Bridging Decisions and Alignment Review

New Route (Airport Parkway) from US 70/US 601 (Jake Alexander Boulevard) to SR 2538 (Peeler Road) at US 29 in Salisbury

Rowan County
STIP Project U-5901

North Carolina Department of Transportation

Division 9

MERGER CONCURRENCE POINT NUMBER 2A October 15, 2025

Table of Contents

1. Meetir	ng Purpose
1.1	Project Description
1.2	Project History and Merger Plan
2. Past M	erger Meetings Summary
2.1	Concurrence Point 1 (CP 1)
2.2	Concurrence Point 2 (CP 2)
3. Water	Resources
4. Major	Hydraulic Crossings
5. Potent	ial Environmental Effects
6. Avoida	nce and Minimization9
7. Merge	r Plan Review/Next Steps
	List of Tables
	J-5901 Cost Estimates
	ار
Table 3. I	Major Hydraulic Structure Recommendations
Table 4. S	Summary of Potential Environmental Effects by Build Detail Study Alternative
	Appendix A – Figures & Tables
Figure 1	. Vicinity Map
Figure 2	. Detailed Study Alternatives (Overview)
Figures 3	BA – 3E. Detailed Study Alternatives with Environmental Features and Hydraulic Sites
Table 5.	Characteristics of Jurisdictional* Streams in the Study Area
Table 6.	Detailed Stream Impacts by Build Detail Study Alternative
Table 7.	Characteristics of Jurisdictional Wetlands in the Study Area
Table 8.	Detailed Wetland Impacts by Build Detail Study Alternative

Appendix B – Hydraulic Site Information

1. Meeting Purpose

The purpose of this Merger Team meeting is to discuss the proposed major hydraulic crossings on the project and to review Detailed Study Alternatives Carried Forward. The goal of the meeting is to achieve concurrence on the major hydraulic structures and alignment.

The lead federal agency for the proposed project is the Federal Highway Administration (FHWA).

The primary points of contact for the subject project are:

<u>Agency</u>	<u>Name</u>
Federal Highway Administration (FHWA)	Seth Wilcher
U.S. Army Corps of Engineers (USACE)	Steve Brumagin
North Carolina Department of Water Resources (NCDWR)	Kaylie Yankura
North Carolina Department of Transportation	Ryan Newcomb
NV5	Eric Midkiff

1.1 Project Description

The North Carolina Department of Transportation (NCDOT), in cooperation with the FHWA, proposes to construct the Airport Parkway in Rowan County. As described in the approved NCDOT 2024 – 2033 State Transportation Improvement Program (September 2025), the proposed Airport Parkway (STIP No. U-5901, WBS No. 44705.1.1) would be a new route from US 70/US 601 (Jake Alexander Boulevard) to SR 2538 (Peeler Road) at US 29 (S. Main Street) in Salisbury. The proposed project is approximately 3.6 miles long and is anticipated to be a two-lane roadway. The project study area is shown in Figure 1 (Appendix A).

1.2 Project History and Merger Plan

The proposed project is included in the approved NCDOT 2024 – 2033 STIP (September 2025). The current costs for the project as estimated in the approved NCDOT 2024 – 2033 STIP (September 2025) are shown in Table 1. The draft project schedule is included in Table 2 and is based on the Merger Plan. The schedule and cost estimates are draft and subject to change.

Table 1. U-5901 Cost Estimates

Phase	Estimated Costs
Right-of-way	\$8,900,000
Utilities	\$6,900,000
Construction	\$39,502,000
Total	\$55,302,000

Table 2. Draft U-5901 Project Schedule

Milestone	Anticipated Date
CP 1 (Purpose and Need and Study Area Defined)	4/17/24
CP 2 (Detailed Study Alternatives Carried Forward)	7/25/24, 5/30/25
CP 2A (Bridging Decisions and Alignment Review)	October 15, 2025
Public Meeting	November 6, 2025
CP 3 (Proposed LEDPA/Preferred Alternative Selection)	February 2026
Type III CE	September 2026
CP 4A (Avoidance and Minimization)	TBD
CP 4B (Hydraulic Design Review)	TBD
CP 4C (Permit Drawings Review)	TBD
Begin ROW Acquisition	FY 2027
Begin Construction	FY 2030

^{*}Draft, subject to change

2. Past Merger Meetings Summary

2.1 Concurrence Point 1 (CP 1)

The Merger Meeting for CP1 was held on April 17, 2024. During the meeting, the Purpose and Need for the project was created and the Project Study Area was defined. See the <u>CP 1 packet</u> for more information.

2.2 Concurrence Point 2 (CP 2)

The Merger Meeting for CP 2 was held on July 25, 2024. As a result of this meeting the following alternatives were carried forward for detailed study: No Build, Alternative 1, Alternative 1A, Alternative 2, Alternative 2A, Alternative 3, Alternative 3A. Descriptions of these alternatives were included in the CP 2 packet.

In May 2025, two additional design alternatives (Alternative 6 and Alternative 6A) were identified and proposed to the Merger Team via email. The Team agreed these two alternatives should also be carried forward for detailed study.

Figure 2 in Appendix A shows the eight build detail study alternative corridors.

3. Water Resources

Jurisdictional streams and wetlands are located in the study area and are shown on Figures 3A through 3E in Appendix A. Characteristics of these streams and their estimated impacts can also be found in Tables 5 and 6 in Appendix A.

Twenty-seven streams were identified within the study area and are located within the Yadkin Pee Dee River Basin. All 27 streams are considered jurisdictional surface waters under Section 404 of the Clean Water Act.

There are no designated High Quality Waters (HQW), Outstanding Resource Waters (ORW), or water supply watersheds (WS-I or WS-II) within, or within 1.0 mile downstream of, the study area. The North Carolina 2022 Final 303(d) list of impaired waters identifies Grants Creek as an impaired water due to DHHS Fish Consumption Advisory present in, or located within 1.0 mile downstream of, the study area.

Three jurisdictional wetlands were identified within the study area. All wetlands in the study area are located within the Yadkin Pee Dee River Basin. The locations of these wetlands are shown on Figures 3A through 3E in Appendix A. Characteristics of these wetlands and their estimated impacts can also be found in Tables 7 and 8 in Appendix A.

4. Major Hydraulic Crossings

Major hydraulic crossings are those with a contributing drainage area requiring conveyance greater than a 72-inch pipe. A Preliminary Hydraulics Study completed for the proposed project identified eight major hydraulic crossings, shown on Figures 2 and 3A-3E in Appendix A. There are no USGS Stream Gage sites on the identified streams; however, flood studies have been completed for several of the waterways. Stream SA has been redelineated. Limited Detail flood studies have been completed for Streams SC and SBB. A Detailed flood study has been completed for Grants Creek.

The hydraulic structures are described in Table 7, and additional information, including the individual site plan and photographs are included in Appendix B. All stream crossings are jurisdictional streams; therefore, the culvert and pipe recommendations are oversized to account for the buried depth of the structures to maintain depth requirements for hydraulic performance.

Table 3. Major Hydraulic Structure Recommendations

			a. ,					Existing	Minimum Recommended			Potentia	l Impact ⁴	
Site	Alternative ID	Route	Stream/ Wetland	Lat	Long	FEMA Study	Drainage Area	Structure	Recommended Structure Cost	Slope Stakes + 40 ft		Slope Stakes + 0 ft		
Number			ID			Type	(sq mi)	Number, Size, Structure Type	Number, Size, Structure Type	Estimate	Streams (If)	Mitigation Cost Estimate ⁵	Streams (If)	Mitigation Cost Estimate
1	1, 1A, 2, 2A, 3, 3A, 6, 6A	L	SA	35.6685	-80.5005	Redelineation	1.06	New Alignment	(1) 13'x9' RCBC OAL = 190'	\$722,000	321	\$508,000	210	\$332,000
						Limited			(1) 7'x7' RCBC OAL = 139' (Alts 1, 2, 3, 6)	\$330,820	233 (Alts 1, 2, 3, 6)	\$369,000 (Alts 1, 2, 3, 6)	148 (Alts 1, 2, 3, 6)	\$234,000 (Alts 1, 2, 3, 6)
2	1, 1A, 2, 2A, 3, 3A, 6, 6A	L SC	SC	35.6612	-80.5104	Detailed Study	0.34	New Alignment	(1) 7'x7' RCBC OAL = 309' (Alts 1A, 2A, 3A, 6A)	\$735,420	388 (Alts 1A, 2A, 3A, 6A)	\$614,000 (Alts 1A, 2A, 3A, 6A)	309 (Alts 1A, 2A, 3A, 6A)	\$489,000 (Alts 1A, 2A, 3A, 6A)
3	1, 1A, 2, 2A, 6, 6A	L	SBB	35.6531	-80.5150	Limited Detailed Study	0.99	New Alignment	(1) 12'x7' RCBC OAL = 164'	\$524,800	287	\$454,000	169	\$267,000
4	1, 1A, 2, 2A, 6, 6A	L	SP	35.6386	-80.5187	N/A	0.09	(1) 96" CMP Length = 64'	Retain & Extend OAL = 160'	\$384,000	270	\$427,000	196	\$310,000
7	3, 3A	L ALT 3-2	SB	35.6581	-80.5156	Detailed Study	36.5	(1) 120' Bridge	Retain	N/A		N/A		
8	3, 3A	L ALT 3-1	SB	35.6565	-80.5210	Detailed Study	35.3	New Alignment	(1) 120' Bridge ³	\$1,944,000	0	0	0	0
12	3, 3A	L ALT 3-1	SG	35.6398	-80.5274	N/A	0.60	(2) 60" CMP Length = 54'	Retain & Extend OAL = 96'	\$92,400	122	\$193,000	49	\$78,000
15	3, 3A	Y4 ALT 3	SG	35.6381	-80.5261	N/A	0.39	(1) 72" CMP Length = 49′	Retain & Extend OAL = 69'	\$40,000	80	\$127,000	20	\$32,000

¹Major Hydraulic Structures - conveyance greater than 72-inch pipe or have an opening equal to or greater than 30 square feet.

