PRELIMINARY SITE ASSESSMENT

SR 1997 (FAYETTEVILLE ROAD) WIDENING TIP NO. U-5797, WBS NO. 44367.1.1

NCDOT PARCEL NO. 16

OWNER: BRYAN BUILDINGS LLC 2548-E FAYETTEVILLE ROAD

LUMBERTON, ROBESON COUNTY, NORTH CAROLINA

PREPARED FOR:
NORTH CAROLINA DEPARTMENT OF TRANSPORTATION
C/O STV ENGINEERS, INC.
1600 PERIMETER PARK DRIVE, SUITE 225
MORRISVILLE, NC 2756002

PREPARED BY: FALCON ENGINEERING, INC. 1210 TRINITY ROAD, SUITE 110 CARY, NC 27513

PROJECT NUMBER: G19011.00 JUNE 9, 2020

June 9, 2020

Mr. Patrick Livingston, PE STV Engineers, Inc. 900 W. Trade St, Suite 715 Charlotte, NC 28202

Re: Preliminary Site Assessment

SR 1997 (Fayetteville Road) Widening TIP No. U-5797, WBS No. 44367.1.1 Parcel No. 16 Owner: Bryan Buildings LLC 2548-E Fayetteville Road Lumberton, Robeson County, North Carolina

Dear: Mr. Livingston:

Falcon is pleased to present the following Preliminary Site Assessment in support of the above-mentioned Project. Specifically, Falcon sampled soil in proximity to the project limits on this parcel in general accordance with the approved scope of work. Soils requiring remediation or special handling during construction were not identified.

Falcon recommends if drums, USTs, above ground storage tanks (ASTs), petroleum odors or sheen are observed during any excavation associated with any property involved in the project that all work in the vicinity stop until further assessment takes place. Further assessment can include but is not limited to; sampling the soil and groundwater, excavation, and proper handling and disposal of contaminated soils and groundwater.

Please review this report and advise us if you have any questions or concerns. We appreciate this opportunity to provide services to you and look forward to partnering with you on future projects. If you have any questions, please give Falcon a call at (919) 871-0800.

Sincerely,

FALCON ENGINEERING, INC.

Christopher J. Burkhardt Environmental Services Manager Jeremy R. Hamm, PE Geotechnical Services Manager

TABLE OF CONTENTS

SECTION	ON 1: INTRODUCTION	5
	1.1 DESCRIPTION	5
	1.2 SCOPE OF WORK	5
SECTIO	ON 2: HISTORY	6
	2.1 PARCEL USAGE	6
	2.2 FACILITY IDENTIFICATION NUMBER	6
	2.3 GROUNDWATER INCIDENT NUMBER	6
SECTIO	ON 3: SITE OBSERVATIONS	7
	3.1 GROUNDWATER MONITORING WELLS	7
	3.2 ACTIVE USTS	7
	3.3 FEATURES APPARENT BEYOND ROW/EASEMENT	7
SECTIO	ON 4: METHODOLOGY	8
	4.1 GEOPHYSICS	8
	4.2 BORINGS	8
	4.3 SAMPLE PROTOCOL	8
SECTIO	ON 5: RESULTS	10
	5.1 GEOPHYSICS	10
	5.2 SAMPLE DATA	_
	TABLE NO. 1 BORING COORDINATES	
	TABLE NO. 2 PID READINGS	
	TABLE NO. 3 SOIL OBSERVATIONS	
	5.4 QUANTITIES CALCULATIONS	
SECTION	ON 6: CONCLUSIONS	12
	6.1 INTERPRETATION OF RESULTS	
	6.2 GEOPHYSICS	12
	6.3 SAMPLING	12
	6.4 QUANTITIES	12
SECTIO	ON 7: RECOMMENDATIONS	13
	7.1 ADDITIONAL SAMPLING	13
	7.2 SPECIAL HANDLING OF IMPACTED SOIL	12

LIST OF FIGURES AND ATTACHMENTS

VICINITY MAP

USGS TOPOGRAPHIC MAP

PARCEL LOCATION MAP

BORING LOCATION MAP

SITE PHOTOGRAPHS

LABORATORY RESULTS

GEOPHYSICAL SURVEY

SECTION 1: INTRODUCTION

1.1 DESCRIPTION

Falcon Engineering, Inc. (Falcon) has completed a Preliminary Site Assessment of NCDOT TIP Project U-5797 Parcel No. 16. Parcel 16 is addressed as 2548-E Fayetteville Road, Lumberton Robeson County, North Carolina. NCDOT is proposing to widen Fayetteville Road (SR 1997) from Farringdom Street to 22nd Street. The limits of the assessment are between the existing edge of NCDOT maintained pavement (within the existing NCDOT ROW) where accessible, and the proposed NCDOT ROW and/or easement (whichever boundary represents the largest area). Boring locations were placed in the vicinity of proposed excavations for drainage features, utilities, and roadway/ditch cuts to determine if soils requiring remediation or special handling were present where excavation was planned to take place.

1.2 SCOPE OF WORK

Falcon's scope of work included coordination of; public and private utility location near the proposed borings, geophysical surveys, collecting soil samples via direct push technology, and laboratory analysis. Samples were analyzed for volatile organic compounds (VOCs) via traditional methods.

SECTION 2: HISTORY

2.1 PARCEL USAGE

Falcon performed a Phase I Environmental Site Assessment (ESA) for U-5797 under Project No. G17057 dated April 2018. The ESA identified this parcel as a Recognized Environmental Condition (REC) based on the potential for an unreported or undiscovered release. Smith's Cleaners is an active dry-cleaning business at this parcel. Falcon spoke with the clerk behind the counter and learned the facility has been a drop off-only facility for about the last two years. Before then the facility performed dry-cleaning onsite since the 1940s.

2.2 FACILITY IDENTIFICATION NUMBER

Facility Identification No: 780002C corresponds to this parcel.

2.3 GROUNDWATER INCIDENT NUMBER

A Groundwater Incident Number was not identified for this parcel.

SECTION 3: SITE OBSERVATIONS

3.1 GROUNDWATER MONITORING WELLS

Groundwater monitoring wells (MWs) were not observed on this parcel.

3.2 ACTIVE USTS

Active USTs were not observed within the project limits or registered at this parcel.

3.3 FEATURES APPARENT BEYOND ROW/EASEMENT

USTs, monitoring wells, remediation systems, or hydraulic lifts were not observed within the project limits.

SECTION 4: METHODOLOGY

4.1 GEOPHYSICS

Pyramid Geophysical Services (Pyramid) was subcontracted to perform a geophysical survey of the assessment area. The assessment area is between the existing edge of NCDOT maintained pavement (within the existing NCDOT ROW) where accessible, and the proposed NCDOT ROW and/or easement (whichever boundary represents the largest area). The survey was used to locate private utility lines, as well as possible indications of USTs, and/or their pits.

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings.

GPR data was acquired across select EM anomalies (where identified), using a Geophysical Survey Systems, Inc. (GSSI) UtilityScan DF unit equipped with a dual frequency 300/800 MHz antenna. Pyramid marked their findings on the surface with paint. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and to obtain adequate coverage. A copy of the full Geophysical Report is included in the Attachments.

4.2 BORINGS

Regional Probing was subcontracted to advance soil borings using direct push technology. Regional Probing used a truck-mounted Geoprobe® 5410 unit mounted on an off-road modified Ford F350 Diesel 4x4. The unit has auger-capabilities and is equipped with a GH-42 soil-probing hammer, with 21,700 pounds of down force and 28,900 pounds of retraction force. The unit has an on-board tank for decontaminating the geoprobe rods before advancing the probe at each sample location.

4.3 SAMPLE PROTOCOL

Prior to initiating sample collection Falcon contacted NC One Call and requested public utility locations be marked around the proposed sample locations. Sampling was in general accordance with the NC Department of Environmental Quality (DEQ) Division of Waste Management's (DWM) "Guidelines for Site Checks, Tank Closure, and Initial Response and Abatement for UST Releases" (March 1, 2007 Version Change 9 – February 1, 2019) guidance document. Sampling strategy was derived based upon the project scope and objectives as outlined above. Pace Analytical (North Carolina Field Services Certification #: 5342) was selected to provide traditional lab testing for VOCs. Appropriate sterile containers were received by Falcon from Red Lab prior to beginning the fieldwork. The containers were labeled appropriately.

A Minirae 3000 photoionization detector (PID) was used to field screen samples for volatile organics to determine if a release had occurred. The instrument was calibrated per manufacturer instructions prior to use. Falcon staff bagged composite soil samples of each boring in approximately two-foot sections. Representative samples were placed in a sealed plastic bag for approximately 10 minutes to allow soil hydrocarbons to reach equilibrium within the headspace prior to scanning with the PID. One sample per boring was collected from the depth of the proposed cut or from the section above the depth of cut with the highest PID reading.

To avoid cross contamination, a new unused pair of non-powdered nitrile gloves was worn while extracting each sample. Samples were placed in the appropriate laboratory provided containers. The labels on each container were then completed so that each provided the date and time of sampling, method of analysis, sample collector, preservative used and sampling location identification. Samples were placed in an ice filled cooler and transported to the lab. Appropriate chain-of-custody procedures, including the completion of necessary forms, were followed.

SECTION 5: RESULTS

5.1 GEOPHYSICS

The geophysical investigation was performed between March 18 and March 26, 2019 to investigate for metallic underground storage tanks (USTs) beneath the survey area. A total of nine EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. Several EM anomalies were associated with interference from a building, a car, and suspected reinforced concrete and were further investigated with GPR. GPR verified the presence of metal reinforcement in the concrete on the central and southern portions of the survey area. No evidence of any larger structures such as USTs was observed.

5.2 SAMPLE DATA

Falcon and our subcontractor advanced two borings (B-18 and B19) to the proposed excavation depth of the drainage features, utilities, or roadway/ditch cut being assessed. Groundwater was not observed. Please see Figure 3 in the attachments for a visual depiction of the sample locations. The coordinates (latitude and longitude) that correspond to the sample locations are shown below in Table No. 1 Boring Coordinates.

TABLE NO. 1 BORING COORDINATES

Boring	Latitude	Longitude
B-18	34.6379799	-79.0015504
B-19	34.6382736	-79.0014282

Borings were field screened with a PID in approximately three-foot sections for evidence of VOCs. The PID screening results are presented in Table No. 2 PID Readings. Falcon selected soil samples based on the field screening results and the needs of the project. Pace Analytical analyzed the selected samples and their full analytical report is attached. VOCs above State Action Levels were not detected in the samples.

TABLE NO. 2 PID READINGS

Boring	Depth BGS*	PID**
D 10	0-3.3	3.3
B-18	3.3-6.7	2.6
D 10	0-3.3	2.2
B-19	3.3-6.7	1.1

^{*}BGS = Depth below ground surface in feet

Samples shown in **bold** were selected for analysis

5.3 SAMPLE OBSERVATIONS

^{**}PID readings are in parts per million

Obvious indications of a release (stained soils, odors, or oily sheen) were not observed. Table No. 3 Soil Observations lists visual soil observations of color and texture.

TABLE NO. 3 SOIL OBSERVATIONS

Sample ID	Sample ID Depth		Soil Type		
B-18	0-3.3	Gray	Silty Sand (A-2-4)		
D-16	3.3-6.7	Gray	Clayey Silty Sand (A-2-4)		
B-19	0-3.3	Gray Brown	Silty Clayey Sand (A-2-6)		
D-19	3.3-6.7	Gray Brown	Clayey Silty Sand (A-2-4)		

Depth is in feet below ground surface

5.4 QUANTITIES CALCULATIONS

Soils requiring quantity calculations were not identified.

SECTION 6: CONCLUSIONS

6.1 INTERPRETATION OF RESULTS

This Preliminary Site Assessment was performed to evaluate the soils in proximity to the project limits on this parcel for the presence of VOCs. The findings are as follows:

➤ Soil sampling completed on the parcel did not identify VOCs in the soil at levels requiring remediation.

6.2 GEOPHYSICS

Collectively, the geophysical data did not record evidence of unknown metallic USTs within the geophysical survey area at Parcel No. 16. Falcon does not anticipate USTs will be encountered within the project limits on this parcel during construction.

6.3 SAMPLING

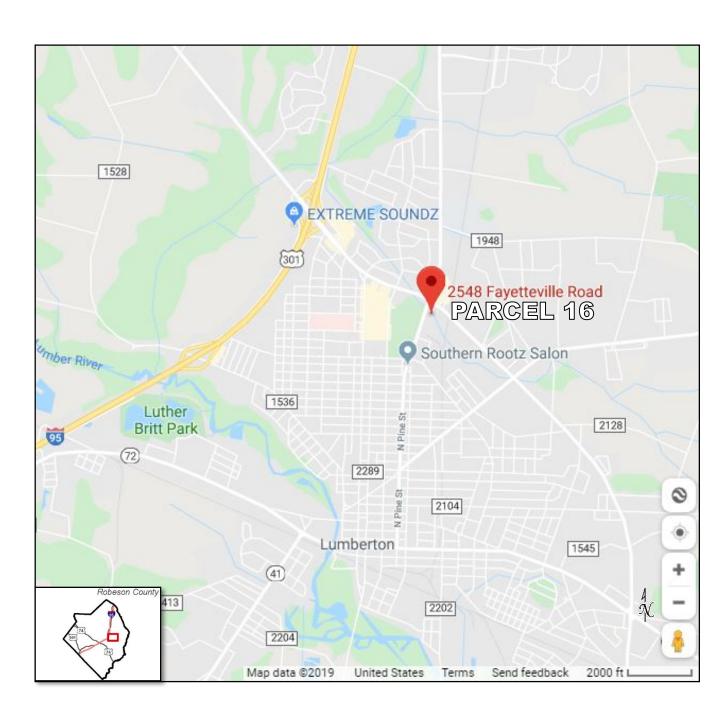
Sampling results did not identify VOCs in the soil which require remediation in the areas sampled. Based on past project experience, Falcon does not anticipate soil remediation or special handling and disposal will be required during construction on this parcel.

6.4 QUANTITIES

Soils requiring quantities calculations were not identified.

SECTION 7: RECOMMENDATIONS

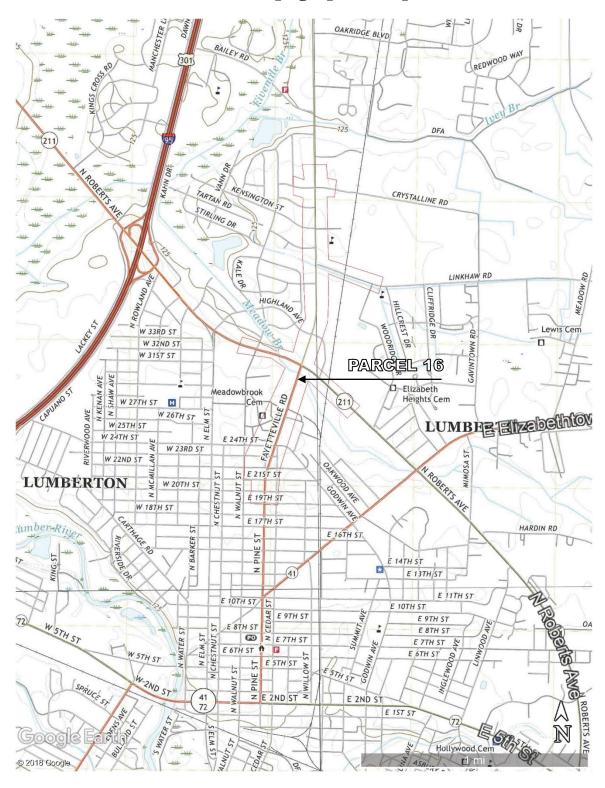
7.1 ADDITIONAL SAMPLING


VOCs above the Industrial / Commercial Soil Cleanup Levels were not identified; therefore, additional assessment is not warranted at this time. Falcon recommends if drums, USTs, above ground storage tanks (ASTs), monitoring wells, petroleum odors, or sheen are observed during any excavation associated with any property involved in the project that all work in the vicinity stop until further assessment takes place. Further assessment can include but is not limited to; sampling the soil and groundwater, excavation, and proper handling and disposal of contaminated soils and groundwater.

