

Via NC DOT FTS

November 30, 2022

NC DOT Geotechnical Unit GeoEnvironmental Section 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Attention: Mr. Ashley Cox, LG

Re: Phase II Investigation Report – Parcel 2/2A

NC DOT State Project No. R-5600 WBS Element No. 45818.1.FR1

Sylva, Jackson County, North Carolina

H&H Job No. ROW-704

Dear Ashley:

Please find the attached PDF copy of the Phase II Investigation report for the Samuel Clemmons property (Parcel 2/2A) located in Sylva, Jackson County, North Carolina. Please return via DocuSign for final signatures. If you have any questions or need additional information, please contact us at (704) 586-0007.

Sincerely,

Hart & Hickman, PC

David Graham, PG

Senior Project Geologist

Matt Bramblett, PE

Matt framblett

Principal

Attachment

Phase II Investigation NC DOT Parcel 2/2A

413 W. Main St. Sylva, Jackson County North Carolina

H&H Job No. ROW-704 State Project: R-5600 WBS Element No. 45818.1.FR1 November 30, 2022

#C-1269 Engineering #-245 Geology

Phase II Investigation – Parcel 2/2A 413 W. Main St. Sylva, Jackson County North Carolina H&H Job No. ROW-704

Table of Contents

Section	<u>Page No.</u>
1.0 Introduction and Background	1
2.0 Geophysical Survey	2
3.0 Soil Assessment	2
3.1 Soil Sampling	2
3.2 Soil Analytical Results	3
4.0 Summary and Regulatory Considerations	4
5.0 Signature Page	6

List of Tables

Table 1 Soil Boring GPS Coordinate Data

Table 2 Soil Analytical Results

List of Figures

Figure 1 Site Location Map

Figure 2 Site Map and Soil Analytical Results

List of Appendices

Appendix A NC DOT Preliminary Plan

Appendix B Pyramid Geophysical Survey Report

Appendix C Soil Boring Logs

Appendix D Laboratory Analytical Report Phase II Investigation – Parcel 2/2A 413 W. Main St. Sylva, Jackson County North Carolina H&H Job No. ROW-704

1.0 Introduction and Background

Hart & Hickman, PC (H&H) has prepared this Phase II Investigation (Phase II) report documenting assessment activities performed at the Samuel Clemmons property located at 413 W. Main St. (Parcel 2/2A) in Sylva, Jackson County, North Carolina. This assessment was conducted on behalf of the North Carolina Department of Transportation (NC DOT) in accordance with H&H's August 17, 2022 proposal.

This assessment was conducted to evaluate the potential for underground storage tank (UST) systems and impacted soil on proposed right-of-way and construction easement areas on Parcel 2/2A related to proposed road improvements along W. Main St. (State Project R-5600). This NC DOT road improvement project includes new curb and gutters, sidewalks, etc. Parcel 2/2A is currently occupied by Sam's Motor Sales, Inc. and an asphalt parking lot. Historical use consisted of auto sales, potential former auto service, and a potential former gas station. A site location map is included as Figure 1, and a site map is presented as Figure 2. NC DOT's plan sheet depicting Parcel 2/2A is included in Appendix A.

H&H searched the North Carolina Department of Environmental Quality (NC DEQ) Laserfiche website and NC DEQ UST databases for incident files related to the Parcel 2/2A property address to better target UST system areas and to check for previously reported impacts. No UST incident files were identified for Parcel 2/2A on NC DEQ's Laserfiche website. Based on the NC DEQ Registered Tank Database, there were no USTs registered on the property consisting of Parcel 2/2A. The property owner stated that Parcel 2A was a gas station in the past. However, no evidence of USTs was found onsite during the geophysical survey.

The Phase II assessment activities conducted by H&H on Parcel 2/2A are discussed below.

2.0 Geophysical Survey

Prior to advancing soil borings, H&H reviewed the results of a geophysical survey performed on Parcel 2/2A by Pyramid Geophysical Services (Pyramid) on September 26 and 27, 2022. Pyramid utilized electromagnetic (EM) induction-metal technology and ground penetrating radar (GPR) technology to identify potential geophysical anomalies and potential USTs at the site. A total of four EM anomalies were identified at the site. The EM anomalies were attributed to known surface metallic objects, such as reinforced concrete or above-ground metal structures (i.e. fencing, metal posts, etc.) that were not characteristic signatures of USTs. The EM/GPR results indicated that no USTs were identified on Parcels 2/2A. Pyramid's report, including figures depicting the results of the EM/GPR survey, is provided in Appendix B.

3.0 Soil Assessment

3.1 Soil Sampling

H&H contracted with Geologic Exploration, Inc. (GEX) of Statesville, North Carolina to advance soil borings on Parcel 2A. Soil sampling was to be conducted on Parcel 2 as well. However, as NC DOT is aware, the property owner refused access for H&H to collect soil samples. On October 11, 2022, 3 soil borings (SB-2A-1 through SB-2A-3) were advanced by GEX on Parcel 2A using a direct push technology (DPT) drill rig. Prior to conducting soil borings, underground utilities were marked by the NC 811 public utility locator and by Pyramid for private underground utilities. Borings were cleared to five feet by hand auger prior to using the DPT rig.

In general, the soil borings were advanced to depths of 15 ft below ground surface (bgs). To facilitate the selection of soil samples for laboratory analysis, soil from each boring was field screened continuously for the presence of volatile organic compounds (VOCs) with a photoionization detector (PID). Additionally, H&H observed the soil for visual and olfactory indications of impacts. Based on field screening, there were indications of potential impacts in borings SB-2A-1 through SB-2A-3. PID readings were significantly higher near the capillary fringe and/or below the water table (estimated 10 to 12 ft bgs at the time of our assessment) in borings SB-

2A-1 through SB-2A-3. Soil samples were collected at various depths between 0 ft to 2 ft and 6 ft to 8 ft bgs. Soil boring logs are included in Appendix C. GPS coordinate data for the soil borings are summarized in Table 1, and the boring locations are shown on Figure 2.

H&H submitted a total of three soil samples from borings SB-2A-1 through SB-2A-3 on Parcel 2A for laboratory analysis. The soil samples were placed into laboratory supplied sample containers using nitrile glove-covered hands. The containers were then labeled as to content, analyses requested, sample date and time, and sampler's name. The samples were placed in an iced cooler upon collection and were subsequently submitted to Red Lab, LLC of Wilmington, NC under standard chain-of-custody protocol for analysis of total petroleum hydrocarbons (TPH) as gasoline-range organics (GRO) and diesel-range organics (DRO) using QED ultraviolet fluorescence (UVF) technology. Soil sample depths and analytical results are summarized in Table 2. Laboratory analytical data sheets and chain-of-custody documentation are provided in Appendix D. The analytical results are discussed below.

Upon completion of soil sampling activities, the soil borings were filled with bentonite pellets, and the surfaces were patched with concrete or soil to match the existing surface.

3.2 Soil Analytical Results

Concentrations of TPH DRO (ranging from 0.71 mg/kg to 87.5 mg/kg) were detected in soil samples collected from borings SB-2A-1 through SB-2A-3. These concentrations are below the NC DEQ Action Level for TPH DRO of 100 mg/kg. TPH GRO was detected in soil sample SB-2A-3 at a concentration of 73 mg/kg, which exceeds the NC DEQ Action Level for TPH GRO of 50 mg/kg. TPH data are depicted on Figure 2.

Based on the above soil sample results, H&H estimates the following amount of impacted soil above the NC DEQ Action Levels is present on Parcel 2A:

• H&H estimates there are roughly 130 cubic yards (200 tons) of soil impacted with TPH GRO between 5 ft and 12 ft near boring SB-2A-3 on the northeastern portion of Parcel 2A.

The estimated depth of impacted soils is based on field screening results up to the approximate water table. However, field screening and lab results did not provide information that fully defines the impacted soil interval or extent. Therefore, impacts may extend beyond the depths and amounts indicated above. The approximate area of impacted soil is shown on Figure 2.

Although laboratory analytical results indicate soil impacts below NC DEQ Action Levels in borings SB-2A-1 and SB-2A-2, significant PID readings from these borings indicate the potential for soil impacts below 12 ft bgs. The elevated PID readings are likely due to impacted groundwater and historical groundwater table fluctuations creating a contamination smear zone near the water table. If impacted soil is encountered near Parcel 2A during the NC DOT construction activities, it should be properly managed and disposed.

4.0 Summary and Regulatory Considerations

H&H has reviewed available NC DEQ files, geophysical survey results, and analytical results of soil samples collected at the Parcel 2/2A property in Sylva, Jackson County, North Carolina. Parcel 2/2A is currently occupied by Sam's Motor Sales, Inc. and an asphalt parking lot. Historical use consisted of auto sales, potential former auto service, and a potential former gas station. However, no evidence of USTs was found onsite during the geophysical survey.

Analytical results of soil samples collected by H&H on Parcel 2A indicate concentrations of TPH GRO above the NC DEQ Action Level in the SB-2A-3 (6-8) soil sample. Soil sampling was to be conducted on Parcel 2 as well. However, as NC DOT is aware, the property owner refused access to collect soil samples. Based on field screening and laboratory analytical results, H&H estimates there are roughly 130 cubic yards (200 tons) of soil impacted with TPH GRO between 5 ft and 12 ft near boring SB-2A-3 in the northeastern portion of Parcel 2A

NC DOT plans indicate a proposed undercut for road improvement activities in proposed NC DOT work areas near Parcel 2/2A. Impacted media encountered during road construction activities should be properly managed and disposed at a permitted facility. If groundwater is

encountered and dewatering activities are required during NC DOT construction activities, the groundwater should be characterized and properly managed, if found to be impacted. The depth to water ranged from approximately 10 ft to 12 ft below grade at the time of H&H's assessment. If a UST is encountered during construction activities, the UST system(s) and their contents should be removed in accordance with NC DEQ regulations and be properly disposed.

5.0 Signature Page

This report was prepared by:

--- DocuSigned by:

David Graham 1

12/05/2022

David Graham, PG

Senior Project Geologist for

Hart & Hickman, PC

This report was reviewed by:

Matt Bramblett, PE

Principal and Project Manager for

Hart & Hickman, PC

Not considered final unless all signatures are completed.

Table 1 (Page 1 of 1) Soil Boring GPS Coordinate Data NC DOT Parcel 2A Sylva, Jackson County, North Carolina H&H Job No. ROW-704

Sample ID	Latitude	Longitude
SB-2A-1	35.373739	-83.220154
SB-2A-2	35.373753	-83.220099
SB-2A-3	35.373757	-83.220042

Notes:

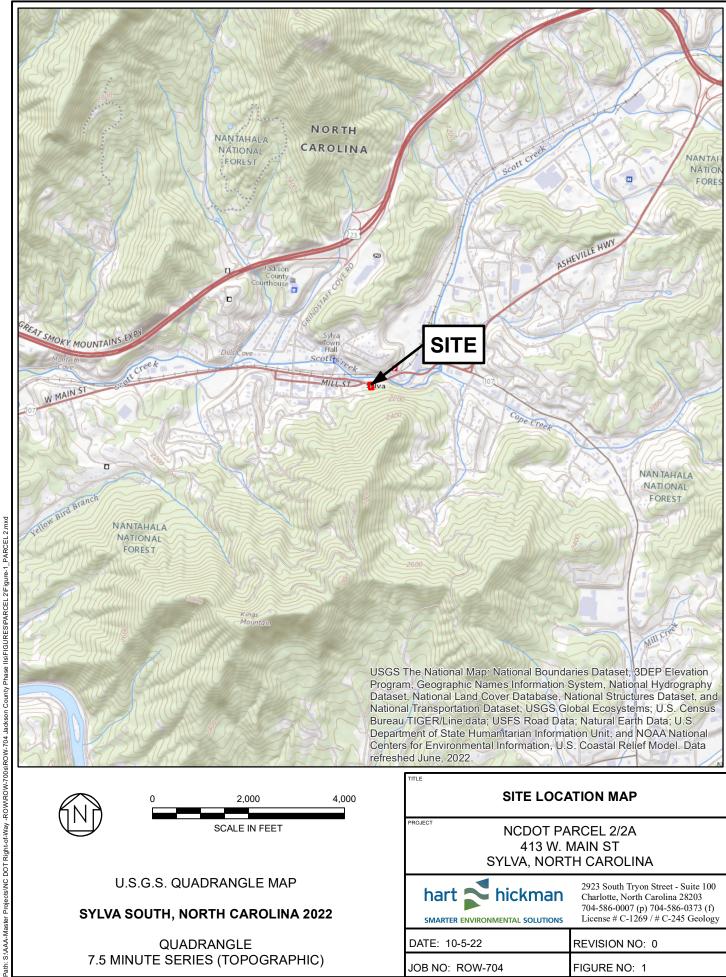
GPS coordinate data points collected using a Trimble GeoExplorer 6000 series unit with external satellite for increased accuracy.

Table 2 (Page 1 of 1) Soil Analytical Results NC DOT Parcel 2A

Sylva, Jackson County, North Carolina H&H Job No. ROW-704

Sample ID	SB-2A-1	SB-2A-2	SB-2A-3	
Sample Depth (ft)	2-4	0-2	6-8	Action Level
Sample Date	10/11/2022	10/11/2022	10/11/2022	
TPH DRO/GRO (UVF) (mg/kg)				
Diesel-Range Organics (DRO)	58.5	0.71	87.5	100
Gasoline-Range Organics (GRO)	< 0.53	< 0.59	73	50

Notes:


UVF = QED Ultraviolet Fluorescence Technology

Bold values exceed NCDEQ Action Levels.

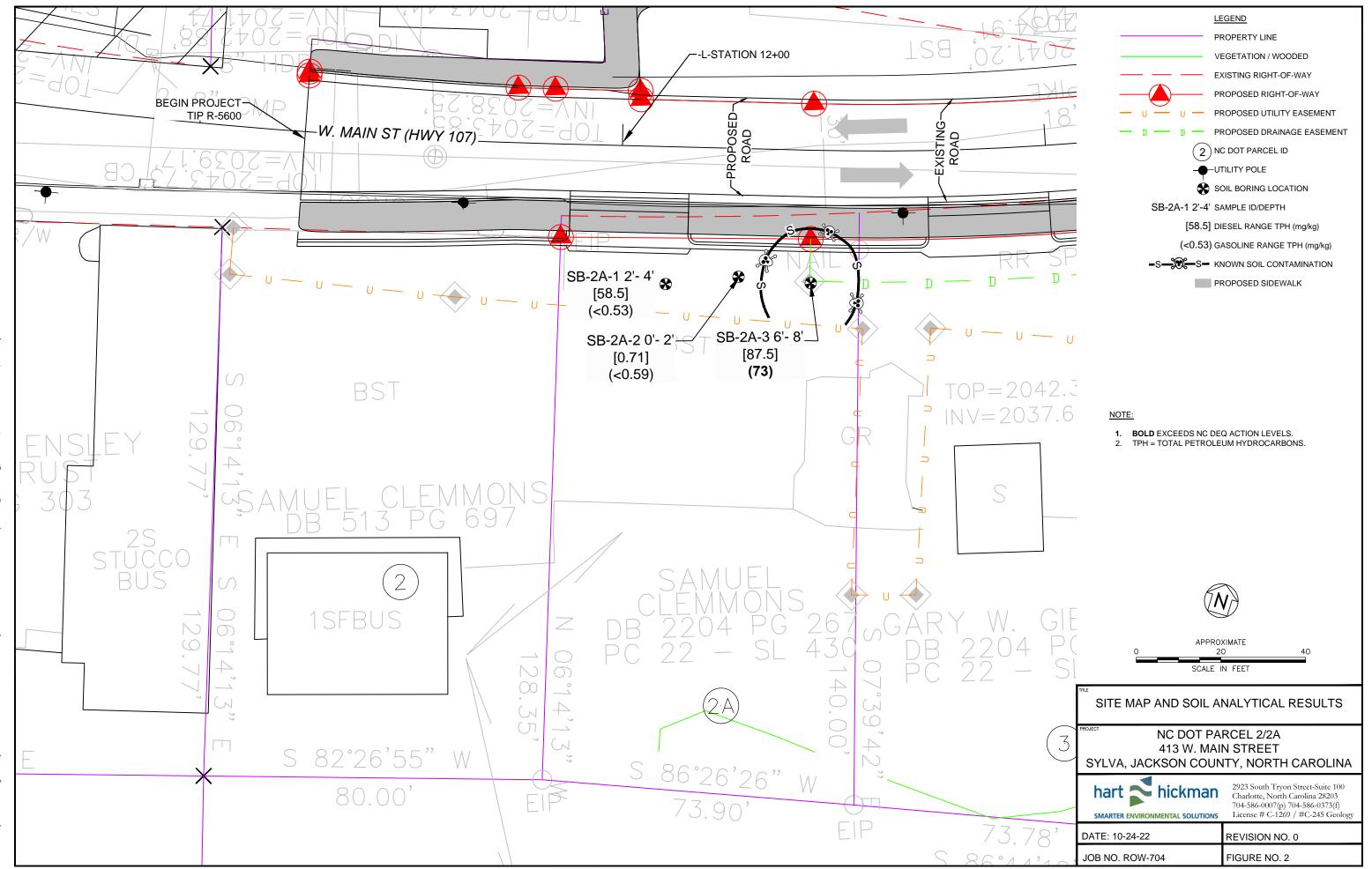
TPH = Total Petroleum Hydrocarbons; DEQ = Department of Environmental Quality

DRO = Diesel-Range Organics

GRO = Gasoline-Range Organics

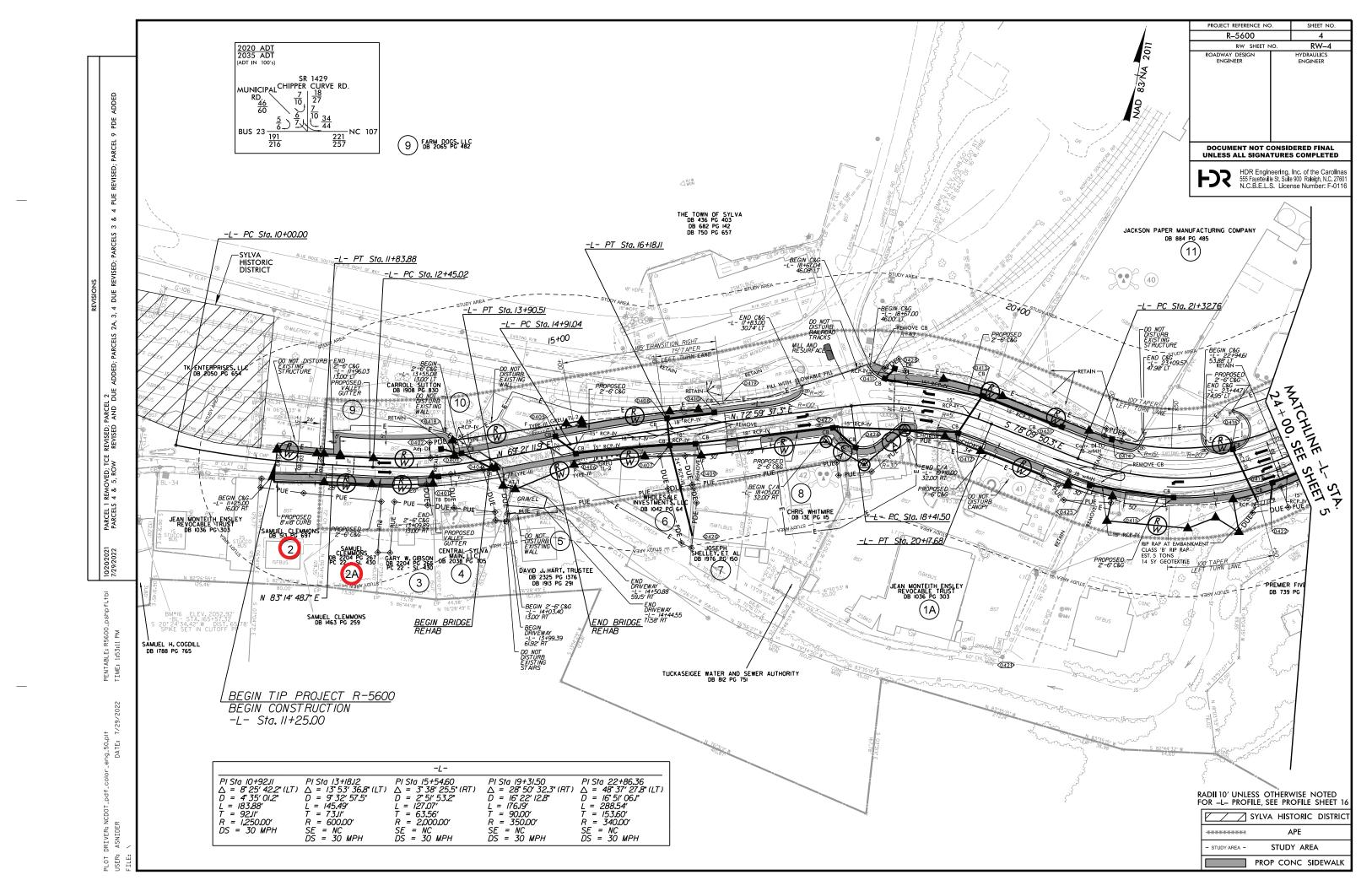
U.S.G.S. QUADRANGLE MAP

SYLVA SOUTH, NORTH CAROLINA 2022


QUADRANGLE 7.5 MINUTE SERIES (TOPOGRAPHIC)

NCDOT PARCEL 2/2A 413 W. MAIN ST SYLVA, NORTH CAROLINA

2923 South Tryon Street - Suite 100 Charlotte, North Carolina 28203 704-586-0007 (p) 704-586-0373 (f) License # C-1269 / # C-245 Geology


DATE: 10-5-22	REVISION NO: 0
JOB NO: ROW-704	FIGURE NO: 1

Appendix A

NC DOT Preliminary Plan

Appendix B

Pyramid Geophysical Survey Report

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2022-260)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCELS 2 & 2A NCDOT PROJECT R-5600 (45818.1.FR1)

413 WEST MAIN STREET, SYLVA, NC

October 21, 2022

Report prepared for: David Graham, P.G.

Hart & Hickman, P.C.

2923 South Tryon Street, Suite 100

Charlotte, NC 28203

Prepared by:

Eric C. Cross, P.G.

NC License #2181

Reviewed by:

Douglas A. Canavello, P.G.

NC License #1066

GEOPHYSICAL INVESTIGATION REPORT

Parcels 2 & 2A - 413 West Main Street Sylva, Jackson County, North Carolina

Table of Contents

Executive Summary	_
Introduction	2
Field Methodology	
Discussion of Results	
Discussion of EM Results	3
Discussion of GPR Results	
Summary & Conclusions	
Limitations	

Figures

- Figure 1 Parcels 2 & 2A Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcels 2 & 2A EM61 Metal Detection Contour Map
- Figure 3 Parcels 2 & 2A GPR Transect Locations and Select Images
- Figure 4 Overlay of Metal Detection Results on NCDOT Engineering Plans

Appendices

Appendix A – GPR Transect Images

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	Dual Frequency
EM	Electromagnetic
GPR	Ground Penetrating Radar
GPS	_
NCDOT	North Carolina Department of Transportation
ROW	
UST	Underground Storage Tank

Project Description: Pyramid Geophysical Services (Pyramid), a department within Pyramid Environmental & Engineering, P.C., conducted a geophysical investigation for Hart & Hickman, P.C. (Hart & Hickman) at Parcels 2 & 2A, located at 413 West Main Street, in Sylva, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project R-5600). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from September 26-27, 2022, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of four EM anomalies were identified. All of the EM anomalies were directly attributed to visible cultural features at the ground surface. GPR was performed across and around all sources of significant metallic interference to confirm the presence of reinforcement within the concrete and to confirm that the interference did not obscure any significant structures such as USTs. The geophysical survey identified evidence of utilities and/or smaller fragments of buried debris. Collectively, the geophysical data recorded no evidence of metallic USTs at Parcels 2 & 2A.

INTRODUCTION

Pyramid Geophysical Services (Pyramid), a department within Pyramid Environmental & Engineering, P.C., conducted a geophysical investigation for Hart & Hickman, P.C. (Hart & Hickman) at Parcels 2 & 2A, located at 413 West Main Street, in Sylva, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project R-5600). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from September 26-27, 2022, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site consisted of an active vehicle repair shop surrounded by asphalt and concrete surfaces. An aerial photograph, showing the survey area boundaries, and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at

approximately 0.8-foot intervals along north-south trending or east-west trending, generally parallel survey lines, spaced five feet apart. The data were downloaded to a computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on September 27, 2022, using a Geophysical Survey Systems, Inc. (GSSI) SIR 4000 unit equipped with a 350 MHz HS antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the SIR 4000 unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the SIR 4000 unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

•	Geophysical Surveys for on NCD	Underground Stora OOT Projects	ge Tanks
High Confidence	Intermediate Confidence	Low Confidence	No Confidence
Known UST	Probable UST	Possible UST	Anomaly noted but not
Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphalt/concrete patch, etc.	Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The

following table presents the list of EM anomalies and the cause of the metallic response, if known:

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Building	✓
2	Fence	
3	Utility	
4	Reinforced Concrete	✓

All of the EM anomalies were directly attributed to visible cultural features at the ground surface, including a building, a fence, a utility, and reinforced concrete. GPR was performed across and around all sources of significant metallic interference to confirm the presence of reinforcement within the concrete and to confirm that the interference did not obscure any significant structures such as USTs.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as select transect images. All of the transect images are included in **Appendix A**. A total of seven formal GPR transects were performed at the site.

GPR Transects 1-7 were performed across and around areas of significant metallic interference. GPR Transects 2-7 confirmed the presence of reinforcement within the concrete. None of these transects showed evidence of significant structures such as USTs. Evidence of utilities and/or smaller fragments of buried debris was also observed.

Collectively, the geophysical data <u>recorded no evidence of metallic USTs at Parcels 2 & 2A</u>. **Figure 4** provides an overlay of the metal detection results on the NCDOT engineering plans for reference.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcels 2 & 2A in Sylva, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- All of the EM anomalies were directly attributed to visible cultural features at the ground surface.
- GPR was performed across and around all sources of significant metallic interference to confirm the presence of reinforcement within the concrete and to confirm that the interference did not obscure any significant structures such as USTs.
- The geophysical survey identified evidence of utilities and/or smaller fragments of buried debris.
- Collectively, the geophysical data <u>recorded no evidence of metallic USTs at Parcels</u>
 2 & 2A.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Hart & Hickman, P.C. in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

View of Survey Area (Facing Approximately West)

View of Survey Area (Facing Approximately East)


503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

PARCELS 2 & 2A SYLVA, NORTH CAROLINA NCDOT PROJECT R-5600 TITLE

PARCELS 2 & 2A -GEOPHYSICAL SURVEY BOUNDARIES AND SITE PHOTOGRAPHS

DATE	9/30/2022	CLIENT	HART & HICKMAN
PYRAMID PROJECT #:	2022-260		FIGURE 1

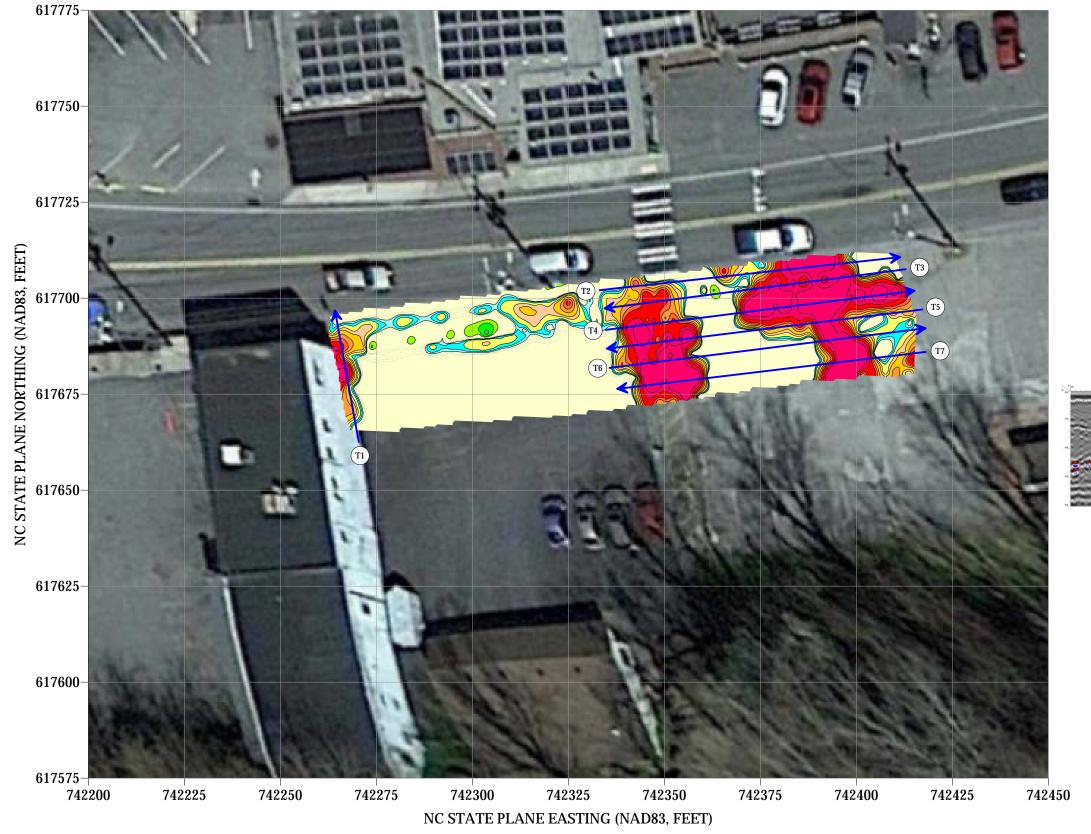
EM61 METAL DETECTION RESULTS

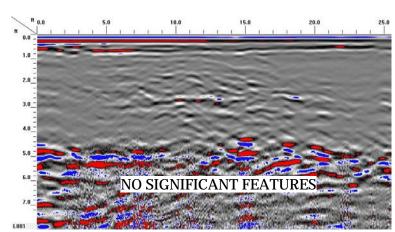
NO EVIDENCE OF METALLIC USTs WAS OBSERVED.

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on September 26, 2022, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI SIR 4000 instrument with a 350 MHz HS antenna on September 27, 2022.

