PRELIMINARY SITE ASSESSMENT

SR 1997 (FAYETTEVILLE ROAD) WIDENING TIP NO. U-5797, WBS NO. 44367.1.1

NCDOT PARCEL NO. 09

OWNER: FLOYD, CHRISTOPHER E. & KAREN R.

2303 PINE STREET

LUMBERTON, ROBESON COUNTY, NORTH CAROLINA

PREPARED FOR:

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION C/O STV ENGINEERS, INC. 1600 PERIMETER PARK DRIVE, SUITE 225 MORRISVILLE, NC 2756002

PREPARED BY:

FALCON ENGINEERING, INC. 1210 TRINITY ROAD, SUITE 110 CARY, NC 27513

PROJECT NUMBER: G19011.00 JUNE 9, 2020

June 9, 2020

Mr. Patrick Livingston, PE STV Engineers, Inc. 900 W. Trade St, Suite 715 Charlotte, NC 28202

Re: Preliminary Site Assessment

SR 1997 (Fayetteville Road) Widening TIP No. U-5797, WBS No. 44367.1.1 Parcel No. 09 Owner: Floyd, Christopher E. & Karen R. 2303 Pine Street Lumberton, Robeson County, North Carolina

Dear: Mr. Livingston:

Falcon is pleased to present the following Preliminary Site Assessment in support of the above-mentioned Project. Specifically, Falcon sampled soil in proximity to the project limits on this parcel in general accordance with the approved scope of work. Contaminants above the State Action Level for DRO were identified; however, additional assessment is not warranted at this time as the soil can be removed and properly disposed of during construction. Ten constituents were also identified in the groundwater above the North Carolina Groundwater Quality Standards but below the Gross Contamination Levels. Collectively, the geophysical data recorded evidence of two probable USTs within the geophysical survey area at Parcel No. 09.

Falcon recommends if drums, additional USTs, above ground storage tanks (ASTs), petroleum odors or sheen are observed during any excavation associated with any property involved in the project that all work in the vicinity stop until further assessment takes place. Further assessment can include but is not limited to; sampling the soil and groundwater, excavation, and proper handling and disposal of contaminated soils and groundwater.

Please review this report and advise us if you have any questions or concerns. We appreciate this opportunity to provide services to you and look forward to partnering with you on future projects. If you have any questions, please give Falcon a call at (919) 871-0800.

Sincerely,

FALCON ENGINEERING, INC.

Christopher J. Burkhardt

Mistopher Butharet

Environmental Services Manager

Jeremy R. Hamm, PE Geotechnical Services Manager

TABLE OF CONTENTS

SECTIO	N 1: INTRODUCTION	5
	1.1 DESCRIPTION	5
	1.2 SCOPE OF WORK	5
SECTIO	N 2: HISTORY	6
	2.1 PARCEL USAGE	6
	2.2 FACILITY IDENTIFICATION NUMBER	6
	2.3 GROUNDWATER INCIDENT NUMBER	6
SECTIO	N 3: SITE OBSERVATIONS	7
	3.1 GROUNDWATER MONITORING WELLS	7
	3.2 ACTIVE USTS	7
	3.3 FEATURES APPARENT BEYOND ROW/EASEMENT	7
SECTIO	N 4: METHODOLOGY	8
	4.1 GEOPHYSICS	8
	4.2 BORINGS	8
	4.3 SAMPLE PROTOCOL	8
SECTIO	N 5: RESULTS	10
	5.1 GEOPHYSICS	10
	5.2 SAMPLE DATA	10
	TABLE NO. 1 BORING COORDINATES	10
	TABLE NO. 2 PID READINGS	
	TABLE NO. 3 SUMMARY OF UVF SOIL SAMPLING RESULTS	
	TABLE NO. 4 SUMMARY OF WATER SAMPLING RESULTS	
	5.3 SAMPLE OBSERVATIONS	
	TABLE NO. 5 SOIL OBSERVATIONS	
SECTIO	N 6: CONCLUSIONS	
SECTIO		
	6.1 INTERPRETATION OF RESULTS	
	6.2 GEOPHYSICS	
	6.3 SAMPLING	
	6.4 QUANTITIES	
SECTIO	N 7: RECOMMENDATIONS	_
	7.1 ADDITIONAL SAMPLING	18
	7.2 SPECIAL HANDLING OF IMPACTED SOIL	18

LIST OF FIGURES AND ATTACHMENTS

VICINITY MAP

USGS TOPOGRAPHIC MAP

PARCEL LOCATION MAP

BORING LOCATION MAP

SOIL LAB RESULTS MAP

GROUNDWATER LAB RESULTS MAP

SITE PHOTOGRAPHS

LABORATORY RESULTS

GEOPHYSICAL SURVEY

SECTION 1: INTRODUCTION

1.1 DESCRIPTION

Falcon Engineering, Inc. (Falcon) has completed a Preliminary Site Assessment of NCDOT TIP Project U-5797 Parcel No. 09. Parcel No. 09 is addressed as 2303 Pine Street, Fayetteville Road, Lumberton Robeson County, North Carolina. NCDOT is proposing to widen Fayetteville Road (SR 1997) from Farringdom Street to 22nd Street. The limits of the assessment are between the existing edge of NCDOT maintained pavement (within the existing NCDOT ROW) where accessible, and the proposed NCDOT ROW and/or easement (whichever boundary represents the largest area). Boring locations were placed in the vicinity of proposed excavations for drainage features, utilities, and roadway/ditch cuts to determine if soils requiring remediation or special handling were present where excavation was planned to take place.

1.2 SCOPE OF WORK

Falcon's scope of work included coordination of; public and private utility location near the proposed borings, geophysical surveys, collecting soil samples using direct push methods, and laboratory analysis. Soil samples were analyzed for petroleum hydrocarbons via UVF technology. Groundwater samples were analyzed for Volatile Organic Compounds (VOCs) and Semi-volatile Organic Compounds (SVOCs) using traditional laboratory methods.

SECTION 2: HISTORY

2.1 PARCEL USAGE

Falcon performed a Phase I Environmental Site Assessment (ESA) for U-5797 under Project No. G17057 dated April 2018. The ESA identified this parcel as a Recognized Environmental Condition (REC) based on the Lumberton Oil Company being listed at the same address in historic City Directories. The potential use/storage of petroleum products and/or other hazardous chemicals prior to current environmental policies and best practices and the potential for an unreported or undiscovered release warranted further investigation.

2.2 FACILITY IDENTIFICATION NUMBER

A Facility Identification Number was not identified for this parcel.

2.3 GROUNDWATER INCIDENT NUMBER

A Groundwater Incident Number was not identified for this parcel.

SECTION 3: SITE OBSERVATIONS

3.1 GROUNDWATER MONITORING WELLS

Groundwater monitoring wells (MWs) were not observed on this parcel.

3.2 ACTIVE USTS

Active USTs were not observed within the project limits or registered at this parcel.

3.3 FEATURES APPARENT BEYOND ROW/EASEMENT

USTs, monitoring wells, remediation systems, or hydraulic lifts were not observed within the project limits.

SECTION 4: METHODOLOGY

4.1 GEOPHYSICS

Pyramid Geophysical Services (Pyramid) was subcontracted to perform a geophysical survey of the assessment area. The assessment area is between the existing edge of NCDOT maintained pavement (within the existing NCDOT ROW) where accessible, and the proposed NCDOT ROW and/or easement (whichever boundary represents the largest area). The survey was used to locate private utility lines, as well as possible indications of USTs, and/or their pits.

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings.

GPR data was acquired across select EM anomalies (where identified), using a Geophysical Survey Systems, Inc. (GSSI) UtilityScan DF unit equipped with a dual frequency 300/800 MHz antenna. Pyramid marked their findings on the surface with paint. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and to obtain adequate coverage. A copy of the full Geophysical Report is included in the Attachments.

4.2 BORINGS

Regional Probing was subcontracted to advance soil borings using direct push technology. Regional Probing used a truck-mounted Geoprobe® 5410 unit mounted on an off-road modified Ford F350 Diesel 4x4. The unit has auger-capabilities and is equipped with a GH-42 soil-probing hammer, with 21,700 pounds of down force and 28,900 pounds of retraction force. The unit has an on-board tank for decontaminating the geoprobe rods before advancing the probe at each sample location.

4.3 SAMPLE PROTOCOL

Prior to initiating sample collection Falcon contacted NC One Call and requested public utility locations be marked around the proposed sample locations. Sampling was in general accordance with the NC Department of Environmental Quality (DEQ) Division of Waste Management's (DWM) "Guidelines for Site Checks, Tank Closure, and Initial Response and Abatement for UST Releases" (March 1, 2007 Version Change 9 – February 1, 2019) guidance document. Sampling strategy was derived based upon the project scope and objectives as outlined above. Red Lab, LLC was selected to perform the UVF laboratory analytical analysis of the soil. Pace Analytical (North Carolina Field Services Certification #: 5342) was selected to provide traditional lab testing

of groundwater. Appropriate sterile containers were received by Falcon from each laboratory prior to beginning the fieldwork. The containers were labeled appropriately.

A Minirae 3000 photoionization detector (PID) was used to field screen samples for volatile organics to determine if a release had occurred. The instrument was calibrated per manufacturer instructions prior to use. Falcon staff bagged composite soil samples of each boring in approximately two-foot sections. Representative samples were placed in a sealed plastic bag for approximately 10 minutes to allow soil hydrocarbons to reach equilibrium within the headspace prior to scanning with the PID. One sample per boring was collected from the depth of the proposed cut or from the section above the depth of cut with the highest PID reading.

To avoid cross contamination, a new unused pair of non-powdered nitrile gloves was worn while extracting each sample. Samples were placed in the appropriate laboratory provided containers. The labels on each container were then completed so that each provided the date and time of sampling, method of analysis, sample collector, preservative used and sampling location identification. Samples were placed in an ice filled cooler and transported to the lab. Appropriate chain-of-custody procedures, including the completion of necessary forms, were followed.

SECTION 5: RESULTS

5.1 GEOPHYSICS

The geophysical investigation was performed between March 19 and March 25, 2019 to investigate for metallic underground storage tanks (USTs) beneath the survey area. A total of eleven EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. One EM anomaly was associated with unknown buried metal and was investigated further with GPR.

GPR provided evidence of two isolated hyperbolic reflectors and two discreet lateral reflectors on the southwest side of the building that are characteristic of USTs. The combined geophysical data resulted in these features being classified as two probable metallic USTs. The western probable metallic UST (UST-1) measured approximately 12 feet long and 5.5 feet wide at a depth of approximately 2 feet below the ground surface. The eastern probable metallic UST (UST-2) measured approximately 7 feet long and 5 feet wide at a depth of approximately 2 feet below the ground surface.

5.2 SAMPLE DATA

Falcon and our subcontractor advanced ten borings as identified in the below Table No. 1 Boring Coordinates. Borings were advanced to the proposed excavation depth of the drainage features, utilities, or roadway/ditch cut being assessed or to a maximum depth of 10 feet below ground surface (bgs) adjacent to the USTs. Saturated soil was observed at 4' below ground surface (BGS) in B-5. Based on the elevated PID readings and presence of groundwater a water sample was obtained from Boring 5.2. Borings 5.1 through 5.6 were added to assess the extent of the suspected area of contamination. Please see the Boring Location Plan in the attachments for a visual depiction of the sample locations. The coordinates (latitude and longitude) that correspond to the boring locations and two USTs are shown below in Table No. 1 Boring and UST Coordinates.

TABLE NO. 1 BORING COORDINATES

Boring	Latitude	Longitude
B-4	34.6336734	-79.0033009
B-5	34.6334720	-79.0033512
B-5.1	34.6334600	-79.0033248
B-5.2	34.6334381	-79.0033295
B-5.3	34.6334444	-79.0033713
B-5.4	34.6334219	-79.0032797
B-5.5	34.6333967	-79.0033621
B-5.6	34.6335419	-79.0034007
B-6	34.6334288	-79.0032179
B-7	34.6336228	-79.0031747
UST-1	34.6334502	-79.0033548
UST-2	34.6334579	-79.0033379

Borings were field screened with a PID in sections for evidence of volatile organics. The section increments and PID screening results are presented in Table No. 2 PID Readings. Falcon selected soil samples based on the field screening results and the needs of the project. Red Lab analyzed the selected soil samples for petroleum hydrocarbons via UVF technology. Groundwater samples were analyzed for Volatile Organic Compounds (VOCs) and Semi-volatile Organic Compounds (SVOCs) by Pace Analytical using traditional laboratory methods.

Gasoline Range Organics (GRO) above the State Action Level of 50 mg/kg were not detected. Diesel Range Organics (DRO) above the State Action Level of 100 mg/kg were detected in B-5 at 126.8mg/kg, B-5.1 at 130.1 mg/kg, B5.3 at 130.3 mg/kg, and B-5.4 at 150 mg/kg. Eleven constituents were identified in the groundwater at boring B-5.2. Ten of the constituents were above the North Carolina Groundwater Quality Standards but below the Gross Contamination Levels for Groundwater. The eleventh constituent was below the North Carolina Groundwater Quality Standards.

Full laboratory reports from Redlabs and Pace are attached. The results of the UVF laboratory analysis are shown in Table No. 3 Summary of UVF Soil Sampling Results. The results of the traditional laboratory analysis are shown in Table No. 4 Summary of Water Sampling Results. Please note that the sample ID for the water sample 5.2 was miss labeled on the chain of custody and reported as boring B-5.1.

TABLE NO. 2 PID READINGS

Boring	Depth BGS*	PID**
B-4	0-1.5	0.5
B-4	1.5-3.0	0.5
	0-2.5	0.9
B-5	2.5-5.0	54.6
D-3	5.0-7.5	486.4
	7.5-10.0	1246.0
	0-2.5	7.2
B-5.1	2.5-5.0	149.8
	5.0-7.5	395.8
	7.5-10.0	1094.0
	0-2.5	25.0
B-5.2	2.5-5.0	15.8
	5.0-7.5	515.0
	7.5-10.0	1451.0
	0-2.5	33.0
B-5.3	2.5-5.0	6.0
	5.0-7.5	138.0
	7.5-10.0	1025.0
	0-2.5	4.2
B-5.4	2.5-5.0	1.2
D-3.4	5.0-7.5	15.7
	7.5-10.0	2115.0
	0-2.5	11.6
B-5.5	2.5-5.0	6.6
D-3.3	5.0-7.5	6.0
	7.5-10.0	123.9
	0-2.5	0.9
B-5.6	2.5-5.0	0.9
B-5.6	5.0-7.5	254.3
	7.5-10.0	536.8
B-6	0-2.0	0.6
D-0	2.0-4.0	0.8
B-7	0-2.0	0.6
D I	2.0-4.0	0.9

Samples shown in **bold** were selected for analysis

^{*}BGS = Depth below ground surface in feet **PID readings are in parts per million

TABLE NO. 3 SUMMARY OF UVF SOIL SAMPLING RESULTS

Sample	BTEX	GRO	DRO	TPH	Total	16			Ratios		HC
ID	(C6 - C9)	(C5 - C10)	(C10 - C35)	(C5 - C35)	Aromatics (C10-C35)	EPA PAHs	BaP	% light	% mid	% heavy	Fingerprint Match
B4	10.9	< 0.27	< 0.27	< 0.27	< 0.27	< 0.05	< 0.09	<0.011	0	100	(FCM)
В5	10.8	<0.27	126.8	251.1	377.9	18	0.7	<0.011	99.7	0.3	Deg Kerosene 90.8%,(FCM)
B5.1	11.4	<0.28	130.1	276.3	406.4	19.7	0.77	<0.011	99.7	0.3	Deg Kerosene 91%,(FCM)
B5.2	19.7	14.9	74.4	67.4	141.8	11.2	0.45	<0.02	98.1	1.7	Deg Gas 60.2%,(FCM),(PFM)
B5.3	19.8	31.7	130.3	122.3	252.6	17.9	0.71	<0.02	99.3	0.6	Deg Kerosene 67%,(FCM)
B5.4	10.1	33.7	150	4.1	154.1	3.4	0.18	<0.01	98.3	1.5	Deg Gas 58.1%,(FCM)
B5.5	9.9	<0.25	18.8	4.4	23.2	2.7	0.13	<0.01	87.1	11.3	Deg Fuel 82%,(FCM)
B5.6	11.9	<0.3	67.4	109.8	177.2	12.6	0.49	<0.012	99.5	0.4	Deg Kerosene 85.5%,(FCM)
В6	9.4	<0.23	0.69	12.9	13.6	6.5	0.32	<0.009	10.5	70.5	V Deg PHC 93.8%,(FCM),(BO)
В7	10.6	<0.27	<0.27	0.43	0.43	0.22	<0.08	<0.011	0	77.7	Deg Fuel 86.3%,(FCM)

Results reported in mg/kg (milligrams per kilogram)

TABLE NO. 4 SUMMARY OF WATER SAMPLING RESULTS

Sample ID	Method	Constituent	Result	GWQS	GCL
B-5.2	8270E	1-Methylnaphthalene	38.9	1	1000
B-5.2	8270E	2-Methylnaphthalene	85.9	30	12500
B-5.2	8270E	Naphthalene	421	6	6000
B-5.2	8260D	Benzene	217	1	5000
B-5.2	8260D	Ethylbenzene	1040	600	84500
B-5.2	8260D	p-isopropyltoluene	26.3	25	11700
B-5.2	8260D	Naphthalene	850	6	6000
B-5.2	8260D	Toluene	27.9	600	260000
B-5.2	8260D	Xylene (Total)	2500	500	85500
B-5.2	8260D	m&p-Xylene	1220	500	85500
B-5.2	8260D	o-Xylene	1280	500	85500

GWQS = North Carolina Groundwater Quality Standards

GCL = Gross Contamination Levels for Groundwater

Results = micrograms per liter (ug/L)

5.3 SAMPLE OBSERVATIONS

Obvious visual indications of a release (stained soils, odors, or oily sheen) were not observed. Table No. 4 Soil Observations lists visual soil observations of color and texture.

TABLE NO. 5 SOIL OBSERVATIONS

Sample ID	Depth	Color	Soil Type
B-4	0-1.5	Dark Brown	Sandy Clay (A-6)
	1.5-3.0	Brown Orange (mottled)	Sandy Clay (A-6)
	0-2.5	Dark Brown to Brown	Sandy Clay (A-6)
B-5	2.5-5.0	Brown	Sandy Clay (A-6)
	5.0-7.5	Brown	Sandy Clay (A-6)
	7.5-10.0	Gray to Light Gray	Highly Sandy Clay (A-6)
	0-2.5	Tan	Sand (A-3)
B-5.1	2.5-5.0	Dark Brown	Clayey Sand (A-2-6)
	5.0-7.5	Gray	Clayey Sand (A-2-6)
	7.5-10.0	Gray	Clayey Sand (A-2-6)
	0-2.5	Brown	Highly Sandy Clay (A-6)
B-5.2	2.5-5.0	Gray Brown (mottled)	Sandy Clay (A-6)
	5.0-7.5	Gray Brown	Sandy Clay (A-6)
	7.5-10.0	Light Gray	Silty Clayey Sand (A-2-6)
	0-2.5	Brown	Clayey Sand (A-2-6)
B-5.3	2.5-5.0	Brown	Sandy Clay (A-6)
	5.0-7.5	Gray	Sandy Clay (A-6)
	7.5-10.0	Light Gray	Highly Sandy Clay (A-6)
	0-2.5	Gray	Silty Sandy Clay (A-6)
B-5.4	2.5-5.0	Brown Gray	Silty Sandy Clay (A-6)
	5.0-7.5	Gray	Silty Clayey Sand (A-2-6)
	7.5-10.0	Gray	Silty Sand (A-2-4)
	0-2.5	Gray Brown	Silty Sandy Clay (A-6)
B-5.5	2.5-5.0	Brown	Sandy Clay (A-6)
	5.0-7.5	Brown	Silty Sandy Clay (A-6)
	7.5-10.0	Gray	Sandy Clay (A-6)
	0-2.5	Gray	Silty Sand (A-2-4)
B-5.6	2.5-5.0	Brown	Silty Sandy Clay (A-6)
	5.0-7.5	Gray Brown	Sandy Clay (A-6)
	7.5-10.0	Gray	Slightly Clayey Silty Sand (A-2-4)
B-6	0-2.0	Brown	Sandy Clay (A-6)
	2.0-4.0	Brown Tan Orange (mottled)	Sandy Clay (A-6)
B-7	0-2.0	Brown	Sandy Clay (A-6)
	2.0-4.0	Brown Orange (mottled)	Sandy Clay (A-6)

Depth is in feet below ground surface

5.4 QUANTITIES CALCULATIONS

The depth of the borings were 10 feet BGS. The area of contaminated soil is assumed as an ellipse, approximately 45 feet long and 36 feet wide. Falcon used the following formula to calculate an estimated volume of contaminated soil:

$$\pi * R^{1}* R^{2}* D$$

Where R^1 & R^2 = the radii of ellipse and D = the depth of the boring. An assumed density of 120 lbs per cubic foot was used to calculate the soil quantity in tons.

SECTION 6: CONCLUSIONS

6.1 INTERPRETATION OF RESULTS

This Preliminary Site Assessment was performed to evaluate the soils in proximity to the project limits on this parcel for the presence of petroleum hydrocarbons. The findings are as follows:

- ➤ Soil sampling completed on the parcel identified DRO in the soils above state action levels.
- > Groundwater sampling at the site identified ten constituents above the North Carolina Groundwater Quality Standards but below the Gross Contamination Levels for Groundwater.

6.2 GEOPHYSICS

Collectively, the geophysical data recorded evidence of two probable USTs within the geophysical survey area at Parcel No. 09.

6.3 SAMPLING

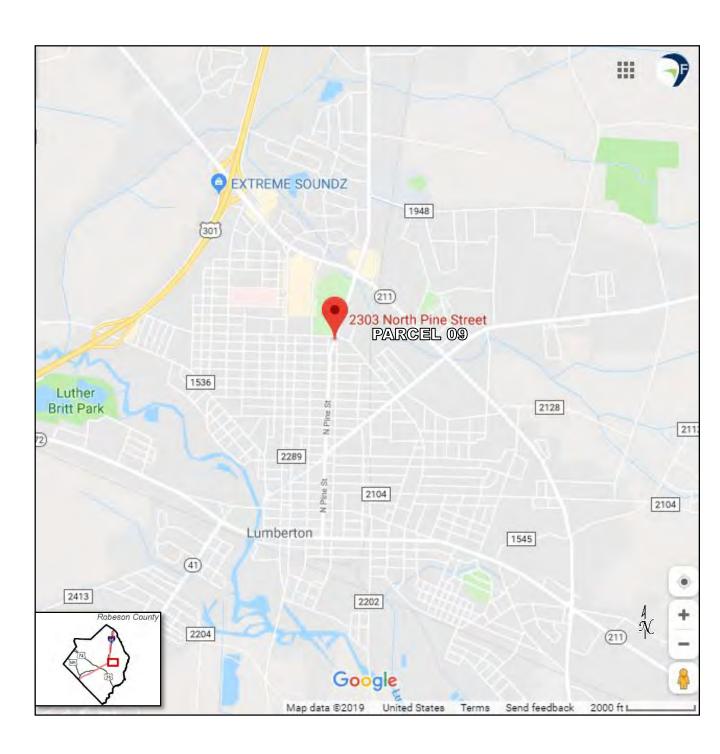
Gasoline Range Organics (GRO) above the State Action Level of 50 mg/kg were not detected. Diesel Range Organics (DRO) above the State Action Level of 100 mg/kg were detected in B-5 at 126.8mg/kg, B-5.1 at 130.1 mg/kg, B5.3 at 130.3 mg/kg, and B-5.4 at 150 mg/kg. Ten constituents were identified in the groundwater above the North Carolina Groundwater Quality Standards but below the Gross Contamination Levels.