7.2 SPECIAL HANDLING OF IMPACTED SOIL

Soils requiring special handling were not identified. If suspect contaminated soils are encountered during construction Falcon and the NCDOT GeoEnvironmental Group should be contacted for proper handling instructions.

NCDOT U-5797 (SR 1997 Widening) Parcel 16 Preliminary Site Assessment Vicinity Map



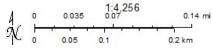
Project No.: G19011.00
Date: September 2019
Source: Google Maps

NCDOT U-5797 (SR 1997 Widening) Parcel 16 Preliminary Site Assessment USGS Topographic Maps

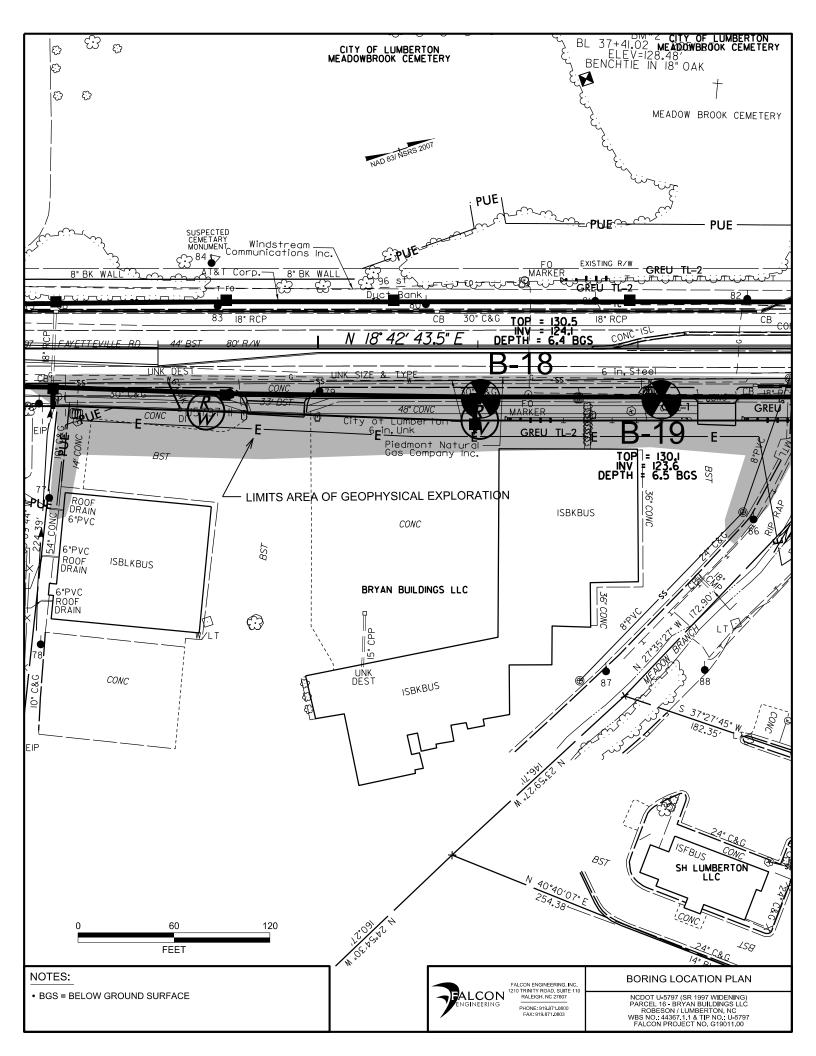
Project No.: G19011.00 Date: September 2019

Source: "NW, NE, SW, and SE Lumberton, NC" 2019

NCDOT U-5797 (SR 1997 Widening) Parcel 16 Preliminary Site Assessment Parcel Location Map


County Line

City Limits

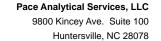

Parcels

— Streets

Project No.: G19011.00
Date: September 2019
Source: Robeson County GIS

Esrl, HERE, Garmin, (c) OpenStretMap contributors, and the GIS user community. Source: Esrl, DigitalGibbe, GeoEye, Earthstar Geographibs, CNES/Altibus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

NCDOT U-5797 (SR 1997 Widening) Parcel 16 Preliminary Site Assessment Site Photographs



Photograph No. 1: General view of Boring B-18.

Photograph No. 2: General view of Boring B-19.

April 25, 2019

Christopher Burkhardt Falcon Engineering 1210 Trinity Road Suite 110 Cary, NC 27513

RE: Project: U5797

Pace Project No.: 92425908

Dear Christopher Burkhardt:

Enclosed are the analytical results for sample(s) received by the laboratory on April 12, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tyriek Hooks

tyriek.hooks@pacelabs.com

Tyrick Hooks

(704)875-9092 Project Manager

Enclosures

cc: Christopher Burkhardt, Falcon Engineering

Pace Analytical www.pacelabs.com

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: U5797
Pace Project No.: 92425908

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

SAMPLE ANALYTE COUNT

Project: U5797
Pace Project No.: 92425908

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92425908001	B3	EPA 8270E	PKS	74	PASI-C
		EPA 8260D	DLK	63	PASI-C
92425908002	B5.1	EPA 8270E	PKS	74	PASI-C
		EPA 8260D	DLK	63	PASI-C
92425908003	B18	EPA 8260D	CL	70	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92425908004	B19	EPA 8260D	CL	70	PASI-C
		ASTM D2974-87	KDF	1	PASI-C

ANALYTICAL RESULTS

Project: U5797 Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

Sample: B18 Lab ID: 92425908003 Collected: 04/10/19 14:41 Received: 04/12/19 14:45 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D/5035A Volatile Organics	Analytical Meth	nod: EPA 8260	D Preparation Me	ethod: I	EPA 5035A			
Acetone	ND	ug/kg	84.1	1	04/19/19 13:00	04/19/19 22:11	67-64-1	
Benzene	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	71-43-2	
Bromobenzene	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	108-86-1	
Bromochloromethane	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	74-97-5	
Bromodichloromethane	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	75-27-4	
Bromoform	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	75-25-2	
Bromomethane	ND	ug/kg	8.4	1	04/19/19 13:00	04/19/19 22:11	74-83-9	
-Butanone (MEK)	ND	ug/kg	84.1	1	04/19/19 13:00	04/19/19 22:11	78-93-3	
n-Butylbenzene	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	104-51-8	
ec-Butylbenzene	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	135-98-8	
ert-Butylbenzene	ND	ug/kg	4.2	1		04/19/19 22:11		
Carbon tetrachloride	ND	ug/kg	4.2	1		04/19/19 22:11		
Chlorobenzene	ND	ug/kg	4.2	1		04/19/19 22:11		
Chloroethane	ND	ug/kg	8.4	1		04/19/19 22:11		
Chloroform	ND	ug/kg	4.2	1		04/19/19 22:11		
Chloromethane	ND	ug/kg	8.4	1		04/19/19 22:11		
-Chlorotoluene	ND	ug/kg	4.2	1		04/19/19 22:11		
-Chlorotoluene	ND ND	ug/kg ug/kg	4.2	1		04/19/19 22:11		
,2-Dibromo-3-chloropropane	ND ND	ug/kg ug/kg	4.2	1		04/19/19 22:11		
ibromochloromethane	ND ND	ug/kg ug/kg	4.2	1		04/19/19 22:11		
,2-Dibromoethane (EDB)	ND ND		4.2	1		04/19/19 22:11		
. ,		ug/kg				04/19/19 22:11		
Dibromomethane	ND	ug/kg	4.2	1				
,2-Dichlorobenzene	ND	ug/kg	4.2	1		04/19/19 22:11		
,3-Dichlorobenzene	ND	ug/kg	4.2	1		04/19/19 22:11		
,4-Dichlorobenzene	ND	ug/kg	4.2	1		04/19/19 22:11		
Dichlorodifluoromethane	ND	ug/kg	8.4	1		04/19/19 22:11		
,1-Dichloroethane	ND	ug/kg	4.2	1		04/19/19 22:11		
,2-Dichloroethane	ND	ug/kg	4.2	1		04/19/19 22:11		
,1-Dichloroethene	ND	ug/kg	4.2	1		04/19/19 22:11		
is-1,2-Dichloroethene	ND	ug/kg	4.2	1		04/19/19 22:11		
rans-1,2-Dichloroethene	ND	ug/kg	4.2	1		04/19/19 22:11	156-60-5	
,2-Dichloropropane	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	78-87-5	
,3-Dichloropropane	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	142-28-9	
,2-Dichloropropane	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	594-20-7	
,1-Dichloropropene	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	563-58-6	
is-1,3-Dichloropropene	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	10061-01-5	
ans-1,3-Dichloropropene	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	10061-02-6	
Diisopropyl ether	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	108-20-3	
thylbenzene	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	100-41-4	
lexachloro-1,3-butadiene	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	87-68-3	
-Hexanone	ND	ug/kg	42.0	1	04/19/19 13:00	04/19/19 22:11	591-78-6	
sopropylbenzene (Cumene)	ND	ug/kg	4.2	1		04/19/19 22:11		
-Isopropyltoluene	ND	ug/kg	4.2	1		04/19/19 22:11		
Methylene Chloride	ND	ug/kg	16.8	1		04/19/19 22:11		
-Methyl-2-pentanone (MIBK)	ND	ug/kg	42.0	1		04/19/19 22:11		
Methyl-tert-butyl ether	ND	ug/kg	4.2	1		04/19/19 22:11		

800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

Pace Project No.: 92425908								
Sample: B18	Lab ID: 924	25908003	Collected: 04/10/1	9 14:4	1 Received: 04	I/12/19 14:45 N	/latrix: Solid	
Results reported on a "dry weight'	" basis and are adj	usted for p	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A Volatile Organics	Analytical Meth	nod: EPA 82	260D Preparation Me	ethod: E	EPA 5035A			
Naphthalene	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	91-20-3	
n-Propylbenzene	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	103-65-1	
Styrene	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	79-34-5	
Tetrachloroethene	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	127-18-4	
Toluene	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	4.2	1	04/19/19 13:00	04/19/19 22:11	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	4.2	1		04/19/19 22:11		
1,1,1-Trichloroethane	ND	ug/kg	4.2	1		04/19/19 22:11		
1,1,2-Trichloroethane	ND	ug/kg	4.2	1		04/19/19 22:11		
Trichloroethene	ND	ug/kg	4.2	1		04/19/19 22:11		
Trichlorofluoromethane	ND	ug/kg	4.2	1		04/19/19 22:11		
1,2,3-Trichloropropane	ND	ug/kg	4.2	1		04/19/19 22:11		
1,2,4-Trimethylbenzene	ND	ug/kg	4.2	1		04/19/19 22:11		
1,3,5-Trimethylbenzene	ND	ug/kg	4.2	1		04/19/19 22:11		
Vinyl acetate	ND	ug/kg	42.0	1		04/19/19 22:11	108-05-4	
Vinyl chloride	ND ND	ug/kg ug/kg	8.4	1		04/19/19 22:11		
Xylene (Total)	ND ND	ug/kg ug/kg	8.4	1		04/19/19 22:11		
m&p-Xylene	ND ND		8.4	1		04/19/19 22:11	179601-23-1	
• •	ND ND	ug/kg	4.2	1		04/19/19 22:11		
o-Xylene Surrogates	ND	ug/kg	4.2	1	04/19/19 13.00	04/19/19 22.11	95-47-0	
Toluene-d8 (S)	98	%	70-130	1	04/19/19 13:00	04/19/19 22:11	2037-26-5	
4-Bromofluorobenzene (S)	96	%	70-130	1		04/19/19 22:11	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	70-130	1		04/19/19 22:11		
,				'	04/19/19 13.00	04/19/19 22.11	17000-07-0	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	15.6	%	0.10	1		04/18/19 14:11		
Sample: B19	Lab ID: 924	25908004	Collected: 04/10/1	9 15:10	0 Received: 04	I/12/19 14:45 N	Matrix: Solid	
Results reported on a "dry weight"								
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A Volatile Organics	Analytical Meth	nod: EPA 82	260D Preparation Me	ethod: E	======================================			
Acetone	ND	ug/kg	91.6	1	04/19/19 13:00	04/19/19 22:36	67-64-1	
Benzene	ND	ug/kg	4.6	1		04/19/19 22:36		
Bromobenzene	ND	ug/kg	4.6	1		04/19/19 22:36		
Bromochloromethane	ND	ug/kg	4.6	1		04/19/19 22:36		
Bromodichloromethane	ND	ug/kg	4.6	1		04/19/19 22:36		
Bromoform	ND	ug/kg	4.6	1		04/19/19 22:36		
Bromomethane	ND ND	ug/kg ug/kg	9.2	1		04/19/19 22:36		
2-Butanone (MEK)	ND ND	ug/kg	91.6	1		04/19/19 22:36		
n-Butylbenzene	ND ND	ug/kg ug/kg	4.6	1		04/19/19 22:36		
sec-Butylbenzene	ND ND	ug/kg	4.6	1		04/19/19 22:36		
235 Zatylbolizollo	110	~g/\\g	7.0	•	3 1, 10, 10 10.00	5 1, 15, 15 22.50	.00 00 0	

Matrix: Solid

563-58-6

10061-01-5

10061-02-6

108-20-3

100-41-4

CAS No.

