REFERENCE

SEE SHEET 2A FOR PLAN SHEET LAYOUT AT TIME OF INVESTIGATION

CONTENTS

<u>LINE</u>	STATION	PLAN	PROFILE
-L-	20+38.00 - 87+20.00	4-9	12-14
-Y2-	15+60.00 - 37+15.00	6,10,11	15
-Y3-	12+50.00 - 25+65.36	6	16
-Y4-	10+00.00 - 17+07.80	8	17
-Y5-	10+00-00 - 11+50-00	9	17

APPENDICES

APPENDIX	<u>TITLE</u>	SHEETS
Α	PAVEMENT INVESTIGATION	18-35
В	LABORATORY RESULTS	36-39

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

ROADWAY SUBSURFACE INVESTIGATION

COUNTY ROBESON

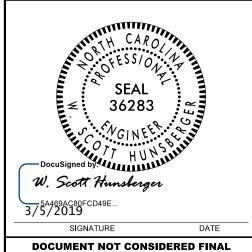
PROJECT DESCRIPTION FAYETTEVILLE ROAD (SR 1997) FROM EAST OF 22nd STREET TO FARRINGDOM STREET

INVENTORY

STATE PROJECT REFERENCE NO. 42 U-5797

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1991 707-6805. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.


GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISTY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS FOR ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- ES:
 THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT
 OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS
 OR CONTRACT FOR THE PROJECT.
 BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS
 FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE
 CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

. 200
CAROLINA DRILLING
WEIS, J.M.
INVESTIGATED BY FALCON ENG.
DRAWN BYHILL, M.J.
CHECKED BYHUNSBERGER, W.S.
SUBMITTED BY FALCON ENG.
DATE MARCH 2019

PERSONNEI

UNLESS ALL SIGNATURES COMPLETED

U-5797

2

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS

GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM D1586). SOIL CLASSIFICATION	<u>UNIFORMLY GRADED</u> - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. <u>GAP-GRADED</u> - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60	AQUIFER - A WATER BEARING FORMATION OR STRATA.
IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK.	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE,	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING
VERY STIFF,GRAY,SILTY CLAY,MOIST WITH INTERBEDDED FINE SAND LAYERS,HIGHLY PLASTIC,A-7-6 SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > 100 BLOWS PER FOOT IF TESTED.	A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC. ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
CEMERAL CRAMIII AR MATERIALS SILT-CLAY MATERIALS	MINERALOGICAL COMPOSITION	FINE TO COARSE CRAIN IGNEOUS AND METAMORPHIC ROCK THAT	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND
CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) ORGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	ROCK (CP) WOULD YIELD SPT REFUSAL IF TESTED, ROCK TYPE INCLUDES GRANITE,	SURFACE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 CLASS. A-1-0 A-1-0 A-1-0 A-2-4 A-2-5 A-2-6 A-2-7 A-2-6 A-2-7 A-3 A-6, A-7	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE. COMPRESSIBILITY	NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
000000000000000000000000000000000000000	SLIGHTLY COMPRESSIBLE LL < 31	ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
SYMBOL 0000 d0000 d00000 d0000 d00000 d0000 d00000 d0000 d00000 d0000 d000000	MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SEDIMENTARY ROCK SPT REFUSAL, ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED
7. PASSING SILT-GRANULAR SILT-MUCK,	PERCENTAGE OF MATERIAL	(CP) SHELL BEDS, ETC.	BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
*40 38 MX 50 MX 51 MN SOILS CAT PEAT	GRANULAR SILT - CLAY	- WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
או אפ א	ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER HAMMER IF CRYSTALLINE.	<u>DIP</u> - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
MATERIAL PASSING *40	LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	HORIZONTAL.
LL 40 MX 41 MN LITTLE OR HIGHLY PI 6 MX NP 10 MX 10 MX 11 MN 11 MN 10 MX 10 MX 11 MN 1	MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
CROUP INDEX A A A A MY B MY 12 MY IS MY NO MY AMOUNTS OF ORGANIC	GROUND WATER	OF A CRYSTALLINE NATURE. SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE
UICIAI TYPES STONE EPAGS ORGANIC SUILS	✓ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	(SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
OF MAJOR GRAVEL, AND FINE SILIT OF CLATEY SILIT LIATEY MATTER	STATIC WATER LEVEL AFTER 24 HOURS	CRYSTALS ARE DULL AND DISCOLORED, CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
MATERIALS SANU	✓ PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.
GEN. RATING AS SUBGRADE EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE	SPRING OR SEEP	DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30	SHING ON SEEP	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH (MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES "CLUNK" SOUND WHEN STRUCK,	FIELD. <u>JOINT</u> - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE COMPACTNESS OR RANGE OF STANDARD RANGE OF UNCONFINED PENETRATION RESISTENCE COMPRESSIVE STRENGTH	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION	IF TESTED, WOULD YIELD SPT REFUSAL	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
CONSISTENCY (N-VALUE) (TONS/FT ²)	₩ITH SOIL DESCRIPTION → OF ROCK STRUCTURES	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT	ITS LATERAL EXTENT.
GENERALLY VERY LOOSE	SOIL SYMBOL SOIL SYMBOL SOIL SYMBOL SOIL SYMBOL SLOPE INDICATOR INSTALLATION	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
GRANULAR MEDIUM DENSE 10 TO 30 N/A	ARTIFICIAL FILL (AF) OTHER ALICEP POPUNG CONE PENETROMETER	IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTILED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
(NON-COHESIVE) DENSE 30 TO 50 VERY DENSE > 50	THAN ROADWAY EMBANKMENT AUGER BORING CONE PENETRUMETER	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
VERY SOFT < 2 < 0.25	— INFERRED SOIL BOUNDARY ————————————————————————————————————	(V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	OF AN INTERVENING IMPERVIOUS STRATUM.
GENERALLY SOFT 2 TO 4 0.25 TO 0.5 SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0	INFERRED ROCK LINE MN MONITORING WELL TEST BORING	VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u> COMPLETE ROCK REDUCED TO SOIL, ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
MATERIAL STIFF 8 TO 15 1 TO 2	A PIFZOMETER	SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE
(COHESIVE) VERY STIFF 15 TO 30 2 TO 4 HARD > 30 > 4	ALLUVIAL SOIL BOUNDARY ALLUVIAL SOIL BOUNDARY SPT N-VALUE	ALSO AN EXAMPLE.	RUN AND EXPRESSED AS A PERCENTAGE.
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270	UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053		HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
BOULDER	SHALLOW UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - UNDERCUT SHEET OF ACCEPTABLE DEGRADABLE ROCK EMBANKMENT OR BACKFILL	TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT
(CSE, SD.) (F SD.) (SL.)	ABBREVIATIONS	HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED	OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.005 0.005 SIZE IN. 12 3	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB, HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL
SOIL MOISTURE - CORRELATION OF TERMS	CL CLAY MOD MODERATELY 7 - UNIT WEIGHT	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE	WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOU MOISTURE SCALE FIELD MOISTURE	CPT - CONE PENETRATION TEST NP - NON PLASTIC $\gamma_{ m d}$ - DRY UNIT WEIGHT CSE COARSE ORG ORGANIC	POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY
(ATTERBERG LIMITS) DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST <u>SAMPLE ABBREVIATIONS</u>	FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH	STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
(SAT.) FROM BELOW THE GROUND WATER TABLE	F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
PLASTIC SEMISOLID; REQUIRES DRYING TO	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL	FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
(PI) PLASTIC LIMIT	FRAGS FRAGMENTS	FRACTURE SPACING BEDDING TERM SPACING TERM THICKNESS	BENCH MARK:
	EQUIPMENT USED ON SUBJECT PROJECT	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET	BORING ELEVATIONS TAKEN FROM u5797_Is_tin_I80723.tin DATED 09/24/2018 ELEVATION: FEET
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE SL SHRINKAGE LIMIT	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET	
PEGLIFIES ADDITIONAL WATER TO	CME-45C CLAY BITS X AUTOMATIC MANUAL	CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET	NOTES:
- DRY - (D) ATTAIN OPTIMUM MOISTURE	X CME-55 G'CONTINUOUS FLIGHT AUGER CORE SIZE:	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED < 0.008 FEET	FIAD - FILLED IMMEDIATELY AFTER DRILLING
PLASTICITY	X 8" HOLLOW AUGERS	INDURATION]
PLASTICITY INDEX (PI) DRY STRENGTH	CME-550 HARD FACED FINGER BITS -N	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	
NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC 6-15 SLIGHT	TUNGCARBIDE INSERTS	FRIABLE RUBBING WITH FINGER FREES NUMEROUS GRAINS; GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
MODERATELY PLASTIC 16-25 MEDIUM	CASING W/ ADVANCER HAND TOULS:	CDAING CAN BE CEDADATED FROM CAMPLE WITH CTEEL BRODE.	
HIGHLY PLASTIC 26 OR MORE HIGH	PORTABLE HOIST TRICONE STEEL TEETH X HAND AUGER	MODERATELY INDURATED ORALING CHIN DE SCHARMIED FROM SHIFTLE WITH STEEL FROME; BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR	TRICONE TUNGCARB. SOUNDING ROD	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE; DIFFICULT TO BREAK WITH HAMMER.	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	CORE BIT VANE SHEAR TEST	CHARP HAMMER BLOWS REGISTED TO RREAV SAMPLE.	
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	<u> </u>	EXTREMELY INDURATED SAMPLE BREAKS ACROSS GRAINS.	DATE: 1-XX-17

END PROJECT

VICINITY MAP

DESIGN DATA

K = 55 %

D = 9 %

T = 4 %

TTST =3% DUAL =1%

FUNC CLASS =

URBAN ARTERIAL

V = 50 MPH

ADT 2020 = 31.800ADT 2040 = 38,800 **PRELIMINARY**

N.T.S

6 E

436

GRAPHIC SCALES

PROFILE (HORIZONTAL)

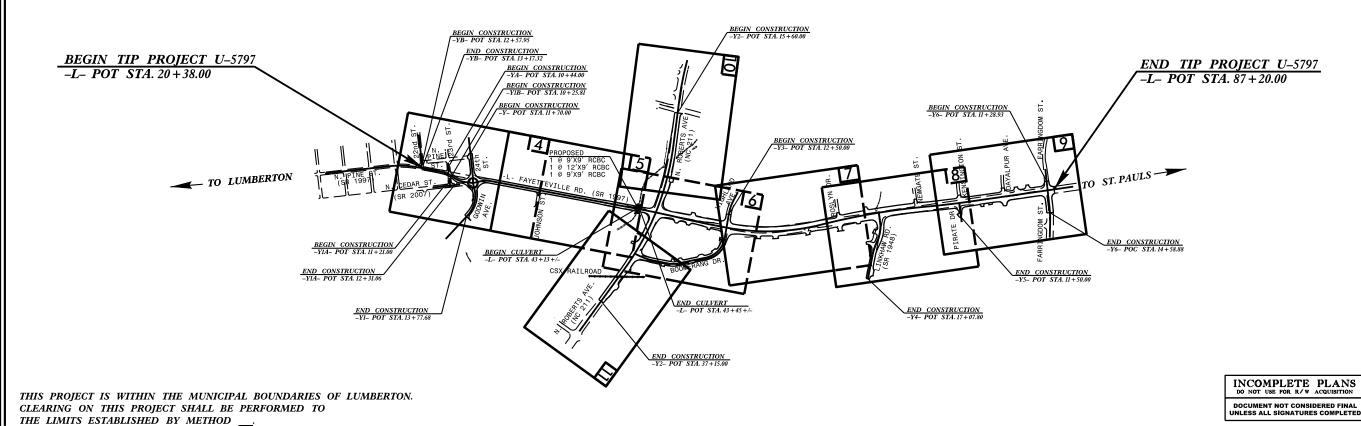
PROFILE (VERTICAL)

STATE OF NORTH CAROLINA DIVISION OF HIGHWAYS

ROBESON COUNTY

LOCATION: FAYETTEVILLE ROAD (SR 1997) FROM EAST OF 22nd STREET TO FARRINGDOM STREET

TYPE OF WORK: GRADING, PAVING, DRAINAGE, AND CULVERTS


STATE	SIATE	PROJECT REFERENCE NO.	NO.	SHEETS
N.C.	Ĺ	J-5797	3	42
STATE	PROJ. NO.	F. A. PROJ. NO.	DESCRIPT	ION
4436	7.1.1	N/A	PE	
		-		

HYDRAULICS ENGINEER

ROADWAY DESIGN

ENGINEER

= 1.266 MILES

PROJECT LENGTH

LENGTH OF ROADWAY TIP PROJECT U-5797 = 1.260 MILES

LENGTH OF STRUCTURE TIP PROJECT U-5797 = 0.006 MILES

CRAIG A. FREEMAN JR., PE

NCDOT DIVISION 6

TOTAL LENGTH OF TIP PROJECT U-5797

NCDOT CONTACT:

PLANS PREPARED FOR THE NCDOT BY:

STV ENGINEERS, INC. 1600 Perimeter Park Drive, Ste 225, Morrisville, NC 27560 NC License Number F-0991

PATRICK A. LIVINGSTON, PE

WESTON D. MURPHY, EI

2018 STANDARD SPECIFICATIONS

RIGHT OF WAY DATE:

NOVEMBER 15, 2018

LETTING DATE:

AUGUST 6, 2020

Roadway Subsurface Investigation Report - Inventory

Fayetteville Road (SR 1997) From East of 22nd Street to Farringdom Street
Robeson County, North Carolina
WBS: 44367.1.1, TIP: U-5797
Falcon Project No.: G17057.00

Prepared for:

STV Engineers, Inc. 1500 Perimeter Park Drive, Suite 200 Morrisville, NC 27560

Submitted by:
Falcon Engineering, Inc.
1210 Trinity Road, Suite 110
Cary, North Carolina 27513
(919) 871-0800
www.falconengineers.com

March 5, 2019

SHEET 3A WBS: 44367.1.1 (U-5797)

 TIP:
 U-5797

 WBS:
 44367.1.1

 COUNTY:
 Robeson

DESCRIPTION: Fayetteville Road (SR 1997) From East of 22nd Street to

Farringdom Street

SUBJECT: Roadway Subsurface Investigation – Inventory

PROJECT DESCRIPTION

This project consists of 1.26 miles of proposed widening and intersection improvements on Fayetteville Road in Lumberton in Robeson County. Fayetteville Road will be widened from east of 22nd Street to Farringdom Street. The intersection of Fayetteville Road and Godwin Avenue will be converted to a new roundabout. Boomerang Drive will be improved to facilitate additional traffic while eliminating left turns from Fayetteville Road onto Roberts Avenue. In addition to the roadway widening, two reinforced concrete box culverts will be constructed. Tie-ins and minor improvements to Y-lines and small drives are also included at various locations.

