SEE SHEET 3 FOR PLAN SHEET LAYOUT AT TIME OF INVESTIGATION

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

CONTENTS

S

REFERENCE

4436

PAGE NUMBER	DESCRIPTION
1	TITLE SHEET
2	LEGEND
3	ROADWAY TITLE
4	PLAN SHEET
5-6	PAVEMENT CORE PHOTOGRAPHS
7	PAVEMENT CORE EVALUATION
8	PAVEMENT DATA
9-11	DCP DATA
12-13	LABORATORY RESULTS

ROADWAY SUBSURFACE INVESTIGATION

COUNTY_	ROBESON			
PROJECT	DESCRIPTION _	SR 1997 (FAY	ETTEVILLE R	<u>OAD</u>)
FROM	FARRINGDON	A STREET TO	D EAST 22ND	<u>STREET</u>

PAVEMENT AND SUBGRADE INVESTIGATION

STATE PROJECT REFERENCE NO. 13 U-5797

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1991 707-680. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAP AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MEDITARIES DESCRIPTIONS AND ASSOCIATION. INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR QUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO PERFORM INDEPENDENT SUBSURFACE INVESTIGATIONS AND MAKE INTERPRETATIONS AS NECESSARY TO CONFIRM CONDITIONS ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- TES:
 THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.
 BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

	ROSS, S. I.
	TRIGON EXP.
INVESTI	GATED BY FALCON ENG.
	BY _HUNSBERGER, W. S.
CHECKE	D BY CROCKETT, S. C.
SUBMIT	TED BY FALCON ENG.

PERSONNEL

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

PROJECT REFERENCE NO. SHEET NO. 2

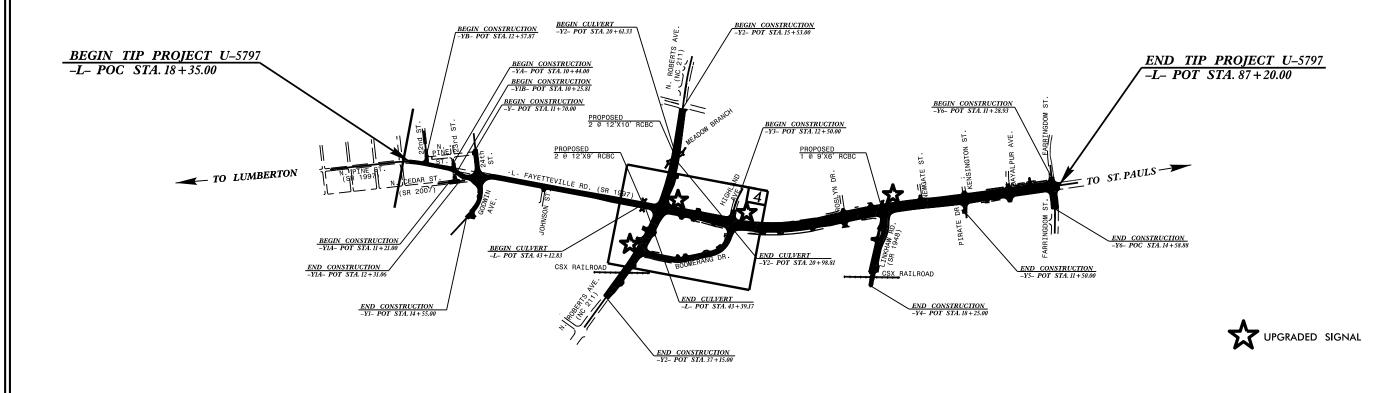
NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