Qual

Analyzed

Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Report Limit

Lab ID: 92425908004

Results

ND

ug/kg

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Units

Collected: 04/10/19 15:10 Received: 04/12/19 14:45

Prepared

04/19/19 13:00 04/19/19 22:36

04/19/19 13:00 04/19/19 22:36

04/19/19 13:00 04/19/19 22:36

04/19/19 13:00 04/19/19 22:36

04/19/19 13:00 04/19/19 22:36

04/19/19 13:00 04/19/19 22:36 87-68-3

04/19/19 13:00 04/19/19 22:36 591-78-6

04/19/19 13:00 04/19/19 22:36 98-82-8

04/19/19 13:00 04/19/19 22:36 99-87-6

04/19/19 13:00 04/19/19 22:36 75-09-2

04/19/19 13:00 04/19/19 22:36 108-10-1

04/19/19 13:00 04/19/19 22:36 91-20-3

04/19/19 13:00 04/19/19 22:36 103-65-1

04/19/19 13:00 04/19/19 22:36 100-42-5

04/19/19 13:00 04/19/19 22:36 630-20-6

04/19/19 13:00 04/19/19 22:36 79-34-5

04/19/19 13:00 04/19/19 22:36 127-18-4

04/19/19 13:00 04/19/19 22:36 108-88-3

04/19/19 13:00 04/19/19 22:36 87-61-6

04/19/19 13:00 04/19/19 22:36 120-82-1

04/19/19 13:00 04/19/19 22:36 71-55-6

04/19/19 13:00 04/19/19 22:36 1634-04-4

DF

Project: U5797
Pace Project No.: 92425908

Parameters

Sample: B19

1,1-Dichloropropene

Diisopropyl ether

p-Isopropyltoluene

Methylene Chloride

Methyl-tert-butyl ether

1.1.1.2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

Date: 04/25/2019 03:59 PM

1,1,1-Trichloroethane

Ethylbenzene

2-Hexanone

Naphthalene

Stvrene

Toluene

n-Propylbenzene

Tetrachloroethene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

Hexachloro-1,3-butadiene

Isopropylbenzene (Cumene)

4-Methyl-2-pentanone (MIBK)

Analytical Method: EPA 8260D Preparation Method: EPA 5035A 8260D/5035A Volatile Organics tert-Butylbenzene ND ug/kg 4.6 04/19/19 13:00 04/19/19 22:36 98-06-6 Carbon tetrachloride ND ug/kg 4.6 1 04/19/19 13:00 04/19/19 22:36 56-23-5 Chlorobenzene ND ug/kg 4.6 04/19/19 13:00 04/19/19 22:36 108-90-7 1 Chloroethane ND ug/kg 9.2 1 04/19/19 13:00 04/19/19 22:36 75-00-3 Chloroform ND ug/kg 4.6 1 04/19/19 13:00 04/19/19 22:36 67-66-3 Chloromethane ND 9.2 04/19/19 13:00 04/19/19 22:36 74-87-3 ug/kg 1 2-Chlorotoluene ND 4.6 04/19/19 13:00 04/19/19 22:36 95-49-8 ug/kg 1 NΠ 46 04/19/19 13:00 04/19/19 22:36 106-43-4 4-Chlorotoluene ug/kg 1 ND 4.6 04/19/19 13:00 04/19/19 22:36 96-12-8 1,2-Dibromo-3-chloropropane ug/kg 1 ND 4.6 04/19/19 13:00 04/19/19 22:36 124-48-1 Dibromochloromethane ug/kg 1 ND 4.6 04/19/19 13:00 04/19/19 22:36 106-93-4 1,2-Dibromoethane (EDB) ug/kg 1 Dibromomethane ND ug/kg 4.6 1 04/19/19 13:00 04/19/19 22:36 74-95-3 1,2-Dichlorobenzene ND ug/kg 4.6 1 04/19/19 13:00 04/19/19 22:36 95-50-1 ND 4.6 04/19/19 13:00 04/19/19 22:36 541-73-1 1,3-Dichlorobenzene ug/kg 1 ND 4.6 04/19/19 13:00 04/19/19 22:36 106-46-7 1,4-Dichlorobenzene ug/kg 1 Dichlorodifluoromethane ND ug/kg 9.2 1 04/19/19 13:00 04/19/19 22:36 75-71-8 ug/kg 1.1-Dichloroethane ND 4.6 1 04/19/19 13:00 04/19/19 22:36 75-34-3 1.2-Dichloroethane ND ug/kg 4.6 1 04/19/19 13:00 04/19/19 22:36 107-06-2 ND 1.1-Dichloroethene ug/kg 46 1 04/19/19 13:00 04/19/19 22:36 75-35-4 cis-1.2-Dichloroethene ND ug/kg 4.6 1 04/19/19 13:00 04/19/19 22:36 156-59-2 trans-1,2-Dichloroethene ND ug/kg 4.6 1 04/19/19 13:00 04/19/19 22:36 156-60-5 1,2-Dichloropropane ND ug/kg 4.6 1 04/19/19 13:00 04/19/19 22:36 78-87-5 1,3-Dichloropropane ND ug/kg 4.6 1 04/19/19 13:00 04/19/19 22:36 142-28-9 2,2-Dichloropropane ND ug/kg 4.6 04/19/19 13:00 04/19/19 22:36 594-20-7 1

4.6

4.6

4.6

4.6

4.6

4.6

45.8

4.6

4.6

18.3

45.8

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

4.6

1

1

1

1

1

1

1

1

1

1

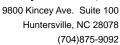
1

1

1

1

1


1

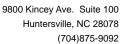
1

1

1

1

ANALYTICAL RESULTS


Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

Sample: B19 Lab ID: 92425908004 Collected: 04/10/19 15:10 Received: 04/12/19 14:45 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D/5035A Volatile Organics	Analytical Meth	nod: EPA 8260D	Preparation Me	thod: E	EPA 5035A			
1,1,2-Trichloroethane	ND	ug/kg	4.6	1	04/19/19 13:00	04/19/19 22:36	79-00-5	
Trichloroethene	ND	ug/kg	4.6	1	04/19/19 13:00	04/19/19 22:36	79-01-6	
Trichlorofluoromethane	ND	ug/kg	4.6	1	04/19/19 13:00	04/19/19 22:36	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	4.6	1	04/19/19 13:00	04/19/19 22:36	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	4.6	1	04/19/19 13:00	04/19/19 22:36	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	4.6	1	04/19/19 13:00	04/19/19 22:36	108-67-8	
Vinyl acetate	ND	ug/kg	45.8	1	04/19/19 13:00	04/19/19 22:36	108-05-4	
Vinyl chloride	ND	ug/kg	9.2	1	04/19/19 13:00	04/19/19 22:36	75-01-4	
Xylene (Total)	ND	ug/kg	9.2	1	04/19/19 13:00	04/19/19 22:36	1330-20-7	
m&p-Xylene	ND	ug/kg	9.2	1	04/19/19 13:00	04/19/19 22:36	179601-23-1	
o-Xylene	ND	ug/kg	4.6	1	04/19/19 13:00	04/19/19 22:36	95-47-6	
Surrogates								
Toluene-d8 (S)	99	%	70-130	1	04/19/19 13:00	04/19/19 22:36	2037-26-5	
4-Bromofluorobenzene (S)	99	%	70-130	1	04/19/19 13:00	04/19/19 22:36	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	70-132	1	04/19/19 13:00	04/19/19 22:36	17060-07-0	
Percent Moisture	Analytical Meth	nod: ASTM D297	4-87					
Percent Moisture	16.2	%	0.10	1		04/18/19 14:11		

QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

QC Batch: 470498 Analysis Method: EPA 8260D

QC Batch Method: EPA 5035A Analysis Description: 8260D MSV 5035A Volatile Organics

Associated Lab Samples: 92425908003, 92425908004

METHOD BLANK: 2554406 Matrix: Solid

Associated Lab Samples: 92425908003, 92425908004

	,	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	5.0	04/19/19 20:05	
1,1,1-Trichloroethane	ug/kg	ND	5.0	04/19/19 20:05	
1,1,2,2-Tetrachloroethane	ug/kg	ND	5.0	04/19/19 20:05	
1,1,2-Trichloroethane	ug/kg	ND	5.0	04/19/19 20:05	
1,1-Dichloroethane	ug/kg	ND	5.0	04/19/19 20:05	
1,1-Dichloroethene	ug/kg	ND	5.0	04/19/19 20:05	
1,1-Dichloropropene	ug/kg	ND	5.0	04/19/19 20:05	
1,2,3-Trichlorobenzene	ug/kg	ND	5.0	04/19/19 20:05	
1,2,3-Trichloropropane	ug/kg	ND	5.0	04/19/19 20:05	
1,2,4-Trichlorobenzene	ug/kg	ND	5.0	04/19/19 20:05	
1,2,4-Trimethylbenzene	ug/kg	ND	5.0	04/19/19 20:05	
1,2-Dibromo-3-chloropropane	ug/kg	ND	5.0	04/19/19 20:05	
1,2-Dibromoethane (EDB)	ug/kg	ND	5.0	04/19/19 20:05	
1,2-Dichlorobenzene	ug/kg	ND	5.0	04/19/19 20:05	
1,2-Dichloroethane	ug/kg	ND	5.0	04/19/19 20:05	
1,2-Dichloropropane	ug/kg	ND	5.0	04/19/19 20:05	
1,3,5-Trimethylbenzene	ug/kg	ND	5.0	04/19/19 20:05	
1,3-Dichlorobenzene	ug/kg	ND	5.0	04/19/19 20:05	
1,3-Dichloropropane	ug/kg	ND	5.0	04/19/19 20:05	
1,4-Dichlorobenzene	ug/kg	ND	5.0	04/19/19 20:05	
2,2-Dichloropropane	ug/kg	ND	5.0	04/19/19 20:05	
2-Butanone (MEK)	ug/kg	ND	100	04/19/19 20:05	
2-Chlorotoluene	ug/kg	ND	5.0	04/19/19 20:05	
2-Hexanone	ug/kg	ND	50.0	04/19/19 20:05	
4-Chlorotoluene	ug/kg	ND	5.0	04/19/19 20:05	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	50.0	04/19/19 20:05	
Acetone	ug/kg	ND	100	04/19/19 20:05	
Benzene	ug/kg	ND	5.0	04/19/19 20:05	
Bromobenzene	ug/kg	ND	5.0	04/19/19 20:05	
Bromochloromethane	ug/kg	ND	5.0	04/19/19 20:05	
Bromodichloromethane	ug/kg	ND	5.0	04/19/19 20:05	
Bromoform	ug/kg	ND	5.0	04/19/19 20:05	
Bromomethane	ug/kg	ND	10.0	04/19/19 20:05	
Carbon tetrachloride	ug/kg	ND	5.0	04/19/19 20:05	
Chlorobenzene	ug/kg	ND	5.0	04/19/19 20:05	
Chloroethane	ug/kg	ND	10.0	04/19/19 20:05	
Chloroform	ug/kg	ND	5.0	04/19/19 20:05	
Chloromethane	ug/kg	ND	10.0	04/19/19 20:05	
cis-1,2-Dichloroethene	ug/kg	ND	5.0	04/19/19 20:05	
cis-1,3-Dichloropropene	ug/kg	ND	5.0	04/19/19 20:05	
Dibromochloromethane	ug/kg	ND	5.0	04/19/19 20:05	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

METHOD BLANK: 2554406 Matrix: Solid

Associated Lab Samples: 92425908003, 92425908004

	,	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dibromomethane	ug/kg	ND	5.0	04/19/19 20:05	
Dichlorodifluoromethane	ug/kg	ND	10.0	04/19/19 20:05	
Diisopropyl ether	ug/kg	ND	5.0	04/19/19 20:05	
Ethylbenzene	ug/kg	ND	5.0	04/19/19 20:05	
Hexachloro-1,3-butadiene	ug/kg	ND	5.0	04/19/19 20:05	
Isopropylbenzene (Cumene)	ug/kg	ND	5.0	04/19/19 20:05	
m&p-Xylene	ug/kg	ND	10.0	04/19/19 20:05	
Methyl-tert-butyl ether	ug/kg	ND	5.0	04/19/19 20:05	
Methylene Chloride	ug/kg	ND	20.0	04/19/19 20:05	
n-Butylbenzene	ug/kg	ND	5.0	04/19/19 20:05	
n-Propylbenzene	ug/kg	ND	5.0	04/19/19 20:05	
Naphthalene	ug/kg	ND	5.0	04/19/19 20:05	
o-Xylene	ug/kg	ND	5.0	04/19/19 20:05	
p-Isopropyltoluene	ug/kg	ND	5.0	04/19/19 20:05	
sec-Butylbenzene	ug/kg	ND	5.0	04/19/19 20:05	
Styrene	ug/kg	ND	5.0	04/19/19 20:05	
tert-Butylbenzene	ug/kg	ND	5.0	04/19/19 20:05	
Tetrachloroethene	ug/kg	ND	5.0	04/19/19 20:05	
Toluene	ug/kg	ND	5.0	04/19/19 20:05	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	04/19/19 20:05	
trans-1,3-Dichloropropene	ug/kg	ND	5.0	04/19/19 20:05	
Trichloroethene	ug/kg	ND	5.0	04/19/19 20:05	
Trichlorofluoromethane	ug/kg	ND	5.0	04/19/19 20:05	
Vinyl acetate	ug/kg	ND	50.0	04/19/19 20:05	
Vinyl chloride	ug/kg	ND	10.0	04/19/19 20:05	
Xylene (Total)	ug/kg	ND	10.0	04/19/19 20:05	
1,2-Dichloroethane-d4 (S)	%	103	70-132	04/19/19 20:05	
4-Bromofluorobenzene (S)	%	99	70-130	04/19/19 20:05	
Toluene-d8 (S)	%	99	70-130	04/19/19 20:05	

LABORATORY CONTROL SAMPLE:	2554407					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	50	49.9	100	70-130	
1,1,1-Trichloroethane	ug/kg	50	43.2	86	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	50	48.2	96	55-130	
1,1,2-Trichloroethane	ug/kg	50	47.0	94	70-130	
1,1-Dichloroethane	ug/kg	50	42.4	85	68-130	
1,1-Dichloroethene	ug/kg	50	43.0	86	70-130	
1,1-Dichloropropene	ug/kg	50	42.8	86	70-130	
1,2,3-Trichlorobenzene	ug/kg	50	47.5	95	70-130	
1,2,3-Trichloropropane	ug/kg	50	51.4	103	70-130	
1,2,4-Trichlorobenzene	ug/kg	50	46.7	93	70-130	
1,2,4-Trimethylbenzene	ug/kg	50	44.0	88	69-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

ABORATORY CONTROL SAMPLE:	2554407					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
,2-Dibromo-3-chloropropane	ug/kg	50	45.1	90	57-141	
,2-Dibromoethane (EDB)	ug/kg	50	47.7	95	70-130	
,2-Dichlorobenzene	ug/kg	50	44.9	90	70-130	
,2-Dichloroethane	ug/kg	50	44.6	89	70-130	
,2-Dichloropropane	ug/kg	50	46.5	93	70-130	
,3,5-Trimethylbenzene	ug/kg	50	44.8	90	70-130	
,3-Dichlorobenzene	ug/kg	50	44.2	88	70-130	
,3-Dichloropropane	ug/kg	50	47.0	94	70-130	
,4-Dichlorobenzene	ug/kg	50	44.2	88	70-130	
,2-Dichloropropane	ug/kg	50	44.8	90	70-130	
-Butanone (MEK)	ug/kg	100	101	101	60-130	
-Chlorotoluene	ug/kg	50	44.8	90	70-130	
-Hexanone	ug/kg	100	93.1	93	70-132	
-Chlorotoluene	ug/kg	50	44.7	89	70-130	
-Methyl-2-pentanone (MIBK)	ug/kg	100	93.1	93	69-130	
cetone	ug/kg	100	102	102	49-148	
enzene	ug/kg	50	45.6	91	70-130	
romobenzene	ug/kg	50	45.6	91	70-130	
romochloromethane	ug/kg	50	45.7	91	70-130	
romodichloromethane	ug/kg	50	46.8	94	70-130	
romoform	ug/kg	50	42.0	84	68-136	
romomethane	ug/kg	50	43.0	86	60-140	
arbon tetrachloride	ug/kg	50	44.0	88	70-130	
Chlorobenzene	ug/kg	50	43.3	87	70-130	
Chloroethane	ug/kg	50	49.2	98	51-147	
hloroform	ug/kg	50	43.8	88	70-130	
Chloromethane	ug/kg	50	42.4	85	48-130	
is-1,2-Dichloroethene	ug/kg	50	43.8	88	70-130	
is-1,3-Dichloropropene	ug/kg	50	47.8	96	70-130	
bibromochloromethane	ug/kg	50	47.3	95	70-130	
Dibromomethane	ug/kg	50	47.3	95	70-130	
Dichlorodifluoromethane	ug/kg	50	43.1	86	49-130	
Diisopropyl ether	ug/kg	50	48.7	97	66-130	
ithylbenzene	ug/kg	50	45.1	90	70-130	
lexachloro-1,3-butadiene	ug/kg	50	45.1	90	70-130	
sopropylbenzene (Cumene)	ug/kg	50	44.6	89	70-130	
n&p-Xylene	ug/kg	100	89.9	90	70-130	
lethyl-tert-butyl ether	ug/kg	50	48.2	96	70-130	
lethylene Chloride	ug/kg	50	38.3	77	50-137	
-Butylbenzene	ug/kg	50	45.0	90	70-130	
-Propylbenzene	ug/kg	50	45.0	90	70-130	
laphthalene	ug/kg	50	47.1	94	70-130	
-Xylene	ug/kg	50	44.2	88	70-131	
-kylene -Isopropyltoluene	ug/kg ug/kg	50 50	44.2 45.2	90	70-130	
ec-Butylbenzene	ug/kg ug/kg	50 50	45.2 45.8	90 92	70-130 70-130	
ityrene	ug/kg ug/kg	50	44.3	89	70-130	
ert-Butylbenzene	ug/kg ug/kg	50 50	44.3 40.1	80	69-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