The investigation was conducted between October 24th and November 7th, 2018 in general accordance with our Scope and Fee Estimate for Geotechnical Investigation and Engineering Services. The information provided in this report is based solely on our site reconnaissance, soil test borings and laboratory test data, engineering evaluation of these data, and generally accepted soil and foundation engineering practices and principles.

A total of forty four (44) Standard Penetration Test (SPT) and five (5) hand auger borings were drilled for the proposed roadway alignments and culverts. All mechanical borings were drilled using a CME 55 ATV mounted drill rig equipped with mud rotary drilling equipment, and SPT testing was performed with an automatic hammer. Representative soil samples, collected with a split-barrel sampler were selected for laboratory testing to verify visual field classifications. In addition, bulk samples were collected for standard Proctor compaction and California Bearing Ratio (CBR) testing.

Portions of the following alignments, totaling approximately 2.1 miles were investigated. Other minor Y-lines and driveways are included on the project but improvements are not anticipated to be significant enough to warrant investigation.

Alignment	Station (ft)
-L- (Fayetteville Road)	20+38 to 87+20
-Y2- (N. Roberts Avenue)	15+60 to 37+15
-Y3- (Boomerang Drive)	12+50 to 25+65
-Y4- (Linkhaw Road)	10+00 to 17+08
-Y5- (Pirate Drive)	10+00 to 11+50

AREAS OF SPECIAL GEOTECHNICAL INTEREST

I. The following locations encountered groundwater within six feet of the proposed subgrade:

Alignment	Station (ft)
-L-	25+55
-L-	26+64
-L-	69+89
-Y4-	12+03
-Y4-	14+00

II. The following locations contain very soft to soft/very loose soils with an N-value less than 4 near the ground surface:

<u>Alignment</u>	Station (ft)
-L-	42+91
-L-	43+07
-L-	73+83
-L-	77+71
-L-	82+24
-L-	84+03
-Y2-	34+35

SHEET 3B WBS: 44367.1.1 (U-5797)

PHYSIOGRAPHY AND GEOLOGY

The project site is in the Coastal Plain Physiographic Province of North Carolina. According to the *Geologic Map of North Carolina* (1985), the site is underlain by one major geologic unit in the Coastal Plain Physiographic Provence. The primary unit is the Duplin Formation (**Tpy**) of the Tertiary Period.

The Duplin Formation is noted to consist of shelly, bluish gray medium- to coarse-grained sand, sandy marl, and limestone.

Existing site topography is flat in the general project vicinity, typical of this area of the Coastal Plain. Drainage swales and ditches parallel existing roadway alignments, and carry roadway drainage toward various natural drainage features. Meadow Branch Creek runs from the northwest to the southwest of the corridor crossing under both Fayetteville Road and Roberts Avenue.

SOIL PROPERTIES

A variety of soils were encountered along the project, including existing Roadway Embankments and Undivided Coastal Plain soils.

Roadway Embankment soils were encountered at the ground surface beneath and adjacent to existing roadways. These soils consist of up to 3 feet of moist, loose, clayey sand (A-2-6).

Undivided Coastal Plain soils were encountered at ground surface or beneath the roadway embankment fills. These soils consist of moist to saturated, very loose to medium dense, clean, silty and clayey sand (A-2-4, A-2-6, A-2-7, A-3) and very soft to very stiff, sandy silt and sandy and silty clay (A-4, A-6, A-7).

GROUNDWATER PROPERTIES

Groundwater levels were measured at the time of boring completion, and in many cases after a waiting period of at least 24 hours. Borings drilled within and in close proximity to existing roadways, and within residential or commercial areas were backfilled immediately after completion due to safety considerations.

Detailed groundwater measurements are included in the attached subsurface profiles and cross sections, and noted areas of shallow groundwater are included in the Areas of Special Geotechnical Interest earlier in this report.

SHEET 3C WBS: 44367.1.1 (U-5797)

ADDITIONAL LABORATORY TESTING

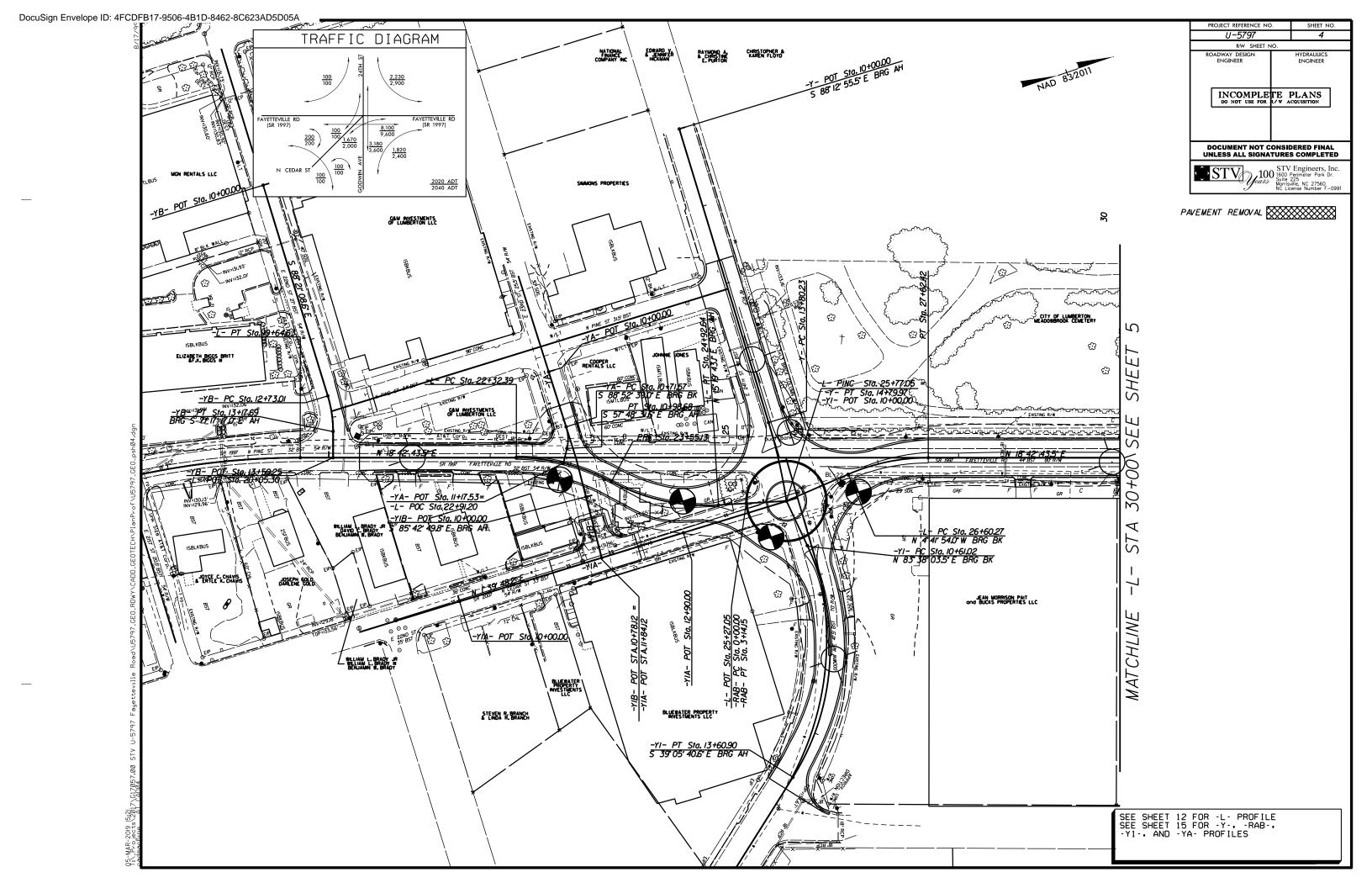
The following bulk samples were obtained:

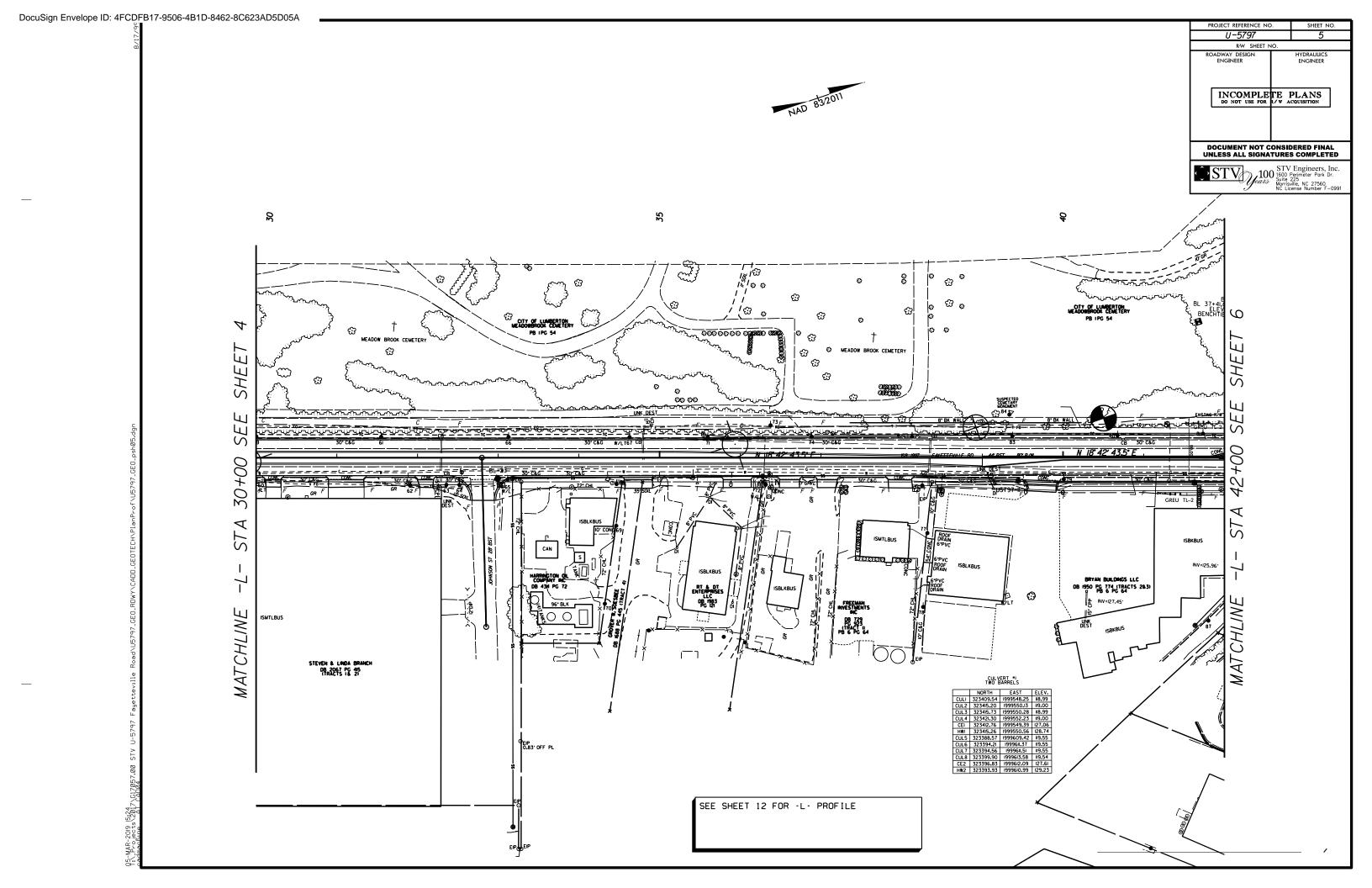
<u>Sample</u>	<u>Location</u>	Depth (ft)	<u>Test</u>
BS-1	26+64, 25' RT, -L-	3.5 – 8.5	California Bearing Ratio, Standard Proctor
BS-2	77+71, 54' LT, -L-	1.0 - 5.0	California Bearing Ratio, Standard Proctor
BS-3	15+00, 27' LT, -Y3-	3.5 – 8.5	California Bearing Ratio, Standard Proctor

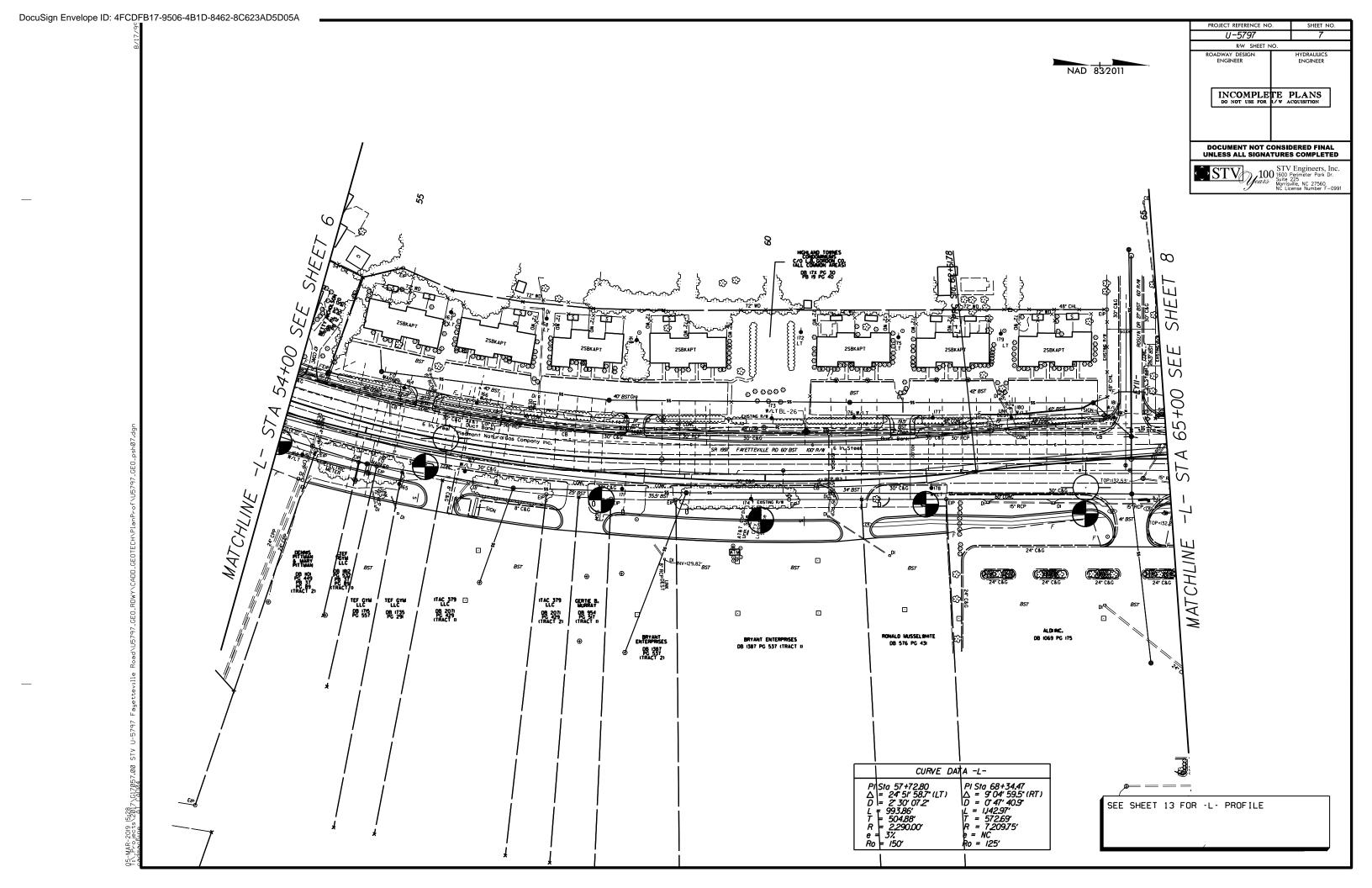
Classification test results for bulk samples are included in the subsurface profiles and cross sections and Standard Proctor and California Bearing Ratio (CBR) data is attached in the Appendix.

