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865 NCDOT ATLAS Habitat and Species Model Development 

EXECUTIVE SUMMARY 

Severe population declines in numerous North American bat species due to white-nose syndrome 

have prompted increased concern for monitoring bat populations at various life-history stages. 

There are also increased legislative protections for species at the state and federal levels to help 

limit impacts. As part of its broader effort to avoid and minimize impacts on federally listed bat 

species, the North Carolina Department of Transportation (NCDOT) is improving their internal 

processes regarding species surveys and monitoring efforts. This effort is a key component of 

NCDOT’s Advancing Transportation through Linkages, Automation, and Screening (ATLAS) 

program. In particular, NCDOT is using machine-learning models to refine species maps for 

federally listed species. Bats were originally excluded from NCDOT’s machine learning models 

because the federally listed species had too few records to develop an adequate model; bat habitat 

usage is highly variable through seasons, life-history stages, and across species; and approved 

programmatic habitat conservation plans (HCPs) are already in place for much of the state and 

for most priority bat species. To provide linkage, automated, and screening model tools relevant 

to bat research needs and NCDOT efforts to streamline bridge repair and maintenance, we 

developed a probabilistic model (i.e., generalized linear model [GLM]) for bat-use in bridges. The 

GLM was originally developed from a dataset of 709 NCDOT bridges that had undergone bat 

habitat assessments and surveys looking for roosting bats. It was then modified based on expert 

review and field testing. The results of the GLM can be applied to a larger, statewide dataset of 

NCDOT bridges, and the outcome of that application has been applied as final shapefiles. 

Because environmental data available for many of the 709 bridges were not available for other 

bridges throughout the state, we considered engineered specifications that may serve as proxies 

for bat selection parameters in bridges. We developed these GLM inputs with bat experts from 

non-government organizations (NGOs), federal agencies, NCDOT, and other state agencies. Our 

refined list of structural variables was used to assess which, if any, were relevant in predicting 

bat roosting in bridges, how they contributed to bat roosting, and which model structure was the 

most effective in predicting potential bat roost use. 

We shared our preliminary results with NCDOT and performed field testing to quality control 

the GLM’s efficacy. Field testing feedback was incorporated into the GLM and the model was re-

scored and re-evaluated. The results of these processes are presented in this report. 
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INTRODUCTION 

The North Carolina Department of Transportation (NCDOT) is improving systems processes 

across their range of operations by implementing the Advancing Transportation through 

Linkages, Automation, and Screening (ATLAS) program. A targeted element of project ATLAS 

is modeling threatened and endangered species throughout the state to better understand how 

they interact with NCDOT infrastructure including bridges. Copperhead Environmental 

Consulting, Inc. (Copperhead) was originally retained to develop a machine-learning model for 

bat species including maximum entropy (MaxEnt) and random forest (RF) models. However, 

during initial project meetings, Copperhead and project bat experts at NCDOT (Melissa Miller) 

and CALYX (Heather Wallace) expressed concerns about the ability to adequately develop a 

MaxEnt or RF model. Concerns included limited element occurrences for the target bat species 

within the state’s Natural Heritage Program (NHP) database, complex phenology of bat-habitat 

use, locational sampling bias for a landscape-wide model, and diverse and species-specific 

landscape use. To overcome these limitations, Copperhead proposed developing a generalized 

linear model (GLM) to model bat roost-use in bridges in North Carolina. This proposal, approved 

by NCDOT, benefits the ATLAS program by increasing the currently limited information on bat 

roost-use in bridges and by allowing NCDOT to better screen and prioritize bridge survey efforts. 

In addition, the GLM could leverage existing bat data, existing bridge-survey data, and the 

existing NCDOT engineering data for bridges (WIGINS data). 

Increasingly bats are being found using bridges and culverts throughout various seasons (Allen 

et al. 2010, Stepanian and Wainwright 2018). Current research is focusing on micro-habitat 

quantification to understand why specific roosts are selected within a bridge (Ferrara and Leberg 

2005, Bektas et al. 2018), and this has fundamental ecological relevance and importance, 

particularly if transportation departments can use this data to incorporate bat roosting spaces as 

an onsite mitigation tool. However, models with such targeted data collection cannot easily be 

expanded to statewide probabilistic models which can have wide ranging utility for project 

screening and risk assessment for bridge repair and maintenance.  

Although it is widely accepted that bats use bridges as roosting sites (Keeley and Tuttle 1999), 

little attention has been given to understanding the combined characteristics of bridge and habitat 

associated with their use of bridges as roosting sites in North Carolina (Keeley and Tuttle 1999, 

Bektas et al. 2018). We investigated how engineered bridge features corresponded to bridge roost 

selection by bats. Because our surveyed bridges included any sign of bats as a “used” bridge, this 

model considers any roost including short-term night roosts. A major goal of this research was to 

better understand when bridge replacement, repair, or rehabilitation projects have the potential 

for “taking” (i.e., harassing, injuring, or killing) bat species listed as federally threatened or 

endangered under the US Endangered Species Act (ESA 1973). The federally endangered gray 

bat (Myotis grisescens), federally threatened northern long-eared bat (M. septentrionalis), and the 
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little brown bat (M. lucifugus) that is currently under review as a candidate species for listing, are 

all found in bridge structures in North Carolina. 

