

Pre-Construction Notification (PCN) Form

For Nationwide Permits and Regional General Permits

(along with corresponding Water Quality Certifications)

April 13, 2022 Ver 4.3

 (\land)

Please note: fields marked with a red asterisk * below are required. You will not be able to submit the form until all mandatory questions are answered.

Also, if at any point you wish to print a copy of the E-PCN, all you need to do is right-click on the document and you can print a copy of the form.

Below is a link to the online help file.

https://edocs.deq.nc.gov/WaterResources/0/edoc/624704/PCN%20Help%20File%202018-1-30.pdf

A. Processing Information

Pre-Filing Meeting Date Request was submitted on: *

10/28/2021

If this is a courtesy copy, please fill in this with the submission date.

County (or Counties) where the project is located: *

Wake

Is this a NCDMS Project*

Yes No

Click Yes, only if NCDMS is the applicant or co-applicant.

Is this project a public transportation project?*

Yes No This is any publicly funded by municipal, state or federal funds road, rail, airport transportation project.

1a. Type(s) of approval sought from the Corps: *

- Section 404 Permit (wetlands, streams and waters, Clean Water Act)
- Section 10 Permit (navigable waters, tidal waters, Rivers and Harbors Act)

Has this PCN previously been submitted?*

Yes

No

1b. What type(s) of permit(s) do you wish to seek authorization?*

Nationwide Permit (NWP)

Regional General Permit (RGP)

Standard (IP)

1c. Has the NWP or GP number been verified by the Corps?*

Yes No

Nationwide Permit (NWP) Number:	57 - Electric Utility Line and Telecommunications Activities – (frequently used)
NWP Numbers (for multiple NWPS):	
List all NW numbers you are applying for not on the drop down list.	
1d. Type(s) of approval sought from the DWR: * check all that apply	
401 Water Quality Certification - Regular	401 Water Quality Certification - Express
Non-404 Jurisdictional General Permit	
Individual 401 Water Quality Certification	
1e. Is this notification solely for the record because writ	tten approval is not required?
	*
For the record only for DWR 401 Certification:	Yes No
For the record only for Corps Permit:	◯ Yes ⊛ No
1f. Is this an after-the-fact permit application?*	
 Yes No 	

Yes

1g. Is payment into a mitigation bank or in-lieu fee program proposed for mitigation of impacts?

If so, attach the acceptance letter from mil	igation bank or in-lieu fee program.
• Yes	No

Acceptance Letter Attachment

Click the upload button or drag and drop files here to attach document FILE TYPE MUST BE PDF

1h. Is the project located in any of NC's twenty coastal counties?*

Yes
No

1j. Is the project located in a designated trout watershed? $\boldsymbol{^{\star}}$

🔍 Yes 💿 No

Link to trout information: http://www.saw.usace.army.mil/Missions/Regulatory-Permit-Program/Agency-Coordination/Trout.aspx

B. Applicant Information

1a. Who is the Primary Contact? * Chris Rivenbark	
	1c. Primary Contact Phone: *
1b. Primary Contact Email:*	(xxx)xxx-xxxx
crivenbark@ncdot.gov	(919)707-6152
1d. Who is applying for the permit?*	
Owner (Check all that apply)	 Applicant (other than owner)
1e. Is there an Agent/Consultant for this project? *	
○ Yes ● No	
2. Owner Information	
2a. Name(s) on recorded deed: *	
n/a	
2b. Deed book and page no.:	
2c. Contact Person:	
(for Corporations)	
2d. Address*	
Street Address	
n/a	
Address Line 2 City	State / Province / Region
n/a	n/a
Postal / Zip Code	Country
n/a	n/a
2e. Telephone Number: *	
(xxx)xxx-xxxx	
(919)707-6000	

 \bigcirc

2f. Fax Number:

(xxx)xxx-xxxx

2g. Email Address:*

maturchy@ncdot.gov

3. Applicant Information (if different from owner)

3a. Name:* NCDOT

3b. Business Name:

(if applicable)

C. Project Information and Prior Project History	\odot
maturchy@ncdot.gov	
3f. Email Address: *	
(XXX)XXX-XXXX	(xxx)xxx-xxxx
(919)707-6000	3e. Fax Number:
3d. Telephone Number: *	
27699-1598	US
Postal / Zip Code	Country
Raleigh	NC
City	State / Province / Region
Address Line 2	
1598 Mail Service Center	
Street Address	
3c. Address*	

 \bigcirc

 \bigcirc

1. Project Information

1a. Name of project: *

Knightdale Town-wide Closed Loop Traffic Signal System (U-6026-Central)

1b. Subdivision name:

(if appropriate)

1c. Nearest municipality / town: *

Knightdale

2. Project Identification

2a. Property Identification Number:	2b. Property size:
(tax PIN or parcel ID)	(in acres)
2c. Project Address	
Street Address	
Address Line 2	
City	State / Province / Region
Postal / Zin Code	Country

2d. Site coordinates in decimal degrees

Please collect site coordinates in decimal degrees. Use between 4-6 digits (unless you are using a survey-grade GPS device) after the decimal place as appropriate, based on how the location was determined. (For example, most mobile phones with GPS provide locational precision in decimal degrees to map coordinates to 5 or 6 digits after the decimal place.)

Latitude: *	Longitude: *
35.798655	-78.476904
ex: 34.208504	-77.796371

3. Surface Waters

3a. Name of the nearest body of water to proposed project: $^{\boldsymbol{\star}}$

Poplar Creek and UTs to Poplar Creek and UTs to Neuse River

```
3b. Water Resources Classification of nearest receiving water: *
C; NSW
```

Surface Water Lookup

3c. What river basin(s) is your project located in? $\ensuremath{^{\star}}$

Neuse

3d. Please provide the 12-digit HUC in which the project is located.*

030202010705, 030202011103

River Basin Lookup

4. Project Description and History

4a. Describe the existing conditions on the site and the general land use in the vicinity of the project at the time of this application: *

All work will be conducted within NCDOT right-of-way and existing utility corridors, which consists of predominately roadside shoulders and periodically maintained areas.

4b. Have Corps permits or DWR certifications been obtained for this project (including all prior phases) in the past?*

🔍 Yes 💿 No 🔍 Unknown

4f. List the total estimated acreage of all existing wetlands on the property:

20

4g. List the total estimated linear feet of all existing streams on the property:

(intermittent and perennial)

3,000

4h. Explain the purpose of the proposed project: *

The purpose of the project is to install conduit and aerial lines within existing DOT right-of-way and existing utility corridors to facilitate the Knightdale town-wide, closed loop, computerized traffic signal system.

4i. Describe the overall project in detail, including indirect impacts and the type of equipment to be used: *

The conduit and aerial lines will be installed as well as anchor guys and bore pits. Anticipated equipment to be used includes trenchers, backhoes, and boring equipment.

5. Jurisdictional Determinations

5a. Have the wetlands or streams	been delineated on the property or proposed impact areas?*
Yes	No

Comments:

Unknown

5b. If the Corps made a jurisdictional determination, what type of determination was made?*

Preliminary Approved Not Verified Unknown N/A

Corps AID Number:

Example: SAW-2017-99999

5c. If 5a is yes, who delineated the jurisdictional areas?

Name (if known):	Ben Cogdell
Agency/Consultant Company:	Atkins
Other:	

6. Future Project Plans

6a. Is this a phased project?*

Yes

Are any other NWP(s), regional general permit(s), or individual permits(s) used, or intended to be used, to authorize any part of the proposed project or related activity? This includes other separate and distant crossing for linear projects that require Department of the Army authorization but don't require pre-construction notification.

D. Proposed Impacts Inventory

1. Impacts Summary

1a. Where are the impacts associated with your project? (check all that apply):

- Wetlands
- Streams-tributaries Pond Construction Open Waters

No

Buffers

 \bigcirc

2. Wetland Impacts

If there are wetland impacts proposed on the site, then complete this question for each wetland area impacted.

"W." will be used in the table below to represent the word "wetland".

2a. Site #* (?)	2a1 Reason * (?)	2b. Impact type * (?)	2c. Type of W. *	2d. W. name*	2e. Forested *	2f. Type of Jurisdicition *	2g. Impact area *
SCP-13	Anchor Guy-Fill	Р	Bottomland Hardwood Forest	WB	Yes	Both	0.000 (acres)
SCP-13	Anchor Guy	Т	Bottomland Hardwood Forest	WB	Yes	Both	0.009 (acres)
SCP-50	Anchor Guy	Р	Bottomland Hardwood Forest	WD	No	Both	0.000 (acres)
SCP-50	Anchor Guy	т	Bottomland Hardwood Forest	WD	No	Both	0.006 (acres)

2g. Total Permanent Wetland Impact

0.000

2g. Total Wetland Impact

0.015

2i. Comments:

SCP-13 permanent wetland impact = 0.000092 SCP-50 permanent wetland impact = 0.000092

6. Buffer Impacts (for DWR)

If project will impact a protected riparian buffer, then complete the chart below. Individually list all buffer impacts below.

6a. Project is in which protect basin(s)?*

Check all that apply.

 Neuse
 Tar-Pamlico

 Catawba
 Randleman

 Goose Creek
 Jordan Lake

 Other
 Tar-Pamlico

6b. Impact Type * (?)	6c. Per or Temp* (?)	6d. Stream name *	6e. Buffer mitigation required?*	6f. Zone 1 impact*	6g. Zone 2 impact*
SCP-17 Guy Anchor-Allowable	Р	SD	No	0 (square feet)	79 (square feet)
SCP-23 Guy Anchor-Allowable	Р	SS	No	396 (square feet)	4 (square feet)
SCP-50 Fiber Optic Bore-Allowable	P	SI	No	50 (square feet)	230 (square feet)
SCP-50 Guy Anchor-Allowable	Ρ	SI	No	294 (square feet)	310 (square feet)

6h. Total buffer impacts:

Total Temporary impacts: 0.00 0.00
Zone 1 Zone 2
Total Permanent impacts: 740.00 623.00
Zone 1 Zone 2
Total combined buffer impacts:740.00623.00

 (\land)

6i. Comments:

E. Impact Justification and Mitigation

1. Avoidance and Minimization

1a. Specifically describe measures taken to avoid or minimize the proposed impacts in designing the project: *

There will be no impact to jurisdictional streams. Impacts to wetlands or riparian buffers will occur only for the installation of guy anchors or bore pits for directional drilling. When possible, lines will use the existing facilities. Impact sites occur within existing public utility easements, so any vegetation clearing would be to herbaceous vegetation and/or small woody saplings, and that no tree clearing (larger than 2-inches diameter at breast height) clearing of woody vegetation is proposed anywhere within the project limits.

1b. Specifically describe measures taken to avoid or minimize the proposed impacts through construction techniques: *

In areas of conflicts with jurisdictional features, the lines will be directionally bored. Installation of lines will be done without equipment crossing (impacting) jurisdictional streams. To the extent practicable, tree cutting will be kept at a minimum.

2. Compensatory Mitigation for Impacts to Waters of the U.S. or Waters of the State

2a. Does the project require Compensatory Mitigation for impacts to Waters of the U.S. or Waters of the State?

Yes • No

2b. If this project DOES NOT require Compensatory Mitigation, explain why:

There are no impacts to jurisdictional streams. Impacts to jurisdictional wetlands is minimal (<0.001 ac.).

NC Stream Temperature Classification Maps can be found under the Mitigation Concepts tab on the Wilmington District's RIBITS website.

*** Recent changes to the stormwater rules have required updates to this section .***

1. Diffuse Flow Plan

1a. Does the project include or is it adjacent to protected riparian buffers identified within one of the NC Riparian Buffer Protection Rules?

Yes

1b. All buffer impacts and high ground impacts require diffuse flow or other form of stormwater treatment. If the project is subject to a state implemented riparian buffer protection program, include a plan that fully documents how diffuse flow will be maintained.

All Stormwater Control Measures (SCM)s must be designed in accordance with the NC Stormwater Design Manual. Associated supplement forms and other documentation shall be provided.

What type of SCM are you providing?

- Level Spreader
- Vegetated Conveyance (lower SHWT)
- Wetland Swale (higher SHWT)
- Other SCM that removes minimum 30% nitrogen
- Proposed project will not create concentrated stormwater flow through the buffer
- (check all that apply)

For a list of options to meet the diffuse flow requirements, click here.

2. Stormwater Management Plan

2a. Is this a NCDOT project subject to compliance with NCDOT's Individual NPDES permit NCS000250?*

No.

Yes No

2b. Does this project meet the requirements for low density projects as defined in 15A NCAC 02H .1003(2)?*

Yes No

To look up low density requirement click here 15A NCAC 02H .1003(2)

Comments

G. Supplementary Information

1. Environmental Documentation

1a. Does the project involve an expenditure of public (federal/state/local) funds or the use of public (federal/state) land?*

```
Yes
                                             No
1b. If you answered "yes" to the above, does the project require preparation of an environmental document pursuant to the requirements of the National or State (North Carolina)
Environmental Policy Act (NEPA/SEPA)?*
                                             No
Yes
1c. If you answered "yes" to the above, has the document review been finalized by the State Clearing House? (If so, attach a copy of the NEPA or SEPA final approval letter.)*
```

Yes No

Comments:*

Type I Categorical Exclusions do not require submittal to the State Clearing House

2. Violations (DWR Requirement)

2a. Is the site in violation of DWR Water Quality Certification Rules (15A NCAC 2H .0500), Isolated Wetland Rules (15A NCAC 2H .1300), or DWR Surface Water or Wetland Standards or Riparian Buffer Rules (15A NCAC 2B .0200)? No

Yes

3. Cumulative Impacts (DWR Requirement)

3a. Will this project (based on past and reasonably anticipated future impacts) result in additional development, which could impact nearby downstream water quality?*

Yes No

3b. If you answered "no," provide a short narrative description.

This project will neither influence nearby land uses nor stimulate growth

4. Sewage Disposal (DWR Requirement)

```
4a. Is sewage disposal required by DWR for this project?*
```

Yes No N/A

 \bigcirc

5. Endangered Species and Designated Critical Habitat (Corps Requirement)

5]. What data sources did you use to determine whether your site would impact Endangered Species or Designated Critical Habitat?*

N.C. Natural Heritage Program database; USFWS-IPaC website list of species with potential within the study area; biological surveys for protected species,which include Neuse River waterdog, Carolina madtom, dwarf wedgemussel, Atlantic pigtoe and Michaux's sumac. Due to having no impact on jurisdictional streams, aquatic species received a biological opinion of No Effect. Due to a known population of Michaux's sumac in close proximity to the project site, informal concurrence was requested from USFWS. Concurrence was received from the USFWS on September 6, 2022.

6. Essential Fish Habitat (Corps Requirement)

6a. Will this project occur in or near an area designated as an Essential Fish Habitat?*

Yes
 No

6b. What data sources did you use to determine whether your site would impact an Essential Fish Habitat?*

NMFS county index

7. Historic or Prehistoric Cultural Resources (Corps Requirement)

No

No

Link to the State Historic Preservation Office Historic Properties Map (does not include archaeological data: http://gis.ncdcr.gov/hpoweb/

7a. Will this project occur in or near an area that the state, federal or tribal governments have designated as having historic or cultural preservation status (e.g., National Historic Trust designation or properties significant in North Carolina history and archaeology)? *

Yes

7b. What data sources did you use to determine whether your site would impact historic or archeological resources?* NEPA documentation

8. Flood Zone Designation (Corps Requirement)

Link to the FEMA Floodplain Maps: https://msc.fema.gov/portal/search

8a. Will this project occur in a FEMA-designated 100-year floodplain?*

Yes

8b. If yes, explain how project meets FEMA requirements:

8c. What source(s) did you use to make the floodplain determination?* FEMA flood map

Miscellaneous

Comments

Please use the space below to attach all required documentation or any additional information you feel is helpful for application review. Documents should be combined into one file when possible, with a Cover Letter, Table of Contents, and a Cover Sheet for each Section preferred.

Click the upload button or drag and drop files here to attach document

U-6026 Nationwide Wake September 9 2022.pdf File must be PDF or KMZ 31.38MB

 \bigcirc

 (\frown)

Signature

.

By checking the box and signing below, I certify that:

• The project proponent hereby certifies that all information contained herein is true, accurate, and complete to the best of my knowledge and belief'; and

- The project proponent hereby requests that the certifying authority review and take action on this CWA 401 certification request within the applicable reasonable period of time.
- I have given true, accurate, and complete information on this form;

I agree that submission of this PCN form is a "transaction" subject to Chapter 66, Article 40 of the NC General Statutes (the "Uniform Electronic Transactions Act");

I agree to conduct this transaction by electronic means pursuant to Chapter 66, Article 40 of the NC General Statutes (the "Uniform Electronic Transactions Act");

- I understand that an electronic signature has the same legal effect and can be enforced in the same way as a written signature; AND
- I intend to electronically sign and submit the PCN form.

Full Name:*

Mack Christopher Rivenbark, III

Signature *

Chnis Rivenbank

Date

9/9/2022

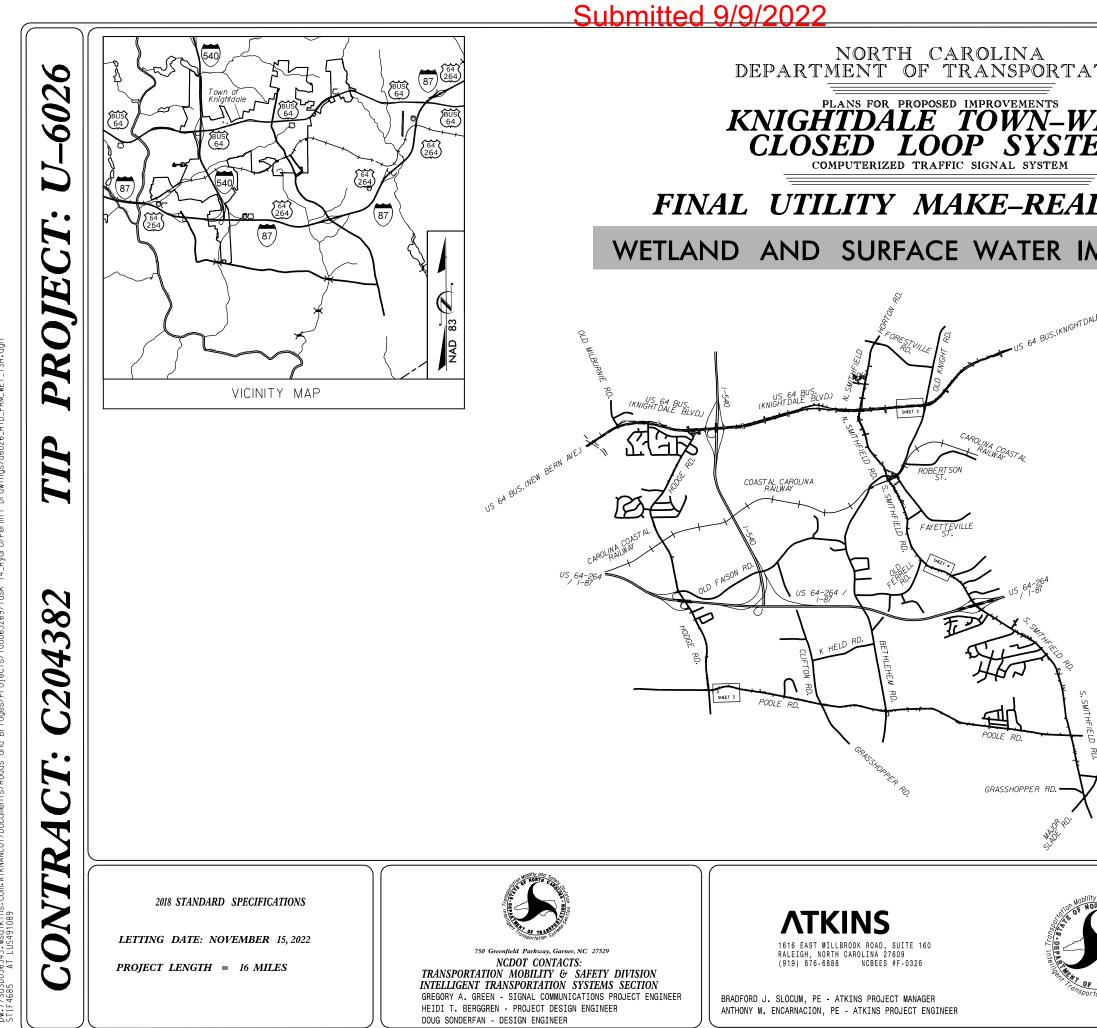
United States Department of the Interior

FISH AND WILDLIFE SERVICE Raleigh ES Field Office Post Office Box 33726 Raleigh, North Carolina 27636-3726 September 6, 2022

Chris Rivenbark NC Department of Transportation 1598 Mail Service Center Raleigh, NC 27699-1598

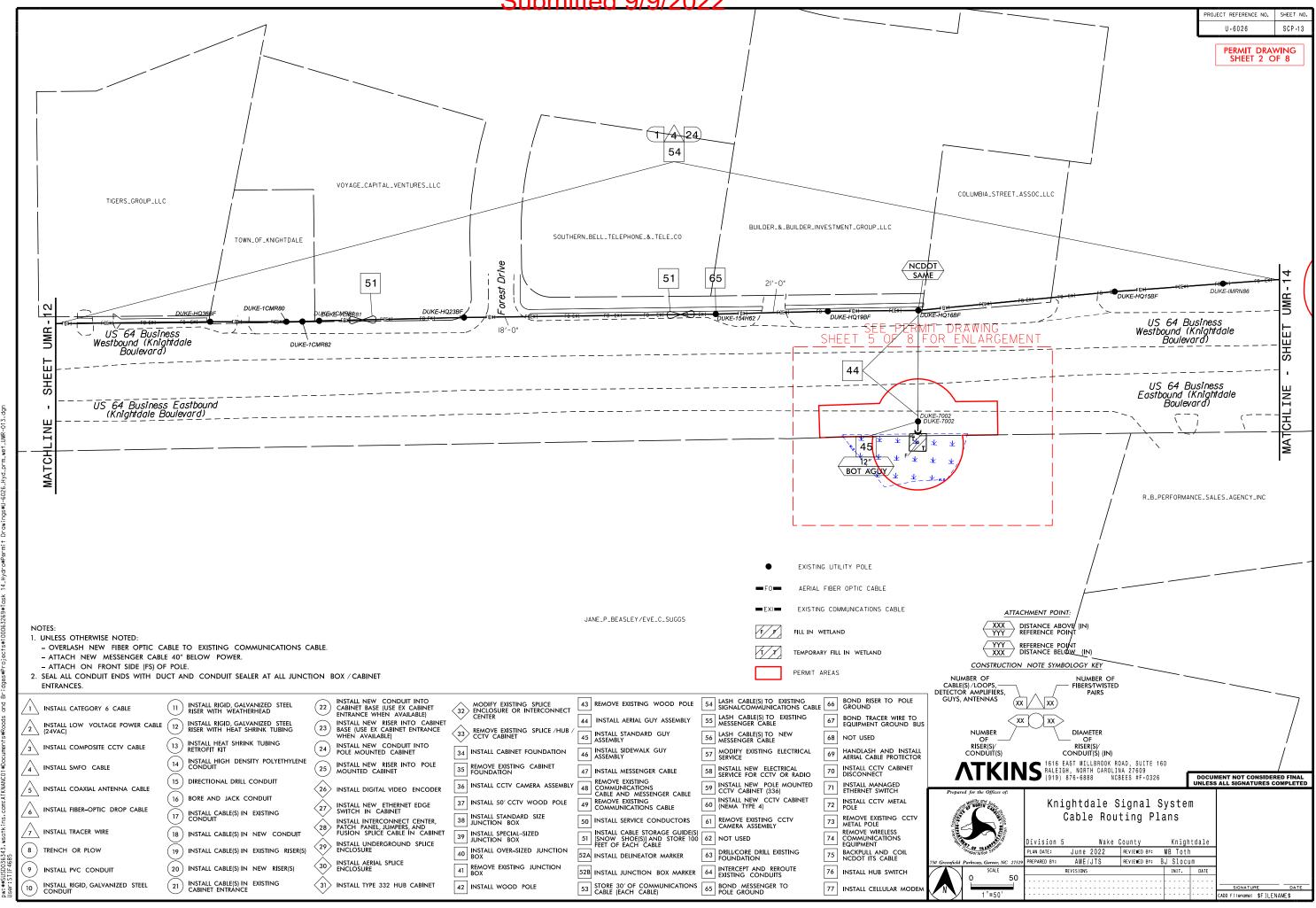
Dear Mr. Rivenbark:

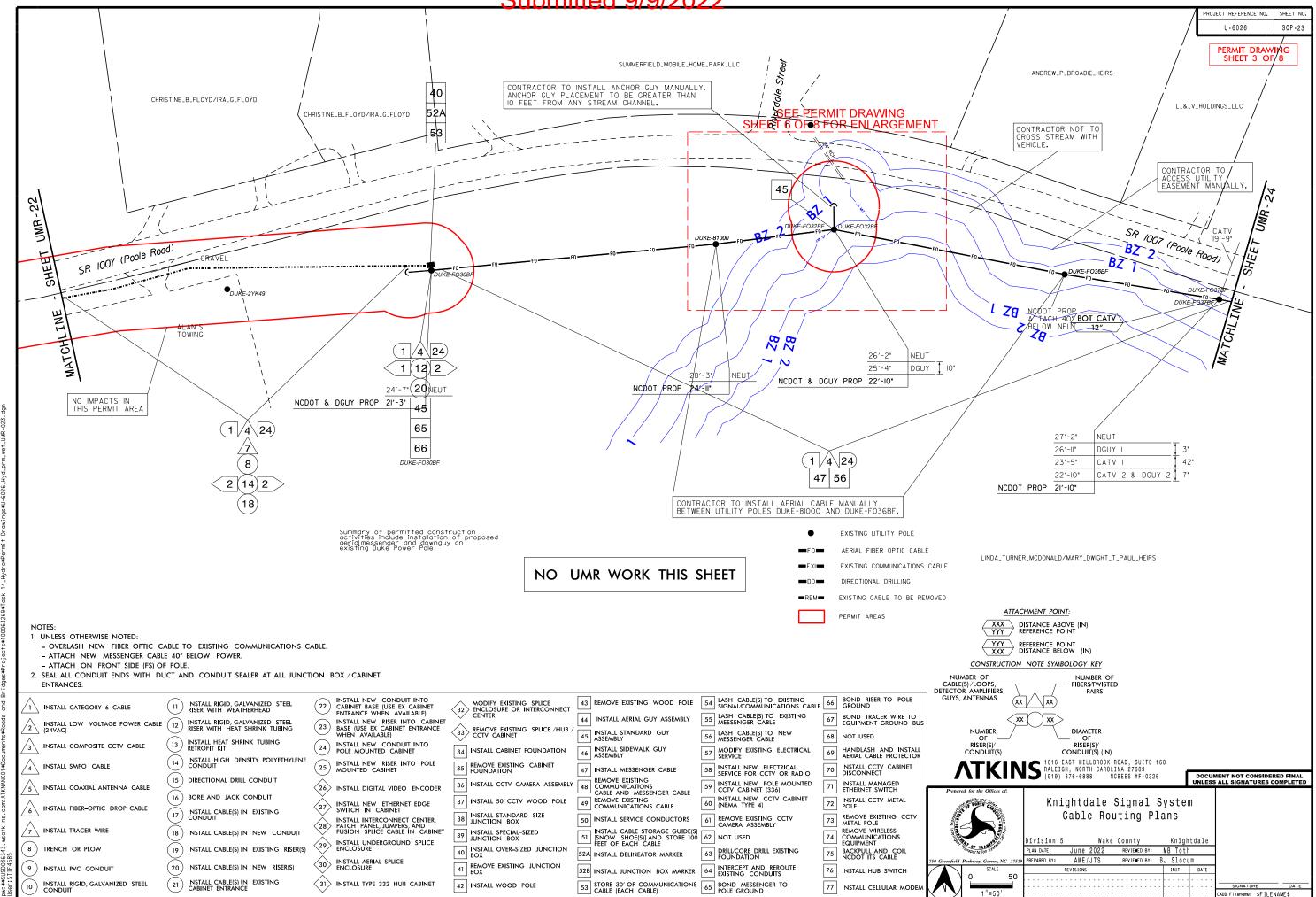
This letter is in response to your letter of September 1, 2022 which provided the U.S. Fish and Wildlife Service (Service) with the biological conclusion of the North Carolina Department of Transportation that the proposed installation of the Knightdale Town-Wide Closed Loop Computerized Traffic Signal System in Wake County (TIP No. U-6026) may affect, but is not likely to adversely affect the federally endangered Michaux's sumac (*Rhus michauxii*). The following response is provided in accordance with Section 7 of the Endangered Species Act (ESA) of 1973, as amended (16 U.S.C. 1531-1543).

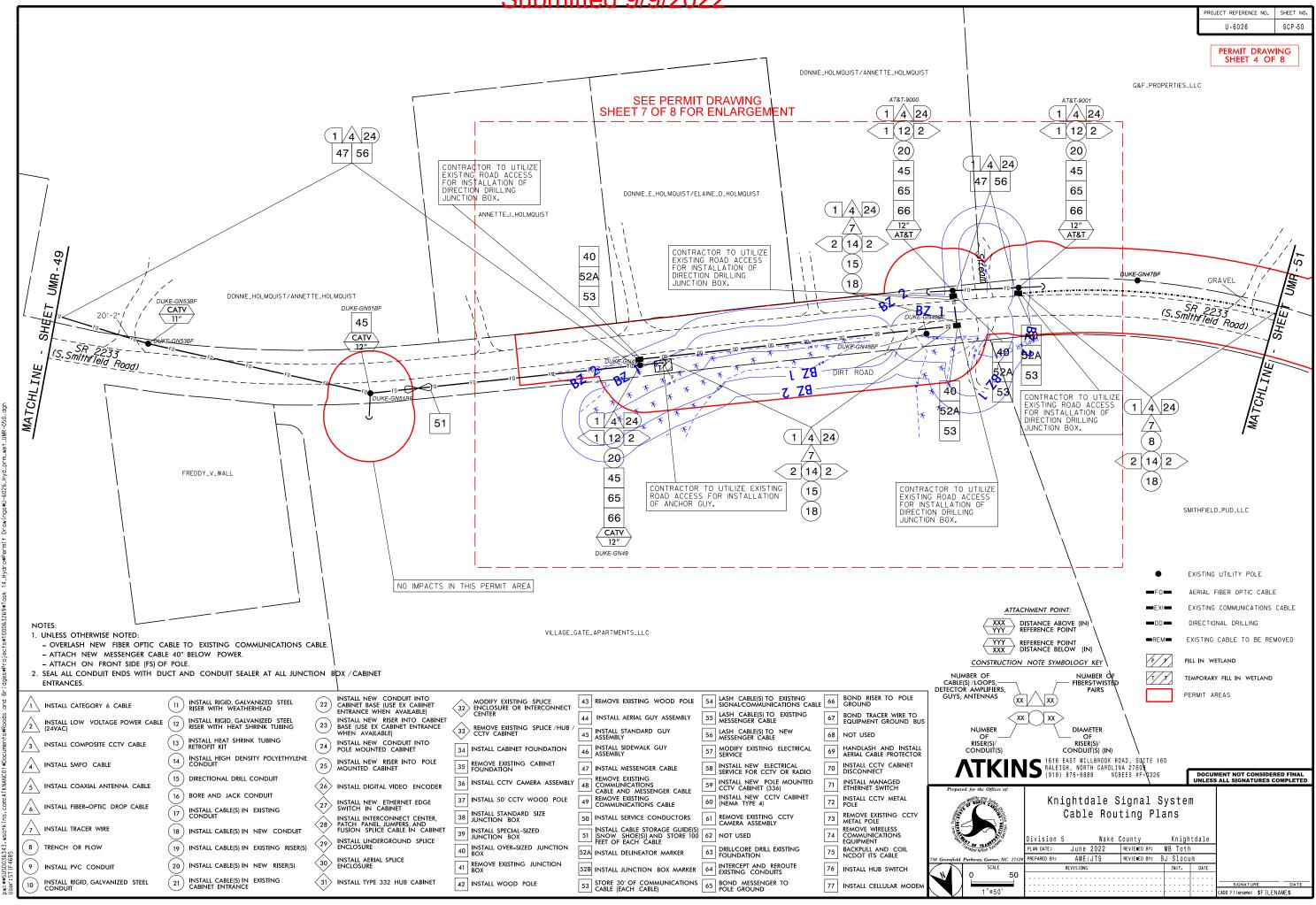

According to information provided, plant surveys were conducted within the study area on multiple days in October 2018 and June 2021. No specimens of Michaux's sumac were observed. However, a known population occurs in close proximity (~0.1 mile) to the study area. Based on survey results and other available information, the Service concurs with your conclusion that the proposed action may affect, but is not likely to adversely affect Michaux's sumac. In addition, we concur that the action will have no effect on all other federally listed species.

We believe that the requirements of Section 7(a)(2) of the ESA have been satisfied. We remind you that obligations under Section 7 consultation must be reconsidered if: (1) new information reveals impacts of this identified action that may affect listed species or critical habitat in a manner not previously considered in this review; (2) this action is subsequently modified in a manner that was not considered in this review; or (3) a new species is listed or critical habitat determined that may be affected by this identified action. If you have any questions regarding our response, please contact Mr. Gary Jordan at gary jordan@fws.gov.

Sincerely,

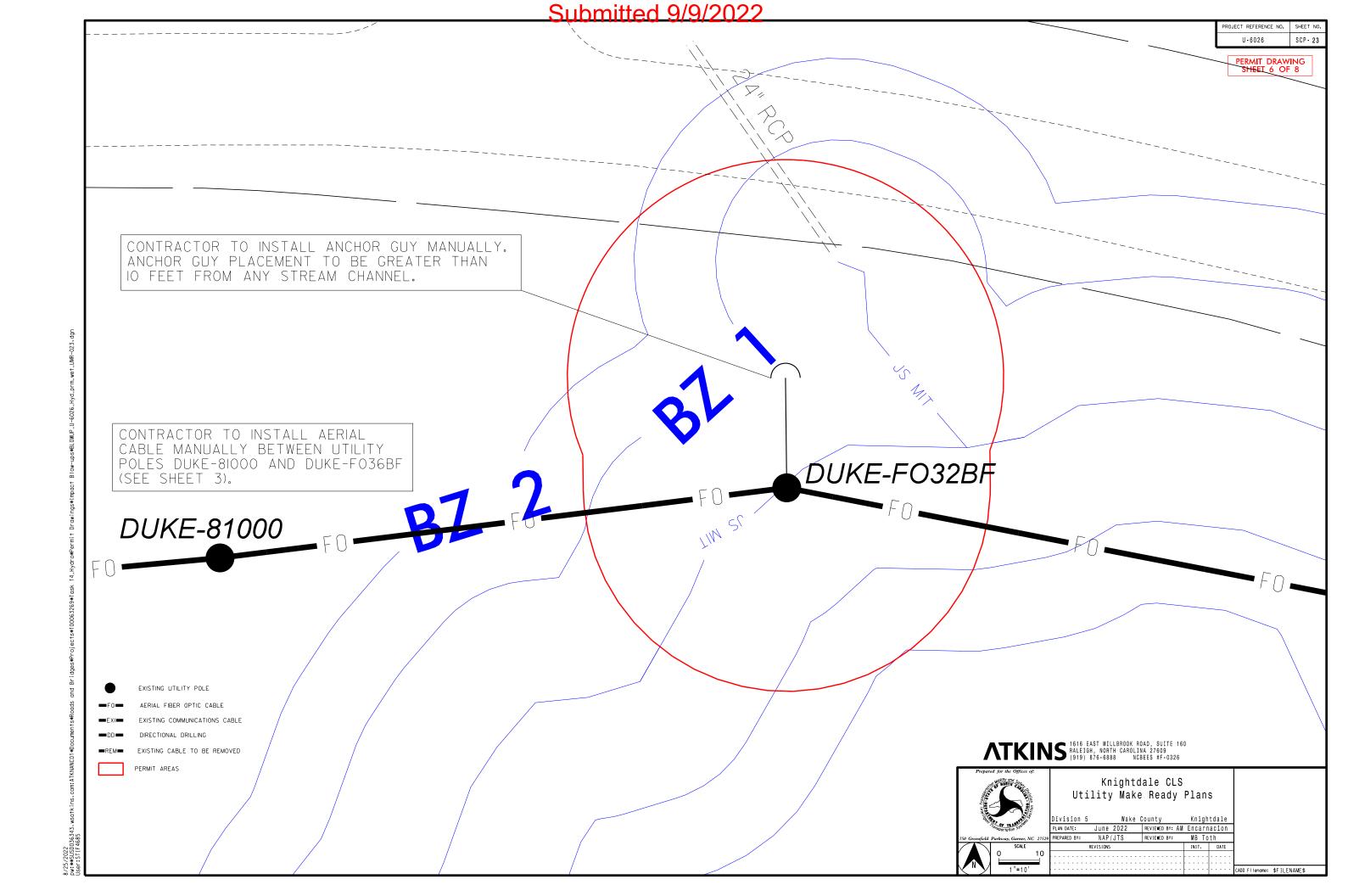

GARY JORDAN GARY JORDAN Date: 2022.09.06 13:56:08 -04'00' *for* Pete Benjamin Field Supervisor

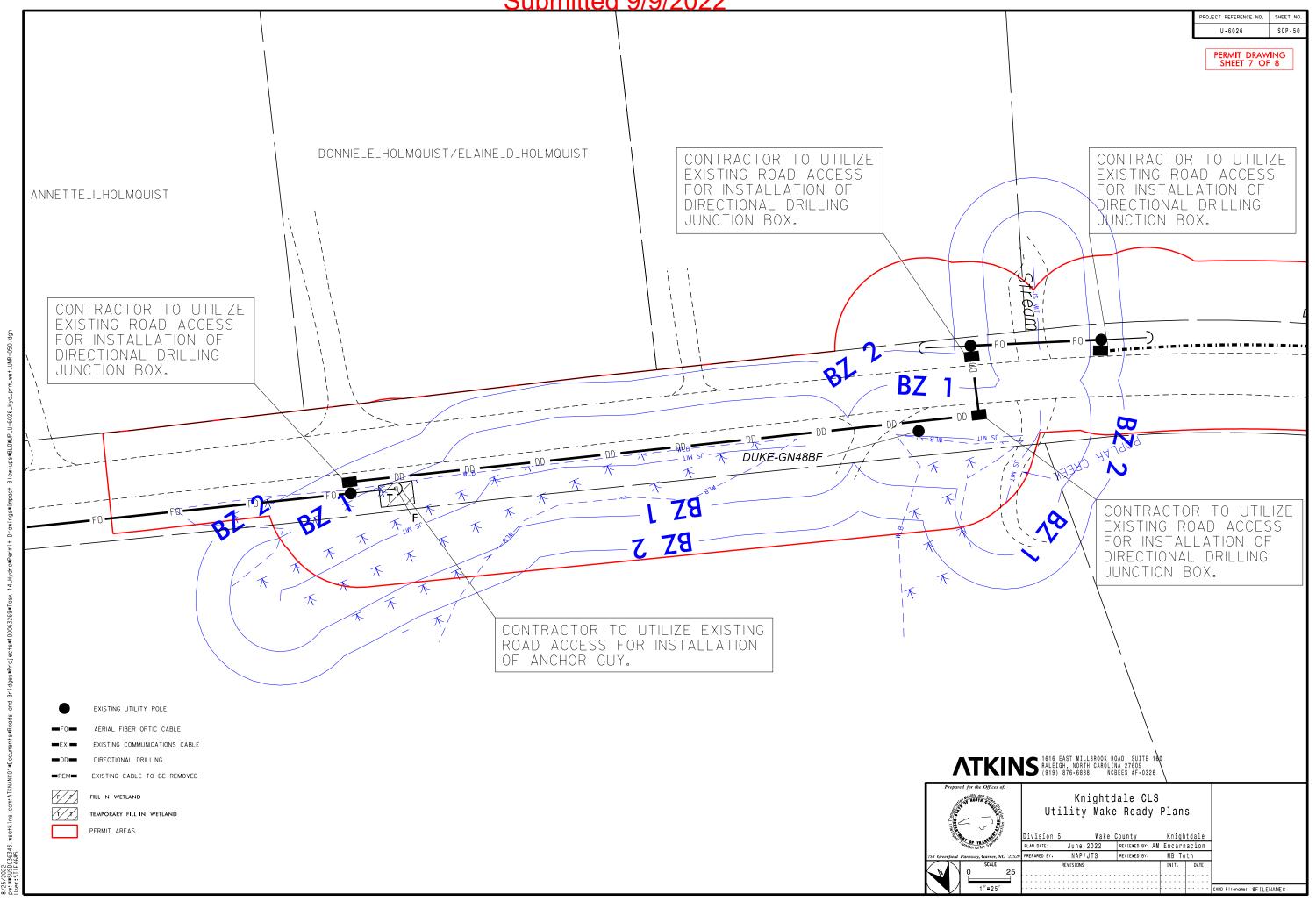

Electronic copy: Eric Alsmeyer, USACE, Wake Forest, NC Jason Dilday, NCDOT, Raleigh, NC




25-AUG-2022 15:47 pw://SUSD036343.wsafkir STIF4685 AT LUS491089

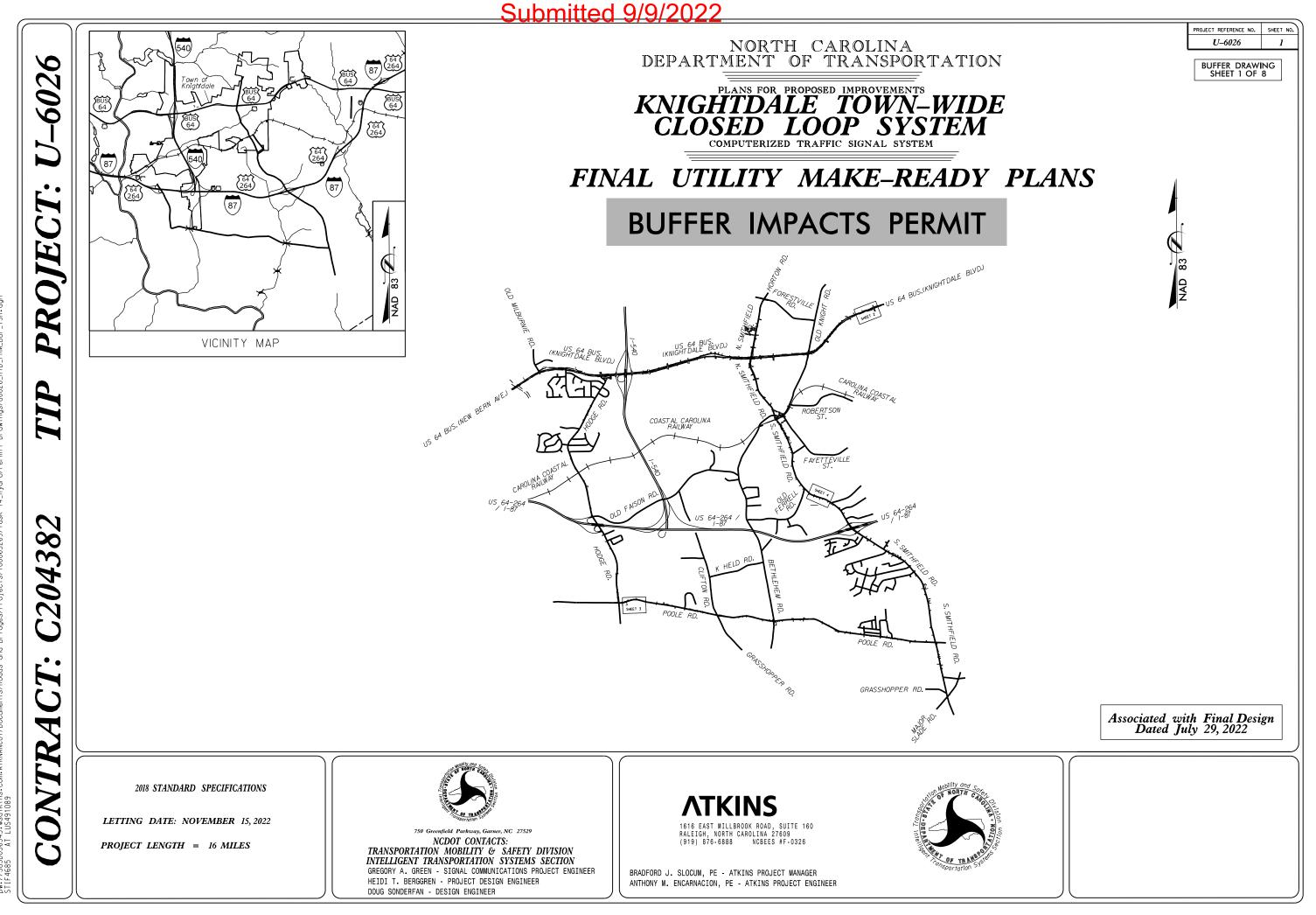
ATION	PROJECT REFERENCE NO. SHEET NO. U-6026 1 PERMIT DRAWING SHEET 1 OF 8
VIDE EM	
DY PLANS	
MPACTS PERMIT	
DALE BLYDJ	
a	
S. SMITHFIELD RD.	
*	
Associated w Dated Ju	ith Final Design uly 29, 2022
PILITY and Society of the society of	



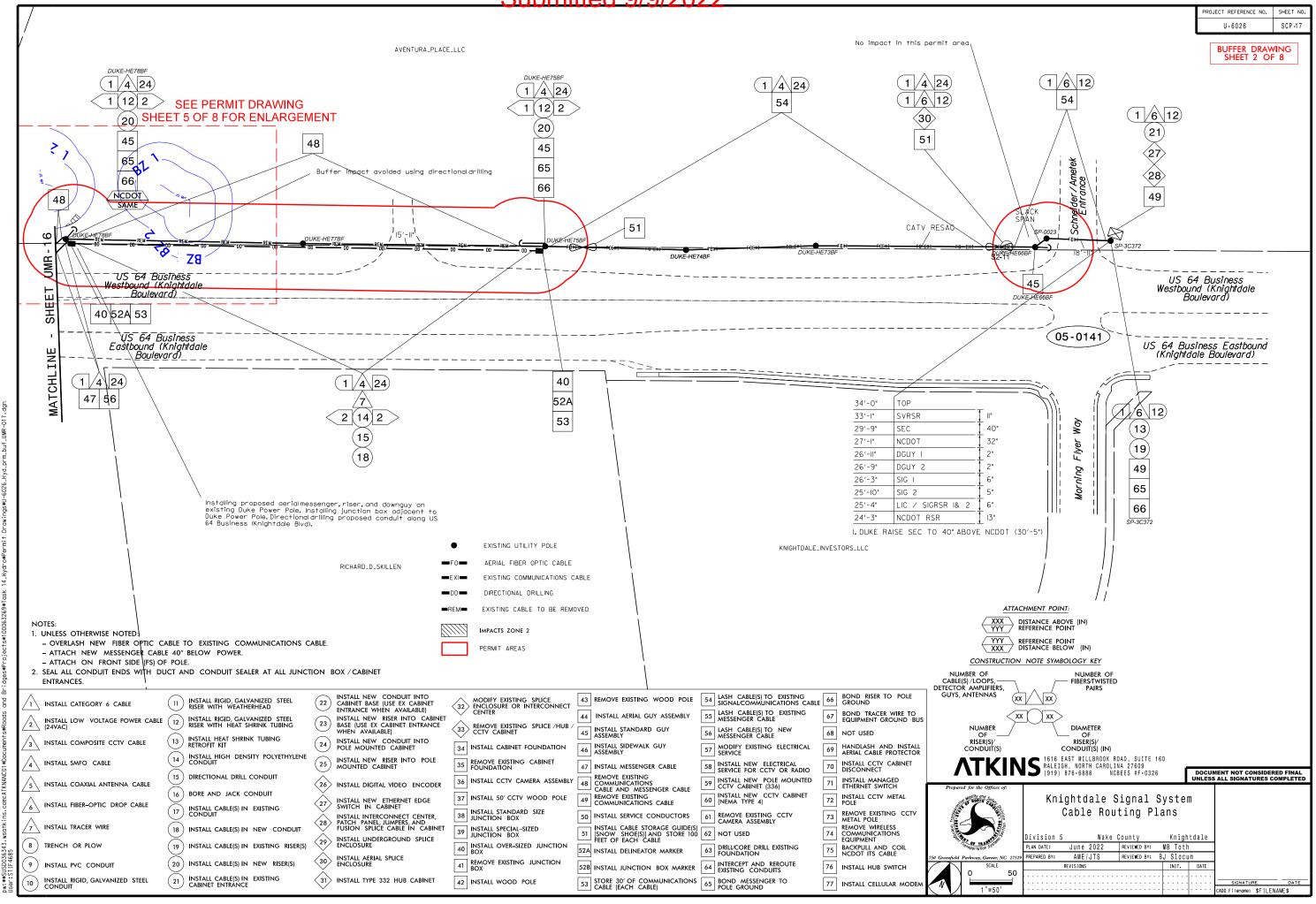


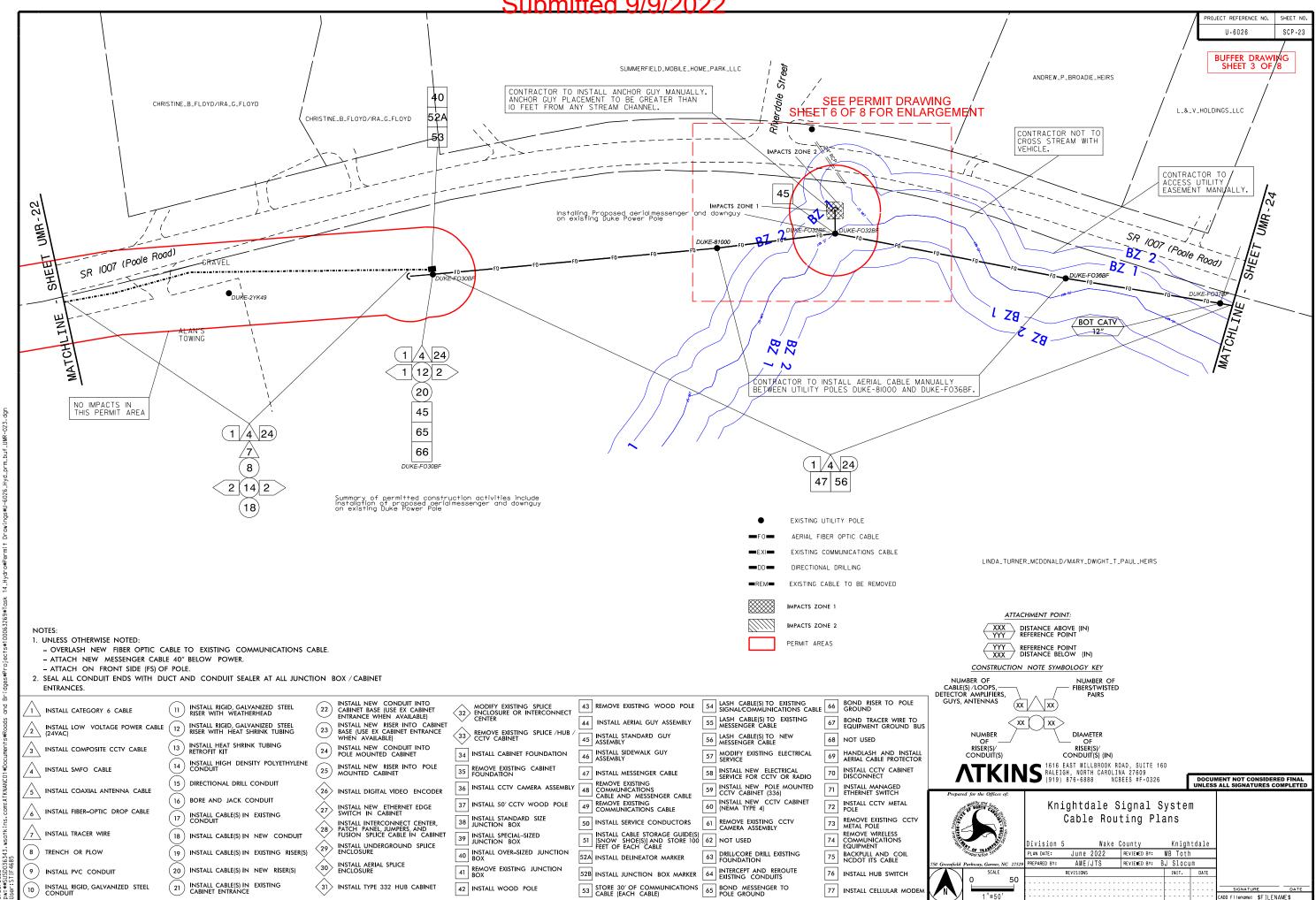
	PROJEC	T REFERENCE NO.	SHEET NO.
		U-6026	SCP-13
	Γ	PERMIT DRA	WING
		PERMIT DRAY SHEET 5 C	DF 8
ATKINS 1616 EAST WILLBROOK ROAD, SUITE 160 RALEIGH, NORTH CAROLINA 27609 (919) 876-6888 NCBEES #F-0326			
epared for the Offices of:	T		
Knightdale CLS			
Utility Make Ready Plans			
Division 5 Wake County Knightd	ale		
PLAN DATE: JUNE 2022 REVIEWED BY: AM ENCAPHAC	ion		
SCALE REVISIONS INIT.	DATE		
1"=10'	c.	DD Filename: \$FILE	NAME\$

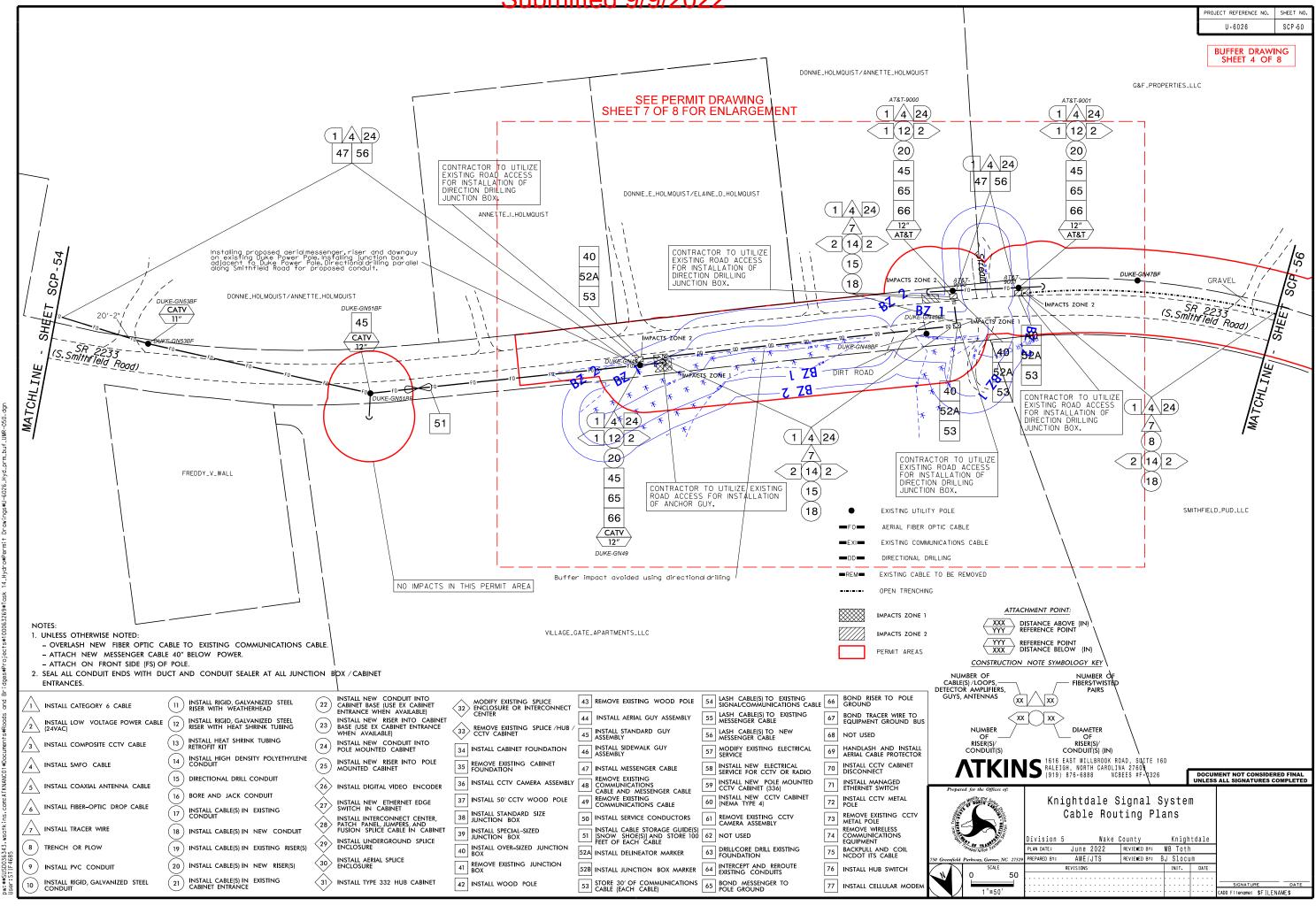
			WE		ND AND SU			SURFA	CE WATER IN	IPACTS	
Sheet No.	Impact Type	Permanent Fill In Wetlands (ac)	Temp. Fill In Wetlands (ac)		Mechanized Clearing	Hand Clearing in Wetlands (ac)	Permanent SW impacts (ac)	Temp. SW impacts (ac)	Existing Channel Impacts Permanent (ft)	Existing Channel Impacts Temp. (ft)	Natural Stream Design (ft)
SCP-13	New Anchor Guy	<0.01	0.01								
SCP-23	New Anchor Guy	0	0								
SCP-50	New Anchor Guy	<0.01	<0.01								
OTALS*:		<0.01	0.01	0.00	0.00	0.00	0.00	0.00	0	0	0