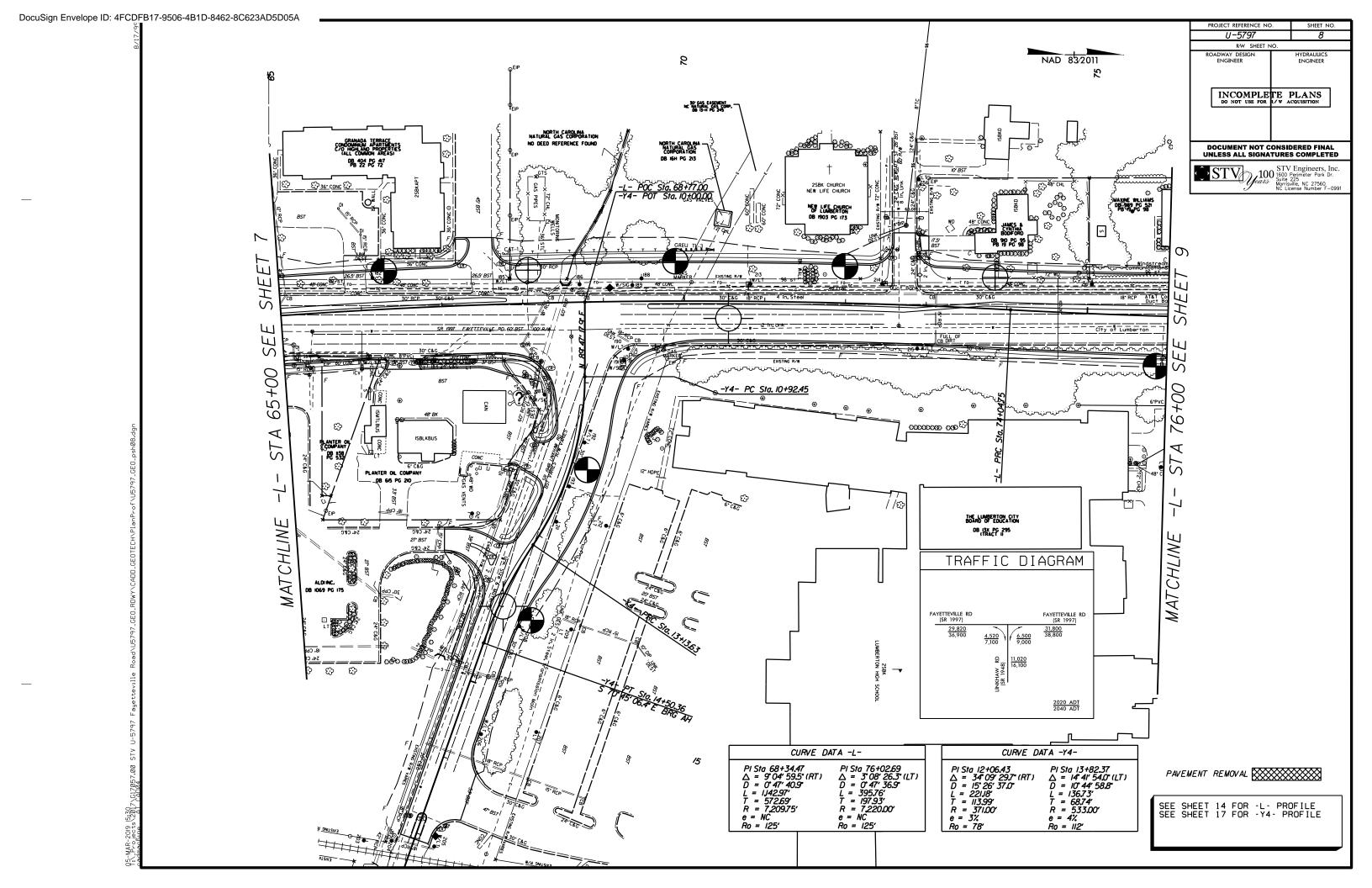
CLOSING

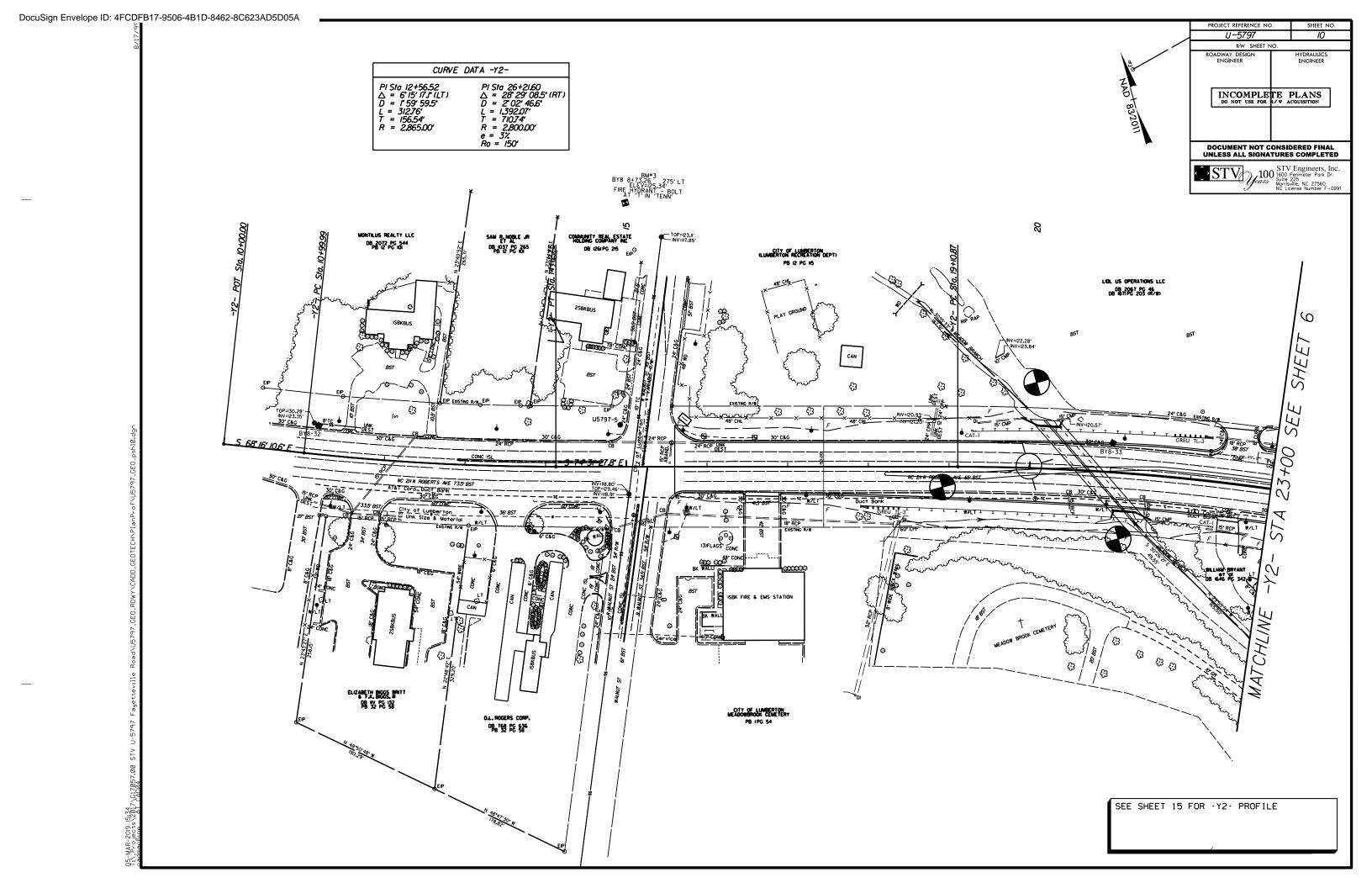
Falcon appreciates the opportunity to have provided our geotechnical engineering services for the above referenced project. If you have any questions concerning the contents of this report or need additional information, please do not hesitate to contact our office.

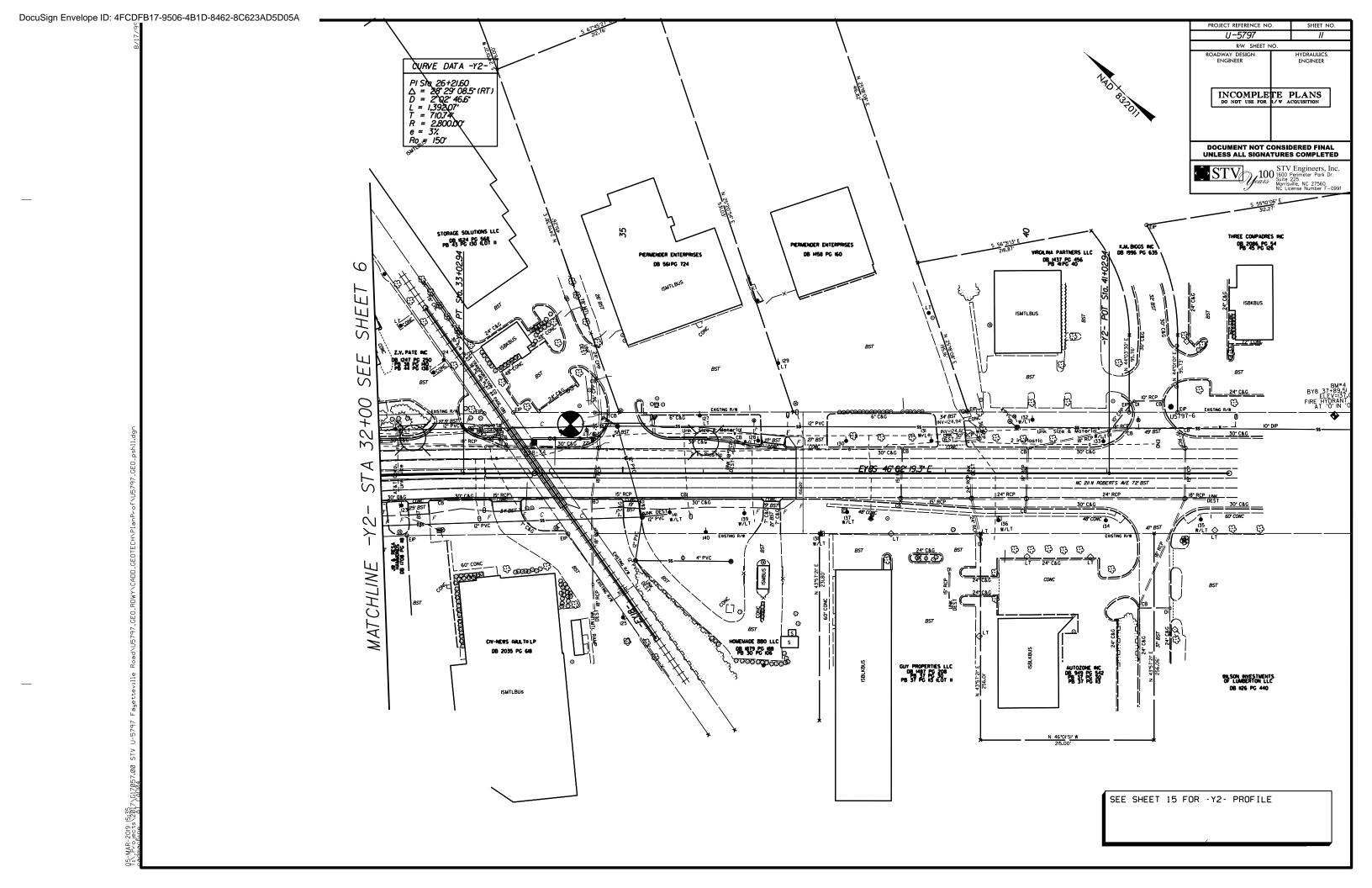

FALCON ENGINEERING, INC.