METHODS 

Initial Model Development 

Original model development was completed using two primary data sources: bat habitat 

assessments (ecological data) in North Carolina and bridge engineering specifications (WIGINS). 

The ecological data-list was developed from bridges surveyed for bat use by trained wildlife 

biologists and literature review. The WIGINS database contains the engineered specifications for 

each bridge, including measurements and materials. Ecological data forms were considered to 

help develop corollaries between necessary ecological needs for bats and engineered WIGINS 

information to develop a robust GLM framework that could be applied statewide.  

Bridge habitat assessments are carried out according to the NCDOT Preliminary Bat Habitat 

Assessments (Structures, Caves, & Mines) (NCDOT 2019) and include quantifying land cover, 

identification of bridge features likely important to bat species (e.g., structure material, crevices 

present), and presence of bats (Keeley and Tuttle 1999). Originally, we hoped to use the ecological 

data almost exclusively, but both datasets (ecological and WIGINS) included data gaps, 

superfluous information that would not inform the model, and differing structure identification 

numbers. Consequently, we collected remotely sensed data to augment ecological data. However, 

we still needed to link surveyed bridges from the existing ecological data to engineered data and 

remotely sensed data. Because these datasets were not designed to be integrated with each other 

and integration was complex, the project team (Jessica Tisdale [HDR], Richard Borthwick 

[Copperhead], and Eric Wilson [KCI at the time]) met with NCDOT staff (Walt Tallman) to 

understand the definitions of the engineered features and which features (as defined by an 

engineer) correspond to bat use features (as defined by a biologist). These were supported 

through expert opinion and literature review (Bektas et al. 2018, Cleveland and Jackson 2013, 

Gore and Studenroth 2005, Keeley and Tuttle 1999, Lance et al. 2001, Ferrara and Leberg 2005). 

Two data gaps posed challenges in coordinating the two datasets: incomplete bridge structure 

numbers and inaccurate or missing GPS locations. The following are the specific sources of these 

issues:  

• Missing county code: All WIGINS structure numbers (i.e., unique bridge identification 

number) consist of six-digit codes with the leading two digits corresponding to a county 

code. In many of the habitat assessment structure numbers, the county code had been 

omitted and the structure number (consequently less than 6 digits) did not correspond 

with the WIGINS database. Both datasets also include the county name, so we used this 

data (where complete) to augment the structure number from the habitat assessment data 

with the appropriate code. 
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• Missing structure number: Without a structure number, the structure was untraceable 

through the WIGINS database. Where this occurred, GPS data were used to find “nearest 

neighbor” bridges in the WIGINS database. 

• Missing GPS data: The lack of GPS data resulted in no geo-referenced information for the 

assessed bridge. If the structure number was complete, the bridge was directly linked to 

WIGINS through the structure number. Two bridges were missing GPS data and a 

structure number. These sites were deleted from the GLM training source data. Although 

they could have been manually identified through aerial photos on a map based on 

location descriptions, neither site had bats roosting in them and were not likely to 

contribute significantly to the GLM. 

In addition to these issues, the coordinates provided from both datasets were not being displayed 

correctly when imported into GIS software (i.e., ArcMap or QGIS) (Ryan Dugger, HDR, Pers. 

Comm.). Therefore, bridge GPS locations from both datasets were added to Google Earth Pro, 

each dataset was exported as a *.KML file, and each *.KML was imported into ArcMap to spatially 

join the two *.KML files into a single shapefile (Appendix 1).  

Because the habitat assessment data is dependent on a field visit and our intention was to test 

models that could be sourced from existing data and applied to bridges that have not yet been 

surveyed, we used ArcMap and remotely available data to help determine proxies for ecological 

variables. The remotely sensed data included the latest iteration of National Land Cover Database 

(NLCD) (Yang et al. 2018) to determine presence of water at each site and surrounding land cover, 

and we used the mineral resources data systems (MRDS) embedded in the ATLAS layer1  to 

determine cave or mine presence within 0.5-miles of the crossing structure. Due to missingness, 

we were forced to remove sun exposure, an important consideration for bridge-roosting bats 

(Ferrara and Leberg 2005, Keeley and Tuttle 1999, Lance et al. 2001).  