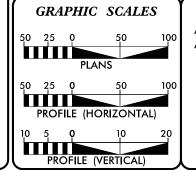
SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUYIUM (ALLUY.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM D1586). SOIL CLASSIFICATION	<u>UNIFORMLY GRADED</u> - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. <u>GAP-GRADED</u> - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL. THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN	AQUIFER - A WATER BEARING FORMATION OR STRATA.
IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	REPRESENTED BY A ZONE OF WEATHERED ROCK.	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	WEATHERED VILLY NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
CENERAL CRANIII AR MATERIALS SILT-CLAY MATERIALS	MINERALOGICAL COMPOSITION	FINE TO COARSE CRAIN IGNEOUS AND METAMORPHIC ROCK THAT	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND
CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) ORGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	CRYSTALLINE ROCK (CR) WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, GNEISS, GABBRO, SCHIST, ETC.	SURFACE.
CROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 CLASS. A-1-0 A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-4-5 A-6 A-7 A-1, A-2 A-4, A-5 A-6, A-7	COMPRESSIBILITY	NON-CRYSTALLINE - FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE. COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM
SYMBOL COCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	SLIGHTLY COMPRESSIBLE LL < 31	ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.	OF SLOPE.
5 5 5 5 6 5 5 6 5 5 6 5 5 5 5 5 5 5 5 5	MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED
7. PASSING *10 50 MX GRANULAR SILT- GRANULAR CLAY MUCK,	PERCENTAGE OF MATERIAL	(CP) SHELL BEDS, ETC.	BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
*40 30 MX 50 MX 51 MN PEAT SOILS PEAT SOILS PEAT SOILS PEAT	GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	WEATHERING	ROCKS OR CUTS MASSIVE ROCK.
MATERIAL MATERIAL	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER HAMMER IF CRYSTALLINE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
PASSING *40 SOILS WITH	LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	HORIZONTAL. DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE
LL — — 40 MX 41 MN 40 MX 41 MN 40 MX 41 MN 40 MX 41 MN LITTLE OR HIGHLY	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	LINE OF DIP, MEASURED CLOCKWISE FROM NORTH,
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF COLUMN	GROUND WATER	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE
USUAL TYPES STONE FRAGS. USUAL TYPES STONE FRAGS. SOLLS ORGANIC SOLLS ORGANIC	✓ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	(SLI.) I INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
OF MAJOR GRAVEL, AND SAND GRAVEL AND SAND SOILS SOILS	STATIC WATER LEVEL AFTER 24 HOURS	CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS. MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES. FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
CEN BATING FAIR TO	→ PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS	PARENT MATERIAL.
AS SUBGRADE EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE	SPRING OR SEEP	DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30	<u> </u>	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH (MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES "CLUNK" SOUND WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE COMPACTNESS OR CONSISTENCY RANGE OF STANDARD RANGE OF UNCONFINED PENETRATION RESISTENCE COMPRESSIVE STRENGTH	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION	IF TESTED, WOULD YIELD SPT REFUSAL	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
CUNSISTENCY (N-VALUE) (TONS/FT ²)	₩ITH SOIL DESCRIPTION → OF ROCK STRUCTURES	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT	ITS LATERAL EXTENT.
GENERALLY VERY LOOSE	SOIL SYMBOL SOIL SYMBOL SUPPLINT TEST BORING SLOPE INDICATOR INSTALLATION	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
MATERIAL MEDIUM DENSE 10 TO 30 N/A	ARTIFICIAL FILL (AF) OTHER AUGER RODING CONE PENETROMETER	IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
DENSE	THAN ROADWAY EMBANKMENT TEST	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
VERY SOFT < 2 < 0.25	— INFERRED SOIL BOUNDARY — CORE BORING ● SOUNDING ROD	(V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	OF AN INTERVENING IMPERVIOUS STRATUM.
GENERALLY SOFT 2 TO 4 0.25 TO 0.5 SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0	INFERRED ROCK LINE MN MONITORING WELL TEST BORING	VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u> COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
MATERIAL STIFF 8 TO 15 1 TO 2	A DIEZOMETED	SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE
(COHESIVE) VERY STIFF 15 TO 30 2 TO 4 HARD > 30 > 4	TTTTT ALLUVIAL SOIL BOUNDARY ALLUVIAL SOIL BOUNDARY INSTALLATION SPT N-VALUE	ALSO AN EXAMPLE.	RUN AND EXPRESSED AS A PERCENTAGE.
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270	UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	USED IN THE TOP 2 FEET OF	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
BOULDER COBBLE GRAVEL COARSE FINE SILT CLAY	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - EMBANKMENT OR BACKFILL	TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT
(BLDR.) (COB.) (GR.) (CSE. SD.) (F SD.) (SL.) (CL.)	ABBREVIATIONS	HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED	OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.05 0.005 SIZE IN. 12 3	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	BY MODERATE BLOWS.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL
	CL CLAY MOD MODERATELY γ - UNIT WEIGHT	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE	WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL
SOIL MOISTURE - CORRELATION OF TERMS SOIL MOISTURE SCALE FIELD MOISTURE COURS FOR FIELD MOISTURE	CPT - CONE PENETRATION TEST NP - NON PLASTIC $\gamma_{ m d}$ - DRY UNIT WEIGHT CSE COARSE ORG ORGANIC	POINT OF A GEOLOGIST'S PICK.	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
(ATTERBERG LIMITS) (ATTERBERG LIMITS) DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY	DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	PIECES CAN BE BROKEN BY FINGER PRESSURE.	STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
(SAT.) FROM BELOW THE GROUND WATER TABLE	F - FINE SL SILT, SILTY ST - SHELBY TUBE	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES I INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
PLASTIC SEMISOLID; REQUIRES DRYING TO	FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK FRACT - FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL	FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
(PI) ATTAIN OPTIMUM MOISTURE	FRAGS FRAGMENTS	FRACTURE SPACING BEDDING	BENCH MARK:
""PLL _ PLASTIC LIMIT	EQUIPMENT USED ON SUBJECT PROJECT	TERM SPACING TERM THICKNESS VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET	EL EVATION FEET
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET	ELEVATION: FEET
SL _ SHRINKAGE LIMIT	CME-45C CLAY BITS X AUTOMATIC MANUAL	CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET	NOTES:
- DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE	6° CONTINUOUS FLIGHT AUGER CORE SIZE:	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED < 0.008 FEET	
PLASTICITY	X CME-55 CORE SIZE: CORE SIZE: -BH	INDURATION	
PLASTICITY INDEX (PI) DRY STRENGTH	CME-550 HARD FACED FINGER BITS N-N	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	
NON PLASTIC 0-5 VERY LOW	TUNGCARBIDE INSERTS	RUBBING WITH FINGER FREES NUMEROUS GRAINS;	
SLIGHTLY PLASTIC 6-15 SLIGHT MODERATELY PLASTIC 16-25 MEDIUM	VANE SHEAR TEST CASING W/ ADVANCER HAND TOOLS:	GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
HIGHLY PLASTIC 26 OR MORE HIGH	PORTABLE HOIST TRICONE STEEL TEETH HAND AUGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR	TRICONE TUNGCARB. SOUNDING ROD	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE;	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	CORE BIT SOSSIBLE TEST	DIFFICULT TO BREAK WITH HAMMER.	
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.		EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE; SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-1-
			I Shield is 1

STATE OF NORTH CAROLINA DIVISION OF HIGHWAYS


ROBESON COUNTY

STATE	STATE	PROJECT REPERENCE NO.		NO.	SHEETS						
N.C.	Į	U-5797 3 1									
STATE	PROJ. NO.	P. A. PROJ. NO.	DESCRIPTION								
4436	57.1.1	N/A		PE							
4436	57.2.2	N/A	R	R.O.W. & UTIL							
4436	7.3.1	N/A	C	ONSTRU	CTION						


LOCATION: SR 1997 (FAYETTEVILLE ROAD) FROM FARRINGDOM STREET TO EAST 22ND STREET.