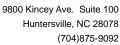
Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

LABORATORY CONTROL SAMPLE:	2554407					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Tetrachloroethene	ug/kg	50	44.7	89	56-130	
oluene	ug/kg	50	44.4	89	70-130	
ns-1,2-Dichloroethene	ug/kg	50	43.1	86	70-130	
ans-1,3-Dichloropropene	ug/kg	50	49.0	98	70-130	
chloroethene	ug/kg	50	43.9	88	70-141	
chlorofluoromethane	ug/kg	50	43.5	87	67-130	
yl acetate	ug/kg	100	92.7	93	10-136	
/l chloride	ug/kg	50	43.2	86	67-130	
ene (Total)	ug/kg	150	134	89	70-130	
-Dichloroethane-d4 (S)	%			96	70-132	
romofluorobenzene (S)	%			99	70-130	
iene-d8 (S)	%			99	70-130	

MATRIX SPIKE SAMPLE:	2555712						
		92425764001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	437	469	107	52-133	
1,1,1-Trichloroethane	ug/kg	ND	437	426	98	49-137	
1,1,2,2-Tetrachloroethane	ug/kg	ND	437	320	73	39-150	
1,1,2-Trichloroethane	ug/kg	ND	437	377	86	48-140	
1,1-Dichloroethane	ug/kg	ND	437	424	97	46-135	
1,1-Dichloroethene	ug/kg	ND	437	530	121	38-149	
1,1-Dichloropropene	ug/kg	ND	437	420	96	41-140	
1,2,3-Trichlorobenzene	ug/kg	ND	437	427	98	10-158	
1,2,3-Trichloropropane	ug/kg	ND	437	322	74	33-157	
1,2,4-Trichlorobenzene	ug/kg	ND	437	451	103	10-155	
1,2,4-Trimethylbenzene	ug/kg	ND	437	499	114	24-154	
1,2-Dibromo-3-chloropropane	ug/kg	ND	437	237	54	33-158	
1,2-Dibromoethane (EDB)	ug/kg	ND	437	330	76	40-136	
1,2-Dichlorobenzene	ug/kg	ND	437	440	101	27-146	
1,2-Dichloroethane	ug/kg	ND	437	335	77	49-140	
1,2-Dichloropropane	ug/kg	ND	437	411	94	44-143	
1,3,5-Trimethylbenzene	ug/kg	ND	437	456	104	40-144	
1,3-Dichlorobenzene	ug/kg	ND	437	443	102	33-140	
1,3-Dichloropropane	ug/kg	ND	437	408	93	47-147	
1,4-Dichlorobenzene	ug/kg	ND	437	447	102	35-139	
2,2-Dichloropropane	ug/kg	ND	437	446	102	41-140	
2-Butanone (MEK)	ug/kg	ND	873	397J	45	10-181	
2-Chlorotoluene	ug/kg	ND	437	457	105	38-147	
2-Hexanone	ug/kg	ND	873	468J	54	18-169	
4-Chlorotoluene	ug/kg	ND	437	462	106	36-145	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	873	509J	58	16-175	
Acetone	ug/kg	ND	873	ND	22	10-200	
Benzene	ug/kg	ND	437	435	100	46-136	
Bromobenzene	ug/kg	ND	437	464	106	38-149	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.


QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

MATRIX SPIKE SAMPLE:	2555712						
		92425764001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromochloromethane	ug/kg	ND	437	335	77	44-142	
Bromodichloromethane	ug/kg	ND	437	369	85	41-140	
Bromoform	ug/kg	ND	437	331	76	34-145	
Bromomethane	ug/kg	ND	437	385	88	14-162	
Carbon tetrachloride	ug/kg	ND	437	442	101	44-141	
Chlorobenzene	ug/kg	ND	437	446	102	39-141	
Chloroethane	ug/kg	ND	437	215	49	10-182	
Chloroform	ug/kg	ND	437	387	89	45-140	
Chloromethane	ug/kg	ND	437	517	119	19-149	
cis-1,2-Dichloroethene	ug/kg	ND	437	401	92	38-150	
cis-1,3-Dichloropropene	ug/kg	ND	437	459	105	30-144	
Dibromochloromethane	ug/kg	ND	437	405	93	36-145	
Dibromomethane	ug/kg	ND	437	291	67	41-145	
Dichlorodifluoromethane	ug/kg	ND	437	241	55	16-146	
Diisopropyl ether	ug/kg	ND	437	445	102	41-143	
Ethylbenzene	ug/kg	ND	437	473	108	35-144	
Hexachloro-1,3-butadiene	ug/kg	ND	437	411	94	10-160	
sopropylbenzene (Cumene)	ug/kg	ND	437	440	101	30-152	
m&p-Xylene	ug/kg	ND	873	1020	116	33-145	
Methyl-tert-butyl ether	ug/kg	ND	437	361	83	49-140	
Methylene Chloride	ug/kg	ND	437	489	112	10-174	
n-Butylbenzene	ug/kg	ND	437	428	98	10-160	
n-Propylbenzene	ug/kg	ND	437	468	107	24-159	
Naphthalene	ug/kg	ND	437	336	77	10-171	
o-Xylene	ug/kg	ND	437	507	116	31-150	
p-Isopropyltoluene	ug/kg	ND	437	445	102	21-154	
sec-Butylbenzene	ug/kg	ND	437	452	104	19-159	
Styrene	ug/kg	ND	437	442	101	15-152	
tert-Butylbenzene	ug/kg	ND	437	395	91	31-141	
Tetrachloroethene	ug/kg	ND	437	432	99	19-141	
Toluene	ug/kg	ND	437	517	118	31-146	
rans-1,2-Dichloroethene	ug/kg	ND	437	425	97	28-157	
trans-1,3-Dichloropropene	ug/kg	ND	437	376	86	25-146	
Trichloroethene	ug/kg	ND	437	442	101	34-149	
Trichlorofluoromethane	ug/kg	ND	437	427	98	10-167	
√inyl acetate	ug/kg	ND	873	807J	92	10-200	
Vinyl chloride	ug/kg	ND	437	248	57	36-155	
Xylene (Total)	ug/kg	ND	1310	1520	116	29-148	
1,2-Dichloroethane-d4 (S)	%				72	70-132	
4-Bromofluorobenzene (S)	%				100	70-130	
Toluene-d8 (S)	%				102	70-130 F	2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

SAMPLE DUPLICATE: 2555711		92425574001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	ND		
1,1,1-Trichloroethane	ug/kg	ND	ND		
,1,2,2-Tetrachloroethane	ug/kg	ND	ND		
,1,2-Trichloroethane	ug/kg	ND	ND		
,1-Dichloroethane	ug/kg	ND	ND		
,1-Dichloroethene	ug/kg	ND	ND		
,1-Dichloropropene	ug/kg	ND	ND		
,2,3-Trichlorobenzene	ug/kg	ND	ND		
1,2,3-Trichloropropane	ug/kg	ND	ND		
,2,4-Trichlorobenzene	ug/kg	ND	ND		
,2,4-Trimethylbenzene	ug/kg	ND	ND		
,,2-Dibromo-3-chloropropane	ug/kg	ND	ND		
,2-Dibromoethane (EDB)	ug/kg	ND	ND		
,2-Dichlorobenzene	ug/kg	ND	ND		
,,2-Dichloroethane	ug/kg	ND	ND		
,2-Dichloropropane	ug/kg	ND	ND		
1,3,5-Trimethylbenzene	ug/kg	ND	ND		
1,3-Dichlorobenzene	ug/kg	ND	ND		
,3-Dichloropropane	ug/kg	ND	ND		
,4-Dichlorobenzene	ug/kg	ND	ND		
2,2-Dichloropropane	ug/kg	ND	ND		
2-Butanone (MEK)	ug/kg	ND	ND		
2-Chlorotoluene	ug/kg	ND	ND ND		
2-Hexanone	ug/kg	ND	ND ND		
I-Chlorotoluene	ug/kg	ND	ND ND		
		ND	ND ND		
4-Methyl-2-pentanone (MIBK)	ug/kg	146		4	0.00
Acetone	ug/kg	ND	240 ND	4	9 D6
Benzene Bramahanzana	ug/kg	ND ND	ND ND		
Bromobenzene	ug/kg	ND ND	ND ND		
Bromochloromethane	ug/kg	ND ND			
Bromodichloromethane	ug/kg		ND		
Bromoform	ug/kg	ND	ND		
Bromomethane	ug/kg	ND	ND		
Carbon tetrachloride	ug/kg	ND ND	ND		
Chlorobenzene	ug/kg		ND		
Chloroethane	ug/kg	ND	ND		
Chloroform	ug/kg	ND	ND		
Chloromethane	ug/kg	ND	ND		
cis-1,2-Dichloroethene	ug/kg	ND	ND		
cis-1,3-Dichloropropene	ug/kg	ND	ND		
Dibromochloromethane	ug/kg	ND	ND		
Dibromomethane	ug/kg	ND	ND		
Dichlorodifluoromethane	ug/kg	ND	ND		
Diisopropyl ether	ug/kg	ND	ND		
Ethylbenzene	ug/kg	ND	ND		
Hexachloro-1,3-butadiene	ug/kg	ND	ND		
sopropylbenzene (Cumene)	ug/kg	ND	ND		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

SAMPLE DUPLICATE: 2555711					
		92425574001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
m&p-Xylene	ug/kg	ND	ND		
Methyl-tert-butyl ether	ug/kg	ND	ND		
Methylene Chloride	ug/kg	ND	ND		
n-Butylbenzene	ug/kg	ND	ND		
n-Propylbenzene	ug/kg	ND	ND		
Naphthalene	ug/kg	ND	ND		
o-Xylene	ug/kg	ND	ND		
p-Isopropyltoluene	ug/kg	ND	ND		
sec-Butylbenzene	ug/kg	ND	ND		
Styrene	ug/kg	ND	ND		
tert-Butylbenzene	ug/kg	ND	ND		
Tetrachloroethene	ug/kg	ND	ND		
Toluene	ug/kg	ND	ND		
trans-1,2-Dichloroethene	ug/kg	ND	ND		
trans-1,3-Dichloropropene	ug/kg	ND	ND		
Trichloroethene	ug/kg	ND	ND		
Trichlorofluoromethane	ug/kg	ND	ND		
Vinyl acetate	ug/kg	ND	ND		
Vinyl chloride	ug/kg	ND	ND		
Xylene (Total)	ug/kg	ND	ND		
1,2-Dichloroethane-d4 (S)	%	100	92		
4-Bromofluorobenzene (S)	%	97	98		
Toluene-d8 (S)	%	99	102		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

QC Batch: 470847 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Associated Lab Samples: 92425908001, 92425908002

METHOD BLANK: 2555743 Matrix: Water

Associated Lab Samples: 92425908001, 92425908002

Associated Lab Samples. 924259	08001, 92425908002	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	04/22/19 23:47	· ·
1,1,1-Trichloroethane	ug/L	ND	1.0	04/22/19 23:47	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	04/22/19 23:47	
1,1,2-Trichloroethane	ug/L	ND	1.0	04/22/19 23:47	
1,1-Dichloroethane	ug/L	ND	1.0	04/22/19 23:47	
1,1-Dichloroethene	ug/L	ND	1.0	04/22/19 23:47	
1,1-Dichloropropene	ug/L	ND	1.0	04/22/19 23:47	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	04/22/19 23:47	
1,2,3-Trichloropropane	ug/L	ND	1.0	04/22/19 23:47	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	04/22/19 23:47	
1,2-Dibromo-3-chloropropane	ug/L	ND	5.0	04/22/19 23:47	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	04/22/19 23:47	
1,2-Dichlorobenzene	ug/L	ND	1.0	04/22/19 23:47	
1,2-Dichloroethane	ug/L	ND	1.0	04/22/19 23:47	
1,2-Dichloropropane	ug/L	ND	1.0	04/22/19 23:47	
1,3-Dichlorobenzene	ug/L	ND	1.0	04/22/19 23:47	
1,3-Dichloropropane	ug/L	ND	1.0	04/22/19 23:47	
1,4-Dichlorobenzene	ug/L	ND	1.0	04/22/19 23:47	
2,2-Dichloropropane	ug/L	ND	1.0	04/22/19 23:47	
2-Butanone (MEK)	ug/L	ND	5.0	04/22/19 23:47	
2-Chlorotoluene	ug/L	ND	1.0	04/22/19 23:47	
2-Hexanone	ug/L	ND	5.0	04/22/19 23:47	
4-Chlorotoluene	ug/L	ND	1.0	04/22/19 23:47	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	04/22/19 23:47	
Acetone	ug/L	ND	25.0	04/22/19 23:47	
Benzene	ug/L	ND	1.0	04/22/19 23:47	
Bromobenzene	ug/L	ND	1.0	04/22/19 23:47	
Bromochloromethane	ug/L	ND	1.0	04/22/19 23:47	IK
Bromodichloromethane	ug/L	ND	1.0	04/22/19 23:47	
Bromoform	ug/L	ND	1.0	04/22/19 23:47	IK
Bromomethane	ug/L	ND	2.0	04/22/19 23:47	IK
Carbon tetrachloride	ug/L	ND	1.0	04/22/19 23:47	
Chlorobenzene	ug/L	ND	1.0	04/22/19 23:47	
Chloroethane	ug/L	ND	1.0	04/22/19 23:47	IK
Chloroform	ug/L	ND	5.0	04/22/19 23:47	
Chloromethane	ug/L	ND	1.0	04/22/19 23:47	
cis-1,2-Dichloroethene	ug/L	ND	1.0	04/22/19 23:47	
cis-1,3-Dichloropropene	ug/L	ND	1.0	04/22/19 23:47	
Dibromochloromethane	ug/L	ND	1.0	04/22/19 23:47	
Dibromomethane	ug/L	ND	1.0	04/22/19 23:47	
Dichlorodifluoromethane	ug/L	ND	1.0	04/22/19 23:47	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