Our team interpreted the WIGINS engineering data from 13,910 bridges to provide proxies for 

ecologically relevant variables. For example, joins and seals are entered as total lengths in unique 

columns depending on the join or seal type. However, because we considered these data a proxy 

for crevice availability in a bridge, we combined varied seal and join data into one column used 

as total crevice potential. Crevices have been shown to be important bat roost selection (Keeley 

and Tuttle 1999), but identifying remote parameters to define crevices is challenging. In addition 

to seals and joins, we considered the number of spans and age of the bridge to further refine 

proxies for crevices. 

After consolidation was complete, the data had an imbalance in bat presence (“1”) and absence 

(“0”). Consequently, we ran a series of GLMs with various techniques to address the imbalance. 

This included zero-inflated GLMs through the “pscl” package in the R software environment (R 

 
1https://gis23.services.ncdot.gov/arcgis/rest/services/AtlasMapServicesStatic/NCDOT_NCMines/Ma
pServer/0 
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Core Team 2019) and a random over-sampling example (ROSE) GLM using the “ROSE” package 

in the R software environment. Because model generation requires knowledge of use, inflated 

zeroes in a dataset (i.e., one case is rare) can result in a poor model fit or an over-fit predicting 

negative or absent data. Because a model tends to focus on prevalent data (Japkowicz & Stephen 

2002), a data imbalance can compromise model training and (due to scarcity of a class) model 

accuracy testing (Menardi & Torelli 2010). 

Several methods exist to address data imbalances (Barandela et al. 2004), but there are some 

conflicting opinions about how to best address the issue (e.g., Allison 2012, Greene 2007). We 

tested three model variations to explore which improved model predictive efficacy. First, we ran 

a conventional model with a reduced negative sample using a modified Wilson’s editing. This 

method generally requires a reduction of both positive and negative occurrences weighted more 

heavily on negative samples. However, due to the large imbalance in this dataset, meaningfully 

reducing zero occurrences was only possible if extraction included only negative data. This 

method resulted in an unquantifiable loss of data and a relatively low-quality model. Second, we 

ran a zero-inflated negative binomial (ZINB) model which attempts to account for the imbalance 

within the model framework. This output focused on the prevalent (i.e., negative) data, a well-

documented shortcoming (e.g., Menardi & Torelli 2010). Third, we considered a smoothed 

bootstrap form of re-sampling from the data to develop a balanced dataset for model training 

(ROSE). This was the only oversampling effort used and we deemed it appropriate as Barandela 

et al. (2004) found that when the data imbalance was severe, oversampling was effective.  

A ROSE model consists of a random oversampling of sites with replacement for the rare class, 

and without replacement for the common class. These methods help avoid the issue of 

missingness that arises from undersampling (i.e., removing zeroes), but increase the risk of over-

fitting as sample units of the minority class are duplicated (Menardi & Torelli 2010). To offset the 

issue of overfitting, Chawla et al. (2002) proposed randomly generating new sample unit 

observations based on nearest-neighbor values from existing sample points. The generation of 

new artificial data has the benefit of reducing over-fitting risks. However, there are inherent 

concerns in randomly generated new data. This has been subsequently studied for applicability 

and efficacy (Guo & Viktor 2004, Mease et al. 2007, Menardi & Torelli 2010). Due to the unknowns 

in bat-roost selection, we opted to use the ROSE model as opposed to generating new data. This 

resulted in better predictive power than either negative data removal or ZINB models. 

The model was used to estimate the probability of bats using a bridge for a roost. To create a 

confusion matrix of successful predictions, a probability threshold was set to allow for the 

assignment of a binary “yes” (i.e., “batty”) or “no” (i.e., “non-batty”) based on the estimated 

probabilities. Thresholds were adjusted when running each GLM so that the probability value 

was optimized. To complete this assessment, we tabled various probability thresholds and their 

respective confusion matrices to maximize both specificity and sensitivity. We completed this 

trial-and-error contrasting table for each model iteration as it was possible that the optimal 

threshold would change.  
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We used threshold assignments to calculate model specificity and sensitivity. Specificity is the 

true negative rate (number of predicted negatives divided by the total number of actual 

negatives) while sensitivity is the true positive rate (number of predicted positives divided by the 

total number of actual positives) (Table 1). Specificity is our ability to accurately predict bat 

absence from bridges while sensitivity is our ability to accurately predict bat presence. For our 

purposes, sensitivity is more important as we do not want to miss bat bridges. As sensitivity 

increases, our rate of false positives also increases, resulting in over-prediction of bat presence. 

The optimal model was conservative in nature and low specificity meant that we were routinely 

predicting “non-batty” bridges as “batty” when using a 32% threshold. For both zero-inflated 

and ROSE model structures, specificity and sensitivity were considered to evaluate which 

method of addressing a zero-inflated dataset predicted most effectively. Akaike’s Information 

Criteria (AIC) or Bayesian Information Criteria (BIC) are generally used to compare model 

structures because, when the response variable remains the same, these criteria indicate 

improvements in model fit as explanatory variables are altered. However, our model iterations 

altered the response variable distribution, so an alternative model scoring framework was 

required. Predicted outputs and probability scores were calculated for the statewide data, saved 

as a shapefile, and uploaded to the HDR and NCDOT Sharepoint hub for file storage. 