6.4 QUANTITIES

Soils requiring quantities calculations were identified at sample locations B-5, B-5.1, B-5.3 and B-5.4. The estimate quantity of contaminated soil is 765 tons. However, this is only an estimate. The contamination plume was not delineated and therefore, the volume of contaminated soil required to be excavated will vary based on the actual plume dimensions and limits of excavation.

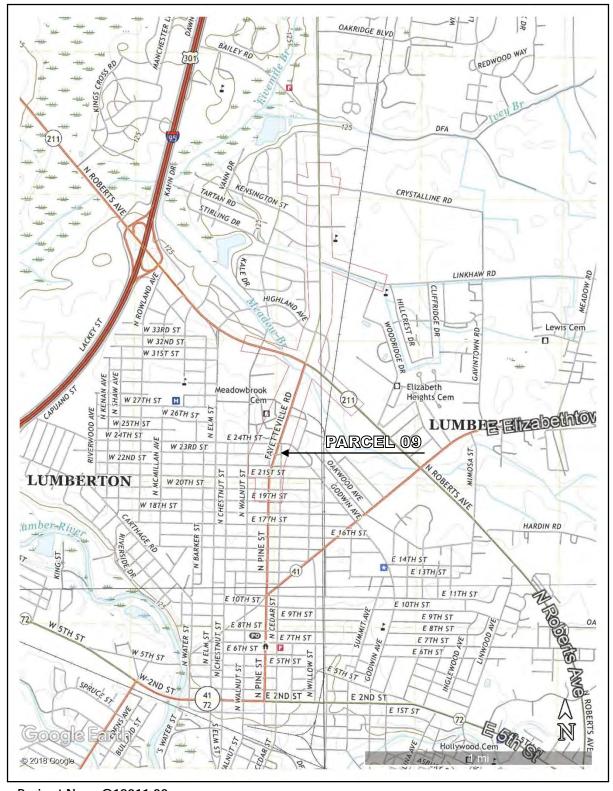
SECTION 7: RECOMMENDATIONS

7.1 ADDITIONAL SAMPLING


Contaminants above the State Action Level for DRO were identified; however, additional assessment is not warranted at this time as the soil can be removed and properly disposed of during construction. Falcon recommends if drums, USTs, above ground storage tanks (ASTs), petroleum odors or sheen are observed during any excavation associated with any property involved in the project that all work in the vicinity stop until further assessment takes place. Further assessment can include but is not limited to; sampling the soil and groundwater, excavation, and proper handling and disposal of contaminated soils and groundwater.

7.2 SPECIAL HANDLING OF IMPACTED SOIL

Soil requiring special handling was identified at B-5, B-5.1, B5.3, and B-5.4. Impacted soil encountered during construction should be removed and properly disposed of.

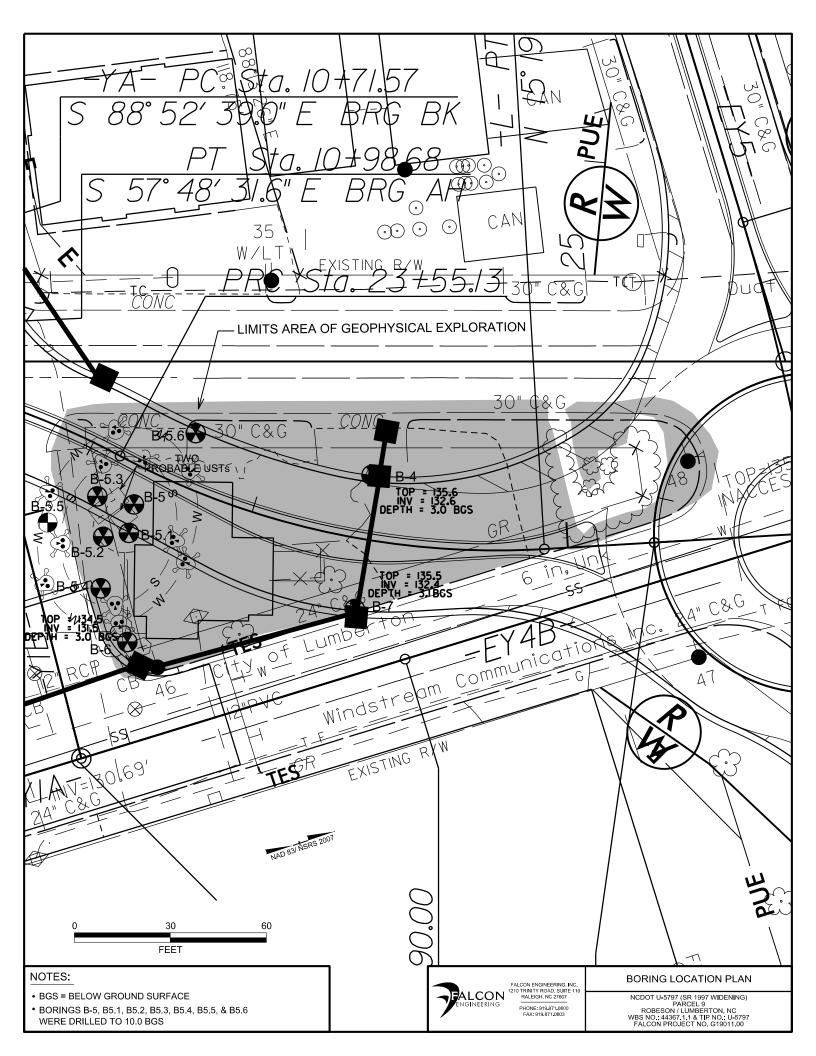

NCDOT U-5797 (SR 1997 Widening) Parcel 09 Preliminary Site Assessment Vicinity Map

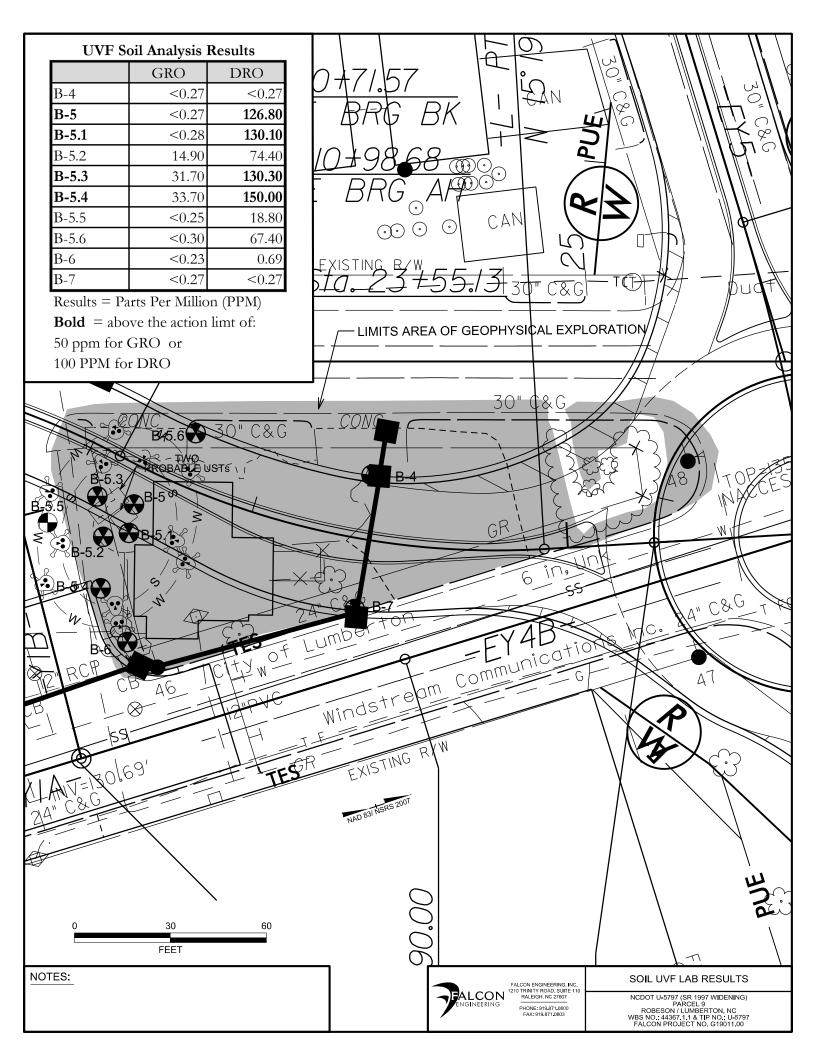
Project No.: G19011.00
Date: September 2019
Source: Google Maps

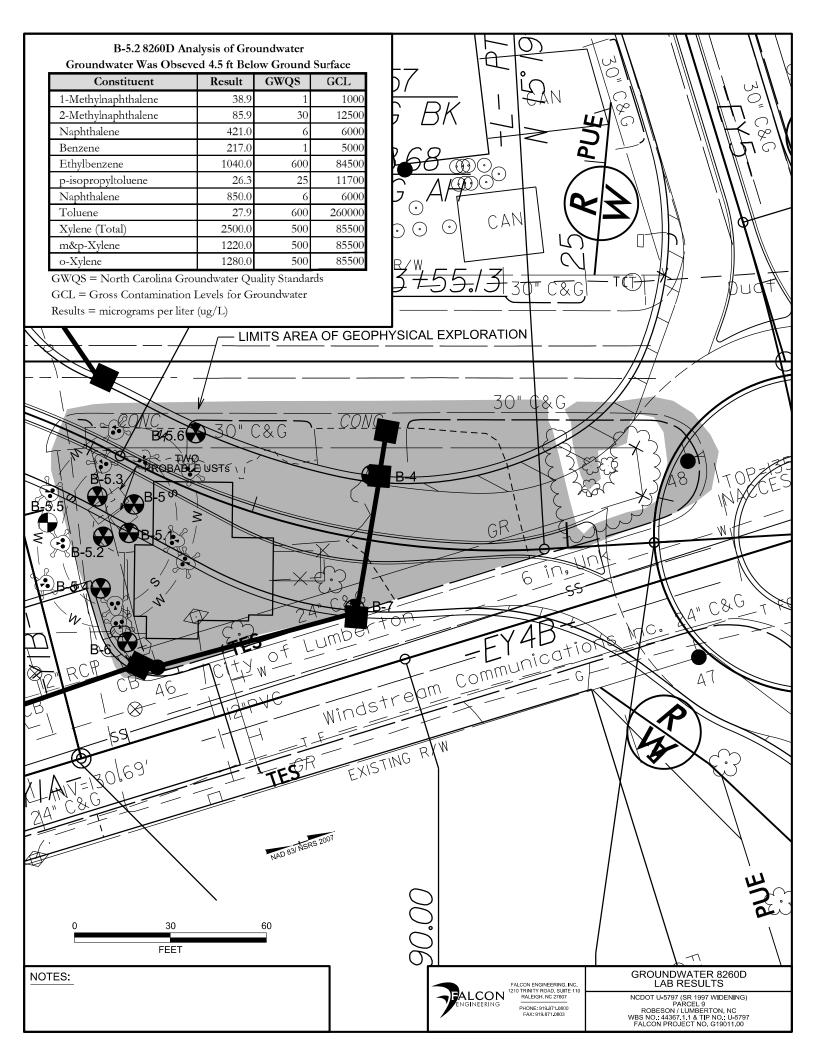
Project No.: G19011.00 Date: September 2019

Source: "NW, NE, SW, and SE Lumberton, NC" 2019

NCDOT U-5797 (SR 1997 Widening) Parcel 09 **Preliminary Site Assessment** Parcel Location Map



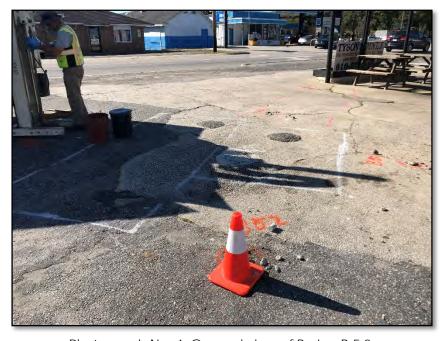



Project No.: G19011.00

Parcels

Date: September 2019 **Robeson County GIS** Source:

Photograph No. 1: General view of Boring B-4.



Photograph No. 2: General view of Boring B-5 and the two probable USTs.

Photograph No. 3: General view of Boring B-5.1.

Photograph No. 4: General view of Boring B-5.2.

Photograph No. 5: General view of Boring B-5.3.

Photograph No. 6: General view of Boring B-5.4.

Photograph No. 7: General view of Boring B-5.5.

Photograph No. 8: General view of Boring B-5.6.

Photograph No. 9: General view of Boring B-6.

Photograph No. 10: General view of Boring B-7.

Hydrocarbon Analysis Results

Client: FALCON

Address: 1210 TRINITY ROAD SUITE 116

CARY NC 28513

Samples taken Samples extracted Tuesday, April 9, 2019 Tuesday, April 9, 2019

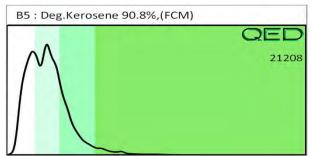
Samples analysed Tuesday, April 16, 2019

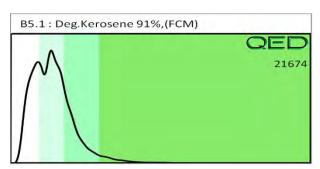
Contact: CHRISTOPHER BURKHARDY Operator DAVIS MARTINEC

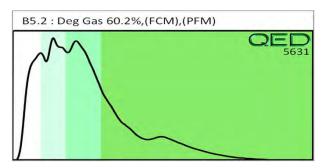
Project: G19011 U5797

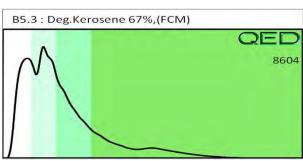
													U00902				
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	% Ratios		% Ratios		% Ratios			HC Fingerprint Match
										C5 - C10	C10 - C18	C18					
s	B4	10.9	<0.27	<0.27	<0.27	<0.27	<0.05	<0.09	<0.011	0	100	0	,(FCM)				
s	B5	10.8	<0.27	126.8	251.1	377.9	18	0.7	<0.011	99.7	0.3	0	Deg.Kerosene 90.8%,(FCM)				
s	B5.1	11.4	<0.28	130.1	276.3	406.4	19.7	0.77	<0.011	99.7	0.3	0	Deg.Kerosene 91%,(FCM)				
s	B5.2	19.7	14.9	74.4	67.4	141.8	11.2	0.45	<0.02	98.1	1.7	0.2	Deg Gas 60.2%,(FCM),(PFM)				
s	B5.3	19.8	31.7	130.3	122.3	252.6	17.9	0.71	<0.02	99.3	0.6	0.1	Deg.Kerosene 67%,(FCM)				
s	B5.4	10.1	33.7	150	4.1	154.1	3.4	0.18	<0.01	98.3	1.5	0.1	Deg Gas 58.1%,(FCM)				
s	B5.5	9.9	<0.25	18.8	4.4	23.2	2.7	0.13	<0.01	87.1	11.3	1.7	Deg.Fuel 82%,(FCM)				
s	B 5.6	11.9	<0.3	67.4	109.8	177.2	12.6	0.49	<0.012	99.5	0.4	0.1	Deg.Kerosene 85.5%,(FCM)				
s	B6	9.4	<0.23	0.69	12.9	13.6	6.5	0.32	<0.009	10.5	70.5	19	V.Deg.PHC 93.8%,(FCM),(BO)				
s	B7	10.6	<0.27	<0.27	0.43	0.43	0.22	<0.08	<0.011	0	77.7	22.3	Deg.Fuel 86.3%,(FCM)				
	Initial C	alibrator (QC check	OK					Final FC	M QC	Check	OK					

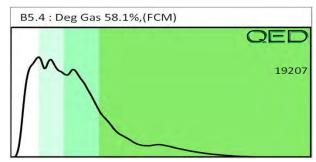
Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

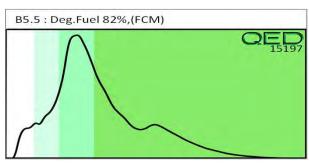

Abbreviations:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence of hydrocarbon identification: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate detected

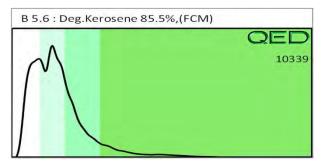

B = Blank Drift: (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result: (BO) = Background Organics detected: (OCR) = Outside cal range: (M) = Modifed Result.

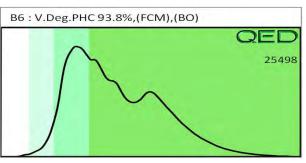

Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only.

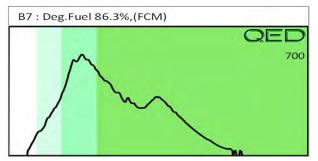

Data generated by HC-1 Analyser











April 25, 2019

Christopher Burkhardt Falcon Engineering 1210 Trinity Road Suite 110 Cary, NC 27513

RE: Project: U5797

Pace Project No.: 92425908

Dear Christopher Burkhardt:

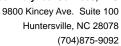
Enclosed are the analytical results for sample(s) received by the laboratory on April 12, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tyriek Hooks

tyriek.hooks@pacelabs.com


Tyrick Hooks

(704)875-9092 Project Manager

Enclosures

cc: Christopher Burkhardt, Falcon Engineering

CERTIFICATIONS

Project: U5797
Pace Project No.: 92425908

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: U5797
Pace Project No.: 92425908

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92425908001	B3	EPA 8270E	PKS	74	PASI-C
		EPA 8260D	DLK	63	PASI-C
92425908002	B5.1	EPA 8270E	PKS	74	PASI-C
		EPA 8260D	DLK	63	PASI-C
92425908003	B18	EPA 8260D	CL	70	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92425908004	B19	EPA 8260D	CL	70	PASI-C
		ASTM D2974-87	KDF	1	PASI-C