METHOD BLANK: 2555743 Matrix: Water

Associated Lab Samples: 92425908001, 92425908002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diisopropyl ether	ug/L	ND	1.0	04/22/19 23:47	
Ethylbenzene	ug/L	ND	1.0	04/22/19 23:47	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	04/22/19 23:47	
m&p-Xylene	ug/L	ND	2.0	04/22/19 23:47	
Methyl-tert-butyl ether	ug/L	ND	1.0	04/22/19 23:47	
Methylene Chloride	ug/L	ND	5.0	04/22/19 23:47	
Naphthalene	ug/L	ND	1.0	04/22/19 23:47	
o-Xylene	ug/L	ND	1.0	04/22/19 23:47	
p-Isopropyltoluene	ug/L	ND	1.0	04/22/19 23:47	
Styrene	ug/L	ND	1.0	04/22/19 23:47	
Tetrachloroethene	ug/L	ND	1.0	04/22/19 23:47	
Toluene	ug/L	ND	1.0	04/22/19 23:47	
trans-1,2-Dichloroethene	ug/L	ND	1.0	04/22/19 23:47	
trans-1,3-Dichloropropene	ug/L	ND	1.0	04/22/19 23:47	
Trichloroethene	ug/L	ND	1.0	04/22/19 23:47	
Trichlorofluoromethane	ug/L	ND	1.0	04/22/19 23:47	
Vinyl acetate	ug/L	ND	2.0	04/22/19 23:47	
Vinyl chloride	ug/L	ND	1.0	04/22/19 23:47	
Xylene (Total)	ug/L	ND	1.0	04/22/19 23:47	
1,2-Dichloroethane-d4 (S)	%	103	70-130	04/22/19 23:47	
4-Bromofluorobenzene (S)	%	101	70-130	04/22/19 23:47	
Toluene-d8 (S)	%	109	70-130	04/22/19 23:47	

LABORATORY CONTROL SAMPLE:	2555744					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	56.0	112	70-130	
1,1,1-Trichloroethane	ug/L	50	53.0	106	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	52.5	105	70-130	
1,1,2-Trichloroethane	ug/L	50	54.9	110	70-130	
1,1-Dichloroethane	ug/L	50	51.7	103	70-130	
1,1-Dichloroethene	ug/L	50	51.0	102	70-130	
1,1-Dichloropropene	ug/L	50	51.3	103	70-130	
1,2,3-Trichlorobenzene	ug/L	50	53.3	107	70-130	
1,2,3-Trichloropropane	ug/L	50	55.1	110	70-130	
1,2,4-Trichlorobenzene	ug/L	50	53.4	107	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	53.3	107	70-130	
1,2-Dibromoethane (EDB)	ug/L	50	54.5	109	70-130	
1,2-Dichlorobenzene	ug/L	50	51.0	102	70-130	
1,2-Dichloroethane	ug/L	50	48.8	98	70-130	
1,2-Dichloropropane	ug/L	50	52.8	106	70-130	
1,3-Dichlorobenzene	ug/L	50	50.4	101	70-130	
1,3-Dichloropropane	ug/L	50	53.2	106	70-131	
1,4-Dichlorobenzene	ug/L	50	51.1	102	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

LABORATORY CONTROL SAMPL	.E: 2555744				_	
_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
2,2-Dichloropropane	ug/L	50	54.4	109	69-130	
2-Butanone (MEK)	ug/L	100	113	113	64-135	
2-Chlorotoluene	ug/L	50	49.9	100	70-130	
2-Hexanone	ug/L	100	107	107	66-135	
4-Chlorotoluene	ug/L	50	49.6	99	70-130	
4-Methyl-2-pentanone (MIBK)	ug/L	100	104	104	70-130	
Acetone	ug/L	100	104	104	61-157	
Benzene	ug/L	50	51.8	104	70-130	
Bromobenzene	ug/L	50	51.9	104	70-130	
Bromochloromethane	ug/L	50	49.4	99	70-130	IK
Bromodichloromethane	ug/L	50	52.3	105	70-130	
Bromoform	ug/L	50	48.6	97	70-130	IK
Bromomethane	ug/L	50	50.9	102	38-130	IK
Carbon tetrachloride	ug/L	50	47.2	94	70-130	
Chlorobenzene	ug/L	50	49.8	100	70-130	
Chloroethane	ug/L	50	41.4	83	37-142	IK
Chloroform	ug/L	50	49.5	99	70-130	
Chloromethane	ug/L	50	50.1	100	48-130	
cis-1,2-Dichloroethene	ug/L	50	51.6	103	70-130	
sis-1,3-Dichloropropene	ug/L	50	57.6	115	70-130	
Dibromochloromethane	ug/L	50	54.9	110	70-130	
Dibromomethane	ug/L	50	51.4	103	70-130	
Dichlorodifluoromethane	ug/L	50	40.6	81	53-134	
Diisopropyl ether	ug/L	50	55.3	111	70-135	
Ethylbenzene	ug/L	50	50.2	100	70-130	
Hexachloro-1,3-butadiene	ug/L	50	50.6	101	68-132	
n&p-Xylene	ug/L	100	102	102	70-130	
Methyl-tert-butyl ether	ug/L	50	58.8	118	70-130	
Methylene Chloride	ug/L	50	47.3	95	67-132	
Naphthalene	ug/L	50	56.7	113	70-130	
o-Xylene	ug/L	50	51.8	104	70-131	
o-Isopropyltoluene	ug/L	50	53.6	107	70-130	
Styrene	ug/L	50	52.1	104	70-130	
Tetrachloroethene	ug/L	50	50.4	101	69-130	
Toluene	ug/L	50	49.4	99	70-130	
rans-1,2-Dichloroethene	ug/L	50	52.1	104	70-130	
rans-1,3-Dichloropropene	ug/L	50	51.2	102	70-130	
richloroethene	ug/L	50	51.6	103	70-130	
richlorofluoromethane	ug/L	50	44.0	88	63-130	
/inyl acetate	ug/L	100	112	112	55-143	
/inyl chloride	ug/L	50	52.1	104	70-131	
(ylene (Total)	ug/L	150	153	102	70-130	
,2-Dichloroethane-d4 (S)	%			100	70-130	
I-Bromofluorobenzene (S)	%			98	70-130	
Toluene-d8 (S)	%			96	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

MATRIX SPIKE SAMPLE:	2555746					
ъ.	11. %	92425875006	Spike	MS	MS	% Rec
Parameter	Units	Result	Conc.	Result	% Rec	Limits Qualifi
I,1,1,2-Tetrachloroethane	ug/L	ND	20	22.8	114	73-134
I,1,1-Trichloroethane	ug/L	ND	20	25.0	125	82-143
1,1,2,2-Tetrachloroethane	ug/L	ND	20	21.2	106	70-136
,1,2-Trichloroethane	ug/L	ND	20	23.1	115	70-135
,1-Dichloroethane	ug/L	0.43J	20	24.2	119	70-139
,1-Dichloroethene	ug/L	ND	20	23.9	120	70-154
,1-Dichloropropene	ug/L	ND	20	23.8	119	70-149
,2,3-Trichlorobenzene	ug/L	ND	20	22.2	111	70-135
,2,3-Trichloropropane	ug/L	ND	20	22.7	113	71-137
,2,4-Trichlorobenzene	ug/L	ND	20	21.8	109	73-140
,2-Dibromo-3-chloropropane	ug/L	ND	20	19.7	98	65-134
,2-Dibromoethane (EDB)	ug/L	ND	20	21.6	108	70-137
,2-Dichlorobenzene	ug/L	ND	20	21.2	106	70-133
,2-Dichloroethane	ug/L	ND	20	22.4	112	70-137
,2-Dichloropropane	ug/L	ND	20	23.8	119	70-140
I,3-Dichlorobenzene	ug/L	ND	20	21.0	105	70-135
,3-Dichloropropane	ug/L	ND	20	21.8	109	70-143
,4-Dichlorobenzene	ug/L	ND	20	21.1	105	70-133
2,2-Dichloropropane	ug/L	ND	20	19.4	97	61-148
P-Butanone (MEK)	ug/L	ND	40	49.5	124	60-139
P-Chlorotoluene	ug/L	ND	20	21.0	105	70-144
2-Hexanone	ug/L	ND	40	42.4	106	65-138
I-Chlorotoluene	ug/L	ND	20	21.3	106	70-137
-Methyl-2-pentanone (MIBK)	ug/L	ND	40	42.5	106	65-135
Acetone	ug/L	ND	40	55.4	139	60-148
Benzene	ug/L	ND	20	23.6	118	70-151
Bromobenzene	ug/L	ND	20	21.7	109	70-136
Bromochloromethane	ug/L	ND	20	25.3	127	70-141 IK
Bromodichloromethane	ug/L	ND	20	22.8	114	70-138
Bromoform	ug/L	ND	20	19.5	97	63-130 IK
Bromomethane	ug/L	ND	20	19.9	100	15-152 IK
Carbon tetrachloride	ug/L	ND	20	22.6	113	70-143
Chlorobenzene	_	ND	20	21.6	108	70-143 70-138
Chloroethane	ug/L ug/L	ND ND	20	22.6	113	70-136 52-163 IK
Chloroform	-	ND ND	20	23.7	116	70-139
Chloromethane	ug/L	ND ND	20	19.9	99	41-139
	ug/L	ND ND	20	23.9		
is-1,2-Dichloroethene	ug/L				119	70-141
sis-1,3-Dichloropropene	ug/L	ND	20	22.1	110	70-137
Dibromochloromethane	ug/L	ND	20	21.5	107	70-134
Dibromomethane	ug/L	ND ND	20	22.9	114	70-138
Dichlorodifluoromethane	ug/L	ND	20	19.2	96	47-155
Diisopropyl ether	ug/L	ND	20	23.4	117	63-144
Ethylbenzene	ug/L	ND	20	22.9	115	66-153
Hexachloro-1,3-butadiene	ug/L	ND	20	20.2	101	65-149
n&p-Xylene	ug/L	ND	40	46.2	116	69-152
Methyl-tert-butyl ether	ug/L	ND	20	24.2	121	54-156
Methylene Chloride	ug/L	ND	20	23.3	111	42-159

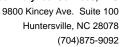
Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

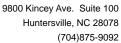

MATRIX SPIKE SAMPLE:	2555746						
		92425875006	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Naphthalene	ug/L	ND	20	23.2	116	61-148	
o-Xylene	ug/L	ND	20	23.1	116	70-148	
p-Isopropyltoluene	ug/L	ND	20	22.5	113	70-146	
Styrene	ug/L	ND	20	21.4	107	70-135	
Tetrachloroethene	ug/L	ND	20	22.0	110	59-143	
Toluene	ug/L	ND	20	22.8	114	59-148	
trans-1,2-Dichloroethene	ug/L	ND	20	24.3	122	70-146	
trans-1,3-Dichloropropene	ug/L	ND	20	20.2	101	70-135	
Trichloroethene	ug/L	ND	20	23.8	119	70-147	
Trichlorofluoromethane	ug/L	ND	20	24.5	122	70-148	
Vinyl acetate	ug/L	ND	40	35.2	88	49-151	
Vinyl chloride	ug/L	ND	20	23.4	117	70-156	
Xylene (Total)	ug/L	ND	60	69.3	116	63-158	
1,2-Dichloroethane-d4 (S)	%				104	70-130	
4-Bromofluorobenzene (S)	%				103	70-130	
Toluene-d8 (S)	%				100	70-130	

SAMPLE DUPLICATE: 2555745					
		92425875005	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	ND		
1,1,1-Trichloroethane	ug/L	ND	ND		
1,1,2,2-Tetrachloroethane	ug/L	ND	ND		
1,1,2-Trichloroethane	ug/L	ND	ND		
1,1-Dichloroethane	ug/L	ND	ND		
1,1-Dichloroethene	ug/L	ND	ND		
1,1-Dichloropropene	ug/L	ND	ND		
1,2,3-Trichlorobenzene	ug/L	ND	ND		
1,2,3-Trichloropropane	ug/L	ND	ND		
1,2,4-Trichlorobenzene	ug/L	ND	ND		
1,2-Dibromo-3-chloropropane	ug/L	ND	ND		
1,2-Dibromoethane (EDB)	ug/L	ND	ND		
1,2-Dichlorobenzene	ug/L	ND	ND		
1,2-Dichloroethane	ug/L	ND	ND		
1,2-Dichloropropane	ug/L	ND	ND		
1,3-Dichlorobenzene	ug/L	ND	ND		
1,3-Dichloropropane	ug/L	ND	ND		
1,4-Dichlorobenzene	ug/L	ND	ND		
2,2-Dichloropropane	ug/L	ND	ND		
2-Butanone (MEK)	ug/L	ND	ND		
2-Chlorotoluene	ug/L	ND	ND		
2-Hexanone	ug/L	ND	ND		
4-Chlorotoluene	ug/L	ND	ND		
4-Methyl-2-pentanone (MIBK)	ug/L	ND	ND		
Acetone	ug/L	27.6	22.1J		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

		92425875005	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Benzene	ug/L		ND		
Bromobenzene	ug/L	ND	ND		
Bromochloromethane	ug/L	ND	ND		IK
Bromodichloromethane	ug/L	ND	ND		
Bromoform	ug/L	ND	ND		IK
Bromomethane	ug/L	ND	ND		IK
Carbon tetrachloride	ug/L	ND	ND		
Chlorobenzene	ug/L	ND	ND		
Chloroethane	ug/L	ND	ND		IK
Chloroform	ug/L	ND	ND		
Chloromethane	ug/L	ND	ND		
sis-1,2-Dichloroethene	ug/L	ND	ND		
sis-1,3-Dichloropropene	ug/L	ND	ND		
Dibromochloromethane	ug/L	ND	ND		
Dibromomethane	ug/L	ND	ND		
Dichlorodifluoromethane	ug/L	ND	ND		
Diisopropyl ether	ug/L	ND	ND		
Ethylbenzene	ug/L	ND	ND		
Hexachloro-1,3-butadiene	ug/L	ND	ND		
n&p-Xylene	ug/L	ND	ND		
Methyl-tert-butyl ether	ug/L	ND	ND		
Methylene Chloride	ug/L	ND	ND		
Naphthalene	ug/L	ND	ND		
o-Xylene	ug/L	ND	ND		
p-Isopropyltoluene	ug/L	ND	ND		
Styrene	ug/L	ND	ND		
etrachloroethene	ug/L	ND	ND		
oluene	ug/L	ND	ND		
rans-1,2-Dichloroethene	ug/L	ND	ND		
rans-1,3-Dichloropropene	ug/L	ND	ND		
richloroethene	ug/L	ND	ND		
richlorofluoromethane	ug/L	ND	ND		
/inyl acetate	ug/L	ND	ND		
/inyl chloride	ug/L	ND	ND		
(ylene (Total)	ug/L	ND	ND		
,2-Dichloroethane-d4 (S)	%	103	100		
I-Bromofluorobenzene (S)	%	102	100		
oluene-d8 (S)	%	111	108		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

