

Via NC DOT FTS

November 30, 2022

NC DOT Geotechnical Unit GeoEnvironmental Section 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Attention: Mr. Ashley Cox, LG

Re: Geophysical Survey Report – Parcel 49

NC DOT State Project No. R-5600 WBS Element No. 45818.1.FR1

Sylva, Jackson County, North Carolina

H&H Job No. ROW-704

Dear Ashley:

Please find the attached PDF copy of the Geophysical Survey Report for the Clearance G. Middleton property (Parcel 49) located in Sylva, Jackson County, North Carolina. Please return via DocuSign for final signatures. If you have any questions or need additional information, please contact us at (704) 586-0007.

Sincerely,

Hart & Hickman, PC

David Graham, PG

Senior Project Geologist

Matt Bramblett, PE

Matt framblett

Principal

Geophysical Survey Report NC DOT Parcel 49

171 E. Main St. Sylva, Jackson County North Carolina

H&H Job No. ROW-704 State Project: R-5600 WBS Element No. 45818.1.FR1 November 30, 2022

#C-1269 Engineering #-245 Geology

Via NC DOT FTS

November 30, 2022

NC DOT - Geotechnical Unit GeoEnvironmental Section 1589 Mail Service Center Raleigh, NC 27699-1589

Attention: Mr. Ashley Cox, LG

Re: Geophysical Survey

NC DOT Parcel 49

171 E. Main Street, Sylva, Jackson County, North Carolina State Project: R-5600; WBS Element No. 45818.1.FR1

H&H Job No. ROW-704

Dear Ashley:

1.0 Introduction and Background Information

Hart & Hickman, PC (H&H) has prepared this letter report documenting geophysical survey activities conducted on the Clearence G. Middleton property (Parcel 49) located at 171 E. Main Street in Sylva, Jackson County, North Carolina. The geophysical survey activities were conducted on behalf of the North Carolina Department of Transportation (NC DOT) in accordance with H&H's August 17, 2022 proposal.

This geophysical survey was conducted to evaluate the potential for underground storage tank (UST) systems on proposed right of way and construction easement areas on Parcel 49 related to proposed road improvements along E. Main Street (State Project R-5600). This NC DOT road improvement project includes new curb and gutters, stormwater drainage piping, sidewalks, etc. Parcel 49 is currently occupied by Middleton's Pawn & Jewelry. A site location map is included as Figure 1. NC DOT's plan sheet depicting Parcel 49 is included in Appendix A.

Clearance G. Middleton Property

November 30, 2022

Page 2

H&H searched the North Carolina Department of Environmental Quality (NC DEQ) Laserfiche

website and NC DEQ UST databases for incident files related to the Parcel 49 address to better

target UST system areas and to check for locations of previously reported impacts. No UST

Incident files were identified for Parcel 49 on NC DEQ's Laserfiche website. No USTs were

registered on the NC DEQ Registered Tank Database.

H&H subcontracted with Pyramid Geophysical Services (Pyramid) of Greensboro, NC to conduct

the geophysical survey. The geophysical survey activities are discussed below.

2.0 Geophysical Survey Activities

H&H reviewed the results of the geophysical survey performed at the site by Pyramid on September

27, 2022. Pyramid utilized electromagnetic (EM) induction technology and ground penetrating

radar (GPR) to identify potential geophysical anomalies and potential USTs at the site.

A total of two EM anomalies were identified at the site. The EM anomalies were attributed to

known surface metallic objects such as above-ground metal structures (i.e. sign post, utility, etc.).

The EM/GPR results indicated that no USTs were identified on Parcel 49. Pyramid's report,

including figures depicting the results of the EM/GPR survey, is provided in Appendix B.

3.0 Conclusions

H&H has reviewed the results of a geophysical survey conducted on Parcel 49 located at 171 E.

Main Street in Sylva, Jackson County, North Carolina. No USTs were identified on Parcel 49

during geophysical survey activities. If a UST is encountered during construction activities, the

UST system(s) and their contents should be removed in accordance with NC DEQ regulations

and be properly disposed. Impacted media encountered during road construction activities, if

any, should be properly managed and disposed at a permitted facility.

.

hart hickman

SMARTER ENVIRONMENTAL SOLUTIONS

Clearance G. Middleton Property November 30, 2022 Page 3

Should you have any questions or need additional information, please do not hesitate to contact us at (704) 586-0007.

Sincerely,

Hart & Hickman, PC

David Graham 12/05/2022
David Graham, PG
Senior Project Geologist

DocuSigned by:

Matthement
CBCA88CDF0E547B...

Matt Bramblett, PE Principal and Project Manager SEAL 2535

Not considered final unless all signatures are completed.

Attachments

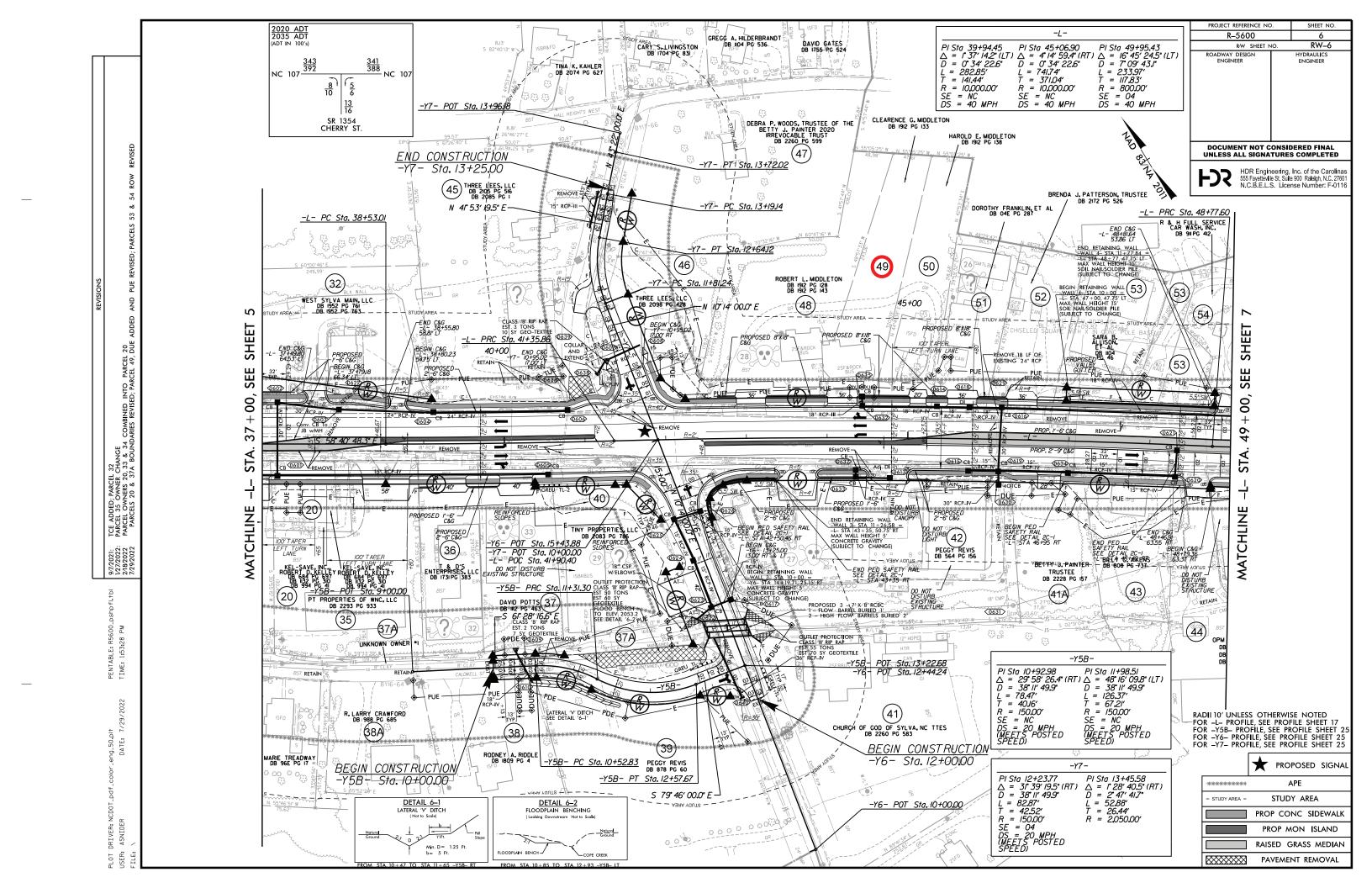
Path: S.AAA-Master Projects/NC DOT Right-of-Way -ROWROW-700s\ROW-704 Jackson County Phase IIs\FIGURES\PARCEL 49\Figure-1_PARCEL 49.mxd

U.S.G.S. QUADRANGLE MAP

SYLVA SOUTH, NORTH CAROLINA 2022

QUADRANGLE 7.5 MINUTE SERIES (TOPOGRAPHIC)

NCDOT PARCEL 49 171 E. MAIN ST SYLVA, NORTH CAROLINA



2923 South Tryon Street - Suite 100 Charlotte, North Carolina 28203 704-586-0007 (p) 704-586-0373 (f) License # C-1269 / # C-245 Geology

DATE: 10-5-22 REVISION NO: 0 JOB NO: ROW-704 FIGURE NO: 1

Appendix A NC DOT Preliminary Plan

Appendix B

Pyramid Geophysical Survey Report

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2022-260)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 49 NCDOT PROJECT R-5600 (45818.1.FR1)

171 EAST MAIN STREET, SYLVA, NC

October 21, 2022

Report prepared for: David Graham, P.G.