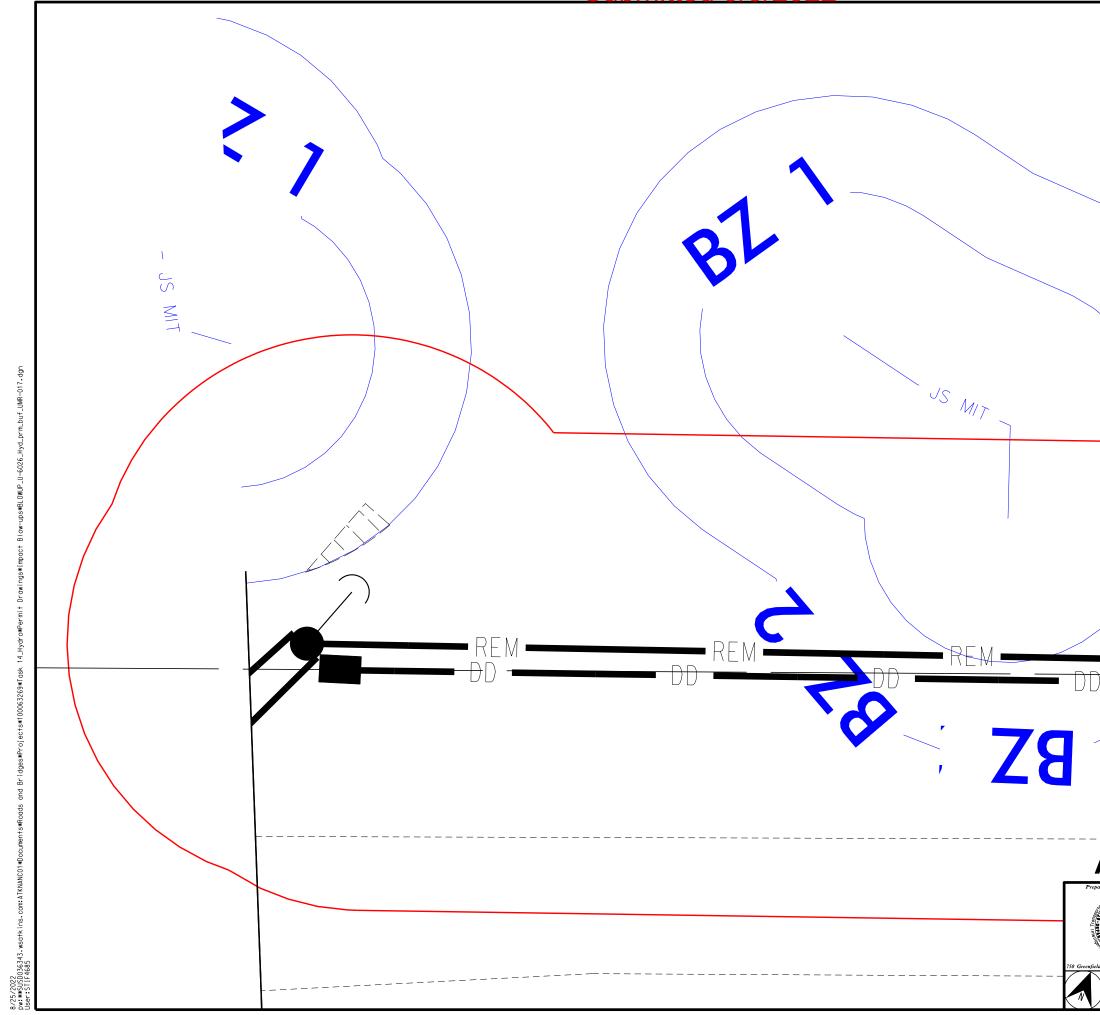

SHEET

8

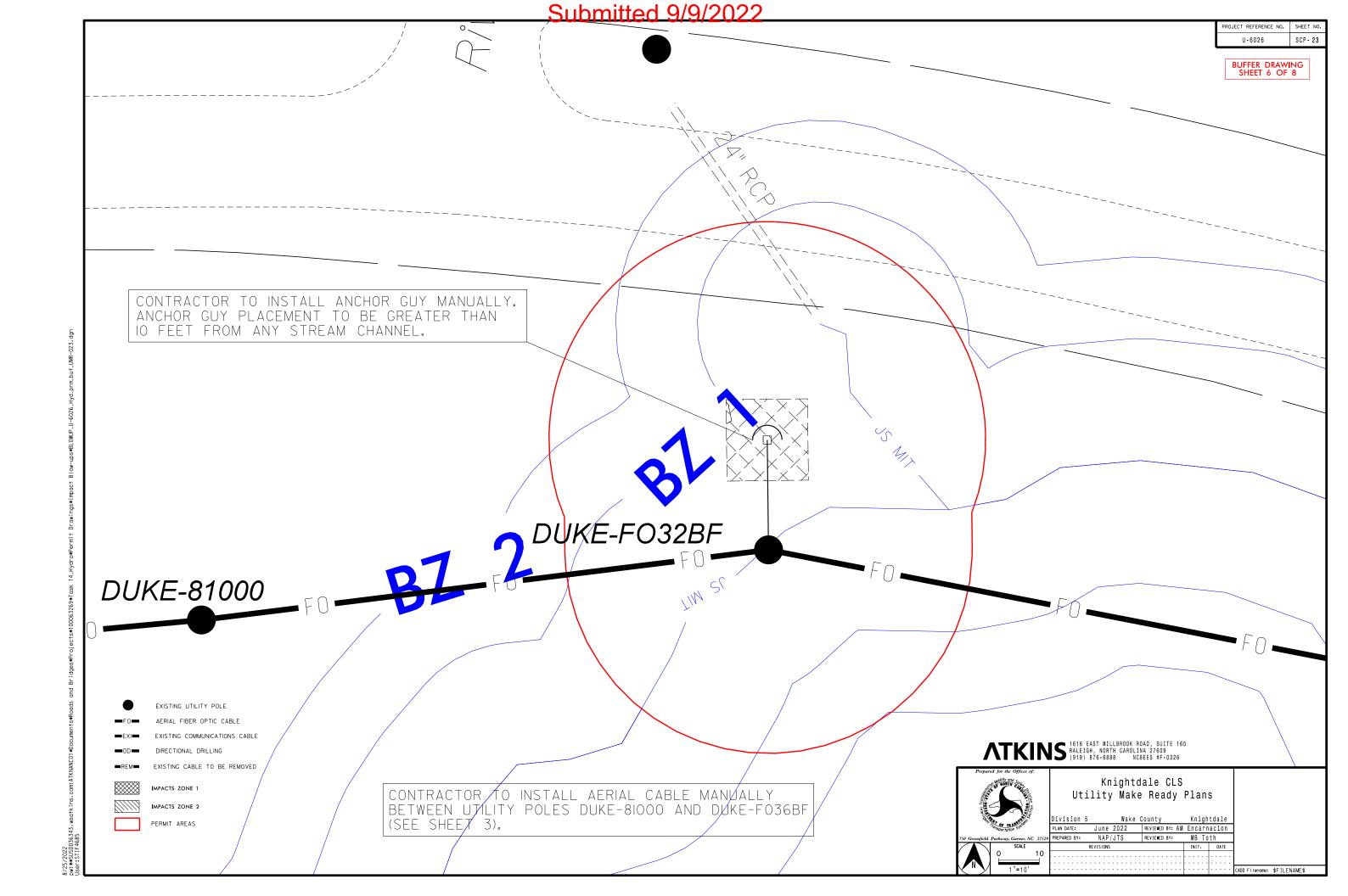

.1 OF

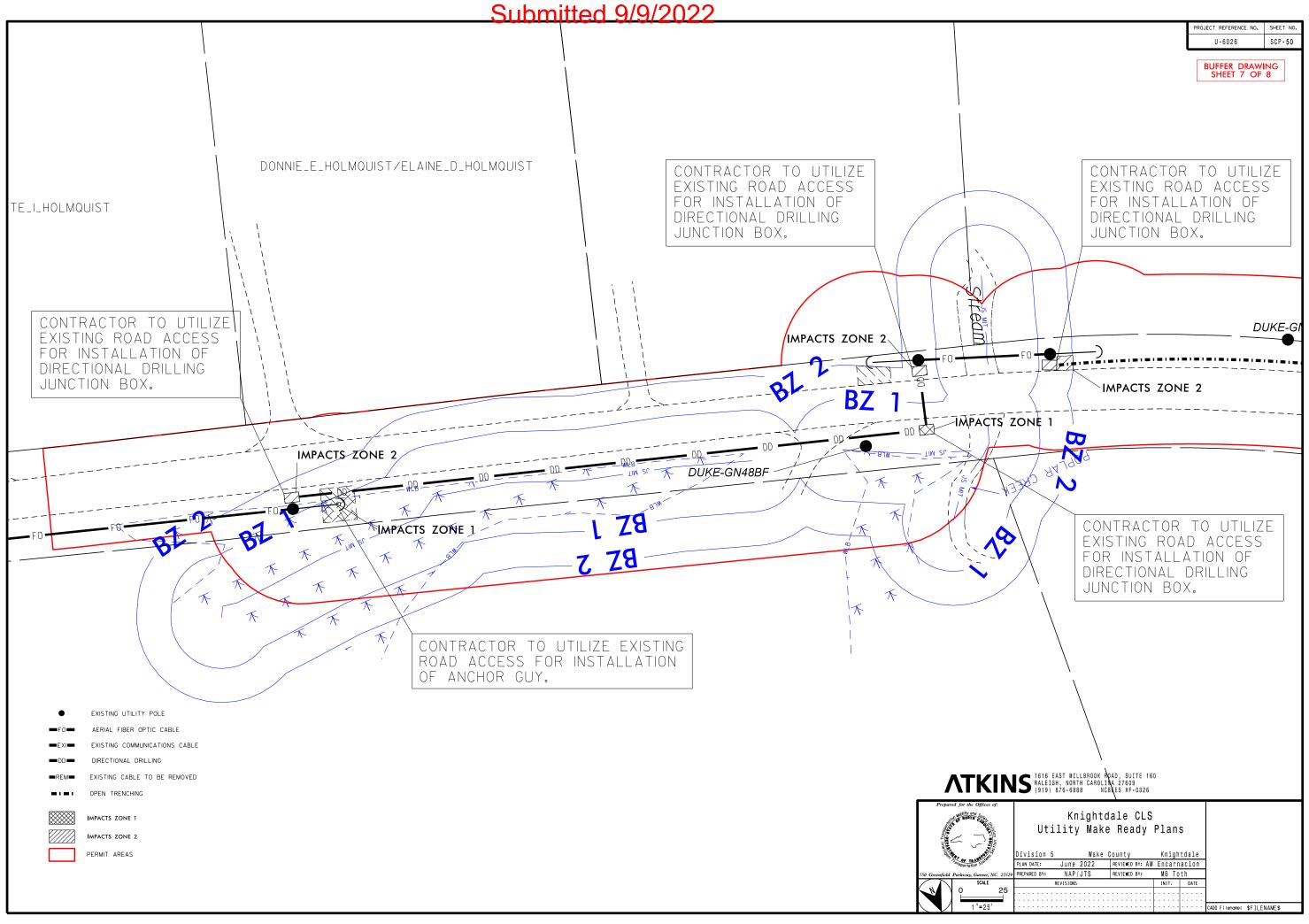

8


Revised 2018 Feb



25-AUG-2022 15:45 pw://SUSD036343.wsafki STIF4685 AT LUS49108





	-	
	PROJECT REFERENCE NO.	SHEET NO.
	U-6026	SCP-17
	BUFFER DRAW SHEET 5 OF	/ING 8
	L	
<		
\setminus		
EXISTING	UTILITY POLE	
	FIBER OPTIC CABLE	
	COMMUNICATIONS CABLE NAL DRILLING	<u>.</u>
	CABLE TO BE REMOVED	
XXXXXX		
IMPACTS Z		
	REAS	
		• [][
~		
ATVINIC 1616 EAST WILLBROOK ROAD, SUITE 160		
ATKINS 1616 EAST WILLBROOK ROAD, SUITE 160 RALEIGH, NORTH CAROLINA 27609 (919) 876-6888 NCBEES #F-0326		
pared for the Offices of: Knightdale CLS		
Division 5 Wake County Knighto PLAN DATE: June 2022 REVIEWED BY: AM Encarna	cion	
eld Parkway, Garner, NC 27529 PREPARED BY: NAP/JTS REVIEWED BY: MB TOTI	DATE	
<u>1″=10′</u>	CADD Filename: \$FILE	NAME\$

RIPARIAN BUFFER IMPACTS SUMMARY

			ARIAN I	BUFFER								
					IMF	PACTS					BUE	FER
			TYPE		A	LLOWABL	E		OWABLE \ /IITIGATIO			CEMENT
Sheet No.	Structure Size / Type	Directional Drill/Bore	Aerial	Open Trench	ZONE 1 (ft ²)	ZONE 2 (ft ²)	TOTAL (ft ²)	ZONE 1 (ft ²)	ZONE 2 (ft ²)	TOTAL (ft ²)	ZONE 1 (ft ²)	ZONE 2 (ft ²)
SCP-17	Guy Anchor		Х		0	79	79	0	0	0		
SCP-23	Guy Anchor		Х		396	4	396	0	0	0		
	Fiber Optic Cable	X		Х	50	230	230	0	0	0		
SCP-50	Guy Anchor		Х		294	310	600	0	0	0		
TOTALS*	<u> </u>	1			740	623	1363	0	0	0	0	0

NOTES:

NC DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS 7/29/22 WAKE U-6026 47150.1.1 SHEET 8 OF 8

Jurisdictional Determination Request

This form is intended for use by anyone requesting a jurisdictional determination (JD) from the U.S. Army Corps of Engineers, Wilmington District (Corps). Please include all supporting information, as described within each category, with your request. You may submit your request via mail, electronic mail, or facsimile. Requests should be sent to the appropriate project manager of the county in which the property is located. A current list of project managers by assigned counties can be found on-line at:

http://www.saw.usace.army.mil/Missions/RegulatoryPermitProgram/Contact/CountyLocator.aspx, by calling 910-251-4633, or by contacting any of the field offices listed below. Once your request is received you will be contacted by a Corps project manager.

ASHEVILLE & CHARLOTTE REGULATORY FIELD OFFICES

US Army Corps of Engineers 151 Patton Avenue, Room 208 Asheville, North Carolina 28801-5006 General Number: (828) 271-7980 Fax Number: (828) 281-8120

RALEIGH REGULATORY FIELD OFFICE

US Army Corps of Engineers 3331 Heritage Trade Drive, Suite 105 Wake Forest, North Carolina 27587 General Number: (919) 554-4884 Fax Number: (919) 562-0421

WASHINGTON REGULATORY FIELD OFFICE

US Army Corps of Engineers 2407 West Fifth Street Washington, North Carolina 27889 General Number: (910) 251-4610 Fax Number: (252) 975-1399

WILMINGTON REGULATORY FIELD OFFICE

US Army Corps of Engineers 69 Darlington Avenue Wilmington, North Carolina 28403 General Number: 910-251-4633 Fax Number: (910) 251-4025

INSTRUCTIONS:

All requestors must complete Parts A, B, C, D, E, F and G.

<u>NOTE TO CONSULTANTS AND AGENCIES</u>: If you are requesting a JD on behalf of a paying client or your agency, please note the specific submittal requirements in **Part H**.

<u>NOTE ON PART D – PROPERTY OWNER AUTHORIZATION:</u> Please be aware that all JD requests must include the current property owner authorization for the Corps to proceed with the determination, which may include inspection of the property when necessary. This form must be signed by the current property owner(s) or the owner(s) authorized agent to be considered a complete request.

<u>NOTE ON PART D - NCDOT REQUESTS:</u> Property owner authorization/notification for JD requests associated with North Carolina Department of Transportation (NCDOT) projects will be conducted according to the current NCDOT/USACE protocols.

<u>NOTE TO USDA PROGRAM PARTICIPANTS</u>: A Corps approved or preliminary JD may not be valid for the wetland conservation provisions of the Food Security Act of 1985. If you or your tenant are USDA Program participants, or anticipate participation in USDA programs, you should also request a certified wetland determination from the local office of the Natural Resources Conservation Service, prior to starting work.

А.	PARCEL INFORMA		Business F	Rd, Hodge Rd, Poole Rd, Smithfield Rd; NCDOT STI	P U-6026			
	City, State:	Knightda	ale, NC					
	County:	Wake						
	Parcel Index Number(s) (PIN)):	N/A (linear transportation project)				
B.	REQUESTOR INFO Name:	RMAT	ION Jason D	ilday				
	Mailing Address:		NCDOT Century Center Building A					
			1000 Bird	h Ridge Drive, Raleigh, NC 27610				
	Telephone Number:		919-707-6111					
	Electronic Mail Addre Select one:	ess:	jldilday@ncdot.gov					
	I am the curren	nt prope	rty owne	r.				
	I am an Author	rized Ag	gent or E	nvironmental Consultant ¹				
	X Interested Buy	er or Ur	Inder Contract to Purchase					
	Other, please e	xplain.						
C.	PROPERTY OWNE Name:	R INFO		ION ² EAU, Attn: Jason Dilday				
	Mailing Address:		NCDOT (Century Center Building A				
			1000 Bird	h Ridge Drive, Raleigh, NC 27610				
	Telephone Number:		919-707-	6111				
	Electronic Mail Addre	ess:	jldilday@	ncdot.gov				

¹ Must provide completed Agent Authorization Form/Letter.
 ² Documentation of ownership also needs to be provided with request (copy of Deed, County GIS/Parcel/Tax Record).

D. PROPERTY ACCESS CERTIFICATION^{3,4}

By signing below, I authorize representatives of the Wilmington District, U.S. Army Corps of Engineers (Corps) to enter upon the property herein described for the purpose of conducting onsite investigations, if necessary, and issuing a jurisdictional determination pursuant to Section 404 of the Clean Water Act and/or Section 10 of the Rivers and Harbors Act of 1899. I, the undersigned, am either a duly authorized owner of record of the property identified herein, or acting as the duly authorized agent of the owner of record of the property.

Print Name
Capacity: Owner Authorized Agent ⁵
Date
Signature
E. REASON FOR JD REQUEST: (Check as many as applicable)
 ☐ I intend to construct/develop a project or perform activities on this parcel which would be designed to avoid all aquatic resources. ☐ I intend to construct/develop a project or perform activities on this parcel which would be designed to avoid all jurisdictional aquatic resources under Corps authority. [X] I intend to construct/develop a project or perform activities on this parcel which may require authorization from the Corps, and the JD would be used to avoid and minimize impacts to jurisdictional aquatic resources and as an initial step in a future permitting process. [] I intend to construct/develop a project or perform activities on this parcel which may require authorization from the Corps; this request is accompanied by my permit application and the JD is to be used in the permitting process. [] I intend to construct/develop a project or perform activities in a navigable water of the U.S. which is included on the district Section 10 list and/or is subject to the ebb and flow of the tide. [] A Corps JD is required in order obtain my local/state authorization. [] I intend to contest jurisdiction over a particular aquatic resource on the parcel. [] I believe that the site may be comprised entirely of dry land.
For NCDOT requests following the current NCDOT/USACE protocols, skip to Part E. If there are multiple parcels owned by different parties, please provide the following for each additional parcel on a continuation sheet.

3 4

F. JURISDICTIONAL DETERMINATION (JD) TYPE (Select One)

I am requesting that the Corps provide a <u>preliminary</u> JD for the property identified herein.

A Preliminary Jurisdictional Determination (PJD) provides an indication that there may be "waters of the United States" or "navigable waters of the United States" on a property. PJDs are sufficient as the basis for permit decisions. For the purposes of permitting, all waters and wetlands on the property will be treated as if they are jurisdictional "waters of the United States". PJDs cannot be appealed (33 C.F.R. 331.2); however, a PJD is "preliminary" in the sense that an approved JD can be requested at any time. PJDs do not expire.

I am requesting that the Corps provide an <u>approved</u> JD for the property identified herein.

An Approved Jurisdictional Determination (AJD) is a determination that jurisdictional "waters of the United States" or "navigable waters of the United States" are either present or absent on a site. An approved JD identifies the limits of waters on a site determined to be jurisdictional under the Clean Water Act and/or Rivers and Harbors Act. Approved JDs are sufficient as the basis for permit decisions. AJDs are appealable (33 C.F.R. 331.2). The results of the AJD will be posted on the Corps website. A landowner, permit applicant, or other "affected party" (33 C.F.R. 331.2) who receives an AJD may rely upon the AJD for five years (subject to certain limited exceptions explained in Regulatory Guidance Letter 05-02).

I am unclear as to which JD I would like to request and require additional information to inform my decision.

G. ALL REQUESTS

| x |

Х

Х

Map of Property or Project Area. This Map must clearly depict the boundaries of the review area.

Size of Property or Review Area <u>51.66</u> acres.

The property boundary (or review area boundary) is clearly physically marked on the site.

H. REQUESTS FROM CONSULTANTS

Project Coordinates (Decimal Degrees): Latitude: <u>35.798727</u>

Longitude: <u>-78.476707</u>

X

A legible delineation map depicting the aquatic resources and the property/review area. Delineation maps must be no larger than 11x17 and should contain the following: (Corps signature of submitted survey plats will occur after the submitted delineation map has been reviewed and approved).⁶

- North Arrow
- Graphical Scale
- Boundary of Review Area
- Date
- Location of data points for each Wetland Determination Data Form or tributary assessment reach.

For Approved Jurisdictional Determinations:

- Jurisdictional wetland features should be labeled as Wetland Waters of the US, 404 wetlands, etc. Please include the acreage of these features.
- Jurisdictional non-wetland features (i.e. tidal/navigable waters, tributaries, impoundments) should be labeled as Non-Wetland Waters of the US, stream, tributary, open water, relatively permanent water, pond, etc. Please include the acreage or linear length of each of these features as appropriate.
- Isolated waters, waters that lack a significant nexus to navigable waters, or nonjurisdictional upland features should be identified as Non-Jurisdictional. Please include a justification in the label regarding why the feature is non-jurisdictional (i.e. "Isolated", "No Significant Nexus", or "Upland Feature"). Please include the acreage or linear length of these features as appropriate.

For Preliminary Jurisdictional Determinations:

- Wetland and non-wetland features should not be identified as Jurisdictional, 404, Waters of the United States, or anything that implies jurisdiction. These features can be identified as Potential Waters of the United States, Potential Non-wetland Waters of the United States, wetland, stream, open water, etc. Please include the acreage and linear length of these features as appropriate.
- X Completed Wetland Determination Data Forms for appropriate region (at least one wetland and one upland form needs to be completed for each wetland type)

⁶ Please refer to the guidance document titled "Survey Standards for Jurisdictional Determinations" to ensure that the supplied map meets the necessary mapping standards. <u>http://www.saw.usace.army.mil/Missions/Regulatory-Permit-Program/Jurisdiction/</u>

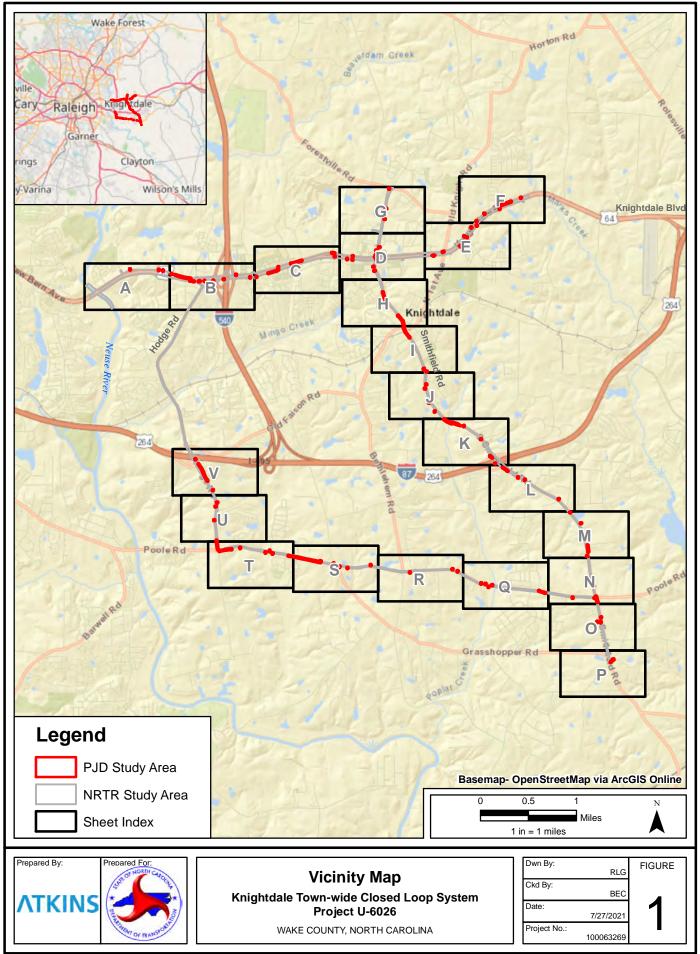
Jurisdictional Determination Request

X	 Completed appropriate Jurisdictional Determination form <u>PJDs.</u> please complete a <u>Preliminary Jurisdictional Determination Form⁷</u> and include the <u>Aquatic Resource Table</u> <u>AJDs.</u> please complete an <u>Approved Jurisdictional Determination Form⁸</u>
X	Vicinity Map
X	Aerial Photograph
X	USGS Topographic Map
X	Soil Survey Map
	Other Maps, as appropriate (e.g. National Wetland Inventory Map, Proposed Site Plan, previous delineation maps, LIDAR maps, FEMA floodplain maps)
	Landscape Photos (if taken)
X	NCSAM and/or NCWAM Assessment Forms and Rating Sheets
X	NC Division of Water Resources Stream Identification Forms
	Other Assessment Forms

⁷ www.saw.usace.army.mil/Portals/59/docs/regulatory/regdocs/JD/RGL_08-02_App_A_Prelim_JD_Form_fillable.pdf
 ⁸ Please see http://www.saw.usace.army.mil/Missions/Regulatory-Permit-Program/Jurisdiction/

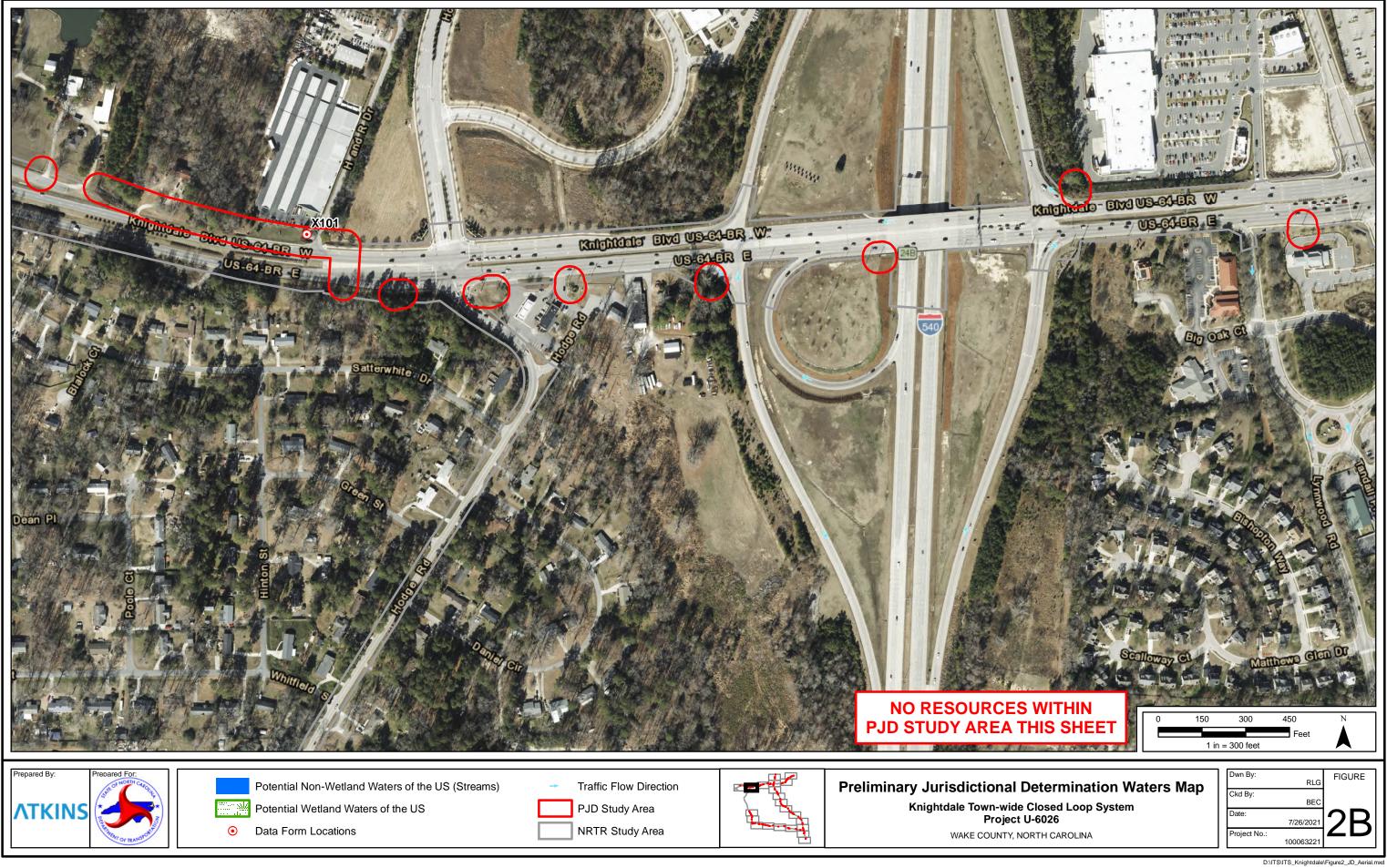
Principal Purpose: The information that you provide will be used in evaluating your request to determine whether there are any aquatic resources within the project area subject to federal jurisdiction under the regulatory authorities referenced above.

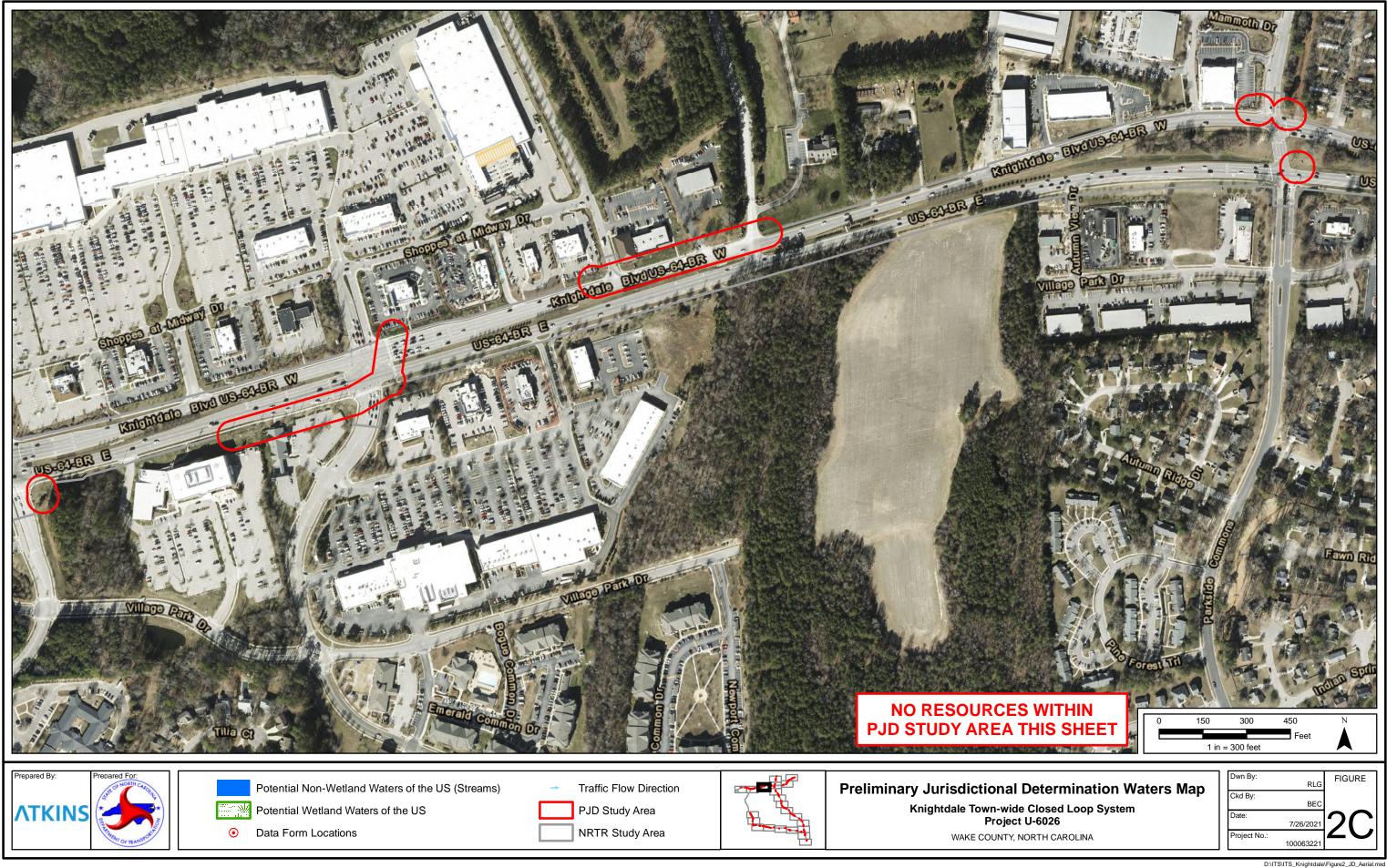
Routine Uses: This information may be shared with the Department of Justice and other federal, state, and local government agencies, and the public, and may be made available as part of a public notice as required by federal law. Your name and property location where federal jurisdiction is to be determined will be included in the approved jurisdictional determination (AJD), which will be made available to the public on the District's website and on the Headquarters USAGE website.

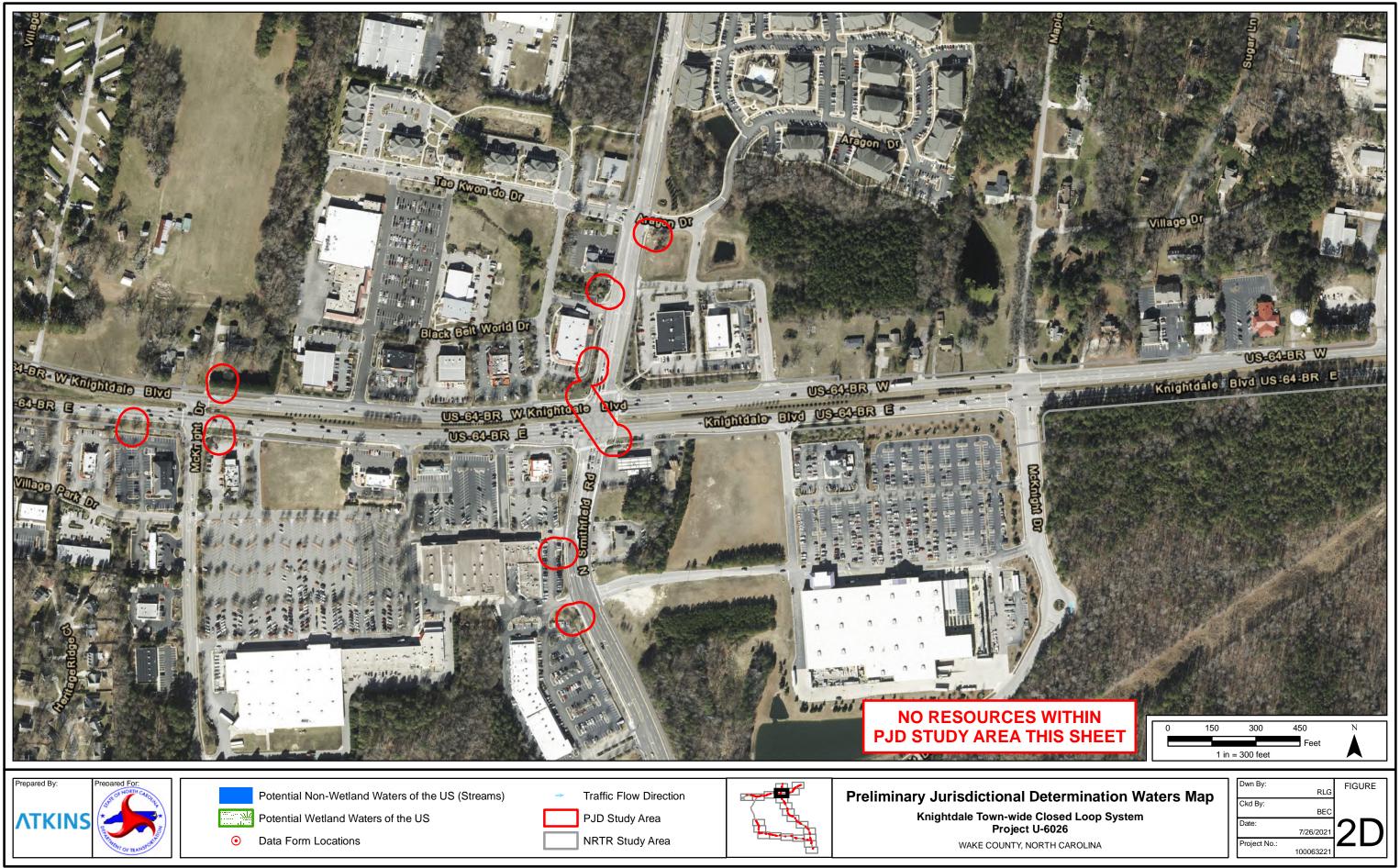

Disclosure: Submission of requested information is voluntary; however, if information is not provided, the request for an AJD cannot be evaluated nor can an AJD be issued.

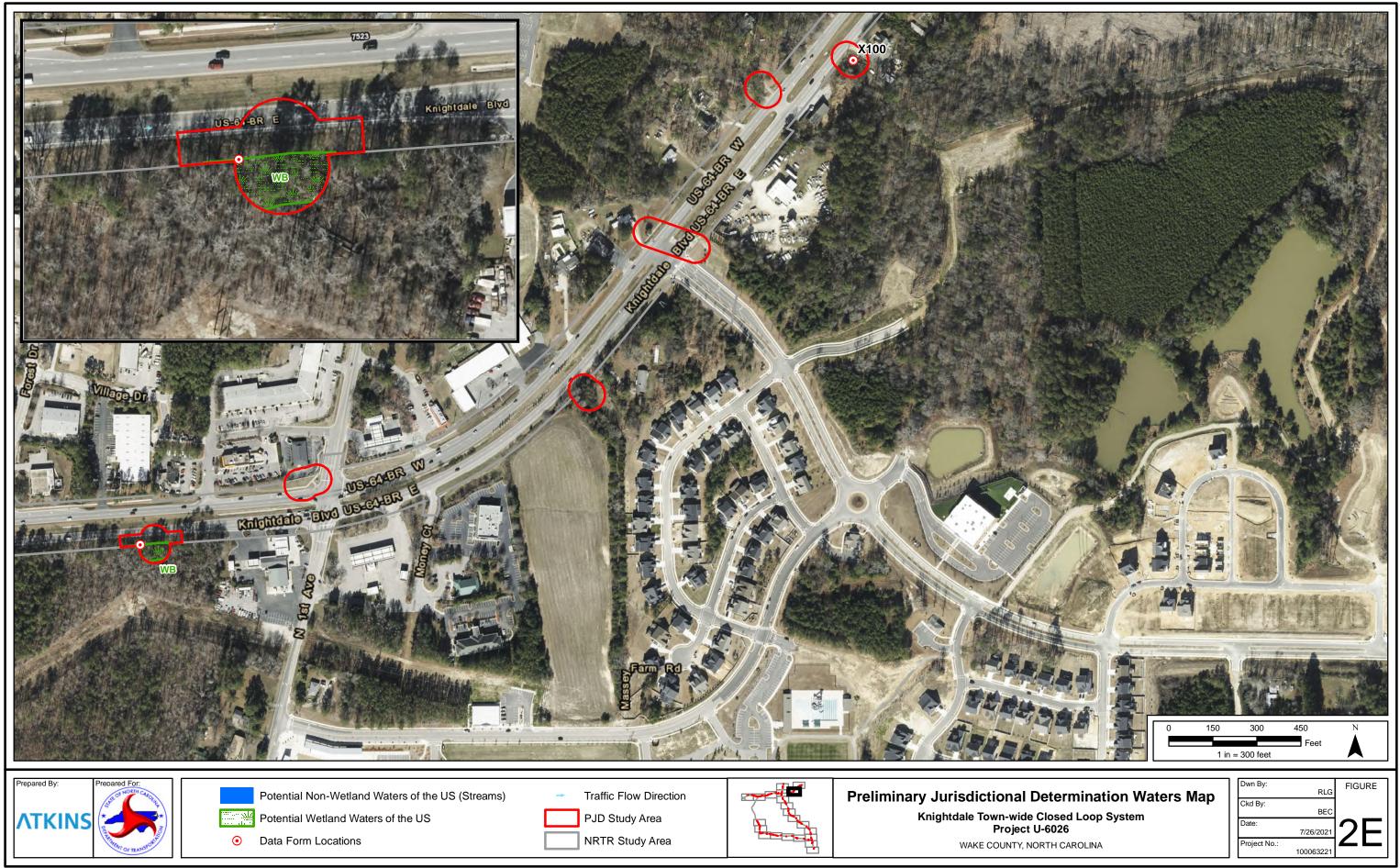
Appendix 1: Fixures

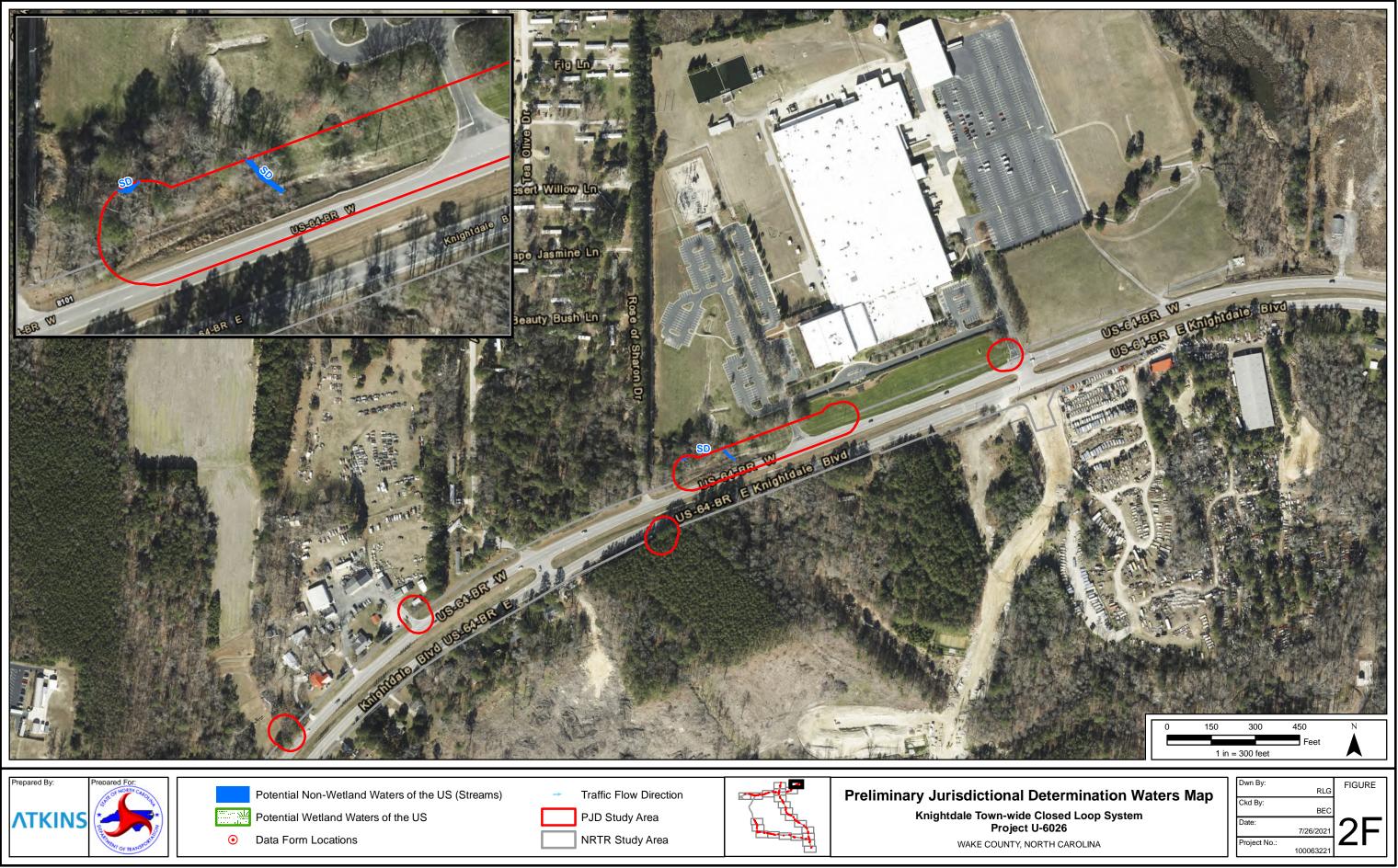
Figure 1—Vicinity Map

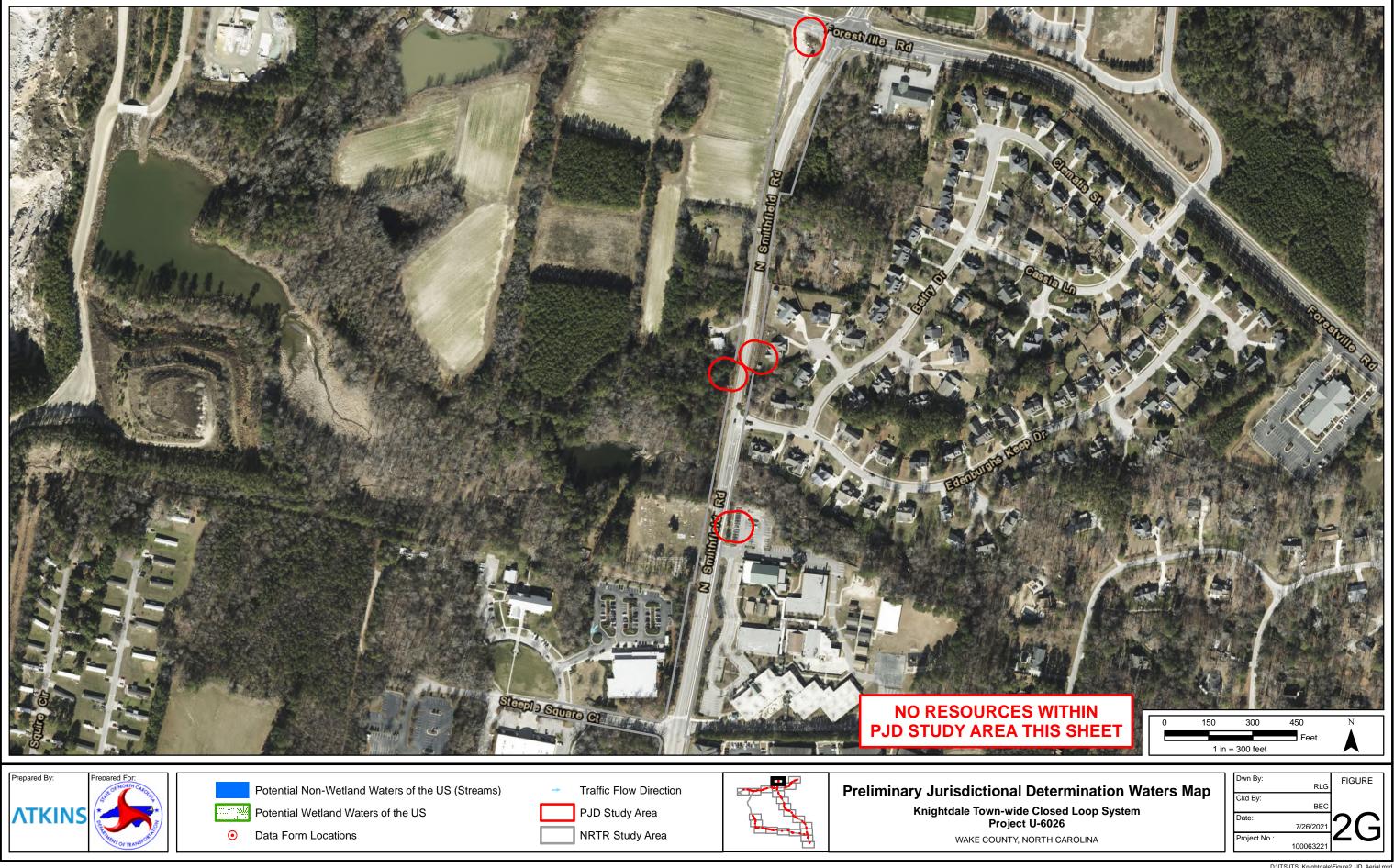

Figure2—Preliminary Jurisdictional Determination Waters Map (Aerial)