TYPE OF WORK: GRADING, PAVING, DRAINAGE, CULVERTS, AND SIGNALS

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

DESIGN DATA

ADT 2025 = 34,600ADT 2045 = 41,600

K = 55 %D = 9 %

V = 50 MPHTTST = 1% DUAL = 3%FUNC CLASS = URBAN ARTERIAL

REGIONAL TIER

PROJECT LENGTH

LENGTH OF ROADWAY TIP PROJECT U-5797 = 1.299 MILES LENGTH OF STRUCTURE TIP PROJECT U-5797 = 0.005 MILES TOTAL LENGTH OF TIP PROJECT U-5797

= 1.304 MILES

NCDOT CONTACT: CRAIG A. FREEMAN JR., PE NCDOT DIVISION 6

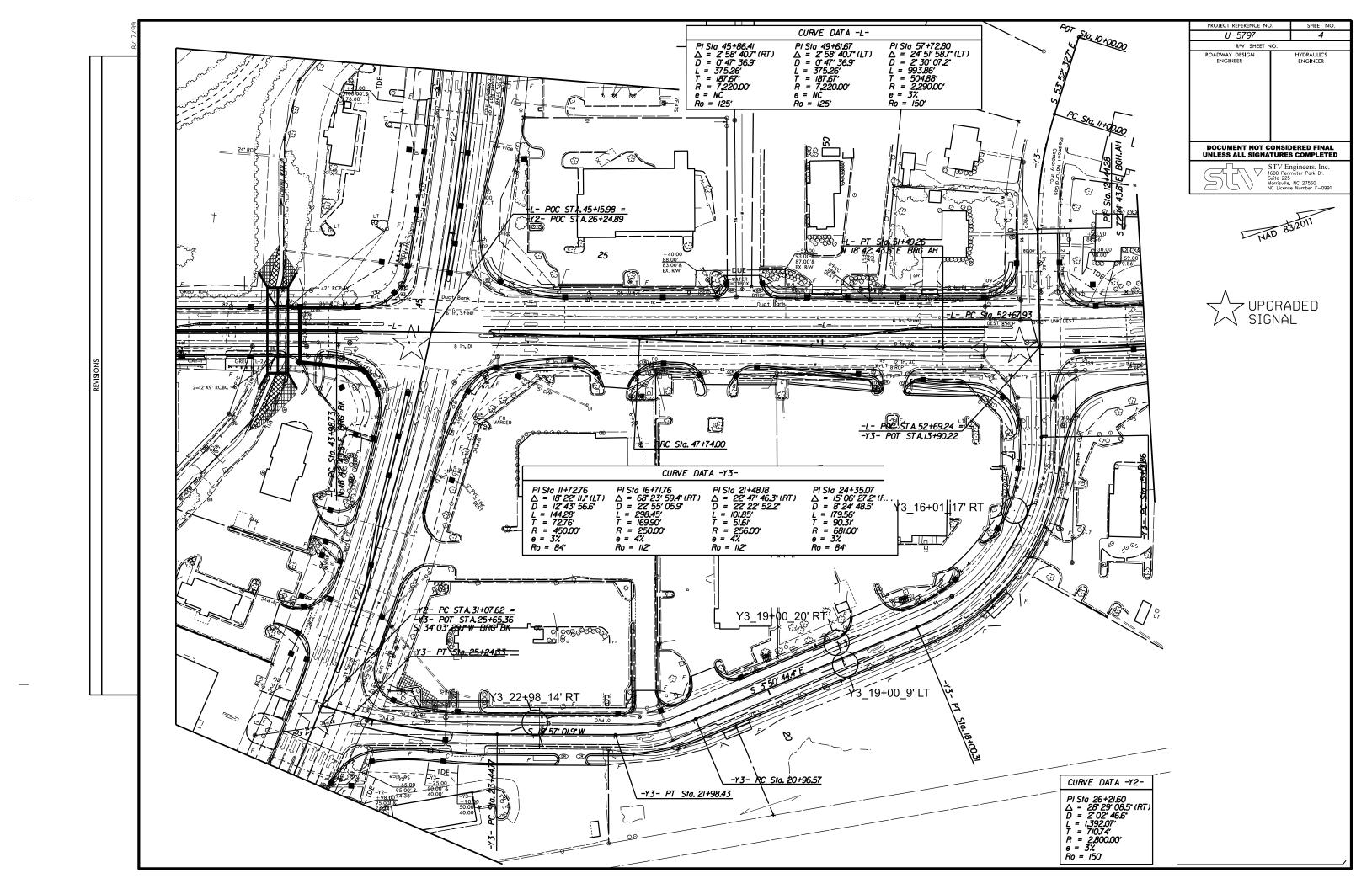
P.O. Box 1150 558 Gillespie Street (Delivery) Fayetteville, NC 28302 910–364–0603 Office 910–364–0841 Direct

PLANS PREPARED FOR THE NCDOT BY: STV Engineers, Inc.