Hart & Hickman, P.C.

2923 South Tryon Street, Suite 100

Charlotte, NC 28203

Prepared by:

Eric C. Cross, P.G.

NC License #2181

Reviewed by:

Douglas A. Canavello, P.G.

NC License #1066

GEOPHYSICAL INVESTIGATION REPORT

Parcel 49 - 171 East Main Street Sylva, Jackson County, North Carolina

Table of Contents

Executive Summary	1
Introduction	
Field Methodology	
Discussion of Results	
Discussion of EM Results	
Discussion of GPR Results	
Summary & Conclusions	
Limitations	

Figures

- Figure 1 Parcel 49 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 49 EM61 Metal Detection Contour Map
- Figure 3 Parcel 49 GPR Transect Locations and Images
- Figure 4 Overlay of Metal Detection Results on NCDOT Engineering Plans

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	Dual Frequency
EM	Electromagnetic
GPR	Ground Penetrating Radar
GPS	_
NCDOT	North Carolina Department of Transportation
ROW	
UST	Underground Storage Tank

EXECUTIVE SUMMARY

Project Description: Pyramid Geophysical Services (Pyramid), a department within Pyramid Environmental & Engineering, P.C., conducted a geophysical investigation for Hart & Hickman, P.C. (Hart & Hickman) at Parcel 49, located at 171 East Main Street, in Sylva, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project R-5600). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted on September 27, 2022, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of two EM anomalies were identified. All of the EM anomalies were directly attributed to visible cultural features at the ground surface. The geophysical survey identified evidence of utilities and/or smaller fragments of buried debris. Collectively, the geophysical data recorded no evidence of metallic USTs at Parcel 49.

INTRODUCTION

Pyramid Geophysical Services (Pyramid), a department within Pyramid Environmental & Engineering, P.C., conducted a geophysical investigation for Hart & Hickman, P.C. (Hart & Hickman) at Parcel 49, located at 171 East Main Street, in Sylva, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project R-5600). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted on September 27, 2022, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site consisted of a pawn shop surrounded by asphalt and grass surfaces. An aerial photograph, showing the survey area boundaries, and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at

approximately 0.8-foot intervals along north-south trending or east-west trending, generally parallel survey lines, spaced five feet apart. The data were downloaded to a computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on September 27, 2022, using a Geophysical Survey Systems, Inc. (GSSI) SIR 4000 unit equipped with a 350 MHz HS antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the SIR 4000 unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the SIR 4000 unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tanks on NCDOT Projects			
High Confidence	Intermediate Confidence	Low Confidence	No Confidence
Known UST	Probable UST	Possible UST	Anomaly noted but not
Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphalt/concrete patch, etc.	Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The

following table presents the list of EM anomalies and the cause of the metallic response, if known:

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Sign	
2	Utility	

All of the EM anomalies were directly attributed to visible cultural features at the ground surface, including a sign and a utility.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as the transect images. A total of two formal GPR transects were performed at the site.

GPR Transects 1-2 were performed as general reconnaissance scans at the request of Hart & Hickman. Neither of these transects showed evidence of significant structures such as USTs. Evidence of utilities and/or smaller fragments of buried debris was observed.

Collectively, the geophysical data <u>recorded no evidence of metallic USTs at Parcel 49</u>. **Figure 4** provides an overlay of the metal detection results on the NCDOT engineering plans for reference.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 49 in Sylva, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic
 USTs within the accessible portions of the geophysical survey area.
- All of the EM anomalies were directly attributed to visible cultural features at the ground surface.
- The geophysical survey identified evidence of utilities and/or smaller fragments of buried debris.

Collectively, the geophysical data <u>recorded no evidence of metallic USTs at Parcel</u>
 49.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Hart & Hickman, P.C. in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

View of Survey Area (Facing Approximately Southeast)

View of Survey Area (Facing Approximately East)