- Figure 3—Topographic Map
- Figure 4—Soils Map

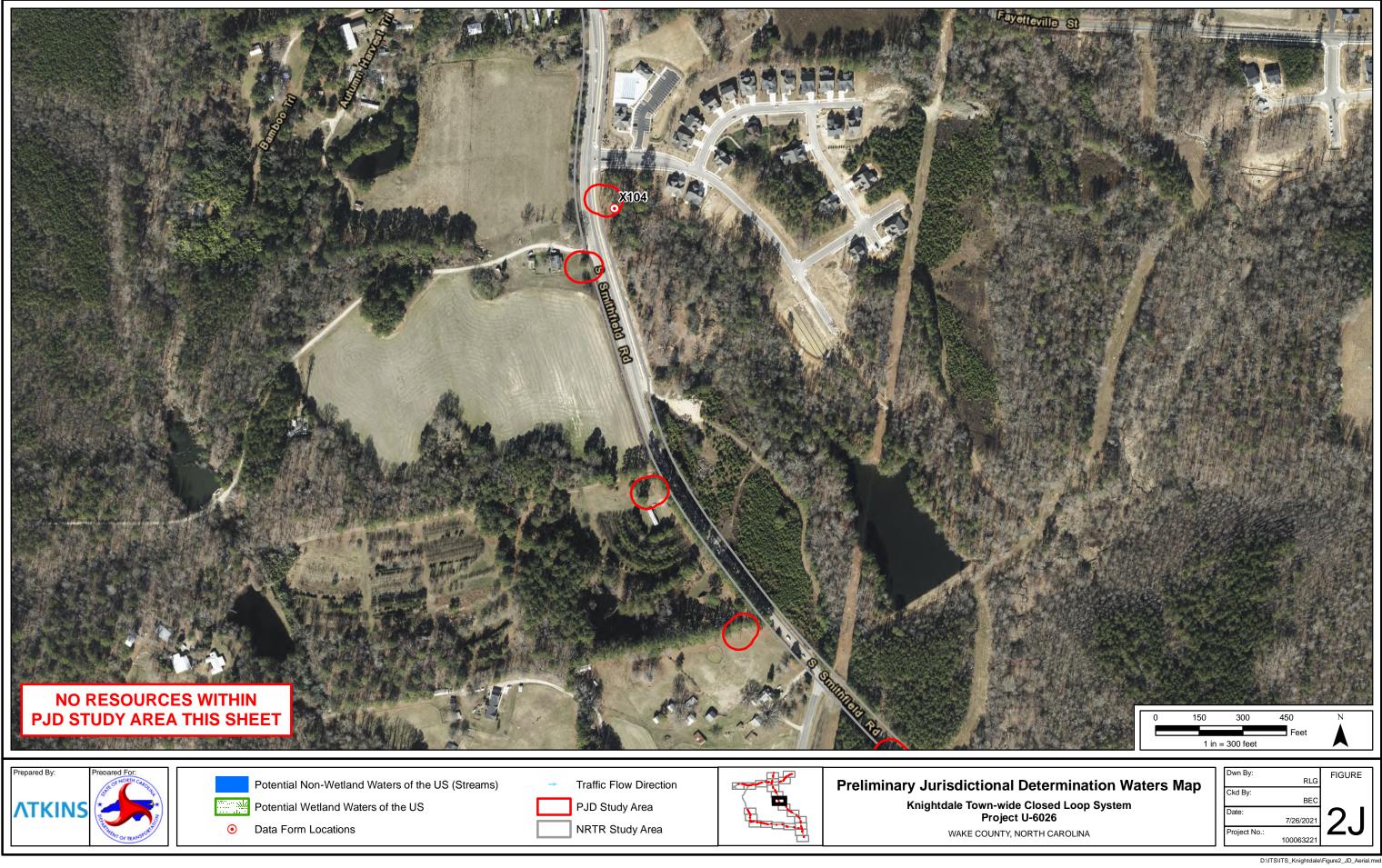


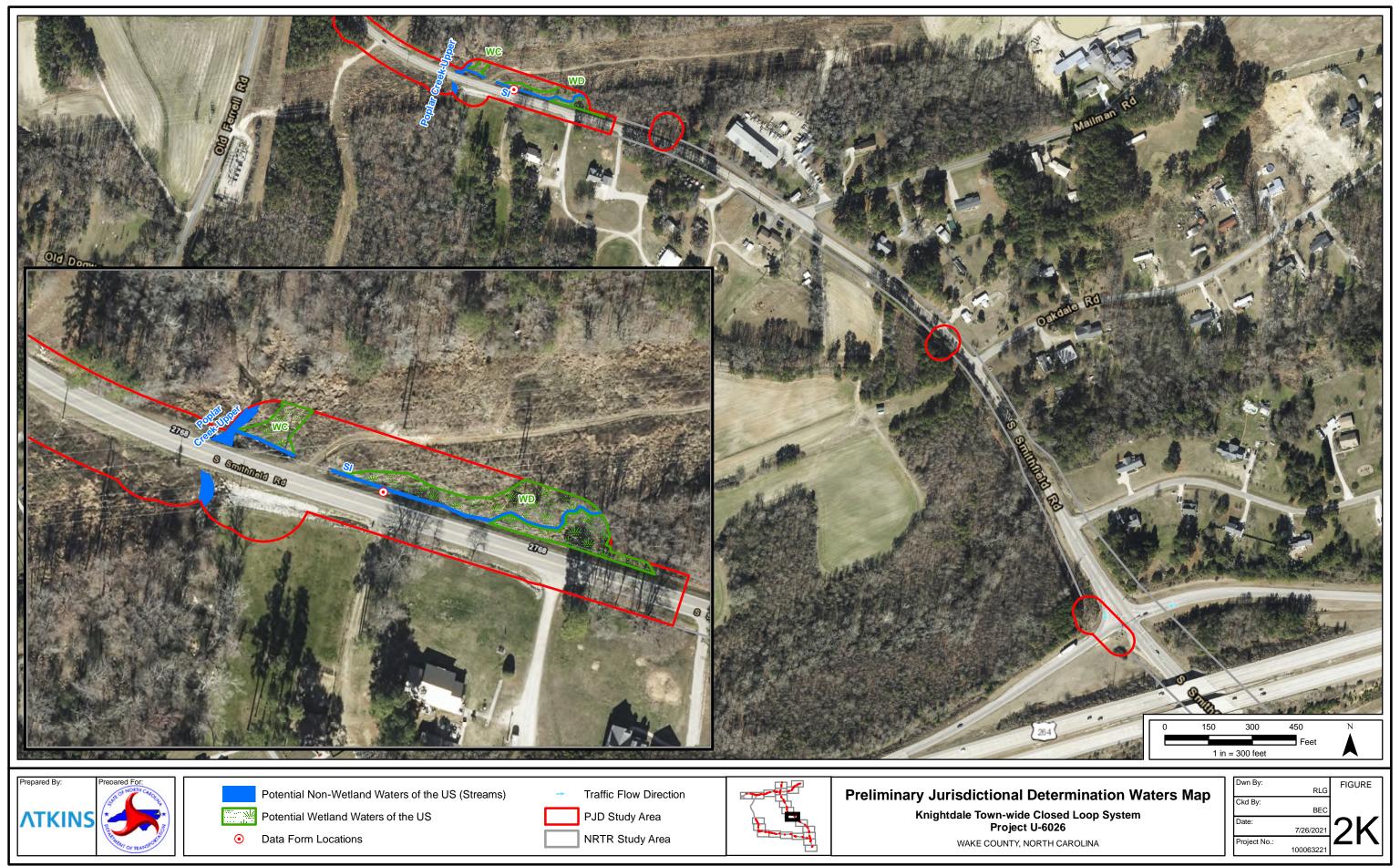

D:\ITS\ITS_Knightdale\Figure1_JD_Vicinity.mxd



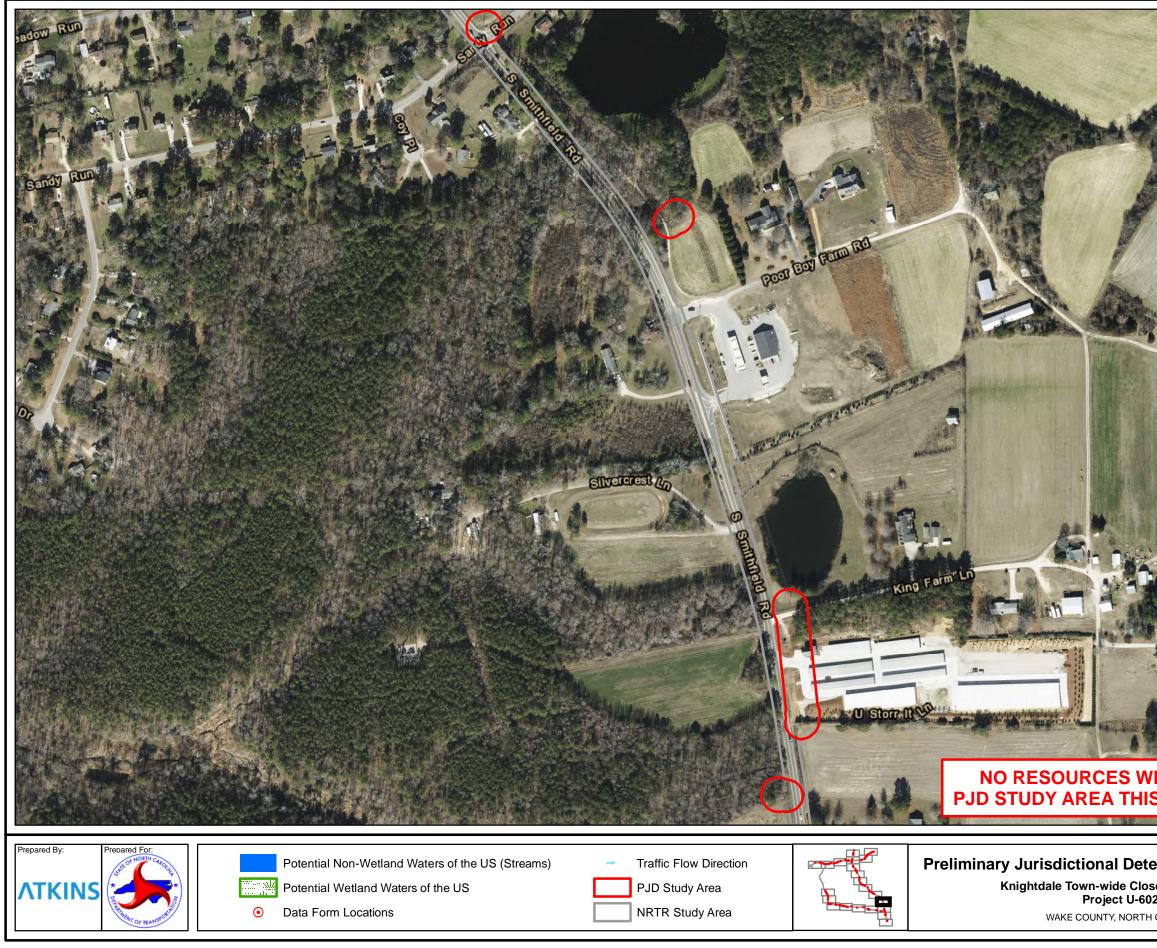


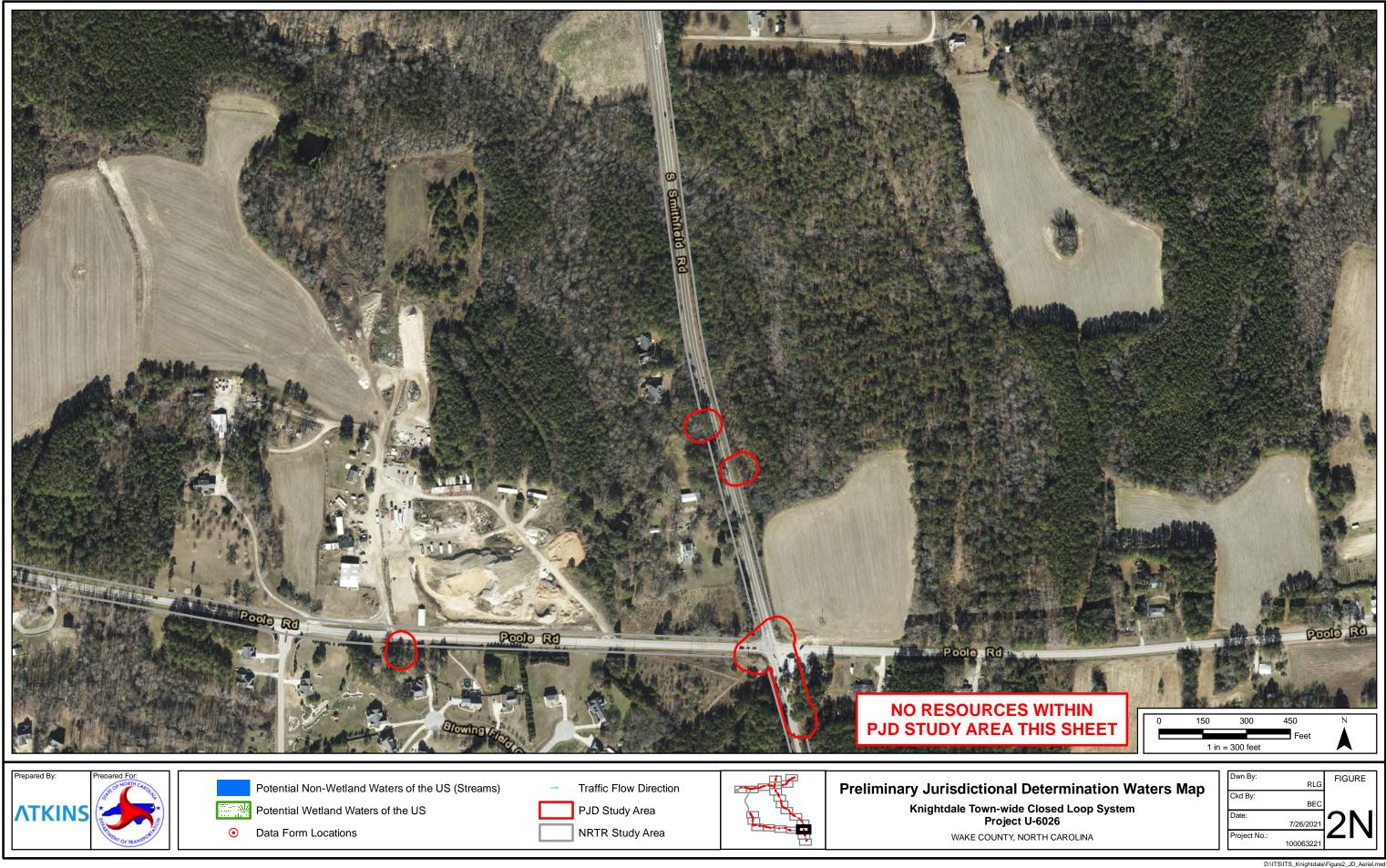

D:\ITS\ITS_Knightdale\Figure2_JD_Aerial.mxd

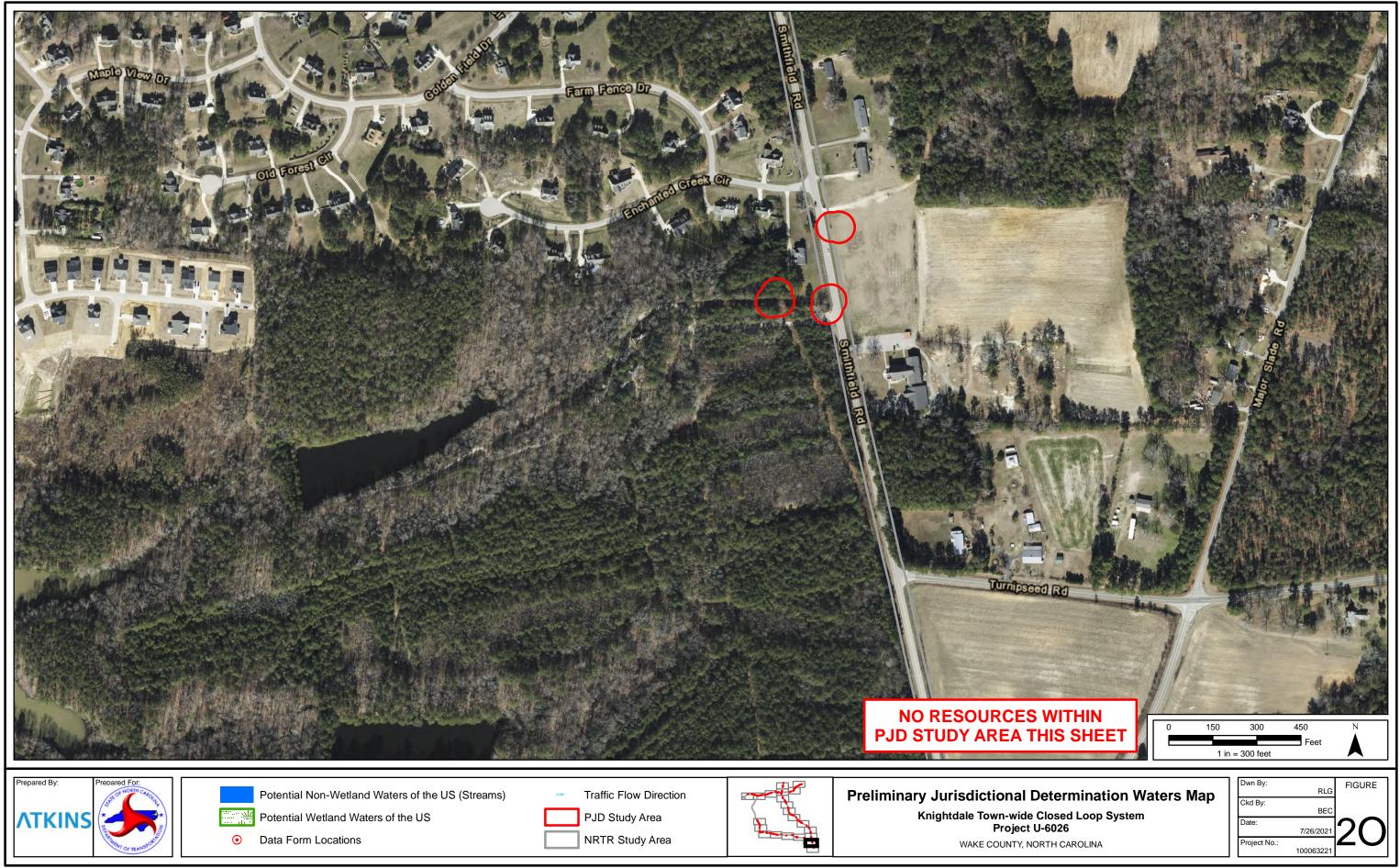

D:\ITS\ITS_Knightdale\Figure2_JD_Aerial.mxd

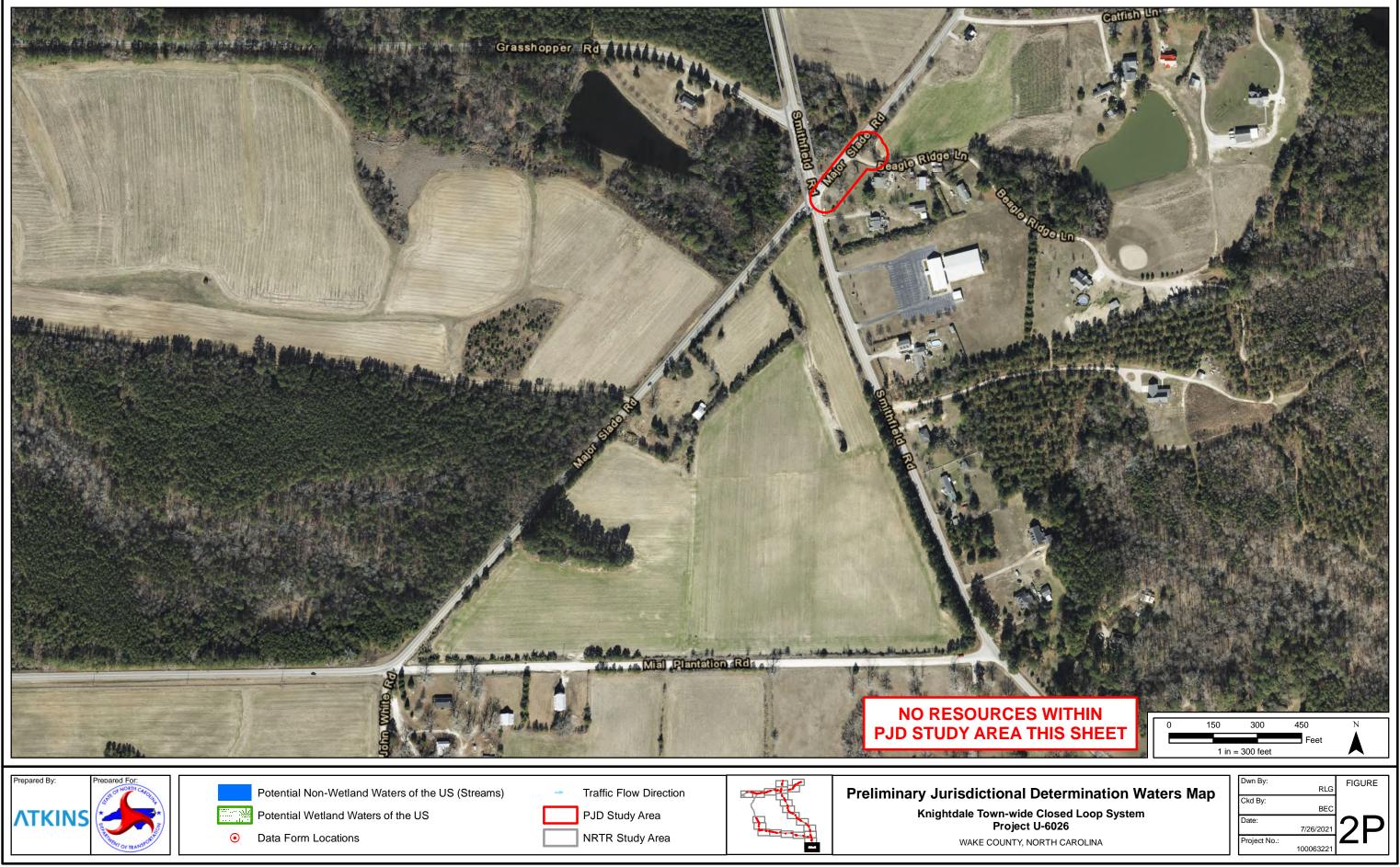


D:\ITS\ITS_Knightdale\Figure2_JD_Aerial.mxd

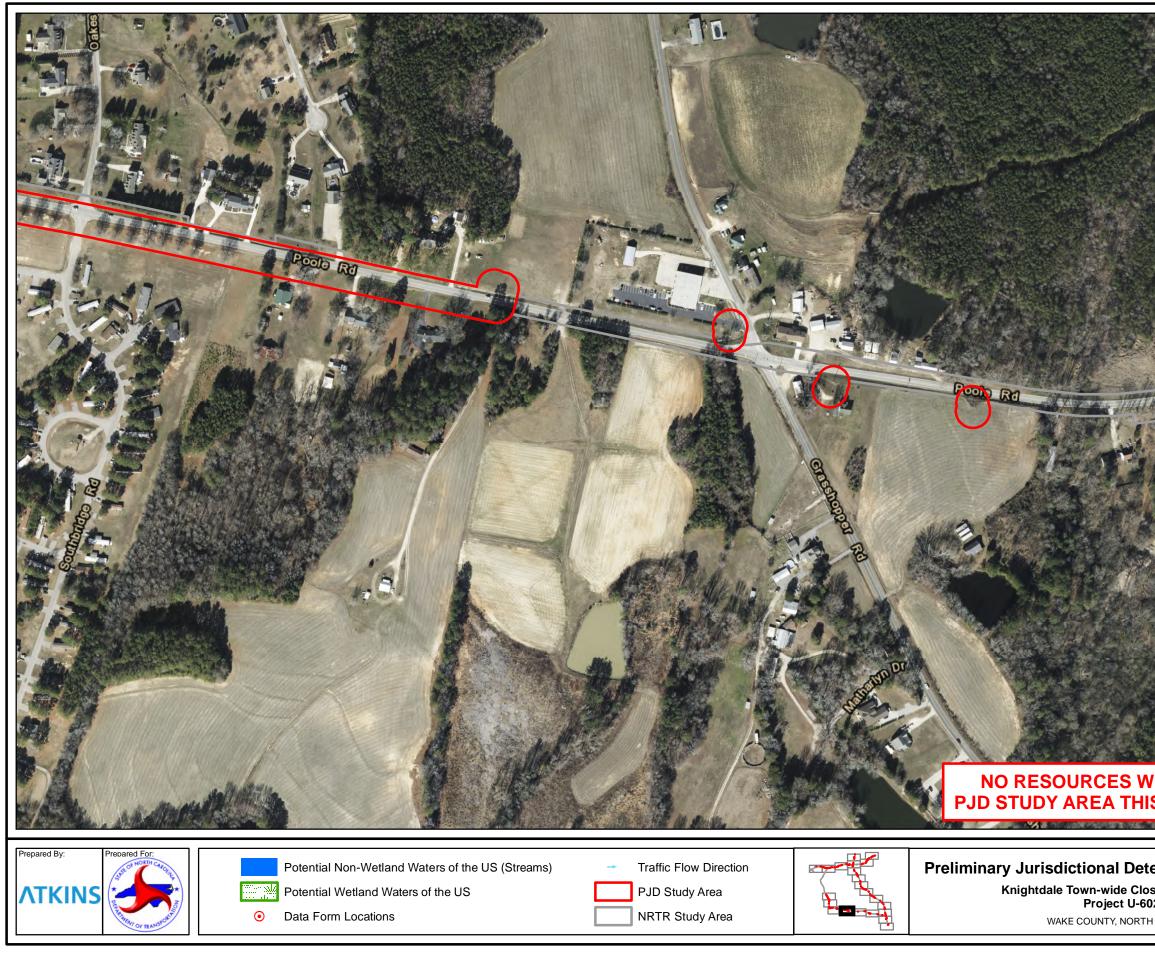


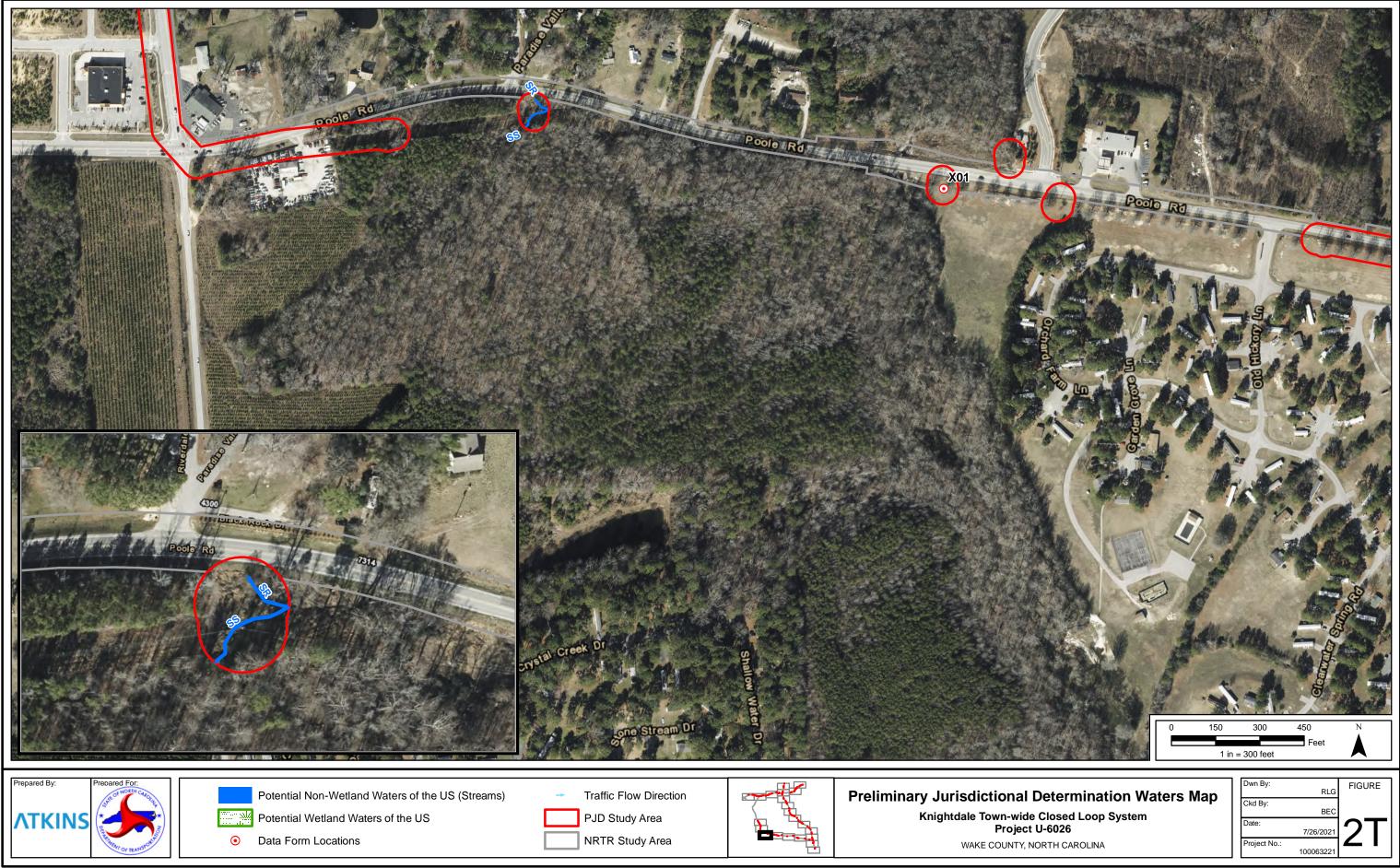


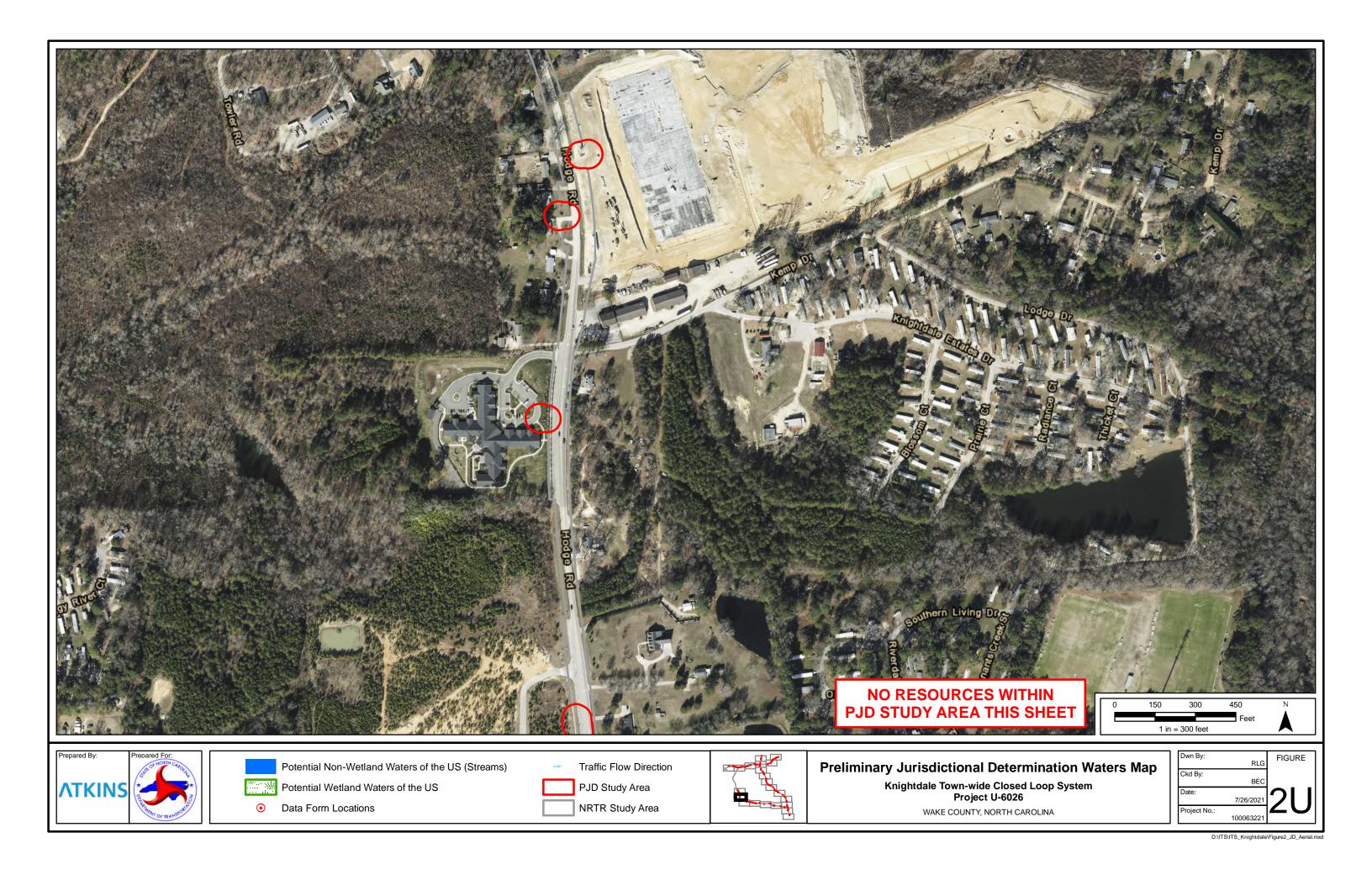




ITHIN S SHEET	0 150	300 = 300 feet	450 Feet	N A
ermination W sed Loop System 26 CAROLINA		Dwn By: Ckd By: Date: Project No.:	RLG BEC 7/26/2021 100063221	FIGURE



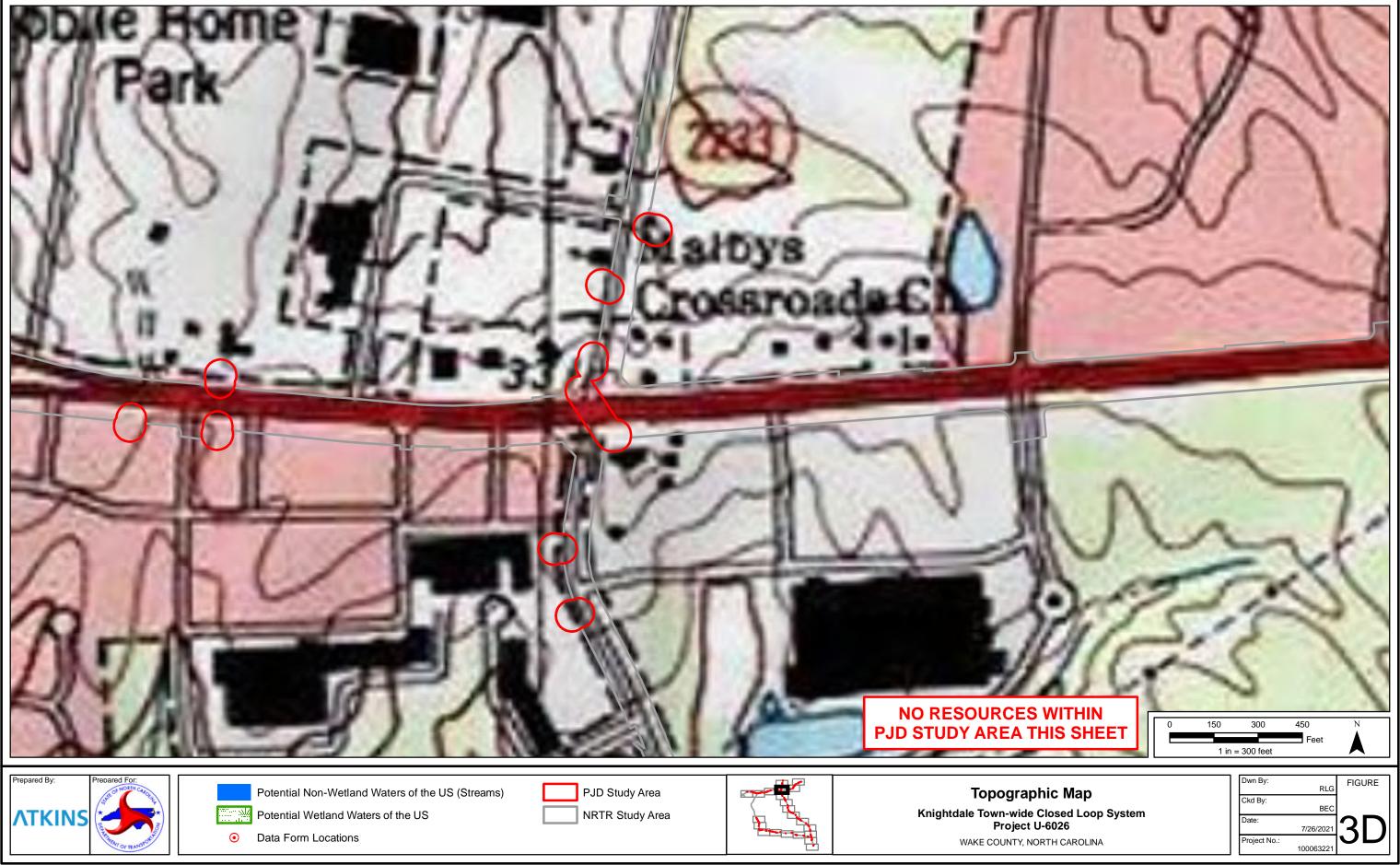



D:\ITS\ITS_Knightdale\Figure2_JD_Aerial.mxd

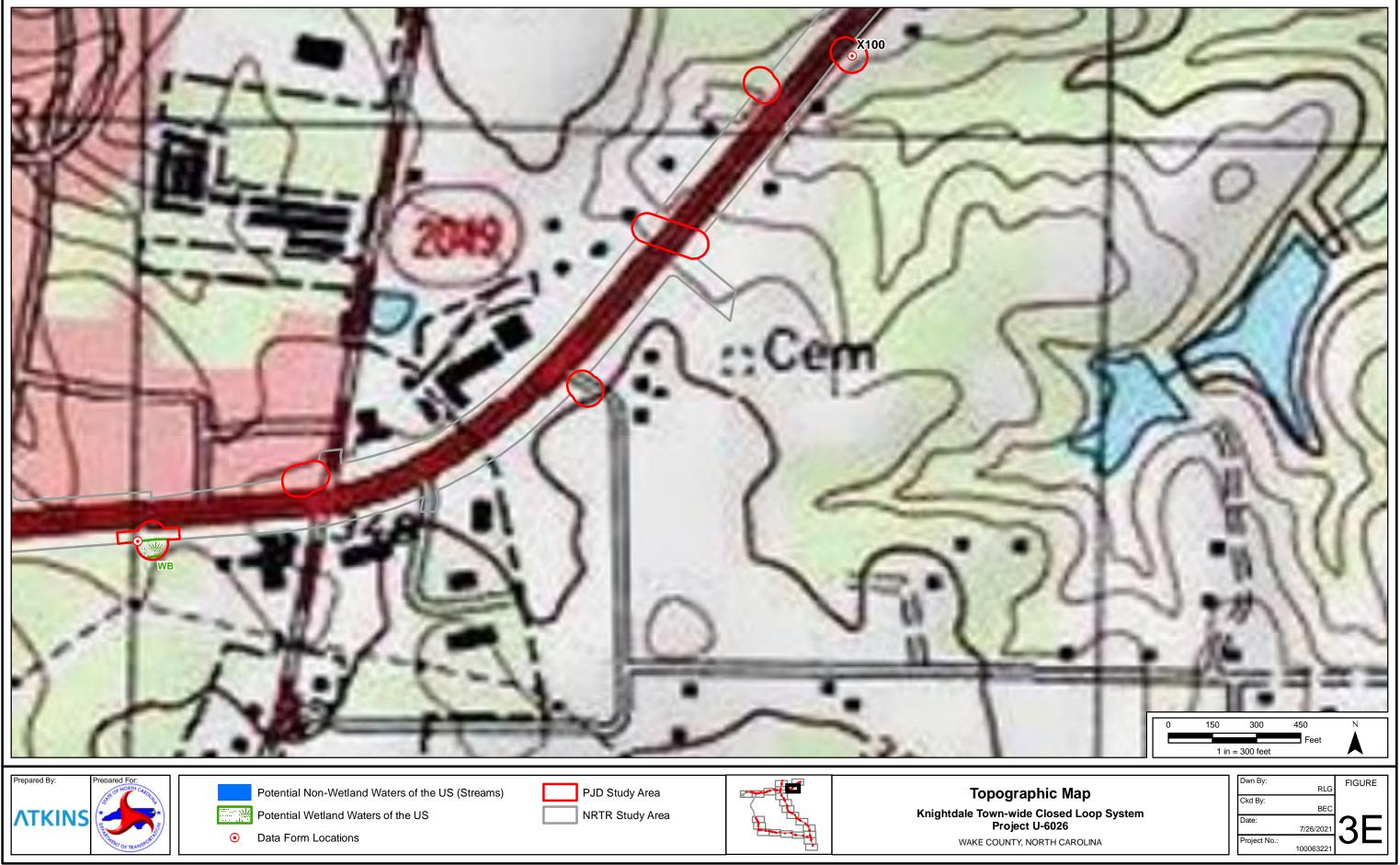


R UND		Rd	
ATTHIN S SHEET ermination Wate sed Loop System	300 = 300 feet Dwn By: Ckd By: Date:	Feet	
I CAROLINA	Project No.:	7/26/2021	2S

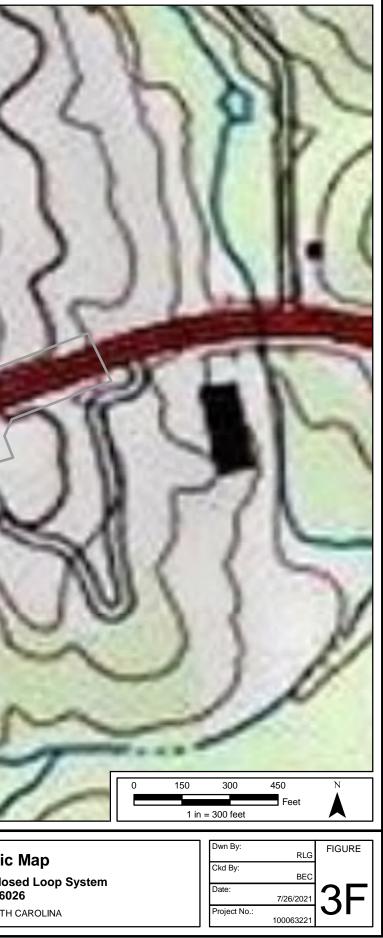
D:\ITS\ITS_Knightdale\Figure2_JD_Aerial.mxd

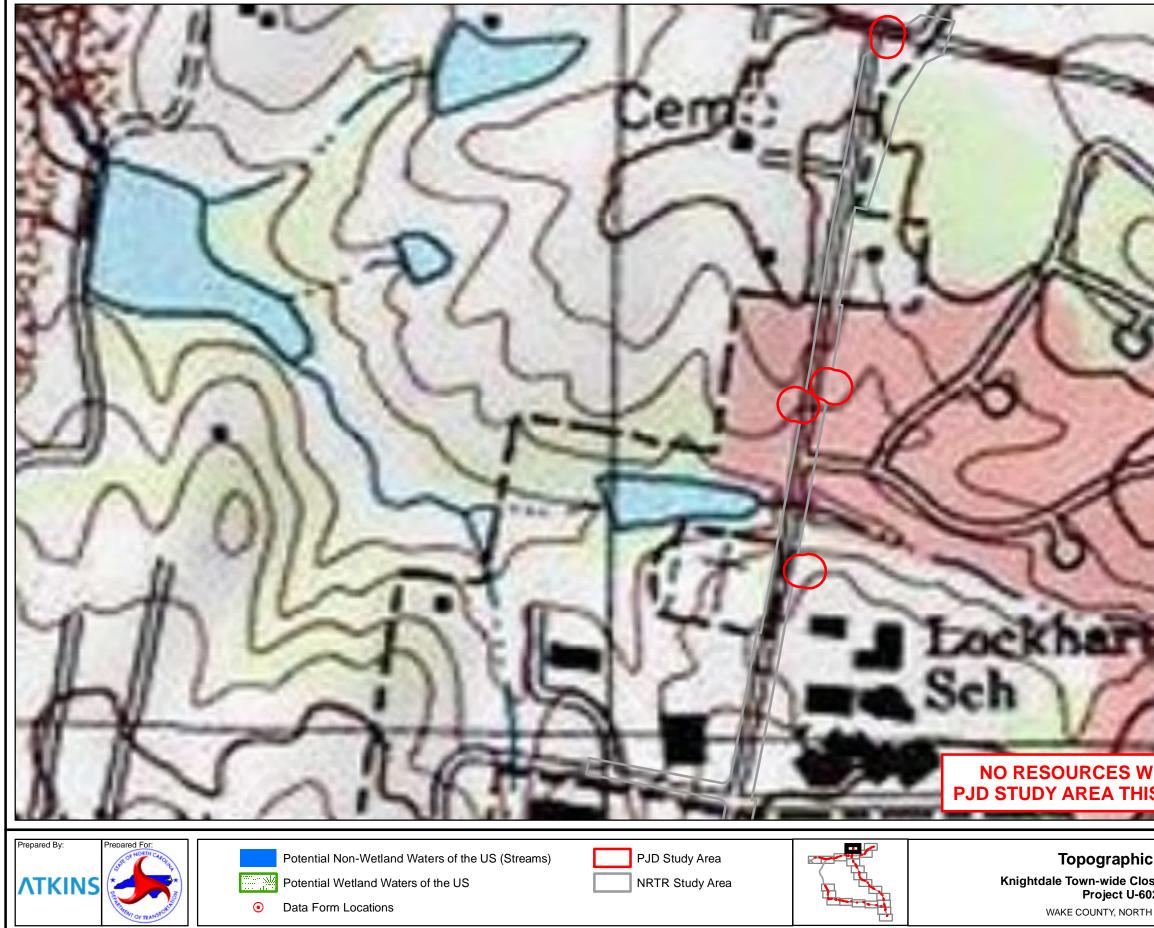


			20	
			The	
	E	XX	- And	
	1	R	NO RESOURCES WITHIN PJD STUDY AREA THIS SHEET	
Prepared By: Prepared For: Image: Constraint of the US (Streams) Image: Constrate (Streams) Image:	PJD Study Area		PJD STUDY AREA THIS SHEET Dopographic Map Knightdale Town-wide Closed Loop System Project U-6026 WAKE COUNTY, NORTH CAROLINA	0 150 300 450 N 1 in = 300 feet

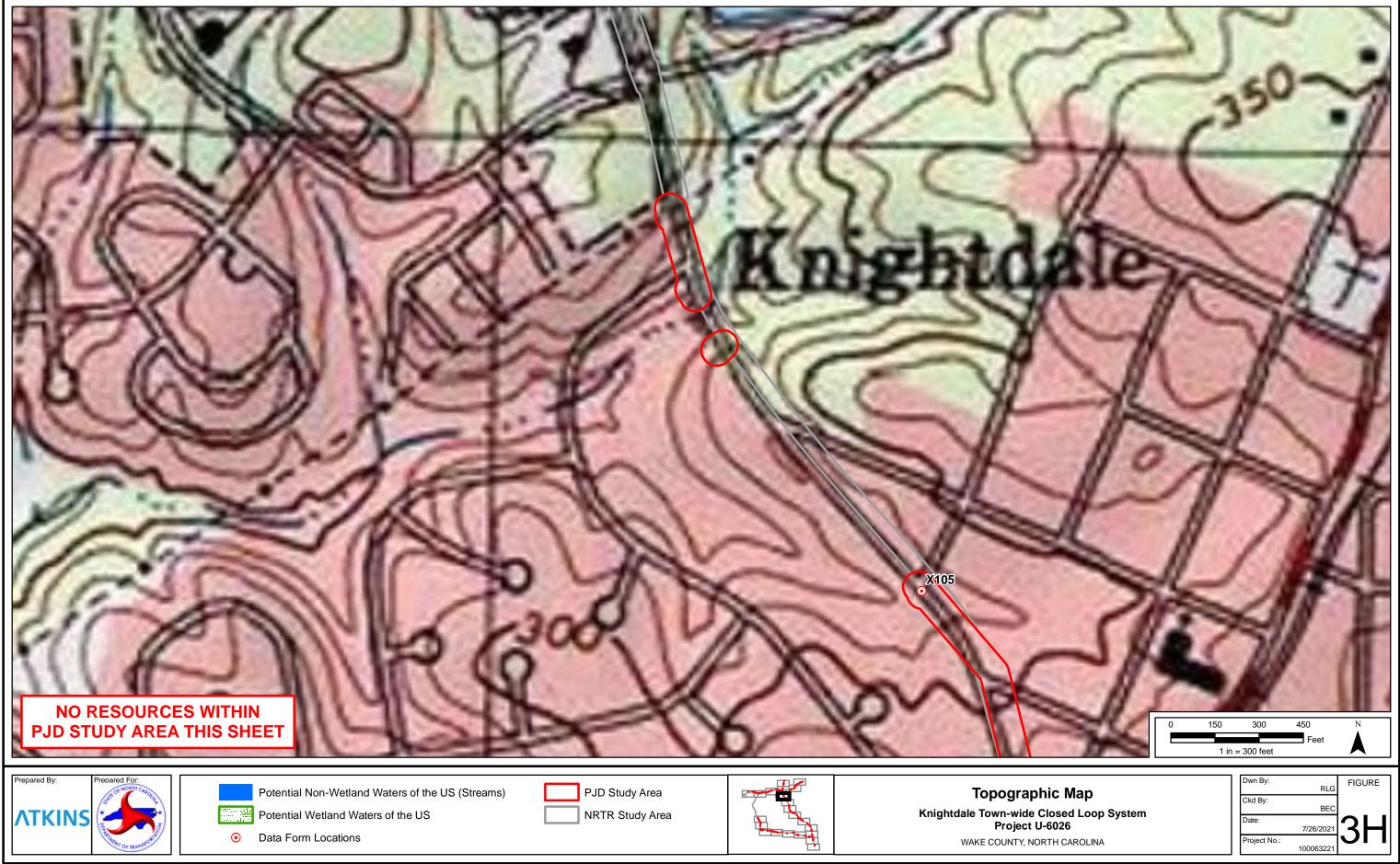

		Image: state	
Prepared By:	Knightdale	E COUNTY, NORTH CAROLINA Project No.: 1000	FIGURE BEC 6/2021 063221 httdale/Figure3_JD_Topo_v2.mxc

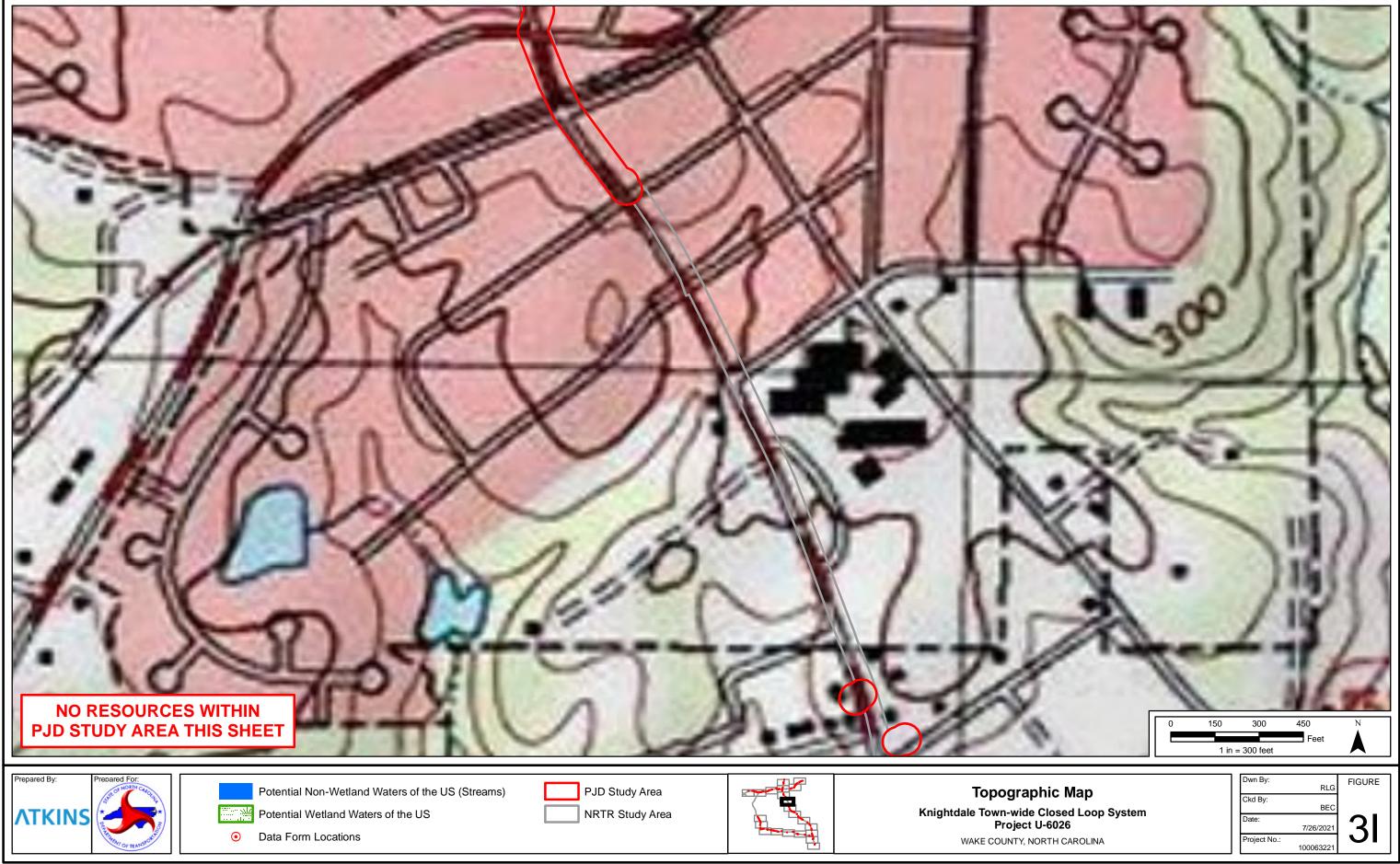
<image/>	<image/>	
H By: KINS Prepared For:	Potential Non-Wetland Waters of the US (Streams) PJD Study Are Potential Wetland Waters of the US NRTR Study Are O Data Form Locations Data Form Locations	a Topographi

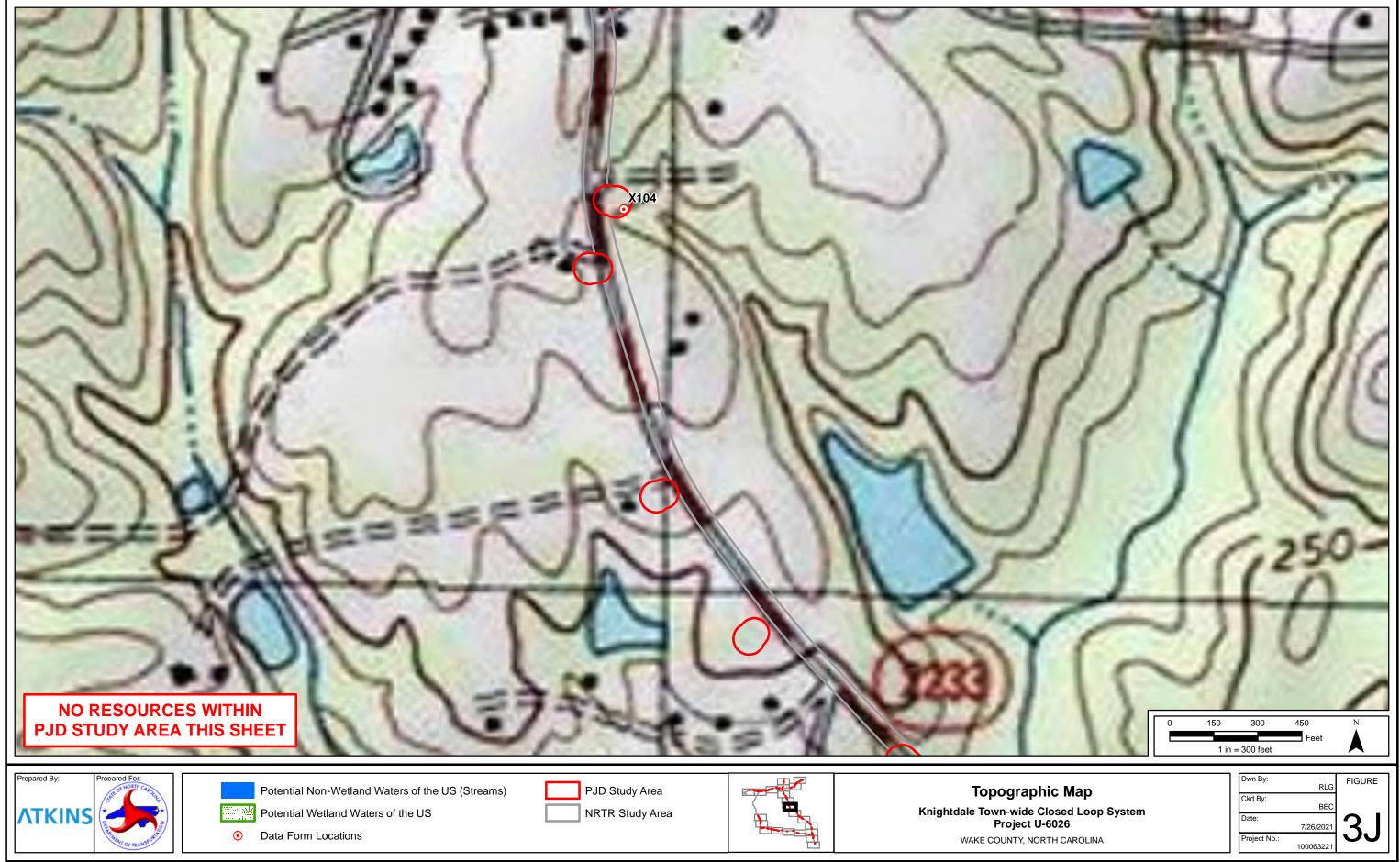




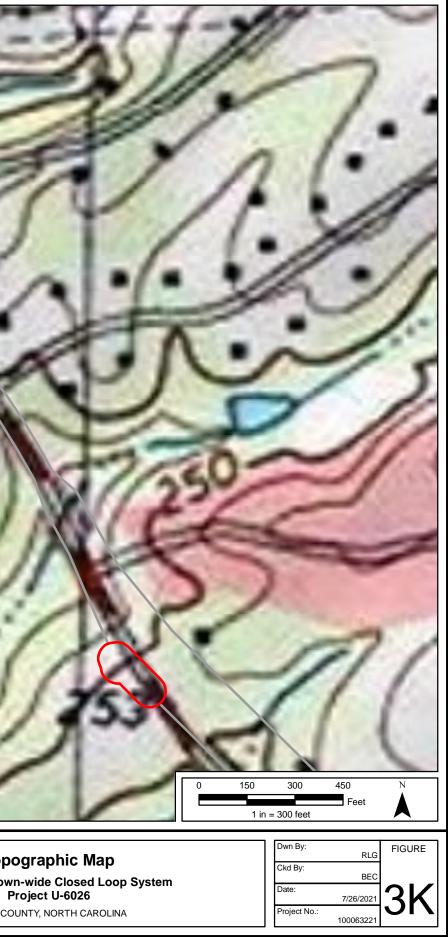
D:\ITS\ITS_Knightdale\Figure3_JD_Topo_v2.mxd

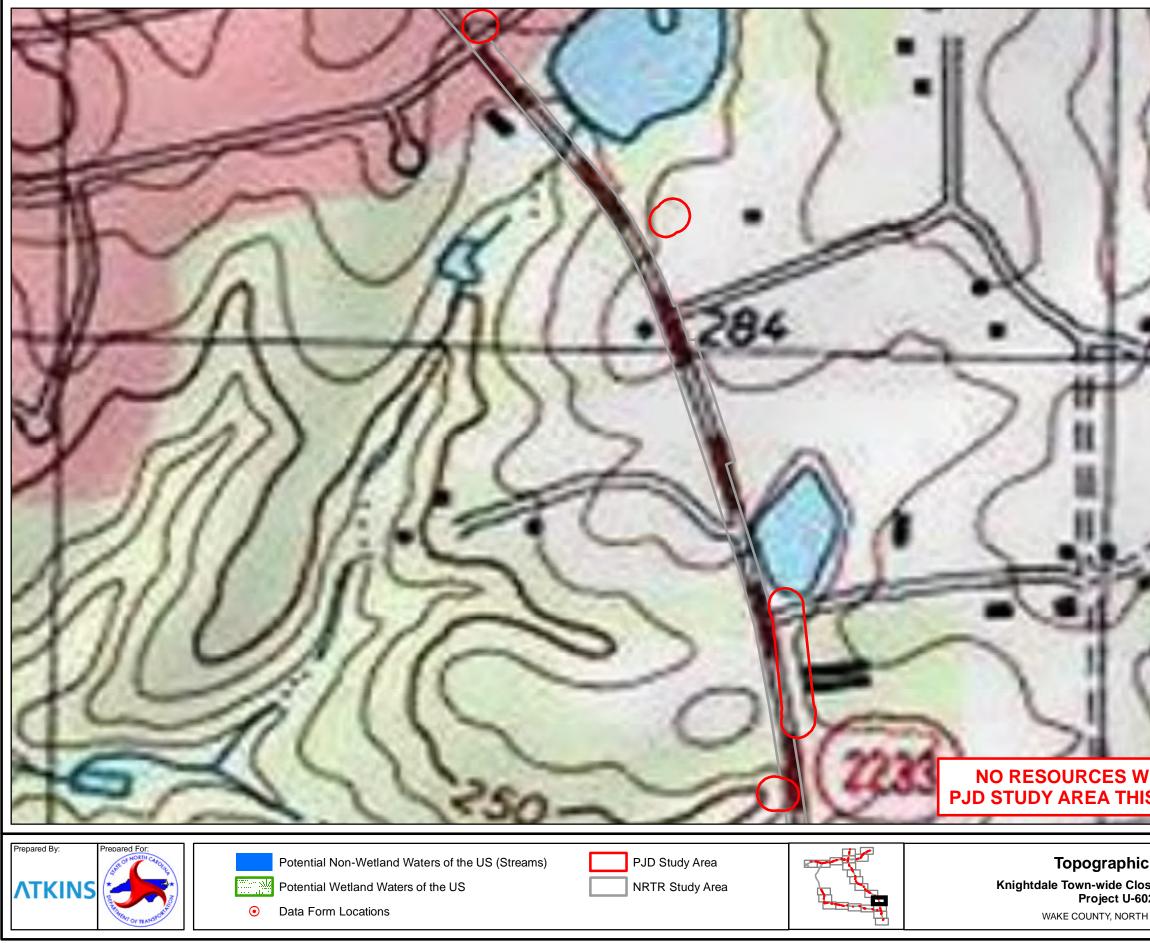



	Topographi Knightdale Town-wide Cle Project U-6 WAKE COUNTY, NORT
	JD Study Area RTR Study Area
R	
Hor	ntial Non-Wetland Waters of the ntial Wetland Waters of the Form Locations
	Potent
	Prepared For:
	Prepared By:

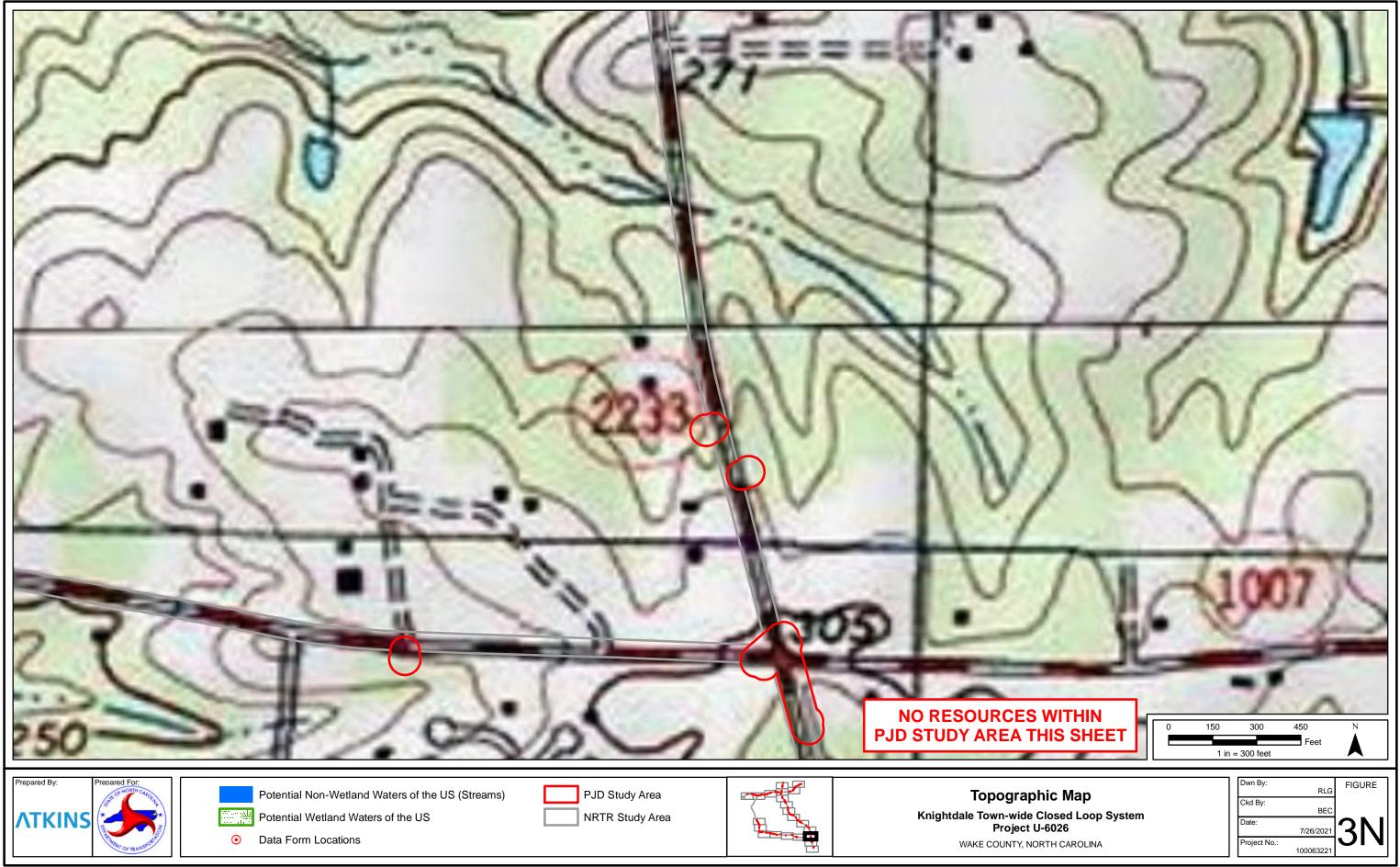


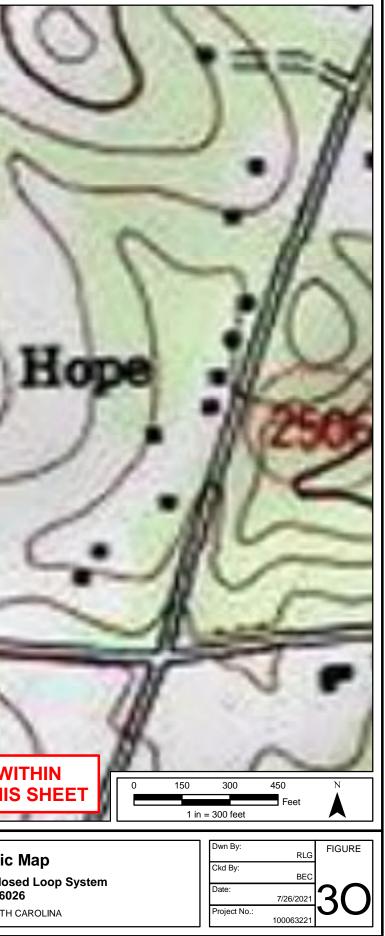
No the	Nor Nor	No la
ATHIN S SHEET		et Feet
: Map sed Loop System 26 H CAROLINA	Dwn By Ckd By Date: Project	BEC 7/26/2021

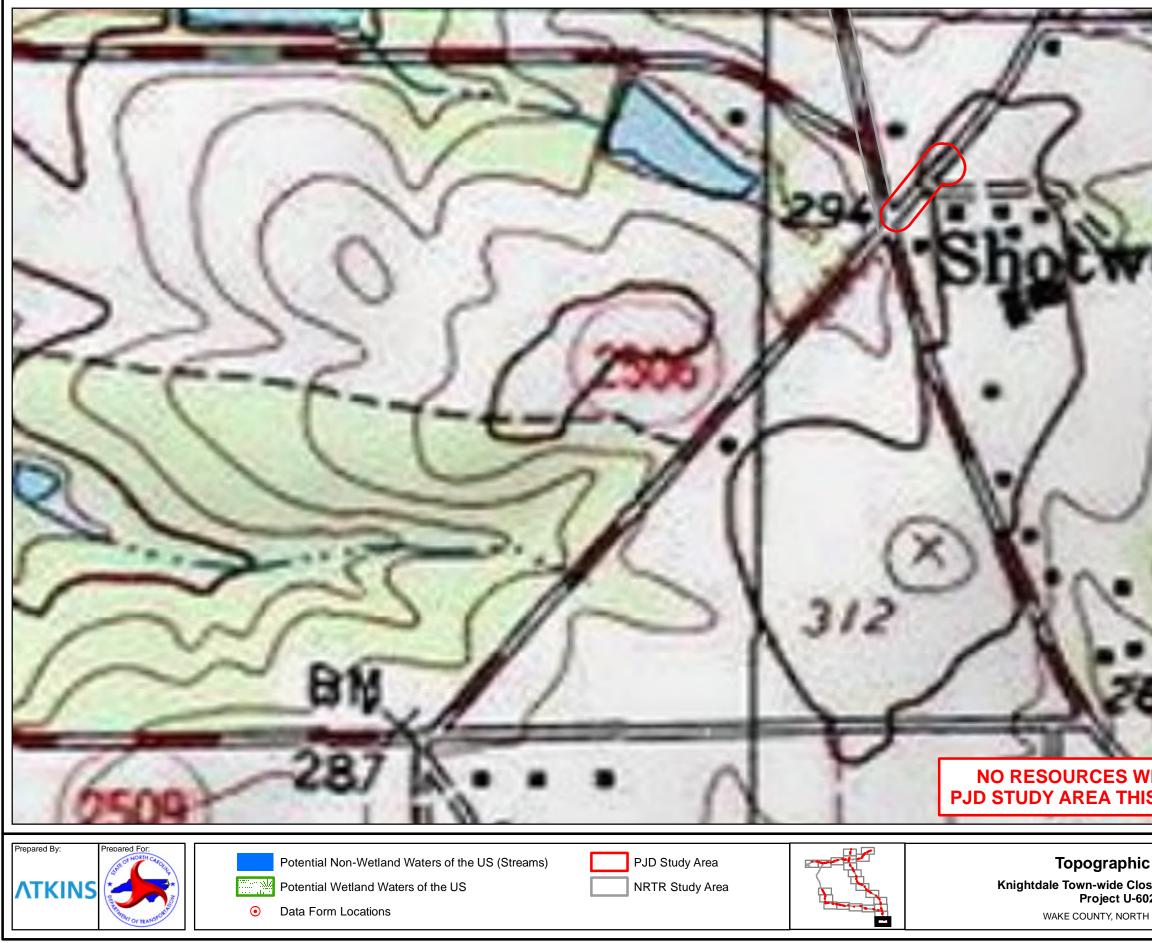



	Substa		ドマシン	
Prepared By: Prepared For: Prepared For:	Potential Non-Wetland Waters of the US (Streams)	PJD Study Area		Topographi Knightdale Town-wide Clu Project Lief