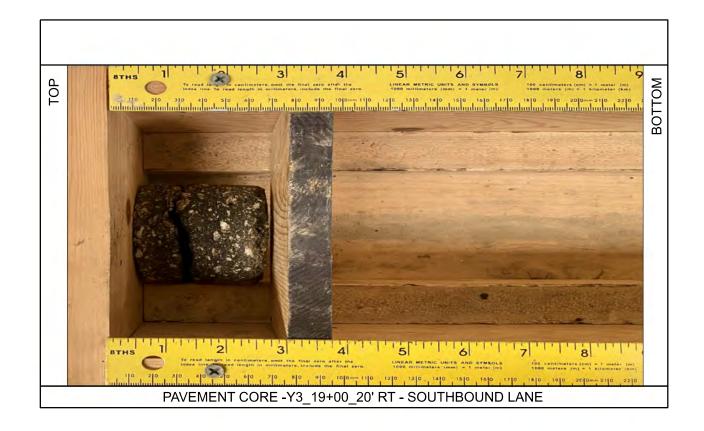
900 West Trade St., Suite 715 Charlotte, NC 28202 2024 STANDARD SPECIFICATIONS

RIGHT OF WAY DATE: PATRICK A. LIVINGSTON, PE July 22,2022

LETTING DATE:


May 21,2025

WESTON D. MURPHY, PE


HYDRAULICS ENGINEER

ROADWAY DESIGN **ENGINEER**

FALCON ENGINEERING, INC.
1210 TRINITY ROAD, SUITE 110
CARY, NC 27513
PHONE: 919.871.0800

PAVEMENT CORE PHOTOGRAPHS

SR 1997 (FAYETTEVILLE ROAD) FROM FARRINGDOM STREET TO EAST 22ND STREET WBS NO.:44367.1.1 | TIP NO.: U-5797 FALCON PROJECT NO.: G24042.00

FALCON ENGINEERING, INC.
1210 TRINITY ROAD, SUITE 110
CARY, NC 27513
PHONE: 919.871.0800

PAVEMENT CORE PHOTOGRAPHS

SR 1997 (FAYETTEVILLE ROAD) FROM FARRINGDOM STREET TO EAST 22ND STREET WBS NO.:44367.1.1 | TIP NO.: U-5797 FALCON PROJECT NO.: G24042.00

PAVEMENT CORE EVALUATION 44367.1.1, U-5797, Robeson County

		ABC	LAYER THICKNESS			
LINE	STATION	(in)	(in)	Lifts	LAYERS	REMARKS
-Y3-	Y3_1601_17'RT 3.5" Asphalt	-	3.50	2	Surface	Low oxidation
-Y3-	Y3_1900_9' LT 2.5" Asphalt	5.0	2.50	1	Surface	Core broken at 1.0" in Asphalt Low oxidation
-Y3-	Y3_1900_20' RT 3.5" Asphalt	1	3.50	2	Surface	Low oxidation
-Y3-	Y3_22+98_14' RT 3.0" Asphalt	4.0	3.00	1	Surface	Low oxidation

PAVEMENT INVESTIGATION DATA SHEET

Project: TIP: 44367.1.1 U-5797

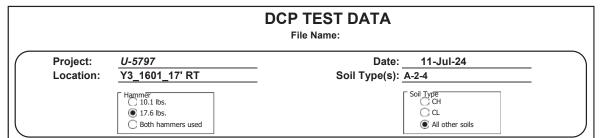
Route: Fayetteville Rd (SR 1997) from Farringdom Street to east of 22nd Street County: Robeson

Date: 08/07/24 Notes By: Ross, S. I.

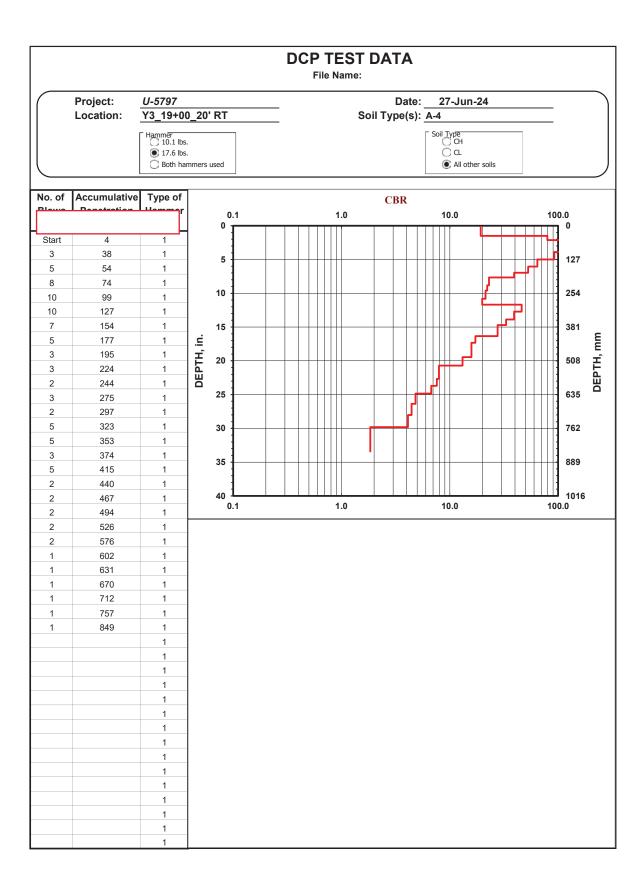
		Width		1	Τ	I		Thickness				Subgrade					T	GPS Coo	dinates
Test Location	Cut/Fill (Est. of Amount)	Lane(s)	Shoulder(s)	Offset Distance (See Notes)	Crown "C in" or Super "S"	Gross to Top of Soil	Asphalt	Concrete	ABC	Stabilized Subgrade Soil	Pavement Layering	Description	Sample Number	AASHTO Classification	Soil Moisture	Probe Depth	Asphalt Notes	Northing	Easting
			1		1		_			_									ı
Y3_16+01_17' RT	2.5' Fill	12.2	N/A	6.3 FY	S	3.5	3.5"	N/A	N/A	N/A	Asphalt Soil Subgrade	Asphalt 0.3'-2.5' Roadway Embankment: Gray, Silty SAND 2.5'- 4' UCP: Dark Brown-Gray, Clayey SILT 4'-5' UCP: Tan-Gray, Sandy CLAY	S-01 N/A N/A	A-2-4 A-5 A-6	10% D M	5 ft	Moderate transverse cracking. Moderate longitudinal cracking. Moderate raveling and polishing. No rutting. Large patches in good condition.	324,194	2,000,082
Y3_19+00_9'LT	3' Fill	11	N/A	7 FY	S	7.5	2.5"	N/A	5"	N/A	Asphalt ABC Soil Subgrade	Asphalt ABC 0.8'-3' Roadway Embankment: Tan, Sandy SILT 3'-5' UCP: Tan, Sandy CLAY	S-02 N/A	A-4 A-6	11% M	5 ft	Moderate transverse cracking. Moderate longitudinal cracking. Moderate raveling and polishing. No rutting.	323,934	2,000,196
Y3_19+00_20' RT	3' Fill	12.7	N/A	7.7 FY	S	3.5	3.5"	N/A	N/A	N/A	Asphalt Soil Subgrade	Asphalt 0.6'-3' Roadway Embankment: Tan, Silty SAND 3'-5' UCP: Tan, Silty SAND	S-03 N/A		10%	5 ft	Moderate transverse cracking. Moderate longitudinal cracking. Moderate raveling and polishing. No rutting.	323,933	2,000,167
Y3_22+98_14' RT	1.5' Fill	13	N/A	4.7 FY	S	7	3"	N/A	4"	N/A	Asphalt ABC Soil Subgrade	Asphalt ABC 0.8'-1.5' Roadway Embankment: Tan, Silty SAND 1.5'-5'UCP: Gray, Silty CLAY	N/A S-04	A-2-4 A-7-6	D	5 ft	Moderate transverse cracking. Moderate longitudinal cracking. Moderate raveling and polishing. Rutting up to 1/4" deep.	323,548	2,000,141
	1		l		T		I						T						
					1														
	+				+												-		
			-										-						
					-								1		$\vdash \vdash$		-		
	+				+												-		
																	1		