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

PARCEL 49 SYLVA, NORTH CAROLINA NCDOT PROJECT R-5600 TITLE

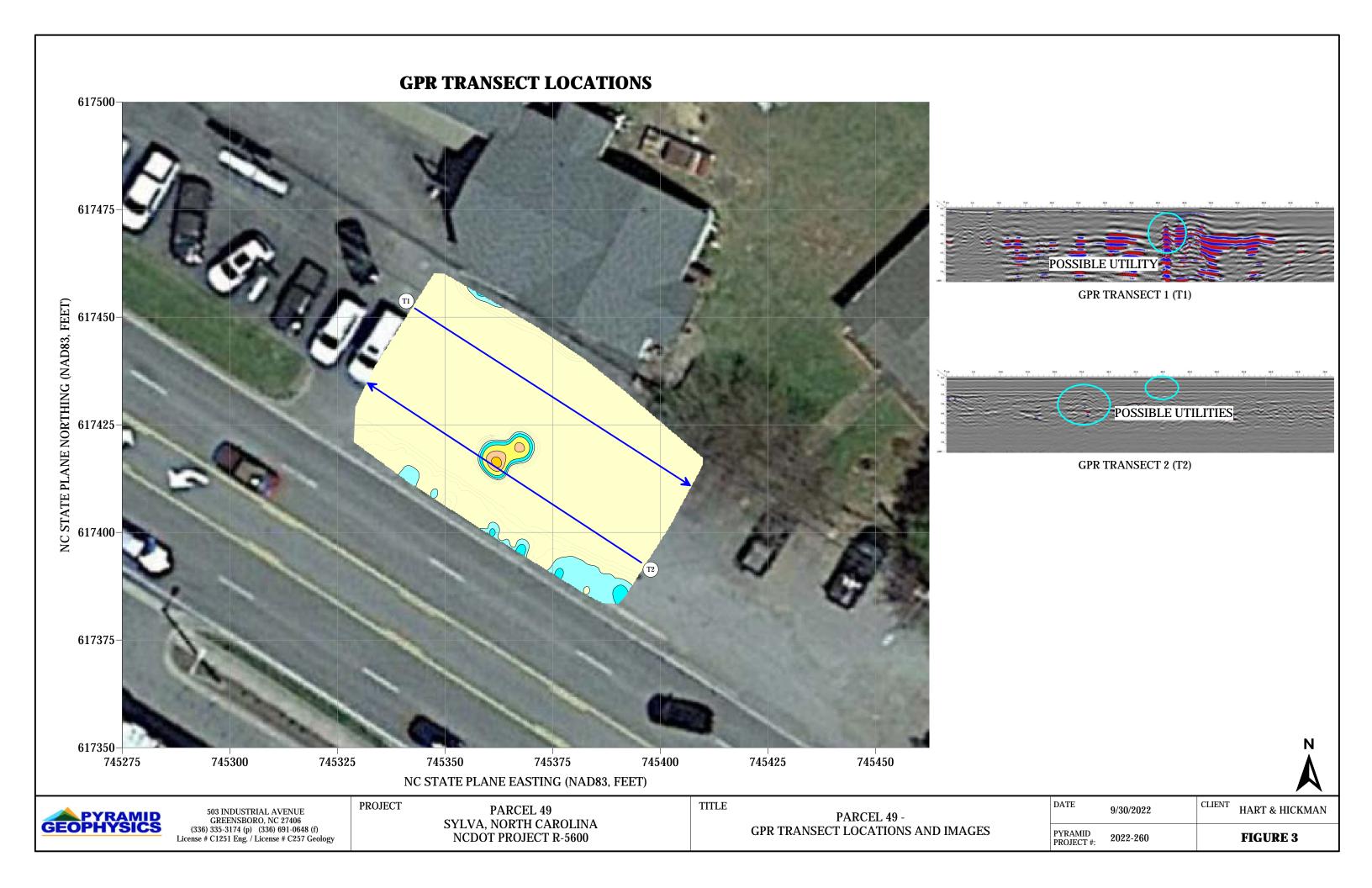
PARCEL 49 -GEOPHYSICAL SURVEY BOUNDARIES AND SITE PHOTOGRAPHS

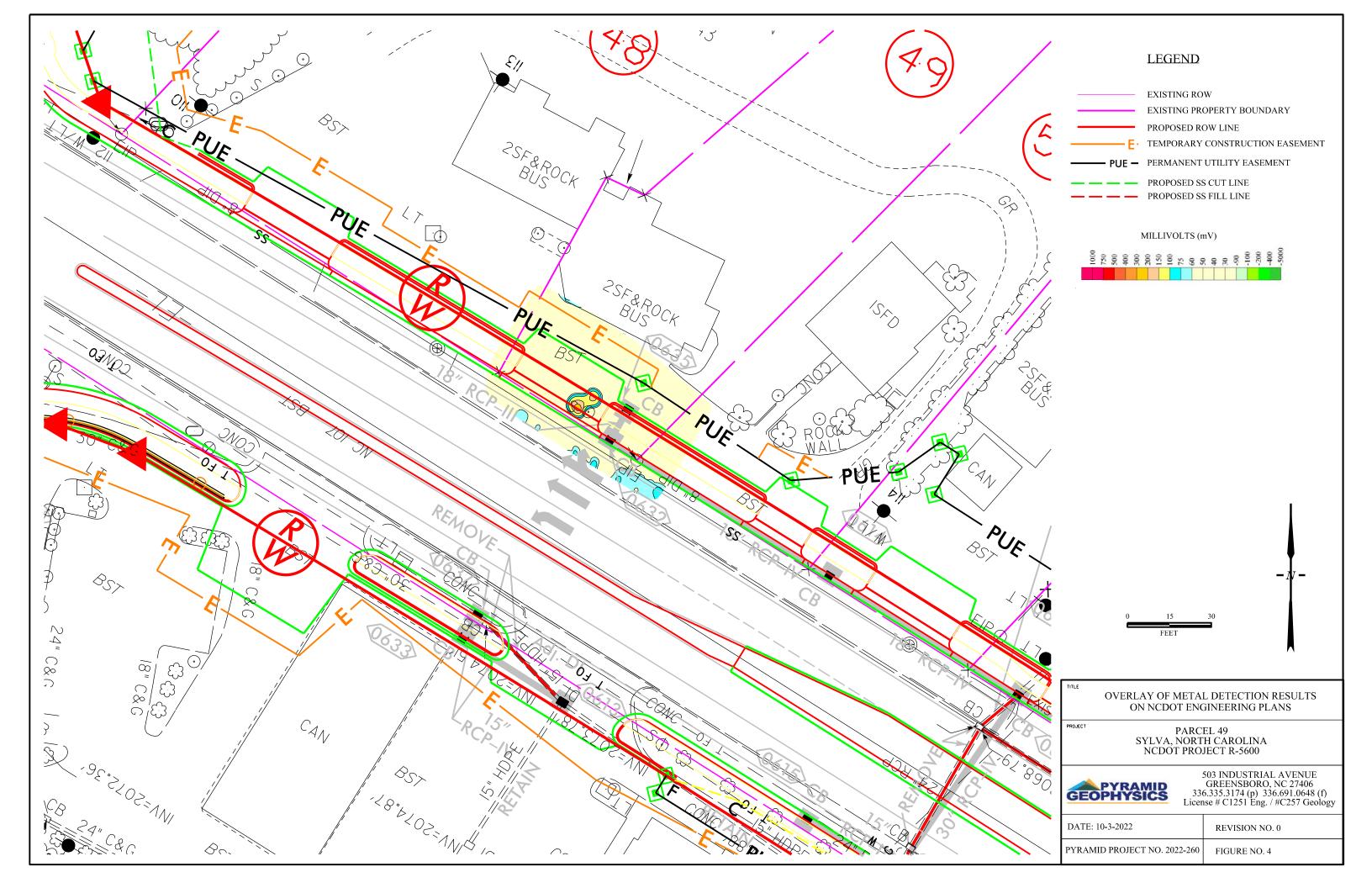
			<u> </u>
DATE	9/30/2022	CLIENT	HART & HICKMAN
PYRAMID PROJECT #:	2022-260		FIGURE 1

NO EVIDENCE OF METALLIC USTs WAS OBSERVED.

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on September 27, 2022, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI SIR 4000 instrument with a 350 MHz HS antenna on September 27, 2022.

> **EM61 Metal Detection Response** (millivolts)


PARCEL 49 -EM61 METAL DETECTION CONTOUR MAP


DATE HART & HICKMAN 9/30/2022 PYRAMID PROJECT #: FIGURE 2 2022-260

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

PARCEL 49 SYLVA, NORTH CAROLINA NCDOT PROJECT R-5600

Via NC DOT FTS

November 30, 2022

NC DOT Geotechnical Unit GeoEnvironmental Section 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Attention: Mr. Ashley Cox, LG

Re: Geophysical Survey Report – Parcel 6

NC DOT State Project No. R-5600 WBS Element No. 45818.1.FR1

Sylva, Jackson County, North Carolina

H&H Job No. ROW-704

Dear Ashley:

Please find the attached PDF copy of the Geophysical Survey Report for the Wholesale Investments, LLC property (Parcel 6) located in Sylva, Jackson County, North Carolina. Please return via DocuSign for final signatures. If you have any questions or need additional information, please contact us at (704) 586-0007.

Sincerely,

Hart & Hickman, PC

David Graham, PG

Senior Project Geologist

Matt Bramblett, PE

Matt framblett

Principal

Geophysical Survey Report NC DOT Parcel 6

345 W. Main St. Sylva, Jackson County North Carolina

H&H Job No. ROW-704 State Project: R-5600 WBS Element No. 45818.1.FR1 November 30, 2022

#C-1269 Engineering #-245 Geology

Via NC DOT FTS

November 30, 2022

NC DOT - Geotechnical Unit GeoEnvironmental Section 1589 Mail Service Center Raleigh, NC 27699-1589

Attention: Mr. Ashley Cox, LG

Re: Geophysical Survey

NC DOT Parcel 6

345 W. Main Street, Sylva, Jackson County, North Carolina State Project: R-5600; WBS Element No. 45818.1.FR1

H&H Job No. ROW-704

Dear Ashley:

1.0 Introduction and Background Information

Hart & Hickman, PC (H&H) has prepared this letter report documenting geophysical survey activities performed at the Wholesale Investments, LLC property (NC DOT Parcel 6) located at 345 W. Main St. in Sylva, Jackson County, North Carolina. The geophysical survey activities were conducted on behalf of the North Carolina Department of Transportation (NC DOT) in accordance with H&H's August 17, 2022 proposal.

This geophysical survey was conducted to evaluate the potential for underground storage tank (UST) systems on proposed right of way and construction easement areas on Parcel 6 related to proposed road improvements along W. Main St. (State Project R-5600). This NC DOT road improvement project includes new curb and gutters, storm water drainage piping, sidewalks, etc. Parcel 6 is currently occupied by the Wholesale Supply Group retail building and parking areas.

Wholesale Investments, LLC November 30, 2022 Page 2

A site location map is included as Figure 1. NC DOT's plan sheet depicting Parcel 6 is included in Appendix A.

H&H searched the North Carolina Department of Environmental Quality (NC DEQ) Laserfiche website and NC DEQ UST databases for incident files related to the Parcel 6 address to better target UST system areas and to check for locations of previously reported impacts. No UST incident files were identified for Parcel 6 on NC DEQ's Laserfiche website. Based on the NC DEQ Registered Tank Database, there were no USTs registered for Parcel 6.

H&H contracted with Pyramid Geophysical Services (Pyramid) of Greensboro, NC to conduct the geophysical survey on Parcel 6. The geophysical survey activities are discussed below.

2.0 Geophysical Survey Activities

H&H reviewed the results of the geophysical survey performed on Parcel 6 by Pyramid on September 26 and 27, 2022. Pyramid utilized electromagnetic (EM) induction technology and ground penetrating radar (GPR) to identify potential geophysical anomalies and potential USTs at the site.

A total of three EM anomalies were identified at the site. The EM anomalies were attributed to known surface metallic objects such as reinforced concrete or above-ground metal structures (i.e. drop inlet, metal door, etc.) that were not characteristic signatures of USTs. The EM/GPR survey detected two possible USTs on Parcel 6. Due to interference from the reinforced concrete, Pyramid could not determine from the EM results if the possible USTs are metallic. As such, the potential USTs (as indicated via GPR) were classified as possible USTs. The dimensions of the two possible USTs are both estimated to be 10.5 ft long by 4.5 ft wide. There were no visual indications of USTs at the site. Pyramid's report, including figures depicting the results of the EM/GPR survey, is provided in Appendix B.

Wholesale Investments, LLC November 30, 2022 Page 3

3.0 Conclusions

H&H has reviewed the results of a geophysical survey conducted on NC DOT Parcel 6 located at 345 W. Main St. in Sylva, Jackson County, North Carolina. Two possible USTs were identified on Parcel 6. At DOT's request, H&H could install small test pits to determine if the USTs are actually present. If a UST is encountered during construction activities, the UST system(s) and their contents should be removed in accordance with NC DEQ regulations and properly disposed. Impacted media encountered during road construction activities, if any, should be properly managed and disposed at a permitted facility.

Should you have any questions or need additional information, please do not hesitate to contact us at (704) 586-0007.