• Data Form Locations

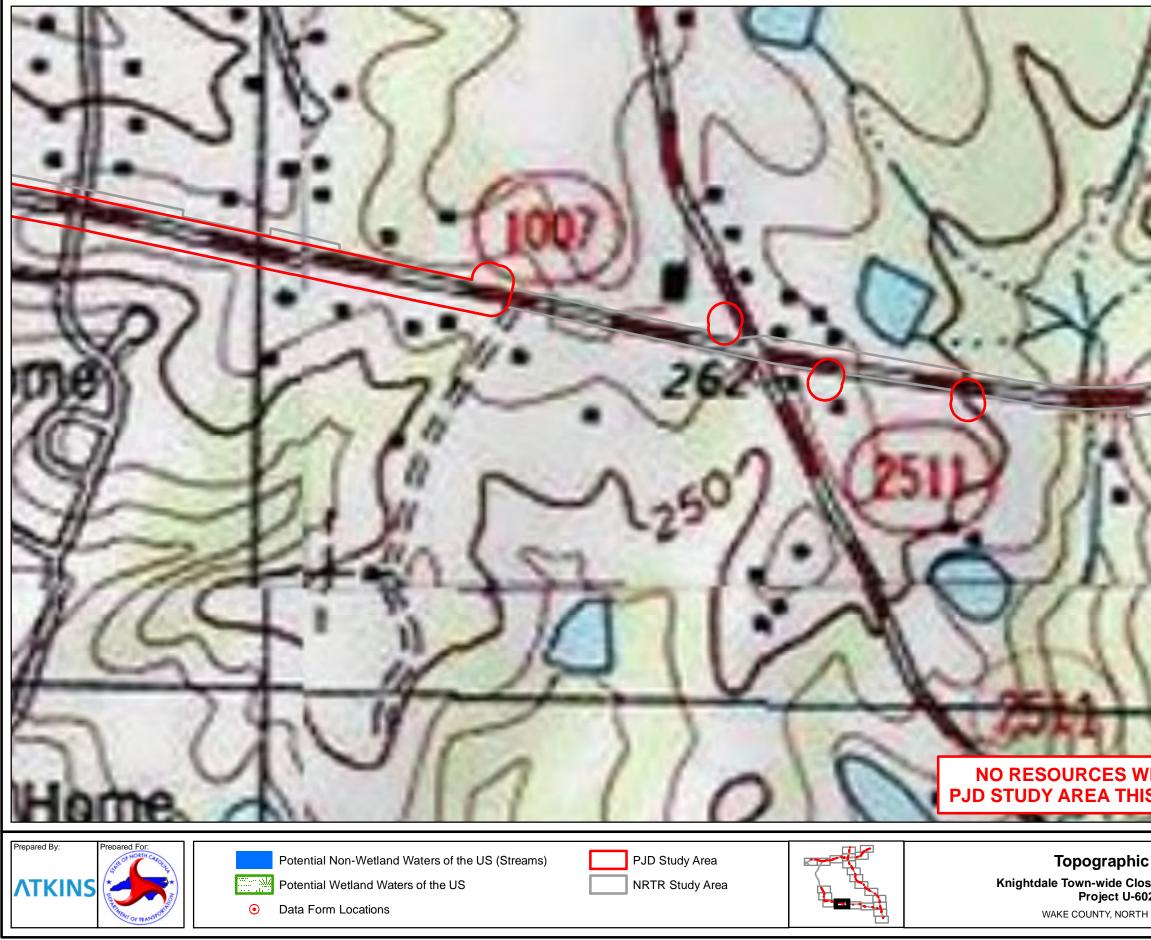

WAKE COUNTY, NORTH CAROLINA


Solution of the second se	Res of the second secon				2
TOP I CONCESSION			250		A 30
PJD STUDY AREA THIS SHEET	Prepared By: Prepared For:	Potential Non-Wetland Waters of the US (Streams)	PJD Study Area	PJD STUDY AREA THIS SHEET	1 in = 300 feet Dwn By: RLG FIGURE

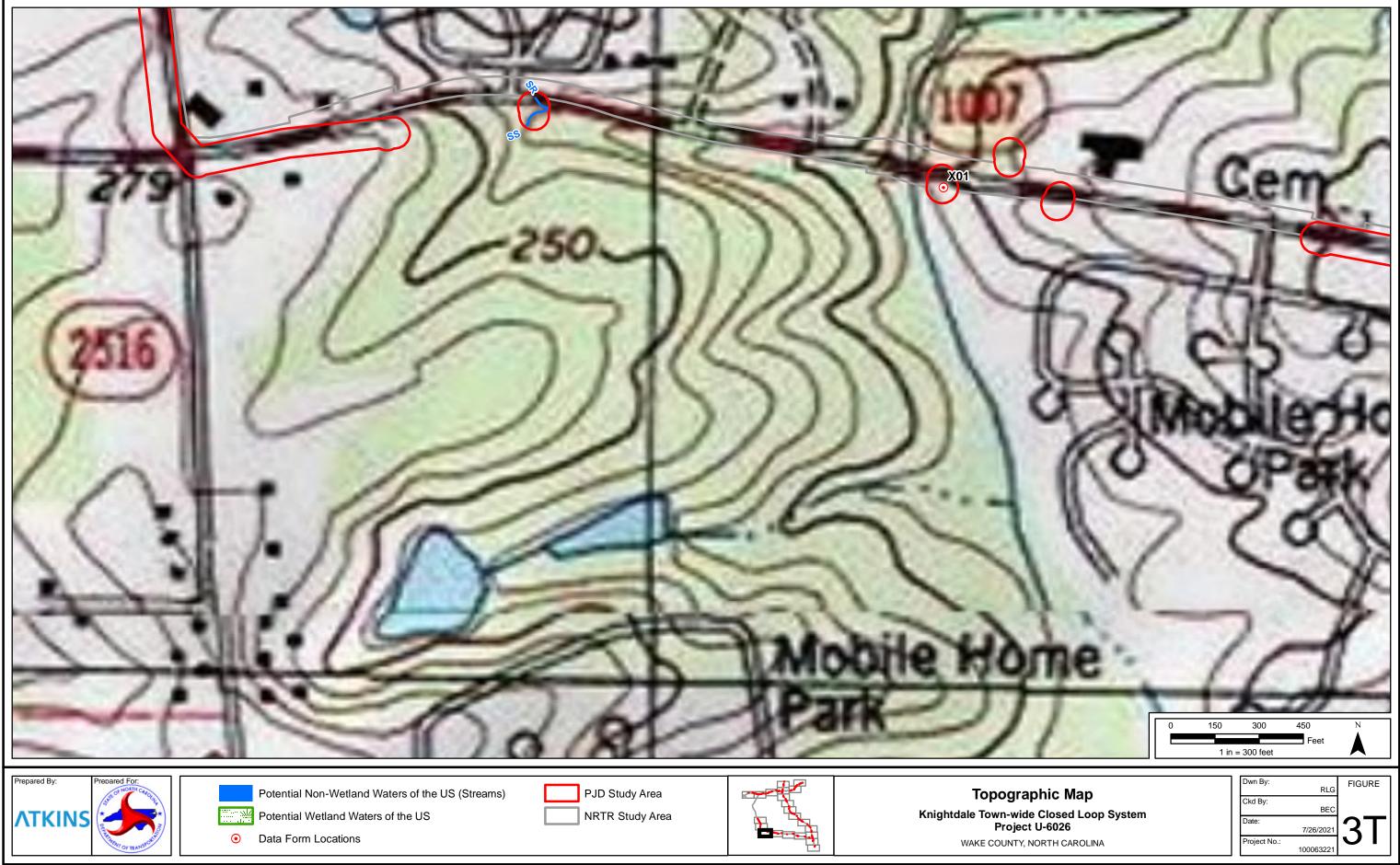


V	No the
	-S
	2 300 450 N H in = 300 feet
C Map sed Loop System D26 H CAROLINA	Dwn By: Ckd By: Date: 7/26/2021 Project No.: 100063221

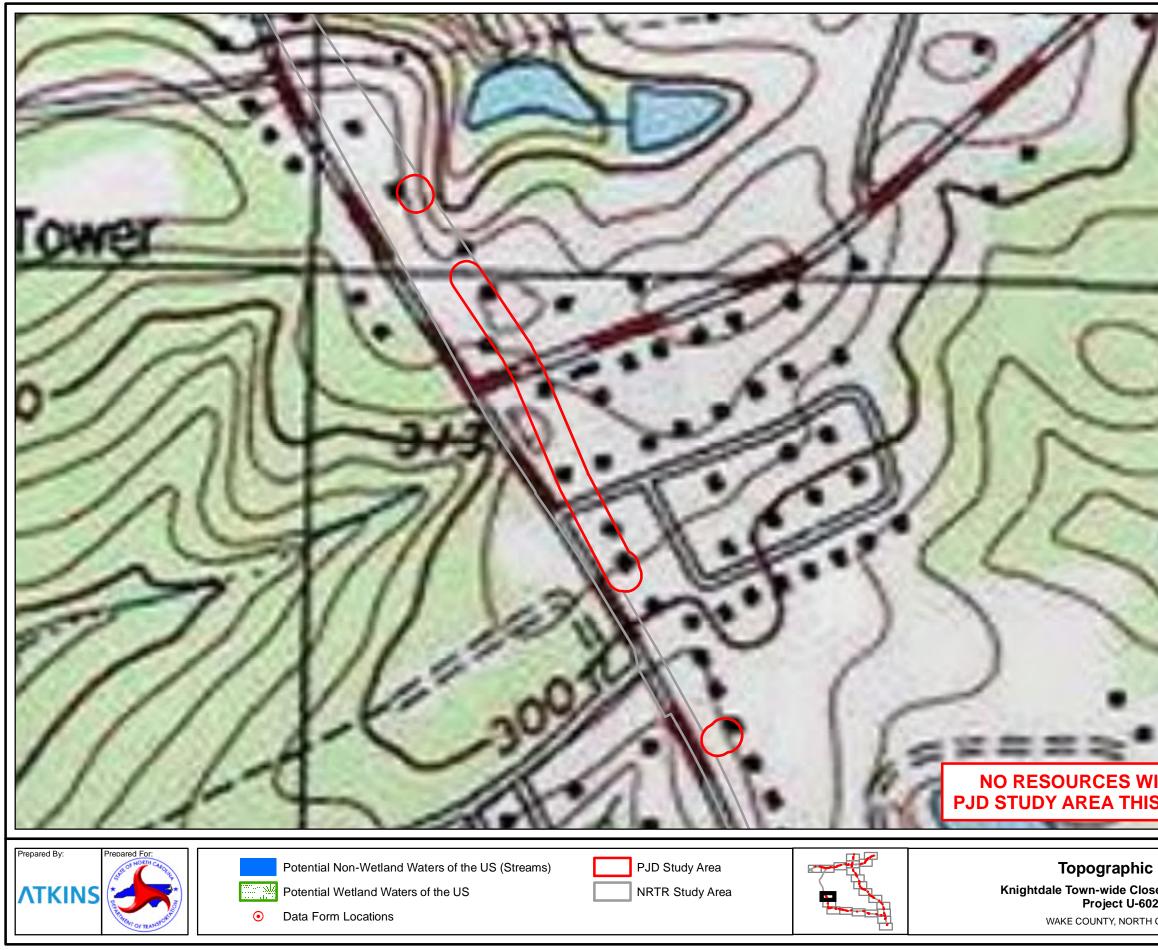
	<image/>
Potential Non-Wetland Waters of the US (Streams) PJD Study Area Potential Wetland Waters of the US (Streams) NRTR Study Area O Data Form Locations	



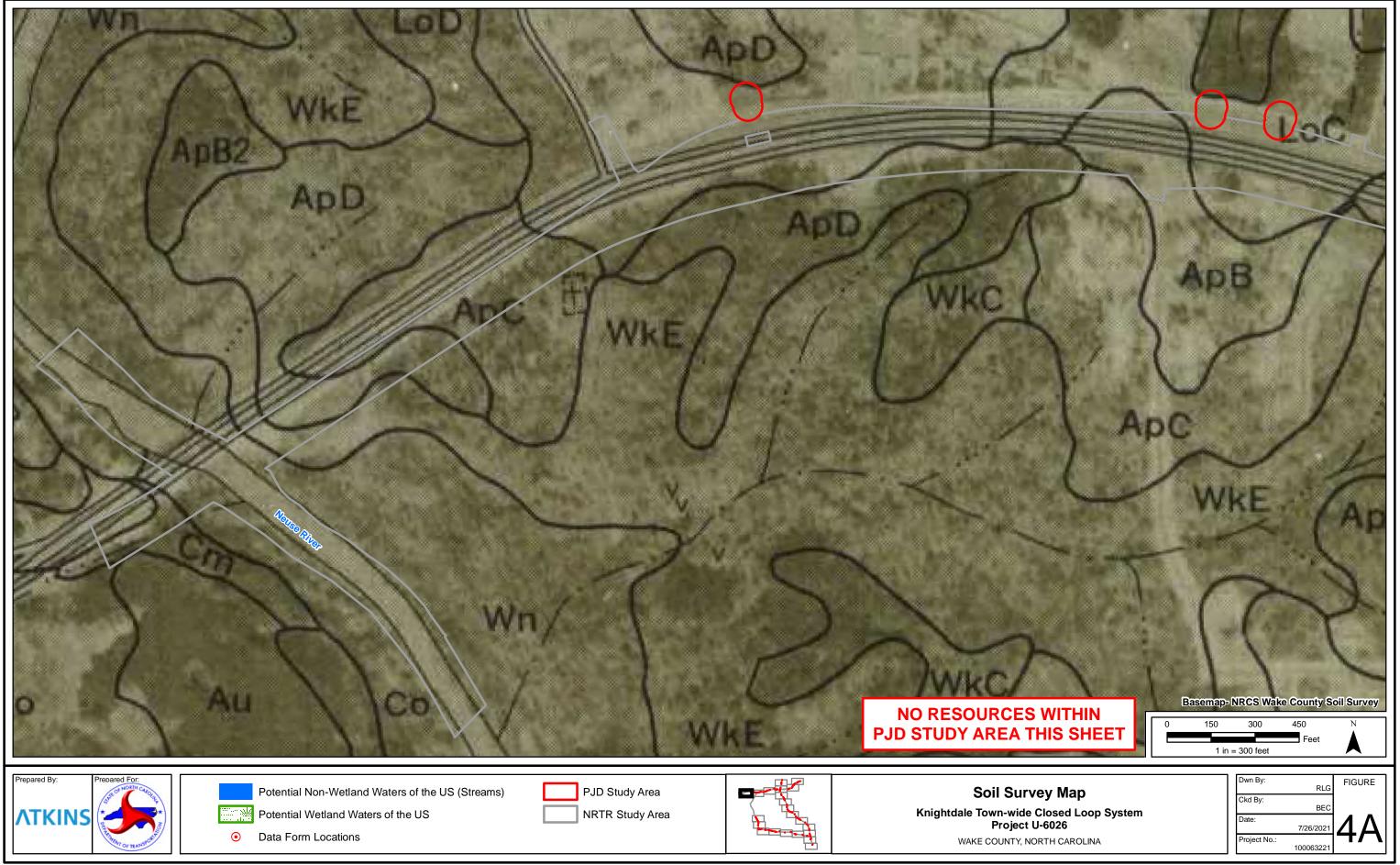
et.	
R	5
	0 300 450 N 1 in = 300 feet
: Map sed Loop System 026 H CAROLINA	Dwn By: RLG Ckd By: BEC Date: 7/26/2021 Project No.: 100063221

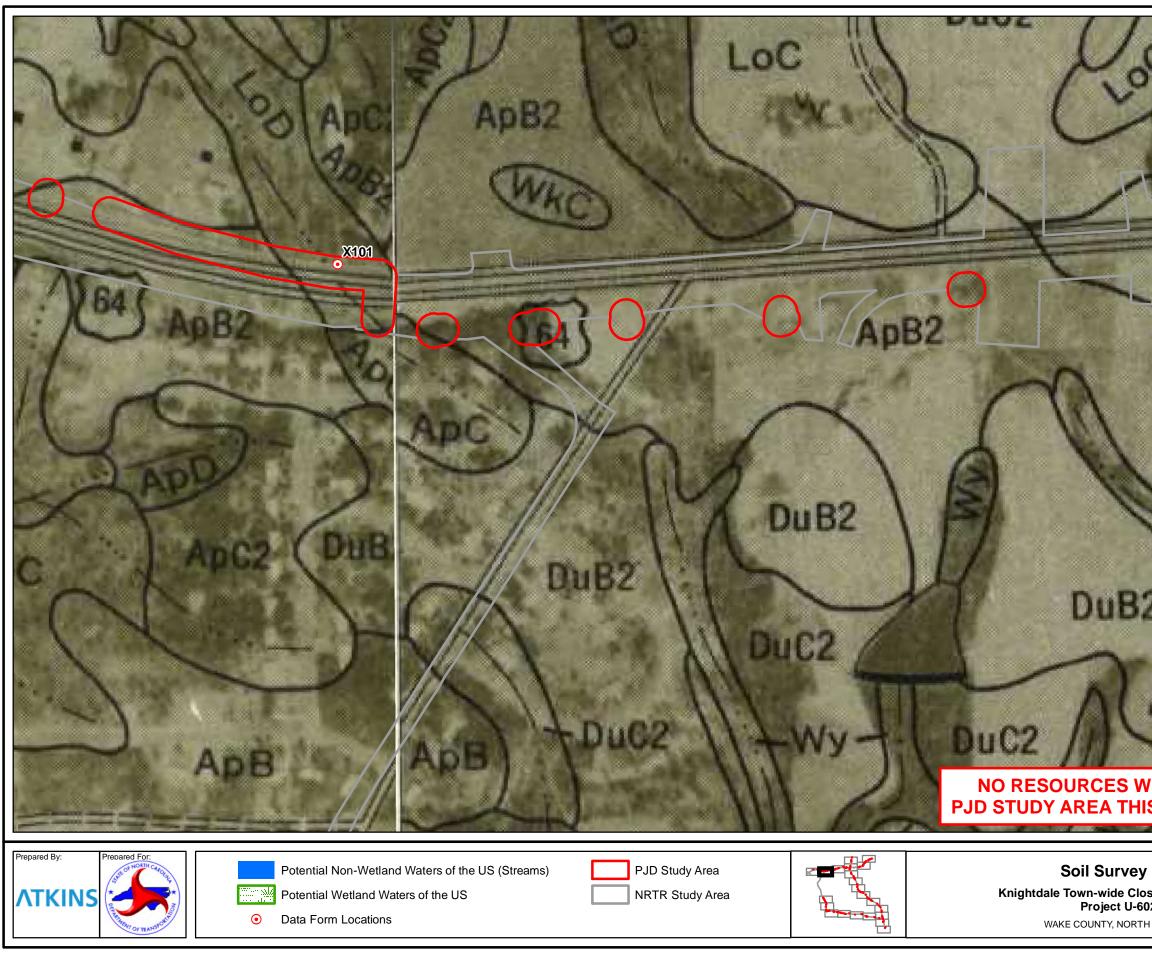

			A	
0		K	1007	NO RESOURCES V JUD STUDY AREA TH
Prepared By: ATKINS Precared For: Precared For:	Potential Non-Wetland Waters of the US (Stream Potential Wetland Waters of the US O Data Form Locations	ns) PJD Study Area		Topographi Knightdale Town-wide Clo Project U-6 WAKE COUNTY, NORT


	RM 200	Mar	250
250 ZO49		The second	
		NO RESOURCE PJD STUDY AREA	Image: system Image: system
Prepared By: ATKINS Prepared For: Potential Non-Wetland Waters of Data Form Locations		Knightdale Town-wi Proje	aphic Map de Closed Loop System ct U-6026 r, NORTH CAROLINA de Closed Loop System ct U-6026 r/26/2021 Project No.: 100063221



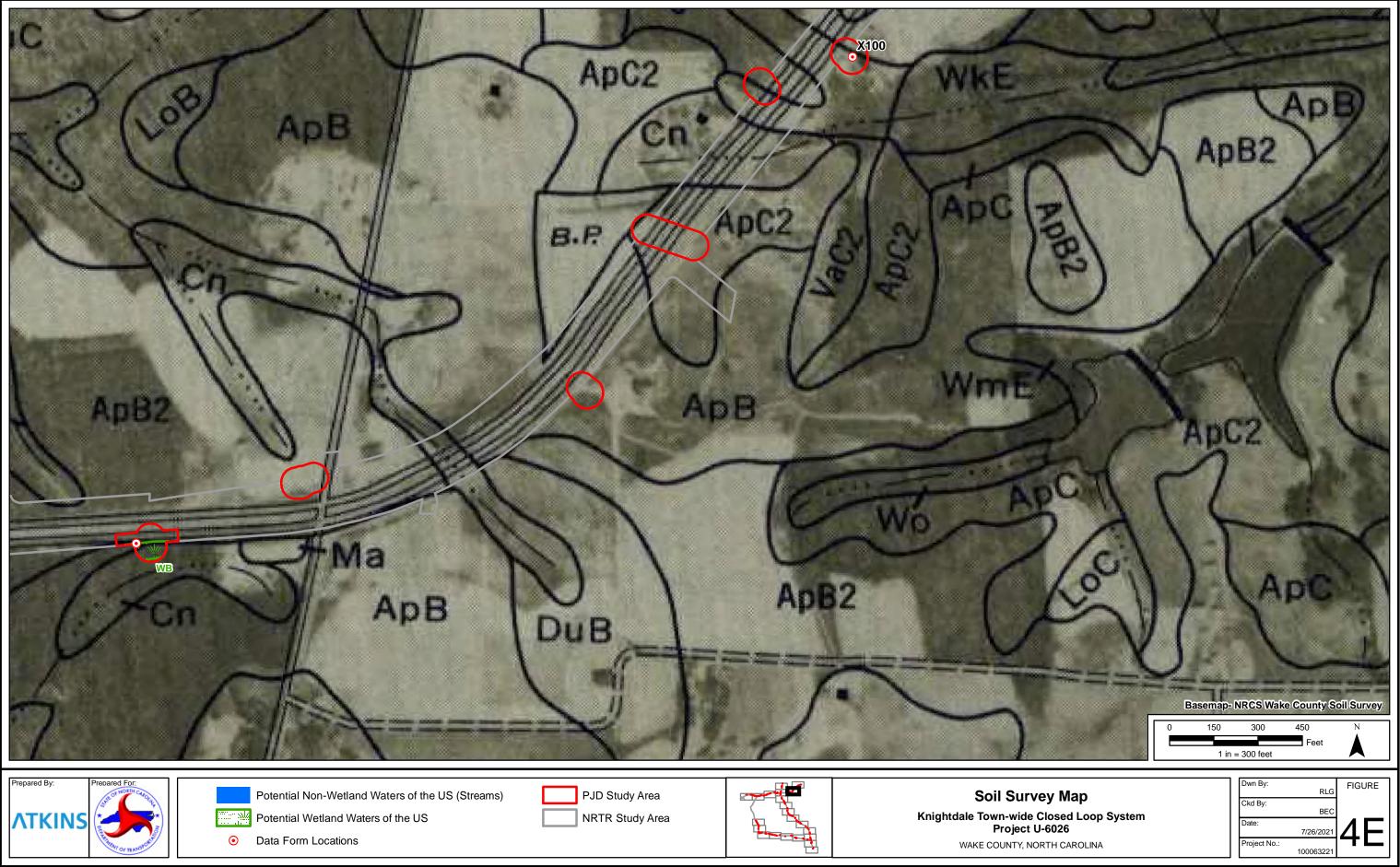
14	
35	Sil
	0
ITHIN	
S SHEET	150 300 450 N 1 in = 300 feet Feet Feet Figure Fig

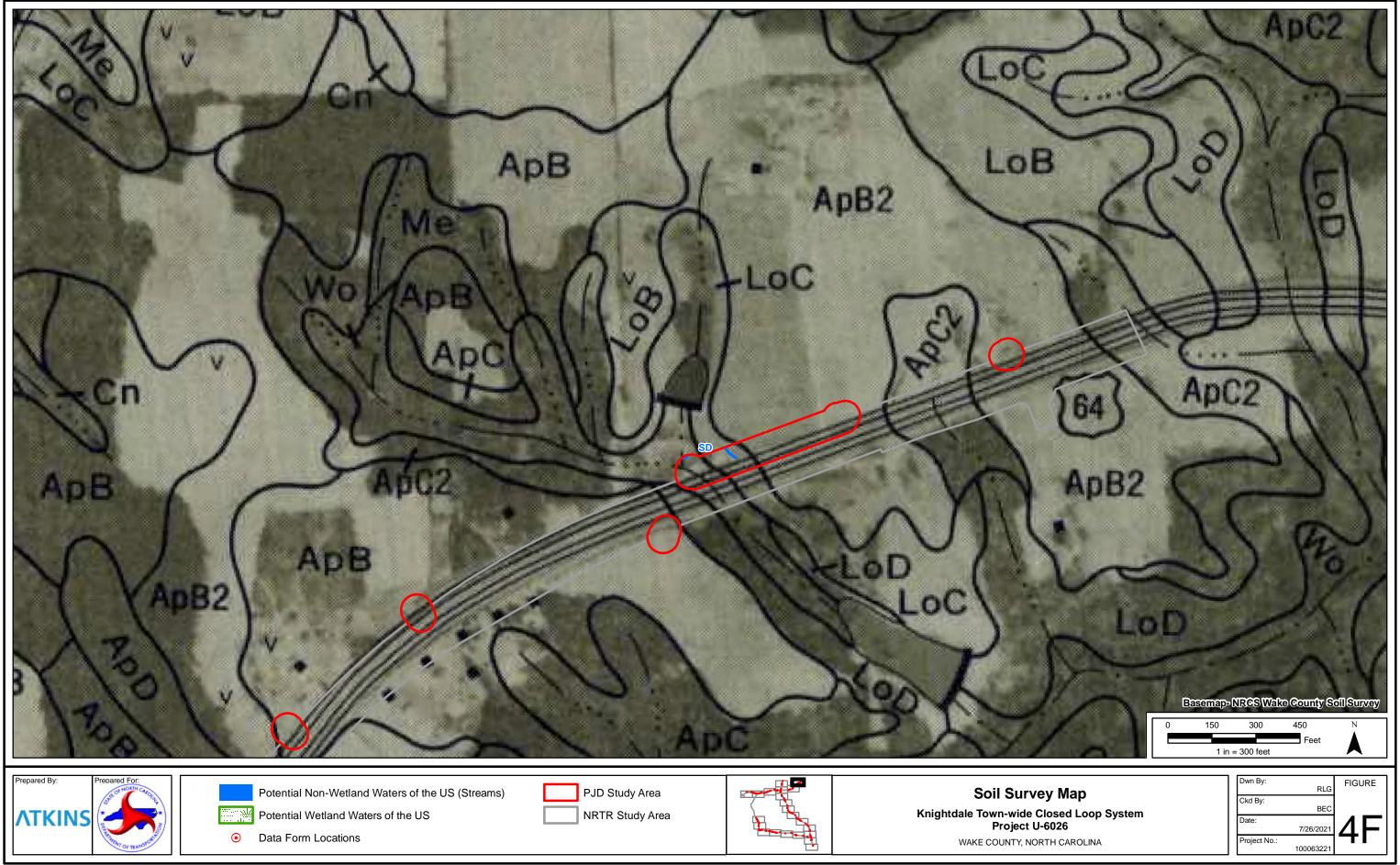

R	NO RESOURCES PJD STUDY AREA TH	Topograph Knightdale Town-wide C Project U- WAKE COUNTY, NOR
Ser Ser	Mob	
		PJD Study Area
	570	
	North And	Potential Non-Wetla Potential Wetland V Oata Form Location
No to	Fre P	AND THE REAL STORY
	1	Prepared By:

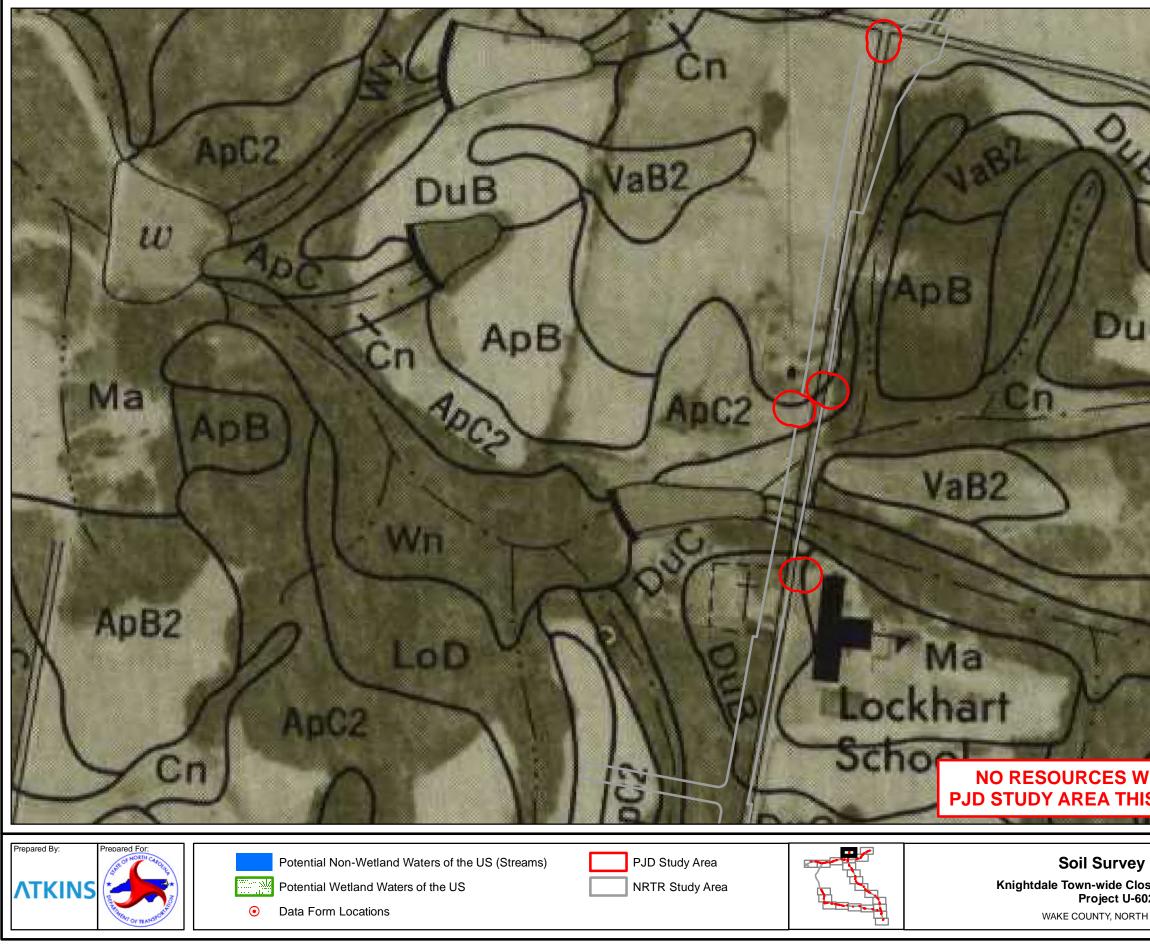


Ser les	1
S)	Sr
200	K
Map sed Loop System 26 I CAROLINA	300 450 N Feet Image: Comparison of the compar

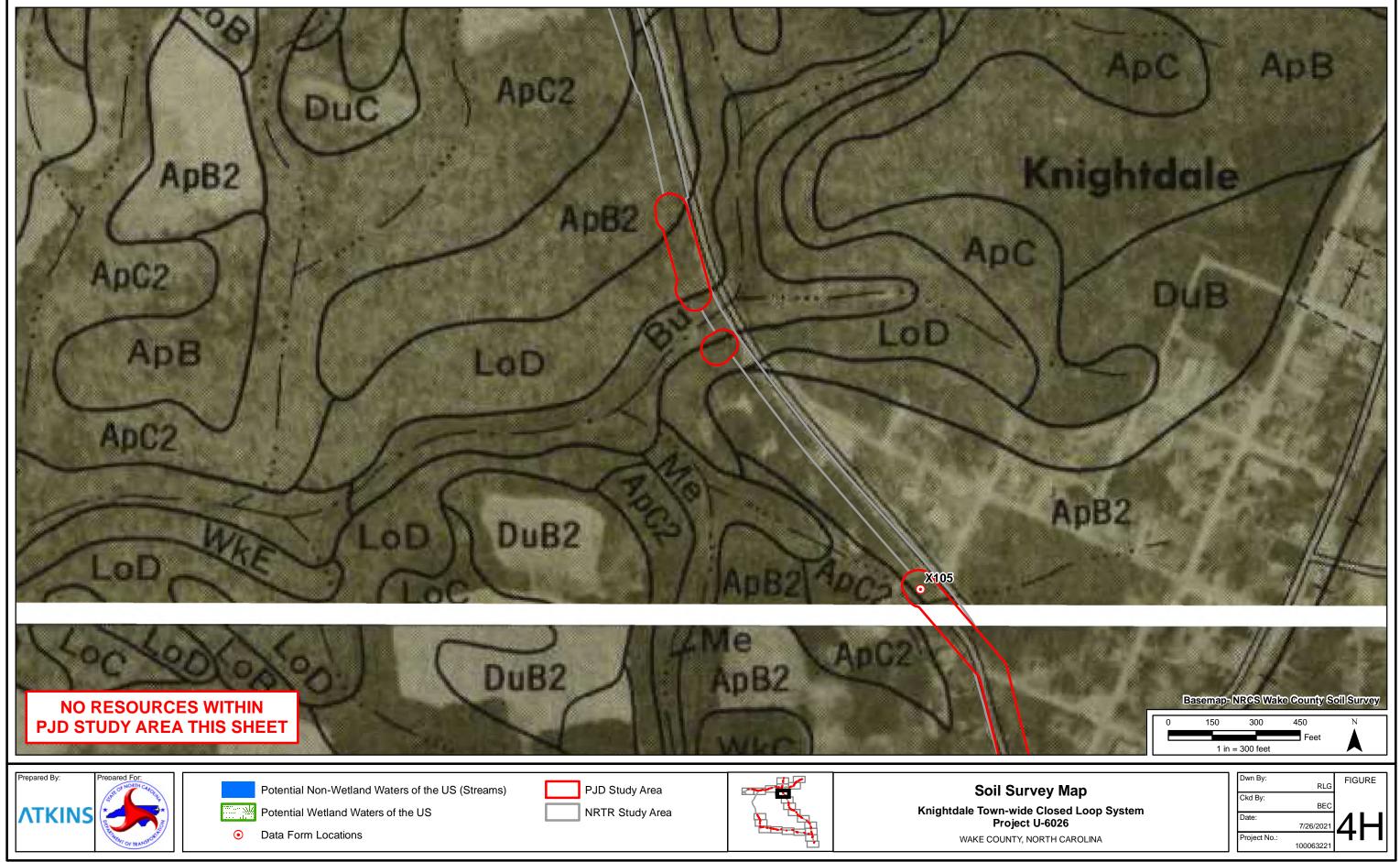
D:\ITS\ITS_Knightdale\Figure3_JD_Topo_v2.mxd

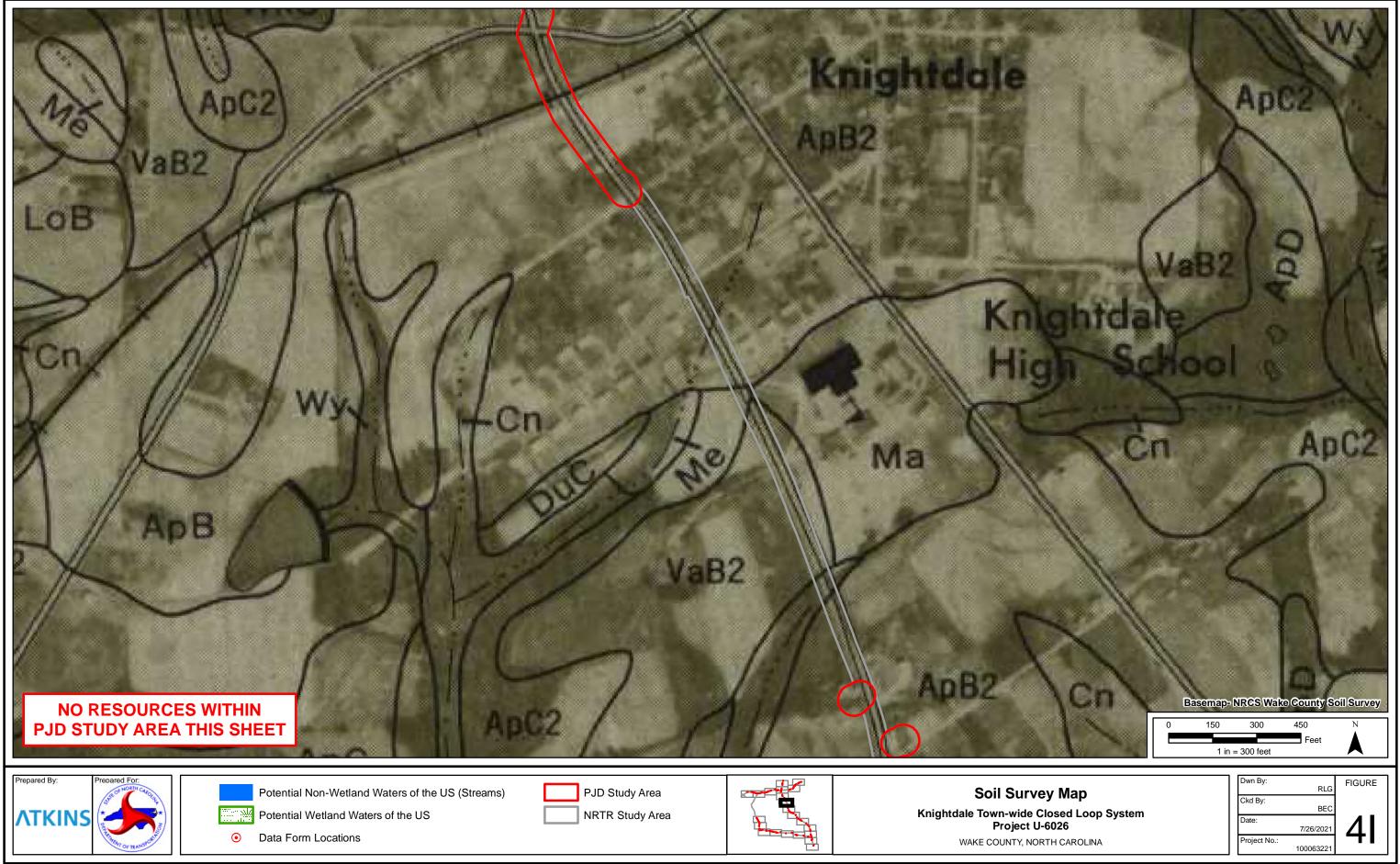

	DUC2
Vais.	Real Na
-	Lot
ITHIN S SHEET	0 150 300 450 N 1 in = 300 feet Feet Image: Comparison of the sector o
Map sed Loop System 26 I CAROLINA	Dwn By: RLG Ckd By: BEC Date: 7/26/2021 Project No.: 100063221 DAITS/ITS_Knightdale/Figure4_JD_Soils_v2.mxd

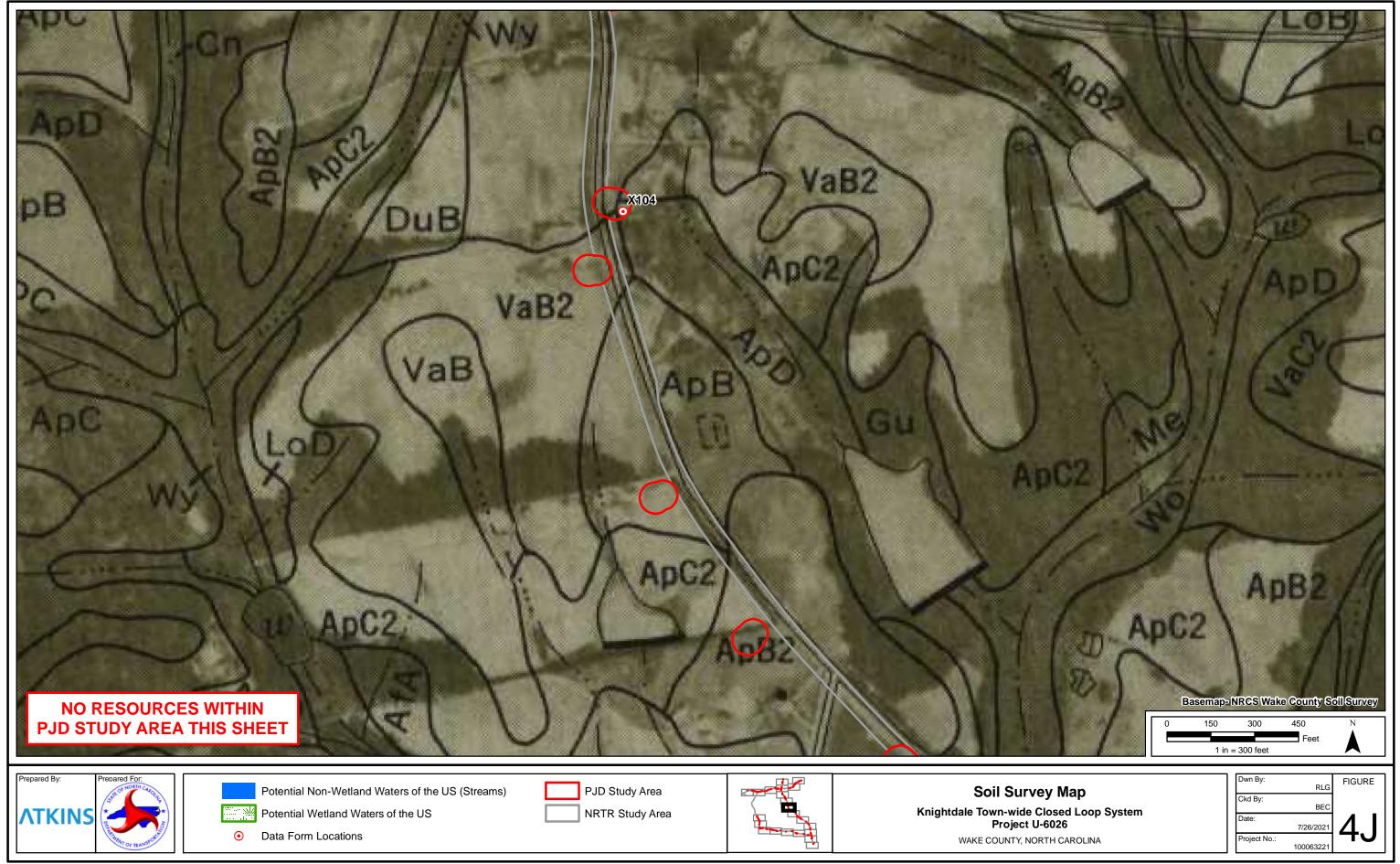

	DuB2 VaB2 Me ApB	VaB2	ADB2	ApB2 VaB2 Vo
Prepared By: TTKINS Prepared For:	Potential Non-Wetland Waters of the US (Streams) Potential Wetland Waters of the US Data Form Locations	PJD Study Area		Soil Survey Knightdale Town-wide Clos Project U-60 WAKE COUNTY, NORTH

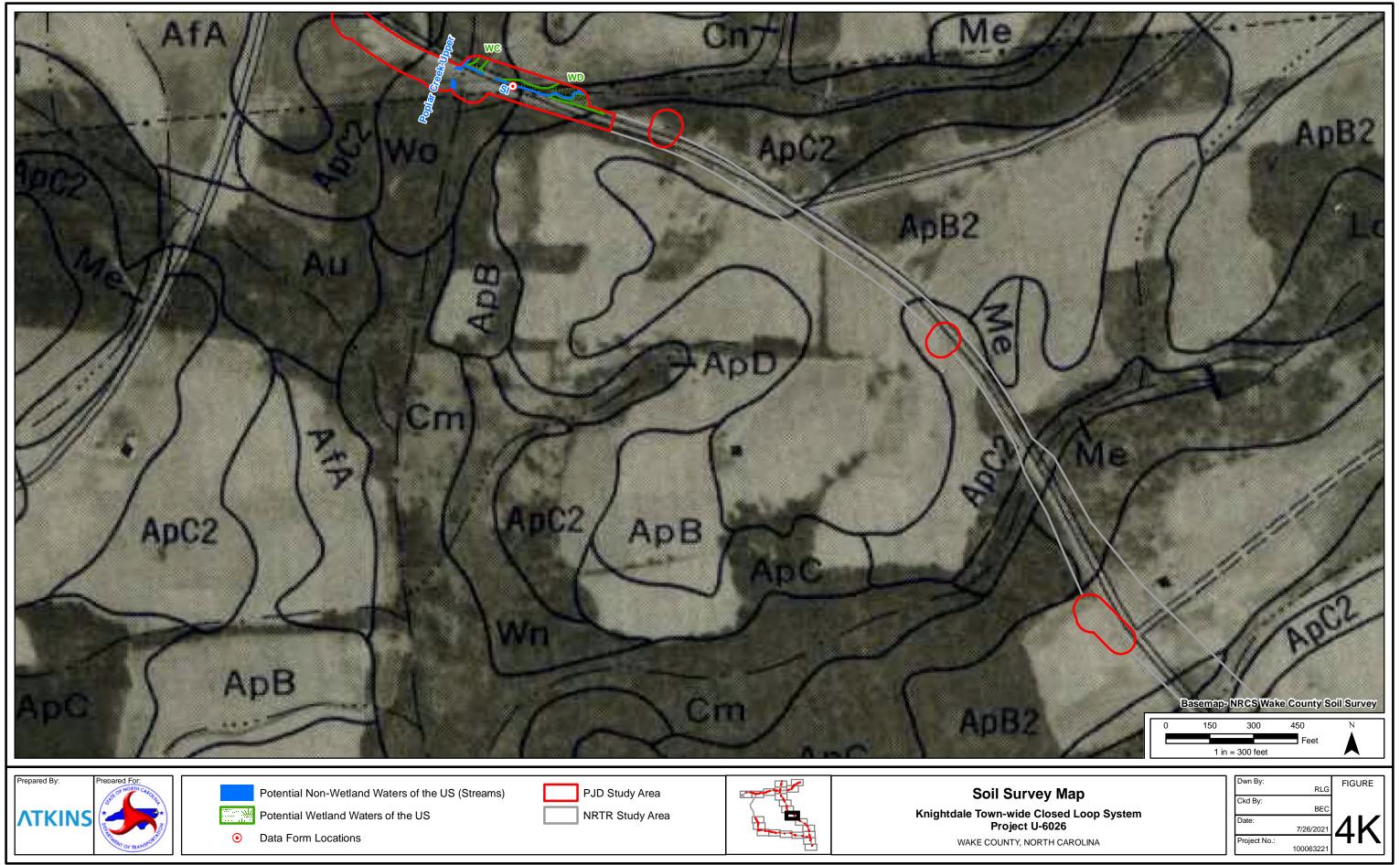

	ap-NRCS Wake County Soil Survey 300 450 Sold Astronomy Feet In n = 300 feet
ey Map losed Loop System 6026 TH CAROLINA	Dwn By: Ckd By: Date: 7/26/2021 Project No.: 100063221 DXITS\TTS_Knightdale\Figure4_JD_Solis_v2.mxd

LoB	Malbys Cross Road		ApB2	
ApB2	ApB Du			ApB2 ApB2 No resources v PJD STUDY AREA TH
Prepared By: Prepared For: Prepared For: Prepare	 Potential Non-Wetland Waters of the US (Streams) Potential Wetland Waters of the US Data Form Locations 	PJD Study Area		Soil Survey Knightdale Town-wide Cle Project U-6 WAKE COUNTY, NORT

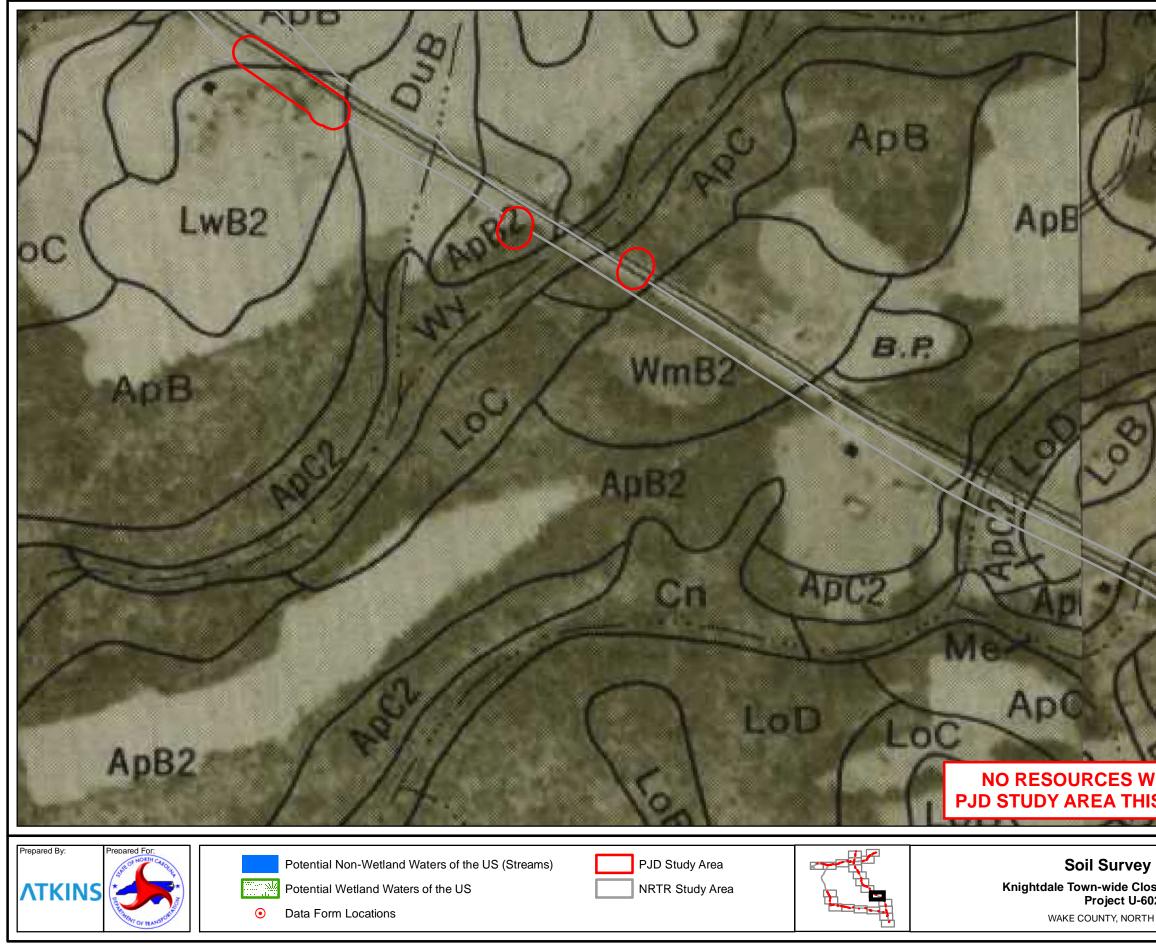

	esemap- NRCS Wake County Soil Survey
VITHIN IS SHEET	0 150 300 450 N Feet 1 in = 300 feet
y Map osed Loop System 026 H CAROLINA	Dwn By: RLG Ckd By: BEC Date: 7/26/2021 Project No.: 100063221 D:\ITS\ITS_Knightdale\Figure4_JD_Soils_v2.mxd

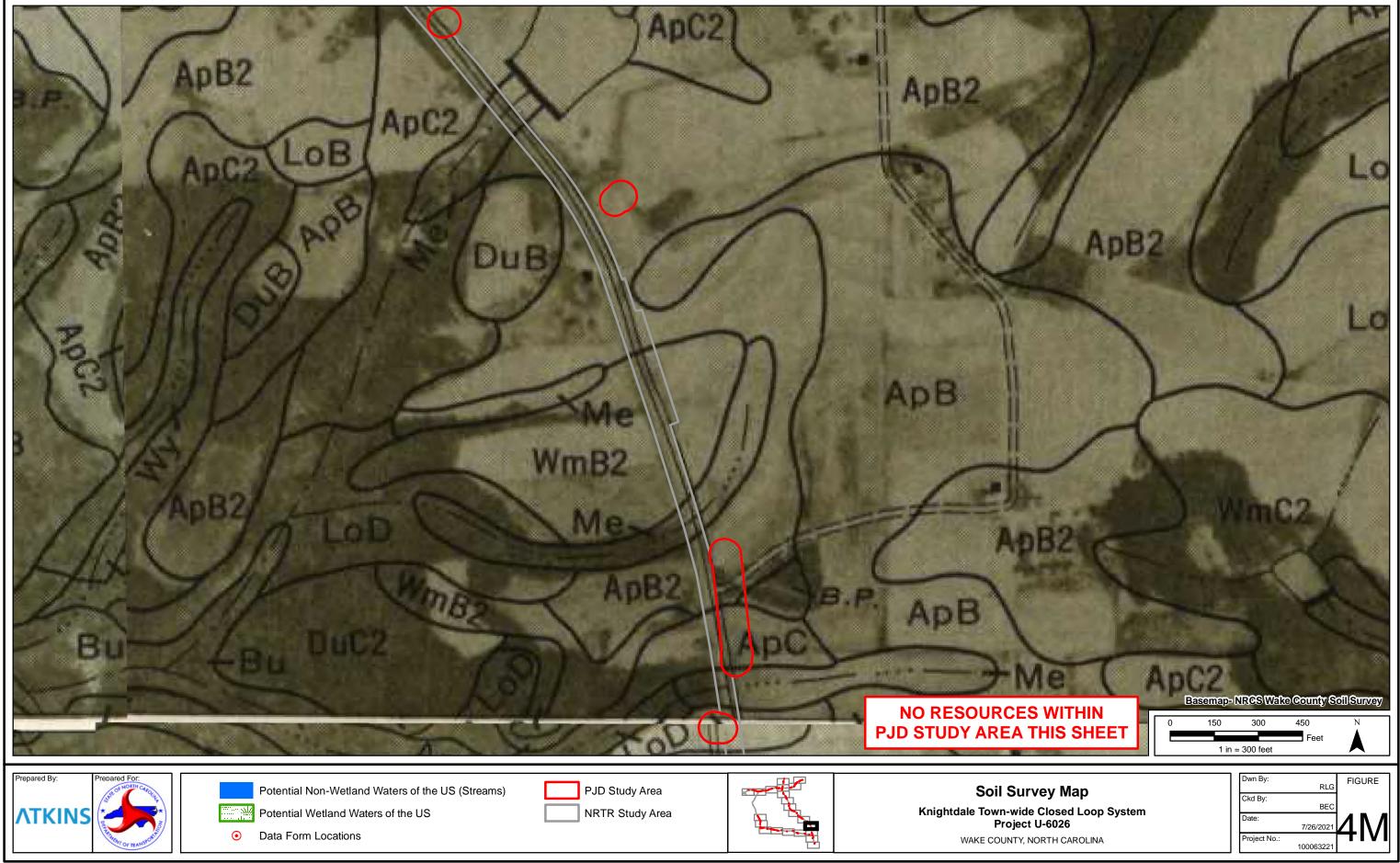


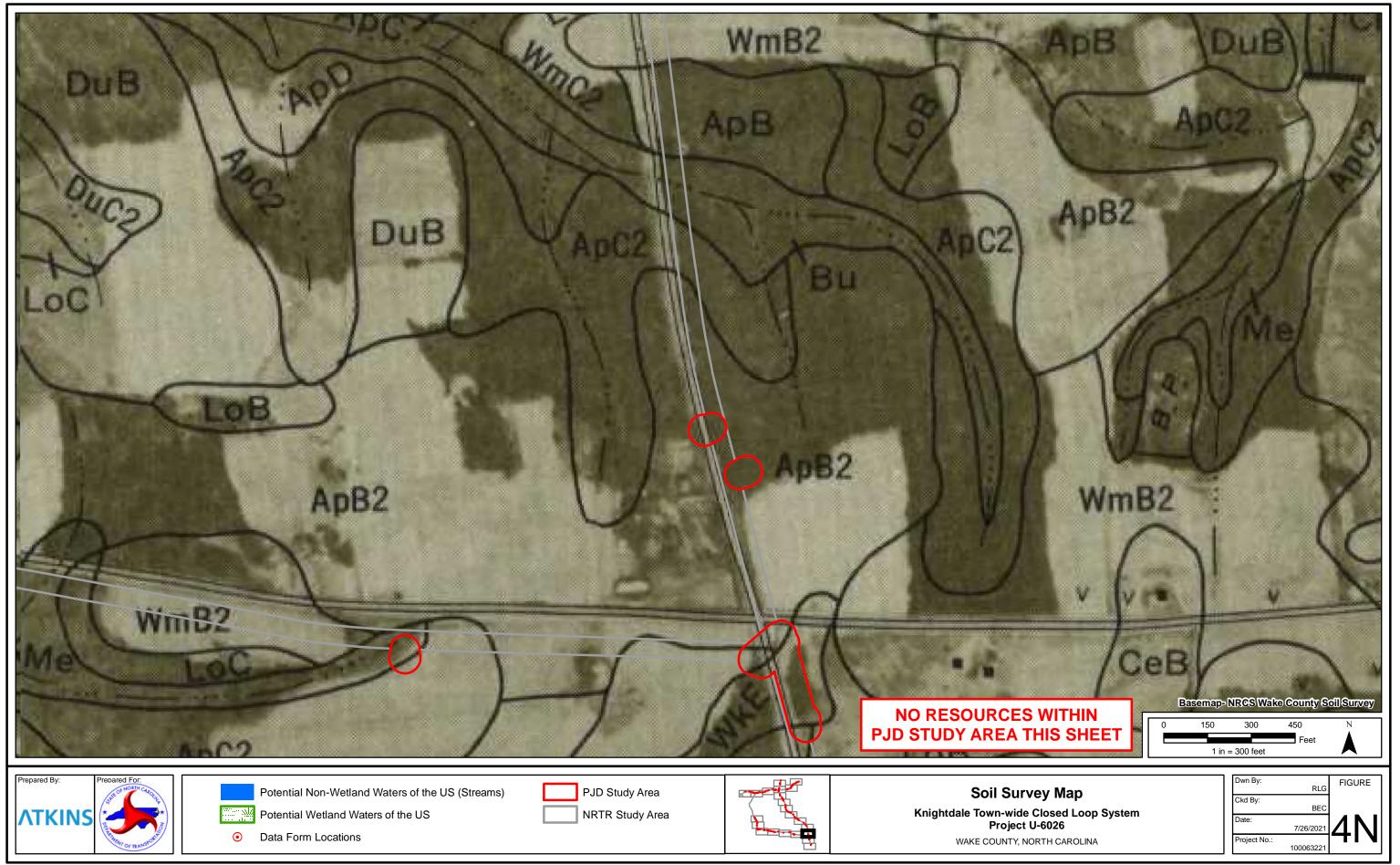


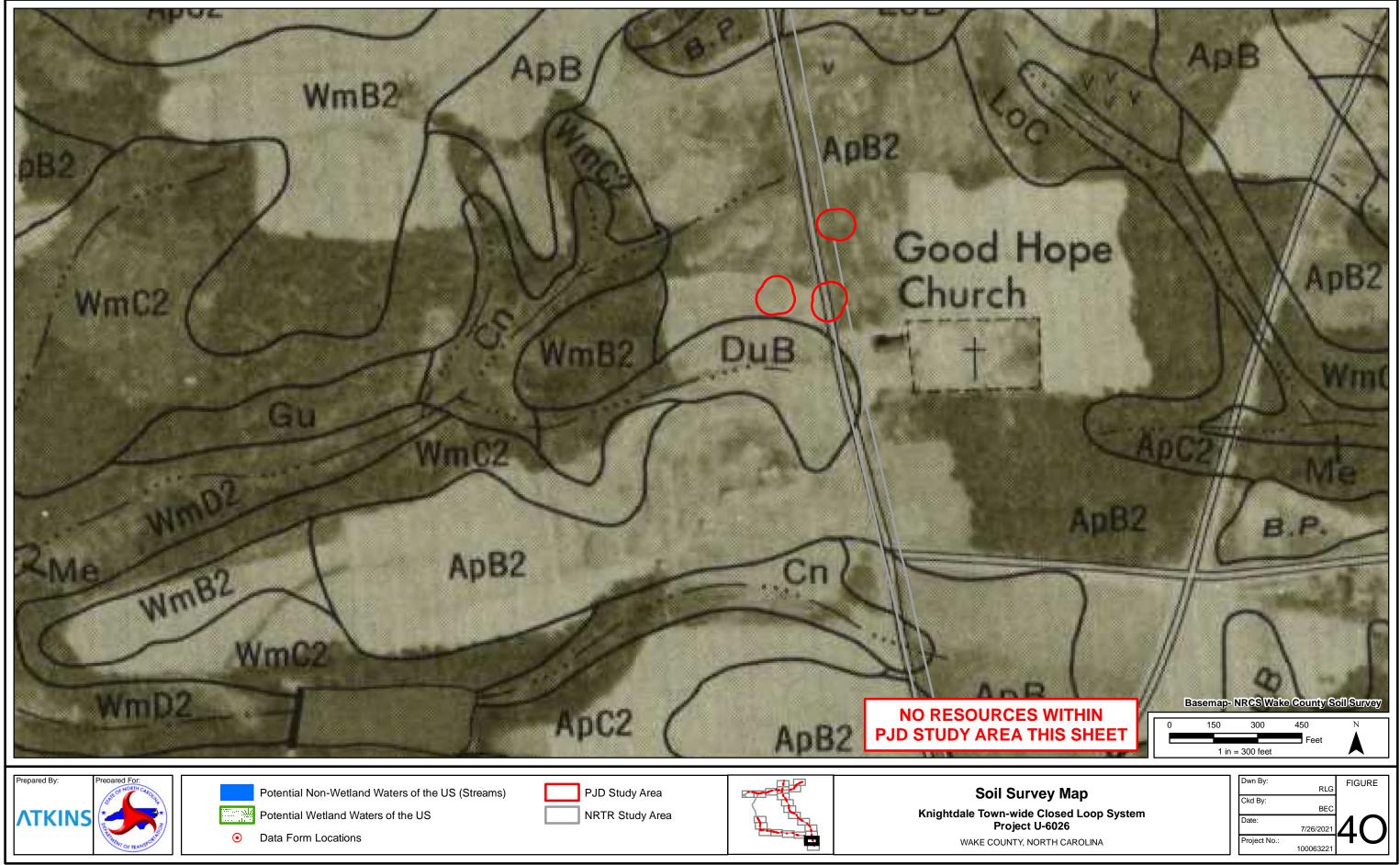


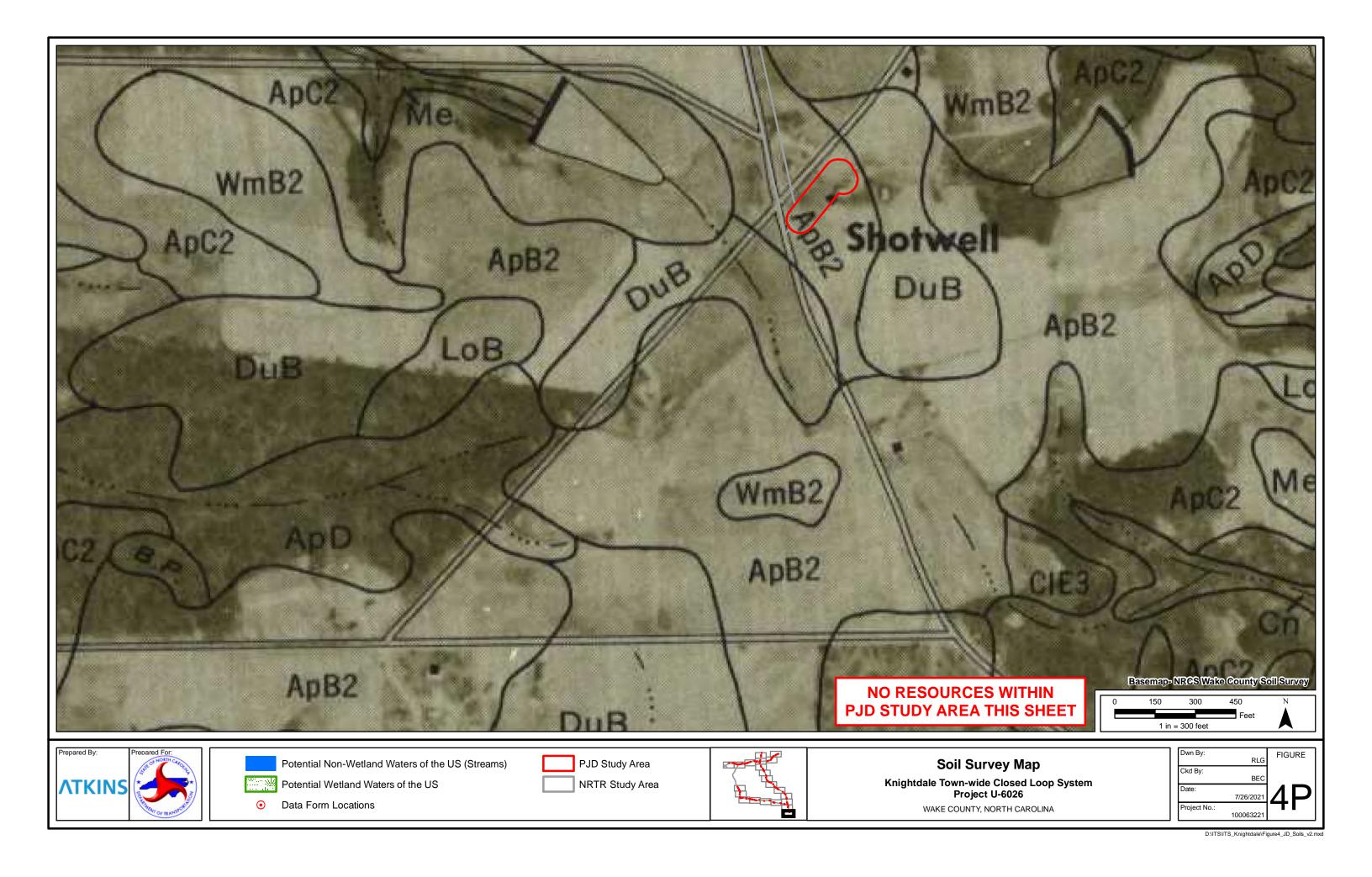
		A Contraction of the second seco	e County S	
VITHIN S SHEET	150	300 = 300 feet	450	
Map sed Loop System 26 I CAROLINA		Dwn By: Ckd By: Date: Project No.:	RLG BEC 7/26/2021 100063221 S\ITS_Knightdale\Fi	FIGURE