Table 1. Confusion matrix format for calculating specificity and sensitivity for each model 

type. 

 Actual Positive Actual Negative 

Predicted Positive True Positives – Model predicted 

bats, and bats or bat sign were 

present during survey. 

False Positives – Model predicted 

bats, but no bats or sign were 

present during survey. 

Predicted Negative False Negatives – Model predicted 

no bats, but bats or bat sign were 

observed during surveys. 

True Negatives – Model predicted 

no bats, and no bats or bat sign 

were observed during surveys.  

First Model Revisions 

The statewide GLM shapefile was reviewed on ArcGIS Online by species experts at the US Fish 

and Wildlife Service (USFWS), NGOs, and NCDOT. Their comments (Appendix 2) indicated that 

overall the GLM was performing well. Reviewers recommended changes making the GLM less 

conservative (increasing specificity) and incorporating bridge height and deck materials which 

were being poorly reflected in the GLM. The model was comprised of several variables queried 

from the WIGINS database (Appendix 3), but bridge height was not available during this initial 

model revision. 

Reviewers were encouraged to comment on agreement or disagreement with the GLM, the 

reasons why, and whether the model should be changed or retained at specific bridges. The GLM 
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was adjusted from these comments by including main structure material and by including beam 

type and material, then it was rerun. We reapplied the new probability scoring to bridges across 

the state and saved the updated shapefile for implementation into the digital data collection 

framework designed by HDR and for ease of reference and review. The new data collection 

framework was an automated data collection protocol that calculated surrounding habitat for 

each bridge structure and auto-populated digital data forms for ecological data collection. This 

initiative was intended to streamline field data collection, ensure completed data forms, and 

facilitate future data modeling efforts during bat habitat assessments at bridges. The automated 

system was beta tested in the fall of 2019 and included a field test for the probabilistic GLM’s 

accuracy and applicability. Field testing was completed by teams from Copperhead and HDR 

and informed the second model revisions.  

Second Model Revisions 

Second model revisions incorporated a field test of the model and expert investigation of modeled 

bridge scoring. Increasing the GLM’s specificity continued to be particularly relevant to wooden 

decked bridges where the GLM predicted high probability of bat use, but the field circumstances 

and past research (Ferrara and Leberg 2005, Keeley and Tuttle 1999) have ruled out that 

likelihood. Further, field testing documented that source data being used for deck structures was 

incorrect, and a new query was initiated from the WIGINs database.  

The WIGINS database queries are highly detail specific. We encountered two primary issues with 

the queries: incomplete data and incorrect data columns. Incomplete data were an issue when 

regional or county data were separated during a query, i.e., a formatting error, or when data were 

still being entered and updated. Through the process improvements within NCDOT, staff are 

continuing to collect data to fill known information gaps and the lag between these data updates 

can result in unpredictable gaps in the data. This required careful screening prior to a variable’s 

use in the model resulting in not all variables being used. For example, data gaps on bridge height 

prevented use of this variable during our initial model runs, but they were entered in fall 2019 

and were subsequently incorporated. The later inclusion of bridge height data helped improve 

our model during the second round of revisions. Another example of missing data was guardrail 

materials which were inconsistently provided so were omitted from the model.  

One primary data column – Structure Type – was uploaded incorrectly in the initial model. 

Because the WIGINS database is organized with coded data labels and because the labels are not 

ecologically related, we initially requested structure material type instead of deck type to model 

the bridge deck materials. Structure Type consists of a 3-digit code that includes the span 

materials and span design (FHWA 1995); however, this differs from the WIGINS coding system 

and definition for deck type. Deck type is a variable that is developed and coded within NCDOT 

and is not part of the FHWA (Federal Highway Administration) guidance document. It is, 

however, included in the WIGINS reports. After review and field verification, deck type better 

reflected the surface that the bats contacted under the bridges. By altering our query request, we 
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improved our model, particularly pertaining to predictions of false positives on smaller wooden 

bridges. Accuracy increased on the field verified models recommended for change by 7%. 

The final GLM incorporates repaired deck source data, newly available bridge height data, past 

reviewer comments, and comments from the field test. The results below include model 

specificity and sensitivity and some summary statistics for model improvements associated with 

revisions. The final GLM was a global model (i.e., includes all parameters and available for 

analysis) that was dredged using the “MuMIn” package in the R software environment. The top 

two reduced models were compared for the final model and are presented as “Reduced 1” and 

“Reduced 2” below. The GLM with the highest sensitivity was considered the most appropriate 

and was applied to all bridges within the state to produce a GIS shapefile for bat expert review. 

During GLM reduction, AIC was considered to identify the most parsimonious and powerful 

model within the ROSE model framework, not across model frameworks. Because parameters 

differed in their units, scales, and values, we scaled data prior to model development. 