Sincerely,

Hart & Hickman, PC

DocuSigned by:

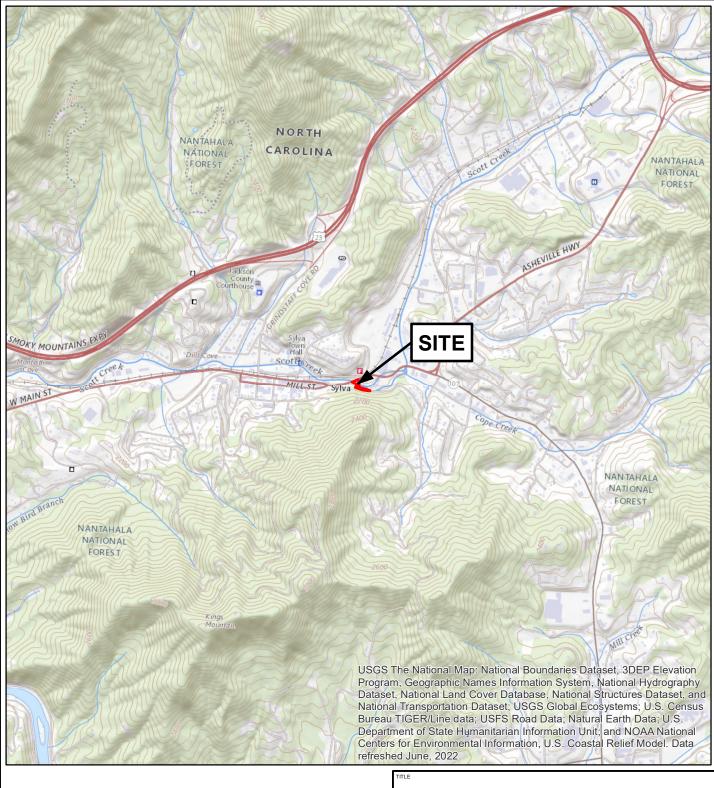
12/05/2022

David Graham, PG

Senior Project Geologist

DocuSigned by:

CBCA88CDF0E547B...


Matt Bramblett, PE

Principal and Project Manager

Not considered final unless all signatures are completed.

Attachments

Path: S.AAA-Master Projects/NC DOT Right-of-Way -ROW/ROW-700s/ROW-704 Jackson County Phase IIs/FIGURES/PARCEL 6/Figure-1_PARCEL 6.mxd

U.S.G.S. QUADRANGLE MAP

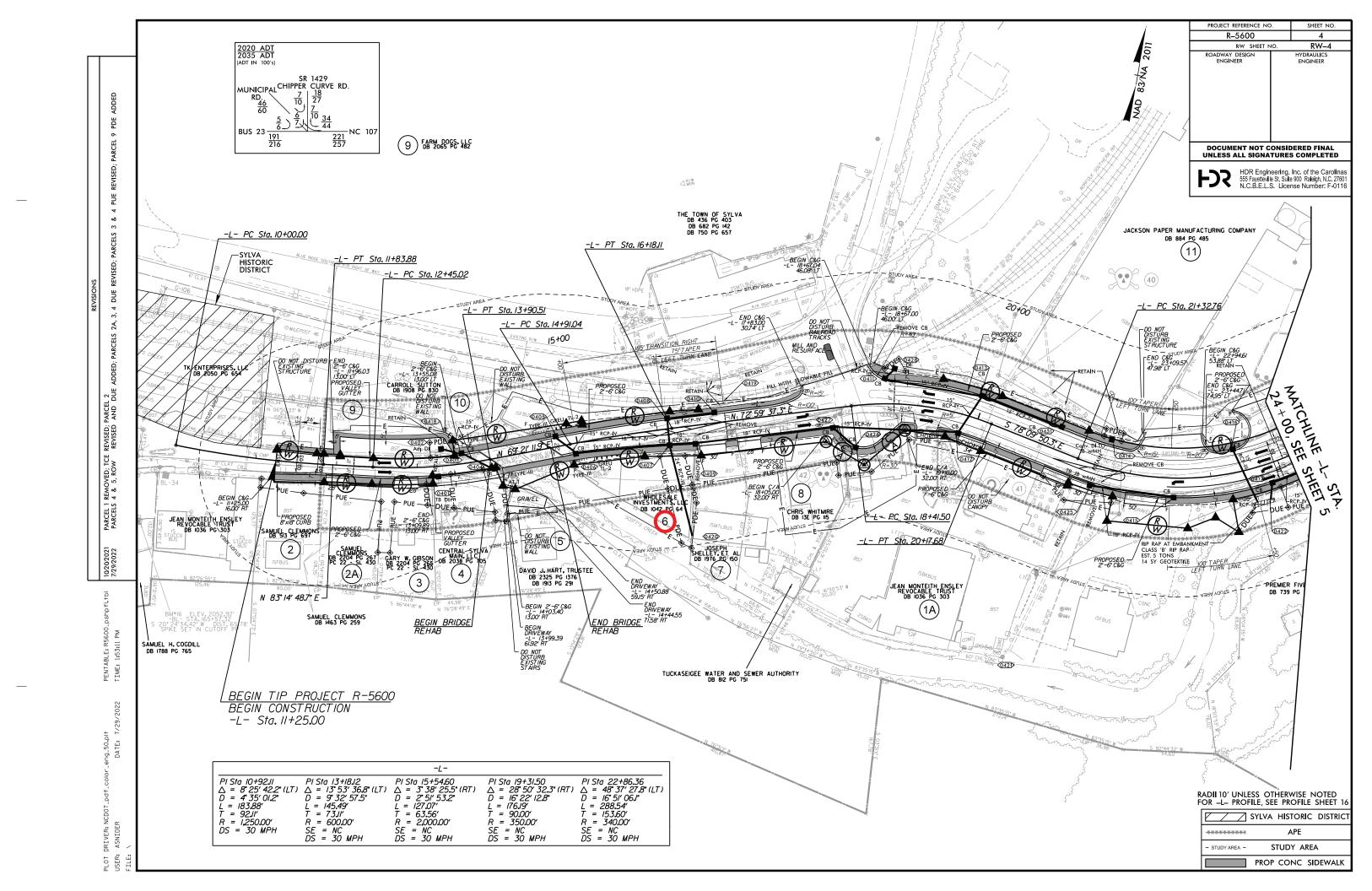
SYLVA SOUTH, NORTH CAROLINA 2022

QUADRANGLE 7.5 MINUTE SERIES (TOPOGRAPHIC)

SITE LOCATION MAP

PROJECT

NCDOT PARCEL 6 345 W. MAIN ST SYLVA, NORTH CAROLINA



2923 South Tryon Street - Suite 100 Charlotte, North Carolina 28203 704-586-0007 (p) 704-586-0373 (f) License # C-1269 / # C-245 Geology

DATE: 10-5-22	REVISION NO: 0
JOB NO: ROW-704	FIGURE NO: 1

Appendix A NC DOT Preliminary Plan

Appendix B

Pyramid Geophysical Survey Report

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2022-260)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 6 NCDOT PROJECT R-5600 (45818.1.FR1)

345 WEST MAIN STREET, SYLVA, NC

October 21, 2022

Report prepared for: David Graham, P.G.

Hart & Hickman, P.C.

2923 South Tryon Street, Suite 100

Charlotte, NC 28203

Prepared by:

Eric C. Cross, P.G.

NC License #2181

Reviewed by:

Douglas A. Canavello, P.G.

NC License #1066

GEOPHYSICAL INVESTIGATION REPORT

Parcel 6 - 345 West Main Street Sylva, Jackson County, North Carolina

Table of Contents

. 1
. 2
. 2
. 3
. 3
. 4
. 5
. 5

Figures

- Figure 1 Parcel 6 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 6 EM61 Metal Detection Contour Map
- Figure 3 Parcel 6 GPR Transect Locations and Select Images
- Figure 4 Parcel 6 Locations and Sizes of Two Possible USTs
- Figure 5 Overlay of Metal Detection Results and Two Possible USTs on NCDOT Engineering Plans

Appendices

Appendix A – GPR Transect Images

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	Dual Frequency
EM	Electromagnetic
GPR	Ground Penetrating Radar
GPS	_
NCDOT	North Carolina Department of Transportation
ROW	
UST	Underground Storage Tank

Project Description: Pyramid Geophysical Services (Pyramid), a department within Pyramid Environmental & Engineering, P.C., conducted a geophysical investigation for Hart & Hickman, P.C. (Hart & Hickman) at Parcel 6, located at 345 West Main Street, in Sylva, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project R-5600). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from September 26-27, 2022, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of three EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. GPR was performed across and around all sources of significant metallic interference to confirm the presence of reinforcement within the concrete and to confirm that the interference did not obscure any significant structures such as USTs. The geophysical survey identified evidence of utilities, buried infrastructure, and/or smaller fragments of buried debris.

Two possible USTs were identified off the northwest corner of the building, within the reinforced concrete slab. Due to the metallic interference from the reinforced concrete, it is unknown whether these features are metallic and are classified as possible USTs. Possible USTs #1 and #2 are both 10.5 feet long by 4.5 feet wide. Collectively, the geophysical data recorded evidence of two possible USTs at Parcel 6.

INTRODUCTION

Pyramid Geophysical Services (Pyramid), a department within Pyramid Environmental & Engineering, P.C., conducted a geophysical investigation for Hart & Hickman, P.C. (Hart & Hickman) at Parcel 6, located at 345 West Main Street, in Sylva, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project R-5600). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from September 26-27, 2022, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site consisted of a commercial building surrounded by asphalt and concrete surfaces. An aerial photograph, showing the survey area boundaries, and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at

approximately 0.8-foot intervals along north-south trending or east-west trending, generally parallel survey lines, spaced five feet apart. The data were downloaded to a computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on September 27, 2022, using a Geophysical Survey Systems, Inc. (GSSI) SIR 4000 unit equipped with a 350 MHz HS antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the SIR 4000 unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the SIR 4000 unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

•	Geophysical Surveys for on NCD	Underground Stora OOT Projects	ge Tanks
High Confidence	Intermediate Confidence	Low Confidence	No Confidence
Known UST	Probable UST	Possible UST	Anomaly noted but not
Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphalt/concrete patch, etc.	Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The

following table presents the list of EM anomalies and the cause of the metallic response, if known:

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Reinforced Concrete and Two Possible USTs	✓
2	Suspected Utilities/Infrastructure/Metal Door	✓
3	Drop Inlet	

The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface, including reinforced concrete, a metal door, and a drop inlet. GPR was performed across and around all sources of significant metallic interference to confirm the presence of reinforcement within the concrete and to confirm that the interference did not obscure any significant structures such as USTs. GPR was also performed across EM Anomaly 2 to investigate whether the anomaly was the result of more significant structures such as USTs.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as select transect images. All of the transect images are included in **Appendix A**. A total of thirteen formal GPR transects were performed at the site.