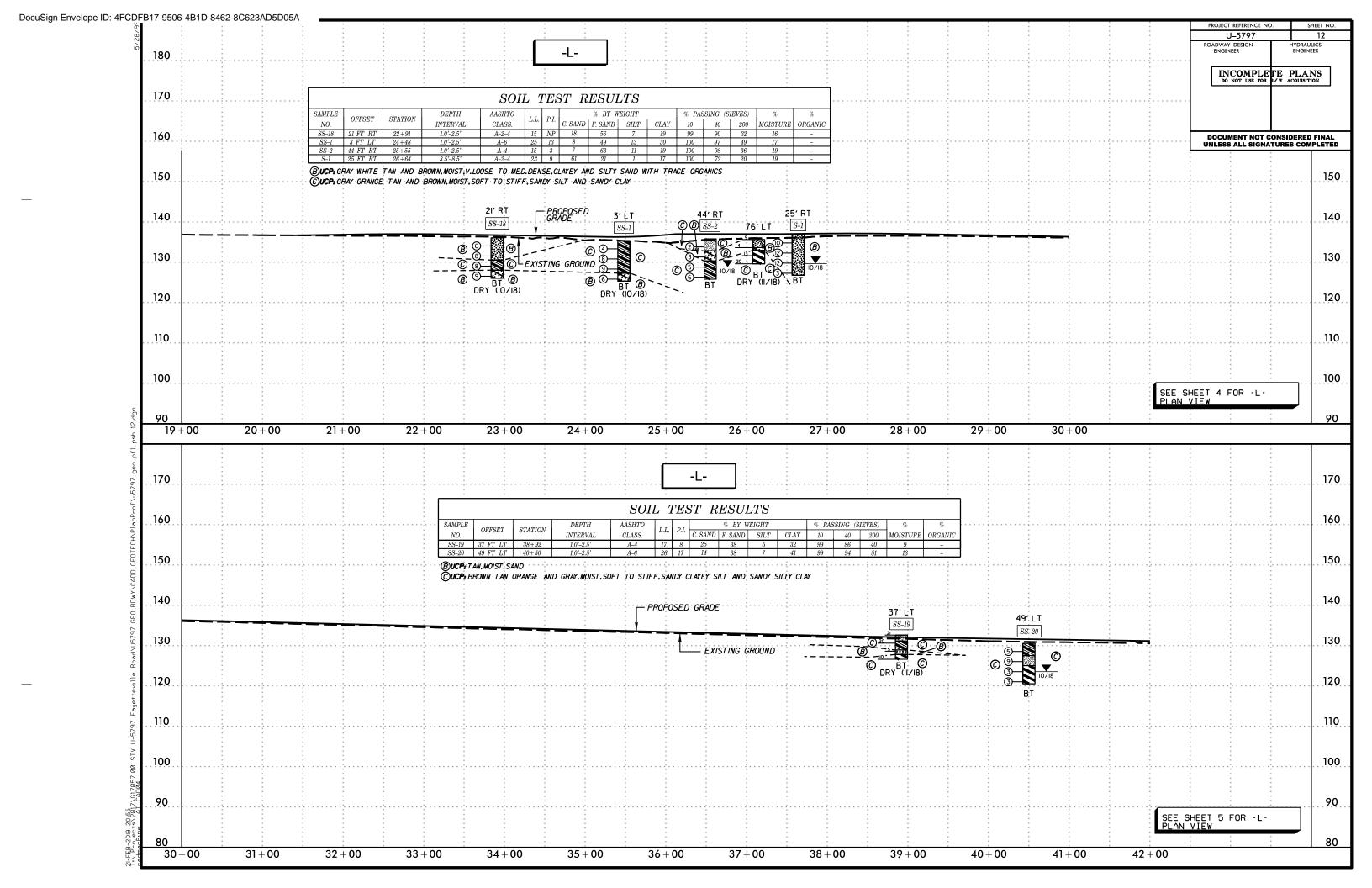

Report Prepared By:

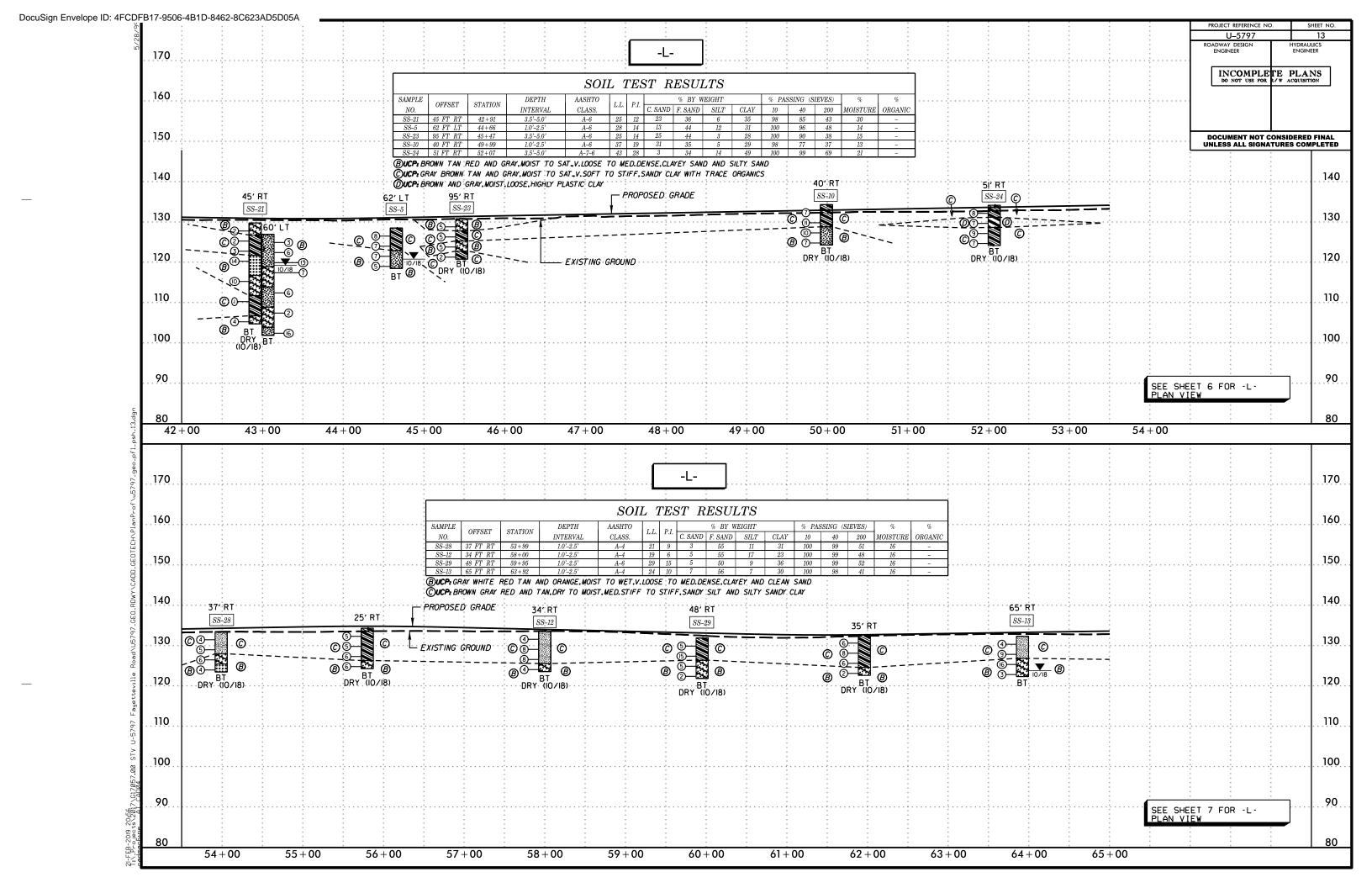

Report Reviewed By:

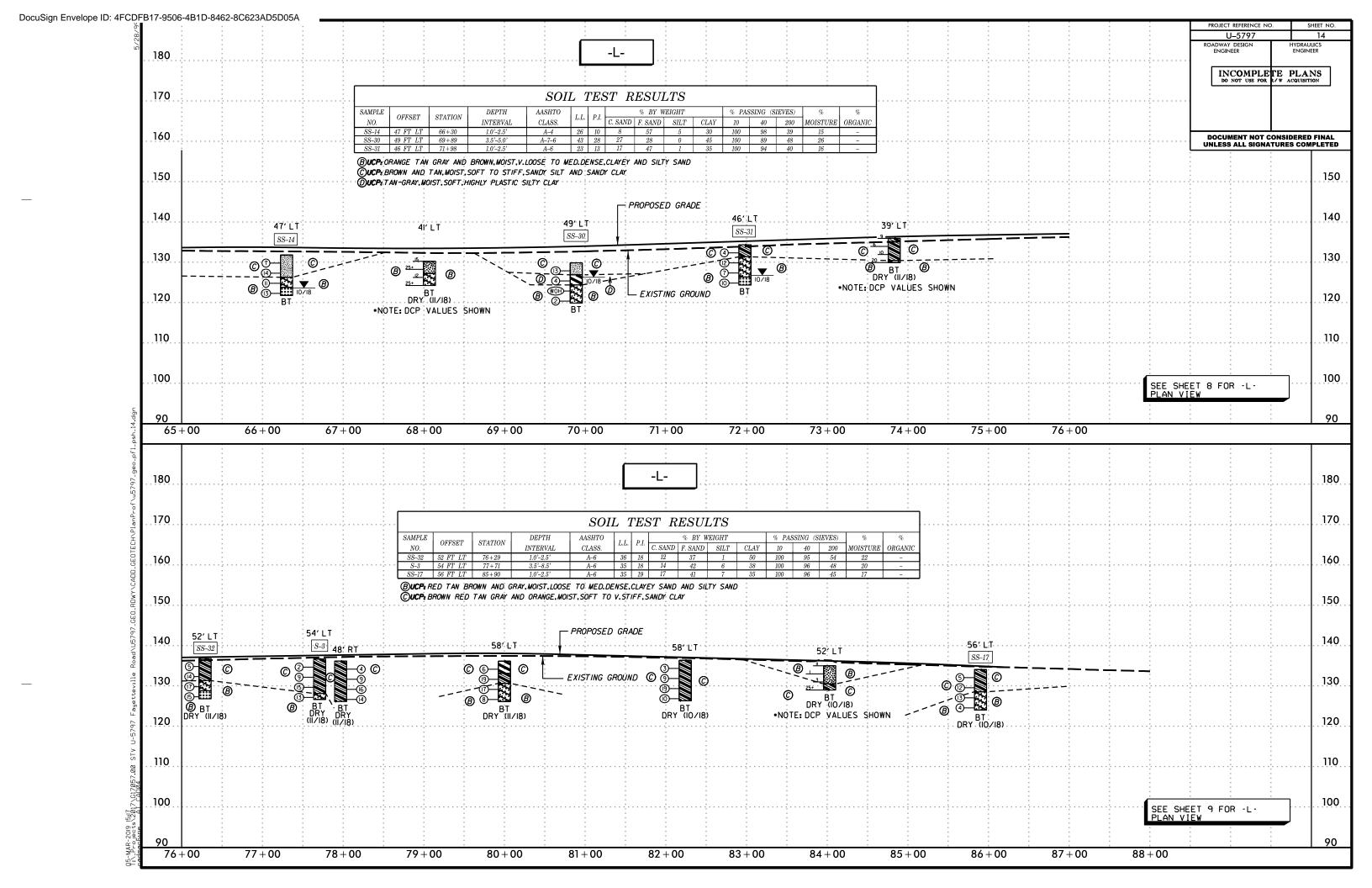

W. Scott Hunsberger, PE Geotechnical Engineer Jeremy R. Hamm, PE

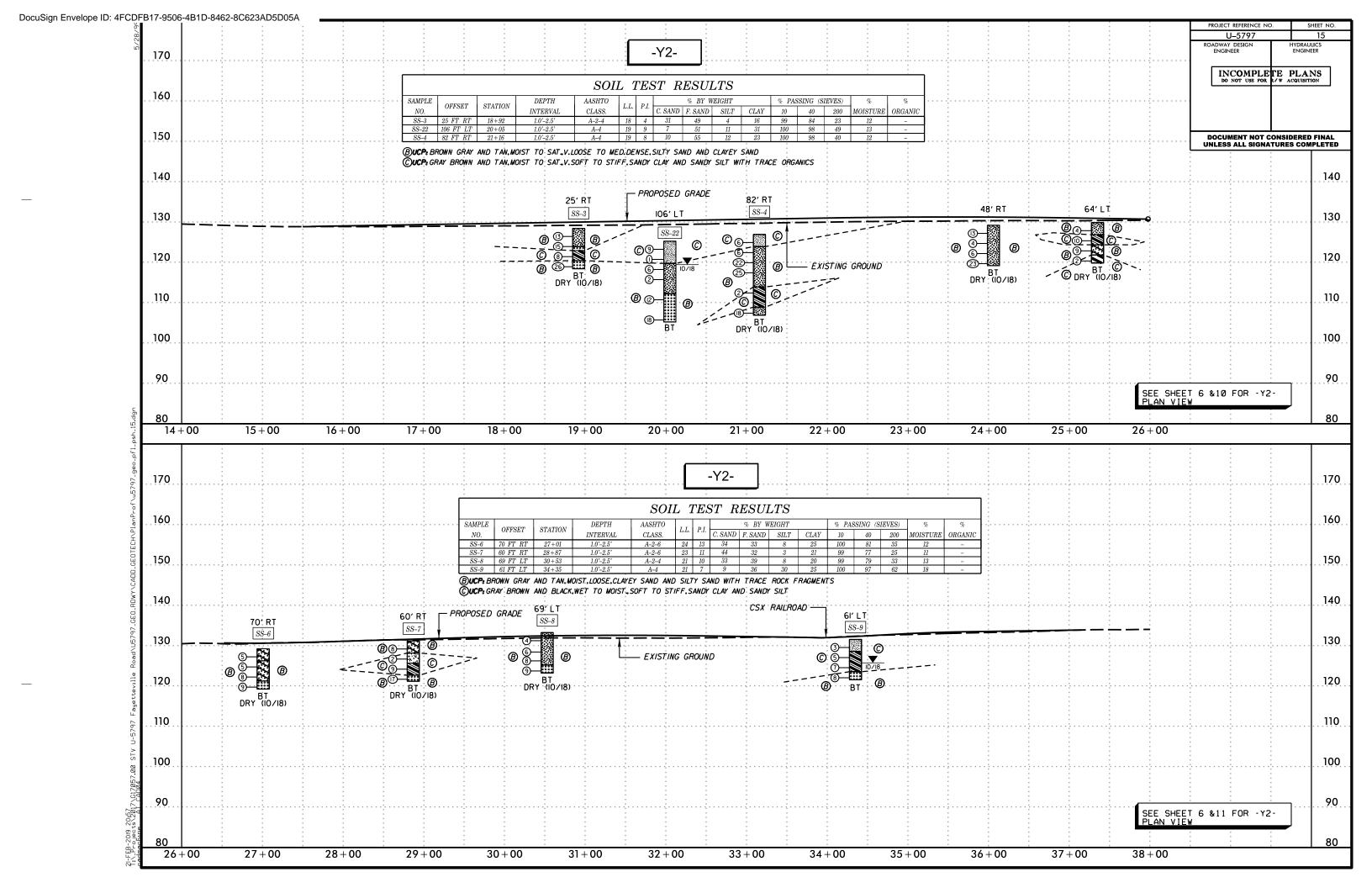

Geotechnical Engineering Manager

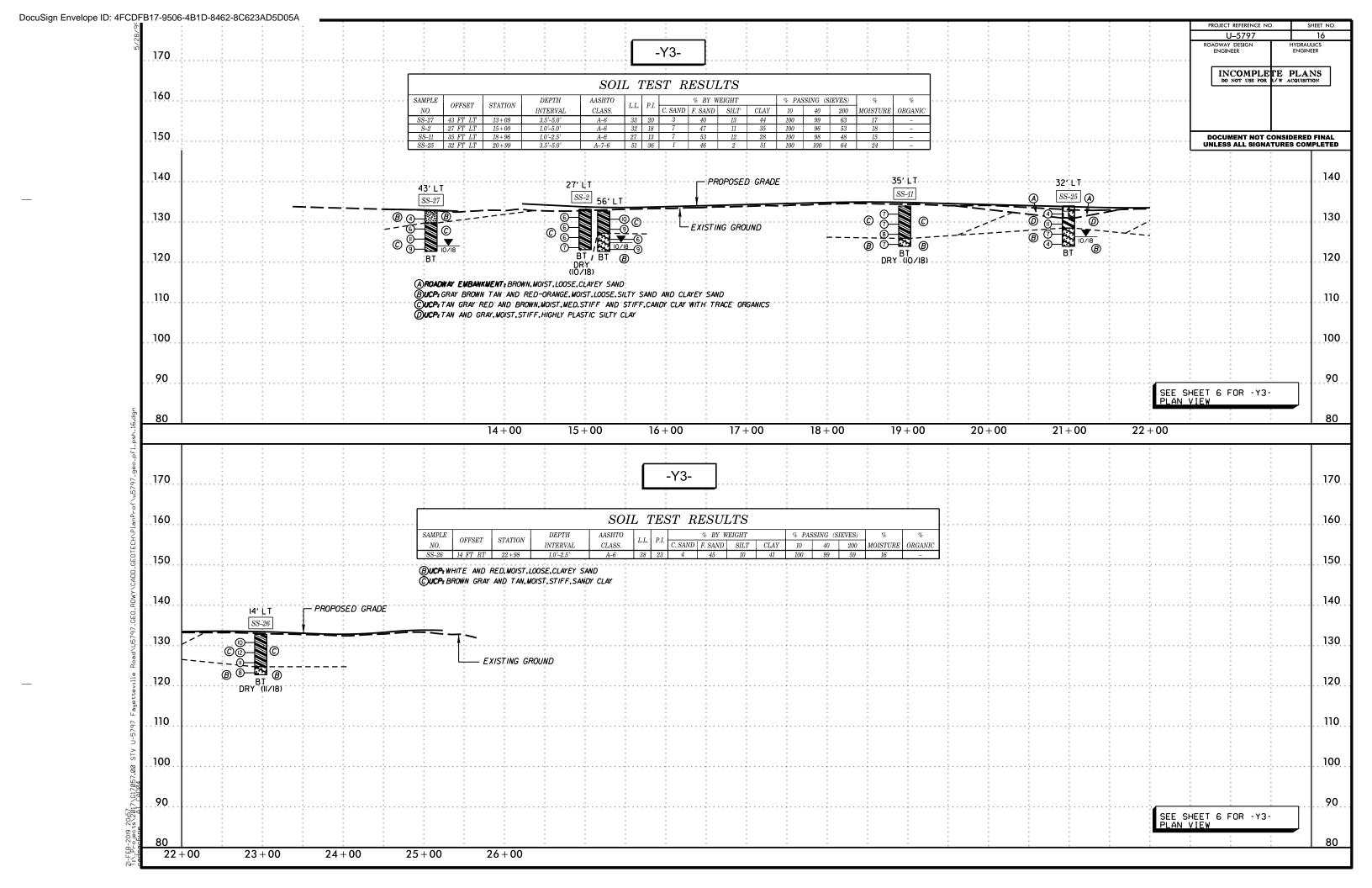












DocuSign Envelope ID: 4FCDFB17-9506-4B1D-8462-8C623AD5D05A PROJECT REFERENCE NO. 18 U-5797 NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT SUBSURFACE INVESTIGATION APPENDIX A PAVEMENT INVESTIGATION REFERENCE: 44367 **WSH** 3/5/2019

DATE

Falcon Engineering, Inc.

1210 Trinity Road, Suite 110 Cary, NC 27513

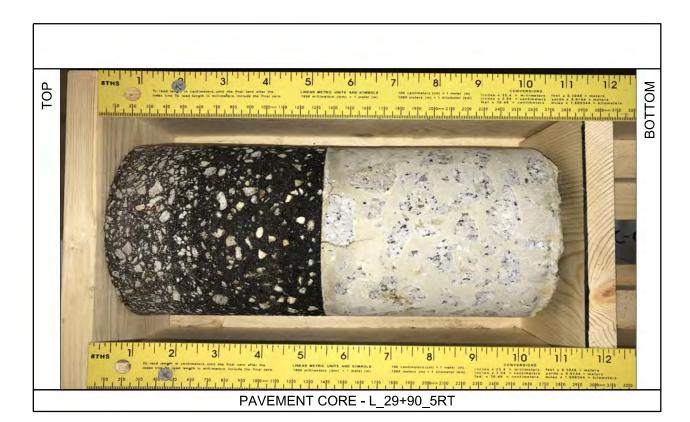
PAVEMENT SECTION AND SUBGRADE CONDITION SUMMARY

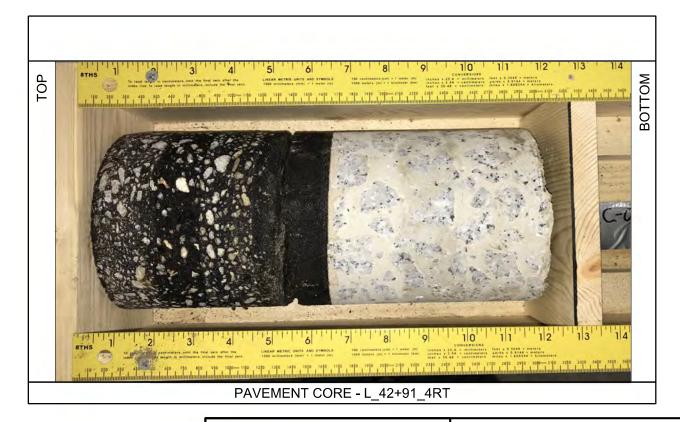
FAYETTEVILLE ROAD (SR 1997) FROM EAST OF 22ND STREET TO FARRINGDOM STREET

ROBESON COUNTY, NORTH CAROLINA

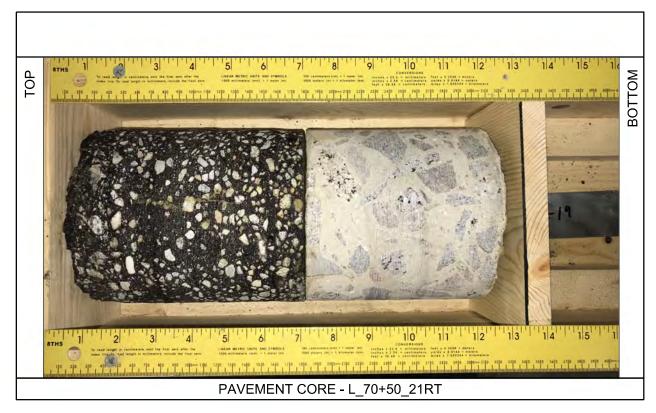
TIP No.: U-5797 WBS No.: 44367.1.1

Falcon Project No.: G17057.00

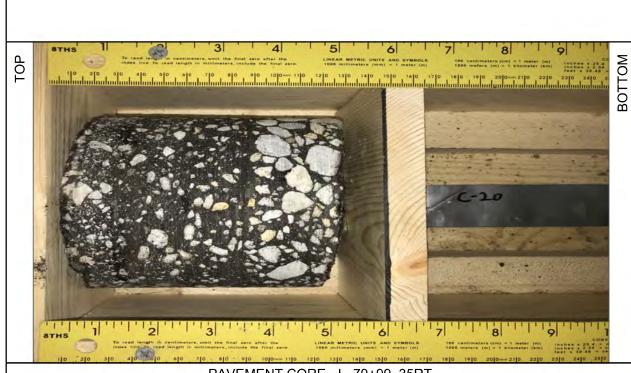

		TEST LOCATI	ON	PAVEMENT SECTION THICKNESS (INCHES)				SUBGRADE	
ALIGNMENT	STATION	OFFSET	LANE	нма	CONCRETE	AGGREGATE BASE	TOTAL	IN-SITU CBR	NOTES
-L-	21+04	CL	CENTRAL TURN LANE	6.00	6.00	0.00	12.00	20	Asphalt over concrete, Multiple Layers
-L-	29+90	5' RT	NORTHBOUND, ISL	5.00	6.00	0.00	11.00	15	Asphalt over concrete, Multiple Layers
-L-	35+94	17' LT	SOUTHBOUND, OSL	7.00	6.00	0.00	13.00	10	Asphalt over concrete, Multiple Layers, delaminated at 6 inches
-L-	42+91	4' RT	NORTHBOUND, ISL	6.00	6.00	0.00	12.00	9	Asphalt over concrete, Multiple Layers, delaminated at 5 inches
-L-	50+02	16' LT	NORTHBOUND, OSL	6.00	0.00	5.00	11.00	10	Multiple Layers
-L-	55+99	14' LT	CENTRAL TURN LANE	12.00	7.00	0.00	19.00	8	Asphalt over concrete, Multiple Layers
-L-	63+96	33' RT	NORTHBOUND, OTL	7.00	0.00	5.00	12.00	6	Multiple Layers
-L-	70+50	21' RT	CENTRAL TURN LANE	7.00	5.00	0.00	12.00	25	Asphalt over concrete, Multiple Layers
-L-	79+99	35' RT	NORTHBOUND, OTL	5.00	0.00	0.00	5.00	6	Multiple Layers
-L-	85+02	33' RT	NORTHBOUND, OTL	11.00	0.00	0.00	11.00	10	Multiple Layers
-Y-	12+00	3' LT	CENTRAL TURN LANE	6.00	0.00	10.00	16.00	6	Multiple Layers, base course crumbling
-Y1-	12+06	5' LT	WESTBOUND, ISL	8.00	0.00	0.00	8.00	12	Multiple Layers
-Y2-	19+99	2' LT	CENTRAL TURN LANE	8.00	0.00	8.00	16.00	10	Multiple Layers
-Y2-	23+53	43' LT	WESTBOUND, OTL	6.00	0.00	3.00	9.00	12	Multiple Layers
-Y2-	29+48	38' LT	WESTBOUND, OTL	6.00	0.00	6.00	12.00	9	Multiple Layers
-Y2-	32+41	44' LT	WESTBOUND, OTL	8.00	0.00	6.00	14.00	20	Multiple Layers
-Y2-	36+03	38' LT	WESTBOUND, OTL	6.00	0.00	6.00	12.00	8	Multiple Layers
-Y3-	16+02	1' LT	WESTBOUND, ISL	4.00	0.00	4.00	8.00	20	Multiple Layers
-Y3-	22+99	5' LT	NORTHBOUND, TL	3.00	0.00	3.00	6.00	15	Multiple Layers
-Y4-	13+99	5' LT	WESTBOUND, ITL	7.00	0.00	5.00	12.00	6	Multiple Layers, base course intact
-Y6-	14+01	7' LT	WESTBOUND, ITL	4.00	0.00	3.00	7.00	10	Multiple Layers
•	RI	EPRESENTATIVE	AVERAGE	6.6	1.7	3.0	11.3	N/A	-


Legend: TL - Travel Lane, ISL - Inside Travel Lane, OSL - Outside Travel Lane, ITL - Inside Turn Lane, OTL - Outside Turn Lane