ANALYTICAL RESULTS

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

Acenaphthylene ND ug/L 10.0 1 04/18/19 17:38 04/18/19 19:54 208-96-8 1 Anthracene ND ug/L 10.0 1 04/18/19 17:38 04/18/19 19:54 208-96-8 1 Anthracene ND ug/L 10.0 1 04/18/19 17:38 04/18/19 19:54 120-12-7 1 Benzo(a)phrene ND ug/L 10.0 1 04/18/19 17:38 04/18/19 19:54 120-12-7 1 Benzo(a)phrene ND ug/L 10.0 1 04/18/19 17:38 04/18/19 19:54 120-12-7 1 Benzo(a)phrene ND ug/L 10.0 1 04/18/19 17:38 04/18/19 19:54 120-12-7 1 Benzo(a)phrene ND ug/L 10.0 1 04/18/19 17:38 04/18/19 19:54 120-12-7 1 Benzo(a)phrene ND ug/L 10.0 1 04/18/19 17:38 04/18/19 19:54 120-12-7 1 Benzo(a)phrene ND ug/L 10.0 1 04/18/19 17:38 04/18/19 19:54 120-12-12 1 Benzo(a)phrene ND ug/L 10.0 1 04/18/19 17:38 04/18/19 19:54 120-12-12 1 Benzo(a)phrenylene ND ug/L 20.0 1 04/18/19 17:38 04/18/19 19:54 107-13-12-12 1 Benzo(a)phrenylene ND ug/L 20.0 1 04/18/19 17:38 04/18/19 19:54 107-13-12 1 Benzo(a)phrenyleneylene ND ug/L 20.0 1 04/18/19 17:38 04/18/19 19:54 107-13-12 1 Benzo(a)phrenyleneyleneyleneyleneyleneyleneyleneyl	Sample: B5.1	Lab ID:	92425908002	Collected:	04/10/1	19 12:30	Received: 04	/12/19 14:45	Matrix: Water	
Acenaphthene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 83-32-9 Acenaphthylene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 208-96-8 Anlithracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 62-53-3 Anlithracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 62-53-3 Anlithracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 56-53-3 Benzo(a)a)priene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 56-53-3 Benzo(a)a)priene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 56-53-3 Benzo(a)a)priene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 50-32-8 Benzo(a)a)priene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 50-32-8 Benzo(a)a)priene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 50-32-8 Benzo(a)a)priene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 50-32-8 Benzo(a)a)priene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 50-32-8 Benzo(a)a)priene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 50-32-8 Benzo(a)a)priene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 50-59-2 Benzo(a)a)priene ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 10-51-6 Benzo(a)a)priene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 10-51-6 Benzo(a)a)priene/prien	Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
Acenaphthylene ND ugL 10.0 1 04/18/19 17:38 04/18/19 19:54 208-96-8 Halline ND ugL 10.0 1 04/18/19 17:38 04/18/19 19:54 208-96-8 Halline ND ugL 10.0 1 04/18/19 17:38 04/18/19 19:54 120-12-7 FBenzo(a).phyrene ND ugL 10.0 1 04/18/19 17:38 04/18/19 19:54 120-12-7 FBenzo(a).phyrene ND ugL 10.0 1 04/18/19 17:38 04/18/19 19:54 120-12-7 FBenzo(a).phyrene ND ugL 10.0 1 04/18/19 17:38 04/18/19 19:54 50-52-8 FBenzo(gh.phyrene ND ugL 10.0 1 04/18/19 17:38 04/18/19 19:54 120-12-7 FBenzo(gh.phyrene ND ugL 10.0 1 04/18/19 17:38 04/18/19 19:54 120-12-7 FBenzo(gh.phyrene ND ugL 10.0 1 04/18/19 17:38 04/18/19 19:54 120-12-12-12 FBenzo(gh.phyrene ND ugL 10.0 1 04/18/19 17:38 04/18/19 19:54 120-12-12-12 FBenzo(gh.phyrene ND ugL 10.0 1 04/18/19 17:38 04/18/19 19:54 120-12-12-12 FBenzo(gh.phyrene ND ugL 10.0 1 04/18/19 17:38 04/18/19 19:54 107-15-12-12-12 FBenzo(gh.phyrene) FBenzo(a).phyreny elber ND ugL 10.0 1 04/18/19 17:38 04/18/19 19:54 107-15-12-12-12 FBenzo(gh.phyreny) FBenzo(gh.phy	8270E RVE	Analytical	Method: EPA 82	270E Prepara	ation Me	ethod: EF	PA 3510C			
Antibracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 62-53-3 I Benzo(a)antiracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 120-12-7 I Benzo(a)antiracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 65-55-3 I Benzo(a)pyrene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 50-52-8 I Benzo(a)pyrene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 50-52-8 I Benzo(a)pyrene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 50-52-8 I Benzo(a)h.)perylene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 50-52-8 I Benzo(a)h.)perylene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 120-59-2 Benzo(a)h.)perylene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 120-59-2 Benzo(a)h.)perylene ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 16-56-5 I Benzyl alcohol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 100-51-6 I Benzyl alcohol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 100-51-6 I Benzylphrhalate ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 55-60-7 I Butylbenzylphrhalate ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 55-60-7 I Butylbenzylphrhalate ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 10-55-3 I Butylbenzylphrhalate ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 10-56-7 I Butylbenzylphrhalate ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 11-44-4 I Butylbenzylphrhalate ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 10-64-7 I Butylbenzylphrhalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 10-64-7 I Butylbenzylphrhalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 10-64-7 I Butylbenzylphrhalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 11-44-4 I Butylbenzylphrhalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 11-44-4 I Butylbenzylphrhalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 13-64-6 I Butylbenzylphrhalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 13-64-6 I Butylbenzylphrhalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 13-64-6 I Butylbenzylphrhalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 13-64-6 I Butylbenzylphrhalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 13-64-6 I Butylbylbhrhalate ND ug/L 10.0 1 04/18/19 17:	Acenaphthene	NI	D ug/L		10.0	1	04/18/19 17:38	04/19/19 19:54	83-32-9	H2
Anthracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 120-12-7 Benzo(a)pyrene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 56-55-3 Benzo(a)pyrene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 56-55-3 Benzo(phljouranthene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 50-32-8 Benzo(phljouranthene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 50-32-8 Benzo(phljouranthene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 50-32-8 Benzo(phljouranthene ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 10-52-6 Benzo(phljouranthene ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 100-51-6 Benzol acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 100-51-6 Benzol acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 100-51-6 Benzol acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 100-51-6 Benzol acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 100-51-6 Benzol acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 100-51-6 Benzol acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 100-51-6 Benzol acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 100-51-6 Benzol acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 100-51-6 Benzol acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 100-51-6 Benzol acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 100-53-8 Benzol acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 106-47-8 Benzol acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 111-44-4 Benzol Acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 111-44-4 Benzol Acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 111-44-4 Benzol Acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 111-44-4 Benzol Acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 15-68-7 Benzol Acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 15-68-7 Benzol Acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 15-68-7 Benzol Acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 15-68-7 Benzol Acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 15-68-7 Benzol Acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 15-68-7 Benzol Acid ND ug/L 50.0 1 04/18/19	Acenaphthylene	NI	D ug/L		10.0	1	04/18/19 17:38	04/19/19 19:54	208-96-8	H2
Benzo(a)anthracene ND	Aniline	NI	D ug/L		10.0	1	04/18/19 17:38	04/19/19 19:54	62-53-3	H2
Benzo(gh)pyene	Anthracene	NI	D ug/L		10.0	1	04/18/19 17:38	04/19/19 19:54	120-12-7	H2
Benzo(gh,i)perylene ND	Benzo(a)anthracene	NI	D ug/L		10.0	1	04/18/19 17:38	04/19/19 19:54	56-55-3	H2
Benzo(gh,i)perylene	Benzo(a)pyrene	NI	D ug/L		10.0	1	04/18/19 17:38	04/19/19 19:54	50-32-8	H2
Benzo(k)fluoranthene ND	Benzo(b)fluoranthene	NI	D ug/L		10.0	1	04/18/19 17:38	04/19/19 19:54	205-99-2	H2
Benzoic Acid ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 65-85-0 F Benzyl alcohol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 100-51-5 F Benzyl alcohol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 100-51-5 1 Butylbenzylphthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 55-68-7 F AcChloro-3-methylphenol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 59-50-7 4-Chloro-3-methylphenol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 59-50-7 4-Chloro-3-methylphenol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 59-50-7 4-Chloro-3-methylphenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 59-50-7 4-Chloro-phenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 111-91-1 1 bis(2-Chloro-thyly) ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 111-91-1 2-Chloro-phenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 91-58-7 2-Chloro-phenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 95-57-8 2-Chloro-phenol/phenylphenyle ther ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 95-57-8 2-Chloro-phenylphenyle ther ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 218-01-9 10benz(a,h) anthracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 218-01-9 10benz(a,h) anthracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 33-70-3 1-2-Dichloro-benzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 33-64-9 1-2-Dichloro-benzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 35-70-3 1-2-Dichloro-benzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 35-60-1 1-2-Dichloro-benzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 34-66-2 1-2-Dichloro-benzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 34-66-2 1-2-Dichloro-benzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 34-66-2 1-2-Dichloro-benzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 34-66-2 1-2-Dichloro-benzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 34-62-2 1-2-D	Benzo(g,h,i)perylene	NI	D ug/L		10.0	1	04/18/19 17:38	04/19/19 19:54	191-24-2	H2
Benzzia Acid ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 100-51-6 16 4-Bromophenylphenyl ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 100-51-6 16 4-Bromophenylphenyl ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 100-53-3 18 Butybbenzylphthalate ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 85-68-7 4-Chloro-3-methylphenol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 59-50-7 4-Chloro-3-methylphenol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 59-50-7 4-Chloro-methylphenol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 59-50-7 4-Chloropethylphenel ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 10-64-78 bis(2-Chloroethyyl) ether ND ug/L 2-Chloropethylphenyl ether ND ug/L 2-Chloropethylphenyl ether ND ug/L 2-Chlorophenylphenyl ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 19:58-7 2-Chlorophenylphenyl ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 19:58-7 2-Chlorophenylphenyl ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 19:58-7 2-Chlorophenylphenyl ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 29:57-8 1-Chlorophenylphenyl ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 29:57-8 1-Chlorophenylphenyl ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 218-01-9 1-Dibenz(a,h)anthracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 218-01-9 1-Dibenz(a,h)anthracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 23-70-3 1-Dibenz(a,h)anthracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 23-70-3 1-Dibenz(a,h)anthracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 23-70-3 1-Dibenz(a,h)anthracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 23-70-3 1-Dibenz(a,h)anthracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 13-70-3 1-Dibenz(a,h)anthracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 13-70-3 1-Dibenz(a,h)anthracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 13-70-3 1-Dibenz(a,h)anthracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 13-70-3 1-Dibenz(a,h)anthracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 13-70-3 1	Benzo(k)fluoranthene	NI	D ug/L		10.0	1	04/18/19 17:38	04/19/19 19:54	207-08-9	H2
Benzyl alcohol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 100-51-6 1	Benzoic Acid	NI	_		50.0	1	04/18/19 17:38	04/19/19 19:54	65-85-0	H2,L2
4-Bromophenylphenylphenyl ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 101-55-3 I Butylbenzylphthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 56-58-7 I 4-Chloro-3-methylphenol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 59-50-7 I 4-Chloro-3-methylphenol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 106-47-8 I bis(2-Chloroethoxy)methane ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 111-91-1 I bis(2-Chloroethyr) ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 111-91-1 I bis(2-Chloroethyr) ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 91-56-7 8 91-56-7 4 4 10.0 1 04/18/19 17:38 04/19/19 19:54 91-56-7 9 10-56-10-10 10.0 1 04/18/19 17:38	Benzyl alcohol	NI	-		20.0	1	04/18/19 17:38	04/19/19 19:54	100-51-6	H2
Butylbenzylphthalate ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 85-68-7 1 4-Chloro-3-methylphenol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 106-64-7 1 1 04/18/19 17:38 04/19/19 19:54 106-64-7 1 1 04/18/19 17:38 04/19/19 19:54 106-64-7 1 1 04/18/19 17:38 04/19/19 19:54 106-64-7 1 1 04/18/19 17:38 04/19/19 19:54 106-64-7 1 1 04/18/19 17:38 04/19/19 19:54 111-91-1 1 1 05/16/16/16/16/16/16/16/16/16/16/16/16/16/	4-Bromophenylphenyl ether	NI	_		10.0	1	04/18/19 17:38	04/19/19 19:54	101-55-3	H2
4-Chloro-3-methylphenol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 59:50-7 in 4-Chloropaniline ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 106-47-8 in bis(2-Chloroethoxy)methane ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 111-91-1 in bis(2-Chloroethyl) ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 111-91-1 in bis(2-Chlorophyl) ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 111-91-1 in bis(2-Chlorophyl) ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 111-91-1 in bis(2-Chlorophyl) ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 91:58-7 in 2-Chlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 91:58-7 in 2-Chlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 91:58-7 in 2-Chlorophenol ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 218-01-9 in 2-Chlorophenol ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 218-01-9 in 2-Chlorophenol ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 33-70-3 in 2-Chlorophenol ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 35-70-3 in 2-Chlorophenol ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 35-70-3 in 2-Chlorophenol ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 32-64-9 in 2-Chlorophenol ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 34-70-1 in 2-Chlorophenol ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 34-70-1 in 2-Chlorophenol ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 34-70-1 in 2-Chlorophenol ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 34-66-7 in 2-Chlorophenol ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 34-66-7 in 2-Chlorophenol ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 34-66-7 in 2-Chlorophenol ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 34-66-7 in 3-Chlorophenol ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 34-66-7 in 3-Chlorophenol ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 34-66-7 in 3-Chlorophenol ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 34-66-7 in 3-Chlorophenol ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 34-66-7 in 3-Chlorophenol ether ND ug/L 1			•		10.0	1				H2
4-Chloropanline ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 106-47-8 lbis(2-Chloroethy)) ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 111-44-4 lbis(2-Chloroethy)) ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 111-44-4 lbis(2-Chloropanly) ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 111-44-4 lbis(2-Chlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 95-57-8 lbis(2-Chlorophenol) ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 95-57-8 lbis(2-Chloropheny) ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 7005-72-3 lbis(2-Chloropheny) ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 7005-72-3 lbis(2-Chloropheny) ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 218-01-9 lbis(2-Chloropheny) ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 218-01-9 lbis(2-Chloropheny) ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 218-01-9 lbis(2-Chloropheny) ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 218-01-9 lbis(2-Chlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 132-64-9 lbis(2-Chlorophenzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 55-0-1 lbis(2-Chlorophenzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 55-0-1 lbis(2-Chlorophenzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 106-66-7 lbis(2-Chlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 106-66-7 lbis(2-Chlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 106-66-7 lbis(2-Chlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 105-67-9 lbis(14) l	4-Chloro-3-methylphenol	NI	_		20.0	1	04/18/19 17:38	04/19/19 19:54	59-50-7	H2
bis(2-Chloroethoxy)) methane ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 111-91-1 1 1 1 1 1 1 1 1 1		NI	_		20.0	1				H2
bis(2-Chloroethyl) ether	bis(2-Chloroethoxy)methane	NI	-		10.0	1	04/18/19 17:38	04/19/19 19:54	111-91-1	H2
2-Chloronaphthalene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 91-58-7 in ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 95-57-8 in ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 95-57-9 in ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 95-57-9 in ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 95-57-9 in ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 95-57-9 in ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 95-57-9 in ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 95-57-9 in ug/L 10.0			0			1	04/18/19 17:38	04/19/19 19:54	111-44-4	H2
2-Chlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 95-57-8 is 4-Chlorophenylphenyl ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 7005-72-3 is Chrysene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 218-01-9 is Dibenz(a,h)anthracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 53-70-3 is Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 53-70-3 is Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 53-70-3 is Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 53-70-3 is Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 541-73-1 is Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 541-73-1 is Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 541-73-1 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 106-46-7 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 106-46-7 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 120-83-2 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 120-83-2 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 120-83-2 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 120-83-2 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 120-83-2 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 131-13-1 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 131-13-1 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 131-13-1 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 131-13-1 is Dibenzofuran ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 117-84-2 is	•		•							H2
4-Chlorophenylphenyl ether ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 7005-72-3 in Chrysene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 218-01-9 in Dibenz(a,h)anthracene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 53-70-3 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 32-64-9 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 32-64-9 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 32-64-9 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 32-64-9 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 54-173-1 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 54-173-1 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 54-173-1 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 54-173-1 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 106-46-7 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 120-83-2 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 120-83-2 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 120-83-2 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 121-14-2 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 121-14-2 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 121-14-2 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 in Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 in D			_							H2
Chrysene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 218-01-9 Fibenz(a,h)anthracene Dibenzofuran ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 53-70-3 i 1,2-Dichlorobenzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 95-50-1 i 1,3-Dichlorobenzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 541-73-1 i 1,4-Dichlorobenzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 541-73-1 i 2,4-Dichlorobenzidine ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 106-46-7 i 3,3'-Dichlorobenzidine ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 106-46-7 i 2,4-Dichlorobenzidine ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 106-46-7 i 2,4-Dinitrobluchitalate	•		_							H2
Dibenz(a,h)anthracene ND	' '' '		-							H2
Dibenzofuran ND	•		0							H2
1,2-Dichlorobenzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 95-50-1 h 1,3-Dichlorobenzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 541-73-1 h 1,4-Dichlorobenzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 541-73-1 h 1,4-Dichlorobenzene ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 106-46-7 h 3,3'-Dichlorobenzidine ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 106-46-7 h 2,4-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 120-83-2 h 1,2-Dichlorobenzidine ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 120-83-2 h 1,2-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 120-83-2 h 1,2-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 h 1,2-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 h 1,2-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 h 1,2-Dichlorophenol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 534-52-1 h 1,2-Dichlorophenol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 534-52-1 h 1,2-Dichlorophenol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 534-52-1 h 1,2-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 52-8-5 h 1,2-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 12-14-2 h 1,2-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 12-14-2 h 1,2-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 12-14-2 h 1,2-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 h 1,2-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 h 1,2-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 h 1,2-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 h 1,2-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 h 1,2-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 h 1,2-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 h 1,2-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 h 1,2-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 h 1,2-Dichlorophen			_							H2
1,3-Dichlorobenzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 541-73-1 Inchity 1,4-Dichlorobenzene 1,4-Dichlorobenzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 106-46-7 Inchity 1,5-Dichlorobenzidine ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 91-94-1 Inchity 1,5-Dichlorobenzidine ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 91-94-1 Inchity 1,5-Dichlorobenzidine ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 91-94-1 Inchity 1,5-Dichlorobenzidine ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 91-94-1 Inchity 20-83-2 Inchity 1,5-Dichlorobenzidine ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 84-66-2 Inchity 20-83-2			_							H2
1,4-Dichlorobenzene ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 106-46-7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			_							H2
3,3'-Dichlorobenzidine ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 91-94-1 1 2,4-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 120-83-2 1 10.0 1 04/18/19 17:38 04/19/19 19:54 120-83-2 1 10.0 1 04/18/19 17:38 04/19/19 19:54 120-83-2 1 10.0 1 04/18/19 17:38 04/19/19 19:54 105-67-9 1 10.0 1 04/18/19 17:38 04/19/19 19:54 105-67-9 1 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 1 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 1 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 1 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 1 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 1 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 1 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 1 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 1 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 1 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 1 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 1 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 1 10.0 1 04/18/19 17:38 04/19/19 19:54 121-14-2 1 10.0 1 04/18/19 1			-							H2
2,4-Dichlorophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 120-83-2 H Diethylphthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 84-66-2 H 2,4-Dimethylphenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 105-67-9 H Dimethylphthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 H Di-n-butylphthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 84-74-2 H 4,6-Dinitro-2-methylphenol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 534-52-1 H 2,4-Dinitrotophenol ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 51-28-5 H 2,4-Dinitrotoluene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 121-14-2 H 2,6-Dinitrotoluene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 121-14-2 </td <td>•</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>H2</td>	•		0							H2
Diethylphthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 84-66-2 Feather Processor 2,4-Dimethylphenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 105-67-9 Feather Processor Dimethylphthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 Feather Processor Di-n-butylphthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 431-11-3 Feather Processor 4,6-Dinitro-2-methylphenol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 534-52-1 Feather Processor 2,4-Dinitrophenol ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 51-28-5 Feather Processor Feather Processor Feather Processor 40/18/19 17:38 04/19/19 19:54 121-14-2 Feather Processor Feather Processor <td>·</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>H2</td>	·		•							H2
2,4-Dimethylphenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 105-67-9 Hobster Process 105-67-9 Hobster Process	•		_							H2
Dimethylphthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 131-11-3 H Di-n-butylphthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 84-74-2 H 4,6-Dinitro-2-methylphenol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 534-52-1 H 2,4-Dinitrophenol ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 51-28-5 H 2,4-Dinitrophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 51-28-5 H 2,4-Dinitrophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 51-28-5 H 2,4-Dinitrophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 51-28-5 H 2,4-Dinitrophenol ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 121-14-2 H 2,6-Dinitrophenol ND			_							H2
Di-n-butylphthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 84-74-2 E 4,6-Dinitro-2-methylphenol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 534-52-1 E 2,4-Dinitrophenol ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 51-28-5 E 2,4-Dinitrotoluene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 51-28-5 E 2,6-Dinitrotoluene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 606-20-2 E Di-n-octylphthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 606-20-2 E Di-n-octylphthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 E bis(2-Ethylhexyl)phthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 E Fluorenthene ND			-							H2
4,6-Dinitro-2-methylphenol ND ug/L 20.0 1 04/18/19 17:38 04/19/19 19:54 534-52-1 F 2,4-Dinitrophenol ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 51-28-5 F 2,4-Dinitrotoluene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 121-14-2 F 2,6-Dinitrotoluene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 121-14-2 F 2,6-Dinitrotoluene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 121-14-2 F 2,6-Dinitrotoluene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 606-20-2 F Di-n-octylphthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 F bis(2-Ethylhexyl)phthalate ND ug/L 6.0 1 04/18/19 17:38 04/19/19 19:54 117-81-7 F Fluoranthene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 86-73-			0						-	H2
2,4-Dinitrophenol ND ug/L 50.0 1 04/18/19 17:38 04/19/19 19:54 51-28-5 E 2,4-Dinitrotoluene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 121-14-2 E 2,6-Dinitrotoluene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 606-20-2 E Di-n-octylphthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 E Dis(2-Ethylhexyl)phthalate ND ug/L 6.0 1 04/18/19 17:38 04/19/19 19:54 117-81-7 E E E E E E E E E E E E E E E E E E E			0							H2
2,4-Dinitrotoluene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 121-14-2 H 2,6-Dinitrotoluene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 606-20-2 H Di-n-octylphthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 H bis(2-Ethylhexyl)phthalate ND ug/L 6.0 1 04/18/19 17:38 04/19/19 19:54 117-81-7 H Fluoranthene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 206-44-0 H Fluorene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 86-73-7 H Hexachloro-1,3-butadiene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 87-68-3 H Hexachlorobenzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 118-74-1 H Hexachlorocyclopentadiene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 67-72-1			_							H2,L2
2,6-Dinitrotoluene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 606-20-2 H Di-n-octylphthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 H bis(2-Ethylhexyl)phthalate ND ug/L 6.0 1 04/18/19 17:38 04/19/19 19:54 117-81-7 H Fluoranthene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 206-44-0 H Fluorene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 86-73-7 H Hexachloro-1,3-butadiene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 87-68-3 H Hexachlorobenzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 118-74-1 H Hexachlorocyclopentadiene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 77-47-4 H Hexachloroethane ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 67-72-1 H Indeno(1,2,3-cd)pyrene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 193-39-5 H			_							H2
Di-n-octylphthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 117-84-0 Heis (2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate ND ug/L 6.0 1 04/18/19 17:38 04/19/19 19:54 117-81-7 Heis (2-Ethylhexyl)phthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 206-44-0 Heis (2-Ethylhexyl)phthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 206-44-0 Heis (2-Ethylhexyl)phthalate ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 206-44-0 Heis (2-Ethylhexyl)phthalate ND Ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 206-44-0 Heis (2-Ethylhexyl)phthalate Heis (2-Ethylhexyl)phthalate ND Ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 206-44-0 Heis (2-Ethylhexyl)phthalate Heis (2-Ethylhexyl)phthalate Heis (2-Ethylhexyl)phthalate Heis (2-Ethylhexyl)phthalate Heis (2-Ethylhexyl)phthalate 10.0 1 04/18/19 17:38 04/19/19 19:54 206-44-0 Heis (2-Ethylhexyl)phthalate </td <td>·</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>H2</td>	·		_							H2
bis(2-Ethylhexyl)phthalate ND ug/L 6.0 1 04/18/19 17:38 04/19/19 19:54 117-81-7 Filoranthene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 206-44-0 Filorene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 86-73-7 Filorene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 86-73-7 Filorene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 87-68-3 Filorene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 87-68-3 Filorene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 118-74-1 Filorene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 77-47-4 Filorene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 67-72-1 Filorene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 193-39-5 Filorene ND ug/			_							H2
Fluoranthene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 206-44-0 Fluorene Fluorene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 86-73-7 Fluorene Hexachloro-1,3-butadiene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 87-68-3 Fluorene Hexachlorobenzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 118-74-1 Fluorene Hexachlorocyclopentadiene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 77-47-4 Fluorene Hexachloroethane ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 67-72-1 Fluorene Indeno(1,2,3-cd)pyrene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 193-39-5 Fluorene			•							H2
Fluorene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 86-73-7 Hexachloro-1,3-butadiene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 87-68-3 Hexachlorobenzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 118-74-1 Hexachlorocyclopentadiene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 77-47-4 Hexachloroethane ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 67-72-1 Hexachloroethane ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 193-39-5 Hexachloroethane Indeno(1,2,3-cd)pyrene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 193-39-5 Hexachloroethane	, , , , , , , , , , , , , , , , , , , ,		•							H2
Hexachloro-1,3-butadiene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 87-68-3 Hexachlorobenzene Hexachlorobenzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 118-74-1 Hexachlorocyclopentadiene Hexachlorocyclopentadiene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 77-47-4 Hexachlorocyclopentadiene Hexachlorocyclopentadiene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 67-72-1 Hexachlorocyclopentadiene Indeno(1,2,3-cd)pyrene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 193-39-5 Hexachlorocyclopentadiene			•							H2
Hexachlorobenzene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 118-74-1 Hexachlorocyclopentadiene Hexachlorocyclopentadiene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 77-47-4 Hexachloroethane Hexachlorocyclopentadiene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 67-72-1 Hexachloroethane Indeno(1,2,3-cd)pyrene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 193-39-5 Hexachloroethane			•							п2 H2
Hexachlorocyclopentadiene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 77-47-4 H Hexachloroethane ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 67-72-1 H Indeno(1,2,3-cd)pyrene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 193-39-5 H	•		•							H2
Hexachloroethane ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 67-72-1 H Indeno(1,2,3-cd)pyrene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 193-39-5 H			•							H2
Indeno(1,2,3-cd)pyrene ND ug/L 10.0 1 04/18/19 17:38 04/19/19 19:54 193-39-5 H	, .		•							
			•							H2
ו ug/L 10.0 ב 10.71 17:38 04/19/19 19:54 /8-59-1 ו ug/L 10.0 ו	, , , ,		•							H2
· ·	•		•							H2 H2