GPR Transects 1-4 were performed across EM Anomaly 2. Evidence of utilities and/or buried infrastructure was observed.

GPR Transects 5-13 confirmed the presence of reinforcement within the concrete. Evidence of utilities and/or smaller fragments of buried debris was observed. Additionally, GPR Transect 11 showed two large, high-amplitude hyperbolic reflectors and GPR Transects 12-13 each showed a high-amplitude lateral reflector. These reflectors are typical of USTs. Due to the metallic interference from the reinforced concrete, it is unknown whether these features are metallic and are classified as possible USTs. Possible USTs #1 and #2 are both 10.5 feet long by 4.5 feet wide. **Figure 4** provides the locations and sizes of the two possible USTs, overlain on an aerial, along with ground-level photographs.

Collectively, the geophysical data <u>recorded evidence of two possible USTs at Parcel 6</u>. **Figure 5** provides an overlay of the metal detection results and two possible USTs on the NCDOT engineering plans for reference.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 6 in Sylva, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic
 USTs within the accessible portions of the geophysical survey area.
- The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface.
- GPR was performed across and around all sources of significant metallic interference to confirm the presence of reinforcement within the concrete and to confirm that the interference did not obscure any significant structures such as USTs.
- The geophysical survey identified evidence of utilities, buried infrastructure, and/or smaller fragments of buried debris.
- Two possible USTs were identified off the northwest corner of the building, within the reinforced concrete slab. Due to the metallic interference from the reinforced concrete, it is unknown whether these features are metallic and are classified as possible USTs. Possible USTs #1 and #2 are both 10.5 feet long by 4.5 feet wide.
- Collectively, the geophysical data <u>recorded evidence of two possible USTs at Parcel 6</u>.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Hart & Hickman, P.C. in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or

absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

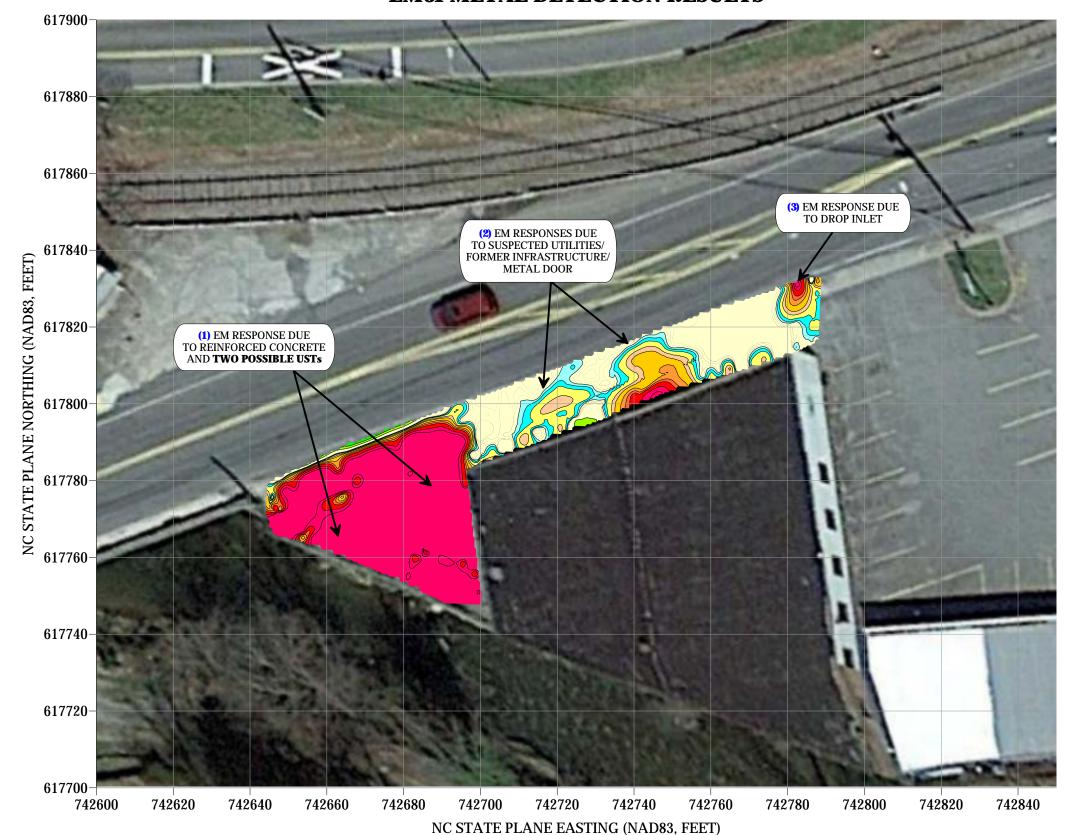
APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

View of Survey Area (Facing Approximately West)

View of Survey Area (Facing Approximately East)

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology

PROJECT


PARCEL 6 SYLVA, NORTH CAROLINA NCDOT PROJECT R-5600

TITLE PARCEL 6 -GEOPHYSICAL SURVEY BOUNDARIES AND SITE PHOTOGRAPHS

DATE	9/30/2022	CLIENT	HA
PYRAMID PROJECT #:	2022-260		F

ART & HICKMAN IGURE 1

EM61 METAL DETECTION RESULTS

EVIDENCE OF TWO POSSIBLE USTs WAS OBSERVED.

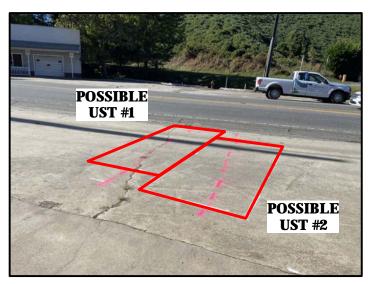
The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on September 26, 2022, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI SIR 4000 instrument with a 350 MHz HS antenna on September 27, 2022.

EM61 Metal Detection Response (millivolts)

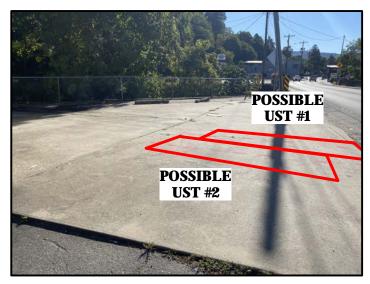
N

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

PARCEL 6 SYLVA, NORTH CAROLINA NCDOT PROJECT R-5600 TITLE


PARCEL 6 - EM61 METAL DETECTION CONTOUR MAP

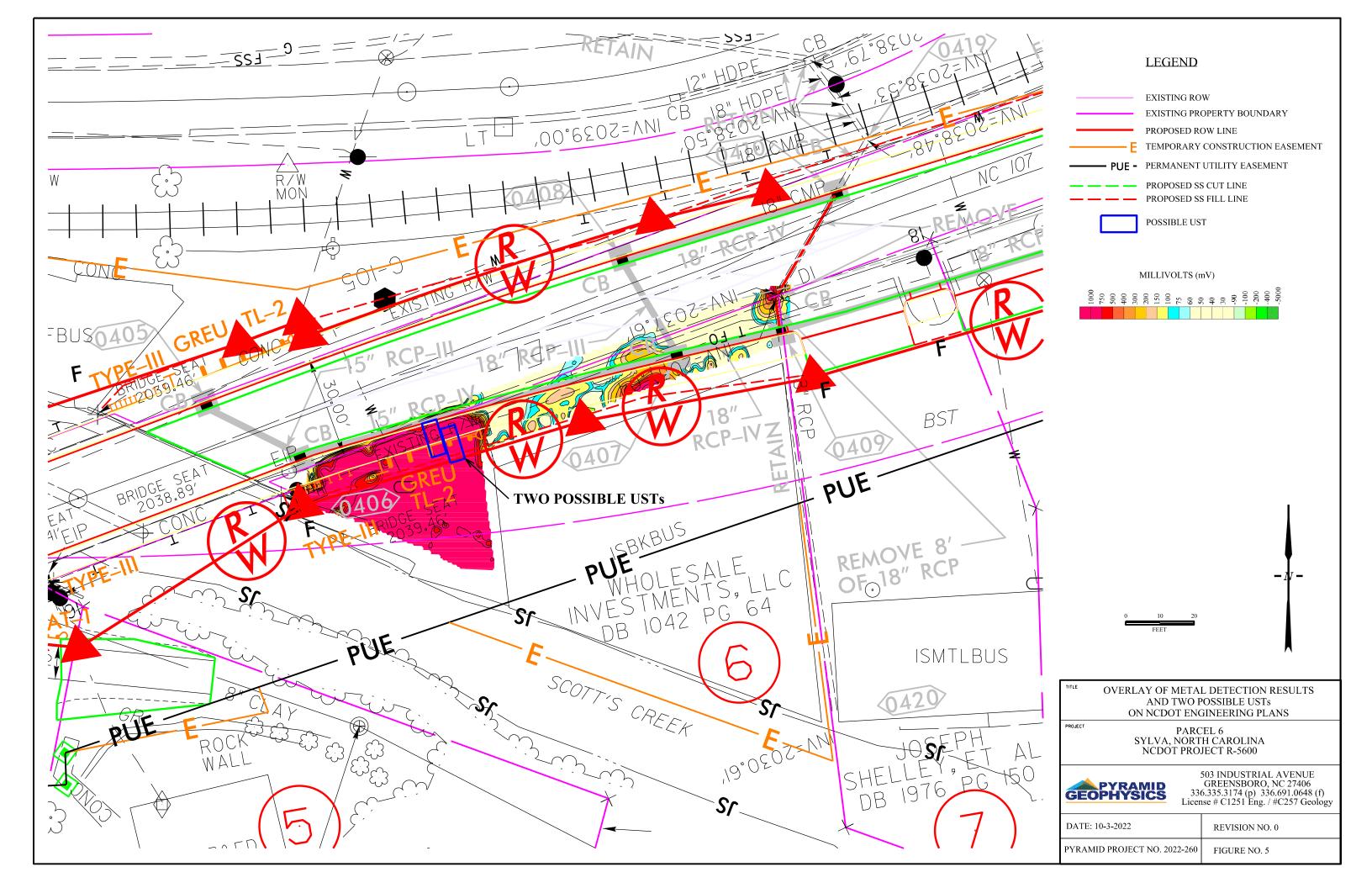
			, ,
DATE	9/30/2022	CLIENT	HART & HICKMAN
PYRAMID PROJECT #:	2022-260		FIGURE 2