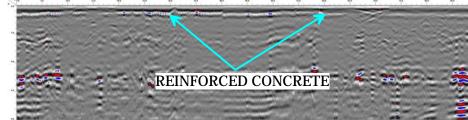
EM61 Metal Detection Response (millivolts)

N


503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT


PARCELS 2 & 2A SYLVA, NORTH CAROLINA NCDOT PROJECT R-5600 TITLE

PARCELS 2 & 2A -EM61 METAL DETECTION CONTOUR MAP

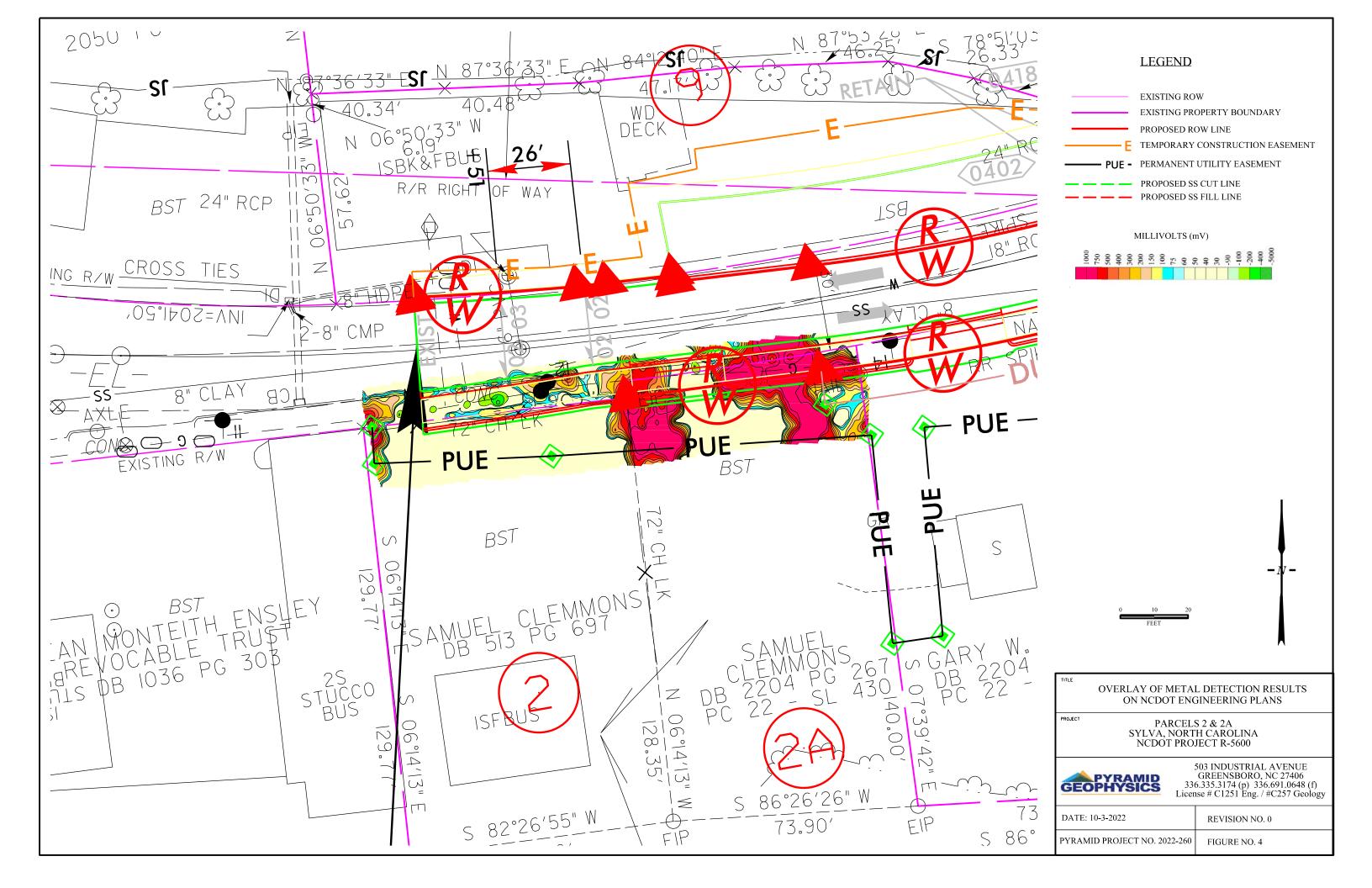

			•
DATE	9/30/2022	CLIENT	HART & HICKMAI
PYRAMID PROJECT #:	2022-260		FIGURE 2

GPR TRANSECT LOCATIONS

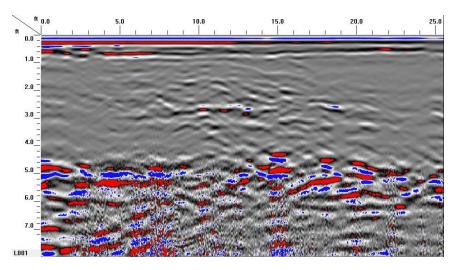
GPR TRANSECT 1 (T1)

GPR TRANSECT 2 (T2)

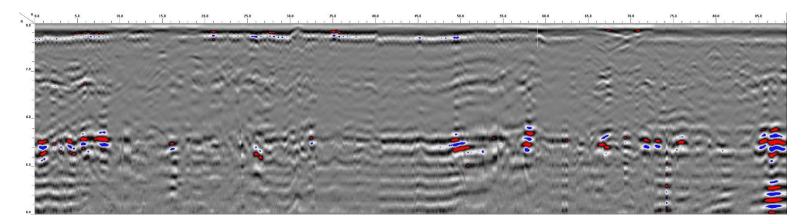
DATE

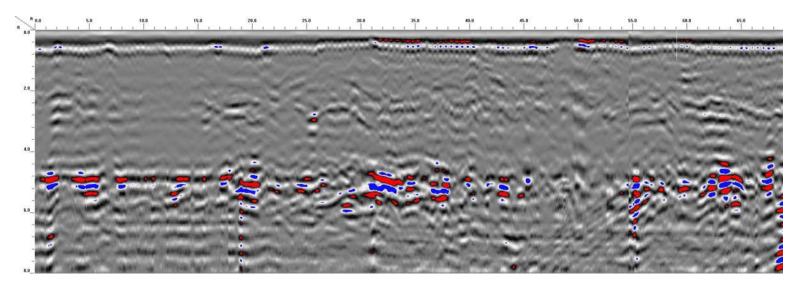

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology

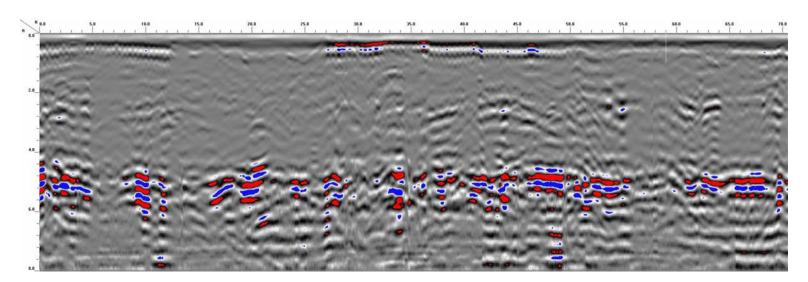
PROJECT

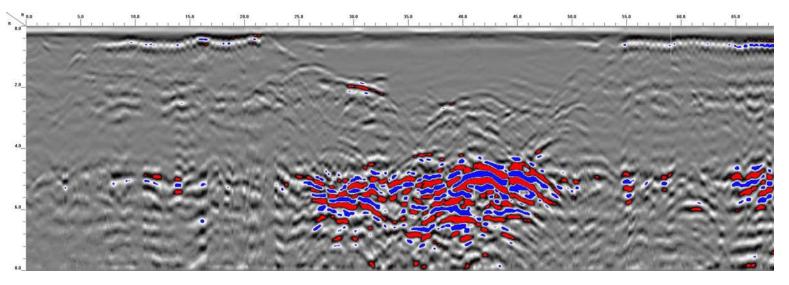

PARCELS 2 & 2A SYLVA, NORTH CAROLINA NCDOT PROJECT R-5600

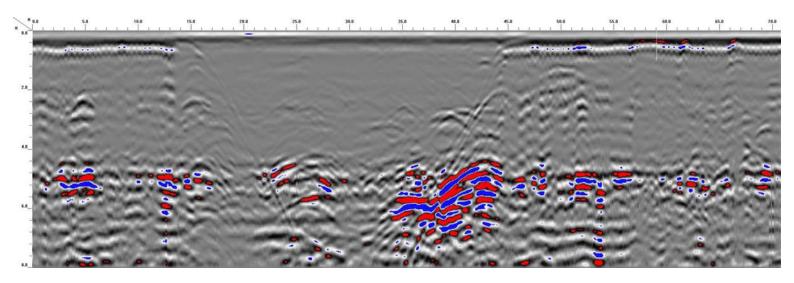
TITLE PARCELS 2 & 2A -GPR TRANSECT LOCATIONS AND SELECT IMAGES

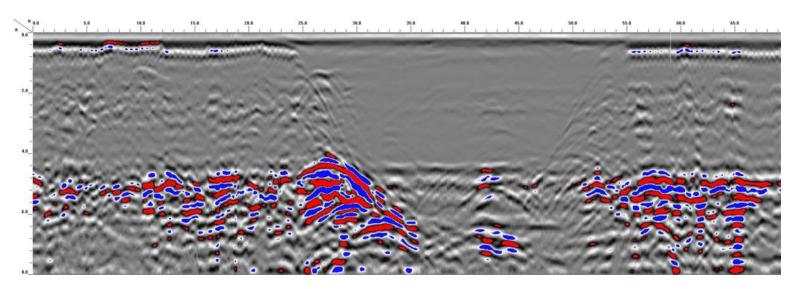

HART & HICKMAN 9/30/2022 PYRAMID PROJECT #: FIGURE 3 2022-260




GPR TRANSECT 1


GPR TRANSECT 2


GPR TRANSECT 3


GPR TRANSECT 4

GPR TRANSECT 5

GPR TRANSECT 6

GPR TRANSECT 7

Appendix C

Soil Boring Logs

Client: NC DOT
Project: ROW-704

Address: Parcel 2A - 413 W. Main Street Sylva,

North Carolina

BORING LOG

Boring No. SB-2A-1

Page: 1 of 1

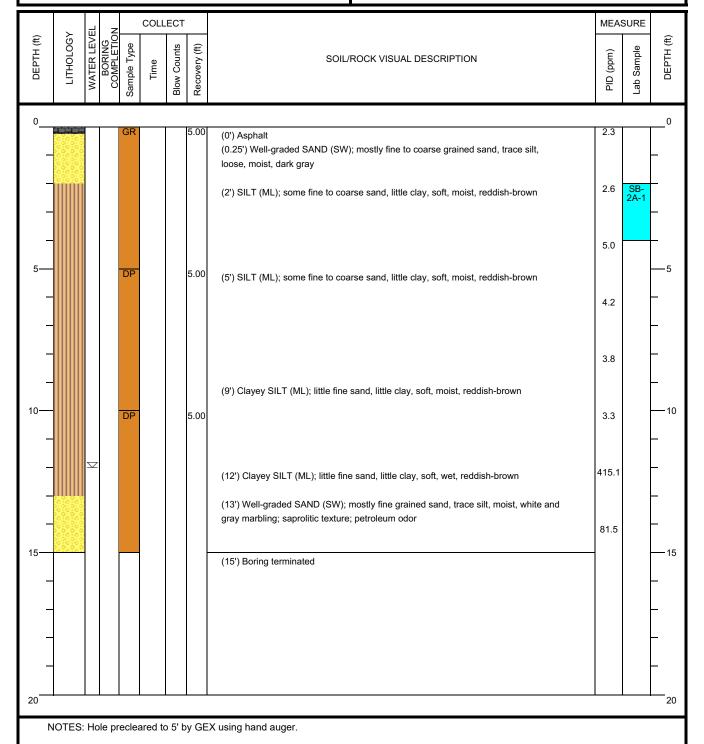
Drilling Start Date: 10/11/22
Drilling End Date: 10/11/22

Drilling Company: GEX

Drilling Method: Direct Push

Drilling Equipment: **GeoProbe 7822 DT**Driller: **David Hall**

Logged By: ABM


Boring Depth (ft): 15.0
Boring Diameter (in): 2.25

Sampling Method(s): Direct Push, Grab

DTW During Drilling (ft): 12.0

DTW After Drilling (ft):
Ground Surface Elev. (ft):

Location (X,Y):

Client: NC DOT Project: **ROW-704**

Parcel 2A - 413 W. Main Street Sylva, Address:

North Carolina

BORING LOG

Boring No. SB-2A-2

Page: 1 of 1

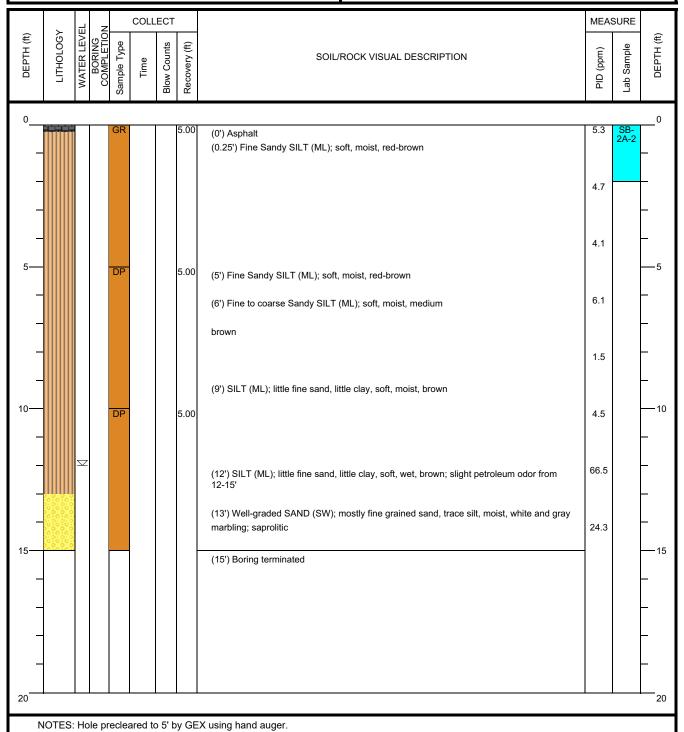
Drilling Start Date: 10/11/22 Drilling End Date: 10/11/22

Drilling Company: GEX Drilling Method: **Direct Push**

Drilling Equipment: GeoProbe 7822 DT

Driller: David Hall

ABM Logged By:


Boring Depth (ft): 15.0 Boring Diameter (in): 2.25

Direct Push, Grab Sampling Method(s):

DTW During Drilling (ft):

DTW After Drilling (ft): Ground Surface Elev. (ft):

Location (X,Y):

Client: NC DOT
Project: ROW-704

Address: Parcel 2A - 413 W. Main Street Sylva,

North Carolina

BORING LOG

Boring No. SB-2A-3

Page: 1 of 1

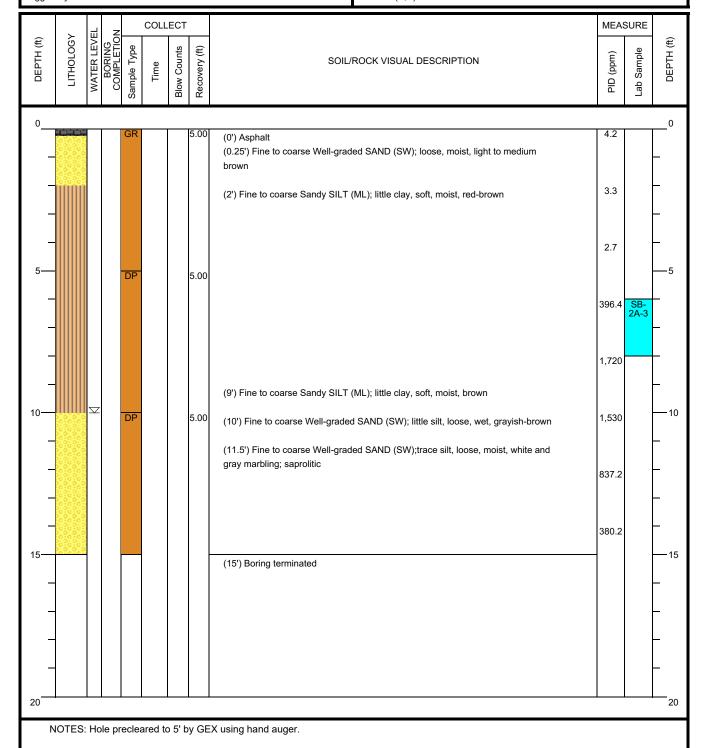
Drilling Start Date: 10/11/22
Drilling End Date: 10/11/22

Drilling Company: GEX

Drilling Method: Direct Push

Drilling Equipment: **GeoProbe 7822 DT**Driller: **David Hall**

Logged By: ABM


Boring Depth (ft): 15.0
Boring Diameter (in): 2.25

Sampling Method(s): Direct Push, Grab

DTW During Drilling (ft): 10.0

DTW After Drilling (ft):
Ground Surface Elev. (ft):

Location (X,Y):

Appendix D

Laboratory Analytical Report

Hydrocarbon Analysis Results

Client: HART & HICKMAN

Address: 2923 SOUTH TRYON ST. SUITE 100

CHARLOTTE NC 28203

Samples taken Samples extracted Samples analysed

Tuesday, October 11, 2022 Tuesday, October 11, 2022

Friday, October 14, 2022

Contact: DAVE GRAHAM Operator TORI KELLY

Project: ROW.704

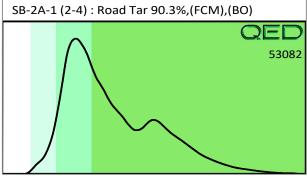
													U04049
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	Ratios			HC Fingerprint Match
										% light	% mid	% heavy	
S	SB-2A-1 (2-4)	21.3	<0.53	<0.53	58.5	58.5	28.2	3.1	0.066	0	84.5	15.5	Road Tar 90.3%,(FCM),(BO)
S	SB-2A-2 (0-2)	23.4	<0.59	<0.59	0.71	0.71	<0.12	<0.19	<0.023	0	71.6	28.4	V.Deg.PHC 83.3%,(FCM)
S	SB-2A-3 (6-8)	264.0	<6.6	73	87.5	160.5	11.8	<2.1	<0.26	98.5	0.9	0.6	Deg.Diesel 72.4%,(FCM)
		alibratar (Cinc. I F				07.2.0/

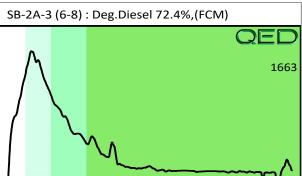
Initial Calibrator QC check OK

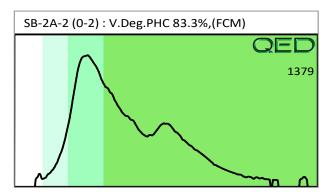
Final FCM QC Check OK

97.3 %

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content


Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library


(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present


Friday, October 14, 2022

ROW.704

Project:

									-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Client Name:	2923 S. Tr	gon St. Ste	100				à	RED La	ıb, LLC twatch V	Vav	
Address:		NC 28203	1		120 (100 (100)		TM	Suite F	twaton v	vay	
Contact:	Dave Gra					DL		Wilming	gton, NC	28412	
Project Ref.:	ROW.7]							analyzed for	
Email:		a hart hick	inancom	entertainment terminal continue			Name and the same and the same as	1.00	GRO, DRO, TI nd BaP. Stand	PH, PAH total dard GC	
Phone #:		7-4630		RAPI	D ENVII	RONMENTAL DIA	AGNOSTICS	Analyses are	e for BTEX an	d Chlorinated	
Collected by:	Adam	michelak							Solvents: VC, 1,1 DCE, 1,2 cis DCE, 1,2 trans DCE, TCE, and PCE. Specify target analytes in the space provided below		
Collected by.			CHAIN	OF CU	STODY	AND ANALYTI	CAL REQUEST FORM				
Sample Collection	TAT Re	quested	Analys	is Type			C	T-4-1 \0/4	Town NA/A	Camania Mit	
Date/Time	24 Hour	48 Hour	UVF	GC	Initials	γ 6	Sample ID	lotal wt.		Sample Wt.	
10/11/22 1500		X	X		AM	SB-ZA-1 Q-4		53.0		12.1	
10/11/22 1530			1			SB-2A-2 (C-2))	55.0	43.9	16.1	
10/11/22 1600		V	V		V	SB-2A-3 (6-8)	52.3	39.5	12.8	
			-	<u> </u>		*/		-			
											
		<u> </u>									
		-		<u> </u>				 		<u> </u>	
		-		<u> </u>						_	
				<u> </u>							
	_	-						 		 	
	-	-		 				 		<u> </u>	
					-						
*			-		-						
			-								
	_			_							
	-	-	-								
CONANAENTS (DEO	LIECTC.					TARCET COUNT AN	IAIVTCO.				
COMMENTS/REQ	DESIS: KA	eport to	MOLS &	J'flags		TARGET GC/UVF AN	ialies:	v			
Relino	uished by				Acce	pted by	Date/Time		D Lab USE	ONLY	
Ada	m Micha	lah			Feel	EX	10/13/22 1100	MOO			
	uished by					pted by	Date/Time	Dog!	118)	
					M	11) 10/14/2	1050	Ref. No	10	/	
					, 0	V					

Via NC DOT FTS

November 30, 2022

NC DOT Geotechnical Unit GeoEnvironmental Section 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Attention: Mr. Ashley Cox, LG

Re: Phase II Investigation Report – Parcel 24

> NC DOT State Project No. R-5600 WBS Element No. 45818.1.FR1

Sylva, Jackson County, North Carolina

H&H Job No. ROW-704

Dear Ashley:

Please find the attached PDF copy of the Phase II Investigation report for the Alpine Sylva, LLC property (Parcel 24) located in Sylva, Jackson County, North Carolina. Please return via DocuSign for final signatures. If you have any questions or need additional information, please contact us at (704) 586-0007.

Sincerely,

Hart & Hickman, PC

David Graham, PG

Senior Project Geologist

Matt Bramblett, PE

Matt framblett

Principal

Attachment

Phase II Investigation NC DOT Parcel 24

28 W. Main St. Sylva, Jackson County North Carolina

H&H Job No. ROW-704 State Project: R-5600 WBS Element No. 45818.1.FR1 November 30, 2022

#C-1269 Engineering #-245 Geology

Phase II Investigation – Parcel 24 28 W. Main St. Sylva, Jackson County North Carolina H&H Job No. ROW-704

Table of Contents

Secti	<u>Pa</u>	<u>age No.</u>
1.0	Introduction and Background	1
2.0	Geophysical Survey	2
3.0	Soil Assessment	2
3.	.1 Soil Sampling	2
3.2	.2 Soil Analytical Results	4
4.0	Groundwater Assessment	5
4.	.1 Groundwater Sampling	5
4.2	.2 Groundwater Analytical Results	6
5.0	Summary and Regulatory Considerations	7
6.0	Signature Page	8

List of Tables

Table 1	Soil Boring and Monitoring Well GPS Coordinate Data
Table 2	Soil Analytical Results
Table 3	Summary of Well Construction and Water Level Data
Table 4	Summary of Groundwater Analytical Results

List of Figures

Figure 1	Site Location Map
Figure 2	Site Map and Soil Analytical Results
Figure 3	Groundwater Analytical Results

List of Appendices

Appendix A	NC DOT Preliminary Plan
Appendix B	Pyramid Geophysical Survey Report
Appendix C	Soil Boring Logs, Well Construction Record, and Well Abandonment Record
Appendix D	Laboratory Analytical Report
Appendix E	Groundwater Sampling Records

Phase II Investigation – Parcel 24 28 W. Main St. Sylva, Jackson County North Carolina H&H Job No. ROW-704

1.0 Introduction and Background

Hart & Hickman, PC (H&H) has prepared this Phase II Investigation (Phase II) report documenting assessment activities performed at the Alpine Sylva, LLC property (Parcel 24) located at 28 W. Main St. in Sylva, Jackson County, North Carolina. This assessment was conducted on behalf of the North Carolina Department of Transportation (NC DOT) in accordance with H&H's August 17, 2022 proposal.

This assessment was conducted to evaluate the potential for underground storage tank (UST) systems and impacted soil and groundwater in proposed right-of-way and construction easement areas on Parcel 24 related to proposed road improvements along W. Main St. and Asheville Highway (Hwy 23) to the east of the site (State Project R-5600). This NC DOT road improvement project includes new curb and gutters, stormwater drainage piping, sidewalks, etc. Parcel 24 is currently an unoccupied vacant lot with asphalt parking, concrete slabs (former building footprint), and grassy areas. A site location map is included as Figure 1, and a site map is presented as Figure 2. NC DOT's plan sheet depicting Parcel 24 is included in Appendix A.

H&H searched the North Carolina Department of Environmental Quality (NC DEQ) Laserfiche website and NC DEQ UST databases for incident files related to the Parcel 24 property address to better target UST system areas and to check for previously reported impacts. No UST Incident files were identified for Parcel 24 on NC DEQ's Laserfiche website. Based on the NC DEQ Registered Tank Database, there were no USTs registered on the property for Parcel 24. One permanent monitoring well (MW-Parcel 24) is located near the center of the property within proposed DOT work areas. According to Maura Clark, Incident Manager with the NC DEQ UST section, the site was formerly occupied by the Sylva Gulf Station (formerly identified as 54 W. Main Street). One 2,000-gallon gasoline UST and two 3,000-gallon gasoline USTs were removed from the site in

December 1990. No release was reported at the site. No UST incident files are available for the former Sylva Gulf Station.

The Phase II assessment activities conducted by H&H on Parcel 24 are discussed below.

2.0 Geophysical Survey

Prior to advancing soil borings, H&H reviewed the results of a geophysical survey performed on Parcel 24 by Pyramid Geophysical Services (Pyramid) on September 26 through September 28, 2022. Pyramid utilized electromagnetic (EM) induction-metal technology and ground penetrating radar (GPR) technology to identify potential geophysical anomalies and potential USTs at the site. A total of seven EM anomalies were identified. Certain EM anomalies were attributed to known surface metallic objects such as reinforced concrete or above-ground metal structures (i.e. drop inlets, metal sign, etc.) that were not characteristic signatures of USTs. However, the EM/GPR survey detected one probable and one possible UST on Parcel 24. The probable UST dimensions are approximately 9.5 ft long by 5.5 ft wide, and the possible UST is approximately 9.5 ft long by 5.5 ft wide. There were no visual indications of the probable and possible USTs. Pyramid's report, including figures depicting the results of the EM/GPR survey, is provided in Appendix B.

3.0 Soil Assessment

3.1 Soil Sampling

H&H contracted with Geologic Exploration, Inc. (GEX) of Statesville, North Carolina to advance soil borings on Parcel 24. On October 12, 2022, eight soil borings (SB-24-1 through SB-24-8) were advanced by GEX on Parcel 24 near the probable and possible USTs and within the proposed right of way and the easement areas using a direct push technology (DPT) drill rig. Prior to conducting soil borings, underground utilities were marked by the NC 811 public utility locator and by Pyramid for private underground utilities. Borings were also cleared to five feet by hand auger prior to using the DPT rig.

The soil borings were advanced to depths ranging from 3 ft to 15 ft below ground surface (bgs). Shallow groundwater was encountered at approximately 3.5 to 6 ft bgs in several borings at the site at the time of our assessment. A temporary monitoring well (TMW-1) was installed in boring SB-24-5 to evaluate shallow groundwater near the potential USTs noted above (see Section 4.0 below). To facilitate the selection of soil samples for laboratory analysis, soil from each boring was field screened continuously for the presence of volatile organic compounds (VOCs) with a photoionization detector (PID). Additionally, H&H observed the soil for visual and olfactory indications of impacts. Based on field screening, there were indications of potential impacts in borings SB-24-5 and SB-24-6. PID readings were significantly higher in the capillary fringe near the water table in borings SB-24-5 and SB-24-6. Soil samples were collected at various depth intervals between 0 ft and 4 ft bgs. Soil boring logs are included in Appendix C. GPS coordinate data for the soil borings and temporary/existing monitoring wells are summarized in Table 1, and the boring locations are shown on Figure 2.

H&H submitted a total of eight soil samples from borings SB-24-1 through SB-24-8 on Parcel 24 for laboratory analysis. The soil samples were placed into laboratory supplied sample containers using nitrile glove-covered hands. The containers were then labeled as to content, analyses requested, sample date and time, and sampler's name. The samples were placed in an iced cooler upon collection and were subsequently submitted to Red Lab, LLC of Wilmington, NC under standard chain-of-custody protocol for analysis of total petroleum hydrocarbons (TPH) as gasoline-range organics (GRO) and diesel-range organics (DRO) using QED ultraviolet fluorescence (UVF) technology. Soil sample depths and analytical results are summarized in Table 2. Laboratory analytical data sheets and chain-of-custody documentation are provided in Appendix D. The analytical results are discussed below.

Upon completion of soil sampling activities the soil borings were filled with bentonite pellets and patched with asphalt or soil to match the existing ground surface.

3.2 Soil Analytical Results

Concentrations of TPH DRO (ranging from 1.3 mg/kg to 1,143 mg/kg) were detected in soil samples collected from borings SB-24-2 through SB-24-8. Concentrations of TPH GRO (6.6 mg/kg and 143.6 mg/kg) were detected in borings SB-24-6 and SB-24-5, respectively. TPH DRO and GRO concentrations exceed the NC DEQ Action Levels of 100 mg/kg and 50 mg/kg, respectively, in soil sample SB-24-5 (2-3 ft). TPH data are depicted on Figure 2.

Based on the above soil sample results, H&H estimates the following amount of impacted soil above the NC DEQ Action Levels is present on Parcel 24:

 H&H estimates there are roughly 200 cubic yards (300 tons) of soil impacted with TPH DRO and GRO between the surface and 5 ft near boring SB-24-5, near the probable and possible USTs.

The estimated depth of impacted soils is based on field screening results up to the approximate water table. However, field screening and lab results did not provide information that fully defines the impacted soil interval or extent. Therefore, impacts may extend beyond the depths and amounts indicated above. The approximate area of impacted soil is shown on Figure 2.

Although laboratory analytical results indicate soil impacts below NC DEQ Action Levels in SB-24-6, significant PID readings from the boring indicate the potential for soil impacts below 2 ft bgs. The elevated PID readings are likely due to impacted groundwater and historical groundwater table fluctuations creating a contamination smear zone near the water table. If impacted soil is encountered on Parcel 24 during the NC DOT construction activities, it should be properly managed and disposed at a permitted facility.

4.0 Groundwater Assessment

4.1 Groundwater Sampling

Upon completion of soil sampling activities, impacted soil boring SB-24-5 was converted into temporary monitoring well TMW-1. As noted above, H&H identified existing monitoring well MW-Parcel 24 near the center of proposed NC DOT right of way and construction easement areas on Parcel 24 during Phase II field activities at the site. The monitoring well tag located in MW-Parcel 24 indicated that the well was installed to a total depth of 14 ft bgs with a screened interval from 4 ft bgs to 14 ft bgs. Based on conversations between H&H and NC DOT, H&H sampled MW-Parcel 24.

Temporary well TMW-1 was installed in soil boring SB-24-5 using the DPT macrocore sampler. The temporary monitoring well was installed to a total depth of 8 ft bgs with 3 ft of one-inch diameter PVC well casing and 5 ft of 0.010-inch slotted PVC pre-packed well screen set to bracket the water table. Additional sand filter pack was placed from the bottom of the well boring to approximately 1 ft above the top of the well screen, and up to 1ft of bentonite was placed above the sand.

Once the monitoring well was installed, H&H developed the well by removing 3 to 5 well volumes. After development activities, the well was allowed to equilibrate, and an electronic water level indicator was used to measure the depth to groundwater relative to the top of casing. The depth to water was approximately 5.71 ft bgs in TMW-1 and 2.84 ft bgs in MW-Parcel 24. Therefore, the water table was approximately 3 to 6 ft below grade in these two wells. Monitoring well construction data and water level data are included in Table 3.

Groundwater samples were then collected from TMW-1 and MW-Parcel 24 utilizing low-flow/low stress purging techniques using a peristaltic pump and dedicated polyethylene tubing. Groundwater was removed at a rate no greater than 200 milliliters per minute. H&H utilized a water quality meter to collect measurements of pH, temperature, dissolved oxygen, oxidation reduction potential (ORP), turbidity, and specific conductivity at various intervals during the purging process. Purging was considered complete when the parameters stabilized (pH \pm 0.1

SU, conductivity varied no more than 5%) or the well was purged dry (TMW-1) due to slow recharge.

The groundwater samples were then collected directly into laboratory-supplied sample containers. The samples were delivered to Waypoint Analytical under standard chain of custody protocol for analysis of VOCs by EPA Method 8260 and polynuclear aromatic hydrocarbons (PAHs) using EPA Method 8270. The groundwater sample analytical results are summarized in Table 4. Groundwater Sampling Records are included in Appendix E.

Upon completion of groundwater sampling activities, temporary groundwater monitoring well TMW-1 was abandoned in accordance with NC DEQ guidelines, and the surface was patched with asphalt to match the existing ground surface. The well boring log, well construction record, and well abandonment record for TMW-1 are included in Appendix C.

4.2 Groundwater Analytical Results

Low level concentrations of petroleum-related VOCs and PAHs were detected in the groundwater samples collected from wells TMW-1 and MW-Parcel 24. Concentrations of naphthalene (9.52 μ g/L and 25.7 μ g/L) were detected in MW-Parcel 24 and TMW-1, respectively, above the 2L Standard of 6 μ g/L for naphthalene. A concentration of 1-methylnaphthalene (17.5 μ g/L) was also detected in TMW-1 above its 2L Standard of 1 μ g/L. No other detected VOCS or PAHs exceeded the 2L Standards.

Based on laboratory analytical results for wells TMW-1 and MW-Parcel 24, groundwater is impacted above 2L Standards and/or NC Surface Water Criteria at the site. If impacted groundwater is encountered and dewatering activities are required during NC DOT construction activities, the groundwater should be properly managed via NPDES permitted discharge or containerization and disposal at a permitted facility. A rough estimate of the horizontal extent of impacted groundwater is shown on Figure 3, but this extent is not based on actual data.

5.0 Summary and Regulatory Considerations

H&H has reviewed available NC DEQ files, geophysical survey results, and analytical results of soil and groundwater samples collected at the Parcel 24 property located at 28 W. Main St. in Sylva, Jackson County, North Carolina. Parcel 24 is currently an unoccupied vacant lot with asphalt parking, concrete slabs, and grassy areas. According to information provided by NC DEQ, the site was formerly occupied by the Sylva Gulf Station. Three gasoline USTs were removed from the site in December 1990. No release was reported at the site. No UST incident files are available for the former Sylva Gulf Station. One existing permanent monitoring well is located near the center of the property within proposed NC DOT work areas.

