
ArcInfo™ 8.2

ArcSDE™ Configuration and Tuning Guide for Oracle®



Copyright © 1999, 2002 ESRI 
All Rights Reserved. 
Printed in the United States of America. 
 
 
The information contained in this document is the exclusive property of ESRI.  This work is protected 
under United States copyright law and the copyright laws of the given countries of origin and applicable 
international laws, treaties, and/or conventions.  No part of this work may be reproduced or transmitted in 
any form or by any means, electronic or mechanical, including photocopying or recording, or by any 
information storage or retrieval system, except as expressly permitted in writing by ESRI.  All requests 
should be sent to Attention: Contracts Manager, ESRI, 380 New York Street, Redlands, CA 92373-8100, 
USA. 
 
The information contained in this document is subject to change without notice. 
 
 

U. S. GOVERNMENT RESTRICTED/LIMITED RIGHTS  
Any software, documentation, and/or data delivered hereunder is subject to the terms of the License 
Agreement.  In no event shall the U.S. Government acquire greater than RESTRICTED/LIMITED 
RIGHTS.  At a minimum, use, duplication, or disclosure by the U.S. Government is subject to restrictions 
as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or 
FAR §12.211/12.212 (Commercial Technical Data/Computer Software); and DFARS §252.227-7015 
(NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable.  
Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373-8100, USA. 
 
ESRI, SDE, ArcView, ArcIMS, and MapObjects are trademarks of ESRI, registered in the United States 
and certain other countries; registration is pending in the European Community.  ArcInfo, ArcSDE, 
ArcCatalog, ArcMap, ArcToolbox, ArcStorm, ArcGIS, ArcEditor, ArcDoc, and Spatial Database Engine 
are trademarks of ESRI.  Other companies and products mentioned herein are trademarks or registered 
trademarks of their respective trademark owners. 
 



iii 

Contents 

Chapter 1 Getting started 1 
Tuning and configuring the Oracle instance 1 
Arranging your data 2 
Creating spatial data in an Oracle database 3 
Connecting to Oracle 3 
National language support 4 
Backup and recovery 4 

Chapter 2 Essential Oracle configuring and tuning 5 
How much time should you spend tuning? 5 
Reducing disk I/O contention 5 
Setting the Oracle initialization parameters 24 
Enabling the optional Oracle startup trigger 28 
Updating Oracle statistics 28 

Chapter 3 Configuring DBTUNE storage parameters 31 
The DBTUNE table 31 
Arranging storage parameters by keyword 33 
Defining the storage parameters 41 
ArcSDE storage parameters for Oracle Spatial 50 
Oracle default parameters 52 
Editing the storage parameters 52 
Converting previous versions of SDE storage parameters into the DBTUNE table 52 
The complete list of ArcSDE 8.1 storage parameters 56 

Chapter 4 Managing tables, feature classes, and raster columns 61 
Data creation 61 
Creating and populating raster columns 66 
Creating views 67 
Exporting data 67 
Schema modification 67 
Using the ArcGIS Desktop ArcCatalog and ArcToolbox applications 67 
Registering a business table 72 

Chapter 5 Connecting to Oracle 75 
Creating the Net8 listener service 76 
Starting the Net8 listener service 78 
Net8 Client installation and configuration 79 
Configuring ArcSDE applications for Oracle direct connections 86 
Connecting to an Oracle net service name or an ArcSDE service 87 
Troubleshooting direct connection problems 89 

Chapter 6 National language support 91 



iv ArcSDE Configuration and Tuning Guide for Oracle 

Oracle database character sets 91 
Setting the NLS_LANG variable on the client 91 

Chapter 7 Backup and recovery 93 
Recording Database Changes 93 
Database backup 97 
Database recovery 99 

Chapter 8 Replication 101 
Setting up advanced replication 101 
Setting up multimaster synchronous replication 103 
Setting up read-only snapshot replication 109 
Editing a replicated database with ArcMap 114 
Using the Oracle replication manager 114 

Appendix A Estimating the size of your tables and indexes 117 
The business table 117 
The feature table 118 
The spatial index table 119 
The version delta tables 119 
The network tables 120 
The raster data tables 123 
The indexes 126 

Appendix B Storing raster data 127 
Raster schema 129 
Creating a raster catalog 135 

Appendix C ArcSDE compressed binary 137 
Compressed binary 137 
The spatial grid index 139 
Creating tables with compressed binary schema 144 
Referential integrity 145 

Appendix D Oracle Spatial geometry type 147 
What is Oracle Spatial? 147 
How does ArcSDE use Oracle Spatial? 149 
How does ArcSDE use existing Oracle Spatial tables? 152 
Interoperability considerations 153 

Index  
 



  1 

 

C H A P T E R  1  

Getting started 

Creating and populating a geodatabase is arguably a simple process, 
especially if you use ESRI�s ArcCatalogTM or ArcToolboxTM to load the data. 
So why is there a configuration and tuning guide? Well, while database 
creation and data loading can be relatively simple, the resulting performance 
may not be acceptable. It requires some effort to build a database that 
performs optimally. Also, as an Oracle® user, you have some choices for 
storing the geometry of your spatial data. This book provides instruction for 
configuring the physical storage parameters of your data in the database 
management system (DBMS) as well as providing information about the 
available options you have to store the geometry. This book also provides 
some important guidelines for configuring and tuning the Oracle instance 
itself. 

Tuning and configuring the Oracle instance 
Building an efficient geodatabase involves properly tuning and configuring the Oracle 
instance and proper arrangement and management of the database's tables and indexes. 
Chapter 2, �Essential Oracle configuring and tuning�, teaches you how to do just that. 

Chapter 2 lists the necessary steps to create a geodatabase. You will learn how to properly 

• Create an Oracle database. 

• Create the tablespaces that will store your tables and indexes. 

• Tune the Oracle instance that will mount and open the database. 

• Manage the optimization statistics of the tables and indexes after they have been created 
and populated. 



2 ArcSDE Configuration and Tuning Guide for Oracle  

Arranging your data 
Every table and index created in a database has a storage configuration. How you store your 
tables and indexes affects your database's performance. 

DBTUNE storage parameters 
How is the storage configuration of the tables and indexes controlled? ArcSDETM reads 
storage parameters from the DBTUNE table to define physical data storage parameters of 
ArcSDE tables and indexes. The storage parameters are grouped into configuration keywords. 
You assign configuration keywords to your data objects (tables and indexes) when you create 
them from an ArcSDE client program. 

Prior to ArcSDE 8.1, configuration keywords were stored in a dbtune.sde file maintained 
under the ArcSDE etc directory. The dbtune.sde file is still used by ArcSDE 8.1 as the initial 
source of storage parameters. When the ArcSDE 8.1 sdesetupora* command executes, the 
configuration parameters are read from the dbtune.sde file and written into the DBTUNE 
table. 

It should also be noted that ArcSDE 8.1 has simplified the storage parameters. Rather than 
matching each Oracle storage parameter with an ArcSDE storage parameter, the ArcSDE 
storage parameters have evolved into configuration strings and represent the entire storage 
configuration for a table or index. Pre-ArcSDE 8.1 storage parameters are automatically 
converted to the new simpler ArcSDE 8.1 storage parameters. The ArcSDE storage parameter 
holds all the Oracle storage parameters of an Oracle CREATE TABLE or CREATE INDEX 
statement. 

The sdedbtune command has been introduced at ArcSDE 8.1 to provide the ArcSDE 
administrator with an easy way to maintain the DBTUNE table. The sdedbtune command 
exports and imports the records of the DBTUNE table to a file in the ArcSDE etc directory. 

The ArcSDE 8.1 installation creates the DBTUNE table. If the dbtune.sde file is absent or 
empty, sdesetupora* creates the DBTUNE table and populates it with default configuration 
keywords representing the minimum ArcSDE configuration. 

In almost all cases, you will populate the table with specific storage parameters for your 
database. Chapter 3, �Configuring DBTUNE storage parameters�, describes in detail the 
DBTUNE table and all possible storage parameters and default configuration keywords. 

Spatial data storage choices 
The DBTUNE storage parameter GEOMETRY_STORAGE allows you to select from 
three possible spatial column storage formats.    

The three possible storage formats are:  

• ArcSDE compressed binary with LONG RAW. The ArcSDE geometry is stored in a 
�LONG RAW� column in a separate feature table. A business table's spatial column is a 
foreign key reference to the records of the feature table. This is the default spatial storage 
format for ArcSDE. 



 Chapter 1 Getting started 3 

• ArcSDE compressed binary with binary large object (BLOB). The schema of this storage 
format is the same as the previous one except for the fact that the geometry is stored in 
the BLOB data type. 

• Oracle Spatial geometry type. Starting at Oracle8i this object-relational model extends 
the database model to include an SDO_GEOMETRY type. Under this storage format, the 
spatial column is an SDO_GEOMETRY data type, and no foreign key reference to 
another table storing a geometry column is required.   

These spatial storage choices are discussed more fully in this book. 

Appendix C, �ArcSDE compressed binary�, describes the ArcSDE compressed binary for 
both LONG RAW and BLOB. 

Appendix D, �Oracle Spatial geometry type�, describes the Oracle Spatial storage format 
supported by ArcSDE.  

Creating spatial data in an Oracle database 
ArcCatalog and ArcToolbox are graphical user interfaces (GUIs) specifically designed to 
simplify the creation and management of a spatial database. These applications provided the 
easiest method for creating spatial data in an Oracle database. With these tools you can 
convert existing ESRI® coverages and shapefile format into ArcSDE feature classes. You can 
also import an existing ArcSDE export file containing the data of a business table, feature 
class, or raster column.  

Multiversioned ArcSDE data can be edited directly with either the ArcCatalog or ArcMapTM 
GUI. 

An alternative approach to creating spatial data in an Oracle database is to use the 
administration tools provided with ArcSDE. 

Chapter 4, �Managing tables, feature classes, and raster columns�, describes the methods used 
to create and maintain spatial data in an Oracle database. 

Connecting to Oracle 
Starting at ArcSDE for Oracle8i� there are two different ways to connect to the Oracle 
instance. ArcSDE clients can either connect to the ArcSDE service, or they may now connect 
directly to the Oracle instance. 

Under the traditional ArcSDE three-tiered architecture, the ArcSDE client connects to the 
ArcSDE service, and the ArcSDE service spawns a dedicated gsrvr process that connects to 
the Oracle instance. The gsrvr process brokers the spatial data between the ArcSDE client and 
the Oracle instance. The ArcSDE service and the gsrvr processes typically reside on the 
Oracle host machine, while ArcSDE clients are typically on remote machines.  

Under the new two-tiered architecture, ArcSDE clients can connect directly to an Oracle 
instance. Essentially the functionality of the gsrvr process has been moved into the ArcSDE 
client. Typically, the ArcSDE clients run on remote desktop machines, while the Oracle 
instance runs on a server class machine. 



4 ArcSDE Configuration and Tuning Guide for Oracle  

Note: The direct connection method can only be used starting at Oracle8i. 

It is possible to use a combination of these two architectures to connect to an Oracle instance. 
With a mixed configuration, some of the ArcSDE clients may be connected directly to the 
Oracle instance, while others connect through an ArcSDE service. 

Figure 1.1 With the traditional three-tiered architecture, the ArcSDE client applications connect to the 
ArcSDE service, which in turn connects to the Oracle instance. Within the two-tiered architecture, the 
ArcSDE client applications connect directly to the Oracle instance. Under a mixed architecture, some of the 
ArcSDE client applications connect to the ArcSDE service, while others connect directly to the Oracle 
instance. 

National language support 
If you intend to support a database that does not use the Oracle default 7-bit United States 
ASCII English (US7ASCII) character set, you will have to take a few extra steps in creating 
the Oracle database. You will also need to set the national language system environment of 
the client applications. 

Chapter 6, �National language support�, describes how to configure the Oracle database and 
set up the application environment. 

Backup and recovery 
Developing and testing a backup strategy is every bit as important as the effort put into 
creating it. A good backup strategy protects the database in the event of a media failure. 

Chapter 7, �Backup and recovery�, lists the ArcSDE files that must be included as part of the 
regular Oracle backup. In addition, suggested Oracle reference materials are listed for further 
reading. 

Oracle

ArcSDE 
clients 

ArcSDE
Service 

Oracle 

ArcSDE 
clients 

ArcSDE
Service 

Oracle 

ArcSDE 
clients 

Three-tiered 
system 

Two-tiered
system 

Mixed two-tiered  
and three-tiered  

system 



5 

C H A P T E R  2  

Essential Oracle configuring 
and tuning  

The performance of an ArcSDE service depends to some extent on how well 
you configure and tune Oracle. This chapter provides basic guidelines for 
tuning an Oracle database for use with an ArcSDE application server. It 
assumes that you have a basic understanding of the Oracle data structures, 
such as tablespaces, tables, and indexes, and that you are proficient with 
Structured Query Language (SQL). We encourage you to refer to Oracle�s 
extensive documentation, in particular Oracle Server Administrator�s Guide, 
Oracle Concepts Guide, and Oracle Server Tuning, for your appropriate 
Oracle release. 

How much time should you spend tuning? 
The appreciable difference between a well-tuned database and one that is not depends on 
how it is used. A database created and used by a single user does not require as much tuning 
as a database that is in constant use by many users. The reason is quite simple�the more 
people using a database, the greater the contention for its resources. 

By definition, tuning is the process of sharing resources among users by configuring the 
components of a database to minimize contention and remove bottlenecks. The more people 
you have accessing your databases, the more effort is required to provide access to a finite 
resource. 

A well-tuned Oracle database makes optimum use of available central processing unit (CPU) 
time and memory while minimizing disk input/output (I/O) contention. Database 
administrators approach this task knowing that each additional hour spent will often return a 
lesser gain in performance. Eventually, they reach a point of diminishing returns, where it is 
impractical to continue tuning; instead, they continue to monitor the server and address 
performance issues as they arise. 

Reducing disk I/O contention 
Disk I/O contention provides the most challenging performance bottleneck. Other than 
purchasing faster disk drives and additional network cards, the solution to this problem lies in 



6 ArcSDE Configuration and Tuning Guide for Oracle 

minimizing disk I/O and balancing it throughout the file system�reducing the possibility of 
one process waiting for another to complete its I/O request. This is often referred to as 
�waiting on I/O�.  

Creating a database using the Oracle installer 
Before installing Oracle and creating the database, decide where to position the software and 
the files of the Oracle database. The Oracle installer program will request this information. 

If you have already installed Oracle and created your database files, you should still read the 
sections that follow. Although it involves more effort, you can move the Oracle database files 
after they have been created. 

Defining the database�s components and their size 
The physical components of an ArcSDE service and the underlying Oracle database, as they 
exist on any given file system, include the ArcSDE and Oracle software and all of the 
physical files (data files, redo log files, and control files) of the Oracle database. Each of the 
components is described below. 

Software 

The software includes both Oracle and ArcSDE. The ArcSDE software occupies 
approximately 32 MB of space. Oracle software can occupy different amounts of disk space 
depending on the version of Oracle and the Oracle components you are installing. Please see 
your Oracle installation notes for further details. 

Control files 

The control files maintain an inventory of an Oracle database's overall physical architecture. 
If they are all lost or destroyed, you must recover the database from your last full backup. 
During the creation of the database, create at least three control files on different disk drives. 
If a disk containing a control file fails, the Oracle server must be shutdown. After the disk 
drive has been repaired, use the operating system copy command to copy another control file 
to the restored location. Starting at Oracle8i, control files are more dynamic and initially 
require about 4 MB of disk space and can grow to more than 10 MB depending on the 
activity of your database. 

The initialization parameter CONTROL_FILE_RECORD_KEEP_TIME controls the size of 
the control files. By default, this parameter is set to 7�instructing Oracle to overwrite its 
reusable section every seven days. For more information on initialization parameters, refer to 
�Setting the Oracle initialization parameters� later in this chapter. 

Online redo log files 

The online redo log files record the changes made to the database. Oracle requires a database 
to have at least three online redo log files present. Our analysis has found that for ArcGIS� 
Desktop applications, the Oracle server performs reliably when the Oracle database has at 
least three online redo log files present. 

An Oracle database that receives regular edits (inserts, updates, or deletes) has highly active 
online redo log files. Writes to the current online redo log file occur according to the 
following schedule: 



 Chapter 2   Essential Oracle configuring and tuning 7 

• The log buffer becomes one third full. 

• Any session issues a commit. 

• Every three seconds if the data block buffer contains nonlogged dirty blocks. 

It is important to physically separate the online redo log files from other data files that also 
experience high rates of I/O. Whenever possible, create the log files on their own disk drives 
or with other relatively static files. 

Each time a log file fills up, a log file switch occurs and Oracle begins writing to the next log 
file. A checkpoint must occur after each log file switch. Much happens within the database 
during a checkpoint, so you will want to lower the frequency of this event. You can and 
should force checkpoints to occur only after a log switch by setting the initialization 
parameters LOG_CHECKPOINT_INTERVAL and LOG_CHECKPOINT_TIMEOUT to 0. 

The size and number of online redo log files in your database depend on the type of database. 
This section will describe three basic kinds of databases: 

• A newly created database. 

• An OnLine Transaction Processing (OLTP)  database. A multiversioned ArcSDE 
database that is constantly edited while it is being queried is an example of an OLTP 
database. 

• A read-only database, meaning a database that, once loaded, receives changes at posted 
intervals. An ArcIMS database is an example of a read-only database. 

Establishing a new spatial database 

With the vast amount of spatial data available as coverage and shapefile format, many spatial 
databases are mass populated immediately following their initial creation. For this type of 
database, create three very large online redo log files and, if possible, place them on a disk 
drive separate from all other data files. In this situation, it is not unreasonable to create log 
files in excess of 1 GB. 

After you have finished loading the data, connect to Oracle as the database administrator 
(DBA) and issue a checkpoint with ALTER SYSTEM CHECKPOINT. Then create new, 
smaller log files. The size and number of the log files depend on what kind of database it will 
become, either OLTP or read-only (see below). 

When loading a database you may turn off archiving. You obtain a performance gain by 
eliminating the periodic copy to the archive log destination following a log switch. It is just as 
easy to recover the database from your load scripts and source data as it is to read the changes 
stored in the archive logs. Remember to turn archiving on after the database has been loaded 
if it is going to be an OLTP database. 

OLTP database 

For these types of databases, the redo log files should be large enough to delay the 
checkpoint as much as possible. Redo log files should also be mirrored to provide maximum 
protection against loss of transaction data. 



8 ArcSDE Configuration and Tuning Guide for Oracle 

If you are archiving the redo logs, create 3 to 10 redo log file groups having log files about 50 
MB in size.  If possible, place them on disk drives that experience very low I/O. The archive 
log file destination should also be placed on a separate and protected disk drive. 

If you are not going to archive your log files, your total space given to redo log files should 
be enough to store all log entries generated between full database backups. If you create 3 
redo log file groups that are 250 MB each, you will have a total of 750 MB of redo log space.  
If you experience a disk failure on a disk storing one of your Oracle data files, you may still 
be able to recover the changes made since the last backup. It is recommended that you turn 
archiving on following the initial creation of the database. 

In either case, you should mirror the online redo log files. Place the mirror copy of the online 
redo log file on a physically separate disk drive from the original copy. 

Note: ESRI does not recommend that NOARCHIVELOG be the normal operating mode of 
an OLTP database due to the risk of losing committed transactions in the event of media 
failure. 

Read-only databases 

Some ArcSDE databases become relatively static following their creation. Such databases 
receive posted intervals of changes over their lifetime. For this type of database, create three 
50 MB online redo log files. Since they're used infrequently, positioning is not as critical as 
for the other two types of databases just described. 

Monitoring the log files 

For all three types of databases, connect as the SYSTEM user and issue the following query 
to determine if your online redo log files are large enough and if the checkpoint frequency is 
occurring at a desirable interval: 
SELECT TO_CHAR(FIRST_TIME,’dd-mon-yy hh24:mi:ss’) FROM V$LOGHIST;

This is an example of the output: 
TO_CHAR(FIRST_TIME)
------------------
04-nov-99 13:15:14
04-nov-99 13:21:04
04-nov-99 13:27:04
04-nov-99 13:32:36

The example output shows the log switches are occurring at intervals greater than five 
minutes, the interval at which Oracle issues the checkpoints. If the interval was less than five 
minutes, the DBA should consider increasing the size of the online redo log files. 

Modifying the online redo log files 

To change the size of the log files, you must actually create new log file groups of the correct 
size, make one of the new groups active, and drop the old log file groups. Remember, Oracle 
requires that you always have at least three log file groups active.  

Note: ESRI recommends that you always mirror the online redo log file groups across 
physically separate disk drives. 

Follow this procedure using the SQL statements listed below. 



 Chapter 2   Essential Oracle configuring and tuning 9 

1. Add the log files with their new size: 
ALTER DATABASE ADD LOGFILE
('<path to log file member1>','<path to log file member2>', …)
SIZE <size>;

2. Determine which of the existing log file groups is current: 
SELECT GROUP#,STATUS FROM V$LOG;

GROUP# STATUS
--------- ----------------

1 INACTIVE
2 CURRENT
3 INACTIVE

3. Issue the correct number of manual log switches required to make a new log file group 
current: 

ALTER SYSTEM SWITCH LOGFILE;

4. Remove the old log file groups, identifying them by their group numbers. You can get a 
log file�s group number by querying the V$LOG table (see step 2): 

ALTER DATABASE DROP LOGFILE GROUP <group number>;

Tablespace data files  

The tablespace represents Oracle�s logical storage container. Each tablespace has assigned to 
it one or more physical data files. 

System tablespace 

The system tablespace stores Oracle�s data dictionary. Each time Oracle parses a SQL 
statement, it checks metadata concerning data objects referenced by the statement from the 
data dictionary. Among other things, Oracle ensures the data objects actually exist and the 
user has the proper privileges.  

Place the SYSTEM tablespace on a disk of moderate activity. The default size of the 
SYSTEM tablespace for Oracle8i is 175 MB.  

Rollback tablespaces 

The rollback tablespaces store rollback segments, which maintain the undo image needed to 
roll back aborted transactions. Rollback segments also provide read consistency for queries 
started prior to a transaction. 

Determine the storage parameters of the rollback tablespace and the rollback segments by the 
type of transactions using them. ArcSDE has three basic categories of transactions. 

Loading transactions�The initial loading of data into an ArcSDE database generally 
entails converting an existing storage format such as an ArcSDE coverage, shapefile, SDE 
export file, or file format provided by a data vendor into an ArcSDE feature class. 

To maximize throughput of the load process, ArcSDE provides a commit interval, allowing 
you to batch inserts. The commit interval also serves to regulate transaction size. The commit 
interval defaults to 5,000 features and is set with the ArcSDE giomgr.defs AUTOCOMMIT 
parameter. Refer to Managing ArcSDE Services for more information on the 
AUTOCOMMIT parameter. When loading data this interval uses approximately 2 MB of 
rollback segment space. Therefore, we recommend setting the extent size of the rollback 



10 ArcSDE Configuration and Tuning Guide for Oracle 

segment to 2 MB when you are loading data into your database. Create a 50 MB rollback 
tablespace and assign two rollback segments to that tablespace. 

If more than two processes are used to load data, create an additional rollback tablespace on a 
separate disk drive and create two rollback segments on it. The addition of the rollback 
tablespace reduces contention for the rollback segment header: 
create tablespace rbs ′<path to data file>′ size 50M extent management local
uniform size 2M;

create rollback segment ro1 tablespace rbs storage (minextents 10);

create rollback segment ro2 tablespace rbs storage (minextents 10);

Version edit transactions�The data maintenance transactions of the ArcGIS system tend to 
be smaller than loading transactions. We recommend that the extent size of the rollback 
segments assigned to these transactions be approximately 256 KB.  

Create a 50 MB rollback tablespace and assign four rollback segments to that tablespace. 
Each rollback segment can optimally support the concurrent transactions of six users, so this 
configuration will support 24 concurrent users: 
create tablespace rbs1 ′<path to data file>′ size 50M extent management local
uniform size 256K;

create rollback segment r01 tablespace rbs1 storage (minextents 20);

create rollback segment r02 tablespace rbs1 storage (minextents 20);

create rollback segment r03 tablespace rbs1 storage (minextents 20);

create rollback segment r04 tablespace rbs1 storage (minextents 20);

You may need to create additional rollback segment tablespaces depending on the number of 
concurrent transactions you expect the database to support. Each transaction is assigned to a 
rollback segment. A rollback segment may be assigned more than one transaction at a time. 
Oracle evenly distributes transactions among the available rollback segments.  

After the database has been started and is in use for a period of time, query the 
V$ROLLSTAT table to determine if the transaction waits are greater than 4 percent of the 
transaction gets: 
select ((sum(waits) / sum(gets)) * 100) from v$rollstat;

If the result of this query is larger than 4 percent, you should create additional rollback 
tablespaces on another disk drive and add more rollback segments to them. 

Version compress transactions�Periodically, the ArcSDE administrator is required to 
compress the states of a multiversioned database to reduce the number of records held by the 
delta tables. To guarantee the consistency of the database, the transactions of the compress 
operation are large, requiring an equally large transaction. Therefore, if you are maintaining a 
multiversioned database you should create a separate rollback tablespace that is at least 
300 MB in size and assign one rollback segment to it. Set the name of this rollback segment 
in the COMPRESS_ROLLBACK_SEGMENT storage parameter of the DEFAULTS dbtune 
configuration keyword. If this parameter is not set, the next available online rollback segment 
will be used. If the rollback segment is not large enough, the compress operation will fail 
since the transaction will be forced to roll back.  

The extent size of the version compress rollback segment should be set to 100 MB: 
create tablespace big_o_rb_tspace ′<path to data file>′
size 301M extent management local uniform size 100M;



 Chapter 2   Essential Oracle configuring and tuning 11 

create rollback segment big_o_rbspace tablespace big_o_rb_tspace
storage (minextents 3);

The rollback segment optimal parameter 

ESRI recommends that you not set the rollback segment optimal storage parameter. The 
optimal parameter causes a rollback segment to shrink whenever it exceeds the optimal 
threshold. Constantly shrinking the rollback segments will significantly degrade 
performance. As a rule, if you find that your transactions are rolled back because your 
rollback segments fill up, you should reduce the size of your transactions or increase the size 
of the rollback tablespaces rather than set the optimal parameter. Large transactions delay 
recovery, increase overhead for queries that must access them for read consistency, and 
increase overhead for other transactions that must allocate additional extents. ArcSDE allows 
you to limit the size of your transactions by setting the giomgr.defs AUTOCOMMIT 
parameter. 

Temporary tablespace 

Oracle applications need temporary tablespace whenever they perform a sort that exceeds the 
memory allocated to the sort area. The sort area is memory allocated to the user�s Program 
Global Area (PGA) and is controlled by the init.ora parameter SORT_AREA_SIZE. Sorts 
occur when indexes are created (Oracle:CREATE INDEX statement), statistics are generated 
(ANALYZE statement), and queries require on-the-fly sorting (SELECT statements that 
include table joins, ORDER BY clauses, and GROUP BY clauses). 

When establishing a new database, the temporary tablespace will need to be large enough to 
create the indexes. Oracle requires twice as much temporary space to create the indexes as it 
does to store it. Therefore, determine the size of your largest index.  

If you are using the ArcSDE compressed binary format to store your spatial data, the 
S<n>_IX1 index on the spatial index table is likely to be your largest index. Refer to 
Appendix A, �Estimating the size of your tables and indexes�, for information on determining 
the size of your indexes. 

If you are storing your spatial data as an Oracle Spatial data type, refer to Appendix A, 
�Tuning Tips and Sample SQL Scripts�, of the Oracle Spatial User's Guide and Reference 
for more information on sizing temporary tablespace for the construction of the Oracle 
Spatial data type indexes. 

After the data has been loaded and the indexes created, temporary tablespace is used for data 
sorts. Temporary tablespace is used when sorts exceed the PGA's sort area, which is allocated 
according to the init.ora SORT_AREA_SIZE parameter.  

The SORT_AREA_SIZE should be increased to perhaps as much as 100 MB during the 
construction of a database, when it is needed to create large indexes and analyze tables. 
During database construction, it is generally a single session that performs the work. If 
multiple sessions are used to construct the database, the SORT_AREA_SIZE should be 
scaled down to avoid memory contention. 

After the database is ready for use, reduce the SORT_AREA_SIZE to the Oracle default 
value of 64 KB if you are storing your spatial data as compressed binary.   



12 ArcSDE Configuration and Tuning Guide for Oracle 

The temporary tablespace can be mixed with other data files of higher I/O since there is a low 
risk of disk I/O contention. 

By default, the Oracle installation process creates the temporary tablespace stored in a data 
file that has logging turned on. Since this tablespace holds temporary data, for which there is 
no requirement to maintain an archive, drop the tablespace and re-create it with a tempfile 
that has logging turned off. 

Always create the temporary tablespace with the syntax: 
CREATE TEMPORARY TABLESPACE <name> TEMPFILE '<path to temporary data file>'
SIZE 300M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 272K;

rather than the Oracle default syntax: 
CREATE TABLESPACE <name> DATAFILE '<path to temporary data file>' SIZE 300M
TEMPORARY DEFAULT STORAGE (INITIAL 128K NEXT 128K MINEXTENTS 1 MAXEXTENTS 121
PCTINCREASE 0);

If you use the latter syntax, the temporary segments are logged and must be recovered in the 
event of a media failure. The former (and preferred syntax) is created with locally managed 
extents, which Oracle allocates more efficiently. 

Set the extent size of the temporary tablespace to a multiple of the SORT_AREA_SIZE plus 
the size of an Oracle data block. For example, if you have set your SORT_AREA_SIZE to 
the Oracle default 64 KB, and you use the recommended 16 KB DB_BLOCK_SIZE, you 
should set your temporary tablespace extents to either 272 KB, 336 KB, or 400 KB.  Always 
use an extent size that is at least four times larger than your SORT_AREA_SIZE plus a data 
block. Doing so reduces the allocation of temporary extents. 

ArcSDE system tablespaces 

The ArcSDE system tablespaces store the ArcSDE and geodatabase system tables and 
indexes created by the ArcSDE sdesetupora* command. The number and placement of the 
tablespaces depend on what you intend to use the ArcSDE database for. 

The placement of these tables and their indexes is controlled by the storage parameters of the 
dbtune DATA_DICTIONARY configuration keyword. The DATA_DICTIONARY 
keyword is used exclusively for the creation of the ArcSDE and geodatabase system tables.    

Multiversioned databases that support ArcGIS OLTP applications have a highly active state-
tree. The state-tree maintains the states or the change history of all editing operations that 
have occurred on tables and feature classes registered as multiversioned. Four ArcSDE 
system tables�STATES, STATE_LINEAGES, MVTABLES_MODIFIED, and 
VERSIONS�maintain the transaction information of the versioned database's state-tree. In 
this type of environment these four tables and their indexes have their own 
DATA_DICTIONARY configuration keyword storage parameters. 

In an active multiversioned database, the STATES_LINEAGE table can easily grow to 
between one and two million records, occupying between 26 and 52 MB of tablespace. The 
STATES table is much smaller, storing between 5,000 to 10,000 records, occupying between 
2 to 4 MB of tablespace. The MVTABLES_MODIFIED table typically has between 50,000 
and 100,000 records occupying between 1 to 2 MB of tablespace. The VERSIONS table is 
usually quite small with less than 100 rows occupying about 64 KB.  

For most applications you can probably create a tablespace for the ArcSDE system tables and 
one for their indexes on different disk drives and set the DATA_DICTIONARY parameters 



 Chapter 2   Essential Oracle configuring and tuning 13 

accordingly. For highly active editing ArcGIS applications, the STATES, 
STATES_LINEAGE, and MVTABLES_MODIFIED tables and their indexes need to be 
created in separate tablespaces and positioned across the file system to minimize disk I/O 
contention. 

If you are not using a multiversioned database, the aforementioned tables are dormant, in 
which case the tables can be stored with the other ArcSDE system tables and indexes. 

The remainder of the ArcSDE and geodatabase system tables store information relating to 
schema changes. They are relatively small and have a low frequency of I/O. They should be 
grouped together in two separate tablespaces�one for tables and one for indexes�and 
positioned with other tablespaces of high activity. 

To summarize, if you are creating an active multiversioned database, create a 70 MB  
tablespace to store ArcSDE tables. On a separate disk drive create a 30 MB tablespace for the  
tables indexes. 

If you are not going to use a multiversioned database, reduce the extent sizes of the 
STATE_LINEAGES, STATES, and MVTABLES_MODIFIED tables and their indexes to 
40 KB. Create two 5-MB tablespaces on separate disk drives�one for the tables and one for 
the indexes.  

For more information about the DATA_DICTIONARY configuration keyword, see Chapter 
3, �Configuring DBTUNE storage parameters�.  

Business table and index tablespaces 

The Oracle installation creates the USER tablespace as the default user tablespace. There is 
no requirement by Oracle that you use the USER tablespace, and you may drop it if you 
wish. If you are building a sizable, permanent spatial database, create tablespaces with names 
reflecting the data they will store. 

The B_STORAGE DBTUNE storage parameter holds business table storage parameters. 

The 15 MB INDX tablespace created by the Oracle installation process can be used to store 
indexes. However, for large spatial databases you will need to create index tablespaces whose 
name and size reflect the indexes they store. You may drop the Oracle-generated INDX 
tablespace if you do not intend to use it. 

The B_INDEX_USER DBTUNE storage parameter holds the storage parameters of the 
business table indexes that you create. 

Arranging the database components 
Minimizing disk I/O contention is achieved by balancing disk I/O across the file system�
positioning frequently accessed �hot� files with infrequently accessed �cold� files. Estimate 
the size of all the database components and determine their relative rates of access. Position 
the components given the amount of disk space available and the size and number of disk 
drives. Diagramming the disk drives and labeling them with the components help keep track 
of the location of each component. Have the diagram handy when you create the Oracle 
database. 



14 ArcSDE Configuration and Tuning Guide for Oracle 

Establish a maximum data file size 

Choose the maximum size of a data file. It is a good policy to set a maximum size limit for 
your data files because doing so facilitates interchanging them. After the database has been in 
use for some time and a �normal� pattern of usage has been established, heavily accessed 
data files sharing the same disk drive need to be separated. They can only be interchanged 
with medium- or low-accessed data files of a similar size (unless you have a lot of free space 
on your disk drives). 

A common maximum size is 512 MB, but with the advent of more advanced backup 
technology, larger sizes are being adopted. Some operating systems have a maximum file size 
of 2 GB, so check your operating system documentation for further details. 

Separate tables from their indexes 

Each time Oracle accesses the index to locate a row, it must then access the table to fetch the 
referenced row. The disk head must travel between the index and the table if they are stored 
on the same disk. 

Whenever possible, store indexes and their corresponding tables in separate tablespaces, on 
physically separate disk drives. Doing this eliminates disk head travel that occurs when the 
data blocks of the table and its indexes are accessed at the same time. 

Determine the size of the tables and indexes 

To determine the sizes of tables and indexes stored in an ArcSDE database, refer to the 
formulas listed in Appendix A, Estimating the size of your tables and indexes. 

Establish the threshold data object size 

As a rule, small data objects, whether they are tables or indexes, are stored together in the 
same tablespace, while larger data objects are stored by themselves in their own tablespace. 
Decide how large a data object must be before it requires its own tablespace. Generally, the 
threshold data object size corresponds in part to the maximum data file size. Data objects 
capable of filling the maximum size data file should be stored in their own tablespace. Data 
objects that approach this limit should also be considered. Since each new tablespace requires 
its own data file, you should strive to keep the number of tablespaces to a minimum to reduce 
the number of data file headers that must be updated during a database checkpoint. 

Separate the tables and indexes into those that require their own tablespaces and those that 
will be grouped together. Never store tables and their indexes together in the same 
tablespace. 

Store small tables and indexes by access 

Base the decision of which small tables to store together in the same tablespace on expected 
access. Store tables of high access in one tablespace and tables of low access in another. 
Doing so allows you to position the data files of the high-access tablespaces with low-access 
data files. This same rule applies to indexes. They, too, should be divided by access. 

Create tablespaces containing a single table or index according to the size of the table or 
index they contain. A tablespace may be large enough that it requires several data files. 
Therefore, if the maximum data file size allowed is 2 GB and a tablespace must store a table 



 Chapter 2   Essential Oracle configuring and tuning 15 

or index that will grow to 7 GB, the tablespace is created with a 2 GB data file. Then the 
tablespace is altered three times to add two 2 GB data files and one 1 GB data file. 

Example: 
create tablespace roads datafile '/gis1/oradata/roads1.dbf' size 2048M
extent management local uniform size 1024M;

alter tablespace roads add datafile '/gis2/oradata/roads2.dbf' size 2048M;

alter tablespace roads add datafile '/gis3/oradata/roads3.dbf' size 2048M;

alter tablespace roads add datafile '/gis4/oradata/roads4.dbf' size 1024M;

Find the sum of the sizes of the objects that you will store together to determine the size of 
their tablespaces. If you expect the table or index to grow in the future, be sure to allow for 
that as well. 

Number of extents 

Keep the number of tablespace extents for tables and indexes less than 1,000 to minimize 
overhead associated with each additional extent. In fact, creating a table or index with 
MAXEXTENTS set to UNLIMITED can render a database unusable if the table or index 
acquires more extents than the database can manage (~10,000). As a general rule of thumb, 
you should try to keep the number of extents to a minimum; however, you do not need to 
fanatically maintain a single extent for each object. 

Positioning the files 

Once you have estimated the size of the data files, determine where to position them on the 
file system. This section provides a list of guidelines that you may not be able to follow in its 
entirety, given the number and size of your disk drives. The guidelines have been listed in 
order of importance�from the greatest to the least. 

Store the online redo log files on their own disk drive. In a database that is frequently edited, 
the online redo log files are the most active in terms of I/O. If you cannot position them on 
their own disk drive, store them with other files that experience relatively low rates of I/O. 

After the indexes have been constructed, ArcSDE does not use temporary tablespace if  
SORT_AREA_SIZE has been set to the recommended 512 KB.  Therefore, the temporary 
tablespace can be positioned with other data files of high activity, provided your other 
applications do not use it. 

Keep the rollback segment data files separate from the redo log files. The rollback segments 
are frequently accessed when a database is edited. Try to separate these data files from other 
highly active data. Doing so improves the rate at which Oracle is able to process transactions. 

Position the system tablespace data file with other data files that experience high I/O activity. 
The access to these data dictionary tables is moderately low because their data is cached in 
the shared pool and the buffer cache. 

Position your business table and index data files according to their expected I/O. If you 
expect a particular data file to experience a high degree of I/O, try to position it alone on its 
own disk drive or with other data files of low to moderate activity. 

The spatial index table of the ArcSDE compressed binary storage format is written to 
whenever new features are added to a feature, but the table is never read. The spatial index 



16 ArcSDE Configuration and Tuning Guide for Oracle 

table's S<n>_IX1 index is a covering index; therefore, Oracle reads the values from the index 
and never accesses the table. Since the table is never read from, the I/O is low, so the 
positioning of this table is unimportant. 

Repositioning data files 

After the database has been in use for a while, you can examine the reads and writes to the 
data files with the following query: 
select vd.name, vs.phyrds, vs.phywrts
from v$datafile vd, v$filestat vs
where vs.file# = vd.file#;

If you find that some disk drives are receiving a higher percentage of the I/O than others, you 
can balance the I/O by repositioning the data files. The data files are repositioned by shutting 
down the Oracle instance, performing a full backup, and moving the files using operating 
system commands to copy them from one disk to another. Using SQL*Plus, the instance is 
started, and the database is mounted but not opened: 
startup mount

Before the database can be opened, you must update the control files with the new locations 
of the data files using the alter database statement: 
alter database rename datafile ‘old name’ to ‘new name’;

Once all of the new locations have been entered, you may open the database. 
alter database open;

Creating the database  
The database should be created after the location of the database files has been determined. 
At the very least, you should assign the locations for the rollback segment, temporary and 
system tablespace data files, and the control files and online redo log files.  