GPR TRANSECT LOCATIONS 617900-617880-UTILITIES/BURIED INFRASTRUCTURE 617860-**GPR TRANSECT 2 (T2)** 617840 NC STATE PLANE NORTHING (NAD83, FEET) 617820 617800 WIDTHS OF TWO POSSIBLE USTs **GPR TRANSECT 11 (T11)** 617780-617760-LENGTH OF ONE LENGTH OF ONE POSSIBLE UST 617740-**POSSIBLE UST GPR TRANSECT 12 (T12) GPR TRANSECT 13 (T13)** 617720-617700-742660 742680 742700 742720 742740 742760 742800 742820 742840 742600 742620 742640 742780 NC STATE PLANE EASTING (NAD83, FEET) DATE PROJECT TITLE HART & HICKMAN PARCEL 6 9/30/2022 503 INDUSTRIAL AVENUE PARCEL 6 -GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology SYLVA, NORTH CAROLINA GPR TRANSECT LOCATIONS AND SELECT IMAGES PYRAMID PROJECT #: NCDOT PROJECT R-5600 FIGURE 3 2022-260

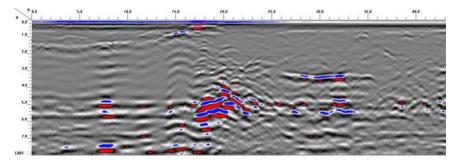
LOCATIONS OF TWO POSSIBLE USTs

View of Two Possible USTs (Facing Approximately North)

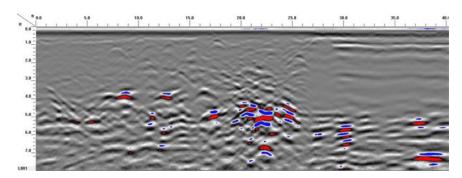
View of Two Possible USTs (Facing Approximately West)

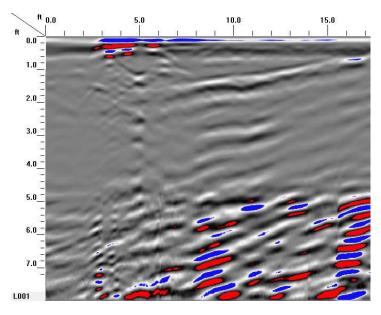


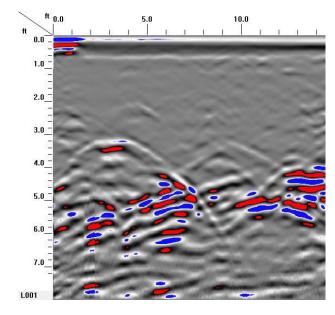
503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

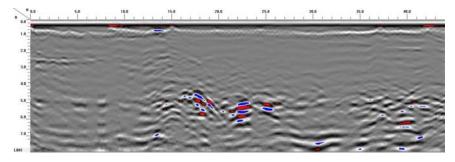

PARCEL 6 SYLVA, NORTH CAROLINA NCDOT PROJECT R-5600 PARCEL 6 -LOCATIONS AND SIZES OF TWO POSSIBLE USTs

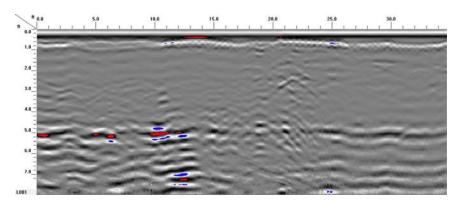
TITLE

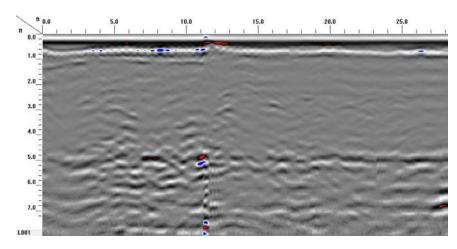

ATE	9/30/2022	CLIENT	HART & HICKMA
YRAMID ROJECT #:	2022-260		FIGURE 4

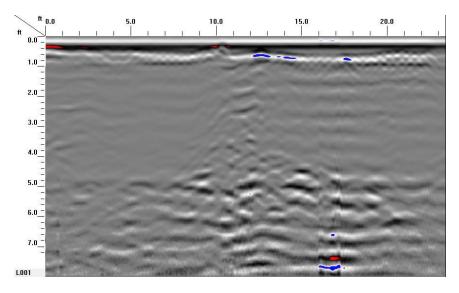


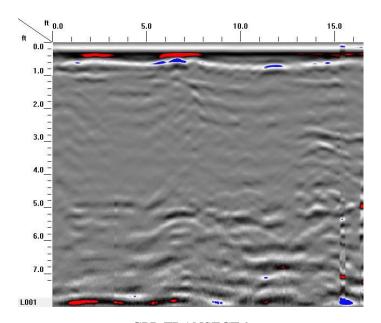

GPR TRANSECT 1

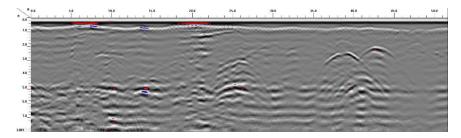

GPR TRANSECT 2

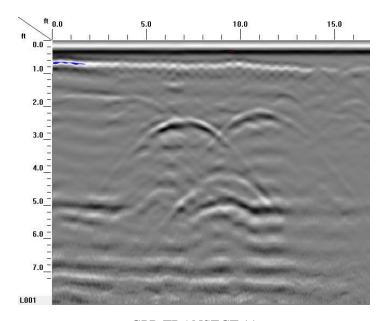

GPR TRANSECT 3

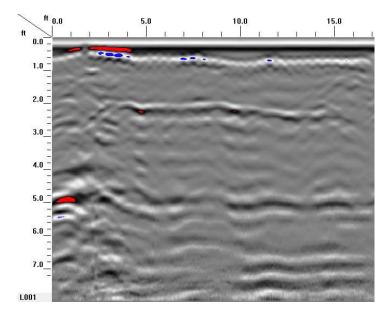

GPR TRANSECT 4

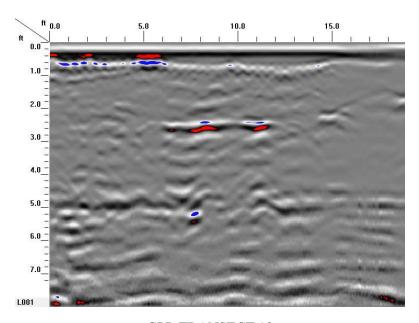

GPR TRANSECT 5


GPR TRANSECT 6


GPR TRANSECT 7


GPR TRANSECT 8


GPR TRANSECT 9


GPR TRANSECT 10

GPR TRANSECT 11

GPR TRANSECT 12

GPR TRANSECT 13

Via NC DOT FTS

November 30, 2022

NC DOT Geotechnical Unit GeoEnvironmental Section 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Attention: Mr. Ashley Cox, LG

Re: Phase II Investigation Report – Parcel 132

NC DOT State Project No. R-5600 WBS Element No. 45818.1.FR1

Sylva, Jackson County, North Carolina

H&H Job No. ROW-704

Dear Ashley:

Please find the attached PDF copy of the Phase II Investigation report for the Kathy Watkins, et al property (Parcel 132) located in Sylva, Jackson County, North Carolina. Please return via DocuSign for final signatures. If you have any questions or need additional information, please contact us at (704) 586-0007.