Based on the geophysical survey, one probable UST and one possible UST are located on the eastern portion of Parcel 24 within proposed NC DOT work areas. Analytical results of soil samples collected by H&H indicate concentrations of TPH DRO and/or GRO above the NC DEQ Action Levels in one soil sample (SB-24-5 2-3 ft) collected on Parcel 24. Based on field screening and laboratory analytical results, H&H estimates there are roughly 200 cubic yards (300 tons) of soil impacted with TPH DRO and GRO between the surface and 5 ft near boring SB-24-5 which is adjacent to the probable and possible USTs. Analytical results of groundwater samples collected from one temporary monitoring well and one permanent monitoring well indicate concentrations of petroleum-related constituents above the 2L Standards and /or NC surface water criteria on Parcel 24.

NC DOT plans indicate a proposed cut/fill and installation of storm drainage piping as part of road improvement activities in proposed NC DOT work areas near Parcel 24. Impacted media encountered during road construction activities should be properly managed and disposed at a permitted facility. If impacted groundwater is encountered and dewatering activities are required during NC DOT construction activities, the groundwater should be characterized and properly managed via NPDES permit or disposed at permitted facility. The depth to water ranged from approximately 3 ft to 6 ft below grade at the time of H&H's assessment. If a UST is encountered during construction activities, the UST system(s) and their contents should be removed in accordance with NC DEQ regulations and be properly disposed.

6.0 Signature Page

This report was prepared by:

David Graham

12/05/2022

9F6FAD6E6BA34BE.

David Graham, PG Senior Project Geologist for Hart & Hickman, PC SEAL 2535

This report was reviewed by:

Matt Bramblett, PEA88CDF0E547B.

Principal and Project Manager for

Hart & Hickman, PC

Not considered final unless all signatures are completed.

Table 1 (Page 1 of 1) Soil Boring and Monitoring Well GPS Coordinate Data NC DOT Parcel 24 Sylva, Jackson County, North Carolina H&H Job No. ROW-704

Sample ID	Latitude	Longitude
SB-24-1	35.374940	-83.214016
SB-24-2	35.374888	-83.213897
SB-24-3	35.374968	-83.213878
SB-24-4	35.374867	-83.213745
SB-24-5/TMW-1	35.374894	-83.213657
SB-24-6	35.374943	-83.213634
SB-24-7	35.375076	-83.213423
SB-24-8	35.375202	-83.213374
MW-Parcel 24	35.374875	-83.213778

Notes:

GPS coordinate data points collected using a Trimble GeoExplorer 6000 series unit with external satellite for increased accuracy.

Table 2 (Page 1 of 1) Soil Analytical Results NC DOT Parcel 24 Sylva, Jackson County, North Carolina H&H Job No. ROW-704

Sample ID	SB-24-1	SB-24-2	SB-24-3	SB-24-4	SB-24-5	SB-24-6	SB-24-7	SB-24-8	
Sample Depth (ft)	2-4	0-2	0-2	0-2	2-3	2-3	2-3	2-3	Action Levels
Sample Date	10/12/2022	10/12/2022	10/12/2022	10/12/2022	10/12/2022	10/12/2022	10/12/2022	10/12/2022	
TPH DRO/GRO (UVF) (mg/kg)									
Diesel-Range Organics (DRO)	< 0.5	31.5	10.4	8.5	1,143	52.8	1.3	17.1	100
Gasoline-Range Organics (GRO)	< 0.5	< 0.61	< 0.52	< 0.53	143.6	6.6	<0.58	< 0.52	50

Notes:

UVF = QED Ultraviolet Fluorescence Technology **Bold** values exceed NCDEQ Action Levels.

TPH = Total Petroleum Hydrocarbons

DRO = Diesel Range Organics

GRO = Gasoline Range Organics

Table 3 (Page 1 of 1) Summary of Well Construction and Water Level Data NC DOT Parcel 24 Sylva, Jackson County, North Carolina H&H Job No. ROW-704

Monitoring Well ID	Screened Interval (ft bgs)	Total Depth (ft bgs)	Depth to Water (ft bgs)
MW-Parcel 24*	4-14	10.95	2.84
TMW-1	3-8	9.71	5.71

Notes:

bgs = below ground surface

^{* =} Existing monitoring well installed by others. Data obtained from well tag.

Table 4 (Page 1 of 1) Summary of Groundwater Analytical Results NC DOT Parcel 24 Sylva, Jackson County, North Carolina H&H Job No. ROW-704

Sample ID Date	MW-Parcel 24 10/19/2022	TMW-1 (24) 10/14/2022	NC 2L Standards ¹	NC UST GCL ²	NC 2B Standards ³	Water Quality Criteria ⁴
Units			μg/	L		
VOCs (8260)						
Benzene	0.570	0.266 J	1	5,000	51	NE
n-Butylbenzene	1.01	0.439 J	70	5,900	NE	3.9
sec-Butylbenzene	1.76	2.30	70	8,800	NE	NE
tert-Butylbenzene	2.50	1.59 J	70	14,750	NE	NE
Ethylbenzene	46.1	1.25	600	80,000	NE	97
Isopropylbenzene	6.25	1.48 J	70	30,500	NE	250
Naphthalene	9.52	<u>25.7</u>	6	6,000	NE	12
n-Propylbenzene	8.31	1.06	70	26,100	NE	80
Toluene	<0.220	0.239 J	600	260,000	0.36	NE
<u>PAHs (8270)</u>						
1-Methylnaphthalene	<7.55	<u>17.5</u>	1	1,000	NE	2.6
2-Methylnaphthalene	<7.13	9.20 J	30	12,000	NE	85
Naphthalene	<8.12	<u>15.1</u>	6	6,000	NE	12

Notes:

- 1) NC DEQ 15A NCAC 2L .0202 Groundwater Quality Standards (2L Standards) (April 2022).
- 2) NC DEQ Division of Waste Management (DWM) Underground Storage Tank (UST) Section, Gross Contamination Levels (GCLs) for Groundwater (September 2022).
- 3) NC DEQ Water Quality Standards for Surface Waters Class C/Trout (Tr) (July 2021).
- 4) Lower of EPA Recommended Water Quality Criteria for Aquatic Life & Human Health Class C/Tr or NC In-Stream Target Values for Surface Water Class C/Tr (July 2021).

The nearest discharge is to a Class C/Tr surface water body (Cope Creek). Based on the classification of the receiving water body, surface water standards and criteria are based on Class C/Tr surface water standards.

Bold concentrations exceed the 2L Standard.

<u>Underlined</u> concentrations exceed surface water quality criteria.

Only constituents detected in at least one sample are shown.

EPA Method follows parameter in parentheses.

VOCs = volatile organic compounds; PAHs = polynuclear aromatic hydrocarbons

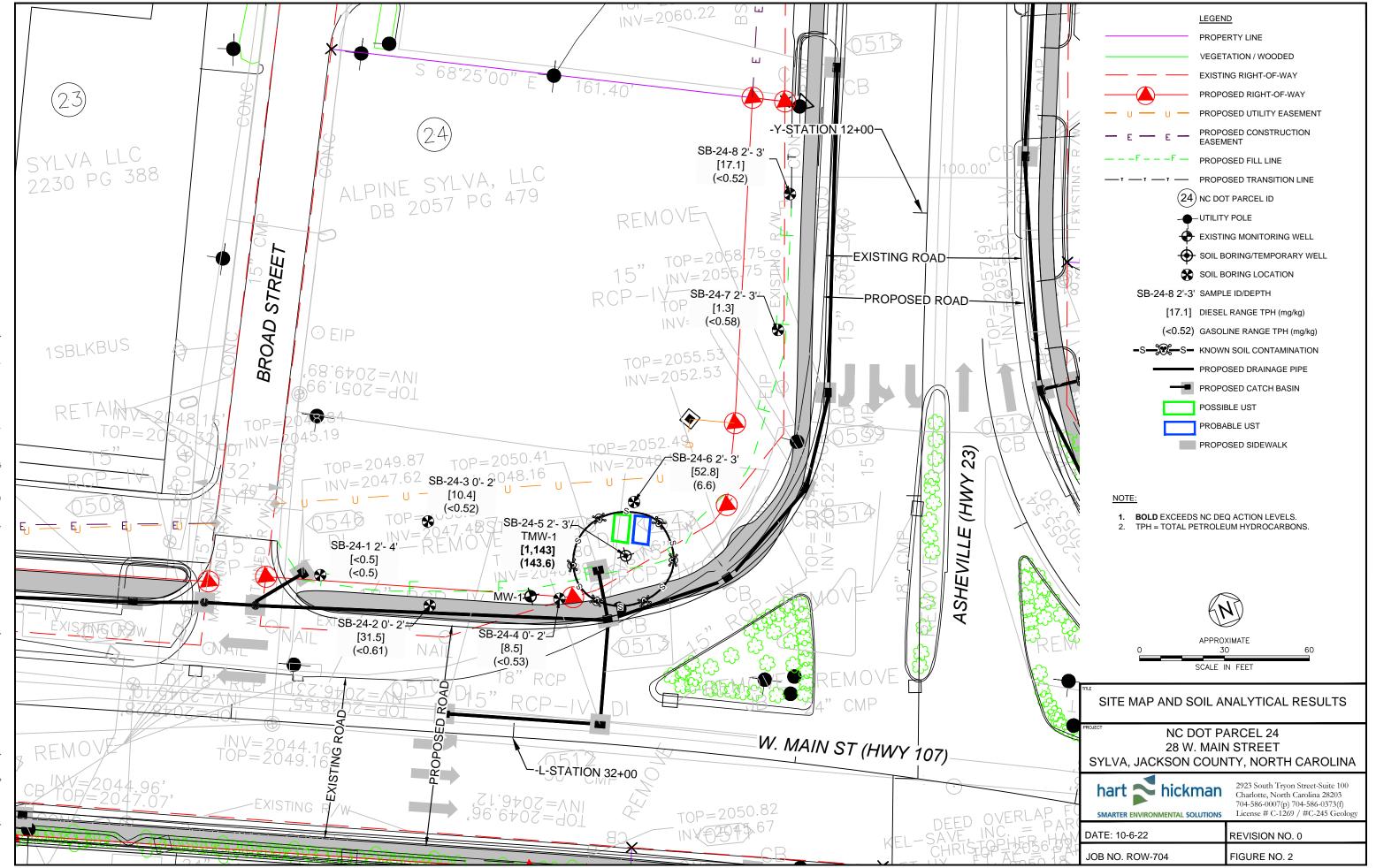
NE = not established

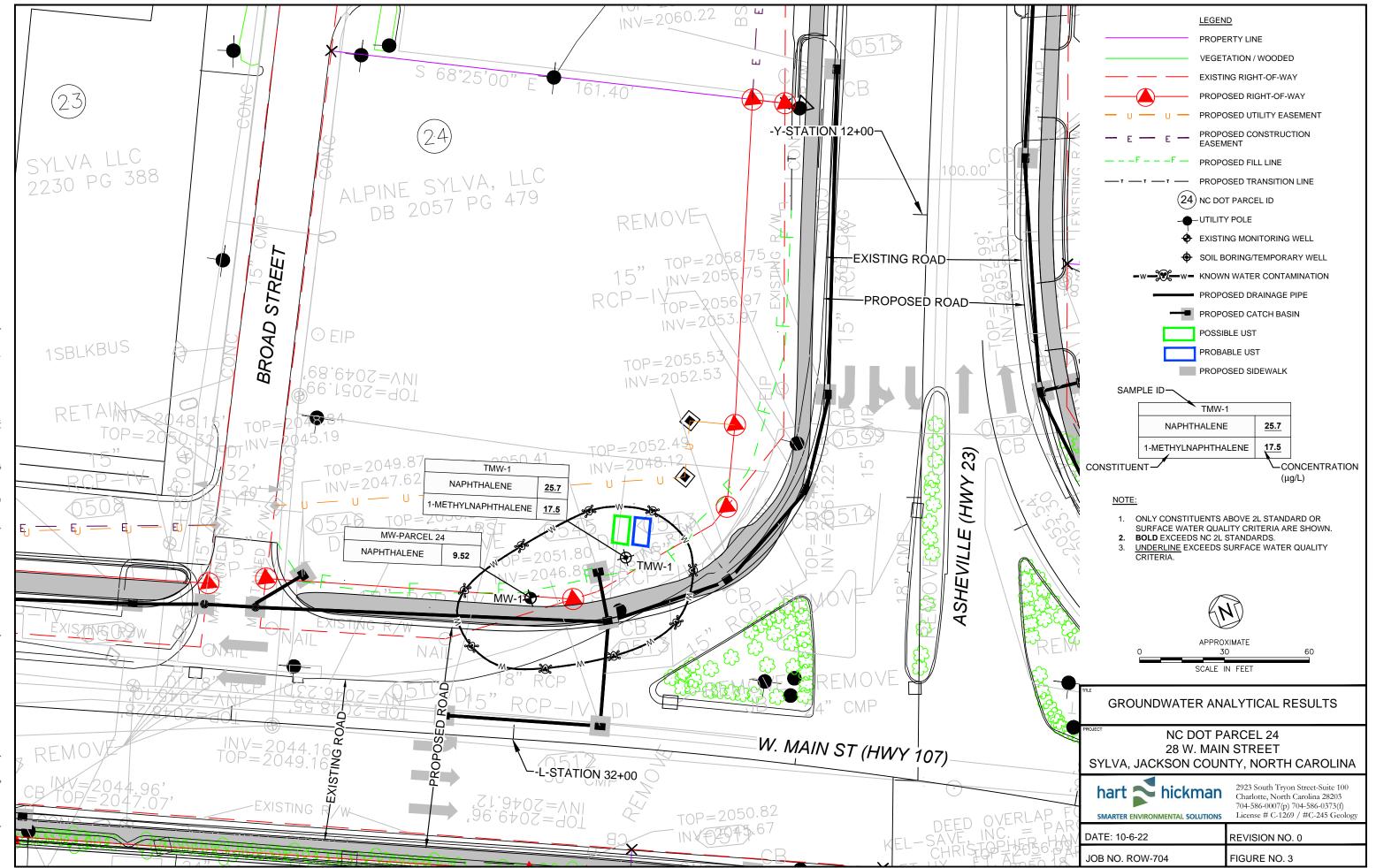
J = estimated value above the method detection limit but below the reporting limit

Path: S.AAA-Master ProjectsINC DOT Right-of-Way -ROW/ROW-700s\ROW-704 Jackson County Phase lisiFIGURES/PARCEL 24|Figure-1_PARCEL 24,mx

U.S.G.S. QUADRANGLE MAP

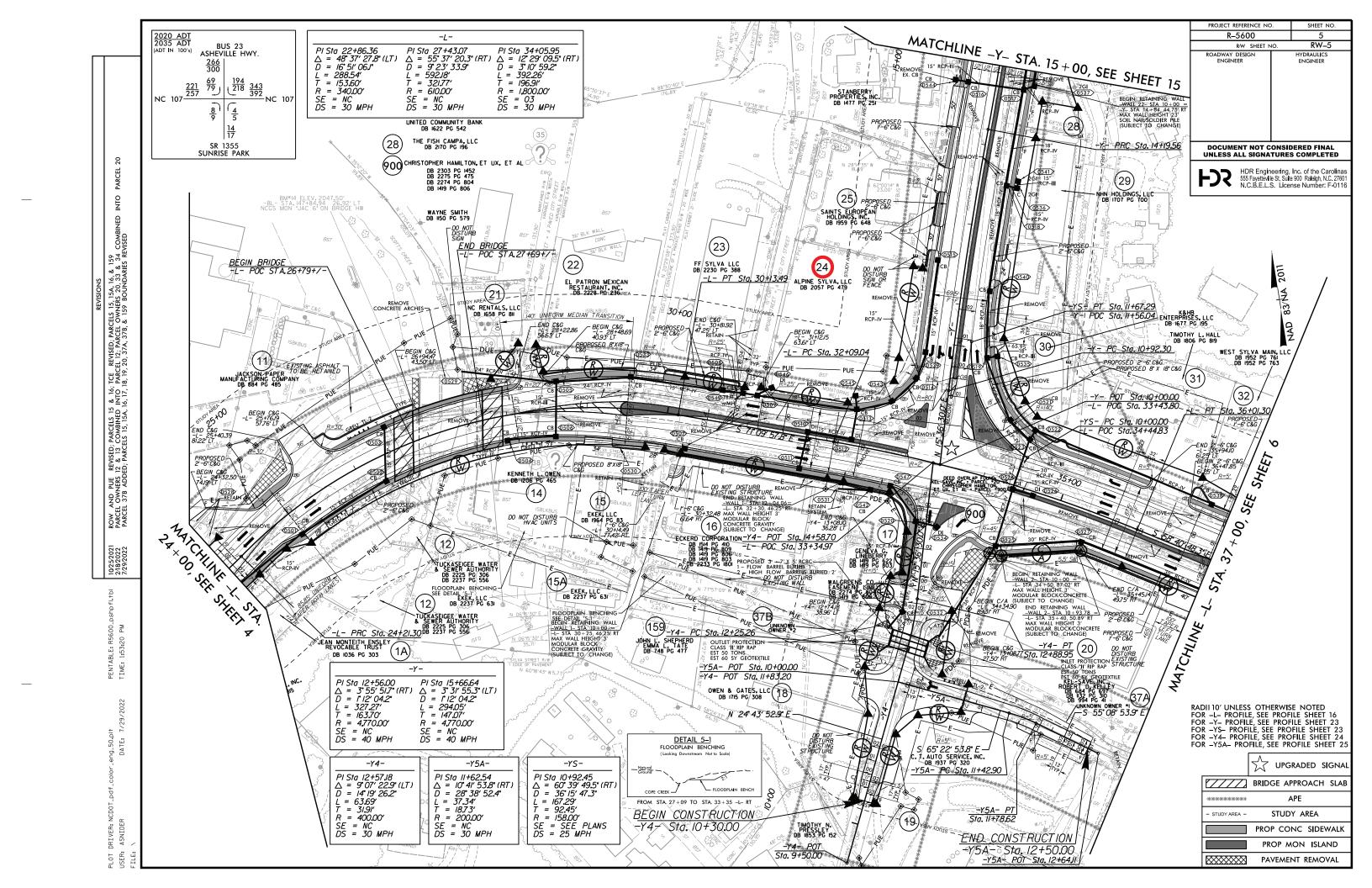
SYLVA NORTH, NORTH CAROLINA 2022


QUADRANGLE 7.5 MINUTE SERIES (TOPOGRAPHIC)


NCDOT PARCEL 24 28 W MAIN ST SYLVA, NORTH CAROLINA

2923 South Tryon Street - Suite 100 Charlotte, North Carolina 28203 704-586-0007 (p) 704-586-0373 (f) License # C-1269 / # C-245 Geology

DATE: 10-5-22	REVISION NO: 0
JOB NO: ROW-704	FIGURE NO: 1



Appendix A

NC DOT Preliminary Plan

Appendix B

Pyramid Geophysical Survey Report

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2022-260)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 24 NCDOT PROJECT R-5600 (45818.1.FR1)

28 WEST MAIN STREET, SYLVA, NC

October 21, 2022

Report prepared for: David Graham, P.G.

Hart & Hickman, P.C.

2923 South Tryon Street, Suite 100

Charlotte, NC 28203

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by:

Douglas A. Canavello, P.G. NC License #1066

GEOPHYSICAL INVESTIGATION REPORT

Parcel 24 - 28 West Main Street Sylva, Jackson County, North Carolina

Table of Contents

Executive Summary	1
Introduction	
Field Methodology	2
Discussion of Results	
Discussion of EM Results	3
Discussion of GPR Results	
Summary & Conclusions	
Limitations	

Figures

- Figure 1 Parcel 24 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 24 EM61 Metal Detection Contour Map
- Figure 3 Parcel 24 GPR Transect Locations and Select Images
- Figure 4 Parcel 24 Locations and Sizes of One Probable UST and One Possible UST
- Figure 5 Overlay of Metal Detection Results & One Probable and One Possible UST on NCDOT Engineering Plans

Appendices

Appendix A – GPR Transect Images

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	Dual Frequency
EM	Electromagnetic
GPR	Ground Penetrating Radar
GPS	Global Positioning System
NCDOT	North Carolina Department of Transportation
ROW	
UST	Underground Storage Tank

Project Description: Pyramid Geophysical Services (Pyramid), a department within Pyramid Environmental & Engineering, P.C., conducted a geophysical investigation for Hart & Hickman, P.C. (Hart & Hickman) at Parcel 24, located at 28 West Main Street, in Sylva, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project R-5600). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from September 26-28, 2022, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of seven EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. GPR was performed across and around all sources of significant metallic interference to confirm the presence of reinforcement within the concrete and to confirm that the interference did not obscure any significant structures such as USTs. The geophysical survey identified evidence of utilities and/or smaller fragments of buried debris. Additionally, evidence or reinforcement beneath the asphalt was observed.

One probable and one possible UST were observed in the southeastern portion of the parcel. Probable UST #1 is approximately 9.5 feet long by 5.5 feet wide. Possible UST #1 is approximately 9.5 feet long by 5.5 feet wide. Collectively, the geophysical data recorded evidence of one probable and one possible UST at Parcel 24.

INTRODUCTION

Pyramid Geophysical Services (Pyramid), a department within Pyramid Environmental & Engineering, P.C., conducted a geophysical investigation for Hart & Hickman, P.C. (Hart & Hickman) at Parcel 24, located at 28 West Main Street, in Sylva, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project R-5600). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from September 26-28, 2022, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site consisted of a former building foundation surrounded by asphalt and grass surfaces. An aerial photograph, showing the survey area boundaries, and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at

approximately 0.8-foot intervals along north-south trending or east-west trending, generally parallel survey lines, spaced five feet apart. The data were downloaded to a computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on September 28, 2022, using a Geophysical Survey Systems, Inc. (GSSI) SIR 4000 unit equipped with a 350 MHz HS antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the SIR 4000 unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the SIR 4000 unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tanks on NCDOT Projects					
High Confidence	Intermediate Confidence	Low Confidence	No Confidence		
Known UST	Probable UST	Possible UST	Anomaly noted but not		
Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphalt/concrete patch, etc.	Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.		

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The

following table presents the list of EM anomalies and the cause of the metallic response, if known:

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Drop Inlet	
2	Reinforced Concrete	✓
3	Floor Drain	
4	Suspected Debris or Utility	✓
5	Cut Pipe	
6	Sign/Utility	
7	One Probable and One Possible UST	✓

The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface, including a drop inlet, reinforced concrete, a floor drain, a cut pipe, a sign, and a utility. GPR was performed across and around all sources of significant metallic interference to confirm the presence of reinforcement within the concrete and to confirm that the interference did not obscure any significant structures such as USTs. GPR was also performed across EM Anomalies 4 and 7 to investigate whether the anomalies were the result of more significant structures such as USTs.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as select transect images. All of the transect images are included in **Appendix A**. A total of ten formal GPR transects were performed at the site.

GPR Transects 1 and 2 were performed across EM Anomaly 4. GPR Transects 7-10 were performed as general reconnaissance scans at the request of Hart & Hickman. None of these transects showed evidence of significant structures such as USTs. Evidence of utilities and/or smaller fragments of buried debris was observed. Additionally, GPR Transects 7-10 showed signs of reinforcement below the asphalt.

GPR Transect 3 confirmed the presence of reinforcement within the concrete. This transect showed no evidence of significant structures such as USTs. Evidence of utilities and/or smaller fragments of buried debris was also observed.

GPR Transects 4-6 were performed across EM Anomaly 7. GPR Transect 4 showed a large, high-amplitude hyperbolic reflector and a large, high-amplitude semi-hyperbolic reflector. GPR Transects 5-6 each showed a high-amplitude lateral reflector. These reflectors are typical of USTs. Probable UST #1 is approximately 9.5 feet long by 5.5 feet wide. Possible UST #1 is approximately 9.5 feet long by 5.5 feet wide. **Figure 4** provides the locations and sizes of one probable and one possible UST, overlain on an aerial, along with ground-level photographs.

Collectively, the geophysical data <u>recorded evidence of one probable and one possible USTs at Parcel 24</u>. **Figure 5** provides an overlay of the metal detection results and one probable and one possible UST on the NCDOT engineering plans for reference.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 24 in Sylva, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface.
- GPR was performed across and around all sources of significant metallic interference to confirm the presence of reinforcement within the concrete and to confirm that the interference did not obscure any significant structures such as USTs.
- The geophysical survey identified evidence of utilities and/or smaller fragments of buried debris. Additionally, evidence or reinforcement beneath the asphalt was observed.
- One probable and one possible UST were observed in the southeastern portion of the parcel. Probable UST #1 is approximately 9.5 feet long by 5.5 feet wide.
 Possible UST #1 is approximately 9.5 feet long by 5.5 feet wide.
- Collectively, the geophysical data recorded evidence of one probable and one

possible UST at Parcel 24.

LIMITATIONS

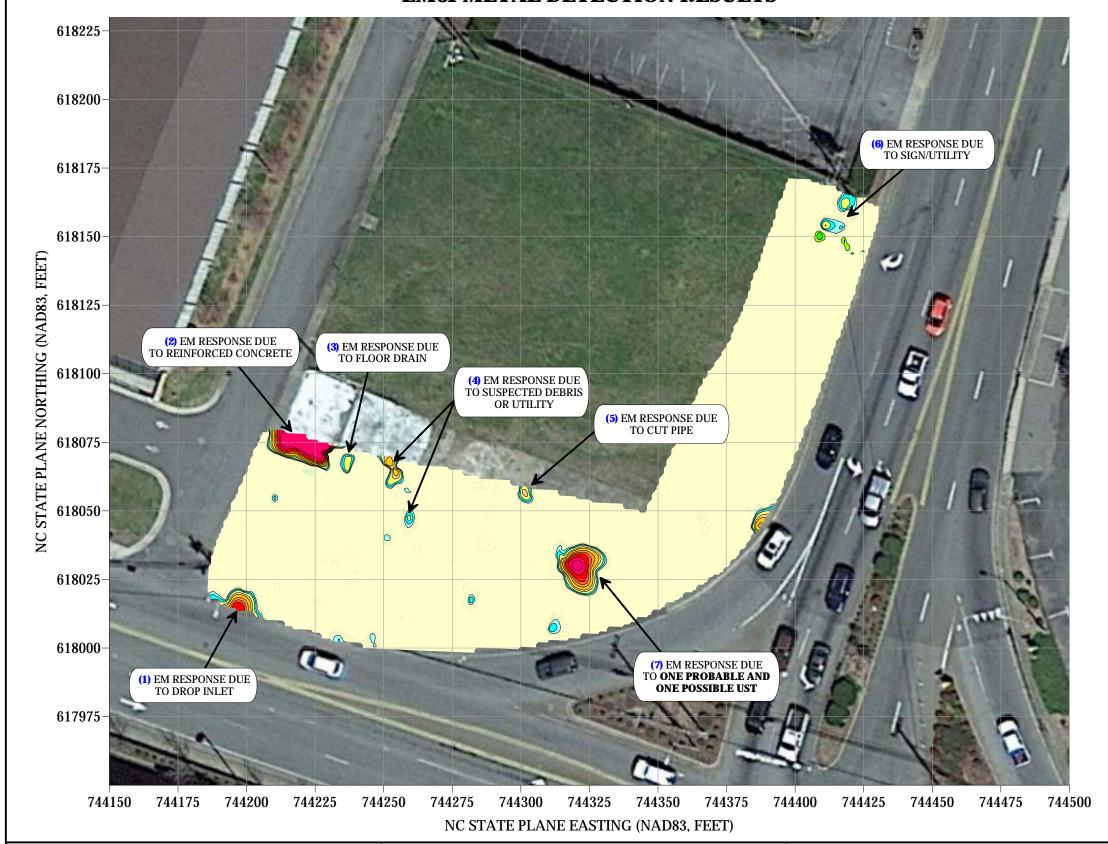
Geophysical surveys have been performed and this report was prepared for Hart & Hickman, P.C. in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

View of Survey Area (Facing Approximately East)

View of Survey Area (Facing Approximately North)

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT


PARCEL 24 SYLVA, NORTH CAROLINA NCDOT PROJECT R-5600 TITLE

PARCEL 24 -GEOPHYSICAL SURVEY BOUNDARIES AND SITE PHOTOGRAPHS

			, ,
DATE	9/30/2022	CLIENT	HART & HICKMAN
PYRAMID PROJECT #:	2022-260		FIGURE 1

Å

EM61 METAL DETECTION RESULTS

EVIDENCE OF ONE PROBABLE AND ONE POSSIBLE UST WAS OBSERVED.

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on September 26, 2022, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI SIR 4000 instrument with a 350 MHz HS antenna on September 28, 2022.