Once you have mapped out the way you want the files to be arranged on disk, create the 
database. First, install the Oracle and ArcSDE software. 

Refer to the Oracle installation guide for instructions on installing the Oracle software and the 
ArcSDE installation guide for instructions on installing the ArcSDE software. 

The Oracle installation provides you with the opportunity to create the Oracle database 
following the installation of the software. If you elect to do so, select the custom database 
option so that you can position the Oracle files on the disks according to your layout. 

Starting with Oracle8i, the database creation scripts are not generated automatically. Instead, 
you are given the choice of generating the scripts and creating the database later or creating 
the database immediately without creating the scripts. If you want the scripts available as a 
record of how the database was created, then you will have to generate the scripts and run 
them following the completion of the installation process. 

The control files, online redo log files, and Oracle database tablespaces (system, rollback, and 
temporary) are created during the Oracle installation process. The USER and INDX 
tablespaces created by the Oracle installation process may be dropped if you do not wish to 
use them. 



 Chapter 2   Essential Oracle configuring and tuning 17 

Setting the data block size 

During the installation process, you will be prompted to enter the data block size. Data blocks 
are the Oracle atomic unit of data transfer. After a database has been created, you cannot 
change the size of the data blocks. It is important that it be set correctly at this time.  

The minimum recommended data block size for ArcSDE applications is 8 KB; however, 
16 KB have been found to deliver a higher overall level of performance for databases storing 
mostly linear or area features. 

If you are not going to let the Oracle installer create the database, you can set the data block 
size with the DB_BLOCK_SIZE initialization parameter. Set the DB_BLOCK_SIZE to at 
least  
8 KB: 
DB_BLOCK_SIZE = 8192

For more information on the init.ora file, refer to Setting the Oracle initialization parameters 
in this chapter.  

Creating the business and index tablespaces 

Once you have completed the installation of Oracle, create the tablespaces that store your 
tables and indexes. You may want to write a SQL script and execute it as the SYSTEM user 
within SQL* Plus.  Alternatively, you could use the graphical user interface of the Oracle 
Enterprise Manager�s Storage Manager to perform this task. 

Creating the Oracle SDE user space 
During the installation of ArcSDE, you will create the Oracle SDE user and the SDE user�s 
default tablespace to store the geodatabase system tables. 

Updating the storage parameters of the DATA_DICTIONARY keyword 

Update the storage parameters of the DATA_DICTIONARY configuration keyword in the 
dbtune.sde file located in the SDEHOME/etc directory on UNIX® systems. On Windows 
NT® systems, the install shield will prompt you for the location of this file (see the ArcSDE 
for Oracle Installation Guide for more information). Set the extent sizes and the names of the 
tablespaces the geodatabase system tables will be stored in. The geodatabase system tables 
are created by the ArcSDE sdesetupora* administration command. 

Installing the optional sdesys_util package 

The optional sdesys_util package, found under the SDEHOME/tools/oracle directory can be 
installed in the Oracle sys users schema. This package contains stored procedures that allow 
you to create and manage the sde user. 

To install the sdesys_util package, log in as the Oracle sys user and execute the package 
specification followed by its body: 
connect sys/<password>

@sdesys_util.sps

Package created.

@sdesys_util.spb



18 ArcSDE Configuration and Tuning Guide for Oracle 

Package body created.

You can allow a user other than sys to execute the stored procedures of the sdesys_util 
package by executing the sdesys_util.grant_admin_privs that grants the necessary privileges. 
The usage of the grant_admin_privs stored procedure is as follows: 
grant_admin_privs (

administrator IN varchar2(30) DEFAULT ‘system’
)

If you do not specify any arguments, the privileges are granted to the Oracle system user: 
connect sys/<password>
exec sdesys_util.grant_admin_privs(‘JOE’);

If a user, other than sys, executes an sdesys_util stored procedure, they must qualify it with 
the sys users schema. For example, the system user would execute the grant_pipes_locks 
stored procedure as follows: 
connect system/<password>
exec sys.sdesys_util.grant_pipes_locks;

Granting execute privileges on DBMS_PIPE and DBMS_LOCKS to PUBLIC 

ArcSDE uses the stored procedures of the DBMS_PIPE and DBMS_LOCK Oracle built-in 
packages. ArcSDE calls stored procedures of the DBMS_PIPE package when it stores and 
transmits ArcSDE rowids. ArcSDE calls the stored procedures of the DBMS_LOCK 
package to add a row to the PROCESS_INFORMATION table whenever an ArcSDE 
session connects. Your Oracle DBA must connect to the Oracle instance as the SYS user and 
grant execute on these packages to PUBLIC: 
connect sys/<password>
grant execute on dbms_pipe to public;
grant execute on dbms_lock to public;

Alternatively, if you have installed the sdesys_util package you can connect as the Oracle sys 
user and execute its sdesys_util.grant_pipes_locks stored procedure: 
connect sys/<password>
exec sdesys_util.grant_pipes_locks;

Creating the Oracle sde user 

Before you run the sdesetupora* command to create the geodatabase system tables on a 
UNIX system the sde Oracle user must be created. The Windows NT installation of ArcSDE 
has automated this procedure. However, you can, if you wish, create the sde Oracle user prior 
to installing ArcSDE. 

Like any Oracle user the sde user requires a default tablespace. Review the previous 
discussion of the ArcSDE system tablespaces to determine how many tablespaces you will 
need to store your ArcSDE system data. 

Use the following SQL commands to create the sde user. Substitute your own entries for the 
sde user�s password, default tablespace and temporary tablespace: 
connect system/<password>

create user sde
identified by <password>
default tablespace <sde user’s default tablespace>
temporary tablespace <temporary tablespace>;

Alternatively, you can use the sys user�s SDESYS.UTIL_CREATE_SDE stored procedure 
to create the SDE Oracle user. The usage for CREATE_SDE_USER is:  



 Chapter 2   Essential Oracle configuring and tuning 19 

SDESYS_UTIL.CREATE_SDE_USER(
sdedatafile IN VARCHAR2(256) DEFAULT NULL,
sdetabspace IN VARCHAR2(30) DEFAULT ‘SDE’,
temptabspace IN VARCHAR2(30) DEFAULT ‘TEMP’,
sdepasswd IN VARCHAR2(30) DEFAULT ‘SDE’);

Executing this stored procedure without any arguments will create the SDE Oracle user with 
a default tablespace set to SDE, a temporary tablespace set to TEMP, and the password set to 
SDE:  
connect sys/<password>
exec sdesys_util.create_sde_user;

CREATE_SDE_USER creates the SDE user�s default tablespace if you specify the location 
of the tablespace�s data file. 

If the default tablespace already exists, CREATE_SDE_USER will check it to make sure that 
it is big enough. If it is less than 100 MB, CREATE_SDE_USER issues a warning message 
telling you to either increase the size of the default tablespace or decrease the initial extents of 
the state, state_lineages, and mvtables DATA_DICTIONARY configuration keyword 
storage parameters. If you have configured these storage parameters to store these tables and 
their indexes in other tablespaces, then you may disregard this warning. The sdesetupora* 
command will fail if it cannot find enough space to store the geodatabase system tables and 
indexes.      

Granting install privileges to the sde Oracle user 

If you are creating a fresh install of ArcSDE, grant the following list of privileges to the SDE 
user. These privileges must be granted to the SDE user:  

SELECT ANY TABLE
CREATE SESSION
CREATE TABLE
CREATE PROCEDURE
CREATE SEQUENCE
CREATE TRIGGER
UNLIMITED TABLESPACE

Alternatively, you can call the GRANT_SDE_INSTALL_PRIVS stored procedure (found in 
the SDESYS_UTIL package) to grant these privileges to the SDE Oracle user:  
connect sys/password
exec sdesys_util.grant_sde_install_privs;

Note: ArcSDE requires the Oracle SDE user be granted SELECT ANY TABLE privileges. 
Granting SELECT ANY TABLE privileges to the SDE user allows it to auto-register Oracle 
Spatial tables. Auto registration occurs when an ArcSDE application performs a layer list and 
detects an Oracle Spatial table that is listed in the Oracle Spatial metadata table that is not 
listed in the SDE.LAYERS table. The SDE user must be able to confirm the presence of the 
Oracle Spatial table before auto-registering it. Since there is no guarantee that the owner of 
the table has granted select permissions on the table to the SDE user, the SDE user must be 
granted SELECT ANY TABLES privileges. 

Granting upgrade privileges to the SDE Oracle user 

To upgrade a previous version of an ArcSDE database, grant the following list of privileges 
to complete the upgrade process. Following the successful completion of the upgrade 
process, you can revoke these privileges and grant the previous list of privileges to the SDE 
Oracle user. 



20 ArcSDE Configuration and Tuning Guide for Oracle 

CREATE ANY SESSION
SELECT ANY TABLE
ALTER ANY TABLE
CREATE ANY INDEX
ALTER ANY INDEX
DROP ANY INDEX
CREATE ANY SEQUENCE
CREATE ANY PROCEDURE
EXECUTE ANY PROCEDURE
DROP ANY PROCEDURE
SELECT ANY SEQUENCE
CREATE ANY VIEW
DROP ANY VIEW
CREATE ANY TRIGGER
DROP ANY SEQUENCE
ANALYZE ANY TABLE
UNLIMITED TABLESPACE

You can grant this list of privileges by executing the 
SDESYS_UTIL.GRANT_SDE_UPGRADE_PRIVS stored procedure: 
connect sys/<password>
exec sdesys_util.grant_sde_upgrade_privs;

The upgrade privileges can be revoked and the install privileges granted by executing the 
SDESYS_UTIL.REVOKE_SDE_UPGRADE_PRIVS stored procedure: 
connect sys/<password>
exec sdesys_util.revoke_sde_upgrade_privs;

Note: Previous versions of ArcSDE maintained the locks in memory. Therefore, to upgrade 
the ArcSDE database from a previous version to ArcSDE, the SDE user must be granted 
privileges to create the sequences and triggers in the schemas of users who own tables listed 
in the TABLE_REGISTRY, LAYERS, or RASTER_COLUMNS tables. Following the 
completion of a successful upgrade, the privileges can be revoked, and lesser privileges 
assigned for the install operation can be granted. 

Creating Oracle users 
The creation of an ArcSDE Oracle user differs from that of other Oracle users that you 
normally create. Each ArcSDE user must own two tables for storing SDE log file data�
SDE_LOGFILES and SDE_LOGFILE_DATA. The SDE log file tables and their associated 
indexes, sequences, and triggers can be created when the ArcSDE Oracle user is created. If 
they are not, ArcSDE detects their absence and attempts to create them. In this case, the 
ArcSDE Oracle user must be able to create the tables when they connect for the first time. 
ArcSDE returns an SE_NO_ACCESS (-15) error message if the user does not have the 
required privileges to create the tables, indexes, sequences and triggers associated with the 
SDE log files. 

The SDE_LOGFILES and SDE_LOGFILE_DATA tables and associated indexes are created 
according to the SDE log file storage parameters specified in the DBTUNE table. For more 
information about these storage parameters, see Chapter 3, �Configuring DBTUNE storage 
parameters�. 

The following list of privileges is required for all ArcSDE users connecting for the first time: 
CREATE SESSION
CREATE TABLE
CREATE PROCEDURE
CREATE SEQUENCE
CREATE TRIGGER
UNLIMITED TABLESPACE



 Chapter 2   Essential Oracle configuring and tuning 21 

Once the user has successfully connected for the first time, privileges can be revoked since 
the SDE_LOGFILES and SDE_LOGFILE_DATA tables now exist. The table below lists 
the type of users DBAs typically create and the privileges assigned to them. 

Title Description Privileges 
Viewer The viewer is allowed to connect 

to an ArcSDE database. Other 
users grant select privileges on 
their tables and feature classes to 
the viewer or to the public role. 
The DBA can create a role that 
can be granted select privileges 
on data objects owned by other 
users. The role can be granted to 
the viewer. 

CREATE SESSION 

SELECT on other user's data objects 

Editor The editor is allowed to connect to 
an ArcSDE database. Other users 
grant select and insert, update, or 
delete on data objects they own to 
the editor. The DBA may create a 
role that can be granted select, 
insert, update, and delete 
privileges on data objects owned 
by other users. The role can be 
granted to the editor.   

CREATE SESSION 

SELECT, INSERT, UPDATE, or DELETE on 
other user's data objects  

Owner The owner is allowed to connect 
to an ArcSDE database and 
create data objects. The owner 
may grant privileges on their 
objects to other users or roles. 
Other users can grant select and 
insert, update, or delete on data 
objects they own to creator. The 
DBA may create a role that can be 
granted select, insert, update, and 
delete privileges on data objects 
owned by other users. The role 
can be granted to the owner. 

CREATE SESSION 

CREATE TABLE 

CREATE PROCEDURE 

CREATE SEQUENCE 

CREATE TRIGGER 

UNLIMITED TABLESPACE 

SELECT, INSERT, UPDATE, or DELETE on 
other user's objects 

  

Manually creating ArcSDE Oracle users  

When you create an Oracle user, assign your users a default tablespace and a temporary 
tablespace.  

Note: If you do not specifically assign a temporary or default tablespace to a user, Oracle 
uses the SYSTEM tablespace by default. Since the SYSTEM tablespace holds the Oracle 
system tables, a vital part of the database, it is important not to use it for anything else. Since 
the data sets managed by ArcSDE may be large, using the SYSTEM tablespace to store this 
data could completely fill the SYSTEM tablespace and cause the Oracle database to crash.  

This is the Oracle user creation syntax:  
create user <username>
identified by <password>
default tablespace <default tablespace>
temporary tablespace <temporary tablespace>
quota unlimited on <default tablespace>
quota unlimited on <temporary tablespace>;



22 ArcSDE Configuration and Tuning Guide for Oracle 

These are the basic privileges that must be granted to all ArcSDE Oracle users until they 
connect for the first time: 

CREATE SESSION
CREATE TABLE
CREATE PROCEDURE
CREATE SEQUENCE
CREATE TRIGGER
UNLIMITED TABLESPACE

Connect as the user to create the SDE_LOGFILES and SDE_LOGFILE_DATA tables. To 
create a user of type VIEWER or EDITOR, revoke the following list of privileges after the 
SDE log file tables have been created: 

CREATE TABLE
CREATE PROCEDURE
CREATE SEQUENCE
CREATE TRIGGER
UNLIMITED TABLESPACE

For the VIEWER, grant SELECT privileges on the specific data objects you wish the user to 
have permission to display or query. If you have a large community of viewers, create a role 
that can be granted SELECT access on the data objects.  

To grant or revoke SELECT access to complex data objects, such as feature datasets or 
standalone feature classes, you should use ArcCatalog. Use the grant or revoke operation of 
the sdelayer administration command to grant or revoke SELECT access if you have not 
installed ArcGIS Desktop. The access can be granted directly to a user or to a role.  

For the editor, grant SELECT privileges and editing (insert, update, or delete) privileges on 
the specific data objects you wish the users to have permissions to query and edit. If you have 
many editors, save time by creating a role and granting the select and edit privileges to it. 
Then grant the role to each editor. 

In this example, the DBA creates the user Sam with the password TREETOP. The default 
tablespace in which Sam will create his tables and indexes that are not assigned a tablespace 
is GIS1.  

Note: The ArcSDE Administrator creates DBTUNE configuration keywords that hold the 
tablespace and other storage parameters Oracle assigns to tables and indexes when it creates 
them. For more information about DBTUNE configuration keywords and how to create and 
use them, see Chapter 3, �Configuring DBTUNE storage parameters�.  

The temporary tablespace used when Sam creates indexes and performs sorts is TEMP1: 
create user sam
identified by treetop
default tablespace gis1
temporary tablespace temp1
quota unlimited on gis1
quota unlimited on temp1;

To create Sam�s log file tables (SDE_LOGFILES and SDE_LOGFILE_DATA) and their 
associated sequence generator and trigger, the DBA grants the user Sam the following 
privileges: 

CREATE SESSION
CREATE TABLE
CREATE PROCEDURE
CREATE SEQUENCE
CREATE TRIGGER
UNLIMITED TABLESPACE



 Chapter 2   Essential Oracle configuring and tuning 23 

The DBA connects to the ArcSDE database as SAM to create the log file tables in SAM's 
schema. The sdelayer administration command describe operation provides a simple way to 
do this: 
$ sdelayer -o describe -u sam -p tree_top

Using the REVOKE <privilege> FROM <user> command to revoke all but the CREATE 
SESSION privileges since Sam is an editor and is not allowed to create a schema:  
CREATE TABLE FROM SAM;
REVOKE CREATE PROCEDURE FROM SAM;
REVOKE CREATE SEQUENCE FROM SAM;
REVOKE CREATE TRIGGER FROM SAM;
REVOKE UNLIMITED TABLESPACE FROM SAM;

Create SDE_VIEWER and SDE_EDITOR roles. The DBA has determined that all users 
who own schema should grant select privileges on their data objects to the SDE_VIEWER 
role and that they should grant INSERT, UPDATE, and DELETE to the SDE_EDITOR role: 
CREATE ROLE SDE_VIEWER;
CREATE ROLE SDE_EDITOR;

The DBA grants both the SDE_VIEWER and SDE_EDITOR roles to Sam: 
GRANT SDE_VIEWER TO SAM;
GRANT SDE_EDITOR TO SAM;

Betty, a creator, uses the grant operation of the sdelayer command to grant select access on 
her roads feature class to the SDE_VIEWERS role. All viewers granted the SDE_VIEWERS 
role will have select access to Betty's roads feature class: 
$ sdelayer -o grant -l roads,feature -A select -U sde_viewers -u betty -p cdn

Betty also grants INSERT, UPDATE, and DELETE access to the SDE_EDITORS role. Now 
editors granted the SDE_EDITORS role, such as SAM, will be able to make changes to 
Betty's roads feature class:  
$ sdelayer -o grant -l roads,feature -A insert -U sde_editors -u betty -p cdn
$ sdelayer -o grant -l roads,feature -A update -U sde_editors -u betty -p cdn
$ sdelayer -o grant -l roads,feature -A delete -U sde_editors -u betty -p cdn

Installing the USER_UTIL package to create and maintain ArcSDE users 

As an alternative to executing the SQL statements to create and maintain ArcSDE users, you 
can install the user_util package of stored procedures located in the SDEHOME/tools/oracle 
directory. To install the package connect as an Oracle DBA (usually the Oracle system user) 
and run the package specification script followed by the body script: 
connect system/<password>
@user_util.sps

Package created

@user_util.spb

Package created

Using the stored procedures of the USER_UTIL package 

The CREATE_USER_AND_LOGFILES stored procedure creates an Oracle user with SDE 
log files and grants privileges according to its user type. The usage for this stored procedure 
is as follows: 
USER_UTIL.CREATE_USER_AND_LOGFILES (

username IN VARCHAR2(30),
password IN VARCHAR2(30),
default_tabsp IN VARCHAR2(30) DEFAULT ‘USERS’,
temp_tabsp IN VARCHAR2(30) DEFAULT ‘TEMP’,



24 ArcSDE Configuration and Tuning Guide for Oracle 

usertype IN VARCHAR2(8) DEFAULT ‘OPERATOR’
)

The username and password must be entered. The user�s default tablespace defaults to 
USERS tablespace, while the temporary tablespace defaults to the TEMP tablespace. The 
usertype argument defines the type of user that will be created and it defaults to 
OPERATOR.  

A user created as an OPERATOR is granted CREATE SESSION privilege, is not allowed to 
create a schema, and does not have access to any data objects owned by other users.  

A user created as an OWNER is granted privileges to create tables, and granted CREATE 
SCHEMA privileges.  OWNER users automatically grant SELECT, INSERT, UPDATE or 
DELETE privileges on their own tables to other OWNER users and to OPERATOR users. 

Updating the DBTUNE file 
After you have created the tablespaces for your tables and indexes, update the DBTUNE file. 
DBTUNE files are always located under the SDEHOME/etc directory. The dbtune.sde file is 
the default DBTUNE file that the ArcSDE setup program uses to populate the DBTUNE 
table.   

Create the keywords in the dbtune.sde file that will contain the Oracle configuration 
parameters of the feature classes and tables that you intend to create with the ArcGIS 
programs ArcCatalog and ArcToolbox or the many ArcSDE administration tools. 

For a detailed discussion on the maintenance of the DBTUNE table, refer to Chapter 3, 
Configuring DBTUNE storage parameters. This chapter describes DBTUNE parameters that 
can be applied to each of the spatial storage methods supported by ArcSDE for Oracle. The 
supported spatial storage formats are described in Appendixes C, D, and E.  

Creating tables, feature classes, and raster column 
ArcInfo and ArcSDE offer several ways to create and maintain the tables, indexes, and 
feature classes of an ArcSDE database. Chapter 4, �Managing tables, feature classes, and 
raster columns�, describes in detail the possible methods for creating tables and feature 
classes using either ArcInfo or ArcSDE tools. 

Setting the Oracle initialization parameters 
Whenever you start an Oracle instance, Oracle reads its initialization parameters from the 
init.ora file. These parameters define the characteristics of the instance. This section describes 
some of the parameters that control allocation of shared memory. For a detailed discussion of 
the Oracle initialization parameters, refer to Oracle Server Tuning for your Oracle release. 

The init.ora file is located under the $ORACLE_BASE/admin/<ORACLE_SID>/pfile 
directory or folder. Init.ora is a common name given to the initialization file of an Oracle 
database instance but for any given instance, the file is actually called init<oracle SID>.ora. 
For example, if the Oracle SID is GIS, the init.ora file for this instance would be called 
initGIS.ora. 



 Chapter 2   Essential Oracle configuring and tuning 25 

Managing Oracle�s memory 
Care must be taken when setting the initialization parameters that affect memory. Setting 
these parameters beyond the limits imposed by the physical memory resource of the host 
machine significantly degrades performance. This section provides a few general rules 
regarding configuration of System Global Area (SGA) as well as memory structures affecting 
the size of an Oracle user�s private area, the PGA. The SGA is a block of shared memory that 
Oracle allocates and shares with all sessions. For more information about the SGA, refer to 
the Oracle Concepts Guide for your Oracle release. 

SGA must not swap 

You should not create an SGA that is larger than two-thirds the size of your server�s physical 
RAM. Your virtual memory must be able to accommodate both the SGA and the 
requirements of all active processes on the server. 

Avoid excessive paging 

Using your operating system tools (vmstat on UNIX systems and the task manager on 
Windows NT), check for excessive paging. A high degree of paging can be the result of an 
SGA that is too large. 

Configure enough virtual memory 

As a rule, Oracle recommends that your swap space be at least two to four times the size of 
your physical RAM. The required size of the swap file UNIX or the page file on 
Windows NT depends on the number of active ArcSDE sessions. For every ArcSDE session, 
a gsrvr process and a corresponding Oracle process is started. To determine the memory 
usage of these processes, use the ps -elf command on UNIX systems and the Processes tab of 
the Windows NT Task Manager. You must deduct the size of the Oracle SGA from the 
Oracle user processes. The total size of the ArcSDE gsrvr processes, the ArcSDE giomgr 
processes, Oracle user processes, Oracle background processes, operating system processes, 
and any other process running on the server must be able to fit into virtual memory. 

For ArcSDE client applications that connected directly to an Oracle instance, the gsrvr 
process does not exist. Also, if the ArcSDE service is not used because all client applications 
connect directly to the Oracle instance, the giomgr process will not be started either. For this 
reason direct connections have a smaller memory imprint on the server since the gsrvr 
process is absent.  

Redo log buffer 
The redo log buffer is a component of the Oracle SGA that holds uncommitted changes to the 
database. The log buffer is flushed to the current online redo log file whenever a user issues a 
commit and the buffer becomes one-third full or every three seconds. The size of the redo log 
buffer is controlled by the LOG_BUFFER parameter. Because of the rapid rate at which the 
log buffer is flushed, it does not need to be that large.  

Oracle recommends that you set this parameter to 500 KB or 128 KB multiplied by the 
number of CPUs.  If you have less than 4 CPUs, set this parameter to 512,000 (500 KB). 
log_buffer = 512000

Otherwise, set LOG_BUFFER to 128 KB * the number of CPUs. 



26 ArcSDE Configuration and Tuning Guide for Oracle 

Setting the LOG_BUFFER to large values in the hope of processing huge loading 
transactions may in fact result in a performance reduction. Latch contention between 
transactions may occur if the log buffer is set too large.  

To determine if the redo log buffer is large enough while the system is active examine the 
Oracle dynamic table V$SYSSTAT. Compare the values of the redo log space requests and 
the redo entries. Oracle recommends that you increase the size of the redo log buffers if the 
ratio of these values is greater than 1:5,000. 
select name, value
from v$sysstat
where name in ( ‘redo entries’ , ’redo log space requests’ );

Shared pool 
The shared pool is another component of the Oracle SGA that holds both the data dictionary 
cache and the library cache. The data dictionary cache holds information about data objects, 
free space, and privileges. The library cache holds the most recently parsed SQL statements. 
Generally, if the shared pool is large enough to satisfy the resource requirements of the 
library cache, it is already large enough to hold the data dictionary cache. The size of the 
shared pool is controlled by the SHARED_POOL_SIZE parameter.  

Set this parameter to at least 55 MB: 
shared_pool_size = 55,000,000

Highly active geodatabases supporting volatile utility or parcel editing systems may require 
the SHARED_POOL_SIZE to be set as high as 200 MB. 

Of the three SGA buffers, the shared pool is the most important. If the SGA is already as 
large as it can be, given the size of your physical memory, reduce the size of the buffer cache 
to accommodate a larger shared pool. 

Buffer cache 
The buffer cache is another component of the Oracle SGA that stores the most recently used 
data blocks. Data blocks are the Oracle atomic unit of data transfer. Oracle reads and writes 
data blocks to and from the database whenever the user edits or queries it. The size of the 
buffer cache is controlled by the DB_BLOCK_BUFFERS parameter. 

For optimum performance, increase the size of the buffer cache without causing the operating 
system to page excessively and/or swap the SGA. Oracle recommends that the SGA not be 
larger than two-thirds of the physical RAM.  

To estimate the size of the buffer cache, first determine how much physical RAM your server 
has. Multiply this number by 0.66 to determine the target size of the SGA. Deduct the 
SHARED_POOL_SIZE and LOG_BUFFER to return the amount of memory available to 
the buffer cache. Reduce this number by 10 percent to account for Oracle�s internal memory 
usage. Finally, divide by the database block size to determine the DB_BLOCK_BUFFERS 
setting. (The recommended minimum data block size for ArcSDE is at least 8 KB; however, 
we have found overall performance does improve with larger block sizes.) 



 Chapter 2   Essential Oracle configuring and tuning 27 

memory available to SGA = physical RAM * 2/3 
 
memory available to buffer cache 
= (memory available to SGA - (shared_pool_size + log_buffer)) * 0.9 
 
db_block_buffers  
= memory available to buffer cache / db_block_size 

Oracle recommends that the buffer cache hit ratio be at least 95 percent. In other words, for 
all data block requests made to the Oracle server, the data blocks were found in the buffer 
cache at least 95 percent of the time.  Data blocks not found in the buffer cache had to be 
retrieved from disk less than 5 percent of the time. Examine the performance of the buffer 
cache after the system has been in use for some time. Compare the values of the db block 
gets, consistent gets, and physical reads in the Oracle dynamic view V$SYSSTAT. If the 
physical reads are greater than 5 percent of the sum of the db block gets and the consistent 
gets, you should increase the size of the buffer cache:  
select name, value
from v$sysstat
where name in ( ’db block gets’, ’consistent gets’, ’physical reads’);

Buffer cache hit ratio = 1 - (physical reads / (db block gets + consistent gets)) 

You should not increase the buffer cache at the expense of the shared pool. 

Sort area 
The sort area is a component of each session's PGA and not the SGA. 

As the name implies, Oracle uses sort area to perform sorting. Larger sort areas reduce the 
time required to build an index. As Oracle constructs an index, it writes the index blocks to 
the sort area. When the sort area becomes full, its contents are transferred to the temporary 
tablespace. The larger the sort area, the less frequently Oracle must write intermediate results 
to temporary disk space. 

You must be careful not to make the sort area too large because it is allocated per session to 
the PGA and not per instance as is the SGA. Additional users connecting to the database 
causes more space to be allocated to the Oracle instance because of the creation of additional 
PGA�s 

Also, Oracle may allocate sort area for each table referenced within a join. Therefore, it is 
theoretically possible for Oracle to allocate the maximum sort area for each table referenced 
in a join. Generally, the logic of the query prevents this from happening. However, you 
should be aware of the dynamic nature of sort area. 

Sort area is controlled by the SORT_AREA_SIZE  parameter. 

For the construction of the indexes during the creation of the database, set the 
SORT_AREA_SIZE parameter to a large value since few sessions are active, and the indexes 
are created faster if more sort area is available. For 2 GB of RAM, setting the sort area to 200 
MB is not unreasonable if you are using one session to create indexes on tables that have 
millions of rows of data. 



28 ArcSDE Configuration and Tuning Guide for Oracle 

Once the database is constructed you should reduce the size of the sort area to account for the 
increased number of sessions. ArcInfoTM applications accessing a multiversioned geodatabase 
generally use little sort area. A sort area of 1 MB is sufficient to prevent I/O to temporary 
tablespace for these types of applications. 

Set SORT_AREA_SIZE to 1 MB:  
sort_area_size = 1048576

You can determine if SORT_AREA_SIZE is large enough by comparing the value of sorts 
(memory) and sorts (disk) of the Oracle dynamic view V$SYSSTAT. If the sorts performed 
on disk are greater than 10 percent of those performed in memory, consider increasing the 
sort area. 
select name, value
from v$sysstat
where name in (‘sorts (memory)’, ‘sorts (disk)’);

Prepage the SGA 
Set the PRE_PAGE_SGA to true for servers that are running a single Oracle instance. 
Prepaging the SGA increases the amount of time required to start the Oracle server as well as 
the amount of time required for users to connect. However, it does reduce the number of page 
faults�which occur whenever Oracle must allocate another page to the SGA�while the 
server is active: 
pre_page_sga = true

Enabling the optional Oracle startup trigger 
ArcSDE includes an optional startup trigger that is run whenever the Oracle instance is 
started. The startup trigger cleans up any orphaned session information that remains in the 
ArcSDE system tables following an instance failure. The startup trigger is optional because 
ArcSDE invariably cleans up the orphaned metadata during its normal operation. The startup 
trigger merely offers a guarantee that orphaned metadata will not be present following Oracle 
instance startup. 

 To create the startup trigger run the SQL arcsde_database_startup.sql script as the Oracle 
SYS user. The script is located at $SDEHOME/etc/tools/oracle on UNIX systems and 
%SDEHOME%\etc\tools\oracle on Windows NT. 

Updating Oracle statistics 
The ArcSDE server has been built to work with either the cost-based optimizer or the 
rule-based optimizer. As a result, you should set the init.ora initialization variable 
OPTIMIZER_MODE to CHOOSE, allowing the optimizer to choose the cost-based 
approach if it encounters a hint or if you have computed statistics. 



 Chapter 2   Essential Oracle configuring and tuning 29 

Updating ArcSDE compressed binary statistics 
For optimal performance of feature classes created with the ArcSDE compressed binary 
storage format, keep the statistics up-to-date. 

In ArcCatalog, to update the statistics of all of the tables and indexes within a feature dataset, 
right-click on the feature dataset and click on Analyze. To update the tables and indexes 
within a feature class, right-click on the feature and click on Analyze. 

From the command line, use the UPDATE_DBMS_STATS operation of the sdetable 
administration command to update the statistics for all the tables and indexes of a feature 
class. It is better to use the UPDATE_DBMS_STATS operation rather than individually 
analyzing the tables with the Oracle SQL ANALYZE statement because it updates the 
statistics for all the tables of a feature class that require statistics. To have the 
UPDATE_DBMS_STATS operation update the statistics for all the required tables, do not 
specify the -K (schema object) option. 
sdetable -o update_dbms_stats -t roads -m compute -u av -p mo

When the feature class is registered as multiversioned, the �adds� and �deletes� tables are 
created to hold the business table�s added and deleted records. The version registration 
process automatically updates the statistics for all the required tables at the time it is 
registered.  

Periodically update the statistics of dynamic tables and indexes to ensure that the Oracle 
cost-based optimizer continues to choose an optimum execution plan. To save time, you can 
analyze all of the data objects within a feature dataset in ArcCatalog. 

If you do not have enough temporary tablespace to compute statistics on larger tables, use the  
-m option to estimate statistics. The tables will be estimated at a sample rate of 33 percent. 
sdetable -o update_dbms_stats -t roads -m estimate -u av -p mo



30 ArcSDE Configuration and Tuning Guide for Oracle 

You should consider increasing the size of your temporary tablespace to compute statistics 
rather than estimate them as it provides more accurate statistics for the Oracle cost-based 
optimizer. 

The statistics of a table�s indexes are automatically computed when the table is analyzed, so 
there is no need to analyze the indexes separately. However, if you need to do so you can use 
the UPDATE_DBMS_STATS -n option with the index name. 

The example below illustrates how the statistics for the f2_ix1 index of the roads feature table 
can be updated: 
sdetable -o update_dbms_stats -t roads -K f -n F2_IX1 -u av -p mo

For more information on analyzing geodatabase objects from ArcCatalog, refer to Building a 
Geodatabase. 

For more information on the sdetable administration command and the 
UPDATE_DBMS_STATS operation, refer to the ArcSDE Developer Help. 

Updating Oracle Spatial geometry type statistics 
Update the statistics of the business table containing an Oracle Spatial column with Analyze 
from ArcCatalog or with the sdetable UPDATE_DBMS_STATS operation. 
sdetable -o update_dbms_stats -t roads -m compute -u av -p mo

You may also update the statistics using the Oracle ANALYZE statement. Use the compute 
statistics option if there is enough temporary tablespace available to permit the operation. 
Otherwise, use the estimate statistics option with as high a sample rate as possible.  
analyze table roads compute statistics;

When ArcSDE creates data using Oracle Spatial Geometry, it can optionally create the 
layer�s Oracle Spatial index. Oracle Spatial suggests that you analyze this spatial index. If 
ArcSDE is asked to create the Oracle Spatial index for you, it automatically analyzes this 
index. If you decide to create the Oracle Spatial index on your own, you will have to use the 
Oracle ANALYZE statement to analyze your index after creating it.  

For more information on the Oracle ANALYZE statement, refer to the Oracle SQL 
Reference Manual for your release of Oracle. 

 



31 

C H A P T E R  3  

Configuring DBTUNE storage 
parameters 

DBTUNE storage parameters allow you to control how ArcSDE clients 
create objects within an Oracle database. They determine such things as 
which tablespace a table or index is created in. The storage parameters define 
the extent size of the data object they stored as well as other Oracle specific 
storage attributes. They let you specify one of the four available storage 
formats to store the geometry of a spatial column. 

The DBTUNE table 
The DBTUNE storage parameters are maintained in the DBTUNE metadata table. The 
DBTUNE table along with all other metadata tables is created during the setup phase that 
follows the installation of the ArcSDE software. 

The DBTUNE table has the following definition: 
Name Null? Datatype

keyword not null varchar2(32)
parameter_name not null varchar2(32)
config_string null varchar2(2048)

The keyword field stores the configuration keywords. Within each configuration keyword, 
there are a number of storage parameters, and the names of these are stored in the 
parameter_name field. Each storage parameter has a configuration string stored in the 
config_string field. 

After creating the DBTUNE table, the setup phase of the ArcSDE 8.1 installation populates 
the table with the contents of the dbtune.sde file, which it expects to find under the etc 
directory of the SDEHOME directory. 

If the DBTUNE table already exists, the ArcSDE setup phase will not alter its contents, 
should you need to run it again. 

Initializing the DBTUNE table 
The dbtune.sde file copied from the install media into the SDEHOME/etc directory contains 
default values. If the file should be missing when the sdesetupora* command is executed, the 



31 

C H A P T E R  3  

Configuring DBTUNE storage 
parameters 

DBTUNE storage parameters allow you to control how ArcSDE clients 
create objects within an Oracle database. They determine such things as 
which tablespace a table or index is created in. The storage parameters define 
the extent size of the data object they stored as well as other Oracle specific 
storage attributes. They let you specify one of the four available storage 
formats to store the geometry of a spatial column. 

The DBTUNE table 
The DBTUNE storage parameters are maintained in the DBTUNE metadata table. The 
DBTUNE table along with all other metadata tables is created during the setup phase that 
follows the installation of the ArcSDE software. 

The DBTUNE table has the following definition: 
Name Null? Datatype

keyword not null varchar2(32)
parameter_name not null varchar2(32)
config_string null varchar2(2048)

The keyword field stores the configuration keywords. Within each configuration keyword, 
there are a number of storage parameters, and the names of these are stored in the 
parameter_name field. Each storage parameter has a configuration string stored in the 
config_string field. 

After creating the DBTUNE table, the setup phase of the ArcSDE 8.1 installation populates 
the table with the contents of the dbtune.sde file, which it expects to find under the etc 
directory of the SDEHOME directory. 

If the DBTUNE table already exists, the ArcSDE setup phase will not alter its contents, 
should you need to run it again. 

Initializing the DBTUNE table 
The dbtune.sde file copied from the install media into the SDEHOME/etc directory contains 
default values. If the file should be missing when the sdesetupora* command is executed, the 



32 ArcSDE Configuration and Tuning Guide for Oracle 

ArcSDE software will enter these values into the dbtune table. These values are referred to as 
software defaults. Also, if a required parameter is removed from a dbtune file before it is 
imported into the DBTUNE table, the software default for the parameter will be written into 
the DBTUNE table. 

You can modify the dbtune.sde file prior to running the setup command on UNIX systems. 
On Windows NT systems the setup phase is part of the install so you will have to edit the file 
and use the sdedbtune import operation to customize the DBTUNE table. 

The tablespace entries in the dbtune.sde file have been commented out with the �#� character.  
You should customize the dbtune.sde file by removing the comment character entering the 
names of the tablespaces you wish to store your ArcSDE tables and indexes in. Be careful not 
to remove the double quotation marks that surround the configuration strings. Follow the 
procedure provided in the following example for updating the Oracle tablespace parameter in 
the dbtune.sde file.  

The DEFAULTS configuration keyword in the dbtune.sde file contains the B_STORAGE storage parameter 
with the Oracle tablespace parameter commented out.  

##DEFAULTS

GEOMETRY_STORAGE "SDEBINARY"
ATTRIBUTE_BINARY "LONGRAW"
B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
# TABLESPACE <default business table tablespace name>

STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0)"

Edit the dbtune.sde file and remove the �#� comment character, and enter the name of the tablespace you 
want to store business tables in by default. 

##DEFAULTS

GEOMETRY_STORAGE "SDEBINARY"
ATTRIBUTE_BINARY "LONGRAW"
B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4

TABLESPACE ROADS
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0)"

When the setup program runs your customized dbtune, configuration keywords are written 
into the DBTUNE table.  

Editing the DBTUNE table 
Although you are free to edit the contents of the DBTUNE table using a SQL interface such 
as SQL*Plus, the sdedbtune administration tool has been provided to enable you to export 
the contents of the table to a file. The file can then be edited with a UNIX file-based editor, 
such as "vi", or a Windows NT file-based editor such as "notepad". After updating the file, 
you can repopulate the DBTUNE table using the import operation of the sdedbtune 
command. 