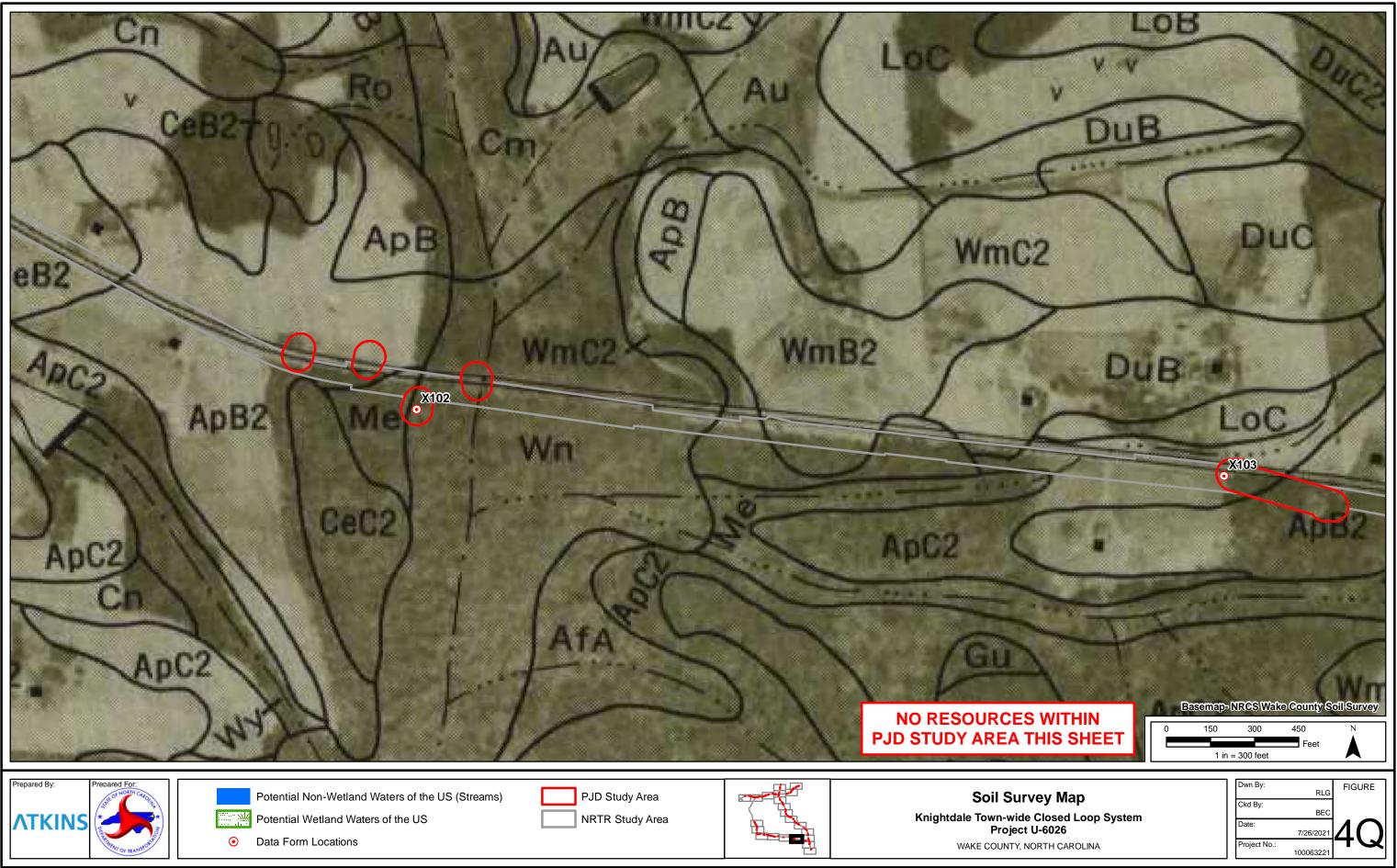


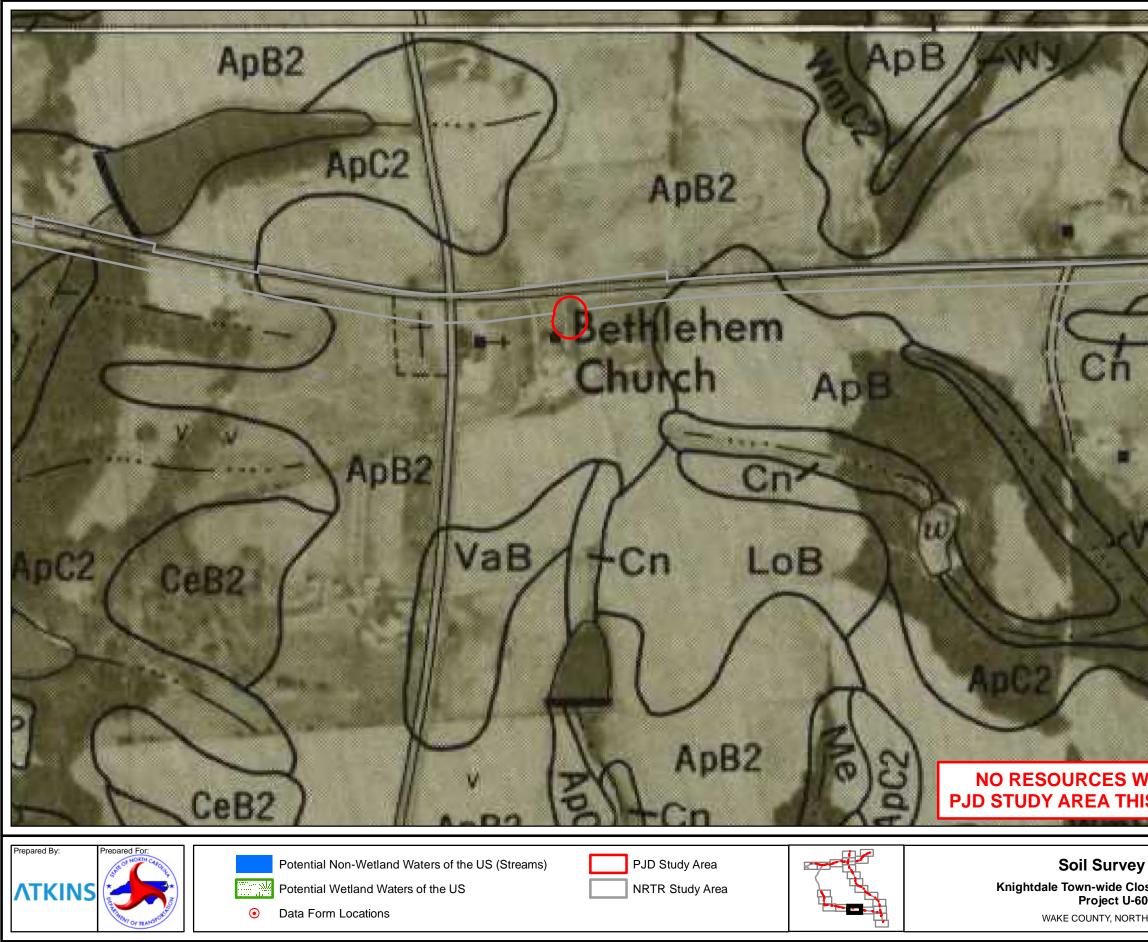


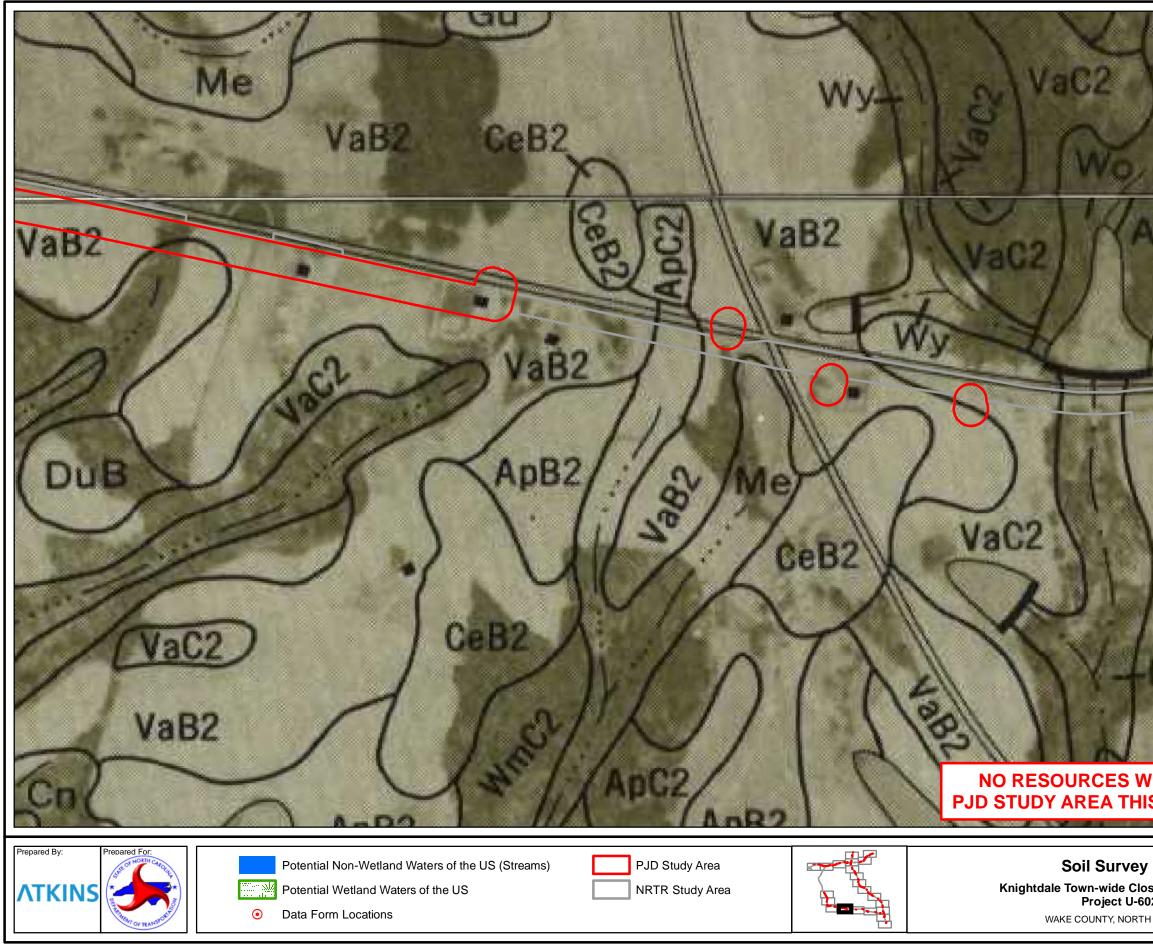


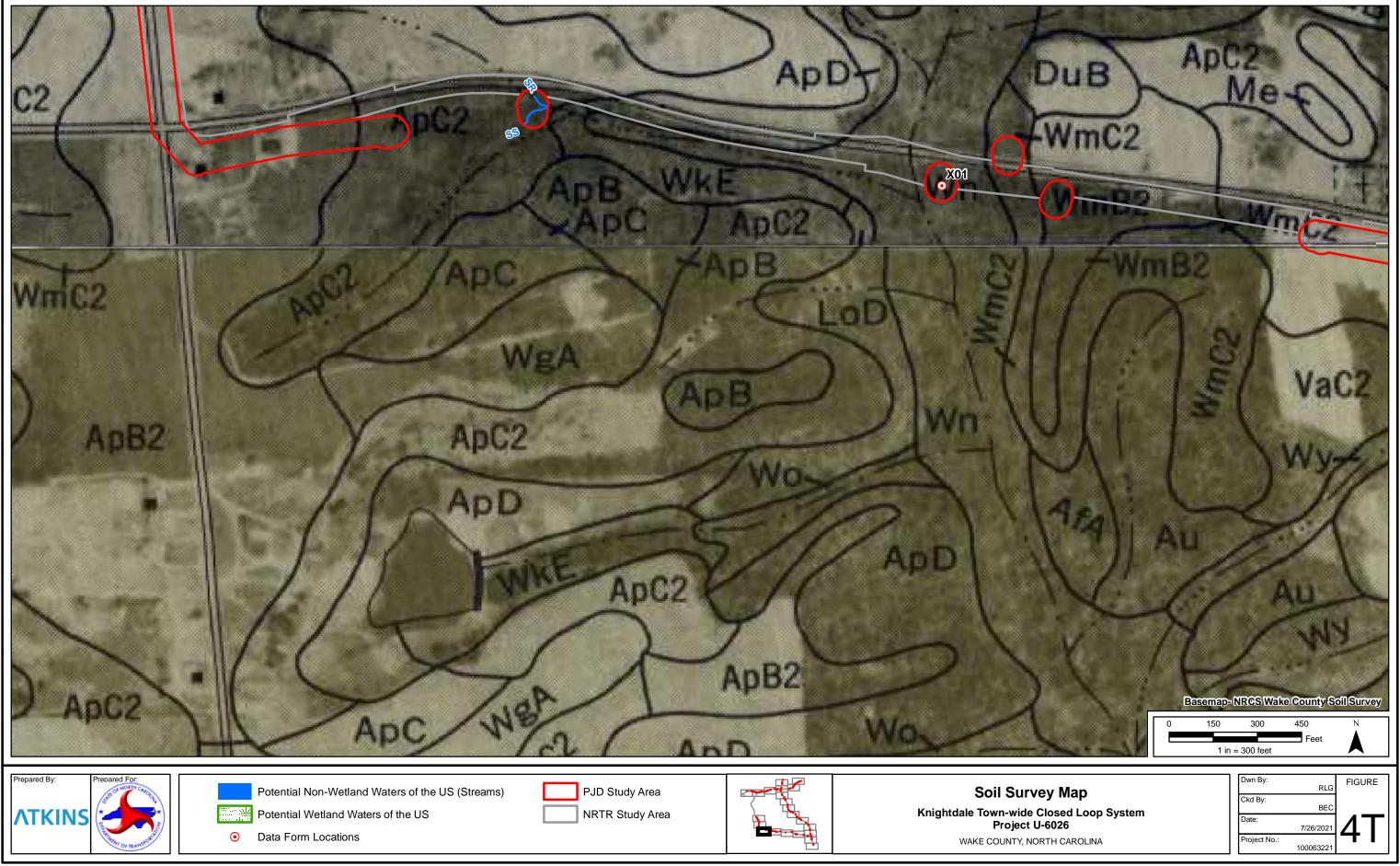

D:\ITS\ITS_Knightdale\Figure4_JD_Soils_v2.mxd

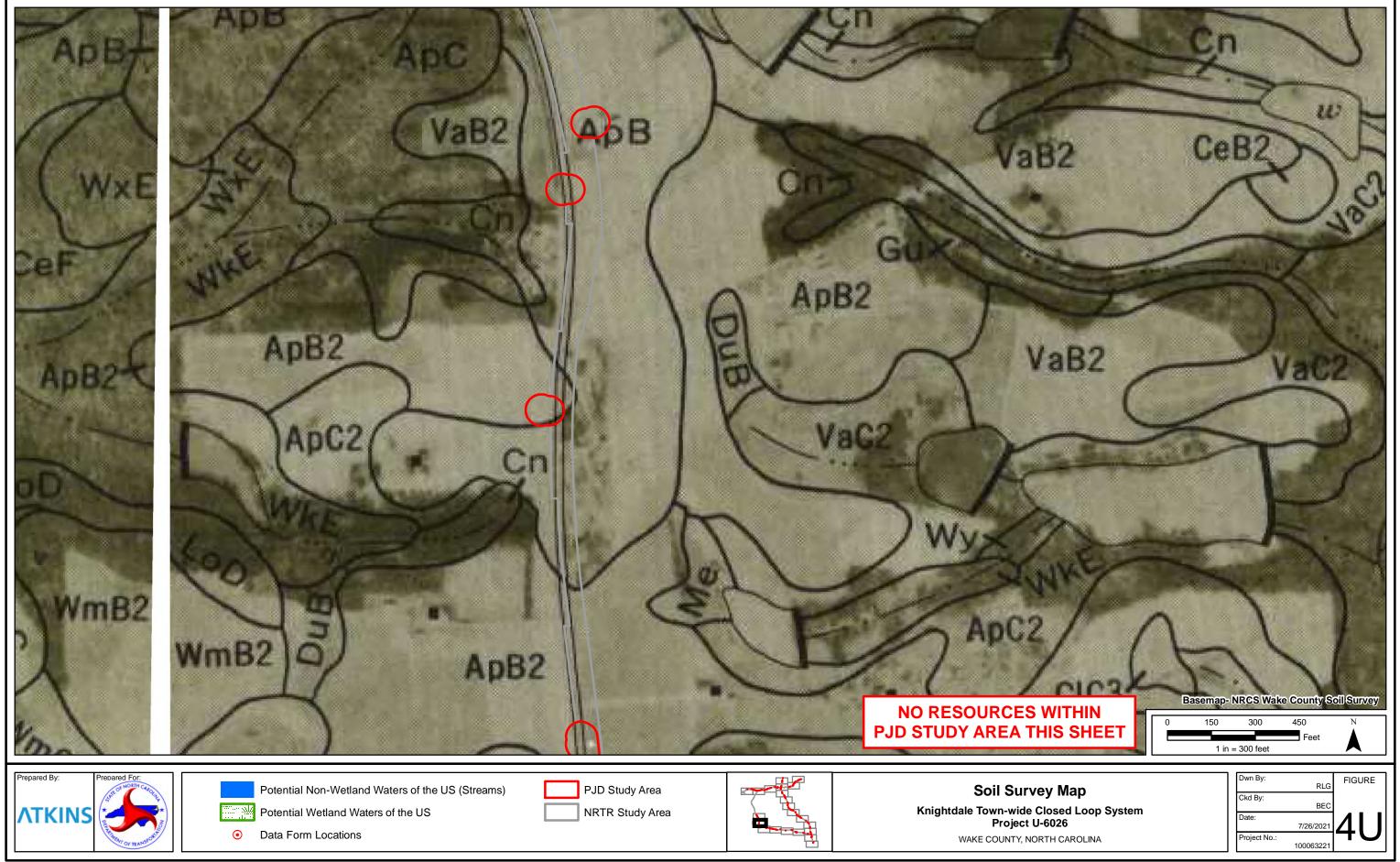


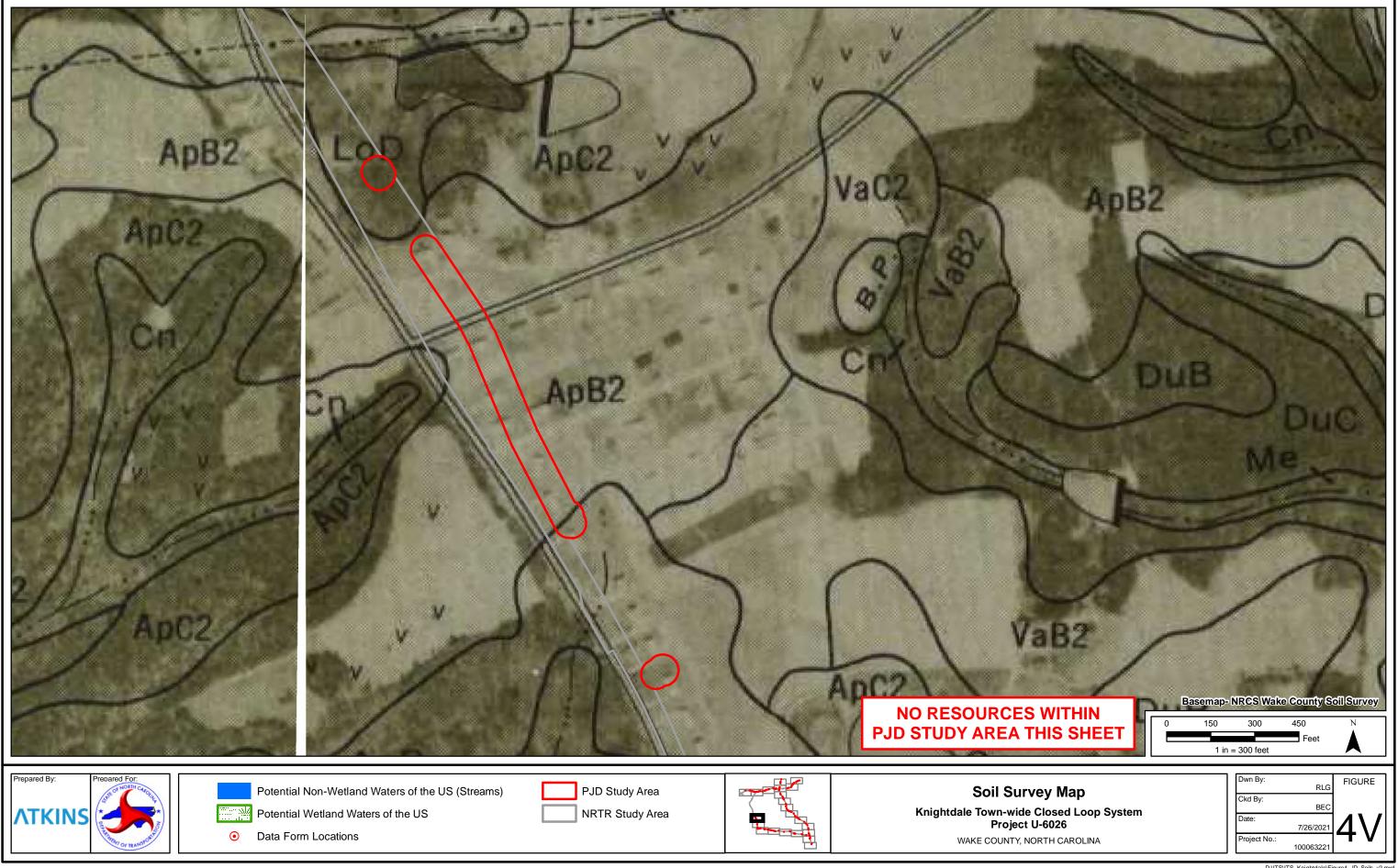

ApB2	DuB
ApB2	LoB
WmE	
VITHIN IS SHEET	Basemap- NRCS Wake County Soil Survey 0 150 300 450 N
Map osed Loop System 026 H CAROLINA	Dwn By: RLG Ckd By: BEC Date: 7/26/2021 Project No.: 100063221










ApB2	mCz
ApB2	
NU	
VITHIN IS SHEET	asemap- NRCS Wake County Soil Survey
/ Map osed Loop System 026 H CAROLINA	Dwn By: RLG Ckd By: Date: 7/26/2021 Project No.: 100063221
	D:\ITS\ITS_Knightdale\Figure4_JD_Soils_v2.mxd

20	ApB
1	Me
DC/11	
ALE AI	102
A	pB2
Si	ApC2
60)	A
	emap-NRCS Wake County Soil Survey
S SHEET	1 in = 300 feet
Map sed Loop System 26 I CAROLINA	Dwn By: RLG Ckd By: BEC Date: 7/26/2021 Project No.: 100063221
	D:\ITS\ITS_Knightdale\Figure4_JD_Soils_v2.mxd

Appendix 2 - PRELIMINARY JURISDICTIONAL DETERMINATION (PJD) FORM

BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR PJD:

B. NAME AND ADDRESS OF PERSON REQUESTING PJD: Jason Dilday, Century Center Building A, 1000 Birch Ridge Drive, Raleigh, NC 27610

C. DISTRICT OFFICE, FILE NAME, AND NUMBER:

D. PROJECT LOCATION(S) AND BACKGROUND INFORMATION: (USE THE TABLE BELOW TO DOCUMENT MULTIPLE AQUATIC RESOURCES AND/OR AQUATIC RESOURCES AT DIFFERENT SITES)

State: North Carolina County/parish/borough: Wake

City: Knightdale

Center coordinates of site (lat/long in degree decimal format):

Lat.: 35.798727 Long.: -78.476707

Universal Transverse Mercator:

Name of nearest waterbody: Neuse River

E. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

Office (Desk) Determination. Date:

Field Determination. Date(s):

TABLE OF AQUATIC RESOURCES IN REVIEW AREA WHICH "MAY BE" SUBJECT TO REGULATORY JURISDICTION.

Site number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resource in review area (acreage and linear feet, if applicable)	Type of aquatic resource (i.e., wetland vs. non-wetland waters)	Geographic authority to which the aquatic resource "may be" subject (i.e., Section 404 or Section 10/404)

- The Corps of Engineers believes that there may be jurisdictional aquatic resources in the review area, and the requestor of this PJD is hereby advised of his or her option to request and obtain an approved JD (AJD) for that review area based on an informed decision after having discussed the various types of JDs and their characteristics and circumstances when they may be appropriate.
- 2) In any circumstance where a permit applicant obtains an individual permit, or a Nationwide General Permit (NWP) or other general permit verification requiring "preconstruction notification" (PCN), or requests verification for a non-reporting NWP or other general permit, and the permit applicant has not requested an AJD for the activity, the permit applicant is hereby made aware that: (1) the permit applicant has elected to seek a permit authorization based on a PJD, which does not make an official determination of jurisdictional aquatic resources; (2) the applicant has the option to request an AJD before accepting the terms and conditions of the permit authorization, and that basing a permit authorization on an AJD could possibly result in less compensatory mitigation being required or different special conditions; (3) the applicant has the right to request an individual permit rather than accepting the terms and conditions of the NWP or other general permit authorization; (4) the applicant can accept a permit authorization and thereby agree to comply with all the terms and conditions of that permit, including whatever mitigation requirements the Corps has determined to be necessary; (5) undertaking any activity in reliance upon the subject permit authorization without requesting an AJD constitutes the applicant's acceptance of the use of the PJD; (6) accepting a permit authorization (e.g., signing a proffered individual permit) or undertaking any activity in reliance on any form of Corps permit authorization based on a PJD constitutes agreement that all aquatic resources in the review area affected in any way by that activity will be treated as jurisdictional, and waives any challenge to such jurisdiction in any administrative or judicial compliance or enforcement action, or in any administrative appeal or in any Federal court; and (7) whether the applicant elects to use either an AJD or a PJD, the JD will be processed as soon as practicable. Further, an AJD, a proffered individual permit (and all terms and conditions contained therein), or individual permit denial can be administratively appealed pursuant to 33 C.F.R. Part 331. If, during an administrative appeal, it becomes appropriate to make an official determination whether geographic jurisdiction exists over aquatic resources in the review area, or to provide an official delineation of jurisdictional aquatic resources in the review area, the Corps will provide an AJD to accomplish that result, as soon as is practicable. This PJD finds that there "may be" waters of the U.S. and/or that there "may be" navigable waters of the U.S. on the subject review area, and identifies all aquatic features in the review area that could be affected by the proposed activity, based on the following information:

SUPPORTING DATA. Data reviewed for PJD (check all that apply)

Checked items should be included in subject file.	Appropriately reference sources
below where indicated for all checked items:	

X	Maps, plans, plots or plat submitted by or on behalf of the PJD requestor: Map: Please refer to Appendix 1
	Data sheets prepared/submitted by or on behalf of the PJD requestor. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Rationale:
	Data sheets prepared by the Corps:
	Corps navigable waters' study:
	U.S. Geological Survey Hydrologic Atlas:
	USGS NHD data. USGS 8 and 12 digit HUC maps.
X	U.S. Geological Survey map(s). Cite scale & quad name: 1:24,000 Knightdale Quad Soil Survey of Wake County, North Carolina
X	Natural Resources Conservation Service Soil Survey. Citation: November 1970
	National wetlands inventory map(s). Cite name:
	State/local wetland inventory map(s):
	FEMA/FIRM maps:
	100-year Floodplain Elevation is:(National Geodetic Vertical Datum of 1929)
X	Photographs: X Aerial (Name & Date): <u>NC One Map, Aerial flown 2017</u> .
	or Other (Name & Date):
	Previous determination(s). File no. and date of response letter:
\square	Other information (please specify):

IMPORTANT NOTE: The information recorded on this form has not necessarily been verified by the Corps and should not be relied upon for later jurisdictional determinations.

Mack C. Digitally signed by Mack C. Rivenbark, III Bate: 2022.09.09 08:36:50 -04'00'

Signature and date of Regulatory staff member completing PJD Signature and date of person requesting PJD (REQUIRED, unless obtaining the signature is impracticable)¹

¹ Districts may establish timeframes for requestor to return signed PJD forms. If the requestor does not respond within the established time frame, the district may presume concurrence and no additional follow up is necessary prior to finalizing an action.

Appendix 3: Tables

Table of Aquatic Resources in Review Area which "May Be" Subject to Regulatory Jurisdiction Characteristics of Streams within the Study Area Characteristics of Wetlands within the Study Area Surface Water Characteristics Aquatic Upload Table

Table of Aquatic Resources in Review Areawhich "May Be" Subject to Regulatory Jurisdiction

Site number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resource in review area (acres/linear feet)	•	Geographic Authority to which the Aquatic Resource "May Be" Subject (Section 404 or Section 10/404)
SD	35.80645	-78.46434	85 lf	Non-Wetland	Section 404
SI	35.77328	-78.47217	413 lf	Non-Wetland	Section 404
SR	35.75451	-78.51303	62 lf	Non-Wetland	Section 404
SS	35.75451	-78.51303	114 lf	Non-Wetland	Section 404
Poplar Creek	35.77344	-78.47333	88 lf	Non-Wetland	Section 404
WB	35.79871	-78.47691	0.13 ac	Wetland	Section 404
WC	35.77352	-78.47343	0.05 ac	Wetland	Section 404
WD	35.77335	-78.47307	0.24 ac	Wetland	Section 404

Characteristics of Streams in the Study Area

Map ID	Length (ft.)	Classification	Compensatory Mitigation Required	River Basin Buffer
SD	85	Perennial	Undetermined	Subject
SI	413	Perennial	Undetermined	Subject
SR	62	Intermittent	Undetermined	Subject
SS	114	Intermittent	Undetermined	Subject
Poplar Creek	88	Perennial	Undetermined	Subject
Total	762			

Characteristics of Wetlands in the Study Area

Map ID	NCWAM Classification	NCWAM Rating	Hydrologic Classification	Area (ac.) in Study Area
WB	Headwater Forest	Low	Riparian	0.13
WC	Bottomland Hardwood Forest	Low	Riparian	0.05
WD	Headwater Forest	Medium	Riparian	0.24
			Total	0.42

Waters_Name	State	Cowardin_Code	HGM_Code	Meas_Type	Amount	Units	Waters_Type	Latitude	Longitude	Local_Waterway
SD	NORTH CAROLINA	R3UB	RIVERINE	Linear	85	FOOT	RPW	35.80645	-78.46434	Marks Creek
SI	NORTH CAROLINA	R3UB	RIVERINE	Linear	413	FOOT	RPWWD	35.77328	-78.47217	Poplar Creek
SR	NORTH CAROLINA	R4SB	RIVERINE	Linear	62	FOOT	RPW	35.75451	-78.51303	Neuse River
SS	NORTH CAROLINA	R4SB	RIVERINE	Linear	114	FOOT	RPW	35.75451	-78.51303	Neuse River
Poplar Creek	NORTH CAROLINA	R3UB	RIVERINE	Linear	88	FOOT	RPWWD	35.77344	-78.47333	Neuse River
WB	NORTH CAROLINA	PFO	RIVERINE	Area	0.13	ACRE	RPWWN	35.79871	-78.47691	Mingo Creek
WC	NORTH CAROLINA	PSS	RIVERINE	Area	0.05	ACRE	RPWWD	35.77352	-78.47343	Poplar Creek
WD	NORTH CAROLINA	PSS	RIVERINE	Area	0.24	ACRE	RPWWD	35.77335	-78.47307	Poplar Creek

Appendix 4: Field Data Forms Wetland Determination Data Forms NCDWQ Stream Identification Forms NCWAM Data Forms NCSAM Data Forms

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region

Project/Site: Knightdale ITS; U-6026	City/County: Wake	Sampli	ng Date: 6/7/2021
Applicant/Owner: North Carolina Department of Transportation			pling Point: BK03
Investigator(s): B. Cogdell-Atkins	Section, Township, Range:	Knightdale USGS 1:24,0	000 Quadrangle
	ocal relief (concave, convex,		Slope (%): 0-3
Subregion (LRR or MLRA): P-136 Lat: 35.798708	Long:	-78.476911	Datum: NAD83
Soil Map Unit Name: CnA-Colfax Sandy Loam		NWI classification:	PFO
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes X No	_ (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology significantly	/ disturbed? Are "Norr	mal Circumstances" present?	Yes X No
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If needed	d, explain any answers in Rei	marks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X Yes X Yes X	No No No	Is the Sampled Area within a Wetland?	Yes X	No
Remarks:					

HYDROLOGY

Wetland Hydrology Indicato	ors:			Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)				Surface Soil Cracks (B6)
Surface Water (A1) True Aquatic Plants (B14)				Sparsely Vegetated Concave Surface (B8)
High Water Table (A2) Hydrogen Sulfide Odor (C1)				X Drainage Patterns (B10)
Saturation (A3)		Roots (C3)	Moss Trim Lines (B16)	
Water Marks (B1)		Presence of Reduced Iron (C4)		Dry-Season Water Table (C2)
Sediment Deposits (B2)		_ Recent Iron Reduction in Tilled Se	oils (C6)	Crayfish Burrows (C8)
Drift Deposits (B3)		_ Thin Muck Surface (C7)		Saturation Visible on Aerial Imagery (C9)
Algal Mat or Crust (B4)		Other (Explain in Remarks)		Stunted or Stressed Plants (D1)
Iron Deposits (B5)				Geomorphic Position (D2)
Inundation Visible on Aeri	ial Imagery (B7)			Shallow Aquitard (D3)
X Water-Stained Leaves (B	9)			Microtopographic Relief (D4)
Aquatic Fauna (B13)				FAC-Neutral Test (D5)
Field Observations:				
Surface Water Present?	Yes No X	Depth (inches):		
		Denth (inches)		
Water Table Present?	Yes <u>No X</u>	_ Depth (inches):		
Saturation Present?		_ Depth (inches): _ Depth (inches):	Wetland I	Hydrology Present? Yes X No
Saturation Present? (includes capillary fringe)	Yes No X	,		
Saturation Present? (includes capillary fringe)	Yes No X	Depth (inches):		
Saturation Present? (includes capillary fringe)	Yes No X	Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No X	Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No X	Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No X	Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No X	Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No X	Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No X	Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No X	Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No X	Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No X	Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No X	Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No X	Depth (inches):		

VEGETATION (Five Strata) – Use scientific names of plants.

Sampling Point: BK03

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: <u>30' rad.</u>)	% Cover	Species?		Number of Dominant Species
1. Acer rubrum	40	Yes	FAC	That Are OBL, FACW, or FAC: 6 (A)
2. Quercus nigra	10	No	FAC	Total Number of Deminent
3. Pinus taeda	5	No	FAC	Total Number of Dominant Species Across All Strata:6 (B)
4. Liquidambar styraciflua	5	No	FAC	
5				Percent of Dominant Species
				That Are OBL, FACW, or FAC: (A/B)
6		= Total Co		Prevalence Index worksheet:
30				Total % Cover of:Multiply by:
50% of total cover: 30	20% of	total cove	r:12	OBL species x 1 =
Sapling Stratum (Plot size: 15' rad.)				FACW species x 2 =
1. Acer rubrum		Yes	FAC	FAC species x 2 = FAC species x 3 =
2. Liquidambar styraciflua	5	Yes	FAC	
3				FACU species x 4 =
4				UPL species x 5 =
5				Column Totals: (A) (B)
6		Tatal O		Prevalence Index = B/A =
	15			Hydrophytic Vegetation Indicators:
50% of total cover: 7.5	20% of	total cove	r: <u> </u>	1 - Rapid Test for Hydrophytic Vegetation
Shrub Stratum (Plot size: 15' rad.)				$\frac{X}{2}$ 2 - Dominance Test is >50%
1				$_$ 3 - Prevalence Index is $\leq 3.0^{1}$
2				4 - Morphological Adaptations ¹ (Provide supporting
3				data in Remarks or on a separate sheet)
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
		= Total Co		Definitions of Five Vegetation Strata:
50% of total cover: <u>N</u> //	A 20% of	total cove	r: <u>N/A</u>	Tree – Woody plants, excluding woody vines,
Herb Stratum (Plot size: 5' rad.				approximately 20 ft (6 m) or more in height and 3 in.
1. Microstegium vimineum	50	Yes	FAC	(7.6 cm) or larger in diameter at breast height (DBH).
2				Sapling – Woody plants, excluding woody vines,
3				approximately 20 ft (6 m) or more in height and less
4				than 3 in. (7.6 cm) DBH.
4				Charth Maadu alaata ayalydiaa yyaadu iraa
5		·		Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height.
6		·		
7				Herb – All herbaceous (non-woody) plants, including
8		·		herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3
9				ft (1 m) in height.
10				
11				Woody vine – All woody vines, regardless of height.
		= Total Co	ver	
50% at tatal any 2F		total cove		
	<u>20% of</u>	total cove	r: <u> </u>	
<u>Woody Vine Stratum</u> (Plot size: <u>30' rad.</u>) <u>1</u> Smilax rotundifolia	30	Yes	540	
••		·	FAC	
2. Toxicodendron radicans	20	Yes	FAC	
3. Parthenocissus quinquefolia	5	No	FACU	
4				
5				Li zdvo na vrije
	55	= Total Co	ver	Hydrophytic Vegetation
50% of total cover: _ 27.5				Present? Yes X No
		IOTAL COVE	I	
Remarks: (Include photo numbers here or on a separate s	heet.)			

Profile Desc	ription: (Describe	to the dep	th needed to docun	nent the i	ndicator o	or confirm	n the absence of inc	dicators.)	
Depth	Matrix			x Feature		. 2	_		
(inches)	Color (moist)	<u>%</u>	Color (moist)	%	Type'	Loc ²	Texture	Remarks	
0-2	10YR 4/2	100					Clay loam		
2-8	10YR 5/1	80	10YR 7/6	20	С	Μ	Clay loam		
8-12+	10YR 5/1	100					Clay loam		
		·							
		. <u> </u>							
		·					·		
1							2		
Type: C=Co Hydric Soil I		letion, RM=	Reduced Matrix, MS	S=Masked	Sand Gra	ains.		e Lining, M=Matrix.	
-			Dark Surface	(07)					
— Histosol Histic En	ipedon (A2)		Dark Surface Polyvalue Be	· · ·	co (S8) (M			luck (A10) (MLRA 1 Prairie Redox (A16)	,
Black His			Thin Dark Su					RA 147, 148)	
	n Sulfide (A4)		Loamy Gleye		•	,,	•	ont Floodplain Soils	(F19)
	Layers (A5)		X Depleted Mat		,			RA 136, 147)	
	ck (A10) (LRR N)		Redox Dark S	Surface (F	6)		Very SI	hallow Dark Surface	; (TF12)
	Below Dark Surfac	e (A11)	Depleted Dar	k Surface	(F7)		Other (Explain in Remarks)
	rk Surface (A12)		Redox Depre		,				
	ucky Mineral (S1) (I	_RR N,	Iron-Mangane		es (F12) (I	_RR N,			
	. 147, 148) leyed Matrix (S4)		MLRA 13 Umbric Surfa	,		6 122)	³ Indicator	s of hydrophytic veg	notation and
	edox (S5)		Piedmont Flo	. , ,	•			hydrology must be	
	Matrix (S6)		Red Parent M	•	, ,	•	•	listurbed or problem	
	ayer (if observed):				, (,			
Type:	,								
· · ·	hes):						Hydric Soil Pres	ent? Yes X	No
Remarks:	,						,		

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region

Project/Site: Knightdale ITS; U-6026	City/County: Wake	Sampli	ng Date: <u>6/7/2021</u>
Applicant/Owner: North Carolina Department of Transportation		10	pling Point: <u>BK03</u>
Investigator(s): B. Cogdell-Atkins		Knightdale USGS 1:24,0	
	ocal relief (concave, convex, i		Slope (%): 0-3
Subregion (LRR or MLRA): P-136 Lat: 35.798708	J Long:	-78.476911	Datum: NAD83
Soil Map Unit Name: CnA-Colfax Sandy Loam		NWI classification:	N/A
Are climatic / hydrologic conditions on the site typical for this time of ye	ear?YesNo	_ (If no, explain in Remarks.)
Are Vegetation, SoilX_, or Hydrology significantly	/ disturbed? Are "Norr	nal Circumstances" present?	Yes X No
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If needed	d, explain any answers in Rei	marks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes <u>X</u> Yes Yes	No NoX NoX	Is the Sampled Area within a Wetland?	Yes	No X
Remarks: Hardpan beginning at 6	" in soil profile.	Unable to penetra	ate beyond 12 inches in s	ample location.	

HYDROLOGY

Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) True Aquatic Plants (B14)	Sparsely Vegetated Concave Surface (B8)
High Water Table (A2) Hydrogen Sulfide Odor (C1)	Drainage Patterns (B10)
Saturation (A3) Oxidized Rhizospheres on Living I	Roots (C3) Moss Trim Lines (B16)
Water Marks (B1) Presence of Reduced Iron (C4)	Dry-Season Water Table (C2)
Sediment Deposits (B2) Recent Iron Reduction in Tilled Sc	ils (C6) Crayfish Burrows (C8)
Drift Deposits (B3) Thin Muck Surface (C7)	Saturation Visible on Aerial Imagery (C9)
Algal Mat or Crust (B4) Other (Explain in Remarks)	Stunted or Stressed Plants (D1)
Iron Deposits (B5)	Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)
Water-Stained Leaves (B9)	Microtopographic Relief (D4)
Aquatic Fauna (B13)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes <u>No X</u> Depth (inches):	
Water Table Present? Yes No X Depth (inches):	
Saturation Present? Yes <u>No X</u> Depth (inches):	Wetland Hydrology Present? Yes NoX
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspect	tions), if available:
Remarks:	
Nemans.	

VEGETATION (Five Strata) – Use scientific names of plants.

Sampling Point: BK03

Remarks: (Include photo numbers here or on a separate s				
50% of total cover: 7.5	20% of	total cove	r: 3	Present? Yes X No
		= Total Co	ver	Vegetation
5				Hydrophytic
4				
3				
2. Wisteria sinensis	5	No	N/A	
1. Toxicodendron radicans	10	Yes	FAC	
Woody Vine Stratum (Plot size: <u>30' rad.</u>)	10			
50% of total cover: <u>37.5</u>	20% of	total cover	r: <u>15</u>	
07 5				
		= Total Co	ver	
11.				Woody vine – All woody vines, regardless of height.
10				
9				plants, except woody vines, less than approximately 3 ft (1 m) in height.
8				herbaceous vines, regardless of size, and woody
7				Herb – All herbaceous (non-woody) plants, including
6				approximately 3 to 20 ft (1 to 6 m) in height.
5		·		Shrub – Woody plants, excluding woody vines,
4				than 3 in. (7.6 cm) DBH.
3. Solidago canadensis	5	No	FACU	approximately 20 ft (6 m) or more in height and less
2. Toxicodendron radicans		Yes	FAC	Sapling – Woody plants, excluding woody vines,
1. Microstegium vimineum		Yes	FAC	(7.6 cm) or larger in diameter at breast height (DBH).
Herb Stratum (Plot size: 5' rad.)	50		FAC	approximately 20 ft (6 m) or more in height and 3 in.
50% of total cover: <u>7.5</u>	∠0% Of	total cove		Tree – Woody plants, excluding woody vines,
E00/ -44-4-1 75				Deminitions of Five vegetation Strata:
		= Total Co	ver	Definitions of Five Vegetation Strata:
6				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
5				
4				
3				Problematic Hydrophytic Vegetation ¹ (Explain)
2				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
1Rosa multiflora			FACU	$3 - \text{Prevalence Index is } \le 3.0^{1}$
Shrub Stratum (Plot size: <u>15' rad.</u>)	15	Voc		
	20% Of	IOIAI COVE	. <u>0</u>	X 2 - Dominance Test is >50%
50% of total cover:15				1 - Rapid Test for Hydrophytic Vegetation
		= Total Co	ver	Hydrophytic Vegetation Indicators:
6				Prevalence Index = B/A =
5				
4		·		Column Totals:
3				UPL species x 5 =
2. Ulmus rubra	5	No	FAC	FACU species x 4 =
1. Liquidambar styraciflua		Yes		FAC species x 3 =
Sapling Stratum (Plot size: 15' rad.)	05			FACW species x 2 =
50% of total cover: <u>5</u>	20% of	total cove	r: <u>2</u>	OBL species x 1 =
				Total % Cover of: Multiply by:
		= Total Co	ver	Prevalence Index worksheet:
6		· ·		
5				Percent of Dominant Species That Are OBL, FACW, or FAC:83 (A/B)
4				
3				Total Number of Dominant Species Across All Strata: 6 (B)
2				Total Number of Demission
1. Liquidambar styraciflua	10	Yes	FAC	That Are OBL, FACW, or FAC:5 (A)
Tree Stratum (Plot size: <u>30' rad.</u>)		Species?		Number of Dominant Species
	Absolute	Dominant	Indicator	Dominance Test worksheet:

Profile Desc	ription: (Describe t	to the dept	h needed to docur	nent the i	ndicator	or confirm	n the absence	of indicato	rs.)	
Depth	Matrix			x Features	S					
(inches)	Color (moist)	<u>%</u>	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks	
0-6	10YR 4/4	100					Clay loam			
6-12+	10yr 4/5	100					Clay loam	hardpan	beginning at 6" depth	
								·		
¹ Type: C=Co	oncentration, D=Depl	etion, RM=	Reduced Matrix, M	S=Masked	I Sand Gra	ains.	² Location: Pl	L=Pore Linir	ng, M=Matrix.	
Hydric Soil I		,	,						oblematic Hydric Soils ³ :	
Histosol	(A1)		Dark Surface	e (S7)			2	cm Muck (A	(10) (MLRA 147)	
Histic Ep	pipedon (A2)		Polyvalue Be		ce (S8) (N	ILRA 147			Redox (A16)	
Black Hi	stic (A3)		Thin Dark Su	Irface (S9)	(MLRA 1	47, 148)		(MLRA 147	7, 148)	
Hydroge	n Sulfide (A4)		Loamy Gleye	ed Matrix (F2)		P	iedmont Flo	odplain Soils (F19)	
Stratified	l Layers (A5)		Depleted Ma	trix (F3)				(MLRA 136		
	ick (A10) (LRR N)		Redox Dark		,				Dark Surface (TF12)	
	Below Dark Surface	e (A11)	Depleted Date		. ,		Other (Explain in Remarks)			
	ark Surface (A12)		Redox Depre		,					
	lucky Mineral (S1) (L	.RR N,	Iron-Mangan		es (F12) (I	LRR N,				
	A 147, 148)		MLRA 13			0 400	31			
	leyed Matrix (S4) edox (S5)		Umbric Surfa	. , .					drophytic vegetation and ogy must be present,	
	Matrix (S6)		Red Parent N	•	, ,	•		•	ed or problematic.	
	_ayer (if observed):			nateriai (i		~ 127, 14				
Type:										
							Undria Cail	Drecent?	Yes <u>No X</u>	
Depth (inc							Hydric Soil	Fresent?	Yes No _^	
Remarks:										

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region

Project/Site: Knightdale ITS; U-6026	City/County: Wake	Sampling	Date: 6/2/2021
Applicant/Owner: North Carolina Department of Transportation			ng Point: BD06
Investigator(s): B. Cogdell-Atkins	Section, Township, Range:	Knightdale USGS 1:24,00	0 Quadrangle
	cal relief (concave, convex, r		Slope (%): 0-3
Subregion (LRR or MLRA): P-136 Lat: 35.773345		78.473072	Datum: NAD83
Soil Map Unit Name: CnA-Colfax Sandy Loam		NWI classification: PS	S
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes X No	(If no, explain in Remarks.)	
Are Vegetation, Soil, or Hydrology significantly	disturbed? Are "Norn	nal Circumstances" present?	Yes X No
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If needed	d, explain any answers in Rema	arks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X Yes X Yes X	No No No	Is the Sampled Area within a Wetland?	Yes_X No
Remarks:				

HYDROLOGY

Wetland Hydrology Indicato	rs:			Secondary Indicators (minimum of two required)		
Primary Indicators (minimum of	of one is required; chec	k all that apply)		Surface Soil Cracks (B6)		
Surface Water (A1)		True Aquatic Plants (B14)		Sparsely Vegetated Concave Surface (B8)		
X High Water Table (A2)		Hydrogen Sulfide Odor (C1)		Drainage Patterns (B10)		
X Saturation (A3)		Oxidized Rhizospheres on Living	Roots (C3)	Moss Trim Lines (B16)		
Water Marks (B1)		Presence of Reduced Iron (C4)		Dry-Season Water Table (C2)		
Sediment Deposits (B2)		Recent Iron Reduction in Tilled So	oils (C6)	Crayfish Burrows (C8)		
Drift Deposits (B3)		Thin Muck Surface (C7)		Saturation Visible on Aerial Imagery (C9)		
Algal Mat or Crust (B4)		Other (Explain in Remarks)		Stunted or Stressed Plants (D1)		
Iron Deposits (B5)				Geomorphic Position (D2)		
Inundation Visible on Aeri	al Imagery (B7)			Shallow Aquitard (D3)		
Water-Stained Leaves (B	9)			Microtopographic Relief (D4)		
Aquatic Fauna (B13)				FAC-Neutral Test (D5)		
Field Observations:						
Surface Water Present?	Yes <u>No X</u>	_ Depth (inches):0				
Water Table Present?	Yes X No	_ Depth (inches):6				
Saturation Present?		Depth (inches): surface	Wetland H	lydrology Present? Yes X No		
Saturation Present? (includes capillary fringe)	Yes X No			· ·· <u> </u>		
Saturation Present? (includes capillary fringe)	Yes X No	_ Depth (inches): surface		· ·· <u> </u>		
Saturation Present? (includes capillary fringe)	Yes X No	_ Depth (inches): surface		· ·· <u> </u>		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes X No	_ Depth (inches): surface		· ·· <u> </u>		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes X No	_ Depth (inches): surface		· ·· <u> </u>		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes X No	_ Depth (inches): surface		· ·· <u> </u>		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes X No	_ Depth (inches): surface		· ·· <u> </u>		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes X No	_ Depth (inches): surface		· ·· <u> </u>		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes X No	_ Depth (inches): surface		· ·· <u> </u>		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes X No	_ Depth (inches): surface		· ·· <u> </u>		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes X No	_ Depth (inches): surface		· ·· <u> </u>		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes X No	_ Depth (inches): surface		· ·· <u> </u>		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes X No	_ Depth (inches): surface		· ·· <u> </u>		

VEGETATION (Five Strata) – Use scientific names of plants.

Sampling Point: BD06

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: <u>30' rad.</u>)	% Cover	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC: (A)
2				
3				Total Number of Dominant Species Across All Strata: (B)
4				Percent of Dominant Species 75
5		·	·	That Are OBL, FACW, or FAC: (A/B)
6				Prevalence Index worksheet:
	0	= Total Cov	/er	
50% of total cover: N/A	20% of	f total cover:	N/A	
Sapling Stratum (Plot size: 15' rad.				OBL species x 1 =
1,				FACW species x 2 =
				FAC species x 3 =
2				FACU species x 4 =
3				UPL species x 5 =
4	·	·	·	Column Totals: (A) (B)
5				
6	. <u> </u>		·	Prevalence Index = B/A =
	0	= Total Cov	ver	Hydrophytic Vegetation Indicators:
50% of total cover: <u>N/A</u>				1 - Rapid Test for Hydrophytic Vegetation
	20% 0	total cover:		$\frac{X}{X}$ 2 - Dominance Test is >50%
Shrub Stratum (Plot size: <u>15' rad.</u>)	00	Vaa	FACU	
1. Rosa multiflora	20	Yes	·	3 - Prevalence Index is ≤3.0 ¹
2. Alnus serrulata	15	Yes	OBL	4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
3. Rubus argutus	5	No	FACU	
4. Acer rubrum	5	No	FAC	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Morella cerifera	5	No	FAC	
6.	·	·	·	¹ Indicators of hydric soil and wetland hydrology must
0	50	Tatal Car		be present, unless disturbed or problematic.
		= Total Cov		Definitions of Five Vegetation Strata:
50% of total cover:2	5 20% of	f total cover	. 10	Tree – Woody plants, excluding woody vines,
Herb Stratum (Plot size: 5' rad.)				approximately 20 ft (6 m) or more in height and 3 in.
1. Carex lupulina	50	Yes	OBL	(7.6 cm) or larger in diameter at breast height (DBH).
2. Juncus effusus	20	Yes	FACW	Sapling – Woody plants, excluding woody vines,
3 Woodwardia areolata	5	No	FACW	approximately 20 ft (6 m) or more in height and less
4 Impatiens capensis	5	No	FACW	than 3 in. (7.6 cm) DBH.
· · · · · · · · · · · · · · · · · · ·				
5	·	·	·	Shrub – Woody plants, excluding woody vines, approximately 3 to 20 ft (1 to 6 m) in height.
6	·	·	·	
7				Herb - All herbaceous (non-woody) plants, including
8				herbaceous vines, regardless of size, and woody
9				plants, except woody vines, less than approximately 3 ft (1 m) in height.
10				
11			·	Woody vine – All woody vines, regardless of height.
	~~	= Total Cov		
10				
	20% o	f total cover	16	
Woody Vine Stratum (Plot size: 30' rad.)				
1				
2				
3				
4	·	·	·	
D	0	· <u> </u>	·	Hydrophytic
		= Total Cov	ver	Vegetation
50% of total cover:N/A	A 20% of	f total cover:	<u>N/A</u>	Present? Yes X No
Remarks: (Include photo numbers here or on a separate s	sheet.)			J
	. /			

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)										
Depth	Matrix	Redox	k Features	s						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture Remarks			
0-2	10YR 4/3	100					Loam			
2-6	10RY 5/1	90	10YR 5/6	10	С	М	Clay loam			
6-18+	10YR 6/1	95	10YR 5/6	5	С	М	Clay loam	l		
							· ·			
		otion PM	=Reduced Matrix, MS	-Mackoo	A Sand Gr	inc	² Location: PL=Pore Lining, M=Matrix.			
Hydric Soil						an 15.	Indicators for Problematic Hydric Soils ³			
Histosol			Dark Surface	(97)			2 cm Muck (A10) (MLRA 147)	•		
	bipedon (A2)		Polyvalue Be		ce (S8) (N	II RA 147				
	stic (A3)		Thin Dark Su		. , .		(MLRA 147, 148)			
	en Sulfide (A4)		Loamy Gleye			41, 140)	Piedmont Floodplain Soils (F19)			
	d Layers (A5)		X Depleted Mat		/		(MLRA 136, 147)			
	uck (A10) (LRR N)		Redox Dark S	. ,	-6)		Very Shallow Dark Surface (TF12)			
	d Below Dark Surface	e (A11)	Depleted Dar		,		Other (Explain in Remarks)			
·	ark Surface (A12)	()	Redox Depre		. ,					
	/ Iucky Mineral (S1) (L	.RR N,	Iron-Mangane		,	_RR N,				
	A 147, 148)	·	MLRA 130		· / ·					
	Gleyed Matrix (S4)		Umbric Surfa		(MLRA 13	6, 122)	³ Indicators of hydrophytic vegetation and	1		
-	Redox (S5)		Piedmont Flo	odplain S	oils (F19)	(MLRA 1	48) wetland hydrology must be present,			
Stripped	Matrix (S6)		Red Parent M	laterial (F	21) (MLR	A 127, 14	(7) unless disturbed or problematic.			
Restrictive	Layer (if observed):									
Type:										
Depth (in	ches):						Hydric Soil Present? Yes X No			
Remarks:										

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region

Project/Site: Knightdale ITS; U-6026	City/County: Wake	Samplin	g Date: 06/02/2021				
Applicant/Owner: North Carolina Department of Transportation		State: NC Samp	ling Point: BD06				
Investigator(s): B. Cogdell-Atkins	Section, Township, Range:	Knightdale USGS 1:24,00	00 Quadrangle				
	ocal relief (concave, convex,		Slope (%): 0-3				
Subregion (LRR or MLRA): P-136 Lat: 35.773345		-78.473072	Datum: NAD83				
Soil Map Unit Name: CnA-Colfax Sandy Loam		NWI classification:	N/A				
Are climatic / hydrologic conditions on the site typical for this time of year? Yes X No (If no, explain in Remarks.)							
Are Vegetation, SoilX_, or Hydrology significantly	v disturbed? Are "Norr	nal Circumstances" present?	Yes X No				
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If needed	d, explain any answers in Rem	narks.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No <u>X</u> No <u>X</u> No <u>X</u>	Is the Sampled Area within a Wetland?	Yes	No	<u>X</u>
Remarks: Data form location occ	urs at wetland	boundary along roa	adside toe of slope. Soil is	largely compr	rised of f	fill material.