RESULTS 

To address our zero-inflated dataset, we tested a “zero-inflated” model and a ROSE model. The 

zero-inflated models under-predicted bridges that housed bats (43% sensitivity) but more 

effectively predicted absences (96% specificity) (results not tabled). This model structure was 

ineffective at the scope and scale of the intended application, as bridges being used by bats were 

routinely missed. Consequently, the ROSE model was selected to develop the GLM. Under the 

initial model development (using all available i.e., ‘global’ model parameters), the ROSE model 

sensitivity was 87% and specificity was 44% at a 32% threshold.  

Table 2. Confusion matrix for the initial model against test data 

 Actual Positive Actual Negative 

Predicted Positive 86 420 

Predicted Negative 13 330 

 

The initial GLM was reviewed by five bat ecology experts from NGOs, state agencies, NCDOT, 

and USFWS. Each reviewer investigated a minimum of 12 sites independently and a total of 60 

structure probabilities were adjudicated. Of these reviewed points, 44 were considered 

appropriate while 16 were recommended for reversal (Appendix 1). Of the 14 sites recommended 

for reversal, the model predicted no bat presence in 12, but expert opinion identified potential for 

roosting. Our first model adjustments addressed only 5 of these bridges because beam type and 

bridge height – the variables consistently driving recommendations to reverse model predictions 

– were unavailable at that time and were not included until second model revisions. The primary 

concern from reviewers was that the GLM would be used inappropriately to classify bridges. 
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With adjustments from expert feedback, we integrated first model revisions, which were applied 

to the predictive model and used for field testing. Field tests included the inspection of an 

additional 280 bridge structures. Of these, 19% were recommended by field teams to reverse from 

a model predicted “batty” to a real-world “non-batty” score and 4% were recommended to 

reverse from predicted “non-batty” to a real-world “batty” score. This corresponded to 

expectations in the model and resulted in the conservative estimates anticipated. Beam type and 

bridge heights were again the driving features that were poorly reflected. To date, an average of 

9% of surveyed bridges have contained bats or bat sign, and models predict ~62% of all bridges 

are likely to contain bats. 

We adjusted the global model based on these recommendations, when bridge height data became 

available and a final global model was defined. These adjustments improved the global model 

which was then dredged to determine the best model iterations: “Reduced 1” and “Reduced 2.” 

The optimal model iteration had 93% sensitivity and 54% specificity at a 35% threshold (Table 2). 

The top two model iterations are provided in Table 1 with AIC and ∆AIC values.  

Table 3. Confusion matrix after first model revisions. 

 Actual Positive Actual Negative 

Predicted Positive 92 344 

Predicted Negative 7 406 

Model revisions from the initial model development increased true positive classifications from 

89% to 95%, improved balanced model accuracy from 66.5% to 73%, and addressed shortfalls in 

data availability as beam type and bridge height became available for incorporation into the 

model. 

Final GLM selection was based on the most parsimonious model with the highest specificity and 

sensitivity and lowest AIC values. Although the Reduced 2 model had the lowest AIC score, it 

had slightly lower than optimal sensitivity and specificity. 

According to the GLM analysis using ROSE, the most important scaled predictors of bat use in 

bridges were wood decks (-), wood beams (-), steel decks (-), concrete beams (+), surrounding 

forest (+), concrete decks (+), steel beams (-), urban developments (-), and bridge heights (+) 

(Table 2). Importance is based on model coefficient weights from scaled variables (Table 3). 

Variables that had significant p-values are bolded in Table 3, and these variables also generally 

had the largest scaled coefficients. This indicates changes in these variables are the most likely, in 

our model framework, to influence bat roosting potential. 
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Table 4. Model iterations for random oversampling example (ROSE) model structures after 

expert review and field test adjustments. Explanatory variables are presented in Appendix 1. 

Specificity = “Spec”, Sensitivity = “Sens” 

Iteration Model AIC ∆AIC Spec Sens

Global mainspans + approachspans + year + lanes.on 

+ lanes.under + ADT + trucks + sub.grade + 

btwnrails + outtoout + beam.height + leftrail + 

rightrail + length + water_vici + RD_ANGLE 

+ seal + seal.count + forest +dev + ag + open + 

wet +brg.ht + mat_cont2 + concrete_d + 

steel_d + wood_d + concrete_b + metal_b + 

wood_b 

608.25 0 0.49 0.92

Reduced 1 mainspans + approachspans + year + outtoout 

+ beam.height +  length + water_vici + 

RD_ANGLE + seal + seal.count + forest +dev 

+ open+ wet +brg.ht + mat_cont2 + 

concrete_d + steel_d + wood_d + concrete_b + 

metal_b+wood_b 

596.13 10.19 0.54 0.93

Reduced 2 mainspans + approachspans + year 

+beam.height + length + seal + forest + dev + 

wet + brg.ht +wood_d + concrete_b + metal_b 

587.35 20.9 0.47 0.90
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Table 5. Variables in the optimal random oversampling estimates (ROSE) model, their 

predictive coefficient, and level of significance. Bolded variables were significant at P < 0.05. 