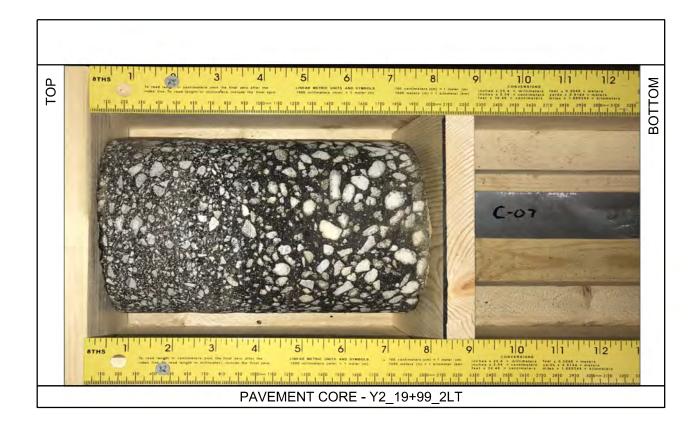
PAVEMENT CORE PHOTOGRAPHS







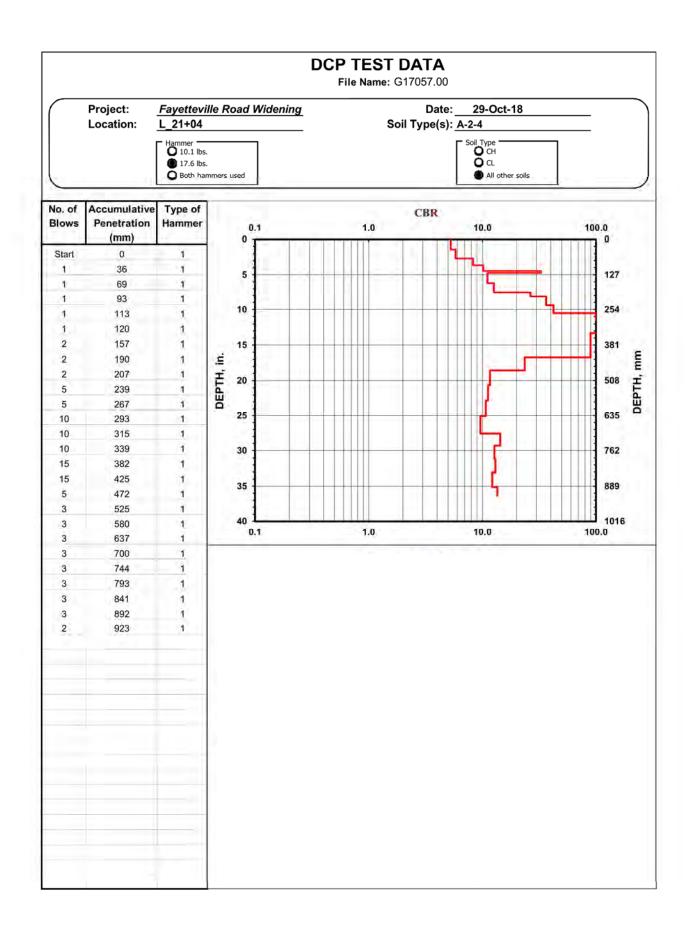
PAVEMENT CORE PHOTOGRAPHS

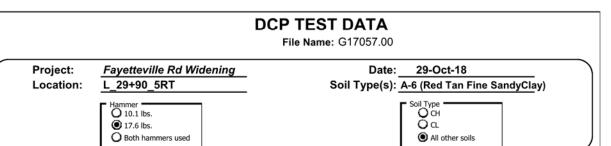

PAVEMENT CORE - Y 12+00 3LT



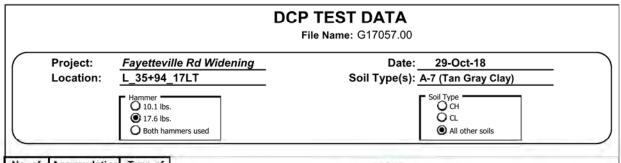
PAVEMENT CORE PHOTOGRAPHS

PAVEMENT CORE PHOTOGRAPHS

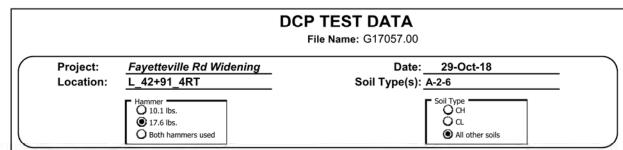

PAVEMENT CORE PHOTOGRAPHS

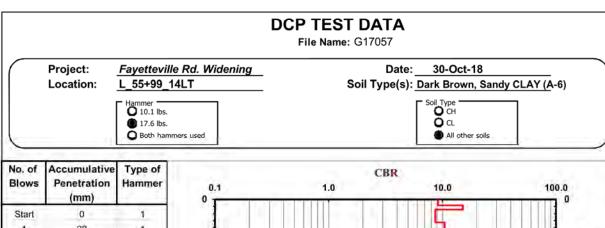


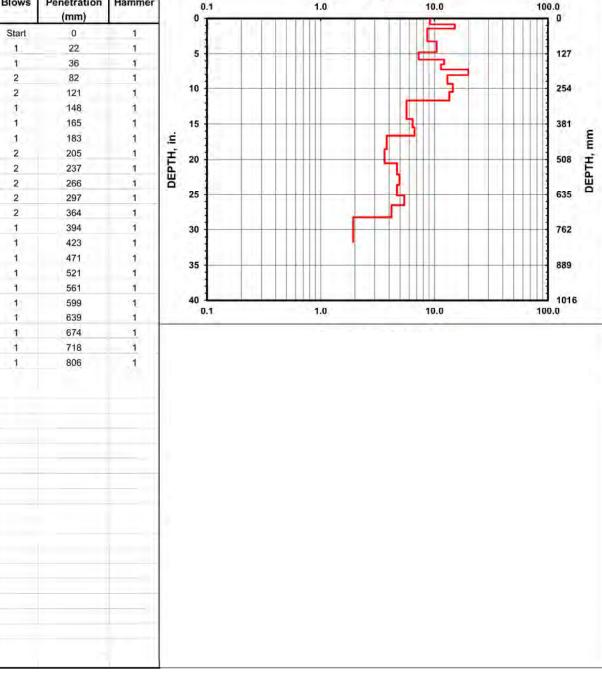
PAVEMENT CORE - Y6_14+01_7LT

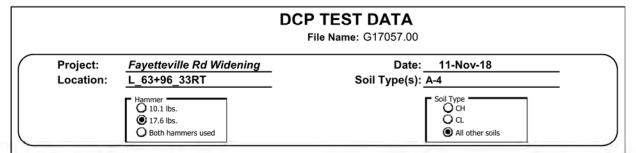


PAVEMENT CORE PHOTOGRAPHS

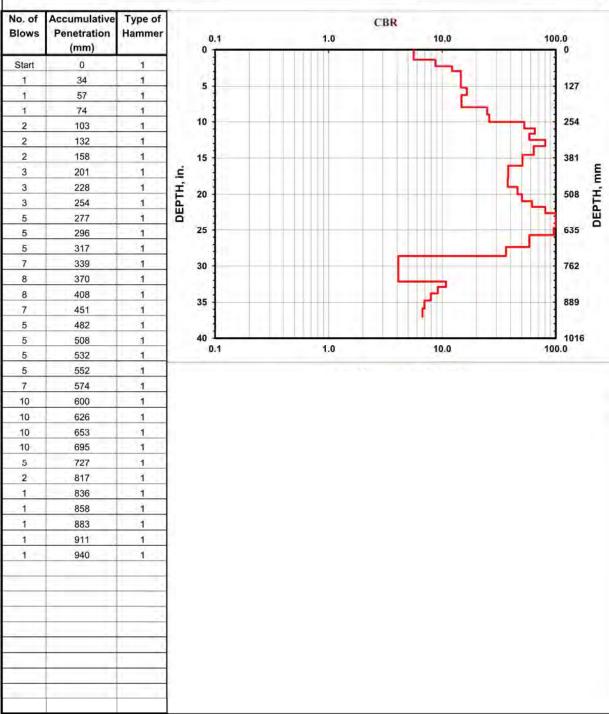


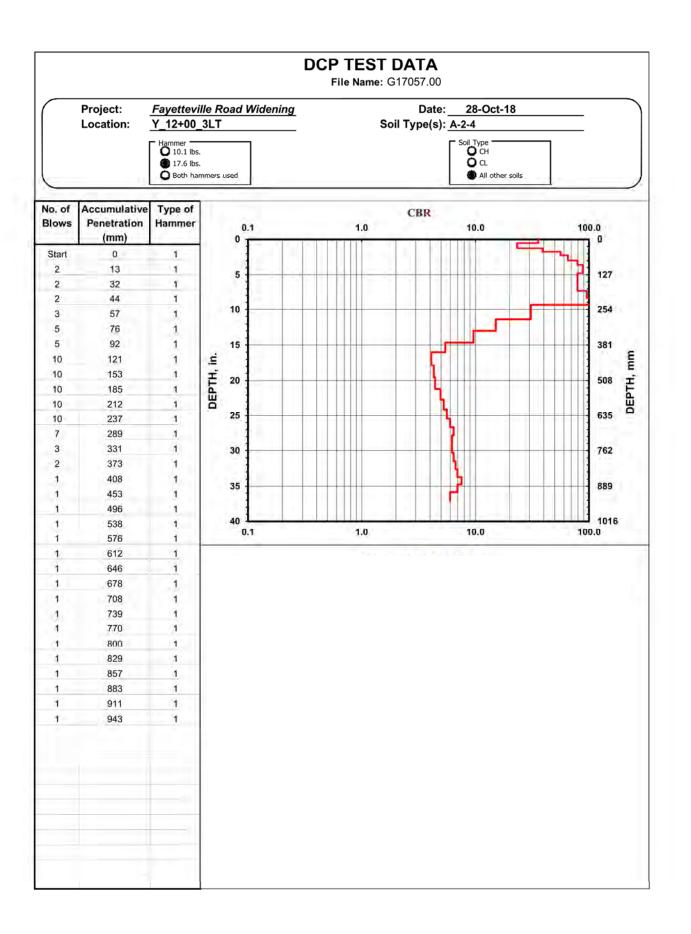

No. of Blows	Accumulative Penetration (mm)	Type of Hammer		0.1	1.0	CBR	10.0	100.0
Start	0	1						
1	17	1						1
1	25	1		5				127
2	32	1		1			T L	
5	55	1		10			1	254
5	92	1		4				1
3	141	1		15				381
2	186	1	.≘	4			4	1 1
2	220	1	DEPTH, in.	20			4	508
2	250	1	4	20]			7	308
2	280	1	8	100			L,	
2	309	1		25				635
2	338	1		1			4	
2	366	1		30				762
2	395	1					1	L
2	423	1		35				889
2	447	1		33			-	- 3005
2	469	1						4
2	492	1		0.1	1.0		10.0	1016 100.0
2	518	1		0.1	1.0		10.0	100.0
2	542	1						
2	568	1						
3	605	1						
3	635	1						
3	661	1						
3	696	1						
3	728	1						
3	757	1						
3	782	1						
3	805	1						
3	825	1						
3	842	1						
3	857	1						
3	875	1						
3	894	1						
2	910	1						
2	920	1						
2	934	1						

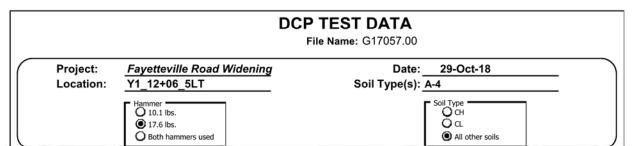



(mm) 0			0.1	1.0		10.0	100.0
0		1					0
	1						
106	1		5		1		127
185	1						
			40]				254
			10			L	254
			15			-5	381
		.⊑	4				
		E	20				508
		8	1			5	
		□				1	111111111111111111111111111111111111111
			25			7	635
			9411			7	
			30 }			-	762
			1			1	
			35			7	889
						2	1 000
							A TANA
			40 1	10		10.0	1016 100.0
			0.1	1.0		10.0	100.0
854							
867	1						
893							
918							
932	1						
= 1	1 1						
7							
	253 288 298 312 326 371 404 442 482 525 549 572 617 640 665 692 716 738 760 779 801 822 839 854 867 893 918	253 1 288 1 298 1 312 1 326 1 371 1 404 1 442 1 482 1 525 1 549 1 572 1 617 1 640 1 665 1 692 1 716 1 738 1 760 1 779 1 801 1 822 1 839 1 854 1 867 1 893 1 918 1	253 1 288 1 298 1 312 1 326 1 371 1 404 1 442 1 482 1 525 1 549 1 572 1 617 1 640 1 665 1 692 1 716 1 738 1 760 1 779 1 801 1 822 1 839 1 854 1 867 1 893 1 918 1	253	253	253 1 288 1 298 1 312 1 326 1 371 1 404 1 442 1 482 1 525 1 549 1 572 1 617 1 640 1 665 1 692 1 716 1 738 1 760 1 779 1 801 1 822 1 839 1 854 1 867 1 893 1 918 1	253 1 288 1 298 1 312 1 326 1 371 1 404 1 442 1 482 1 525 1 549 1 572 1 617 1 640 1 665 1 692 1 716 1 738 1 760 1 779 1 801 1 822 1 839 1 054 1 867 1 893 1 918 1

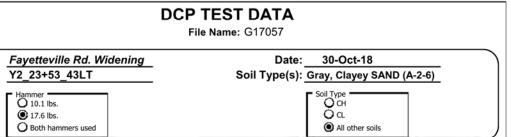
No. of Blows	Accumulative Penetration (mm)	Type of Hammer		0.1	1.0	CBR	10.0	100.0
Start	0	1		1				1 1
1	27	1		5				127
11	35	1		*]			-	} '2'
2	48	1						
5	75	1		10			<u> </u>	254
5	95	1						1
7	163	1		15				381
5	222	1	.⊑	1		کے		11111
2	265	1	DEPTH, in.	20				508
2	295	1	1	20]				} 300
2	341	1	ä					508
2	407	1		25				635
1	441	1		0.3				1
1	484	1		30				762
1	540	1		1				
1	569	1		35				889
1	569	1		-				1 000
1	589	1						A TANA
1	602	1		40 1	1.0		10.0	100.0
2	619	1		w.,	,,,,		10.0	700.0
4	635	1				Service Value		
5	658	1						
5	717	1						
2	772	1						
1	818	1						
1	884	1						
	-							
_								
	-							
-								
		-						







	Accumulative Penetration (mm)	Type of Hammer		0.1	1.0	CBR 10.0	100.0
Start	0	1					7-1
1	6	1		5			127
11	11	1		*			1 12/
3	26	1					
5	47	1		10			254
5	62	1					1
10	99	1	154	15			381
5	145	1	DEPTH, in.	1		1] }
3	211	1	ΞÉ	20			508 7
1	251	1	<u>a.</u>			7	I
1	288	1	ă	_ 1		5	508 H
1	329	1		25		3	635
1	371	1		9411			
1	413	1		30		<u>L</u>	762
1	451	1		93			
1	480	1		35			889
1	514	1				7	
1	544	1		40			1016
1	569	1		0.1	1.0	10.0	100.0
1	594	1	-				P 150
1	617	1					
1	642 663	1	1				
1	683	1					
		1	1				
		4					
2	734 761	1					
1	761	1					
1	761 787	1					
1 1 1	761 787 808	1 1 1					
1 1 1	761 787 808 828	1 1 1					
1 1 1 1	761 787 808 828 852	1 1 1 1					
1 1 1 1 1	761 787 808 828 852 873	1 1 1 1 1					
1 1 1 1 1 1	761 787 808 828 852 873 893	1 1 1 1 1 1					
1 1 1 1 1 1 1	761 787 808 828 852 873 893 911	1 1 1 1 1					
1 1 1 1 1 1	761 787 808 828 852 873 893	1 1 1 1 1 1 1 1					
1 1 1 1 1 1 1 1 1 1	761 787 808 828 852 873 893 911 926	1 1 1 1 1 1 1 1					
1 1 1 1 1 1 1 1 1 1	761 787 808 828 852 873 893 911 926	1 1 1 1 1 1 1 1					
1 1 1 1 1 1 1 1 1 1	761 787 808 828 852 873 893 911 926	1 1 1 1 1 1 1 1					
1 1 1 1 1 1 1 1 1 1	761 787 808 828 852 873 893 911 926	1 1 1 1 1 1 1 1					
1 1 1 1 1 1 1 1 1 1	761 787 808 828 852 873 893 911 926	1 1 1 1 1 1 1 1					

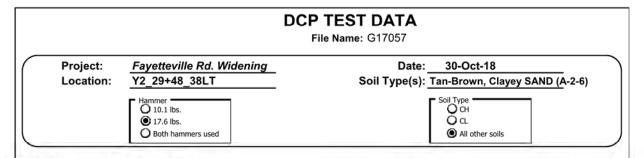


No. of Blows	Accumulative Penetration	Type of Hammer		0.1	1.0	CBR 10,0	100.0
20/16	(mm)	4		0			0
Start	0	1		1			1 1
1	12	1		5			127
1	26	1		1			
1	41	1		10			254
1	59	1				5	2005
2	96	1				4	
2	136	1		15			381
2	184	1	DEPTH, in.	4		L L	508
2	243	1	픋	20			508
1	268	1	0	1			
1	299	1	_	25		1	635
1	326 353	1		1		4	
1	377	1	1			<u> </u>	1
1	402	1		30			762
1	421	1		1		4	
2	462	1		35 }			889
2	499	1					
2	546	1		40			1016
2	594	1		0.1	1.0	10.0	100.0
2	636	1			1.5-33		
2	677	1					
2	722	1					
1	741	1					
1	759	1					
2	801	1					
2	841	1					
2	876	1	1				
1	892	1					
1	908	1	1				
1	927	1	1				
	721		1				
			1				
			1				
			1				

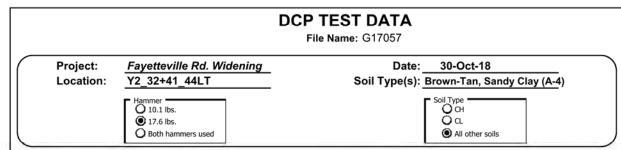
DCP TEST DATA File Name: G17057 Date: 30-Oct-18 Project: Fayetteville Rd. Widening Y2_19+99_2LT Location: Soil Type(s): A-2-4 Hammer 10.1 lbs. 17.6 lbs. Both hammers used Soil Type -O CH O CL All other soils

No. of	Accumulative					CBR				
Blows	Penetration (mm)	Hammer		0.1	1.0		10,0	10	0.0	
Start	0	1		1				-	4	
1	9	1							127	
1	17	1		•]				1	12/	
1	29	1							200	
2	42	1	10	0 1				4 1	254	
3	56	1		1						
5	76	1	15	5					381	
5	98	1		1						Ē
10	133	1	DEPTH, in.						500	÷
10	165	1	E 20	1					508	Ě
10	193	1	8	1					1	DEPTH, mm
10	229	1	2:	5			J		635	
10	273	1		1			4		1	
10	314	1	30	1			4		762	
5	401	1				1 1 1 1 1 1 1			10.57	
2	454	1		.1				1	-	
2	491	1	35	9.1			_		889	
32	542	1		1					-4	
2	605	1	40	0 1					1016	
2	652	5		0.1	1.0		10.0	10	0.0	
2	700	1								
2	747	1								
1	768	1								
1	788	1								
2	824	1								
2	884	1								
2	903	1								
1	921	1								
1	941	1								
		1 1]							
		li ii								
		11								
		11								
	1.1	I								
		1	1							