 $^{^2\}mbox{Recommended}$ culvert sizes were calculated based on HW/D=1.2, per NCDOT guidelines.

³Minimum bridge length is the minimum length required to span the floodway and have a "no rise". It is not the minimum length required for the hydraulic opening.

⁴Impacts have been calculated based on slope stakes limits plus 40 feet and slope stake limits only. No wetlands impacts are expected at these sites.

⁵Mitigation cost = stream length within impact area X \$791.19 X 2.

RCBC – Reinforced Concrete Box Culvert; OAL – Overall Length

<u>Site 1</u>: It is recommended to utilize a proposed 13' x9' RCBC to convey Stream SA. Analysis of the 50-year design storm event at this new location crossing indicates that the 13'x9' RCBC is sufficiently sized. Additionally, the culvert width matches the existing stream base width, and the downstream structure at US 70/601 is a 14'x7' RCBC.

<u>Site 2</u>: It is recommended to utilize a proposed 7'x7' RCBC to convey Stream SC. Analysis of the 50-year design storm event at this new location crossing indicates that the 7'x7' RCBC is sufficiently sized. Additionally, the culvert width matches the existing stream base width.

<u>Site 3</u>: It is recommended to utilize a proposed 12'x7' RCBC to convey Stream SBB. Analysis of the 50-year design storm event at this new location crossing indicates that the 12'x7' RCBC is sufficiently sized. Additionally, the culvert width matches the existing stream base width.

<u>Site 4</u>: It is recommended to extend the existing 96" CMP to the proposed fill limits. Analysis of the 50-year design storm event indicates that the 96" CMP is adequately sized, and the downstream culvert is a 96" CMP; therefore, extension of the culvert is warranted.

<u>Site 7</u>: It is recommended to retain the existing bridge since the proposed typical section can be contained within the existing bridge typical section.

<u>Site 8</u>: It is recommended to utilize a proposed bridge to convey Stream SII. The drainage area at this new location crossing is over 36 square miles. Additionally, bridges are utilized as crossings both upstream and downstream.

<u>Site 12</u>: It is recommended to extend the existing 2 @ 60" CMP to the proposed fill limits. Analysis of the 50-year design storm event indicates that the double 60" CMP is adequately sized; therefore, extension of the culvert is warranted.

<u>Site 15</u>: It is recommended to extend the existing 72" CMP as needed to the proposed fill limits. Analysis of the 50-year design storm event indicates that the single 72" CMP is adequately sized; therefore, extension of the culvert is warranted.

5. Potential Environmental Effects

Potential environmental effects were evaluated for each of the eight Build Detailed Study Alternatives using the functional designs. Proposed slope stake limits were buffered by 40 feet to calculate potential natural and human environmental impacts for each alternative (see Table 8 below and Figures 3A through 3E in Appendix A). The impact categories for delineated streams, wetlands, known federally protected species, potential historic resources, and geoenvironmental sites are based on field investigations. All other impact categories are based on available desktop GIS data and will be further refined as additional technical reports are completed for the project.

Table 4. Summary of Potential Environmental Effects by Build Detail Study Alternative

Impact Category	Measure	Detailed Study Alternative									
impact category	Medsure	1	1A	2	2A	3	3A	6	6A		
Length (L-line)	Miles	3.91	3.94	2.84	2.88	4.22	4.25	3.82	3.85		
Proposed Major Hydraulic Sites	Number	4	4	4	4	6	6	4	4		
Natural Resource Impacts											
Delineated Wetlands (Jurisdictional)	Acres	0.1	0.1	0.0	0.0	2.4	2.4	0.1	0.1		
Delineated Streams (Jurisdictional)	Linear Feet	1,895	2,267	1,339	1,711	2,756	3,051	2,058	2,430		
Potential Stream Crossings	Number	9	10	7	8	11	12	10	11		
Known Federally Protected Species ²	Number Occurrences	0	0	0	0	0	0	0	0		
100-Year Floodplain	Acres	6.0	6.5	6.0	6.5	19.0	19.0	6.0	6.5		
Floodway	Acres	0.0	0.0	0.0	0.0	3.9	3.8	0.0	0.0		
Human Environment Impacts											
Residential Relocations	Number Structures	6	3	6	3	14	11	6	3		
Commercial Relocations	Number Structures	3	3	1	1	1	1	3	3		
Physical Environment Impacts											
Superfund Sites	Number Sites	1	1	0	0	1	1	1	1		
Registered Underground Storage Tank	Number	0	0	4	4	0	0	0	0		
Transmission Lines	Linear Feet	719	1,094	719	1,094	719	1,094	719	1,094		
Old Landfill	Acres	0.0	0.0	0.0	0.0	2.0	2.0	0.0	0.0		
Farmland of Statewide Importance	Acres	26.8	24.6	21.0	18.8	29.7	27.7	30.7	28.6		
Airport Property	Acres	8.4	8.4	7.8	7.8	34.1	34.1	8.4	8.4		
Conservation Easement	Acres	1.0	1.0	1.0	1.0	23.5	23.5	1.0	1.0		

¹Impacts based on slope stake limits plus 40 feet.

²IPaC lists Monarch Butterfly (PT)and Schweinitz's Sunflower (E). NV5 biologists conducted a habitat survey for Schweinitz's sunflower in September and October of 2024. While several sections of early successional habitat were identified within the study area, no Schweinitz's sunflower was found.

6. Avoidance and Minimization

Concurrence Point 1: See the CP 1 packet for previously identified avoidance and minimization items.

Concurrence Point 2: See the <u>CP 2 packet</u> for previously identified avoidance and minimization items. The following avoidance item was identified after the CP 2 meeting was held.

 The Alternatives 6 and 6A preliminary corridor alignment near the project terminus at Cedar Springs Road will <u>avoid impacts on the operations of the Westlake Royal Building Products</u> business.

Concurrence Point 2A:

- To the extent possible, the proposed detailed study alignments will <u>utilize 2:1 fill slopes in</u> jurisdictional areas to minimize impacts to streams and wetlands.
- Existing drainage patterns are being maintained to the extent practicable.

7. Merger Plan Review/Next Steps

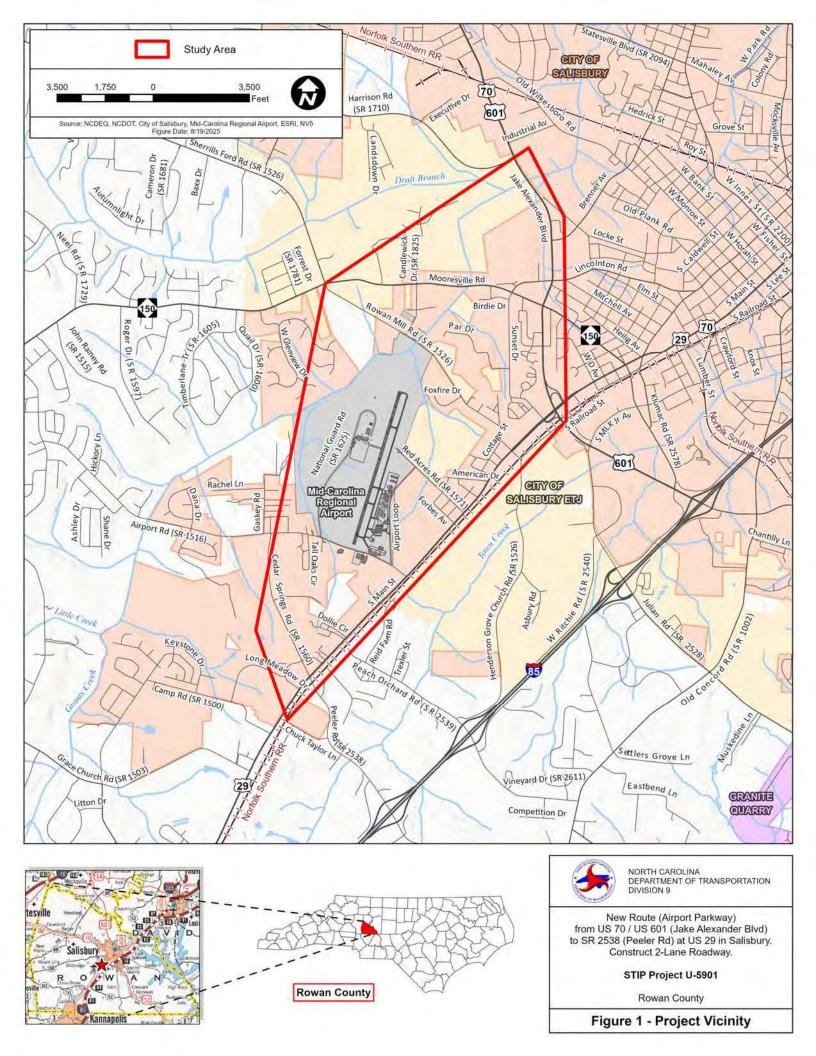
NCDOT proposes the next Merger Meeting will be CP 3 (Least Environmentally Damaging Practicable Alternative/Preferred Alternative), currently proposed to be held in February 2026. Following concurrence on Bridging Decisions and Alignment Review at CP 2A, NCDOT will conduct a public meeting in November 2025 and calculate preliminary impacts in preparation for the CP 3 meeting. Merger Team members will be notified of any changes that require a revision of this timetable.