QC Batch: 470256 Analysis Method: EPA 8270E

QC Batch Method: EPA 3510C Analysis Description: 8270E Water MSSV RVE

Associated Lab Samples: 92425908001, 92425908002

METHOD BLANK: 2553172 Matrix: Water

Associated Lab Samples: 92425908001, 92425908002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifier
					Qualifier
,2,4-Trichlorobenzene	ug/L	ND	10.0	04/19/19 16:02	
,2-Dichlorobenzene	ug/L	ND	10.0	04/19/19 16:02	
,3-Dichlorobenzene	ug/L	ND	10.0	04/19/19 16:02	
,4-Dichlorobenzene	ug/L	ND	10.0	04/19/19 16:02	
-Methylnaphthalene	ug/L	ND	10.0	04/19/19 16:02	
,2'-Oxybis(1-chloropropane)	ug/L	ND	10.0	04/19/19 16:02	
,4,5-Trichlorophenol	ug/L	ND	10.0	04/19/19 16:02	
,4,6-Trichlorophenol	ug/L	ND	10.0	04/19/19 16:02	
,4-Dichlorophenol	ug/L	ND	10.0	04/19/19 16:02	
,4-Dimethylphenol	ug/L	ND	10.0	04/19/19 16:02	
,4-Dinitrophenol	ug/L	ND	50.0	04/19/19 16:02	
,4-Dinitrotoluene	ug/L	ND	10.0	04/19/19 16:02	
,6-Dinitrotoluene	ug/L	ND	10.0	04/19/19 16:02	
-Chloronaphthalene	ug/L	ND	10.0	04/19/19 16:02	
-Chlorophenol	ug/L	ND	10.0	04/19/19 16:02	
-Methylnaphthalene	ug/L	ND	10.0	04/19/19 16:02	
-Methylphenol(o-Cresol)	ug/L	ND	10.0	04/19/19 16:02	
-Nitroaniline	ug/L	ND	50.0	04/19/19 16:02	
-Nitrophenol	ug/L	ND	10.0	04/19/19 16:02	
&4-Methylphenol(m&p Cresol)	ug/L	ND	10.0	04/19/19 16:02	
,3'-Dichlorobenzidine	ug/L	ND	20.0	04/19/19 16:02	
-Nitroaniline	ug/L	ND	50.0	04/19/19 16:02	
,6-Dinitro-2-methylphenol	ug/L	ND	20.0	04/19/19 16:02	
-Bromophenylphenyl ether	ug/L	ND	10.0	04/19/19 16:02	
-Chloro-3-methylphenol	ug/L	ND	20.0	04/19/19 16:02	
-Chloroaniline	ug/L	ND	20.0	04/19/19 16:02	
-Chlorophenylphenyl ether	ug/L	ND	10.0	04/19/19 16:02	
-Nitroaniline	ug/L	ND	20.0	04/19/19 16:02	
-Nitrophenol	ug/L	ND	50.0	04/19/19 16:02	
cenaphthene	ug/L	ND	10.0	04/19/19 16:02	
cenaphthylene	ug/L	ND	10.0	04/19/19 16:02	
niline	ug/L	ND	10.0	04/19/19 16:02	
Inthracene	ug/L	ND	10.0	04/19/19 16:02	
enzo(a)anthracene	ug/L	ND	10.0	04/19/19 16:02	
Benzo(a)pyrene	ug/L	ND	10.0	04/19/19 16:02	
Benzo(b)fluoranthene	ug/L	ND	10.0	04/19/19 16:02	
Benzo(g,h,i)perylene	ug/L	ND	10.0	04/19/19 16:02	
Benzo(k)fluoranthene	ug/L	ND	10.0	04/19/19 16:02	
Benzoic Acid	ug/L	ND	50.0	04/19/19 16:02	
senzyl alcohol	ug/L	ND	20.0	04/19/19 16:02	
is(2-Chloroethoxy)methane	ug/L	ND	10.0	04/19/19 16:02	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

METHOD BLANK: 2553172 Matrix: Water

Associated Lab Samples: 92425908001, 92425908002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
					Qualifiers
is(2-Chloroethyl) ether	ug/L	ND	10.0	04/19/19 16:02	
is(2-Ethylhexyl)phthalate	ug/L	ND	6.0	04/19/19 16:02	
utylbenzylphthalate	ug/L	ND	10.0	04/19/19 16:02	
hrysene	ug/L	ND	10.0	04/19/19 16:02	
-n-butylphthalate	ug/L	ND	10.0	04/19/19 16:02	
-n-octylphthalate	ug/L	ND	10.0	04/19/19 16:02	
enz(a,h)anthracene	ug/L	ND	10.0	04/19/19 16:02	
oenzofuran	ug/L	ND	10.0	04/19/19 16:02	
ethylphthalate	ug/L	ND	10.0	04/19/19 16:02	
methylphthalate	ug/L	ND	10.0	04/19/19 16:02	
uoranthene	ug/L	ND	10.0	04/19/19 16:02	
orene	ug/L	ND	10.0	04/19/19 16:02	
xachloro-1,3-butadiene	ug/L	ND	10.0	04/19/19 16:02	
achlorobenzene	ug/L	ND	10.0	04/19/19 16:02	
achlorocyclopentadiene	ug/L	ND	10.0	04/19/19 16:02	
cachloroethane	ug/L	ND	10.0	04/19/19 16:02	
no(1,2,3-cd)pyrene	ug/L	ND	10.0	04/19/19 16:02	
phorone	ug/L	ND	10.0	04/19/19 16:02	
litroso-di-n-propylamine	ug/L	ND	10.0	04/19/19 16:02	
litrosodimethylamine	ug/L	ND	10.0	04/19/19 16:02	
litrosodiphenylamine	ug/L	ND	10.0	04/19/19 16:02	
hthalene	ug/L	ND	10.0	04/19/19 16:02	
obenzene	ug/L	ND	10.0	04/19/19 16:02	
ntachlorophenol	ug/L	ND	25.0	04/19/19 16:02	
enanthrene	ug/L	ND	10.0	04/19/19 16:02	
enol	ug/L	ND	10.0	04/19/19 16:02	
rene	ug/L	ND	10.0	04/19/19 16:02	
,6-Tribromophenol (S)	%	70	10-137	04/19/19 16:02	
luorobiphenyl (S)	%	54	13-130	04/19/19 16:02	
luorophenol (S)	%	45	10-130	04/19/19 16:02	
robenzene-d5 (S)	%	56	13-130	04/19/19 16:02	
enol-d6 (S)	%	33	10-130	04/19/19 16:02	
rphenyl-d14 (S)	%	93	25-130	04/19/19 16:02	

LABORATORY CONTROL SAMPLE:	2553173					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trichlorobenzene	ug/L	50	27.1	54	30-130	
1,2-Dichlorobenzene	ug/L	50	29.3	59	30-130	
1,3-Dichlorobenzene	ug/L	50	28.2	56	20-130	
1,4-Dichlorobenzene	ug/L	50	29.6	59	30-130	
1-Methylnaphthalene	ug/L	50	35.7	71	30-130	
2,2'-Oxybis(1-chloropropane)	ug/L	50	32.7	65	20-130	
2,4,5-Trichlorophenol	ug/L	50	35.4	71	40-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

LABORATORY CONTROL SAMPLE:	2553173					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2,4,6-Trichlorophenol	ug/L	50	34.4	69	40-130	
2,4-Dichlorophenol	ug/L	50	35.3	71	31-130	
2,4-Dimethylphenol	ug/L	50	37.4	75	30-130	
2,4-Dinitrophenol	ug/L	250	ND	5	30-130 I	_2
2,4-Dinitrotoluene	ug/L	50	41.3	83	49-130	
2,6-Dinitrotoluene	ug/L	50	38.1	76	50-130	
2-Chloronaphthalene	ug/L	50	30.1	60	30-130	
2-Chlorophenol	ug/L	50	36.5	73	30-130	
2-Methylnaphthalene	ug/L	50	34.4	69	30-130	
2-Methylphenol(o-Cresol)	ug/L	50	37.0	74	30-130	
2-Nitroaniline	ug/L	100	76.3	76	40-130	
2-Nitrophenol	ug/L	50	34.6	69	20-130	
3&4-Methylphenol(m&p Cresol)	ug/L	50	33.5	67	20-130	
3,3'-Dichlorobenzidine	ug/L	100	77.8	78	10-150	
3-Nitroaniline	ug/L	100	84.0	84	40-130	
1,6-Dinitro-2-methylphenol	ug/L	100	46.1	46	40-130	
1-Bromophenylphenyl ether	ug/L	50	35.3	71	30-130	
1-Chloro-3-methylphenol	ug/L	100	72.7	73	30-130	
I-Chloroaniline	ug/L	100	74.5	75	20-130	
I-Chlorophenylphenyl ether	ug/L	50	34.5	69	20-130	
I-Nitroaniline	ug/L	100	91.7	92	40-130	
I-Nitrophenol	ug/L	250	48.6J	19	10-130	
Acenaphthene	ug/L	50	37.0	74	30-130	
Acenaphthylene	ug/L	50	39.1	78	30-130	
Aniline	ug/L	50	34.1	68	20-130	
Anthracene	ug/L	50	43.9	88	50-130	
Benzo(a)anthracene	ug/L	50	45.3	91	50-130	
Benzo(a)pyrene	ug/L	50	45.2	90	50-130	
Benzo(b)fluoranthene	ug/L	50	45.4	91	50-130	
Benzo(g,h,i)perylene	ug/L	50	47.8	96	50-130	
Benzo(k)fluoranthene	ug/L	50	47.3	95	50-130	
Benzoic Acid	ug/L	250	ND	0	10-130 I	_2
Benzyl alcohol	ug/L	100	71.0	71	20-130	
ois(2-Chloroethoxy)methane	ug/L	50	35.9	72	30-130	
ois(2-Chloroethyl) ether	ug/L	50	36.8	74	30-130	
ois(2-Ethylhexyl)phthalate	ug/L	50	41.8	84	50-130	
Butylbenzylphthalate	ug/L	50	38.8	78	50-150	
Chrysene	ug/L	50	45.2	90	50-130	
Di-n-butylphthalate	ug/L	50	42.4	85	50-130	
Di-n-octylphthalate	ug/L	50	40.9	82	50-130	
Dibenz(a,h)anthracene	ug/L	50	49.4	99	40-130	
Dibenzofuran	ug/L	50	34.6	69	40-130	
Diethylphthalate	ug/L	50	41.7	83	40-130	
Dimethylphthalate	ug/L	50	39.7	79	40-130	
Fluoranthene	ug/L	50	47.6	95	30-130	
Fluorene	ug/L	50	39.4	79	20-130	
Hexachloro-1,3-butadiene	ug/L	50	25.8	52	10-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

ABORATORY CONTROL SAMPLE:	2553173					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
exachlorobenzene	ug/L	50	37.4		30-130	
exachlorocyclopentadiene	ug/L	50	23.9	48	10-150	
exachloroethane	ug/L	50	27.0	54	10-130	
deno(1,2,3-cd)pyrene	ug/L	50	48.1	96	40-130	
ophorone	ug/L	50	34.6	69	30-130	
-Nitroso-di-n-propylamine	ug/L	50	35.7	71	30-130	
Nitrosodimethylamine	ug/L	50	31.8	64	10-130	
Nitrosodiphenylamine	ug/L	50	38.4	77	30-130	
aphthalene	ug/L	50	35.1	70	20-130	
robenzene	ug/L	50	33.7	67	20-130	
ntachlorophenol	ug/L	100	64.9	65	10-140	
enanthrene	ug/L	50	44.0	88	50-130	
enol	ug/L	50	22.6	45	10-130	
rene	ug/L	50	42.4	85	50-130	
4,6-Tribromophenol (S)	%			89	10-137	
Fluorobiphenyl (S)	%			71	13-130	
Fluorophenol (S)	%			61	10-130	
robenzene-d5 (S)	%			76	13-130	
enol-d6 (S)	%			48	10-130	
phenyl-d14 (S)	%			83	25-130	

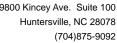
MATRIX SPIKE SAMPLE:	2553236						
		92425875001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trichlorobenzene	ug/L	ND	50	12.3	25	30-130	M1
1,2-Dichlorobenzene	ug/L	ND	50	13.9	28	30-130	M1
1,3-Dichlorobenzene	ug/L	ND	50	13.2	26	20-130	
1,4-Dichlorobenzene	ug/L	ND	50	14.4	27	30-130	M1
1-Methylnaphthalene	ug/L	ND	50	16.8	34	30-130	
2,2'-Oxybis(1-chloropropane)	ug/L	ND	50	13.8	28	20-130	
2,4,5-Trichlorophenol	ug/L	ND	50	18.3	37	40-130	M1
2,4,6-Trichlorophenol	ug/L	ND	50	16.6	33	40-130	M1
2,4-Dichlorophenol	ug/L	ND	50	15.2	30	31-130	M1
2,4-Dimethylphenol	ug/L	ND	50	14.3	29	30-130	M1
2,4-Dinitrophenol	ug/L	ND	250	162	65	30-130	
2,4-Dinitrotoluene	ug/L	ND	50	30.4	61	49-130	
2,6-Dinitrotoluene	ug/L	ND	50	22.5	45	50-130 l	M1
2-Chloronaphthalene	ug/L	ND	50	13.9	28	30-130	M1
2-Chlorophenol	ug/L	ND	50	15.7	31	30-130	
2-Methylnaphthalene	ug/L	ND	50	16.3	33	30-130	
2-Methylphenol(o-Cresol)	ug/L	ND	50	16.0	32	30-130	
2-Nitroaniline	ug/L	ND	100	44.6J	45	40-130	
2-Nitrophenol	ug/L	ND	50	15.4	31	20-130	
3&4-Methylphenol(m&p Cresol)	ug/L	ND	50	14.2	28	20-130	
3,3'-Dichlorobenzidine	ug/L	ND	100	24.4	24	10-150	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(704)875-9092


QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

MATRIX SPIKE SAMPLE:	2553236					
D		92425875001	Spike	MS	MS	% Rec
Parameter	Units	Result	Conc	Result	% Rec	Limits Qualifie
3-Nitroaniline	ug/L	ND	100	53.9	54	40-130
4,6-Dinitro-2-methylphenol	ug/L	ND	100	71.8	72	40-130
4-Bromophenylphenyl ether	ug/L	ND	50	22.5	45	30-130
4-Chloro-3-methylphenol	ug/L	ND	100	37.2	37	30-130
4-Chloroaniline	ug/L	ND	100	25.0	25	20-130
4-Chlorophenylphenyl ether	ug/L	ND	50	18.7	37	20-130
4-Nitroaniline	ug/L	ND	100	66.6	67	40-130
4-Nitrophenol	ug/L	ND	250	121	48	10-130
Acenaphthene	ug/L	ND	50	19.0	38	30-130
Acenaphthylene	ug/L	ND	50	19.4	39	30-130
Aniline	ug/L	ND	50	3.2J	6	20-130 M1
Anthracene	ug/L	ND	50	32.7	65	50-130
Benzo(a)anthracene	ug/L	ND	50	36.1	72	50-130
Benzo(a)pyrene	ug/L	ND	50	35.6	71	50-130
Benzo(b)fluoranthene	ug/L	ND	50	36.1	72	50-130
Benzo(g,h,i)perylene	ug/L	ND	50	36.4	73	50-130
Benzo(k)fluoranthene	ug/L	ND	50	37.2	74	50-130
Benzoic Acid	ug/L	ND	250	60.2	24	10-130
Benzyl alcohol	ug/L	ND	100	30.0	30	20-130
ois(2-Chloroethoxy)methane	ug/L	ND	50	15.2	30	30-130
ois(2-Chloroethyl) ether	ug/L	ND	50	15.6	31	30-130
pis(2-Ethylhexyl)phthalate	ug/L	ND	50	33.1	66	50-130
Butylbenzylphthalate	ug/L	ND	50	32.1	64	50-150
Chrysene	ug/L	ND	50	36.3	73	50-130
Di-n-butylphthalate	ug/L	ND	50	35.2	70	50-130
Di-n-octylphthalate	ug/L	ND	50	33.3	67	50-130
Dibenz(a,h)anthracene	ug/L	ND	50	37.2	74	40-130
Dibenzofuran	ug/L	ND	50	17.9	36	40-130 M1
Diethylphthalate	ug/L	ND	50	30.3	61	40-130
Dimethylphthalate	ug/L	ND	50	24.8	50	40-130
Fluoranthene	ug/L	ND	50	39.9	80	30-130
Fluorene	ug/L	ND	50	23.0	46	20-130
Hexachloro-1,3-butadiene	ug/L	ND	50	11.1	22	10-130
Hexachlorobenzene	ug/L	ND	50	22.3	45	30-130
Hexachlorocyclopentadiene	ug/L	ND	50	10.7	21	10-150
Hexachloroethane	ug/L	ND	50	12.3	25	10-130
ndeno(1,2,3-cd)pyrene	ug/L	ND	50	36.6	73	40-130
sophorone	ug/L	ND	50	16.4	33	30-130
N-Nitroso-di-n-propylamine	ug/L ug/L	ND ND	50 50	16.4	33	30-130
N-Nitrosodimethylamine	ug/L ug/L	ND ND	50	14.4	29	10-130
N-Nitrosodimetriylamine	ug/L ug/L	ND ND	50 50	8.5J	29 17	30-130 M1
Naphthalene		ND ND	50 50	6.5J 17.4	35	20-130 MT
•	ug/L	ND ND				
Nitrobenzene	ug/L		50 100	15.2	30	20-130
Pentachlorophenol	ug/L	ND	100	63.7	64	10-140
Phenanthrene	ug/L	ND	50	33.9	68	50-130
Phenol	ug/L	ND	50	10.5	21	10-130
Pyrene	ug/L	ND	50	34.8	70	50-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