REPORT OF LABORATORY ANALYSIS

(704)875-9092

ANALYTICAL RESULTS

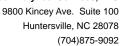
Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

Sample: B5.1	Lab ID: 9	92425908002	Collected: 04/10/1	9 12:30	Received: 04	/12/19 14:45 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3270E RVE	Analytical N	Method: EPA 82	270E Preparation Me	thod: EF	PA 3510C			
2-Methylnaphthalene	85.9	ug/L	10.0	1	04/18/19 17:38	04/19/19 19:54	91-57-6	H2
2-Methylphenol(o-Cresol)	ND	ug/L	10.0	1	04/18/19 17:38	04/19/19 19:54	95-48-7	H2
3&4-Methylphenol(m&p Cresol)	ND	ug/L	10.0	1	04/18/19 17:38	04/19/19 19:54	15831-10-4	H2
Naphthalene	421	ug/L	40.0	4	04/18/19 17:38	04/22/19 13:10	91-20-3	H2
2-Nitroaniline	ND	ug/L	50.0	1	04/18/19 17:38	04/19/19 19:54	88-74-4	H2
3-Nitroaniline	ND	ug/L	50.0	1	04/18/19 17:38	04/19/19 19:54	99-09-2	H2
-Nitroaniline	ND	ug/L	20.0	1	04/18/19 17:38	04/19/19 19:54	100-01-6	H2
litrobenzene	ND	ug/L	10.0	1	04/18/19 17:38	04/19/19 19:54	98-95-3	H2
?-Nitrophenol	ND	ug/L	10.0	1	04/18/19 17:38	04/19/19 19:54	88-75-5	H2
-Nitrophenol	ND	ug/L	50.0	1	04/18/19 17:38	04/19/19 19:54	100-02-7	H2
N-Nitrosodimethylamine	ND	ug/L	10.0	1	04/18/19 17:38	04/19/19 19:54	62-75-9	H2
I-Nitroso-di-n-propylamine	ND	ug/L	10.0	1	04/18/19 17:38	04/19/19 19:54	621-64-7	H2
N-Nitrosodiphenylamine	ND	ug/L	10.0	1	04/18/19 17:38	04/19/19 19:54	86-30-6	H2
2,2'-Oxybis(1-chloropropane)	ND	ug/L	10.0	1	04/18/19 17:38	04/19/19 19:54	108-60-1	H2
Pentachlorophenol	ND	ug/L	25.0	1	04/18/19 17:38	04/19/19 19:54	87-86-5	H2
Phenanthrene	ND	ug/L	10.0	1	04/18/19 17:38	04/19/19 19:54	85-01-8	H2
Phenol	ND	ug/L	10.0	1	04/18/19 17:38	04/19/19 19:54	108-95-2	H2
yrene	ND	ug/L	10.0	1	04/18/19 17:38	04/19/19 19:54	129-00-0	H2
,2,4-Trichlorobenzene	ND	ug/L	10.0	1	04/18/19 17:38	04/19/19 19:54	120-82-1	H2
,4,5-Trichlorophenol	ND	ug/L	10.0	1	04/18/19 17:38	04/19/19 19:54	95-95-4	H2
.,4,6-Trichlorophenol	ND	ug/L	10.0	1	04/18/19 17:38	04/19/19 19:54	88-06-2	H2
Surrogates								
litrobenzene-d5 (S)	68		13-130	1		04/19/19 19:54		
?-Fluorobiphenyl (S)	55		13-130	1		04/19/19 19:54		
erphenyl-d14 (S)	66		25-130	1		04/19/19 19:54		
Phenol-d6 (S)	47		10-130	1		04/19/19 19:54		
2-Fluorophenol (S)	52		10-130	1		04/19/19 19:54		
2,4,6-Tribromophenol (S)	75	%	10-137	1	04/18/19 17:38	04/19/19 19:54	118-79-6	
2260D MSV Low Level	Analytical N	Method: EPA 82	260D					
cetone	ND	ug/L	250	10		04/23/19 09:01	67-64-1	
Benzene	217	ug/L	10.0	10		04/23/19 09:01	71-43-2	
Bromobenzene	ND	ug/L	10.0	10		04/23/19 09:01	108-86-1	
Bromochloromethane	ND	ug/L	10.0	10		04/23/19 09:01	74-97-5	IK
Bromodichloromethane	ND	ug/L	10.0	10		04/23/19 09:01	75-27-4	
Bromoform	ND	ug/L	10.0	10		04/23/19 09:01	75-25-2	IK
Bromomethane	ND	ug/L	20.0	10		04/23/19 09:01	74-83-9	IK
-Butanone (MEK)	ND	ug/L	50.0	10		04/23/19 09:01	78-93-3	
Carbon tetrachloride	ND	ug/L	10.0	10		04/23/19 09:01	56-23-5	
Chlorobenzene	ND	Ū	10.0	10		04/23/19 09:01		
Chloroethane	ND	ug/L	10.0	10		04/23/19 09:01	75-00-3	IK
Chloroform	ND	ug/L	50.0	10		04/23/19 09:01		
Chloromethane	ND	ug/L	10.0	10		04/23/19 09:01	74-87-3	
2-Chlorotoluene	ND	ug/L	10.0	10		04/23/19 09:01	95-49-8	
-Chlorotoluene	ND	ug/L	10.0	10		04/23/19 09:01	106-43-4	
,2-Dibromo-3-chloropropane	ND	ug/L	50.0	10		04/23/19 09:01	96-12-8	
Dibromochloromethane	ND	ug/L	10.0	10		04/23/19 09:01	124-48-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



ANALYTICAL RESULTS

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

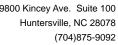
Sample: B5.1	Lab ID: 924	25908002	Collected: 04/10/1	9 12:30	Received: 04/12/19 14	4:45 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared Anal	yzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	nod: EPA 82	260D					
1,2-Dibromoethane (EDB)	ND	ug/L	10.0	10	04/23/1	9 09:01	106-93-4	
Dibromomethane	ND	ug/L	10.0	10	04/23/1	9 09:01	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	10.0	10	04/23/1	9 09:01	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	10.0	10	04/23/1	9 09:01	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	10.0	10	04/23/1	9 09:01	106-46-7	
Dichlorodifluoromethane	ND	ug/L	10.0	10	04/23/1	9 09:01	75-71-8	
I,1-Dichloroethane	ND	ug/L	10.0	10	04/23/1	9 09:01	75-34-3	
1,2-Dichloroethane	ND	ug/L	10.0	10	04/23/1	9 09:01	107-06-2	
1,1-Dichloroethene	ND	ug/L	10.0	10			75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	10.0	10			156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	10.0	10			156-60-5	
1,2-Dichloropropane	ND	ug/L	10.0	10			78-87-5	
1,3-Dichloropropane	ND	ug/L	10.0	10			142-28-9	
2,2-Dichloropropane	ND	ug/L	10.0	10			594-20-7	
I,1-Dichloropropene	ND ND	ug/L	10.0	10			563-58-6	
cis-1,3-Dichloropropene	ND ND	-	10.0	10			10061-01-5	
, ,		ug/L						
rans-1,3-Dichloropropene	ND	ug/L	10.0	10	04/23/1			
Diisopropyl ether	ND	ug/L	10.0	10	04/23/1			
Ethylbenzene	1040	ug/L	10.0	10			100-41-4	
lexachloro-1,3-butadiene	ND	ug/L	10.0	10			87-68-3	
-Hexanone	ND	ug/L	50.0	10			591-78-6	
p-Isopropyltoluene	26.3	ug/L	10.0	10			99-87-6	
Methylene Chloride	ND	ug/L	50.0	10			75-09-2	
I-Methyl-2-pentanone (MIBK)	ND	ug/L	50.0	10			108-10-1	
Methyl-tert-butyl ether	39.9	ug/L	10.0	10	04/23/1	9 09:01	1634-04-4	
Naphthalene	850	ug/L	10.0	10			91-20-3	
Styrene	ND	ug/L	10.0	10	04/23/1	9 09:01	100-42-5	
,1,1,2-Tetrachloroethane	ND	ug/L	10.0	10	04/23/1	9 09:01	630-20-6	
,1,2,2-Tetrachloroethane	ND	ug/L	10.0	10	04/23/1	9 09:01	79-34-5	
- etrachloroethene	ND	ug/L	10.0	10	04/23/1	9 09:01	127-18-4	
oluene	27.9	ug/L	10.0	10	04/23/1	9 09:01	108-88-3	
,2,3-Trichlorobenzene	ND	ug/L	10.0	10	04/23/1	9 09:01	87-61-6	
,2,4-Trichlorobenzene	ND	ug/L	10.0	10	04/23/1	9 09:01	120-82-1	
,1,1-Trichloroethane	ND	ug/L	10.0	10	04/23/1	9 09:01	71-55-6	
,1,2-Trichloroethane	ND	ug/L	10.0	10	04/23/1	9 09:01	79-00-5	
richloroethene	ND	ug/L	10.0	10			79-01-6	
richlorofluoromethane	ND	ug/L	10.0	10			75-69-4	
,2,3-Trichloropropane	ND	ug/L	10.0	10			96-18-4	
/inyl acetate	ND	ug/L	20.0	10			108-05-4	
/inyl chloride	ND	ug/L	10.0	10			75-01-4	
(ylene (Total)	2500	ug/L	10.0	10			1330-20-7	
n&p-Xylene	1220	ug/L	20.0	10			179601-23-1	
nap-Aylene n-Xylene	1280	ug/L ug/L	10.0	10			95-47-6	
Surrogates	1200	ug/L	10.0	10	04/23/1	J UJ.UI	33-41-0	
-Bromofluorobenzene (S)	101	%	70-130	10	<u>04/23/1</u>	g <u>n</u> g-n1	460-00-4	
,2-Dichloroethane-d4 (S)	102	% %	70-130	10			17060-07-0	
Foluene-d8 (S)	102	% %	70-130	10			2037-26-5	

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

QC Batch: 470498 Analysis Method: EPA 8260D

QC Batch Method: EPA 5035A Analysis Description: 8260D MSV 5035A Volatile Organics


Associated Lab Samples: 92425908003, 92425908004

METHOD BLANK: 2554406 Matrix: Solid

Associated Lab Samples: 92425908003, 92425908004

Associated Lab Campies.	92423900003, 92423900004	- ·			
Danamatan	Haita	Blank	Reporting	A	O II
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	5.0	04/19/19 20:05	
1,1,1-Trichloroethane	ug/kg	ND	5.0	04/19/19 20:05	
1,1,2,2-Tetrachloroethane	ug/kg	ND	5.0	04/19/19 20:05	
1,1,2-Trichloroethane	ug/kg	ND	5.0	04/19/19 20:05	
1,1-Dichloroethane	ug/kg	ND	5.0	04/19/19 20:05	
1,1-Dichloroethene	ug/kg	ND	5.0	04/19/19 20:05	
1,1-Dichloropropene	ug/kg	ND	5.0	04/19/19 20:05	
1,2,3-Trichlorobenzene	ug/kg	ND	5.0	04/19/19 20:05	
1,2,3-Trichloropropane	ug/kg	ND	5.0	04/19/19 20:05	
1,2,4-Trichlorobenzene	ug/kg	ND	5.0	04/19/19 20:05	
1,2,4-Trimethylbenzene	ug/kg	ND	5.0	04/19/19 20:05	
1,2-Dibromo-3-chloropropan	e ug/kg	ND	5.0	04/19/19 20:05	
1,2-Dibromoethane (EDB)	ug/kg	ND	5.0	04/19/19 20:05	
1,2-Dichlorobenzene	ug/kg	ND	5.0	04/19/19 20:05	
1,2-Dichloroethane	ug/kg	ND	5.0	04/19/19 20:05	
1,2-Dichloropropane	ug/kg	ND	5.0	04/19/19 20:05	
1,3,5-Trimethylbenzene	ug/kg	ND	5.0	04/19/19 20:05	
1,3-Dichlorobenzene	ug/kg	ND	5.0	04/19/19 20:05	
1,3-Dichloropropane	ug/kg	ND	5.0	04/19/19 20:05	
1,4-Dichlorobenzene	ug/kg	ND	5.0	04/19/19 20:05	
2,2-Dichloropropane	ug/kg	ND	5.0	04/19/19 20:05	
2-Butanone (MEK)	ug/kg	ND	100	04/19/19 20:05	
2-Chlorotoluene	ug/kg	ND	5.0	04/19/19 20:05	
2-Hexanone	ug/kg	ND	50.0	04/19/19 20:05	
4-Chlorotoluene	ug/kg	ND	5.0	04/19/19 20:05	
4-Methyl-2-pentanone (MIBh	K) ug/kg	ND	50.0	04/19/19 20:05	
Acetone	ug/kg	ND	100	04/19/19 20:05	
Benzene	ug/kg	ND	5.0	04/19/19 20:05	
Bromobenzene	ug/kg	ND	5.0	04/19/19 20:05	
Bromochloromethane	ug/kg	ND	5.0	04/19/19 20:05	
Bromodichloromethane	ug/kg	ND	5.0	04/19/19 20:05	
Bromoform	ug/kg	ND	5.0	04/19/19 20:05	
Bromomethane	ug/kg	ND	10.0	04/19/19 20:05	
Carbon tetrachloride	ug/kg	ND	5.0	04/19/19 20:05	
Chlorobenzene	ug/kg	ND	5.0	04/19/19 20:05	
Chloroethane	ug/kg	ND	10.0	04/19/19 20:05	
Chloroform	ug/kg	ND	5.0	04/19/19 20:05	
Chloromethane	ug/kg	ND	10.0	04/19/19 20:05	
cis-1,2-Dichloroethene	ug/kg	ND	5.0	04/19/19 20:05	
cis-1,3-Dichloropropene	ug/kg	ND	5.0	04/19/19 20:05	
Dibromochloromethane	ug/kg	ND	5.0	04/19/19 20:05	
	5 5				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

METHOD BLANK: 2554406 Matrix: Solid

Associated Lab Samples: 92425908003, 92425908004

Davamatas	, Lleite	Blank	Reporting	A a lu a -l	Ovalitiana
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dibromomethane	ug/kg	ND	5.0	04/19/19 20:05	
Dichlorodifluoromethane	ug/kg	ND	10.0	04/19/19 20:05	
Diisopropyl ether	ug/kg	ND	5.0	04/19/19 20:05	
Ethylbenzene	ug/kg	ND	5.0	04/19/19 20:05	
Hexachloro-1,3-butadiene	ug/kg	ND	5.0	04/19/19 20:05	
Isopropylbenzene (Cumene)	ug/kg	ND	5.0	04/19/19 20:05	
m&p-Xylene	ug/kg	ND	10.0	04/19/19 20:05	
Methyl-tert-butyl ether	ug/kg	ND	5.0	04/19/19 20:05	
Methylene Chloride	ug/kg	ND	20.0	04/19/19 20:05	
n-Butylbenzene	ug/kg	ND	5.0	04/19/19 20:05	
n-Propylbenzene	ug/kg	ND	5.0	04/19/19 20:05	
Naphthalene	ug/kg	ND	5.0	04/19/19 20:05	
o-Xylene	ug/kg	ND	5.0	04/19/19 20:05	
p-Isopropyltoluene	ug/kg	ND	5.0	04/19/19 20:05	
sec-Butylbenzene	ug/kg	ND	5.0	04/19/19 20:05	
Styrene	ug/kg	ND	5.0	04/19/19 20:05	
tert-Butylbenzene	ug/kg	ND	5.0	04/19/19 20:05	
Tetrachloroethene	ug/kg	ND	5.0	04/19/19 20:05	
Toluene	ug/kg	ND	5.0	04/19/19 20:05	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	04/19/19 20:05	
trans-1,3-Dichloropropene	ug/kg	ND	5.0	04/19/19 20:05	
Trichloroethene	ug/kg	ND	5.0	04/19/19 20:05	
Trichlorofluoromethane	ug/kg	ND	5.0	04/19/19 20:05	
Vinyl acetate	ug/kg	ND	50.0	04/19/19 20:05	
Vinyl chloride	ug/kg	ND	10.0	04/19/19 20:05	
Xylene (Total)	ug/kg	ND	10.0	04/19/19 20:05	
1,2-Dichloroethane-d4 (S)	%	103	70-132	04/19/19 20:05	
4-Bromofluorobenzene (S)	%	99	70-130	04/19/19 20:05	
Toluene-d8 (S)	%	99	70-130	04/19/19 20:05	

LABORATORY CONTROL SAMPLE:	2554407					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	50	49.9	100	70-130	
1,1,1-Trichloroethane	ug/kg	50	43.2	86	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	50	48.2	96	55-130	
1,1,2-Trichloroethane	ug/kg	50	47.0	94	70-130	
1,1-Dichloroethane	ug/kg	50	42.4	85	68-130	
1,1-Dichloroethene	ug/kg	50	43.0	86	70-130	
1,1-Dichloropropene	ug/kg	50	42.8	86	70-130	
1,2,3-Trichlorobenzene	ug/kg	50	47.5	95	70-130	
1,2,3-Trichloropropane	ug/kg	50	51.4	103	70-130	
1,2,4-Trichlorobenzene	ug/kg	50	46.7	93	70-130	
1,2,4-Trimethylbenzene	ug/kg	50	44.0	88	69-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

ABORATORY CONTROL SAMPLE:	2554407					
Davis :	11.5	Spike	LCS	LCS	% Rec	0 ""
Parameter	Units	Conc	Result	% Rec	Limits	Qualifiers
,2-Dibromo-3-chloropropane	ug/kg	50	45.1	90	57-141	
,2-Dibromoethane (EDB)	ug/kg	50	47.7	95	70-130	
,2-Dichlorobenzene	ug/kg	50	44.9	90	70-130	
,2-Dichloroethane	ug/kg	50	44.6	89	70-130	
,2-Dichloropropane	ug/kg	50	46.5	93	70-130	
,3,5-Trimethylbenzene	ug/kg	50	44.8	90	70-130	
,3-Dichlorobenzene	ug/kg	50	44.2	88	70-130	
,3-Dichloropropane	ug/kg	50	47.0	94	70-130	
,4-Dichlorobenzene	ug/kg	50	44.2	88	70-130	
,2-Dichloropropane	ug/kg	50	44.8	90	70-130	
-Butanone (MEK)	ug/kg	100	101	101	60-130	
-Chlorotoluene	ug/kg	50	44.8	90	70-130	
-Hexanone	ug/kg	100	93.1	93	70-132	
-Chlorotoluene	ug/kg	50	44.7	89	70-130	
-Methyl-2-pentanone (MIBK)	ug/kg	100	93.1	93	69-130	
cetone	ug/kg	100	102	102	49-148	
Senzene	ug/kg	50	45.6	91	70-130	
Bromobenzene	ug/kg	50	45.6	91	70-130	
romochloromethane	ug/kg	50	45.7	91	70-130	
romodichloromethane	ug/kg	50	46.8	94	70-130	
romoform	ug/kg	50	42.0	84	68-136	
romomethane	ug/kg	50	43.0	86	60-140	
arbon tetrachloride	ug/kg	50	44.0	88	70-130	
Chlorobenzene	ug/kg	50	43.3	87	70-130	
Chloroethane	ug/kg	50	49.2	98	51-147	
Chloroform	ug/kg	50	43.8	88	70-130	
Chloromethane	ug/kg	50	42.4	85	48-130	
is-1,2-Dichloroethene	ug/kg	50	43.8	88	70-130	
is-1,3-Dichloropropene	ug/kg	50	47.8	96	70-130	
Dibromochloromethane	ug/kg	50	47.3	95	70-130	
Dibromomethane	ug/kg	50	47.3	95	70-130	
Dichlorodifluoromethane	ug/kg	50	43.1	86	49-130	
Diisopropyl ether	ug/kg	50	48.7	97	66-130	
thylbenzene	ug/kg	50	45.1	90	70-130	
lexachloro-1,3-butadiene	ug/kg	50	45.1	90	70-130	
sopropylbenzene (Cumene)	ug/kg	50	44.6	89	70-130	
n&p-Xylene	ug/kg	100	89.9	90	70-130	
Nethyl-tert-butyl ether	ug/kg	50	48.2	96	70-130	
Methylene Chloride	ug/kg	50	38.3	77	50-137	
-Butylbenzene	ug/kg	50	45.0	90	70-130	
-Propylbenzene	ug/kg	50	45.0	90	70-130	
laphthalene	ug/kg	50	47.1	94	70-131	
-Xylene	ug/kg	50	44.2	88	70-130	
-Isopropyltoluene	ug/kg	50	45.2	90	70-130	
ec-Butylbenzene	ug/kg	50	45.8	92	70-130	
Styrene	ug/kg	50 50	44.3	89	70-130	
ert-Butylbenzene	ug/kg ug/kg	50 50	44.3	80	69-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

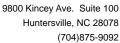
Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

ABORATORY CONTROL SAMPLE:	2554407					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
etrachloroethene	ug/kg	50	44.7	89	56-130	
oluene	ug/kg	50	44.4	89	70-130	
ans-1,2-Dichloroethene	ug/kg	50	43.1	86	70-130	
ans-1,3-Dichloropropene	ug/kg	50	49.0	98	70-130	
richloroethene	ug/kg	50	43.9	88	70-141	
ichlorofluoromethane	ug/kg	50	43.5	87	67-130	
nyl acetate	ug/kg	100	92.7	93	10-136	
nyl chloride	ug/kg	50	43.2	86	67-130	
/lene (Total)	ug/kg	150	134	89	70-130	
2-Dichloroethane-d4 (S)	%			96	70-132	
Bromofluorobenzene (S)	%			99	70-130	
oluene-d8 (S)	%			99	70-130	