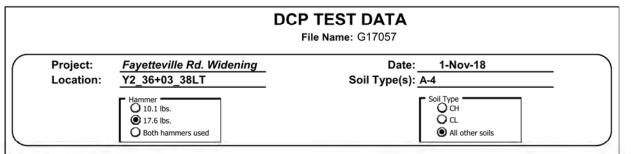
SHEET 31

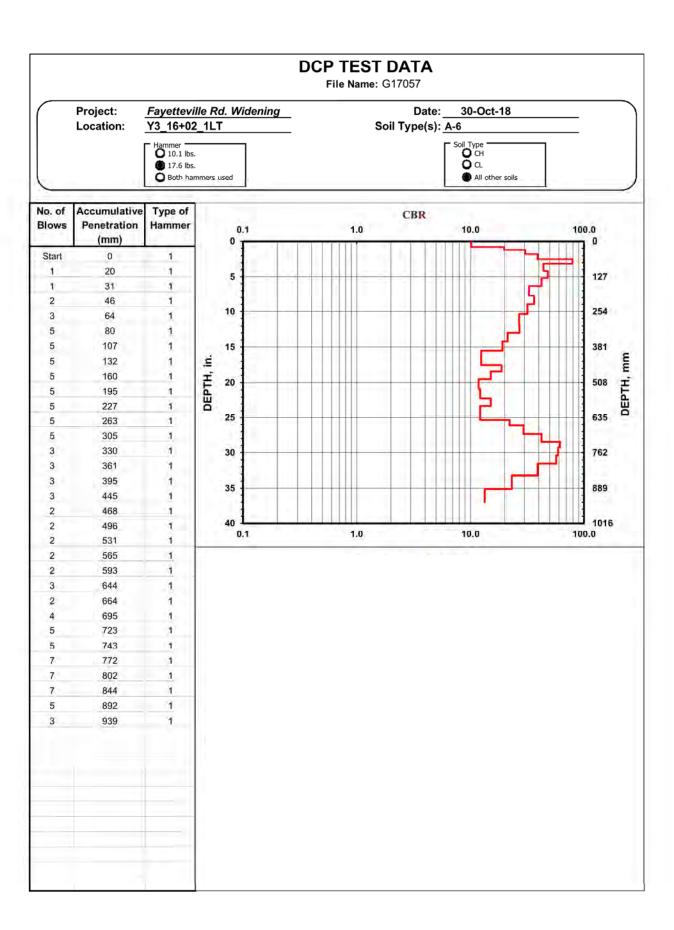


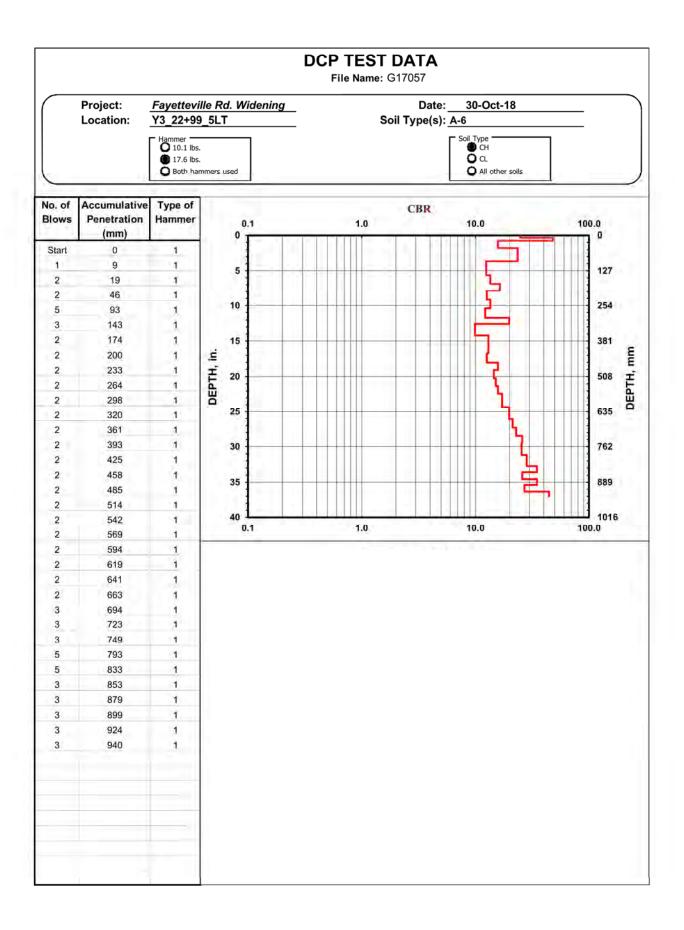
All other soils


No. of	Accumulative				CBR		
Blows	Penetration (mm)	Hammer	0.1	1.0		10,0	100.0
Start	0	1					
1	11	1	5				127
1	22	1					111111111111111111111111111111111111111
1	28	1				2	
2	43	1	10				254
3	60	1				3	11111
5	95	1	15				381
5	144	1	обража 1.1, т. 20				508 H
3	187	1	± 20				508 E
2	213	1	<u>a</u>		1	_	1 4
2	243	1			l l		1 5
2	268	1	25				635
3	315	1				<u> </u>	
2	348	1	30				762
2	383	1					
2	417	1	35				889
2	464	1					
2	505	1	40 1				1016
2	549	1	0.1	1.0		10.0	100.0
1	576	1		77		A 10	
1	604	1	1				
1	632	1	1				
1	663	1	1				
1	689	1	ł				
2	711 740	1					
2	771	1					
2	805	1	1				
2	848	1	1				
2	878	1	1				
2	899	1	1				
2	913	1	1				
2	923	1	1				
1	933	1	1				

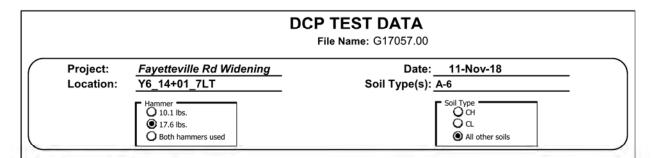
Project:


Location:


	Accumulative					CBR			
Blows	Penetration (mm)	Hammer		0.1	1.0	1 1 1 1 1	10.0	100.0	
Start	0	1						7	
1	18	1		5				127	
1	27	1		1				127	
2	40	1							
4	62	1	1	0 1				254	
5	82	1		1			-		
10	109	1	1	5				381	
10	130	1	DEPTH, in.	1				1 1 1 1 1 1 1 1 1 1	The state of the s
10	158	1	Ŧ,	0				508	
10	186	1	<u>ٿ</u> '	1			الاس	300	į
10	221	1		1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i
10	261	1	2	5		7		635	
8	300	1		1		1		1	
5	329	1	3	0 1				762	
5	382	1		1					
5	446	1	3	5				889	
2	483	1	,	7				3 009	
2	528	1						1	
1	552	1	4	0.1	1.0		10.0	100.0	6
1	581	11		0.1	1.0		10.0	100.0	
1	610	1							
1	648	111	ļ						
1	689	1							
1	727	1							
1	767	1							
1	831	1							
1	831 882	1							



No. of Blows	Accumulative Penetration (mm)	Type of Hammer		0.1	1.0	CBR 10.0	100.0
Start	0	1		1			7
1	14	1		5			127
1	21	1		*			4 1 12 12 12 12 12 12 12 12 12 12 12 12 1
2	30	1					
5	50	1		10			254
10	86	1		1			-
7	114	1		15			381
7	136	1	DEPTH, in.	1			508
10	168	1	ΞÉ	20			508
10	204	1	<u></u>				930
10	256	1	□				11 0.00
5	289	1		25		<u> </u>	635
5	327	1		- 1			1
4	365	1		30 }			762
4	414	1		1			
2	454	1		35		<u> </u>	889
2	502	1					
2	565	1		1			7000
1	604	1		0.1	1.0	10.0	1016
1	644	1			77.7		1/2-17
1	678	1					
1	706	1					
1	753	1					
1	706		l				
	706	1	1				
1	753	1					
1	753 816	1					
1 1 1	753 816 861	1 1 1					
1	753 816	1					
1 1 1	753 816 861	1 1 1					
1 1	753 816 861	1 1 1					
1 1 1	753 816 861	1 1 1					
1 1	753 816 861	1 1 1					
1 1 1	753 816 861	1 1 1					
1 1	753 816 861	1 1 1					
1 1 1	753 816 861	1 1 1					
1 1 1	753 816 861	1 1 1					


(mm)	No. of Blows	Accumulative Penetration	Type of Hammer		0.1	1.0	CBR	10.0	100.0
1		(mm)			0 1		TITLE		0
1 23 1 1 23 1 1 23 1 1 25									7
1 23 1 2 34 1 3 46 1 5 69 1 5 93 1 5 114 1 5 168 1 5 194 1 5 221 1 5 224 1 5 224 1 5 300 1 5 328 1 3 347 1 3 397 1 3 397 1 3 461 1 2 507 1 1 553 1 1 633 1 1 670 1 1 797 1 1 828 1 1 828 1 1 828 1 1 828 1 1 828 1				1	5				127
3 46 1 5 69 1 5 93 1 5 114 1 5 141 1 5 168 1 5 194 1 5 221 1 5 228 1 3 347 1 3 397 1 3 466 1 2 507 1 1 553 1 1 696 1 1 670 1 1 705 1 1 707 1 1 828 1 1 858 1				1					1
5 69 1 5 93 1 5 114 1 5 168 1 5 194 1 5 221 1 5 248 1 5 300 1 5 300 1 5 308 1 3 347 1 3 397 1 3 426 1 3 461 1 2 507 1 1 553 1 1 596 1 1 633 1 1 670 1 1 705 1 1 705 1 1 705 1 1 705 1 1 705 1 1 705 1 1 705 1 1 705 1 1 705 1 1 707 1 1 828 1 1 888 1					40.1				354
5 93 1 5 114 1 5 141 1 5 168 1 5 194 1 5 221 1 5 248 1 5 300 1 5 328 1 3 347 1 3 397 1 3 426 1 3 461 1 2 507 1 1 553 1 1 563 1 1 670 1 1 705 1 1 705 1 1 707 1 1 828 1 1 858 1				-	"]				5 34
5 114 1				1					<u> </u>
5 221 1 5 248 1 5 275 1 5 300 1 5 328 1 33 347 1 3 397 1 3 426 1 3 461 1 2 507 1 1 553 1 1 596 1 1 633 1 1 670 1 1 705 1 1 705 1 1 705 1 1 705 1 1 707 1 1 828 1 1 858 1					15			7	381
5 221 1 5 248 1 5 275 1 5 300 1 5 328 1 3 347 1 3 397 1 3 426 1 3 461 1 2 507 1 1 553 1 1 596 1 1 633 1 1 670 1 1 705 1 1 705 1 1 705 1 1 707 1 1 828 1 1 1 858 1				Ξ					
5 221 1 5 248 1 5 275 1 5 300 1 5 328 1 3 347 1 3 397 1 3 426 1 3 461 1 2 507 1 1 553 1 1 596 1 1 633 1 1 670 1 1 705 1 1 705 1 1 705 1 1 707 1 1 828 1 1 1 858 1				표	20			-	508
5 221 1 5 248 1 5 275 1 5 300 1 5 328 1 3 347 1 3 397 1 3 426 1 3 461 1 2 507 1 1 553 1 1 596 1 1 633 1 1 670 1 1 705 1 1 705 1 1 705 1 1 707 1 1 828 1 1 1 858 1				<u></u>	1		1		
5 248 1 5 275 1 5 300 1 5 328 1 3 347 1 3 397 1 3 426 1 3 461 1 2 507 1 1 553 1 1 633 1 1 670 1 1 705 1 1 705 1 1 707 1 1 707 1 1 797 1 1 828 1 1 858 1				-	25		7		635
5 275 1 5 300 1 5 328 1 3 347 1 3 397 1 3 426 1 3 461 1 2 507 1 1 553 1 1 670 1 1 705 1 1 737 1 1 767 1 1 797 1 1 828 1 1 858 1				1	220		1		1 300
5 300 1 5 328 1 3 347 1 3 397 1 3 426 1 3 461 1 2 507 1 1 553 1 1 633 1 1 670 1 1 705 1 1 767 1 1 797 1 1 828 1 1 858 1				1			1		1
5 328 1 3 347 1 3 372 1 3 397 1 3 426 1 3 461 1 2 507 1 1 553 1 1 633 1 1 670 1 1 705 1 1 767 1 1 797 1 1 828 1 1 858 1				1	30				1 762
3 347 1 3 372 1 3 397 1 3 426 1 3 461 1 2 507 1 1 553 1 1 670 1 1 797 1 1 797 1 1 828 1 1 858 1				1	1		1		
3 372 1 3 397 1 3 426 1 3 446 1 2 507 1 1 553 1 1 633 1 1 670 1 1 705 1 1 737 1 1 767 1 1 797 1 1 828 1 1 858 1				1	35			-	889
3 397 1 40 1 1016 3 426 1 1 2 507 1 1 1 553 1 1 1 633 1 1 1 670 1 1 1 705 1 1 1 707 1 1 1 828 1 1 1 858 1				1	1				
3 426 1 3 461 1 2 507 1 1 553 1 1 596 1 1 670 1 1 705 1 1 737 1 1 797 1 1 828 1 1 858 1					40				1016
3 461 1 2 507 1 1 553 1 1 596 1 1 633 1 1 670 1 1 705 1 1 737 1 1 767 1 1 828 1 1 858 1					0.1	1.0		10.0	100.0
2 507 1 1 553 1 1 596 1 1 633 1 1 670 1 1 705 1 1 737 1 1 767 1 1 797 1 1 828 1 1 858 1									
1 553 1 1 596 1 1 633 1 1 670 1 1 705 1 1 737 1 1 767 1 1 797 1 1 828 1 1 858 1				1					
1 596 1 1 633 1 1 670 1 1 705 1 1 737 1 1 767 1 1 797 1 1 828 1 1 858 1				1					
1 633 1 1 670 1 1 705 1 1 737 1 1 767 1 1 797 1 1 828 1 1 858 1				1					
1 670 1 1 705 1 1 737 1 1 767 1 1 797 1 1 828 1 1 858 1				1					
1 705 1 1 737 1 1 767 1 1 797 1 1 828 1 1 858 1				1					
1 737 1 1 767 1 1 797 1 1 828 1 1 858 1	1		1						
1 797 1 1 828 1 1 858 1	1		1						
1 828 1 1 858 1	1	767	1						
1 858 1	1	797	1						
	1	828	1						
1 886 1									
	1	886	1						
	-								
				1					