Variable Coefficient Std. Error z-value P-value 

Number of Main Spans 0.23335 0.08255 2.827 0.004704 

Number of Approach Spans -0.25646 0.1241 -2.067 0.03878 

Year -0.16696 0.08928 -1.87 0.061472 

Out to Out 0.05758 0.11202 0.514 0.607242 

Beam Height -0.24948 0.09138 -2.73 0.006333 

Length 0.21166 0.10083 2.099 0.035794 

Water (0.5 miles) -0.24502 0.26713 -0.917 0.359032 

Mine (0.5 miles) -0.1135 0.41276 -0.275 0.783331 

Road Angle -0.08666 0.08682 -0.998 0.318197 

Seal Length 0.19728 0.08611 2.291 0.021954 

Seal Count -0.07997 0.06122 -1.306 0.191454 

Forest Cover 0.46071 0.10686 4.311 1.62E-05 

Developed Land -0.36054 0.10771 -3.347 0.000816 

Open Habitat -0.02738 0.08404 -0.326 0.744572 

Wet Habitat 0.19341 0.06962 2.778 0.005467 

Bridge Height 0.30877 0.10086 3.061 0.002203 

Deck Materials - continuous 0.07876 0.12449 0.633 0.526941 

Concrete Deck 0.42848 0.42391 1.011 0.312123 

Metal Deck -0.73977 0.86707 -0.853 0.393557 

Wood Deck -1.68017 0.473 -3.552 0.000382 

Concrete Beams 0.68362 0.23805 2.872 0.004082 

Metal Beams -0.41613 0.22702 -1.833 0.066794 

Wood Beams -1.18146 0.95559 -1.236 0.216323 

DISCUSSION 

This was a broad-scale effort to apply engineered bridge specifications and remotely sensed 

ecological data to a statewide probabilistic GLM for bat use in bridges. The final GLM predictors 

corresponded to those recommended in an a priori discussion with bat experts. The predictors 

hypothesized to be important were as follows: crevices, gaps, sun-exposure, bridge height and 

size, deck and beam material, and surrounding habitat including the presence of snags (Bektas et 

al. 2018, Cleveland and Jackson 2013, Gore and Studenroth 2005, Keeley and Tuttle 1999). We 

were unable to develop a proxy for sun exposure but found engineering data or remotely sensed 

data that was indicative of the remaining variables. Our study differs from these past studies in 

that we surveyed more bridges for bat use within North Carolina, we used a wider array of 

engineered specifications, and we investigated all bat species.  
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The GLM quantifies the contributions of engineered variables to bat roost selection in bridges in 

North Carolina. Although a bat may, in theory, use any bridge crevice as a roost, the model 

indicates that optimal bat roosting bridges are those with concrete beams that are relatively long 

and high, have multiple spans, and are near wet habitat (i.e., NLCD classified woody wetlands 

or emergent herbaceous vegetation) or forest cover. Bridges that have wooden decks, are 

relatively low, and lack gaps or crevices associated with multiple spans and high seal lengths are 

likely not to be used. Ecologically, these findings suggest that bats are looking for gaps and 

crevices, materials that exhibit thermal inertia, and offer protection from the elements, usually 

from beams.  

Although we did not complete species-specific models, our findings align with past research in 

Louisiana that documented Corynorhinus rafinesquii rarely used wooden bridges but did use 48% 

of concrete bridges surveyed and that flat slab bridges were not highly selected (Lance et al. 2001). 

Ferrara and Leberg (2005) found that bats tended to roost in the darkest portion of the bridge and 

beams help provide darker environments. Our model shows that the level of traffic on, below, or 

around the structure does not seem particularly relevant for selection, which differs from the 

findings of Keeley and Tuttle (1999). 

Corresponding to existing literature, we found that concrete substructure and beam type were 

positively correlated with bat roosting, as was surrounding forest habitat (Ferrara and Leberg 

2005, Keeley and Tuttle 1999). Gaps and joins were generally important as well, as indicated by 

the seal length and number of spans.  

Low bridges with wood decks were generally unsuitable for bat roosts potentially due to 

convective heat loss or creosote treatments. Wooden decks had a highly significant negative 

relationship and the highest predictive coefficient with bat-roost use and were more than four 

times as likely to deter bat roosting than concrete decks are to encourage bat roosting. Concrete 

decks did not have a significant relationship with roost-use, but concrete beams did and were the 

most important positive predictor of bat roost use in bridges based on the scaled model 

correlation coefficient.  