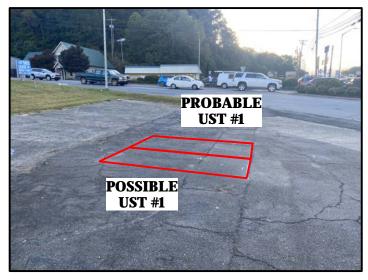
> **EM61 Metal Detection Response** (millivolts)

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology **PROJECT**

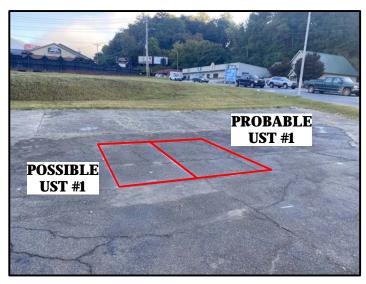
PARCEL 24 SYLVA, NORTH CAROLINA NCDOT PROJECT R-5600

PARCEL 24 -

TITLE


EM61 METAL DETECTION CONTOUR MAP

ATE	9/30/2022	CLIENT	HART & HICKMA
RAMID	2022-260		FIGURE 2

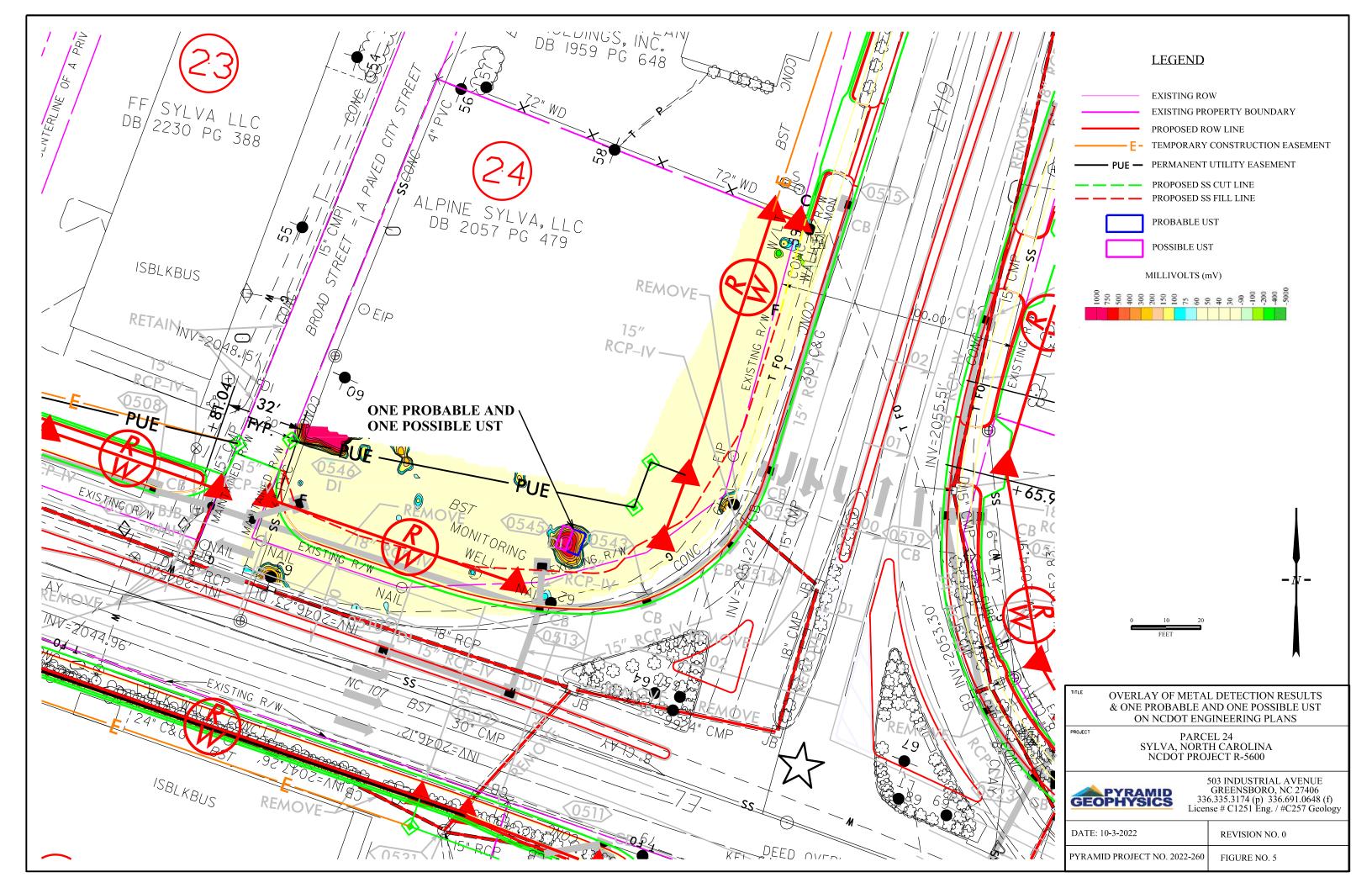

GPR TRANSECT LOCATIONS 618225-618200-618175-618150-NC STATE PLANE NORTHING (NAD83, FEET) GPR TRANSECT 4 (T4) 618125-618075-LENGTH OF ONE PROBABLE UST 618050-GPR TRANSECT 5 (T5) 618025-618000-ENGTH OF ONE POSSIBLE US 617975-**GPR TRANSECT 6 (T6)** 744350 744150 744175 744200 744225 744250 744275 744300 744325 744375 744400 744425 744450 744475 744500 NC STATE PLANE EASTING (NAD83, FEET) DATE PROJECT TITLE 503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology HART & HICKMAN PARCEL 24 9/30/2022 PARCEL 24 -SYLVA, NORTH CAROLINA GPR TRANSECT LOCATIONS AND SELECT IMAGES PYRAMID PROJECT #: NCDOT PROJECT R-5600 FIGURE 3 2022-260

LOCATIONS OF ONE PROBABLE UST AND ONE POSSIBLE UST

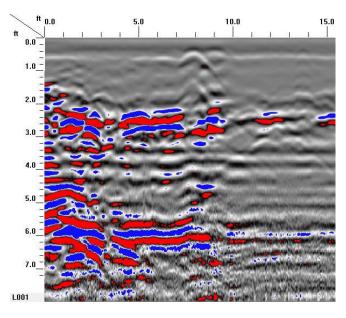
View of One Probable and One Possible UST (Facing Approximately East)

View of One Probable and One Possible UST (Facing Approximately Northeast)

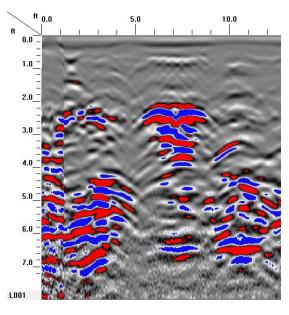
DATE 9/30/2022 CLIENT HART & HICKMAN

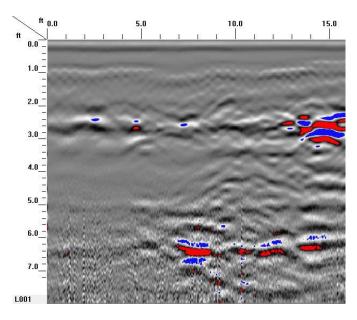

PYRAMID PROJECT #: 2022-260 FIGURE 4

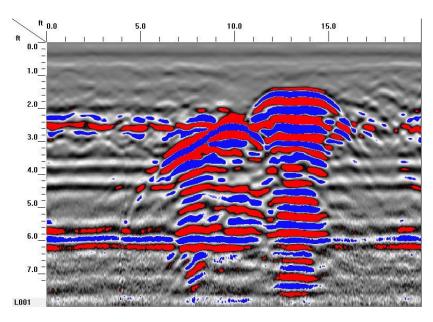
PYRAMID GEOPHYSICS

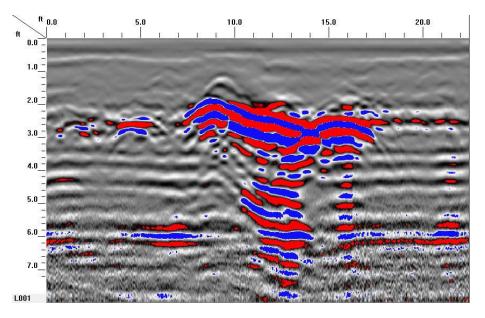

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

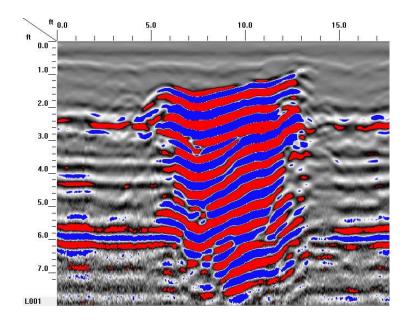
PARCEL 24 SYLVA, NORTH CAROLINA NCDOT PROJECT R-5600 PARCEL 24 -LOCATIONS AND SIZES OF ONE PROBABLE UST AND ONE POSSIBLE UST


TITLE

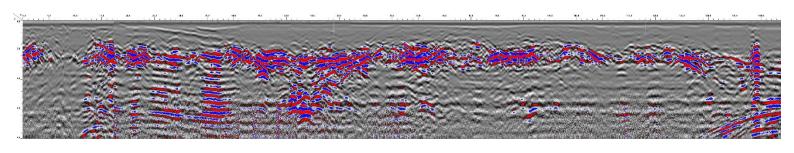



GPR TRANSECT 1

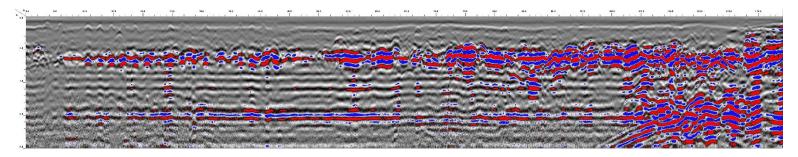

GPR TRANSECT 2

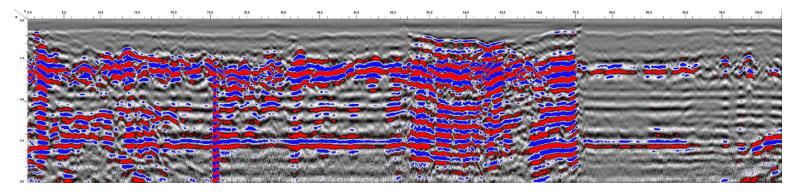


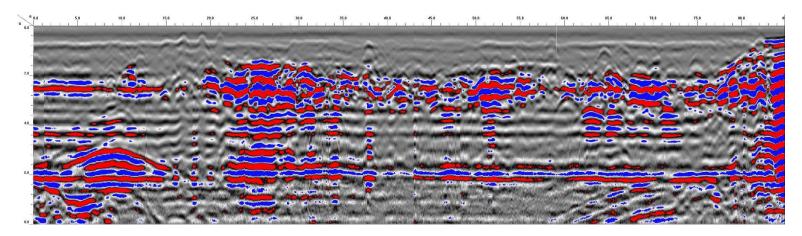
GPR TRANSECT 3



GPR TRANSECT 4




GPR TRANSECT 5 GPR TRANSECT 6


GPR TRANSECT 7

GPR TRANSECT 8

GPR TRANSECT 9

GPR TRANSECT 10

Appendix C

Soil Boring Logs, Well Construction Record, and Well Abandonment Record

Project:

ROW-704

Parcel 24 - 28 W. Main Street, Sylva, North Carolina Address:

BORING LOG

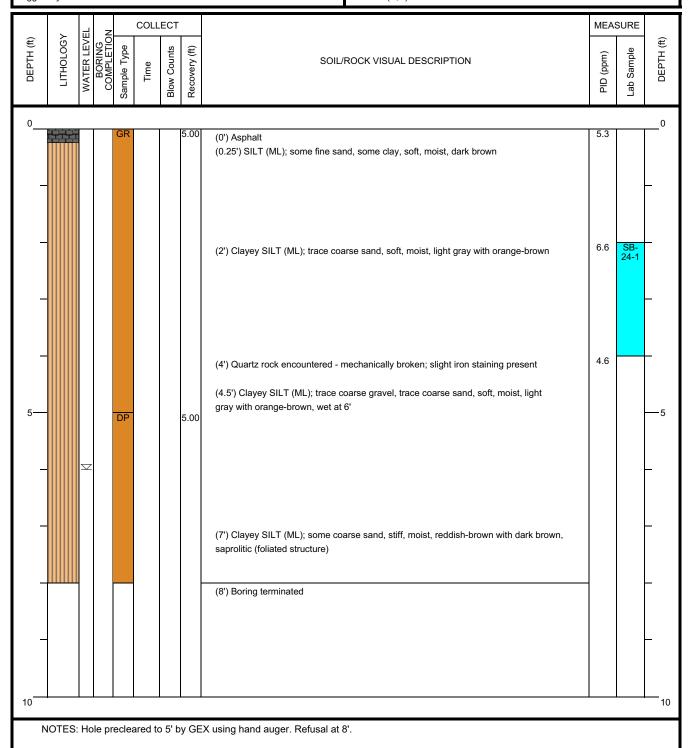
Boring No. SB-24-1 Page: 1 of 1

Drilling Start Date: 10/12/22 Drilling End Date: 10/12/22

Drilling Company: GEX Drilling Method: **Direct Push**

Drilling Equipment: GeoProbe 7822 DT Driller: David Hall

ABM Logged By:


Boring Depth (ft): 8.0 Boring Diameter (in): 2.25

Sampling Method(s): Direct Push, Grab

DTW During Drilling (ft):

DTW After Drilling (ft): Ground Surface Elev. (ft):

Location (X,Y):

Project: ROW-704

Address: Parcel 24 - 28 W. Main, S

s: Parcel 24 - 28 W. Main, Street Sylva, North Carolina

Boring Depth (ft):

Boring Diameter (in):

BORING LOG

Boring No. SB-24-2 Page: 1 of 1

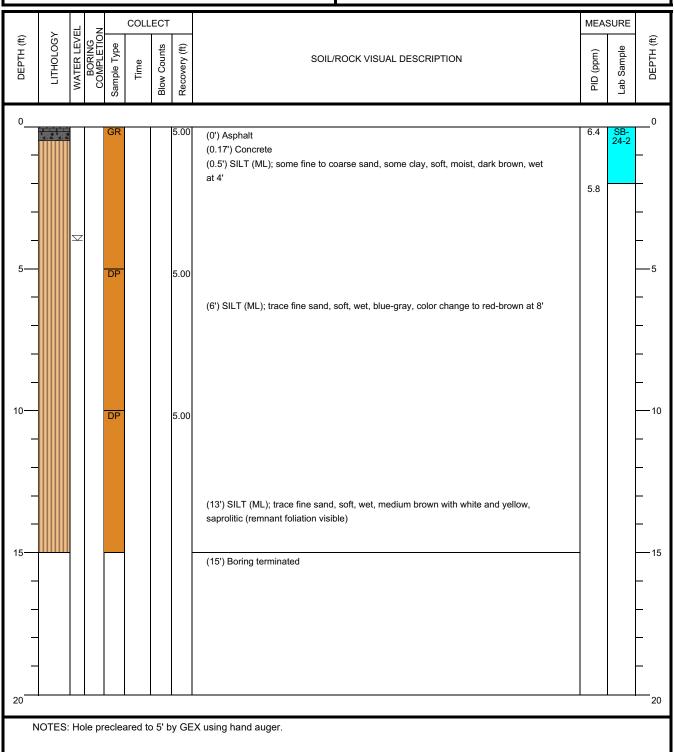
15.0

2.25

Drilling Start Date: 10/12/22
Drilling End Date: 10/12/22

Drilling Company: GEX Sampling Method(s): Direct Push, Grab

Drilling Method: Direct Push


DrW During Drilling (ft): 4.

DrW After Drilling (ft): DTW After Drilling (ft):

Drilling Equipment: GeoProbe 7822 DT DTW After Drilling (ft):

Driller: David Hall Ground Surface Elev. (ft):

Logged By: ABM Location (X,Y):

Project: ROW-704

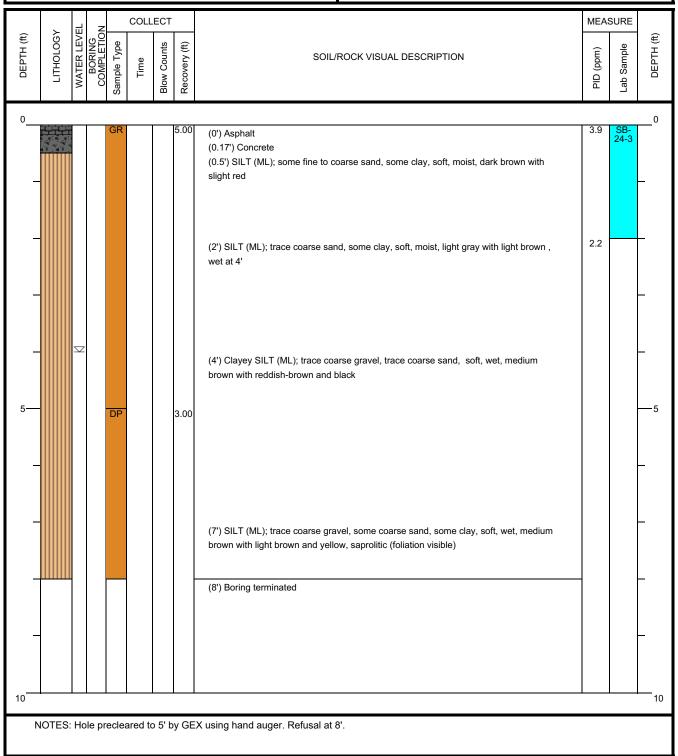
Address: Parcel 24 - 28 W. Main Street, Sylva, North Carolina **BORING LOG**

Boring No. SB-24-3 Page: 1 of 1

8.0

2.25

Drilling Start Date: 10/12/22 Boring Depth (ft):
Drilling End Date: 10/12/22 Boring Diameter (in):


Drilling Company: GEX Sampling Method(s): Direct Push, Grab

Drilling Method: Direct Push DTW During Drilling (ft): 4.0

Drilling Equipment: GeoProbe 7822 DT DTW After Drilling (ft):

Driller: David Hall Ground Surface Elev. (ft):

Logged By: ABM Location (X,Y):

Project: ROW-704

Address: Parcel 24 - 28 W. Main Street, Sylva, North Carolina **BORING LOG**

Boring No. SB-24-4

Page: 1 of 1

Drilling Start Date: 10/12/22
Drilling End Date: 10/12/22

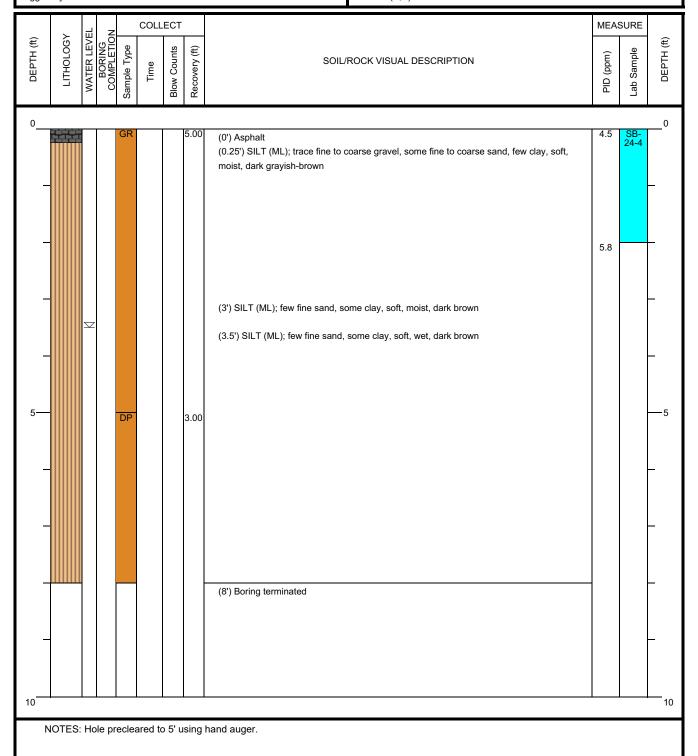
Drilling Company: **GEX**

Drilling Method: Direct Push
Drilling Equipment: GeoProbe 7822 DT

David Hall

Logged By: ABM

Driller:


Boring Depth (ft): 8.0
Boring Diameter (in): 2.25

Sampling Method(s): Direct Push, Grab

DTW During Drilling (ft): 3.5

DTW After Drilling (ft):
Ground Surface Elev. (ft):

Location (X,Y):

Client: NC DOT
Project: ROW-704

Address: Parcel 24 - 28 W. Main Street, Sylva, North Carolina Well No. SB-24-5/TMW-1

WELL LOG

Page: 1 of 1

Drilling Start Date: 10/12/22

Drilling End Date: 10/12/22

Drilling Company: GEX

Drilling Method: Direct Push

Drilling Equipment: GeoProbe 7822 DT

Driller: David Hall
Logged By: ABM

Boring Depth (ft): 8.0

Boring Diameter (in): 2.25
Sampling Method(s): DP, GR

DTW During Drilling (ft): 4.0

DTW After Drilling (ft):
Top of Casing Elev. (ft):

Location (X,Y):

Well Depth (ft): 8.0
Well Diameter (in): 1.0
Screen Slot (in): 0.010

Riser Material: Sch 40 PVC

Screen Material: Sch 40 PVC Slotted

Seal Material(s): Bent. Pellets
Filter Pack: Sand Pack

MEASURE COLLECT WELL COMPLETION WATER LEVEL LITHOLOGY DEPTH (ft) Sample Type Blow Counts Recovery (ft) _ab Sample PID (ppm) SOIL/ROCK VISUAL DESCRIPTION Time 0 0 16.1 (0') Asphalt (0.25') Concrete (0.5') SILT (ML); some fine to coarse sand, some clay, soft, moist, dark brown, petroleum odor at 3'; wet at 4' 337.7 24-5 700.3 (4') SILT (ML); some fine sand, soft, moist, dark brown, no petroleum odor at 6.5' -5 3.00 (6.5') SILT (ML); some fine sand, soft, wet, medium brown-gray (8') Boring terminated 10 10 NOTES: Hole precleared to 5' by GEX using hand auger.

Project: ROW-704

Address: Parcel 24 - 28 W. Main Street, Sylva, North Carolina

BORING LOG

Boring No. SB-24-6 Page: 1 of 1

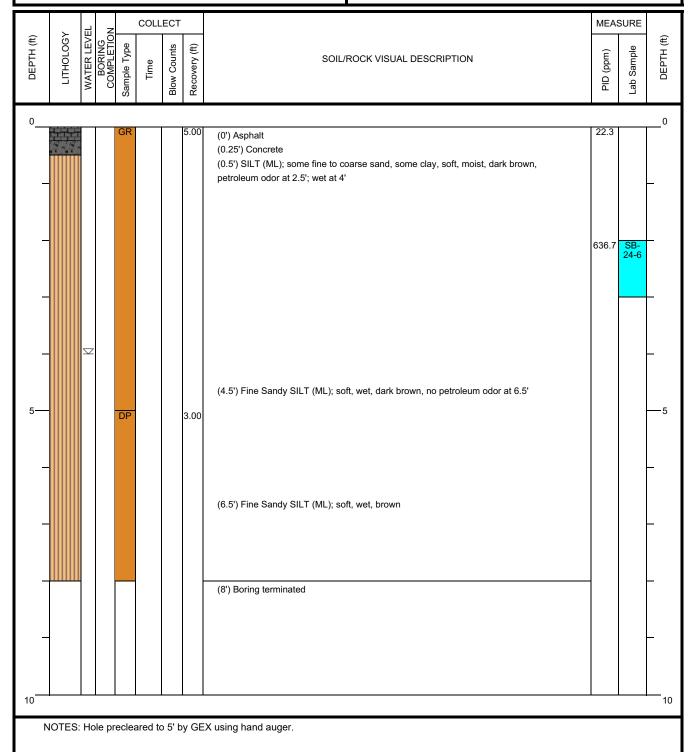
Drilling Start Date: 10/12/22 Drilling End Date: 10/12/22

Drilling Company: GEX

Drilling Method: **Direct Push** Drilling Equipment: GeoProbe 7822 DT

Driller: David Hall

ABM Logged By:


Boring Depth (ft): 8.0 Boring Diameter (in): 2.25

Sampling Method(s): Direct Push, Grab

DTW During Drilling (ft):

DTW After Drilling (ft): Ground Surface Elev. (ft):

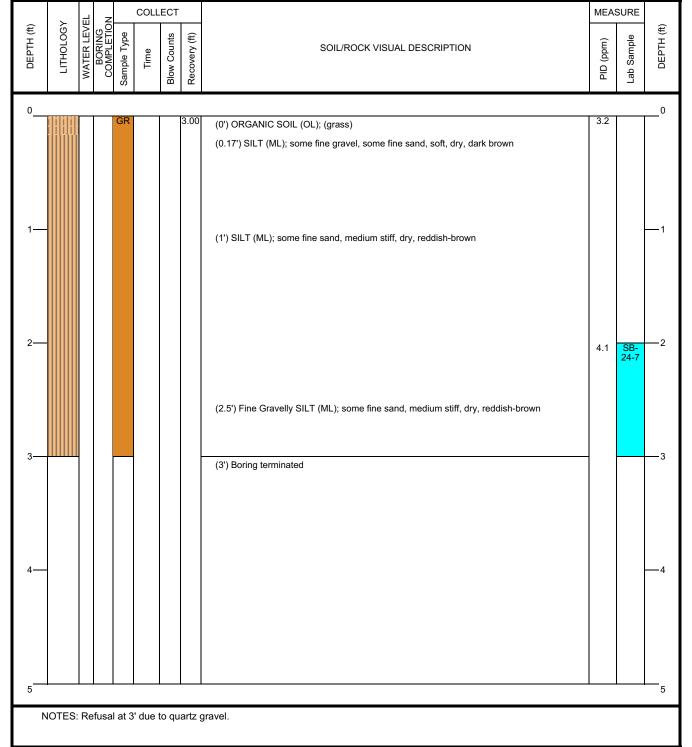
Location (X,Y):

Project: ROW-704

Address: Parcel 24 - 28 W. Main Street, Sylva, North Carolina

BORING LOG

Boring No. SB-24-7 Page: 1 of 1


Drilling Start Date: 10/12/22 Boring Depth (ft): Drilling End Date: 10/12/22 Boring Diameter (in): Drilling Company: GEX

3.25 Sampling Method(s): Grab DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft):

3.0

Location (X,Y):

Drilling Method: **Hand Auger** Drilling Equipment: Hand Auger Driller: David Hall ABM Logged By:

Project: ROW-704

Address: Parcel 24 - 28 W. Main Street, Sylva, North Carolina BORING LOG

Boring No. SB-24-8 Page: 1 of 1

3.0

3.25

Grab

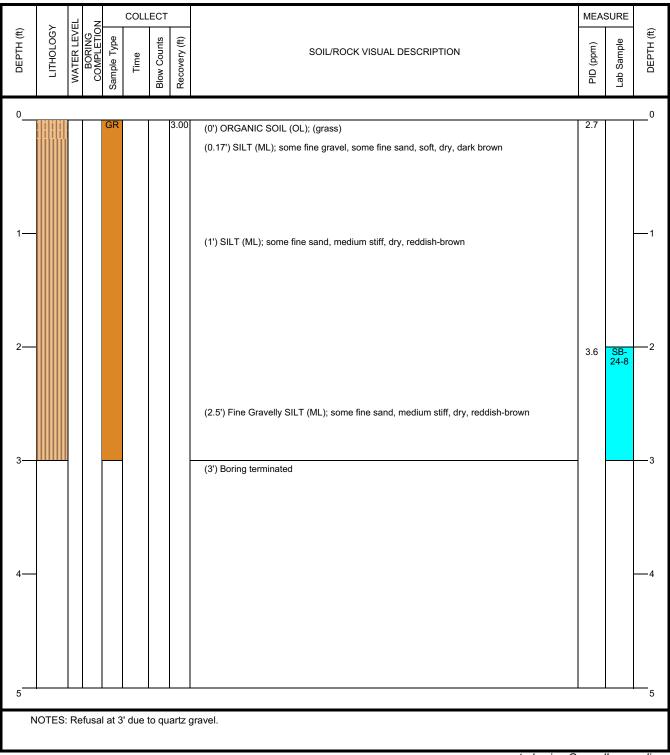
Drilling Start Date: 10/12/22 Boring Depth (ft):

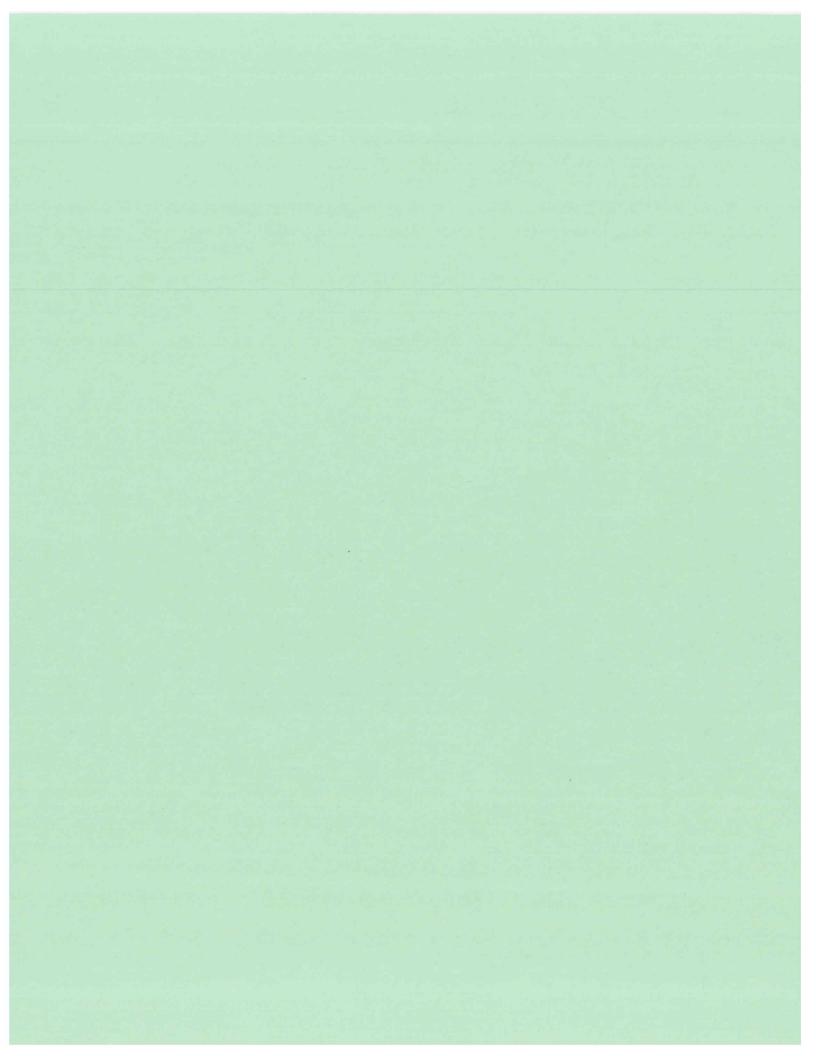
Drilling End Date: 10/12/22 Boring Diameter (in):

Drilling Company: GEX Sampling Method(s):

 Drilling Method:
 Hand Auger

 Drilling Equipment:
 Hand Auger


 Driller:
 David Hall


 Drown During Drilling (ft):

 DTW After Drilling (ft):

 Ground Surface Elev. (ft):

Logged By: ABM Location (X,Y):

This form can be used for single or multiple well		For Internal	Use ONLY:							
I. Well Contractor Information:	•									
DAVID HALL		14. WATE	R ZONES	alli uzaneena	CONTR	sir=0	velaci	(411V)		_
Well Contractor Name		FROM ft.	TO	DESCRIP	TION				_	
A ~ 4459		ft.	<u> </u>	it.						_
				or multi-cased		OP LINE	ED de	11 11 1		
NC Well Contractor Certification Number		FROM	TO	DIAMETE	R R	THICK	NESS		ERIAL	_
GEOLOGIC EXPLORATION		ft.		't	in.					
Company Name		16. INNER FROM	CASING OF	TUBING (ge	otherm R	al closed THICK	I-loop)	MATE	RIAL	_
2. Well Construction Permit #:	County State Variance etc.)	ft.		t.	in.	11101	<u>u viboo</u>	MAIL	SHOPE.	_
3. Well Use (check well use):		ft.		t.	in.					
Water Supply Well:		FROM	то	DIAMETER	SLO	T SIZE	THICK	NESS	MATERIAL	_
□Agricultural	□Municipal/Public	ft.	ft.	in.						
□Geothermal (Heating/Cooling Supply)	☐Residential Water Supply (single)	ft,	ft.	in.						
□Industrial/Commercial	☐Residential Water Supply (shared)	18. GROUT	ТО	MATERIA		FLADA	A C'PASEN	T MAP TO	00 4 (1401)	_
□lrrigation		fr.	f		<u> </u>	EMP	LACEMEN	1 MEIH	IOD & AMOUN	11
Non-Water Supply Well:		ft.	n			-				_
☑Monitoring Injection Well:	□Recovery	<u> </u>	f			 -				_
□Aquifer Recharge	☐Groundwater Remediation	11		CK (if applical	hle)	TARSON.	وباقاري			_
□Aquifer Storage and Recovery	□Salinity Barrier	FROM	то	MATERIA	L		EMPLAC	EMENT	METHOD	_
DAquifer Test	☐Stormwater Drainage	ft.	fi	·						
□Experimental Technology	□Subsidence Control	ft.	fi	1		1		•		
□Geothermal (Closed Loop)	□Tracer	20. DRILLI FROM	NG LOG (at	tach additional	sheets	if neces	sary)	li tona	grain size, etc.)	\equiv
□Geothermal (Heating/Cooling Return)	□Other (explain under #21 Remarks)		8.0 ft		1011 (10		ECT PUS		graim size, etc.)	\exists
4. Date Well(s) Completed: 10/12/22		ft.	ft	.						٦
· · · · · · · · · · · · · · · · · · ·	- Well ID#	ft.	ft							
5a. Well Location: NCDOT - PARCEL 24		ft,	ft							_
		ft.	ft							П
Facility/Owner Name	Facility ID# (if applicable)	ft.	ft							ᅦ
28 WEST MAIN STREET SY	LVA 28779	ft.	ft.							┨
Physical Address, City, and Zip JACKSON		21. REMAR	KS		1,000			WW.		Ⅎ
County	Describing Control by (MIN)									\Box
5b. Latitude and Longitude in degrees/mi	Parcel Identification No. (PIN)									╝
(if well field, one lat/long is sufficient)		22. Certifica	ition:	7 /	//	el	,			
35° 22' 24.60" _N 8	3° 13' 13.22"w			rad	10	. ll		_ 11,	/02/22	
6. Is (are) the well(s): Permanent or	2Temporary	Signature of Co						Date		
]Yes or ⊠No	with 15A NCA	C 02C .0100 .	by certify that or 15A NCAC (D2C 02	00 Well				
If this is a repair, fill out known well construction i	information and explain the nature of the			provided to the						
repair under #21 remarks section or on the back of	this form.	23. Site diag	ram or add	itional well d	etails:	والمام ما المام	سند استان	n 12.	والمنافية	
8. Number of wells constructed:1		construction	details. You	f this page to I may also att	ach ad	ditional	pages if	necessa	uetails or we arv	41
For multiple injection or non-water supply wells O. submit one form.	NLY with the same construction, you can	SUBMITTA					, ,		2	
9. Total well depth below land surface:	8.0 (ft.)	24a. For All	Wells: S	uhmit this fe	rm w	ithin 30	dave of	` comn	letion of we	41
or multiple wells list all depths if different (examp	de- 3@200" and 2@100')	construction t			***	50	days of	comp	iction of we	"
10. Static water level below top of casing: fwater level is above casing, use "±"	(ft.)	D		ater Quality Service Cen					it,	
1. Borehole diameter: 2.25	_ (in.)	24b. For Ini	ection Well	s: In additio	n to se	endine t	he form	to the a	ddress in 24	ภ
NPT.	•	above, also s	ubmit a co	py of this fo	rm wi	thin 30	days of	compl	etion of we	II
2. Well construction method:		construction t	o the follow	/ing:						
FOR WATER SUPPLY WELLS ONLY:		Division		Quality, Unde Service Cent					rogram,	
		240 For W-			-				h. C	
3a. Yield (gpm) Me	thod of test:	24c. For Wat the address(e	s) above, a	lso submit o	ne cor	y of th	ns form	within	30 days of	
3b. Disinfection type:	Amount:	completion o where constru	f well cons icted:	truction to th	e cou	nty heal	lth depar	tment	of the count	у