In the following example, the DBTUNE table is exported to the dbtune.out file, and the file is 
edited with the UNIX "vi" file-based editor. 
$ sdedbtune -o export -f dbtune.out -u sde -p fredericton

ArcSDE 8.1 Wed Oct 4 22:32:44 PDT 2000
Attribute Administration Utility
-----------------------------------------------------

Successfully exported to file SDEHOME\etc\dbtune.out



 Chapter 3   Configuring DBTUNE storage parameters 33 

$ vi dbtune.out

$ sdedbtune -o import -f dbtune.out -u sde -p fredericton -N

ArcSDE 8.1 Wed Oct 4 22:32:44 PDT 2000
Attribute Administration Utility
-----------------------------------------------------

Successfully imported from file SDEHOME\etc\dbtune.out

The sdedbtune administration tool always exports the file in the etc directory of the ArcSDE 
home directory. You cannot relocate the file to another directory with a qualifying pathname. 
By not allowing the relocation of the file, the sdedbtune command ensures they remain under 
the ownership of the ArcSDE administrator.  

Arranging storage parameters by keyword 
Storage parameters of the DBTUNE table are grouped by keyword. When the contents of the 
DBTUNE table are exported to a file, the keywords are prefixed by two pound signs, �##�. 
The �END� clause terminates each keyword. 

Keywords define the storage configuration of simple objects, such as tables and indexes, and 
complex objects such as feature classes, network classes, and raster columns. ESRI client 
applications and some ArcSDE administration tools assign DBTUNE configuration 
keywords to these objects. The pound signs, �##�, are not included when the configuration 
keywords are assigned.  

DEFAULTS keyword 
Each DBTUNE table has a fully populated DEFAULTS configuration keyword. The 
DEFAULTS configuration keyword can be selected whenever you create a table, index, 
feature class, or raster column. If you do not select a keyword for one of these objects, the 
DEFAULTS configuration keyword is used. If you do not include a storage parameter in a 
configuration keyword that you have defined, ArcSDE substitutes the storage parameter from 
the DEFAULTS configuration keyword. 

The DEFAULTS configuration keyword relieves you of the need to define all the storage 
parameters for each of your configuration keywords. The storage parameters of the 
DEFAULTS configuration keyword should be populated with values that represent the 
average storage configuration of your data. 

During installation, if the ArcSDE software detects a missing DEFAULTS configuration 
keyword storage parameter in the dbtune.sde file, it automatically adds the storage parameter. 
If you import a DBTUNE file with the sdedbtune command, the command automatically 
adds default storage parameters that are missing. ArcSDE will detect the presence of the 
following list of storage parameters and insert the storage parameter and the default 
configuration string. 
##DEFAULTS

ATTRIBUTE_BINARY "LONGRAW"
A_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0)"
A_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0)"



34 ArcSDE Configuration and Tuning Guide for Oracle 

A_INDEX_STATEID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0)"

A_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0)"

A_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4
MINEXTENTS 1 PCTINCREASE 0)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 2 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0)"

B_INDEX_SHAPE "PCTFREE 10 INITRANS 2 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0)"

B_INDEX_USER "PCTFREE 10 INITRANS 2 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0)"

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 1 STORAGE (FREELISTS 4
MINEXTENTS 1 PCTINCREASE 0)"

D_INDEX_DELETED_AT "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4
MINEXTENTS 1 PCTINCREASE 0)"

D_INDEX_STATE_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4
MINEXTENTS 1 PCTINCREASE 0)"

D_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4
MINEXTENTS 1 PCTINCREASE 0)"

F_INDEX_AREA "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0)"

F_INDEX_FID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0)"

F_INDEX_LEN "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0)"

F_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4
MINEXTENTS 1 PCTINCREASE 0)"

GEOMETRY_STORAGE "SDEBINARY"
S_INDEX_ALL "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0)"
S_INDEX_SP_FID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0)"
S_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

MINEXTENTS 1 PCTINCREASE 0)"
UI_TEXT ""

END

Setting the system table DATA_DICTIONARY configuration 
keyword 
During the execution of the sdesetupora* administration tool, the ArcSDE and geodatabase 
system tables and indexes are created with the storage parameters of the 
DATA_DICTIONARY configuration keyword. You may customize the configuration 
keyword in the dbtune.sde file prior to running the sdesetupora* tool. In this way you can 
change default storage parameters of the DATA_DICTIONARY configuration keyword. 

Edits to all of the geodatabase system tables and most of the ArcSDE system tables occur 
when schema change occurs. As such, edits to these system tables and indexes usually 
happen during the initial creation of an ArcGIS database with infrequent modifications 
occurring whenever a new schema object is added. 

Four of the ArcSDE system tables�VERSION, STATES, STATE_LINEAGES, and 
MVTABLES_MODIFIED�participate in the ArcSDE versioning model and record events 
resulting from changes made to multiversioned tables. If your site makes extensive use of a 
multiversioned database, these tables and their associated indexes are very active. Separating 
these objects into their own tablespace allows you to position their data files with data files 
that experience low I/O activity and thus minimize disk I/O contention. 

If the dbtune.sde file does not contain the DATA_DICTIONARY configuration keyword, or 
if any of the required parameters are missing from the configuration keyword, the following 



 Chapter 3   Configuring DBTUNE storage parameters 35 

records will be inserted into the DATA_DICTIONARY when the table is created. (Note that 
the DBTUNE file entries are provided here for readability.) 
##DATA_DICTIONARY

B_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4
INITIAL 40K NEXT 40K MINEXTENTS 1 MAXEXTENTS 200
PCTINCREASE 0)"

B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4
INITIAL 40K NEXT 40K MINEXTENTS 1 MAXEXTENTS 200
PCTINCREASE 0)"

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 INITIAL 40K NEXT 40K
MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

STATE_LINEAGES_TABLE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4
INITIAL 40M NEXT 10M MINEXTENTS 1 MAXEXTENTS

200)"

STATES_TABLE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 INITIAL 8M NEXT 1M
MINEXTENTS 1 MAXEXTENTS 200)"

STATES_INDEX "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4
INITIAL 1M NEXT 128K MINEXTENTS 1 MAXEXTENTS

200)"

MVTABLES_MODIFIED_TABLE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 INITIAL 2M NEXT 1M
MINEXTENTS 1 MAXEXTENTS 200)"

MVTABLES_MODIFIED_INDEX "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4
INITIAL 2M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200)"

VERSIONS_TABLE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 INITIAL 256K
NEXT 128K MINEXTENTS 1 MAXEXTENTS 200)"

VERSIONS_INDEX "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4
INITIAL 128K NEXT 128K MINEXTENTS 1
MAXEXTENTS 200)"

END

The IMS METADATA keywords 
The IMS METADATA keywords control the storage of the IMS Metadata tables. These 
keywords are a standard part of the dbtune table. If the keywords are not present in the 
dbtune file when it is imported into the DBTUNE table, ArcSDE applies software defaults. 
The software defaults have the same settings as the keyword parameters listed in the 
dbtune.sde table that is shipped with ArcSDE. The Oracle parameter settings such as the 
initial and next should be sufficient. However, you will need to edit the storage parameters 
tablespace names. As always try to separate the tables and indexes into different tablespaces. 

For more information about installing IMS Metadata and the associated tables and indexes 
refer to ArcIMS Metadata Server documentation. 

The IMS metadata keywords are as follows: 

The IMS_METADATA keyword controls the storage of the ims_metadata feature class. 
Four indexes are created on the ims_metadata business table. ArcSDE creates the following 
default  IMS_METADATA keyword in the DBTUNE table if the keyword is missing from 
the dbtune file when it is imported. 



36 ArcSDE Configuration and Tuning Guide for Oracle 

##IMS_METADATA

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 100M )"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 INITIAL 6M
MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

B_INDEX_SHAPE "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 6M) NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 6M) NOLOGGING"

F_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 40M)"

F_INDEX_FID "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 3M) NOLOGGING"

F_INDEX_AREA "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 3M) NOLOGGING"

F_INDEX_LEN "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 3M) NOLOGGING"

S_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 16M)"

S_INDEX_ALL "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 16M) NOLOGGING"

S_INDEX_SP_FID "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 3M) NOLOGGING"

COMMENT "The IMS metatdata feature class"

UI_TEXT ""

END

The IMS_METADATARELATIONSHIPS keyword controls the storage of the 
ims_metadatarelationships business table. Three indexes are created on the 
ims_metadatarelationships business table. ArcSDE creates the following default 
IMS_METADATARELATIONSHIPS keyword in the DBTUNE table if the keyword is 
missing from the dbtune file when it is imported. 
##IMS_METADATARELATIONSHIPS

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 256K)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 64K) NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 64K) NOLOGGING"



 Chapter 3   Configuring DBTUNE storage parameters 37 

END

The IMS_METADATATAGS keyword controls the storage of the ims_metadatatags 
business table. Two indexes are created on the ims_metadatatags business table. ArcSDE 
creates the following default IMS_METADATATAGS keyword in the DBTUNE table if the 
keyword is missing from the dbtune file when it is imported.  
##IMS_METADATATAGS

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 64K)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 64K) NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 64K) NOLOGGING"

END

The IMS_METADATATHUMBNAILS keyword controls the storage of the 
ims_metadatathumbnails business table. One index is created on the ims_metadatathumbnails 
business table. ArcSDE creates the following default IMS_METADATATHUMBNAILS 
keyword in the DBTUNE table if the keyword is missing from the dbtune file when it is 
imported. 
##IMS_METADATATHUMBNAILS

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 4M)"

B_INDEX_USER "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 256K) NOLOGGING"

END

The IMS_METADATAUSERS keyword controls storage of the ims_metadatausers business 
table. One index is created on the ims_metadatausers business table. ArcSDE creates the 
following default IMS_METADATAUSERS keyword in the DBTUNE table if the keyword 
is missing from the dbtune file when it is imported. 
##IMS_METADATAUSERS

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 7M)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 512K) NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 512K) NOLOGGING"

END

 

The IMS_METADATAVALUES keyword controls the storage of the ims_metadatavalues 
business table. Two indexes are created on ims_metadatavalues business table. ArcSDE 
creates the following default IMS_METADATAVALUES keyword in the DBTUNE table if 
the keyword is missing from the dbtune file when it is imported. 



38 ArcSDE Configuration and Tuning Guide for Oracle 

##IMS_METADATAVALUES

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 7M)"

B_INDEX_USER "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 512K) NOLOGGING"

END

The IMS_METADATAWORDINDEX keyword controls the storage of the 
ims_metadatawordindex business table. Three indexes are created on the 
ims_metadatawordindex business table. ArcSDE creates the following default 
IMS_METADATAWORDINDEX keyword in the DBTUNE table if the keyword is missing 
from the dbtune file when it is imported. 
##IMS_METADATAWORDINDEX

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 10M)"

B_INDEX_USER "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 512K) NOLOGGING"

END

The IMS_METADATAWORDS keyword controls the storage of the ims_metadatawords 
business table. One index is created on the ims_metadatawords business table. ArcSDE 
creates the following default IMS_METADATAWORDS keyword in the DBTUNE table if 
the keyword is missing from the dbtune file when it is imported. 
##IMS_METADATAWORDS

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 7M)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 512K) NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4
STORAGE (FREELISTS 4 MINEXTENTS 1 PCTINCREASE 0
INITIAL 512K) NOLOGGING"

END

Setting the storage format�the GEOMETRY_STORAGE 
parameter 
ArcSDE for Oracle provides three spatial data storage formats. The 
GEOMETRY_STORAGE parameter indicates which geometry storage method is to be used. 
The GEOMETRY_STORAGE parameter has the following values: 

• ArcSDE compressed binary stored in LONG RAW data type.  This is the default spatial 
storage method of ArcSDE for Oracle.  
 
Set the GEOMETRY_STORAGE parameter to SDEBINARY if you wish to store your 
spatial data in this format. If the GEOMETRY_STORAGE parameter is not set, the 
SDEBINARY format is assumed. 



 Chapter 3   Configuring DBTUNE storage parameters 39 

• ArcSDE compressed binary stored as a BLOB data type. This data type can be replicated 
through Oracle Advanced Replication.  
 
Set the GEOMETRY_STORAGE parameter to SDELOB if you wish to store your 
spatial data in this format. If you wish to make this format the default, set the 
GEOMETRY_STORAGE parameter to SDELOB in the DEFAULTS configuration 
keyword. 

• Oracle Spatial geometry type. Available starting at Oracle8i, this object-relational model 
extends the database model to include an SDO_GEOMETRY type in the Oracle DBMS.  
 
Set the GEOMETRY_STORAGE parameter to SDO_GEOMETRY if you wish to store 
your spatial data in this format. If you wish to make this format the default, set the 
GEOMETRY_STORAGE parameter to SDO_GEOMETRY in the DEFAULTS 
configuration keyword. 

The default value for GEOMETRY_STORAGE is SDEBINARY. 

If all of the feature classes in your database use the same geometry storage method, set the 
GEOMETRY_STORAGE parameter once in the DEFAULTS configuration keyword. To 
change the default GEOMETRY_STORAGE from SDEBINARY to SDO_GEOMETRY, 
the following change is made: 
## DEFAULTS
GEOMETRY_STORAGE SDO_GEOMETRY
<other parameters>
END

For convenience, three predefined configuration keywords are provided in the dbtune.proto 
file to allow the use of each of the supported geometry storage methods. These configurations 
are defined as follows:  
## SDEBINARY
GEOMETRY_STORAGE SDEBINARY
END
##SDELOB
GEOMETRY_STORAGE SDELOB
END
## SDO_GEOMETRY
GEOMETRY_STORAGE SDO_GEOMETRY
END

Setting the COMPRESS_ROLLBACK_SEGMENT storage 
parameter 
Periodically compressing the versioned database's state-tree is a required maintenance 
procedure. The state-tree can be compressed with either the compress operation of the 
sdeversion administration command or the SE_state_compress_tree C application 
programming interface (API) function. The transactions of the compress operation tend to be 
rather large, and we recommend that you create a separate large rollback segment to contain 
their changes. The COMPRESS_ROLLBACK_SEGMENT storage parameter stores the 
name of a rollback segment that you have created for this purpose. Add the 
COMPRESS_ROLLBACK_SEGMENT storage parameter to the DEFAULTS 
configuration keyword. 

For more information on creating the rollback segment used for compressing the state-tree, 
see Chapter 2, �Essential Oracle configuring and tuning�.  



40 ArcSDE Configuration and Tuning Guide for Oracle 

Changing the attribute binary storage format 
By default, ArcSDE defines attribute columns it creates to store binary data as LONG RAW. 
However, you can direct ArcSDE to define a binary attribute column as BLOB by setting the 
ATTRIBUTE_BINARY storage parameter to BLOB. If the storage parameter is not set in 
the DEFAULTS configuration keyword when a DBTUNE file is imported by the sdedbtune 
administration tool, ArcSDE inserts the ATTRIBUTE_BINARY storage parameter under the 
DEFAULTS configuration keyword with a configuration string set to LONGRAW. 

Changing the appearance of DBTUNE configuration keywords in 
the ArcInfo user interface 
Starting in ArcSDE 8.1, ArcSDE introduces two new storage parameters that will support the 
ArcInfo user interfaces UI_TEXT and UI_NETWORK_TEXT. ArcSDE administrators can 
add one of these storage parameters to each configuration keyword to communicate to the 
ArcInfo schema builders the intended use of the configuration keyword. The configuration 
string of these storage parameters will appear in ArcInfo interface DBTUNE configuration 
keyword scrolling lists.   

The UI_TEXT storage parameter should be added to configuration keywords that will be 
used to build tables, feature classes, and indexes. 

The UI_NETWORK_TEXT storage parameter should be added to parent network 
configuration keywords. 

Adding a comment to a configuration keyword 
The COMMENT storage parameter allows you to add informative text that describes such 
things as a configuration keyword's intended use, the last time it was changed, or who created 
it.  

LOG FILE configuration keywords 
Log files are used by ArcSDE to maintain temporary and persistent sets of selected records. 
Whenever a user connects to ArcSDE for the first time, the SDE_LOGFILES and 
SDE_LOGFILE_DATA tables and indexes are created. 

You may create a configuration keyword for each user that begins with the 
LOGFILE_<username>. For example, if the user�s name is STANLEY, ArcSDE will search 
the DBTUNE table for the LOGFILE_STANLEY configuration keyword. If this 
configuration keyword is not found, ArcSDE will use the storage parameters of the 
LOGFILE_DEFAULTS configuration keyword to create the SDE_LOGFILES and 
SDE_LOGFILE_DATA tables.  

ArcSDE always creates the DBTUNE table with a LOGFILE_DEFAULTS configuration 
keyword. If you do not specify this configuration keyword in a DBTUNE file imported by 
the sdedbtune command, ArcSDE will populate the DBTUNE table with default 
LOGFILE_DEFAULTS storage parameters. Further, if the DBTUNE file lacks some of the 
LOGFILE_DEFAULTS configuration keyword storage parameters, ArcSDE supplies the 
rest. Therefore, the LOGFILE_DEFAULTS configuration keyword is always fully 
populated. 



 Chapter 3   Configuring DBTUNE storage parameters 41 

If a user-specific configuration keyword exists, but some of the storage parameters are not 
present, the storage parameters of the LOGFILE_DEFAULTS configuration keyword are 
used. 

Creating a log file configuration keyword for each user allows you to position their sde log 
files onto separate devices by specifying the tablespace the log file tables and indexes are 
created in. Most installations of ArcSDE will function well using the 
LOGFILE_DEFAULTS storage parameters supplied with the installed dbtune.sde file. 
However, for applications making use of sde log files, such as ArcInfo, ArcEditorTM, and 
ArcView®, it may help performance by spreading the log files across the file system. 
Typically log files are updated whenever a selection set exceeds 100 records. 

If the imported DBTUNE file does not contain a LOGFILE_DEFAULTS configuration 
keyword, or if any of the log file storage parameters are missing, ArcSDE will insert the 
following records: 
##LOGFILE_DEFAULTS

LD_INDEX_DATA_ID "PCTFREE 10 INITRANS 2 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0) NOLOGGING"

LD_INDEX_ROWID "PCTFREE 10 INITRANS 2 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0) NOLOGGING"

LD_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 1 STORAGE (FREELISTS 4
MINEXTENTS 1 PCTINCREASE 0)"

LF_INDEXES "PCTFREE 10 INITRANS 2 STORAGE (FREELISTS 4 MINEXTENTS 1
PCTINCREASE 0) NOLOGGING"

LF_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 1 STORAGE (FREELISTS 4
MINEXTENTS 1 PCTINCREASE 0)"

UI_TEXT ""

END

The LD_STORAGE and LF_STORAGE parameters that control the storage of the 
SDE_LOGFILE_DATA and SDE_LOGFILES tables by default are generated with Oracle 
logging turned on (the Oracle NOLOGGING parameter is absent from the configuration 
string of these parameters). If you are not using a customized application that stores persistent 
log files, you should add NOLOGGING to the LD_STORAGE and LF_STORAGE 
parameters. ESRI applications accessing ArcSDE data use temporary log files.        

Defining the storage parameters 
Configuration keywords may include any combination of three basic types of storage 
parameters: meta parameters, table parameters, and index parameters. 

Meta parameters 
Meta parameters define the way certain types of data will be stored, the environment of a 
configuration keyword, or a comment that describes the configuration keyword. 

Table parameters 
Table parameters define the storage configuration of an Oracle table. The table parameter is 
appended to an Oracle CREATE TABLE statement during its creation by ArcSDE. Valid 
entries for an ArcSDE table parameter include the parameters to the right of the SQL 
CREATE TABLE statement's columns list.  



42 ArcSDE Configuration and Tuning Guide for Oracle 

For example, a business table created with the following Oracle CREATE TABLE statement: 
CREATE TABLE roads (road_id integer, name varchar2(32), surface_code integer)
tablespace roads_tabsp
storage (initial 10M next 1M minextents 1 maxextents 100 pctincrease 0
freelists 4)
initrans 4 pctfree 10 pctused 90;

would be entered into a DBTUNE file B_STORAGE table parameter with the following 
configuration string: 
B_STORAGE "tablespace roads_tabsp storage (initial 10M next 1M minextents 1
maxextents 100 pctincrease 0 freelists 4) initrans 4 pctfree 10 pctused 90"

Index parameters 
Index parameters define the storage configuration of an Oracle index. The index parameter is 
appended to an Oracle CREATE INDEX statement during its creation by ArcSDE. Valid 
entries in an ArcSDE index parameter include all parameters to the right of the SQL 
CREATE INDEX statement's column list. 

For example, an index created with the following Oracle CREATE INDEX statement: 
CREATE INDEX roads_idx on roads (road_id)
tablespace roads_idx_tabsp
storage (initial 1M next 512K minextents 1 maxextents 100 pctincrease 0
freelists 4)
initrans 4 pctfree 10;

would be entered into a B_INDEX_USER storage parameter with the following 
configuration string: 
B_INDEX_USER "tablespace roads_idx_tabsp storage(initial 1M next 512K
minextents 1 maxextents 100 pctincrease 0 freelists 4) initrans 4 pctfree 10"

The business table storage parameter 
A business table is any Oracle table created by an ArcSDE client, the sdetable administration 
command, or the ArcSDE C API SE_table_create function. 

Use the DBTUNE table's B_STORAGE storage parameter to define the storage 
configuration of a business table. 

The business table index storage parameters 
Three index storage parameters exist to support the creation of business table indexes. 

The B_INDEX_USER storage parameter holds the storage configuration for user-defined 
indexes created with the C API function SE_table_create_index and the create_index 
operation of the sdetable command. 

The B_INDEX_ROWID storage parameter holds the storage configuration of the index that 
ArcSDE creates on a register table's object ID column, commonly referred to as the ROWID. 

Note: ArcSDE registers all tables that it creates. Tables not created by ArcSDE can also be 
registered with the alter_reg operation of the sdetable command or with ArcCatalog. The 
SDE.TABLE_REGISTRY system table maintains a list of the currently registered tables. 



 Chapter 3   Configuring DBTUNE storage parameters 43 

The B_INDEX_SHAPE storage parameter holds the storage configuration of the spatial 
column index that ArcSDE creates when a spatial column is added to a business table. This 
index is created by the ArcSDE C API function SE_layer_create. This function is called by 
ArcInfo when it creates a feature class and by the add operation of the sdelayer command. 

Multiversioned table storage parameters 
Registering a business table as multiversioned allows multiple users to maintain and edit their 
copy of the object. At appropriate intervals each user merges the changes they have made to 
their copy with the changes made by other users and reconciles any conflicts that arise when 
the same rows are modified. 

ArcSDE creates two tables�the adds table and the deletes table�for each table that is 
registered as multiversioned. 

The A_STORAGE storage parameter maintains the storage configuration of the adds table. 
Four other storage parameters hold the storage configuration of the indexes of the adds table. 
The adds table is named A<n>, where <n> is the registration ID listed in the 
SDE.TABLE_REGISTRY system table. For instance, if the business table ROADS is listed 
with a registration ID of 10, ArcSDE creates the adds table as A10.  

The A_INDEX_ROWID storage parameter holds the storage configuration of the index that 
ArcSDE creates on the multiversion object ID column, commonly referred to as the ROWID. 
The adds table ROWID index is named A<n>_ROWID_IX1, where <n> is the business 
table's registration ID, which the adds table is associated with. 

The A_INDEX_STATEID storage parameter holds the storage configuration of the index 
that ArcSDE creates on the adds table's SDE_STATE_ID column. The SDE_STATE_ID 
column index is called A<n>_STATE_IX2, where <n> is the business table's registration ID, 
which the adds table is associated with. 

The A_INDEX_SHAPE storage parameter holds the storage configuration of the index that 
ArcSDE creates on the adds table's spatial column. If the business table contains a spatial 
column, the column and the index on it are duplicated in the adds table. The adds table's 
spatial column index is called A<n>_IX1_A, where <n> is the layer ID of the feature class as 
it is listed in the SDE.LAYERS table.  

The A_INDEX_USER storage parameter holds the storage configuration of user-defined 
indexes that ArcSDE creates on the adds table. The user-defined indexes on the business 
tables are duplicated on the adds table.  

The D_STORAGE storage parameter holds the storage configuration of the deletes table. 
Two other storage parameters hold the storage configuration of the indexes that ArcSDE 
creates on the deletes table. The deletes table is named D<n>, where <n> is the registration 
ID listed in the SDE.TABLE_REGISTRY system table. For instance, if the business table 
ROADS is listed with a registration ID of 10, ArcSDE creates the deletes table as D10. 

The D_INDEX_STATE_ROWID storage parameter holds the storage configuration of the 
D<n>_IDX1 index that ArcSDE creates on the deletes table's SDE_STATE_ID and 
SDE_DELETES_ROW_ID columns. 

The D_INDEX_DELETED_AT storage parameter holds the storage configuration of the 
D<n>_IDX2 index that ArcSDE creates on the deletes table's SDE_DELETED_AT column. 



44 ArcSDE Configuration and Tuning Guide for Oracle 

Note: If a configuration keyword is not specified when the registration of a business table is 
converted from single-version to multiversion, the adds and deletes tables and their indexes 
are created with the storage parameters of the configuration keyword the business table was 
created with.  

Feature class storage parameters 
A feature class created with an ArcSDE compressed binary storage (LONG RAW or BLOB 
datatype) format adds two tables to the Oracle database�the feature table and the spatial 
index table. Three indexes are created on the feature table, and two indexes are created on the 
spatial index table. The storage parameters for these tables and indexes follow the same 
pattern as the B_STORAGE and B_INDEX_* storage parameters of the business table. 

The F_STORAGE storage parameter holds the Oracle CREATE TABLE storage 
configuration of the feature table. The feature table is created as F_<n>, where <n> 
references the layer ID of the table's feature class found in the SDE.LAYERS table. 

The F_INDEX_FID storage parameter holds the Oracle CREATE INDEX storage 
configuration of the feature tables spatial column index. The spatial column is created as 
F_<n>_IX1, where <n> references the layer ID of the index's feature class found in the 
SDE.LAYERS table. 

The F_INDEX_AREA storage parameter holds the Oracle CREATE INDEX storage 
configuration of the feature tables area column index. The spatial column is created as 
F_<n>_AREA, where <n> references the layer ID of the index's feature class found in the 
SDE.LAYERS table. 

The F_INDEX_LEN storage parameter holds the Oracle CREATE INDEX storage 
configuration of the feature table�s length column index. The spatial column is created as 
F_<n>_LEN, where <n> references the layer ID of the index's feature class found in the 
SDE.LAYERS table. 

The S_STORAGE storage parameter holds the Oracle CREATE TABLE storage 
configuration of the spatial index table. The spatial index table is created as S_<n>, where 
<n> references the layer ID of the spatial index table's feature class found in the 
SDE.LAYERS table. 

The S_INDEX_ALL storage parameter holds the Oracle CREATE INDEX storage 
configuration of the spatial table first index. The spatial index table is created as S_<n>_IX1, 
where <n> references the layer ID of the index's feature class found in the SDE.LAYERS 
table. 

The S_INDEX_SP_FID storage parameter holds the Oracle CREATE INDEX storage 
configuration of the spatial table second index. The spatial index table is created as 
S_<n>_IX2, where <n> references the layer ID of the index's feature class found in the 
SDE.LAYERS table. 

Raster table storage parameters 
A raster column added to a business table is actually a foreign key reference to raster data 
stored in a schema consisting of four tables and five supporting indexes.  



 Chapter 3   Configuring DBTUNE storage parameters 45 

The RAS_STORAGE storage parameter holds the Oracle CREATE TABLE storage 
configuration of the RAS table.  

The RAS_INDEX_ID storage parameter holds the Oracle CREATE TABLE storage 
configuration of the RAS table index. 

The BND_STORAGE storage parameter holds the Oracle CREATE TABLE storage 
configuration of the BND table index. 

The BND_INDEX_ COMPOSITE storage parameter holds the Oracle CREATE INDEX 
storage configuration of the BND table�s composite column index.  

The BND_INDEX_ID storage parameter holds the Oracle CREATE INDEX storage 
configuration of the BND table�s rid column index. 

The AUX_STORAGE storage parameter holds the Oracle CREATE TABLE storage 
configuration of the AUX table. 

The AUX_INDEX_COMPOSITE storage parameter holds the Oracle CREATE INDEX 
storage configuration of the AUX table's index.  

The BLK_STORAGE storage parameter holds the Oracle CREATE TABLE storage 
configuration of the BLK table. 

The BLK_INDEX_COMPOSITE storage parameter holds the Oracle CREATE TABLE 
storage configuration of the BLK table's index. 

Network class composite configuration keywords 
The composite keyword is a unique type of configuration keyword designed to accommodate 
the tables of the ArcGIS network class. The network table's size variation requires a 
configuration keyword that provides configuration storage parameters for both large and 
small tables. Typically, the network descriptions table is very large in comparison with the 
others.  

To accommodate the vast difference in the size of the network tables, the network composite 
configuration keyword is subdivided into elements. A network composite configuration 
keyword has three elements: the parent element defines the general characteristic of the 
configuration keyword and the junctions feature class, the description element defines the 
configuration of the DESCRIPTIONS table and its indexes, and the network element defines 
the configuration of the remaining network tables and their indexes. 

The parent element does not have a suffix, and its configuration keyword looks like any other 
configuration keyword. The description element is demarcated by the addition of the ::DESC 
suffix to the parent element's configuration keyword, and the network element is demarcated 
by the addition of the ::NETWORK suffix to the parent element's configuration keyword. 

For example, if the parent element configuration keyword is ELECTRIC, the network 
composite configuration keyword would appear in a DBTUNE file as follows: 
##ELECTRIC

COMMENT This configuration keyword is dedicated to the electrical geometric
network class



46 ArcSDE Configuration and Tuning Guide for Oracle 

UI_NETWORK_TEXT "The electrical geometrical network class configuration
keyword"

B_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90 STORAGE
(INITIAL 500M NEXT 100M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

B_INDEX_ROWID "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 100M NEXT 50M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

B_INDEX_SHAPE "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 100M NEXT 50M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

B_INDEX_USER "TABLESPACE BUSINESS_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 100M NEXT 50M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

F_STORAGE "TABLESPACE FEATURE INITRANS 4 PCTFREE 10 PCTUSED 90 STORAGE
(INITIAL 500M NEXT 100M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

F_INDEX_FID "TABLESPACE FEATURE_INDEX INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 100M NEXT 50M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

F_INDEX_LEN "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
100M NEXT 50M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

F_INDEX_AREA "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
100M NEXT 50M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

S_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90 STORAGE
(INITIAL 200M NEXT 20M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

S_INDEX_ALL "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
200M NEXT 20M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

S_INDEX_SP_FID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
50M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90 STORAGE
(INITIAL 100M NEXT 50M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

A_INDEX_ROWID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_INDEX_SHAPE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_INDEX_USER "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_INDEX_STATEID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

D_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90
STORAGE (INITIAL 20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

D_INDEX_DELETED_AT "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

D_INDEX_STATE_ROWID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

END

##ELECTRIC::DESC

B_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90
STORAGE (INITIAL 500M NEXT 100M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

B_INDEX_ROWID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
100M NEXT 50M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

B_INDEX_USER "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
100M NEXT 50M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"



 Chapter 3   Configuring DBTUNE storage parameters 47 

A_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90
STORAGE (INITIAL 500M NEXT 100M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

A_INDEX_ROWID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_INDEX_SHAPE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_INDEX_USER "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_INDEX_STATEID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

D_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90
STORAGE (INITIAL 20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

D_INDEX_DELETED_AT "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

D_INDEX_STATE_ROWID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 20M NEXT 10M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

END

##ELECTRIC::NETWORK

B_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90
STORAGE (INITIAL 1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

B_INDEX_ROWID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

B_INDEX_USER "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90
STORAGE (INITIAL 1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

A_INDEX_ROWID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_INDEX_SHAPE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_INDEX_USER "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

A_INDEX_STATEID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE (INITIAL
1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

D_STORAGE "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 PCTUSED 90
STORAGE (INITIAL 1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0)"

D_INDEX_DELETED_AT "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

D_INDEX_STATE_ROWID "TABLESPACE BUSINESS INITRANS 4 PCTFREE 10 STORAGE
(INITIAL 1M NEXT 1M MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0) NOLOGGING"

END

Following the import of the DBTUNE file, these records would be inserted into the 
DBTUNE table. 
SQL> select keyword, parameter_name from DBTUNE;

KEYWORD PARAMETER_NAME
---------------- ----------------
ELECTRIC COMMENT
ELECTRIC UI_NETWORK_TEXT



48 ArcSDE Configuration and Tuning Guide for Oracle 

ELECTRIC B_STORAGE
ELECTRIC B_INDEX_ROWID
ELECTRIC B_INDEX_SHAPE
ELECTRIC B_INDEX_USER
ELECTRIC F_STORAGE
ELECTRIC F_INDEX_FID
ELECTRIC F_INDEX_LEN
ELECTRIC F_INDEX_AREA
ELECTRIC S_STORAGE
ELECTRIC S_INDEX_ALL
ELECTRIC S_INDEX_SP_FID
ELECTRIC A_STORAGE
ELECTRIC A_INDEX_ROWID
ELECTRIC A_INDEX_SHAPE
ELECTRIC A_INDEX_USER
ELECTRIC A_INDEX_STATEID
ELECTRIC D_STORAGE
ELECTRIC D_INDEX_DELETED_AT
ELECTRIC D_INDEX_STATE_ROWID
ELECTRIC::DESC B_STORAGE
ELECTRIC::DESC B_INDEX_ROWID
ELECTRIC::DESC B_INDEX_USER
ELECTRIC::DESC A_STORAGE
ELECTRIC::DESC A_INDEX_ROWID
ELECTRIC::DESC A_INDEX_STATEID
ELECTRIC::DESC A_INDEX_USER
ELECTRIC::DESC D_STORAGE
ELECTRIC::DESC D_INDEX_DELETE_AT
ELECTRIC::DESC D_INDEX_STATE_ROWID
ELECTRIC::NETWORK B_STORAGE
ELECTRIC::NETWORK B_INDEX_ROWID
ELECTRIC::NETWORK B_INDEX_USER
ELECTRIC::NETWORK A_STORAGE
ELECTRIC::NETWORK A_INDEX_ROWID
ELECTRIC::NETWORK A_INDEX_STATEID
ELECTRIC::NETWORK A_INDEX_USER
ELECTRIC::NETWORK D_STORAGE
ELECTRIC::NETWORK D_INDEX_DELETE_AT
ELECTRIC::NETWORK D_INDEX_STATE_ROWID

The network junctions feature class is created with the ELECTRIC configuration keyword 
storage parameters, the network descriptions table is created with the storage parameters of 
the ELECTRIC::DESC configuration keyword, and the remaining smaller network tables are 
created with the ELECTRIC::NETWORK configuration keyword. 

The NETWORK_DEFAULTS configuration keyword 
The NETWORK_DEFAULTS configuration keyword contains the default storage 
parameters for the ArcGIS network class. If the user does not select a network class 
composite configuration keyword from the ArcCatalog interface, the ArcGIS network is 
created with the storage parameters within the NETWORK_DEFAULTS configuration 
keyword. 

Whenever a network class composite configuration keyword is selected, its storage 
parameters are used to create the feature class, table, and indexes of the network class. If a 
network composite configuration keyword is missing any storage parameters, ArcGIS 
substitutes the storage parameters of the DEFAULTS configuration keyword rather than the 
NETWORK_DEFAULTS configuration keyword. The storage parameters of the 
NETWORK_DEFAULTS configuration keyword are used when a network composite 
configuration keyword has not been specified. 



 Chapter 3   Configuring DBTUNE storage parameters 49 

If a NETWORK_DEFAULTS configuration keyword is not present in a DBTUNE file 
imported into the DBTUNE table, the following NETWORK_DEFAULTS configuration 
keyword is created. 
##NETWORK_DEFAULTS

A_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_INDEX_STATEID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4
PCTINCREASE 0)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

B_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4
PCTINCREASE 0)"

COMMENT "The base system initialization parameters for NETWORK_DEFAULTS"
D_INDEX_DELETED_AT "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE
0)

NOLOGGING"
D_INDEX_STATE_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE
0)

NOLOGGING"
D_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS

PCTINCREASE 0)"
F_INDEX_AREA "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
F_INDEX_FID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
F_INDEX_LEN "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
F_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

MINEXTENTS 1 PCTINCREASE 0)"
S_INDEX_ALL "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
S_INDEX_SP_FID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 MINEXTENTS 1

PCTINCREASE 0) NOLOGGING"
S_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

MINEXTENTS 1 PCTINCREASE 0)"
UI_NETWORK_TEXT "The network default configuration"

END

##NETWORK_DEFAULTS::DESC

A_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_INDEX_STATEID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4
PCTINCREASE 0)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

B_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4
PCTINCREASE 0)"



50 ArcSDE Configuration and Tuning Guide for Oracle 

D_INDEX_DELETED_AT "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE
0)

NOLOGGING"
D_INDEX_STATE_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE
0)

NOLOGGING"
D_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

PCTINCREASE 0)"

END

##NETWORK_DEFAULTS::NETWORK

A_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_INDEX_STATEID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

A_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4
PCTINCREASE 0)"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

B_INDEX_SHAPE "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE 0)
NOLOGGING"

B_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4
PCTINCREASE 0)"

D_INDEX_DELETED_AT "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE
0)

NOLOGGING"
D_INDEX_STATE_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4 PCTINCREASE
0)

NOLOGGING"
D_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE (FREELISTS 4

PCTINCREASE 0)"

END

ArcSDE storage parameters for Oracle Spatial 
Several storage parameters exist to determine the storage of a feature class created as an 
Oracle Spatial SDO_GEOMETRY type. 

The SDO_SRID identifies the Oracle Spatial coordinate reference description. Consult the 
Oracle Spatial Users Guide and Reference for a list of supported coordinate references. 

ArcSDE provides storage parameters to define fixed values for the Oracle Spatial dimension 
information. If you do not define these storage parameters, Oracle Spatial calculates the 
dimensions from the data. Oracle Spatial allows you to define up to four dimensions. There 
are three basic parameters that are repeated for each dimension, delineated by the number of 
the dimension that is appended to the storage parameter's name. 

SDO_DIMNAME_<n> stores the dimension�s name. 

SDO_LB_<n> stores the dimension�s lower boundary. 

SDO_UB_<n> stores the dimension�s upper boundary. 

SDO_TOLERANCE_<n> stores the dimension�s precision. 



 Chapter 3   Configuring DBTUNE storage parameters 51 

Oracle Spatial provides three different spatial index methods: RTREE, FIXED, and 
HYBRID. The default is RTREE. The SDO_INDEX storage parameter lets you set the 
spatial index method to one of the methods offered by Oracle Spatial. 

The SDO_INDEX_SHAPE storage parameter stores the spatial index�s storage parameters. 
The parameters are a quoted string of a list of parameter = value elements that are passed to 
the PARAMETERS clause of the Oracle user-defined CREATE INDEX statement. 

The SDO_COMMIT_INTERVAL, SDO_LEVEL, SDO_NUMTILES, SDO_MAXLEVEL, 
and SDO_ORDCNT storage parameters all affect the configuration of the spatial index. 
These are actually Oracle Spatial parameters that have been documented in the Oracle 
Spatial Users Guide and Reference. For more information on how to set these parameters, 
see that document. You should be aware that in some cases Oracle will calculate the values 
for you based on the values of the spatial data being indexed. It is recommended that you use 
the Oracle defaults before setting these values yourself. 

The ArcSDE SDO_VERIFY storage parameter determines whether the geometry data 
fetched from Oracle Spatial feature class should be examined and, if necessary, corrected. 