HYDROLOGY

Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) True Aquatic Plants (B14)	Sparsely Vegetated Concave Surface (B8)
High Water Table (A2) Hydrogen Sulfide Odor (C1)	Drainage Patterns (B10)
Saturation (A3) Oxidized Rhizospheres on Living	Roots (C3) Moss Trim Lines (B16)
Water Marks (B1) Presence of Reduced Iron (C4)	Dry-Season Water Table (C2)
Sediment Deposits (B2) Recent Iron Reduction in Tilled S	oils (C6) Crayfish Burrows (C8)
Drift Deposits (B3) Thin Muck Surface (C7)	Saturation Visible on Aerial Imagery (C9)
Algal Mat or Crust (B4) Other (Explain in Remarks)	Stunted or Stressed Plants (D1)
Iron Deposits (B5)	Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)
Water-Stained Leaves (B9)	Microtopographic Relief (D4)
Aquatic Fauna (B13)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No _X Depth (inches):	
Water Table Present? Yes No X Depth (inches):	
Saturation Present? Yes No X Depth (inches):	Wetland Hydrology Present? Yes NoX
(includes capillary fringe)	
(includes capillary fringe)	
(includes capillary fringe)	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspe-	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspe-	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspe-	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspe-	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspe-	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspe-	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspe-	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspe-	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspe-	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspe-	

VEGETATION (Five Strata) – Use scientific names of plants.

Sampling Point: BD06

20' rod	Absolute	Dominant		Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>30' rad.</u>) 1		Species?		Number of Dominant Species That Are OBL, FACW, or FAC:0 (A)
2				Total Number of Dominant 3 (D)
3				Species Across All Strata: (B)
4 5				Percent of Dominant Species 0 (A/B)
6				
	0	= Total Cov	er	Prevalence Index worksheet: Total % Cover of: Multiply by:
50% of total cover: <u>N/A</u>	20% of	total cover:	N/A	OBL species 0 x 1 =
Sapling Stratum (Plot size: <u>15' rad.</u>)				FACW species x 2 =
1				FAC species x 3 =
2				FACU species 85 x 4 = 340
3				UPL species $0 \times 5 =$
4				Column Totals: 85 (A) 340 (B)
5				Prevalence Index = B/A =4
6		= Total Cov	er	Hydrophytic Vegetation Indicators:
50% of total cover: <u>N/A</u>				1 - Rapid Test for Hydrophytic Vegetation
Shrub Stratum (Plot size: <u>15' rad.</u>)	20% of	total cover:		2 - Dominance Test is >50%
				3 - Prevalence Index is $\leq 3.0^{1}$
1				4 - Morphological Adaptations ¹ (Provide supporting
2 3				data in Remarks or on a separate sheet)
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5				
6				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
	0	= Total Cov	er	Definitions of Five Vegetation Strata:
50% of total cover:N/A				Demitions of Five vegetation Strata.
Herb Stratum (Plot size: <u>5' rad.</u>)	2070 01			Tree – Woody plants, excluding woody vines,
1. Paspalum notatum	60	Yes	FACU	approximately 20 ft (6 m) or more in height and 3 in. (7.6 cm) or larger in diameter at breast height (DBH).
2. Taraxacum officinale	10	No	FACU	Sapling – Woody plants, excluding woody vines,
3. Salanum carolinense	5	No	FACU	approximately 20 ft (6 m) or more in height and less
4				than 3 in. (7.6 cm) DBH.
5				Shrub – Woody plants, excluding woody vines,
6				approximately 3 to 20 ft (1 to 6 m) in height.
7				Herb – All herbaceous (non-woody) plants, including
8				herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3
9				ft (1 m) in height.
10				Woody vine – All woody vines, regardless of height.
11				
		= Total Cov		
50% of total cover: 37.5	20% of	total cover:	15	
Woody Vine Stratum (Plot size: 30' rad.)	-			
1. Rosa multiflora	5	Yes	FACU	
2. Parthenocissus quinquefolia	5	Yes	FACU	
3				
4				
5				Hydrophytic
	10	= Total Cov	er	Vegetation X
50% of total cover: <u>5</u>	20% of	total cover:	2	Present? Yes <u>No</u>
Remarks: (Include photo numbers here or on a separate s	heet.)			1

Profile Descr	iption: (Describe to	o the depth	n needed to docur	nent the ir	ndicator	or confirm	n the absence o	of indicato	rs.)	
Depth	Matrix			x Features						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks	;
0-6	10YR 4/3	100					Clay Loam			
6-12+	Roadside Fill									
·										
· ·										
·						·	······································			
· .		<u> </u>								
·						·	······································			
							. <u> </u>			
¹ Type: C=Co	ncentration, D=Deple	etion, RM=F	Reduced Matrix, MS	S=Masked	Sand Gra	ains.	² Location: PL=	=Pore Linir	ng, M=Matrix	۲.
Hydric Soil Ir			,				Indicat	ors for Pr	oblematic H	lydric Soils ³ :
Histosol (A1)		Dark Surface	(S7)			2 c	m Muck (A	10) (MLRA	147)
Histic Epi	pedon (A2)		Polyvalue Be	low Surfac	e (S8) (N	ILRA 147,			Redox (A16	
Black His	• • • •		Thin Dark Su		. , .			MLRA 14	7, 148)	
Hydrogen	Sulfide (A4)		Loamy Gleye	, ,	•		Pie	edmont Flo	odplain Soil	s (F19)
Stratified	Layers (A5)		Depleted Ma					MLRA 13	6, 147)	. ,
2 cm Muc	k (A10) (LRR N)		Redox Dark	Surface (F	6)		Ve	ry Shallow	Dark Surfac	ce (TF12)
Depleted	Below Dark Surface	(A11)	Depleted Dai	k Surface	(F7)		Oth	ner (Explai	n in Remark	s)
Thick Dar	k Surface (A12)		Redox Depre	ssions (F8	3)					
Sandy Mu	ucky Mineral (S1) (Ll	RR N,	Iron-Mangan	ese Masse	es (F12) (LRR N,				
MLRA	147, 148)		MLRA 13	6)						
Sandy Gl	eyed Matrix (S4)		Umbric Surfa	ce (F13) (I	MLRA 13	6, 122)	³ Indic	ators of hy	drophytic ve	egetation and
Sandy Re	edox (S5)		Piedmont Flo	odplain So	oils (F19)	(MLRA 14	(8) wet	and hydrol	ogy must be	e present,
	Matrix (S6)		Red Parent M	Aaterial (F2	21) (MLR	A 127, 147	7) unle	ss disturbe	ed or proble	matic.
Restrictive La	ayer (if observed):									
Туре:										
Depth (incl	nes):						Hydric Soil F	resent?	Yes	X
Remarks:										

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region

Project/Site: Knightdale ITS; U-6026	City/County: Wake	Sampl	ing Date: 6/7/2021
Applicant/Owner: North Carolina Department of Transportation		110	npling Point: X01
Investigator(s): B. Cogdell-Atkins	Section, Township, Range:	Raleigh East USGS 1:2	4,000 Quadrangle
	ocal relief (concave, convex, i		Slope (%): 0-2
Subregion (LRR or MLRA): P-136 Lat: 35.753859) Long:	-78.508306	Datum: NAD83
Soil Map Unit Name: WnA-Colfax Wehadkee Silt Loam		NWI classification:	N/A
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes No	_ (If no, explain in Remarks	.)
Are Vegetation X, Soil, or Hydrology significantly	/ disturbed? Are "Norr	nal Circumstances" present?	Yes X No
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If needed	d, explain any answers in Re	emarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No <u>X</u> No <u>X</u> No <u>X</u>	Is the Sampled Area within a Wetland?	Yes NoX	
Remarks: Maintained turf/lawn do	minated by fe	scue			

HYDROLOGY

Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) True Aquatic Plants (B14)	Sparsely Vegetated Concave Surface (B8)
High Water Table (A2) Hydrogen Sulfide Odor (C1)	Drainage Patterns (B10)
Saturation (A3) Oxidized Rhizospheres on Living	Roots (C3) Moss Trim Lines (B16)
Water Marks (B1) Presence of Reduced Iron (C4)	Dry-Season Water Table (C2)
Sediment Deposits (B2) Recent Iron Reduction in Tilled S	oils (C6) Crayfish Burrows (C8)
Drift Deposits (B3) Thin Muck Surface (C7)	Saturation Visible on Aerial Imagery (C9)
Algal Mat or Crust (B4) Other (Explain in Remarks)	Stunted or Stressed Plants (D1)
Iron Deposits (B5)	Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)
Water-Stained Leaves (B9)	Microtopographic Relief (D4)
Aquatic Fauna (B13)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No X Depth (inches):	
Water Table Present? Yes No X Depth (inches):	
Saturation Present? Yes No X Depth (inches):	Wetland Hydrology Present? Yes No X
(includes capillary fringe)	Wetland Hydrology Present? Yes No X
(includes capillary fringe)	
(includes capillary fringe)	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec	
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspec	

VEGETATION (Five Strata) – Use scientific names of plants.

Sampling Point: X01

	Absolute	Dominant		Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>30' rad.</u>) 1		Species?		Number of Dominant Species That Are OBL, FACW, or FAC:0 (A)
2				Total Number of Dominant
3				Species Across All Strata: (B)
4				
5				Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
6	_			Prevalence Index worksheet:
	·	= Total Cov		Total % Cover of:Multiply by:
50% of total cover: <u>N//</u>	A 20% of	total cover:	N/A	OBL species 0 x 1 = 0
Sapling Stratum (Plot size: 15' rad.				FACW species 0 x 2 = 0
1				FAC species x 3 =0
2				FACU species 105 $x 4 = 420$
3				UPL species $0 \times 5 = 0$
4				100
5				Column Totals: <u>105</u> (A) <u>420</u> (B)
6				Prevalence Index = B/A =
·		= Total Cov		Hydrophytic Vegetation Indicators:
50% of total cover: <u>N/A</u>	20% of	total cover:	<u>N/A</u>	1 - Rapid Test for Hydrophytic Vegetation
Shrub Stratum (Plot size: <u>15' rad.</u>)				2 - Dominance Test is >50%
1				3 - Prevalence Index is ≤3.0 ¹
2				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
3				. ,
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5				
6				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
		= Total Cov		
				Definitions of Five Vegetation Strata:
50% of total cover: <u>N/A</u>	• 20% of	total cover:	N/A	Tree – Woody plants, excluding woody vines,
Herb Stratum (Plot size: 5' rad.)	05		FAOL	approximately 20 ft (6 m) or more in height and 3 in.
1. Festuca rubra	85	Yes	FACU	(7.6 cm) or larger in diameter at breast height (DBH).
2. Eupotorium Capillioflium	10	No	FACU	Sapling – Woody plants, excluding woody vines,
3				approximately 20 ft (6 m) or more in height and less
4				than 3 in. (7.6 cm) DBH.
5.				Shrub – Woody plants, excluding woody vines,
6				approximately 3 to 20 ft (1 to 6 m) in height.
7				Herb – All herbaceous (non-woody) plants, including
8				herbaceous vines, regardless of size, and woody
				plants, except woody vines, less than approximately 3
9				ft (1 m) in height.
10				Woody vine – All woody vines, regardless of height.
11				
	95	= Total Cov	er	
50% of total cover: 47.5	20% of	total cover:	19	
Woody Vine Stratum (Plot size: 30' rad.)				
1.Rubus argutus	10	Yes	FACU	
2				
3				
4				
5		Tetal O		Hydrophytic
_		= Total Cov	0	Vegetation Present? Yes No X
50% of total cover: <u>5</u>	20% of	total cover:	2	Present? Yes No
Remarks: (Include photo numbers here or on a separate s	heet.)			

Depth	Matrix		th needed to docun Redo	x Feature					,		
(inches)	Color (moist)	%	Color (moist)	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	Type ¹	Loc ²	Texture		Remar	ks	
0-6	10YR 4/4	100					Clay loam				
6-12+	10yr 4/5	100					Clay loam	hardpar	beginnin	g at 6" de	epth
. <u> </u>					. <u>.</u>						
·											
·					·						
1 Type: C=C		letion PM	=Reduced Matrix, MS	-Masker	d Sand Gr	aine	² Location: P		ing M-Mat	riv	
Hydric Soil			0-6		YR 4/4	10 anns.	0 Indica	ators for P	roblematic	Hydric S	oils ³ : Clay l
Histosol	(A1)		Dark Surface					cm Muck (A10) (MLR	A 147)	
	pipedon (A2)		Polyvalue Be				, 148) C	oast Prairie		16)	
Black Hi			Thin Dark Su			47, 148)		(MLRA 14			
	en Sulfide (A4) d Layers (A5)		Loamy Gleye		(FZ)		P	iedmont Flo (MLRA 13		JIIS (F 19)	
	ick (A10) (LRR N)		Redox Dark \$. ,	-6)		V	ery Shallov		ace (TF12	2)
	d Below Dark Surfac	e (A11)	Depleted Dar		,			ther (Expla			·/
	ark Surface (A12)	· · /	Redox Depre	ssions (F	8)					,	
Sandy M	lucky Mineral (S1) (I	LRR N,	Iron-Mangan	ese Mass	es (F12) (LRR N,					
MLRA	A 147, 148)		MLRA 13	6)							
	Bleyed Matrix (S4)		Umbric Surfa					icators of h			
	Redox (S5)		Piedmont Flo					tland hydro	logy must	be present	t,
	Matrix (S6)		Red Parent N	laterial (F	21) (MLR	A 127, 14	7) un	less disturb	ed or probl	ematic.	
	Layer (if observed)	:									
Type: Depth (inc	ches):						Hydric Soil	Present?	Yes	No	x
Remarks:											
Remarks.											

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region

Project/Site: Knightdale ITS: U-6026	City/County: Wake	Samplir	ng Date: <u>6/7/2021</u>
Applicant/Owner: North Carolina Department of Transportation			pling Point: X102
Investigator(s): B. Cogdell-Atkins	Section, Township, Range:		4,000 Quadrangle
	cal relief (concave, convex, n		Slope (%): <u>0-2</u>
Subregion (LRR or MLRA): P-136 Lat: 35.748601	Long: <u>-7</u>	8.466894	Datum: NAD83
Soil Map Unit Name: MeA-Mantachie Sandy Loam		NWI classification:	N/A
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes X No	(If no, explain in Remarks.))
Are Vegetation, Soil, or Hydrology significantly	v disturbed? Are "Norm	al Circumstances" present?	Yes X No
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If needed	, explain any answers in Rer	marks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No <u>X</u> No <u>X</u> No <u>X</u>	Is the Sampled Area within a Wetland?	Yes	No X
Remarks:					

HYDROLOGY

Wetland Hydrology Indicato	rs:			Secondary Indicators (minimum of two required)
Primary Indicators (minimum of	of one is required; chec	ck all that apply)		Surface Soil Cracks (B6)
Surface Water (A1)		True Aquatic Plants (B14)		Sparsely Vegetated Concave Surface (B8)
High Water Table (A2)		Hydrogen Sulfide Odor (C1)		Drainage Patterns (B10)
Saturation (A3)		Oxidized Rhizospheres on Living	Roots (C3)	Moss Trim Lines (B16)
Water Marks (B1)		Presence of Reduced Iron (C4)		Dry-Season Water Table (C2)
Sediment Deposits (B2)		Recent Iron Reduction in Tilled Se	oils (C6)	Crayfish Burrows (C8)
Drift Deposits (B3)		Thin Muck Surface (C7)		Saturation Visible on Aerial Imagery (C9)
Algal Mat or Crust (B4)		Other (Explain in Remarks)		Stunted or Stressed Plants (D1)
Iron Deposits (B5)				Geomorphic Position (D2)
Inundation Visible on Aeri	ial Imagery (B7)			Shallow Aquitard (D3)
Water-Stained Leaves (B	9)			Microtopographic Relief (D4)
Aquatic Fauna (B13)				FAC-Neutral Test (D5)
Field Observations:				
Surface Water Present?	Yes <u>No X</u>	_ Depth (inches):		
Water Table Present?	Yes <u>No X</u>	_ Depth (inches):		
Saturation Present?		_ Depth (inches): _ Depth (inches):	Wetland H	lydrology Present? Yes NoX
Saturation Present? (includes capillary fringe)	Yes No _X			
Saturation Present? (includes capillary fringe)	Yes No _X	_ Depth (inches):		
Saturation Present? (includes capillary fringe)	Yes No _X	_ Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No _X	_ Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No _X	_ Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No _X	_ Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No _X	_ Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No _X	_ Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No _X	_ Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No _X	_ Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No _X	_ Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No _X	_ Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No _X	_ Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes No _X	_ Depth (inches):		· · · ·

VEGETATION (Five Strata) – Use scientific names of plants.

Sampling Point: X102

	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: <u>30' rad.</u>)		Species?		Number of Dominant Species
1. Quercus shumardii	15	Yes	FAC	That Are OBL, FACW, or FAC: (A)
2	·	·		Total Number of Dominant
3		·		Species Across All Strata: 7 (B)
4				
5				Percent of Dominant Species That Are OBL, FACW, or FAC: 14 (A/B)
		·		That Are OBL, FACW, or FAC: (A/B)
6		= Total Cov		Prevalence Index worksheet:
			•	Total % Cover of: Multiply by:
50% of total cover: 7.	5 20% of	total cover:	3	OBL species 0 x 1 = 0
Sapling Stratum (Plot size: 15' rad.				FACW species $0 x^2 = 0$
_{1.} Juniperus virginiana	10	Yes	FACU	
2. Rhus copallinum	5	Yes	FACU	
3		·		$\begin{array}{c} \text{FACO species} \\ \underline{\qquad} \\ x \neq \underline{=} \\ \underline{\qquad} \\ z \neq \underline{=} \\ z \neq \underline{=} \\ \underline{\qquad} \\ z \neq \underline{=} \\ z = \\ z \neq \underline{=} \\ z \neq \underline{=} \\ z = \\ z \neq \underline{=} \\ z = \\ z \neq \underline{=} \\ z = \\ z =$
				UPL species x 5 = 50
4				Column Totals: <u>90</u> (A) <u>355</u> (B)
5		·	<u> </u>	
6		·	<u> </u>	Prevalence Index = B/A =3.9
	15	= Total Cov	er	Hydrophytic Vegetation Indicators:
50% of total cover: 7.5	20% of	total cover:	3	1 - Rapid Test for Hydrophytic Vegetation
Shrub Stratum (Plot size: 15' rad.)				2 - Dominance Test is >50%
	5	Yes	FACU	$3 - Prevalence Index is \leq 3.0^1$
1. Juniperus virginiana				4 - Morphological Adaptations ¹ (Provide supporting
2. Rhus copallinum		Yes		data in Remarks or on a separate sheet)
3				Problematic Hydrophytic Vegetation ¹ (Explain)
4				
5				
6.				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
	10	= Total Cov	er	
500/ // 5				Definitions of Five Vegetation Strata:
50% of total cover: <u>5</u>	20% 01	total cover:	Z	Tree – Woody plants, excluding woody vines,
Herb Stratum (Plot size: 5' rad.)				approximately 20 ft (6 m) or more in height and 3 in.
1. Sorghum halepense	40	Yes	FACU	(7.6 cm) or larger in diameter at breast height (DBH).
2. Daucus carolta	10	Yes	UPL	Sapling – Woody plants, excluding woody vines,
3				approximately 20 ft (6 m) or more in height and less
4.				than 3 in. (7.6 cm) DBH.
5				Shrub – Woody plants, excluding woody vines,
<u>.</u>		·		approximately 3 to 20 ft (1 to 6 m) in height.
6				
7	·	·		Herb – All herbaceous (non-woody) plants, including
8	·	·		herbaceous vines, regardless of size, and woody plants, except woody vines, less than approximately 3
9				ft (1 m) in height.
10	·	·		
11				Woody vine – All woody vines, regardless of height.
		= Total Cov	er	
25				
50% of total cover:2	20% of	total cover:	10	
Woody Vine Stratum (Plot size: 30' rad.)				
1				
2				
3				
4				
5				
	0	= Total Cov	or	Hydrophytic
				Vegetation Present? Yes <u>No X</u>
50% of total cover: <u>N/</u>	A 20% of	total cover:	IN/A	
Remarks: (Include photo numbers here or on a separate s	sheet.)			

Profile Desc	ription: (Describe	to the dept	h needed to docur	nent the ind	icator o	or confirm	n the absence of	indicato	rs.)		
Depth	Matrix			x Features	- 1	- 2	- <i>i</i>				
(inches)	Color (moist)	<u> </u>	Color (moist)	<u>%</u> 1	Гуре	Loc ²	Texture		Remarks		
0-6	10YR 4/4						Clay Loam				
6-12	10YR 4/5	100					Clay Loam				
	oncentration, D=Dep	lotion PM-I	Poducod Matrix, M	S-Maskad Sr	and Gra	inc	² Location: PL=	Poro Linii	a M-Matrix		
Hydric Soil									oblematic H		s ³ :
Histosol			Dark Surface	e (S7)					10) (MLRA	•	
Histic Ep	pipedon (A2)		Polyvalue Be	· · /	(S8) (M	LRA 147			Redox (A16)	,	
Black Hi	stic (A3)		Thin Dark Su	ırface (S9) (N	ILRA 1	47, 148)	()	MLRA 14	7, 148)		
	n Sulfide (A4)		Loamy Gleye	· · ·)				odplain Soils	(F19)	
	Layers (A5)		Depleted Ma	. ,			•	MLRA 13	•		
	ick (A10) (LRR N) d Below Dark Surface	Λ (Λ 1 1)	Redox Dark	. ,	7)				Dark Surface n in Remarks	· ,	
·	ark Surface (A12)	= (ATT)	Redox Depre		()		O			<i>)</i>	
	lucky Mineral (S1) (L	.RR N,	Iron-Mangan	, ,	(F12) (L	.RR N,					
-	A 147, 148)	·	MLRA 13		· / ·						
Sandy G	leyed Matrix (S4)		Umbric Surfa					ators of hy	drophytic ve	getation a	nd
	edox (S5)		Piedmont Flo	•	, ,	•	•	•	ogy must be		
	Matrix (S6)		Red Parent N	Material (F21)) (MLRA	A 127, 14	7) unles	s disturbe	ed or problem	natic.	
	_ayer (if observed):										
Туре:											
Depth (ind	ches):						Hydric Soil Pr	resent?	Yes	No	<u>X</u>
Remarks:											

Date: 06/07/2021	Project/Site: Knightdale ITS	Latitude: 35.806449
Evaluator: B. Cogdell-Atkins	County: Wake	Longitude: -78.464335
Total Points:Stream is at least intermittent if ≥ 19 or perennial if $\geq 30^*$	Stream Determination (circle one) Ephemeral Intermittent Rerennia	Other e.g. Quad Name: Knightdale

A. Geomorphology (Subtotal = <u>14.5</u>)	Absent	Weak	Moderate	Strong
1 ^a Continuity of channel bed and bank	0	1	2	3
2. Sinuosity of channel along thalweg	0	1	2	3
 In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence 	0	1	2	3
4. Particle size of stream substrate	0	1	2	3
5. Active/relict floodplain	0	1	2	3
6. Depositional bars or benches	0	1	2	3
7. Recent alluvial deposits	0	1	2	3
8. Headcuts	0	1	2	3
9. Grade control	0	0.5	1	1.5
10. Natural valley	0	0.5	1	1.5
11. Second or greater order channel	N	0	Yes	= 3
^a artificial ditches are not rated; see discussions in manual				
B. Hydrology (Subtotal = <u>9.5</u>)				
12. Presence of Baseflow	0	1	2	3
13. Iron oxidizing bacteria	0	1	2	3
14. Leaf litter	1.5	1	0.5	0
15. Sediment on plants or debris	0	0.5		1.5
16. Organic debris lines or piles	0	0.5	1	1.5
17. Soil-based evidence of high water table?	N	o = 0	Yes	3
C. Biology (Subtotal = <u>6</u>)				
18. Fibrous roots in streambed	3	2	1	0
19. Rooted upland plants in streambed	()	2	1	0
20. Macrobenthos (note diversity and abundance)	0	1	2	3
21. Aquatic Mollusks	\odot	1	2	3
22. Fish	0	0.5	1	1.5
23. Crayfish	\odot	0.5	1	1.5
24. Amphibians	0	0.5	1	1.5
25. Algae	0	0.5	1	1.5
26. Wetland plants in streambed		FACW = 0.75;	OBL = 1.5 Other €	\mathbb{O}
*perennial streams may also be identified using other metho	ds. See p. 35 of manua	al.		
Notes:				

Date: 6/2/2021 4:00:00 PM		Project/Site: Knightdale ITS	Latitude: 35.773278604666601
Evaluator: Ben Cogdell, Raino	r Gresham	County: Wake	Longitude: - 78.4721669896666604
Total Points: Stream is at least intermittent if \geq 19 or perennial if \geq 30*	3125	Stream Determination Perennial	Other e.g. Quad Name: Knightdale

A. Geomorphology (Subtotal = <u>15.5</u>)	Absent	Weak	Moderate	Strong		
1 ^{a.} Continuity of channel bed and bank	Moderate (2)					
2. Sinuosity of channel along thalweg		Strong (3)				
3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence		Mo	derate (2)			
4. Particle size of stream substrate		N	/eak (1)			
5. Active/relict floodplain		St	rong (3)			
6. Depositional bars or benches		Mo	derate (2)			
7. Recent alluvial deposits		N	/eak (1)			
8. Headcuts		At	osent (0)			
9. Grade control		At	osent (0)			
10. Natural valley		Str	ong (1.5)			
11. Second or greater order channel			No (0)			
^a artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal = <u>9</u>)						
12. Presence of Baseflow		St	rong (3)			
13. Iron oxidizing bacteria		At	osent (0)			
14. Leaf litter		Ab	sent (1.5)			
15. Sediment on plants or debris		W	eak (0.5)			
16. Organic debris lines or piles		Mo	derate (1)			
17. Soil-based evidence of high water table?			Yes (3)			
C. Biology (Subtotal = <u>6.75</u>)						
18. Fibrous roots in streambed		At	osent (3)			
19. Rooted upland plants in streambed		At	osent (3)			
20. Macrobenthos (note diversity and abundance)		At	osent (0)			
21. Aquatic Mollusks		Absent (0)				
22. Fish		Absent (0)				
23. Crayfish		At	osent (0)			
24. Amphibians		At	osent (0)			
25. Algae		Ak	osent (0)			
26. Wetland plants in streambed		FAG	CW (0.75)			
*perennial streams may also be identified using other method	ls. See p. 35 of manua	al.				
Notes: Within wetland BB						

Date: 6/2/2021 4:00:00 PM	Project/Site: Knightdale ITS	Latitude: 35.754506150833301
Evaluator: Ben Cogdell, Rainor Gresham	County: Wake	Longitude: - 78.513027425000004
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*	Stream Determination Intermittent	Other <i>e.g. Quad Name</i> : Raleigh East

A. Geomorphology (Subtotal = <u>14</u>)	Absent	Weak	Moderate	Strong			
1 ^{a.} Continuity of channel bed and bank		Moderate (2)					
2. Sinuosity of channel along thalweg		Mo	derate (2)				
3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence		W	/eak (1)				
4. Particle size of stream substrate		W	/eak (1)				
5. Active/relict floodplain			/eak (1)				
6. Depositional bars or benches			derate (2)				
7. Recent alluvial deposits			derate (2)				
8. Headcuts			osent (0)				
9. Grade control			ong (1.5)				
10. Natural valley			ong (1.5)				
11. Second or greater order channel			No (0)				
^a artificial ditches are not rated; see discussions in manual							
B. Hydrology (Subtotal = <u>9</u>)							
12. Presence of Baseflow		Mo	derate (2)				
13. Iron oxidizing bacteria		At	osent (0)				
14. Leaf litter		Ab	sent (1.5)				
15. Sediment on plants or debris		Str	ong (1.5)				
16. Organic debris lines or piles		Mo	derate (1)				
17. Soil-based evidence of high water table?			Yes (3)				
C. Biology (Subtotal = <u>5</u>)							
18. Fibrous roots in streambed		V	/eak (2)				
19. Rooted upland plants in streambed		At	osent (3)				
20. Macrobenthos (note diversity and abundance)		At	osent (0)				
21. Aquatic Mollusks		Absent (0)					
22. Fish		Absent (0)					
23. Crayfish		Absent (0)					
24. Amphibians		Ak	osent (0)				
25. Algae		At	osent (0)				
26. Wetland plants in streambed		C	ther (0)				
*perennial streams may also be identified using other metho	ods. See p. 35 of manua	l					
Notes:							

Date: 6/2/2021 5:56:23 PM	Project/Site: Knightdale ITS	Latitude: 35.754506150833301
Evaluator: Ben Cogdell, Rainor Gresham	County: Wake	Longitude: - 78.513027425000004
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*	Stream Determination Intermittent	Other e.g. Quad Name: Raleigh East

A. Geomorphology (Subtotal = <u>14</u>)	Absent	Weak	Moderate	Strong		
1 ^{a.} Continuity of channel bed and bank		Мос	derate (2)			
2. Sinuosity of channel along thalweg		Мос	derate (2)			
3. In-channel structure: ex. riffle-pool, step-pool,		١٨	/eak (1)			
ripple-pool sequence			. ,			
4. Particle size of stream substrate			/eak (1)			
5. Active/relict floodplain			/eak (1)			
6. Depositional bars or benches			derate (2)			
7. Recent alluvial deposits			derate (2)			
8. Headcuts			osent (0)			
9. Grade control			ong (1.5)			
10. Natural valley			ong (1.5)			
11. Second or greater order channel			No (0)			
artificial ditches are not rated; see discussions in manual						
B. Hydrology (Subtotal = <u>9</u>)						
12. Presence of Baseflow		Мос	derate (2)			
13. Iron oxidizing bacteria		Ab	osent (0)			
14. Leaf litter		Abs	sent (1.5)			
15. Sediment on plants or debris		Str	ong (1.5)			
16. Organic debris lines or piles		Мос	derate (1)			
17. Soil-based evidence of high water table?		`	Yes (3)			
C. Biology (Subtotal = <u>5</u>)						
18. Fibrous roots in streambed		W	/eak (2)			
19. Rooted upland plants in streambed		Ab	osent (3)			
20. Macrobenthos (note diversity and abundance)		Ab	osent (0)			
21. Aquatic Mollusks		Absent (0)				
22. Fish		Absent (0)				
23. Crayfish		Ab	osent (0)			
24. Amphibians		Ab	osent (0)			
25. Algae		Ab	osent (0)			
26. Wetland plants in streambed		0	ther (0)			
	ds. See p. 35 of manua					

Poplar Creek-Upper

NC DWQ Stream Identification Form Version 4.11

Date: 6/2/2021 3:22:43 PM	Project/Site: Knightdale ITS	Latitude: 35.773441326166598
Evaluator: Ben Cogdell, Rainor Gresham	County: Wake	Longitude: - 78.473331647666598
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*	Stream Determination Perennial	Other e.g. Quad Name: Knightdale

A. Geomorphology (Subtotal = <u>21.5</u>)	Absent	Weak	Moderate	Strong		
1 ^{a.} Continuity of channel bed and bank		St	rong (3)			
2. Sinuosity of channel along thalweg		Moderate (2)				
3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence		Мос	derate (2)			
4. Particle size of stream substrate		Moo	derate (2)			
5. Active/relict floodplain		St	rong (3)			
6. Depositional bars or benches		St	rong (3)			
7. Recent alluvial deposits		Мос	derate (2)			
8. Headcuts		Ab	sent (0)			
9. Grade control		Ab	sent (0)			
10. Natural valley		Stro	ong (1.5)			
11. Second or greater order channel		`	Yes (3)			
^a artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal = <u>9</u>)						
12. Presence of Baseflow		St	rong (3)			
13. Iron oxidizing bacteria		Ab	osent (0)			
14. Leaf litter		Absent (1.5)				
15. Sediment on plants or debris		Moo	derate (1)			
16. Organic debris lines or piles		We	eak (0.5)			
17. Soil-based evidence of high water table?		`	Yes (3)			
C. Biology (Subtotal = <u>6</u>)						
18. Fibrous roots in streambed		Ab	sent (3)			
19. Rooted upland plants in streambed		Ab	sent (3)			
20. Macrobenthos (note diversity and abundance)		Absent (0)				
21. Aquatic Mollusks		Absent (0)				
22. Fish		Absent (0)				
23. Crayfish		Absent (0)				
24. Amphibians		Absent (0)				
25. Algae		Ab	osent (0)			
26. Wetland plants in streambed		0	ther (0)			
*perennial streams may also be identified using other method	ds. See p. 35 of manua					

NC DWQ Stream Identification Form Version 4.11

Date: 6/7/2021 4:00:00 PM		Project/Site: Knightdale ITS	Latitude: 35.803055106695503
Evaluator: Ben Cogdell, Rainor Gresham		County: Wake	Longitude: - 78.468646500332696
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*		Stream Determination Ephemeral	Other e.g. Quad Name : Knightdale

A. Geomorphology (Subtotal = 7.5) Absent Weak Moderate				
1 ^{a.} Continuity of channel bed and bank	Weak (1)			
2. Sinuosity of channel along thalweg		W	/eak (1)	
3. In-channel structure: ex. riffle-pool, step-pool,		M	/eak (1)	
ripple-pool sequence			< <i>'</i> ,	
4. Particle size of stream substrate			/eak (1)	
5. Active/relict floodplain			/eak (1)	
6. Depositional bars or benches			osent (0)	
7. Recent alluvial deposits			/eak (1)	
8. Headcuts			osent (0)	
9. Grade control			osent (0)	
10. Natural valley		Str	ong (1.5)	
11. Second or greater order channel			No (0)	
^a artificial ditches are not rated; see discussions in manual				
B. Hydrology (Subtotal = <u>3</u>)				
12. Presence of Baseflow		At	osent (0)	
13. Iron oxidizing bacteria		At	osent (0)	
14. Leaf litter		W	/eak (1)	
15. Sediment on plants or debris		Mo	derate (1)	
16. Organic debris lines or piles		Mo	derate (1)	
17. Soil-based evidence of high water table?			No (0)	
C. Biology (Subtotal = <u>3</u>)				
18. Fibrous roots in streambed		Mo	derate (1)	
19. Rooted upland plants in streambed		N	/eak (2)	
20. Macrobenthos (note diversity and abundance)		At	osent (0)	
21. Aquatic Mollusks		At	osent (0)	
22. Fish		At	osent (0)	
23. Crayfish		At	osent (0)	
24. Amphibians		Absent (0)		
25. Algae	Absent (0)			
26. Wetland plants in streambed		0	ther (0)	
*perennial streams may also be identified using other method	ods. See n. 35 of manua		-	

NC DWQ Stream Identification Form Version 4.11

Date: 6/7/2021 4:00:00 PM		Project/Site: Knightdale ITS	Latitude: 35.795469672561403
Evaluator: Ben Cogdell, Rainor	Gresham	County: Wake	Longitude: - 78.522320196828105
Total Points:		Stream Determination	Other
Stream is at least intermittent 14.5 if ≥ 19 or perennial if ≥ 30*		Ephemeral	e.g. Quad Name : Raleigh East

	Absent	Weak	Moderate	Strong
^{a.} Continuity of channel bed and bank	Weak (1)			
2. Sinuosity of channel along thalweg		Weak (1)		
3. In-channel structure: ex. riffle-pool, step-pool,		۵۲	osent (0)	
ripple-pool sequence			. ,	
Particle size of stream substrate			derate (2)	
5. Active/relict floodplain			/eak (1)	
6. Depositional bars or benches			osent (0)	
7. Recent alluvial deposits			/eak (1)	
3. Headcuts		Ab	osent (0)	
9. Grade control		Ab	osent (0)	
I0. Natural valley		Мо	derate (1)	
1. Second or greater order channel			No (0)	
artificial ditches are not rated; see discussions in manual				
3. Hydrology(Subtotal = <u>1.5</u>)				
2. Presence of Baseflow		Ab	osent (0)	
13. Iron oxidizing bacteria		Ab	osent (0)	
14. Leaf litter		N	/eak (1)	
15. Sediment on plants or debris		We	eak (0.5)	
l6. Organic debris lines or piles		Ab	osent (0)	
17. Soil-based evidence of high water table?			No (0)	
C. Biology (Subtotal = <u>6</u>)				
18. Fibrous roots in streambed	Absent (3)			
19. Rooted upland plants in streambed		Ab	osent (3)	
20. Macrobenthos (note diversity and abundance)		Ab	osent (0)	
21. Aquatic Mollusks		Ab	osent (0)	
22. Fish		Ab	osent (0)	
23. Crayfish		Ab	sent (0)	
24. Amphibians	Absent (0)			
25. Algae	Absent (0)			
26. Wetland plants in streambed		0	ther (0)	
*perennial streams may also be identified using other metho	ds. See p. 35 of manual			

NC DWQ Stream Identification Form Version 4.11

Date: 6/7/2021 4:00:00 PM	Project/Site: Knightdale ITS	Latitude: 35.747971787982998
Evaluator: Ben Cogdell, Rainor Gresham	County: Wake	Longitude: - 78.457685272279406
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*	Stream Determination Ephemeral	Other e.g. Quad Name : Clayton

A. Geomorphology (Subtotal = <u>1.5</u>)	Absent Weak Moderate Str			
1 ^a Continuity of channel bed and bank	Absent (0)			
2. Sinuosity of channel along thalweg		Absent (0)		
3. In-channel structure: ex. riffle-pool, step-pool,		Ał	osent (0)	
ripple-pool sequence			. ,	
4. Particle size of stream substrate			osent (0)	
5. Active/relict floodplain			/eak (1)	
6. Depositional bars or benches			osent (0)	
7. Recent alluvial deposits		Ab	osent (0)	
8. Headcuts		Ab	osent (0)	
9. Grade control		Ab	osent (0)	
10. Natural valley		We	eak (0.5)	
11. Second or greater order channel			No (0)	
^a artificial ditches are not rated; see discussions in manual				
B. Hydrology (Subtotal = <u>1.5</u>)				
12. Presence of Baseflow		Ab	osent (0)	
13. Iron oxidizing bacteria		Ab	osent (0)	
14. Leaf litter		Abs	sent (1.5)	
15. Sediment on plants or debris		Ab	osent (0)	
16. Organic debris lines or piles		Ab	osent (0)	
17. Soil-based evidence of high water table?			No (0)	
C. Biology (Subtotal = <u>0</u>)				
18. Fibrous roots in streambed		St	rong (0)	
19. Rooted upland plants in streambed		St	rong (0)	
20. Macrobenthos (note diversity and abundance)		Ab	osent (0)	
21. Aquatic Mollusks		Ab	osent (0)	
22. Fish		Ab	osent (0)	
23. Crayfish			osent (0)	
24. Amphibians	Absent (0)			
25. Algae	Absent (0)			
26. Wetland plants in streambed		0	ther (0)	
*perennial streams may also be identified using other method				

NC DWQ Stream Identification Form Version 4.11

Date: 6/1/2021 4:00:00 PM		Project/Site: Knightdale ITS	Latitude: 35.779204014500003
Evaluator: Ben Cogdell, Rainor	Gresham	County: Wake	Longitude: - 78.478151124500002
Total Points: 10.5 Stream is at least intermittent 10.5 if ≥ 19 or perennial if $\geq 30^*$		Stream Determination Ephemeral	Other e.g. Quad Name : Knightdale

A. Geomorphology (Subtotal = 4.5)	Absent	Weak	Moderate	Strong
1 ^{a.} Continuity of channel bed and bank				
2. Sinuosity of channel along thalweg		Weak (1)		
3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence		Ab	osent (0)	
4. Particle size of stream substrate		W	/eak (1)	
5. Active/relict floodplain		Ab	osent (0)	
6. Depositional bars or benches		Ab	osent (0)	
7. Recent alluvial deposits		W	/eak (1)	
8. Headcuts		Ab	osent (0)	
9. Grade control		Ab	sent (0)	
10. Natural valley		We	eak (0.5)	
11. Second or greater order channel			No (0)	
^a artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal = <u>4</u>)				
12. Presence of Baseflow		Ab	osent (0)	
13. Iron oxidizing bacteria		Ab	sent (0)	
14. Leaf litter		St	rong (0)	
15. Sediment on plants or debris		We	eak (0.5)	
16. Organic debris lines or piles		We	eak (0.5)	
17. Soil-based evidence of high water table?		Ň	Yes (3)	
C. Biology (Subtotal = <u>2</u>)				
18. Fibrous roots in streambed		Мос	derate (1)	
19. Rooted upland plants in streambed		Мос	derate (1)	
20. Macrobenthos (note diversity and abundance)		Ab	osent (0)	
21. Aquatic Mollusks		Ab	osent (0)	
22. Fish	Absent (0)			
23. Crayfish	Absent (0)			
24. Amphibians	Absent (0)			
25. Algae			osent (0)	
26. Wetland plants in streambed		0	ther (0)	
*perennial streams may also be identified using other methods		al.		
Notes: Privet in channel, turns into wetland outside	e SA boundary			

NC DWQ Stream Identification Form Version 4.11

Date: 6/1/2021 4:00:00 PM		Project/Site: Knightdale ITS	Latitude: 35.789646550999997
Evaluator: Ben Cogdell, Rainor Gresham		County: Wake	Longitude: - 78.483314693500006
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*		Stream Determination Ephemeral	Other e.g. Quad Name : Knightdale

A. Geomorphology (Subtotal = 4.5)	Absent	Weak	Moderate	Strong	
1 ^{a.} Continuity of channel bed and bank	Moderate (2)				
2. Sinuosity of channel along thalweg		Weak (1)			
3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence		Al	osent (0)		
4. Particle size of stream substrate		Al	osent (0)		
5. Active/relict floodplain		V	Veak (1)		
6. Depositional bars or benches		Al	osent (0)		
7. Recent alluvial deposits		Al	osent (0)		
8. Headcuts		Al	osent (0)		
9. Grade control		Al	osent (0)		
10. Natural valley		W	eak (0.5)		
11. Second or greater order channel			No (0)		
^a artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal = <u>2</u>)					
12. Presence of Baseflow	Absent (0)				
13. Iron oxidizing bacteria		A	osent (0)		
14. Leaf litter		Ab	sent (1.5)		
15. Sediment on plants or debris		W	eak (0.5)		
16. Organic debris lines or piles		Al	osent (0)		
17. Soil-based evidence of high water table?			No (0)		
C. Biology (Subtotal = <u>6</u>)					
18. Fibrous roots in streambed		Al	osent (3)		
19. Rooted upland plants in streambed		Al	osent (3)		
20. Macrobenthos (note diversity and abundance)		Al	osent (0)		
21. Aquatic Mollusks		Al	osent (0)		
22. Fish	Absent (0)				
23. Crayfish	Absent (0)				
24. Amphibians	Absent (0)				
25. Algae	Absent (0)				
26. Wetland plants in streambed		C)ther (0)		
*perennial streams may also be identified using other method	ls. See p. 35 of manua	al.			
Notes: Concrete flume					

NC WAM FIELD ASSESSMENT FORM

Accompanies User Manual Version 5.0

110	CE AID #		Accompanies	NCDWR#	
034		ot Nome			6/7/2021
Δ		ct Name	NCDOT	Date of Evaluation	
Арр	licant/Owne		NCDOT	Wetland Site Name	WB
		nd Type	Headwater Forest	Assessor Name/Organization	B. Cogdell - Atkins
	Level III Ed	0	Piedmont	Nearest Named Water Body	Mingo Creek
	Riv	er Basin		USGS 8-Digit Catalogue Unit	03020201
		County		NCDWR Region	Raleigh
	🗌 Yes	🛛 No	Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	35.798708, -78.476911
Pleas recei	se circle an nt past (for i Hydrol Surfac tanks, Signs o Habita e assessm ulatory Cor Anadro Federa NCDW Abuts Publicl N.C. D	d/or mal instance, ogical m e and su undergro of vegeta t/plant co ent area nsiderati omous fis ally prote /R riparia a Primar ly owned	within 10 years). Noteworthy stressors is odifications (examples: ditches, dams, b b-surface discharges into the wetland (ex- bund storage tanks (USTs), hog lagoons, ation stress (examples: vegetation morta ommunity alteration (examples: mowing, intensively managed? Yes ons - Were regulatory considerations ev- sh cted species or State endangered or three an buffer rule in effect y Nursery Area (PNA) property f Coastal Management Area of Environm	etressors is apparent. Consider departure fr include, but are not limited to the following. eaver dams, dikes, berms, ponds, etc.) camples: discharges containing obvious pollu etc.) lity, insect damage, disease, storm damage, clear-cutting, exotics, etc.) No aluated? ⊠Yes ⊡No If Yes, check all that eatened species	itants, presence of nearby septic , salt intrusion, etc.) It apply to the assessment area.
	Desigr	nated NC	with a NCDWQ classification of SA or su NHP reference community listed stream or a tributary to a 303(d)-list	upplemental classifications of HQW, ORW, c	or Trout
Is the	Blackw Brown Tidal (i e assessm e assessm	vater water if tidal, cl ent area ent area		unar Wind Both No uration substantially altered by beaver?	□ Yes ⊠ No
Does	s the asses	sment a	rea experience overbank flooding dur	ing normal rainfall conditions?	🖾 No
1. G	Fround Sur	face Co	ndition/Vegetation Condition – assess	ment area condition metric	
C a a G □ D	Check a boy ssessment rea based o SS VS]A □,]B ⊠I	c in each area. Co on evider A No B Se se al di	column. Consider alteration to the group ompare to reference wetland if applicable nee an effect. The severely altered everely altered over a majority of the assi- edimentation, fire-plow lanes, skidder tra- teration examples: mechanical disturban versity [if appropriate], hydrologic alteration	und surface (GS) in the assessment area an (see User Manual). If a reference is not app essment area (ground surface alteration exa acks, bedding, fill, soil compaction, obvious ice, herbicides, salt intrusion [where appropri on)	mples: vehicle tracks, excessive pollutants) (vegetation structure
2. S	urface and	l Sub-Su	rface Storage Capacity and Duration -	 assessment area condition metric 	
C d S L	consider bot	th increa ected to a b A W B W C W	se and decrease in hydrology. A ditch ≤ iffect both surface and sub-surface water ater storage capacity and duration are no ater storage capacity or duration are alte ater storage capacity or duration are sub	acity and duration (Surf) and sub-surface sto 1 foot deep is considered to affect surface Consider tidal flooding regime, if applicable to altered. red, but not substantially (typically, not suffici- stantially altered (typically, alteration suffici- tion, filling, excessive sedimentation, underg	water only, while a ditch > 1 foot e. cient to change vegetation). ent to result in vegetation change)
3. V	Vater Stora	ge/Surfa	ice Relief – assessment area/wetland	type condition metric (skip for all marshe	es)
C	Check a box AA Wī a. □A □ □B □	<mark>k in eac</mark> h]A M]B M	a column. Select the appropriate storage ajority of wetland with depressions able t ajority of wetland with depressions able t	e for the assessment area (AA) and the wetl o pond water > 1 deep o pond water 6 inches to 1 foot deep	
			ajority of wetland with depressions able t epressions able to pond water < 3 inches		

3b. □A Evidence that maximum depth of inundation is greater than 2 feet □B Evidence that maximum depth of inundation is between 1 and 2 feet ☑C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

- Sandv soil 4a. ⊠в Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres) □с Loamy or clayey soils not exhibiting redoximorphic features DD Loamy or clayey gleyed soil Histosol or histic epipedon 4b. 🖾 A Soil ribbon < 1 inch □в Soil ribbon \geq 1 inch
- 4c. 🖾 A No peat or muck presence
 - □в A peat or muck presence

5. Discharge into Wetland - opportunity metric

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf ⊠Α
 - Little or no evidence of pollutants or discharges entering the assessment area ⊠Α
- □в □в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- □с ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M). 2M

- WS 5M ⊠Α
 - ≥ 10% impervious surfaces ⊠Α $\square A$
- □в □в □в Confined animal operations (or other local, concentrated source of pollutants
- □с □с □с ≥ 20% coverage of pasture DD
 - DD DD ≥ 20% coverage of agricultural land (regularly plowed land)
- ΠE ≥ 20% coverage of maintained grass/herb
- □F □F ⊡F ≥ 20% coverage of clear-cut land □G □G □G

Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

Wetland Acting as Vegetated Buffer – assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - □Yes ⊠No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - □A □B ≥ 50 feet
 - From 30 to < 50 feet
 - ⊡с From 15 to < 30 feet
 - ΠD From 5 to < 15 feet
 - ΠE < 5 feet or buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. 7c.
 - □≤ 15-feet wide \square > 15-feet wide \square Other open water (no tributary present)
- Do roots of assessment area vegetation extend into the bank of the tributary/open water? 7d. □Yes □No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8. Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT

WC ΠA ≥ 100 feet Πв Πв From 80 to < 100 feet ⊠c ⊠c From 50 to < 80 feet DD DD From 40 to < 50 feet ΠE ΠE From 30 to < 40 feet From 15 to < 30 feet ΠF □G □G From 5 to < 15 feet □н ШΗ < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (<7 consecutive days) ΜA
- □в Evidence of saturation, without evidence of inundation
- ⊡c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. ΜA
- Пв Sediment deposition is excessive, but not overwhelming the wetland.
- □с Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT

- WC FW (if applicable)
- ≥ 500 acres ΠA ΠA □в □в From 100 to < 500 acres □с ПС From 50 to < 100 acres ΠD D DD From 25 to < 50 acres ШE ΠE ΠE From 10 to < 25 acres ΠF
 - ΠF ΠF From 5 to < 10 acres
- □G □G □G From 1 to < 5 acres
- ШΗ From 0.5 to < 1 acre □н ШΗ
- N N N From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - Πĸ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent ($\geq 90\%$) of its natural landscape size. Πа
- □в Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA		≥ 500 acres
□в	□в	From 100 to < 500 acres
⊠C	□c	From 50 to < 100 acres
□D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
ΠF	□F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

□No Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0

□J

Пĸ

ØΒ 1 to 4

ПС 5 to 8

15. Vegetative Composition – assessment area condition metric (skip for all marshes and Pine Flat)

- ΠA Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- ⊠в Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ПС Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics). ΠΑ
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠в
- Vegetation is dominated by exotic species (> 50 % cover of exotics).

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

01.00101	• ••p	
AA A⊠D Canopy O□	WT ⊠A □B □C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story B B	□A □B ⊠C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
Shrub B B C	□A □B ⊠C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
a ⊠A □B	⊠A □B	Dense herb layer Moderate density herb layer

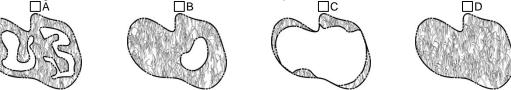
 $\square C$ $\square C$ Herb layer sparse or absent

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.


20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

□A Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 □A Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank and overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name WB	Date of Assessment	6/7/2021	
Wetland Type Headwater Forest	Assessor Name/Organization	B. Cogde	II - Atkins
Notes on Field Assessment Form (Y/N)			NO
Presence of regulatory considerations (Y/N)			NO
Wetland is intensively managed (Y/N)			NO
Assessment area is located within 50 feet of a natural trib	utary or other open water (Y/N)		NO
Assessment area is substantially altered by beaver (Y/N)			NO
Assessment area experiences overbank flooding during n	ormal rainfall conditions (Y/N)		NO
Assessment area is on a coastal island (Y/N)			NO

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	HIGH
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	MEDIUM
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	MEDIUM
Function Rating Summary		Matrice	Deting
Function		Metrics	Rating
Hydrology		Condition	MEDIUM
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

Overall Wetland Rating Low

NC WAM FIELD ASSESSMENT FORM

Accompanies User Manual Version 5.0

US	ACE AID	#		NCDWR#	
	Pi	oject Nan	ıe	Date of Evaluation	6/2/2021
Ap	plicant/C	wner Nan	ne NCDOT	Wetland Site Name	WC
	W	etland Ty		Assessor Name/Organization	B. Cogdell-Atkins
		II Ecoregi		Nearest Named Water Body	Poplar Creek
			in Neuse	USGS 8-Digit Catalogue Unit	03020201
		Cour		NCDWR Region	Raleigh
	□ Ye	es 🖂 I	No Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	35.773515, -78.473433
Ple rec	ase circle ent past (• Hy • Su tar • Sig • Ha he asses gulatory An Fe NC Ab Pu N.(Ab	e and/or n for instan- drological rface and iks, under gns of veg bitat/plant sment ar Consider adromous derally pro- DWR ripa uts a Prim blicly own C. Divisior uts a strea	hake note on the last page if evidence, within 10 years). Noteworthy stree modifications (examples: ditches, da sub-surface discharges into the wetla ground storage tanks (USTs), hog lag etation stress (examples: vegetation community alteration (examples: mo ea intensively managed? Yea ations - Were regulatory consideration fish betected species or State endangered irian buffer rule in effect ary Nursery Area (PNA) ed property of Coastal Management Area of Env am with a NCDWQ classification of S.	mortality, insect damage, disease, storm damage owing, clear-cutting, exotics, etc.) s ⊠ No ons evaluated? ⊠Yes ⊡No If Yes, check all tha	itants, presence of nearby septic , salt intrusion, etc.) at apply to the assessment area.
Wh	Ab at type c Bla Bro Tic he asses	uts a 303 of natural ackwater ownwater lal (if tidal ssment ar	ea on a coastal island?		□ Yes ⊠ No
				ng during normal rainfall conditions? 🛛 Yes	
1.	Ground	Surface C	Condition/Vegetation Condition – a	ssessment area condition metric	
	assessm	ent area. ed on evic VS	Compare to reference wetland if appl lence an effect. Not severely altered Severely altered over a majority of th sedimentation, fire-plow lanes, skide	he ground surface (GS) in the assessment area ar licable (see User Manual). If a reference is not app ne assessment area (ground surface alteration exa der tracks, bedding, fill, soil compaction, obvious turbance, herbicides, salt intrusion [where appropr alteration)	amples: vehicle tracks, excessive pollutants) (vegetation structure
2.	Surface	and Sub-	Surface Storage Capacity and Dura	ation – assessment area condition metric	
	Conside	both incr	ease and decrease in hydrology. A construction of the surface and sub-surface water storage capacity and duration water storage capacity or duration a Water storage capacity or duration a	ge capacity and duration (Surf) and sub-surface sto ditch \leq 1 foot deep is considered to affect surface a water. Consider tidal flooding regime, if applicable are not altered. The altered, but not substantially (typically, not sufficient to substantially altered (typically, alteration sufficient to mpaction, filling, excessive sedimentation, underg	water only, while a ditch > 1 foot le. cient to change vegetation). ent to result in vegetation change)
3.	Water St	orage/Su	rface Relief – assessment area/we	tland type condition metric (skip for all marshe	es)
			ch column. Select the appropriate s	storage for the assessment area (AA) and the wet	and type (WT).
		□A □B □C	Majority of wetland with depressions Majority of wetland with depressions Majority of wetland with depressions Depressions able to pond water < 3	able to pond water 6 inches to 1 foot deep able to pond water 3 to 6 inches deep	

3b. □A Evidence that maximum depth of inundation is greater than 2 feet
□B Evidence that maximum depth of inundation is between 1 and 2 feet
□C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

- Sandv soil 4a. ⊠в Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres) □с Loamy or clayey soils not exhibiting redoximorphic features DD Loamy or clayey gleyed soil Histosol or histic epipedon 4b. 🖾 A Soil ribbon < 1 inch □в Soil ribbon \geq 1 inch
- 4c. 🖾 A No peat or muck presence
 - □в A peat or muck presence

5. Discharge into Wetland - opportunity metric

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf ⊠Α
 - Little or no evidence of pollutants or discharges entering the assessment area ⊠Α
- □в □в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- □с ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M). 2M

- WS 5M
- ≥ 10% impervious surfaces ⊠Α ⊠Α $\square A$ □в □в □в Confined animal operations (or other local, concentrated source of pollutants □с ПС □с ≥ 20% coverage of pasture ØD ØD ØD ≥ 20% coverage of agricultural land (regularly plowed land) ΠE ≥ 20% coverage of maintained grass/herb ⊡F ⊡F ⊡F ≥ 20% coverage of clear-cut land □G □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

Wetland Acting as Vegetated Buffer – assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

Is assessment area within 50 feet of a tributary or other open water? 7a.

⊠Yes ΠNo If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ⊠Α ≥ 50 feet
 - ⊡в From 30 to < 50 feet
 - ⊡с From 15 to < 30 feet
 - ΠD From 5 to < 15 feet
 - ΠE < 5 feet or buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. 7c.
 - ⊠≤ 15-feet wide \square > 15-feet wide \square Other open water (no tributary present)
- Do roots of assessment area vegetation extend into the bank of the tributary/open water? 7d. ⊠Yes □No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8. Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT WC

ΠA ≥ 100 feet Пв Пв From 80 to < 100 feet ПС ПС From 50 to < 80 feet ΠD DD From 40 to < 50 feet ⊠Ε ⊠Ε From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF □G □G From 5 to < 15 feet □н Πн < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (<7 consecutive days) ΜA
- □в Evidence of saturation, without evidence of inundation
- □с Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. ΜA
- Пв Sediment deposition is excessive, but not overwhelming the wetland.
- □с Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT

- WC FW (if applicable)
- ΠA ΠA ≥ 500 acres □в □в From 100 to < 500 acres □с ПС From 50 to < 100 acres ΠD D DD From 25 to < 50 acres ШE ΠE ΠE From 10 to < 25 acres ΠF ΠF ΠF From 5 to < 10 acres □G □G □G From 1 to < 5 acres
- ШΗ From 0.5 to < 1 acre ШΗ
- ШΗ From 0.1 to < 0.5 acre
- ΜJ ⊠J ⊠J From 0.01 to < 0.1 acre
 - Πĸ
 - Πĸ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent ($\geq 90\%$) of its natural landscape size. Πа
- □в Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA	□ A Î	≥ 500 acres
□в	□в	From 100 to < 500 acres
⊠C	□C	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
ΠF	□F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

No Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0
	1 +

Πв

⊡к

1 to 4 ⊠в

ПС 5 to 8

15. Vegetative Composition – assessment area condition metric (skip for all marshes and Pine Flat)

- ΠA Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- ⊠в Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ПС Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics). ΠΑ
 - Vegetation diversity is low or has > 10% to 50% cover of exotics.
 - Vegetation is dominated by exotic species (> 50 % cover of exotics).