13b. Disinfection type: _

WELL ABANDONMENT RECORD For Internal Use ONLY: This form can be used for single or multiple wells 1. Well Contractor Information: WELL ABANDONMENT DETAILS DAVID HALL 7a. Number of wells being abandoned: Well Contractor Name (or well owner personally abandoning well on his/her property) For multiple injection or non-water supply wells ONLY with the construction abandonment, you can submit one form. $\Delta - 4459$ 7b. Approximate volume of water remaining in well(s): ____ NC Well Contractor Certification Number GEOLOGIC EXPLORATION FOR WATER SUPPLY WELLS ONLY: Company Name 7c. Type of disinfectant used: 2. Well Construction Permit #: List all applicable well construction permits (i.e. County, State, Variance, etc.) if known 7d. Amount of disinfectant used: 3. Well use (check well use): 7e. Sealing materials used (check all that apply): Water Supply Well: □ Neat Cement Grout ☐ Bentonite Chips or Pellets □ Agricultural OMunicipal/Public □ Sand Cement Grout Dry Clay ☐Geothermal (Heating/Cooling Supply) DResidential Water Supply (single) □ Drill Cuttings □Industrial/Commercial □Residential Water Supply (shared) □ Concrete Grout ☐ Specialty Grout □lrrigation □ Gravel Non-Water Supply Well: Bentonite Slurry ☐ Other (explain under 7g) ☑ Monitoring □Recovery Injection Well: 7f. For each material selected above, provide amount of materials used: □Aquifer Recharge 1.0 GALLONS ☐Groundwater Remediation □ Aquifer Storage and Recovery OSalinity Barrier □Aquifer Test ☐Stormwater Drainage □Experimental Technology □Subsidence Control 7g. Provide a brief description of the abandonment procedure: ☐Geothermal (Closed Loop) □Tracer ABANDONED VIA TREMIE PIPE WITH BENTONITE SLURRY □Geothermal (Heating/Cooling Return) □Other (explain under 7g) 10/14/22 4. Date well(s) abandoned: 5a. Well location: NCDOT - PARCEL 24 8. Certification: Facility/Owner Name Facility ID# (if applicable) 28 WEST MAIN STREET SYLVA 28779 11/02/22 Physical Address, City, and Zip Signature of Certified Well Contractor or Well Owner Date JACKSON By signing this form, I hereby certify that the well(s) was (were) abandoned in County accordance with 15A NCAC 02C .0100 or 2C .0200 Well Construction Standards Parcel Identification No. (PIN) and that a copy of this record has been provided to the well owner. 5b. Latitude and longitude in degrees/minutes/seconds or decimal degrees: (if well field, one lat/long is sufficient) 9. Site diagram or additional well details: You may use the back of this page to provide additional well site details or well 35° 22' 24.60" 83° 13' 13.22" abandonment details. You may also attach additional pages if necessary CONSTRUCTION DETAILS OF WELL(S) BEING ABANDONED **SUBMITTAL INSTRUCTIONS** Attach well construction record(s) if available. For multiple injection or non-water supply wells ONLY with the same construction abandonment, you can submit one form. 10a. For All Wells: Submit this form within 30 days of completion of well 6a. Well ID#; ___ TMW-1 abandonment to the following: Division of Water Quality, Information Processing Unit, 1617 Mail Service Center, Raleigh, NC 27699-1617 6b. Total well depth: __ 10b. For Injection Wells: In addition to sending the form to the address in 10a 6c. Borehole diameter: _ 2.25 above, also submit one copy of this form within 30 days of completion of well abandonment to the following: Division of Water Quality, Underground Injection Control Program, 6d. Water level below ground surface: 1636 Mail Service Center, Raleigh, NC 27699-1636 10c. For Water Supply & Injection Wells: In addition to sending the form to 6e. Outer casing length (if known): ______(ft.) the address(es) above, also submit one copy of this form within 30 days of completion of well abandonment to the county health department of the county where abandoned. 6f. Inner casing/tubing length (if known): ____

6g. Screen length (if known): _____

Appendix D

Laboratory Analytical Reports

Hydrocarbon Analysis Results

Client: HART & HICKMAN

Address: 2923 SOUTH TRYON ST. SUITE 100

CHARLOTTE NC 28203

Samples taken Samples extracted Samples analysed Wednesday, October 12, 2022 Wednesday, October 12, 2022

Friday, October 14, 2022

Contact: DAVE GRAHAM Operator TORI KELLY

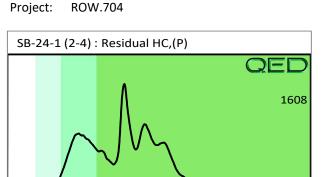
Project: ROW.704

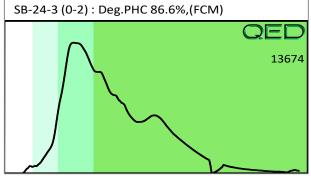
													U04049
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР		Ratios		HC Fingerprint Match
										% light	% mid	% heavy	
S	SB-24-1 (2-4)	20.2	<0.5	<0.5	<0.5	<0.5	<0.1	<0.16	<0.02	0	57.3	42.7	Residual HC,(P)
S	SB-24-2 (0-2)	24.5	<0.61	<0.61	31.5	31.5	24.4	1.6	<0.025	0	89.8	10.2	Deg Fuel 69%,(FCM),(BO)
S	SB-24-3 (0-2)	20.8	<0.52	<0.52	10.4	10.4	4.2	0.22	<0.021	0	78.7	21.3	Deg.PHC 86.6%,(FCM)
S	SB-24-4 (0-2)	21.1	<0.53	<0.53	8.5	8.5	4.9	0.26	<0.021	0	82.7	17.3	Deg Fuel 92.5%,(FCM)
S	SB-24-5 (2-3)	270.0	<13.5	143.6	1143	1287	37.4	<2.2	<0.27	99.3	0.7	0	Undeg.Kerosene 85.4%,(FCM)
S	SB-24-6 (2-3)	21.3	<0.53	6.6	52.8	59.4	1.7	<0.17	<0.021	99.8	0.2	0	Undeg.Kerosene 88.4%,(FCM)
S	SB-24-7 (2-3)	23.0	<0.58	<0.58	1.3	1.3	0.61	<0.18	<0.023	0	64.5	35.5	V.Deg.PHC 94.5%,(FCM)
s	SB-24-8 (2-3)	20.8	<0.52	<0.52	17.1	17.1	12.4	0.66	<0.021	0	90.4	9.6	Deg Fuel 80.6%,(FCM)

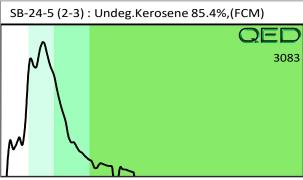
Initial Calibrator QC check

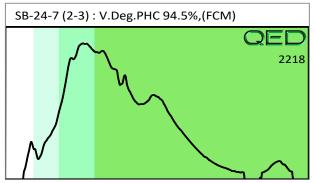
OK

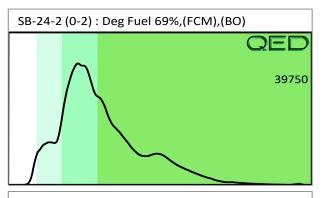
Final FCM QC Check OK

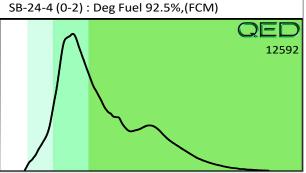

101.7 %

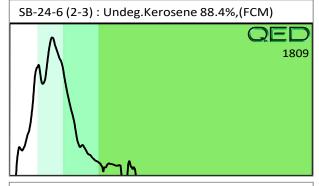

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content

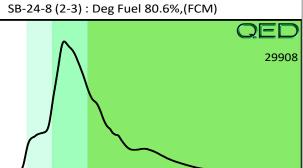

Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library


(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present

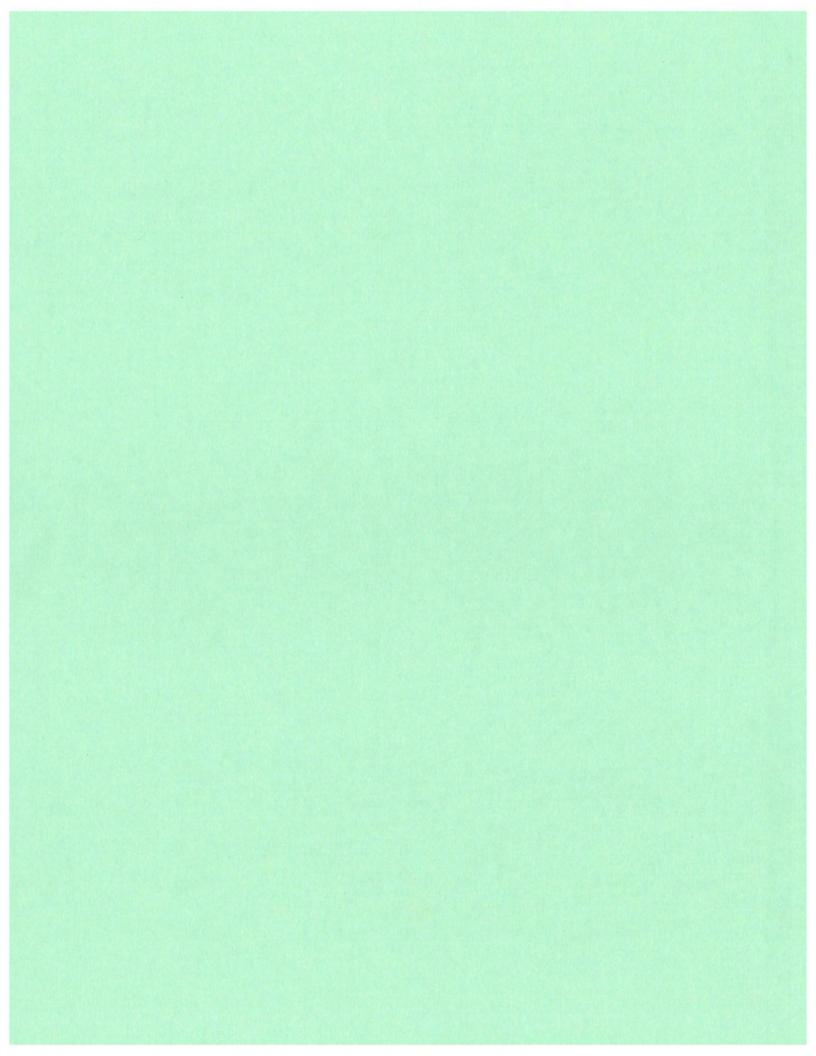

Friday, October 14, 2022







Client Name:	DOT
Address:	2923 So Tryon Sto Stelled Charlotte NC 28203
Contact:	Dave Graham
Project Ref.:	ROW-704
Email:	dgraham@harthickman.com
Phone #:	704-887-4630
Collected by:	Adam mechalak


RED Lab, LLC 105 Portwatch Way Suite F Wilmington, NC 28412

Each UVF sample will be analyzed for total BTEX, GRO, DRO, TPH, PAH total aromatics and BaP. Standard GC Analyses are for BTEX and Chlorinated Solvents: VC, 1,1 DCE, 1,2 cis DCE, 1,2 trans DCE, TCE, and PCE. Specify target analytes in the space provided below.

CHAIN OF	CUSTODY	AND A	NALYTICAL	REQUEST FOR	SM

				CHAIN OF COSTODI		AND ANALTHICAL REQUEST FURIN	analytes in the space provided below.			
Sample Collection			Analysis Type		Initials	Sample ID	Total Wt.	Tare Wt.	Sample Wt.	
Date/Time	24 Hour	48 Hour	UVF	GC						
10/12/12 1000		X	X		AM	SB-24-1 (2-4)	151.8	38.9	12.9	
10/12/22 1030		Ì				5B-24-2 (0-21	149.6	39.0	10.6	
18/12/22 1100						SB-24-3 (0-2)	52.5	40.0	12.5	
10/12/22 1130						SB-24-4 (0-5)	51.4	39.1	12.3	
10/12/22 1200						SB-24-5 (2-3)	52,5	40.0		
10/12/22 1230						SB-24-6 (2-3)	56.0	43.8	12.2	
10/12/22 1300						SB-24-7 (2-3)	49.9	38.6		
10/12/22 1330		V	V	Approximate the second		SB-24-8 (2-3)	54.7	42.2	12.5	
Accelei-mala,				Apparently and are contained an account of the soul						
A STATE OF THE PARTY OF THE PAR										
			-		 					
	1				 		1			
							_			
	-				-		-			
			ļ		-)	-		_	
Ý			<u> </u>							
						d .				
COMMENTS/REQU	FCTC. h.	2001 1-	MDIA	110100	(·	TARGET GC/UVF ANALYTES:		L		

Relinquished by	Accepted by	Date/Time	RED Lab USE ONLY
Adam mithalah	fed Ex	10/13/22 1100	Way (E)
Relinquished by	Accepted by	Date/Time	(18)
	N/M 10/14/22	1050	Ref. No

10/27/2022

Hart & Hickman (Charlotte) David Graham 2923 South Tryon St. Ste 100 Charlotte, NC, 28203

Ref: Analytical Testing

Lab Report Number: 22-293-2100 Client Project Description: ROW.704

Dear David Graham:

Waypoint Analytical, LLC (Charlotte) received sample(s) on 10/20/2022 for the analyses presented in the following report.

The above referenced project has been analyzed per your instructions. The analyses were performed in accordance with the applicable analytical method.

The analytical data has been validated using standard quality control measures performed as required by the analytical method. Quality Assurance, method validations, instrumentation maintenance and calibration for all parameters were performed in accordance with guidelines established by the USEPA (including 40 CFR 136 Method Update Rule May 2021) unless otherwise indicated.

Certain parameters (chlorine, pH, dissolved oxygen, sulfite...) are required to be analyzed within 15 minutes of sampling. Usually, but not always, any field parameter analyzed at the laboratory is outside of this holding time. Refer to sample analysis time for confirmation of holding time compliance.

The results are shown on the attached Report of Analysis(s). Results for solid matrices are reported on an asreceived basis unless otherwise indicated. This report shall not be reproduced except in full and relates only to the samples included in this report.

Please do not hesitate to contact me or client services if you have any questions or need additional information.

Sincerely.

Angela D Overcash Senior Project Manager

Laboratory's liability in any claim relating to analyses performed shall be limited to, at laboratory's option, repeating the analysis in question at laboratory's expense, or the refund of the charges paid for performance of said analysis.

Certification Summary

Laboratory ID: WP CNC: Waypoint Analytical Carolina, Inc. (C), Charlotte, NC

State	Program	Lab ID	Expiration Date
North Carolina	State Program	37735	07/31/2023
North Carolina	State Program	402	12/31/2022
South Carolina	State Program	99012	07/31/2023
South Carolina	State Program	99012	12/31/2022

Page 1 of 1 00016/22-293-2100

Page 2 of 25

Sample Summary Table

Report Number: 22-293-2100

Client Project Description: ROW.704

Lab No	Client Sample ID	Matrix	Date Collected	Date Received
91183	TMW-1 (24)	Aqueous	10/14/2022 13:00	10/20/2022 12:49
91187	MW-Parcel 24	Aqueous	10/19/2022 10:00	10/20/2022 12:49

Summary of Detected Analytes

Project: ROW.704

Report Number: 22-293-2100

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
TMW-1 (24)	V 91183					
8260D	Benzene	0.266	μg/L	0.180	10/25/2022 04:42	J
8260D	n-Butylbenzene	0.439	μg/L	0.185	10/25/2022 04:42	J
8260D	sec-Butyl benzene	2.30	μg/L	0.200	10/25/2022 04:42	
8260D	tert-Butyl benzene	1.59	μg/L	0.920	10/25/2022 04:42	J
8260D	Ethylbenzene	1.25	μg/L	0.170	10/25/2022 04:42	
8260D	Isopropylbenzene	1.48	μg/L	0.180	10/25/2022 04:42	J
8260D	Naphthalene	25.7	μg/L	0.470	10/25/2022 04:42	
8260D	n-Propylbenzene	1.06	μg/L	0.190	10/25/2022 04:42	
8260D	Toluene	0.239	μg/L	0.220	10/25/2022 04:42	J
8270E	1-Methylnaphthalene	17.5	μg/L	7.62	10/24/2022 21:34	
8270E	2-Methylnaphthalene	9.20	μg/L	7.20	10/24/2022 21:34	J
8270E	Naphthalene	15.1	μg/L	8.20	10/24/2022 21:34	
MW-Parcel 24	V 91187					
8260D	Benzene	0.570	μg/L	0.180	10/25/2022 07:24	
8260D	n-Butylbenzene	1.01	μg/L	0.185	10/25/2022 07:24	
8260D	sec-Butyl benzene	1.76	μg/L	0.200	10/25/2022 07:24	
8260D	tert-Butyl benzene	2.50	μg/L	0.920	10/25/2022 07:24	
8260D	Ethylbenzene	46.1	μg/L	0.170	10/25/2022 07:24	
8260D	Isopropylbenzene	6.25	μg/L	0.180	10/25/2022 07:24	
8260D	Naphthalene	9.52	μg/L	0.470	10/25/2022 07:24	
8260D	n-Propylbenzene	8.31	μg/L	0.190	10/25/2022 07:24	

Client: Hart & Hickman (Charlotte)

Project: ROW.704

Lab Report Number: 22-293-2100

Date: 10/27/2022

CASE NARRATIVE

Volatile Organic Compounds - GC/MS Method 8260D

Analyte: Ethanol

QC Batch No: V25504/V25503

Relative Percent Difference (RPD) for the duplicate analysis was outside of the allowable QC limits.

01102

Hart & Hickman (Charlotte)
David Graham
2923 South Tryon St. Ste 100
Charlotte , NC 28203

Project ROW.704

Information:

Report Date: 10/27/2022

Received: 10/20/2022

Report Number: 22-293-2100 REPORT OF ANALYSIS

Lab No : 91183 Matrix: Aqueous

Sample ID: **TMW-1 (24)** Sampled: **10/14/2022 13:00**

Analytical Method: 8260D Prep Batch(es): V25503 10/24/22 14:00 **Prep Method:** 5030B Results Units MDL MQL DF Date / Time Ву Analytical Test **Analyzed Batch** Acetone μg/L <1.80 1.80 5.00 V25504 1 10/25/22 04:42 MSA Acrolein µg/L < 2.00 2.00 5.00 1 10/25/22 04:42 MSA V25504 Acrylonitrile µg/L < 0.230 0.230 5.00 1 10/25/22 04:42 MSA V25504 Benzene 0.266 J μg/L 0.180 0.500 1 10/25/22 04:42 MSA V25504 Bromobenzene < 0.210 μg/L 0.210 0.500 1 10/25/22 04:42 MSA V25504 Bromochloromethane < 0.420 μg/L 0.420 1.00 1 10/25/22 04:42 MSA V25504 Bromodichloromethane < 0.160 μg/L 0.160 0.500 1 10/25/22 04:42 MSA V25504 Bromoform <1.50 μg/L 1.50 5.00 1 10/25/22 04:42 MSA V25504 Bromomethane < 0.280 μg/L 0.280 1.00 1 10/25/22 04:42 MSA V25504 n-Butylbenzene μg/L 0.439 J 0.185 1.00 1 10/25/22 04:42 MSA V25504 sec-Butyl benzene μg/L 2.30 0.200 0.500 1 10/25/22 04:42 MSA V25504 tert-Butyl benzene μg/L 1.59 J 0.920 2.00 1 10/25/22 04:42 MSA V25504 Carbon Disulfide μg/L < 0.150 0.150 5.00 1 10/25/22 04:42 MSA V25504 Carbon Tetrachloride < 0.180 μg/L 0.180 0.500 1 10/25/22 04:42 MSA V25504 Chlorobenzene μg/L < 0.190 0.190 V25504 0.500 1 10/25/22 04:42 MSA Chlorodibromomethane μg/L < 0.190 0.190 0.500 1 10/25/22 04:42 MSA V25504 Chloroethane μg/L < 0.430 0.430 1 10/25/22 04:42 MSA V25504 1.00 Chloroform μg/L < 0.220 0.220 0.500 1 10/25/22 04:42 MSA V25504 Chloromethane < 0.220 μg/L 0.220 0.500 1 10/25/22 04:42 MSA V25504 2-Chlorotoluene μg/L < 0.200 0.500 1 10/25/22 04:42 MSA 0.200 V25504 4-Chlorotoluene 0.200 < 0.200 μg/L 0.500 1 10/25/22 04:42 MSA V25504 Di-Isopropyl Ether (DIPE) < 0.960 μg/L 0.960 5.00 1 10/25/22 04:42 MSA V25504

Qualifiers/ Definitions

DF

Dilution Factor

MQL

Method Quantitation Limit

Estimated value

1

01102

Hart & Hickman (Charlotte) David Graham 2923 South Tryon St. Ste 100 Charlotte, NC 28203

Project ROW.704

Information:

Report Date: 10/27/2022

Received: 10/20/2022

Report Number: 22-293-2100 REPORT OF ANALYSIS

Lab No: 91183 Matrix: Aqueous

Sample ID : **TMW-1 (24)** Sampled: **10/14/2022 13:00**

•	260D 030B	Prep Batch(es	s): V25503	10/24/2	10/24/22 14:00			
Test	Resu	ts Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
1,2-Dibromo-3-Chloropropa	ane <1.10) μg/L	1.10	2.00	1	10/25/22 04:42	MSA	V25504
1,2-Dibromoethane	<0.200) μg/L	0.200	0.500	1	10/25/22 04:42	MSA	V25504
Dibromomethane	<0.230) μg/L	0.230	0.500	1	10/25/22 04:42	MSA	V25504
1,2-Dichlorobenzene	<0.220) μg/L	0.220	0.500	1	10/25/22 04:42	MSA	V25504
1,3-Dichlorobenzene	<0.190) μg/L	0.190	0.500	1	10/25/22 04:42	MSA	V25504
1,4-Dichlorobenzene	<0.210) μg/L	0.210	0.500	1	10/25/22 04:42	MSA	V25504
Dichlorodifluoromethane	<1.20) μg/L	1.20	5.00	1	10/25/22 04:42	MSA	V25504
1,1-Dichloroethane	<0.240) μg/L	0.240	0.500	1	10/25/22 04:42	MSA	V25504
1,2-Dichloroethane	<0.150) μg/L	0.150	0.500	1	10/25/22 04:42	MSA	V25504
1,1-Dichloroethene	<0.150) μg/L	0.150	0.500	1	10/25/22 04:42	MSA	V25504
cis-1,2-Dichloroethene	<0.200) μg/L	0.200	0.500	1	10/25/22 04:42	MSA	V25504
trans-1,2-Dichloroethene	<0.186) μg/L	0.180	0.500	1	10/25/22 04:42	MSA	V25504
1,2-Dichloropropane	<0.190) μg/L	0.190	0.500	1	10/25/22 04:42	MSA	V25504
1,3-Dichloropropane	<0.130) μg/L	0.130	0.500	1	10/25/22 04:42	MSA	V25504
2,2-Dichloropropane	<0.210) μg/L	0.210	2.00	1	10/25/22 04:42	MSA	V25504
1,1-Dichloropropene	<0.200) μg/L	0.200	0.500	1	10/25/22 04:42	MSA	V25504
cis-1,3-Dichloropropene	<0.210) μg/L	0.210	0.500	1	10/25/22 04:42	MSA	V25504
trans-1,3-Dichloropropene	<0.150) μg/L	0.150	0.500	1	10/25/22 04:42	MSA	V25504
Ethanol	<42.0) μg/L	42.0	200	1	10/25/22 04:42	MSA	V25504
Ethylbenzene	1.2	μg/L	0.170	0.500	1	10/25/22 04:42	MSA	V25504
Ethyl Tertiary Butyl Ether (E	(ETBE) <1.80) μg/L	1.80	10.0	1	10/25/22 04:42	MSA	V25504
Hexachlorobutadiene	<0.350) μg/L	0.350	2.00	1	10/25/22 04:42	MSA	V25504

Qualifiers/ Definitions DF Dilution Factor

MQL Method Quantitation Limit

Estimated value

J

01102

Hart & Hickman (Charlotte) David Graham 2923 South Tryon St. Ste 100 Charlotte, NC 28203

Project ROW.704

Information:

Report Date: 10/27/2022 Received: 10/20/2022

Report Number : 22-293-2100 REPORT OF ANALYSIS

Lab No: 91183 Matrix: Aqueous

Sample ID : **TMW-1 (24)** Sampled: **10/14/2022 13:00**

Analytical Method: 8260D Prep Batch(es): V25503 10/24/22 14:00

Prep Method: 5030B

Possults Method: MDI DE Date / Time

Prep Method: 5030B								
Test	Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
n-Hexane	<1.30	μg/L	1.30	10.0	1	10/25/22 04:42	MSA	V25504
2-Hexanone	<0.380	μg/L	0.380	5.00	1	10/25/22 04:42	MSA	V25504
Isopropylbenzene	1.48 J	μg/L	0.180	5.00	1	10/25/22 04:42	MSA	V25504
4-Isopropyl toluene	<0.089	μg/L	0.089	0.500	1	10/25/22 04:42	MSA	V25504
Methyl Ethyl Ketone (MEK)	<0.710	μg/L	0.710	5.00	1	10/25/22 04:42	MSA	V25504
Methyl tert-butyl ether (MTBE)	<0.140	μg/L	0.140	0.500	1	10/25/22 04:42	MSA	V25504
4-Methyl-2-Pentanone	<1.00	μg/L	1.00	5.00	1	10/25/22 04:42	MSA	V25504
Methylene Chloride	<0.330	μg/L	0.330	1.00	1	10/25/22 04:42	MSA	V25504
Naphthalene	25.7	μg/L	0.470	1.00	1	10/25/22 04:42	MSA	V25504
n-Propylbenzene	1.06	μg/L	0.190	0.500	1	10/25/22 04:42	MSA	V25504
Styrene	<0.220	μg/L	0.220	0.500	1	10/25/22 04:42	MSA	V25504
1,1,1,2-Tetrachloroethane	<0.160	μg/L	0.160	0.500	1	10/25/22 04:42	MSA	V25504
1,1,2,2-Tetrachloroethane	<0.160	μg/L	0.160	0.500	1	10/25/22 04:42	MSA	V25504
Tetrachloroethene	<0.220	μg/L	0.220	0.500	1	10/25/22 04:42	MSA	V25504
Toluene	0.239 J	μg/L	0.220	0.500	1	10/25/22 04:42	MSA	V25504
1,2,3-Trichlorobenzene	<0.380	μg/L	0.380	2.00	1	10/25/22 04:42	MSA	V25504
1,2,4-Trichlorobenzene	<0.310	μg/L	0.310	1.00	1	10/25/22 04:42	MSA	V25504
1,1,1-Trichloroethane	<0.160	μg/L	0.160	0.500	1	10/25/22 04:42	MSA	V25504
1,1,2-Trichloroethane	<0.096	μg/L	0.096	0.500	1	10/25/22 04:42	MSA	V25504
Trichloroethene	<0.180	μg/L	0.180	0.500	1	10/25/22 04:42	MSA	V25504
Trichlorofluoromethane	<0.180	μg/L	0.180	0.500	1	10/25/22 04:42	MSA	V25504
1,2,3-Trichloropropane	<0.270	μg/L	0.270	1.00	1	10/25/22 04:42	MSA	V25504

Qualifiers/ Definitions DF Dilution Factor

MQL Method Quantitation Limit

Estimated value

J

01102

Hart & Hickman (Charlotte) David Graham 2923 South Tryon St. Ste 100 Charlotte, NC 28203

Project ROW.704

Information:

Report Date: 10/27/2022

Received: 10/20/2022

Report Number: 22-293-2100 REPORT OF ANALYSIS

Lab No : 91183 Matrix: Aqueous

Sample ID : **TMW-1 (24)** Sampled: **10/14/2022 13:00**

Analytical Method: Prep Method:	8260D 5030B		Prep Batch(es):	V25503	10/24/22 14:00					
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch	
1,3,5-Trimethylbenzene	e	<0.180	μg/L	0.180	0.500	1	10/25/22 04:42	MSA	V25504	
Vinyl Acetate		<1.00	μg/L	1.00	2.00	1	10/25/22 04:42	MSA	V25504	
Vinyl Chloride		<0.170	μg/L	0.170	0.500	1	10/25/22 04:42	MSA	V25504	
o-Xylene		<0.210	μg/L	0.210	0.500	1	10/25/22 04:42	MSA	V25504	
m,p-Xylene		<0.420	μg/L	0.420	1.00	1	10/25/22 04:42	MSA	V25504	
Xylene (Total)		<0.21	μg/L	0.210	0.500	1	10/25/22 04:42		V25504	
Analytical Method: Prep Method:	8270E 3510C	Prep Batch(es): V25610 10/21/22 08:59								
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch	
Acenaphthene		<7.37	μg/L	7.37	20.7	1	10/24/22 21:34	JMV	V25611	
Acenaphthylene		<7.18	μg/L	7.18	20.7	1	10/24/22 21:34	JMV	V25611	
Anthracene		<6.83	μg/L	6.83	10.4	1	10/24/22 21:34	JMV	V25611	
Benzo(a)anthracene		<5.88	μg/L	5.88	10.4	1	10/24/22 21:34	JMV	V25611	
Benzo(a)pyrene		<4.86	μg/L	4.86	10.4	1	10/24/22 21:34	JMV	V25611	
Benzo(b)fluoranthene		<4.70	μg/L	4.70	10.4	1	10/24/22 21:34	JMV	V25611	
Benzo(g,h,i)perylene		<4.41	μg/L	4.41	10.4	1	10/24/22 21:34	JMV	V25611	
Benzo(k)fluoranthene		<4.87	μg/L	4.87	10.4	1	10/24/22 21:34	JMV	V25611	
Chrysene		<5.60	μg/L	5.60	10.4	1	10/24/22 21:34	JMV	V25611	
Dibenz(a,h)anthracene		<6.22	μg/L	6.22	20.7	1	10/24/22 21:34	JMV	V25611	
Fluoranthene		<6.27	μg/L	6.27	10.4	1	10/24/22 21:34	JMV	V25611	

Qualifiers/ Definitions DF

Dilution Factor

MQL

Method Quantitation Limit

Estimated value

J

01102

Hart & Hickman (Charlotte) David Graham 2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project ROW.704

Information:

Report Date: 10/27/2022

Received: 10/20/2022

Report Number: 22-293-2100

Lab No: 91183 Matrix: Aqueous

Sample ID : **TMW-1 (24)** Sampled: 10/14/2022 13:00

REPORT OF ANALYSIS

Analytical Method: 8270E Prep Batch(es): V25610 10/21/22 08:59 3510C **Prep Method:** Test Results Units MDL MQL DF Date / Time Ву **Analytical** Analyzed **Batch** Fluorene μg/L <7.56 7.56 10.4 1 10/24/22 21:34 JMV V25611 Indeno(1,2,3-cd)pyrene μg/L <6.45 6.45 10.4 1 10/24/22 21:34 JMV V25611 1-Methylnaphthalene 17.5 μg/L V25611 7.62 10.4 1 10/24/22 21:34 JMV 2-Methylnaphthalene 9.20 J μg/L 7.20 10.4 1 10/24/22 21:34 JMV V25611 Naphthalene 15.1 μg/L 8.20 1 10/24/22 21:34 JMV V25611 10.4 Phenanthrene <6.59 μg/L 6.59 1 10/24/22 21:34 JMV V25611 10.4 Pyrene <5.64 μg/L 5.64 10.4 1 10/24/22 21:34 JMV V25611 Surrogate: 2-Fluorobiphenyl 74.7 Limits: 44-119% 1 10/24/22 21:34 JMV V25611 1 10/24/22 21:34 Surrogate: Nitrobenzene-d5 61.0 Limits: 44-120% V25611

Surrogate: 4-Terphenyl-d14 91.9 Limits: 50-134% 1 10/24/22 21:34 JMV V25611

Qualifiers/ **Definitions**

DF **Dilution Factor**

MQL Method Quantitation Limit Estimated value

J

01102

Hart & Hickman (Charlotte)
David Graham
2923 South Tryon St. Ste 100
Charlotte , NC 28203

Project ROW.704

Information:

Report Date: 10/27/2022

Received: 10/20/2022

Report Number: 22-293-2100 REPORT OF ANALYSIS

Lab No: 91187 Matrix: Aqueous

Sample ID: MW-Parcel 24 Sampled: 10/19/2022 10:00

Analytical Method: 8260D Prep Batch(es): V25503 10/24/22 14:00 **Prep Method:** 5030B Results Units MDL MQL DF Date / Time Analytical Test By Analyzed **Batch** Acetone μg/L <1.80 1.80 5.00 V25504 1 10/25/22 07:24 MSA Acrolein µg/L < 2.00 2.00 5.00 1 10/25/22 07:24 MSA V25504 Acrylonitrile µg/L < 0.230 0.230 5.00 1 10/25/22 07:24 MSA V25504 Benzene 0.570 μg/L 0.180 0.500 1 10/25/22 07:24 MSA V25504 Bromobenzene μg/L < 0.210 0.210 0.500 1 10/25/22 07:24 MSA V25504 Bromochloromethane < 0.420 μg/L 0.420 1.00 1 10/25/22 07:24 MSA V25504 Bromodichloromethane < 0.160 μg/L 0.160 0.500 1 10/25/22 07:24 MSA V25504 Bromoform <1.50 μg/L 1.50 5.00 1 10/25/22 07:24 MSA V25504 Bromomethane < 0.280 μg/L 0.280 1.00 1 10/25/22 07:24 MSA V25504 n-Butylbenzene μg/L 1.01 0.185 1.00 1 10/25/22 07:24 MSA V25504 sec-Butyl benzene μg/L 1.76 0.200 0.500 1 10/25/22 07:24 MSA V25504 tert-Butyl benzene 2.50 μg/L 0.920 2.00 1 10/25/22 07:24 MSA V25504 Carbon Disulfide μg/L < 0.150 0.150 5.00 1 10/25/22 07:24 MSA V25504 Carbon Tetrachloride < 0.180 μg/L 0.180 0.500 1 10/25/22 07:24 MSA V25504 Chlorobenzene μg/L < 0.190 0.190 V25504 0.500 1 10/25/22 07:24 MSA Chlorodibromomethane μg/L < 0.190 0.190 0.500 1 10/25/22 07:24 MSA V25504 Chloroethane μg/L < 0.430 0.430 1 10/25/22 07:24 MSA V25504 1.00 Chloroform μg/L < 0.220 0.220 0.500 1 10/25/22 07:24 MSA V25504 Chloromethane < 0.220 μg/L 0.220 0.500 1 10/25/22 07:24 MSA V25504 2-Chlorotoluene μg/L < 0.200 0.500 0.200 1 10/25/22 07:24 MSA V25504 4-Chlorotoluene 0.200 < 0.200 μg/L 0.500 1 10/25/22 07:24 MSA V25504 Di-Isopropyl Ether (DIPE) < 0.960 μg/L 0.960 5.00 1 10/25/22 07:24 MSA V25504

Qualifiers/ Definitions

DF

Dilution Factor

MQL

Method Quantitation Limit

Estimated value

1

01102

Hart & Hickman (Charlotte) David Graham 2923 South Tryon St. Ste 100 Charlotte, NC 28203

Project ROW.704

Information:

Report Date: 10/27/2022

Received: 10/20/2022

Report Number: 22-293-2100 REPORT OF ANALYSIS

Lab No : 91187 Matrix: Aqueous

Sample ID : **MW-Parcel 24** Sampled: **10/19/2022 10:00**

Analytical Method: 8260		Prep Batch(es):		10/24/22 14:00				
Prep Method: 5030 Test)B Result	s Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
1,2-Dibromo-3-Chloropropan	e <1.10	μg/L	1.10	2.00	1	10/25/22 07:24	MSA	V25504
1,2-Dibromoethane	<0.200	μg/L	0.200	0.500	1	10/25/22 07:24	MSA	V25504
Dibromomethane	<0.230	μg/L	0.230	0.500	1	10/25/22 07:24	MSA	V25504
1,2-Dichlorobenzene	<0.220	μg/L	0.220	0.500	1	10/25/22 07:24	MSA	V25504
1,3-Dichlorobenzene	<0.190	μg/L	0.190	0.500	1	10/25/22 07:24	MSA	V25504
1,4-Dichlorobenzene	<0.210	μg/L	0.210	0.500	1	10/25/22 07:24	MSA	V25504
Dichlorodifluoromethane	<1.20	μg/L	1.20	5.00	1	10/25/22 07:24	MSA	V25504
1,1-Dichloroethane	<0.240	μg/L	0.240	0.500	1	10/25/22 07:24	MSA	V25504
1,2-Dichloroethane	<0.150	μg/L	0.150	0.500	1	10/25/22 07:24	MSA	V25504
1,1-Dichloroethene	<0.150	μg/L	0.150	0.500	1	10/25/22 07:24	MSA	V25504
cis-1,2-Dichloroethene	<0.200	μg/L	0.200	0.500	1	10/25/22 07:24	MSA	V25504
trans-1,2-Dichloroethene	<0.180	μg/L	0.180	0.500	1	10/25/22 07:24	MSA	V25504
1,2-Dichloropropane	<0.190	μg/L	0.190	0.500	1	10/25/22 07:24	MSA	V25504
1,3-Dichloropropane	<0.130	μg/L	0.130	0.500	1	10/25/22 07:24	MSA	V25504
2,2-Dichloropropane	<0.210	μg/L	0.210	2.00	1	10/25/22 07:24	MSA	V25504
1,1-Dichloropropene	<0.200	μg/L	0.200	0.500	1	10/25/22 07:24	MSA	V25504
cis-1,3-Dichloropropene	<0.210	μg/L	0.210	0.500	1	10/25/22 07:24	MSA	V25504
trans-1,3-Dichloropropene	<0.150	μg/L	0.150	0.500	1	10/25/22 07:24	MSA	V25504
Ethanol	<42.0	μg/L	42.0	200	1	10/25/22 07:24	MSA	V25504
Ethylbenzene	46.1	μg/L	0.170	0.500	1	10/25/22 07:24	MSA	V25504
Ethyl Tertiary Butyl Ether (ET	ΓBE) <1.80	μg/L	1.80	10.0	1	10/25/22 07:24	MSA	V25504
Hexachlorobutadiene	<0.350	μg/L	0.350	2.00	1	10/25/22 07:24	MSA	V25504

Qualifiers/ Definitions DF Dilution Factor

MQL Method Quantitation Limit

J Estimated value

01102

Hart & Hickman (Charlotte) David Graham 2923 South Tryon St. Ste 100 Charlotte, NC 28203

Project ROW.704

Information:

Report Date: 10/27/2022

Received: 10/20/2022

Report Number: 22-293-2100 REPORT OF ANALYSIS

Lab No: 91187 Matrix: Aqueous

Sample ID: **MW-Parcel 24** Sampled: **10/19/2022 10:00**

Analytical Method: 8260D Prep Batch(es): V25503 10/24/22 14:00 Prep Method: 5030B Test Results Units MDL MQL DF Date / Time Ву Analytical Analyzed **Batch** n-Hexane μg/L <1.30 1.30 10.0 V25504 1 10/25/22 07:24 MSA 2-Hexanone µg/L < 0.380 0.380 5.00 1 10/25/22 07:24 MSA V25504 Isopropylbenzene µg/L 6.25 0.180 5.00 1 10/25/22 07:24 MSA V25504 4-Isopropyl toluene < 0.089 μg/L 0.089 0.500 1 10/25/22 07:24 MSA V25504 Methyl Ethyl Ketone (MEK) μg/L < 0.710 0.710 5.00 1 10/25/22 07:24 MSA V25504 Methyl tert-butyl ether (MTBE) μg/L < 0.140 0.140 0.500 1 10/25/22 07:24 MSA V25504 4-Methyl-2-Pentanone μg/L 1 10/25/22 07:24 MSA <1.00 1.00 5.00 V25504 Methylene Chloride < 0.330 μg/L 0.330 1.00 1 10/25/22 07:24 MSA V25504 Naphthalene 9.52 μg/L 0.470 1.00 1 10/25/22 07:24 MSA V25504 n-Propylbenzene μg/L 8.31 0.190 0.500 1 10/25/22 07:24 MSA V25504 Styrene μg/L < 0.220 0.220 0.500 1 10/25/22 07:24 MSA V25504 1,1,1,2-Tetrachloroethane μg/L < 0.160 0.160 0.500 1 10/25/22 07:24 MSA V25504 1,1,2,2-Tetrachloroethane μg/L < 0.160 0.160 0.500 1 10/25/22 07:24 MSA V25504 Tetrachloroethene < 0.220 μg/L 0.500 V25504 0.220 1 10/25/22 07:24 MSA Toluene μg/L < 0.220 0.220 0.500 V25504 1 10/25/22 07:24 MSA 1,2,3-Trichlorobenzene μg/L < 0.380 0.380 1 10/25/22 07:24 MSA V25504 2.00 1,2,4-Trichlorobenzene μg/L < 0.310 0.310 1 10/25/22 07:24 MSA V25504 1.00 1,1,1-Trichloroethane μg/L < 0.160 0.160 0.500 1 10/25/22 07:24 MSA V25504 1,1,2-Trichloroethane < 0.096 μg/L 0.096 0.500 1 10/25/22 07:24 MSA V25504 Trichloroethene μg/L < 0.180 0.180 0.500 V25504 1 10/25/22 07:24 MSA Trichlorofluoromethane μg/L 0.180 0.500 1 10/25/22 07:24 MSA V25504 < 0.180 1,2,3-Trichloropropane < 0.270 μg/L 0.270 1.00 1 10/25/22 07:24 MSA V25504

Qualifiers/ Definitions

DF Dilution Factor

MQL

Method Quantitation Limit

Estimated value

1

01102

Hart & Hickman (Charlotte) David Graham 2923 South Tryon St. Ste 100 Charlotte, NC 28203

Project ROW.704

Information:

Report Date: 10/27/2022

Received: 10/20/2022

Report Number: 22-293-2100 REPORT OF ANALYSIS

Lab No : 91187 Matrix: Aqueous

Sample ID : MW-Parcel 24 Sampled: 10/19/2022 10:00

Analytical Method: Prep Method:	8260D 5030B		Prep Batch(es):	V25503	10/24/2	22 14:00)		
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
1,3,5-Trimethylbenzene	e	<0.180	μg/L	0.180	0.500	1	10/25/22 07:24	MSA	V25504
Vinyl Acetate		<1.00	μg/L	1.00	2.00	1	10/25/22 07:24	MSA	V25504
Vinyl Chloride		<0.170	μg/L	0.170	0.500	1	10/25/22 07:24	MSA	V25504
o-Xylene		<0.210	μg/L	0.210	0.500	1	10/25/22 07:24	MSA	V25504
m,p-Xylene		<0.420	μg/L	0.420	1.00	1	10/25/22 07:24	MSA	V25504
Xylene (Total)		<0.21	μg/L	0.210	0.500	1	10/25/22 07:24		V25504
Analytical Method: Prep Method:	8270E 3510C		Prep Batch(es):	V25610	10/21/2	22 08:59	9		
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Acenaphthene		<7.33	μg/L	7.33	20.6	1	10/24/22 23:04	JMV	V25611
Acenaphthylene		<7.15	μg/L	7.15	20.6	1	10/24/22 23:04	JMV	V25611
Anthracene		<6.77	μg/L	6.77	10.3	1	10/24/22 23:04	JMV	V25611
Benzo(a)anthracene		<5.82	μg/L	5.82	10.3	1	10/24/22 23:04	JMV	V25611
Benzo(a)pyrene		<4.81	μg/L	4.81	10.3	1	10/24/22 23:04	JMV	V25611
Benzo(b)fluoranthene		<4.66	μg/L	4.66	10.3	1	10/24/22 23:04	JMV	V25611
Benzo(g,h,i)perylene		<4.37	μg/L	4.37	10.3	1	10/24/22 23:04	JMV	V25611
Benzo(k)fluoranthene		<4.82	μg/L	4.82	10.3	1	10/24/22 23:04	JMV	V25611
Chrysene		<5.54	μg/L	5.54	10.3	1	10/24/22 23:04	JMV	V25611
Dibenz(a,h)anthracene		<6.19	μg/L	6.19	20.6	1	10/24/22 23:04	JMV	V25611
Fluoranthene		<6.21	μg/L	6.21	10.3	1	10/24/22 23:04	JMV	V25611

Qualifiers/ Definitions DF

Dilution Factor

MQL

Method Quantitation Limit

Estimated value

J

01102

Hart & Hickman (Charlotte) David Graham

2923 South Tryon St. Ste 100 Charlotte , NC 28203

Project ROW.704

Information:

Report Date: 10/27/2022 Received: 10/20/2022

Report Number : 22-293-2100

REPORT OF ANALYSIS

Lab No: 91187 Matrix: Aqueous

Sample ID: MW-Parcel 24 Sampled: 10/19/2022 10:00

Analytical Method: 8270E Prep Batch(es): V25610 10/21/22 08:59 3510C Prep Method: Test Results Units MDL MQL DF Date / Time Ву **Analytical** Analyzed **Batch** Fluorene μg/L <7.49 7.49 10.3 1 10/24/22 23:04 JMV V25611 Indeno(1,2,3-cd)pyrene μg/L <6.39 6.39 10.3 1 10/24/22 23:04 JMV V25611 1-Methylnaphthalene μg/L V25611 <7.55 7.55 10.3 1 10/24/22 23:04 JMV 2-Methylnaphthalene <7.13 μg/L 7.13 10.3 1 10/24/22 23:04 JMV V25611 Naphthalene < 8.12 μg/L 8.12 V25611 10.3 1 10/24/22 23:04 JMV Phenanthrene <6.53 μg/L 6.53 10.3 1 10/24/22 23:04 JMV V25611 Pyrene <5.58 μg/L 5.58 10.3 1 10/24/22 23:04 JMV V25611 Surrogate: 2-Fluorobiphenyl 81.6 Limits: 44-119% 1 10/24/22 23:04 JMV V25611 Surrogate: Nitrobenzene-d5 68.5 Limits: 44-120% 1 10/24/22 23:04 JMV V25611 Surrogate: 4-Terphenyl-d14 98.3 Limits: 50-134% 1 10/24/22 23:04 JMV V25611

Qualifiers/ Definitions

DF Dilution Factor

MQL Method Quantitation Limit

J Estimated value

Quality Control Data

Client ID: Hart & Hickman (Charlotte)

Project Description: ROW.704
Report No: 22-293-2100

QC Prep: V25503 QC Analytical Batch(es): V25504
QC Prep Batch Method: 5030B Analysis Method: 8260D

Analysis Description: Volatile Organic Compounds - GC/MS

Lab Reagent BlankLRB-V25503Matrix: AQU

Associated Lab Samples: 91183, 91187

Parameter	Units	Blank Result	MDL	MQL	Analyzed	% Recovery	% Rec Limits
Acetone	μg/L	<1.80	1.80	5.00	10/25/22 01:32		
Acrolein	μg/L	<2.00	2.00	5.00	10/25/22 01:32		
Acrylonitrile	μg/L	<0.230	0.230	5.00	10/25/22 01:32		
Benzene	μg/L	<0.180	0.180	0.500	10/25/22 01:32		
Bromobenzene	μg/L	<0.210	0.210	0.500	10/25/22 01:32		
Bromochloromethane	μg/L	<0.420	0.420	1.00	10/25/22 01:32		
Bromodichloromethane	μg/L	<0.160	0.160	0.500	10/25/22 01:32		
Bromoform	μg/L	<1.50	1.50	5.00	10/25/22 01:32		
Bromomethane	μg/L	<0.280	0.280	1.00	10/25/22 01:32		
n-Butylbenzene	μg/L	<0.185	0.185	1.00	10/25/22 01:32		
sec-Butyl benzene	μg/L	<0.200	0.200	0.500	10/25/22 01:32		
tert-Butyl benzene	μg/L	<0.920	0.920	2.00	10/25/22 01:32		
Carbon Disulfide	μg/L	<0.150	0.150	5.00	10/25/22 01:32		
Carbon Tetrachloride	μg/L	<0.180	0.180	0.500	10/25/22 01:32		
Chlorobenzene	μg/L	<0.190	0.190	0.500	10/25/22 01:32		
Chlorodibromomethane	μg/L	<0.190	0.190	0.500	10/25/22 01:32		
Chloroethane	μg/L	<0.430	0.430	1.00	10/25/22 01:32		
Chloroform	μg/L	<0.220	0.220	0.500	10/25/22 01:32		
Chloromethane	μg/L	<0.220	0.220	0.500	10/25/22 01:32		
2-Chlorotoluene	μg/L	<0.200	0.200	0.500	10/25/22 01:32		
4-Chlorotoluene	μg/L	<0.200	0.200	0.500	10/25/22 01:32		
Di-Isopropyl Ether (DIPE)	μg/L	< 0.960	0.960	5.00	10/25/22 01:32		
1,2-Dibromo-3-Chloropropane	μg/L	<1.10	1.10	2.00	10/25/22 01:32		
1,2-Dibromoethane	μg/L	<0.200	0.200	0.500	10/25/22 01:32		
Dibromomethane	μg/L	<0.230	0.230	0.500	10/25/22 01:32		
1,2-Dichlorobenzene	μg/L	<0.220	0.220	0.500	10/25/22 01:32		
1,3-Dichlorobenzene	μg/L	<0.190	0.190	0.500	10/25/22 01:32		

Date: 10/27/2022 12:15 PM

Page 1 of 8

Quality Control Data

Client ID: Hart & Hickman (Charlotte)

Project Description: ROW.704
Report No: 22-293-2100

QC Prep: V25503 QC Analytical Batch(es): V25504
QC Prep Batch Method: 5030B Analysis Method: 8260D

Analysis Description: Volatile Organic Compounds - GC/MS

Lab Reagent BlankLRB-V25503Matrix: AQU

Associated Lab Samples: 91183, 91187

Parameter	Units	Blank Result	MDL	MQL	Analyzed	% Recovery	% Rec Limits
1,4-Dichlorobenzene	μg/L	<0.210	0.210	0.500	10/25/22 01:32		
Dichlorodifluoromethane	μg/L	<1.20	1.20	5.00	10/25/22 01:32		
1,1-Dichloroethane	μg/L	<0.240	0.240	0.500	10/25/22 01:32		
1,2-Dichloroethane	μg/L	<0.150	0.150	0.500	10/25/22 01:32		
1,1-Dichloroethene	μg/L	<0.150	0.150	0.500	10/25/22 01:32		
cis-1,2-Dichloroethene	μg/L	<0.200	0.200	0.500	10/25/22 01:32		
trans-1,2-Dichloroethene	μg/L	<0.180	0.180	0.500	10/25/22 01:32		
1,2-Dichloropropane	μg/L	<0.190	0.190	0.500	10/25/22 01:32		
1,3-Dichloropropane	μg/L	<0.130	0.130	0.500	10/25/22 01:32		
2,2-Dichloropropane	μg/L	<0.210	0.210	2.00	10/25/22 01:32		
1,1-Dichloropropene	μg/L	<0.200	0.200	0.500	10/25/22 01:32		
cis-1,3-Dichloropropene	μg/L	<0.210	0.210	0.500	10/25/22 01:32		
trans-1,3-Dichloropropene	μg/L	<0.150	0.150	0.500	10/25/22 01:32		
Ethanol	μg/L	<42.0	42.0	200	10/25/22 01:32		
Ethylbenzene	μg/L	<0.170	0.170	0.500	10/25/22 01:32		
Ethyl Tertiary Butyl Ether (ETBE)	μg/L	<1.80	1.80	10.0	10/25/22 01:32		
Hexachlorobutadiene	μg/L	<0.350	0.350	2.00	10/25/22 01:32		
n-Hexane	μg/L	<1.30	1.30	10.0	10/25/22 01:32		
2-Hexanone	μg/L	<0.380	0.380	5.00	10/25/22 01:32		
Isopropylbenzene	μg/L	<0.180	0.180	5.00	10/25/22 01:32		
4-Isopropyl toluene	μg/L	<0.089	0.089	0.500	10/25/22 01:32		
Methyl Ethyl Ketone (MEK)	μg/L	<0.710	0.710	5.00	10/25/22 01:32		
Methyl tert-butyl ether (MTBE)	μg/L	<0.140	0.140	0.500	10/25/22 01:32		
4-Methyl-2-Pentanone	μg/L	<1.00	1.00	5.00	10/25/22 01:32		
Methylene Chloride	μg/L	<0.330	0.330	1.00	10/25/22 01:32		
Naphthalene	μg/L	<0.470	0.470	1.00	10/25/22 01:32		
n-Propylbenzene	μg/L	<0.190	0.190	0.500	10/25/22 01:32		

Date: 10/27/2022 12:15 PM

Page 2 of 8

Quality Control Data

Client ID: Hart & Hickman (Charlotte)

Project Description: ROW.704
Report No: 22-293-2100

QC Prep: V25503 QC Analytical Batch(es): V25504
QC Prep Batch Method: 5030B Analysis Method: 8260D

Analysis Description: Volatile Organic Compounds - GC/MS

Lab Reagent Blank

LRB-V25503

Matrix: AQU

Associated Lab Samples: 91183, 91187

Parameter	Units	Blank Result	MDL	MQL	Analyzed	% Recovery	% Rec Limits
Styrene	μg/L	<0.220	0.220	0.500	10/25/22 01:32		
1,1,1,2-Tetrachloroethane	μg/L	<0.160	0.160	0.500	10/25/22 01:32		
1,1,2,2-Tetrachloroethane	μg/L	<0.160	0.160	0.500	10/25/22 01:32		
Tetrachloroethene	μg/L	<0.220	0.220	0.500	10/25/22 01:32		
Toluene	μg/L	<0.220	0.220	0.500	10/25/22 01:32		
1,2,3-Trichlorobenzene	μg/L	<0.380	0.380	2.00	10/25/22 01:32		
1,2,4-Trichlorobenzene	μg/L	<0.310	0.310	1.00	10/25/22 01:32		
1,1,1-Trichloroethane	μg/L	<0.160	0.160	0.500	10/25/22 01:32		
1,1,2-Trichloroethane	μg/L	<0.096	0.096	0.500	10/25/22 01:32		
Trichloroethene	μg/L	<0.180	0.180	0.500	10/25/22 01:32		
Trichlorofluoromethane	μg/L	<0.180	0.180	0.500	10/25/22 01:32		
1,2,3-Trichloropropane	μg/L	<0.270	0.270	1.00	10/25/22 01:32		
1,3,5-Trimethylbenzene	μg/L	<0.180	0.180	0.500	10/25/22 01:32		
Vinyl Acetate	μg/L	<1.00	1.00	2.00	10/25/22 01:32		
Vinyl Chloride	μg/L	<0.170	0.170	0.500	10/25/22 01:32		
o-Xylene	μg/L	<0.210	0.210	0.500	10/25/22 01:32		
m,p-Xylene	μg/L	<0.420	0.420	1.00	10/25/22 01:32		
4-Bromofluorobenzene (S)					10/25/22 01:32	100	80-124
Dibromofluoromethane (S)					10/25/22 01:32	98.8	75-129
1,2-Dichloroethane - d4 (S)					10/25/22 01:32	102	63-136
Toluene-d8 (S)					10/25/22 01:32	98.8	77-123

Laboratory Control Sample & LCSD

LCS-V25503 LCSD-V25503

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
Acetone	μg/L	40.0	40.3	38.1	101	95.2	40-166	5.6	20

Date: 10/27/2022 12:15 PM

Page 3 of 8

Quality Control Data

Client ID: Hart & Hickman (Charlotte)

Project Description: ROW.704
Report No: 22-293-2100

QC Prep: V25503 QC Analytical Batch(es): V25504
QC Prep Batch Method: 5030B Analysis Method: 8260D

Analysis Description: Volatile Organic Compounds - GC/MS

Laboratory Control Sample & LCSD LCS-V25503 LCSD-V25503

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
Acrolein	μg/L	40.0	36.1	36.5	90.2	91.2	70-130	1.1	20
Acrylonitrile	μg/L	40.0	37.5	39.9	93.7	99.7	81-127	6.2	20
Benzene	μg/L	20.0	19.2	18.4	96.0	92.0	77-128	4.2	20
Bromobenzene	μg/L	20.0	18.4	18.1	92.0	90.5	78-129	1.6	20
Bromochloromethane	μg/L	20.0	19.5	18.6	97.5	93.0	78-135	4.7	20
Bromodichloromethane	μg/L	20.0	19.9	20.0	99.5	100	76-138	0.5	20
Bromoform	μg/L	20.0	18.7	18.3	93.5	91.5	71-135	2.1	20
Bromomethane	μg/L	20.0	20.5	20.6	103	103	41-168	0.4	20
n-Butylbenzene	μg/L	20.0	19.3	18.7	96.5	93.5	68-134	3.1	20
sec-Butyl benzene	μg/L	20.0	19.2	19.1	96.0	95.5	71-131	0.5	20
tert-Butyl benzene	μg/L	20.0	19.6	19.4	98.0	97.0	70-132	1.0	20
Carbon Disulfide	μg/L	20.0	19.2	18.7	96.0	93.5	59-135	2.6	20
Carbon Tetrachloride	μg/L	20.0	18.4	18.6	92.0	93.0	72-142	1.0	20
Chlorobenzene	μg/L	20.0	19.3	18.7	96.5	93.5	78-119	3.1	20
Chlorodibromomethane	μg/L	20.0	19.9	20.1	99.5	101	75-134	1.0	20
Chloroethane	μg/L	20.0	20.5	20.3	103	102	57-142	0.9	20
Chloroform	μg/L	20.0	18.9	18.9	94.5	94.5	77-130	0.0	20
Chloromethane	μg/L	20.0	17.6	17.0	88.0	85.0	47-145	3.4	20
2-Chlorotoluene	μg/L	20.0	19.3	18.7	96.5	93.5	74-126	3.1	20
4-Chlorotoluene	μg/L	20.0	19.1	18.8	95.5	94.0	78-129	1.5	20
Di-Isopropyl Ether (DIPE)	μg/L	20.0	19.1	19.1	95.5	95.5	60-154	0.0	20
1,2-Dibromo-3-Chloropropane	μg/L	20.0	17.6	19.8	88.0	99.0	63-134	11.7	20
1,2-Dibromoethane	μg/L	20.0	20.1	20.4	101	102	77-135	1.4	20
Dibromomethane	μg/L	20.0	18.2	18.3	91.0	91.5	76-138	0.5	20
1,2-Dichlorobenzene	μg/L	20.0	19.4	18.5	97.0	92.5	78-128	4.7	20
1,3-Dichlorobenzene	μg/L	20.0	19.2	18.9	96.0	94.5	77-125	1.5	20

Date: 10/27/2022 12:15 PM

Page 4 of 8

Quality Control Data

Client ID: Hart & Hickman (Charlotte)

Project Description: ROW.704
Report No: 22-293-2100

QC Prep: V25503 QC Analytical Batch(es): V25504
QC Prep Batch Method: 5030B Analysis Method: 8260D

Analysis Description: Volatile Organic Compounds - GC/MS

Laboratory Control Sample & LCSD LCS-V25503 LCSD-V25503

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
1,4-Dichlorobenzene	μg/L	20.0	19.0	19.0	95.0	95.0	75-126	0.0	20
Dichlorodifluoromethane	μg/L	20.0	19.6	18.8	98.0	94.0	28-163	4.1	20
1,1-Dichloroethane	μg/L	20.0	19.0	18.6	95.0	93.0	70-130	2.1	20
1,2-Dichloroethane	μg/L	20.0	17.5	17.8	87.5	89.0	68-131	1.6	20
1,1-Dichloroethene	μg/L	20.0	19.5	18.9	97.5	94.5	70-154	3.1	20
cis-1,2-Dichloroethene	μg/L	20.0	19.0	18.4	95.0	92.0	76-141	3.2	20
trans-1,2-Dichloroethene	μg/L	20.0	19.2	18.9	96.0	94.5	76-135	1.5	20
1,2-Dichloropropane	μg/L	20.0	19.0	18.6	95.0	93.0	77-130	2.1	20
1,3-Dichloropropane	μg/L	20.0	19.9	19.3	99.5	96.5	76-132	3.0	20
2,2-Dichloropropane	μg/L	20.0	17.9	17.3	89.5	86.5	29-149	3.4	20
1,1-Dichloropropene	μg/L	20.0	19.3	18.3	96.5	91.5	71-136	5.3	20
cis-1,3-Dichloropropene	μg/L	20.0	18.9	19.3	94.5	96.5	65-140	2.0	20
trans-1,3-Dichloropropene	μg/L	20.0	19.4	19.3	97.0	96.5	67-140	0.5	20
Ethanol	μg/L	500	355	437	71.0	87.4	70-130	20.7*	20
Ethylbenzene	μg/L	20.0	19.1	18.5	95.5	92.5	80-127	3.1	20
Ethyl Tertiary Butyl Ether (ETBE)	μg/L	40.0	39.0	38.6	97.5	96.5	70-130	1.0	20
Hexachlorobutadiene	μg/L	20.0	18.8	18.9	94.0	94.5	61-134	0.5	20
n-Hexane	μg/L	20.0	18.7	18.8	93.5	94.0	70-130	0.5	20
2-Hexanone	μg/L	20.0	18.0	18.0	90.0	90.0	64-137	0.0	20
Isopropylbenzene	μg/L	20.0	19.5	18.8	97.5	94.0	70-130	3.6	20
4-Isopropyl toluene	μg/L	20.0	19.6	18.8	98.0	94.0	69-132	4.1	20
Methyl Ethyl Ketone (MEK)	μg/L	20.0	20.6	20.3	103	102	71-134	1.4	20
Methyl tert-butyl ether (MTBE)	μg/L	20.0	19.3	19.2	96.5	96.0	68-135	0.5	20
4-Methyl-2-Pentanone	μg/L	20.0	18.0	18.9	90.0	94.5	69-134	4.8	20
Methylene Chloride	μg/L	20.0	19.7	19.4	98.5	97.0	73-131	1.5	20
Naphthalene	μg/L	20.0	17.6	17.9	88.0	89.5	64-136	1.6	20

* QC Fail Date: 10/27/2022 12:15 PM Page 5 of 8

Page 20 of 25

Quality Control Data

Client ID: Hart & Hickman (Charlotte)

Project Description: ROW.704
Report No: 22-293-2100

QC Prep: V25503 QC Analytical Batch(es): V25504
QC Prep Batch Method: 5030B Analysis Method: 8260D

Analysis Description: Volatile Organic Compounds - GC/MS

Laboratory Control Sample & LCSD LCS-V25503 LCSD-V25503

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
n-Propylbenzene	μg/L	20.0	19.5	19.0	97.5	95.0	72-132	2.5	20
Styrene	μg/L	20.0	19.8	18.8	99.0	94.0	78-129	5.1	20
1,1,1,2-Tetrachloroethane	μg/L	20.0	20.0	19.6	100	98.0	79-134	2.0	20
1,1,2,2-Tetrachloroethane	μg/L	20.0	18.5	19.8	92.5	99.0	62-127	6.7	20
Tetrachloroethene	μg/L	20.0	19.2	18.3	96.0	91.5	80-129	4.8	20
Toluene	μg/L	20.0	18.7	18.0	93.5	90.0	76-131	3.8	20
1,2,3-Trichlorobenzene	μg/L	20.0	19.0	19.2	95.0	96.0	58-144	1.0	20
1,2,4-Trichlorobenzene	μg/L	20.0	19.1	19.5	95.5	97.5	66-139	2.0	20
1,1,1-Trichloroethane	μg/L	20.0	19.3	18.9	96.5	94.5	75-135	2.0	20
1,1,2-Trichloroethane	μg/L	20.0	19.2	19.8	96.0	99.0	70-140	3.0	20
Trichloroethene	μg/L	20.0	20.0	19.8	100	99.0	77-133	1.0	20
Trichlorofluoromethane	μg/L	20.0	20.4	19.8	102	99.0	62-148	2.9	20
1,2,3-Trichloropropane	μg/L	20.0	19.1	19.3	95.5	96.5	71-127	1.0	20
1,3,5-Trimethylbenzene	μg/L	20.0	19.4	19.0	97.0	95.0	75-131	2.0	20
Vinyl Acetate	μg/L	20.0	17.3	18.2	86.5	91.0	34-167	5.0	20
Vinyl Chloride	μg/L	20.0	19.8	18.7	99.0	93.5	57-141	5.7	20
o-Xylene	μg/L	20.0	19.4	18.7	97.0	93.5	78-128	3.6	20
m,p-Xylene	μg/L	40.0	39.1	37.6	97.7	94.0	77-133	3.9	20
4-Bromofluorobenzene (S)					102	100	80-124		
Dibromofluoromethane (S)					101	101	75-129		
1,2-Dichloroethane - d4 (S)					99.8	99.0	63-136		
Toluene-d8 (S)					99.8	98.8	77-123		