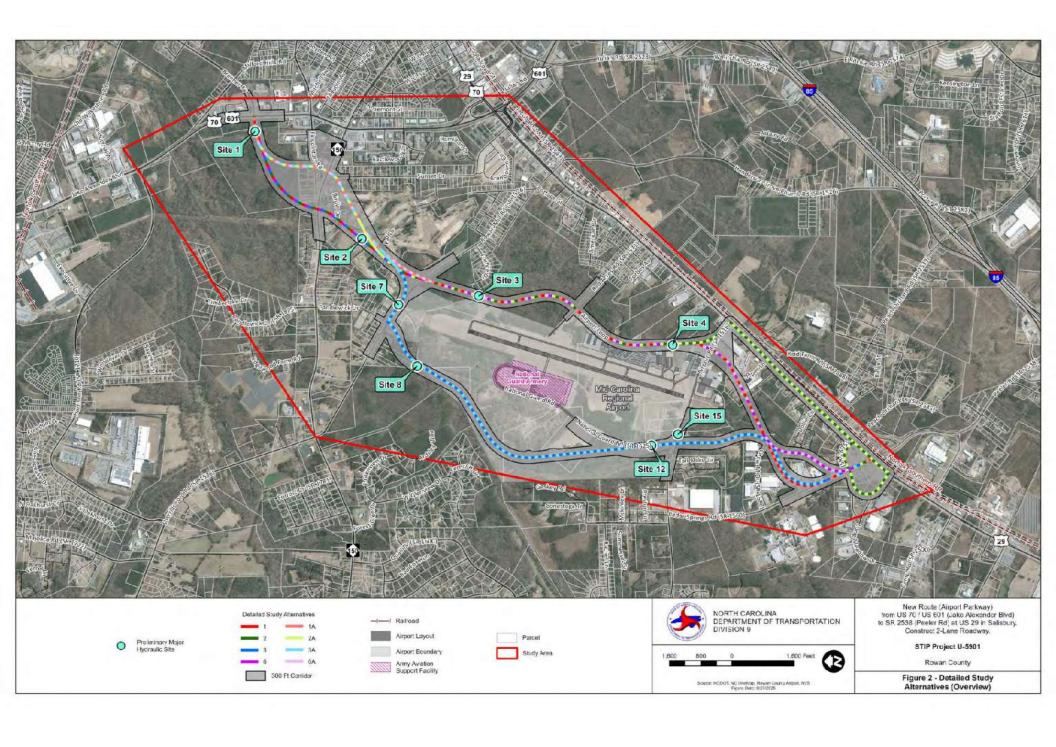
Section 404/NEPA Merger Project Team Meeting Agreement Concurrence Point No. 2A Bridging Decisions and Alignment Review

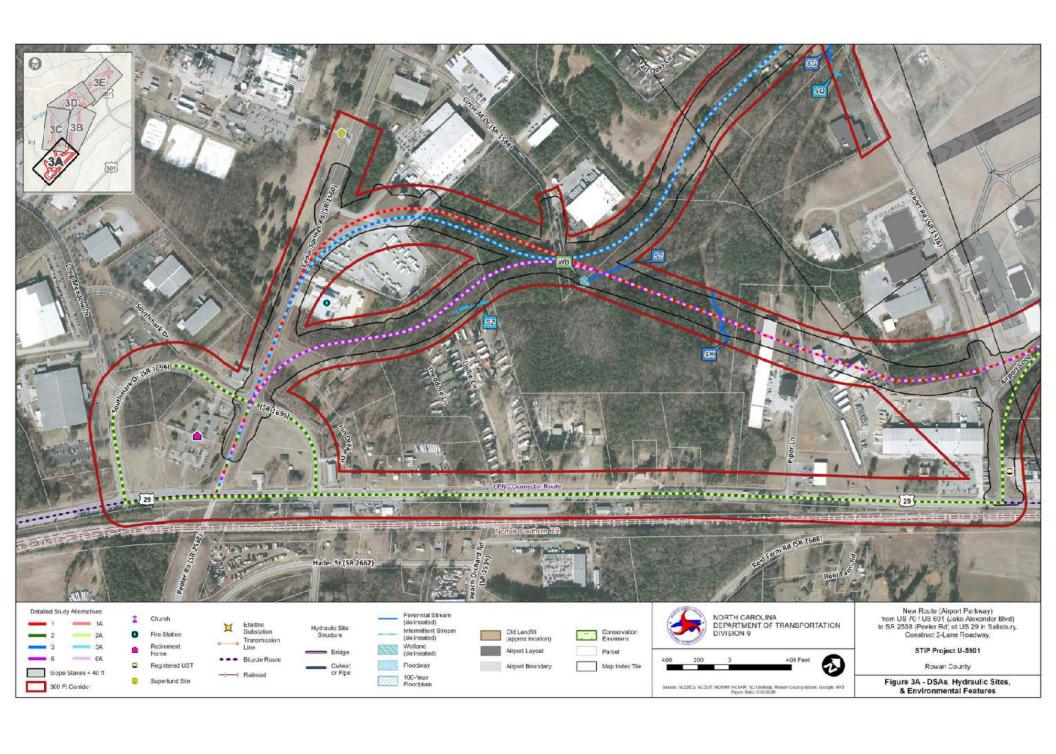
Project Title: Proposed Airport Parkway (STIP No. U-5901, WBS No. 44705.1.1) from

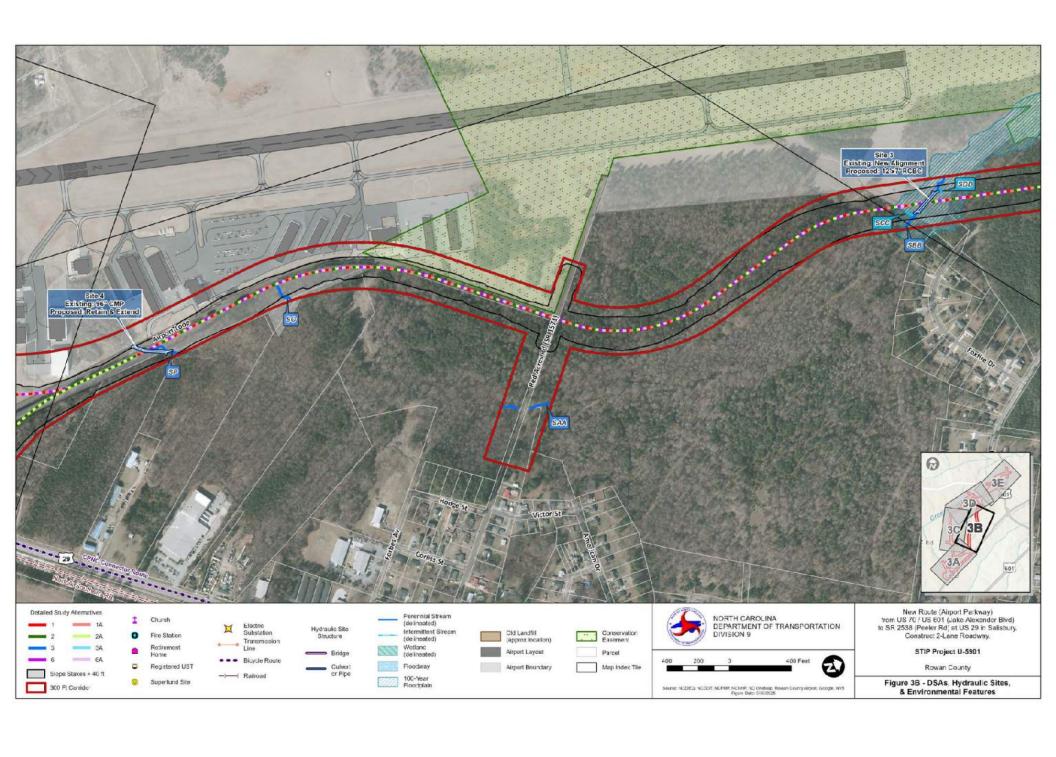
US 70/US 601 (Jake Alexander Boulevard) to SR 2538 (Peeler Road) at US 29

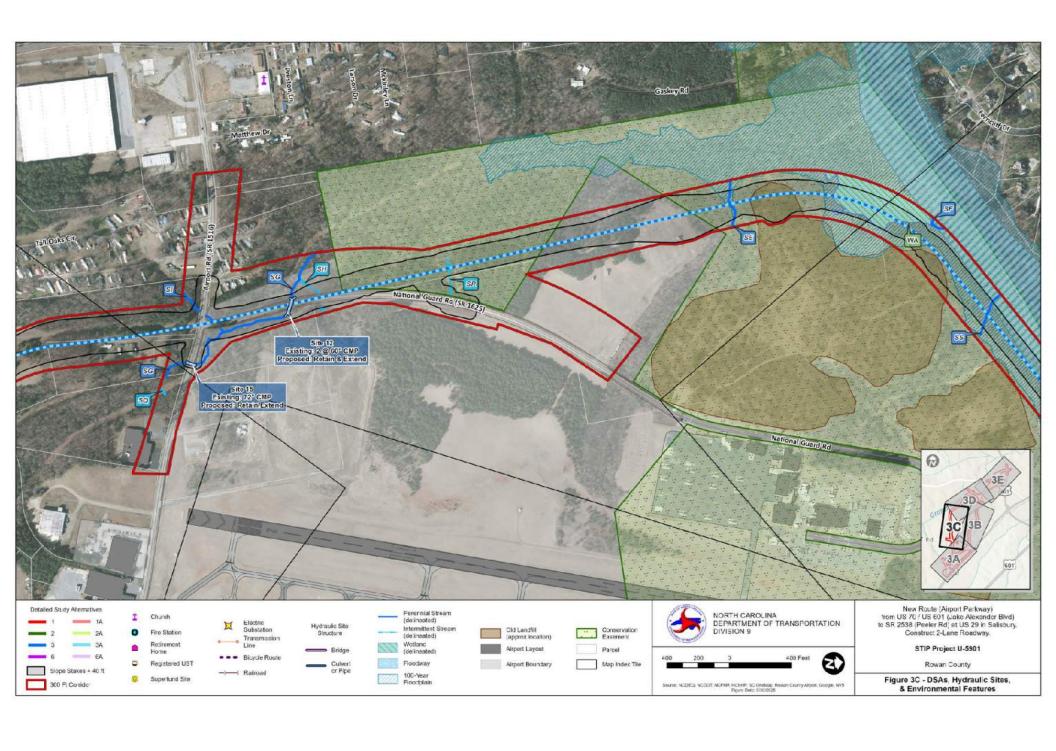
(S. Main Street) in Salisbury, Rowan County