Listed below is an ArcSDE DBTUNE configuration with storage parameters set to store a 
feature class created with an Oracle Spatial column. 
##ORACLE_SPATIAL_FC

GEOMETRY_STORAGE SDO_GEOMETRY

B_STORAGE "TABLESPACE BUSINESS PCTFREE 10 PCTUSED 90
INITRANS 4 STORAGE(FREELISTS 4 INITIAL 512000 NEXT
512000 MINEXTENTS 1 MAXEXTENTS 100 PCTINCREASE 0)"

B_INDEX_USER "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4
INITIAL 512000 NEXT 512000 MINEXTENTS 1 MAXEXTENTS
100 PCTINCREASE 0) NOLOGGING"

B_INDEX_ROWID "PCTFREE 10 INITRANS 4 STORAGE (FREELISTS 4
INITIAL 512000 NEXT 512000 MINEXTENTS 1 MAXEXTENTS
100 PCTINCREASE 0) NOLOGGING"

A_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE
(FREELISTS 4 INITIAL 512000 NEXT 512000 MINEXTENTS
1 MAXEXTENTS 100 PCTINCREASE 0)"

A_INDEX_USER "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE
(FREELISTS 4 INITIAL 512000 NEXT 512000 MINEXTENTS
1 MAXEXTENTS 100 PCTINCREASE 0)"

A_INDEX_ROWID "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE
(FREELISTS 4 INITIAL 512000 NEXT 512000 MINEXTENTS
1 MAXEXTENTS 100 PCTINCREASE 0)"

A_INDEX_STATEID "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE
(FREELISTS 4 INITIAL 512000 NEXT 512000 MINEXTENTS
1 MAXEXTENTS 100 PCTINCREASE 0)"

D_STORAGE "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE
(FREELISTS 4 INITIAL 512000 NEXT 512000 MINEXTENTS
1 MAXEXTENTS 100 PCTINCREASE 0)"

D_INDEX_DELETED_AT "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE
(FREELISTS 4 INITIAL 512000 NEXT 512000 MINEXTENTS
1 MAXEXTENTS 100 PCTINCREASE 0)"

D_INDEX_STATE_ROWID "PCTFREE 10 PCTUSED 90 INITRANS 4 STORAGE
(FREELISTS 4 INITIAL 512000 NEXT 512000 MINEXTENTS
1 MAXEXTENTS 100 PCTINCREASE 0)"

SDO_COMMIT_INTERVAL 100
SDO_INDEX_SHAPE "tablespace = spatial_index,initial = 409600, next

= 409600, minextents = 1, maxextents = 1000,
pctincrease = 0, btree_initial = 12384, btree_next
= 4096, btree_pctincrease = 0"

SDO_LAYER_GTYPE "POINT"



52 ArcSDE Configuration and Tuning Guide for Oracle 

SDO_LEVEL 30
SDO_ORDCNT 2
SDO_VERIFY TRUE

SDO_DIMNAME_1 LONGITUDE1
SDO_LB_1 -160.0
SDO_UB_1 20.0
SDO_TOLERANCE_1 0.000050

SDO_DIMNAME_2 LATITUDE2
SDO_LB_2 -68.0
SDO_UB_2 60.0
SDO_TOLERANCE_2 0.000050

SDO_DIMNAME_3 ZVals
SDO_LB_3 0.0
SDO_UB_3 15000.0
SDO_TOLERANCE_3 0.000050

SDO_DIMNAME_4 MVals
SDO_LB_4 0.0
SDO_UB_4 5000.0
SDO_TOLERANCE_4 0.000050

END

Oracle default parameters 
By default, Oracle stores tables and indexes in the user�s default tablespace using the 
tablespace�s default storage parameters. Determine a user�s default tablespace by querying 
the DEFAULT_TABLESPACE field of the USER_USERS system table when connected as 
that user. As the Oracle DBA, query the DEFAULT_TABLESPACE field of the 
DBA_USERS table using a where clause to specify the user. 
SQL> connect <user>/<password>
SQL> select default_tablespace from user_users;

or  
SQL> connect system/<password>
SQL> select default_tablespace from dba_users where username = <user>;

Obtain a list of tablespace default storage parameters for a tablespace by querying 
USER_TABLESPACES.  
SQL> connect <user>/<password>
SQL> select * from user_tablespaces where tablespace_name = <tablespace>;

Editing the storage parameters 
To edit the storage parameters, the sdedbtune administration command allows you to export 
the DBTUNE table to a file located in the $SDEHOME/etc directory on UNIX servers and in 
the %SDEHOME%\etc folder on Windows servers. It is an ArcSDE configuration file that 
contains Oracle table and index creation parameters. These parameters allow the ArcSDE 
service to communicate to the Oracle server such things as:  

•  Which tablespace a table or index will be created in  

•  The size of the initial and next extent  

• Other parameters that can be set on either the CREATE TABLE or CREATE  INDEX 
statement 



 Chapter 3   Configuring DBTUNE storage parameters 53 

Converting previous versions of SDE storage parameters 
into the DBTUNE table 

For older versions of the Spatial Database Engine� (SDE®), the DBTUNE storage 
parameters were maintained in the dbtune.sde file. The storage parameters of these previous 
versions were mapped directly to each Oracle storage parameters. For example, the ArcSDE 
8.0.2 F_TBLSP storage parameter holds the name of the feature table's tablespace.  

Beginning at ArcSDE 8.1, storage parameters hold entire configuration strings of the table or 
index they represent. For example, the F_STORAGE storage parameter holds the 
configuration string of the feature table. Any legal Oracle storage parameter listed to the right 
of the columns clause of the Oracle CREATE TABLE statement can be listed in the 
F_STORAGE storage parameter. Therefore, the F_STORAGE storage parameter 
incorporates all of the ArcSDE 8.0.2 feature table storage parameters. 

If you are upgrading to ArcSDE 8.1 or higher from a version of ArcSDE prior to ArcSDE 
8.1, the conversion of the dbtune files storage parameters occurs automatically when the 
sdesetupora* utility reads the storage parameters from the previous version�s dbtune.sde file. 
The import operation of the sdedbtune command will convert a DBTUNE file into current 
ArcSDE storage parameters before it writes them to the DBTUNE table. To see the results 
you can either use SQL*Plus to list the storage parameters of the DBTUNE table or write the 
storage parameters of the DBTUNE table to another file using the export operation of the 
sdedbtune command. 



54 ArcSDE Configuration and Tuning Guide for Oracle 

The following table lists the conversion of ArcSDE 8.0.2 storage parameters to ArcSDE 8.1 
storage parameters.  

 

ArcSDE 8.0.2 storage 
parameters 

INDEX_TABLESPACE  ROADS_IX 
 
A_IX1_INIT             10M 
A_IX1_NEXT          5M 
A_MINX                   1 
A_MAXX                 200 
A_PCTI                     0 
A_ITRANS               5 
A_MAXTRS            255 
A_PCTFREE           10 

ArcSDE 8.1 storage parameters 

B_INDEX_SHAPE   "TABLESPACE ROADS_IX 
                                       STORAGE (FREELISTS 4 
                                                             INITIAL 10M 
                                                             NEXT 5M 
                                                             MINEXTENTS 1 
                                                             MAXEXTENTS 200 
                                                             PCTINCREASE 0) 
                                       INITRANS 5 
                                       MAXTRANS 255 
                                       PCTFREE 10" 

ArcSDE 8.0.2 storage parameters 

A_TBLSP         ROADS 
 
A_INIT             10M 
A_NEXT          5M 
A_MINX          1 
A_MAXX         200 
A_PCTI            0 
A_ITRANS      5 
A_MAXTRS    255 
A_PCTFREE    10 
A_PCTUSD     90 

ArcSDE 8.1 storage parameters 

B_STORAGE   "TABLESPACE ROADS 
                            STORAGE (FREELISTS 4 
                                                INITIAL 10M 
                                                NEXT 5M 
                                                MINEXTENTS 1 
                                                MAXEXTENTS 200
                                               PCTINCREASE 0) 
                           INITRANS 5 
                           MAXTRANS 255 
                           PCTFREE 10 
                           PCTUSED 90" 
                                                

The ArcSDE 8.0.2 business table and index parameter prefix is "A_". The ArcSDE 8.1 business table and index 
parameter prefix is "B_". The ArcSDE 8.0.2 business table storage parameters are converted to the single 
ArcSDE 8.1 B_STORAGE storage parameter. The B_STORAGE parameter holds the entire business table�s 
configuration string. 

The ArcSDE 8.0.2 business table index storage parameters are converted to ArcSDE 8.1 storage parameter 
configuration strings. The example below illustrates how the ArcSDE 8.0.2 storage parameters are converted into 
the ArcSDE 8.1 spatial column index storage parameter B_INDEX_SHAPE. The other ArcSDE 8.1 business 
table index storage parameters B_INDEX_ROWID and B_INDEX_USER are also constructed this way. 



 Chapter 3   Configuring DBTUNE storage parameters 55 

 

 

 

 

ArcSDE 8.0.2 storage 
parameters 

INDEX_TABLESPACE  ROADS_F_IX
 
F_IX1_INIT             10M 
F_IX1_NEXT          5M 
F_MINX                   1 
F_MAXX                 200 
F_PCTI                     0 
F_ITRANS               5 
F_MAXTRS            255 
F PCTFREE           10 

ArcSDE 8.1 storage parameters 

F_INDEX_FID           "TABLESPACE ROADS_F_IX 
                                       STORAGE (FREELISTS 4 
                                                             INITIAL 10M 
                                                             NEXT 5M 
                                                             MINEXTENTS 1 
                                                             MAXEXTENTS 200 
                                                             PCTINCREASE 0) 
                                       INITRANS 5 
                                       MAXTRANS 255 
                                       PCTFREE 10" 

ArcSDE 8.0.2 storage parameters 

F_TBLSP         ROADS_F 
 
F_INIT             10M 
F_NEXT          5M 
F_MINX          1 
F_MAXX         200 
F_PCTI            0 
F_ITRANS      5 
F_MAXTRS    255 
F_PCTFREE    10 
F_PCTUSD     90 

ArcSDE 8.1 storage parameters 

F_STORAGE   "TABLESPACE ROADS_F 
                            STORAGE (FREELISTS 4 
                                                INITIAL 10M 
                                                NEXT 5M 
                                                MINEXTENTS 1 
                                                MAXEXTENTS 200 
                                               PCTINCREASE 0) 
                           INITRANS 5 
                           MAXTRANS 255 
                           PCTFREE 10 
                           PCTUSED 90" 

The ArcSDE 8.0.2 feature table storage parameters are converted to the ArcSDE 8.1 F_STORAGE storage 
parameter. The F_STORAGE parameter holds the entire feature table�s configuration string. 

The ArcSDE 8.0.2 feature table index storage parameters are converted to ArcSDE 8.1 storage parameter 
configuration strings. The example below illustrates how the ArcSDE 8.0.2 storage parameters are converted into 
the ArcSDE 8.1fid column index storage parameter F_INDEX_FID. The other ArcSDE 8.1 feature table index 
storage parameters F_INDEX_AREA and F_INDEX_LEN are also constructed this way. 



56 ArcSDE Configuration and Tuning Guide for Oracle 

 

ArcSDE 8.0.2 storage parameters 

INDEX_TABLESPACE ROADS_S_IX 
 
S_IX1_INIT             10M 
S_IX1_NEXT          5M 
S_MINX                   1 
S_MAXX                 200 
S_PCTI                     0 
S_ITRANS               5 
S_MAXTRS            255 
S_PCTFREE           10 

ArcSDE 8.1 storage parameters 

S_INDEX_ALL             "TABLESPACE ROADS_S_IX 
                                            STORAGE (FREELISTS 4 
                                                                  INITIAL 10M 
                                                                  NEXT 5M 
                                                                  MINEXTENTS 1 
                                                                  MAXEXTENTS 200 
                                                                  PCTINCREASE 0) 
                                            INITRANS 5 
                                            MAXTRANS 255 
                                            PCTFREE 10" 

ArcSDE 8.0.2 storage parameters 

S_TBLSP         ROADS_S 
 
S_INIT             10M 
S_NEXT          5M 
S_MINX          1 
S_MAXX         200 
S_PCTI            0 
S_ITRANS      5 
S_MAXTRS    255 
S_PCTFREE    10 
S_PCTUSD     90 

ArcSDE 8.1 storage parameters 

S_STORAGE   "TABLESPACE ROADS_S 
                            STORAGE (FREELISTS 4 
                                                INITIAL 10M 
                                                NEXT 5M 
                                                MINEXTENTS 1 
                                                MAXEXTENTS 200
                                               PCTINCREASE 0) 
                           INITRANS 5 
                           MAXTRANS 255 
                           PCTFREE 10 
                           PCTUSED 90" 

The ArcSDE 8.0.2 spatial index table storage parameters are converted to the ArcSDE 8.1 S_STORAGE storage 
parameter. The S_STORAGE parameter holds the entire spatial index table�s configuration string. 

The ArcSDE 8.0.2 spatial index table storage parameters are converted to ArcSDE 8.1 storage parameter 
configuration strings. The example below illustrates how the ArcSDE 8.0.2 index storage parameters are 
converted into the ArcSDE 8.1 storage parameter S_INDEX_ALL. The  S_INDEX_SP_FID storage parameter is 
converted the same way except ArcSDE 8.0.2 storage parameters S_IX2_INIT and S_IX2_NEXT are used. 



 Chapter 3   Configuring DBTUNE storage parameters 57 

The complete list of ArcSDE 8.1 storage parameters 
 

Parameter Name Value Parameter Description  Default Value 

STATES_LINEAGES_TABLE <string> State_lineages table B_STORAGE 

STATES_TABLE <string> States table B_STORAGE 

STATES_INDEX <string> States indexes B_INDEX_USER 

MVTABLES_MODIFIED_TABLE <string> Mvtables_modified table B_STORAGE 

MVTABLES_MODIFIED_INDEX <string> Mvtables_modified index B_INDEX_USER 

VERSIONS_TABLE <string> Versions table B_STORAGE 

VERSIONS_INDEX <string> Version index B_INDEX_USER 

COMPRESS_ROLLBACK_SEGMENT <string> Version compression rollback 
segment 

Oracle defaults 

B_STORAGE <string> Business table Oracle defaults 

B_INDEX_ROWID <string> Business table object ID 
column index 

Oracle defaults 

B_INDEX_SHAPE <string> Business table spatial column 
index 

Oracle defaults 

B_INDEX_USER <string> Business table user index(s) Oracle defaults 

F_STORAGE <string> Feature table Oracle defaults 

F_INDEX_FID <string> Feature table fid column index Oracle defaults 

F_INDEX_AREA <string> Feature table area column index Oracle defaults 

F_INDEX_LEN <string> Feature table length column 
index  

Oracle defaults 

S_STORAGE <string> Spatial index table Oracle defaults 

S_INDEX_ALL <string> Spatial index table first index Oracle defaults 

S_INDEX_SP_FID <string> Spatial index table second index Oracle defaults 

A_STORAGE <string> Adds table Oracle defaults 



58 ArcSDE Configuration and Tuning Guide for Oracle 

Parameter Name Value Parameter Description  Default Value 

A_INDEX_ROWID <string> Adds table object ID column 
index 

Oracle defaults 

A_INDEX_SHAPE <string> Adds table spatial column index Oracle defaults 

A_INDEX_STATEID <string> Adds table sde_state_id column 
index 

Oracle defaults 

A_INDEX_USER <string> Adds table index  Oracle defaults 

D_STORAGE <string> Deletes table Oracle defaults 

D_INDEX_ STATE_ROWID <string> Deletes table sde_states_id and 
sde_deletes_row_id column 
index  

Oracle defaults 

D_INDEX_DELETED_AT <string> Deletes table sde_deleted_at 
column index 

Oracle defaults 

LF_STORAGE <string> Sde log files table Oracle defaults 

LF_INDEXES <string> Sde log file table column 
indexes 

Oracle defaults 

LD_STORAGE <string> Sde log file data table Oracle defaults 

LD_INDEX_DATA_ID <string> Sde log file data table  Oracle defaults 

LD_INDEX_ROWID <string> SDE log file data table SDE 
rowid column index 

Oracle defaults 

RAS_STORAGE <string> Raster RAS table Oracle defaults 

RAS_INDEX_ID <string> Raster RAS table RID index Oracle defaults 

BND_STORAGE <string> Raster BND table Oracle defaults 

BND_INDEX_COMPOSITE <string> Raster BND table composite 
column index  

Oracle defaults 

BND_INDEX_ID <string> Raster BND table RID column 
index 

Oracle defaults 

AUX_STORAGE <string> Raster AUX table   Oracle defaults 

AUX_INDEX_COMPOSITE <string> Raster AUX table composite 
column index 

Oracle defaults 

BLK_STORAGE <string> Raster BLK table  Oracle defaults 



 Chapter 3   Configuring DBTUNE storage parameters 59 

Parameter Name Value Parameter Description  Default Value 

BLK_INDEX_COMPOSITE <string> Raster BLK table composite 
column index 

Oracle defaults 

ATTRIBUTE_BINARY <string> Set this storage parameter to 
longraw or blob 

longraw 

GEOMETRY_STORAGE <string> Set this storage parameter to 
sdebinary, sdelob, or 
sdo_geometry 

SDEBINARY 

SDO_COMMIT_INTERVAL integer Specifies the Oracle Spatial 
Geometry Types index commit 
interval 

Use Oracle Default 

SDO_DIMNAME_1 String The name of the first dimension 
for Oracle Spatial Geometry 
Types only 

X 

SDO_DIMNAME_2 String The name of the second 
dimension for Oracle Spatial 
Geometry Types only 

Y 

SDO_DIMNAME_3 string The name of the third 
dimension for Oracle Spatial 
Geometry Types only 

Z 

SDO_DIMNAME_4 string The name of the fourth 
dimension for Oracle Spatial 
Geometry Types only 

M 

SDO_INDEX string The Oracle Spatial Geometry 
Types index type (FIXED, 
HYBRID, RTREE) 

Oracle Defaults 

SDO_INDEX_SHAPE string The Oracle Spatial Geometry 
types spatial index storage 
parameters 

Oracle Default 

SDO_LAYER_GTYPE POINT Specifies that the parameter 
�LAYER_GTYPE = POINT� 
should be used when creating 
the spatial index 

Set ONLY for single 
part POINT data when 
using quadtree indexes 

SDO_LB_1 real 
number 

Lower dimension boundary for 
Oracle Spatial Geometry Type  

Based on extent of 
data loaded 

SDO_LB_2 real 
number 

Lower dimension boundary for 
Oracle Spatial Geometry Type  

Based on extent of 
data loaded 



60 ArcSDE Configuration and Tuning Guide for Oracle 

Parameter Name Value Parameter Description  Default Value 

SDO_LB_3 real 
number 

Lower dimension boundary for 
Oracle Spatial Geometry Types 
only 

Based on extent of 
data loaded 

SDO_LB_4 real 
number 

Lower dimension boundary for 
Oracle Spatial Geometry Types 
only 

Based on extent of 
data loaded 

SDO_LEVEL integer Specifies the desired fixed-size 
tiling level for Oracle Spatial 
Geometry Types only 

Computed by 
SDO_TUNE.ESTIM
ATE_TILING_LEVE
L 

SDO_MAXLEVEL integer Specifies the maximum tiling 
level for Oracle Spatial 
Geometry Types only 

Computed by 
SDO_TUNE.ESTIM
ATE_TILING_LEVE
L 

SDO_NUMTILES integer Specifies the number of 
variable-sized tiles to be used in 
tessellating an object for Oracle 
Spatial Geometry Type  

Computed by 
SDO_TUNE.ESTIM
ATE_TILING_LEVE
L 

SDO_ORDCNT integer The number of ordinates in a 
row (for Oracle Spatial Schema 
Only) 

16 (2 for POINT data) 

SDO_SRID integer Oracle Spatial coordinate 
reference identifier assigned to 
the SDO_GEOMETRY column 

NULL 

SDO_TOLERANCE_1 real 
number 

The precision of the dimension 
for Oracle Spatial Geometry 
Type  

.0005 

SDO_TOLERANCE_2 real 
number 

The precision of the dimension 
for Oracle Spatial Geometry 
Type Schema 

.0005 

SDO_TOLERANCE_3 real 
number 

The precision of the dimension 
for Oracle Spatial Geometry 
Types only 

.0005 

SDO_TOLERANCE_4 real 
number 

The precision of the dimension 
for Oracle Spatial Geometry 
Types only 

.0005  

SDO_UB_1 real 
number 

Upper dimension boundary for 
Oracle Spatial Geometry Type  

Based on extent of 
data loaded 



  61 

 

C H A P T E R  4  

Managing tables, feature 
classes, and raster columns 

A fundamental part of any database is creating and loading the tables. Tables 
with spatial columns are called standalone feature classes. Attribute-only 
(nonspatial) tables are also an important part of any database. This chapter 
will describe the table and feature class creation and loading process.  

Data creation  
There are numerous applications that can create and load data within an ArcSDE Oracle 
database. These include: 

1. ArcSDE administration commands located in the bin directory of SDEHOME: 

• sdelayer�creates and manages feature classes. 

• sdetable�creates and manages tables. 

• sdeimport�takes an existing sdeexport file and loads the data into a feature class. 

• shp2sde�loads an ESRI shapefile into a feature class. 

• cov2sde�loads a coverage, Map LIBRARIAN layer, or an ArcStorm� layer into a 
feature class. 

• tbl2sde�loads an attribute-only dBASE® or INFO� file into a table. 

• sdegroup�a specialty feature class creation command that combines the features of 
an existing feature class into single multipart features and stores them in a new 
feature class for background display. The generated feature class is used for rapid 
display of a large amount of geometry data. The attribute information is not retained, 
and spatial searches cannot be performed on these feature classes. 

• sderaster�creates, inserts, modifies, imports and manages raster data stored in an 
ArcSDE database. 



62 ArcSDE Configuration and Tuning Guide for Oracle 

These are all run from the operating system prompt. Command references for these tools are in the 
ArcSDE developer help.    

Other applications include: 

2. ArcGIS Desktop�use ArcCatalog or ArcToolbox to manage and populate your 
database. 

3. ArcInfo Workstation�use the Defined Layer interface to create and populate the 
database. 

4. ArcView 3.2�use the Database Access extension. 

5. MapObjects®�custom Component Object Model (COM) applications can be built to 
create and populate databases. 

6. ArcSDE CAD Client extension�for AutoCAD® and MicroStation® users. 

7. Other third party applications built with either the C or Java� APIs. 

This document focuses primarily on the ArcSDE administration tools but does provide some 
ArcGIS Desktop examples as well. In general, most people prefer an easy-to-use graphic user 
interface like the one found in ArcGIS Desktop. For details on how to use ArcCatalog or 
ArcToolbox (another desktop data loading tool), please refer to the ArcGIS books: 

• Using ArcCatalog 

• Using ArcToolbox 

• Building a Geodatabase 

Creating and populating a feature class 
The general process involved with creating and loading a feature class is: 

1. Create the business table. 

2. Record the business table and the spatial column in the ArcSDE LAYERS and 
GEOMETRY_COLUMNS system tables, thus adding a new feature class to the 
database. 

3. Switch the feature class to load_only_io mode (optional step to improve bulk data 
loading performance. It is OK to leave feature class in normal_io mode to load data.). 

4. Insert the records (load data). 

5. Switch the feature class to normal_io mode (builds the indexes). 

6. Version the data (optional). 

7. Grant privileges on the data (optional). 

In the following sections, this process is discussed in more detail and illustrated with some 
examples of ArcSDE administration commands usage and ArcInfo data-loading utilities 
through the ArcCatalog and ArcToolbox interfaces. 



 Chapter 4   Managing tables, feature classes, and raster columns 63 

Creating a feature class �from scratch� 

There are two basic ways to create a feature class. You can create a feature class from scratch 
(requiring considerably more effort), or you can create a feature class from existing data such 
as a coverage or ESRI shapefile. Both methods are reviewed below with the �from scratch� 
method being first.  

Creating a business table  

You may create a business table with either the SQL CREATE TABLE statement or the 
ArcSDE sdetable command. The sdetable command allows you to include a dbtune 
configuration keyword containing the storage parameters of the table.  

Although the table may be up to 256 columns, ArcSDE requires that only one of those 
columns be defined as a spatial column. 

In this example, the sdetable command is used to create the �roads� business table. 
sdetable -o create -t roads -d 'road_id integer, name string(32), shape
integer' -k roads -u beetle -p bug

The table is created using the dbtune configuration keyword (-k) �roads� by user beetle.   

The same table could be created with a SQL CREATE TABLE statement using the Oracle 
SQL*Plus interface. 
create table roads
(road_id integer,
name varchar(32),
shape integer)
tablespace beetle_data
storage (initial 16K next 8K);

At this point you have created a table in the database. ArcSDE does not yet recognize it as a 
feature class.  The next step is to record the spatial column in the ArcSDE LAYERS and 
GEOMETRY_COLUMNS system tables and thus add a new feature class to the database. 

Adding a feature class 

After creating a business table, you must add an entry for the spatial column in the ArcSDE 
LAYERS system tables before the ArcSDE server can reference it. Use the sdelayer 
command with the �-o add� operation to add the new feature class.  

In the following example, the roads feature class is added to the ArcSDE database. Note that 
to add the feature class, the roads table name and the spatial column are combined to form a 
unique feature class reference. To understand the purpose of the �e, �g, and �x options, refer 
to the sdelayer command reference in the ArcSDE developer help.   
sdelayer -o add -l roads,shape -e l+ -g 256,0,0 -x 0,0,100 -u beetle -p bug -k
roads

If the spatial column of the feature class is stored in either LONG RAW or BLOB ArcSDE 
compressed binary format, the feature and spatial index tables are created. The feature class 
tables and indexes are stored according to the storage parameters of the roads configuration 
keywords in the DBTUNE table. Upon successful completion of the previous sdetable 
command�to create a table�and the sdelayer command�to record the feature class in the 
ArcSDE system tables�you have an empty feature class in normal_io mode. 



64 ArcSDE Configuration and Tuning Guide for Oracle 

Switching to load-only mode 

Switching the feature class to load-only mode drops the spatial index and makes the feature 
class unavailable to ArcSDE clients. Bulk loading data into the feature class in this state is 
much faster due to the absence of index maintenance. Use the sdelayer command to switch 
the feature class to load-only mode by specifying the �-o load_only_io� operation. 
sdelayer -o load_only_io -l roads,shape -u beetle -p bug

Note: A feature class, registered as multiversioned, cannot be placed in the load-only I/O 
mode. However, the grid size can be altered with the -o alter operation. The alter operation 
will apply an exclusive lock on the feature class, preventing all modifications by ArcInfo until 
the operation is complete. 

Inserting records into the feature class 

Once the empty feature class exists, the next step is to populate it with data. There are several 
ways to insert data into a feature class, but probably the easiest method is to convert an 
existing shapefile or coverage or import a previously exported ArcSDE sdeexport file directly 
into the feature class. 

In this first example, shp2sde is used with the init operation. The init operation is used on 
newly created feature classes or can be used on feature classes when you want to �overwrite� 
data that�s already there. Don't use the init operation on feature classes that already contain 
data unless you want to remove the existing data. Here, the shapefile, �rdshp�, will be loaded 
into the feature class, �roads�.  Note that the name of the spatial column (�shape� in this case) 
is included in the feature class (-l) option.  
shp2sde -o init -l roads,shape -f rdshp -u beetle -p bug

Similarly, we can also use the cov2sde command: 
cov2sde -o init -l roads,shape -f rdcov -u beetle -p bug

Switching the table to normal_io mode 

After data has been loaded into the feature class, you must switch the feature class to 
normal_io mode to re-create all indexes and make the feature class available to clients. For 
example: 
sdelayer -o normal_io -l roads,shape -u beetle -p bug

Versioning your data 

Optionally, you may enable your feature class as multiversioned. Versioning is a process that 
allows multiple representations of your data to exist without requiring duplication or copies of 
the data. ArcMap requires data to be multiversioned to edit it. For further information on 
versioning data, refer to the Building a Geodatabase book. 

In this example, the feature class called �states� will be registered as multiversioned using the 
sdetable alter_reg operation. 
sdetable -o alter_reg -t states -c ver_id -C SDE -V multi -k GEOMETRY_TYPE
 

Granting privileges on the data 

Once you have the data loaded, it is often necessary for other users to have access to the data 
for update, query, insert, or delete operations. Initially, only the user who has created the 
business table has access to it. In order to make the data available to others, the owner of the 



 Chapter 4   Managing tables, feature classes, and raster columns 65 

data must grant privileges to other users. The owner can use the sdelayer command to grant 
privileges. Privileges can be granted to either another user or to a role. 

In this example, a user called �beetle� gives a user called �spider� SELECT privileges on a 
feature class called �states�. 
sdelayer -o grant -l states,feature -U spider -A SELECT -u beetle -p bug

The full list of -A keywords are: 

SELECT. The user may query the selected object(s) data. 

DELETE. The user may delete the selected object(s) data. 

UPDATE. The user may modify the selected object(s) data. 

INSERT. The user may add new data to the selected object(s) data. 

If you include the -I grant option, you also grant the recipient the privilege of granting other 
users and roles the initial privilege. 

Creating and loading feature classes from existing data 

We have reviewed the �from scratch� method of creating a schema and then loading it. This 
next section reviews how to create feature classes from existing data. This method is simpler 
since the creation and load process is completed at once.   

Each of the ArcSDE administration commands, shp2sde, cov2sde, and sdeimport, includes a 
�-o create� operation, which allows you to create a new feature class within the ArcSDE 
database. The create operation does all of the following: 

• Creates the business table using the input data as the template for the schema 

• Adds the feature class to the ArcSDE system tables 

• Puts the feature class into load-only mode 

• Inserts data into the feature class 

• When all the records are inserted, puts the feature class into normal_io mode 

shp2sde 

shp2sde converts shapefiles into ArcSDE feature classes. The spatial column definition is read 
directly from the shapefile. You can use the shpinfo command to display the shapefile column 
definitions. As part of the create operation, you can specify which spatial storage format you 
wish to adopt for the data storage by including a  ��k� option that references to a configuration 
keyword containing a GEOMETRY_STORAGE parameter.  

In this example, Oracle Spatial geometry type is selected as the storage format by including 
the configuration keyword �GEOMETRY_TYPE�. The keyword GEOMETRY_TYPE, 
defined in the DBTUNE table, also sets a number of additional parameters for this storage 
type, which will be used to create the Oracle Spatial index. See Appendix D, �Oracle Spatial 
Geometry Type�, for additional information on Oracle Spatial and specifics about how it can 
be configured. 



66 ArcSDE Configuration and Tuning Guide for Oracle 

shp2sde -o create -f rdshp -l roads,shape -k GEOMETRY_TYPE -u beetle -p bug

cov2sde 

The cov2sde command converts ArcInfo coverages, ArcInfo Librarian� library feature 
classes, and ArcStorm library feature classes into ArcSDE feature classes. The create 
operation derives the spatial column definition from the coverage�s feature attribute table. Use 
the ArcInfo describe command to display the ArcInfo data source column definitions.  

In this example, an ArcStorm library, �roadlib�, is converted into the feature class, �roads�.  
cov2sde -o create -l roads,shape -f roadlib,arcstorm -g 256,0,0 -x 0,0,100 -e
l+ -u beetle -p bug

sdeimport  

The sdeimport command converts ArcSDE export files into ArcSDE feature classes. In this 
example, the roadexp ArcSDE export file is converted into the feature class �roads�.  
sdeimport -o create -l roads,shape -f roadexp -u beetle -p bug

After using these commands to create and load data, you may optionally need to enable 
multiversioning on the feature class and grant privileges on the feature class to other users. 

Appending data to an existing feature class  
A common requirement for data management is to be able to append data to existing feature 
classes. The data loading commands described thus far have a �o append operation for 
appending data. A feature class must exist prior to using the append operation. If the feature 
class is multiversioned, it must be in an �open� state. It is also advisable to change the feature 
class to load-only I/O mode and pause the spatial indexing operations before loading the data 
to improve the data-loading performance. The spatial indexes will be re-created when the 
feature class is put back into normal I/O mode. Because the feature class has been defined, the 
metadata exists and is not altered by the append operation.  

In the shp2sde example below, a previously created �roads� feature class appends features 
from a shapefile, �rdshp2�.  All existing features, loaded from the �rdshp� shapefile, remain 
intact, and ArcSDE updates the feature class with the new features from the rdshp2 shapefile.  
sdelayer -o load_only_io -l roads,shape -u beetle -p bug
shp2sde -o append -f rdshp2 -l roads,shape -u beetle -p bug
sdelayer -o normal_io -l roads,shape -u beetle -p bug
sdetable -o update_dbms_stats -t roads -u beetle -p bug

Note the last command in the sequence. The sdetable update_dbms_stats operation updates 
the table and index statistics required by the Oracle cost-based optimizer. Without the 
statistics the optimizer may not be able to select the best execution plan when you query the 
table. For more information on updating statistics, see Chapter 2, �Essential Oracle 
configuring and tuning�. 

Creating and populating raster columns 
Raster columns are created from ArcGIS Desktop using ArcCatalog or ArcMap. To create a 
raster column, you will first need to convert the image file into a format acceptable to 
ArcSDE. Then after the image has been converted to the ESRI raster file format, you can 
convert it into a raster column. 



 Chapter 4   Managing tables, feature classes, and raster columns 67 

For more information on creating raster columns using either ArcCatalog or ArcToolbox, 
refer to Building a Geodatabase. 

To estimate the size of your raster data, refer to Appendix A, �Estimating the size of your 
tables and indexes�.  

To understand how ArcSDE stores rasters in Oracle, refer to Appendix B, �Storing raster 
data�. 

Creating views 
There are times when a DBMS view is required in your database schema. ArcSDE provides 
the sdetable create_view operation to accommodate this need. The view creation is much like 
any other Oracle view creation. If you want to create a view using a layer and you want the 
resulting view to appear as a feature class to client applications, include the feature class's 
spatial column in the view definition. As with the other ArcSDE commands, see the ArcSDE 
developer help for more information. 

Exporting data 
As with importing data, there are also client applications that export data from ArcSDE as 
well. With ArcSDE, the following command line tools exist: 

sdeexport�creates an ArcSDE export file to easily move feature class data between Oracle 
instances and to other supported DBMSs  

sde2shp�creates an ESRI shapefile from an ArcSDE feature class 

sde2cov�creates a coverage from an ArcSDE feature class 

sde2tbl�creates a dBASE or INFO file from a DBMS table 

Schema modification 
There will be occasions when it is necessary to modify the schema of some tables. You may 
need to add or remove columns from a table. The ArcSDE command to do this is sdetable 
with the �o alter option. ArcCatalog offers an easy-to-use tool for this and other schema 
operations such as modifying the spatial index (grids) and adding and dropping column 
indexes. 

Using the ArcGIS Desktop ArcCatalog and ArcToolbox 
applications 

So far the discussion has focused on ArcSDE command line tools that create feature class 
schemas and load data into them. While robust, these commands can be daunting for the 
first-time user. In addition, if you are using ArcGIS Desktop, you may have to use ArcCatalog 
to create feature datasets and feature classes within those feature datasets to use specific 
ArcGIS Desktop functionality. For that reason, we provide a glimpse of how to use 
ArcToolbox and ArcCatalog to load data. Please refer to the ArcInfo documentation on 
ArcCatalog, ArcToolbox, and the geodatabase for a full discussion of these tools. 



68 ArcSDE Configuration and Tuning Guide for Oracle 

Loading data 
You can convert ESRI shapefiles, coverages, Map LIBRARIAN layers, and ArcStorm layers 
into geodatabase feature classes with the ArcToolbox and ArcCatalog applications. 
ArcToolbox provides a number of tools that enable you to convert data from one format to 
another. 

ArcToolbox operations, such as the ArcSDE administration commands shp2sde, cov2sde, and 
sdeimport, accept configuration keywords. By using a configuration keyword with the 
GEOMETRY_STORAGE storage parameter, the user can choose one of the three Oracle 
spatial storage methods supported by ArcSDE. 

In the ArcToolbox Shapefile to Geodatabase wizard, you can see that a configuration 
keyword has been specified for the loading of the hampton_streets shapefile into the 
geodatabase. Since the geodatabase is maintained by an ArcSDE service operating on an 
Oracle database, you can store the resulting feature class using the Oracle Spatial geometry 
type format. This keyword has set the GEOMETRY_STORAGE parameter to 
SDO_GEOMETRY, indicating to ArcSDE that the resulting feature class should be stored as 
an Oracle Spatial geometry type. 

The shapefile CASNBRST.shp file is converted to feature class vtest.CASNBRST using ArcToolbox. 



 Chapter 4   Managing tables, feature classes, and raster columns 69 

Versioning your data 
ArcCatalog also provides a means for registering data as multiversioned. Simply right-click 
the feature class to be registered as multiversioned and select the Register As Versioned 
context menu item. 

A feature class is registered as multiversioned from within ArcCatalog. 

Granting privileges 
Using ArcCatalog, right-click on the data object class and click on the Privileges context 
menu. From the Privileges context menu assign privileges specifying the username and the 
privilege you wish to grant to or revoke from a particular user. 



70 ArcSDE Configuration and Tuning Guide for Oracle 

The ArcCatalog Privileges menu allows the owner of an object class, such as a feature dataset, feature 
class, or table, to assign privileges to other users or roles. 

Creating a raster column with ArcCatalog 
Using ArcCatalog, right-click on the database connection, point to Import, and click on Raster 
to Geodatabase. Navigate to the raster file to import. Click Change Settings if you want to 
change the coordinate reference system, tile size, pyramids option, or configuration keyword. 
Click OK to import the raster file into the Oracle database.  



 Chapter 4   Managing tables, feature classes, and raster columns 71 

 



72 ArcSDE Configuration and Tuning Guide for Oracle 

Registering a business table  
When ArcSDE registers a business table it performs a number of tasks depending on the type 
of registration that was requested. The duration of the registration  process is dependent on the 
type of registration, whether the business table has a spatial column, and the table's number of 
rows. 

Registering a table as NONE or USER maintained  
Tables registered as NONE, are registered without a row id column.  

Tables registered as USER, are registered with a row id column whose values you must 
maintain. 

If the registration type is NONE or USER, ArcSDE merely adds a record to the 
SDE.TABLE_REGISTRY that references the business table. For tables registered as type 
USER the name of the row id is also added to the SDE.TABLE_REGISTRY entry. 

Registration of these two registration types happens rather quickly. 

Registering a table as SDE maintained  
Tables registered as type SDE, must have a row id column that uniquely identifies the rows of 
the table.  

NOTE: Table's registered by the geodatabase must be registered to ArcSDE as SDE 
maintained. If the geodatabase determined that the table has already been registered by 
ArcSDE as SDE maintained, the geodatabase uses the SDE maintained row id. In this case the 
geodatabase registration process is relatively inexpensive especially if you have already. 

If a table was registered with a USER maintained row id, the geodatabase alters its row id 
registration to be SDE maintained. 

By default the geodatabase adds a column called objectid to the table and register it as SDE 
maintained. If the objectid column already exists, and is not currently registered as sde 
maintained, the geodatabase will add a new column to the table called objectid_1.   

Creating a new SDE maintained row ID column  

If the row id column does not exist when the table is registered, ArcSDE adds a column of 
type INTEGER, with a NOT NULL constraint. If the table contains rows, ArcSDE populates 
the column with unique ascending values starting at your specified minimum id value. The 
minimum id value defaults to 1 if left unspecified. It then creates a unique index on the 
column called R<registration_id>_SDE_ROWID_UK, where registration_id is the 
registration identifier ArcSDE assigns the table when it was registered. 