Date: 10/27/2022 12:15 PM

Page 6 of 8

Quality Control Data

Client ID: Hart & Hickman (Charlotte)

Project Description: ROW.704 Report No: 22-293-2100

QC Prep: V25610 **QC Analytical Batch(es):** V25611 QC Prep Batch Method: 3510C **Analysis Method:**

> **Analysis Description:** Semivolatile Organic Compounds - GC/MS

8270E

Lab Reagent Blank

LRB-V25610

Matrix: AQU

Associated Lab Samples: 91183, 91187

Parameter	Units	Blank Result	MDL	MQL	Analyzed	% Recovery	% Rec Limits
Acenaphthene	μg/L	<7.12	7.12	20.0	10/24/22 12:46		
Acenaphthylene	μg/L	<6.94	6.94	20.0	10/24/22 12:46		
Anthracene	μg/L	<6.57	6.57	10.0	10/24/22 12:46		
Benzo(a)anthracene	μg/L	<5.65	5.65	10.0	10/24/22 12:46		
Benzo(a)pyrene	μg/L	<4.67	4.67	10.0	10/24/22 12:46		
Benzo(b)fluoranthene	μg/L	<4.52	4.52	10.0	10/24/22 12:46		
Benzo(g,h,i)perylene	μg/L	<4.24	4.24	10.0	10/24/22 12:46		
Benzo(k)fluoranthene	μg/L	<4.68	4.68	10.0	10/24/22 12:46		
Chrysene	μg/L	<5.38	5.38	10.0	10/24/22 12:46		
Dibenz(a,h)anthracene	μg/L	<6.01	6.01	20.0	10/24/22 12:46		
Fluoranthene	μg/L	<6.03	6.03	10.0	10/24/22 12:46		
Fluorene	μg/L	<7.27	7.27	10.0	10/24/22 12:46		
indeno(1,2,3-cd)pyrene	μg/L	<6.20	6.20	10.0	10/24/22 12:46		
L-Methylnaphthalene	μg/L	<7.33	7.33	10.0	10/24/22 12:46		
2-Methylnaphthalene	μg/L	<6.92	6.92	10.0	10/24/22 12:46		
Naphthalene	μg/L	<7.88	7.88	10.0	10/24/22 12:46		
Phenanthrene	μg/L	<6.34	6.34	10.0	10/24/22 12:46		
Pyrene	μg/L	<5.42	5.42	10.0	10/24/22 12:46		
2-Fluorobiphenyl (S)					10/24/22 12:46	70.8	44-119
Nitrobenzene-d5 (S)					10/24/22 12:46	61.2	44-120
1-Terphenyl-d14 (S)					10/24/22 12:46	94.2	50-134

Laboratory Control Sample & LCSD

LCS-V25610 LCSD-V25610

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
Acenaphthene	μg/L	50.0	35.2	41.0	70.4	82.0	38-117	15.2	20.0

Date: 10/27/2022 12:15 PM

Page 7 of 8

Quality Control Data

Client ID: Hart & Hickman (Charlotte)

Project Description: ROW.704
Report No: 22-293-2100

QC Prep: V25610 QC Analytical Batch(es): V25611 QC Prep Batch Method: 3510C Analysis Method: 8270E

Analysis Description: Semivolatile Organic Compounds - GC/MS

Laboratory Control Sample & LCSD LCS-V25610 LCSD-V25610

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
Acenaphthylene	μg/L	50.0	34.5	40.2	69.0	80.4	41-130	15.2	20.0
Anthracene	μg/L	50.0	39.4	43.5	78.8	87.0	57-123	9.8	20.0
Benzo(a)anthracene	μg/L	50.0	39.4	42.5	78.8	85.0	58-125	7.5	20.0
Benzo(a)pyrene	μg/L	50.0	46.1	50.1	92.2	100	54-128	8.3	20.0
Benzo(b)fluoranthene	μg/L	50.0	42.5	46.3	85.0	92.6	53-131	8.5	20.0
Benzo(g,h,i)perylene	μg/L	50.0	39.4	43.1	78.8	86.2	50-134	8.9	20.0
Benzo(k)fluoranthene	μg/L	50.0	42.1	45.6	84.2	91.2	53-131	7.9	20.0
Chrysene	μg/L	50.0	39.9	44.0	79.8	88.0	59-123	9.7	20.0
Dibenz(a,h)anthracene	μg/L	50.0	31.6	35.2	63.2	70.4	51-134	10.7	20.0
Fluoranthene	μg/L	50.0	39.7	43.3	79.4	86.6	57-128	8.6	20.0
Fluorene	μg/L	50.0	36.9	43.2	73.8	86.4	52-124	15.7	20.0
Indeno(1,2,3-cd)pyrene	μg/L	50.0	39.6	43.1	79.2	86.2	52-134	8.4	20.0
1-Methylnaphthalene	μg/L	50.0	28.7	33.0	57.4	66.0	41-119	13.9	20.0
2-Methylnaphthalene	μg/L	50.0	27.6	31.6	55.2	63.2	40-121	13.5	20.0
Naphthalene	μg/L	50.0	26.5	30.4	53.0	60.8	40-121	13.7	20.0
Phenanthrene	μg/L	50.0	39.8	44.0	79.6	88.0	59-120	10.0	20.0
Pyrene	μg/L	50.0	41.3	45.6	82.6	91.2	57-126	9.8	20.0
2-Fluorobiphenyl (S)					67.0	77.6	44-119		
Nitrobenzene-d5 (S)					51.8	58.8	44-120		
4-Terphenyl-d14 (S)					85.8	92.0	50-134		

Date: 10/27/2022 12:15 PM

Page 23 of 25

Shipment Receipt Form

Customer Number: 01102

Customer Name: Hart & Hickman (Charlotte)

Report Number: 22-293-2100

Shipping Method

		Ompping	wethou		
○ Fed Ex	US Postal	Lab		Other :	
UPS	Client	O Courie	r	Thermometer ID:	IRT-15 3.8 C
Shipping conta	ainer/cooler uncompromised	! ?	Yes	○ No	
Number of cod	olers/boxes received	ſ	1		
Custody seals	intact on shipping containe	r/cooler?	O Yes	○ No	Not Present
Custody seals	intact on sample bottles?		O Yes	○ No	Not Present
Chain of Custo	ody (COC) present?		Yes	○ No	
COC agrees v	vith sample label(s)?		Yes	○ No	
COC properly	completed		Yes	○ No	
Samples in pr	oper containers?		Yes	○ No	
Sample contai	iners intact?		Yes	○ No	
Sufficient sam	ple volume for indicated tes	t(s)?	Yes	○ No	
All samples re	ceived within holding time?		Yes	○ No	
Cooler temper	ature in compliance?		Yes	○ No	
	es arrived at the laboratory of considered acceptable as of egun.		Yes	○ No	
Water - Samp	le containers properly prese	rved	Yes	○ No	○ N/A
Water - VOA v	rials free of headspace		Yes	○ No	○ N/A
Trip Blanks re	ceived with VOAs		O Yes	No	○ N/A
Soil VOA meth	nod 5035 – compliance crite	ria met	Yes	○ No	● N/A
High conce	entration container (48 hr)		Lov	v concentration EnC	ore samplers (48 hr)
High conce	entration pre-weighed (meth	anol -14 d)	Lov	v conc pre-weighed	vials (Sod Bis -14 d)
Special precau	utions or instructions include	ed?	O Yes	No	
Comments:					

Page 24 of 25

Date & Time: 10/27/2022 10:24:58

Signature: Angela D Overcash

Hart & I	. Tryon S	PC (H&H) St, Suite100	Client Project Manager/Conta	act		acc	ounts ounts	oayab			For Laboratory Use Only		
Project D Parce	ect Description Project/Site Location (City/St		RUSH – Additional charges apply Special Detection Limit(s) Date Results Needed 5 day TAT			Courier Client Drop Off DW – Drinking Wa		Matrix Key WW – Wastewater GW – Groundwater DW – Drinking Water S – Soil /Solid O – Oil P - Product M - Misc					
Project N	Number		Project Manager Phone #			Proje	ct Manag	er Email		Purchase Order	Number	Site/Facility ID #	
ROV	V-704		704-586-0007			dgra	aham@	harth	ickman.com				
449 Spring Charlotte,	AN/ gbrook Road NC 28217 04-S29-6364		Unless noted, all containers per Table II of 40 CFR Part 136	Number of Containers	Matrix (Refer to Key)	(G)rab or (C)omposite	8260VOCs	PAHs 8270				A Cool < 10C Na2S2O3 (Micro Only) B Cool <= 6C C H2SO4 pH<2 D None Required E NaOH pH>10 F HNO3 pH<2 G HCL pH<2 H H3PO4 pH<2 I Cool <= 6C NA2S2O3	
Date	Time	5	Sample Identification		Σ	9)			Required Ar	nalysis / Preservati	ve	Comments/Notes	
10/14/22	1300	TMW-1 (2	4)	5			1	1					
10/19/22	1000	MW-Parce	el 24	5			1	1					
						1							
							Part - St						
				-0									
		For Laborato	ry Use Only	Sam	pled by	(Name	– Print)			Client Remarks	Comments		
Ice		istody Seals	Lab Comments	Ada	am N	licha	lak	(H&H)					
⊘ N		r/N		Reli	nquishe	d by: (S	IGNATUR	tE)		Date Time	Received by: (SIGNA	TURE) Date Time	
Blan	nk/Cooler 1			Reli	nquishe	d by: (S	IGNATUR	RE)		Date Time	Received by: (SIGNA	TURE) Date Time	
	5.	80		Reli	nquishe	d by: (S	IGNATUR	RE)		Date Time	Received by: (SIGNA	Date Time (1/05/ct (249	

Appendix E

Groundwater Sampling Records

SMARTER ENVIRONMENTAL SOLUTIONS

LOW-FLOW GROUNDWATER SAMPLING RECORD

Stabilization Criteria

Primary: Secondary:

pH +/- 0.1 unit DO +/- 0.2 mg/L S. Cond. +/- 5% ORP +/- 20 mV

Turb. +/- 10% (<10 NTUs for metals)

Water Level: slight or stable drawdown during purging

Job No: RO	W-704
------------	-------

Well ID: MW-Parcel 24

Well Location: Parcel 24

racility mame:	DOT Right of	of Way				Date	e: 10/19/22		
Top of Casing	Volume of Water Per Well Volume: gallon:								
Total Well Dep	th (ftTOC):	14	Depth to Water (ftTOC):		2.84	ļ	_ Well Diamet	er: 2 inch	
Sampling Pers	onnel:	ABM	,,		Sc	creen Interval ((ftTOC):	4 -	14
Type of Pump:	Peristaltic		Tubing Ma	aterial: Polyethyl	ene	Pu	ımp/Tubing se	t at:10).5 ft
Weather Cond	itions: Sunny,	30 F			N	OTES: Screen	interval is pe	r the well const	ruction tag
			GROUN	DWATER SAM	PLING PARAM	ETERS			
	Water	Volume	Pumping	DO	Temp.	S. Cond.	рН	ORP	Turbidity
<u>Time</u>	<u>Level</u>	Pumped	<u>Rate</u>	<u>(mg/l)</u>	(°C)	(µS/cm)	(SU)	<u>(mV)</u>	(NTU)
09:40	3.02	0.75 L	150 mL/min	0.00	22.4	371.0	6.33	-199.9	44.70
09:45	3.02	1.50 L	150 mL/min	0.00	22.2	372.5	6.26	-206.4	42.10
09:50	3.03	2.25 L	150 mL/min	0.00	22.6	370.7	6.23	-208.0	41.80
09:55	3.03	3.00 L	150 mL/min	0.00	22.7	369.8	6.21	-210.1	40.30
Other Sample	Parameters:								
Sampled at:	10	0:00	Paramete	rs taken with:		YSI Pro P	Plus and Hach	2100Q	
Sample Delive	red to:Lab			_ by	ABM		at		
Field Filtration:	OYes C) No If	yes, which samp	ole parameters w	vere field filtered	l:			
Sample Param	eter Containe	rs (Types. Num	ber of Container	s. Preservatives): 3 40- mL VC)A 8260. 2 1 I	Amber 8270		
		- (////,		_,	, <u> </u>	5200, 2 1 2			

SMARTER ENVIRONMENTAL SOLUTIONS

LOW-FLOW GROUNDWATER SAMPLING RECORD

Stabilization Criteria

Primary: Secondary: pH +/- 0.1 unit DO +/- 0.2 mg/L

S. Cond. +/- 5% ORP +/- 20 mV Turb. +/- 10% (<10 NTUs for metals)

Water Level: slight or stable drawdown during purging

Job No: ROW	<i>'-</i> 704
-------------	---------------

Well ID: TMW-1

Well Location: Parcel 24

Time Level Pumped Rate (mg/l) (°C) (μS/cm) (SU) (mV) (NTU 12:50 7.12 0.75 L 150 mL/min 0.20 24.8 434.2 6.52 -245.6 471.0	Facility Name	DOT Right o	of Way				Date	e: <u>10/14/22</u>			
Screen Interval (ftTOC): 3 - 8 Type of Pump; Peristaltic Tubing Material: Polyethylene Pump/Tubing set at: 7 ft Weather Conditions: Sunny, 60s NOTES: Slower recharge - sampled early	Top of Casing Elevation (ft msl):			Casing M	Casing Material: PVC		Volume of Water Per Well Volume:				
Type of Pump; Peristaltic	Total Well De	pth (ftTOC):	8	Depth to Wate	er (ftTOC):	5.71	V	Vell Diamete	: 1 inch		
Weather Conditions: Sunny, 60s NOTES: Slower recharge - sampled early Riser height: 1.86° above ground surface GROUNDWATER SAMPLING PARAMETERS Water Volume Pumping DO Temp. S. Cond. pH ORP Turbic Time Level Pumped Rate (mg/l) Rate (mg/l) (°C) (µS/cm) (SU) (mV) (NTI 12:50 7.12 0.75 L 150 mL/min 0.20 24.8 434.2 6.52 -245.6 471.0 12:55 8.82 1.50 L 150 mL/min 1.88 24.7 452.6 6.32 -205.1 131.0 Other Sample Parameters: Sampled at: 13:00 Parameters taken with: YSI Pro Plus and Hach 2100Q YSI Pro Plus and Hach 2100Q Sample Delivered to: Lab by ABM at	Sampling Per	sonnel:	ABM	······································		Sc	reen Interval (ftTOC):	3 -		8
See Neight: 1.86' above ground surface Section	Type of Pump	: Peristaltic		Tubing Ma	aterial: Polyethyl	ene	Pu	mp/Tubing s	et at:	7	ft
Semple Parameters Param	Weather Cond	ditions: Sunny,	60s			N	OTES: Slower	recharge - sa	ampled early		
Water Volume Pumping DO Temp. S. Cond. pH ORP Turbic 12:50 7.12 0.75 L 150 mL/min 0.20 24.8 434.2 6.52 2-245.6 471.0 12:55 8.82 1.50 L 150 mL/min 1.88 24.7 452.6 6.32 -205.1 131.0 College Sample Parameters: Sampled at: 13:00 Parameters taken with: YSI Pro Plus and Hach 2100Q Sample Delivered to: Lab by ABM at Field Filtration: Yes No If yes, which sample parameters were field filtered:	Riser height:	1.86' above gro	ound surface								
Time Level Pumped Rate (mg/l) (°C) (μS/cm) (SU) (mV) (NTL 12:50 7.12 0.75 L 150 mL/min 0.20 24.8 434.2 6.52 2.245.6 471.0 12:55 8.82 1.50 L 150 mL/min 1.88 24.7 452.6 6.32 -205.1 131.0 Cother Sample Parameters: Sampled at: 13:00 Parameters taken with: YSI Pro Plus and Hach 2100Q Sample Delivered to: Lab by ABM at Field Filtration: Yes No If yes, which sample parameters were field filtered:				GROUN	DWATER SAM	PLING PARAM	ETERS				
12:50 7.12 0.75 L 150 mL/min 0.20 24.8 434.2 6.52 -245.6 471.0 12:55 8.82 1.50 L 150 mL/min 1.88 24.7 452.6 6.32 -205.1 131.0 Other Sample Parameters: Sampled at: 13:00 Parameters taken with: YSI Pro Plus and Hach 2100Q Sample Delivered to: Lab by ABM at Field Filtration: ○Yes No If yes, which sample parameters were field filtered:		Water	Volume	Pumping	DO	Temp.	S. Cond.	рН	ORP		Turbidity
12:55	<u>Time</u>	<u>Level</u>	<u>Pumped</u>	<u>Rate</u>	<u>(mg/l)</u>	<u>(°C)</u>	(μS/cm)	<u>(SU)</u>	<u>(mV)</u>		(NTU)
Other Sample Parameters: Sampled at:	12:50	7.12	0.75 L	150 mL/min	0.20	24.8	434.2	6.52	-245.6		471.00
Sampled at: 13:00 Parameters taken with: YSI Pro Plus and Hach 2100Q Sample Delivered to: Lab by ABM at Field Filtration: Yes No If yes, which sample parameters were field filtered:	12:55	8.82	1.50 L	150 mL/min	1.88	24.7	452.6	6.32	-205.1		131.00
Sampled at: 13:00 Parameters taken with: YSI Pro Plus and Hach 2100Q Sample Delivered to: Lab by ABM at Field Filtration: Yes No If yes, which sample parameters were field filtered:									-		
Sampled at: 13:00 Parameters taken with: YSI Pro Plus and Hach 2100Q Sample Delivered to: Lab by ABM at Field Filtration: Yes No If yes, which sample parameters were field filtered:									_		
Sampled at: 13:00 Parameters taken with: YSI Pro Plus and Hach 2100Q Sample Delivered to: Lab by ABM at Field Filtration: Yes No If yes, which sample parameters were field filtered:									_		
Sampled at: 13:00 Parameters taken with: YSI Pro Plus and Hach 2100Q Sample Delivered to: Lab by ABM at Field Filtration: Yes No If yes, which sample parameters were field filtered:											
Sampled at: 13:00 Parameters taken with: YSI Pro Plus and Hach 2100Q Sample Delivered to: Lab by ABM at Field Filtration: Yes No If yes, which sample parameters were field filtered:											
Sampled at: 13:00 Parameters taken with: YSI Pro Plus and Hach 2100Q Sample Delivered to: Lab by ABM at Field Filtration: Yes No If yes, which sample parameters were field filtered:											
Sampled at: 13:00 Parameters taken with: YSI Pro Plus and Hach 2100Q Sample Delivered to: Lab by ABM at Field Filtration: Yes No If yes, which sample parameters were field filtered:									_		
Sampled at: 13:00 Parameters taken with: YSI Pro Plus and Hach 2100Q Sample Delivered to: Lab by ABM at Field Filtration: Yes No If yes, which sample parameters were field filtered:									_		
Sampled at: 13:00 Parameters taken with: YSI Pro Plus and Hach 2100Q Sample Delivered to: Lab by ABM at Field Filtration: Yes No If yes, which sample parameters were field filtered:									_		
Sample Delivered to: Lab by ABM at	Other Sample	Parameters:									
Field Filtration: OYes No If yes, which sample parameters were field filtered:	Sampled at:_	13	3:00	Paramete	rs taken with:		YSI Pro P	lus and Hach	1 2100Q		
	Sample Delive	ered to:Lab_			_ by	ABM		at			
	Field Filtration	Yes) No If	ves. which same	ole parameters v	vere field filtered	l:				
Sample Parameter Containers (Types, Number of Containers, Preservatives): 3 40- mL VOA 8260, 2 1 L Amber 8270		•		•	·						
	Sample Parar	neter Container	rs (1 ypes, Num	iber of Container	s, Preservatives): 3 40- mL VC	DA 8260, 2 1 L	Amber 8270			
				<u> </u>							

Via NC DOT FTS

November 30, 2022

NC DOT Geotechnical Unit GeoEnvironmental Section 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Attention: Mr. Ashley Cox, LG

Re: Phase II Investigation Report – Parcel 3

NC DOT State Project No. R-5600 WBS Element No. 45818.1.FR1

Sylva, Jackson County, North Carolina

H&H Job No. ROW-704

Dear Ashley:

Please find the attached PDF copy of the Phase II Investigation report for the Gary Gibson property (Parcel 3) located in Sylva, Jackson County, North Carolina. Please return via DocuSign for final signatures. If you have any questions or need additional information, please contact us at (704) 586-0007.

Sincerely,

Hart & Hickman, PC

David Graham, PG

Senior Project Geologist

Matt Bramblett, PE

Matt framblett

Principal

Phase II Investigation NC DOT Parcel 3

399 W. Main St. Sylva, Jackson County North Carolina

H&H Job No. ROW-704 State Project: R-5600 WBS Element No. 45818.1.FR1 November 30, 2022

#C-1269 Engineering #-245 Geology

Phase II Investigation – Parcel 3 399 W. Main St. Sylva, Jackson County North Carolina H&H Job No. ROW-704

Table of Contents

1.0 Introduction and Background
2001
3.0 Soil Assessment
3.1 Soil Sampling
3.2 Soil Analytical Results
4.0 Summary and Regulatory Considerations
5.0 Signature Page

List of Tables

Table 1 Soil Boring GPS Coordinate Data

Table 2 Soil Analytical Results

List of Figures

Figure 1 Site Location Map

Figure 2 Site Map and Soil Analytical Results

List of Appendices

Appendix A NC DOT Preliminary Plan

Appendix B Pyramid Geophysical Survey Report

Appendix C Soil Boring Logs

Appendix D Laboratory Analytical Report

Phase II Investigation – Parcel 3 399 W. Main St. Sylva, Jackson County North Carolina <u>H&H Job No. ROW-704</u>

1.0 Introduction and Background

Hart & Hickman, PC (H&H) has prepared this Phase II Investigation (Phase II) report documenting assessment activities performed at the Gary Gibson property (Parcel 3) located at 399 W. Main St. in Sylva, Jackson County, North Carolina. This assessment was conducted on behalf of the North Carolina Department of Transportation (NC DOT) in accordance with H&H's August 17, 2022 proposal.

This assessment was conducted to evaluate the potential for underground storage tank (UST) systems and impacted soil on proposed right-of-way and construction easement areas on Parcel 3 related to proposed road improvements along W. Main St. (State Project R-5600). This NC DOT road improvement project includes new curb and gutters, sidewalks, etc. along W. Main St. near the subject site. Parcel 3 is currently occupied by a small retail or office building and a parking lot. A site location map is included as Figure 1, and a site map is presented as Figure 2. NC DOT's plan sheet depicting Parcel 3 is included in Appendix A.

H&H searched the North Carolina Department of Environmental Quality (NC DEQ) Laserfiche website and NC DEQ UST databases for incident files related to the Parcel 3 property address to better target UST system areas and to check for previously reported impacts. No UST incident files were identified for Parcel 3 on NC DEQ's Laserfiche website. Based on the NC DEQ Registered Tank Database, there were no USTs registered on the property consisting of Parcel 3.

The Phase II assessment activities conducted by H&H on Parcel 3 are discussed below.

2.0 Geophysical Survey

Prior to advancing soil borings, H&H reviewed the results of a geophysical survey performed on Parcel 3 by Pyramid Geophysical Services (Pyramid) on September 26 and 27, 2022. Pyramid utilized electromagnetic (EM) induction-metal technology and ground penetrating radar (GPR) technology to identify potential geophysical anomalies and potential USTs at the site. A total of three EM anomalies were identified at the site. The EM anomalies were attributed to known surface metallic objects, such as reinforced concrete or above-ground metal structures (i.e. survey markers, etc.) that were not characteristic signatures of USTs. The EM/GPR results indicated that no USTs were identified on Parcel 3. Pyramid's report, including figures depicting the results of the EM/GPR survey, is provided in Appendix B.

3.0 Soil Assessment

3.1 Soil Sampling

H&H contracted with Geologic Exploration, Inc. (GEX) of Statesville, North Carolina to advance soil borings on Parcel 3. On October 11, 2022, three soil borings (SB-3-1 through SB-3-3) were advanced on Parcel 3 using a direct push technology (DPT) drill rig. Prior to conducting soil borings, underground utilities were marked by the NC 811 public utility locator and by Pyramid for private underground utilities. Borings were cleared to five feet by hand auger prior to using DPT.

The soil borings were advanced to depths ranging from 9.5 ft to 15 ft below ground surface (bgs). Two borings were advanced to shallower depths due to DPT refusal, and one of the soil borings was advanced to 15 ft bgs to evaluate the depth to groundwater at the site. To facilitate the selection of soil samples for laboratory analysis, soil from each boring was field screened continuously for the presence of volatile organic compounds (VOCs) with a photoionization detector (PID). Additionally, H&H observed the soil for visual and olfactory indications of impacts. Based on field screening, there were indications of potential impacts in borings SB-3-1 and SB-3-2. PID readings were significantly higher near the capillary fringe and/or below the water table in borings SB-3-1 and SB-3-2. Based on the expected shallow soil disturbance associated with DOT's project in this area, soil samples were collected at shallow depths of 0 ft to 2 ft to 4 ft bgs. Soil boring logs

are included in Appendix C. GPS coordinate data for the soil borings are summarized in Table 1, and the boring locations are shown on Figure 2.

H&H submitted one soil sample from each of the borings SB-3-1 through SB-3-3 for laboratory analysis. The soil samples were placed into laboratory-supplied sample containers using nitrile glove-covered hands. The containers were then labeled as to content, analyses requested, sample date and time, and sampler's name. The samples were placed in an iced cooler upon collection and were submitted to Red Lab, LLC of Wilmington, NC under standard chain-of-custody protocol for analysis of total petroleum hydrocarbons (TPH) as gasoline-range organics (GRO) and diesel-range organics (DRO) using QED ultraviolet fluorescence (UVF) technology. Soil sample depths and analytical results are summarized in Table 2. Laboratory analytical data sheets and chain-of-custody documentation are provided in Appendix D. The analytical results are discussed below.

Upon completion of soil sampling activities, the soil borings were filled with bentonite pellets, and the surfaces were patched to match the existing surface.

3.2 Soil Analytical Results

Concentrations of TPH DRO (ranging from 0.52 mg/kg to 11.7 mg/kg) were detected in soil samples collected from borings SB-3-1 and SB-3-3. The DRO concentrations in both soil samples did not exceed NC DEQ Action Level of 100 mg/kg. TPH GRO was not detected in the soil samples collected. TPH data are depicted on Figure 2.

Although laboratory analytical results indicate soil impacts below NC DEQ Action Levels in borings SB-3-1 and SB-3-2, significant PID readings from these borings indicate the potential for soil impacts below 8 ft bgs in SB-3-1 and 12 ft bgs in SB-3-2. The elevated PID readings are likely due to impacted groundwater and historical groundwater table fluctuations creating a contamination smear zone near the water table. If impacted soil is encountered near Parcel 3 during the NC DOT construction activities, it should be properly managed and disposed.

4.0 Summary and Regulatory Considerations

H&H has reviewed available NC DEQ files, geophysical survey results, and analytical results of soil samples collected at the Parcel 3 property in Sylva, Jackson County, North Carolina. Parcel 3 is currently occupied by a small retail or office building and a parking lot.

Based on the geophysical survey, no USTs were suspected on Parcel 3. Based on H&H's shallow soil assessment results, TPH DRO and TPH GRO were not detected above NC DEQ Action Levels on Parcel 3. However, impacts may be present, particularly in the capillary fringe and near the water table at depths greater than 8 ft. The depth to water was estimated to be approximately 12 ft bgs on Parcel 3 at the time of H&H's assessment.

NC DOT plans indicate proposed undercut for road improvement activities in proposed NC DOT work areas near Parcel 3. Impacted media encountered during road construction activities, if any, should be properly managed and disposed at a permitted facility. If groundwater is encountered and dewatering activities are required during NC DOT construction activities, the groundwater should be characterized and properly managed, if found to be impacted. If a UST is encountered during construction activities, the UST system(s) and their contents should be removed in accordance with NC DEQ regulations and be properly disposed.

5.0 Signature Page

This report was prepared by:

Docusigned by:

David Graham

9F6FAD6E6BA34BE...

David Graham, PG Senior Project Geologist for Hart & Hickman, PC

This report was reviewed by:

Matt Bramblett, PE

Principal and Project Manager for

Hart & Hickman, PC

Not considered final unless all signatures are completed.

Table 1 (Page 1 of 1) Soil Boring GPS Coordinate Data NC DOT Parcel 3 Sylva, Jackson County, North Carolina H&H Job No. ROW-704

Sample ID	Latitude	Longitude
SB-3-1	35.373667	-83.219948
SB-3-2	35.373778	-83.219932
SB-3-3	35.373797	-83.219826

Notes:

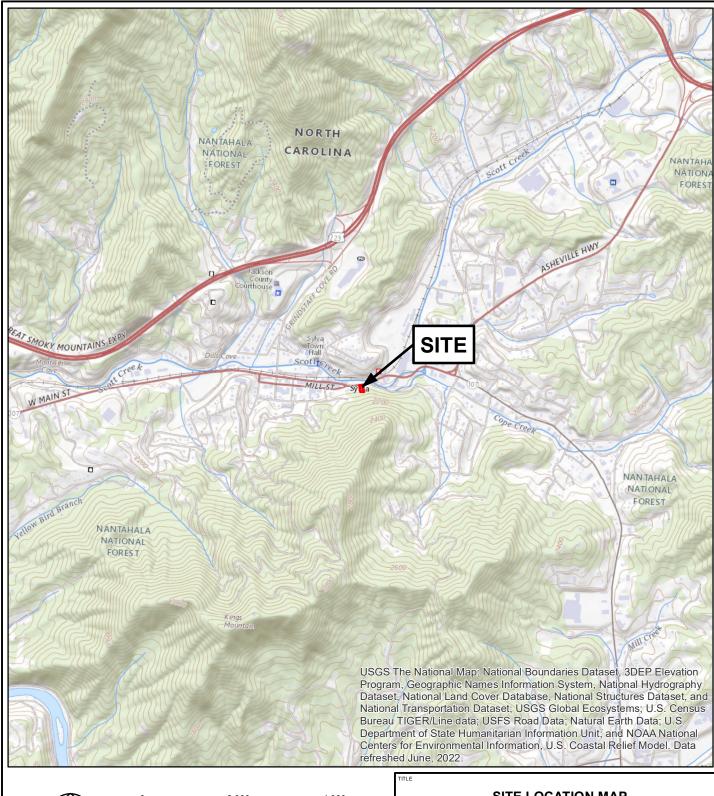
GPS coordinate data points collected using a Trimble GeoExplorer 6000 series unit with external satellite for increased accuracy.

Table 2 (Page 1 of 1) Soil Analytical Results NC DOT Parcel 3

Sylva, Jackson County, North Carolina H&H Job No. ROW-704

Sample ID	SB-3-1	SB-3-2	SB-3-3	
Sample Depth (ft)	0-2	0-2	2-4	Action Levels
Sample Date	10/11/2022	10/11/2022	10/11/2022	
TPH DRO/GRO (UVF) (mg/kg)				
Diesel-Range Organics (DRO)	0.52	< 0.53	11.7	100
Gasoline-Range Organics (GRO)	< 0.3	< 0.53	< 0.51	50

Notes:


UVF = QED Ultraviolet Fluorescence Technology

Bold values exceed NCDEQ Action Levels.