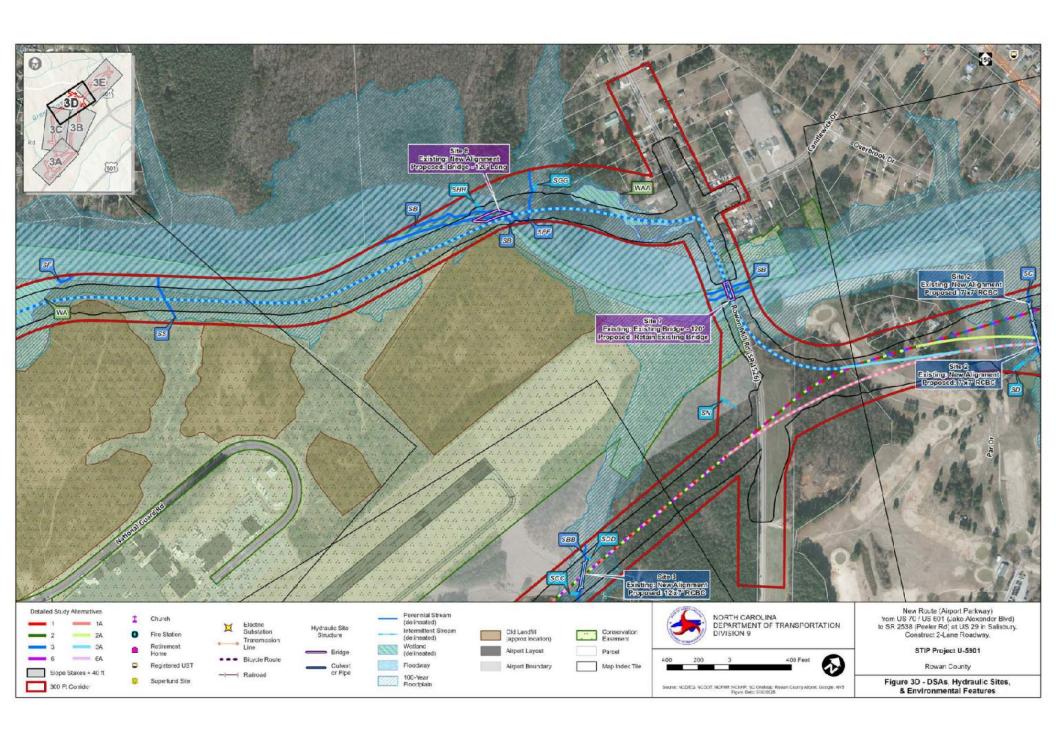

STIP Project No.: U-5901 **WBS No.:** 44705.1.1


The Merger Team concurred on October 15, 2025, on the major hydraulics structures as shown in Table 3 of the CP 2A Merger Packet for NCDOT STIP Project No. U-5901.


Agency	Signature
USACE	
USEPA	
USFWS	
FHWA	
NCDOT	
NCWRC	
NCDEQ DWR	
NCHPO	
CRMPO	


Appendix A


Figures & Tables



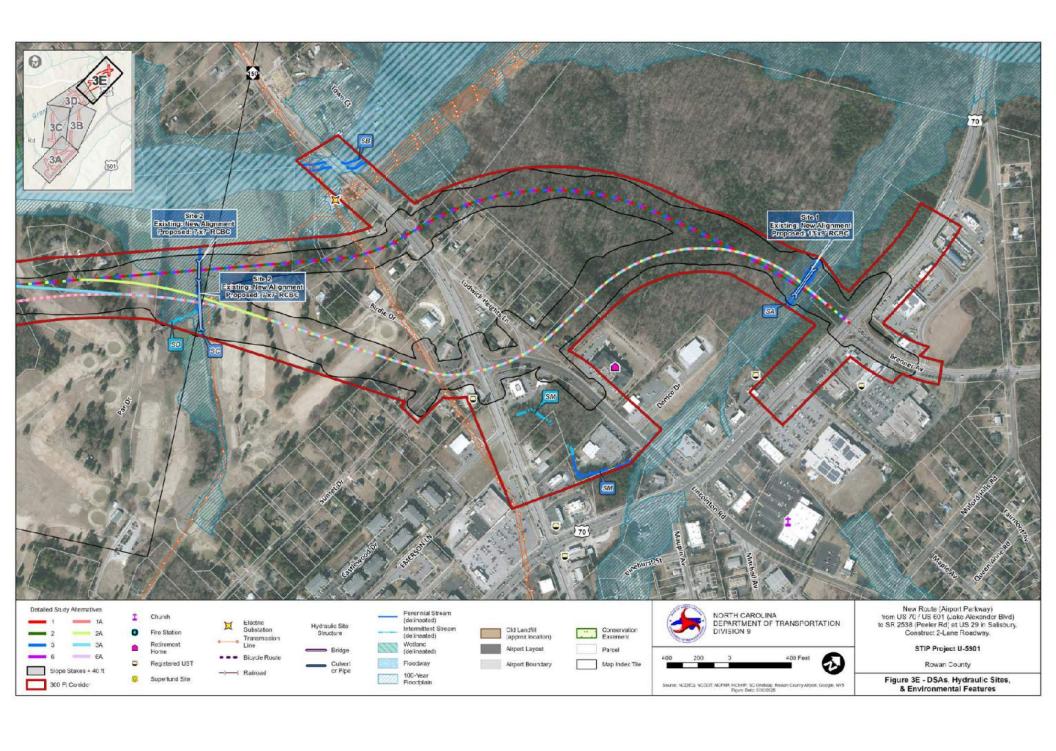


Table 5. Characteristics of Jurisdictional* Streams in the Study Area

		NCS	AM Rating	D 111 11 (6)	2 16 11 111 (6)	- u (6)		ol ::: .:	
Figure No.	Stream ID	USACE All Streams	NCDWR Intermittent	Bank Height (ft)	Bankfull width (ft)	Depth (ft)	Length (ft.)	Classification	
3E	SA	High	N/A	5-10	12	6	387.1	Perennial	
3D, 3E	SB	High	N/A	Unable To Assess	25-30	Unable To Assess	297.2	Perennial	
3D, 3E	SC	Low	N/A	2-3	1-2	0.5-1	568.6	Perennial	
3D, 3E	SD	Low	Low	1-2	0.5-1.5	0.5-1	218.6	Intermittent	
3C	SE	Medium	N/A	4-6	4	0.5	329.7	Perennial	
3C, 3D	SF	Medium	N/A	0.5-1	3	0.5	137.8	Perennial	
3A, 3C	SG	Low	N/A	0.5	4-5	0.5	1390.2	Perennial	
3C	SH	Medium	High	0.5	2-4	0.5	213.4	Intermittent	
3C	SI	Medium	N/A	1	0.5-1	0.5	245.2	Perennial	
3A	SJ	Medium	N/A	1	2-3	0.5-1	329.1	Perennial	
3A	SK	Low	N/A	4	4-6	1-3	406.4	Perennial	
3E	SM	High	High	3	1-2	0.5	371.4	Intermittent	
3E	SM	Low	N/A	3	1-2	0.5	458.3	Perennial	
3D	SN	Medium	N/A	0.5	1	0.5	130.4	Intermittent	
3B	SO	Medium	N/A	2-4	7	0.5	164.9	Perennial	
3B	SP	Medium	N/A	3	2-4	0.5-1.5	289.1	Perennial	
3A, 3C	SQ	Low	N/A	0.5-1.5	1-3	0.5-1.5	61.0	Intermittent	
3C	SR	Medium	N/A	1	0.5-1	0.5-1	247.4	Intermittent	
3C, 3D	SS	Medium	N/A	0.5	1-2	0.5	297.8	Perennial	
3B	SAA	Low	N/A	5-10	2-10	0.5-1.5	251.6	Perennial	
3B, 3D	SBB	Medium	N/A	0.5-2	8	0.5-1	440.6	Perennial	
3B, 3D	SCC	High	High	0.5-2	1	0.5-1	67.8	Intermittent	
3B, 3D	SDD	Medium	High	0.5-1	1	0.5	41.9	Intermittent	
3D	SFF	Medium	N/A	0.5-1.5	4-5	0.5-1.5	373.5	Perennial	
3D	SGG	Medium	Medium	0.5	0.5-1	0.5	67.5	Intermittent	
3D	SHH	Medium	Medium	0.25	1-3	0.5	78.2	Intermittent	
3A	SZ	Low	Low	1	2-3	0.5-1	255.2	Intermittent	

^{*}These streams have been delineated in the field but not verified.