Sincerely,

Hart & Hickman, PC

David Graham, PG

Senior Project Geologist

Matt Bramblett, PE

Matt framblett

Principal

Attachment

Phase II Investigation NC DOT Parcel 132

1668 E. Main St. Sylva, Jackson County North Carolina

H&H Job No. ROW-704 State Project: R-5600 WBS Element No. 45818.1.FR1 November 30, 2022

#C-1269 Engineering #-245 Geology

Phase II Investigation – Parcel 132 1668 E. Main St. Sylva, Jackson County North Carolina H&H Job No. ROW-704

Table of Contents

Section	Page No.
1.0 Introduction and Background	1
2.0 Geophysical Survey	2
3.0 Soil Assessment	3
3.1 Soil Sampling	3
3.2 Soil Analytical Results	4
4.0 Groundwater Assessment	5
4.1 Groundwater Sampling	5
4.2 Groundwater Analytical Results	6
5.0 Summary and Regulatory Considerations	7
6.0 Signature Page	9

List of Tables

Table 1	Soil Boring and Monitoring Well GPS Coordinate Data
Table 2	Soil Analytical Results
Table 3	Summary of Well Construction and Water Level Data
Table 4	Summary of Groundwater Analytical Results

List of Figures

Figure 1	Site Location Map
Figure 2	Site Map and Soil Analytical Results
Figure 3	Groundwater Analytical Results

List of Appendices

Appendix A	NC DOT Preliminary Plan
Appendix B	Historical Environmental Documents
Appendix C	Pyramid Geophysical Survey Report
Appendix D	Soil Boring Logs, Well Construction Record, and Well Abandonment Record
Appendix E	Laboratory Analytical Reports
Appendix F	Groundwater Sampling Record

Phase II Investigation – Parcel 132 1668 E. Main St. Sylva, Jackson County North Carolina H&H Job No. ROW-704

1.0 Introduction and Background

Hart & Hickman, PC (H&H) has prepared this Phase II Investigation (Phase II) report documenting assessment activities performed at the Kathy Watkins, et al property (Parcel 132) located at 1668 E. Main St. in Sylva, Jackson County, North Carolina. This assessment was conducted on behalf of the North Carolina Department of Transportation (NC DOT) in accordance with H&H's August 17, 2022 proposal.

This assessment was conducted to evaluate the potential for underground storage tank (UST) systems and impacted soil and groundwater in proposed NC DOT work areas, including proposed right-of-way and construction easement areas, on Parcel 132 related to proposed road improvements along E. Main St. (State Project R-5600). This NC DOT road improvement project includes new curb and gutters, sidewalks, installation of stormwater drainage piping, etc. along E. Main St. and on the subject site. Parcel 132 is currently occupied by three buildings including a Crossfit training facility. The property was previously occupied by Rays Grocery which operated as a convenience store and gasoline station. A site location map is included as Figure 1, and a site map is presented as Figure 2. NC DOT's plan sheet depicting Parcel 132 is included in Appendix A.

H&H searched the North Carolina Department of Environmental Quality (NC DEQ) Laserfiche website for incident files and NC DEQ UST databases related to the Parcel 132 address to better target UST system areas and to check for previously reported impacts. NC DEQ incident No. 5325 is associated with this property. Review of limited NC DEQ files indicates that the property was previously occupied by Ray's Grocery. Four 4,000-gallon gasoline USTs were previously located on or near Parcel 132. A gasoline release was identified in Mill Creek downgradient of a leaking gasoline UST in 1989. Mill Creek runs through a culvert beneath the eastern portion of the property. Based on information provided by NC DEQ, the leaking UST appears to have been located just outside of the current property boundary to the south of Parcel 132 near E. Main Street

and within proposed NC DOT work areas. The other USTs were located adjacent to the Crossfit building on the southern portion of the property near proposed NC DOT work areas. The leaking UST was removed in 1991. Concentrations of total petroleum hydrocarbons (TPH) detected in UST closure samples were reportedly less the 10 mg/kg. The three remaining USTs were removed from the site in 1994. No UST closure reports were available for review. Rays Grocery (Incident #5325) is eligible for assessment and cleanup through the NC DEQ State Lead Cleanup Program. According to Sharon Ghiold with the NC DEQ UST Section, no assessment activities have been conducted at the site. H&H identified a water supply well in the southeast portion of the site during Phase II assessment activities. The well appears to be located in proposed NC DOT work areas. Current use of the well is unknown. The approximate water supply well location is shown on Figure 2. Pertinent information from files provided by NC DEQ are included Appendix B.

The Phase II assessment activities conducted by H&H on Parcel 132 are discussed below.

2.0 Geophysical Survey

Prior to advancing soil borings, H&H reviewed the results of a geophysical survey performed on Parcel 132 by Pyramid Geophysical Services (Pyramid) on September 26 through September 29, 2022. Pyramid utilized electromagnetic (EM) induction-metal technology and ground penetrating radar (GPR) technology to identify potential geophysical anomalies and potential USTs at the site. A total of eight EM anomalies were identified. Certain EM anomalies were attributed to known surface metallic objects, such as reinforced concrete pipes or above-ground metal structures (i.e. mailboxes, metal sign, etc.) that were not characteristic signatures of USTs. However, the EM/GPR survey confirmed the presence of one probable UST adjacent to the northeast corner of the Crossfit building. Based on visible indications of a potential UST (i.e. potential vent pipe/fill port) adjacent to the northeastern side of the Crossfit building and discussions with NC DOT, EM/GPR and soil investigation activities were conducted in this area. The UST is estimated to be 12 ft long by 5.5 ft wide. The EM/GPR results indicated that no other suspected USTs were identified on the targeted survey area for Parcel 132. Pyramid's report, including figures depicting the results of the EM/GPR survey, is provided in Appendix C.

3.0 Soil Assessment

3.1 Soil Sampling

H&H contracted with Geologic Exploration, Inc. (GEX) of Statesville, North Carolina to advance soil borings on Parcel 132. On October 18, 2022, six soil borings (SB-132-1 through SB-132-6) were advanced by GEX using a direct push technology (DPT) drill rig. Prior to conducting soil borings, underground utilities were marked by the NC 811 public utility locator and by Pyramid for private underground utilities. Borings were also cleared to five feet by hand auger prior to using the DPT rig.

The soil borings were advanced to depths ranging from 7 ft to 15 ft below ground surface (bgs). Based on field observations, the depth to groundwater appeared to be approximately 5 to 7 ft bgs in several borings at the site at the time of our assessment activities. A temporary monitoring well (TMW-1) was installed in boring SB-24-6 to evaluate shallow groundwater near the former UST locations (noted above) near the southeastern corner of the CrossFit building (see Section 4.0 below). To facilitate the selection of soil samples for laboratory analysis, soil from each boring was field screened continuously for the presence of volatile organic compounds (VOCs) with a photoionization detector (PID). Additionally, H&H observed the soil for visual and olfactory indications of impacts. Based on field screening, there were indications of potential impacts in borings SB-132-2, SB-132-3, and SB-132-6. PID readings were significantly higher near the capillary fringe and/or the water table in borings mentioned above. Soil samples were collected at various depth intervals between 0 ft and 8 ft bgs. Soil boring logs are included in Appendix D. GPS coordinate data for the soil borings are summarized in Table 1, and the boring locations are shown on Figure 2.

H&H submitted a total of six soil samples from borings SB-132-1 through SB-132-6 for laboratory analysis. The soil samples were placed into laboratory supplied sample containers using nitrile glove-covered hands. The containers were then labeled as to content, analyses requested, sample date and time, and sampler's name. The samples were placed in an iced cooler upon collection and were subsequently submitted to Red Lab, LLC of Wilmington, NC under standard chain-of-custody protocol for analysis of TPH as gasoline-range organics (GRO) and

diesel-range organics (DRO) using QED ultraviolet fluorescence (UVF) technology. Soil sample depths and analytical results are summarized in Table 2. Laboratory analytical data sheets and chain-of-custody documentation are provided in Appendix E. The analytical results are discussed below.

Upon completion of soil sampling activities, the soil borings were filled with bentonite pellets and patched with asphalt or soil to match the existing ground surface.

3.2 Soil Analytical Results

Concentrations of TPH DRO (ranging from 1.8 mg/kg to 799.1 mg/kg) were detected in soil samples collected from borings SB-132-1 through SB-132-6. TPH GRO was detected in soil boring SB-132-6 at a concentration of 376.1 mg/kg. The TPH DRO concentration (799.1 mg/kg) detected in soil sample SB-132-3 (4-6 ft) exceeds the NC DEQ Action Level of 100 mg/kg and the TPH GRO concentration (376.1 mg/kg) detected in soil sample SB-132-6 (6-8 ft) exceeds the NC DEQ Action Level of 50 mg/kg. TPH DRO and GRO data are depicted on Figure 2.

Based on the above soil sample results, H&H estimates the following amount of impacted soil above the NC DEQ Action Levels is present on Parcel 132:

H&H estimates there are roughly 100 cubic yards (150 tons) of soil impacted with TPH DRO between 3 ft and 6 ft bgs near boring SB-132-3 near the probable UST, and roughly 100 cubic yards (150 tons) of soil impacted with TPH GRO between 5 ft and 8 ft near boring SB-132-6 near the former gasoline UST locations.