ArcSDE creates a sequence generator called R<registration_id> and uses it to generate the 
next value of the row id column whenever a value is added to the column. 

Adding a column to an Oracle table that already contains rows can result in row migration, 
when the free space of the Oracle data block (as defined by PCTFREE) is consumed by the 
newly added column values.  



 Chapter 4   Managing tables, feature classes, and raster columns 73 

Therefore, if at all possible, it is better to include the row id column as part of the table's 
original definition or add it before data is inserted into the table. If, however, you must add the 
row id column to a table that contains data, consider exporting the table afterwards, truncating 
the rows, and importing the data back into the table. Doing so eliminates the excessive disk 
I/O generated by fetching the migrated rows.   

Using an existing column  

If the row id column already exists, ArcSDE confirms that the column was defined as an 
integer. If it is not, the registration fails. 

Next, ArcSDE confirms that the column has a unique index. If the column was defined with a 
non-unique index, ArcSDE drops the index.  

In the event that the column does not have a unique index, ArcSDE attempts to create a 
unique index on the column. If the index creation fails because the column contains non-
unique values, ArcSDE repopulates the column with ascending values beginning at 1 and then 
creates the unique index. ArcSDE  names the unique index 
R<registration_id>_SDE_ROWID_UK. 

Next, ArcSDE verifies that the column has been defined as NOT NULL.  

If the column was defined as NULL, ArcSDE attempts to redefine it as NOT NULL. If this 
action fails, ArcSDE repopulates the column and defines it as NOT NULL. 

 Repopulating the column either because it contained null values, or  because it contained non-
unique values is an expensive process, especially if the table contains more than a 100,000 
records.  

Therefore if at all possible you should not rely on ArcSDE to perform this operation. You 
instead define the row id column as not null when the table is created and create your own 
unique index on it. At the very least, you should insure that the column is populated with 
unique integer values. 

Analyzing the tables  

Tables registered as type SDE must have statistics. 

ArcSDE queries the LAST_ANALYZED value from the USER_TABLES view for the 
business table to determine if it has has been analyzed. If the value is NULL, ArcSDE 
analyzes the table with compute statistics. This is a very expensive operation for tables with 
more than a million rows. Therefore, to speed up the registration process, you should analyze 
large tables, before you register them.  

For large tables containing several million rows, sampling 10 percent of the rows, should be 
adequate. 

If the business table contains a spatial column that is stored as binary, (see Appendix C for 
more information), the feature table and spatial index table must also have statistics. ArcSDE 
also queries the LAST_ANALYZED value of the USER_TABLES view for these tables.  

If the value is not null, these tables and their indexes are analyzed. 



74 ArcSDE Configuration and Tuning Guide for Oracle 

Again, if they are very large (more than 1 million rows), you should analyze them yourself 
using a percentage of the total number of records. 

Use the Oracle ANALYZE statement to analyze the tables.  
ANALYZE TABLE <table_name>
ESTIMATE STATISTICS SAMPLE <percent_value> PERCENT;

If the statistics exist, but are stale, (many changes have occurred since the last time the 
statistics were created), you should reanalyze the tables. In this case ARCSDE will not 
analyze the tables since it will detect that the LAST_ANALYZE value is not null.The 
ArcSDE SQL statements have been written to take advantage of the Oracle cost based 
optimization.   

Under cost based optimization Oracle uses the statistics of the tables it is querying to select the 
most optimal execution plan. 

Note: The registration of an SDE maintained row id column is the only  time the ArcSDE 
automatically analyzes the business, adds and deletes tables and their indexes as well as the 
feature table and the spatial index table if they exist.  

Registering a table as multiversioned 
To perform versioned edits on a business table, the table must be registered as multiversioned. 
When tables are registered as multiversioned the associated adds and deletes table are created 
and analyzed. These tables as their name implies, store the records of the business that are 
added and deleted. They are named A<registration_id> and D<registration_id>. 



75 

C H A P T E R  5  

Connecting to Oracle 

Beginning with ArcSDE 8.1, ArcSDE client applications can connect to 
either an ArcSDE service or directly to an Oracle instance (at least Oracle 
8.1). The direct connection capability, added during the ArcSDE 8.1 release, 
was achieved by embedding the ArcSDE application server technology into 
the ArcSDE client software. Any application programmed with the 
functionality of the ArcSDE 8.1 C libraries can connect directly to an Oracle 
instance. 

ArcSDE client applications that connect to an ArcSDE service send spatial requests to the 
service. The ArcSDE service converts the spatial requests into SQL statements and submits 
them to the Oracle instance. Upon receiving results from the Oracle instance, the ArcSDE 
service converts the result into spatial data recognizable to the ArcSDE client. 

At ArcSDE 8.1, the functionality of the ArcSDE service has been linked into the ArcSDE  
C API, allowing ArcSDE client applications to connect directly to Oracle instances. Spatial 
requests are converted to SQL statements by the ArcSDE client applications instead of the 
ArcSDE service.  

Before you can connect to an ArcSDE service, you must install and configure the ArcSDE 
product. The sde user must be created, and the sde setup program (sdesetupora*) must be run 
to create and populate the ArcSDE system tables and required stored procedures. In addition, 
ArcSDE must be able to reference an ArcSdeServer license from a license manager 
accessible through the network.  

Since a direct connection to an Oracle instance does not require the presence of an ArcSDE 
service, the ArcSDE product does not need to be installed. You are, however, required to run 
the ArcSDE setup program (sdesetupora*), which creates the necessary ArcSDE system 
tables in the sde users schema. Also, to obtain a read�write connection to the Oracle 
database, an ArcSDE client application must reference a valid ArcSdeServer license. If an 
ArcSdeServer license cannot be referenced, access is restricted to read-only.  

The ArcSDE setup program is located in the bin directory of all ESRI products capable of 
connecting to ArcSDE. If you do not already have one, an ArcSdeServer license can be 
obtained from ESRI Customer Support. 

To connect directly to an Oracle instance, you must configure the Oracle Net8 listener 
process, on the database host, to listen for Oracle client connections. You must also install the 
Oracle client on your client machine. The sections that follow provide details on how to set 
up the client and server machines to perform a direct connection to an Oracle instance. 



76 ArcSDE Configuration and Tuning Guide for Oracle 

For more information regarding an ArcSDE service, refer to the ArcSDE Installation Guide 
for installation instructions and the Managing ArcSDE Services for configuration and 
connection instructions. 

All ArcSDE client applications, such as ArcMap or ArcCatalog, function the same way 
regardless of whether a user connects to an ArcSDE service or directly to an Oracle instance. 
The only difference occurs during the entry of the connection information. 

Creating the Net8 listener service 
To establish a connection to an Oracle instance that is running on a remote computer, you 
must configure and start the Oracle Net8 listener process. Oracle allows you to configure the 
Net8 listener to listen on just about any network protocol that might exist in today's diverse 
computer network. The discussion and the examples provided in this document are limited to 
the widely used TCP/IP network protocol.   

The examples below are taken from an Oracle8i installation.  Please refer to your Oracle 
installation documentation for your specific Oracle release. 

Oracle offers a Java-based GUI on both the Windows NT and the UNIX server that 
simplifies the task of configuring the Oracle listener process. Provided is a simple walk-
through of the Oracle Net8 Configuration Assistant. For a more in-depth discussion of the 
Net8 Configuration Assistant and other Oracle utilities, please refer to the Oracle online 
documentation. 

On Windows NT launch the Net 8 Configuration Assistant by clicking Programs>Oracle> 
OraHOME>Net8 Configuration Assistant. On UNIX systems launch the Net8 Configuration 
Assistant by running $ORACLE_HOME/bin/netca. 

After the �Welcome� panel appears choose the Listener configuration radio button and click 
Next. 



 Chapter 5  Connecting to Oracle 77 

The Net8 Configuration Assistant edits the listener.ora file normally located under the 
%ORACLE_HOME%\network\admin folder on Windows NT and the 
$ORACLE_HOME/network/admin directory on UNIX systems. 

The Net8 Configuration Assistant will create a listener in the listener.ora file that looks 
something like this: 
# LISTENER.ORA Network Configuration File:
D:\Oracle\Ora81\network\admin\listener.ora
# Generated by Oracle configuration tools.
LISTENER =
( DESCRIPTION_LIST =
( DESCRIPTION =
( ADDRESS_LIST =
( ADDRESS = ( PROTOCOL = TCP )( HOST = bruno )( PORT = 1521 ))

)
)

)

SID_LIST_LISTENER =
( SID_LIST =
( SID_DESC =
( GLOBAL_DBNAME = bruno.esri.com )
( ORACLE_HOME = D:\oracle\ora81 )
( SID_NAME = bruno )

)
)

Note: For this particular listener.ora file, the GLOBAL_DBNAME parameter was manually 
entered after the Net8 Configuration Assistant added the listener service. You may also need 
to manually enter this parameter to the listener.ora file, depending on your network 
configuration. 

If you receive an ORA 12514 error when you try to connect to the listener service, manually 
enter the GLOBAL_DBNAME parameter. 

On the �Listener Configuration, Listener Name� panel, enter the listener name. Unless you 
are an experienced Oracle DBA, use the LISTENER default value. Click Next and continue 
on to the �Listener Configuration, Select Protocols� panel. 



78 ArcSDE Configuration and Tuning Guide for Oracle 

Select the TCP protocol from the Available Protocols list and click the right arrow button to 
move the TCP protocol into the Selected Protocols list. Click Next to configure the TCP/IP 
network protocol adapter from the Listener Configuration, TCP/IP Protocol. 

Choose the default �Use standard port number of 1521� radio button. If you know that 
another software product is already using this port number, enter a different one. 

Click Next to continue on to the �Listener Configuration, More Listeners?� panel. You should 
not need to configure another listener, so choose the "No" radio button and click Next. 

Click Next on the �Listener Configuration Done� panel, which returns to the �Welcome� 
panel. 
Click Finish. 

Starting the Net8 listener service 
Before you can connect to the listener service, you must start it. To start the listener service 
on Windows NT, click the Start>Settings>Control panel and double-click the Services icon 
in the Control Panel window. After the Services dialog box appears, scroll down until you 
find the Oracle Net8 listener service and click the Start button. 



 Chapter 5  Connecting to Oracle 79 

To start the Net8 listener process on a UNIX platform as the Oracle user, issue the lsnrctl 
start command at the operating system prompt. 
$ lsnrctl start

LSNRCTL for Solaris: Version 8.1.7.0.0 - Production on 12-JAN-2001 16:37:15

(c) Copyright 1998 Oracle Corporation. All rights reserved.

Starting /ultra1/app/ora817/product/8.1.7/bin/tnslsnr: please wait...

TNSLSNR for Solaris: Version 8.1.7.0.0 - Production
System parameter file is
/ultra1/app/ora817/product/8.1.7/network/admin/listener.ora
Log messages written to
/ultra1/app/ora817/product/8.1.7/network/log/listener.log
Trace information written to
/ultra1/app/ora817/product/8.1.7/network/trace/listener.trc
Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=ultra)))
Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=ultra)(PORT=1521)))

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=ultra)))
STATUS of the LISTENER
------------------------
Alias LISTENER
Version TNSLSNR for Solaris: Version 8.1.7.0.0 - Production
Start Date 12-JAN-2001 16:37:15
Uptime 0 days 0 hr. 0 min. 0 sec
Trace Level admin
Security OFF
SNMP OFF
Listener Parameter File
/ultra1/app/ora817/product/8.1.7/network/admin/listener.ora
Listener Log File
/ultra1/app/ora817/product/8.1.7/network/log/listener.log
Listener Trace File
/ultra1/app/ora817/product/8.1.7/network/trace/listener.trc
Services Summary...
ora817 has 1 service handler(s)

The command completed successfully

Net8 Client installation and configuration 
To make a direct connection to an Oracle instance, Oracle Client must be installed on your 
client machine. Oracle Client is shipped with the Oracle Enterprise Edition. Oracle Client 
includes the installation of the Oracle Net8 software, which is necessary to connect to an 
Oracle server. 



80 ArcSDE Configuration and Tuning Guide for Oracle 

After you start the Oracle Universal installer and complete the preliminary panels, choose the 
Oracle Client radio button from the Available Products panel and click Next. 



 Chapter 5  Connecting to Oracle 81 

From the �Installation Types� panel select the Custom radio button and click Next. 

From the �Available Product Components, Oracle 8i Client� panel you need to check at least 
the Net8 Products and Net8 Client boxes to enable a direction connection to an Oracle 
instance. Click Next to proceed to the Installation Summary panel and click Next again to 
install the Net8 products of the Oracle Client. Immediately following the installation of the 
software, the Net8 Configuration Manager appears, which allows you to configure the net 
service name needed to connect to a remote Oracle database. 



82 ArcSDE Configuration and Tuning Guide for Oracle 

When the �Net8 Configuration Assistant Welcome� panel appears, check �Perform typical 
configuration� and click Next to add the net service name. Alternatively, you can click 
Cancel to defer the configuration of the net service name. Clicking Cancel returns control to 
the Oracle Universal Installer installation summary panel. 

On Windows NT you can launch the Net 8 Configuration Assistant by clicking 
Programs>Oracle> OraHOME>Net8 Configuration Assistant. On UNIX systems you can 
launch the Net8 Configuration Assistant by running $ORACLE_HOME/bin/netca. 

On the �Net8 Configuration Assistant Welcome� panel that follows, click the �No, I will 
create net service names myself. I would like to create the first one now.� radio button. 

 

From the �Net8 Configuration Assistant: Welcome� panel, choose the �Local Net Service 
Name configuration� radio button and click Next to proceed to the 'Net Service Name 
Configuration, Database Version' panel. 



 Chapter 5  Connecting to Oracle 83 

Choose the �Oracle database or service� radio button. Click Next and continue to the �Net 
Service Name Configuration, Service Name� panel. 

Although the service name can be anything you want it to be, for some Oracle applications 
such as Advance Replication it is required to be the global database name. By convention, 
you should use the global database name as it is easier to keep track of. The global database 
name is formed by concatenating the DB_NAME (database name) and the DB_DOMAIN 
(database domain) together and separating them by a period. In this example the database 
name, bruno, and the database domain, esri.com, concatenate to form the global database 
name bruno.esri.com. Click Next to continue to the Net Service Name Configuration, Select 
Protocols panel. 



84 ArcSDE Configuration and Tuning Guide for Oracle 

In the previous section we created a listener that listens on the TCP/IP protocol. Select the 
TCP protocol and click Next to proceed to the �Net Service Name Configuration, TCP/IP 
Protocol� panel. 

 

Enter the host name of the computer that the database is running on. The host name should be 
listed in your NIS hosts file. You can also enter the computer�s IP address, although you 
should set up and use the host name since it is easier to recognize. Choose the �Use the 
standard port number of 1521.� radio button unless you were forced to use a different port 
number when you configured the listener. Click Next to continue to the Net Service Name 
Configuration, Test. 



 Chapter 5  Connecting to Oracle 85 

You should test the connection of the service name that you have just created. You can return 
later to test the connection, but if you are ready to test it now, choose the �Yes, perform a test� 
radio button and click Next. The �Net Service Name Configuration, Connecting� panel will 
appear with the results of the connection test. If the Details dialog box does not contain 
�Connecting�Test successful.�, there is a problem with the connection. The first thing to 
look at is the username and password used to make the connection. By default, the Net8 
Configuration Assistant defaults to scott as the username and tiger as the password. If 
necessary, click Change Login to use a different username and password. When you click 
OK on the 'Change Login' panel, Net8 Configuration Assistant will attempt the connection 
again. If you are still unable to connect to the listener, contact Oracle Technical Support for 
help.  

Following a successful connect test, click Next to proceed to the 'Net Service Name 
Configuration Done' panel. Click Next on this panel to return to the 'Welcome' panel. Click 
Finish. The tnsnames.ora file has been updated and can now be referenced by an Oracle 
client software product to make a connection to an Oracle database. 



86 ArcSDE Configuration and Tuning Guide for Oracle 

The entry made to the tnsnames.ora file by the Net* Configuration Assistant should look 
something like this: 
BRUNO.ESRI.COM =
( DESCRIPTION =
( ADDRESS_LIST =
( ADDRESS = ( PROTOCOL = TCP )( HOST = bruno )(PORT = 1521 ))

)
( CONNECT_DATA =
( SERVICE_NAME = bruno.esri.com )

)
)

Configuring ArcSDE applications for Oracle direct 
connections 

ArcSDE applications that have linked in the client libraries of the ArcSDE for Oracle C API 
are capable of connecting directly to Oracle instances. When connecting to a remote Oracle 
instance, the Oracle Client software must be installed on the local machine, and the net 
service name containing the connection information to the remote Oracle instance must be 
configured in the Oracle Client tnsnames.ora file. 

Once these tasks have been completed, it is possible to further configure the ArcSDE client 
application to connect to a particular Oracle instance, by default. In addition, should you fail 
to establish a connection to a properly configured Oracle instance, proper configuration of the 
ArcSDE client application will provide a location of error log files. 

Configuring the ArcSDE etc directory 
As an option, the additional files can be created in the etc directory of ArcSDE client 
application to capture error messages and establish a default Oracle connection environment. 
An ArcSDE client application will search for the etc directory under the SDEHOME 
environment variable.  

SDEHOME is determined by an ArcSDE client application using the following search 
criteria: 

1. If the SDEHOME environment variable is set in the system environment, the etc 
directory, if one exists, must be located in the directory defined by the value of the 
SDEHOME environment variable. 

2. If the SDEHOME environment variable is not set and the ARCHOME environment 
variable is, the etc directory, if one exists, must be located in the directory defined by the 
value of the ARCHOME environment variable. 

3. Finally, if neither the SDEHOME nor the ARCHOME environment variables is set, the 
etc directory must be located in the directory defined by the registry key value of 
HKEY_LOCAL_MACHINE / SOFTWARE / ESRI / ArcInfo / Desktop / 8.0 / 
SourceDir. 

Create the dbinit.sde file in the etc directory and add Oracle LOCAL variable for Windows 
NT and TWO_TASK on UNIX systems to this file to set the default connection to a 
particular Oracle instance. 



 Chapter 5  Connecting to Oracle 87 

If the etc directory exists, upon initial connection to the Oracle instance, the ArcSDE 
application creates the sde.errlog file within the etc directory. All subsequent error messages 
will be written to this file. Therefore, if you cannot establish a connection to the Oracle 
instance, look in the sde.errlog for possible further information as to what the problem may 
be. 

Connecting to an Oracle net service name or an ArcSDE 
service 

ESRI application software uses the same graphical user interface to connect directly to an 
Oracle instance as it does to an ArcSDE service. Refer to the ESRI application product 
documentation for more information on exactly how to connect directly to a net service name 
containing the connection information to an Oracle instance. 

The example provided here uses the ArcMap GUI to illustrate how the entry of the direct 
connection information for the net service name to an Oracle instance and an ArcSDE service 
connection differ. 

Connecting to Oracle instance from ArcMap 
In the example, the SDE Connections dialog box appears after double-clicking on the 
Database Connections followed by double-clicking on Add SDE Connection. 

To connect to an Oracle instance, enter sde:oracle in the Service field. 

In the User Name field, enter the Oracle username. The username in this example is gus. 

In the Password field, enter the Oracle password, optionally, followed by the at sign, "@", 
and the Oracle net service name. If you do not enter the net service name in the Password 
field, the net service name must be set in either the dbinit.sde file or as a system variable in 
the environment (TWO_TASK if your local machine is UNIX or LOCAL if your local 
machine is Windows NT).  

The Server and Database fields are not required to establish a direct connection to an Oracle 
instance.  



88 ArcSDE Configuration and Tuning Guide for Oracle 

 

Connecting to an ArcSDE service from ArcMap 
In the example, the SDE Connections dialog box appears after double-clicking on the 
Database Connections followed by double-clicking on Add SDE Connection. 

To connect to an ArcSDE service, enter the server name in the Server field. 

In the Service field, enter the ArcSDE service. 

In the User Name field, enter the Oracle username. 

In the Password field, enter the Oracle password. 

The Database field is not required for connections to ArcSDE for Oracle services but is 
required for some of the other ArcSDE implementations such as ArcSDE for SQL Server.  



 Chapter 5  Connecting to Oracle 89 

 

Troubleshooting direct connection problems 
Some of the more common problems that occur when you try to establish a direct connection 
to Oracle are listed below. 

Oracle server was not started 
Symptom:  You try to connect to the Oracle instance, and you receive: 

ORA 01034.

Cause: The Oracle instance has not been started. 

Solution:  Start the Oracle instance. 

Oracle listener was not started 
Symptom: You try to connect to the Oracle instance, and you receive: 

ORA-12541: TNS:no listener.

Cause: The Oracle listener has not been started. 

Solution: Start the Oracle listener. 

Oracle username or password are incorrect 
Symptom: You try to connect to an Oracle instance, and you receive: 

ORA-01017: invalid username/password; logon denied error

Cause: Either the username or the password is incorrect. 



90 ArcSDE Configuration and Tuning Guide for Oracle 

Solution: Connect the username or password and try again. If you cannot remember the  
password, connect to Oracle as the DBA and change the password with the 
ALTER USER command. If you cannot remember the username, connect to 
Oracle as the DBA and list the available usernames from the DBA_USERS 
table. 

Net service name does not exist 
Symptom: You try to connect to an Oracle instance, and you receive: 

ORA-12154: TNS:could not resolve service name

Cause: Oracle could not find the net service name in the tnsnames.ora file. 

Solution: Check the spelling of the net service name and reenter if misspelled. If you are 
sure you entered the net service name correctly, examine the net service name 
in the tnsnames.ora file to make sure that it was entered correctly. 

Net service name cannot be resolved in listener 
Symptom: You try to connect to an Oracle instance, and you receive: 

ORA-12514: TNS:listener could not resolve SERVICE_NAME given in
connect descriptor

Cause: Although the net service name was found in the tnsnames.ora file, and 
connection information was able to locate the listener service running on the 
remote host, Oracle was not able to locate the Oracle instance. 

Solution: A common cause of this problem is the absence of the GLOBAL_DBNAME 
parameter in the listener.ora file. Examine the listener.ora file. If the 
GLOBAL_DBNAME parameter is missing, add it and restart the listener 
again. Retry the connection. 

The Oracle instance is not at least an Oracle 8.1 instance 
Symptom: You try to connect to an unsupported instance, and you receive: 

ERROR in clearing lock and process tables.
Error: -51
DBMS error code: 6550
ORA-06550: line 1, column 219:
PLS-00201: identifier 'SDE.PINFO_UTIL' must be declared
ORA-06550: line 1, column 219:
PL/SQL: Statement ignored

Couldn't initialize shared memory, error = -51.
Cannot Attach to Shared Memory -1

Cause: The Oracle instance is not at least Oracle 8.1, or the sdesetupora* program was 
not run. Make sure the sdesetupora* program has been run. The sdesetupora* 
program will only run on at valid, supported Oracle instance. 

Solution: Check your Oracle version by querying the dynamic view V$VERSION. If the 
Oracle version is not at least Oracle 8.1, you cannot establish a direct 
connection. 

 



91 

C H A P T E R  6  

National language support 

Storing data in an ArcSDE Oracle database using character sets other than  
US7ASCII requires some extra configuration on both the client and the 
server. This section provides guidelines for configuring both the Oracle 
database and the ArcSDE client environment to enable the use of character 
sets other than US7ASCII. 

Oracle database character sets 
If you are using UNIX, by default an Oracle database is created with a US7ASCII character 
set.  On Windows NT the default character set is WE8ISO8859P1. The character set is 
selected when the database is created with the CREATE DATABASE statement and cannot 
be changed afterwards. To change a character set the database must be re-created and the data 
reloaded. Consult the Oracle National Language Support Guide for your Oracle release to 
determine the character set that is right for your data. 

Setting the NLS_LANG variable on the client 
Once the ArcSDE Oracle database has been created with the proper character set, data can be 
loaded into it using a variety of applications such as ArcGIS Desktop and the ArcSDE 
administration tools shp2sde and cov2sde. To properly convert and preserve the characters, 
you must set the Oracle NLS_LANG variable in the client applications system environment. 

For instance, using ArcToolbox installed on Windows NT to convert a coverage containing 
German attribute data into an Oracle database on a UNIX server created with the Western 
European character set WE8ISO8859P1, you would set the NLS_LANG to 
GERMAN_GERMANY.WE8ISO8859P1. To set the NLS_LANG variable for ArcToolbox, 
click Start, Settings, and Control Panel. Double-click on the System icon and select the 
Environment tab after the System menu appears. Click on the System Variables scrolling list 
and enter NLS_LANG in the Variable: input line and 
GERMAN_GERMANY.WE8ISO8859P1 in the Value: input line. Click Set and then OK. 

Setting the NLS_LANG variable for Windows NT clients 
Be careful setting the NLS_LANG on the Windows NT platform because there are actually 
two different codepage environments on this platform. Windows applications such as 
ArcGIS Desktop run in the Windows American National Standards Institute (ANSI) 
codepage environment, while ArcSDE administration tools and C and Java API applications 
invoked from the MS�DOS Command Prompt run in the original equipment manufacturer 



92 ArcSDE Configuration and Tuning Guide for Oracle 

(OEM) codepage environment. Some languages require two different NLS_LANG settings 
for the language character set component for each of these codepage environments. 

For instance, in the above example the NLS_LANG variable would be set to 
GERMAN_GERMANY.WE8PC850 if the data was loaded from the MS�DOS Command 
Prompt using the ArcSDE administration tool shp2sde. If you use both Windows 
applications and MS�DOS applications together, then you should set the NLS_LANG 
variable for MS�DOS applications when you open the MS�DOS Command Prompt using 
the MS�DOS SET command. 

SET NLS_LANG = GERMAN_GERMANY.WE8PC850 

To determine if your language requires a separate language character set, consult the Oracle 
National Language Support Guide for your Oracle release. 

For more information on ArcInfo national language support, refer to the National Language 
Support section of the Systems Administration chapter found on your ArcDoc� CD.  



93 

C H A P T E R  7  

Backup and recovery 

Data safety is ensured by implementing, testing, and verifying an appropriate 
database backup and recovery procedure. Oracle provides a number of 
choices for backing up a database including exporting data, selective backup 
of tablespaces, or copying database files.  

This chapter presents a summary of the Oracle concepts that are essential for 
understanding backup and recovery, plus specific guidelines that may be 
applied to your ArcSDE installation. 

For details, refer to the Oracle Backup and Recovery Guide for your Oracle 
release. 

Recording Database Changes 
Oracle manages changes to its contents and structure in such a manner as to guarantee 
recovery of the database to the last committed transaction after any single point of failure.  
This guarantee is at the heart of Oracle�s architecture and this statement says a great deal.  

To the last committed transaction means that, once control is returned to the user after 
executing a COMMIT statement, Oracle guarantees that the committed data has been written 
to disk in some form and is recoverable. 

Single point of failure means that any single file or process can fail without losing the 
contents of any committed transaction.  If a data file is lost or corrupted, the contents of the 
redo logs guarantee that the data is recoverable.  If a control file breaks, the other control files 
ensure that the information remains safe.  A process may be killed, but committed data is 
never lost. 

Such a guarantee requires a high level of coordination between database processes and 
database files.  Files �know about� each other and may not be deleted or changed without 
properly coordinating through the Oracle instance. 

This section briefly describes the role of the various Oracle database files in backup and 
recovery to achieve this guarantee. 



94 ArcSDE Configuration and Tuning Guide for Oracle 

Control files 
The physical structure of the database�the arrangement of physical files on disk�is 
recorded in the control file. The control file is so important for the purpose of database 
consistency that Oracle maintains multiple identical copies of it. 

If the database loses one of its control files, the database will halt. You will have to do a 
SHUTDOWN ABORT on the database instance prior to recovering the database. 

Oracle recommends that any database instance should use at least three identical control 
files, and further recommends that each control file be placed on a physically separate disk 
drive under a separate disk controller. While a single hardware failure may cause the loss of 
one control file, this strategy ensures the safety of the remaining control files.  

The locations and names of the control files are controlled by the init.ora parameter: 

 CONTROL_FILES  

Note: If you add or drop a data file or an online redo log file, or alter file locations, the 
contents of the control file change as this information is recorded.  Since the backup version 
of the control file no longer matches the current database structure, you should take an 
immediate backup of the new control file.   

Redo log files 
Every change that is made to an Oracle database�such as creating or altering schema objects 
or inserting or manipulating data�is recorded in the online redo log file. This happens 
automatically in addition to the normal action of writing the changes to the appropriate data 
file or control file. 

Changes to the database are recorded in the order that they occur. If, for example, you create 
a table to store GIS data, then insert some data into that table, the create table action will be 
recorded first, and the insert data action will be recorded second.  

Recording the order of the actions is very important and individual steps may not be 
neglected. In this example, if the table creation step is skipped or performed at the wrong 
time, the data insertion step will fail. 

Eventually, the database change information recorded in a redo log file accumulates to some 
preset maximum. Oracle then performs a log switch, closing the current online redo log file 
and opening the next one.  

Oracle uses the online redo log files in a circular fashion, reusing the first log file after it 
closes the last log file. If three online log files are specified, for example, Oracle will use the 
log files in order: 1, 2, 3, 1, 2, 3, 1, �  This means that earlier information stored in any of 
the online redo log files will be lost when the file is used again.  

Archiving redo log files 
Oracle provides for the online redo log files to be copied to an offline location immediately 
after a log switch. This is called archiving the redo log files.  



 Chapter 7   Backup and recovery   95 

When an Oracle database is run in ARCHIVELOG mode, redo log information is 
accumulated indefinitely by copying the online redo log file to an offline location with a 
unique name based on the current log sequence number. 

For example, as Oracle switches through online redo log files in order (1, 2, 3, 1, 2,�) the 
following archived redo log files (reflecting log sequence numbers 15, 16, 17, 18, 19,�) 
might be created: 
LOG0015.ARC
LOG0016.ARC
LOG0017.ARC
LOG0018.ARC
LOG0019.ARC

etc. 

In ARCHIVELOG mode, the total amount of redo log information is limited only by the total 
file space available at the archive destination. When an Oracle database is run in 
NOARCHIVELOG mode, the online redo log files are not copied, so that the amount of 
usable redo log information is limited to the contents of the current online redo log files.  

Which archive mode should you use? 

Often databases are created and initially loaded under the NOARCHIVELOG mode because, 
should a media failure occur, the same effort is required to restore the database regardless of 
whether the database was reloaded using the archived redo log files or the original source 
data. In addition, a huge amount of log file data is created, and maintaining this data is 
unnecessary since the original source data is readily available. 

After the initial data load is complete and the database goes into production, the changes 
become difficult to re-create. Switch to ARCHIVELOG mode to ensure that point-in-time 
recovery of the database is available in the event of a media failure.  

Operate the database in NOARCHIVELOG mode and make frequent backups only if you 
understand the risk of data loss and can afford to re-enter the changes made since the last 
backup.  

Note: Because of the risk of losing committed transactions in the event of media failure, 
ESRI does not recommend using NOARCHIVELOG mode for normal operation of an 
ArcSDE database. 

Switching from NOARCHIVELOG to ARCHIVELOG 

An Oracle database created in NOARCHIVELOG mode can be switched to ARCHIVELOG 
mode. To make this change, shut down the database using the NORMAL, IMMEDIATE or 
TRANSACTIONAL priority. (Do not use ABORT.): 
SVRMGR> connect internal
Connected.
SVRMGR> shutdown normal
Database closed.
Database dismounted.
Oracle instance shut down.

Before switching to ARCHIVELOG mode, Oracle recommends that you make a full backup 
of the database. 



96 ArcSDE Configuration and Tuning Guide for Oracle 

To the init.ora file, add the LOG_ARCHIVE_START and LOG_ARCHIVE_DEST 
parameters. 
LOG_ARCHIVE_START = TRUE
LOG_ARCHIVE_DEST = <pathname_to_archives>/arch%t_%s.dbf 

Setting LOG_ARCHIVE_START to true causes the ARCH process to archive the online 
redo log files automatically. If you do not set this parameter or set it to false, you will have to 
manually archive the log files. For information on how to perform a manual archive, consult 
the Oracle Server Administrator�s Guide for your Oracle release. 

After you have backed up the Oracle database, switch the database to ARCHIVELOG mode: 
$ svrmgrl

Oracle Server Manager Release 3.1.6.0.0 - Production

(c) Copyright 1997, Oracle Corporation. All Rights Reserved.

Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production
With the Partitioning and Java options
PL/SQL Release 8.1.6.0.0 - Production

SVRMGR> startup mount
Total System Global Area 245317008 bytes
Fixed Size 64912 bytes
Variable Size 103677952 bytes
Database Buffers 131072000 bytes
Redo Buffers 10502144 bytes
Database mounted.
SVRMGR> alter database archivelog;
Statement Processes
SVRMGR> alter database open;
Statement processed.
SVRMGR>

Note: After the database successfully reopens in ARCHIVELOG mode, you should shut it 
down again and make another full backup. If you don�t, your last full backup will have 
recorded that the database was in NOARCHIVELOG mode, and you will not be able to 
apply the online redo log files following the restoration of the backup.  

Sizing the redo log files 
If you have created small online redo log files, you should consider creating new, larger redo 
log files.   

Every time that Oracle switches the log file, it first performs a checkpoint in which the 
contents of changed blocks within the database buffer cache are written to disk.  Changes to 
the database are always suspended while checkpoint processing is taking place.   

In a large multiuser system where many changes are being made, the checkpoint process may 
involve practically the entire database buffer cache and should, therefore, be put off for as 
long as possible.  Where the number of database changes is small, checkpoint processing will 
be insignificant. 

If the database is configured with only three large online redo log files without mirroring�
the default configuration�you should create more log file groups and mirror them before 
you switch the database to ARCHIVELOG mode.  



 Chapter 7   Backup and recovery   97 

Additional log file groups helps smooth out the archiving process by enabling the archive 
process to finish copying a log file to the archive destination before the database needs to 
make the log file current again. If the database must make a log file current before the archive 
process has finished copying it, the database will wait until the archive is finished before 
continuing processing.  

Refer to Chapter 2, Essential Oracle configuring and tuning for guidance on configuring the 
online redo logs. 

For details on commands used to manage redo log files, refer to the Administrator�s Guide 
for your Oracle release. 

Database backup 
To back up your ArcSDE Oracle database, you must copy these files to an offline location: 

• Control files 

• Data files 

• giomgr.defs, dbinit.sde, and services.sde files 

• Archived redo log files 

You should make at least three copies of the control files with each backup because of their 
importance in ensuring database consistency.  Because control files are comparatively small, 
there is negligible cost in doing do.  

Remember that the redo log files are essential for bringing the data files from an earlier state 
to a later state. Between any two points in time, the redo logs must be found in an unbroken 
sequence if database recovery is to succeed.  

ESRI recommends that you maintain at least two copies of all archived redo logs for as far 
back in time as may be reasonably necessary for database recovery.  The two copies should 
be stored on physically distinct media�separate disk drives, for example, or a disk drive and 
a tape drive.  

If you intend to purge the archived redo log files from their location on disk, be sure that you 
have a second backup copy of each archived redo log file before purging. 

This strategy of multiple backups of the archived redo log files helps guard against multiple 
media failure, which is not as rare as it might seem.  Some tape drives, for example, fail to 
detect bit errors until you attempt to restore a file, when it may be too late. 

You only need to make a single copy of each data file with each backup as long as you 
carefully maintain multiple copies of archived redo logs. 

Note: The online redo log files are not necessary for backup.  If the current online redo log 
file fails, committed information still exists in memory, which Oracle writes to the data files 
when a checkpoint is issued.  Oracle issues a checkpoint automatically when you shutdown a 
database instance with NORMAL, IMMEDIATE or TRANSACTIONAL priority.  Before 
shutting down a database with ABORT priority you should force a checkpoint with the 
ALTER SYSTEM � CHECKPOINT command if at all possible. 



98 ArcSDE Configuration and Tuning Guide for Oracle 

Hot backup 
Backing up an Oracle database while the database instance is running is called a hot backup. 
If you plan to take a hot backup, you must operate your database in ARCHIVELOG mode. 

Enter the ALTER TABLESPACE � BEGIN BACKUP command prior to the backup of 
each tablespace, which tells Oracle that a hot backup is being taken.  If this command is not 
issued, the hot backup will appear to succeed but it may be useless for restoring the database. 
To finish the hot backup, for each tablespace enter the ALTER TABLESPACE � END 
BACKUP command. 

Changes to data are recorded and held in the rollback segment until they are no longer 
needed by any outstanding transaction. Taking a hot backup prevents the release of rollback 
segment data until the ALTER TABLESPACE � END BACKUP command is issued.  

Therefore, the rollback segment must be large enough to accommodate changes made during 
the hot backup. If the rollback segment runs out of space, a transaction will fail with an ORA-
1555 error: 

ORA-1555: snapshot too old (rollback segment too small)

While the hot backup will succeed despite this error, changes made to the database may need 
to be reentered. 

You may avoid this error by taking a hot backup during times of low database activity or by 
ensuring that your rollback segments are large enough to accommodate data changes made 
during backup. 

You do not need to shutdown the ArcSDE server process (giomgr) prior to making a hot 
backup. 

For details on hot backup refer to the Oracle Backup and Recovery Guide for your Oracle 
release. 

Cold backup 
Backing up an Oracle database while the database instance is shutdown is called a cold 
backup. Managing a cold backup is simpler than a hot backup and less prone to error.  

If you run the database in NOARCHIVELOG mode, a cold backup is your only option. 
Running the database in ARCHIVELOG mode will enable you to use a cold backup to 
recover a database to the latest committed transaction. 

Database export 
You can use Oracle�s export utility to supplement a full backup. If changes are made to a 
known set of data objects between full backups, you can export the objects.  

However, the export utility should only be used on data objects that are not changing during 
the export and on all data objects that are closely related.  For example, if you use export to 
back up a business table, you should also capture the related spatial index, feature and delta 
tables in the same backup. 



 Chapter 7   Backup and recovery   99 

ESRI does not recommend that you use the export utility as your only backup method. 

You can also back up the entire Oracle database with the Oracle export utility and then make 
cumulative and incremental backups.  

For more information on the export, utility refer to the Oracle Utilities manual for your 
Oracle release. 

Frequency of backups 
Base the frequency of your backups on the rate at which the data in your database is 
changing. The more changes that occur, the more frequently backups should occur. 

If your Oracle database is operating under ARCHIVELOG mode, you have several 
variations that you may add to your backup strategy in addition to the periodic full backup. 
Databases operating under the NOARCHIVELOG mode are restricted to full backups with 
the possible addition of Oracle export files.  

For more information on different Oracle database backup strategies, refer to the Oracle 
Backup and Recovery Guide for your Oracle release. 

Regardless of which archiving mode you are using, you should make regular full backups of 
the Oracle database. A full backup should include the Oracle database and, if you have 
started an ArcSDE service, the giomgr.defs, dbinit.sde, and services.sde files. 

Scripting the backup 
Once you have decided upon your backup strategy, the commands that are entered through 
the system prompt or through SQL*Plus may often be scripted. 

ESRI recommends using a script for backup purposes whenever possible.   

Executing the backup commands from a Unix shell script, or a Windows batch file will help 
ensure that the database is being backed up consistently and that all intended steps are being 
followed. 

Be sure to update the script whenever the physical structure of the database changes, for 
instance whenever you add a data file or move a redo log file. 

For examples of backup scripts refer to the Oracle Backup and Recovery Guide for your 
Oracle release. 

Database recovery 
To recover a database after any failure, Oracle takes these steps: 

1. Reads the init.ora file to determine the names and locations of the control files. 

2. Reads the control files to verify their consistency with each other and to determine the 
physical file structure of the database. 