No. of Blows	Accumulative Penetration (mm)	Type of Hammer		1.0	CBR	10.0	100.0
Start	0	1					
1	16	1	1 .1				
1	28	1	5				127
1	37	1	1				
3	55	1	10				254
5	74	1					
5	104	1	15				381
5	116	1					1 8
10	158	1	0EPTH, in.				508 T
9	213	1	<u>a</u> 20]		The second second] 500 1
5	277	1			- 2] [
2	333	1	25				635
2	368	1	4		74		
2	435	1	30				762
1	477	1			1		
1	519	1	35			+	889
1	556	1	35 }				3005
1	589	1	1				4.700
1	627	1	40 <u>1</u> 0.1	1.0		10.0	1016 100.0
1	674	1	0.1	1.0		10.0	100.0
1	714	1					
1	748	1					
1	786	1					
1	823	1					
1	866 905	1					

Blows	Accumulative Penetration	Hammer				CBR			
400	(mm)	Hammer		0.1	1.0		10.0	100.0	
Start	0	1							
2	12	1		5				J 12	7
5	40	1		* 1					
5	59	1							
8	89	1		10				25	4
8	125	1		1					
5	149	1		15				38	1
5	182	1	DEPTH, in.	1			1		DEPTH. mm
5	206	1	Ŧ,	20			15	50	. T
5	230	1	1	20]		L		30	°Ę
8	271	1	8	10					H
7	323	1		25			(63	5
5	389	1		1			1		
2	435	1		30			4	76	2
2	480	1					7		
1	501	1		35			7	1 00	0
1	535	1		35			-	88	9
1	559	1						11 11 11	
1	580	1		40 1	- 40		40.0	100	16
1	601	1		0.1	1.0		10.0	100.0	
1	622	1							
2	665	1							
•			1						
2	706	1	1						
2	745	1							
2	745 768								
2	745 768 789	1							
1 1 1	745 768 789 807	1 1 1							
1 1	745 768 789 807 823	1 1 1 1							
1 1 1	745 768 789 807 823 840	1 1 1 1 1							
2 1 1 1 1 1	745 768 789 807 823 840 856	1 1 1 1 1 1							
2 1 1 1 1 1	745 768 789 807 823 840 856	1 1 1 1 1 1 1							
2 1 1 1 1 1	745 768 789 807 823 840 856 870 884	1 1 1 1 1 1 1 1 1 1 1							
2 1 1 1 1 1 1 1 1 1	745 768 789 807 823 840 856 870 884	1 1 1 1 1 1 1 1 1							
2 1 1 1 1 1 1 1 1	745 768 789 807 823 840 856 870 884	1 1 1 1 1 1 1 1 1 1 1							

DocuSign Envelope ID: 4FCDFB17-9506-4B1D-8462-8C623AD5D05A PROJECT REFERENCE NO. 36 U-5797 NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT SUBSURFACE INVESTIGATION APPENDIX B LABORATORY RESULTS REFERENCE: 44367 3/5/2019

DATE

1210 TRINITY ROAD, SUITE 110

PHONE: 919.871.0800

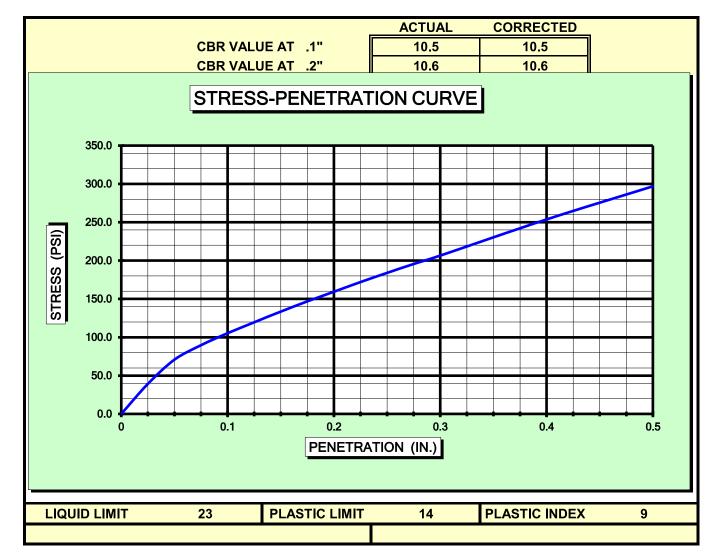
LABORATORY COMPACTION TEST RESULTS

PAGE 1 OF 1

G17057.00 Project No. Project Name: U-5797 | SR 1997 Fayetteville Road Widening BS-01 Sample No: B-05 Source of Material: Red Brown Color: Visual/Manual Description: CLAYEY SAND(SC) **USCS** Classification: A-2-4 **AASHTO Classification:** AASHTO T-99 Method A **Test Method: TEST RESULTS** Maximum Dry Unit Weight: 115.5 PCF **Optimum Water Content:** 14.3 % Natural Water Content: 19.1 % Percent Passing #200: 19.7%UNIT WEIGHT, pcf **ATTERBERG LIMITS** 23 Curves of 100% Saturation for Specific Gravity Equal to: --- 2.6 --- 2.5 2.4 WATER CONTENT, %

SHEET 37

FALCON ENGINEERING

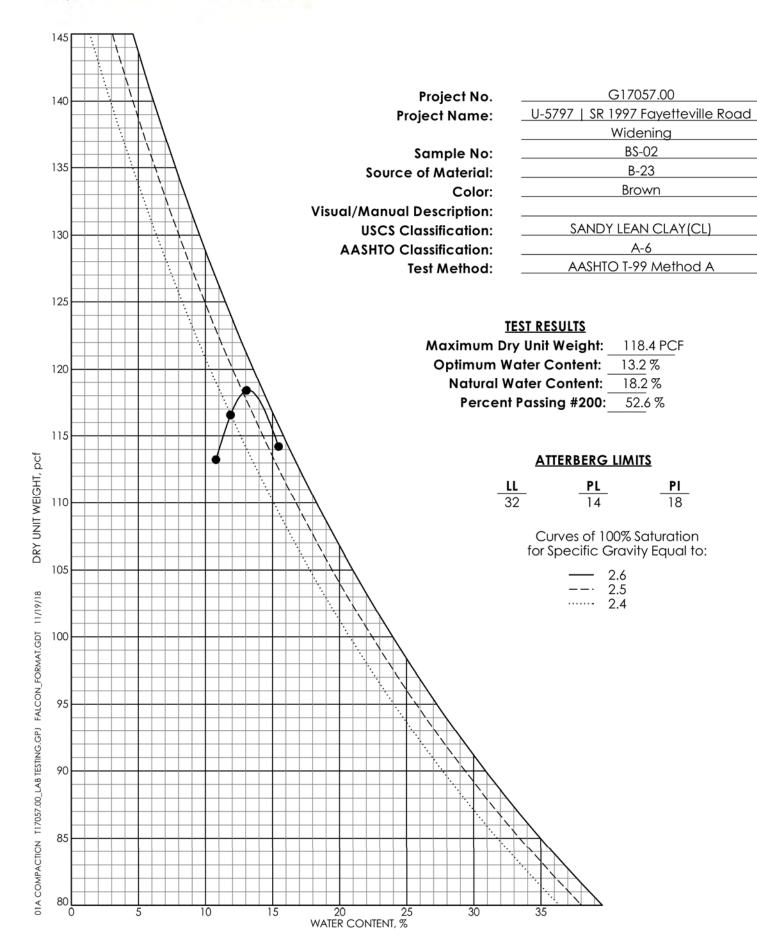

1210 TRINITY RD., SUITE 110, Cary, NC 27513

CBR (CALIFORNIA BEARING RATIO) OF LABORATORY COMPACTED SOIL **AASHTO T-193 \ ASTM D-1883**

PROJECT #: G17057.00 DATE: 11/20/2018 U-5797 | SR 1997 Fayetteville Road Widening **PROJECT NAME: BORING:** B-05 SAMPLE: DEPTH: 3.5-8.5 **BS-01** SOIL DESCRIPTION:

SOIL DESCRIPTION.	Red Br	own Clayey	Sand (A-2-4)

	om olayoy cana (,	
COMPACTION METHOD	AASHTO T-99A	SOAK	96 HRS.
MAXIMUM DRY DENSITY	115.5 PCF	STRAIN RATE	.05 IN/MIN.
OPTIMUM MOISTURE CONTENT	14.3%	LOAD CELL	6000
TEST DATA		SURCHARGE WEIGHT	10 lb.
DRY DENSITY	112.9 PCF	SURCHARGE PER SQUARE FOOT	51 lbs/sq.ft.
MOISTURE CONTENT	14.7%	FINAL MOISTURE CONTENT	N/A
PERCENT COMPACTION	97.7%	SWELL	0.04%



1210 TRINITY ROAD, SUITE 110

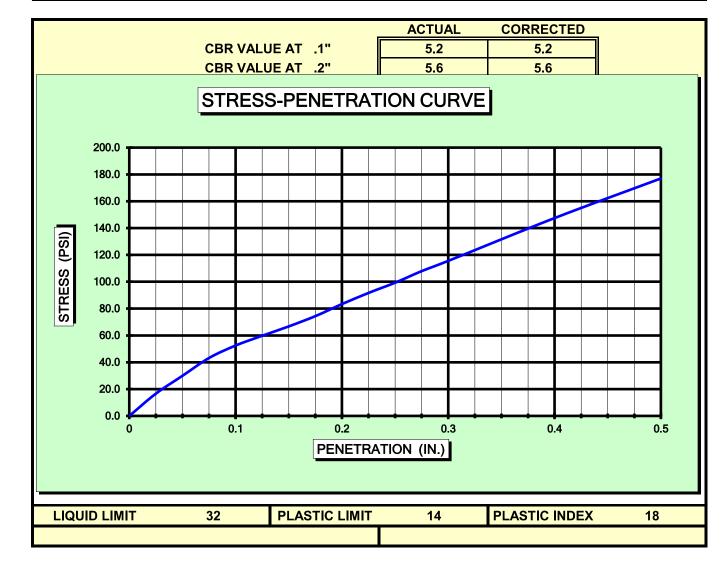
LABORATORY COMPACTION TEST RESULTS

PAGE 1 OF 1

PHONE: 919.871.0800 www.falconengineers.com

SHEET 38

FALCON ENGINEERING


1210 TRINITY RD., SUITE 110, Cary, NC 27513

CBR (CALIFORNIA BEARING RATIO) OF LABORATORY COMPACTED SOIL **AASHTO T-193 \ ASTM D-1883**

PROJECT #: G17057.00 DATE: 11/20/2018 **PROJECT NAME:** U-5797 | SR 1997 Fayetteville Road Widening **BORING:** B-23 SAMPLE: BS-02 DEPTH: 1.0-5.0

SOIL DESCRIPTION: Brown Sandy Clay (A-6)

_	Brown Bandy Glay (A 6)						
	COMPACTION METHOD	AASHTO T-99A	SOAK	96 HRS.			
	MAXIMUM DRY DENSITY	118.4 PCF	STRAIN RATE	.05 IN/MIN.			
	OPTIMUM MOISTURE CONTENT	13.2%	LOAD CELL	6000			
	TEST DATA		SURCHARGE WEIGHT	10 lb.			
	DRY DENSITY	116.0 PCF	SURCHARGE PER SQUARE FOOT	51 lbs/sq.ft.			
	MOISTURE CONTENT	13.3%	FINAL MOISTURE CONTENT	N/A			
	PERCENT COMPACTION	98.0%	SWELL	0.15%			

ALCON 1210 TRINITY ROAD, SUITE 110 CARY, NC 27513

PHONE: 919.871.0800

LABORATORY COMPACTION TEST RESULTS

PAGE 1 OF 1

G17057.00 U-5797 | SR 1997 Fayetteville Road Widening B-44 Source of Material: Light Brown Color: Visual/Manual Description: CLAYEY SAND(SC) **USCS** Classification: **AASHTO Classification:** A-6 AASHTO T-99 Method A **Test Method: TEST RESULTS** Maximum Dry Unit Weight: 113.5 PCF **Optimum Water Content:** 15.0 % Natural Water Content: 19.8 % Percent Passing #200: 48.2%UNIT WEIGHT, pcf **ATTERBERG LIMITS** 35 18 Curves of 100% Saturation for Specific Gravity Equal to: -- 2.6 -- 2.5 2.4

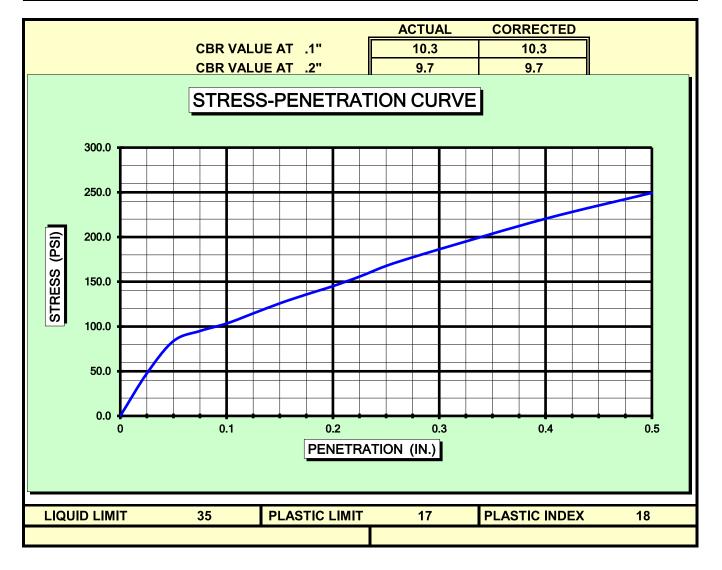
WATER CONTENT, %

SHEET 39

FALCON ENGINEERING

1210 TRINITY RD., SUITE 110, Cary, NC 27513

CBR (CALIFORNIA BEARING RATIO) OF LABORATORY COMPACTED SOIL AASHTO T-193 \ ASTM D-1883


 PROJECT #:
 G17057.00
 DATE:
 11/21/2018

 PROJECT NAME:
 U-5797 | SR 1997 Fayetteville Road Widening

 BORING:
 B-44
 SAMPLE:
 BS-03
 DEPTH:
 3.5-8.5

SOIL DESCRIPTION: Light Brown Sandy Clay (A-6)

_	Light Brown Sandy Clay (A-6)						
	COMPACTION METHOD	AASHTO T-99A	SOAK	96 HRS.			
	MAXIMUM DRY DENSITY	113.5 PCF	STRAIN RATE	.05 IN/MIN.			
	OPTIMUM MOISTURE CONTENT	15.0%	LOAD CELL	6000			
	TEST DATA		SURCHARGE WEIGHT	10 lb.			
	DRY DENSITY	112.1 PCF	SURCHARGE PER SQUARE FOOT	51 lbs/sq.ft.			
	MOISTURE CONTENT	14.4%	FINAL MOISTURE CONTENT	N/A			
	PERCENT COMPACTION	98.8%	SWELL	0.15%			