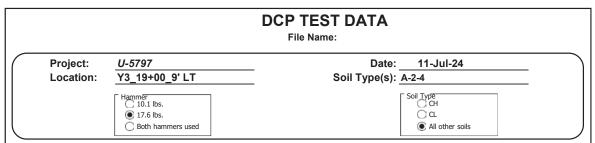
Notes: OSL = Outside Lane ISL = Inside Lane CL = Center Lane LTL = Left Turn Lane

CTL = Center Turn Lane RTL = Right Turn Lane DECEL = Deceleration Lane ACCEL = Acceleration Lane OSS = Outside Shoulder ISS = Inside Shoulder GM = Grass Median OGS = Outside Grass Shoulder

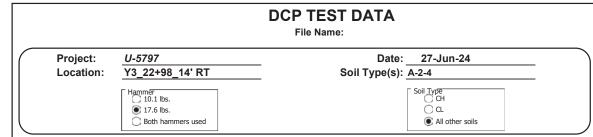

PS = Paved Shoulder RT LN = Right Lane LT LN = Left Lane COL = Collector Lane RT = Right LT = Left (I) = Inside (O) = Outside NB = Northbound SB = Southbound FW = From White FY = From Yellow EOP = Edge of Pavement

			PROJECT NUMBE	R I	PROJECT I.D.		ROUTE	
	CONF PENE	ETROMETER	U-5797		44367.1.1		(-Y3-) BOOMERAN	
		DE SHEET	COUNTY		GEOLOGIST		TECHNICIA	
	DATAGO	DE SHEET	Robeson		Ross, S. I.		TECHNICIA	AINO .
Station (Id	ocation) informat	ion	Date run	Station (Io	cation) information			ate run
Y3_16+0		1011	6/20/2024	Y3_19+00				20/2024
Datum			Remarks	Datum	cut or fill		Remarks	
Soil Sub				Soil Subg				
	Cur	mulative Penetration	on in Centimeters		Cumula	ative Penetration	in Centimeters	
0.3	24.4	89.2	0.00	0.4	21.3	10,000	(1)(1)	110
2.0	25.0	90.9	E135	1.5	22.4	1000	0.0	0.0
2.5	25.5	92.5	0.0	2.6	23.4	10,0	0.0	0.0
3.0	26.0	93.9		3.8	24.4		10.0	0.0
3.5	26.5			4.1	25.4		10.0	100
4.0 4.7	27.0 27.9			4.4 4.7	26.4 27.5			1.0
5.0	28.9			5.0	28.6			
5.3	30.0			5.4	29.7			10
5.6	31.5			5.6	30.2			
5.9	33.1	7.1		5.8	30.7			1111
6.3	35.3	1111	193	6.0	31.2	1111	100	1111
6.5	37.2	1010		6.2	31.7		03.03	100
6.7	39.0	4 0.0	1000 H	6.4	32.3		0.0	0.0
6.9	40.4	2.00	0.0	6.6	32.9	10,00	0.0	1.0
7.1	41.6	0.0	0.00	6.8	33.5		100	0.0
7.6	42.9	0.00		7.4	34.1	10.00	100	1.0
7.9	44.2			7.6	34.7			
8.2 8.5	45.7 47.2			7.8 8.0	35.3 36.0			
8.8	49.0			8.2	36.7			100
9.3	51.0			8.4	37.4			100
9.6	52.0	0.0	1000	8.6	38.2	10,0	0.0	1.0
9.9	53.1	0.0	0.0	8.8	39.0	1000	1000	0,0
10.2	53.7	0.0		9.0	39.8	1010	0.0	0.0
10.5	54.3	0.0	E125	9.2	40.6	(0)(0)	(1)(1)	0.0
11.1	54.9	0.0	0.00	9.9	41.5	10,0	0.0	0.0
11.5	55.5	0.00		10.1	42.7	10.00		1.0
11.9	56.2	0.0		10.3	44.0			0.0
12.3 12.7	56.8 57.4			10.5 10.7	44.8 46.7			
13.1	58.0			10.7	48.0			
13.5	58.6			11.1	49.4			
14.3	59.5	100		11.3	51.0	To Table	1000	100
14.8	60.4		1000	11.5	52.6		0.00	100
15.3	61.3	10)(1)	TOTAL STATE OF THE	11.7	55.1		010	0.00
15.8	62.2	1000		12.7	57.6			100
16.6	63.1	72	1000	13.0	60.2			1011
17.0	64.3	1111		13.3	63.1			100
17.4	65.7			13.6	67.0			
17.8	67.2			13.9	71.2			
18.2 19.0	68.5 69.9			14.2 14.5	75.7 84.9			
19.4	71.5	7		15.4	07.0		0.0	
19.8	73.2	111111111111111111111111111111111111111		15.8			1000	1011
20.2	75.1	1111	1000	16.2		11111	0.00	110
20.6	77.1	1000		16.6	E 10 10 10 10 10 10 10 10 10 10 10 10 10		03.03	100
21.0	78.9			17.0	70.0	10.0	0.0	
21.4	80.8			17.7				
22.0	82.6	1000		18.3		1000	100	10.00
22.6	84.4	100		18.9			1000	100
23.2	86.0			19.5				
23.8	87.6			20.4				100