3. Opens each data file mentioned in the control file to determine whether that data file is 
current and reflects the latest committed change or is in need of recovery. 



100 ArcSDE Configuration and Tuning Guide for Oracle 

4. Opens each redo log file in sequence and applies the information found there to each 
data file, as necessary, to bring each data file to the state where it contains all its 
committed transactions. 

It is possible to recover a database by combining current data files with older data files 
restored from backup, since Oracle selectively applies changes from the redo log files to all 
files that are not current. However, this strategy succeeds only if an unbroken sequence of 
redo log files is available to bring the older data files up to date. 

Database failure and recovery modes 
If the database has lost a control file, the database is recovered by replacing the lost control 
file with a copy of a current control file. 

If the database has lost one or more data files, the database is recovered by, first, replacing the 
lost data file(s) with backup copies and then using the redo logs (online or archived) to make 
the restored copies current. If the backup copies are restored to different locations from the 
original files they are intended to replace, you must use the ALTER DATABASE RENAME 
FILE command to tell the Oracle instance where the restored files are to be found. 

If the database has lost the current online redo log, the database instance will halt when it 
attempts to commit more transactions. No data will have been lost, except that the latest 
transaction will not be committed and may need to be reentered when the database comes 
back up. However, the current online redo log file will have to be replaced and a backup of 
the database should immediately be taken. 

If the database has lost any archived redo logs, the database instance will continue to 
function, as it will have no knowledge of the loss. However, the ability to recover the 
database in the event of a second media failure or file loss may be compromised. A fresh 
backup should be taken if the archived redo logs are lost. 

For detailed information on the recovery of an Oracle database, refer to the Oracle Backup 
and Recovery Guide for your Oracle release.  

Note: ESRI strongly recommends that you test your backup procedure by building a 
functioning database instance from backup files before an emergency arises. If you have just 
loaded your database, you should make a full backup and then recover the database from the 
backed up files to ensure the recovery process will work when you need it. 



101 

C H A P T E R  8  

Replication 

ArcSDE provides support for Oracle Advanced Replication. It is possible to 
create a virtual geodatabase by linking two remote geodatabases. The tables 
within the virtual geodatabase are replicated at each site, and the changes 
made to the tables are propagated across the link. Thus users viewing at 
either site see the changes after they have been propagated. 

Currently ESRI supports two types of Oracle replication: multimaster synchronous 
replication and read-only snapshot replication. Setup and configuration of both of these 
replication types are discussed in this section. 

For an indepth discussion of Oracle replication, refer to the Oracle Replication and Oracle 
Replication Management API Reference for your Oracle release. 

Setting up advanced replication 
The replication of a geodatabase requires the installation of the Oracle Advanced Replication 
option and configuration of the replication environment on both sites. 

Installing Oracle Advanced Replication 
Using replication requires the installation of the Oracle Enterprise Server with the Advanced 
Replication option at both sites. For more information on the installation of Oracle, refer to 
the Oracle Installation Guide for your Oracle release. 

Replication Manager 
You should include the Replication Manager as part of your installation of the Oracle 
Enterprise Manager. The Replication Manager complements the scripts and stored 
procedures provided by ESRI, allowing you to monitor the status of the distributed Oracle 
database and the replicated tables at either site. 

Adding Advanced Replication init.ora parameters 
You should add the following parameters to the Oracle instance init.ora files: 
job_queue_processes = 31
job_queue_interval = 15
distributed_transactions = 10
open_links = 4



102 ArcSDE Configuration and Tuning Guide for Oracle 

Establishing NET8 communications between databases 
Before you can create an Oracle database link, you must configure the NET8 connections 
between the databases. Database A must be able to connect to database B, and database B 
must be able to connect to database A. 

If you did not configure the NET8 listener service with a TCP/IP protocol when you installed 
the Oracle Enterprise Server, use the NET8 Assistant to add and start the listener service. 
Perform this task at both sites. In this case you are configuring the server component of 
NET8 by updating the ORACLE_HOME/network/admin/listener.ora file. 

Use the Net8 Assistant at each site to create a net service name alias that contains the 
connection parameters to the listener service of the remote site. In this case you are 
configuring the client component of the NET8 by updating the tnsnames.ora file. In a 
distributed database each remote database is both a client and a server of the other. 

Converting LONG RAW data to LOB data 
Oracle does not replicate the LONG RAW data type�the ArcSDE default storage for 
geometry. However, Oracle replicates the BLOB data type�an alternate ArcSDE storage for 
geometry. Therefore, to replicate data that has been stored in LONG RAW columns, you 
must convert the data to BLOB. The simplest way to convert an entire geodatabase that 
contains LONG RAW columns to one that contains only BLOB columns is to perform an 
ArcCatalog copy/paste into a newly created geodatabase.  

Follow these steps: 

1. Create a new Oracle database. 

2. Create the tablespaces of geodatatabase including the sde tablespace. 

3. Create the sde user and grant the privileges to it according to instructions provided in 
Chapter 2, �Essential configuring and tuning for Oracle�. 

4. Edit the SDEHOME/etc/dbtune.sde file. In the DEFAULTS configuration keyword set 
the GEOMETRY_STORAGE parameter to SDELOB and the ATTRIBUTE_BINARY 
parameter to BLOB. Search the remainder of the dbtune.sde file and change all 
occurrences of the GEOMETRY_STORAGE parameter to SDELOB and the 
ATTRIBUTE_BINARY parameter to BLOB. 

5. Run the sdesetupora* install operation. The sde metadata tables that are normally created 
with a LONG RAW data type are created instead with BLOB data type. To confirm this 
connect to Oracle as the sde user with SQL*Plus and describe the 
GDB_OBJECTCLASSES table. The EXTPROPS column should have been created 
with a blob data type.  

$ sqlplus sde/sde

SQL*Plus: Release 8.1.7.0.0 - Production on Wed Jun 27 15:43:45 2001

(c) Copyright 2000 Oracle Corporation. All rights reserved.

Connected to:
Oracle8i Enterprise Edition Release 8.1.7.0.0 - Production
JServer Release 8.1.7.0.0 - Production



 Chapter 8  Replication 103 

SQL> describe gdb_objectclasses
Name Null? Type
----------------------------------------- -------- -------------------------
-
ID NOT NULL NUMBER(38)
DATABASENAME VARCHAR2(32)
OWNER NOT NULL VARCHAR2(32)
NAME NOT NULL VARCHAR2(160)
ALIASNAME VARCHAR2(160)
MODELNAME VARCHAR2(160)
CLSID NOT NULL VARCHAR2(38)
EXTCLSID VARCHAR2(38)
EXTPROPS BLOB
SUBTYPEFIELD VARCHAR2(32)
DATASETID NUMBER(38)

SQL>

6. Start ArcCatalog and connect to the geodatabase containing the LONG RAW data types 
and the new geodatabase that will contain data with BLOB data types. Right-click on an 
object from the �LONG RAW� geodatabase and select Copy. Right-click the �BLOB� 
geodatabase and select Paste, and the object is copied into the BLOB geodatabase. Do 
this for each object until all the objects are copied into the new geodatabase.  To confirm 
that the data is being created with BLOB data types, connect to Oracle as a data user and 
describe one of its feature tables and examine the POINTS column. 

$ sqlplus gisuser1/gisuser1

SQL*Plus: Release 8.1.7.0.0 - Production on Wed Jun 27 16:06:23 2001

(c) Copyright 2000 Oracle Corporation. All rights reserved.

Connected to:
Oracle8i Enterprise Edition Release 8.1.7.0.0 - Production
JServer Release 8.1.7.0.0 - Production

SQL> describe f1
Name Null? Type
----------------------------------------- -------- -------------------------
FID NOT NULL NUMBER(38)
NUMOFPTS NOT NULL NUMBER(38)
ENTITY NOT NULL NUMBER(38)
EMINX NOT NULL NUMBER(64)
EMINY NOT NULL NUMBER(64)
EMAXX NOT NULL NUMBER(64)
EMAXY NOT NULL NUMBER(64)
EMINZ NUMBER(64)
EMAXZ NUMBER(64)
MIN_MEASURE NUMBER(64)
MAX_MEASURE NUMBER(64)
AREA NOT NULL NUMBER(64)
LEN NOT NULL NUMBER(64)
POINTS BLOB

SQL>

Setting up multimaster synchronous replication 
Multimaster synchronous replication is a form of Oracle Advanced Replication that allows 
you to link two databases together and share the changes made to each master site. In effect, 
the linked databases appear as a single virtual database to the end user. This document 
supports the replication of an entire geodatabase. That is, all of the tables owned by the SDE 
user and all of the tables referenced in the SDE.LAYERS and SDE.TABLE_REGISTRY 
tables will be replicated. While partial replication of a geodatabase is possible, it is not 



104 ArcSDE Configuration and Tuning Guide for Oracle 

discussed in this document. If you wish to set up multimaster replication of only part of the 
geodatabase, you may use the scripts provided as a guide. 

Duplicating the tables of a geodatabase 
The tables to be replicated under multimaster replication must have the same �shape�. The 
shape of a table as defined by Oracle refers to the number of columns, their column names, 
and the column datatypes. 

As an option, Oracle will copy the rows of a table from the master definition site to the 
master sites when it generates replication. Copying the rows of the large tables of a GIS 
database can require a lot of network I/O. Therefore, the stored procedures 
rep_util_masdef.create_sde_repobjects and rep_util_masdef.create_user_repobjects have set 
the copy_rows argument to false when the dbms_repcat.create_master_repobject stored 
procedure is called to create the replication object for each table. When the replication is 
generated by the rep_util_masdef.generate_replication stored procedure�s call to the 
dbms_repcat.generate_replication_support stored procedure, the tables are compared to 
ensure they are the same, but the rows are not copied.  

Duplicating the data using the Oracle export/import utilities is usually more efficient than 
having the large tables of your GIS database traverse the network when replication is 
generated. To duplicate an Oracle database in its entirety, use the database export option. 
Otherwise, export the schema of each user that owns feature classes that you wish to 
replicate. If you choose to duplicate schemas, rather than the entire Oracle database, you must 
duplicate the schema of the sde user since the sde user owns the geodatabase metadata tables. 

Offsetting the connection sequence generator 
The connection sequence generator maintains a unique identifier for each connection to 
ArcSDE geodatabase. The sde.connection_id_generator must be offset to allow the ArcSDE 
locks to function across the virtual database. 

Connect to Oracle at the master definition site as the sde user and offset the 
connection_id_generator by executing the following SQL statements: 
DROP SEQUENCE connection_id_generator;

CREATE SEQUENCE connection_id_generator INCREMENT BY 16 START WITH 1000000000
MINVALUE 1 MAXVALUE 2147483647 NOCYCLE NOORDER';

Offsetting the version table sequence generator 
The version table sequence generator maintains a unique identifier of each version stored in 
the SDE.VERSIONS table. The sde.version_id_generator must be offset to allow versions to 
be created at both the master definition and the master site. 

Connect to Oracle at the master definition site as the sde user and offset the 
version_id_generator by executing the following SQL statements:  
DROP SEQUENCE version_id_generator;

CREATE SEQUENCE version_id_generator INCREMENT BY 16 START WITH 1000000000
MINVALUE 1 MAXVALUE 2147483647 NOCYCLE NOORDER';



 Chapter 8  Replication 105 

Offsetting the business table and feature class table sequence 
generators 
Special handling of the Oracle sequence generators is required since they cannot be 
replicated. The last value of the each sequence used to generate values for unique IDs must 
be offset at one of the replication sites to prevent the attempted entry of duplicate values. 
ArcSDE supports two sequences on the users� tables that need to be offset. 

I sequences generate the values of the FID column of the F tables that store the feature�s 
geometry. ArcSDE forms the I sequences for each F table by combining the letter I and the 
layer ID of the F table. ArcSDE forms the F table�s name by combining the letter F and its 
layer ID. For instance, the sequence I36 generates the FID values of the F36 table. 

The R sequences generate the values of the registered table�s rowid column. ArcSDE forms 
the name of the R sequences by combining the letter R and the registration ID of the register 
table. ArcSDE maintains a reference to each registered table in SDE.TABLE_REGISTRY. 
The ROWID_COLUMN of this table stores the name of the column of the registered table 
whose values are generated by R sequences. 

Run the offsets.sql script at only one of your sites and run it once. Before running the script 
update the %user% parameter with the name of the user that owns the sequences that need to 
be offset. The offset value of 1 billion should be enough to avoid duplication of ID values. If 
you have more than one Oracle user owning schema in your geodatabase, edit the offsets.sql 
to add the runs for the addition users. 
connect sys/manager

@rep_util_masdef.sps
@rep_util_masdef.spb

begin

rep_util_masdef.offset_sequences(fred,1000000000);
rep_util_masdef.offset_sequences(sally,1000000000);
rep_util_masdef.offset_sequences(june,1000000000);
rep_util_masdef.offset_sequences(bob,1000000000);
rep_util_masdef.offset_sequences(dan,1000000000);

end;
/

Turning off the states table sequence generator 
The default values of the STATE_ID column of the SDE.STATES table are generated from 
the STATE_ID_GENERATOR_NC. Using a sequence is an efficient way to generate the ID 
values for the STATE_ID column when records are added to the STATES table. However, 
Oracle does not replicate sequences. Therefore, in order to use them you must be able to 
offset them, such that each site has its own range of values that it provides the application 
when new records are added to the tables that the sequence supports. It is not possible to 
offset the STATE_ID_GENERATOR_NC sequence because the ArcSDE state tree model 
maintains the STATE_ID values in a continuous order. Gaps caused by offsets are not 
allowed. 

Before you can use replication, you must essentially �turn off� the 
STATE_ID_GENERATOR_NC sequence by telling ArcSDE not to use. Instead ArcSDE 
must determine the maximum STATE_ID value, increase it by 1, and insert the incremented 
value as the next STATE_ID. The SDE.VERSION_UTIL.INSERT_STATE stored 
procedure inserts new records into the STATES table. The SDE.VERSION_UTIL package is 



106 ArcSDE Configuration and Tuning Guide for Oracle 

created when you run the sdesetupora* command. The source code for the package is located 
under SDEHOME/lib. Under this folder you will find: two Oracle package body files 
version_util.spb and version_util.no_state_seq.spb.  

At each replication site, rename version_util.spb to version_util.state_seq.spb and rename 
version_util.no_state_seq.spb to version_util.spb. Using SQL*Plus connect to Oracle as the 
sde user and update the SDE.VERSION_UTIL package with the no sequence version of the 
INSERT_STATE stored procedure. 
SQL> @version_util.spb
Package created successfully
SQL>

Creating the replication environment 
In the master_replication folder the mmsetup.sql SQL script installs and executes the stored 
procedures of the reputil_masdef and reputil_master packages. The stored procedures of 
these packages are installed and executed as the sys user, so you need to be the database 
administrator to run the mmsetup.sql script. 

Updating mmsetup.sql 

Before you run the mmsetup.sql script you must update the variables that define your 
distributed database environment. 

user0 

A data user is an Oracle user that owns registered tables in the geodatabase you are about to 
replicate. If you have more than one data user, you will have to define additional variables to 
support them such as user1 and user2. 

sys_password 

The sys password is needed to connect as the sys user. The password for the sys user is 
assumed to be the same at both the master definition site and the master site. 

The sys user creates and owns the rep_util_masdef package at the master definition site and 
the rep_util_master package at the master site. The packages contain stored procedures and 
functions designed for the setup of geodatabase replication. The sys user grants execute 
privileges on the packages to PUBLIC. 

The sys user creates the t_columns and t_column_list types used in the replication of the SDE 
tables by the rep_util_masdef.create_sde_repobjects stored procedure. 

system_password 

The password of the system user is needed to connect as system. The system user creates the 
repadmin user at both the master sites. The password is assumed to be the same at both sites. 

masdef_site 

The Oracle NET8 network service name used by users at the master site to connect to the 
master definition site. Review �Establishing NET8 communications between databases� 
above to establish and test your network service names, if you have not already done so. 



 Chapter 8  Replication 107 

master_site 

The Oracle NET8 network service name used by users at the master definition site to connect 
to the master site. Review �Establishing NET8 communications between databases� above to 
establish and test your network service names, if you have not already done so. 

default_tablespace 

The default tablespace that the data of the replication administration user, repadmin will be 
stored in once the user has been created. 

temporary_tablespace 

The temporary tablespace that the temporary segments of the replication administration user, 
repadmin, will be stored in once the user has been created. 

masdef_site_gdb_name 

The master definition site�s global database name that can be found with the query: 
select * from global_name

using SQL*Plus while connected to the master definition site�s database. 

master_site_gdb_name 

The master site�s global database name that can be found with the query: 
select * from global_name

using SQL*Plus while connected to the master site�s database. 

group_name 

The replication group is created to hold the replicated objects of the geodatabase. The objects 
include all the metadata tables of the SDE user with the exception of the tables that support 
log files, SDE_LOGFILES and SDE_LOGFILE_DATA, and all the business tables, delta 
tables, and feature class tables of the users that own schema within the geodatabase. 

Running mmsetup.sql 

Once you have updated the variables with your replication environment, connect to the sys 
user with SQL*Plus and run mmsetup.sql. 
$ sqlplus sys/manager

SQL*Plus: Release 8.1.7.0.0 - Production on Mon Jun 25 10:26:46 2001
(c) Copyright 2000 Oracle Corporation. All rights reserved.

Connected to:
Oracle8i Enterprise Edition Release 8.1.7.0.0 - Production
JServer Release 8.1.7.0.0 - Production

SQL> @mmsetup

The mmsetup script performs the following tasks: 

1. Connects to the master definition site as the sys user. 



108 ArcSDE Configuration and Tuning Guide for Oracle 

2. Creates the t_column_list and t_columns objects. In step 23 these objects are used 
by the rep_util_masdef.create_sde_repobjects stored procedure to add the tables of 
the sde user to the replication group. 

3. Creates the rep_util_masdef package. This package contains all the stored 
procedures and functions that will be used by the mmsetup SQL script to set up 
replication at the master definition site. 

4. Connects as the sys user at the master definition site. 

5. Creates the rep_util_master package at the master site. The package contains stored 
procedures and functions used by the mmsetup SQL script used to set up replication 
at the master site. 

6. Connects as system at the master definition site. 

7. Creates the public database link to the master site. The link will be used to transfer 
changes to the master site. 

8. Creates the replication administrator, repadmin, at the master definition site. The 
replication administrator creates the replication groups and the replication objects 
and manages the state of replication between the master sites. 

9. Connects as the repadmin user at the master definition site. 

10. Creates a private database link to the master site. The replication administrator 
transfers the changes made to the replication objects to the different sites. 

11. Schedules the purge job. A purge job periodically removes the pushed transactions 
from the deferred transaction queue. 

12. Schedules the push job to the master site. The push job periodically propagates the 
local changes to the remote master sites. 

13. Connects as the system user at the master definition site. 

14. Creates the public database link to the master definition site. 

15. Creates the repadmin user at the master site. 

16. Connects as the repadmin user at the master site. 

17. Creates the private database link to the master definition site. 

18. Schedules the purge job. 

19. Schedules the push job to the master definition site. 

20. Connects as the repadmin user at the master definition site. 

21. Creates the multimaster replication group at the master definition site. 

22. Adds the master site to the multimaster replication group. 



 Chapter 8  Replication 109 

23. Adds the sde replication objects to the replication group. 

24. Generates replication of the sde replication objects. 

25. Adds the users� replication objects to the replication group. 

26. Generates replication of the users� replication objects. 

27. Resumes replication. 

Before Oracle can actually resume replication, the generation of replication of both the sde 
and user tables must finish. You can check on the progress of replication generation support 
with the following query while connected to your master definition site as the repadmin user. 
$ sqlplus repadmin/repadmin

SQL*Plus: Release 8.1.7.0.0 - Production on Mon Jun 25 12:59:10 2001

(c) Copyright 2000 Oracle Corporation. All rights reserved.

Connected to:
Oracle8i Enterprise Edition Release 8.1.7.0.0 - Production
JServer Release 8.1.7.0.0 - Production

SQL> select sname, oname,generation_status
from dba_repobject
order by generation_status, sname, oname;

The query will return a list of objects, the schema they belong to, and their current generation 
status. Following the completion of the mmsetup.sql script, the generation status for all 
objects should either be DOINGGEN, which means that Oracle is in the process of 
generation replication for this object, or GENERATED, which means that Oracle has 
finished generating replication. If the generation status for any of the objects is NEEDSGEN, 
a problem occurred during the execution of the mmsetup.sql script. Review the mmsetup.log 
if you encounter any problems to ensure that all of the steps of the mmsetup.sql SQL script 
completed successfully. 

Once replication resumes, you may edit the geodatabase while connected to either the master 
definition site or the master site. The changes will automatically be pushed to the opposite 
site, following a commit. Commits occur in the ArcMap client following each edit operation. 

Setting up read-only snapshot replication 
Read-only snapshot replication allows you to link a snapshot site to a master site and receive 
from the master site. Users connected to the read-only snapshot site cannot change the tables 
that have been replicated. Only users connected to the master site are able to edit the 
replicated tables. All of the tables listed in the SDE.TABLE_REGISTRY and the 
SDE.LAYERS tables are replicated. Only the tables owned by the SDE user that need to 
store the changes made to the geodatabase are replicated. The remainder of the sde user�s 
tables store the changes of a user session and cannot be replicated because users edit these 
tables at both the master site and the read-only snapshot site. 

Duplicating the tables of a geodatabase 
As an option, Oracle will copy the rows of a table from the master definition site to the 
snapshot site when the snapshots are created at the snapshot site. Copying the rows of the 



110 ArcSDE Configuration and Tuning Guide for Oracle 

large tables of a GIS database can require a lot of network I/O. Therefore, the stored 
procedures rep_util_snapshot.create_sde_repobjects and 
rep_util_snapshot.create_user_repobjects create the snapshots with the �on prebuilt table 
without reduced precision� clause. When the snapshots are created Oracle compares the 
definitions of the tables to ensure that they are the same. 

Duplicating the data using the Oracle export/import utilities is usually more efficient than 
having the large tables of your GIS database traverse the network when the snapshots are 
created. To duplicate an Oracle database in its entirety, use the database export option. 
Otherwise, export the schema of each user that owns data to replicated. If you choose to 
duplicate schemas, rather than the entire Oracle database, you must duplicate the schema of 
the sde user that owns the geodatabase metadata tables. 

Creating the replication environment 
In the snapshot_replication folder the rossetup.sql SQL script installs and executes the stored 
procedures of the reputil_master and reputil_snapshot packages. The stored procedures of 
these packages are installed and executed as the sys user, so you need to be the database 
administrator to run the rossetup.sql script. 

Updating rossetup.sql 

Before you run the rossetup.sql script you must update the variables that define your 
distributed database environment. 

user0 

A data user is an Oracle user that owns registered tables in the geodatabase you are about to 
replicate. If you have more than one data user, you will have to define and assign values to 
additional variables such as user1 and user2. 

user_password0 

The data user�s password is needed to connect as the data user to create the snapshot logs at 
the master site. 

sys_password 

The sys password is needed to connect as the sys user. The password for the sys user is 
assumed to be the same at both the master site and snapshot site. 

The sys user creates and owns the rep_util_master package at the master site and the 
rep_util_snapshot package at the snapshot site. The packages contain stored procedures and 
functions designed for the setup of read-only snapshot replication. The sys user grants 
execute privileges on the packages to the public. 

The sys user creates the t_constraints and t_constraint_list types used by the 
rep_util_master.create_sde_pkeys stored procedure that creates primary keys on SDE tables. 

system_password 

The password of the system user is needed to connect as the system user. The system user 
creates the replication administration user at both the master site and snapshot site. The 
password is assumed to be the same at both sites. 



 Chapter 8  Replication 111 

sde_password 

The password of the sde user is needed to connect as the sde user. The sde user creates 
primary keys and snapshot logs on its tables. 

master_site 

The Oracle NET8 network service name used by users at the snapshot site to connect to the 
master site. Review �Establishing NET8 communications between databases� above to 
establish and test your network service names. 

snapshot_site 

The Oracle NET8 network service name used by users at the master site to connect to the 
snapshot site. Review �Establishing NET8 communications between databases� above to 
establish and test your network service names. 

default_tablespace 

The default tablespace that will be used for the creation of the replication administration 
users. The default tablespace is assumed to be the same at both the master site and snapshot 
site. 

temporary_tablespace 

The temporary tablespace that will be used for the creation of the replication administration 
users. The temporary tablespace is assumed to be the same at both the master site and 
snapshot site. 

masdef_site_gdb_name 

The master site�s global database name that can be found with the query: 
select * from global_name

using SQL*Plus while connected to the master site�s database. 

snapshot_site_gdb_name 

The snapshot site�s database name that can be found with the query: 
select * from global_name

using SQL*Plus while connected to the snapshot site�s database. 

group_name 

The replication group is created to hold the replicated objects of the geodatabase. The objects 
include the metadata tables of the SDE user with the exception of the tables that support log 
files and user session data and all the business tables, delta tables, and feature class tables of 
the users that own schema within the geodatabase. 

Running rossetup.sql 

Once you have updated the variables with your replication environment, connect to the sys 
user with SQL*Plus and run rossetup.sql. 
$ sqlplus sys/manager



112 ArcSDE Configuration and Tuning Guide for Oracle 

SQL*Plus: Release 8.1.7.0.0 - Production on Mon Jun 25 10:26:46 2001
(c) Copyright 2000 Oracle Corporation. All rights reserved.

Connected to:
Oracle8i Enterprise Edition Release 8.1.7.0.0 - Production
JServer Release 8.1.7.0.0 - Production

SQL> @rossetup

The rossetup.sql script performs the following tasks: 

1. Connects as the sys user at the master site. 

2. Creates the t_constraints and t_constraint_list objects for use by the 
rep_util_master.create_sde_pkeys stored procedure that creates the primary keys on 
SDE tables that lack them. Read-only replication requires that all replicated tables have 
primary keys. 

3. Creates the rep_util_master package of stored procedures and functions that the 
rossetup.sql script uses to set up read-only snapshot replication at the master site. 

4. Connects as the sde user at the master site. 

5. Creates the primary keys on the sde tables that need them. 

6. Connects as the data user. 

7. Creates the primary keys on the data user�s tables that need them. 

8. Connects as the system user. 

9. Creates the replication administration users. 

10. Grants privileges to the replication administration users. 

11. Registers the replication administration repadmin as the receiver at the master site. 

12. Creates the public database link to the snapshot site. 

13. Connects as the repadmin user at the master site. 

14. Creates a private database link to the master site. 

15. Schedules the purge job. 

16. Schedules the push job to the snapshot site. 

17. Creates the replication group. 

18. Adds the sde tables as replication objects to the replication group. 

19. Connects as the sde user at the master site. 

20. Creates the snapshot logs on the sde tables that have been replicated. 



 Chapter 8  Replication 113 

21. Connects as the repadmin user at the master site. 

22. Adds the users� tables to the replication group. 

23. Connects as the data user. 

24. Creates the snapshot logs on the data user�s table. 

25. Connects as the sys user at the snapshot site. 

26. Creates the remote_repobjects public synonym. 

27. Creates the rep_util_snapshot package, which contains stored procedures and functions 
that the rossetup.sql SQL script uses to set up replication at the snapshot site. 

28. Connects as the system user at the snapshot site. 

29. Create the replication administration users at the snapshot site. 

30. Creates the public database link to the master site. 

31. Connects as the snapadmin user at the snapshot site. 

32. Creates the database link to the master site. 

33. Schedules the purge job. 

34. Schedules the push job to the master site. 

35. Connects as the propagator user at the snapshot site. 

36. Creates the private database link that connects as the repadmin user at the master site. 

37. Connects as the sde user at the snapshot site. 

38. Creates the private database link that connects as the proxy_refresher to the master site. 

39. Connects as the sys user at the snapshot site. 

40. Re-creates the remote_repobjects synonym of the dba_repobjects table at the master site. 

41. Connects as the snapadmin user at the snapshot site. 

42. Creates the snapshot replication group. 

43. Adds the sde tables to the snapshot replication group. 

44. Connects as the data user to the snapshot site. 

45. Creates the private database link that connects as the proxy_refresher to the master site. 

46. Connects as the snapadmin user to the snapshot site. 



114 ArcSDE Configuration and Tuning Guide for Oracle 

47. Adds the data user�s tables to the snapshot replication group. 

48. Connects as the repadmin user at the master site. 

49. Resumes replication. 

Once replication resumes, you may edit the geodatabase while connected to either of the 
master sites. The master site periodically refreshes the snapshot site with the committed 
changes. 

Editing a replicated database with ArcMap 
Edits made to versioned feature classes, tables, and geometric networks are not visible to the 
distributed site until the edits have been saved.  

For read-only snapshot replication the saved edits are visible at the snapshot site after it has 
been refreshed. 

For multimaster synchronous replication, the saved edits are immediately visible at the other 
master site. 

For both types of replication you may need to refresh the version to see changes made at a 
remote site. To refresh the current version of a geodatabase, first enable the Versioning 
toolbar. Click Tools and Customize and check Versioning. From the Versioning toolbar click 
the Refresh button.   

Using the Oracle replication manager 
The Oracle Replication Manager is a graphical user interface tool that is installed with the 
Oracle Enterprise Manager. It is very useful for monitoring and altering your replication 
environment. It is particularly useful for monitoring the progress of either the mmsetup.sql 
script during multimaster replication setup or the rossetup.sql script during snapshot 
replication setup. 

It is possible to use the replication manager to add additional tables to the replication group.  

If you decide to generate replication for a business table that has been registered as 
multiversioned, you must replicate the adds and deletes tables. Query 
SDE.TABLE_REGISTRY to obtain REGISTRATION_ID, which forms the table names of 
the adds and deletes tables. 
SELECT REGISTRATION_ID
FROM SDE.TABLE_REGISTRY
WHERE TABLE_NAME = ‘ROADS’
AND OWNER = ‘DAN’;

If the query for the registration ID returns 30, the adds table is A30, and the deletes table is 
D30. 

If the business table contains a spatial column, you must replicate the feature table and the 
spatial index table. To determine the names of these tables, query the SDE.LAYERS table for 
the layer ID of the business table�s spatial column. 



 Chapter 8  Replication 115 

SELECT LAYER_ID
FROM LAYERS
WHERE TABLE_NAME = ‘ROADS’
AND OWNER =’DAN’

If the query for the layer ID returns 10, the feature table is F10, and the spatial index table is 
S10. 

Offsetting sequences for multimaster replication 
If you add a business table to a feature class in a multimaster replication group, you must 
remember to offset the ArcSDE sequences of the business and F table. 

To re-create the sequences of the business table, first obtain the registration ID from the 
SDE.TABLE_REGISTRY. If the table name is ROADS and is owned by DAN, obtain the 
registration ID for this table with the following query: 
SELECT REGISTRATION_ID
FROM SDE.TABLE_REGISTRY
WHERE TABLE_NAME = ‘ROADS’

AND OWNER = ‘DAN’;

If the registration ID for this table is 10, then the sequence is R10. 

Regenerate the sequence with the following statements: 
DROP SEQUENCE R10;

CREATE SEQUENCE R10 INCREMENT BY 16 START WITH 1000000000 MINVALUE 1 MAXVALUE
2147483647 NOCYCLE NOORDER;

To re-create the sequence of the F table, first obtain the layer ID of the F table. The F table 
and the sequence that support it are created with the layer ID as part of their name. The layer 
ID can be obtained from the SDE.LAYERS table: 
SELECT LAYER_ID
FROM SDE.LAYERS
WHERE TABLE_NAME = ‘ROADS’
AND OWNER = ‘DAN’

If the layer ID is 30, the F table is F30, and the sequence is I30. 

Regenerate the sequence with the following statements: 
DROP SEQUENCE I30;

CREATE SEQUENCE I30 INCREMENT BY 10 START WITH 1000000000 MINVALUE 1
MAXVALUE 2147483647 NOCYCLE NOORDER;



116 ArcSDE Configuration and Tuning Guide for Oracle 



117 

A P P E N D I X  A  

Estimating the size of your 
tables and indexes 

The formulas provided in this appendix provide approximations of the actual 
sizes of the Oracle tables and indexes created by ArcSDE.  

The business table 
The following calculation of business table size is based on the calculations provided in 
Oracle Administrator�s Guide for your Oracle release. 

1. Determine the data block size. Do this by connecting to the database as the DBA and 
querying the db_block_size parameter stored in the v$parameter file. 

$ sqlplus system/<password>

SQL> select value from v$parameter where name = ‘db_block_size’;

2. Remove the header from the data block space.  
space after headers(sph) = db_block_size - 86 - ((INITRANS -1) * 24)

3. Calculate the available space by removing the percent free from the space after headers. 
available space = ceil(sph * (1 - PCTFREE / 100)) - 4

4. Reduce the available space further by 5 percent. 
available space = (available space * 0.95)

5. Calculate the row size. You may use the formulas described in Step 3 of Appendix A in 
the Oracle Administrator�s Guide to calculate the row size. However, if you can create 
the table and load about 100 sample records into it, you can obtain the most accurate 
estimate of row size by analyzing the table and then querying user_tables for the table�s 
avg_row_len. 

$ sqlplus <username>/<password>

SQL> create table <table_name> . . .
SQL> insert into table <table_name> . . .
SQL> analyze table <table_name> compute statistics;
SQL> select avg_row_len from user_tables where table_name = <table_name>;

6. Compute the number of rows that can be stored by each data block. 
rows per data block = floor(available space / row size)

7. Compute the number of data blocks required to store the table. You will need to estimate 
the number of rows you expect the table to contain. 



118 ArcSDE Configuration and Tuning Guide for Oracle 

total data blocks = total rows / rows per data block

8. Compute tablespace required to store the table in bytes. 
tablespace size = data block size * total data blocks

The feature table 
Use the steps listed in the business table size calculation to calculate the size of the feature 
table. If you cannot load a sample feature class, use the following formula to calculate the 
row size: 

row size = feature header + (average points per geometry) * 0.586 * coordinate factor 

The feature header varies depending on the type of geometry the feature class stored and 
whether z-values and/or measures are stored. Table A.1 lists the feature header sizes for the 
various combinations. 

 x,y x,y,z x,y,m x,y,z,m 

points 85 103 121 139 

lines 93 111 129 147 

polygons 101 119 137 155 

Table A.1 Feature headers vary according to the geometry type of the feature class and whether z-values 
and/or measures are stored along with each x,y coordinate pair. The geometry type is listed by row, while 
the coordinate type is listed by column. 



 Appendix A   Estimating the size of your tables and indexes 119 

The coordinate factor varies depending on whether it will store z-values and/or measures. 
Table A.2 lists the possible coordinate factors. 

Coordinate 
type 

Coordinate factor 

x,y 8 

x,y,z 12 

x,y,m 12 

x,y,z,m 16 

Table A.2 Coordinate factors vary depending on the type of coordinates stored. 

If the features store annotation, the row size will be larger. Calculating the space required to 
store annotation can be rather complex with the annotation text, leader line, placement, and 
metadata. Most annotation will occupy between 100 and 300 bytes of space per feature. 
Therefore, increase the row size by 200 bytes if your features include annotation.  

The spatial index table 
You can use the steps listed in calculating the business table to calculate the size of the spatial 
index table except for the row size. The row size for the spatial index table is always 43 
bytes. 

However, the size of the spatial index table can be fairly accurately estimated given the 
number of records in a feature class�s business table.  

spatial index table size = number of business table records * 1.3 

This formula assumes that the spatial index table contains an average of 1.3 grid cells for 
each feature. 

Use steps 6, 7, and 8, listed in the business table, to calculate the amount of space required to 
store the spatial index table. 

The version delta tables 
When you register a business table as multiversioned, three tables are created to maintain the 
deltas: the adds table, the deletes table, and the equivalency table. Depending on how the 
versions are managed, these tables may remain relatively small, or they may become quite 
large. The adds table receives one record for each record that is added to a business table 
version. The deletes table receives a record each time a record is deleted from a business table 
version. The equivalency table receives records each time versions are merged. The function 
of the equivalency table is rather complex, but its main role is to maintain the integrity of 
versioned records that have been copied between versions. As a result, it can grow 
exponentially depending on the number of merges that occur. 



120 ArcSDE Configuration and Tuning Guide for Oracle 

The most difficult part of estimating space for the delta tables is trying to predict how many 
rows they will contain. Partly it will depend on how many versions the table is involved in. In 
other words, how many records are added or deleted throughout the life of a version will 
affect the size of the adds and deletes tables. The number of times the version of one work 
order is copied to another will affect the size of the equivalency table.  

The size of the delta tables also depends on how often records are removed. These tables 
shrink only when the states preceding the level 0 version are compressed. This occurs only 
after a version branching directly off the root of the version tree completes and is removed 
from the system. The compression of states that follows will cause the changes of the states 
between the level 0 version and the next version following the one removed to be written to 
the business table and deleted from the delta tables. 

For most applications the delta tables should not be expected to grow beyond 10,000 records. 
However, there are applications where several versions of the database must be maintained 
over a long period. In these cases as many as 30,000 records per delta table can be expected.  

The adds table 

The table definition of the adds table is identical to that of the business table with the addition 
of the SDE_STATE_ID column. Therefore, to compute the space required to store the adds 
table, use the calculations for the business table and increase the row size of the adds table by 
4 bytes to account for the addition of the SDE_STATES_ID column. 

The record count for the adds table will be an estimate of the number of records added to the 
versioned business table after it has been registered as multiversioned. Records are removed 
from the adds table only when a version next to the 0 version is removed and its states are 
compressed. 

The deletes table 

The record count depends on the number of records deleted from the business table after it 
was registered as multiversioned. Records are removed from the deletes table only when a 
version next to the 0 version is removed and its states are compressed. 

Calculate the size of the deletes table with the following formula: 

deletes table size = 5.4 * number of rows. 

For more information on versioning, refer to Building a Geodatabase. 

The network tables 
There are 10 standard network tables created whenever you create a geodatabase network 
class. Optionally, the application designer may also create weights for the network, in which 
case two tables are created for each weight.  

The size of the network tables depends on the number of rows in the base tables. A network 
class is basically the logical combination of point and linestring feature classes. In network 
terms, linestring features are referred to as junctions.  

The first step in determining the size of the network tables is to establish the total number of 
edges and junctions. 



 Appendix A   Estimating the size of your tables and indexes 121 

The total number of edges is calculated by adding up all the linestring features in the 
network. 

A junction must exist at the endpoint of each linestring. If a point feature does not exist at the 
endpoint of a linestring, a logical junction is created within the network tables. For endpoints 
of two or more linestrings that share the same coordinate position, only one junction exists. 
So some of the endpoints will share the same coordinate position, and some will not. Some 
will have a point feature at the endpoint, and some will not. As a rough guide assume that 
half of your linestring endpoints share the same coordinate position and that the total number 
of junctions required by the network is equal to the number of edges.    

Once you have the junction and edge totals, you can determine the size of the network tables 
using the following formulas. 

Description table (N_<n>_DESC) 
The number of rows in the description table is equal to the sum of the junctions and edges. 