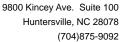
Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

MATRIX SPIKE SAMPLE:	2553236						
		92425875001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
2,4,6-Tribromophenol (S)	<u></u>				58	10-137	
2-Fluorobiphenyl (S)	%				30	13-130	
2-Fluorophenol (S)	%				26	10-130	
Nitrobenzene-d5 (S)	%				33	13-130	
Phenol-d6 (S)	%				20	10-130	
Terphenyl-d14 (S)	%				61	25-130	

SAMPLE DUPLICATE: 2553237					
		92425875002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2,4-Trichlorobenzene	ug/L	ND	ND		
1,2-Dichlorobenzene	ug/L	ND	ND		
1,3-Dichlorobenzene	ug/L	ND	ND		
1,4-Dichlorobenzene	ug/L	ND	ND		
1-Methylnaphthalene	ug/L	ND	2.1J		
2,2'-Oxybis(1-chloropropane)	ug/L	ND	ND		
2,4,5-Trichlorophenol	ug/L	ND	ND		
2,4,6-Trichlorophenol	ug/L	ND	ND		
2,4-Dichlorophenol	ug/L	ND	ND		
2,4-Dimethylphenol	ug/L	ND	ND		
2,4-Dinitrophenol	ug/L	ND	ND		
2,4-Dinitrotoluene	ug/L	ND	ND		
2,6-Dinitrotoluene	ug/L	ND	ND		
2-Chloronaphthalene	ug/L	ND	ND		
2-Chlorophenol	ug/L	ND	ND		
2-Methylnaphthalene	ug/L	3.1J	5.5J		
2-Methylphenol(o-Cresol)	ug/L	ND	ND		
2-Nitroaniline	ug/L	ND	ND		
2-Nitrophenol	ug/L	ND	ND		
3&4-Methylphenol(m&p Cresol)	ug/L	ND	ND		
3,3'-Dichlorobenzidine	ug/L	ND	ND		
3-Nitroaniline	ug/L	ND	ND		
4,6-Dinitro-2-methylphenol	ug/L	ND	ND		
4-Bromophenylphenyl ether	ug/L	ND	ND		
4-Chloro-3-methylphenol	ug/L	ND	ND		
4-Chloroaniline	ug/L	ND	ND		
4-Chlorophenylphenyl ether	ug/L	ND	ND		
4-Nitroaniline	ug/L	ND	ND		
4-Nitrophenol	ug/L	ND	ND		
Acenaphthene	ug/L	ND	ND		
Acenaphthylene	ug/L	ND	ND		
Aniline	ug/L	ND	ND		
Anthracene	ug/L	ND	ND		
Benzo(a)anthracene	ug/L	ND	ND		
Benzo(a)pyrene	ug/L	ND	ND		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

SAMPLE DUPLICATE: 2553237		00405075000			
Б	11.2	92425875002	Dup	222	0 117
Parameter	Units	Result	Result	RPD	Qualifiers
Benzo(b)fluoranthene	ug/L	ND	ND		
Benzo(g,h,i)perylene	ug/L	ND	ND		
Benzo(k)fluoranthene	ug/L	ND	ND		
Benzoic Acid	ug/L	ND	ND		
Benzyl alcohol	ug/L	ND	ND		
bis(2-Chloroethoxy)methane	ug/L	ND	ND		
ois(2-Chloroethyl) ether	ug/L	ND	ND		
bis(2-Ethylhexyl)phthalate	ug/L	ND	ND		
Butylbenzylphthalate	ug/L	ND	ND		
Chrysene	ug/L	ND	ND		
Di-n-butylphthalate	ug/L	ND	ND		
Di-n-octylphthalate	ug/L	ND	ND		
Dibenz(a,h)anthracene	ug/L	ND	ND		
Dibenzofuran	ug/L	ND	ND		
Diethylphthalate	ug/L	ND	ND		
Dimethylphthalate	ug/L	ND	ND		
Fluoranthene	ug/L	ND	ND		
Fluorene	ug/L	ND	ND		
Hexachloro-1,3-butadiene	ug/L	ND	ND		
Hexachlorobenzene	ug/L	ND	ND		
Hexachlorocyclopentadiene	ug/L	ND	ND		
Hexachloroethane	ug/L	ND	ND		
ndeno(1,2,3-cd)pyrene	ug/L	ND	ND		
sophorone	ug/L	ND	ND		
N-Nitroso-di-n-propylamine	ug/L	ND	ND		
N-Nitrosodimethylamine	ug/L	ND	ND		
N-Nitrosodiphenylamine	ug/L	ND	ND		
Naphthalene	ug/L	7.8J	13.6		
Nitrobenzene	ug/L	ND	ND		
Pentachlorophenol	ug/L	ND	ND		
Phenanthrene	ug/L	ND	ND		
Phenol	ug/L	ND	2.7J		
Pyrene	ug/L	ND	ND		
2,4,6-Tribromophenol (S)	%	59	69		
2-Fluorobiphenyl (S)	%	51	57		
2-Fluorophenol (S)	%	46	48		
Nitrobenzene-d5 (S)	%	55	60		
Phenol-d6 (S)	%	36	37		
Terphenyl-d14 (S)	%	72	73		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: U5797
Pace Project No.: 92425908

QC Batch: 470258 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 92425908003, 92425908004

SAMPLE DUPLICATE: 2553186

Parameter Units Result Result RPD Qualifiers

Percent Moisture % 18.6 16.4 13

SAMPLE DUPLICATE: 2553187

Date: 04/25/2019 03:59 PM

ParameterUnits92425874002 ResultDup ResultRPDQualifiersPercent Moisture%4.55.214

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: U5797
Pace Project No.: 92425908

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

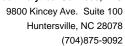
PASI-C Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

Date: 04/25/2019 03:59 PM

D6	The precision between the sample and sample duplicate exceeded laboratory control limits.

H2 Extraction or preparation conducted outside EPA method holding time.


IK The recalculated concentration of the calibration standard(s) did not meet method acceptance criteria; this result should be considered an estimated value.

L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

P2 Re-extraction or re-analysis could not be performed due to insufficient sample amount.

S0 Surrogate recovery outside laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92425908001	B3	EPA 3510C	470256	EPA 8270E	470471
92425908002	B5.1	EPA 3510C	470256	EPA 8270E	470471
92425908003	B18	EPA 5035A	470498	EPA 8260D	470560
92425908004	B19	EPA 5035A	470498	EPA 8260D	470560
92425908001	В3	EPA 8260D	470847		
92425908002	B5.1	EPA 8260D	470847		
92425908003	B18	ASTM D2974-87	470258		
92425908004	B19	ASTM D2974-87	470258		

	Positive Live
	Document Name: Sample Condition Upon Receipt (SCUR) Document Revised: February 7, 2018. Page 1 of 1
*	race cavillas duality Office
	Ashaville
	Hunterville Delater
	Sample Continon Character
	Upon Receipt WO#: 92425908
	Project Project
	Course: Fed Ex Clumber 1
_	Commercial
	Liotrar
	Custady Seal Present? Yes No Seals Intact? Types The
	Seals Intact? [Yes []No
	Packing Material: [Bubble Wood To Determine Contents: [DB]
	Bubble Bags Nagan C' au
	Biological Tissue Februar 7
	Type of Ice: Twet Takes The MA
	Cooler Temp (°C): 10. Correction Factor: Add/Subtract (°C) -0.
	Temp should be above freezing to 6°C
	USDA Registrate out of temporitaria Samples out of temporitaria Samples out of temporitaria
	Did samples originate in a quarantine zone within the United States: CA, NY, or SC (check maps)? Old samples originate from the form the form the first states of the samples or the samp
	Yes No Vitalian the United States: CA, NY, or SC (check mans)?
	including the principal of the principal
	Manager and Publish Manager And Manager An
	Myer Chi.
	Samples Arrived within Hold Time?
	Short Hold Time Analysis (<72 hr 17 . Professional Profes
	Rush Turn Around Time Ranuested? [Na 3.
	Sufficient Volume?
	transfer Actualities
	Constitutions Used?
	Of City of
ŀ	Containers Intact?
-	Olssolved analysis: Semples Field Filtered?
- 1	Sample Labels March COCO
- 1	Mres No N/A 9.
L	-Includes Date/Time/ID/Analysis Matrice WT 5L
1	Particulars varie/Time/ID/Analysis Matrix WT 5L
Tr	lea dispace in VDA Viels (>5-6mm)?
1	TVo.
Tri	P Blank Custody Seals Present 2
	Yes The Chile
-OHTE	ACHTS/SAMPLE OLICE EPANCY
- Table	The state of the s
	A STATE OF THE PROPERTY OF THE
(a) =	
ENT NO	TIFICATION/RESOLUTION Lot ID of split containers:
	,
-tas	
anu cou	ntacted:
	Date/Time:
oject M	fanager SCURF Review:
8	
	Date:

Pace Analytical

Document Name: Sample Condition Upon Receipt(SCUR) Document No.: F-CAR-CS-033-Rev.06

Occument Revised: February 7, 2018 Page 1 of 2 Issuing Authority:

Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TDC, Oil and Grease, DRO/8015 (water) DGC, LLHg ##Bottom half of box is to list number of bottle

Project

WO#: 92425908

PN: TIH

Due Date: 04/28/10

CLIENT: 92-FALCON

		3					\prod	T of	T	g	7	Γ	ã	:	T	T	T	T	7						Γ			_			7			
	BP4U-125 ml pl	BP3U-250 mL Plastic Unipreserved (N/A) (Cl-)	SP21Leng	BP111.1 III.	BP45-136 BP45-136	Boos 23 mt. Plastic H2SO4 (pH < 2) (G+)	PPSN-250 mL plastic HNOS (pH < 2)	Druc-125 mL Plastic 2N Acetate & NaOH (>9)	+	vierU-Wide-mouthed Glass Jar Unpreserved	Actual liter Amber Unpreserved (N/A) (CH)	AGLH-1 liter Amber HCl (pH < 2)	AGBU-250 mt Amber Unpreserved (N/A) (CL)	AG1.S-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2504 (nH < 2)	AG9A(DG3A)-250 mL Ambar NHaci in 1995	DG9H-40 mt VOA HCI (N/A)	VG9T-40 mL VOA Na2520a 1811.	VGSU-40 mt VGA Um (1415)	D639-40 mLV04 L200	VOAK (6 ulais	View in the per kit)-5085 kit (N/A)	SPRT	Sport Sterile Plastic (N/A - lab)	Sterile Plastic (N/A - lab)	BP3A-250 mL Plante Interne	AGOU-100 M A MILE AGOU-100 M	VSGU-20 mi ca	Dean of the Scintillation viale (N/A)	Long mi Amber Unpreserved viols (N/A)			8	
2	A			\vdash			1	1	1	\perp	1	1	-	X	1	Y							1		1		1							
3	V	1				(1	X	+		1	+	1	X	X	7	4	+	+	\dashv	T	\vdash		-		A	1	_						
5	V				V	V						-	1	1	X	1	+	+	+	+	'	7		_	H	1	+	-	\dashv					
5	Y	1	7	1	X	A	V	Y					7	1	A		-	1-	-	+	+	7		1	J	1	+	1						
7	7	+	+	1	X	X	X	Y	4		Y		1	7				I		I	I	1		1	V	J	1	1	7					
В	}	-	}	+	X,	X	X	7	+	-	4	1	X		/	<u> </u>		_	_	L	1	1	1	1	1	V		I					•	
9	1		-	K	X	1	X	7	+	+	7	1	X	X	1		\dashv					+	+	1	1	1	L	1	1					
10		7	_	1	1	X	A	1	-	K	+	1	X	7	7	1	1	\exists	\exists			-	\perp	1	1		_		$\left\{ \right.$					
12-7-		****		V	7	/	1	1	F	X		1	X	1	7	==	=				TIME	4400	loca	K	1	A.Thur	-	eri-e-		·~ ~	- v+	42		
12			\perp							N		1	1	1	J		1			1														

ample ID	Type of Preservative	PITAL	Justment Log for Pres	served Samples		
•	,, = =	by abou tecelbs	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lat ‡
		···········				

Note: Whenever there is a discrepancy affecting North Carolina compilance samples, a copy of this form will be sent to the North Carolina DEHNR Cartification Office (i.e.

0 12 LAN 18 1	William (Viv) Consist
Section B Section B Section B Required Project Information: Chalved Custody is a LEGAL DOCUMENT. All relevant field Required Project Information: Copy To: Charles Order #: C719011 Project Warmer Cook order #: C719011 Project #: C719011 Proje	A CONTROL OF CAMERS. SOWITHER OF SAMPLER. SON TURE OF SAMPLER.

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2019-091)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 16 NCDOT PROJECT U-5797

2548-E FAYETTEVILLE RD., LUMBERTON, NC APRIL 22, 2019

Report prepared for: Christopher J. Burkhardt, PWS

Falcon Engineers 1210 Trinity Rd. #110 Raleigh, NC 27607

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by:

Douglas A. Canavello, P.G.

NC License #1066

GEOPHYSICAL INVESTIGATION REPORT

Parcel 16 - 2548-E Fayetteville Rd. Lumberton, Robeson County, North Carolina

Table of Contents

Executive Summary	1
Introduction	
Field Methodology	2
Discussion of Results	
Discussion of EM Results	
Discussion of GPR Results	
Summary & Conclusions	
Limitations	

Figures

- Figure 1 Parcel 16 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 16 EM61 Results Contour Map
- Figure 3 Parcel 16 GPR Transect Locations and Select Images
- Figure 4 Parcel 16 Overlay of Metal Detection Results on NCDOT Engineering Plans

Appendices

Appendix A – GPR Transect Images

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	Dual Frequency
EM	Electromagnetic
GPR	Ground Penetrating Radar
GPS	Global Positioning System
NCDOT	North Carolina Department of Transportation
ROW	
UST	Underground Storage Tank

EXECUTIVE SUMMARY

Project Description: Pyramid Environmental conducted a geophysical investigation for Falcon Engineers at Parcel 16, located at 2548-E Fayetteville Rd. in Lumberton, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project U-5797). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from March 18-26, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of nine EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. Several EM anomalies were associated with interference from a building, a car, and suspected reinforced concrete and were further investigated with GPR.