			PROJECT NUI	<u>MBER</u>		PF	ROJECT I.	.D.		(-Y3-) BOOMERANG DRIVE					
С	ONE PENET	ROMETER	U-5797				44367.1.1				(-Y3-) BO	OMERA	NG DRI	VE	
	DATA CODE	SHEET	COUNTY			G	EOLOGIS	ST.			TE	CHNIC	IANS		
			Robeson				Ross, S. I.								
Station (loca	tion) information		Date run		Statio		n) informat						Date ru	n	
Y3_19+00_9			6/20/2024			2+98_14'				ROUTE (-Y3-) BOOMERANG DRIVE TECHNICIANS Date run 6/20/2024 Remarks ation in Centimeters					
Datum	cut or fill	F	Remarks		Datum	1	cut or fill				Rem				
ABC	Fill					ABC	Fill								
	Cumula	ative Penetration in Cen	timeters					Cumulativ	ve Penetr	ation in	Centimet	ers			
0.4	45.8		0.00	0,0	0.2	113	81.1	174.6	0.0		(0),(0)		0.0		0.0
2.7	46.6	10.00		0.0	2.0		83.7	1.9	0.0		0.0		0.0		0.0
3.8	47.5	0.01	9 (9)	0.0	2.8		85.6	1.8	0.0		(0),(0)		(0),(0)		0.0
4.9	48.2	0.00	0.00	0.0	3.6		87.4	1.7	0.0		(0,0)		(0,0)		
6.1	48.9	0.0	0.0	0.0	4.4		89.1	1.8	0.0		(0,0)		0.0		0.0
6.9	49.8	0.01	0.0	0.0	5.5		90.7	1.5	0.0		0.0		0.0		0.0
7.7	50.7	0.0	0.0	0.0	6.5		92.2	1.5	0.0		0.0		0.0		0.0
8.5	51.6	0.0	0.0	0.0	7.5	1.2	93.7		0.0	_	0.0		0.0		0.0
9.4	52.6		0.00	0.0	8.7	1.6	_	0.0	0.0		0.0	\vdash	0.0		0.0
10.3	53.7			1111	10.3				100	-	11.1	\vdash			
11.4	54.8			1111	11.9					-	0.0	\vdash			
12.2	56.2				13.0					_		\vdash			
13.0	57.7				14.2					-		\vdash			
14.0	59.5				15.2		_			-		\vdash			
15.1	63.8				16.2					-		\vdash			
16.2 17.4	66.7 69.4				17.3 18.5					-		\vdash			
18.6	70.4				20.1					-					
19.9	71.4				22.0					-					
21.2	72.4			-	23.9					-	0.0	-			
22.6	73.5				25.0					1	0.0				
23.7	74.6				26.2										
24.9	75.7				27.1										
25.5	76.8				28.0	100		(1)							
26.1	77.9	11(1)	-	0.0	28.9	0.77		0.0			0.0				
26.8	79.0	1111	-		29.6	0.77		0.0			0.0		0.0		
27.4	79.7	0.0	1000	1000	30.3	0.74		0.0	1000		0.0		0.0		
28.0	80.4			0.0	31.0	1,0		(0,0)	1111		0.0		0.0		0.0
28.6	81.1	1000	100	11.0	32.0	10.0		0.0	0.0		0.0		0.0		
29.1	81.8	(1,0)		0,0	33.0	122		(0,0)	(0,0)		0.0		(0)(0)		
29.6	82.5	0.0	0.00	0,0	34.2	4.8			10,0		0.0				
30.1	83.1	0.0		0.0	36.0	1.0		0.0	0.0		0.0		0.0		
30.6	83.7		100	0.0	37.8	111		0.0	0.0		0.0				
31.3	84.5	10.0			38.8			0.00			0.0				
31.7	85.3			1111	39.8				10.0			\vdash			
32.1	86.1			1000	41.0			10.00	10.0	-		\vdash			
32.5	87.0	1900			42.2					-		\vdash			
32.9	87.8				43.4		_			-		\vdash			
33.5	88.6				44.9							\vdash			
34.0	89.5 90.2			100	46.5					-	0.0	\vdash			
34.5 35.0	90.2				48.7 51.9		_			-					
35.5	91.0				55.9										
36.4	92.6				58.7						0.0				
37.2	93.4				61.3	0,0				1	0.0				
38.0	30.7				63.6	777									
39.0					65.9	77.0									
40.0					68.2	77									
41.0					70.7			0.0			110				
42.1					72.8			(6) (1)			1111				
43.0	-			1111	74.6	9.0		(1.1)	1010		0.0				
43.9	111111	11111	To be a second	0.0	76.5	222		0,0			0.0		0.0		
45.0			100		78.7								0.0		