MATRIX SPIKE SAMPLE:	2555712						
		92425764001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	437	469	107	52-133	
1,1,1-Trichloroethane	ug/kg	ND	437	426	98	49-137	
1,1,2,2-Tetrachloroethane	ug/kg	ND	437	320	73	39-150	
1,1,2-Trichloroethane	ug/kg	ND	437	377	86	48-140	
1,1-Dichloroethane	ug/kg	ND	437	424	97	46-135	
1,1-Dichloroethene	ug/kg	ND	437	530	121	38-149	
1,1-Dichloropropene	ug/kg	ND	437	420	96	41-140	
1,2,3-Trichlorobenzene	ug/kg	ND	437	427	98	10-158	
1,2,3-Trichloropropane	ug/kg	ND	437	322	74	33-157	
1,2,4-Trichlorobenzene	ug/kg	ND	437	451	103	10-155	
1,2,4-Trimethylbenzene	ug/kg	ND	437	499	114	24-154	
1,2-Dibromo-3-chloropropane	ug/kg	ND	437	237	54	33-158	
1,2-Dibromoethane (EDB)	ug/kg	ND	437	330	76	40-136	
1,2-Dichlorobenzene	ug/kg	ND	437	440	101	27-146	
1,2-Dichloroethane	ug/kg	ND	437	335	77	49-140	
1,2-Dichloropropane	ug/kg	ND	437	411	94	44-143	
1,3,5-Trimethylbenzene	ug/kg	ND	437	456	104	40-144	
1,3-Dichlorobenzene	ug/kg	ND	437	443	102	33-140	
1,3-Dichloropropane	ug/kg	ND	437	408	93	47-147	
1,4-Dichlorobenzene	ug/kg	ND	437	447	102	35-139	
2,2-Dichloropropane	ug/kg	ND	437	446	102	41-140	
2-Butanone (MEK)	ug/kg	ND	873	397J	45	10-181	
2-Chlorotoluene	ug/kg	ND	437	457	105	38-147	
2-Hexanone	ug/kg	ND	873	468J	54	18-169	
4-Chlorotoluene	ug/kg	ND	437	462	106	36-145	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	873	509J	58	16-175	
Acetone	ug/kg	ND	873	ND	22	10-200	
Benzene	ug/kg	ND	437	435	100	46-136	
Bromobenzene	ug/kg	ND	437	464	106	38-149	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

MATRIX SPIKE SAMPLE:	2555712						
		92425764001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromochloromethane	ug/kg	ND	437	335	77	44-142	
Bromodichloromethane	ug/kg	ND	437	369	85	41-140	
Bromoform	ug/kg	ND	437	331	76	34-145	
Bromomethane	ug/kg	ND	437	385	88	14-162	
Carbon tetrachloride	ug/kg	ND	437	442	101	44-141	
Chlorobenzene	ug/kg	ND	437	446	102	39-141	
Chloroethane	ug/kg	ND	437	215	49	10-182	
Chloroform	ug/kg	ND	437	387	89	45-140	
Chloromethane	ug/kg	ND	437	517	119	19-149	
cis-1,2-Dichloroethene	ug/kg	ND	437	401	92	38-150	
cis-1,3-Dichloropropene	ug/kg	ND	437	459	105	30-144	
Dibromochloromethane	ug/kg	ND	437	405	93	36-145	
Dibromomethane	ug/kg	ND	437	291	67	41-145	
Dichlorodifluoromethane	ug/kg	ND	437	241	55	16-146	
Diisopropyl ether	ug/kg	ND	437	445	102	41-143	
Ethylbenzene	ug/kg	ND	437	473	108	35-144	
Hexachloro-1,3-butadiene	ug/kg	ND	437	411	94	10-160	
Isopropylbenzene (Cumene)	ug/kg	ND	437	440	101	30-152	
m&p-Xylene	ug/kg	ND	873	1020	116	33-145	
Methyl-tert-butyl ether	ug/kg	ND	437	361	83	49-140	
Methylene Chloride	ug/kg	ND	437	489	112	10-174	
n-Butylbenzene	ug/kg	ND	437	428	98	10-160	
n-Propylbenzene	ug/kg	ND	437	468	107	24-159	
Naphthalene	ug/kg	ND	437	336	77	10-171	
o-Xylene	ug/kg	ND	437	507	116	31-150	
p-Isopropyltoluene	ug/kg	ND	437	445	102	21-154	
sec-Butylbenzene	ug/kg	ND	437	452	104	19-159	
Styrene	ug/kg	ND	437	442	101	15-152	
tert-Butylbenzene	ug/kg	ND	437	395	91	31-141	
Tetrachloroethene	ug/kg	ND	437	432	99	19-141	
Toluene	ug/kg	ND	437	517	118	31-146	
trans-1,2-Dichloroethene	ug/kg	ND	437	425	97	28-157	
trans-1,3-Dichloropropene	ug/kg	ND	437	376	86	25-146	
Trichloroethene	ug/kg	ND	437	442	101	34-149	
Trichlorofluoromethane	ug/kg	ND	437	427	98	10-167	
Vinyl acetate	ug/kg	ND	873	807J	92	10-200	
Vinyl chloride	ug/kg	ND	437	248	57	36-155	
Xylene (Total)	ug/kg	ND	1310	1520	116	29-148	
1,2-Dichloroethane-d4 (S)	%				72	70-132	
4-Bromofluorobenzene (S)	%				100	70-130	
Toluene-d8 (S)	%				102	70-130 F	2

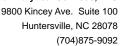
Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

SAMPLE DUPLICATE: 2555711		92425574001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	ND		
1,1,1-Trichloroethane	ug/kg	ND	ND		
I,1,2,2-Tetrachloroethane	ug/kg	ND	ND		
,1,2-Trichloroethane	ug/kg	ND	ND		
I,1-Dichloroethane	ug/kg	ND	ND		
,1-Dichloroethene	ug/kg	ND	ND		
1,1-Dichloropropene	ug/kg	ND	ND		
I,2,3-Trichlorobenzene	ug/kg	ND	ND		
,2,3-Trichloropropane	ug/kg	ND	ND		
1,2,4-Trichlorobenzene	ug/kg	ND	ND		
,2,4-Trimethylbenzene	ug/kg	ND	ND		
,2-Dibromo-3-chloropropane	ug/kg	ND	ND		
,2-Dibromoethane (EDB)	ug/kg	ND	ND		
,2-Dichlorobenzene	ug/kg	ND	ND		
,,2-Dichloroethane	ug/kg	ND	ND		
,2-Dichloropropane	ug/kg	ND	ND		
1,3,5-Trimethylbenzene	ug/kg	ND	ND		
1,3-Dichlorobenzene	ug/kg	ND	ND		
,3-Dichloropropane	ug/kg	ND	ND		
,,4-Dichlorobenzene	ug/kg	ND	ND		
2,2-Dichloropropane	ug/kg	ND	ND		
2-Butanone (MEK)	ug/kg	ND	ND		
2-Chlorotoluene		ND	ND ND		
2-Hexanone	ug/kg	ND	ND ND		
I-Chlorotoluene	ug/kg	ND ND	ND ND		
	ug/kg	ND ND			
I-Methyl-2-pentanone (MIBK)	ug/kg	146	ND	4	0.00
Acetone	ug/kg	ND	240	4	9 D6
Benzene	ug/kg		ND		
Bromobenzene	ug/kg	ND ND	ND		
Bromochloromethane	ug/kg	ND	ND		
Bromodichloromethane	ug/kg	ND	ND		
Bromoform	ug/kg	ND	ND		
Bromomethane	ug/kg	ND	ND		
Carbon tetrachloride	ug/kg	ND	ND		
Chlorobenzene	ug/kg	ND	ND		
Chloroethane	ug/kg	ND	ND		
Chloroform	ug/kg	ND	ND		
Chloromethane	ug/kg	ND	ND		
is-1,2-Dichloroethene	ug/kg	ND	ND		
cis-1,3-Dichloropropene	ug/kg	ND	ND		
Dibromochloromethane	ug/kg	ND	ND		
Dibromomethane	ug/kg	ND	ND		
Dichlorodifluoromethane	ug/kg	ND	ND		
Diisopropyl ether	ug/kg	ND	ND		
Ethylbenzene	ug/kg	ND	ND		
Hexachloro-1,3-butadiene	ug/kg	ND	ND		
sopropylbenzene (Cumene)	ug/kg	ND	ND		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

Parameter	Units	92425574001 Result	Dup Result	RPD	Qualifiers
m&p-Xylene	ug/kg	ND	ND		
Methyl-tert-butyl ether	ug/kg	ND	ND		
Methylene Chloride	ug/kg	ND	ND		
n-Butylbenzene	ug/kg	ND	ND		
n-Propylbenzene	ug/kg	ND	ND		
Naphthalene	ug/kg	ND	ND		
o-Xylene	ug/kg	ND	ND		
p-Isopropyltoluene	ug/kg	ND	ND		
sec-Butylbenzene	ug/kg	ND	ND		
Styrene	ug/kg	ND	ND		
tert-Butylbenzene	ug/kg	ND	ND		
Tetrachloroethene	ug/kg	ND	ND		
Toluene	ug/kg	ND	ND		
trans-1,2-Dichloroethene	ug/kg	ND	ND		
trans-1,3-Dichloropropene	ug/kg	ND	ND		
Trichloroethene	ug/kg	ND	ND		
Trichlorofluoromethane	ug/kg	ND	ND		
Vinyl acetate	ug/kg	ND	ND		
Vinyl chloride	ug/kg	ND	ND		
Xylene (Total)	ug/kg	ND	ND		
1,2-Dichloroethane-d4 (S)	%	100	92		
4-Bromofluorobenzene (S)	%	97	98		
Toluene-d8 (S)	%	99	102		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: U5797 Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

QC Batch: 470847 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Associated Lab Samples: 92425908001, 92425908002

METHOD BLANK: 2555743 Matrix: Water

Associated Lab Samples: 92425908001, 92425908002

Associated Lab Samples. 92425	5908001, 92425908002	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	 ug/L	ND	1.0	04/22/19 23:47	· -
1,1,1-Trichloroethane	ug/L	ND	1.0	04/22/19 23:47	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	04/22/19 23:47	
1,1,2-Trichloroethane	ug/L	ND	1.0	04/22/19 23:47	
1,1-Dichloroethane	ug/L	ND	1.0	04/22/19 23:47	
1,1-Dichloroethene	ug/L	ND	1.0	04/22/19 23:47	
1,1-Dichloropropene	ug/L	ND	1.0	04/22/19 23:47	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	04/22/19 23:47	
1,2,3-Trichloropropane	ug/L	ND	1.0	04/22/19 23:47	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	04/22/19 23:47	
1,2-Dibromo-3-chloropropane	ug/L	ND	5.0	04/22/19 23:47	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	04/22/19 23:47	
1,2-Dichlorobenzene	ug/L	ND	1.0	04/22/19 23:47	
1,2-Dichloroethane	ug/L	ND	1.0	04/22/19 23:47	
1,2-Dichloropropane	ug/L	ND	1.0	04/22/19 23:47	
1,3-Dichlorobenzene	ug/L	ND	1.0	04/22/19 23:47	
1,3-Dichloropropane	ug/L	ND	1.0	04/22/19 23:47	
1,4-Dichlorobenzene	ug/L	ND	1.0	04/22/19 23:47	
2,2-Dichloropropane	ug/L	ND	1.0	04/22/19 23:47	
2-Butanone (MEK)	ug/L	ND	5.0	04/22/19 23:47	
2-Chlorotoluene	ug/L	ND	1.0	04/22/19 23:47	
2-Hexanone	ug/L	ND	5.0	04/22/19 23:47	
4-Chlorotoluene	ug/L	ND	1.0	04/22/19 23:47	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	04/22/19 23:47	
Acetone	ug/L	ND	25.0	04/22/19 23:47	
Benzene	ug/L	ND	1.0	04/22/19 23:47	
Bromobenzene	ug/L	ND	1.0	04/22/19 23:47	
Bromochloromethane	ug/L	ND	1.0	04/22/19 23:47	IK
Bromodichloromethane	ug/L	ND	1.0	04/22/19 23:47	
Bromoform	ug/L	ND	1.0	04/22/19 23:47	IK
Bromomethane	ug/L	ND	2.0	04/22/19 23:47	IK
Carbon tetrachloride	ug/L	ND	1.0	04/22/19 23:47	
Chlorobenzene	ug/L	ND	1.0	04/22/19 23:47	
Chloroethane	ug/L	ND	1.0	04/22/19 23:47	IK
Chloroform	ug/L	ND	5.0	04/22/19 23:47	
Chloromethane	ug/L	ND	1.0	04/22/19 23:47	
cis-1,2-Dichloroethene	ug/L	ND	1.0	04/22/19 23:47	
cis-1,3-Dichloropropene	ug/L	ND	1.0	04/22/19 23:47	
Dibromochloromethane	ug/L	ND	1.0	04/22/19 23:47	
Dibromomethane	ug/L	ND	1.0	04/22/19 23:47	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

METHOD BLANK: 2555743 Matrix: Water

Associated Lab Samples: 92425908001, 92425908002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diisopropyl ether	ug/L	ND ND	1.0	04/22/19 23:47	
Ethylbenzene	ug/L	ND	1.0	04/22/19 23:47	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	04/22/19 23:47	
m&p-Xylene	ug/L	ND	2.0	04/22/19 23:47	
Methyl-tert-butyl ether	ug/L	ND	1.0	04/22/19 23:47	
Methylene Chloride	ug/L	ND	5.0	04/22/19 23:47	
Naphthalene	ug/L	ND	1.0	04/22/19 23:47	
o-Xylene	ug/L	ND	1.0	04/22/19 23:47	
p-Isopropyltoluene	ug/L	ND	1.0	04/22/19 23:47	
Styrene	ug/L	ND	1.0	04/22/19 23:47	
Tetrachloroethene	ug/L	ND	1.0	04/22/19 23:47	
Toluene	ug/L	ND	1.0	04/22/19 23:47	
trans-1,2-Dichloroethene	ug/L	ND	1.0	04/22/19 23:47	
trans-1,3-Dichloropropene	ug/L	ND	1.0	04/22/19 23:47	
Trichloroethene	ug/L	ND	1.0	04/22/19 23:47	
Trichlorofluoromethane	ug/L	ND	1.0	04/22/19 23:47	
Vinyl acetate	ug/L	ND	2.0	04/22/19 23:47	
Vinyl chloride	ug/L	ND	1.0	04/22/19 23:47	
Xylene (Total)	ug/L	ND	1.0	04/22/19 23:47	
1,2-Dichloroethane-d4 (S)	%	103	70-130	04/22/19 23:47	
4-Bromofluorobenzene (S)	%	101	70-130	04/22/19 23:47	
Toluene-d8 (S)	%	109	70-130	04/22/19 23:47	

LABORATORY CONTROL SAMPLE:	2555744					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	56.0	112	70-130	
1,1,1-Trichloroethane	ug/L	50	53.0	106	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	52.5	105	70-130	
1,1,2-Trichloroethane	ug/L	50	54.9	110	70-130	
1,1-Dichloroethane	ug/L	50	51.7	103	70-130	
1,1-Dichloroethene	ug/L	50	51.0	102	70-130	
1,1-Dichloropropene	ug/L	50	51.3	103	70-130	
1,2,3-Trichlorobenzene	ug/L	50	53.3	107	70-130	
1,2,3-Trichloropropane	ug/L	50	55.1	110	70-130	
1,2,4-Trichlorobenzene	ug/L	50	53.4	107	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	53.3	107	70-130	
1,2-Dibromoethane (EDB)	ug/L	50	54.5	109	70-130	
1,2-Dichlorobenzene	ug/L	50	51.0	102	70-130	
1,2-Dichloroethane	ug/L	50	48.8	98	70-130	
1,2-Dichloropropane	ug/L	50	52.8	106	70-130	
1,3-Dichlorobenzene	ug/L	50	50.4	101	70-130	
1,3-Dichloropropane	ug/L	50	53.2	106	70-131	
1,4-Dichlorobenzene	ug/L	50	51.1	102	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

LABORATORY CONTROL SAMPLE:	2555744					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2,2-Dichloropropane	ug/L		54.4	109	69-130	
2-Butanone (MEK)	ug/L	100	113	113	64-135	
2-Chlorotoluene	ug/L	50	49.9	100	70-130	
2-Hexanone	ug/L	100	107	107	66-135	
1-Chlorotoluene	ug/L	50	49.6	99	70-130	
I-Methyl-2-pentanone (MIBK)	ug/L	100	104	104	70-130	
Acetone	ug/L	100	104	104	61-157	
Benzene	ug/L	50	51.8	104	70-130	
Bromobenzene	ug/L	50	51.9	104	70-130	
Bromochloromethane	ug/L	50	49.4	99	70-130 II	<
Bromodichloromethane	ug/L	50	52.3	105	70-130	
Bromoform	ug/L	50	48.6	97	70-130 II	<
Bromomethane	ug/L	50	50.9	102	38-130 II	<
Carbon tetrachloride	ug/L	50	47.2	94	70-130	
Chlorobenzene	ug/L	50	49.8	100	70-130	
Chloroethane	ug/L	50	41.4	83	37-142 II	<
Chloroform	ug/L	50	49.5	99	70-130	
Chloromethane	ug/L	50	50.1	100	48-130	
is-1,2-Dichloroethene	ug/L	50	51.6	103	70-130	
is-1,3-Dichloropropene	ug/L	50	57.6	115	70-130	
Dibromochloromethane	ug/L	50	54.9	110	70-130	
Dibromomethane	ug/L	50	51.4	103	70-130	
Dichlorodifluoromethane	ug/L	50	40.6	81	53-134	
Diisopropyl ether	ug/L	50	55.3	111	70-135	
Ethylbenzene	ug/L	50	50.2	100	70-130	
- Hexachloro-1,3-butadiene	ug/L	50	50.6	101	68-132	
n&p-Xylene	ug/L	100	102	102	70-130	
Methyl-tert-butyl ether	ug/L	50	58.8	118	70-130	
Methylene Chloride	ug/L	50	47.3	95	67-132	
Naphthalene	ug/L	50	56.7	113	70-130	
- -Xylene	ug/L	50	51.8	104	70-131	
o-Isopropyltoluene	ug/L	50	53.6	107	70-130	
Styrene	ug/L	50	52.1	104	70-130	
Tetrachloroethene	ug/L	50	50.4	101	69-130	
Toluene	ug/L	50	49.4	99	70-130	
rans-1,2-Dichloroethene	ug/L	50	52.1	104	70-130	
rans-1,3-Dichloropropene	ug/L	50	51.2	102	70-130	
richloroethene	ug/L	50	51.6	103	70-130	
richlorofluoromethane	ug/L	50	44.0	88	63-130	
/inyl acetate	ug/L	100	112	112	55-143	
/inyl chloride	ug/L	50	52.1	104	70-131	
(ylene (Total)	ug/L	150	153	102	70-130	
,2-Dichloroethane-d4 (S)	%			100	70-130	
I-Bromofluorobenzene (S)	%			98	70-130	
Foluene-d8 (S)	%			96	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

MATRIX SPIKE SAMPLE:	2555746					
Davasatas	Llaita	92425875006	Spike	MS	MS % Date	% Rec
Parameter	Units	Result	Conc.	Result	% Rec	Limits Qualifier
1,1,1,2-Tetrachloroethane	ug/L	ND	20	22.8	114	73-134
1,1,1-Trichloroethane	ug/L	ND	20	25.0	125	82-143
1,1,2,2-Tetrachloroethane	ug/L	ND	20	21.2	106	70-136
1,1,2-Trichloroethane	ug/L	ND	20	23.1	115	70-135
1,1-Dichloroethane	ug/L	0.43J	20	24.2	119	70-139
I,1-Dichloroethene	ug/L	ND	20	23.9	120	70-154
,1-Dichloropropene	ug/L	ND	20	23.8	119	70-149
1,2,3-Trichlorobenzene	ug/L	ND	20	22.2	111	70-135
I,2,3-Trichloropropane	ug/L	ND	20	22.7	113	71-137
,2,4-Trichlorobenzene	ug/L	ND	20	21.8	109	73-140
,2-Dibromo-3-chloropropane	ug/L	ND	20	19.7	98	65-134
,2-Dibromoethane (EDB)	ug/L	ND	20	21.6	108	70-137
,2-Dichlorobenzene	ug/L	ND	20	21.2	106	70-133
,2-Dichloroethane	ug/L	ND	20	22.4	112	70-137
,2-Dichloropropane	ug/L	ND	20	23.8	119	70-140
1,3-Dichlorobenzene	ug/L	ND	20	21.0	105	70-135
,3-Dichloropropane	ug/L	ND	20	21.8	109	70-143
,4-Dichlorobenzene	ug/L	ND	20	21.1	105	70-133
2,2-Dichloropropane	ug/L	ND	20	19.4	97	61-148
P-Butanone (MEK)	ug/L	ND	40	49.5	124	60-139
2-Chlorotoluene	ug/L	ND	20	21.0	105	70-144
2-Hexanone	ug/L	ND	40	42.4	106	65-138
l-Chlorotoluene	ug/L	ND	20	21.3	106	70-137
I-Methyl-2-pentanone (MIBK)	ug/L	ND	40	42.5	106	65-135
Acetone	ug/L	ND	40	55.4	139	60-148
Benzene	ug/L	ND	20	23.6	118	70-151
Bromobenzene	ug/L	ND	20	21.7	109	70-136
Bromochloromethane	ug/L	ND	20	25.3	127	70-141 IK
Bromodichloromethane	ug/L	ND	20	22.8	114	70-138
Bromoform	ug/L	ND	20	19.5	97	63-130 IK
Bromomethane	ug/L	ND	20	19.9	100	15-152 IK
Carbon tetrachloride	ug/L	ND	20	22.6	113	70-143
Chlorobenzene	ug/L	ND	20	21.6	108	70-138
Chloroethane	ug/L	ND	20	22.6	113	52-163 IK
Chloroform	ug/L	ND	20	23.7	116	70-139
Chloromethane	ug/L	ND	20	19.9	99	41-139
sis-1,2-Dichloroethene	ug/L	ND	20	23.9	119	70-141
sis-1,3-Dichloropropene	ug/L	ND	20	22.1	110	70-137
Dibromochloromethane	ug/L	ND	20	21.5	107	70-134
Dibromomethane	ug/L	ND	20	22.9	114	70-138
Dichlorodifluoromethane	ug/L	ND	20	19.2	96	47-155
Diisopropyl ether	ug/L	ND	20	23.4	117	63-144
Ethylbenzene	ug/L	ND	20	22.9	115	66-153
Hexachloro-1,3-butadiene	ug/L	ND	20	20.2	101	65-149
n&p-Xylene	ug/L	ND	40	46.2	116	69-152
Methyl-tert-butyl ether	ug/L	ND	20	24.2	121	54-156
Methylene Chloride	ug/L	ND	20	23.3	111	42-159

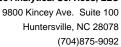
Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

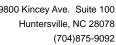

MATRIX SPIKE SAMPLE:	2555746						
		92425875006	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Naphthalene	ug/L	ND	20	23.2	116	61-148	
o-Xylene	ug/L	ND	20	23.1	116	70-148	
p-Isopropyltoluene	ug/L	ND	20	22.5	113	70-146	
Styrene	ug/L	ND	20	21.4	107	70-135	
Tetrachloroethene	ug/L	ND	20	22.0	110	59-143	
Toluene	ug/L	ND	20	22.8	114	59-148	
trans-1,2-Dichloroethene	ug/L	ND	20	24.3	122	70-146	
trans-1,3-Dichloropropene	ug/L	ND	20	20.2	101	70-135	
Trichloroethene	ug/L	ND	20	23.8	119	70-147	
Trichlorofluoromethane	ug/L	ND	20	24.5	122	70-148	
Vinyl acetate	ug/L	ND	40	35.2	88	49-151	
Vinyl chloride	ug/L	ND	20	23.4	117	70-156	
Xylene (Total)	ug/L	ND	60	69.3	116	63-158	
1,2-Dichloroethane-d4 (S)	%				104	70-130	
4-Bromofluorobenzene (S)	%				103	70-130	
Toluene-d8 (S)	%				100	70-130	