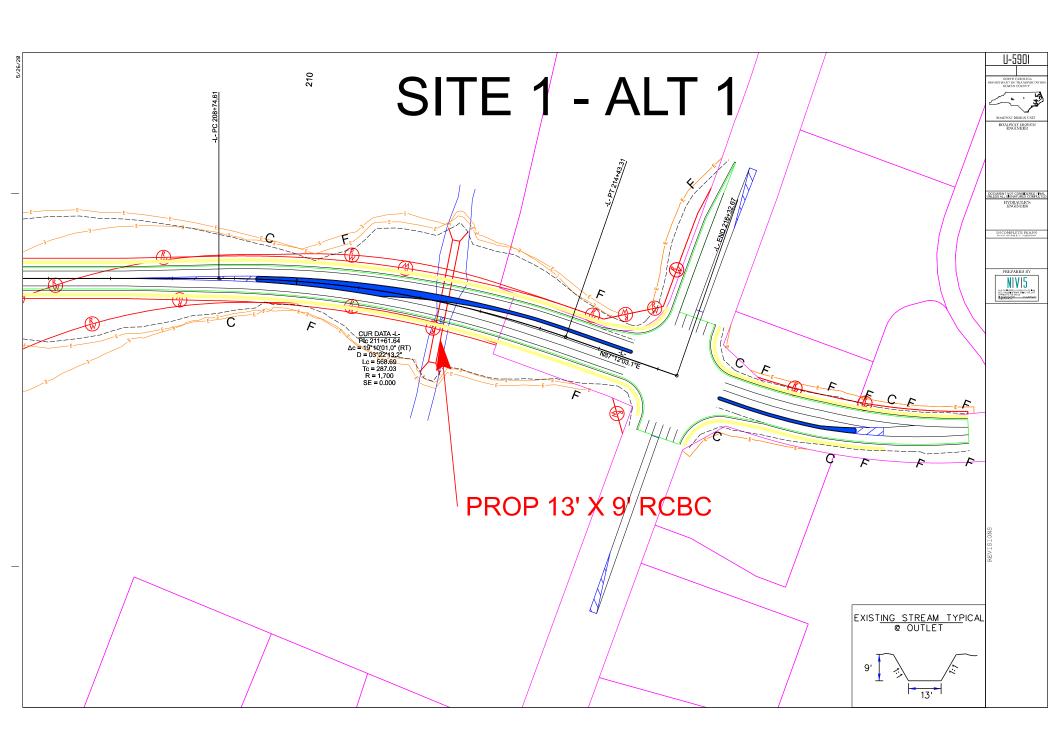
Note: All streams are unnamed tributaries to Grants Creek, except Stream SB, which is Grants Creek. Additionally, all streams have an NCDWR Index Number of 12-110 and a Best Usage Classification of C. Compensatory mitigation is assumed to be required for all streams, and no streams are subject to state riparian buffer rules.

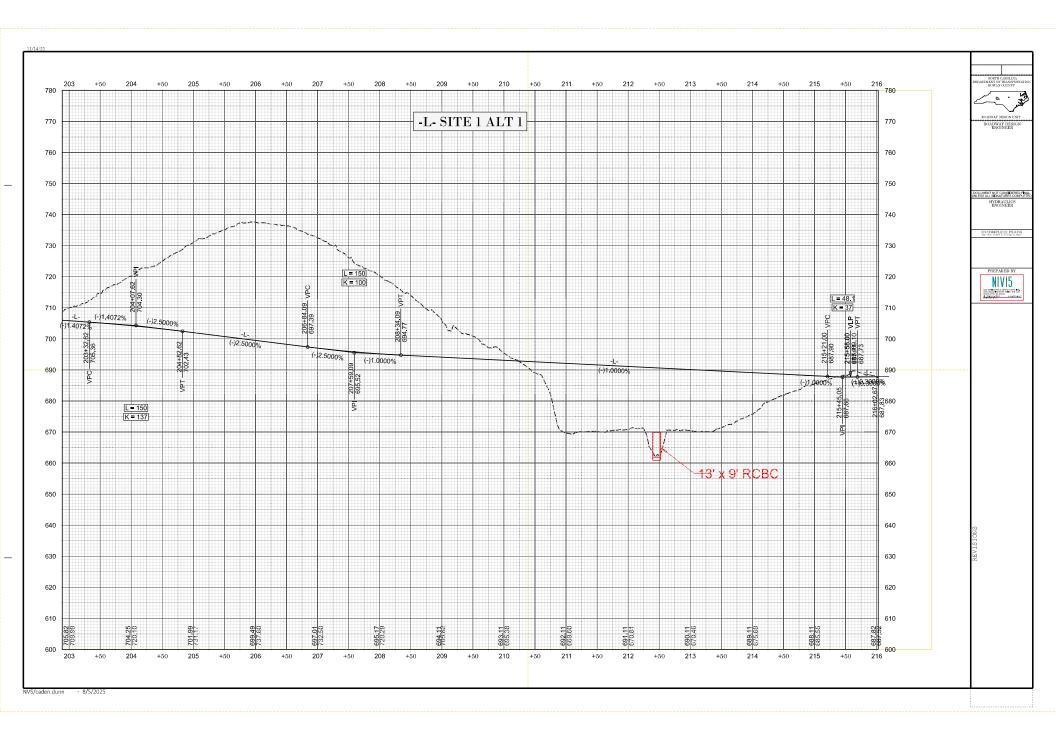
Table 6. Detailed Stream Impacts by Build Detail Study Alternative

Stream ID	Figure No.	Detailed Study Alternative (impacts ¹ in linear feet)									
	rigure No.	1	1A	2	2A	3	3A	6	6A		
SA	3E	341	340	341	340	341	340	341	340		
SB	3D, 3E	0	0	0	0	436	436	0	0		
SC	3D, 3E	233	388	233	388	233	354	233	388		
SD	3D, 3E	0	218	0	218	0	175	0	218		
SE	3C	0	0	0	0	199	199	0	0		
SF	3C, 3D	0	0	0	0	0	0	0	0		
SG	3A, 3C	0	0	0	0	731	731	0	0		
SH	3C	0	0	0	0	105	105	0	0		
SI	3C	0	0	0	0	135	135	0	0		
SJ	3A	255	255	0	0	0	0	255	255		
SK	3A	298	298	0	0	0	0	298	298		
SM (Intermittent)	3E	0	0	0	0	0	0	0	0		
SM (Perennial)	3E	0	0	0	0	0	0	0	0		
SN	3D	0	0	0	0	0	0	0	0		
SO	3B	101	101	100	100	0	0	101	101		
SP	3B	270	270	268	268	0	0	270	270		
SQ	3A, 3C	0	0	0	0	0	0	0	0		
SR	3C	0	0	0	0	176	176	0	0		
SS	3C, 3D	0	0	0	0	178	178	0	0		
SAA	3B	0	0	0	0	0	0	0	0		
SBB	3B, 3D	287	287	287	287	0	0	287	287		
SCC	3B, 3D	68	68	68	68	0	0	68	68		
SDD	3B, 3D	42	42	42	42	0	0	42	42		
SFF	3D	0	0	0	0	186	186	0	0		
SGG	3D	0	0	0	0	0	0	0	0		
SHH	3D	0	0	0	0	36	36	0	0		
SZ	3A	0	0	0	0	0	0	163	163		
	Total	1,895	2,267	1,339	1,711	2,756	3,051	2,058	2,430		

¹Impacts based on slope stake limits plus 40 feet.

Table 7. Characteristics of Jurisdictional Wetlands in the Study Area

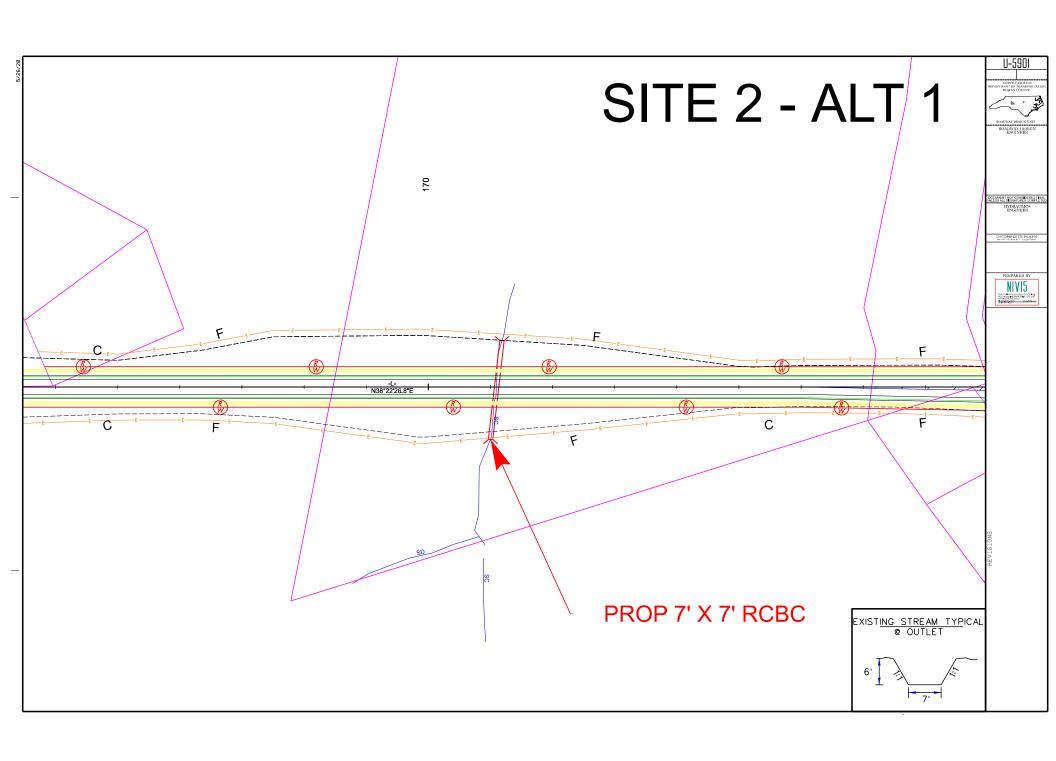

Map ID	Figure No.	NCWAM Classification	NCWAM Rating	Hydrologic Classification	Area (ac.) in Study Area
WAA	3D	Bottomland Hardwood Forest	Medium	Riparian	1.42
WA	3C, 3D	Floodplain Pool	High	Riparian	2.81
WB	3A	Hardwood Flat	Medium	Riparian	0.11