SG = Subgrade SS = Stabilized Soil ABC = Aggregate Base Course

SG = Subgrade SS = Stabilized Soil ABC = Aggregate Base Course



No. of Blows	Accumulative Penetration	Type of Hammer		0	.1		1.0		CI	BR	10.0		10	0.0	
	(mm)		1	0 -			Ш	П			П		<u></u>	0	
1	20	1		:	1							▎▕▕▐	++<u>1</u>11		
5	47	1		5 -			Ш						<u> </u>	127	
5	63	1											_ ;		
5	76	1		40									J ;	254	
5	93	1		10										254	
5	111	1]										
7	143	1	١.	15			+			+	⊞ ધ્		Ш:	381	_
4	166	1].⊑	:							│││ <u></u> ┌८				E
5	190	1	DEPTH, in.	20 -			Ш						1111	508	DEPTH, mm
7	220	1	品									7			F.
5	250	1	۵	25 -	1								:	635	DE
5	279	1		∠5 :		П					5			035	
2	300	1													
2	331	1		30 -							╫╅		++++:	762	
1	353	1		:							ኒ				
1	372	1		35										889	
1	390	1	1	:	1						Ъ				
1	404	1	-	40										1016	
1	416	1	1	-0	.1		1.0				10.0		10	0.0	
2	442	1	_												
	472		1												
1	490	1													
2	510 531	1													
5	562	1													
5	595	1													
5	643	1													
2	672	1													
2	699	1													
2	732	1													
2	771	1													
2	808	1													
2	844	1													
2	876	1	1												
2	909	1	1												
1	925	1	1												
1	939	1	1												
		1													
		1	1												
		1	1												
		1	1												
		1	1												
		1	1												

No. of	Accumulative		1		CBR	
Blows	Penetration (mm)	Hammer	0.1	1.0	10.0	100.0
1	4	1	1 1	ABC	: - 	<u> </u>
1	27	1	5 -		_	127
3	61	1] °]		_	
3	85	1] :			
3	114	1	10			254
3	140	1] [🕦
3	174	1	15			381
2	199	1	<u>.</u>			<u> </u> _
2	226	1	DE PTH, 50			508 ±
2	249	1	[₽ E
3	268	11				508 H EE H
4	291	1	25			635
4	313	1				<mark> </mark>
5	335	1	30 }			762
5	364	1				<u></u>
3	390	1	35			889
3	421	1				🚅
3	450	1	40			
3	475	1	0.1	1.0	10.0	1016 100.0
3	498	1				
3	526	1	-			
2	548	1				
2	577	1	-			
2	614	1	-			
1	638	11				
1	667	1	-			
1	694	<u>1</u> 1	-			
3	724 757	1 1	-			
3	757	1				
5	790 825	1				
3	845	1				
3	870	1	-			
3	895	1				
2	910	1				
1	919	1				
1	926	1				
1	934	1				
· ·		•				
			1			
			1			

400.0	40.0	CBR	4.0	0.4	e of mer		Accumulative Penetration	No. of Blows
100.0	10.0	-ABC	1.0	 0.1		Ī.	(mm)	
				- 1			2	1
127				5 📙			20	1
	%			- 1			55	4
254				10			87	3
204				"			119	2
							142 162	2
381 €				15			185	2
				.]	– ļ. Έ		201	1
1 508 ⋣	 			20	ᇤ		239	2
508 H.H. W.	<mark>†≒</mark>	4		- 1	DEPTH, in.		262	2
635				25 -			289	3
	<mark>4,</mark>			- 1			310	3
762	 			30			342	3
				- 1			378	2
889	∐∏Ն			35			410	3
	ነ			*			434	2
							465	2
1016 100.0	10.0		1.0	40 L 0.1			487	1
							519	1
							559 587	1
							613	1
							636	1
							659	1
							682	1
							707	1
							728	1
							765	2
							787	1
							811	1
							837	1
							856	1
							874	1
							891 907	1
							907	1
							937	1
							331	
							931	1