SAMPLE DUPLICATE: 2555745					
		92425875005	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	ND		
1,1,1-Trichloroethane	ug/L	ND	ND		
1,1,2,2-Tetrachloroethane	ug/L	ND	ND		
1,1,2-Trichloroethane	ug/L	ND	ND		
1,1-Dichloroethane	ug/L	ND	ND		
1,1-Dichloroethene	ug/L	ND	ND		
1,1-Dichloropropene	ug/L	ND	ND		
1,2,3-Trichlorobenzene	ug/L	ND	ND		
1,2,3-Trichloropropane	ug/L	ND	ND		
1,2,4-Trichlorobenzene	ug/L	ND	ND		
1,2-Dibromo-3-chloropropane	ug/L	ND	ND		
1,2-Dibromoethane (EDB)	ug/L	ND	ND		
1,2-Dichlorobenzene	ug/L	ND	ND		
1,2-Dichloroethane	ug/L	ND	ND		
1,2-Dichloropropane	ug/L	ND	ND		
1,3-Dichlorobenzene	ug/L	ND	ND		
1,3-Dichloropropane	ug/L	ND	ND		
1,4-Dichlorobenzene	ug/L	ND	ND		
2,2-Dichloropropane	ug/L	ND	ND		
2-Butanone (MEK)	ug/L	ND	ND		
2-Chlorotoluene	ug/L	ND	ND		
2-Hexanone	ug/L	ND	ND		
4-Chlorotoluene	ug/L	ND	ND		
4-Methyl-2-pentanone (MIBK)	ug/L	ND	ND		
Acetone	ug/L	27.6	22.1J		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

Parameter	SAMPLE DUPLICATE: 2555745					
Benzene			92425875005	Dup		
Bromobenzene ug/L ND ND IK Bromochloromethane ug/L ND ND IK Bromodichloromethane ug/L ND ND IK Bromodichloromethane ug/L ND ND ND IK Bromomethane ug/L ND ND ND IK Carbon tetrachloride ug/L ND ND ND ND Chlorobenzene ug/L ND	Parameter	Units	Result	Result	RPD	Qualifiers
Bromobenzene ug/L ND ND IK Bromochloromethane ug/L ND ND IK Bromodichloromethane ug/L ND ND IK Bromomethane ug/L ND ND IK Bromomethane ug/L ND ND ND Carbon tetrachloride ug/L ND ND ND Chlorobenzene ug/L ND ND ND Cis-1,2-Dichloropropene ug/L ND ND ND Dibromochloromethane ug/L ND ND ND Dibromoch	Benzene	ug/L	ND ND	ND		
Bromochloromethane ug/L ND ND IK Bromodichloromethane ug/L ND ND ND IK Bromoform ug/L ND ND IK Bromomethane ug/L ND ND ND Carbon tetrachloride ug/L ND ND ND Chlorobenzene ug/L ND ND ND Chlorothane ug/L ND ND ND Chloromethane ug/L ND ND ND Chloromethane ug/L ND ND ND Cis-1,3-Dichloropropene ug/L ND ND ND Cis-1,3-Dichloropropene ug/L ND ND ND Dibromochloromethane ug/L ND ND ND Dibromomethane ug/L ND ND ND Diisopropyl ether ug/L ND ND ND Hexachloro-1,3-butadiene ug/L ND ND ND <td>Bromobenzene</td> <td></td> <td>ND</td> <td>ND</td> <td></td> <td></td>	Bromobenzene		ND	ND		
Bromodichloromethane ug/L ND ND IK Bromoform ug/L ND ND ND IK Bromomethane ug/L ND ND ND IK Carbon tetrachloride ug/L ND ND <td>Bromochloromethane</td> <td></td> <td>ND</td> <td>ND</td> <td></td> <td>IK</td>	Bromochloromethane		ND	ND		IK
Bromoform ug/L ND ND IK Bromomethane ug/L ND ND IK Carbon tetrachloride ug/L ND ND ND Chlorobenzene ug/L ND ND ND Chloroethane ug/L ND ND ND Chloroform ug/L ND ND ND Chloroethane ug/L ND ND ND Cis-1,2-Dichloroethene ug/L ND ND ND cis-1,3-Dichloroptoene ug/L ND ND ND Dibromochloromethane ug/L ND ND ND Dibromomethane ug/L ND ND ND Disporptylether<	Bromodichloromethane		ND	ND		
Bromomethane ug/L ND ND IK Carbon tetrachloride ug/L ND ND ND Chlorobenzene ug/L ND ND ND Chloroftane ug/L ND ND ND Chloroform ug/L ND ND ND Chloromethane ug/L ND ND ND Cis-1,2-Dichloropropene ug/L ND ND ND Dibromochloromethane ug/L ND ND ND Dibromomethane ug/L ND ND ND Dichlorodifluoromethane ug/L ND ND ND Diisopropyl ether ug/L ND ND ND Ethylbenzene ug/L ND ND ND Hexachloro-1,3-butadiene ug/L ND ND ND Map-Xylene ug/L ND ND ND Methyl-tert-butyl ether ug/L ND ND ND	Bromoform	-	ND	ND		IK
Carbon tetrachloride ug/L ND ND Chlorobenzene ug/L ND ND Chloroethane ug/L ND ND Chloroform ug/L ND ND Chloromethane ug/L ND ND Cis-1,2-Dichloroethene ug/L ND ND cis-1,3-Dichloropropene ug/L ND ND Dibromochloromethane ug/L ND ND Methyleter-thutyl ether ug/L ND ND Methyleter-thutyl ether<	Bromomethane		ND	ND		IK
Chlorobenzene ug/L ND ND IK Chloroftane ug/L ND ND IK Chloroform ug/L ND ND ND Chloromethane ug/L ND ND ND cis-1,2-Dichloroethene ug/L ND ND ND cis-1,3-Dichloroptopene ug/L ND ND ND Dibromochloromethane ug/L ND ND ND Dibromochloromethane ug/L ND ND ND Dichlorodifluoromethane ug/L ND ND ND Dichlorodifluoromethane ug/L ND ND ND Dichlorodifluoromethane ug/L ND ND ND Disopropyl ether ug/L ND <	Carbon tetrachloride		ND	ND		
Chloroethane ug/L ND ND IK Chloroform ug/L ND ND ND Chloromethane ug/L ND ND ND cis-1,2-Dichloroethene ug/L ND ND ND cis-1,3-Dichloropropene ug/L ND ND ND Dibromochloromethane ug/L ND ND ND Dibromomethane ug/L ND ND ND Discopropyl ether ug/L ND ND ND Dissopropyl ether ug/L ND ND ND Ethylbenzene ug/L ND ND ND Hexachloro-1,3-butadiene ug/L ND ND ND Methylenzene ug/L ND ND ND Methylenzene ug/L ND ND ND Methylene Chloride ug/L ND ND ND Naphthalene ug/L ND ND ND S	Chlorobenzene		ND	ND		
Chloroform ug/L ND ND Chloromethane ug/L ND ND cis-1,2-Dichloroethene ug/L ND ND cis-1,3-Dichloropropene ug/L ND ND Dibromochloromethane ug/L ND ND Dibromomethane ug/L ND ND Dichlorodifluoromethane ug/L ND ND Diisopropyl ether ug/L ND ND Diisopropyl ether ug/L ND ND Ethylbenzene ug/L ND ND Hexachloro-1,3-butadiene ug/L ND ND Hexachloro-1,3-butadiene ug/L ND ND Methyl-tert-butyl ether ug/L ND ND Methyl-tert-butyl ether ug/L ND ND Methyl-tert-butyl ether ug/L ND ND Naphthalene ug/L ND ND -Xylene ug/L ND ND Styrene ug/L	Chloroethane		ND	ND		IK
cis-1,2-Dichloroethene ug/L ND ND cis-1,3-Dichloropropene ug/L ND ND Dibromochloromethane ug/L ND ND Dibromomethane ug/L ND ND Dichlorodifluoromethane ug/L ND ND Disopropyl ether ug/L ND ND Disopropyl ether ug/L ND ND Ethylbenzene ug/L ND ND Hexachloro-1,3-butadiene ug/L ND ND Mebyl-tert-butyl ether ug/L ND ND Methylere Chloride ug/L ND ND Methylene Chloride ug/L ND ND Methylene Chloride ug/L ND ND Np-Isopropyltoluene ug/L ND ND P-Isopropyltoluene ug/L ND ND Styrene ug/L ND ND Tetrachloroethene ug/L ND ND Trichloroethene	Chloroform	ug/L	ND	ND		
cis-1,3-Dichloropropene ug/L ND ND Dibromochloromethane ug/L ND ND Dibromomethane ug/L ND ND Dichlorodifluoromethane ug/L ND ND Diisopropyl ether ug/L ND ND Ethylbenzene ug/L ND ND Hexachloro-1,3-butadiene ug/L ND ND Methylene-1,3-butadiene ug/L ND ND Methyl-tert-butyl ether ug/L ND ND Methyl-tert-butyl ether ug/L ND ND Methylene Chloride ug/L ND ND Methylene Chloride ug/L ND ND Np ND ND ND Sty	Chloromethane	ug/L	ND	ND		
Dibromochloromethane ug/L ND ND Dibromomethane ug/L ND ND Dichlorodifluoromethane ug/L ND ND Dissopropyl ether ug/L ND ND Ethylbenzene ug/L ND ND Hexachloro-1,3-butadiene ug/L ND ND Mexp-Xylene ug/L ND ND Methyl-tert-butyl ether ug/L ND ND Methyl-tert-butyl ether ug/L ND ND Methylene Chloride ug/L ND ND Methylene Chloride ug/L ND ND ND ND ND ND ND ND ND ND ND ND ND ND P-Isopropyltoluene ug/L ND ND Styrene ug/L ND ND Tetrachloroethene ug/L ND ND Toluene ug/L ND ND	cis-1,2-Dichloroethene	ug/L	ND	ND		
Dibromomethane ug/L ND ND Dichlorodifluoromethane ug/L ND ND Diisopropyl ether ug/L ND ND Ethylbenzene ug/L ND ND Hexachloro-1,3-butadiene ug/L ND ND Mexp-Xylene ug/L ND ND Methyl-tert-butyl ether ug/L ND ND Methylene Chloride ug/L ND ND Methylene Chloride ug/L ND ND ND ND ND ND NSprene ug/L ND ND ND ND ND ND Styrene ug/L ND ND Tetrachloroethene ug/L ND ND Toluene ug/L ND ND trans-1,2-Dichloroethene ug/L ND ND trans-1,3-Dichloropropene ug/L ND ND Trichlorofluoromethane ug/L ND ND	cis-1,3-Dichloropropene	ug/L	ND	ND		
Dichlorodifluoromethane ug/L ND ND Diisopropyl ether ug/L ND ND Ethylbenzene ug/L ND ND Hexachloro-1,3-butadiene ug/L ND ND Mexp-Xylene ug/L ND ND Methyl-tert-butyl ether ug/L ND ND Methylene Chloride ug/L ND ND Methylene Chloride ug/L ND ND Naphthalene ug/L ND ND O-Xylene ug/L ND ND P-Isopropyltoluene ug/L ND ND Styrene ug/L ND ND Styrene ug/L ND ND Tetrachloroethene ug/L ND ND Toluene ug/L ND ND Trichloroethene ug/L ND ND Trichloropropene ug/L ND ND Trichlorofluoromethane ug/L ND ND <td>Dibromochloromethane</td> <td>ug/L</td> <td>ND</td> <td>ND</td> <td></td> <td></td>	Dibromochloromethane	ug/L	ND	ND		
Diisopropyl ether ug/L ND ND Ethylbenzene ug/L ND ND Hexachloro-1,3-butadiene ug/L ND ND m&p-Xylene ug/L ND ND Methyl-tert-butyl ether ug/L ND ND Methylene Chloride ug/L ND ND Methylene Chloride ug/L ND ND Naphthalene ug/L ND ND O-Xylene ug/L ND ND P-Isopropyltoluene ug/L ND ND Styrene ug/L ND ND Styrene ug/L ND ND Tetrachloroethene ug/L ND ND Toluene ug/L ND ND trans-1,2-Dichloroethene ug/L ND ND Trichloroethene ug/L ND ND Trichlorofluoromethane ug/L ND ND Vinyl acetate ug/L ND ND	Dibromomethane	ug/L	ND	ND		
Ethylbenzene ug/L ND ND Hexachloro-1,3-butadiene ug/L ND ND m&p-Xylene ug/L ND ND Methyl-tert-butyl ether ug/L ND ND Methylene Chloride ug/L ND ND Naphthalene ug/L ND ND 0-Xylene ug/L ND ND p-Isopropyltoluene ug/L ND ND Styrene ug/L ND ND Tetrachloroethene ug/L ND ND Toluene ug/L ND ND Toluene ug/L ND ND Trichloroethene ug/L ND ND Trichloropropene ug/L ND ND Trichlorofluoromethane ug/L ND ND Vinyl acetate ug/L ND ND Vinyl chloride ug/L ND ND Xylene (Total) ug/L ND ND <t< td=""><td>Dichlorodifluoromethane</td><td>ug/L</td><td>ND</td><td>ND</td><td></td><td></td></t<>	Dichlorodifluoromethane	ug/L	ND	ND		
Hexachloro-1,3-butadiene ug/L ND ND m&p-Xylene ug/L ND ND Methyl-tert-butyl ether ug/L ND ND Methylene Chloride ug/L ND ND Naphthalene ug/L ND ND o-Xylene ug/L ND ND p-Isopropyltoluene ug/L ND ND Styrene ug/L ND ND Tetrachloroethene ug/L ND ND Toluene ug/L ND ND trans-1,2-Dichloroethene ug/L ND ND trans-1,3-Dichloropropene ug/L ND ND Trichlorofluoromethane ug/L ND ND Vinyl acetate ug/L ND ND Vinyl chloride ug/L ND ND Xylene (Total) ug/L ND ND 1,2-Dichloroethane-d4 (S) % 103 100 4-Bromofluorobenzene (S) %	Diisopropyl ether	ug/L	ND	ND		
m&p-Xylene ug/L ND ND Methyl-tert-butyl ether ug/L ND ND Methylene Chloride ug/L ND ND Naphthalene ug/L ND ND o-Xylene ug/L ND ND p-Isopropyltoluene ug/L ND ND Styrene ug/L ND ND Tetrachloroethene ug/L ND ND Toluene ug/L ND ND trans-1,2-Dichloroethene ug/L ND ND trans-1,3-Dichloropropene ug/L ND ND Trichlorofluoromethane ug/L ND ND Trichlorofluoromethane ug/L ND ND Vinyl acetate ug/L ND ND Vinyl chloride ug/L ND ND Xylene (Total) ug/L ND ND 1,2-Dichloroethane-d4 (S) % 103 100 4-Bromofluorobenzene (S) % 10	Ethylbenzene	ug/L	ND	ND		
Methyl-tert-butyl ether ug/L ND ND Methylene Chloride ug/L ND ND Naphthalene ug/L ND ND o-Xylene ug/L ND ND p-Isopropyltoluene ug/L ND ND Styrene ug/L ND ND Tetrachloroethene ug/L ND ND Toluene ug/L ND ND trans-1,2-Dichloroethene ug/L ND ND trans-1,3-Dichloropropene ug/L ND ND Trichlorofluoromethane ug/L ND ND Vinyl acetate ug/L ND ND Vinyl chloride ug/L ND ND Xylene (Total) ug/L ND ND 1,2-Dichloroethane-d4 (S) % 103 100 4-Bromofluorobenzene (S) % 102 100	Hexachloro-1,3-butadiene	ug/L	ND	ND		
Methylene Chloride ug/L ND ND Naphthalene ug/L ND ND o-Xylene ug/L ND ND p-Isopropyltoluene ug/L ND ND Styrene ug/L ND ND Tetrachloroethene ug/L ND ND Toluene ug/L ND ND trans-1,2-Dichloroethene ug/L ND ND trans-1,3-Dichloropropene ug/L ND ND Trichloroethene ug/L ND ND Trichlorofluoromethane ug/L ND ND Vinyl acetate ug/L ND ND Vinyl chloride ug/L ND ND Xylene (Total) ug/L ND ND 1,2-Dichloroethane-d4 (S) % 103 100 4-Bromofluorobenzene (S) % 102 100	m&p-Xylene	ug/L	ND	ND		
Naphthalene ug/L ND ND o-Xylene ug/L ND ND p-Isopropyltoluene ug/L ND ND Styrene ug/L ND ND Tetrachloroethene ug/L ND ND Toluene ug/L ND ND trans-1,2-Dichloroethene ug/L ND ND trans-1,3-Dichloropropene ug/L ND ND Trichloroethene ug/L ND ND Trichlorofluoromethane ug/L ND ND Vinyl acetate ug/L ND ND Vinyl chloride ug/L ND ND Xylene (Total) ug/L ND ND 1,2-Dichloroethane-d4 (S) % 103 100 4-Bromofluorobenzene (S) % 102 100	Methyl-tert-butyl ether	ug/L	ND	ND		
o-Xylene ug/L ND ND p-Isopropyltoluene ug/L ND ND Styrene ug/L ND ND Tetrachloroethene ug/L ND ND Toluene ug/L ND ND trans-1,2-Dichloroethene ug/L ND ND trans-1,3-Dichloropropene ug/L ND ND Trichloroethene ug/L ND ND Trichlorofluoromethane ug/L ND ND Vinyl acetate ug/L ND ND Vinyl chloride ug/L ND ND Xylene (Total) ug/L ND ND 1,2-Dichloroethane-d4 (S) % 103 100 4-Bromofluorobenzene (S) % 102 100	Methylene Chloride	ug/L	ND	ND		
p-Isopropyltoluene ug/L ND ND Styrene ug/L ND ND Tetrachloroethene ug/L ND ND Toluene ug/L ND ND trans-1,2-Dichloroethene ug/L ND ND trans-1,3-Dichloropropene ug/L ND ND Trichloroethene ug/L ND ND Trichlorofluoromethane ug/L ND ND Vinyl acetate ug/L ND ND Vinyl chloride ug/L ND ND Xylene (Total) ug/L ND ND 1,2-Dichloroethane-d4 (S) % 103 100 4-Bromofluorobenzene (S) % 102 100	Naphthalene	ug/L	ND	ND		
Styrene ug/L ND ND Tetrachloroethene ug/L ND ND Toluene ug/L ND ND trans-1,2-Dichloroethene ug/L ND ND trans-1,3-Dichloropropene ug/L ND ND Trichloroethene ug/L ND ND Trichlorofluoromethane ug/L ND ND Vinyl acetate ug/L ND ND Vinyl chloride ug/L ND ND Xylene (Total) ug/L ND ND 1,2-Dichloroethane-d4 (S) % 103 100 4-Bromofluorobenzene (S) % 102 100	o-Xylene	ug/L		ND		
Tetrachloroethene ug/L ND ND Toluene ug/L ND ND trans-1,2-Dichloroethene ug/L ND ND trans-1,3-Dichloropropene ug/L ND ND Trichloroethene ug/L ND ND Trichlorofluoromethane ug/L ND ND Vinyl acetate ug/L ND ND Vinyl chloride ug/L ND ND Xylene (Total) ug/L ND ND 1,2-Dichloroethane-d4 (S) % 103 100 4-Bromofluorobenzene (S) % 102 100	p-Isopropyltoluene			ND		
Toluene ug/L ND ND trans-1,2-Dichloroethene ug/L ND ND trans-1,3-Dichloropropene ug/L ND ND Trichloroethene ug/L ND ND Trichlorofluoromethane ug/L ND ND Vinyl acetate ug/L ND ND Vinyl chloride ug/L ND ND Xylene (Total) ug/L ND ND 1,2-Dichloroethane-d4 (S) % 103 100 4-Bromofluorobenzene (S) % 102 100	Styrene	ug/L		ND		
trans-1,2-Dichloroethene ug/L ND ND trans-1,3-Dichloropropene ug/L ND ND Trichloroethene ug/L ND ND Trichlorofluoromethane ug/L ND ND Vinyl acetate ug/L ND ND Vinyl chloride ug/L ND ND Xylene (Total) ug/L ND ND 1,2-Dichloroethane-d4 (S) % 103 100 4-Bromofluorobenzene (S) % 102 100	Tetrachloroethene	ug/L		ND		
trans-1,3-Dichloropropene ug/L ND ND Trichloroethene ug/L ND ND Trichlorofluoromethane ug/L ND ND Vinyl acetate ug/L ND ND Vinyl chloride ug/L ND ND Xylene (Total) ug/L ND ND 1,2-Dichloroethane-d4 (S) % 103 100 4-Bromofluorobenzene (S) % 102 100	Toluene	ug/L		ND		
Trichloroethene ug/L ND ND Trichlorofluoromethane ug/L ND ND Vinyl acetate ug/L ND ND Vinyl chloride ug/L ND ND Xylene (Total) ug/L ND ND 1,2-Dichloroethane-d4 (S) % 103 100 4-Bromofluorobenzene (S) % 102 100	trans-1,2-Dichloroethene			ND		
Trichlorofluoromethane ug/L ND ND Vinyl acetate ug/L ND ND Vinyl chloride ug/L ND ND Xylene (Total) ug/L ND ND 1,2-Dichloroethane-d4 (S) % 103 100 4-Bromofluorobenzene (S) % 102 100	trans-1,3-Dichloropropene	ug/L		ND		
Vinyl acetate ug/L ND ND Vinyl chloride ug/L ND ND Xylene (Total) ug/L ND ND 1,2-Dichloroethane-d4 (S) % 103 100 4-Bromofluorobenzene (S) % 102 100	Trichloroethene	ug/L		ND		
Vinyl chloride ug/L ND ND Xylene (Total) ug/L ND ND 1,2-Dichloroethane-d4 (S) % 103 100 4-Bromofluorobenzene (S) % 102 100	Trichlorofluoromethane	ug/L		ND		
Xylene (Total) ug/L ND ND 1,2-Dichloroethane-d4 (S) % 103 100 4-Bromofluorobenzene (S) % 102 100	Vinyl acetate	ug/L				
1,2-Dichloroethane-d4 (S)	Vinyl chloride					
4-Bromofluorobenzene (S) % 102 100	, ,					
, - , - , - , - , - , - , - , - , - , -						
Toluene-d8 (S) % 111 108						
	Toluene-d8 (S)	%	111	108		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