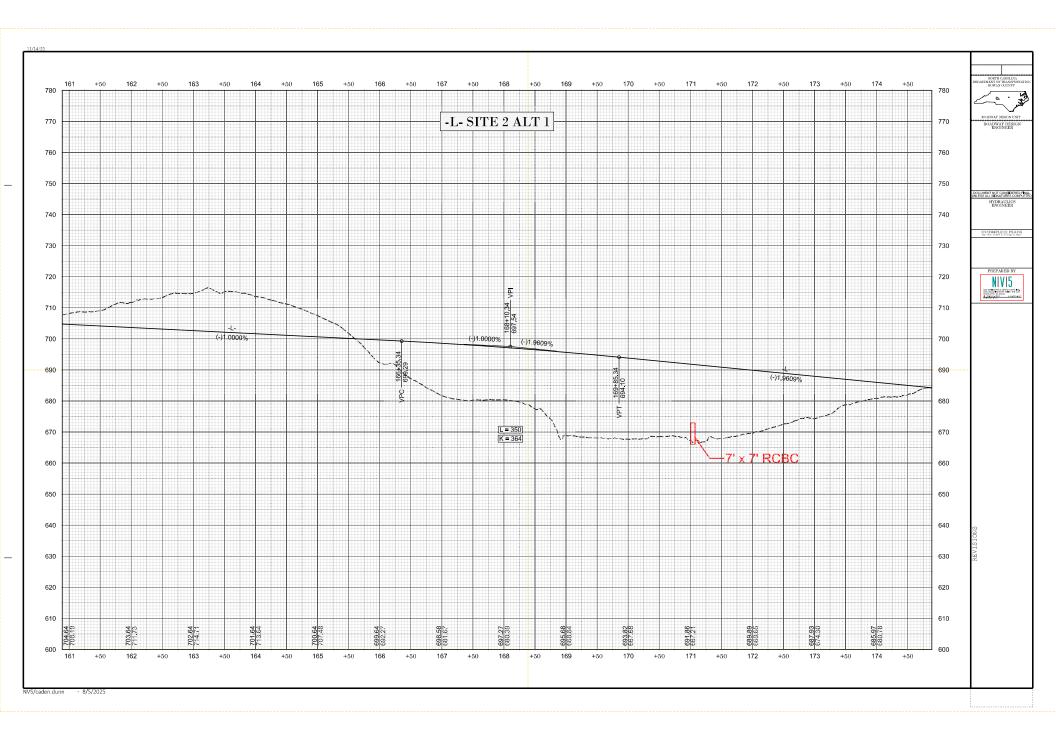

Table 8. Detailed Wetland Impacts by Build Detail Study Alternative

Wetland	Figure No.									
ID		1	1A	2	2A	3	3A	6	6A	
WAA	3D	0.0	0.0	0.0	0.0	0.7	0.7	0.0	0.0	
WA	3C, 3D	0.0	0.0	0.0	0.0	1.7	1.7	0.0	0.0	
WB	3A	0.1	0.1	0.0	0.0	0.0	0.0	0.1	0.1	
	Total	0.1	0.1	0.0	0.0	2.4	2.4	0.1	0.1	

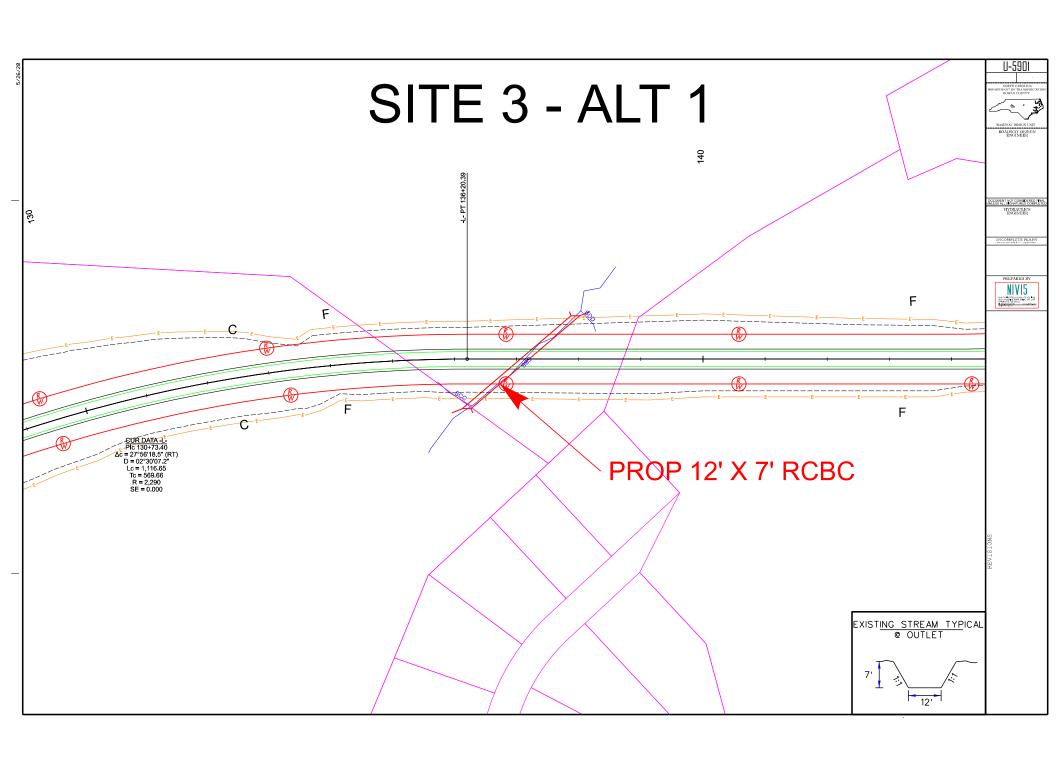
¹Impacts based on slope stake limits plus 40 feet.