GPR verified the presence of metal reinforcement in the concrete on the central and southern portions of the survey area. No evidence of any larger structures such as USTs was observed. Collectively, the geophysical data <u>did not record any evidence of unknown</u> metallic USTs within the geophysical survey area at Parcel 16.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Falcon Engineers at Parcel 16, located at 2548-E Fayetteville Rd. in Lumberton, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project U-5797). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from March 18-26, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included commercial buildings surrounded by concrete, asphalt, and grass surfaces. An aerial photograph showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8-foot intervals along north-south trending or east-west trending, generally parallel survey lines, spaced five feet apart. The data were downloaded to a

computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on March 26, 2019, using a Geophysical Survey Systems, Inc. (GSSI) UtilityScan DF unit equipped with a dual frequency 300/800 MHz antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the DF unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the DF unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

	Geophysical Surveys for on NCI	Underground Stora OOT Projects	ge Tanks
High Confidence	Intermediate Confidence	Low Confidence	No Confidence
Known UST	Probable UST	Possible UST	Anomaly noted but not
Active tank - spatial location, orientation,	Sufficient geophysical data from both magnetic and radar surveys that is	Sufficient geophysical data from either magnetic or radar surveys	characteristic of a UST. Should be noted in the text and may be called
and approximate	characteristic of a tank. Interpretation may	that is characteristic of a tank.	out in the figures at the
depth determined by	be supported by physical evidence such as	Additional data is not sufficient	geophysicist's discretion.
geophysics.	fill/vent pipe, metal cover plate,	enough to confirm or deny the	g. P.
T (T)(T)	asphalt/concrete patch, etc.	presence of a UST.	

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The following table presents the list of EM anomalies and the cause of the metallic response, if known:

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Guard Rail	
2	Drop Inlet	
3	Drop Inlet	
4	Surface Metal	
5	Reinforced Concrete	Ø
6	Drop Inlet	
7	Reinforced Concrete	Ø
8	Car/Building	Ø
9	Utilities	

The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface, including a guard rail, drop inlets, surface metal, a car, the buildings, and utilities. EM Anomalies 5 and 7 were associated with suspected reinforced concrete and were further investigated with GPR to confirm that there was reinforcement in the concrete slab and the reinforcement did not obscure any potential USTs.

EM Anomaly 8 was associated with interference from a building and a car and was further investigated with GPR to verify that the interference did not obscure buried structures such as USTs.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as select transect images. All of the transect images are included in **Appendix A**. A total of eleven formal GPR transects were performed at the site. GPR Transects 1-7 were performed in a grid-like fashion across EM Anomaly 5. These transects verified the presence of metal reinforcement in the concrete on the central portion of the survey area. No evidence of any larger structures such as USTs was observed.

GPR Transects 8-10 were performed across EM Anomaly 7. These transects verified the presence of metal reinforcement in the concrete on the southern portion of the survey area. No evidence of any larger structures such as USTs was observed.

GPR Transect 11 was performed across EM Anomaly 8. This transect did not record evidence of significant structures, such as USTs, and verified that the car and building were the cause for the EM interference.

Collectively, the geophysical data <u>did not record any evidence of unknown metallic USTs</u> <u>within the geophysical survey area at Parcel 16</u>. **Figure 4** provides an overlay of the EM61 metal detection contour map onto the NCDOT MicroStation engineering plans for reference.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 16 in Lumberton, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface.
- Several EM anomalies were associated with interference from a building, a car, and suspected reinforced concrete and were further investigated with GPR.
- GPR verified the presence of metal reinforcement in the concrete on the central and southern portions of the survey area. No evidence of any larger structures such as USTs was observed.
- Collectively, the geophysical data <u>did not record any evidence of unknown metallic</u>
 USTs within the geophysical survey area at Parcel 16.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Falcon Engineers in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

View of Survey Area (Facing Approximately North)

View of Survey Area (Facing Approximately South)

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

PARCEL 16 LUMBERTON, NORTH CAROLINA NCDOT PROJECT U-5797 TITLE

PARCEL 16 - GEOPHYSICAL SURVEY BOUNDARIES AND SITE PHOTOGRAPHS

DATE	3/26/2019	CLIENT FALCON ENGINEER
PYRAMID PROJECT #:	2019-091	FIGURE 1

EM61 METAL DETECTION RESULTS

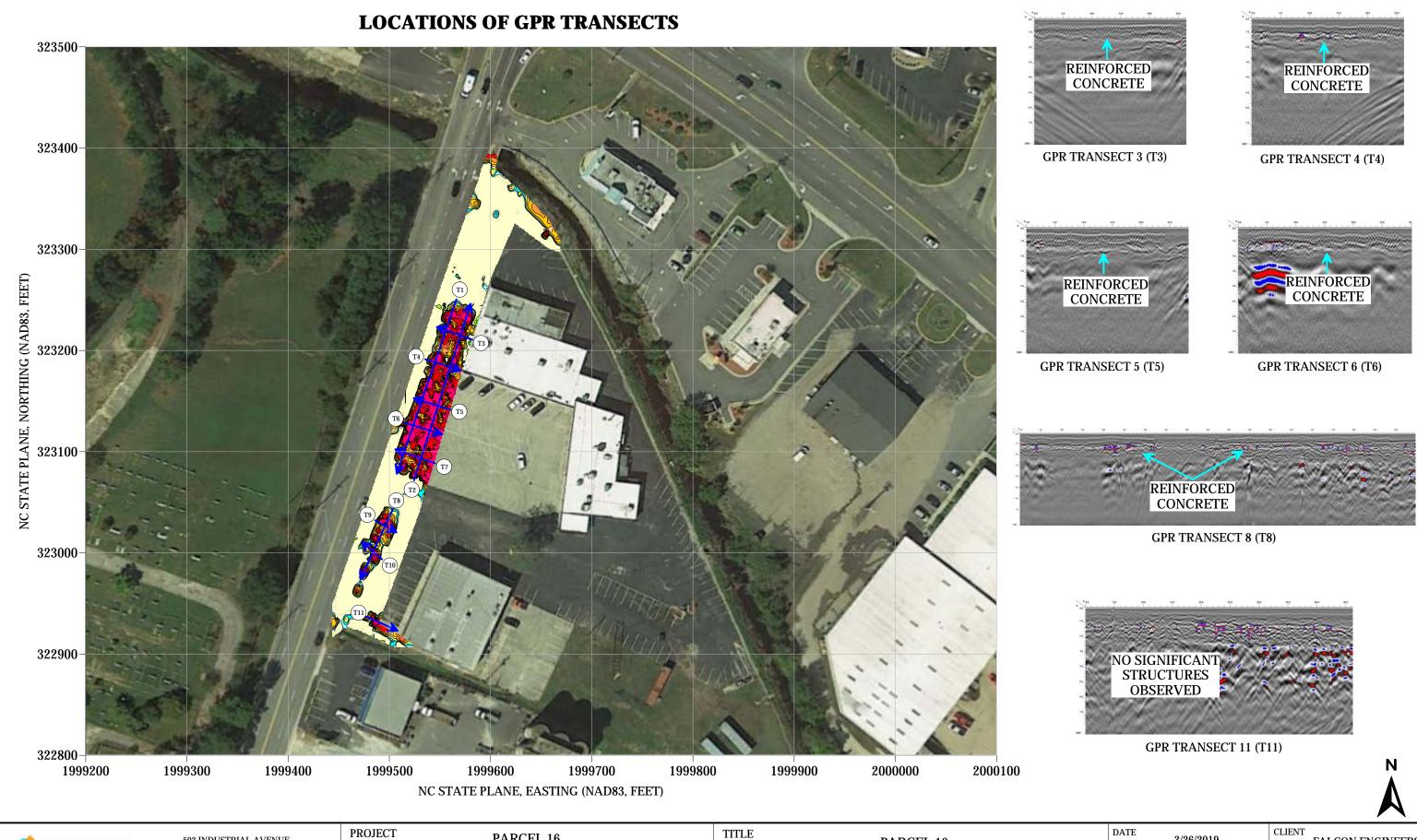
NO EVIDENCE OF METALLIC USTs OBSERVED.

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on March 18, 2019, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI UtilityScan DF instrument with a dual frequency 300/800 MHz antenna on March 26, 2019.

EM61 Metal Detection Response (millivolts)

1000 750 500 400 300 150 100 75 60 60 50 100 -200 -400 -5000

N



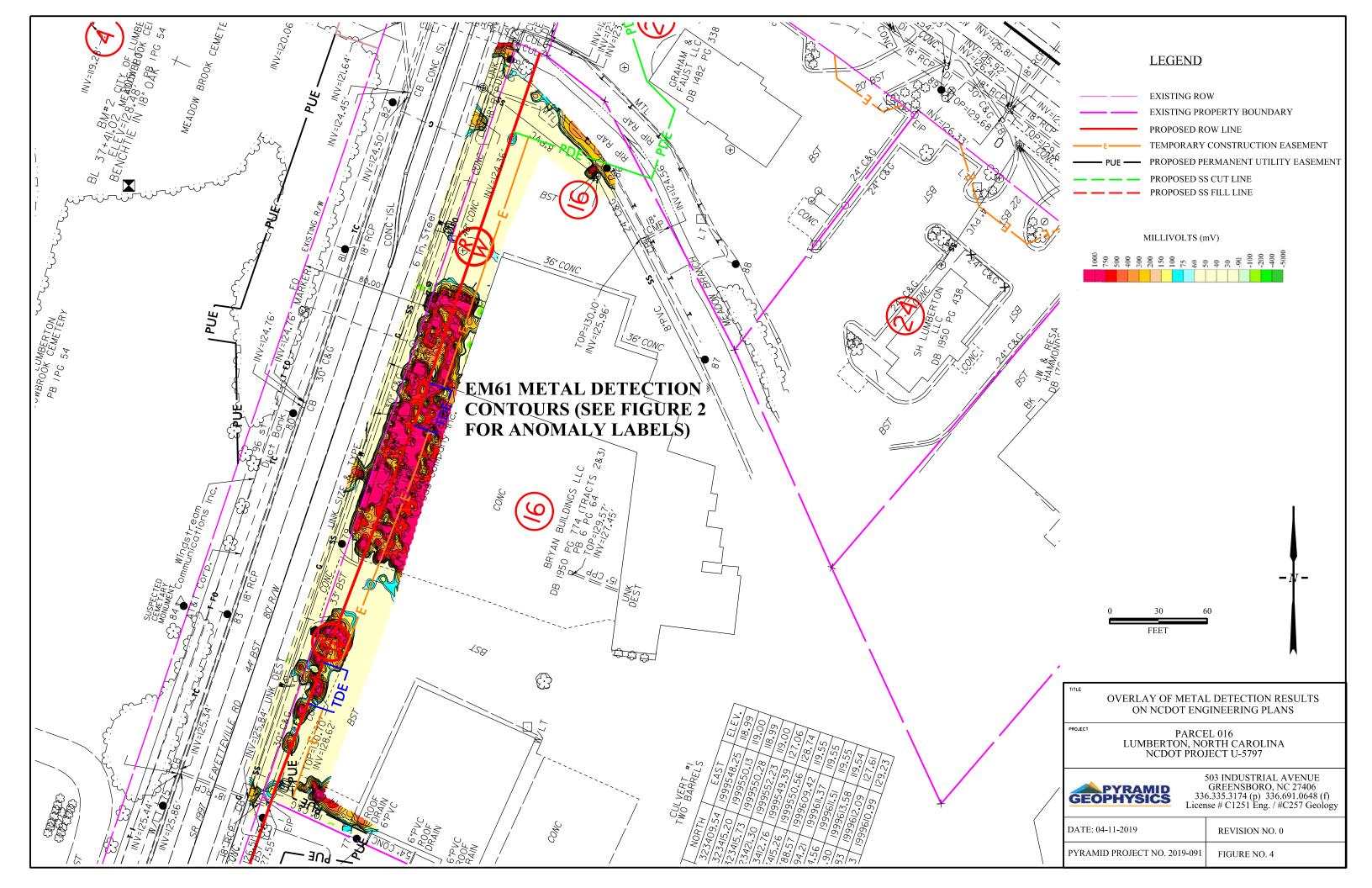
503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

PARCEL 16 LUMBERTON, NORTH CAROLINA NCDOT PROJECT U-5797 TITLE

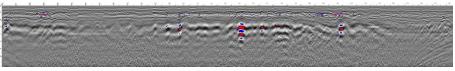
PARCEL 16 -EM61 METAL DETECTION CONTOUR MAP

	DATE	3/26/2019	FALCON ENGINE
	PYRAMID PROJECT #:	2019-091	FIGURE 2

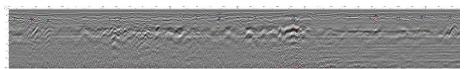
503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology

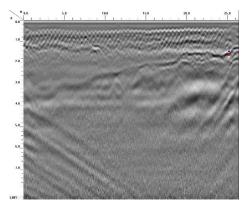

PROJECT

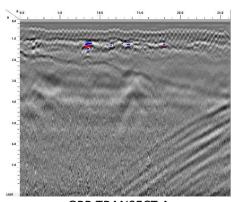
PARCEL 16 LUMBERTON, NORTH CAROLINA NCDOT PROJECT U-5797

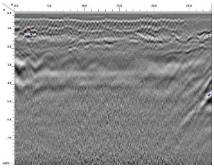

PARCEL 16 -GPR TRANSECT LOCATIONS AND SELECT IMAGES 3/26/2019

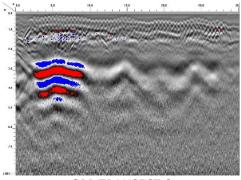
FALCON ENGINEERS

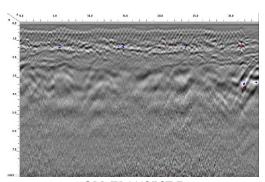

PYRAMID PROJECT #: FIGURE 3 2019-091

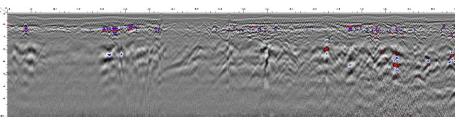


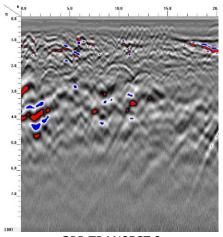

GPR TRANSECT 1

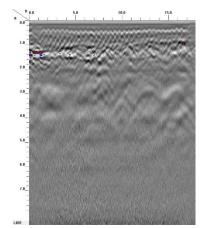

GPR TRANSECT 2

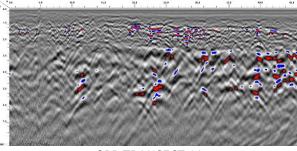

GPR TRANSECT 3


GPR TRANSECT 4


GPR TRANSECT 5


GPR TRANSECT 6


GPR TRANSECT 7


GPR TRANSECT 8

GPR TRANSECT 9

GPR TRANSECT 10

GPR TRANSECT 11