The size of the description table is calculated as  

size in bytes = number of rows * 7.4 

Edge description table  (N_<n>_EDESC) 
The number of rows in the edge description table is calculated as  

number of rows  = number of edges  / 1638 

The size of the edge description table is calculated as  

size in bytes = number of rows * 6250 

Edge status table (N_<n>_ESTATUS) 
The number of rows in the edge status table is calculated as the  

number of rows = number of edges / 65536 

size in bytes = number of rows * 10000 

Edge topology table (N_<n>_ETOPO) 
The number of rows in the edge topology table is calculated as the 

number of rows = number of edges / 4096 

The size of the edge topology table is calculated as  

size in bytes = number of  rows * 6336  



122 ArcSDE Configuration and Tuning Guide for Oracle 

Flow direction table (N_<n>_FLODIR) 
The number of rows in the flow direction table is calculated as 

number of rows = number of edges / 65536 

The size of the flow direction table is calculated as 

size in bytes =  number of rows * 40960 

Junction description table (N_<n>_JDESC) 
The number of rows in the junction description table is calculated as 

number of rows = number of junctions / 1638 

The size of the junction description table is calculated as 

size in bytes =  number of rows * 24986 

Junction status table (N_<n>_JSTATUS) 
The number of rows in the junction status table is calculated as 

number of rows = number of junctions / 65536 

The size of the junction status table is calculated as 

size in bytes =  number of rows * 40960 

Junction topology table (N_<n>_JTOPO) 
The number of rows in the junction topology table is calculated as 

number of rows = number of junctions / 2048 

The size of the junction topology table is calculated as 

size in bytes =  number of rows * 24865 

Junction overflow topology table (N_<n>_JTOPO2) 
The number of rows in the junction overflow topology table is calculated as 

number of rows = number of junctions / 20480 

The size of the junction overflow topology table is calculated as 

size in bytes =  number of rows * 29257 



 Appendix A   Estimating the size of your tables and indexes 123 

Property table (N_<n>_PROP) 
The number of rows in the network properties table is always 10. 

number of rows = 10 

The size of the network properties table is approximately 250 bytes. 

size in bytes =  250 

The network properties table will always occupy one data block. 

Edge weight table (N_<n>_E<w>) 
The number of rows in an edge weight table is calculated as 

number of rows = number of edges / 2048 

The size of the junction overflow topology table is calculated as 

size in bytes =  number of rows * 24865 

Junction weight table (N_<n>_J<w>) 
The number of rows in the junction overflow topology table is calculated as 

number of rows = number of junctions / 2048 

The size of the junction overflow topology table is calculated as 

size in bytes =  number of rows * 24865 

The raster data tables 
Four raster data tables are created whenever a user adds a raster column to a business table. A 
row is added to the sde raster_columns system table for each raster column created in the 
database. Each new raster column is given a unique ID called a rastercolumn_id. The 
rastercolumn_id is used in the naming of the raster data tables.   

Raster data schema consists of four tables and their associated indexes. The four tables and 
their associated indexes are: 

1. The raster table (SDE_RAS_<raster_column_id>) stores one record for each raster. The 
number of raster table rows is always less than or equal to the number of business table 
rows. If each row of the business table has an image stored in the raster tables, then the 
number of rows is equal. If some of the business table rows do not have an image 
associated with them, then the number for raster tables is less.  
 
The raster table has a single unique index on the raster_id column 
(SDE_RAS_<raster_column_id>_UK). 



124 ArcSDE Configuration and Tuning Guide for Oracle 

2. The raster bands table (SDE_BND_<raster_column_id>) stores one record for each 
raster band. The one-to-many relationship between the raster table and the raster bands 
table is maintained by the primary/foreign key raster_id column. The number of rows in 
the raster bands table can be determined by multiplying the number of image bands by 
the number of raster table rows. 
 
The raster bands table has two unique indexes, one on the rasterband_id column 
(SDE_BND_<raster_column_id>_UK1) and the other a composite of the raster_id and 
sequence_nbr columns (SDE_BND_<raster_column_id>_UK2).   

3. The data stored in the raster auxiliary table (SDE_AUX_<raster_column_id>) is 
optional. Therefore, a zero-to-many relationship exists between the raster bands table 
and the raster auxiliary table. The tables are joined on the primary/foreign key 
relationship of the rasterband_id column. The raster auxiliary table stores one record of 
metadata about each band. For example, if the image has a color map associated with it, 
one record will be added to the auxiliary table for each record in the raster band table. If 
you elect to create statistics for the raster, one record will be added for each record in the 
raster bands table. If you are not sure how much metadata will be stored for each raster, 
you don't need to be overly concerned since the size of this table is very small. 
 
The raster auxiliary table has one unique index, a composite of the type, and 
rasterband_id columns (SDE_AUX_<raster_column_id>_UK). 

4. The raster blocks table (SDE_BLK_<raster_column_id>) stores the raster band pixels as 
blocks defined by the block's dimensions. A one-to-many relationship exists between the 
raster bands table and the raster blocks table. The number of rows in the raster blocks 
table can be estimated by first determining the pixels required to complete a block, 
dividing this number into the total number of pixels within a band, and multiplying the 
result by the number of bands in the raster. If you have elected to store a resolution 
pyramid, multiply the result by 1.33 to account for the resolution pyramid blocks. 
 
The raster blocks table has one unique index�a composite of the rasterband_id, 
rrd_factor, row_nbr, and col_nbr columns (SDE_BLK_<raster_column_id>_UK). 

Raster table (SDE_RAS_<raster_column_id>) 
On the average, 2,400 raster table rows fit in a 16 KB Oracle data block, given an Oracle data 
block percent free of 10 percent and initial transactions of 4. To roughly estimate the number 
of data blocks required to store the rows of the raster table, divide the total number of rows 
you expect the table to have by 2,400. 

Raster bands table (SDE_BND_<raster_column_id>) 
On the average, 190 raster band table rows fit within a 16 KB Oracle data block, given an 
Oracle data block percent free of 10 percent and initial transactions of 4. To roughly estimate 
the number of data blocks required to store the rows of the raster bands table, divide the total 
number of rows you expect the table to have by 190. 

Raster auxiliary table (SDE_AUX_<raster_column_id>) 
On the average, six raster auxiliary table rows fit within a 16 KB Oracle data block, given an 
Oracle data block percent free of 10 percent and initial transactions of 4. To roughly estimate 



 Appendix A   Estimating the size of your tables and indexes 125 

the number of data blocks required to store the rows of the raster auxiliary table, divide the 
total number of rows you expect the table to have by 6. 

Raster blocks table (SDE_BLK_<raster_column_id>)  
The size of the raster blocks table varies depending on whether you have built a resolution 
pyramid and whether an image compression method has been applied. The addition of the 
pyramid will increase the number of rows in the raster blocks table from the base level by a 
factor of one third. 

The pixel depth affects the row size of the raster block. Single bit pixels require less storage 
space than do 4-bit pixels, which in turn require less space than 8-bit pixels, and so on. 

The pixel dimension of the raster blocks also affects the row size of the raster blocks. Larger 
dimensions require more space. For example, the storage space of a  64 x 64 pixel raster 
block requires a quarter of the space of a 128 x 128 raster block. 

Compression reduces the total size of the stored image in a manner similar to the algorithmic 
compression of ASCII files. The software interrogates rows of pixels searching for equal 
valued groups and storing a single value and the pixel count, rather than a string of equal 
values. Compression reduces the row size of the raster blocks.     

Compression results vary from image to image; however, Table A.3 provides a general 
guideline for the number of Oracle 16 KB data blocks required to store raster block table 
rows, given the image�s pixel depth. To compute the total number of 16 KB Oracle data 
blocks required, multiply the expected number of rows in the raster block�s table by the 
appropriate Oracle data blocks per row factor in Table A.3. If you created the database with 
an Oracle data block size of 8, multiply the result by 2.   



126 ArcSDE Configuration and Tuning Guide for Oracle 

Table A.1 Number of 16 KB Oracle data blocks required to store a row of the raster blocks table for a given 
pixel depth. 

 Pixel Depth 

Compression 1-bit 8-bit 16-bit 32-bit 

None 0.17 1.5 2.6 4.5 

LV77 0.01 0.55 0.78 1.08 

The indexes 
All of the indexes, with the exception of the spatial index table�s S<n>_IX1, index single-
integer columns. The spatial index table�s S<n>_IX1 indexes all of the columns of the table. 
Since the definition of the indexes is fixed, the size of the indexes can be based on the 
number of rows they index. The space for all indexes, except the spatial index table�s 
S<n>_IX index, can be calculated using the following formula: 

adjusted size  = 500 rows per data block * (1 - PCTFREE) 

total data blocks = table rows / adjusted size 

tablespace size = total data blocks * data block size 

For the S<n>_IX1 index the formula is  

adjusted size  = 150 rows per data block * (1 - PCTFREE) 

total data blocks = table rows / adjusted size 

tablespace size = total data blocks * data block size 

 



  127 

A P P E N D I X  B  

Storing raster data 

A raster is a rectangular array of equally spaced cells that, taken as a whole, 
represent thematic, spectral, or picture data. Raster data can represent 
everything from qualities of land surface such as elevation or vegetation to 
satellite images, scanned maps, and photographs.  

You are probably familiar with raster formats such as tagged image file 
format (TIFF), Joint Photographic Experts Group (JPEG), and Graphics 
Interchange Format (GIF) that your Internet browser renders. These rasters 
are composed ofone or more bands. Each band is segmented into a grid of 
square pixels. Each pixel is assigned a value that reflects the information it 
represents at a particular position. 

For an expanded discussion of the type of raster data supported by ESRI products, review 
Chapter 9, �Cell-based modeling with rasters�, in Modeling Our World. 

ArcSDE stores raster datasets similar to the way it stores compressed binary feature classes 
(see Appendix C, �ArcSDE compressed binary�). A raster column is added to a business 
table, and each cell of the raster column contains a reference to a raster stored in a separate 
raster table. Therefore, each row of a business table references an entire raster. 

ArcSDE stores the raster bands in the raster band table. ArcSDE joins the raster band table to 
the raster table on the raster_id column. The raster band table's raster_id column is a foreign 
key reference to the raster table's raster_id primary key. 

ArcSDE automatically stores any existing image metadata, such as image statistics, color 
maps, or bitmasks, in the raster auxiliary table. The rasterband_id column of the raster 
auxiliary table is a foreign key reference to the primary key of the raster band table. ArcSDE 
joins the two tables on this primary/foreign key reference when accessing a raster band's 
metadata. 



128 ArcSDE Configuration and Tuning Guide for Oracle 

The raster blocks table stores the pixels of each raster band. ArcSDE tiles the pixels into 
blocks according to a user-defined dimension. ArcSDE does not have a default dimension; 
however, applications that store raster data in ArcSDE do. ArcToolbox and ArcCatalog, for 
example, use  default raster block dimensions of 128-by-128 pixels per block. The 
dimensions of the raster block, along with any specified compression method, determine the 
storage size of each raster block. You should select raster block dimensions that, combined 
with the compression method, allow each row of the raster block table to fit within an Oracle 
data block. For Oracle databases, storing raster data should be created with a 16 KB Oracle 
data block size. See Appendix A, �Estimating the size of your tables and indexes�, for more 
information on estimating the size of your raster tables and indexes. 

Using a compression method, such as lossless lz77, almost always results in an improvement 
in performance. The savings in disk space and network I/O generally offset the additional 
CPU cycles required for the application to decompress the image.   

The rendition of rasters

Multiband rasters are often displayed as red-
green-blue composites. This band configuration 
is common because these bands can be directly 
displayed on computer displays, which employ a 
red-green-blue color rendition model.

Raster datasets have one or many
bands. In multiband rasters, a band

represents a segment of the 
electromagnetic spectrum that has 

been collected by a sensor.

Red
band

Green
band

Blue
band

Red-green-blue
composite

Attribute values
range from 0 to 255

in each band

255

0

Displaying multiband rasters

Electromagnetic spectrum

band 1

band 2

band 3

Bands often represent a portion of the electromagnetic
spectrum, including ranges not visible to the eye—the
infrared or ultraviolet sections of the spectrum.

A raster can have one or many bands. The cell values of rasters can be drawn in a variety of
ways. These are some of the ways to display rasters by cell values.

Monochrome
image

0 0 0 0 1 1

1 0 0 1 1 0

1 0 1 1 0 0

0 0 0 1 1 0

1 1 0 0 0 1

0 1 1 1 0 0

0

251

41

86

118

141

187 236

201

16 25532

66

126

124 183

191 198

0

243

68

76 124

162

170

212

251 10

255

56

68

124

132

152

218

234

00 1 255

Grayscale
image

Display colormap
image

1 3

42

5

1

3

4

2

5

1 3

4

2

5

1

3

42

5

1

3

4

2

5

1 3

42

5

1 34 2

5

2

1

3

4

2

5

Colormap

red green blue

64

255 0

128

3232

0

255

255 128

25500

128

255

In a monochrome image, each cell
has a value of 0 or 1. They are often
used for scanning maps with simple
linework, such as parcel maps.

In a grayscale image, each cell has a
value from 0 to 255. They are often 
used for black-and-white aerial
photographs.

One way to represent colors on an
image is with a colormap. A set of
values is arbritrarily coded to match a
defined set of red-green-blue values.

Cell values in single-band rasters can be drawn in these three basic ways.

Displaying single-band rasters



 Appendix B   Storing raster data 129 

The raster blocks table contains the rasterband_id column, which is a foreign key reference to 
the raster band table's rasterband_id primary key. ArcSDE joins these tables together on the 
primary/foreign key reference when accessing the blocks of the raster band. 

ArcSDE populates the raster blocks table according to a declining resolution pyramid. The 
number of levels specified by the application determines the height of the pyramid. The 
application, such as ArcToolbox or ArcCatalog, may allow you to define the levels, or it may 
request that ArcSDE calculate them, or it may offer both possible choices. 

The pyramid begins at the base, or level 0, which contains the original pixels of the image. 
The pyramid proceeds toward the apex by coalescing four pixels from the previous level into 
a single pixel at the current level. This process continues until less than four pixels remain or 
until ArcSDE exhausts the defined number of levels. 

The apex of the pyramid is reached when the uppermost level has less than four pixels. The 
additional levels of the pyramid increase the number of raster block table rows by one third. 
However, since it is possible for the user to specify the number of levels, the true apex of the 
pyramid may not be obtained, limiting the number of records added to the raster blocks table. 

 

Figure B.1 When you build a pyramid, more rasters are created by progressively downsampling the 
previous level by a factor of two until the apex is reached. As the application zooms out and the raster cells 
grow smaller than the resolution threshold, ArcSDE selects a higher level of the pyramid. The purpose of 
the pyramid is to optimize display performance. 

The pyramid allows ArcSDE to provide the application with a constant resolution of pixel 
data regardless of the rendering window's scale. Data of a large raster transfers quicker to the 
client when a pyramid exists since ArcSDE can transfer fewer cells of a reduced resolution.  

Raster schema 
When you import a raster into an ArcSDE database, ArcSDE adds a raster column to the 
business table of your choice. You may name the raster column whatever you like, so long as 
it conforms to Oracle's column naming convention. ArcSDE restricts one raster column per 
business table. 

The raster column is a foreign key reference to the raster_id column of the raster table created 
during the addition of the raster column. Also joined to the raster table's raster_id primary 
key, the raster band table stores the bands of the image. The raster auxiliary table, joined one 
to one to the raster band table by rasterband_id, stores the metadata of each raster band. The 
rasterbands_id also joins the raster band table to the raster blocks table in a many-to-one 
relationship. The raster blocks table rows store blocks of pixels, determined by the 
dimensions of the block. 



130 ArcSDE Configuration and Tuning Guide for Oracle 

Figure B.2 When ArcSDE adds a raster column to a table, it records that column in the sde user's 
raster_columns table. The rastercolumn_id table is used in the creation of the table names of the raster, 
raster band, raster auxiliary, and raster blocks table. 

The sections that follow describe the schema of the tables associated with the storage of 
raster data. Refer to Figure B.2 for an illustration of these tables and the manner in which 
they are associated with one another. 

RASTER_COLUMNS table 
When you add a raster column to a business table, ArcSDE adds a record to the 
RASTER_COLUMNS system table maintained in the sde user's schema. ArcSDE also 
creates four tables to store the raster images and metadata associated with each one. 

NAME DATA TYPE NULL?

rastercolumn_id NUMBER(38) NOT NULL

description VARCHAR2(65) NULL

database_name VARCHAR2(32) NULL

owner VARCHAR2(32) NOT NULL

table_name VARCHAR2(160) NOT NULL



 Appendix B   Storing raster data 131 

raster_column VARCHAR2(32) NOT NULL

cdate NUMBER(38) NOT NULL

config_keyword VARCHAR2(32) NULL

minimum_id NUMBER(38) NULL

base_rastercolumn_id NUMBER(38) NOT NULL

rastercolumn_mask NUMBER(38) NOT NULL

srid NUMBER(38) NULL

Raster columns table  

• rastercolumn_id (SE_INTEGER_TYPE)�The table's primary key. 

• description (SE_STRING_TYPE)�The description of the raster table. 

• database_name (SE_STRING_TYPE)�Field is always NULL for Oracle. 

• owner (SE_STRING_TYPE)�The owner of the raster column's business table. 

• table_name (SE_STRING_TYPE)�The business table name. 

• raster_column (SE_STRING_TYPE)�The raster column name. 

• cdate (SE_INTEGER_TYPE)�The date the raster column was added to the business 
table. 

• config_keyword (SE_STRING_TYPE)�The DBTUNE configuration keyword whose 
storage parameters determine how the tables and indexes of the raster are stored in the 
Oracle database. For more information on DBTUNE configuration keywords and their 
storage parameters, review Chapter 3, �Configuring DBTUNE storage parameters'.   

• minimum_id (SE_INTEGER_TYPE)�Defined during the creation of the raster, 
establishes value of the raster table's raster_id column. 

• base_rastercolumn_id (SE_INTEGER_TYPE)�If a view of the business table is 
created that includes the raster column, an entry is added to the RASTER_COLUMNS 
table. The raster column entry of the view will have its own rastercolumn_id. The 
base_rastercolumn_id will be the rastercolumn_id of the business table used to create the 
view. This base_rastercolumn_id maintains referential integrity to the business table. It 
ensures that actions performed on the business table raster column are reflected in the 
view. For example, if the business table�s raster column is dropped, it will also be 
dropped from the view (essentially removing the view's raster column entry from the 
RASTER_COLUMNS table). 

• rastercolumn_mask (SE_INTEGER_TYPE)�Currently not used; maintained for future 
use. 

• srid (SE_INTEGER_TYPE)�The spatial reference ID (srid) is a foreign key reference 
to the SPATIAL_REFERENCES table. For images that can be georeferenced, the srid 
references the coordinate reference system the image was created under.   

Business table 
In the example that follows, the fictitious BUILD_FOOTPRINTS business table contains the 
raster column house_image. This is a foreign key reference to the raster table created in the 
user�s schema. In this case the raster table contains a record for each raster of a house. It 



132 ArcSDE Configuration and Tuning Guide for Oracle 

should be noted that images of houses cannot be georeferenced. Therefore, the SRID column 
of the RASTER_COLUMN record for this raster is NULL. 

NAME DATA TYPE NULL?

building_id NUMBER(38) NOT NULL

building_footprint NUMBER(38) NOT NULL

house_picture NUMBER(38) NOT NULL

BUILDING_FOOTPRINTS business table with house image raster column  

• building_id (SE_INTEGER_TYPE)�the table's primary key 

• building_footprints (SE_INTEGER_TYPE)�a spatial column and foreign key 
reference to a feature table containing the building footprints 

• house_image (SE_INTEGER_TYPE)�a raster column and foreign key reference to a 
raster table containing the images of the houses located on each building footprint 

Raster table (SDE_RAS_<rastercolumn_id>) 
The raster table, created as SDE_RAS_<raster_column_id> in the Oracle database, stores a 
record for each image stored in a raster column. The raster_column_id is assigned by 
ArcSDE whenever a raster column is created in the database. A record for each raster column 
in the database is stored in the ArcSDE RASTER_COLUMNS system table maintained in 
the sde user's schema. 

NAME DATA TYPE NULL?

raster_id NUMBER(38) NOT NULL

raster_flags NUMBER(38) NULL

description VARCHAR2(65) NULL

Raster description table schema (SDE_RAS_<raster_column_id>) 

• raster_id (SE_INTEGER_TYPE)�The primary key of the raster table and unique 
sequential identifier of each image stored in the raster table  

• raster_flags (SE_INTEGER_TYPE)�A bitmap set according to the characteristics of a  
stored image 

• description (SE_STRING_TYPE)�A text description of the image (not implemented at 
ArcSDE 8.1) 

Raster band table (SDE_BND_<rastercolumn_id>) 
Each image referenced in a raster may be subdivided into one or more raster bands. The 
raster band table, created as SDE_BND_<rastercolumn_id>, stores the raster bands of each 
image stored in the raster table. The raster_id column of the raster band table is a foreign key 
reference to the raster table's raster_id primary key. The rasterband_id column is the raster 
band table's primary key. Each raster band in the table is uniquely identified by the sequential 
rasterband_id.  

NAME DATA TYPE NULL?

rasterband_id NUMBER(38) NOT NULL

sequence_nbr NUMBER(38) NOT NULL

raster_id NUMBER(38) NOT NULL



 Appendix B   Storing raster data 133 

name VARCHAR2(65) NULL

band_flags NUMBER(38) NOT NULL

band_width NUMBER(38) NOT NULL

band_height NUMBER(38) NOT NULL

band_types NUMBER(38) NOT NULL

block_width NUMBER(38) NOT NULL

block_height NUMBER(38) NOT NULL

block_origin_x NUMBER(64) NOT NULL

block_origin_y NUMBER(64) NOT NULL

eminx NUMBER(64) NOT NULL

eminy NUMBER(64) NOT NULL

emaxx NUMBER(64) NOT NULL

emaxy NUMBER(64) NOT NULL

cdate NUMBER(38) NOT NULL

mdate NUMBER(38) NOT NULL

Raster band table schema 

• rasterband_id (SE_INTEGER_TYPE)�The primary key of the raster band table that 
uniquely identifies each raster band. 

• sequence_nbr (SE_INTEGER_TYPE)�An optional sequential number that can be 
combined with the raster_id as a composite key as a second way to uniquely identify the 
raster band. 

• raster_id (SE_INTEGER_TYPE)�The foreign key reference to the raster table�s 
primary key. Uniquely identifies the raster band when combined with the sequence_nbr 
as a composite key. 

• name (SE_STRING_TYPE)�The name of the raster band. 

• band_flags (SE_INTEGER_TYPE)�A bitmap set according to the characteristics of 
the raster band. 

• band_width (SE_INTEGER_TYPE)�The pixel width of the band. 

• band_height (SE_INTEGER_TYPE)�The pixel height of the band. 

• band_types (SE_INTEGER_TYPE)�A bitmap band compression data. 

• block_width (SE_INTEGER_TYPE)�The pixel width of the band's tiles. 

• block_height (SE_INTEGER_TYPE)�The pixel height of the band's tiles. 

• block_origin_x (SE_FLOAT_TYPE)�The leftmost pixel.  

• block_origin_y (SE_FLOAT_TYPE)�The bottommost pixel. 

If the image has a map extent, the optional eminx, eminy, emaxx, and emaxy will hold the 
coordinates of the extent. 

• eminx (SE_FLOAT_TYPE)�The band's minimum x-coordinate.  

• eminy (SE_FLOAT_TYPE)�The band's minimum y-coordinate. 



134 ArcSDE Configuration and Tuning Guide for Oracle 

• emaxx (SE_FLOAT_TYPE)�The band's maximum x-coordinate.  

• emaxy (SE_FLOAT_TYPE)�The band's maximum y-coordinate. 

• cdate (SE_FLOAT_TYPE)�The creation date. 

• mdate (SE_FLOAT_TYPE)�The last modification date. 

Raster blocks table (SDE_BLK_<rastercolumn_id>) 
Created as SDE_BLK_<rastercolumn_id>, the raster blocks table stores the actual pixel data 
of the raster images. ArcSDE evenly tiles the bands into blocks of pixels. Tiling the raster 
band data enables efficient storage and retrieval of the raster data. The raster blocks can be 
configured so that the records of the raster block table fit with an Oracle data block, avoiding 
the adverse effects of data block chaining. 

The rasterband_id column of the raster block table is a foreign key reference to the raster 
band table's primary key. A composite unique key is formed by combining the rasterband_id, 
rrd_factor, row_nbr, and col_nbr columns.  

NAME DATA TYPE NULL?

rasterband_id NUMBER(38) NOT NULL

rrd_factor NUMBER(38) NOT NULL

row_nbr NUMBER(38) NOT NULL

col_nbr NUMBER(38) NOT NULL

block_data LONG RAW or BLOB NOT NULL

Raster block table schema 

• rasterband_id (SE_INTEGER_TYPE)�The foreign key reference to the raster band 
table�s primary key. 

• rrd_factor (SE_INTEGER_TYPE)�The reduced resolution dataset factor determines 
the position of the raster band block within the resolution pyramid. The resolution 
pyramid begins at 0 for the highest resolution and increases until the raster band�s lowest 
resolution level has been reached. 

• row_nbr (SE_INTEGER_TYPE)�The block's row number. 

• col_nbr (SE_INTEGER_TYPE)�The block's column number. 

• block_data (SE_BLOB_TYPE)�The block's tile of pixel data. 

Raster band auxiliary table (SDE_AUX_<rastercolumn_id>) 
The raster band auxiliary table, created as SDE_AUX_<rastercolumn_id>, stores optional 
raster metadata such as the image color map, image statistics, and bitmasks used for image 
overlay and mosaicking. The rasterband_id column is a foreign key reference to the primary 
key of the raster band table.     

NAME DATA TYPE NULL?

rasterband_id NUMBER(38) NOT NULL

type NUMBER(38) NOT NULL

object LONG RAW or BLOB NOT NULL



 Appendix B   Storing raster data 135 

Raster auxiliary table schema 

• rasterband_id (SE_INTEGER_TYPE)�The foreign key reference to the raster band 
table�s primary key 

• type (SE_INTEGER_TYPE)�A bitmap set according to the characteristics of the data 
stored in the object column 

• object (SE_BLOB_TYPE)�May contain the image color map, image statistics, etc. 

Creating a raster catalog 
An image catalog allows you to group many images by simply listing them in a table. 
ArcGIS clients like ArcCatalog or ArcMap display the images as a group by reading the 
entries in the image catalog table. The table must contain the five columns: IMAGE, XMIN, 
YMIN, XMAX, and YMAX. 

The IMAGE column contains the fully qualified name of the image, while the remaining four 
columns describe the image�s extent. The table does not have to be registered with either 
ArcSDE or the Geodatabase and does not have to be multiversioned. Here's an example: 

IMAGE XMIN YMIN XMAX YMAX 

TOPO1 322169.2 4094888 411902.3 4151957 

TOPO2 323452.5 4150579 412586.2 4207658 

TOPO3 233002.1 4096472 323537.9 4154628 

TOPO4 234912.9 4151847 324666.3 4210094 

TOPO5 676712.7 4090675 770814.6 4154551 

TOPO6 675530.7 4146368 769195.7 4210173 

TOPO7 324599.5 4206098 413235.3 4263136 

TOPO8 325340.9 4261470 413692.2 4318609 

TOPO9 236598.8 4207336 325702 4265705 

TOPO10 239302.9 4262352 327095.4 4321168 

TOPO11 413273.8 4316886 500802.2 4372878 

If you have less than nine images, then all the images will display. If you have more, your 
images will not display until you begin to zoom in. 

 

 



136 ArcSDE Configuration and Tuning Guide for Oracle 

 



  137 

A P P E N D I X  C  

ArcSDE compressed binary 

ArcSDE uses a compressed binary format to store geometry in either an 
Oracle binary LONG RAW or BLOB data type. ArcSDE stores compressed 
binary spatial data in the POINTS columns of the feature table. Compressing 
the geometry offers efficient storage and retrieval of spatial data by reducing 
the size of the geometry. Compressed binary stored in the LONG RAW data 
type is the default storage format for ArcSDE feature classes. 

Compressed binary 
ArcSDE verifies the geometry, compresses it, and sends it to the Oracle instance, where it is 
inserted into a feature table in compressed binary format. Compressing the geometry on the 
client offloads the task from the ArcSDE server and reduces the transmission time to send the 
geometry to the ArcSDE server. Storing compressed geometry data reduces the space 
required to store data by as much as 40 percent.  

Compressed binary schema 
A compressed binary feature class comprises three tables: the business table, the feature table, 
and the spatial index table.  

The business table contains attributes and a spatial column. The spatial column is a key to the 
feature and spatial index tables.  

The relationship between the business table and the feature table is managed through the 
spatial column and the FID column. This key, which is maintained by ArcSDE, is unique. 

NAME DATA TYPE NULL?

fid NUMBER(38) NOT NULL

numofpts NUMBER(38) NOT NULL

entity NUMBER(38) NOT NULL

eminx NUMBER(64) NOT NULL

eminy NUMBER(64) NOT NULL

emaxx NUMBER(64) NOT NULL

emaxy NUMBER(64) NOT NULL

eminz NUMBER(64) NULL

emaxz NUMBER(64) NULL

min_measure NUMBER(64) NULL



138 ArcSDE Configuration and Tuning Guide for Oracle 

max_measure NUMBER(64) NULL

area NUMBER(64) NOT NULL

len NUMBER(64) NOT NULL

points LONG RAW or BLOB NULL

anno_text VARCHAR2(256) NULL

Feature table schema 

The feature table stores the geometry, annotation, and CAD in the POINTS column. The 
POINTS column may be defined as either LONG RAW or BLOB depending on the setting 
of the GEOMETRY_STORAGE DBTUNE storage parameter. Set the 
GEOMETRY_STORAGE DBTUNE storage parameter to SDEBINARY if you want to 
store the compressed binary spatial data in a column defined as LONG RAW; otherwise, set 
the storage parameter to SDELOB if you want to store the compressed binary spatial data in a 
column defined as BLOB. 

For an expanded discussion of the GEOMETRY_STORAGE DBTUNE storage parameter, 
see Chapter 3, �Configuring DBTUNE storage parameters�. 

The ArcSDE datatype for each column is defined below. 

• fid (SE_INTEGER_TYPE)�contains the unique ID that joins the feature table to the 
business table 

• entity (SE_INTEGER_TYPE)�the type of geometric feature stored in the spatial 
column (e.g., point, linestring) 

• numofpts (SE_INTEGER_TYPE)�the number of points defining the geometry 

• eminx, eminy, emaxx, emaxy (SE_FLOAT_TYPE)�the envelope of the geometry  

• eminz (SE_FLOAT_TYPE)�the minimum z-value in the geometry 

• emaxz (SE_FLOAT_TYPE)�the maximum z-value in the geometry 

• min_measure (SE_FLOAT_TYPE)�the minimum measure value in the geometry 

• max_measure (SE_FLOAT_TYPE)�the maximum measure value in the geometry 

• area (SE_FLOAT_TYPE)�the area of the geometry 

• len (SE_FLOAT_TYPE)�the length or perimeter of the geometry 

• points (SE_SHAPE_TYPE)�contains the byte stream of point coordinates that define 
the geometry 

• anno_text (SE_STRING_TYPE)�contains the feature annotation string 

NAME DATA TYPE NULL?

sp_fid NUMBER(38) NOT NULL

gx NUMBER(38) NOT NULL

gy NUMBER(38) NOT NULL

eminx NUMBER(64) NOT NULL

eminy NUMBER(64) NOT NULL

emaxx NUMBER(64) NOT NULL

emaxy NUMBER(64) NOT NULL



 Appendix C   ArcSDE compressed binary 139 

Spatial index table schema 

The spatial index table defines the grid range and extent of all geometry in an ArcSDE 
feature class.  

� sp_fid�contains the unique ID that joins the feature table to the business table 

� gx/gy�defines the feature�s extent in grid cells 

� eminx/eminy/emaxx/emaxy�defines the extent of the feature in system units 

In this example the FEATURE-ID column from the WELLS business table references 
features from the feature and spatial index tables: 

WELL_ID DEPTH ACTIVE FEATURE-ID 
1 30029 Yes 101 
2 13939 No 102 
3 92891 No 103 
� �  � 

 

FID AREA LEN EMINX,EMINY,� POINTS 
101    <compressed feature> 
102    <compressed feature> 
103    <compressed feature> 
�    � 

 

SP_FID GX GY {EMINX,EMINY,EMAXX,EMAXY} 
101 70 100  
102 70 100  
103 71 100  
�    

        A business/feature/spatial index key reference 

The spatial grid index 
The spatial grid index is a two-dimensional index that spans a feature class, like the reference 
grid you might find on a common road map. You may assign the spatial grid index one, two, 
or three grid levels, each with its own distinct cell size. The mandatory first grid level has the 
smallest cell size. The optional second and third grid cell levels are disabled by setting them 
to 0. If enabled, the second grid cell size must be at least three times larger than the first grid 
cell size, and the third grid cell size must be three times larger than the second grid cell size.  

The spatial index table (S<feature class_id>) has seven integer columns that store the grid 
cell values, feature envelopes, and corresponding feature IDs. Adding a feature to a feature 
class adds one or more grid cells to the spatial index table. The number of records added to 
the spatial index table depends on the number of grid cells the feature spans. 

The spatial index table contains two indexes. One index is on the SP_FID column, which 
contains the feature ID. The other is a composite index that includes all of the columns of the 
spatial index table. Since all of the columns of the spatial index table are indexed, the values 
of the table are read from the leaf blocks of the index and not the table data blocks. The result 



140 ArcSDE Configuration and Tuning Guide for Oracle 

is less I/O and better performance. In addition, the spatial index table is not accessed 
whenever the feature class is queried. Therefore, when considering how to position the tables 
and indexes to reduce disk I/O contention, you should be concerned about the positioning of 
the indexes of the spatial index table but not the table itself. 

Building the spatial index 
Every time a feature class is added to a business table, a persistent spatial index is built for it. 

The ArcSDE server manages the spatial index throughout the life of the feature class. As 
features are inserted, updated, or deleted, the spatial index is automatically updated.  

A load-only mode disables spatial index management until loading completes. This boosts 
loading performance substantially and is imperative for bulk loading efforts (no queries are 
allowed in the load-only mode except native SQL-based queries).  

Once loading has been completed, the spatial index is enabled by returning it to normal I/O 
mode. The conversion from normal I/O mode to load-only I/O mode reconstructs the spatial 
index. 

Inserting, updating, or deleting a feature updates the spatial index when the feature class is in 
normal I/O mode. 

ArcSDE overlays the extent of each feature onto the lowest grid level to obtain the number of 
grid cells. If the feature exceeds four cells, ArcSDE promotes the feature to the next highest 
grid level, if you have defined one. ArcSDE will continue to promote the feature until it fits 
within four cells or less or until the highest defined grid level is reached. On the highest 
defined grid level, geometries can be indexed by more than four grid cells. 

ArcSDE adds the feature�s grid cells to the spatial index table with their corresponding shape 
ID and feature envelope. The grid level is encoded with each grid cell. 

In the example below, the feature class has two grid levels. Area shape 101 is located in grid 
cell 4 on level 1. A record is added to the spatial index table because the feature resides 
within four grid cells (in this case it is one). Area feature 102�s envelope is located in cells 1 
through 8 on level 1. Because the feature�s envelope resides in more than four grid cells, the 
feature is promoted to level 2, where its envelope fits within two grid cells. Feature 102 is 
indexed at level 2, and two records are added to the spatial index table. 



 Appendix C   ArcSDE compressed binary 141 

1 2 3 4

5 6 7 8

102 101

Level 1

Level 2
1 2

 

Figure C.1  Shape 101 is indexed on grid level 1, while shape 102 is indexed on grid level 2, where it is in 
only two grid cells. 

Spatial queries and the spatial index 
Spatial queries, such as finding all the lakes within a state boundary, use the spatial index. 
The spatial index is used unless the search order has been set to SE_ATTRIBUTE_FIRST in 
the SE_stream_set_spatial_constraints function. When the search order is set to 
SE_ATTRIBUTE_FIRST, ArcSDE ignores the spatial index, and the criteria of the 
attribute�s where clause determines which records of the feature class the query returns.  

Whenever the spatial index is used, the ArcSDE service generally uses the following decision 
process to perform the query: 

1. Define the envelope. The envelope could be defined directly by the application such as 
the extent defined by the ArcMap zoom in tool. Alternatively, the envelope may be 
defined as the envelope of another feature. 

2. Join the spatial index table with the feature table and return all features whose grid cells 
intersect the envelope.  

3. Join the feature table with the business table and apply the criteria of the attribute�s 
where clause to further refine the features returned. 

Grid cell size impacts the size of the spatial index table. Setting up the spatial index means 
balancing the cell sizes�smaller cell sizes mean more cells per shape, which requires more 
entries in the spatial index table.  

Guidelines for tuning the spatial index 
Because client applications and spatial data profiles vary from one system to another, no 
single solution fits all. Experienced users of ArcSDE often experiment with the spatial index, 
trying different cell sizes and different grid level configurations. 

The sdelayer command has several operations that can help you optimize the spatial index by 
changing the grid cell sizes and adding new grid levels with the �alter� operation. The �stats� 
and �si_stats� operations profile your spatial data and current spatial index. 

The following guidelines can help improve the performance of spatial queries. 



142 ArcSDE Configuration and Tuning Guide for Oracle 

! Consider how many grid levels are needed and remember the ArcSDE server scans the 
spatial index table once per grid level. Often a single grid level is the best solution for a 
feature class, despite the notion of distributing geometries evenly across many grid levels 
to minimize the spatial index entries. 

! Use one grid level for pure point type feature class and consider making the cell sizes 
large. Spatial queries generally process point geometries faster than other geometry 
types. 

! Monitor the spatial index. Tuning a spatial index is difficult if the data changes 
frequently. Tuning depends on the structure of the spatial data. Periodically assess the 
spatial index as your spatial data changes. 

! Base the spatial index on the application. Match the spatial index grid cell sizes to the 
extent of the application window. By doing so, the application is probably viewing exact 
entries in the spatial index table. This helps to size the spatial index table suitably and 
reduces the amount of processing because fewer candidate feature IDs must be evaluated 
against the feature table (see �Spatial queries and the spatial index� above). 

! For unknown or variable application windows, start by defining one grid level with a 
cell size three times the average feature extent size. Query the feature table to obtain the 
average feature size with the following SQL statement: 
select (avg(emaxx - eminx) + avg(emaxy - eminy)) / 2
from f<N>;

(where <N> is the layer number of the feature class)

Such spatial index configuration minimizes the number of rows in the spatial index table 
while maintaining the proficiency of the index because the majority of the features can 
be referenced by less than one or two grid cells. 

! Design the feature class around spatial data categories such as type, geometry size, and 
distribution. Sometimes a carefully designed feature class, using these categories, can 
substantially boost the performance of spatial queries. 

Displaying spatial index statistics 
The sdelayer command�s spatial index statistics operation, �si_stats�, can help you determine 
optimum spatial index grid sizes. Optimum grid cell sizes depend on the spatial extent of all 
feature geometries, the variation in feature geometry spatial extent, and the types of searches 
to be performed on the map feature class. Below is a sample output generated by si_stats: 
$ sdelayer -o si_stats -l victoria,parcels -u av -p mo -i sde81
ArcSDE 8.1 Wed Jan 17 22:43:09 PST 2000
Layer Administration Utility
--------------------------------------------------------
Layer 1 Spatial Index Statistics:
Level 1, Grid Size 200
|-------------------------------------------------------|
| Grid Records: 978341 |
| Feature Records: 627392 |
| Grids/Feature Ratio: 1.56 |
| Avg. Features per Grid: 18.26 |
| Max. Features per Grid: 166 |
| % of Features Wholly Inside 1 Grid: 59.71 |
|-------------------------------------------------------|
| Spatial Index Record Count By Group |
| Grids: <=4 >4 >10 >25 >50 >100 >250 >500 |
|---------- ------ --- ---- ---- ---- ----- ----- ----- |



 Appendix C   ArcSDE compressed binary 143 

| Shapes: 627392 0 0 0 0 0 0 0 |
| % Total: 100% 0% 0% 0% 0% 0% 0% 0%|
|-------------------------------------------------------|
Level 2, Grid Size 1600 (Meters)
|-------------------------------------------------------|
| Grid Records: 70532 |
| Feature Records: 36434 |
| Grids/Feature Ratio: 1.94 |
| Avg. Features per Grid: 18.21 |
| Max. Features per Grid: 82 |
| % of Features Wholly Inside 1 Grid: 45.35 |
|-------------------------------------------------------|
| Spatial Index Record Count By Group |
| Grids: <=4 >4 >10 >25 >50 >100 >250 >500 |
|---------- ------ --- ---- ---- ---- ----- ----- ----- |
| Shapes: 35682 752 87 17 3 0 0 0 |
| % Total: 97% 2% 0% 0% 0% 0% 0% 0%|
|-------------------------------------------------------|

As the output shows, for each defined spatial index level, the following values and statistics 
are printed: 

� Grid level and cell size. 