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

on aoran	e in anop	aborto ano accocomont area (i i i) and the metallicity po (iii) coparatoly.
AA A□DA S□DS S□DS	WT □A □B ⊠C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story	□A	Dense mid-story/sapling layer
B⊠	⊠B	Moderate density mid-story/sapling layer
V□	□C	Mid-story/sapling layer sparse or absent
durde	□A	Dense shrub layer
BB	⊠B	Moderate density shrub layer
□C	□C	Shrub layer sparse or absent
a ⊠A	⊠A	Dense herb layer
□B	□B	Moderate density herb layer

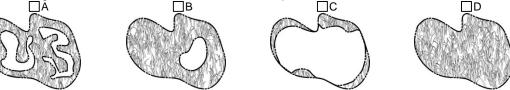
 $\square C$ $\square C$ Herb layer sparse or absent

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.


20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

□A Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 □A Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank and overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name WC	Date of Assessment	6/2/2021	
Wetland Type Bottomland Hardwood Forest	Assessor Name/Organization	B. Cogde	II-Atkins
Notes on Field Assessment Form (Y/N)			NO
Presence of regulatory considerations (Y/N)			YES
Wetland is intensively managed (Y/N)			NO
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N)			YES
Assessment area is substantially altered by beaver (Y/N)			NO
Assessment area experiences overbank flooding during n	ormal rainfall conditions (Y/N)		YES
Assessment area is on a coastal island (Y/N)		-	NO

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	MEDIUM
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Soluble Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	MEDIUM
unction Rating Summary			
Function		Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

Overall Wetland Rating Low

NC WAM FIELD ASSESSMENT FORM

Accompanies User Manual Version 5.0

USACE AID #		NCDWR#	
Project Name	3	Date of Evaluation	6/2/2021
Applicant/Owner Name	NCDOT	Wetland Site Name	WD
Wetland Type	e Headwater Forest	Assessor Name/Organization	B. Cogdell-Atkins
Level III Ecoregion	n Piedmont	Nearest Named Water Body	Poplar Creek
River Basir	Neuse	USGS 8-Digit Catalogue Unit	03020201
County	y Wake	NCDWR Region	Raleigh
🗌 Yes 🛛 No	Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	35.773345, -78.473072
Please circle and/or ma recent past (for instance • Hydrological n • Surface and su tanks, undergr • Signs of veget • Habitat/plant c Is the assessment area Regulatory Considerat Anadromous f	e, within 10 years). Noteworthy stressors nodifications (examples: ditches, dams, b ub-surface discharges into the wetland (ex round storage tanks (USTs), hog lagoons tation stress (examples: vegetation morta community alteration (examples: mowing, a intensively managed? Yes tions - Were regulatory considerations ev ish ected species or State endangered or thre ian buffer rule in effect iry Nursery Area (PNA)	stressors is apparent. Consider departure f include, but are not limited to the following. beaver dams, dikes, berms, ponds, etc.) kamples: discharges containing obvious pollu , etc.) ality, insect damage, disease, storm damage , clear-cutting, exotics, etc.)] No valuated? ⊠Yes □No If Yes, check all that	utants, presence of nearby septic , salt intrusion, etc.)
Image: N.C. Division of Abuts a stream Image: Designated No.	of Coastal Management Area of Environm	upplemental classifications of HQW, ORW, o	or Trout
	tream is associated with the wetland, i	f any? (check all that apply)	
Blackwater			
Brownwater	check one of the following boxes)		
	ъ , <u> </u>	unar 📋 Wind 📋 Both	
Is the assessment area	a on a coastal island? 🗌 Yes 🛛	No	
Is the assessment are	a's surface water storage capacity or d	luration substantially altered by beaver?	🗌 Yes 🛛 No
	area experience overbank flooding dur		
1. Ground Surface Co	ondition/Vegetation Condition – assess	sment area condition metric	
	Compare to reference wetland if applicable	und surface (GS) in the assessment area ar e (see User Manual). If a reference is not app	
	Not severely altered		
⊠B ⊠B S s a	Severely altered over a majority of the ass redimentation, fire-plow lanes, skidder tra	essment area (ground surface alteration exa acks, bedding, fill, soil compaction, obvious cce, herbicides, salt intrusion [where appropr ion)	s pollutants) (vegetation structure
2. Surface and Sub-S			
	urface Storage Capacity and Duration		
Check a box in eac Consider both increa deep is expected to Surf Sub	h column. Consider surface storage cap ase and decrease in hydrology. A ditch s affect both surface and sub-surface water	 assessment area condition metric acity and duration (Surf) and sub-surface sto ≤ 1 foot deep is considered to affect surface r. Consider tidal flooding regime, if applicable 	water only, while a ditch > 1 foot
Check a box in eac Consider both increa deep is expected to Surf Sub □ A ⊠ A V ⊠ B □ B V □ C □ C V	h column. Consider surface storage cap ase and decrease in hydrology. A ditch s affect both surface and sub-surface water Vater storage capacity and duration are n Vater storage capacity or duration are alter Vater storage capacity or duration are sub	 assessment area condition metric acity and duration (Surf) and sub-surface sto ≤ 1 foot deep is considered to affect surface r. Consider tidal flooding regime, if applicable 	water only, while a ditch > 1 foot le. cient to change vegetation). ent to result in vegetation change)
Check a box in eac Consider both increa deep is expected to Surf Sub □A ⊠A V ⊠B □B V □C □C V	h column. Consider surface storage cap ase and decrease in hydrology. A ditch s affect both surface and sub-surface water Vater storage capacity and duration are n Vater storage capacity or duration are alter Vater storage capacity or duration are sub examples: draining, flooding, soil compact	– assessment area condition metric acity and duration (Surf) and sub-surface sto ≤ 1 foot deep is considered to affect surface r. Consider tidal flooding regime, if applicabl ot altered. ered, but not substantially (typically, not suffice ostantially altered (typically, alteration sufficient)	water only, while a ditch > 1 foot le. cient to change vegetation). ent to result in vegetation change) round utility lines).
Check a box in eac Consider both increa deep is expected to Surf Sub □ A ⊠ A V ⊠ B □ B V □ C □ C V (1) 3. Water Storage/Surf Check a box in eac	h column. Consider surface storage cap ase and decrease in hydrology. A ditch s affect both surface and sub-surface water Vater storage capacity and duration are n Vater storage capacity or duration are alter Vater storage capacity or duration are sub examples: draining, flooding, soil compact face Relief – assessment area/wetland	– assessment area condition metric acity and duration (Surf) and sub-surface stor ≤ 1 foot deep is considered to affect surface r. Consider tidal flooding regime, if applicable ot altered. ered, but not substantially (typically, not suffice stantially altered (typically, alteration sufficient tion, filling, excessive sedimentation, undergroup of the substantial set of the substantial set of the set o	water only, while a ditch > 1 foot le. cient to change vegetation). ent to result in vegetation change) pround utility lines).
Check a box in eac Consider both increa deep is expected to Surf Sub □A ⊠A V □B □B V □C □C V ((3. Water Storage/Surf Check a box in eac AA WT	h column. Consider surface storage cap ase and decrease in hydrology. A ditch s affect both surface and sub-surface water Vater storage capacity and duration are n Vater storage capacity or duration are alte Vater storage capacity or duration are sub examples: draining, flooding, soil compace face Relief – assessment area/wetland th column. Select the appropriate storage	– assessment area condition metric acity and duration (Surf) and sub-surface stor ≤ 1 foot deep is considered to affect surface r. Consider tidal flooding regime, if applicable ot altered. ered, but not substantially (typically, not suffice ostantially altered (typically, alteration sufficient tion, filling, excessive sedimentation, underg type condition metric (skip for all marsher the for the assessment area (AA) and the weth	water only, while a ditch > 1 foot le. cient to change vegetation). ent to result in vegetation change) pround utility lines).
Check a box in eac Consider both increa deep is expected to Surf Sub □ A □ A V □ C □ C V (f 3. Water Storage/Surf Check a box in eac AA WT 3a. □ A □ A M □ B □ B M □ C □ C M	h column. Consider surface storage cap ase and decrease in hydrology. A ditch s affect both surface and sub-surface water Vater storage capacity and duration are n Vater storage capacity or duration are alter Vater storage capacity or duration are sub examples: draining, flooding, soil compact face Relief – assessment area/wetland	– assessment area condition metric acity and duration (Surf) and sub-surface sto ≤ 1 foot deep is considered to affect surface r. Consider tidal flooding regime, if applicable ot altered. ered, but not substantially (typically, not suffice batantially altered (typically, alteration sufficient tion, filling, excessive sedimentation, underg type condition metric (skip for all marsher the for the assessment area (AA) and the weth to pond water > 1 deep to pond water 6 inches to 1 foot deep to pond water 3 to 6 inches deep	water only, while a ditch > 1 foot le. cient to change vegetation). ent to result in vegetation change) pround utility lines).

3b. □A Evidence that maximum depth of inundation is greater than 2 feet □B Evidence that maximum depth of inundation is between 1 and 2 feet ☑C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

- Sandv soil 4a. ⊠в Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres) □с Loamy or clayey soils not exhibiting redoximorphic features DD Loamy or clayey gleyed soil Histosol or histic epipedon 4b. 🖾 A Soil ribbon < 1 inch □в Soil ribbon \geq 1 inch
- 4c. 🖾 A No peat or muck presence
 - □в A peat or muck presence

5. Discharge into Wetland - opportunity metric

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf
- Little or no evidence of pollutants or discharges entering the assessment area ⊠Α ⊠Α
- □в □в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- □с ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M). 2M

- WS 5M
- ≥ 10% impervious surfaces ⊠Α ⊠Α $\square A$
- □в □в □в Confined animal operations (or other local, concentrated source of pollutants
- □с ПС □с ≥ 20% coverage of pasture ØD
 - ØD ØD ≥ 20% coverage of agricultural land (regularly plowed land)
- ΠE ≥ 20% coverage of maintained grass/herb
- ⊡F ⊡F ⊡F ≥ 20% coverage of clear-cut land □G □G □G

Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

Wetland Acting as Vegetated Buffer – assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - ⊠Yes ΠNo If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - □A □B ≥ 50 feet
 - From 30 to < 50 feet
 - ⊠C From 15 to < 30 feet
 - ΠD From 5 to < 15 feet
 - ΠE < 5 feet or buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. 7c.
 - ⊠≤ 15-feet wide \square > 15-feet wide \square Other open water (no tributary present)
- Do roots of assessment area vegetation extend into the bank of the tributary/open water? 7d. ⊠Yes □No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8. Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries.

WT WC ΠA ≥ 100 feet Пв Пв From 80 to < 100 feet ПС ⊠c From 50 to < 80 feet DD DD From 40 to < 50 feet ΠE ΠE From 30 to < 40 feet From 15 to < 30 feet ΠF ∃G □G From 5 to < 15 feet □н ШΗ < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (<7 consecutive days) ПΑ
- ⊠в Evidence of saturation, without evidence of inundation
- □с Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. ΜA
- ⊡в Sediment deposition is excessive, but not overwhelming the wetland.
- □с Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT

- WC FW (if applicable)
- ΠA ΠA ≥ 500 acres □в □в From 100 to < 500 acres □с ПС From 50 to < 100 acres
- ΠD D DD From 25 to < 50 acres
- ШE ΠE ΠE From 10 to < 25 acres
- ΠF ΠF ΠF From 5 to < 10 acres
- □G □G □G From 1 to < 5 acres
- ШΗ From 0.5 to < 1 acre □н ШΗ
- N N From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - Πĸ ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent ($\geq 90\%$) of its natural landscape size. Πа
- □в Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA		≥ 500 acres
□в	□в	From 100 to < 500 acres
□c	□c	From 50 to < 100 acres
D	D	From 10 to < 50 acres
⊠E	ΠE	< 10 acres
ΠF	□F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

No Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

ΠA 0

□J

Пĸ

⊠в 1 to 4 ⊡c

5 to 8

15. Vegetative Composition – assessment area condition metric (skip for all marshes and Pine Flat)

- ΠA Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- □в Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ΠΑ Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠в
- Vegetation is dominated by exotic species (> 50 % cover of exotics).

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

011010101	• • • p	
AA A□ D⊠ D⊠	WT □A □B ⊠C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story B B	□A □B ⊠C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
Shrub B □ C	□A ⊠B □C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
Herb B ⊠ B	⊠A □B	Dense herb layer Moderate density herb layer

C C Herb layer sparse or absent

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.

20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

□A Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 □B Not A

21. Vegetation/Open Water Dispersion – wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank and overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name WD	Date of Assessment	6/2/2021		
Wetland Type Headwater Forest	Assessor Name/Organization	B. Cogde	II-Atkins	
Notes on Field Assessment Form (Y/N)				
Presence of regulatory considerations (Y/N)				
Wetland is intensively managed (Y/N)				
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N)				
Assessment area is substantially altered by beaver (Y/N)				
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N)			NO	
Assessment area is on a coastal island (Y/N)			NO	

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	HIGH
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	MEDIUM
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
Function Rating Summary			
Function		Metrics	Rating
Hydrology		Condition	MEDIUM
Water Quality		Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

Overall Wetland Rating MEDIUM

NC SAM FIELD ASSESSMENT RESULTS

Accompanies User Manual Version 2.1

USACE AID #:	NCDWR #:			
INSTRUCTIONS: Attach a sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic quadrangle,				
	stream reach under evaluation. If multiple stream reaches will be evaluated on the same property, identify and			
	ached map, and include a separate form for each reach. See the NC SAM User Manual for detailed descriptions			
and explanations of requester	d information. Record in the "Notes/Sketch" section if supplementary measurements were performed. See the			
NC SAM User Manual for exa	amples of additional measurements that may be relevant.			
NOTE EVIDENCE OF STRES	SSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area).			
PROJECT/SITE INFORMATI				
1. Project name (if any):	Knightdale ITS 2. Date of evaluation: 06/07/2021			
3. Applicant/owner name:	NCDOT 4. Assessor name/organization: B. Cogdell-Atkins			
5. County:	Wake 6. Nearest named water body			
7. River basin:	Neuse on USGS 7.5-minute quad: Mark's Creek			
•	degrees, at lower end of assessment reach): 35.806449, -78.464335			
	lepth and width can be approximations)			
9. Site number (show on attac				
12. Channel width at top of ba				
-	al flow Intermittent flow ITidal Marsh Stream			
15. NC SAM Zone:	Mountains (M)			
40 Estimated as an ambia				
16. Estimated geomorphic valley shape (skip for				
Tidal Marsh Stream):	(more sinuous stream, flatter valley slope) (less sinuous stream, steeper valley slope)			
17. Watershed size: (skip	Size 1 (< 0.1 mi ²) ⊠Size 2 (0.1 to < 0.5 mi ²) □Size 3 (0.5 to < 5 mi ²) □Size 4 (≥ 5 mi ²)			
for Tidal Marsh Stream)				
ADDITIONAL INFORMATION				
	ations evaluated? \square Yes \square No If Yes, check all that apply to the assessment area.			
Section 10 water	Classified Trout Waters Water Supply Watershed (
Essential Fish Habitat	Primary Nursery Area High Quality Waters/Outstanding Resource Waters			
Publicly owned propert				
Anadromous fish	303(d) List CAMA Area of Environmental Concern (AEC)			
-	of a federal and/or state listed protected species within the assessment area.			
List species:	hitat (liet species)			
	ormation/supplementary measurements included in "Notes/Sketch" section or attached? Yes No			
1. Channel Water – assess	ment reach metric (skip for Size 1 streams and Tidal Marsh Streams)			
	ut assessment reach.			
B No flow, water in				
C No water in asse	essment reach.			
	ction – assessment reach metric			
	assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or fill to the			
	ting flow <u>or</u> a channel choked with aquatic macrophytes <u>or</u> ponded water <u>or</u> impoundment on flood or ebb within			
the assessment beaver dams).	reach (examples: undersized or perched culverts, causeways that constrict the channel, tidal gates, debris jams,			
\boxtimes B Not A				
3. Feature Pattern – assess				
☐A A majority of the ⊠B Not A	assessment reach has altered pattern (examples: straightening, modification above or below culvert).			
	ofile – assessment reach metric			
	ssment reach has a substantially altered stream profile (examples: channel down-cutting, existing damming, over			
disturbances).	aggradation, dredging, and excavation where appropriate channel profile has not reformed from any of these			
$\square B$ Not A				
	by according to the matrix			
-	ty – assessment reach metric nstability, not past events from which the stream has currently recovered. Examples of instability include			
	channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap).			
$\Box A < 10\%$ of channe				
B 10 to 25% of cha				

 $\Box C > 25\%$ of channel unstable

6. Streamside Area Interaction – streamside area metric Consider for the Left Bank (LB) and the Right Bank (RB).

Consider for the Left Bank (LB				
LB	RB			
ΠA	ΠA	Little or no eviden		
□в	⊠в	Moderate evidenc		

- A Little or no evidence of conditions that adversely affect reference interaction
 - B Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affect reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leaky or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])
- Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone access [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruption of flood flows through streamside area] or too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching]) or floodplain/intertidal zone unnaturally absent or assessment reach is a man-made feature on an interstream divide

7.	Water Quality Stressors -	assessment	reach/intertidal	zone metric
----	---------------------------	------------	------------------	-------------

Check all that apply.

⊠C

- Discolored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam)
- B Excessive sedimentation (burying of stream features or intertidal zone)
- C Noticeable evidence of pollutant discharges entering the assessment reach and causing a water quality problem
- D Odor (not including natural sulfide odors)
- E Current published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes/Sketch" section.
- F Livestock with access to stream or intertidal zone
- G Excessive algae in stream or intertidal zone
- H Degraded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc)
- Other: _____ (explain in "Notes/Sketch" section)
- J Little to no stressors

8. Recent Weather – watershed metric (skip for Tidal Marsh Streams)

- For Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought.
- A Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours
- B Drought conditions and rainfall exceeding 1 inch within the last 48 hours
- C No drought conditions

9. Large or Dangerous Stream – assessment reach metric

Yes No Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).

10. Natural In-stream Habitat Types - assessment reach metric

10a. XYes Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessive sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging) (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)

10b. Check all that occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams)

- A Multiple aquatic macrophytes and aquatic mosses
- (include liverworts, lichens, and algal mats)
 □B Multiple sticks and/or leaf packs and/or emergent vegetation
 □C Multiple snags and logs (including lap trees)
- D 5% undercut banks and/or root mats and/or roots
- in banks extend to the normal wetted perimeter
- E Little or no habitat

Check for Tidal Marsh Streams Only]G]H]J JJ JK
--	----------------------------

5% oysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom 5% vertical bank along the marsh Little or no habitat

11. Bedform and Substrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

- 11a. XYes No Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams)
- 11b. Bedform evaluated. Check the appropriate box(es).
 - A Riffle-run section (evaluate 11c)
 - B Pool-glide section (evaluate 11d)
 - C Natural bedform absent (skip to Metric 12, Aquatic Life)
- 11c. In riffle sections, check all that occur below the normal wetted perimeter of the assessment reach whether or not submerged. Check at least one box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = absent, Rare (R) = present but ≤ 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentages should not exceed 100% for each assessment reach.
 NP
 P
 C
 A
 P

		,00000800			Bedrock/saprolite Boulder (256 – 4096 mm) Cobble (64 – 256 mm) Gravel (2 – 64 mm) Sand (.062 – 2 mm) Silt/clay (< 0.062 mm) Detritus Artificial (rip-rap, concrete, etc.)
--	--	-----------	--	--	--

11d. Xes No Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

12. Aquatic Life – assessment reach metric (skip for Tidal Marsh Streams)

- 12a. ⊠Yes □No Was an in-stream aquatic life assessment performed as described in the User Manual? If No, select one of the following reasons and skip to Metric 13. No Water Other:
- 12b. ⊠Yes □No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
 - Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. >1
 - Adult frogs
 - Aquatic reptiles
 - Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
 - Beetles
 - Caddisfly larvae (T)
 - Asian clam (Corbicula)
 - Crustacean (isopod/amphipod/crayfish/shrimp)
 - Dipterans
 - Mayfly larvae (E)
 - Megaloptera (alderfly, fishfly, dobsonfly larvae)
 - Midges/mosquito larvae
 - Mosquito fish (Gambusia) or mud minnows (Umbra pygmaea)
 - Mussels/Clams (not Corbicula)
 - Other fish Salamanders/tadpoles

 - Stonefly larvae (P)
 - Tipulid larvae
 - Worms/leeches

13. Streamside Area Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)

Consider for the Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff. LB RB

ΠA	ΠA	Little or no alteration to water storage capacity over a majority of the streamside area
□в	⊠в	Moderate alteration to water storage capacity over a majority of the streamside area
⊠C	□c	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction,
		livestock disturbance, buildings, man-made levees, drainage pipes)

14. Streamside Area Water Storage - streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB) of the streamside area.

LB	RB
ΠA	ΠA
□в	□в
⊠C	⊠C

- Majority of streamside area with depressions able to pond water ≥ 6 inches deep
- Majority of streamside area with depressions able to pond water 3 to 6 inches deep
- Majority of streamside area with depressions able to pond water < 3 inches deep ШC

15. Wetland Presence - streamside area metric (skip for Tidal Marsh Streams)

Consider for the Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal wetted perimeter of assessment reach. RB

- LB ΠY
 - ΠY Are wetlands present in the streamside area?
- ⊠Ν ⊠Ν

16. Baseflow Contributors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)

Check all contributors within the assessment reach or within view of and draining to the assessment reach.

- $\square A$ Streams and/or springs (jurisdictional discharges)
- □в Ponds (include wet detention basins; do not include sediment basins or dry detention basins)
- □с Obstruction passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
- D Evidence of bank seepage or sweating (iron in water indicates seepage)
- ΠE Stream bed or bank soil reduced (dig through deposited sediment if present)
- □F None of the above

17. Baseflow Detractors – assessment area metric (skip for Tidal Marsh Streams)

Check all that apply.

- Evidence of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
- □в Obstruction not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) Urban stream (≥ 24% impervious surface for watershed)
- ΔD Evidence that the streamside area has been modified resulting in accelerated drainage into the assessment reach
- ΠE Assessment reach relocated to valley edge
- ΠF None of the above

18. Shading – assessment reach metric (skip for Tidal Marsh Streams)

- Consider aspect. Consider "leaf-on" condition.
- Stream shading is appropriate for stream category (may include gaps associated with natural processes)
- Degraded (example: scattered trees) ⊠в
- Stream shading is gone or largely absent

Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out

	LB RB LB A A A A B B B B C C C 0	oded RBA \supseteq AA \supseteq AA \supseteq ABFrom 50 to < 100 feet wideC \Box CFrom 30 to < 50 feet wideD \Box DFrom 10 to < 30 feet wide
20.		 streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). Mature forest Non-mature woody vegetation or modified vegetation structure Herbaceous vegetation with or without a strip of trees < 10 feet wide Maintained shrubs Little or no vegetation
21.	Check all appropwithin 30 feet of sIf none of the folAbuts< 3LBRBLBAAABBCC	 streamside area metric (skip for Tidal Marsh Streams) priate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is tream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). lowing stressors occurs on either bank, check here and skip to Metric 22: 0 feet 30-50 feet RB LB RB A A A A A Row crops B B B Maintained turf C C C C C Pasture (no livestock)/commercial horticulture D D D D D Pasture (active livestock use)
22.		streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). Medium to high stem density Low stem density No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.		getated Buffer – streamside area metric (skip for Tidal Marsh Streams) vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. The total length of buffer breaks is < 25 percent. The total length of buffer breaks is between 25 and 50 percent. The total length of buffer breaks is > 50 percent.
24.	Evaluate the dom assessment reach LB RB	bosition – streamside area metric (skip for Tidal Marsh Streams) inant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to in habitat. Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
	⊠c ⊠c	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation.
25.	25a. □Yes ⊠ If No, select	ssessment reach metric (skip for all Coastal Plain streams) No Was conductivity measurement recorded? one of the following reasons. No Water I Other: ox corresponding to the conductivity measurement (units of microsiemens per centimeter).

Notes/Sketch:

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Additional stream information/supplementary measurements included (Y/N) IC SAM feature type (perennial, intermittent, Tidal Marsh Stream) <u>Function Class Rating Summary</u> (1) Hydrology (2) Baseflow (2) Flood Flow	NO NO Perennia USACE/ All Streams	
resence of regulatory considerations (Y/N) dditional stream information/supplementary measurements included (Y/N) C SAM feature type (perennial, intermittent, Tidal Marsh Stream) <u>Function Class Rating Summary</u> (1) Hydrology (2) Baseflow (2) Flood Flow	NO NO Perennia USACE/ All Streams	
Presence of regulatory considerations (Y/N) Additional stream information/supplementary measurements included (Y/N) IC SAM feature type (perennial, intermittent, Tidal Marsh Stream) <u>Function Class Rating Summary</u> (1) Hydrology (2) Baseflow (2) Flood Flow	NO NO Perennia USACE/ All Streams	
Additional stream information/supplementary measurements included (Y/N) IC SAM feature type (perennial, intermittent, Tidal Marsh Stream) <u>Function Class Rating Summary</u> (1) Hydrology (2) Baseflow (2) Flood Flow	NO Perennia USACE/ All Streams	
IC SAM feature type (perennial, intermittent, Tidal Marsh Stream) Function Class Rating Summary (1) Hydrology (2) Baseflow (2) Flood Flow	Perennia USACE/ All Streams	
Function Class Rating Summary (1) Hydrology (2) Baseflow (2) Flood Flow	USACE/ All Streams	
(1) Hydrology(2) Baseflow(2) Flood Flow	All Streams	
(1) Hydrology(2) Baseflow(2) Flood Flow	All Streams	
(1) Hydrology(2) Baseflow(2) Flood Flow		NCDWR Intermittent
(2) Baseflow (2) Flood Flow		mermillen
(2) Flood Flow	LOW HIGH	
	LOW	
(\mathbf{O}) Other area ide. A new Attenue tier		
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	LOW	
(4) Wooded Riparian Buffer	MEDIUM	
(4) Microtopography	LOW	
(3) Stream Stability	LOW	
(4) Channel Stability	MEDIUM	
(4) Sediment Transport	LOW	
(4) Stream Geomorphology	MEDIUM	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	MEDIUM	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	LOW	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	LOW	
(2) In-stream Habitat	LOW	
(3) Baseflow	HIGH	
(3) Substrate	MEDIUM	
(3) Stream Stability	MEDIUM	
(3) In-stream Habitat	LOW	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	MEDIUM	
(2) Tidal Marsh In-stream Habitat	NA	
	NA NA	
(3) Flow Restriction		
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat (2) Intertidal Zone	NA	
	NA	

NC SAM FIELD ASSESSMENT RESULTS

Accompanies User Manual Version 2.1

USACE AID #:	·•	NCDWR #:		
INSTRUCTIONS: Attach a sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic quadrangle,				
and circle the location of the stream reach under evaluation. If multiple stream reaches will be evaluated on the same property, identify and				
number all reaches on the attached map, and include a separate form for each reach. See the NC SAM User Manual for detailed descriptions				
	I information. Record in the "Notes/Sketch" s			
	mples of additional measurements that may b		·	
	SORS AFFECTING THE ASSESSMENT AF		the assessment area).	
PROJECT/SITE INFORMATIO	ON:			
1. Project name (if any):	Knightdale ITS 2.	Date of evaluation: 6/2/202	1	
3. Applicant/owner name:	NCDOT 4.	Assessor name/organization:	B. Cogdell - Atkins	
5. County:	Wake 6.	Nearest named water body		
7. River basin:	Neuse	on USGS 7.5-minute quad:	Poplar Creek	
8. Site coordinates (decimal de	egrees, at lower end of assessment reach):	35.773278, -78.472166		
	epth and width can be approximations)			
9. Site number (show on attack		gth of assessment reach evalua		
	n riffle, if present) to top of bank (feet): 1		hable to assess channel depth.	
12. Channel width at top of bar	nk (feet): <u>3</u> 13. Is asse I flow □Intermittent flow □Tidal Marsh Stre	essment reach a swamp steam'		
		eam		
15. NC SAM Zone:	\square Mountains (M) \square Piedmont (P)	Inner Coastal Plain (I)	Outer Coastal Plain (O)	
16. Estimated geomorphic valley shape (skip for		□в へ	<i>F</i>	
Tidal Marsh Stream):	(more sinuous stream, flatter valley slope	e) (less sinuous str	eam, steeper valley slope)	
17. Watershed size: (skip	☐Size 1 (< 0.1 mi ²)	·	,	
for Tidal Marsh Stream)				
ADDITIONAL INFORMATION				
	tions evaluated? Xes No If Yes, check			
Section 10 water	Classified Trout Waters		shed (\Box I \Box II \Box III \Box IV \Box V)	
Essential Fish Habitat	Primary Nursery Area	• •	Outstanding Resource Waters	
Publicly owned property Anadromous fish				
	☐303(d) List of a federal and/or state listed protected spec		onmental Concern (AEC)	
List species:	of a federal and/or state listed protected spec			
Designated Critical Hab	itat (list species)			
	mation/supplementary measurements include	ed in "Notes/Sketch" section or	attached? Yes No	
	nent reach metric (skip for Size 1 streams	and Tidal Marsh Streams)		
A Water throughout	t assessment reach.			
$\square C$ No water in asses				
—				
	tion – assessment reach metric	and anguarda in anyarahy offer	ted by a flow restriction or fill to the	
	assessment reach in-stream habitat or riffle-p ng flow <u>or</u> a channel choked with aquatic ma			
	each (examples: undersized or perched culv			
beaver dams).		•		
B Not A				
3. Feature Pattern – assess	ment reach metric			
	assessment reach has altered pattern (exam	ples: straightening, modification	above or below culvert).	
B Not A				
4. Feature Longitudinal Prot	file – assessment reach metric			
	sment reach has a substantially altered strea	m profile (examples: channel d	own-cutting, existing damming, over	
	aggradation, dredging, and excavation when	re appropriate channel profile h	has not reformed from any of these	
disturbances).				
B Not A				
	/ – assessment reach metric			
	stability, not past events from which the			
	channel down-cutting (head-cut), active wider	ning, and artificial hardening (su	ch as concrete, gabion, rip-rap).	
$\square A$ < 10% of channel $\square B$ 10 to 25% of chan				

 $\Box C > 25\%$ of channel unstable

6. Streamside Area Interaction – streamside area metric Consider for the Left Bank (LB) and the Right Bank (RB).

Consi	der for the	e Left Bank (L
LB	RB	
ΠA	ΠA	Little or no e
□в	⊠в	Moderate ev

- A Little or no evidence of conditions that adversely affect reference interaction
- B Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affect reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leaky or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])
- Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone access [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruption of flood flows through streamside area] or too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching]) or floodplain/intertidal zone unnaturally absent or assessment reach is a man-made feature on an interstream divide

7. Water Quality Stressors – assessment reach/intertidal zone metric

Check all that apply.

⊠C

- A Discolored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam)
- B Excessive sedimentation (burying of stream features or intertidal zone)
- C Noticeable evidence of pollutant discharges entering the assessment reach and causing a water quality problem
- D Odor (not including natural sulfide odors)
- E Current published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes/Sketch" section.
- F Livestock with access to stream or intertidal zone
- G Excessive algae in stream or intertidal zone
- H Degraded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc)
- Other: _____ (explain in "Notes/Sketch" section)
- J Little to no stressors

8. Recent Weather – watershed metric (skip for Tidal Marsh Streams)

- For Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought.
- A Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours
- B Drought conditions and rainfall exceeding 1 inch within the last 48 hours
- C No drought conditions

9. Large or Dangerous Stream – assessment reach metric

Yes No Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).

10. Natural In-stream Habitat Types - assessment reach metric

10a.
Yes No Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessive sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging) (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)

10b. Check all that occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams)

- A Multiple aquatic macrophytes and aquatic mosses
- (include liverworts, lichens, and algal mats)
 Multiple sticks and/or leaf packs and/or emergent vegetation
 □C Multiple snags and logs (including lap trees)
- D 5% undercut banks and/or root mats and/or roots
- in banks extend to the normal wetted perimeter
- E Little or no habitat

Check for Tidal Marsh Streams Only A C □ □ □ □ A C □ 1 D 1	
--	--

5% oysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom 5% vertical bank along the marsh Little or no habitat

11. Bedform and Substrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

- 11a. TYes XNo Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams)
- 11b. Bedform evaluated. Check the appropriate box(es).
 - A Riffle-run section (evaluate 11c)
 - B Pool-glide section (evaluate 11d)
 - C Natural bedform absent (skip to Metric 12, Aquatic Life)
- 11c. In riffle sections, check all that occur below the normal wetted perimeter of the assessment reach whether or not submerged. Check at least one box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = absent, Rare (R) = present but ≤ 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentages should not exceed 100% for each assessment reach.
 NP
 R
 C
 A
 P

11d. Xes No Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

12. Aquatic Life – assessment reach metric (skip for Tidal Marsh Streams)

- 12a. ⊠Yes □No Was an in-stream aquatic life assessment performed as described in the User Manual? If No, select one of the following reasons and skip to Metric 13. No Water Other:
- 12b. 🗌 Yes ⊠No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
 - Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. >1
 - Adult frogs
 - Aquatic reptiles
 - Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
 - Beetles
 - Caddisfly larvae (T)
 - Asian clam (Corbicula)
 - Crustacean (isopod/amphipod/crayfish/shrimp)
 - Dipterans
 - Mayfly larvae (E)
 - Megaloptera (alderfly, fishfly, dobsonfly larvae)
 - Midges/mosquito larvae
 - Mosquito fish (Gambusia) or mud minnows (Umbra pygmaea)
 - Mussels/Clams (not Corbicula)
 - Other fish Salamanders/tadpoles

 - Stonefly larvae (P)
 - Tipulid larvae
 - Worms/leeches

13. Streamside Area Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)

Consider for the Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff. LB RB

ΠA	ΠA	Little or no alteration to water storage capacity over a majority of the streamside area
⊠в	⊠в	Moderate alteration to water storage capacity over a majority of the streamside area
□c	□c	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction,
		livestock disturbance, buildings, man-made levees, drainage pipes)

14. Streamside Area Water Storage - streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB) of the streamside area.

LB	RB
□в	□в
Mc	Mc

- Majority of streamside area with depressions able to pond water ≥ 6 inches deep
- Majority of streamside area with depressions able to pond water 3 to 6 inches deep
- Majority of streamside area with depressions able to pond water < 3 inches deep

15. Wetland Presence - streamside area metric (skip for Tidal Marsh Streams)

Consider for the Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal wetted perimeter of assessment reach. RB

- LB ØΥ
 - ØΥ Are wetlands present in the streamside area?
- 16. Baseflow Contributors assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)

Check all contributors within the assessment reach or within view of and draining to the assessment reach.

- $\square A$ Streams and/or springs (jurisdictional discharges)
- □в Ponds (include wet detention basins; do not include sediment basins or dry detention basins)
- □с Obstruction passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
- D Evidence of bank seepage or sweating (iron in water indicates seepage)
- ΠE Stream bed or bank soil reduced (dig through deposited sediment if present)
- □F None of the above

17. Baseflow Detractors – assessment area metric (skip for Tidal Marsh Streams)

Check all that apply.

- Evidence of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
- □в Obstruction not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) Urban stream (≥ 24% impervious surface for watershed)
- ΔD Evidence that the streamside area has been modified resulting in accelerated drainage into the assessment reach
- ΠE Assessment reach relocated to valley edge
- ΠF None of the above

18. Shading – assessment reach metric (skip for Tidal Marsh Streams)

- Consider aspect. Consider "leaf-on" condition.
- Stream shading is appropriate for stream category (may include gaps associated with natural processes)
- Degraded (example: scattered trees) ⊠в
- Stream shading is gone or largely absent

Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out

	LB RB LB A A A D B B B D X C X C X	podedRBA \supseteq AA \supseteq AB \Box BFrom 50 to < 100 feet wideC \Box CD \Box DFrom 10 to < 30 feet wide
20.		 streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). Mature forest Non-mature woody vegetation <u>or</u> modified vegetation structure Herbaceous vegetation with or without a strip of trees < 10 feet wide Maintained shrubs Little or no vegetation
21.	Check all appropwithin 30 feet of sIf none of the folAbuts< 3LBRBLBAAABBCC	 a streamside area metric (skip for Tidal Marsh Streams) briate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). llowing stressors occurs on either bank, check here and skip to Metric 22: 10 feet 30-50 feet RB LB RB A A A A A Row crops B B B B Maintained turf C C C C C Pasture (no livestock)/commercial horticulture D D D D D Pasture (active livestock use)
22.		streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). Medium to high stem density Low stem density No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.		getated Buffer – streamside area metric (skip for Tidal Marsh Streams) r vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. The total length of buffer breaks is < 25 percent. The total length of buffer breaks is between 25 and 50 percent. The total length of buffer breaks is > 50 percent.
24.		position – streamside area metric (skip for Tidal Marsh Streams) inant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to h habitat. Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or
	⊠c ⊠c	communities with non-native invasive species present, but not dominant, over a large portion of the expected strata <u>or</u> communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation.
25.	25a. □Yes ⊠ If No, selec	ssessment reach metric (skip for all Coastal Plain streams) No Was conductivity measurement recorded? t one of the following reasons. No Water Other:
	25b. Check the t □A < 46	box corresponding to the conductivity measurement (units of microsiemens per centimeter). □ □ B 46 to < 67 □ C 67 to < 79 □ D 79 to < 230 □ E ≥ 230

Notes/Sketch:

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name	Knightdale ITS Date of Assess	sment	6/2/2021	
Stream Category	Pa2 Assessor Name/Organiz	zation	B. Cogdell	- Atkins
Notes of Field Asses	ssment Form (Y/N)		NO	
	ory considerations (Y/N)		YES	
-	formation/supplementary measurements included (Y/N)		NO	
	e (perennial, intermittent, Tidal Marsh Stream)		Perennia	<u></u>
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
			USACE/	NCDWR
	Function Class Rating Summary	AI	II Streams	Intermittent
	(1) Hydrology		LOW	
	(2) Baseflow	-	MEDIUM	
	(2) Flood Flow		LOW	
	(3) Streamside Area Attenuation		LOW	
	(4) Floodplain Access		LOW	
	(4) Wooded Riparian Buffer		HIGH	
	(4) Microtopography		LOW	
	(3) Stream Stability		MEDIUM	
	(4) Channel Stability		HIGH	
	(4) Sediment Transport		LOW	
	(4) Stream Geomorphology	I	MEDIUM	
	(2) Stream/Intertidal Zone Interaction		NA	
	(2) Longitudinal Tidal Flow		NA	
	(2) Tidal Marsh Stream Stability		NA	
	(3) Tidal Marsh Channel Stability		NA	
	(3) Tidal Marsh Stream Geomorphology	,	NA	
	(1) Water Quality	/	LOW	
	(2) Baseflow		MEDIUM	
	(2) Streamside Area Vegetation		LOW	
	(3) Upland Pollutant Filtration		LOW	
	(3) Thermoregulation		MEDIUM	
	(2) Indicators of Stressors		NO	
	(2) Aquatic Life Tolerance		LOW	
	(2) Intertidal Zone Filtration		NA	
	(1) Habitat		LOW	
	(2) In-stream Habitat		LOW	
	(3) Baseflow		MEDIUM	
	(3) Substrate		LOW	
	(3) Stream Stability		HIGH	
	(3) In-stream Habitat		LOW	
	(2) Stream-side Habitat		LOW	
	(3) Stream-side Habitat		LOW	
	(3) Thermoregulation			
	(2) Tidal Marsh In-stream Habitat		NA	
	(3) Flow Restriction		NA	
	(3) Tidal Marsh Stream Stability		NA	
	(4) Tidal Marsh Channel Stability		NA	
	(4) Tidal Marsh Stream Geomorphology	/	NA	
	(3) Tidal Marsh In-stream Habitat		NA	
	(2) Intertidal Zone		NA	
	Overall		LOW	

NC SAM FIELD ASSESSMENT RESULTS

Accompanies User Manual Version 2.1

USACE AID #: NCDWR #:	
INSTRUCTIONS: Attach a sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic quadrang	ale
and circle the location of the stream reach under evaluation. If multiple stream reaches will be evaluated on the same property, identify a	
number all reaches on the attached map, and include a separate form for each reach. See the NC SAM User Manual for detailed description	
and explanations of requested information. Record in the "Notes/Sketch" section if supplementary measurements were performed. See	
NC SAM User Manual for examples of additional measurements that may be relevant.	
NOTE EVIDENCE OF STRESSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area).	
PROJECT/SITE INFORMATION:	
1. Project name (if any): Knightdale ITS 2. Date of evaluation: 06/02/2021	
3. Applicant/owner name: NCDOT 4. Assessor name/organization: B. Cogdell - Atkins	
5. County: Wake 6. Nearest named water body	
7. River basin: Neuse on USGS 7.5-minute quad: Neuse River	
8. Site coordinates (decimal degrees, at lower end of assessment reach): 35.754506, -78.513027	
STREAM INFORMATION: (depth and width can be approximations)	
9. Site number (show on attached map): SR 10. Length of assessment reach evaluated (feet): 62	
11. Channel depth from bed (in riffle, if present) to top of bank (feet): 2 Unable to assess channel depth.	
12. Channel width at top of bank (feet): 3 13. Is assessment reach a swamp steam? □Yes □No	
14. Feature type: Perennial flow Intermittent flow ITidal Marsh Stream	
STREAM CATEGORY INFORMATION:	
15. NC SAM Zone: Mountains (M) Piedmont (P) Inner Coastal Plain (I) Outer Coastal Plain (O)	
16. Estimated geomorphic valley shape (skip for	
Tidal Marsh Stream): (more sinuous stream, flatter valley slope) (less sinuous stream, steeper valley slope)	
17. Watershed size: (skip Size 1 (< 0.1 mi ²) \Box Size 2 (0.1 to < 0.5 mi ²) \Box Size 3 (0.5 to < 5 mi ²) \Box Size 4 (≥ 5 mi ²)	
for Tidal Marsh Stream)	
ADDITIONAL INFORMATION:	
18. Were regulatory considerations evaluated? Xes No If Yes, check all that apply to the assessment area.	
Section 10 water Classified Trout Waters Water Supply Watershed (<i>J</i>
Essential Fish Habitat	.,
Publicly owned property INCDWR Riparian buffer rule in effect Nutrient Sensitive Waters	
Anadromous fish 303(d) List CAMA Area of Environmental Concern (AEC)	
Documented presence of a federal and/or state listed protected species within the assessment area.	
List species:	
Designated Critical Habitat (list species)	
19. Are additional stream information/supplementary measurements included in "Notes/Sketch" section or attached?	
1. Channel Water – assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams)	
☑A Water throughout assessment reach. □B No flow, water in pools only.	
\Box C No water in pools only.	
—	
2. Evidence of Flow Restriction – assessment reach metric	- 0
A At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or fill to point of obstructing flow or a channel choked with aquatic macrophytes or ponded water or impoundment on flood or ebb w	
the assessment reach (examples: undersized or perched culverts, causeways that constrict the channel, tidal gates, debris ja	
beaver dams).	31113,
⊠B Not A	
 Feature Pattern – assessment reach metric A majority of the assessment reach has altered pattern (examples: straightening, modification above or below culvert). 	
\square A majority of the assessment reach has altered pattern (examples: straightening, modification above of below curvert). \square B Not A	
4. Feature Longitudinal Profile – assessment reach metric	
A Majority of assessment reach has a substantially altered stream profile (examples: channel down-cutting, existing damming,	
widening, active aggradation, dredging, and excavation where appropriate channel profile has not reformed from any of the	iese
disturbances).	
5. Signs of Active Instability – assessment reach metric	
Consider only current instability, not past events from which the stream has currently recovered. Examples of instability inc	lude
active bank failure, active channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap).	•
 □A < 10% of channel unstable □A 10 to 25% of channel unstable 	

 $\Box C > 25\%$ of channel unstable

6. Streamside Area Interaction – streamside area metric Consider for the Left Bank (LB) and the Right Bank (RB).

Consi	der for the	e Left Bank	: (LB) an
LB	RB		

- A Little or no evidence of conditions that adversely affect reference interaction
- B Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affect reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leaky or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])
- Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone access [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruption of flood flows through streamside area] <u>or</u> too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching]) <u>or</u> floodplain/intertidal zone unnaturally absent <u>or</u> assessment reach is a man-made feature on an interstream divide

7. \	Water Quality Stressors	 assessment 	reach/intertidal	zone metric
------	-------------------------	--------------------------------	------------------	-------------

Check all that apply.

ΠA

⊠в

ПС

- A Discolored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam)
- B Excessive sedimentation (burying of stream features or intertidal zone)
- C Noticeable evidence of pollutant discharges entering the assessment reach and causing a water quality problem
- D Odor (not including natural sulfide odors)
- E Current published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes/Sketch" section.
- F Livestock with access to stream or intertidal zone
- G Excessive algae in stream or intertidal zone
- H Degraded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc)
- Other: _____ (explain in "Notes/Sketch" section)
- J Little to no stressors

8. Recent Weather – watershed metric (skip for Tidal Marsh Streams)

- For Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought.
- A Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours
- B Drought conditions and rainfall exceeding 1 inch within the last 48 hours
- C No drought conditions

9. Large or Dangerous Stream – assessment reach metric

Yes No Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).

10. Natural In-stream Habitat Types – assessment reach metric

10a. XYes Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessive sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging) (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)

10b. Check all that occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams)

- A Multiple aquatic macrophytes and aquatic mosses
- (include liverworts, lichens, and algal mats)
 □B Multiple sticks and/or leaf packs and/or emergent vegetation
 □C Multiple snags and logs (including lap trees)
- D 5% undercut banks and/or root mats and/or roots
- in banks extend to the normal wetted perimeter
- E Little or no habitat

5% oysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom 5% vertical bank along the marsh Little or no habitat

11. Bedform and Substrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

- 11a. TYes No Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams)
- 11b. Bedform evaluated. Check the appropriate box(es).
 - A Riffle-run section (evaluate 11c)
 - B Pool-glide section (evaluate 11d)
 - C Natural bedform absent (skip to Metric 12, Aquatic Life)
- 11c. In riffle sections, check all that occur below the normal wetted perimeter of the assessment reach whether or not submerged. Check at least one box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = absent, Rare (R) = present but ≤ 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentages should not exceed 100% for each assessment reach.
 NP
 P
 C
 A
 P

					Bedrock/saprolite Boulder (256 – 4096 mm) Cobble (64 – 256 mm) Gravel (2 – 64 mm) Sand (.062 – 2 mm) Silt/clay (< 0.062 mm) Detritus Artificial (rip-rap, concrete, etc.)
--	--	--	--	--	--

11d. Xes No Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

12. Aquatic Life – assessment reach metric (skip for Tidal Marsh Streams)

- 12a. ⊠Yes □No Was an in-stream aquatic life assessment performed as described in the User Manual? If No, select one of the following reasons and skip to Metric 13. No Water Other:
- 12b.
 Yes ⊠No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
 - Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. >1

Adult frogs	
-------------	--

1

- Aquatic reptiles
 - Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
- Beetles
- Caddisfly larvae (T)
- Asian clam (Corbicula)
- Crustacean (isopod/amphipod/crayfish/shrimp)
- Dipterans Mayfly larvae (E)
- Megaloptera (alderfly, fishfly, dobsonfly larvae)
- Midges/mosquito larvae
- Mosquito fish (Gambusia) or mud minnows (Umbra pygmaea)
- Mussels/Clams (not Corbicula)
 - Other fish Salamanders/tadpoles

 - Stonefly larvae (P)
 - Tipulid larvae
 - Worms/leeches

13. Streamside Area Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)

Consider for the Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff. LB RB

×Α	×Α	Little or no alteration to water storage capacity over a majority of the streamside area
□в	□в	Moderate alteration to water storage capacity over a majority of the streamside area
□c	□c	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction,
		livestock disturbance, buildings, man-made levees, drainage pipes)

14. Streamside Area Water Storage - streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB) of the streamside area.

B	RB
ΠA	ПА
	<u> </u>
⊒в	Пв
ΠC	

- Majority of streamside area with depressions able to pond water ≥ 6 inches deep
- Majority of streamside area with depressions able to pond water 3 to 6 inches deep R
- Majority of streamside area with depressions able to pond water < 3 inches deep ⊔с

15. Wetland Presence – streamside area metric (skip for Tidal Marsh Streams)

Consider for the Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal wetted perimeter of assessment reach. RB

- LB ΠY
 - ΠY Are wetlands present in the streamside area?
- ⊠Ν ⊠Ν

16. Baseflow Contributors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)

Check all contributors within the assessment reach or within view of and draining to the assessment reach.

- $\square A$ Streams and/or springs (jurisdictional discharges)
- □в Ponds (include wet detention basins; do not include sediment basins or dry detention basins)
- □с Obstruction passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
- D Evidence of bank seepage or sweating (iron in water indicates seepage)
- ΠE Stream bed or bank soil reduced (dig through deposited sediment if present)
- □F None of the above

17. Baseflow Detractors – assessment area metric (skip for Tidal Marsh Streams)

Check all that apply.

- Evidence of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
- □в Obstruction not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) Urban stream (≥ 24% impervious surface for watershed)
- DD Evidence that the streamside area has been modified resulting in accelerated drainage into the assessment reach
- ΠE Assessment reach relocated to valley edge
- ⊠F None of the above

18. Shading – assessment reach metric (skip for Tidal Marsh Streams)

- Consider aspect. Consider "leaf-on" condition.
- Stream shading is appropriate for stream category (may include gaps associated with natural processes)
- Degraded (example: scattered trees) ⊠в
- Stream shading is gone or largely absent

Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out

	LB RB LB A A A A B B B B C C C 0	oded RBA \supseteq AA \supseteq ABFrom 50 to < 100 feet wideC \Box CFrom 30 to < 50 feet wideD \Box DFrom 10 to < 30 feet wide
20.		 streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). Mature forest Non-mature woody vegetation <u>or</u> modified vegetation structure Herbaceous vegetation with or without a strip of trees < 10 feet wide Maintained shrubs Little or no vegetation
21.	Check all appropwithin 30 feet of sIf none of the folAbuts< 3LBRBLBAAABBBB	A □A □A Row crops B □B □B Maintained turf C □C □C □C Pasture (no livestock)/commercial horticulture
22.		streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). Medium to high stem density Low stem density No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.		getated Buffer – streamside area metric (skip for Tidal Marsh Streams) vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. The total length of buffer breaks is < 25 percent. The total length of buffer breaks is between 25 and 50 percent. The total length of buffer breaks is > 50 percent.
24.		 bosition – streamside area metric (skip for Tidal Marsh Streams) inant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to habitat. Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or
	⊠c ⊠c	communities with non-native invasive species present, but not dominant, over a large portion of the expected strata <u>or</u> communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation.
25.	25a. 🗌 Yes 🛛 🛛	ssessment reach metric (skip for all Coastal Plain streams) No Was conductivity measurement recorded? t one of the following reasons. DNo Water ØOther:
	25b. Check the b □A < 46	box corresponding to the conductivity measurement (units of microsiemens per centimeter). $\square B$ 46 to < 67 $\square C$ 67 to < 79 $\square D$ 79 to < 230 $\square E \ge 230$

Notes/Sketch:

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name	Knightdale ITS Date of Assessme	ent 06/02/202	1
Stream Category	Pb1 Assessor Name/Organizati		
5,	ő	0	
Notes of Field Asses	ssment Form (Y/N)	NO	
	bry considerations (Y/N)	NO	
Additional stream in	ormation/supplementary measurements included (Y/N)	NO	
NC SAM feature typ	e (perennial, intermittent, Tidal Marsh Stream)	Intermitter	nt
		USACE/	NCDWR
	Function Class Rating Summary	All Streams	Intermittent
	(1) Hydrology	LOW	LOW
	(2) Baseflow	HIGH	HIGH
	(2) Flood Flow	LOW	LOW
	(3) Streamside Area Attenuation	LOW	LOW
	(4) Floodplain Access	MEDIUM	MEDIUM
	(4) Wooded Riparian Buffer	LOW	LOW
	(4) Microtopography	NA	NA
	(3) Stream Stability	LOW	LOW
	(4) Channel Stability	MEDIUM	MEDIUM
	(4) Sediment Transport	LOW	LOW
	(4) Stream Geomorphology	MEDIUM	MEDIUM
	(2) Stream/Intertidal Zone Interaction	NA	NA
	(2) Longitudinal Tidal Flow	NA	NA
	(2) Tidal Marsh Stream Stability	NA	NA
	(3) Tidal Marsh Channel Stability	NA	NA
	(3) Tidal Marsh Stream Geomorphology	NA	NA
	(1) Water Quality	HIGH	HIGH
	(2) Baseflow	HIGH	HIGH
	(2) Streamside Area Vegetation	MEDIUM	MEDIUM
	(3) Upland Pollutant Filtration	MEDIUM	MEDIUM
	(3) Thermoregulation	MEDIUM	MEDIUM
	(2) Indicators of Stressors	NO	NO
	(2) Aquatic Life Tolerance	HIGH	
			NA
	(2) Intertidal Zone Filtration	NA	NA
	(1) Habitat	LOW	LOW
	(2) In-stream Habitat	LOW	LOW
	(3) Baseflow	HIGH	HIGH
	(3) Substrate	LOW	LOW
	(3) Stream Stability	MEDIUM	MEDIUM
	(3) In-stream Habitat	LOW	LOW
	(2) Stream-side Habitat	LOW	LOW
	(3) Stream-side Habitat	LOW	LOW
	(3) Thermoregulation	MEDIUM	MEDIUM
	(2) Tidal Marsh In-stream Habitat	NA	NA
	(3) Flow Restriction	NA	NA
	(3) Tidal Marsh Stream Stability	NA	NA
	(4) Tidal Marsh Channel Stability	NA	NA
	(4) Tidal Marsh Stream Geomorphology	NA	NA
	(3) Tidal Marsh In-stream Habitat	NA	NA
	(2) Intertidal Zone	NA	NA
	Overall	LOW	LOW
			-

NC SAM FIELD ASSESSMENT RESULTS

Accompanies User Manual Version 2.1

USACE AID #: NCDWR #:				
INSTRUCTIONS: Attach a sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic quadra	ngle,			
and circle the location of the stream reach under evaluation. If multiple stream reaches will be evaluated on the same property, identify	/ and			
number all reaches on the attached map, and include a separate form for each reach. See the NC SAM User Manual for detailed descrip	tions			
and explanations of requested information. Record in the "Notes/Sketch" section if supplementary measurements were performed. Se	e the			
NC SAM User Manual for examples of additional measurements that may be relevant.				
NOTE EVIDENCE OF STRESSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area).				
PROJECT/SITE INFORMATION:				
1. Project name (if any): Knightdale ITS 2. Date of evaluation: 06/02/2021				
3. Applicant/owner name: NCDOT 4. Assessor name/organization: B. Cogdell - Atkins				
5. County: Wake 6. Nearest named water body				
7. River basin: Neuse on USGS 7.5-minute quad: Neuse River				
8. Site coordinates (decimal degrees, at lower end of assessment reach): 35.754506, -78.513027				
STREAM INFORMATION: (depth and width can be approximations) 9. Site number (show on attached map): SS 10. Length of assessment reach evaluated (feet): 114				
11. Channel depth from bed (in riffle, if present) to top of bank (feet): 2 Unable to assess channel depth	ı.			
12. Channel width at top of bank (feet): 3 13. Is assessment reach a swamp steam? Yes No				
14. Feature type: Perennial flow Intermittent flow Tidal Marsh Stream				
STREAM CATEGORY INFORMATION:				
15. NC SAM Zone: 🗌 Mountains (M) 🛛 Piedmont (P) 🗌 Inner Coastal Plain (I) 🗌 Outer Coastal Plain (O)				
16. Estimated geomorphic				
valley shape (skip for				
Tidal Marsh Stream):(more sinuous stream, flatter valley slope)(less sinuous stream, steeper valley slope)				
17. Watershed size: (skip \square Size 1 (< 0.1 mi ²) \square Size 2 (0.1 to < 0.5 mi ²) \square Size 3 (0.5 to < 5 mi ²) \square Size 4 (\ge 5 mi ²)				
for Tidal Marsh Stream)				
18. Were regulatory considerations evaluated? Xes No If Yes, check all that apply to the assessment area.	71.0			
Section 10 water Classified Trout Waters Water Supply Watershed (□ I □ II □ III □ IV □ Essential Fish Habitat Primary Nursery Area High Quality Waters/Outstanding Resource Waters				
Essential Fish Habitat Primary Nursery Area High Quality Waters/Outstanding Resource Waters Publicly owned property NCDWR Riparian buffer rule in effect Nutrient Sensitive Waters	3			
Anadromous fish 303(d) List CAMA Area of Environmental Concern (AEC)				
Documented presence of a federal and/or state listed protected species within the assessment area.				
Designated Critical Habitat (list species)				
19. Are additional stream information/supplementary measurements included in "Notes/Sketch" section or attached? Yes No				
1. Channel Water – assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams)				
☑A Water throughout assessment reach. □B No flow, water in pools only.				
\Box C No water in assessment reach.				
—				
2. Evidence of Flow Restriction – assessment reach metric	4 - 41			
A At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or fill point of obstructing flow or a channel choked with aquatic macrophytes or ponded water or impoundment on flood or ebb				
the assessment reach (examples: undersized or perched culverts, causeways that constrict the channel, tidal gates, debris				
beaver dams).	j =,			
B Not A				
3. Feature Pattern – assessment reach metric				
\Box A A majority of the assessment reach has altered pattern (examples: straightening, modification above or below culvert).				
B Not A				
4. Feature Longitudinal Profile – assessment reach metric				
4. Feature Longitudinal Frome – assessment reach metric ⊠A Majority of assessment reach has a substantially altered stream profile (examples: channel down-cutting, existing damming)	1. OVer			
widening, active aggradation, dredging, and excavation where appropriate channel profile has not reformed from any of these				
disturbances).				
B Not A				
5. Signs of Active Instability – assessment reach metric				
Consider only current instability, not past events from which the stream has currently recovered. Examples of instability in	nclude			
active bank failure, active channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap).				
□A < 10% of channel unstable				
B 10 to 25% of channel unstable				

 $\Box C > 25\%$ of channel unstable

6. Streamside Area Interaction – streamside area metric Consider for the Left Bank (LB) and the Right Bank (RB).

Consi	der for the	e Left Bank	: (LB) an
LB	RB		

- A Little or no evidence of conditions that adversely affect reference interaction
- B Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affect reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leaky or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])
- Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone access [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruption of flood flows through streamside area] <u>or</u> too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching]) <u>or</u> floodplain/intertidal zone unnaturally absent <u>or</u> assessment reach is a man-made feature on an interstream divide

7. \	Water Quality Stressors	 assessment 	reach/intertidal	zone metric
------	-------------------------	--------------------------------	------------------	-------------

Check all that apply.

ΠA

⊠в

ПС

- A Discolored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam)
- B Excessive sedimentation (burying of stream features or intertidal zone)
- C Noticeable evidence of pollutant discharges entering the assessment reach and causing a water quality problem
- D Odor (not including natural sulfide odors)
- E Current published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes/Sketch" section.
- F Livestock with access to stream or intertidal zone
- G Excessive algae in stream or intertidal zone
- H Degraded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc)
- Other: _____ (explain in "Notes/Sketch" section)
- J Little to no stressors

8. Recent Weather – watershed metric (skip for Tidal Marsh Streams)

- For Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought.
- A Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours
- B Drought conditions and rainfall exceeding 1 inch within the last 48 hours
- C No drought conditions

9. Large or Dangerous Stream – assessment reach metric

Yes No Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).