Forest cover and bridge height were the second and third most important predictors of bat roost 

use in bridges, respectively. Urban developments, where forest cover is still present near bridges, 

are net positive for bats despite urban development in general having a negative influence on bat 

roost selection.  

Guardrail material was not significant in final probability calculations, nor were the presence of 

mines or major water sources within 0.5 miles of a structure. These results were surprising as 

guardrail material was identified by reviewers and existing literature (Taylor 2006) as important 

for bat roost selection, as was the presence of water. Proximity to water may have been limited in 

this context as a consequence of the bridge type. Bridges that discourage bat roost use were 

primarily over water during our sampling. For example, small, low, wooden deck bridges are 

used almost exclusively to cross watercourses. These structures provide limited roosting 
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potential. Consequently, the issue may be one of sample bias. This may also be an issue of thermal 

cover (Adam and Hayes 2000) as bridges over water may be subjected to higher convective heat 

loss. The low number of mines found within proximity to surveyed bridges may be a factor in its 

limited contributions to the model. Year the bridge was constructed was a significant factor, and 

this is likely due to the increase in gap or crevice size as a bridges age and erode which 

corresponded with past research (Gore and Studenroth 2005). 

Model sensitivity performed well across the statewide GLM. Overall the model can be used to 

screen bridges for the likelihood of bat use, and this can help prioritize inventory and survey 

efforts. While the GLM should not be considered definitive in assigning potential bat use to a 

bridge, it helps in understanding variables driving roost selection and allows for a quantification 

of probability of use. The bats-in-bridges GLM achieved three major objectives identified by 

Copperhead, NCDOT, HDR, and CALYX/NV5: 1) quantify bridge features used by bats, 2) 

provide a probability scoring for bat use in un-surveyed bridges, and 3) incorporate these data 

into a field collection format that may advise a subsequent machine-learning model (not reported 

on here). As a result, the GLM will improve survey targeting and field methods for NCDOT crews 

assessing bridge repair, replacement, or routine maintenance. The GLM incorporated multiple 

bat species so that the dataset was large enough to develop a robust model, but individual species 

models were not tested. 

As more bat surveys are completed on bridge or culvert structures, this model framework may 

be applied and refined to further our understanding of bat use of bridges. With additional data, 

GLMs could be completed for target species allowing a better understanding of species-specific 

effect. Ultimately, as the data becomes available, a similar model should be constructed for 

culverts as federally listed bat species are increasingly being found in these environments. 
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Appendix 1 – ArcGIS Work Flow to Reconcile Varied Spatial Dataframes 

1. Coordinates provided by EAU NCDOT in the “Mergeddata” excel sheet were not being imported in ArcMap or QGIS properly. The following 

work around to get the points in the correct position was employed: 

a. Imported the points to Google Earth Pro 

b. Exported as KML file and Imported into ArcMap 

c. Joined exported points to “Mergeddata” excel sheet via UID (unique ID) 

i. This provided spatially correct points along with existing attribute data from the “MergedData” excel sheet. File named Bats.shp 

2. Mines/Caves and Water analysis 

a. Buffered the Mine/Cave points to 1-mile diameter: 

i. If Bats.shp fell within the buffered zone of the Caves/Mines data, then they were given a Value of 1. Points that did not fall within 

the buffered zone were given a Value of 0 

b. NC_Wetlands.shp was used to see which Bats.shp points were over water. 

i. Used Select By Location tool to find which points were over waterbodies 

1. Note: The tool looked for points that were within 100ft to allow for inaccuracy of the NC_Wetlands line drawings. (added 

a 100ft buffer) 

ii. Bats.shp points that were over waterbodies were given a value of 1 and points that were not over waterbodies were given a value 

of 0 

3. Reclassified Landcover Raster 

a. Raster used was nlcd_NC_utm17.tif 

b. Reclassify tool ran on the nlcd_NC_utm17.tif 

i. Water: Value 1 

ii. Developed: Land Value 2 

iii. Natural Land: Value 3 

iv. Agriculture Land: Value 4 

4. Land Cover analysis using Tabulate Area tool in ArcMap 

a. Buffered the Bat.shp to .5 miles giving the buffered area a 1-mile diameter from the center point of the Bat point. Named BatsBuff.shp 

b. Ran Tabulate Area tool 

i. Input feature zone data: BatsBuff.shp 

ii. Zone field: UID 

iii. Input Raster: nlcd_Reclass 

iv. Class Field: Landcover 

c. Tabulate Area tool gave the Landcover area in Square Meters 

5. The Tabulate Area tool did not initially process all 699 buffered areas. Step 4b was re-ran 5 times to get all 699 buffered areas processed 
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a. The Tabulate Area produces an ArcMap Table. All 5 tables were converted to an Excel file then merged into one table called 

LandCoverPercentage_Working 

6. Excel file was converted to an ArcMap table and joined to the existing Bats.shp using the UID field. 

7. Exported the Joined Bats.shp to Bats_Final.shp. 
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Appendix 2 - Reviewer Comments to Reverse Initial Model Predictions 

General Notes 
Model 

Prediction 
Reviewer 
Agency 

Too low, close to water Bats NCDOT 

Concrete cross brace over bent often has bats No Bats NCDOT 

Bridge is over water, receives sunlight and is in okay habitat. Bridge deck, concrete end walls and expansion joints 
may provide roosting habitat, if guardrails do not. 