QC Batch: 470256 Analysis Method: EPA 8270E

QC Batch Method: EPA 3510C Analysis Description: 8270E Water MSSV RVE

Associated Lab Samples: 92425908001, 92425908002

METHOD BLANK: 2553172 Matrix: Water

Associated Lab Samples: 92425908001, 92425908002

Parameter Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,2,4-Trichlorobenzene	ug/L	ND	10.0	04/19/19 16:02	
1,2-Dichlorobenzene	ug/L	ND	10.0	04/19/19 16:02	
1,3-Dichlorobenzene	ug/L	ND	10.0	04/19/19 16:02	
1,4-Dichlorobenzene	ug/L	ND	10.0	04/19/19 16:02	
1-Methylnaphthalene	ug/L	ND	10.0	04/19/19 16:02	
2,2'-Oxybis(1-chloropropane)	ug/L	ND	10.0	04/19/19 16:02	
2,4,5-Trichlorophenol	ug/L	ND	10.0	04/19/19 16:02	
2,4,6-Trichlorophenol	ug/L	ND	10.0	04/19/19 16:02	
2,4-Dichlorophenol	ug/L	ND	10.0	04/19/19 16:02	
2,4-Dimethylphenol	ug/L	ND	10.0	04/19/19 16:02	
2,4-Dinitrophenol	ug/L	ND	50.0	04/19/19 16:02	
2,4-Dinitrotoluene	ug/L	ND	10.0	04/19/19 16:02	
2,6-Dinitrotoluene	ug/L	ND	10.0	04/19/19 16:02	
2-Chloronaphthalene	ug/L	ND	10.0	04/19/19 16:02	
2-Chlorophenol	ug/L	ND	10.0	04/19/19 16:02	
2-Methylnaphthalene	ug/L	ND	10.0	04/19/19 16:02	
2-Methylphenol(o-Cresol)	ug/L	ND	10.0	04/19/19 16:02	
2-Nitroaniline	ug/L	ND	50.0	04/19/19 16:02	
2-Nitrophenol	ug/L	ND	10.0	04/19/19 16:02	
3&4-Methylphenol(m&p Cresol)	ug/L	ND	10.0	04/19/19 16:02	
3,3'-Dichlorobenzidine	ug/L	ND	20.0	04/19/19 16:02	
3-Nitroaniline	ug/L	ND	50.0	04/19/19 16:02	
4,6-Dinitro-2-methylphenol	ug/L	ND	20.0	04/19/19 16:02	
4-Bromophenylphenyl ether	ug/L	ND	10.0	04/19/19 16:02	
4-Chloro-3-methylphenol	ug/L	ND	20.0	04/19/19 16:02	
4-Chloroaniline	ug/L	ND	20.0	04/19/19 16:02	
4-Chlorophenylphenyl ether	ug/L	ND	10.0	04/19/19 16:02	
4-Nitroaniline	ug/L	ND	20.0	04/19/19 16:02	
4-Nitrophenol	ug/L	ND	50.0	04/19/19 16:02	
Acenaphthene	ug/L	ND	10.0	04/19/19 16:02	
Acenaphthylene	ug/L	ND	10.0	04/19/19 16:02	
Aniline	ug/L	ND	10.0	04/19/19 16:02	
Anthracene	ug/L	ND	10.0	04/19/19 16:02	
Benzo(a)anthracene	ug/L	ND	10.0	04/19/19 16:02	
Benzo(a)pyrene	ug/L	ND	10.0	04/19/19 16:02	
Benzo(b)fluoranthene	ug/L	ND	10.0	04/19/19 16:02	
Benzo(g,h,i)perylene	ug/L	ND	10.0	04/19/19 16:02	
Benzo(k)fluoranthene	ug/L	ND	10.0	04/19/19 16:02	
Benzoic Acid	ug/L	ND	50.0	04/19/19 16:02	
Benzyl alcohol	ug/L	ND	20.0	04/19/19 16:02	
bis(2-Chloroethoxy)methane	ug/L	ND	10.0	04/19/19 16:02	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

METHOD BLANK: 2553172 Matrix: Water

Associated Lab Samples: 92425908001, 92425908002

Doromotor	Llaita	Blank Result	Reporting Limit	Anglyzad	Qualifiers
Parameter	Units	Result	Limit ———————————————————————————————————	Analyzed	Qualifiers
bis(2-Chloroethyl) ether	ug/L	ND	10.0	04/19/19 16:02	
bis(2-Ethylhexyl)phthalate	ug/L	ND	6.0	04/19/19 16:02	
Butylbenzylphthalate	ug/L	ND	10.0	04/19/19 16:02	
Chrysene	ug/L	ND	10.0	04/19/19 16:02	
Di-n-butylphthalate	ug/L	ND	10.0	04/19/19 16:02	
Di-n-octylphthalate	ug/L	ND	10.0	04/19/19 16:02	
Dibenz(a,h)anthracene	ug/L	ND	10.0	04/19/19 16:02	
Dibenzofuran	ug/L	ND	10.0	04/19/19 16:02	
Diethylphthalate	ug/L	ND	10.0	04/19/19 16:02	
Dimethylphthalate	ug/L	ND	10.0	04/19/19 16:02	
Fluoranthene	ug/L	ND	10.0	04/19/19 16:02	
Fluorene	ug/L	ND	10.0	04/19/19 16:02	
Hexachloro-1,3-butadiene	ug/L	ND	10.0	04/19/19 16:02	
Hexachlorobenzene	ug/L	ND	10.0	04/19/19 16:02	
Hexachlorocyclopentadiene	ug/L	ND	10.0	04/19/19 16:02	
Hexachloroethane	ug/L	ND	10.0	04/19/19 16:02	
Indeno(1,2,3-cd)pyrene	ug/L	ND	10.0	04/19/19 16:02	
Isophorone	ug/L	ND	10.0	04/19/19 16:02	
N-Nitroso-di-n-propylamine	ug/L	ND	10.0	04/19/19 16:02	
N-Nitrosodimethylamine	ug/L	ND	10.0	04/19/19 16:02	
N-Nitrosodiphenylamine	ug/L	ND	10.0	04/19/19 16:02	
Naphthalene	ug/L	ND	10.0	04/19/19 16:02	
Nitrobenzene	ug/L	ND	10.0	04/19/19 16:02	
Pentachlorophenol	ug/L	ND	25.0	04/19/19 16:02	
Phenanthrene	ug/L	ND	10.0	04/19/19 16:02	
Phenol	ug/L	ND	10.0	04/19/19 16:02	
Pyrene	ug/L	ND	10.0	04/19/19 16:02	
2,4,6-Tribromophenol (S)	%	70	10-137	04/19/19 16:02	
2-Fluorobiphenyl (S)	%	54	13-130	04/19/19 16:02	
2-Fluorophenol (S)	%	45	10-130	04/19/19 16:02	
Nitrobenzene-d5 (S)	%	56	13-130	04/19/19 16:02	
Phenol-d6 (S)	%	33	10-130	04/19/19 16:02	
Terphenyl-d14 (S)	%	93	25-130	04/19/19 16:02	

LABORATORY CONTROL SAMPLE:	2553173					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trichlorobenzene	ug/L	50	27.1	54	30-130	
1,2-Dichlorobenzene	ug/L	50	29.3	59	30-130	
1,3-Dichlorobenzene	ug/L	50	28.2	56	20-130	
1,4-Dichlorobenzene	ug/L	50	29.6	59	30-130	
1-Methylnaphthalene	ug/L	50	35.7	71	30-130	
2,2'-Oxybis(1-chloropropane)	ug/L	50	32.7	65	20-130	
2,4,5-Trichlorophenol	ug/L	50	35.4	71	40-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

LABORATORY CONTROL SAMPLE:	2553173					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
2,4,6-Trichlorophenol	ug/L		34.4		40-130	
2,4-Dichlorophenol	ug/L	50	35.3	71	31-130	
2,4-Dimethylphenol	ug/L	50	37.4	75	30-130	
2,4-Dinitrophenol	ug/L	250	ND	5	30-130	L2
2,4-Dinitrotoluene	ug/L	50	41.3	83	49-130	
2,6-Dinitrotoluene	ug/L	50	38.1	76	50-130	
2-Chloronaphthalene	ug/L	50	30.1	60	30-130	
2-Chlorophenol	ug/L	50	36.5	73	30-130	
2-Methylnaphthalene	ug/L	50	34.4	69	30-130	
2-Methylphenol(o-Cresol)	ug/L	50	37.0	74	30-130	
2-Nitroaniline	ug/L	100	76.3	76	40-130	
2-Nitrophenol	ug/L	50	34.6	69	20-130	
3&4-Methylphenol(m&p Cresol)	ug/L	50	33.5	67	20-130	
3,3'-Dichlorobenzidine	ug/L	100	77.8	78	10-150	
3-Nitroaniline	ug/L	100	84.0	84	40-130	
4,6-Dinitro-2-methylphenol	ug/L	100	46.1	46	40-130	
4-Bromophenylphenyl ether	ug/L	50	35.3	71	30-130	
4-Chloro-3-methylphenol	ug/L	100	72.7	73	30-130	
4-Chloroaniline	ug/L	100	74.5	75	20-130	
4-Chlorophenylphenyl ether	ug/L	50	34.5	69	20-130	
4-Nitroaniline	ug/L	100	91.7	92	40-130	
4-Nitrophenol	ug/L	250	48.6J	19	10-130	
Acenaphthene	ug/L	50	37.0	74	30-130	
Acenaphthylene	ug/L	50	39.1	78	30-130	
Aniline	ug/L	50	34.1	68	20-130	
Anthracene	ug/L	50	43.9	88	50-130	
Benzo(a)anthracene	ug/L	50	45.3	91	50-130	
Benzo(a)pyrene	ug/L	50	45.2	90	50-130	
Benzo(b)fluoranthene	ug/L	50	45.4	91	50-130	
Benzo(g,h,i)perylene	ug/L	50	47.8	96	50-130	
Benzo(k)fluoranthene	ug/L	50	47.3	95	50-130	
Benzoic Acid	ug/L	250	ND	0	10-130	L2
Benzyl alcohol	ug/L	100	71.0	71	20-130	
bis(2-Chloroethoxy)methane	ug/L	50	35.9	72	30-130	
bis(2-Chloroethyl) ether	ug/L	50	36.8	74	30-130	
bis(2-Ethylhexyl)phthalate	ug/L	50	41.8	84	50-130	
Butylbenzylphthalate	ug/L	50	38.8	78	50-150	
Chrysene	ug/L	50	45.2	90	50-130	
Di-n-butylphthalate	ug/L	50	42.4	85	50-130	
Di-n-octylphthalate	ug/L	50	40.9	82	50-130	
Dibenz(a,h)anthracene	ug/L	50	49.4	99	40-130	
Dibenzofuran	ug/L	50	34.6	69	40-130	
Diethylphthalate	ug/L	50	41.7	83	40-130	
Dimethylphthalate	ug/L	50	39.7	79	40-130	
Fluoranthene	ug/L	50	47.6	95	30-130	
Fluorene	ug/L	50	39.4	79	20-130	
Hexachloro-1,3-butadiene	ug/L	50	25.8	52	10-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

ABORATORY CONTROL SAMPLE:	2553173					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
exachlorobenzene	ug/L	50	37.4		30-130	
exachlorocyclopentadiene	ug/L	50	23.9	48	10-150	
exachloroethane	ug/L	50	27.0	54	10-130	
deno(1,2,3-cd)pyrene	ug/L	50	48.1	96	40-130	
ophorone	ug/L	50	34.6	69	30-130	
-Nitroso-di-n-propylamine	ug/L	50	35.7	71	30-130	
Nitrosodimethylamine	ug/L	50	31.8	64	10-130	
Nitrosodiphenylamine	ug/L	50	38.4	77	30-130	
aphthalene	ug/L	50	35.1	70	20-130	
robenzene	ug/L	50	33.7	67	20-130	
ntachlorophenol	ug/L	100	64.9	65	10-140	
enanthrene	ug/L	50	44.0	88	50-130	
enol	ug/L	50	22.6	45	10-130	
rene	ug/L	50	42.4	85	50-130	
4,6-Tribromophenol (S)	%			89	10-137	
Fluorobiphenyl (S)	%			71	13-130	
Fluorophenol (S)	%			61	10-130	
robenzene-d5 (S)	%			76	13-130	
enol-d6 (S)	%			48	10-130	
phenyl-d14 (S)	%			83	25-130	

MATRIX SPIKE SAMPLE:	2553236						
		92425875001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trichlorobenzene	ug/L	ND	50	12.3	25	30-130	И1
1,2-Dichlorobenzene	ug/L	ND	50	13.9	28	30-130 ľ	Л1
1,3-Dichlorobenzene	ug/L	ND	50	13.2	26	20-130	
1,4-Dichlorobenzene	ug/L	ND	50	14.4	27	30-130 ľ	Л1
1-Methylnaphthalene	ug/L	ND	50	16.8	34	30-130	
2,2'-Oxybis(1-chloropropane)	ug/L	ND	50	13.8	28	20-130	
2,4,5-Trichlorophenol	ug/L	ND	50	18.3	37	40-130 ľ	Л1
2,4,6-Trichlorophenol	ug/L	ND	50	16.6	33	40-130 ľ	/11
2,4-Dichlorophenol	ug/L	ND	50	15.2	30	31-130 [/11
2,4-Dimethylphenol	ug/L	ND	50	14.3	29	30-130 ľ	/11
2,4-Dinitrophenol	ug/L	ND	250	162	65	30-130	
2,4-Dinitrotoluene	ug/L	ND	50	30.4	61	49-130	
2,6-Dinitrotoluene	ug/L	ND	50	22.5	45	50-130 ľ	Л1
2-Chloronaphthalene	ug/L	ND	50	13.9	28	30-130 ľ	Л1
2-Chlorophenol	ug/L	ND	50	15.7	31	30-130	
2-Methylnaphthalene	ug/L	ND	50	16.3	33	30-130	
2-Methylphenol(o-Cresol)	ug/L	ND	50	16.0	32	30-130	
2-Nitroaniline	ug/L	ND	100	44.6J	45	40-130	
2-Nitrophenol	ug/L	ND	50	15.4	31	20-130	
3&4-Methylphenol(m&p Cresol)	ug/L	ND	50	14.2	28	20-130	
3,3'-Dichlorobenzidine	ug/L	ND	100	24.4	24	10-150	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(704)875-9092

QUALITY CONTROL DATA

Project: U5797
Pace Project No.: 92425908

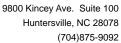
Date: 04/25/2019 03:59 PM

MATRIX SPIKE SAMPLE:	2553236		0 "			a. 5
Parameter	Units	92425875001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifie
3-Nitroaniline	ug/L		100	53.9	54	40-130
4,6-Dinitro-2-methylphenol	ug/L	ND	100	71.8	72	40-130
4-Bromophenylphenyl ether	ug/L	ND	50	22.5	45	30-130
4-Chloro-3-methylphenol	ug/L	ND	100	37.2	37	30-130
4-Chloroaniline	ug/L	ND	100	25.0	25	20-130
4-Chlorophenylphenyl ether	ug/L	ND	50	18.7	37	20-130
4-Nitroaniline	ug/L	ND	100	66.6	67	40-130
4-Nitrophenol	ug/L	ND	250	121	48	10-130
Acenaphthene	ug/L	ND	50	19.0	38	30-130
Acenaphthylene	ug/L	ND	50	19.4	39	30-130
Aniline	ug/L	ND	50	3.2J	6	20-130 M1
Anthracene	ug/L	ND	50	32.7	65	50-130
Benzo(a)anthracene	ug/L	ND	50	36.1	72	50-130
Benzo(a)pyrene	ug/L	ND	50	35.6	71	50-130
Benzo(b)fluoranthene	ug/L	ND	50 50	36.1	72	50-130
Benzo(g,h,i)perylene	ug/L	ND	50	36.4	73	50-130
Benzo(k)fluoranthene	ug/L	ND	50	37.2	74	50-130
Benzoic Acid	ug/L	ND	250	60.2	24	10-130
Benzyl alcohol	ug/L	ND	100	30.0	30	20-130
is(2-Chloroethoxy)methane	ug/L	ND	50	15.2	30	30-130
is(2-Chloroethyl) ether	ug/L	ND	50	15.6	31	30-130
is(2-Ethylhexyl)phthalate	ug/L	ND	50	33.1	66	50-130
Butylbenzylphthalate	ug/L	ND	50	32.1	64	50-150
Chrysene	ug/L	ND	50	36.3	73	50-130
Di-n-butylphthalate	ug/∟ ug/L	ND ND	50	35.2	73 70	50-130
	_	ND	50	33.3	67	50-130
Di-n-octylphthalate	ug/L	ND ND	50 50	33.3 37.2	74	40-130
Dibenz(a,h)anthracene	ug/L	ND ND	50 50	37.2 17.9		
Dibenzofuran Diathylahthalata	ug/L	ND ND	50 50	30.3	36	40-130 M1 40-130
Diethylphthalate	ug/L	ND ND		30.3 24.8	61	
Dimethylphthalate	ug/L	ND ND	50 50	39.9	50	40-130
Fluoranthene	ug/L	ND ND			80	30-130
Fluorene	ug/L	ND ND	50	23.0	46	20-130
Hexachloro-1,3-butadiene	ug/L	ND ND	50	11.1	22	10-130
Hexachlorobenzene	ug/L	ND ND	50	22.3 10.7	45	30-130
Hexachlorocyclopentadiene	ug/L	ND ND	50		21	10-150
lexachloroethane	ug/L	ND ND	50	12.3	25	10-130
ndeno(1,2,3-cd)pyrene	ug/L		50	36.6	73	40-130
sophorone	ug/L	ND ND	50 50	16.4	33	30-130
I-Nitroso-di-n-propylamine	ug/L	ND ND	50 50	16.4	33	30-130
V-Nitrosodimethylamine	ug/L	ND ND	50 50	14.4	29	10-130
I-Nitrosodiphenylamine	ug/L		50 50	8.5J	17 25	30-130 M1
Naphthalene	ug/L	ND ND	50	17.4	35	20-130
Nitrobenzene	ug/L	ND	50	15.2	30	20-130
Pentachlorophenol	ug/L	ND	100	63.7	64	10-140
Phenanthrene	ug/L	ND	50	33.9	68	50-130
Phenol	ug/L	ND	50	10.5	21	10-130
Pyrene	ug/L	ND	50	34.8	70	50-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA


Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

MATRIX SPIKE SAMPLE:	2553236		0 "			a. 5	
Parameter	Units	92425875001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
2,4,6-Tribromophenol (S)	%				58	10-137	
2-Fluorobiphenyl (S)	%				30	13-130	
2-Fluorophenol (S)	%				26	10-130	
Nitrobenzene-d5 (S)	%				33	13-130	
Phenol-d6 (S)	%				20	10-130	
Terphenyl-d14 (S)	%				61	25-130	

		92425875002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,2,4-Trichlorobenzene	ug/L	ND ND	ND		
1,2-Dichlorobenzene	ug/L	ND	ND		
1,3-Dichlorobenzene	ug/L	ND	ND		
1,4-Dichlorobenzene	ug/L	ND	ND		
1-Methylnaphthalene	ug/L	ND	2.1J		
2,2'-Oxybis(1-chloropropane)	ug/L	ND	ND		
2,4,5-Trichlorophenol	ug/L	ND	ND		
2,4,6-Trichlorophenol	ug/L	ND	ND		
2,4-Dichlorophenol	ug/L	ND	ND		
2,4-Dimethylphenol	ug/L	ND	ND		
2,4-Dinitrophenol	ug/L	ND	ND		
2,4-Dinitrotoluene	ug/L	ND	ND		
2,6-Dinitrotoluene	ug/L	ND	ND		
2-Chloronaphthalene	ug/L	ND	ND		
2-Chlorophenol	ug/L	ND	ND		
2-Methylnaphthalene	ug/L	3.1J	5.5J		
2-Methylphenol(o-Cresol)	ug/L	ND	ND		
2-Nitroaniline	ug/L	ND	ND		
2-Nitrophenol	ug/L	ND	ND		
3&4-Methylphenol(m&p Cresol)	ug/L	ND	ND		
3,3'-Dichlorobenzidine	ug/L	ND	ND		
3-Nitroaniline	ug/L	ND	ND		
4,6-Dinitro-2-methylphenol	ug/L	ND	ND		
1-Bromophenylphenyl ether	ug/L	ND	ND		
4-Chloro-3-methylphenol	ug/L	ND	ND		
4-Chloroaniline	ug/L	ND	ND		
4-Chlorophenylphenyl ether	ug/L	ND	ND		
4-Nitroaniline	ug/L	ND	ND		
4-Nitrophenol	ug/L	ND	ND		
Acenaphthene	ug/L	ND	ND		
Acenaphthylene	ug/L	ND	ND		
Aniline	ug/L	ND	ND		
Anthracene	ug/L	ND	ND		
Benzo(a)anthracene	ug/L	ND	ND		
Benzo(a)pyrene	ug/L	ND	ND		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

		92425875002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Benzo(b)fluoranthene	ug/L	ND	ND		
Benzo(g,h,i)perylene	ug/L	ND	ND		
Benzo(k)fluoranthene	ug/L	ND	ND		
Benzoic Acid	ug/L	ND	ND		
Benzyl alcohol	ug/L	ND	ND		
bis(2-Chloroethoxy)methane	ug/L	ND	ND		
bis(2-Chloroethyl) ether	ug/L	ND	ND		
bis(2-Ethylhexyl)phthalate	ug/L	ND	ND		
Butylbenzylphthalate	ug/L	ND	ND		
Chrysene	ug/L	ND	ND		
Di-n-butylphthalate	ug/L	ND	ND		
Di-n-octylphthalate	ug/L	ND	ND		
Dibenz(a,h)anthracene	ug/L	ND	ND		
Dibenzofuran	ug/L	ND	ND		
Diethylphthalate	ug/L	ND	ND		
Dimethylphthalate	ug/L	ND	ND		
Fluoranthene	ug/L	ND	ND		
Fluorene	ug/L	ND	ND		
Hexachloro-1,3-butadiene	ug/L	ND	ND		
Hexachlorobenzene	ug/L	ND	ND		
Hexachlorocyclopentadiene	ug/L	ND	ND		
Hexachloroethane	ug/L	ND	ND		
Indeno(1,2,3-cd)pyrene	ug/L	ND	ND		
Isophorone	ug/L	ND	ND		
N-Nitroso-di-n-propylamine	ug/L	ND	ND		
N-Nitrosodimethylamine	ug/L	ND	ND		
N-Nitrosodiphenylamine	ug/L	ND	ND		
Naphthalene	ug/L	7.8J	13.6		
Nitrobenzene	ug/L	ND	ND		
Pentachlorophenol	ug/L	ND	ND		
Phenanthrene	ug/L	ND	ND		
Phenol	ug/L	ND	2.7J		
Pyrene	ug/L	ND	ND		
2,4,6-Tribromophenol (S)	%	59	69		
2-Fluorobiphenyl (S)	%	51	57		
2-Fluorophenol (S)	%	46	48		
Nitrobenzene-d5 (S)	%	55	60		
Phenol-d6 (S)	%	36	37		
Terphenyl-d14 (S)	%	72	73		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project:

U5797

Pace Project No.:

92425908

QC Batch:

470258

Analysis Method:

ASTM D2974-87

QC Batch Method:

ASTM D2974-87

Analysis Description:

Dry Weight/Percent Moisture

Associated Lab Samples:

92425908003, 92425908004

SAMPLE DUPLICATE: 2553186

Parameter

Parameter

92425748006

Dup

Qualifiers

Percent Moisture

Units %

Result 18.6 Result 16.4 **RPD**

13

SAMPLE DUPLICATE: 2553187

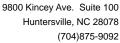
Date: 04/25/2019 03:59 PM

92425874002 Result

Dup Result

RPD Qualifiers

Percent Moisture


Units %

4.5

5.2

14

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: U5797
Pace Project No.: 92425908

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-C Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

Date: 04/25/2019 03:59 PM

D6	The precision between the sample and sample duplicate exceeded laboratory control limits.
H2	Extraction or preparation conducted outside EPA method holding time.
IK	The recalculated concentration of the calibration standard(s) did not meet method acceptance criteria; this result should

be considered an estimated value.

Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated

samples may be biased low.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

P2 Re-extraction or re-analysis could not be performed due to insufficient sample amount.

S0 Surrogate recovery outside laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: U5797
Pace Project No.: 92425908

Date: 04/25/2019 03:59 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92425908001	B3	EPA 3510C	470256	EPA 8270E	470471
92425908002	B5.1	EPA 3510C	470256	EPA 8270E	470471
92425908003	B18	EPA 5035A	470498	EPA 8260D	470560
92425908004	B19	EPA 5035A	470498	EPA 8260D	470560
92425908001	В3	EPA 8260D	470847		
92425908002	B5.1	EPA 8260D	470847		
92425908003	B18	ASTM D2974-87	470258		
92425908004	B19	ASTM D2974-87	470258		

	Pace Analytical	. Document Name:	Document Revised: February 7, 2018
	, and analytical	Sample Condition Upon Receipt (SCUR) Document No.:	Page 1 of 1
	Laboratory receiving samples:	F-CAR-CS-033-Rev.06	Issuing Authority: Pace Carolinas Quality Office
	Ashavilla		Joseph Guarty Office
		Greenwood Huntersville	Raleigh Mechanicsvilla
4	Sample Condition Client Name:		" " " " " " " " " " " " " " " " " " "
	Forces Francis	Project A	10#:92425908
	Courier:	MINA , III	
-	☐ Commercial ☐ Pace ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	USPS . Edlent	
	Custody Seal Present? Yes Mo Seals Int	92	425908
	THE SHAPE OF	0.0 UND	7, mf
	Packing Material: Subble Wrap Maubble		e/Initials Person Examining Contents: WBT
	Thermometers	Bags None () Other	Biological Tissue Spozen? of 12/19
	Dir Gun io: 917005	ypa of los: Wet Blue None	LYES NO MN/A
	Cooler Temp (*C): 10.1 Correction Factor: Add/	Subtract from - 0 1	
	Cooler Temp Corrected (°C): 10.0		the shows that the same
	USDA Regulated Soil (N/A, water sample)	M ∃amples	be above freezing to 6°C s out of temporitaria. Samples on ice, cooling process
	Old samples originate in a quarantine zone within the United States [No	has begun	of A.C., would process
	LYes No	CA, NY, or SC (check maps)? Old samples orle	ginate from a foreign source (Internationally,
		Including Hawaii	(Ind Perm XICO)? Yes Tha
	Chain of Custody Present?	S No NA 1	Comments/Discrepancy:
	Samples Arrived within Hold Time?	Die I	
	Saort Hole time Analysis (<72 hr.)?	Z IIIVA Z	
	The run Albund Time Requested?	MA JN/A 3.	
	Sufficient Volume? Correct Containers Useg?		
	-Pace Containers Used?	UNO UNIA 5.	
	Containers Intact?	-BNO	
1	Olssolved analysis: Samples Field Filtered 2	□NO □NA 7.	
1	Sample Labels Metch COC7	□No MN/A 8.	
1]NO □N/A 9.	
1	-Includes Date/Time/ID/Analysis Matrix: WT 51_		
· H	leadspace in VOA Vials (>5-6mm)?		
- 1	TV~ T	NO EN/A 10.	
	P Brank Custody Seals Present?	/	
COMM	MENTS/SAMPLE OLICREPANCY	lo SKVA	
	A REAL PROPERTY OF THE PROPERT		Tield Decartos Disabili True Tom
		A CONTRACTOR OF THE PROPERTY O	THE DESIGNATION OF THE PROPERTY OF THE PROPERT
ENTNO	OTIFICATION/RESOLUTION	Lot ID of split containers:	The state of the s
		or spir containers;	
			The state of the s
	ntacted:		
rson co		Seath Author	
	/	Date/Time:	
	Manager SCURF Review:	Date/Time:	17 10

Document Name: Sample Condition Upon Receipt(SCUR) Document No.: F-CAR-CS-033-Rev.06

Occument Revised: February 7, 2018 Page 1 of 2 Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

Exceptions: VOA, Coliform, TDC, Oil and Grease, DRO/8015 (water) DOC, LLHg **Bottom half of box is to list number of bottle

CLIENT: 92-FALCON

		SP41.17-	BP3U-250 ml Plastic Unipracerved (N/A) (CI-)	About Alastic Unpreserved (N/A)	or co-soo mt Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	0P4S-125 ml. Plastic H2504 (pH < 2) (CI-)	BP9N-250 mL plastic HNO3 (pH < 2)	5P42-125 mL Plastic ZN Acetate & NaOH Ison	BP4C-125 mL Plastic NaOH (PH > 12) (CL.)	WGPU-Wide-mouthed Glass Jar University	AG114.1 liter Amber Unpresented duty	AG1H-1 liter Amber 4-4	AGBU-250 mi 4	On Manager Unpreserved (N/A) (G-)	AGAS-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2504 (pH < 2)	AG3A(DG3A)-250 mL Ambur with an	DG9H-40 mt VOA HC (N/A)(CI-)	G9T-an 1 sta	Man WA Na2S2O3 (N/A)	CASU-40 mt VOA Unp (N/A)	DGSP-40 mL VOA H3PD4 (N/A)	VOAK (6 vlats per kit)-5085 kit (N/A)	J'OR (3 VIAIS per idt)-VPH/Gas idt (N/A)	SP5T-325 mL Sterile Plastic (N/A - lab)	SP27-250 mL Starile Plastic (N/A - lab)		BP3A-250 mL Plastic (NHZ)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved 41-1	VSGU-20 mL Scintillation visit (N.A.)	DGSU-40 mt. Amber Unresser	(A/N) state or control (N/A)			
	1 2 3 4 5																		1				1	> :		#		XXX		34	3	90			- 11-11	
9 10 12	K							XXX							V X X X X																		~ ~	we.		

Sample ID	Type of Preservative	pH upon receipt	ljustment Log for Preserved Samples											
		hu ahou secerbe	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #								
	-													
Whater	Sec. 12 10		compilance samples, a copy of thi											

npleted accurately.	Maioto Agency.	Residual Chlorina (YIV) (1/eArrel S 200 3 Cleannel S 000 3	TEMP In C Semples Semples (YM) (YM) (Cooler (YM) (Cooler (YM) (Cooler (YM) (YM) (Cooler (YM) (YM) (Cooler (YM) (YM) (YM) (YM) (YM) (YM) (YM) (YM)
CHAIN-OF-CUSTODY / Analytical Request Document Section B Required Project Information: Report To: Christopher Burkhordt Makenton: Copy To: Christopher	Calfour	SS-SS-SS-SS-SS-SS-SS-SS-SS-SS-SS-SS-SS-	Diagram of the control of the contro
Section A Required Client Information: Company: Falcon Engineering Address: 12:10 Tristly Road Suits 110, Railegh, NC 275:13	Phone: 414 720 0064 Fax Requested Due Date:	SAMPLE ID One Character per ban (A2, Os), -1 Sample its mest ba unique (A3, Os), -1 Sample its mest ba unique (A4, Os), -1 Sample its mest ba unique (A4, Os), -1 Sample its mest ba unique (A4, Os), -1 Sample its mest ba unique (A5, Os), -1 Sample its mest ba unique (A5	

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2019-091)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 9 NCDOT PROJECT U-5797

2303 FAYETTEVILLE RD., LUMBERTON, NC APRIL 22, 2019

Report prepared for: Christopher J. Burkhardt, PWS

Falcon Engineers 1210 Trinity Rd. #110 Raleigh, NC 27607

Prepared by: ______ Eric C. Cross, P.G.

NC License #2181

Reviewed by:

Douglas A. Canavello, P.G. NC License #1066

GEOPHYSICAL INVESTIGATION REPORT

Parcel 9 - 2303 Fayetteville Rd. Lumberton, Robeson County, North Carolina

Table of Contents

Executive Summary	1
Introduction	
Field Methodology	
Discussion of Results	
Discussion of EM Results	
Discussion of GPR Results	
Summary & Conclusions	
Limitations	

Figures

- Figure 1 Parcel 9 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 9 EM61 Results Contour Map
- Figure 3 Parcel 9 GPR Transect Locations and Images
- Figure 4 Parcel 9 Locations and Sizes of Two Probable USTs
- Figure 5 Parcel 9 Overlay of Metal Detection Results and Two Probable USTs on NCDOT Engineering Plans

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	Dual Frequency
EM	Electromagnetic
GPR	Ground Penetrating Radar
GPS	Global Positioning System
NCDOT	North Carolina Department of Transportation
ROW	
UST	Underground Storage Tank

Project Description: Pyramid Environmental conducted a geophysical investigation for Falcon Engineers at Parcel 9, located at 2303 Fayetteville Rd. in Lumberton, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project U-5797). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from March 19-25, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of eleven EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. One EM anomaly was associated with unknown buried metal and was investigated further with GPR.

GPR provided evidence of two isolated hyperbolic reflectors and two discreet lateral reflectors on the southwest side of the building that are characteristic of USTs. The combined geophysical data resulted in these features being classified as two probable metallic USTs. The western probable metallic UST (UST #1) was approximately 12 feet long and 5.5 feet wide at a depth of approximately 2 feet below the ground surface. The eastern probable metallic UST (UST#2) was approximately 7 feet long and 5 feet wide at a depth of approximately 2 feet below the ground surface. Collectively, the geophysical data recorded evidence of two probable USTs within the geophysical survey area at Parcel 9.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Falcon Engineers at Parcel 9, located at 2303 Fayetteville Rd. in Lumberton, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project U-5797). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from March 19-25, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included a restaurant building surrounded by concrete, asphalt, and grass surfaces. An aerial photograph showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8-foot intervals along north-south trending or east-west trending, generally parallel survey lines, spaced five feet apart. The data were downloaded to a

computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on March 25, 2019, using a Geophysical Survey Systems, Inc. (GSSI) UtilityScan DF unit equipped with a dual frequency 300/800 MHz antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the DF unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the DF unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

	Geophysical Surveys for on NCI	Underground Stora OOT Projects	ge Tanks
High Confidence	Intermediate Confidence	Low Confidence	No Confidence
Known UST Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Probable UST Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphalt/concrete patch, etc.	Possible UST Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	Anomaly noted but not characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The following table presents the list of EM anomalies and the cause of the metallic response, if known:

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Signs	
2	Sign/Utilities	
3	Utility	
4	Building	
5	Sign	
6	Storm Drain	
7	Water Meter	
8	Two Probable USTs	Ø
9	Signs	
10	Metal Pole	
11	Surface Metal	

The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface, including signs, utilities, a storm drain, a water meter, a metal pole, and surface metal. EM Anomaly 8 was associated with unknown buried metal and was further investigated with GPR.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as the transect images. A total of three formal GPR transects were performed at the site. GPR Transects 1-3 were performed across EM Anomaly 8 and recorded two isolated hyperbolic reflectors and two discreet lateral reflectors on the southwest side of the building that are characteristic of USTs.

The combined geophysical data resulted in these features being classified as two probable metallic USTs. The western probable metallic UST (UST #1) was approximately 12 feet long and 5.5 feet wide at a depth of approximately 2 feet below the ground surface. The eastern probable metallic UST (UST#2) was approximately 7 feet long and 5 feet wide at a depth of approximately 2 feet below the ground surface. **Figure 4** provides the locations and sizes of the two probable USTs overlain on an aerial, along with ground-level photographs.

Collectively, the geophysical data <u>recorded evidence of two probable USTs within the geophysical survey area at Parcel 9</u>. **Figure 5** provides an overlay of the EM61 metal detection contour map, along with the locations of the two probable USTs, onto the NCDOT MicroStation engineering plans for reference.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 9 in Lumberton, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface.
- One EM anomaly was associated with unknown buried metal and was investigated further with GPR.
- GPR provided evidence of two isolated hyperbolic reflectors and two discreet lateral reflectors on the southwest side of the building that are characteristic of USTs. The combined geophysical data resulted in these features being classified as two probable metallic USTs.
- The western probable metallic UST (UST #1) was approximately 12 feet long and 5.5 feet wide at a depth of approximately 2 feet below the ground surface. The eastern probable metallic UST (UST#2) was approximately 7 feet long and 5 feet wide at a depth of approximately 2 feet below the ground surface.
- Collectively, the geophysical data <u>recorded evidence of two probable USTs within</u> the geophysical survey area at Parcel 9.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Falcon Engineers in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique

and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

View of Survey Area (Facing Approximately North)

View of Survey Area (Facing Approximately South)

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

PARCEL 9 LUMBERTON, NORTH CAROLINA NCDOT PROJECT U-5797 TITLE

PARCEL 9 - GEOPHYSICAL SURVEY BOUNDARIES AND SITE PHOTOGRAPHS

DATE 3/25/2019		CLIENT FALCON ENGINEE		
PYRAMID PROJECT #:	2019-091	FIGURE 1		

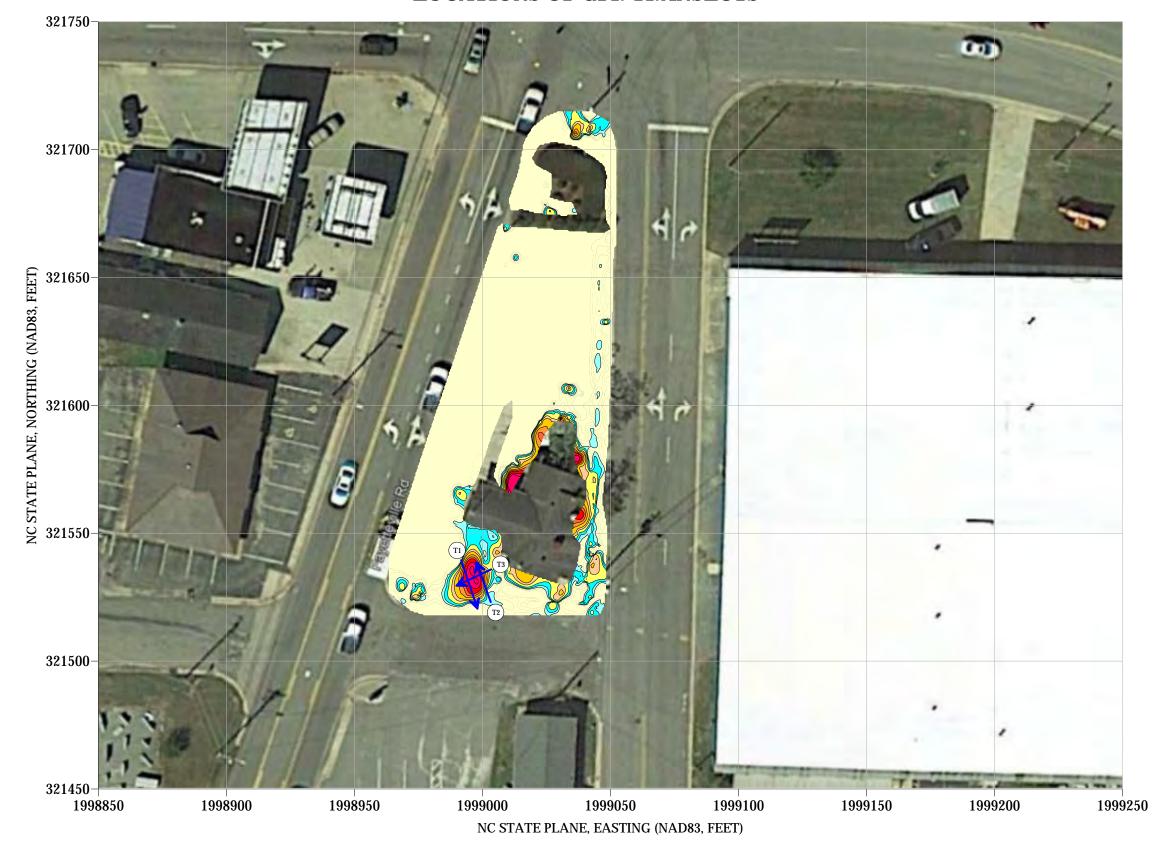
Å

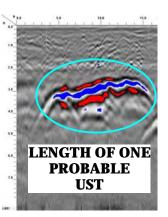
EM61 METAL DETECTION RESULTS

EVIDENCE OF TWO PROBABLE USTs OBSERVED.

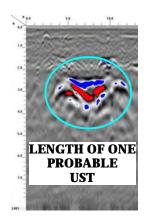
The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on March 19, 2019, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI UtilityScan DF instrument with a dual frequency 300/800 MHz antenna on March 25, 2019.

EM61 Metal Detection Response (millivolts)

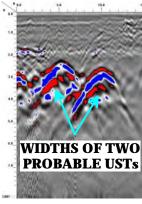

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT


PARCEL 9 LUMBERTON, NORTH CAROLINA NCDOT PROJECT U-5797 TITLE

PARCEL 9 -EM61 METAL DETECTION CONTOUR MAP


DATE	3/25/2019	CLIENT FALCON ENGINEER
PYRAMID PROJECT #:	2019-091	FIGURE 2

LOCATIONS OF GPR TRANSECTS



GPR TRANSECT 1 (T1)

GPR TRANSECT 2 (T2)

GPR TRANSECT 3 (T3)

DATE

PYRAMID PROJECT #:

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology

PROJECT

PARCEL 9 LUMBERTON, NORTH CAROLINA NCDOT PROJECT U-5797

TITLE

PARCEL 9 -GPR TRANSECT LOCATIONS AND IMAGES

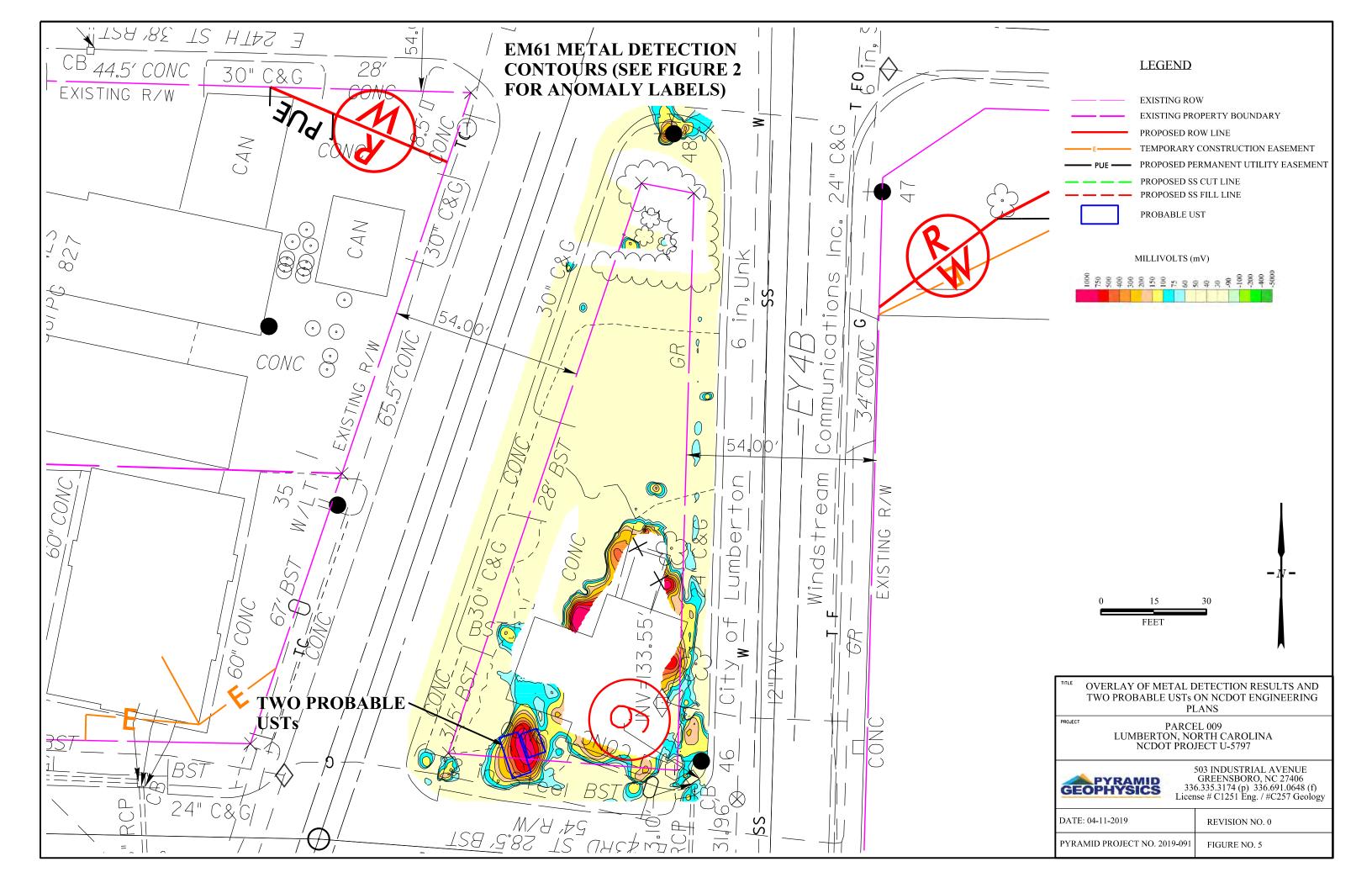
3/25/2019	CLIENT FALCON ENGINEER	S
2019-091	FIGURE 3	

LOCATIONS OF TWO PROBABLE USTs

View of Two Probable USTs Facing Approximately East

View of Two Probable USTs Facing Approximately North

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT


PARCEL 9 LUMBERTON, NORTH CAROLINA NCDOT PROJECT U-5797

NC STATE PLANE, EASTING (NAD83, FEET)

TITLE

PARCEL 9 - LOCATIONS AND SIZES OF TWO PROBABLE USTs

DATE	3/25/2019	FALCON ENGINEER
PYRAMID PROJECT #:	2019-091	FIGURE 4