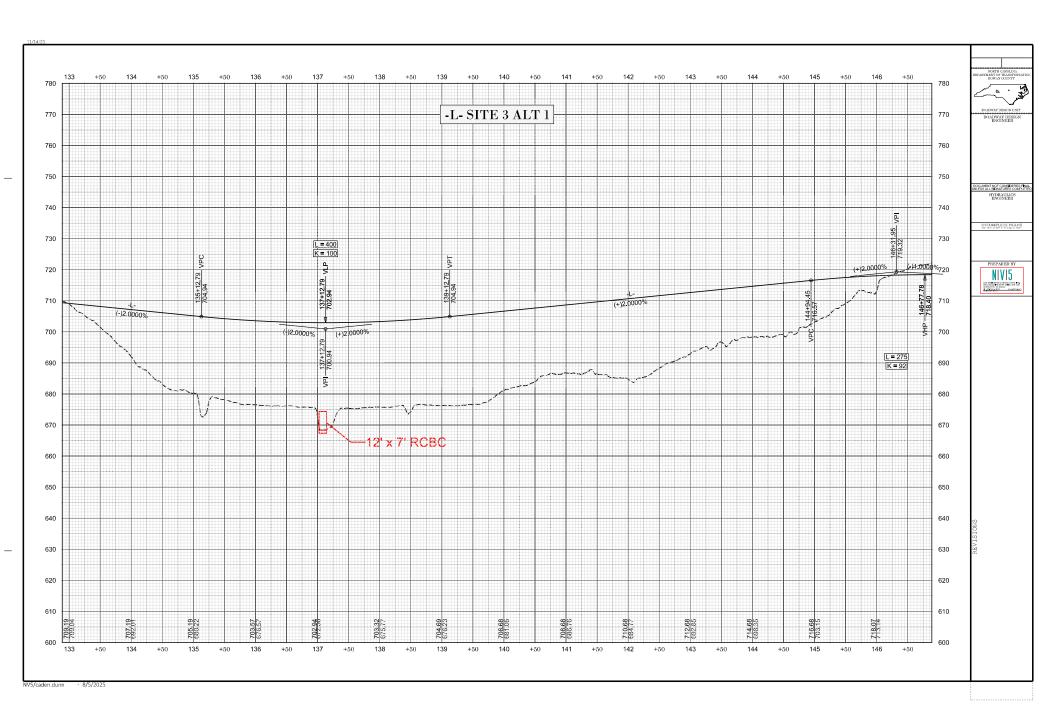
Appendix B Hydraulic Site Information



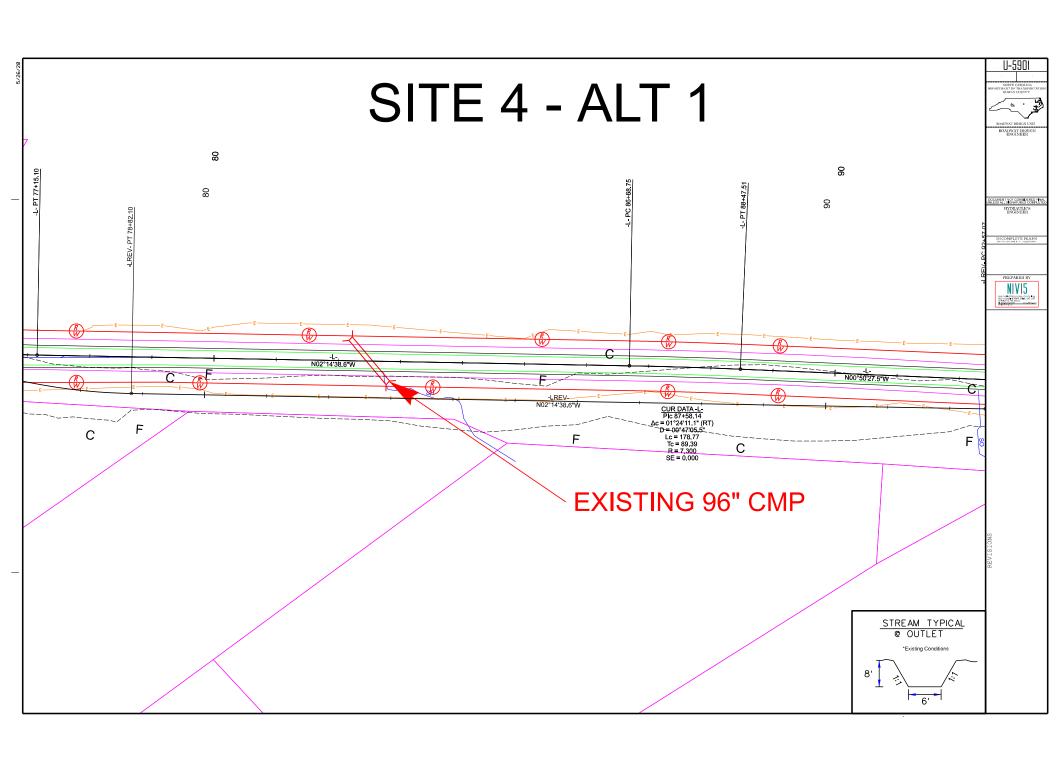


Site 1 Photos

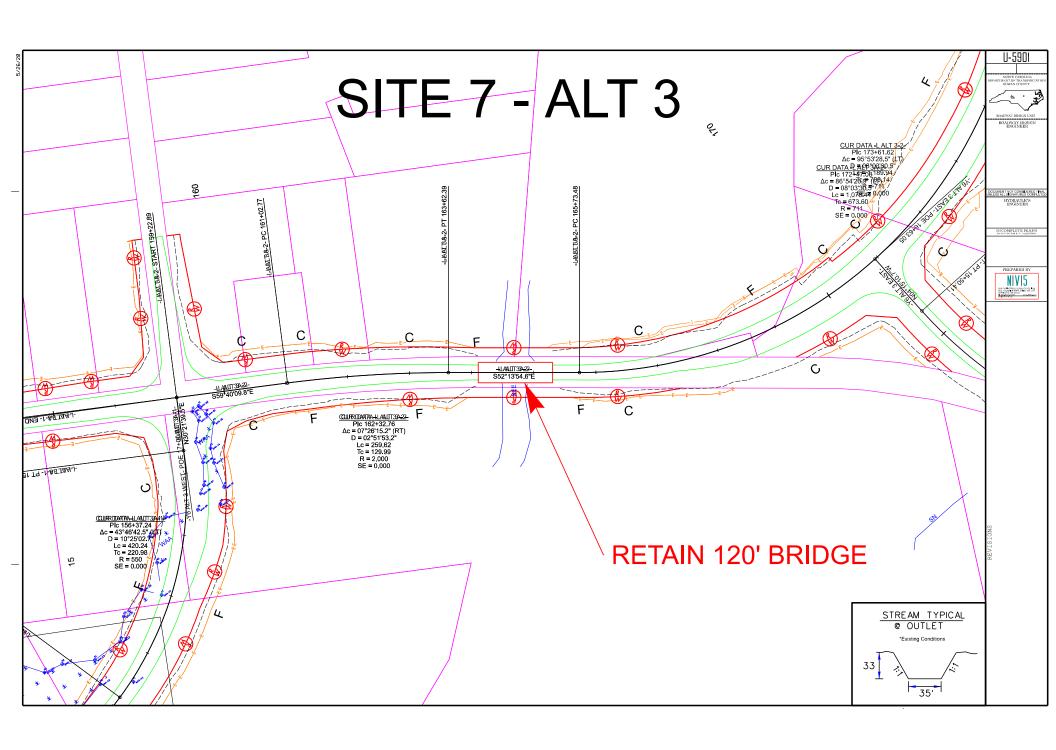

Site 2 Photos

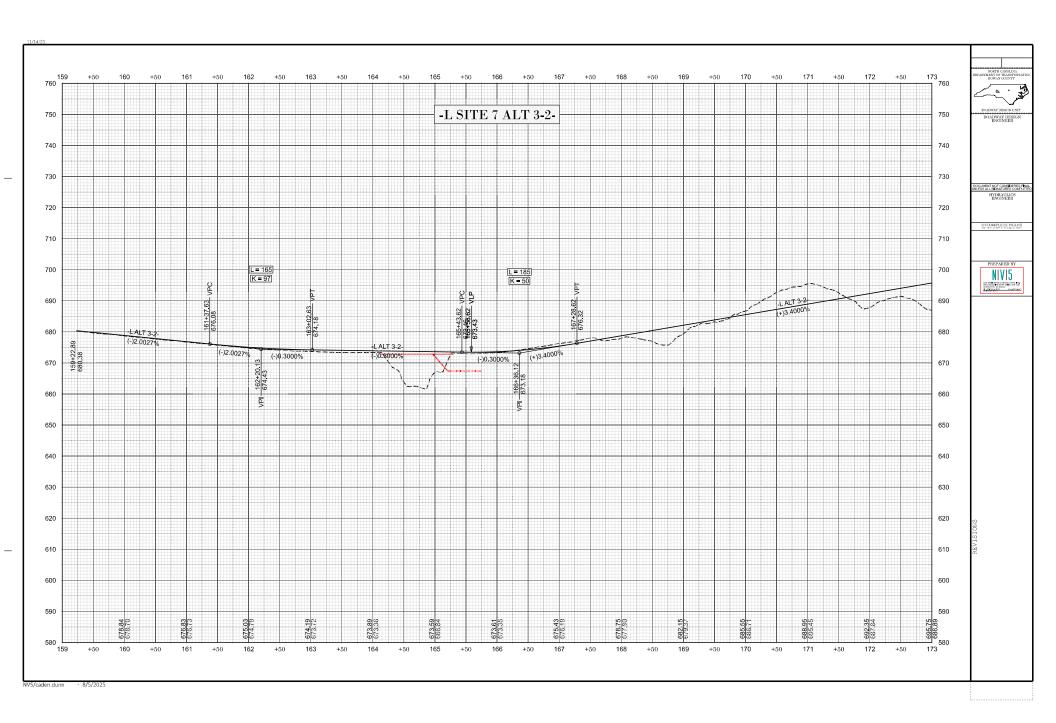


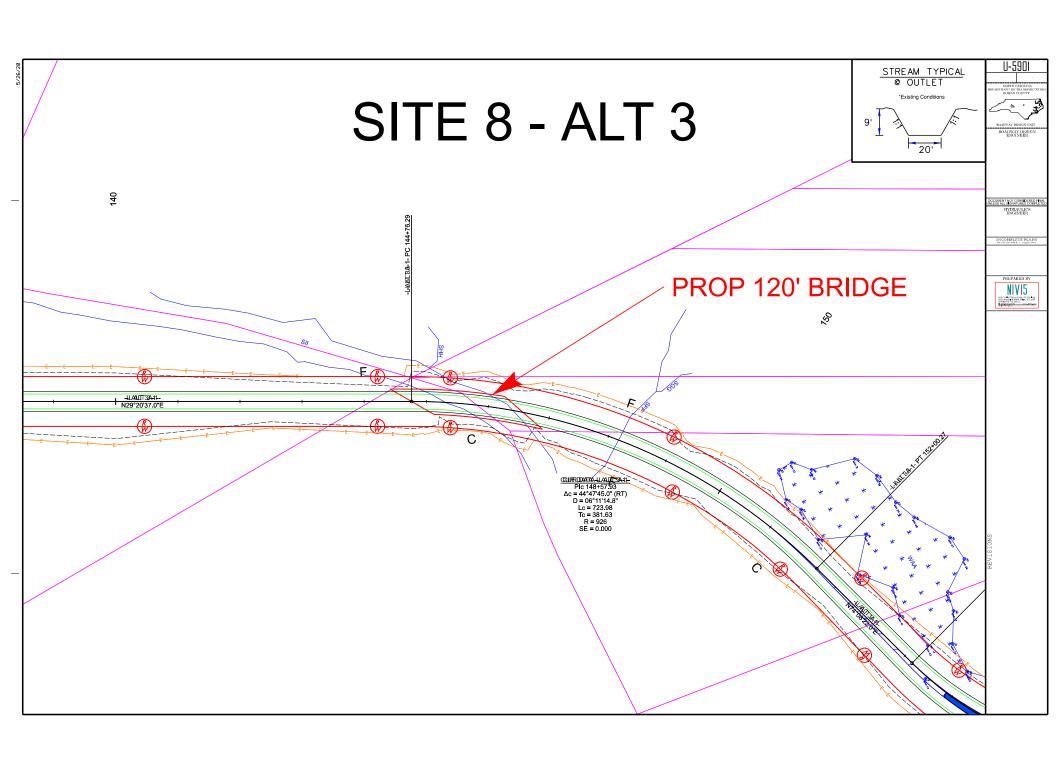