No Bats 
NGO 

Habitat is poor but bridge has concrete guardrails which could provide roosting habitat. No Bats NGO 

Concrete guardrails and end walls may provide roosting habitat.  This bridge should at least score high enough to 
warrant a survey. 

No Bats 
NGO 

This bridge should score high enough to be surveyed.  Habitat is poor but bridge has concrete guardrails and end 
walls which could provide crevices for roosting.  Looks like bat bridge on US 1 south of Raleigh. 

No Bats 
NGO 

Habitat is poor but bridge should at least rank high enough for a survey.  Bridge has concrete deck; there could be 
suitable crevices in the expansion joints and in the base of the guardrail. 

No Bats 
NGO 

This bridge does not look very batty to me.  The only decent habitat is the end walls and the expansion joints, to a 
certain extent.  I would expect that the expansion joints are completely seal 

Bats 
NGO 

Although the surrounding landscape is forested and the bridge is in sun and high over water, the bridge itself offers 
little in the way of bat habitat (metal beams, expansion joints are closed, guard rails are open, etc.) 

Bats 
NGO 

I've seen big brown in bridges just like this one. No Bats NGO 

Metal beams not ideal, but overall bridge looks batty. No Bats NGO 

Bat roosting habitat in gaps in concrete guardrails, bridge over stream in relatively wooded area (good habitat) No Bats NCWRC 

Patchy habitat; over road, but stream close by; concrete guardrails and other features could provide some habitat; not 
ideal, but wouldn't rule it out 

No bats 
USFWS 

While not great surrounding habitat, bridge is concrete and could provide habitat; we have had bats using these types 
of bridges 

No Bats 
USFWS 

Habitat looks okay for bats; bridge construction doesn't look great for bats, but could have batty features underneath 
(crevices, bird/wasp nests) 

No Bats 
USFWS 

I26 bridge over service road not ideal, but in good habitat, close to French Broad River and wetland; also very close to 
known bat roost; limited roost potential visible, but could be features underneath where bats could roost 

No Bats 
USFWS 
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Appendix 3 – Descriptions for Model Input Parameters. 

Model Variable Model Code Definition 
Number of Main Spans Mainspans The number of main spans 
Number of Approach Spans Approachspans The number of approach spans 
Year Built Year The year the bridge was built 
Number of lanes carried lanes.on Number of lanes being carried by the structure 
Number of lanes crossed lanes.under Number of lanes being crossed over by the structure 
Average Daily Traffic ADT Average daily traffic volume for the structure 
Percentage of Trucks in traffic trucks Percentage of trucks comprised in the ADT 
Substructure Grade sub.grade  Gradient of the substructure 
Bridge width excluding guardrails Btwnrails Distance measured across the bridge surface between guardrails 
Bridge width including guardrails Outtoout Distance measured from the outer edge of one guardrail to the other 
Beam height beam.height Depth of the beam, not the height above ground/water 
Material of left rail leftrail  Material for the guardrail 
Material of right rail rightrail  Material for the guardrail 
Bridge length length  The overall length of the bridge 
Water within 0.5 miles water_vici Binary response to the presence of water within 0.5 miles of bridge 
Road Angle RD_ANGLE The Azimuth of the road 
Seal length Seal The combined length of all seals in a bridge 
Seal count Seal.count The total count of seal segments in a bridge 
Acres of forest within 0.5 miles Forest NLCD forested habitat within 0.5 miles. Includes deciduous, coniferous and 

mixed forests 
Acres of developed land within 0.5 miles Dev NLCD developed land cover within 0.5 miles; all NLCD levels 
Acres of agricultural land within 0.5 miles Ag Acreage of hay/pasture and cultivated crops within 0.5 mi 
Acres of barren land within 0.5 miles open Acreage of barren, herbaceous, or scrub landcover within 0.5 mi 
Acres of water habitats within 0.5 miles wet Acreage of open water, woody wetlands, and emergent vegetation 
Bridge height Brg.ht Height of the bridge above road or water surfaces 
Deck materials scored on a continuum Mat_cont2 Continuous ranking of deck materials: concrete=3,steel=2,wood=1 
Concrete Deck Concrete_d Binary coding of deck material 
Steel Deck Steel_d Binary coding of deck material 
Wood Deck Wood_d Binary coding of deck material 
Concrete Beams Concrete_b Binary coding of deck material 
Metal Beams Metal_b Binary coding of deck material 
Wood Beams Wood_b Binary coding of deck material 

 