LABORATORY TEST RESULTS

Fayetteville Road Proposed Widening from Farringdom Street to 22nd Street

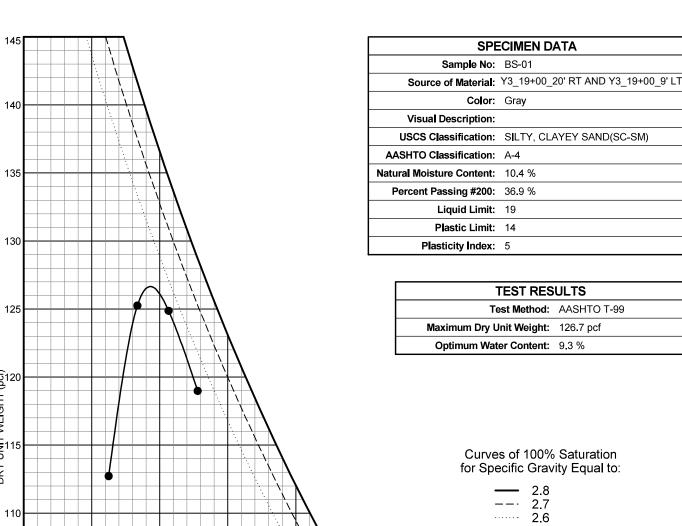
Lumberton, NC

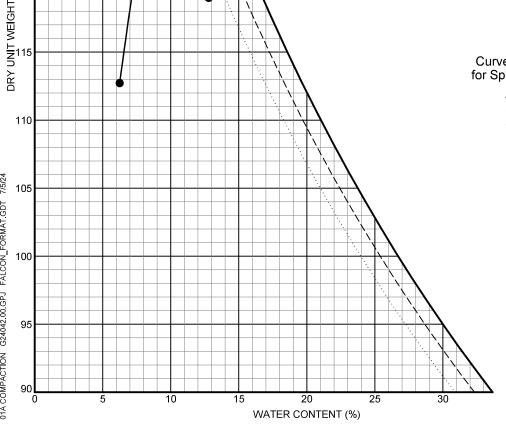
NCDOT Project: U-5797

Falcon Engineering Project No: G24042.00

	SAMPLE	DEPTH	AASHTO	ATTERBE	RG LIMITS		PERCENT I	BY WEIGHT		PERCE	ENT PASSING	SIEVE	MOISTURE	SPECIFIC	ORGANICS
NO.	LOCATION	INTERVAL	CLASS.	LL	PI	C.SAND	F.SAND	SILT	CLAY	#10	#40	#200	(%)	GRAVITY	(%)
BS-01	Y3_19+00_20' RT & 9' LT	1.0-3.0	A-4(0)	19	5	24	45	12	19	100	86	37	10	2.604	N/A
S-01	Y3_16+01_17' RT	1.0-2.5	A-2-4(0)	17	3	37	38	7	18	100	77	29	10	N/A	N/A
S-02	Y3_19+00_9 ' RT	1.0-2.0	A-4(0)	18	3	23	45	12	20	100	86	37	11	N/A	N/A
S-03	Y3_19+00_20' RT	1.0-3.0	A-2-4(0)	19	5	31	40	11	18	100	81	33	10	N/A	N/A
S-04	Y3_22+98_14' RT	4.0-5.0	A-7-6(15)	48	30	4	44	14	38	100	98	61	18	N/A	N/A

Certification: 105-0803 Falcon Engineering, Inc. 1210 Trinity Road, Suite 110, Cary, NC 27513


FALCON ENGINEERING, INC. 1210 TRINITY ROAD, SUITE 110 CARY, NC 27513


PHONE: 919.871.0800

LABORATORY COMPACTION TEST RESULTS

PAGE 1 OF 1

Project No.:	G24042.00
Project Name:	U-5797
Project Location:	Lumberton, NC

CALIFORNIA BEARING RATIO TEST RESULTS

Project No.: G24042.00 Test Date: 2024-15-07 Tested By: J. Grabner

Project Name: U-5797

CARY, NC 27513

PHONE: 919.871.0800

www.falconengineers.com

Boring ID: Y3_19+00_20' RT AND Y3_19+00_9' LT Sample ID: BS-01 Sample Depth: 1.0-3.0 ft

MOLDED SPECIMEN TEST DATA

Wt. of Mold + Wet Soil:	21111 g	Moisture Content Befo	ore Molding	After Molding	Max. Dry U	Jnit Weight:	126.7 pcf
Wt. of Mold:	16478 g	Tare Wt.:	201.30 g	184.80 g	Optimum Moistu	ire Content:	9.3%
Wt. of Wet Soil:	4633 g	Wt. Tare + Wet Soil:	585.90 g	916.20 g	Percent C	ompaction:	98.1%
Mold Volume:	0.0752 cf	Wt. Tare + Dry Soil:	553.40 g	853.10 g	Compact	on Method:	698C
Wet Unit Weight:	135.8 pcf	Moisture Content:	9.2%	9.4%	<u>Conv</u>	ersion Factors	<u>3</u>
Dry Unit Weight:	124.2 pcf	Average Moisture	e Content:	9.3%	1 l b = 453.6 gram	1 cu. foot =	1728 cu. inch

LOAD TEST DATA

Penetration (in) Load (lb)		Stress (psi)	Piston Calibration				
0.000	0	0.0	Strain Rate:	0.05 inch/minute			
0.025	127	42.4	Piston Diameter:	1.954 inch			
0.050	248	82.7	Piston Area:	2.999 sq. inch			
0.075	406	135.4					
0.100	548	182.7					
0.125	683	227.8	1				
0.150	817	272.4	Swell F	<u>eadings</u>			
0.175	947	315.8	Soak Time:	96 hours			
0.200	1072	357.5	Surcharge Weight:	10 l b			
0.225	1178	392.8	Surcharge Stress:	51 psf			
0.250	1268	422.8	Molded Sample Height:	4.594 inch			
0.275	1365	455.2	Initial Dial Reading:	0.050 inch			
0.300	1455	485.2	Final Dial Reading:	0.050 inch			
0.400	1790	596.9	Percent Swell:	0.00%			
0.500	2082	694.3	1				
Readings	After Soak		Additional Specimen Data				

Wt. Mold + Soaked Soil: 21150 g Wt. Tare: Wt. Wet Soil + Tare: 176 g Wt. Tare + Dry Soil: Moisture Content: Wet Unit Weight: 137.0 pcf 124.8 pcf Dry Unit Weight:

BEARING RATIO

CBR at 0.1 inch: **18.3**

CBR at 0.2 inch: **23.8**

Liquid Limit: 19 Percent Passing #4: Plastic Limit: 14 Percent Passing #10: Plasticity Index: 5 Percent Passing #40:

> Percent Passing #200: 36.9%

Color: Visual Description: USCS Classification: AASHTO Classification:

Gray SILTY, CLAYEY SAND (SC-SM) A-4 (0)