Site 3 Photos

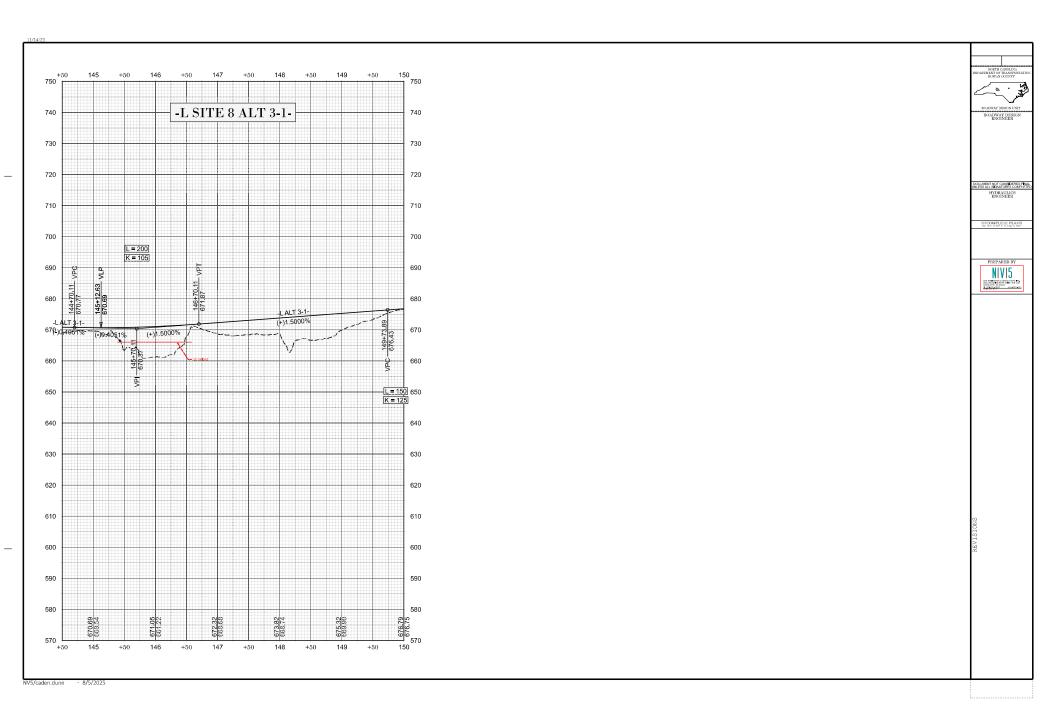


Site 4 Photos

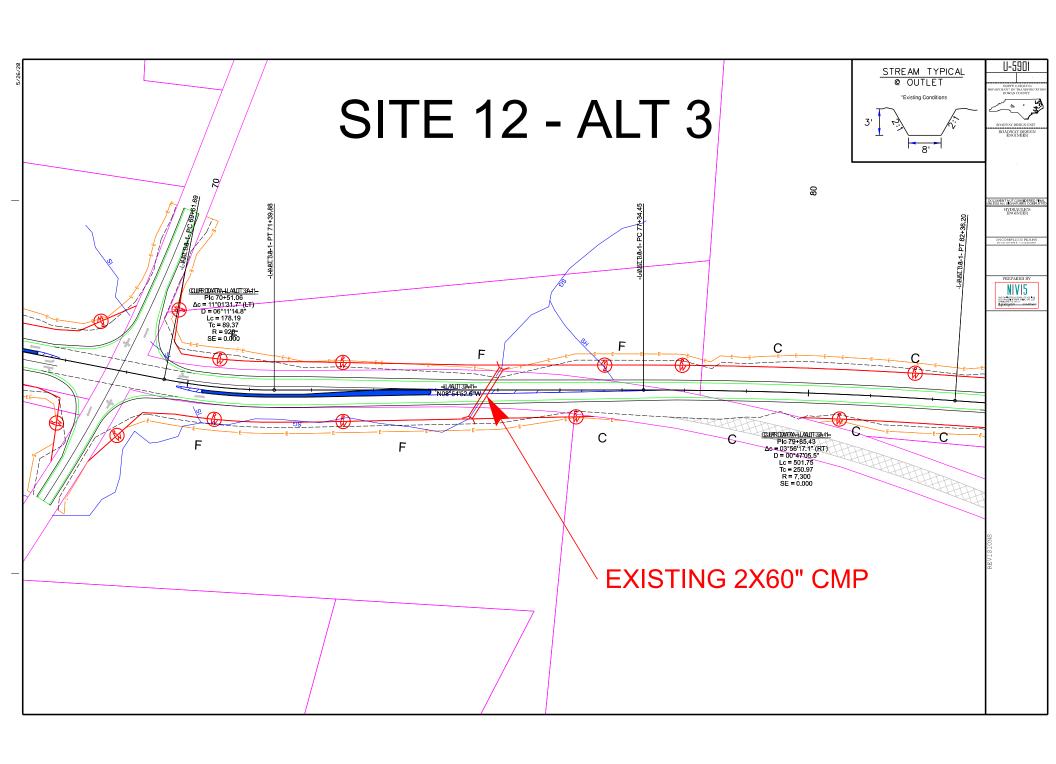


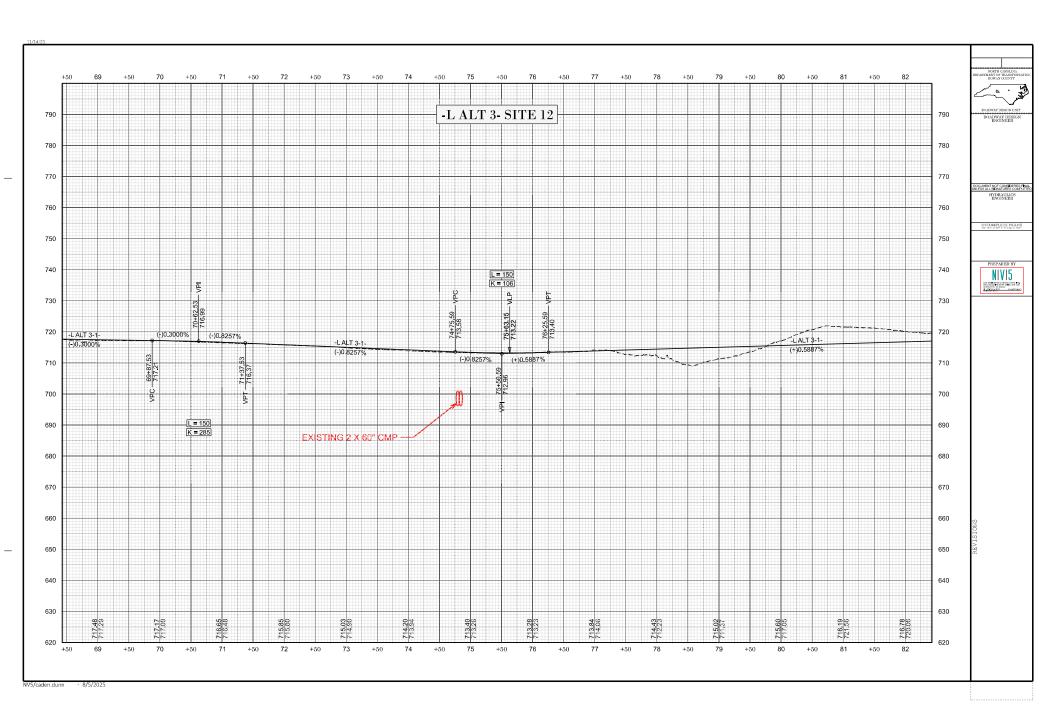


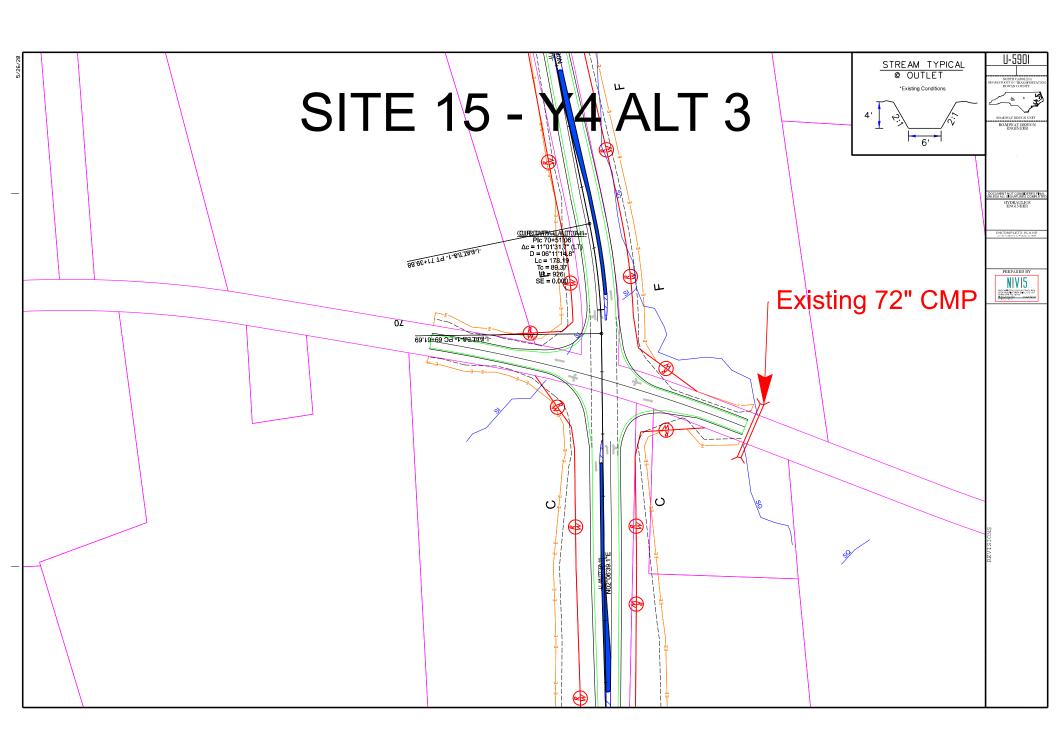




Site 7 Photos (continued)




Site 8 Photos



Site 12 Photos

Site 15 Photos