� Total spatial index records for the current grid level. 

� Total geometries stored for the current grid level.  

� Ratio of spatial index records per geometry. 

� Geometry counts and percentages by group that indicate how geometries are grouped 
within the spatial index at this grid level. The column headings have the following meaning 
(where �N� is the number of grid cells): 

<=N Number of geometries and percentage of total geometries that fall within <= N grid 
cells 
>N Number of geometries and percentage of total geometries that fall within > N grid 
cells 

Notice that the �>� groupings include count values from the next group. For instance, the �>4� 
group count represents the number of geometries that require more than four grid records as 
well as more than 10, and so on. 

� Average number of geometries per grid. 

� Maximum number of geometries per grid. This is the maximum number of geometries 
indexed into a single grid. 

� Percentage of geometries wholly inside one grid. This is the percentage of all geometries 
wholly contained by one grid record. 

The output sample shows spatial index statistics for a map feature class that uses two grid 
levels: one that specifies a grid size of 200 meters, the other a grid size of 1,600 meters. 
When a geometry requires more than four spatial index records, it is automatically promoted 
to the next grid level, if one is defined. A geometry will not generate more than four records 
if a higher grid level is available. 

In the example above, 627,392 features are indexed through grid level 1. Because the system 
automatically promotes geometries that need more than four spatial index records to the next 
defined grid level, all 627,392 geometries for grid level 1 are indexed with four grid records 



144 ArcSDE Configuration and Tuning Guide for Oracle 

or less. Grid level 2 is the last defined grid level, so geometries indexed at this level are 
allowed to be indexed with more than four grid records. At grid level 2, there are a total of 
36,434 geometries and 70,532 spatial index records. There are 35,682 geometries indexed 
with four grid records or fewer, 752 geometries indexed with more than four grid records, 87 
geometries indexed with more than 10, 17 geometries with more than 25, and three 
geometries with more than 50. Percentage values below each column show how the 
geometries are dispersed through the eight groups. 

Creating tables with compressed binary schema 
The geometry storage format for ArcSDE feature classes defaults to LONG RAW 
compressed binary. If you always store your geometry in this format, you do not need to 
adjust the geometry storage format.   

If you wish to have a mix of geometry types in your schema, add configuration keywords to 
the DBTUNE table with the desired geometry storage format and assign the configuration 
keywords to the feature classes. 

The DBTUNE table GEOMETRY_STORAGE storage parameter defines a feature class's 
geometry storage format. The GEOMETRY_STORAGE value for the default, LONG RAW 
compressed binary, is SDEBINARY. In the following example, a dbtune file has a 
PARCELS configuration keyword that contains the value SDEBINARY. 
##PARCELS
GEOMETRY_STORAGE SDEBINARY
<other parameters>
END

Additional storage parameters precisely define the storage configuration of the parcel�s 
feature class. 
##PARCELS

GEOMETRY_STORAGE "SDEBINARY"
B_STORAGE "TABLESPACE btabsp STORAGE (FREELISTS 4 INITIAL 500M

NEXT 100M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0)"
B_INDEX_ROWID "TABLESPACE bindex_tsp STORAGE (FREELISTS 4 INITIAL 100M

NEXT 25M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0)"
B_INDEX_SHAPE "TABLESPACE bindex_tsp STORAGE (FREELISTS 4 INITIAL 100M

NEXT 25M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0)"
A_STORAGE "TABLESPACE atabsp STORAGE (FREELISTS 4 INITIAL 100M

NEXT 25M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0)"
A_INDEX_ROWID "TABLESPACE aindex_tsp STORAGE (FREELISTS 4 INITIAL 50M

NEXT 10M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0)"
A_INDEX_SHAPE "TABLESPACE aindex_tsp STORAGE (FREELISTS 4 INITIAL 50M

NEXT 10M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0)"
A_INDEX_STATEID "TABLESPACE aindex_tsp STORAGE (FREELISTS 4 INITIAL 50M

NEXT 10M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0)"
D_STORAGE "TABLESPACE atabsp STORAGE (FREELISTS 4 INITIAL 50M

NEXT 10M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0)"
D_INDEX_STATE_ROWID "TABLESPACE dindex_tsp STORAGE (FREELISTS 4 INITIAL 50M

NEXT 10M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0)"
D_INDEX_DELETED_AT "TABLESPACE dindex_tsp STORAGE (FREELISTS 4 INITIAL 50M

NEXT 10M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0)"
F_STORAGE "TABLESPACE ftabsp STORAGE (FREELISTS 4 INITIAL 500M

NEXT 100M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0)"
F_INDEX_FID "TABLESPACE findex_tsp STORAGE (FREELISTS 4 INITIAL 50M

NEXT 10M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0)"
F_INDEX_AREA "TABLESPACE findex_tsp STORAGE (FREELISTS 4 INITIAL 50M

NEXT 10M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0)"
F_INDEX_LEN "TABLESPACE findex_tsp STORAGE (FREELISTS 4 INITIAL 50M

NEXT 10M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0)"
S_STORAGE "TABLESPACE stabsp STORAGE (FREELISTS 4 INITIAL 300M

NEXT 50M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0)"



 Appendix C   ArcSDE compressed binary 145 

S_INDEX_ALL "TABLESPACE sindex_tsp STORAGE (FREELISTS 4 INITIAL 100M
NEXT 50M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0)"

S_INDEX_SP_FID "TABLESPACE sindex_tsp STORAGE (FREELISTS 4 INITIAL 100M
NEXT 50M MINEXTENTS 1 MAXEXTENTS 50 PCTINCREASE 0)"

END

In this example, the storage schema is compressed binary; it defines the storage and location 
for the business table, adds table, deletes table, feature table, and spatial index table. Chapter 
3, �Configuring DBTUNE storage parameters�, describes these storage parameters as well as 
many others. 

Referential integrity 
Maintaining the referential integrity between the business and feature table is important. You 
should not edit the records of either the feature table or the spatial index table. Several 
indexes and constraints have been added to the business, feature, and spatial index table to 
ensure referential integrity is maintained. However, these indexes and constraints are 
removed when the feature class is converted to the load-only I/O mode, a state that allows for 
rapid insertion of data into the feature class. 

When the feature class is placed back into normal I/O mode, the state that allows users to 
query the feature class through an ArcSDE client, the indexes are created, and the constraints 
are enabled. The conversion to normal I/O mode will fail if the unique indexes cannot be 
built on the business table�s spatial column or the feature table�s FID column. It will also fail 
if a value exists in the business table�s spatial column that is not in the feature table�s FID 
column. In this case a reference to the offending business table record is loaded into the 
SDE_EXCEPTIONS table. 



146 ArcSDE Configuration and Tuning Guide for Oracle 

 



  147 

 

A P P E N D I X  D  

Oracle Spatial geometry type 

ArcSDE supports Oracle Spatial�s Object Relational Model as a method to 
store spatial data. Oracle Spatial�s Object Relational Model was introduced in 
Oracle8i as an alternative to the Oracle Spatial normalized schema. The 
Oracle Spatial Object Relational Model uses object-relational types and 
methods to define, index, and perform spatial analysis on spatial data. For 
additional information on Oracle Spatial, please see the Oracle Spatial Users 
Guide and Reference for your Oracle release. 

What is Oracle Spatial? 
Oracle Spatial is a product that extends the Oracle database with the addition of spatial data 
management functions. Oracle Spatial provides a SQL geometry type, spatial metadata 
schema, spatial indexing methods, spatial functions, and implementation rules. 

The Oracle Spatial product is available in Oracle Enterprise Edition and must be licensed 
separately. Oracle Spatial is not available for Oracle Workgroup or Personal Oracle products. 

Geometry type 
The Oracle Spatial geometry type is named SDO_GEOMETRY and is implemented using 
Oracle�s extensible object-relational type system. The SDO_GEOMETRY type stores 
information about a geometry value including its shape type, spatial reference ID, 
interpolation instructions, and coordinate values.  

The SDO_GEOMETRY type supports single and multipart point, line, and area geometry. 
Geometries may be defined as having linear interpolation between coordinates as defined by 
the OpenGIS Simple Feature Specification. Geometries may also be constructed from circular 
curves or a combination of both interpolation methods. 

Applications are responsible for properly inserting, updating, and fetching the contents of the 
SDO_GEOMETRY type using Oracle�s object-relational SQL interface. Applications are also 
responsible for ensuring that the contents of the SDO_GEOMETRY type adhere to the rules 
defined in the Oracle Spatial documentation. 



148 ArcSDE Configuration and Tuning Guide for Oracle 

Consult your Oracle Spatial Users Guide and Reference for your Oracle release for 
information on the definition and use of the SDO_GEOMETRY type. 

Metadata schema 
The Oracle Spatial metadata schema provides storage for information about the geometry 
data. It is the responsibility of an application to record in the metadata schema each 
SDO_GEOMETRY column it creates or modifies. Applications can record such information 
as the SDO_GEOMETRY schema, spatial reference ID, coordinate dimension, and spatial 
indexing instructions. 

Consult your Oracle Spatial Users Guide and Reference for information on the Oracle Spatial 
metadata schema. 

Spatial index 
Oracle Spatial provides spatial indexing methods for the SDO_GEOMETRY type. Spatial 
indexes provide fast access to records based on the location of geometry values.  

Oracle Spatial provides three different spatial indexing methods: Fixed Quadtree, Hybrid 
Quadtree, and Rtree indexes. Oracle Spatial provides the Oracle Spatial index advisor utility 
to assist in defining spatial index parameters. 

Consult your Oracle Spatial Users Guide and Reference for information on supported Spatial 
index types. 

Spatial functions 
Oracle Spatial extends SQL with search functions that provide primary and secondary spatial 
filtering. Including the SDO_FILTER function in a SQL query performs a primary spatial 
search that uses the spatial index of tables with SDO_GEOMETRY columns. Spatial 
predicates, such as SDO_RELATE and SDO_CONTAINS, return secondary relationships 
between pairs of SDO_GEOMETRY. 

Oracle Spatial provides spatial transformation functions that change the form of an 
SDO_GEOMETRY value. For example, the SDO_BUFFER function computes the 
coordinates of a new SDO_GEOMETRY object as a distance surrounding the original 
geometry. Other spatial transformation functions include SDO_DIFFERENCE and 
SDO_INTERSECTION. 

Consult your Oracle Spatial Users Guide and Reference for information on supported spatial 
search functions and transformations. 

Coordinate reference 
Oracle Spatial provides a number of coordinate reference systems using predefined spatial 
reference ID (SRID) values. The predefined SRID value is stored in the SDO_GEOMETRY 
object. The SDO_TRANSFORM function uses the spatial reference ID to establish 
coordinate reference transformations. 

Consult your Oracle Spatial Users Guide and Reference for information on supported 
coordinate references. 



 Appendix D  Oracle Spatial geometry type 149 

How does ArcSDE use Oracle Spatial? 
ArcSDE supports Oracle Spatial for managing geometry in an Oracle Enterprise Edition 
database.  

Making Oracle Spatial your default geometry schema 
When you install ArcSDE, the SDE compressed binary geometry schema is the default. The 
SDE compressed binary schema is supported on Oracle Workgroup and Enterprise servers. 
The default settings for ArcSDE are defined in the DBTUNE table�one of these settings 
controls the GEOMETRY_STORAGE method. As installed, the GEOMETRY_STORAGE 
setting looks like this: 
##DEFAULTS
GEOMETRY_STORAGE SDEBINARY
<other parameters>
END

Changing the default ArcSDE geometry storage to use Oracle Spatial is easy. Simply 
changing the GEOMETRY_STORAGE setting from SDEBINARY to SDO_GEOMETRY 
makes Oracle Spatial the ArcSDE default geometry storage schema: 
##DEFAULTS
GEOMETRY_STORAGE SDO_GEOMETRY
<other parameters>
END

After the default GEOMETRY_STORAGE setting has been changed to SDO_GEOMETRY, 
ArcSDE, by default, creates feature classes with SDO_GEOMETRY columns. 

ArcSDE for Oracle supports a number of different geometry storage schemas�these different 
schemas can all exist in the same database. While there can only be one default geometry 
schema, individual tables can be created using different geometry schemas. See Chapter 3, 
�Configuring DBTUNE storage parameters�, for instructions on using DBTUNE to define 
different geometry schemas. 

SDO_GEOMETRY columns  
ArcSDE creates a feature class by adding a geometry column to the specified business table.  
When the GEOMETRY_STORAGE storage parameter is set to SDO_GEOMETRY, 
ArcSDE adds an SDO_GEOMETRY column to the business table. In this example, a 
business table named �COUNTRIES� has name and population properties�after adding a 
geometry column, it also has an SDO_GEOMETRY column named �BORDERS�. 

NAME DATA TYPE NULL?

NAME VARCHAR2(32)

POPULATION NUMBER(11)

BORDERS MDSYS.SDO_GEOMETRY

OBJECTID NUMBER(38) NOT NULL

�COUNTRIES� business table schema 

A geometry column can be added to the business table using ArcCatalog, the sdelayer 
administration utility, or the ArcSDE C and Java API. 

When ArcSDE adds the SDO_GEOMETRY column, an additional OBJECTID column is 
also defined. ArcSDE uses the OBJECTID for log file queries, single row operations, and 



150 ArcSDE Configuration and Tuning Guide for Oracle 

multiversioned database operations. An existing column can be used for the OBJECTID as 
long as it is indexed and declared as NUMBER(38) with a NOT NULL and UNIQUE 
constraint. 

Spatial index 
When an SDO_GEOMETRY column is added to a business table, a spatial index on that 
geometry column is also defined. By default, ArcSDE creates an RTREE index on an 
SDO_GEOMETRY column. ArcSDE includes support for the creation of Oracle Spatial 
Fixed and Hybrid indexes. ArcSDE can also create feature classes with no spatial index; 
however, spatial constraints cannot be supported until a spatial index is constructed. 

The spatial index can be defined using ArcCatalog, the sdelayer administration utility, 
DBTUNE configurations, or the ArcSDE C and Java API. 

ArcSDE automatically drops and re-creates Oracle Spatial indexes that ArcSDE has created 
whenever the feature class is switched between LOAD_ONLY_IO and NORMAL_IO mode. 

Spatial indexes defined by the Oracle Spatial Index Advisor application are not dropped when 
ArcSDE switches the feature class to LOAD_ONLY_IO mode. 

Coordinate dimension 
You can create ArcSDE geometry as 2D, 2D with measures, 3D, and 3D with measures.  
ArcSDE defines the Oracle Spatial dimension information (DIMINFO) as: 

• The X ordinate is the first dimension. 

• The Y ordinate is the second dimension. 

• The Z ordinate is the third dimension if the feature class is defined as having elevations. 

• The M ordinate is the last dimension if the feature class is defined as having measures. 

The dimension extents for X range, Y range, Z range, and M range can be calculated from the 
actual data or based on fixed values in the DBTUNE table. See Chapter 3, �Configuring 
DBTUNE storage parameters�, for DBTUNE storage parameters to establish predefined 
Oracle Spatial dimension properties and to change the name of any dimension. 

Coordinate reference 
Oracle Spatial coordinate references are predefined and cannot be modified. To set an 
SDO_GEOMETRY column�s Spatial Reference ID (SRID), identify the appropriate Oracle 
Spatial coordinate reference description and set the feature class�s SDO_SRID DBTUNE 
storage parameter to that value. If the SDO_SRID storage parameter is not set, the SRID of 
each SDO_GEOMETRY value is set to NULL, and so is the corresponding SRID of the 
metadata record in the USER_SDO_GEOM_METADATA view. 

ArcSDE does not require the Oracle Spatial coordinate reference ID to be set. ArcSDE 
maintains the coordinate reference information for each feature class in its own 
SPATIAL_REFERENCES table independent of Oracle Spatial.  



 Appendix D  Oracle Spatial geometry type 151 

Consult your Oracle Spatial Users Guide and Reference for information on supported 
coordinate references. 

Oracle Spatial metadata 
When ArcSDE adds an SDO_GEOMETRY column to a business table, it also adds the 
required Oracle Spatial metadata record to the USER_SDO_GEOM_METADATA view.  
This metadata includes the table name, SDO_GEOMETRY column name, spatial reference 
ID, and coordinate dimension information. 

SDO_GEOMETRY values 
ArcSDE populates the SDO_GEOMETRY value from the SE_SHAPE object. The ArcSDE 
SE_SHAPE object can contain simple and complex geometry that may include elevations, 
measures, CAD data, annotation, and surface patches. The SDO_GEOMETRY value 
supports a subset of these geometric properties.  

When generating the SDO_GEOMETRY coordinate information, follow these rules: 

• Define the SDO_GTYPE parameter based on the Oracle 8.1.6 release. 

• The SDO_SRID  is NULL if no Oracle Spatial coordinate reference is defined. 

• Coordinate values are written in the appropriate coordinate reference system. 

• Coordinates are written as X, Y, <Z>, and <M>, where the elevation and measure 
ordinates are only defined if present in the source SE_SHAPE object. 

• If elevations and/or measures are present in the source SE_SHAPE object, all coordinates 
are stored with an elevation and/or measure ordinate. 

• Elevations and measures may be NAN if specific coordinates in the geometry contain 
undefined elevation or measure values. 

• Measures are not restricted to ascending or descending order. 

• Measures may be present on any geometry type, not just linestrings. 

• Circular curves are written to the SDO_GEOMETRY type; other nonlinear interpolated 
shapes (cubic spline, bezier, etc.) are converted to linestrings. 

• All ArcSDE-generated SDO_GEOMETRY values are generated from SE_SHAPE 
objects that have passed the ArcSDE rigorous geometry validation. 

• Single point layers use the SDO_POINT property in the SDO_GEOMETRY object. 

• ArcSDE does not support heterogeneous geometry collection in the SDO_GEOMETRY 
object. 

• ArcSDE does not encode SDO_ETYPE 0 elements in the SDO_GEOMETRY object. 
SDO_ETYPE 0 elements are application specific. See �Interoperability considerations� 
below for more information. 



152 ArcSDE Configuration and Tuning Guide for Oracle 

CAD and annotation properties 
The SDO_GEOMETRY type cannot store all of the computer-aided design (CAD) or 
annotation data that ArcSDE supports. To store CAD or annotation data, ArcSDE adds a 
BLOB column called SE_CAD to the business table whenever a feature class defined with 
CAD or annotation properties is created with an SDO_GEOMETRY spatial column.  

NAME DATA TYPE NULL?

NAME VARCHAR2(32)

POPULATION NUMBER(11)

BORDERS MDSYS.SDO_GEOMETRY

SE_CAD BLOB

OBJECTID NUMBER(38) NOT NULL

�COUNTRIES� business table schema with the addition of CAD data 

Whenever ArcSDE detects that the data source has CAD data, ArcSDE writes a simple 
geometric representation of the CAD data into the SDO_GEOMETRY value and then writes 
the unmodified CAD data into the SE_CAD value. If the data source does not have CAD data, 
ArcSDE sets the SE_CAD value to NULL. 

The SE_CAD property contains data from numerous ArcGIS components: 

• AutoCAD or MicroStation data from ArcSDE CAD Client 

• Parametric objects such as cubic splines and bezier curves from ArcMap 

• Surface patches from ArcMap Spatial Analyst 

• Annotation from ArcInfo Workstation 

Spatial queries 
ArcSDE uses the Oracle Spatial SDO_FILTER function to perform the primary spatial query. 
ArcSDE performs secondary filtering of the SDO_GEOMETRY based on the spatial 
relationship requested by the application. 

Applications may also include Oracle Spatial primary and secondary filter functions in the 
SQL where clause supplied to ArcSDE. Using spatial filters in the where clause, applications 
can distribute the spatial query between the database server, the ArcSDE application server, 
and the application itself. 

 How does ArcSDE use existing Oracle Spatial tables? 
Tables with SDO_GEOMETRY columns can be created by other applications. ArcSDE has 
been designed to use tables containing SDO_GEOMETRY columns that were created by 
other applications. 

Automatic discovery of tables with SDO_GEOMETRY columns 
Whenever an ArcSDE client lists the feature classes stored in the database, ArcSDE 
automatically searches the Oracle Spatial metadata views for new tables with 



 Appendix D  Oracle Spatial geometry type 153 

SDO_GEOMETRY columns. When a new table is discovered, it is registered with ArcSDE 
and made available to applications.   

ArcSDE uses the first record in a newly discovered table to establish the ArcSDE geometry 
type. If the table contains multiple geometry types, the sdelayer administration utility can be 
used to alter the geometry type definition. 

ArcSDE searches for a column in the table to use as an OBJECTID column. To qualify, the 
column must be defined as NUMBER (38), NOT NULL, and UNIQUE constraints. If such a 
column is found, it is recorded in the ArcSDE table registry along with the table. If an 
OBJECTID column is not found, the table is registered, but operations requiring an 
OBJECTID are unavailable. 

For SDO_GEOMETRY columns that have an Oracle Spatial coordinate reference ID (SRID), 
ArcSDE stores the information in the ArcSDE SPATIAL_REFERENCES table. ArcSDE sets 
its spatial reference AUTH_NAME field to ORACLE and the AUTH_SRID field to the 
SRID value. ArcSDE tests the coordinate reference description and, if it is valid, sets the 
SRTEXT field to the Oracle Spatial coordinate reference description. 

To disable automatic discovery of tables with SDO_GEOMETRY columns (often referred to 
as auto-registration), set the environment variable SDEDISABLEAUTOREG to 1. To disable 
automatic discovery for all users of an ArcSDE (three-tiered) service, set this variable in the 
file dbinit.sde in the etc directory under the SDEHOME environment variable. To prevent 
automatic discovery by client applications that use direct connect, set this environment 
variable in the client�s environment before connecting. 

Accessing SDO_GEOMETRY values 
ArcSDE does not support heterogeneous geometry collections in an SDO_GEOMETRY 
object. 

ArcSDE automatically validates SDO_GEOMETRY values as they are fetched from the 
database. This validation ensures that geometric objects are properly formed and adhere to 
feature class constraints. Geometry values that do not pass validation are skipped. 

Interoperability considerations 
There is a common misconception that applications can interoperate simply because they 
support the same underlying geometry type. The geometry type is only one aspect of the 
interoperability picture�a common understanding of rules, constraints, schema, and 
implementation is also required. 

Multiple SDO_GEOMETRY columns in a table 
ArcSDE and ArcGIS do not support multiple geometry columns in a table. Tables with 
multiple SDO_GEOMETRY columns should be accessed through views that contain only 
one SDO_GEOMETRY column. 

Use the sdetable create_view operation to create views of business tables. 



154 ArcSDE Configuration and Tuning Guide for Oracle 

Single geometry type in an SDO_GEOMETRY column 
While ArcSDE supports multiple geometry types in a geometry column, many applications do 
not. For example, ArcGIS requires that a geometry column be restricted to a single geometry 
type. 

Oracle Spatial does not enforce geometry type constraints on an SDO_GEOMETRY column. 
While one application may want to enforce a single geometry type constraint on an 
SDO_GEOMETRY column, another application could insert different geometry types. You 
can create an insert�update trigger that checks the SDO_GEOMETRY GTYPE property to 
enforce geometry types. 

Geometry validation 
Oracle Spatial does not automatically enforce geometry validation on the insert or update of 
an SDO_GEOMETRY value. You can create an insert�update trigger to fire the 
SDO_VALIDATE function to enforce validation of SDO_GEOMETRY types.   

To reduce the occurrences of problems from illegal or poorly formed geometry values, 
ArcSDE automatically validates any SDO_GEOMETRY value from a table that was created 
by other applications. 

SDO_ETYPE 0 elements in an SDO_GEOMETRY object 
Oracle Spatial allows applications to insert application-specific data into an 
SDO_GEOMETRY object. Applications do this by embedding their data using an 
SDO_ETYPE value of 0. The nature of the application specific data is known only to the 
application that generated the SDO_GEOMETRY object. Such application-specific data 
cannot be reliably supported in an interoperable environment. Applications reading 
SDO_GEOMETRY objects do not know how to interpret SDO_ETYPE 0 data. Applications 
updating SDO_GEOMETRY objects do not know how to edit or preserve the SDO_ETYPE 
0 data. 

When reading SDO_GEOMETRY objects containing SDO_ETYPE 0 elements, ArcSDE 
will ignore the SDO_ETYPE 0 data and will return the geometry component to the 
application. 

When updating SDO_GEOMETRY objects containing SDO_ETYPE 0 elements, ArcSDE 
will not preserve the SDO_ETYPE 0 data. Applications that need to ensure that SDO_ETYPE 
0 data is preserved should make sure that users do not have UPDATE access to the table.  

Coordinate reference 
ArcSDE requires that all SDO_GEOMETRY values in a column be in the same coordinate 
reference system. If the coordinate reference is undefined, the SRID value should be NULL as 
defined in the Oracle Spatial Users Guide and Reference. 

Oracle Spatial does not automatically enforce spatial reference ID validation on insert or 
update of an SDO_GEOMETRY value. You can create an insert�update trigger to fire the 
SDO_VALIDATE function to enforce validation of SDO_GEOMETRY types.   



 Appendix D  Oracle Spatial geometry type 155 

Identification of elevations and measures 
Oracle Spatial and ArcSDE assume that the first and second dimensions of the 
SDO_GEOMETRY are X and Y.  

If an SDO_GEOMETRY object has three dimensions, ArcSDE assumes the third dimension 
is a measure if the dimension name starts with an �M�; otherwise, the third dimension is 
assumed to be an elevation. You can control how ArcSDE interprets the third dimension by 
setting the feature class�s entity flag to have either elevations or measures. 

In this example, sdelayer sets the entity type of a feature class to store linestrings and 
elevations. 
sdelayer -o add -e l3

In this example, sdelayer sets the entity type of a feature class to store linestrings and 
measures. 
sdelayer -o add -e lM

If the SDO_GEOMETRY object has four dimensions, measures are expected to be the last 
ordinate. 

Measures and linear reference 
Oracle Spatial provides functions for linear reference calculations using measure values. The 
Oracle Spatial linear reference functions require that all measure values in an 
SDO_GEOMETRY object be monotonically ascending or descending without NAN values.  
Oracle Spatial linear reference also restricts measure values to linestrings. 

ArcSDE allows measures and linear reference calculations on all geometric types, with 
support for arbitrarily ordered measure values and NAN values.   

If you use Oracle Spatial linear reference functions, design your application and database to 
operate within the Oracle Spatial linear reference constraints. 

Object identification 
ArcSDE provides limited support for Oracle Spatial tables without an OBJECTID column�
no logfile operations, no single row operations, and no versioned database support. An 
OBJECTID column can easily be added using the sdetable administration command or the 
ArcCatalog application. 

Many applications, such as ArcGIS Desktop, require an OBJECTID column in a table. Each 
application has its own requirements and limitations. ArcGIS Desktop can draw and query 
feature classes created with SDO_GEOMETRY columns but without an OBJECTID column; 
however, ArcGIS Desktop can't select, edit, or add these feature classes to a feature dataset. 

Multiversioned database 
ArcGIS Desktop uses a multiversioned database implemented through ArcSDE for all editing 
operations. The multiversioned database provides long transaction support for multiple 
simultaneous design alternatives. 



156 ArcSDE Configuration and Tuning Guide for Oracle 

Multiversioned views are available for SQL access to the multiversioned database. See the 
ArcSDE Developers Guide for more information. 

Networks and topology feature classes 
ArcGIS Desktop can create and maintain networks and integrated topological feature classes 
from simple feature classes that use the SDO_GEOMETRY type. ArcGIS Desktop manages 
the relationships and maintains the topological integrity of the data�modifications to the 
underlying features through ArcGIS Desktop are reflected in these integrated networks. 

Modification of Oracle Spatial feature classes participating in these networks should be 
restricted to ArcGIS Desktop applications. Other applications can freely read the data, but any 
modifications they make are not reflected in the networks. 

Relationships and constraints 
ArcGIS Desktop enforces relationships and constraints across lots of different data sources. 
Feature classes containing an SDO_GEOMETRY type may be included in relationships and 
may have constraints defined on them. 

Modification of Oracle Spatial feature classes participating in relationships and constraints 
should be restricted to ArcGIS Desktop applications. Other applications can freely read the 
data, but their edits are not properly handled. 

Oracle Spatial software patches 
Keep the Oracle Spatial software current by applying the patches as they become available. 

ArcSDE Oracle Spatial Support 
Please visit the ESRI On-Line Support Center (http://support.esri.com) for help with Oracle 
Spatial issues. 



  i 

Index 

A 

adds table 
sizing of   120 

American National Standards 
Institute (ANSI)   91 

ArcCatalog   22, 24, 29, 62, 67, 
69, 128, 129, 149 

ArcGIS   24 
ArcGIS Desktop   62, 91 
ArcInfo   62 
ArcInfo Workstation   62 
ArcMap   141 
ArcSDE CAD Client   62 
ArcSDE compressed binary 

storage format   15, 29 
storing geometry in   2, 38 

ArcSDE service   3 
ArcSdeServer license   75 
ArcStorm libraries   66 
ArcToolbox   24, 62, 67, 68, 91, 

128, 129 
ArcView 3.2   62 

B 

backup and recovery   4 
BLOB   63, 102, 137 
business table 

sizing of   117 

C 

checkpoint   7 
clients 

tuning the spatial index for   
141 

commit interval   9 
configuration keyword   2, 63 

DEFAULTS   10 
cov2sde   61, 65 
coverage   9, 66 

D 

data block buffers   16 
datafile size   13 
dbtune configuration keyword   33 

DATA_DICTIONARY   12, 
17, 34 

DEFAULTS   33 

GEOMETRY_STORAGE   38, 
68 

LOGFILE_DEFAULTS   40 
NETWORK_DEFAULTS   48 

dbtune storage parameter 
A_INDEX_ROWID   43 
A_INDEX_SHAPE   43 
A_INDEX_STATEID   43 
A_INDEX_USER   43 
A_STORAGE   43 
ATTRIBUTE_BINARY   40 
AUX_INDEX_COMPOSITE   

45 
AUX_STORAGE   45 
B_INDEX_ROWID   42 
B_INDEX_SHAPE   42 
B_INDEX_USER   13, 42 
B_STORAGE   13, 42 
BLK_INDEX_COMPOSITE   

45 
BLK_STORAGE   45 
BND_INDEX_COMPOSITE   

45 
BND_INDEX_ID   45 
BND_STORAGE   45 
COMMENT   40 
COMPRESS_ROLLBACK_ 

SEGMENT   10, 39 
D_INDEX_DELETED_AT   

43 
D_INDEX_STATE_ROWID   

43 
D_STORAGE   43 
F_INDEX_AREA   44 
F_INDEX_FID   44 
F_INDEX_LEN   44 
F_STORAGE   44 
GEOMETRY_STORAGE   

138, 144, 149 
RAS_INDEX_ID   45 
RAS_STORAGE   44 
S_INDEX_ALL   44 
S_INDEX_SP_FID   44 
S_STORAGE   44 
SDO_COMMIT_INTERNAL   

50 
SDO_INDEX   50 
SDO_INDEX_SHAPE   50 
SDO_LEVEL   50 
SDO_MAXLEVEL   50 
SDO_NUMTILES   50 
SDO_ORDCNT   50 
SDO_SRID   50, 150 
SDO_VERIFY   51 
UI_NETWORK_TEXT   40 
UI_TEXT   40 

DBTUNE storage parameters   31 
DBTUNE table   2, 31, 65 
dbtune.sde   2, 24, 31, 41 

declining resolution pyramid   129 
deletes table 

sizing of   120 
direct connect   3 

F 

feature class   9 
feature classes 

creating   24 
feature table   141 

sizing of   118 

G 

giomgr.defs parameters 
AUTOCOMMIT   9, 11 

Graphics Interchange Format 
(GIF)   127 

grids 
defined   139 
determining the number of 

levels   142 
examples   142 
levels   139 
size impact on spatial queries   

141 
use in rebuilding spatial index   

140 
using sdelayer to determine 

optimum size   142 
gsrvr process   3 

I 
indexes 

sizing of   126 
init.ora   24, 101 

J 

Joint Photographic Experts Group 
(JPEG)   127 

L 

layers 
design for faster spatial queries   

142 
grid levels on   139 
statistics for grid cell size   142 

LIBRARIAN libraries   66 
listing 

spatial index statistics   142 
load-only I/O mode   66 
load-only mode   64 
LONG RAW   63, 102, 137 

M 

MapObjects   62 
mmsetup.sql   106 
multiversioned   64 



ii ArcSDE Configuration and Tuning Guide for Oracle  

MVTABLES_MODIFIED table   
12 

N 

national language support   4 
network tables 

sizing of   120 
normal I/O mode   66 
normal_io   64 

O 

OnLine Transaction Processing 
(OLTP)   7, 12 

OpenGIS   147 
Oracle 

ALTER DATABASE DROP 
LOGFILE GROUP   9 

ALTER SYSTEM 
CHECKPOINT   7 

ALTER SYSTEM SWITCH 
LOGFILE   9 

ANALYZE statement   30 
archiving   7 
buffer cache   26 
control files   6 
CREATE INDEX statement   

42, 52 
CREATE TABLE statement   

41, 52 
data block   128 
database backup   93 
database creation   16 
database files   6 
database recovery   93 
DEFAULT_TABLESPACE   

52 
disk I/O contention   5, 11, 13 
granting privileges   20 
GROUP BY clause   11 
instance   75, 86 
listener.ora file   77 
log switch   7 
memory   24 
Net8 Configuration Assistant   

76 
Net8 listener   75 
NLS_LANG   91 
online redo log files   6, 7, 15, 

95 
online redo modifying   8 
optimal rollback segment 

storage parameter   11 
ORDER BY clause   11 
Redo log buffer   25 
rollback segment   9, 15 
SGA   26 
shared pool   26 
sort area   11, 27 

System Global Area (SGA)   24 
TCP/IP network protocol   76 
tnsnames.ora   86 
tnsnames.ora file   85 
tuning   5 
USER_TABLESPACES   52 
V$ROLLSTAT   10 
V$SYSSTAT   27 

Oracle database 
recovering   100 

Oracle datafiles 
rollback segment   15 

Oracle init.ora parameter 
SORT_AREA_SIZE   11, 15 

Oracle init.ora parameters 
ARCHIVELOG   96 
CONTROL_FILE_RECORD_

KEEP_ TIME   6 
DB_BLOCK_BUFFERS   26 
DB_BLOCK_SIZE   17 
DB_DOMAIN   83 
DB_NAME   83 
LOG_ARCHIVE_DEST   95 
LOG_ARCHIVE_START   95 
LOG_BUFFER   25, 26 
LOG_CHECKPOINT_ 

INTERVAL   7 
LOG_CHECKPOINT_ 

TIMEOUT   7 
NOARCHIVELOG   96 
OPTIMIZER_MODE   28 
PRE_PAGE_SGA   28 
SHARED_POOL_SIZE   26 
SORT_AREA_SIZE   27 

Oracle instance   1 
Oracle NET8   102 
Oracle Net8 parameter 

GLOBAL_DBNAME   77 
Oracle sde user 

creating   17 
Oracle Spatial   50 

coordinate dimension   150 
coordinate reference   150 
fixed index   150 
hybrid index   150 
hybrid quadtree index   148 
measures   155 
quadtree fixed index   148 
Rtree index   148, 150 
SDO_FILTER function   152 
SDO_GEOMETRY   147 
SDO_GYTPE   151 
SDO_POINT   151 
SDO_SRID   151 
SDO_VALIDATE function   

154 
SE_CAD column   152 
SE_SHAPE   151 
SRID   148 

Oracle spatial object 
storing geometry in   3, 39 

Oracle stored procedures 
DBMS_LOCK   18 
DBMS_PIPE   18 

Oracle tablespaces 
ArcSDE system   12 
business and index   13, 17 
INDX   13, 16 
rollback   9 
system   9, 21 
temporary   11, 15, 27, 29 
USER   13, 16 

original equipment manufacturer   
92 

P 

performance 
guidelines for faster spatial 

queries   141 
physical RAM   26 
privileges 

granting   64 
PROCESS_INFORMATION 

table   18 

R 

raster band auxiliary table   134 
raster band table   132 
raster bands   127 
raster blocks table   134 
raster columns   66, 127 

creating   24 
raster data tables 

sizing of   123 
raster table   132 
RASTER_COLUMNS table   130 
read-only databases   8 
replication   101 

multimaster synchronous   103 
read-only snapshot   109 

rossetup.sql   110 

S 

SDE 
spatial query process   141 

sde export file   9 
SDE_EXCEPTIONS   145 
SDE_LOGFILE_DATA   40 
SDE_LOGFILES   40 
sde2cov   67 
sde2shp   67 
sde2tbl   67 
SDEBINARY   38, 138, 144 
sdedbtune   2, 32 
sdeexport   67 
sdegroup   61 
SDEHOME   17, 31, 52, 86 



 Index iii 

sdeimport   61, 65, 66 
sdelayer   22, 61, 63, 65, 153 

spatial index operations   141 
SDELOB   38, 138 
sdesetupora8i   75 
sdetable   61, 63, 67, 155 

update_dbms_stats   29 
sdeversion   39 
SE_stream_set_spatial_constraints   

141 
sequence generator 

states table   105 
sequence generators 

offsetting for replication   104 
server manager 

managing the spatial index   
140 

shapefile   9 
shapes 

editing impact on the spatial 
index   140 

grid levels and   140 
shared memory   24 
shp2sde   61, 64, 65 
shpinfo   65 
spatial index table   15, 139, 141 

sizing of   119 
spatial indexes 

building by SDE   140 
examples   142 
listing statistics about   142 
load-only mode and   140 
rebuilding process after editing   

140 
tuning for performance   141 

spatial queries 
process in SDE   141 
spatial index and   141 

SPATIAL_REFERENCES table   
150, 153 

STATES table   12 
STATES_LINEAGE table   12 
storage parameters   2 

T 

tables 
creating   24 

tagged image file format (TIFF)   
127 

task manager   25 
tbl2sde   61 
three-tiered architecture   3 
two-tiered architecture   3 

U 

US7ASCII   91 

V 

version delta tables 
sizing of   119 

VERSIONS table   12 
virtual memory   25 
vmstat   25 



  iv 

 

 


	Contents
	Chapter 1 - Getting started
	Chapter 2 - Essential Oracle configuration
	Chapter 3 - Configuring DBTUNE storage parameters
	Chapter 4 - Managing tables, feature classes, and raster columns
	Chapter 5 - Connecting to Oracle
	Chapter 6 - National language support
	Chapter 7 - Backup and Recovery
	Chapter 8 - Replication
	Appendix A - Estimating the size of your tables and indexes
	Appendix B - Storing raster data
	Appendix C - ArcSDE compressed binary
	Appendix D - Oracle Spatial geometry type
	Index