10. Natural In-stream Habitat Types – assessment reach metric

10a. XYes Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessive sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging) (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)

10b. Check all that occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams)

- A Multiple aquatic macrophytes and aquatic mosses
- (include liverworts, lichens, and algal mats)
 □B Multiple sticks and/or leaf packs and/or emergent vegetation
 □C Multiple snags and logs (including lap trees)
- D 5% undercut banks and/or root mats and/or roots
- in banks extend to the normal wetted perimeter
- E Little or no habitat

5% oysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom 5% vertical bank along the marsh Little or no habitat

11. Bedform and Substrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

- 11a. TYes No Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams)
- 11b. Bedform evaluated. Check the appropriate box(es).
 - A Riffle-run section (evaluate 11c)
 - B Pool-glide section (evaluate 11d)
 - C Natural bedform absent (skip to Metric 12, Aquatic Life)
- 11c. In riffle sections, check all that occur below the normal wetted perimeter of the assessment reach whether or not submerged. Check at least one box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = absent, Rare (R) = present but ≤ 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentages should not exceed 100% for each assessment reach.
 NP
 P
 C
 A
 P

					Bedrock/saprolite Boulder (256 – 4096 mm) Cobble (64 – 256 mm) Gravel (2 – 64 mm) Sand (.062 – 2 mm) Silt/clay (< 0.062 mm) Detritus Artificial (rip-rap, concrete, etc.)
--	--	--	--	--	--

11d. Xes No Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

12. Aquatic Life – assessment reach metric (skip for Tidal Marsh Streams)

12a. 🗌 Yes 🗌 No Was an in-stream aquatic life assessment performed as described in the User Manual? If No, select one of the following reasons and skip to Metric 13. No Water Other:

- 12b.
 Yes ⊠No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
 - Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. >1

Adult	frogs	

1

- Aquatic reptiles
 - Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
- Beetles
- Caddisfly larvae (T)
- Asian clam (Corbicula)
- Crustacean (isopod/amphipod/crayfish/shrimp)
- Dipterans
- Mayfly larvae (E) Megaloptera (alderfly, fishfly, dobsonfly larvae)
- Midges/mosquito larvae
- Mosquito fish (Gambusia) or mud minnows (Umbra pygmaea)
- Mussels/Clams (not Corbicula)
 - Other fish Salamanders/tadpoles

 - Stonefly larvae (P)
 - Tipulid larvae
 - Worms/leeches

13. Streamside Area Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)

Consider for the Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff. LB RB

$\boxtimes A$	$\boxtimes A$	Little or no alteration to water storage capacity over a majority of the streamside area
□в	□в	Moderate alteration to water storage capacity over a majority of the streamside area
□C	□C	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction,
		livestock disturbance, buildings, man-made levees, drainage pipes)

14. Streamside Area Water Storage - streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB) of the streamside area.

LB	RB
ΠA	ΠA
□в	□в
Mc	Mc

- Majority of streamside area with depressions able to pond water ≥ 6 inches deep
- Majority of streamside area with depressions able to pond water 3 to 6 inches deep
- Majority of streamside area with depressions able to pond water < 3 inches deep

15. Wetland Presence - streamside area metric (skip for Tidal Marsh Streams)

Consider for the Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal wetted perimeter of assessment reach. RB

- LB ΠY
 - ΠY Are wetlands present in the streamside area?
- ⊠Ν ⊠Ν

16. Baseflow Contributors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)

Check all contributors within the assessment reach or within view of and draining to the assessment reach.

- $\square A$ Streams and/or springs (jurisdictional discharges)
- □в Ponds (include wet detention basins; do not include sediment basins or dry detention basins)
- □с Obstruction passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
- D Evidence of bank seepage or sweating (iron in water indicates seepage)
- ΠE Stream bed or bank soil reduced (dig through deposited sediment if present)
- □F None of the above

17. Baseflow Detractors – assessment area metric (skip for Tidal Marsh Streams)

Check all that apply.

Evidence of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)

□в Obstruction not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) Urban stream (≥ 24% impervious surface for watershed)

- DD Evidence that the streamside area has been modified resulting in accelerated drainage into the assessment reach
- ΠE Assessment reach relocated to valley edge
- ⊠F None of the above

18. Shading – assessment reach metric (skip for Tidal Marsh Streams)

Consider aspect. Consider "leaf-on" condition.

- Stream shading is appropriate for stream category (may include gaps associated with natural processes)
- Degraded (example: scattered trees) ⊠в
- Stream shading is gone or largely absent

Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out

	LB RB LB A A A A B B B B C C C 0	oded RBA \supseteq AA \supseteq ABFrom 50 to < 100 feet wideC \Box CFrom 30 to < 50 feet wideD \Box DFrom 10 to < 30 feet wide
20.		 streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). Mature forest Non-mature woody vegetation <u>or</u> modified vegetation structure Herbaceous vegetation with or without a strip of trees < 10 feet wide Maintained shrubs Little or no vegetation
21.	Check all appropwithin 30 feet of sIf none of the folAbuts< 3LBRBLBAAABBBB	A □A □A Row crops B □B □B Maintained turf C □C □C □C Pasture (no livestock)/commercial horticulture
22.		streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). Medium to high stem density Low stem density No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.		getated Buffer – streamside area metric (skip for Tidal Marsh Streams) vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. The total length of buffer breaks is < 25 percent. The total length of buffer breaks is between 25 and 50 percent. The total length of buffer breaks is > 50 percent.
24.		 bosition – streamside area metric (skip for Tidal Marsh Streams) inant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to habitat. Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or
	⊠c ⊠c	communities with non-native invasive species present, but not dominant, over a large portion of the expected strata <u>or</u> communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation.
25.	25a. 🗌 Yes 🛛 🛛	ssessment reach metric (skip for all Coastal Plain streams) No Was conductivity measurement recorded? t one of the following reasons. DNo Water ØOther:
	25b. Check the b □A < 46	box corresponding to the conductivity measurement (units of microsiemens per centimeter). $\square B$ 46 to < 67 $\square C$ 67 to < 79 $\square D$ 79 to < 230 $\square E \ge 230$

Notes/Sketch:

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Category Pb1 Assessor Name/Organization B. Cogdell - Atkins Notes of Field Assessment Form (V/N) NO NO Presence of regulatory considerations (V/N) NO NO Additional stream information/supplementary measurements included (V/N) NO NO NC SAM feature type (perennial, intermittent, Tidal Marsh Stream) USACE/ Intermittent (1) Hydrology LOW LOW LOW (2) Baseflow LOW LOW LOW (2) Flood Flow LOW LOW LOW (3) Streamside Area Attenuation LOW LOW LOW (4) Microtopography NA NA (4) Microtopography NA NA (4) Stream Stability LOW LOW (2) Stream/Intertidal Zone Interaction NA NA (2) Tidal Marsh Stream Stability NA NA (2) Tidal Marsh Stream Stability NA NA (2) Tidal Marsh Stream Stability NA NA (1) Water Quality LOW LOW LOW (2) Streamside Area Vegetation MEDIUM MEDIUM (2) Streamside Area Vegetation MEDIUM MEDIUM (3) Upland Pollutant Filtration MEDIUM MEDIUM (2) Auatic Life	Stream Site Name	Knightdale ITS Date of Assessme	ent 06/02/202	1
Notes of Field Assessment Form (Y/N) NO Presence of regulatory considerations (Y/N) NO Additional stream information/supplementary measurements included (Y/N) NO NC SAM feature type (perennial, intermittent, Tidal Marsh Stream) USACE/ NCDWR All Streams Intermittent NO NO (1) Hydology LOW LOW LOW (2) Flood Flow LOW LOW LOW (2) Flood Flow LOW LOW LOW (3) Streamside Area Attenuation LOW LOW LOW (4) Ploodplain Access MEDIUM MEDIUM (4) Nooded Riparian Buffer LOW LOW LOW (3) Stream Stability MEDIUM MEDIUM MEDIUM (4) Stream Geomorphology MEDIUM MEDIUM MEDIUM (2) Longludinal Tidal Flow NA NA NA (2) Streamside Area Vegetation NA NA NA (2) Streamside Area Vegetation MEDIUM MEDIUM MEDIUM (3) Tidal Marsh Stream Stability NA NA NA (2) Indictators of Streasors NO NO		<u> </u>		
Presence of regulatory considerations (VN) Additional stream information/supplementary measurements included (V/N) NC SAM feature type (perennial, intermittent, Tidal Marsh Stream) Intermittent (1) Hydrology (2) Baseflow (2) Baseflow (3) Streamside Area Attenuation (4) Floodplain Access MEDIUM (2) Flood Flow (4) Floodplain Access MEDIUM (4) Floodplain Access MEDIUM (4) Floodplain Access MEDIUM (4) Wicrotopography NA (3) Stream Stability (4) Stream Geomorphology (2) Stream/Interiod Inappleter (3) Stream Stability (4) Stream Geomorphology (4) Stream Geomorphology (5) Tidal Marsh Stream Geomorphology (1) Water Quality (2) Streamsite Area Vegetation (3) Tidal Marsh Stream Geomorphology (1) Water Quality (2) Streamsite Area Vegetation (3) Tidal Marsh Stream Geomorphology (1) Water Quality (2) Streamside Area Vegetation (3) Tidal Marsh Stream Geomorphology (1) Water Quality (2) Streamside Area Vegetation (3) Tidal Marsh Stream Geomorphology (1) Water Quality (2) Streamside Area Vegetation (3) Tidal Marsh Stream Geomorphology (4) Poloutant Filtration (3) Tidal Marsh Stream Geomorphology (4) Stream Stability (3) Tidal Marsh Stream Geomorphology (4) Stream Stability (3) Tidal Marsh Stream Geomorphology (4) Cow (2) Aquatic Life Tolerance (3) Tidal Marsh Stream Geomorphology (4) MeDIUM (5) Thermoregulation (5) Aquatic Life Tolerance (2) Indicators of Stressors NO (3) Stream Habitat (0) LOW (3) Stream Stability (4) Tidal Marsh Stream Geomorphology (3) Stream Stability (4) Tidal Marsh Stream Geomorphology (3) Stream Stability (4) Tidal Marsh Stream Geomorphology (3) Stream Habitat LOW (4) Hoov (3) Stream Habitat LOW (4) Tidal Marsh Stream Geomorphology NA (4) Tidal Marsh Stream Geomorphology NA (5) Stream Stability NA (6) Tidal Marsh Stream Geomorphology NA (7) Tidal Marsh Stream Geomorphology NA (3) Thermoregulation (4) Tidal Marsh Stream Geomorphology NA (3) Tidal Marsh Stream Geomorphology NA (4) Tidal Marsh Stream Geomorphology NA (5) T	0,	Ŭ	0	
Additional stream information/supplementary measurements included (Y/N) NO NC SAM feature type (perennial, intermittent, Tidal Marsh Stream) USACE/ Function Class Rating Summary All Streams (1) Hydrology LOW (2) Baseflow HIGH (2) Flood Flow LOW (2) Flood Flow LOW (3) Streamside Area Attenuation LOW (4) Wooded Riparian Buffer LOW (4) Wooded Riparian Buffer LOW (4) Microtopography NA (4) Stream Stability MEDIUM (4) Stream Stability LOW (4) Stream Genorphology MA (4) Stream Genorphology NA (2) Tidal Marsh Stream Stability NA (2) Tidal Marsh Stream Stability NA (2) Tidal Marsh Stream Stability NA (1) Water Quality LOW LOW (2) Streamside Area Vegetation MEDIUM (2) Streamside Area Vegetation MEDIUM (2) Indexidors Streams Stability NA (1) Water Quality LOW LOW (2) Internitient LOW LOW (3) U	Notes of Field Asses	ssment Form (Y/N)	NO	
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream) Intermittent (1) Hydrology LOW LOW (2) Baseflow HIGH HIGH (2) Flood Flow LOW LOW (3) Streamside Area Attenuation LOW LOW (4) Floodplain Access MEDIUM MEDIUM (4) Wooded Riparian Buffer LOW LOW (4) Wooded Riparian Buffer LOW LOW (3) Stream Stability LOW LOW (4) Wooded Riparian Buffer LOW LOW (3) Stream Stability LOW LOW (4) Channel Stability MEDIUM MEDIUM (4) Stream Geomorphology MEDIUM MEDIUM (2) Streamsite Area Vegetation NA NA (3) Tidal Marsh Stream Geomorphology NA NA (1) Water Quality LOW LOW LOW (2) Streamside Area Vegetation MEDIUM MEDIUM (3) Upland Pollutant Filtration MEDIUM MEDIUM (2) Instride Zore Filtration MEDIUM MEDIUM (3) Upland Pollutant Filtration MEDIUM MEDIUM	Presence of regulate	bry considerations (Y/N)	NO	
Function Class Rating Summary USACE/ All Streams Intermittent Intermittent (1) Hydrology LOW LOW LOW (2) Baseflow HiGH HiGH (2) Flood Flow LOW LOW LOW (3) Streamside Area Attenuation LOW LOW LOW (4) Wooded Riparian Buffer LOW LOW LOW (4) Wooded Riparian Buffer LOW LOW LOW (4) Microtopography NA NA NA (3) Stream Stability LOW LOW LOW (4) Stream Geomorphology MEDIUM MEDIUM MEDIUM (2) Stream/Interidal Zone Interaction NA NA (2) Tidal Marsh Channel Stability NA NA (3) Tidal Marsh Channel Stability NA NA (1) Water Quality LOW LOW LOW (2) Streamside Area Vegetation MEDIUM MEDIUM (3) Tidal Marsh Stream Geomorphology NA NA (2) Indicators of Stressors NO NO (3) Tidal Marsh Stream	Additional stream inf	formation/supplementary measurements included (Y/N)	NO	
Function Class Rating SummaryAll StreamsIntermittent(1) HydrologyLOWLOWLOW(2) BaseflowIIGHHIGHHIGH(2) Flood FlowLOWLOWLOW(3) Streamside Area AttenuationLOWLOWMeDIUM(4) Floodplain AccessMEDIUMMEDIUMMEDIUM(4) Wooded Riparian BufferLOWLOWLOW(4) MicrotopographyNANANA(3) Stream StabilityLOWLOWLOW(4) Stream GeomorphologyMEDIUMMEDIUM(2) Stream/Intertidal Zone InteractionNANA(2) Congitudinal Tidal FlowNANA(2) Tidal Marsh Stream StabilityNANA(3) Tidal Marsh Stream GeomorphologyNANA(1) Water QualityLOWLOWLOW(2) Stream/Intertidal Zone InteractionMEDIUMMEDIUM(3) Tidal Marsh Stream GeomorphologyNANA(1) Water QualityLOWLOWLOW(2) Intertidal Polutant FiltrationMEDIUMMEDIUM(3) Tidal Marsh Stream GeomorphologyNANA(2) IntermoregulationMEDIUMMEDIUM(3) Tidal Marsh Stream GeomorphologyNANA(2) Intertidal Zone FiltrationMANA(3) SubstrateLOWLOWLOW(3) SubstrateLOWLOWLOW(3) Stream StabilityMEDIUMMEDIUM(3) Stream StabilityMEDIUMMEDIUM(3) Stream StabilityM	NC SAM feature typ	e (perennial, intermittent, Tidal Marsh Stream)	Intermitter	nt
Function Class Rating SummaryAll StreamsIntermittent(1) HydrologyLOWLOWLOW(2) BaseflowIIGHHIGHHIGH(2) Flood FlowLOWLOWLOW(3) Streamside Area AttenuationLOWLOWMeDIUM(4) Floodplain AccessMEDIUMMEDIUMMEDIUM(4) Wooded Riparian BufferLOWLOWLOW(4) MicrotopographyNANANA(3) Stream StabilityLOWLOWLOW(4) Stream GeomorphologyMEDIUMMEDIUM(2) Stream/Intertidal Zone InteractionNANA(2) Congitudinal Tidal FlowNANA(2) Tidal Marsh Stream StabilityNANA(3) Tidal Marsh Stream GeomorphologyNANA(1) Water QualityLOWLOWLOW(2) Stream/Intertidal Zone InteractionMEDIUMMEDIUM(3) Tidal Marsh Stream GeomorphologyNANA(1) Water QualityLOWLOWLOW(2) Intertidal Polutant FiltrationMEDIUMMEDIUM(3) Tidal Marsh Stream GeomorphologyNANA(2) IntermoregulationMEDIUMMEDIUM(3) Tidal Marsh Stream GeomorphologyNANA(2) Intertidal Zone FiltrationMANA(3) SubstrateLOWLOWLOW(3) SubstrateLOWLOWLOW(3) Stream StabilityMEDIUMMEDIUM(3) Stream StabilityMEDIUMMEDIUM(3) Stream StabilityM				
(1) Hydrology LOW LOW (2) Baseflow HIGH HIGH (2) Flood Flow LOW LOW (3) Streamside Area Attenuation LOW LOW (4) Floodplain Access MEDIUM MEDIUM (4) Wooded Riparian Buffer LOW LOW (4) Microtopography NA NA (3) Stream Stability LOW LOW (4) Scienent Transport LOW LOW (2) Stream/Intertidal Zone Interaction NA NA (2) Stream/Intertidal Zone Interaction NA NA (2) Tidal Marsh Stream Stability NA NA (3) Tidal Marsh Stream Geomorphology MEDIUM MEDIUM (2) Streamside Area Vegetation MEDIUM MEDIUM (3) Tidal Marsh Stream Geomorphology NA NA (1) Water Quality LOW LOW LOW (2) Streamside Area Vegetation MEDIUM MEDIUM (3) Upland Pollutant Filtration MEDIUM MEDIUM (2) Indicators of Stressors NO NO (2) Intertidal Zone Filtration MEDIUM MEDIUM (3) Substrate LOW LOW LOW (3) Stream Stability MEDIUM MEDIUM (3) Streams-side Habi				-
(2) Baseflow HIGH HIGH (2) Flood Flow LOW LOW (3) Streamside Area Attenuation LOW LOW (4) Floodplain Access MEDIUM MEDIUM (4) Wooded Riparian Buffer LOW LOW (4) Microtopography NA NA (3) Stream Stability LOW LOW (4) Sediment Transport LOW LOW (4) Stream Geomorphology MEDIUM MEDIUM (2) Longitudinal Tidal Flow NA NA (2) Longitudinal Tidal Flow NA NA (2) Tidal Marsh Stream Stability NA NA (3) Tidal Marsh Stream Stability NA NA (1) Water Quality LOW LOW LOW (2) Intermoregulation MEDIUM MEDIUM MEDIUM (3) Tidal Marsh Stream Geomorphology NA NA (1) Water Quality LOW LOW LOW (2) Streamside Area Vegetation MEDIUM MEDIUM (3) Tidal Marsh Stream Geomorphology NA NA (2) Interridal Zone Filtration MEDIUM MEDIUM (2) Interridal Zone Filtration MEDIUM MEDIUM (2) Interridal Zone Filtration NA NA (3) Substrate				
(2) Flood Flow LOW LOW (3) Streamside Area Attenuation LOW LOW (4) Floodplain Access MEDIUM MEDIUM (4) Wooded Riparian Buffer LOW LOW (4) Wooded Riparian Buffer LOW LOW (3) Stream Stability LOW LOW (4) Channel Stability MEDIUM MEDIUM (4) Sediment Transport LOW LOW (2) Stream/Intertidal Zone Interaction NA NA (2) Stream/Intertidal Zone Interaction NA NA (2) Indial Marsh Stream Stability NA NA (1) Water Quality LOW LOW LOW (2) Streamside Area Vegetation MEDIUM MEDIUM (3) Upland Pollutant Filtration MEDIUM MEDIUM (2) Indicators of Stressors NO NO (2) Intertidal Zone Filtration MEDIUM MEDIUM (2) Intertidal Zone Filtration MEDIUM MEDIUM (2) Intertidal Zone Filtration NA NA (3) Stream Stability MEDIUM MEDIUM (3) Stream-side Habitat LOW LOW				
(3) Streamside Area Attenuation LOW LOW (4) Floodplain Access MEDIUM MEDIUM (4) Wooded Riparian Buffer LOW LOW (4) Microtopography NA NA (3) Stream Stability LOW LOW (4) Microtopography NA NA (3) Stream Stability LOW LOW (4) Sediment Transport LOW LOW (4) Stream Geomorphology MEDIUM MEDIUM (2) Stream/Intertidal Zone Interaction NA NA (2) Iongitudinal Tidal Flow NA NA (2) Tidal Marsh Stream Stability NA NA (3) Tidal Marsh Stream Geomorphology NA NA (1) Water Quality LOW LOW LOW (2) Streamside Area Vegetation MEDIUM MEDIUM (2) Indicators of Stressors NO NO (2) Indicators of Stressors NO NO (2) Intertidal Zone Filtration NA NA (1) Habitat LOW LOW LOW (2) Intertidal Zone Filtration NA NA (3) Substrate LOW LOW LOW (3) Stream Stability MEDIUM MEDIUM (3) Stream Habitat LOW <td< td=""><td></td><td></td><td></td><td></td></td<>				
(4) Floodplain Access MEDIUM MEDIUM (4) Wooded Riparian Buffer LOW LOW (4) Microtopography NA NA (3) Stream Stability LOW LOW (4) Stream Geomorphology MEDIUM MEDIUM (4) Stream Geomorphology MEDIUM MEDIUM (2) Stream/Intertidal Zone Interaction NA NA (2) Longitudinal Tidal Flow NA NA (3) Tidal Marsh Stream Stability NA NA (3) Tidal Marsh Stream Geomorphology MEDIUM MEDIUM (2) Streamside Area Vegetation MEDIUM MEDIUM (3) Tidal Marsh Stream Geomorphology NA NA (1) Water Quality LOW LOW LOW (2) Indicators of Stressors NO NO (3) Stream Habitat LOW LOW (3) Stream Habitat LOW LOW (3) Stream Habitat LOW LOW (3) Stream Stability MEDIUM MEDIUM (3) Stream Stability MEDIUM MEDIUM (3) Stream Stream Habitat LOW		(2) Flood Flow	LOW	LOW
(4) Wooded Riparian Buffer LOW LOW (4) Microtopography NA NA (3) Stream Stability LOW LOW (4) Channel Stability MEDIUM MEDIUM (4) Sediment Transport LOW LOW (4) Stream Geomorphology MEDIUM MEDIUM (2) Stream/Intertidal Zone Interaction NA NA (2) Longitudinal Tidal Flow NA NA (3) Tidal Marsh Stream Stability NA NA (3) Tidal Marsh Stream Geomorphology NA NA (3) Tidal Marsh Stream Geomorphology NA NA (1) Water Quality LOW LOW LOW (2) Streamside Area Vegetation MEDIUM MEDIUM (3) Upland Pollutant Filtration MEDIUM MEDIUM (2) Indicators of Stressors NO NO (2) Indicators of Stressors NO NA (1) Habitat LOW LOW (2) Instream Habitat LOW LOW (3) Stream Habitat LOW LOW (3) Stream Stability MEDIUM MEDIUM (3) Substrate LOW LOW (3) Stream Stability MEDIUM MEDIUM (3) Stream Stability MEDIUM MEDIUM <td></td> <td>(3) Streamside Area Attenuation</td> <td>LOW</td> <td>LOW</td>		(3) Streamside Area Attenuation	LOW	LOW
(4) Microtopography NA NA (3) Stream Stability LOW LOW (4) Channel Stability MEDIUM MEDIUM (4) Sediment Transport LOW LOW (4) Stream Geomorphology MEDIUM MEDIUM (2) Stream/Intertidal Zone Interaction NA NA (2) Longitudinal Tidal Flow NA NA (2) Tidal Marsh Stream Stability NA NA (3) Tidal Marsh Stream Geomorphology NA NA (1) Water Quality LOW LOW (2) Streamside Area Vegetation MEDIUM MEDIUM (3) Upland Pollutant Filtration MEDIUM MEDIUM (3) Upland Pollutant Filtration MEDIUM MEDIUM (2) Indicators of Stressors NO NO (2) Indicators of Stressors NO NO (2) Intertidal Zone Filtration NA NA (1) Habitat LOW LOW (2) Intertidal Zone Filtration NA NA (3) Stream Stability MEDIUM MEDIUM (3) Stream Stability LOW LOW (3) Stream-side Habitat LOW LOW (3) Stream-side Habitat LOW LOW (3) Thermoregulation MEDIUM MEDIUM		(4) Floodplain Access	MEDIUM	MEDIUM
(3) Stream Stability LOW LOW (4) Channel Stability MEDIUM MEDIUM (4) Stream Geomorphology MEDIUM MEDIUM (4) Stream Geomorphology MEDIUM MEDIUM (2) Stream/Intertidal Zone Interaction NA NA (2) Congitudinal Tidal Flow NA NA (2) Tidal Marsh Stream Stability NA NA (3) Tidal Marsh Channel Stability NA NA (3) Tidal Marsh Stream Geomorphology NA NA (1) Water Quality LOW LOW LOW (2) Streamside Area Vegetation MEDIUM MEDIUM (3) Upland Pollutant Filtration MEDIUM MEDIUM (2) Indicators of Stressors NO NO (2) Aquatic Life Tolerance LOW LOW (3) Baseflow HIGH HIGH (1) Habitat LOW LOW (3) Substrate LOW LOW (3) Stream Stability MEDIUM MEDIUM (3) Stream Stability MEDIUM MEDIUM (3) Stream Habitat LOW LOW (3) Stream Habitat LOW LOW (3) Thermoregulation MEDIUM MEDIUM (3) Thermoregulation MEDIUM ((4) Wooded Riparian Buffer	LOW	LOW
(4) Channel Stability MEDIUM MEDIUM (4) Steam Geomorphology LOW LOW (4) Stream Geomorphology MEDIUM MEDIUM (2) Stream/Intertidal Zone Interaction NA NA (2) Longitudinal Tidal Flow NA NA (2) Longitudinal Tidal Flow NA NA (2) Tidal Marsh Stream Stability NA NA (3) Tidal Marsh Stream Geomorphology NA NA (1) Water Quality LOW LOW LOW (2) Baseflow HIGH HIGH HIGH (1) Water Quality LOW LOW LOW (2) Indicators of Stressors NO NO (2) Indicators of Stressors NO NO (2) Intertidal Zone Filtration MEDIUM MEDIUM (1) Habitat LOW LOW LOW (2) Intertidal Zone Filtration NA NA (3) Stream Habitat LOW LOW LOW (3) Stream Habitat LOW LOW LOW (3) Stream Stability MEDIUM MEDIUM (3) Stream-side Habitat LOW		(4) Microtopography	NA	NA
(4) Sediment Transport LOW LOW (4) Stream Geomorphology MEDIUM MEDIUM (2) Stream/Intertidal Zone Interaction NA NA (2) Longitudinal Tidal Flow NA NA (2) Tidal Marsh Stream Stability NA NA (3) Tidal Marsh Stream Stability NA NA (1) Water Quality LOW LOW (2) Streamside Area Vegetation MEDIUM MEDIUM (3) Upland Pollutant Filtration MEDIUM MEDIUM (2) Indicators of Stressors NO NO (2) Intertidal Zone Filtration NA NA (1) Habitat LOW LOW (2) Intertidal Zone Filtration NA NA (2) Intertidal Zone Filtration NA NA (3) Upland Pollutant Filtration NA NA (2) Intertidal Zone Filtration NA NA (3) Upland Pollutant Filtration NA NA (1) Habitat LOW LOW LOW (2) Intertidal Zone Filtration NA NA (3) Substrate LOW LOW LOW (3) Stream Habitat LOW LOW LOW (3) Stream-side Habitat LOW LOW (2) Tidal Marsh Stream Habitat		(3) Stream Stability	LOW	LOW
(4) Stream Geomorphology MEDIUM MEDIUM (2) Stream/Intertidal Zone Interaction NA NA (2) Longitudinal Tidal Flow NA NA (2) Tidal Marsh Stream Stability NA NA (3) Tidal Marsh Stream Stability NA NA (3) Tidal Marsh Channel Stability NA NA (1) Water Quality LOW LOW (2) Baseflow HIGH HIGH (2) Streamside Area Vegetation MEDIUM MEDIUM (3) Tidal Marsh Stream Geomorphology NA NA (1) Water Quality LOW LOW LOW (2) Baseflow HIGH HIGH HIGH (2) Internoregulation MEDIUM MEDIUM (3) Thermoregulation MEDIUM MEDIUM (2) Intertidal Zone Filtration NA NA (1) Habitat LOW LOW LOW (3) Substrate LOW LOW LOW (3) Stream Stability MEDIUM MEDIUM (3) Stream Stability MEDIUM MEDIUM (3) Stream Stability MEDIUM LOW LOW		(4) Channel Stability	MEDIUM	MEDIUM
(4) Stream GeomorphologyMEDIUMMEDIUM(2) Stream/Intertidal Zone InteractionNANA(2) Longitudinal Tidal FlowNANA(2) Tidal Marsh Stream StabilityNANA(3) Tidal Marsh Channel StabilityNANA(3) Tidal Marsh Channel StabilityNANA(3) Tidal Marsh Stream GeomorphologyNANA(1) Water QualityLOWLOW(2) BaseflowHIGHHIGH(3) Upland Pollutant FiltrationMEDIUM(3) Upland Pollutant FiltrationMEDIUM(3) ThermoregulationMEDIUM(2) Indicators of StressorsNO(2) Aquatic Life ToleranceLOW(2) Intertidal Zone FiltrationNA(1) HabitatLOW(3) SubstrateLOW(3) Stream StabilityMEDIUM(3) Stream StabilityMEDIUM(3) Stream StabilityMEDIUM(3) In-stream HabitatLOW(3) Stream-side HabitatLOW(3) Stream-side HabitatLOW(3) ThermoregulationMEDIUM(3) ThermoregulationMEDIUM(3) ThermoregulationMEDIUM(3) ThermoregulationMEDIUM(4) Tidal Marsh Stream StabilityNA(4) Tidal Marsh Stream GeomorphologyNA(4) Tidal Marsh In-stream HabitatNA(3) Tidal Marsh Stream GeomorphologyNA(4) Tidal Marsh Stream GeomorphologyNA(3) Tidal Marsh In-stream HabitatNA(3) Tidal Marsh Stream GeomorphologyNA <tr< td=""><td></td><td></td><td>LOW</td><td>LOW</td></tr<>			LOW	LOW
(2) Stream/Intertidal Zone Interaction NA NA (2) Longitudinal Tidal Flow NA NA (2) Tidal Marsh Stream Stability NA NA (3) Tidal Marsh Stream Stability NA NA (3) Tidal Marsh Stream Geomorphology NA NA (1) Water Quality LOW LOW LOW (2) Baseflow HIGH HIGH (2) Streamside Area Vegetation MEDIUM MEDIUM (3) Upland Pollutant Filtration MEDIUM MEDIUM (3) Thermoregulation MEDIUM MEDIUM (2) Indicators of Stressors NO NO (2) Indicators of Stressors NO NO (1) Habitat LOW LOW LOW (2) Indicators of Stressors NO NO (3) Substrate LOW LOW (3) Substrate LOW LOW (3) Stream Stability MEDIUM MEDIUM (3) Stream-side Habitat LOW LOW (3) Stream-side Habitat LOW LOW (3) Thermoregulation MEDIUM MEDIUM (3) Tidal Marsh In-str			MEDIUM	MEDIUM
(2) Longitudinal Tidal Flow NA NA (2) Tidal Marsh Stream Stability NA NA (3) Tidal Marsh Channel Stability NA NA (3) Tidal Marsh Stream Geomorphology NA NA (1) Water Quality LOW LOW LOW (2) Baseflow HIGH HIGH HIGH (2) Streamside Area Vegetation MEDIUM MEDIUM (3) Upland Pollutant Filtration MEDIUM MEDIUM (3) Thermoregulation MEDIUM MEDIUM (2) Indicators of Stressors NO NO (2) Intertidal Zone Filtration NA NA (1) Habitat LOW LOW LOW (2) Intertidal Zone Filtration NA NA (3) Substrate LOW LOW LOW (3) Stream Stability MEDIUM MEDIUM (3) Stream-side Habitat LOW LOW (3) Thermoregulation MEDIUM MEDIUM (3) Stream Stability MEDIUM MEDIUM (3) Stream Habitat LOW LOW (2) Tidal Marsh In-stream Habitat LOW LOW		· · · · · -	NA	
(2) Tidal Marsh Stream Stability NA NA (3) Tidal Marsh Channel Stability NA NA (3) Tidal Marsh Stream Geomorphology NA NA (1) Water Quality LOW LOW LOW (2) Baseflow HIGH HIGH HIGH (2) Streamside Area Vegetation MEDIUM MEDIUM (3) Upland Pollutant Filtration MEDIUM MEDIUM (3) Thermoregulation MEDIUM MEDIUM (2) Indicators of Stressors NO NO (2) Indicators of Stressors NO NA (2) Intertidal Zone Filtration NA NA (1) Habitat LOW LOW LOW (2) Instream Habitat LOW LOW LOW (3) Substrate LOW LOW LOW (3) Stream-side Habitat LOW LOW LOW (3) Stream-side Habitat LOW LOW LOW (3) Thermoregulation MEDIUM MEDIUM (3) Tream-side Habitat LOW LOW LOW (3) Thermoregulation MEDIUM MEDIUM MEDIUM <				
(3) Tidal Marsh Channel Stability (3) Tidal Marsh Stream GeomorphologyNANA(1) Water Quality (2) BaseflowLOWLOWLOW(2) BaseflowHIGHHIGHHIGH(2) Streamside Area VegetationMEDIUMMEDIUM(3) Upland Pollutant FiltrationMEDIUMMEDIUM(3) ThermoregulationMEDIUMMEDIUM(2) Indicators of StressorsNONO(2) Aquatic Life ToleranceLOWLOW(2) Intertidal Zone FiltrationNANA(1) HabitatLOWLOW(2) In-stream HabitatLOWLOW(3) SubstrateLOWLOW(3) Stream StabilityMEDIUMMEDIUM(3) Stream-side HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) Tidal Marsh In-stream HabitatNANA(3) Flow RestrictionNANA(3) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh Stream GeomorphologyNANA(2) Intertidal ZoneNANA(2) Intertidal ZoneNANA				
(3) Tidal Marsh Stream GeomorphologyNANA(1) Water QualityLOWLOWLOW(2) BaseflowHIGHHIGHHIGH(2) Streamside Area VegetationMEDIUMMEDIUM(3) Upland Pollutant FiltrationMEDIUMMEDIUM(3) ThermoregulationMEDIUMMEDIUM(2) Indicators of StressorsNONO(2) Aquatic Life ToleranceLOWNA(1) HabitatLOWLOW(2) Instream HabitatLOWLOW(3) SubstrateLOWLOW(3) Stream StabilityMEDIUM(3) Stream-side HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) Tidal Marsh In-stream HabitatNANA(4) Tidal Marsh In-stream HabitatNANA(2) Intertidal ZoneNANA(3) IntertionMEDIUMMEDIUM(2) Stream-side HabitatLOWLOW(3) Stream-side HabitatLOWLOW(4) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh Stream StabilityNANA(2) Intertidal ZoneNANA				
(1) Water QualityLOWLOW(2) BaseflowHIGHHIGH(2) Streamside Area VegetationMEDIUMMEDIUM(3) Upland Pollutant FiltrationMEDIUMMEDIUM(3) ThermoregulationMEDIUMMEDIUM(2) Indicators of StressorsNONO(2) Aquatic Life ToleranceLOWNA(2) Intertidal Zone FiltrationNANA(1) HabitatLOWLOWLOW(2) Instream HabitatLOWLOW(3) SubstrateLOWLOW(3) Stream StabilityMEDIUMMEDIUM(3) Stream-side HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) ThermoregulationMEDIUMMEDIUM(2) Tidal Marsh In-stream HabitatLOWLOW(3) Flow RestrictionNANA(3) Flow RestrictionNANA(3) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh In-stream HabitatNANA(3) Tidal Marsh In-stream HabitatNANA(3) Tidal Marsh Stream GeomorphologyNANA(3) Tidal Marsh In-stream HabitatNANA(3) Tidal Marsh In-stream HabitatNANA(3) Tidal Marsh In-stream HabitatNANA(3) Tidal Marsh In-stream HabitatNANA(3) Tidal Marsh In-stream HabitatNANA(2) Intertidal ZoneNANA				
(2) BaseflowHIGHHIGH(2) Streamside Area VegetationMEDIUMMEDIUM(3) Upland Pollutant FiltrationMEDIUMMEDIUM(3) ThermoregulationMEDIUMMEDIUM(2) Indicators of StressorsNONO(2) Aquatic Life ToleranceLOWNA(2) Intertidal Zone FiltrationNANA(1) HabitatLOWLOW(2) In-stream HabitatLOWLOW(3) BaseflowHIGHHIGH(3) SubstrateLOWLOW(3) Stream StabilityMEDIUMMEDIUM(3) Stream-side HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) ThermoregulationMEDIUMMEDIUM(3) Tidal Marsh In-stream HabitatNANA(3) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh Stream GeomorphologyNANA(3) Tidal Marsh In-stream HabitatNANA(2) Intertidal ZoneNANA				
(2) Streamside Area VegetationMEDIUMMEDIUM(3) Upland Pollutant FiltrationMEDIUMMEDIUM(3) ThermoregulationMEDIUMMEDIUM(2) Indicators of StressorsNONO(2) Aquatic Life ToleranceLOWNA(2) Intertidal Zone FiltrationNANA(1) HabitatLOWLOW(2) In-stream HabitatLOWLOW(3) BaseflowHIGHHIGH(3) SubstrateLOWLOW(3) Stream StabilityMEDIUMMEDIUM(3) In-stream HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) ThermoregulationMEDIUMMEDIUM(2) Tidal Marsh In-stream HabitatNANA(3) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh In-stream HabitatNANA(2) Intertidal ZoneNANA(2) Intertidal ZoneNANA				
(3) Upland Pollutant FiltrationMEDIUMMEDIUM(3) ThermoregulationMEDIUMMEDIUM(2) Indicators of StressorsNONO(2) Aquatic Life ToleranceLOWNA(2) Intertidal Zone FiltrationNANA(1) HabitatLOWLOW(2) In-stream HabitatLOWLOW(3) BaseflowHIGHHIGH(3) SubstrateLOWLOW(3) Stream StabilityMEDIUMMEDIUM(3) In-stream HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) ThermoregulationMEDIUMMEDIUM(2) Tidal Marsh In-stream HabitatNANA(3) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh Stream GeomorphologyNANA(2) Intertidal ZoneNANA(2) Intertidal ZoneNANA		- · · · -		
(3) ThermoregulationMEDIUMMEDIUM(2) Indicators of StressorsNONO(2) Aquatic Life ToleranceLOWNA(2) Intertidal Zone FiltrationNANA(1) HabitatLOWLOW(2) In-stream HabitatLOWLOW(3) BaseflowHIGHHIGH(3) SubstrateLOWLOW(3) Stream StabilityMEDIUMMEDIUM(3) In-stream HabitatLOWLOW(3) Stream-side HabitatLOWLOW(2) Stream-side HabitatLOWLOW(3) ThermoregulationMEDIUMMEDIUM(2) Tidal Marsh In-stream HabitatNANA(3) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh Stream GeomorphologyNANA(3) Tidal Marsh In-stream HabitatNANA(2) Intertidal ZoneNANA				
(2) Indicators of StressorsNONO(2) Aquatic Life ToleranceLOWNA(2) Intertidal Zone FiltrationNANA(1) HabitatLOWLOW(2) In-stream HabitatLOWLOW(3) BaseflowHIGHHIGH(3) SubstrateLOWLOW(3) Stream StabilityMEDIUMMEDIUM(3) In-stream HabitatLOWLOW(3) Stream-side HabitatLOWLOW(2) Stream-side HabitatLOWLOW(3) ThermoregulationMEDIUMMEDIUM(2) Tidal Marsh In-stream HabitatNANA(3) Flow RestrictionNANA(4) Tidal Marsh Stream GeomorphologyNANA(3) Tidal Marsh In-stream HabitatNANA(2) Intertidal ZoneNANA				
(2) Aquatic Life ToleranceLOWNA(2) Intertidal Zone FiltrationNANA(1) HabitatLOWLOW(2) In-stream HabitatLOWLOW(3) BaseflowHIGHHIGH(3) SubstrateLOWLOW(3) Stream StabilityMEDIUMMEDIUM(3) In-stream HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) ThermoregulationMEDIUMMEDIUM(2) Tidal Marsh In-stream HabitatNANA(3) Flow RestrictionNANA(4) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh Stream GeomorphologyNANA(3) Tidal Marsh In-stream HabitatNANA(4) Tidal Marsh Stream HabitatNANA(2) Intertidal ZoneNANA			-	
(2) Intertidal Zone FiltrationNANA(1) HabitatLOWLOW(2) In-stream HabitatLOWLOW(3) BaseflowHIGHHIGH(3) SubstrateLOWLOW(3) Stream StabilityMEDIUMMEDIUM(3) In-stream HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) ThermoregulationMEDIUMMEDIUM(2) Tidal Marsh In-stream HabitatNANA(3) Flow RestrictionNANA(4) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh In-stream HabitatNANA(3) Tidal Marsh In-stream HabitatNANA(4) Tidal Marsh Stream GeomorphologyNANA(3) Tidal Marsh In-stream HabitatNANA(2) Intertidal ZoneNANA				
(1) HabitatLOWLOW(2) In-stream HabitatLOWLOW(3) BaseflowHIGHHIGH(3) SubstrateLOWLOW(3) Stream StabilityMEDIUMMEDIUM(3) In-stream HabitatLOWLOW(2) Stream-side HabitatLOWLOW(3) ThermoregulationMEDIUMMEDIUM(2) Tidal Marsh In-stream HabitatNANA(3) Flow RestrictionNANA(3) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh Stream GeomorphologyNANA(3) Tidal Marsh In-stream HabitatNANA(2) Intertidal ZoneNANA				
(2) In-stream HabitatLOWLOW(3) BaseflowHIGHHIGH(3) SubstrateLOWLOW(3) Stream StabilityMEDIUMMEDIUM(3) In-stream HabitatLOWLOW(2) Stream-side HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) ThermoregulationMEDIUMMEDIUM(2) Tidal Marsh In-stream HabitatNANA(3) Flow RestrictionNANA(3) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh Channel StabilityNANA(3) Tidal Marsh In-stream HabitatNANA(4) Tidal Marsh Stream GeomorphologyNANA(2) Intertidal ZoneNANA				
(3) BaseflowHIGHHIGH(3) SubstrateLOWLOW(3) Stream StabilityMEDIUMMEDIUM(3) In-stream HabitatLOWLOW(2) Stream-side HabitatLOWLOW(3) ThermoregulationMEDIUMMEDIUM(2) Tidal Marsh In-stream HabitatNANA(3) Flow RestrictionNANA(4) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh In-stream HabitatNANA(2) Itidal Marsh In-stream HabitatNANA(3) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh In-stream HabitatNANA(2) Intertidal ZoneNANA				
(3) SubstrateLOWLOW(3) Stream StabilityMEDIUMMEDIUM(3) In-stream HabitatLOWLOW(2) Stream-side HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) ThermoregulationMEDIUMMEDIUM(2) Tidal Marsh In-stream HabitatNANA(3) Flow RestrictionNANA(3) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh Stream GeomorphologyNANA(2) Intertidal ZoneNANA				
(3) Stream StabilityMEDIUMMEDIUM(3) In-stream HabitatLOWLOW(2) Stream-side HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) ThermoregulationMEDIUMMEDIUM(2) Tidal Marsh In-stream HabitatNANA(3) Flow RestrictionNANA(3) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh Stream GeomorphologyNANA(3) Tidal Marsh In-stream HabitatNANA(4) Tidal Marsh Stream GeomorphologyNANA(2) Intertidal ZoneNANA		_		
(3) In-stream HabitatLOWLOW(2) Stream-side HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) ThermoregulationMEDIUMMEDIUM(2) Tidal Marsh In-stream HabitatNANA(3) Flow RestrictionNANA(3) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh Stream GeomorphologyNANA(3) Tidal Marsh In-stream HabitatNANA(4) Tidal Marsh Stream GeomorphologyNANA(2) Intertidal ZoneNANA				
(2) Stream-side HabitatLOWLOW(3) Stream-side HabitatLOWLOW(3) ThermoregulationMEDIUMMEDIUM(2) Tidal Marsh In-stream HabitatNANA(3) Flow RestrictionNANA(3) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh Channel StabilityNANA(3) Tidal Marsh In-stream HabitatNANA(2) Intertidal ZoneNANA				
(3) Stream-side HabitatLOWLOW(3) ThermoregulationMEDIUMMEDIUM(2) Tidal Marsh In-stream HabitatNANA(3) Flow RestrictionNANA(3) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh Channel StabilityNANA(3) Tidal Marsh In-stream HabitatNANA(2) Inidal Marsh In-stream HabitatNANA(3) Tidal Marsh In-stream HabitatNANA(2) Intertidal ZoneNANA		_		
(3) ThermoregulationMEDIUMMEDIUM(2) Tidal Marsh In-stream HabitatNANA(3) Flow RestrictionNANA(3) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh Channel StabilityNANA(4) Tidal Marsh Stream GeomorphologyNANA(3) Tidal Marsh In-stream HabitatNANA(2) Intertidal ZoneNANA		_		
(2) Tidal Marsh In-stream HabitatNANA(3) Flow RestrictionNANA(3) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh Channel StabilityNANA(4) Tidal Marsh Stream GeomorphologyNANA(3) Tidal Marsh In-stream HabitatNANA(2) Intertidal ZoneNANA		· · · ·		
(3) Flow RestrictionNANA(3) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh Channel StabilityNANA(4) Tidal Marsh Stream GeomorphologyNANA(3) Tidal Marsh In-stream HabitatNANA(2) Intertidal ZoneNANA				
(3) Tidal Marsh Stream StabilityNANA(4) Tidal Marsh Channel StabilityNANA(4) Tidal Marsh Stream GeomorphologyNANA(3) Tidal Marsh In-stream HabitatNANA(2) Intertidal ZoneNANA		(2) Tidal Marsh In-stream Habitat		
(4) Tidal Marsh Channel StabilityNANA(4) Tidal Marsh Stream GeomorphologyNANA(3) Tidal Marsh In-stream HabitatNANA(2) Intertidal ZoneNANA		(3) Flow Restriction	NA	NA
(4) Tidal Marsh Stream GeomorphologyNANA(3) Tidal Marsh In-stream HabitatNANA(2) Intertidal ZoneNANA				NA
(3) Tidal Marsh In-stream HabitatNANA(2) Intertidal ZoneNANA		(4) Tidal Marsh Channel Stability	NA	NA
(2) Intertidal Zone NA NA		(4) Tidal Marsh Stream Geomorphology	NA	NA
		(3) Tidal Marsh In-stream Habitat	NA	NA
Overall LOW LOW		(2) Intertidal Zone	NA	NA
		Overall	LOW	LOW

NC SAM FIELD ASSESSMENT RESULTS

Accompanies User Manual Version 2.1				
USACE AID #: NCDWR #:				
INSTRUCTIONS: Attach a sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic quadrangle, and circle the location of the stream reach under evaluation. If multiple stream reaches will be evaluated on the same property, identify and number all reaches on the attached map, and include a separate form for each reach. See the NC SAM User Manual for detailed descriptions and explanations of requested information. Record in the "Notes/Sketch" section if supplementary measurements were performed. See the NC SAM User Manual for examples of additional measurements that may be relevant. NOTE EVIDENCE OF STRESSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area). PROJECT/SITE INFORMATION:				
1. Project name (if any): Knightdale ITS 2. Date of evaluation: 06/02/2021				
3. Applicant/owner name: NCDOT 4. Assessor name/organization: B. Cogdell-Atkins				
5. County: Wake 6. Nearest named water body				
7. River basin: Neuse on USGS 7.5-minute quad: Poplar Creek				
8. Site coordinates (decimal degrees, at lower end of assessment reach): 35.773441, 78.473331				
STREAM INFORMATION: (depth and width can be approximations) Poplar Creek-				
9. Site number (show on attached map): Upper 10. Length of assessment reach evaluated (feet): 88 11. Channel depth from bed (in riffle, if present) to top of bank (feet): 3 □Unable to assess channel depth. 12. Channel width at top of bank (feet): 12 13. Is assessment reach a swamp steam? □Yes □No 14. Feature type: ☑Perennial flow □Intermittent flow □Tidal Marsh Stream STREAM CATEGORY INFORMATION: 15. NC SAM Zone: □ Mountains (M) ☑ Piedmont (P) □ Inner Coastal Plain (I) □ Outer Coastal Plain (O) 16. Estimated geomorphic valley shape (skip for Tidal Marsh Stream): ☑A □ □ □ 16. Estimated geomorphic valley shape (skip for Tidal Marsh Stream): ☑A □ □ □				
17. Watershed size: (skip ☐ Size 1 (< 0.1 mi ²) ☐ Size 2 (0.1 to < 0.5 mi ²) ⊠ Size 3 (0.5 to < 5 mi ²) ☐ Size 4 (≥ 5 mi ²) for Tidal Marsh Stream)				
ADDITIONAL INFORMATION:				
18. Were regulatory considerations evaluated? Yes No If Yes, check all that apply to the assessment area. Section 10 water Classified Trout Waters Water Supply Watershed (II III III IV V) Essential Fish Habitat Primary Nursery Area High Quality Waters/Outstanding Resource Waters Publicly owned property NCDWR Riparian buffer rule in effect Nutrient Sensitive Waters Anadromous fish 303(d) List CAMA Area of Environmental Concern (AEC) Documented presence of a federal and/or state listed protected species within the assessment area. List species: Designated Critical Habitat (list species) Designated Critical Habitat (list species)				
Designated Critical Habitat (list species) 19. Are additional stream information/supplementary measurements included in "Notes/Sketch" section or attached? Yes XNo				
 19. Are additional stream information/supplementary measurements included in Notes/sketch section of attached? Pes Kino 1. Channel Water – assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams) A Water throughout assessment reach. B No flow, water in pools only. C No water in assessment reach. 2. Evidence of Flow Restriction – assessment reach metric 				
A At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or fill to the				

- point of obstructing flow or a channel choked with aquatic macrophytes or ponded water or impoundment on flood or ebb within the assessment reach (examples: undersized or perched culverts, causeways that constrict the channel, tidal gates, debris jams, beaver dams).
- ⊠в Not A

Feature Pattern – assessment reach metric 3.

ΠA A majority of the assessment reach has altered pattern (examples: straightening, modification above or below culvert). ⊠в Not A

4. Feature Longitudinal Profile – assessment reach metric

- ⊠Α Majority of assessment reach has a substantially altered stream profile (examples: channel down-cutting, existing damming, over widening, active aggradation, dredging, and excavation where appropriate channel profile has not reformed from any of these disturbances). Not A
- □в

Signs of Active Instability - assessment reach metric 5.

Consider only current instability, not past events from which the stream has currently recovered. Examples of instability include active bank failure, active channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap).

- $\square A$ < 10% of channel unstable
- □в 10 to 25% of channel unstable
- Пс > 25% of channel unstable

6. Streamside Area Interaction – streamside area metric Consider for the Left Bank (LB) and the Right Bank (RB).

Consi	der for the	e Left Bank (I
LB	RB	
ΜA	ΜA	Little or no
□в	□в	Moderate e

- A Little or no evidence of conditions that adversely affect reference interaction
- B Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affect reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leaky or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])
- C Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone access [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruption of flood flows through streamside area] <u>or</u> too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching]) <u>or</u> floodplain/intertidal zone unnaturally absent <u>or</u> assessment reach is a man-made feature on an interstream divide

7. Water Quality Stressors – assessment reach/intertidal zone metric

Check all that apply.

ПС

- Discolored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam)
- B Excessive sedimentation (burying of stream features or intertidal zone)
- C Noticeable evidence of pollutant discharges entering the assessment reach and causing a water quality problem
- D Odor (not including natural sulfide odors)
- E Current published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes/Sketch" section.
- F Livestock with access to stream or intertidal zone
- G Excessive algae in stream or intertidal zone
- H Degraded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc)
- Other: _____ (explain in "Notes/Sketch" section)
- J Little to no stressors

8. Recent Weather – watershed metric (skip for Tidal Marsh Streams)

- For Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought.
- A Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours
- B Drought conditions and rainfall exceeding 1 inch within the last 48 hours
- C No drought conditions

9. Large or Dangerous Stream – assessment reach metric

Yes No Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).

10. Natural In-stream Habitat Types – assessment reach metric

10a. XYes Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessive sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging) (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)

10b. Check all that occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams)

- A Multiple aquatic macrophytes and aquatic mosses
- (include liverworts, lichens, and algal mats)
 □B Multiple sticks and/or leaf packs and/or emergent vegetation
 □C Multiple snags and logs (including lap trees)
- D 5% undercut banks and/or root mats and/or roots
- in banks extend to the normal wetted perimeter
- E Little or no habitat

Check for Tidal Marsh Streams Only	_F _G _H _J J K
--	--------------------------------

5% oysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom 5% vertical bank along the marsh Little or no habitat

11. Bedform and Substrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

- 11a. TYes XNo Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams)
- 11b. Bedform evaluated. Check the appropriate box(es).
 - A Riffle-run section (evaluate 11c)
 - B Pool-glide section (evaluate 11d)
 - C Natural bedform absent (skip to Metric 12, Aquatic Life)
- 11c. In riffle sections, check all that occur below the normal wetted perimeter of the assessment reach whether or not submerged. Check at least one box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = absent, Rare (R) = present but ≤ 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentages should not exceed 100% for each assessment reach.
 NP
 R
 C
 A
 P

Image: Structure Image: Structure Image: Structure Image: Structure Imag	□ □ □ □ ⊠ Sand (.062 – 2 mm) □ □ ⊠ □ □ Silt/clay (< 0.062 mm	□ □ □ Boulder (256 – 4096 □ □ □ □ Cobble (64 – 256 mr □ □ □ □ Gravel (2 – 64 mm)
--	---	--

11d. Xes No Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

12. Aquatic Life – assessment reach metric (skip for Tidal Marsh Streams)

- 12a. ⊠Yes □No Was an in-stream aquatic life assessment performed as described in the User Manual? If No, select one of the following reasons and skip to Metric 13. No Water Other:
- 12b. Xes □No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
 - Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. >1

Adult	frogs	

Aquatic reptiles

1

- Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
- Beetles
- Caddisfly larvae (T)
- Asian clam (Corbicula)
- Crustacean (isopod/amphipod/crayfish/shrimp)
- Dipterans
- Mayfly larvae (E) Megaloptera (alderfly, fishfly, dobsonfly larvae)
- Midges/mosquito larvae
 - Mosquito fish (Gambusia) or mud minnows (Umbra pygmaea)
- Mussels/Clams (not Corbicula)
 - Other fish
 - Salamanders/tadpoles
 - Stonefly larvae (P)
 - Tipulid larvae
 - Worms/leeches

13. Streamside Area Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)

Consider for the Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.

LB	КB	
ΜA	ΜA	Little or no alteration to water storage capacity over a majority of the streamside area
□в	□в	Moderate alteration to water storage capacity over a majority of the streamside area
□c	□c	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction,
		livestock disturbance, buildings, man-made levees, drainage pipes)

14. Streamside Area Water Storage - streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB) of the streamside area.

LB	RB
ΠA	ΠA
□в	□в
⊠C	⊠C

- Majority of streamside area with depressions able to pond water ≥ 6 inches deep
- Majority of streamside area with depressions able to pond water 3 to 6 inches deep
- Majority of streamside area with depressions able to pond water < 3 inches deep ШC

15. Wetland Presence - streamside area metric (skip for Tidal Marsh Streams)

Consider for the Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal wetted perimeter of assessment reach. RB

- LB ØΥ
 - ΠY Are wetlands present in the streamside area?
- ⊠Ν

16. Baseflow Contributors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)

Check all contributors within the assessment reach or within view of and draining to the assessment reach.

- $\square A$ Streams and/or springs (jurisdictional discharges)
- □в Ponds (include wet detention basins; do not include sediment basins or dry detention basins)
- □с Obstruction passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
- D Evidence of bank seepage or sweating (iron in water indicates seepage)
- ΠE Stream bed or bank soil reduced (dig through deposited sediment if present)
- □F None of the above

17. Baseflow Detractors – assessment area metric (skip for Tidal Marsh Streams)

Check all that apply.

- Evidence of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
- □в Obstruction not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) Urban stream (≥ 24% impervious surface for watershed)
- ΔD Evidence that the streamside area has been modified resulting in accelerated drainage into the assessment reach
- ΠE Assessment reach relocated to valley edge
- ΠF None of the above

18. Shading – assessment reach metric (skip for Tidal Marsh Streams)

- Consider aspect. Consider "leaf-on" condition.
- Stream shading is appropriate for stream category (may include gaps associated with natural processes)
- Degraded (example: scattered trees) ⊠в
- □с Stream shading is gone or largely absent

19.	Buffer Width -	 streamside area 	metric (ski	p for Tida	al Marsh S	treams)
-----	----------------	-------------------------------------	-------------	------------	------------	---------

Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break.

	the first break.agetatedWoodedBRBRBA \square A \square AA \square A \square AB \square BBFrom 50 to < 100 feet wideC \square C \square CFrom 30 to < 50 feet wideD \square D \square DFrom 10 to < 30 feet wideE \square E \square E \square C	
20.	uffer Structure – streamside area metric (skip for Tidal Marsh Streams) posider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). RB A A Mature forest B Non-mature woody vegetation or modified vegetation structure IC IC Herbaceous vegetation with or without a strip of trees < 10 feet wide ID ID Maintained shrubs IE IE	
21.	auffer Stressors – streamside area metric (skip for Tidal Marsh Streams) neck all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but thin 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). none of the following stressors occurs on either bank, check here and skip to Metric 22: auts < 30 feet 30 Feet 30-50 feet 30 RB LB RB A A A B B B B B B C C C D D D D D D	is
22.	em Density – streamside area metric (skip for Tidal Marsh Streams) onsider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). RB A 🛛 A Medium to high stem density B 🗋 B Low stem density IC 🔄 C No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground	
23.	ontinuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) onsider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. B RB A A The total length of buffer breaks is < 25 percent. B B The total length of buffer breaks is between 25 and 50 percent. IC C	
24.	egetative Composition – streamside area metric (skip for Tidal Marsh Streams) valuate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes it sessment reach habitat. B RB IA A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species with non-native invasive species absent or sparse. IB B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities missing understory but retaining canopy trees. IC C Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species diversity or proportions. Mature canopy is absent or communities missing understory but retaining canopy trees. IC C Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planter stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.	s, ve <u>or</u> es
25.	onductivity – assessment reach metric (skip for all Coastal Plain streams) a. □Yes ⊠No Was conductivity measurement recorded? If No, select one of the following reasons. □No Water ⊠Other: b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter).	
	$\square A < 46$ $\square B 46 \text{ to } < 67$ $\square C 67 \text{ to } < 79$ $\square D 79 \text{ to } < 230$ $\square E \ge 230$	

Notes/Sketch:

Draft NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name Knightdale ITS Date of Assessn	nent 06/02/2021	
Stream Category Pa3 Assessor Name/Organiza	ation B. Cogdell-Atkins	
<u> </u>	-	
Notes of Field Assessment Form (Y/N)	NO	
Presence of regulatory considerations (Y/N)	YES	
Additional stream information/supplementary measurements included (Y/N)	NO	
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)	Perennial	
Function Class Rating Summary	USACE/ NCDWR All Streams Intermitte	
(1) Hydrology	HIGH	
(2) Baseflow	HIGH	
(2) Flood Flow	HIGH	
(3) Streamside Area Attenuation	HIGH	
(4) Floodplain Access	HIGH	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	LOW	
(3) Stream Stability	MEDIUM	
(4) Channel Stability	HIGH	
(4) Sediment Transport	LOW	
(4) Steam Geomorphology	MEDIUM	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	MEDIUM	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	HIGH	
(3) Upland Pollutant Filtration	HIGH	
(3) Thermoregulation	MEDIUM	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	LOW	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	LOW	
(2) In-stream Habitat	LOW	
(3) Baseflow	HIGH	
(3) Substrate	LOW	
(3) Stream Stability	MEDIUM	
(3) In-stream Habitat	LOW	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	MEDIUM	
(2) Tidal Marsh In-stream Habitat	NA	
(2) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone	NA	
Overall	MEDIUM	