TPH = Total Petroleum Hydrocarbons

DRO = Diesel-Range Organics

GRO = Gasoline-Range Organics

Path: S.AAA-Master Projects\NC DOT Right-o-Way -ROW/ROW-700s\ROW-704 Jackson County Phase IIs\FIGURES\PARCEL 3\Figure-1 PARCEL 3.mxd

U.S.G.S. QUADRANGLE MAP

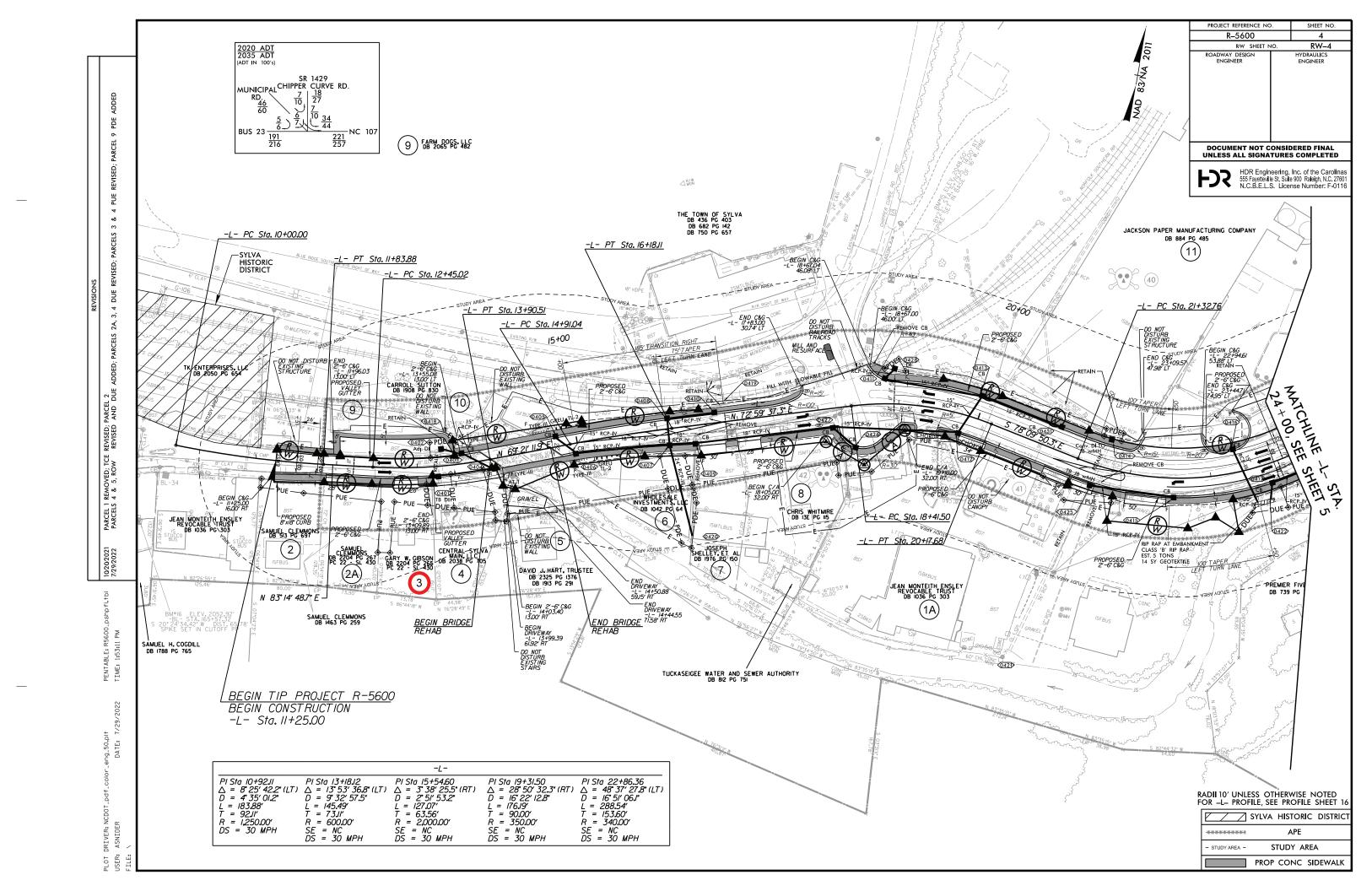
SYLVA SOUTH, NORTH CAROLINA 2022

QUADRANGLE 7.5 MINUTE SERIES (TOPOGRAPHIC)

SITE LOCATION MAP

NCDOT PARCEL 3 399 W. MAIN ST SYLVA, NORTH CAROLINA

2923 South Tryon Street - Suite 100 Charlotte, North Carolina 28203 704-586-0007 (p) 704-586-0373 (f) License # C-1269 / # C-245 Geology


DATE: 10-5-22 REVISION NO: 0 JOB NO: ROW-704 FIGURE NO: 1

Appendix A

NC DOT Preliminary Plan

Appendix B

Pyramid Geophysical Survey Report

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2022-260)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 3 NCDOT PROJECT R-5600 (45818.1.FR1)

399 WEST MAIN STREET, SYLVA, NC

October 21, 2022

Report prepared for: David Graham, P.G.

Hart & Hickman, P.C.

2923 South Tryon Street, Suite 100

Charlotte, NC 28203

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by:

Douglas A. Canavello, P.G.

NC License #1066

GEOPHYSICAL INVESTIGATION REPORT

Parcel 3 - 399 West Main Street Sylva, Jackson County, North Carolina

Table of Contents

Executive Summary	_
Introduction	2
Field Methodology	
Discussion of Results	
Discussion of EM Results	3
Discussion of GPR Results	
Summary & Conclusions	
Limitations	

Figures

- Figure 1 Parcel 3 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 3 EM61 Metal Detection Contour Map
- Figure 3 Parcel 3 GPR Transect Locations and Select Images
- Figure 4 Overlay of Metal Detection Results on NCDOT Engineering Plans

Appendices

Appendix A – GPR Transect Images

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	Dual Frequency
EM	Electromagnetic
GPR	Ground Penetrating Radar
GPS	_
NCDOT	North Carolina Department of Transportation
ROW	
UST	Underground Storage Tank

Project Description: Pyramid Geophysical Services (Pyramid), a department within Pyramid Environmental & Engineering, P.C., conducted a geophysical investigation for Hart & Hickman, P.C. (Hart & Hickman) at Parcel 3, located at 399 West Main Street, in Sylva, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project R-5600). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from September 26-27, 2022, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of three EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. GPR was performed across and around all sources of significant metallic interference to confirm the presence of reinforcement within the concrete and to confirm that the interference did not obscure any significant structures such as USTs. The geophysical survey identified evidence of utilities and/or smaller fragments of buried debris. Collectively, the geophysical data recorded no evidence metallic USTs at Parcel 3.

INTRODUCTION

Pyramid Geophysical Services (Pyramid), a department within Pyramid Environmental & Engineering, P.C., conducted a geophysical investigation for Hart & Hickman, P.C. (Hart & Hickman) at Parcel 3, located at 399 West Main Street, in Sylva, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project R-5600). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from September 26-27, 2022, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site consisted of two small buildings surrounded by asphalt, concrete, and grass surfaces. An aerial photograph, showing the survey area boundaries, and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at

approximately 0.8-foot intervals along north-south trending or east-west trending, generally parallel survey lines, spaced five feet apart. The data were downloaded to a computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on September 27, 2022, using a Geophysical Survey Systems, Inc. (GSSI) SIR 4000 unit equipped with a 350 MHz HS antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the SIR 4000 unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the SIR 4000 unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tanks on NCDOT Projects									
High Confidence	Intermediate Confidence	Low Confidence	No Confidence						
Known UST	Probable UST	Possible UST	Anomaly noted but not						
Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphalt/concrete patch, etc.	Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.						

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The

following table presents the list of EM anomalies and the cause of the metallic response, if known:

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Survey Markers	
2	Suspected Buried Debris	✓
3	Reinforced Concrete	✓

The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface, including survey markers and reinforced concrete. GPR was performed across and around all sources of significant metallic interference to confirm the presence of reinforcement within the concrete and to confirm that the interference did not obscure any significant structures such as USTs. GPR was also performed across EM Anomaly 2 to investigate whether the anomaly was the result of a more significant structure such as a UST.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as select transect images. All of the transect images are included in **Appendix A**. A total of ten formal GPR transects were performed at the site.

GPR Transects 1-8 and 10 confirmed the presence of reinforcement within the concrete. GPR Transect 9 was performed across EM Anomaly 2. None of these transects showed evidence of significant structures such as USTs. Evidence of utilities and/or smaller fragments of buried debris was also observed.

Collectively, the geophysical data <u>recorded no evidence metallic USTs at Parcel 3</u>. **Figure 4** provides an overlay of the metal detection results and four known USTs on the NCDOT engineering plans for reference.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 3 in Sylva, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface.
- GPR was performed across and around all sources of significant metallic interference to confirm the presence of reinforcement within the concrete and to confirm that the interference did not obscure any significant structures such as USTs.
- The geophysical survey identified evidence of utilities and/or smaller fragments of buried debris.
- Collectively, the geophysical data <u>recorded no evidence metallic USTs at Parcel 3</u>.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Hart & Hickman, P.C. in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

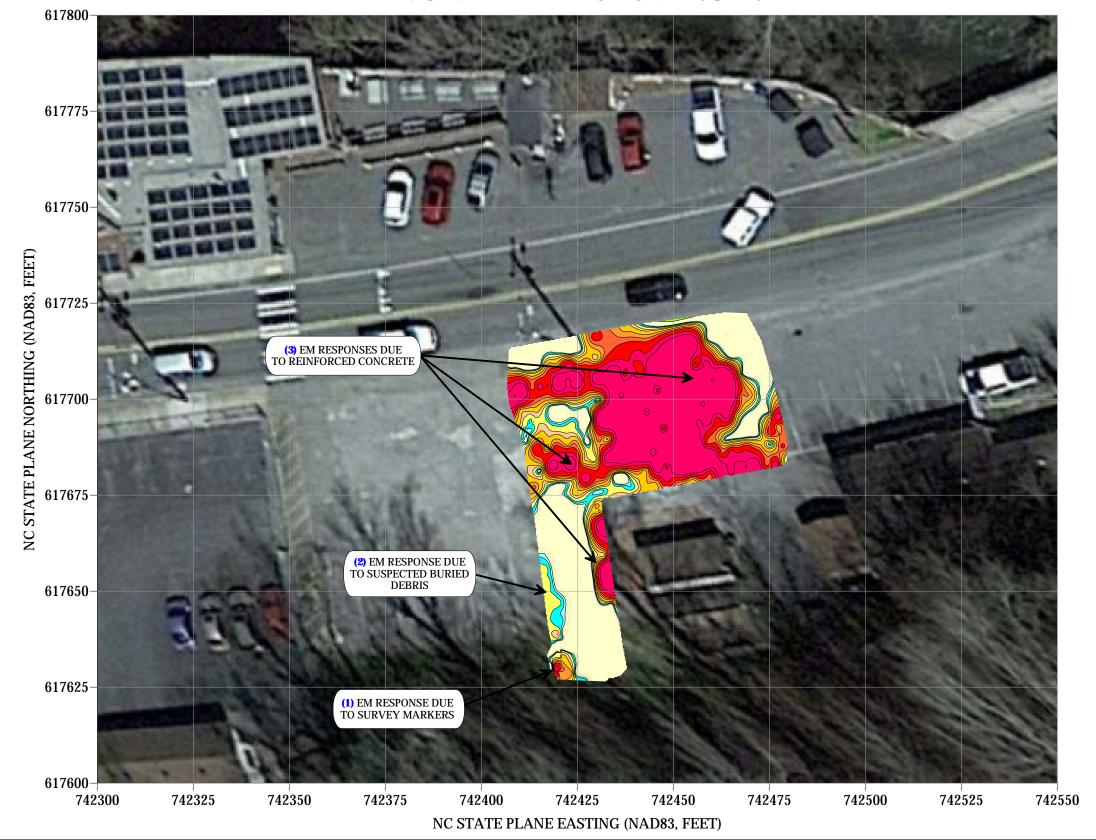
View of Survey Area (Facing Approximately East)

View of Survey Area (Facing Approximately Southeast)

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology

PROJECT

PARCEL 3 SYLVA, NORTH CAROLINA NCDOT PROJECT R-5600


TITLE

PARCEL 3 -AND SITE PHOTOGRAPHS

DATE	9/30/2022	CLIENT	HART & HICKMAN
PYRAMID PROJECT #:	2022-260		FIGURE 1

GEOPHYSICAL SURVEY BOUNDARIES

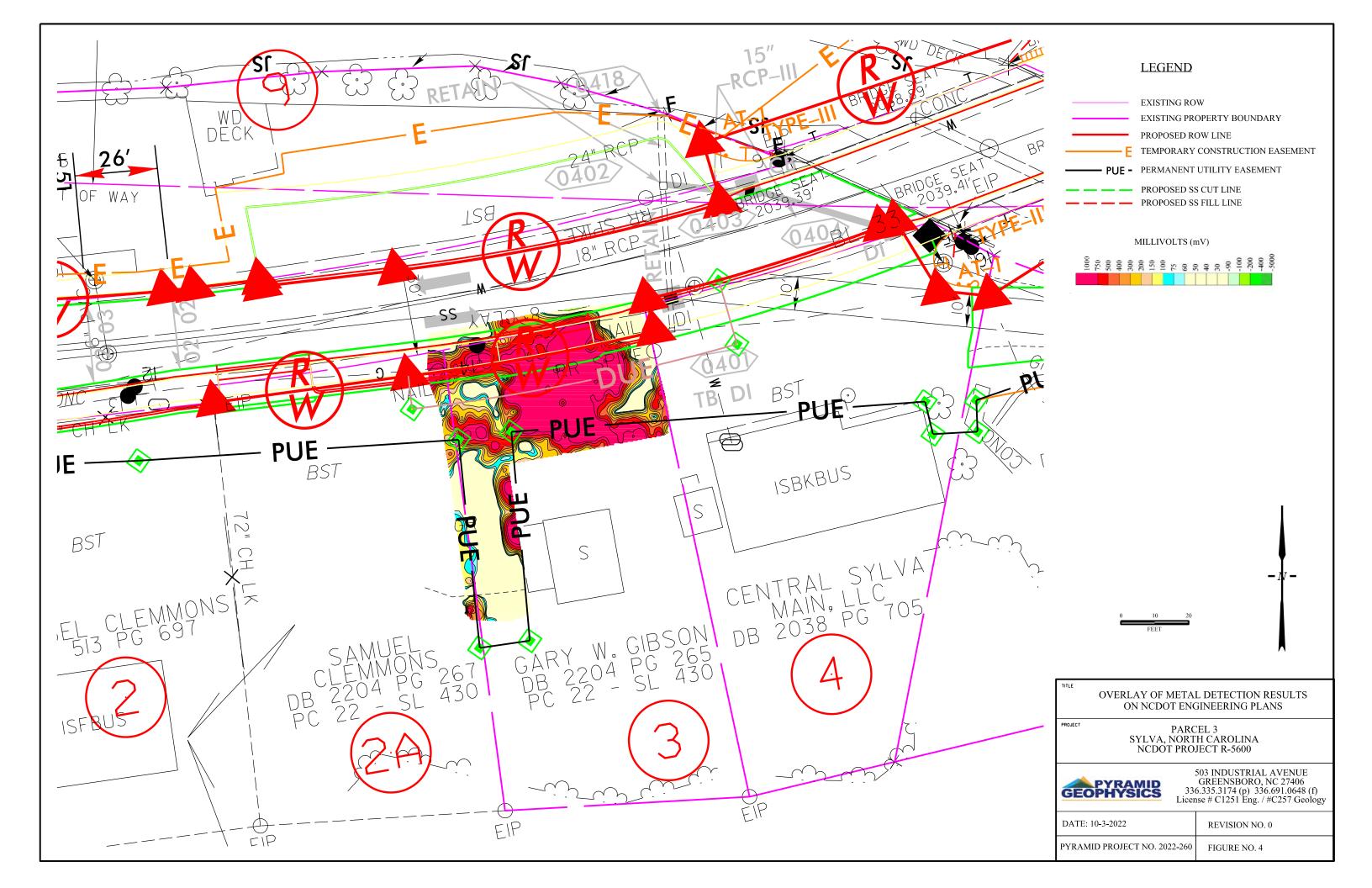

EM61 METAL DETECTION RESULTS

NO EVIDENCE OF METALLIC USTs WAS OBSERVED.

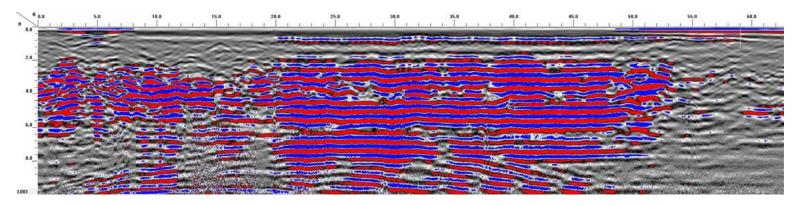
The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on September 26, 2022, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI SIR 4000 instrument with a 350 MHz HS antenna on September 27, 2022.

EM61 Metal Detection Response (millivolts)

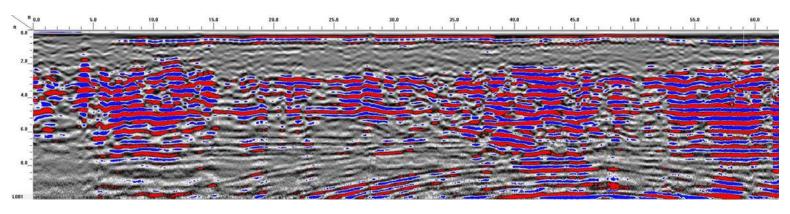
N A

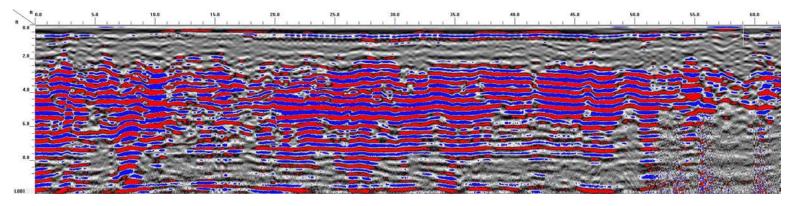

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

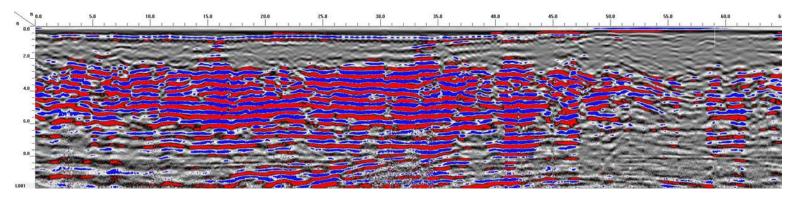
PARCEL 3 SYLVA, NORTH CAROLINA NCDOT PROJECT R-5600 TITLE

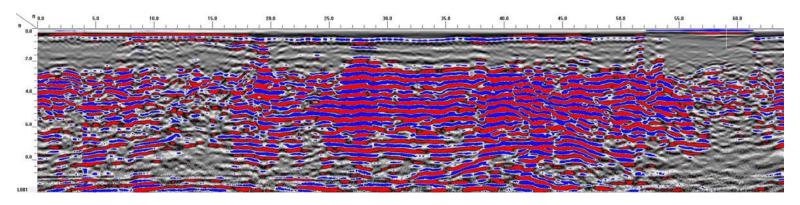

PARCEL 3 -EM61 METAL DETECTION CONTOUR MAP

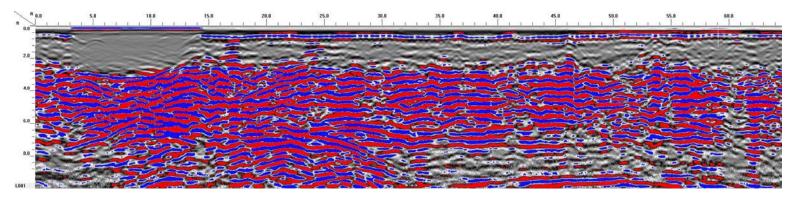
DATE	9/30/2022	CLIENT	HART & HICKMAI
PYRAMID PROJECT #:	2022-260		FIGURE 2

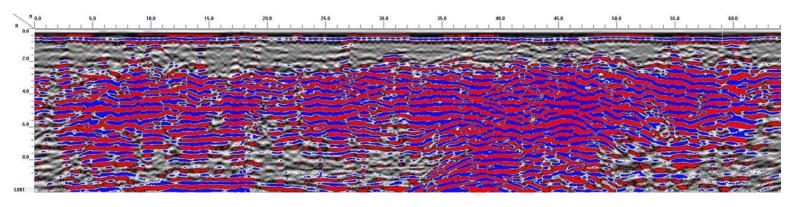

GPR TRANSECT LOCATIONS 617800 REINFORCED CONCRETE GPR TRANSECT 2 (T2) 617750 FEET) NC STATE PLANE NORTHING (NAD83, 617725-NO SIGNIFICANT FEATURES GPR TRANSECT 9 (T9) 617675-617650-REINFORCED CONCRETE 617625-GPR TRANSECT 10 (T10) 617600-742300 742325 742350 742375 742400 742425 742450 742475 742500 742525 742550 NC STATE PLANE EASTING (NAD83, FEET) DATE PROJECT TITLE 503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology HART & HICKMAN PARCEL 3 9/30/2022 PARCEL 3 -SYLVA, NORTH CAROLINA GPR TRANSECT LOCATIONS AND SELECT IMAGES PYRAMID PROJECT #: NCDOT PROJECT R-5600 FIGURE 3 2022-260

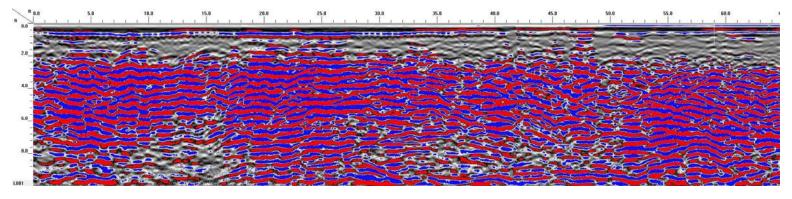



GPR TRANSECT 1

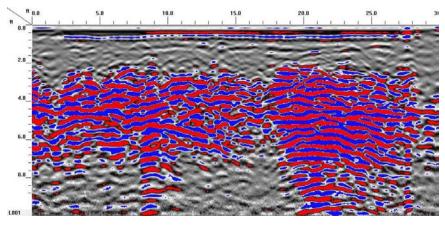

GPR TRANSECT 2


GPR TRANSECT 3


GPR TRANSECT 4


GPR TRANSECT 5


GPR TRANSECT 6


GPR TRANSECT 7

GPR TRANSECT 8

GPR TRANSECT 9

GPR TRANSECT 10

Appendix C

Soil Boring Logs

Client: NC DOT

Project: ROW-704

Address: Parcel 3 - 399 W. Main Street Sylva, North Carolina

BORING LOG

Boring No. SB-3-1 Page: 1 of 1

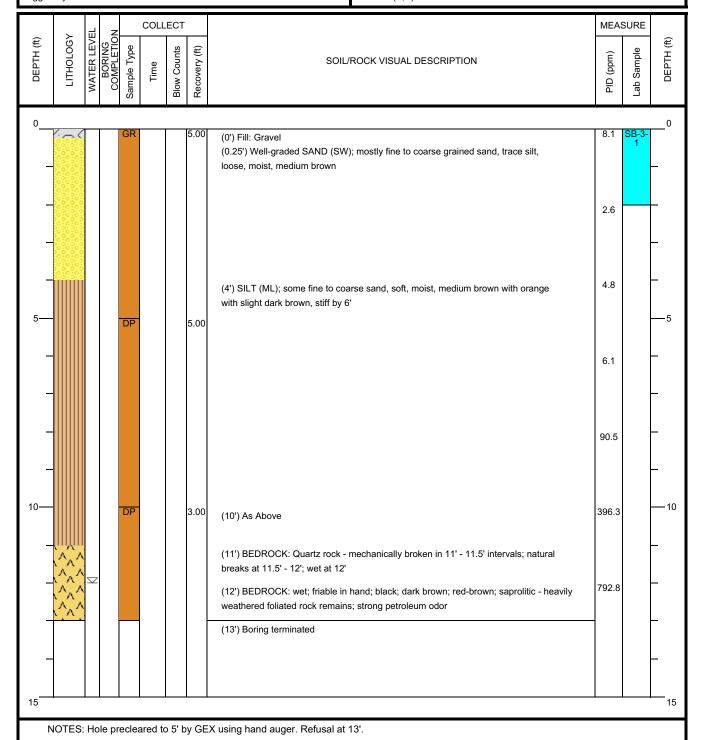
Drilling Start Date: 10/11/22
Drilling End Date: 10/11/22

Drilling Company: **GEX**

Drilling Method: Direct Push
Drilling Equipment: GeoProbe 7822 DT

Driller: David Hall

Logged By: ABM


Boring Depth (ft): 13.0
Boring Diameter (in): 2.25

Sampling Method(s): Direct Push, Grab

DTW During Drilling (ft): 12.0

DTW After Drilling (ft):
Ground Surface Elev. (ft):

Location (X,Y):

Client: NC DOT

Project: ROW-704

Address: Parcel 3 - 399 W. Main Street Sylva, North Carolina

BORING LOG

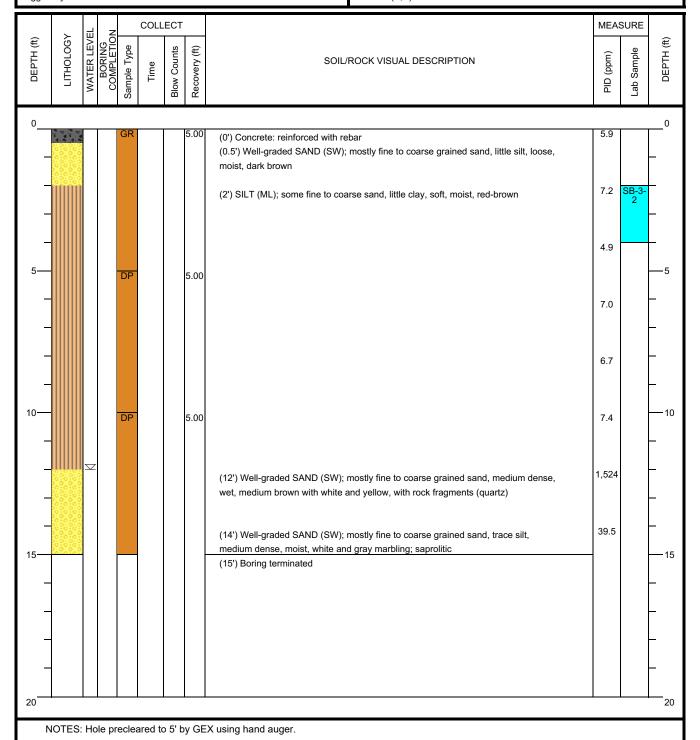
Boring No. SB-3-2 Page: 1 of 1

Drilling Start Date: 10/11/22
Drilling End Date: 10/11/22
Drilling Company: GEX

Drilling Method: Direct Push

Drilling Equipment: **GeoProbe 7822 DT**Driller: **David Hall**

Logged By: ABM


Boring Depth (ft): 15.0
Boring Diameter (in): 2.25

Sampling Method(s): Direct Push, Grab

DTW During Drilling (ft): 12.0

DTW After Drilling (ft):
Ground Surface Elev. (ft):

Location (X,Y):

Client: NC DOT

Project: ROW-704

Address: Parcel 3 - 399 W. Main Street Sylva, North Carolina

BORING LOG

Boring No. SB-3-3 Page: 1 of 1

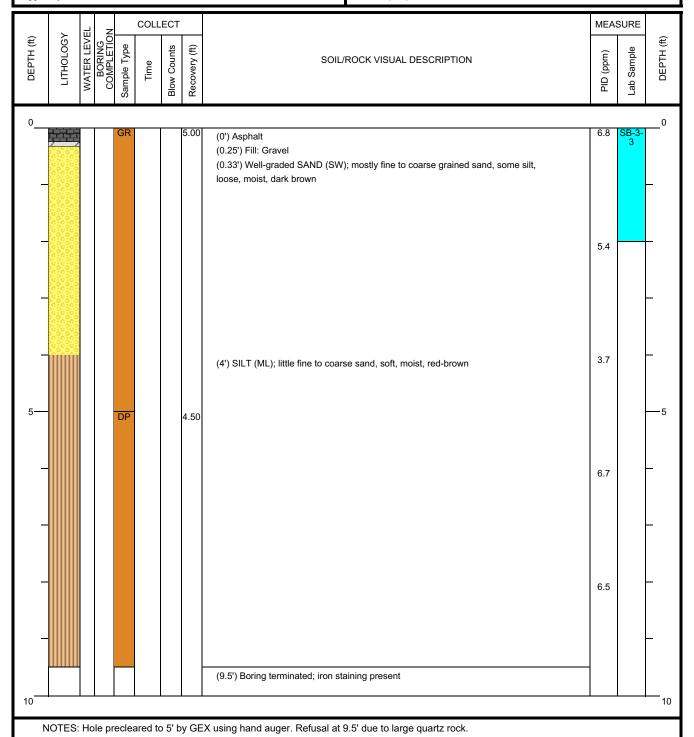
Drilling Start Date: 10/11/22
Drilling End Date: 10/11/22

Drilling Company: **GEX**

Drilling Method: Direct Push
Drilling Equipment: GeoProbe 7822 DT

David Hall

Logged By: ABM


Driller:

Boring Depth (ft): 9.5
Boring Diameter (in): 2.25

Sampling Method(s): Direct Push, Grab

DTW During Drilling (ft):
DTW After Drilling (ft):
Ground Surface Elev. (ft):

Location (X,Y):

Appendix D

Laboratory Analytical Report

Hydrocarbon Analysis Results

Client: HART & HICKMAN

Address: 2923 SOUTH TRYON ST. SUITE 100

CHARLOTTE NC 28203

Samples taken Samples extracted Samples analysed Tuesday, October 11, 2022 Tuesday, October 11, 2022

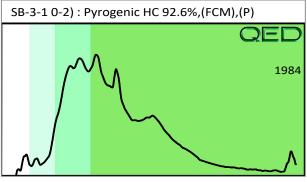
Friday, October 14, 2022

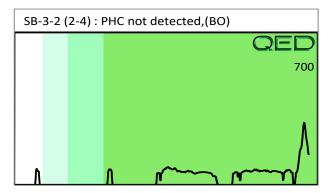
Contact: DAVE GRAHAM Operator TORI KELLY

Project: ROW.704

	U04049									U04049																							
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs						ВаР	ВаР	ВаР	ВаР	ВаР		Ratios		Ratios		Ratios		aP Ratios	Ratios		Ratios		Ratios		HC Fingerprint Match
										% light	% mid	% heavy																					
S	SB-3-1 0-2)	11.9	<0.3	<0.3	0.52	0.52	0.25	<0.09	<0.012	0	70.5	29.5	Pyrogenic HC 92.6%,(FCM),(P)																				
S	SB-3-2 (2-4)	21.3	<0.53	<0.53	<0.53	<0.53	<0.11	<0.17	<0.021	0	0	0	PHC not detected,(BO)																				
S	SB-3-3 (0-2)	20.3	<0.51	<0.51	11.7	11.7	5.6	0.62	<0.02	0	80.4	19.6	Road Tar 91.7%,(FCM)																				
	Initial	Calibrator	QC check	OK					Final F	CM QC	Check	OK	96.4 %																				

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content


Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library


(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present

Friday, October 14, 2022

ROW.704

Project:

Client Name:	DOT							T		
Address:	2923 S. Tr	yon str ste L, NC z 820:	10 0				. *** *** *** *** *** *** *** *** *** *	RED La 105 Po Suite F	rtwatch V	Vay
Contact:	Dave Gra]			DL		Wilming	gton, NC	28412
Project Ref.:	ROW. 7	04						Each UVF sa	mple will be	analyzed for
Email:	derahami	e harthicl	man.com		total BTEX, GRO, DRO, TPH, PAH total aromatics and BaP. Standard GC					
Phone #:	704-887			RAPI	D ENVIR	RONMENTAL DIA	GNOSTICS	1		dard GC d Chlorinated
Collected by:	Adami	uichalak		N OF CU	ISTODY	AND ANALYTI	CAL REQUEST FORM	Solvents: VO trans DCE, T	C, 1,1 DCE, 1, CE, and PCE.	2 cis DCE, 1,2 Specify target ovided below.
Sample Collection	TAT Re	quested	Analys	sis Type	Initials		Compute ID		-	
Date/Time	24 Hour	48 Hour	UVF	GC	initials		Sample ID	lotal Wt.	Tare Wt.	Sample Wt
10/11/22 1630		X	X		AM	SB-3-1 0-2		55.6	43.8	11.8
10/11/22 1700			1		1	58-3-2 (2-4)	The second secon	56.Z	44.0	12,2
10/11/22 1730		V	V		V	SB-3-3 (0-2)		52.7	39.9	12.8
						j.				
						1				
				(об стите 1900 — 1900 год на выдобор образование на доличение об боль доли вышеную перене условня доли выполня доличения			
	-									
	 									
								-		•
¥										
								-		
										
	<u> </u>									
COMMENTS/REQU	ESTS: R.P	port to n	MDIC DI'	"Slage		TARGET GC/UVF AN	ALYTES:			
5.11		TOT TO I	(ל נטעוי	4149						
	ished by				Accept		Date/Time	RED Lab USE ONLY		
Adam Mithalah					fed E	fed &x 10/13/22 1100				

Accepted by

Date/Time

Ref. No

Relinquished by