The estimated depth of impacted soils is based on field screening results up to the approximate water table. However, field screening and lab results did not provide information that fully defines the impacted soil interval or extent. Therefore, impacts may extend beyond the depths and amounts indicated above. The approximate area of impacted soil is shown on Figure 2.

Significant PID readings from SB-132-6 indicate the potential for soil impacts below 8 ft bgs and/or near the water table. The elevated PID readings are likely due to impacted groundwater and historical groundwater table fluctuations creating a contamination smear zone in soil near the water table. If impacted soil is encountered near Parcel 132 during the NC DOT construction activities, it should be properly managed and disposed at a permitted facility.

4.0 Groundwater Assessment

4.1 Groundwater Sampling

Based discussions between H&H and NC DOT, potential impacts identified in soil boring SB-132-6 during field screening, and because boring SB-132-6 was installed near the location of three former gasoline USTs, SB-132-6 was converted into temporary monitoring well TMW-1 to evaluate groundwater at the site.

The temporary well boring was advanced using the DPT macrocore sampler. The temporary monitoring well was installed to a total depth of 14 ft bgs with 4 ft of one-inch diameter PVC well casing, and 10 ft of 0.010-inch slotted PVC pre-packed well screen set to bracket the water table. Sand filter pack was placed from the bottom of the well boring to approximately 1 ft above the top of the well screen, and up to one feet of bentonite was placed above the sand.

Once the monitoring well was installed, H&H developed the well by removing a minimum of 3 to 5 well volumes. After development activities, the well was allowed to equilibrate, and an electronic water level indicator was used to measure the depth to groundwater relative to the top of casing. Due to slow recharge of groundwater in the well, the depth to water was measured at approximately 11.61 ft bgs in TMW-1. As noted above, based on field observations, the depth to groundwater appears to be approximately 5 ft to 7 ft bgs in soil borings advanced at the site. Monitoring well construction data and water level data are included in Table 3.

A groundwater sample was then collected from the temporary well utilizing low-flow/low stress purging techniques using a peristaltic pump and dedicated polyethylene tubing. Groundwater was removed at a rate no greater than 200 milliliters per minute. H&H utilized a water quality

meter to collect measurements of pH, temperature, dissolved oxygen, oxidation reduction potential (ORP), turbidity, and specific conductivity during the purging process. Purging was considered complete when the well was purged dry due to slow recharge of groundwater into the well.

The groundwater sample was then collected directly into laboratory supplied sample containers. The samples were delivered to Waypoint Analytical under standard chain of custody protocol for analysis of VOCs by EPA Method 8260 and polynuclear aromatic hydrocarbons (PAHs) using EPA Method 8270. The groundwater sample analytical results are summarized in Table 4. The Groundwater Sampling Record is included in Appendix F.

Upon completion of groundwater sampling activities, the temporary groundwater monitoring well was abandoned in accordance with NC DEQ guidelines, and the surface was patched with concrete or soil to match the existing surface. The well boring log, well construction record, and well abandonment record are included in Appendix C.

4.2 Groundwater Analytical Results

Concentrations of target petroleum-related constituents were detected in the groundwater sample collected from TMW-1. Concentrations of benzene (11.6 ug/L) and naphthalene (14.2 ug/L) were detected in TMW-1 above their 2L Standards of 1 ug/L and 6 μ g/L, respectively. Other low level VOCs were detected in TMW-1 below the 2L Standards. No detected constituents exceeded the Gross Contamination Levels (GCLs).

NC DEQ regulations allow construction dewatering to surface water if surface water standards are not contravened. In addition, there can be no petroleum sheen on the water to be discharged. As such, the groundwater concentrations noted above were also compared to the NC Water Quality Standards for Surface Water (2B Standards). The nearest discharge is to a Class C surface water body (Mill Creek). Based on the classification of the receiving water body downgradient of the site, concentrations detected in groundwater were compared to criteria applicable for Class C surface water. Per NC Division of Water Resources (DWR) guidance (NC DWR Surface Water Quality Standards, Criteria & In-Stream Target Values table, July

2021), if no 2B Standards exist for certain compounds, concentrations were also compared to the lower of the EPA National Recommended Water Quality Criteria or NC In-Stream Target Values. Based on this comparison, a concentration of naphthalene (14.2 ug/L) detected in TMW-1 exceeded the NC surface water criteria.

Based on laboratory analytical results for TMW-1, groundwater is impacted above 2L Standards and NC surface water criteria at the site. If impacted groundwater is encountered and dewatering activities are required during NC DOT construction activities, the groundwater should be characterized and properly managed via NPDES permitted discharge or containerization and disposal at a permitted facility. A rough estimate of the horizontal extent of impacted groundwater is shown on Figure 3, but this extent is not based on actual data.

5.0 Summary and Regulatory Considerations

H&H has reviewed available NC DEQ files, geophysical survey results, and analytical results of soil and groundwater samples collected at the Parcel 132 property located at 1668 E. Main St. in Sylva, Jackson County, North Carolina. Parcel 132 is currently occupied by CrossFit training facility and was previously occupied by Rays Grocery (NC DEQ Incident No. 5325), a convenience store and gasoline station. Four 4,000-gallon gasoline USTs were previously located on or near Parcel 132. A release associated with one of the 4,000-gallon gasoline USTs was identified near Mill Creek which runs beneath the eastern portion of the property. Based on information provided by NC DEQ, the leaking UST appears to have been located just outside of the current Parcel 132 boundary to the south and within proposed NC DOT work areas. The other USTs were located adjacent to site building on the southern portion of the property. The four gasoline USTs were removed from the site in the early 1990's. No UST closure reports were available for review.

Based on the geophysical survey, one probable UST was identified on the property. No other suspected USTs were identified by the geophysical survey on Parcel 132. Analytical results of soil samples collected by H&H indicate concentrations of TPH DRO and/or GRO above the NC DEQ Action Levels in two soil samples collected on Parcel 132. Based on field screening and laboratory analytical results, H&H estimates there are roughly 100 cubic yards (150 tons) of soil impacted with TPH DRO between 3 ft and 6 ft bgs near boring SB-132-3 which was adjacent to the probable UST,

and roughly 100 cubic yards (150 tons) of soil impacted with TPH GRO between 5 ft and 8 ft near boring SB-132-6 which was at the location of three former gasoline USTs. Analytical results of a groundwater sample collected from one temporary monitoring well indicates concentrations of petroleum constituents above the 2L Standards and surface water criteria on Parcel 132.

NC DOT plans indicate installation of proposed drainage piping as part of road improvement activities in proposed NC DOT work areas near Parcel 132. Impacted media encountered during road construction activities should be properly managed and disposed at a permitted facility. If groundwater is encountered and dewatering activities are required during NC DOT construction activities, the groundwater should be properly managed via NPDES permit or disposed at permitted facility. The depth to groundwater appeared to be 5 to 7 bgs in soil borings at the site based on field observations. If a UST is encountered during construction activities, the UST system(s) and their contents should be removed in accordance with NC DEQ regulations and be properly disposed.

A water supply well was observed in the proposed NC DOT work areas. The current use of the well should be determined. If the well will be disturbed by NC DOT work, an alternate water supply may be needed for the property. In addition, the well may need to be abandoned by a NC licensed well driller prior to disturbance to the well by NC DOT work activities.

6.0 Signature Page

This report was prepared by:

David Graham

12/05/2022

— 9F6FAD6E6BA34BE.

David Graham, PG Senior Project Geologist for Hart & Hickman, PC

This report was reviewed by:

11/40 //

Matt Bramblett, PE

Principal and Project Manager for

Hart & Hickman, PC

Not considered final unless all signatures are completed.

Table 1 (Page 1 of 1) Soil Boring and Monitoring Well GPS Coordinate Data NC DOT Parcel 132 Sylva, Jackson County, North Carolina H&H Job No. ROW-704

Sample ID	Latitude	Longitude
SB-132-1	35.355087	-83.200957
SB-132-2	35.355255	-83.200975
SB-132-3	35.355338	-83.201178
SB-132-4	35.355367	-83.200958
SB-132-5	35.355464	-83.201039
SB-132-6/TMW-1	35.355152	-83.201141

Notes:

GPS coordinate data points collected using a Trimble GeoExplorer 6000 series unit with external satellite for increased accuracy.

Table 2 (Page 1 of 1) Soil Analytical Results NC DOT Parcel 132

Sylva, Jackson County, North Carolina

H&H	Job	No.	RO'	W-704

Sample ID	SB-132-1	SB-132-2	SB-132-3	SB-132-4	SB-132-5	SB-132-6	
Sample Depth (ft)	4-5	2-4	4-6	2-4	0-2	6-8	NC DEQ Action Levels
Sample Date	10/18/2022	10/18/2022	10/18/2022	10/18/2022	10/18/2022	10/18/2022	
TPH DRO/GRO (UVF) (mg/kg)							
Diesel-Range Organics (DRO)	35	26.5	799.1	3	1.8	2.1	100
Gasoline-Range Organics (GRO)	< 0.56	< 0.56	<7.5	< 0.52	< 0.49	376.1	50

Notes:

UVF = QED Ultraviolet Fluorescence Technology

Bold values exceed NC DEQ Action Levels.

TPH = Total Petroleum Hydrocarbons

DRO = Diesel Range Organics

GRO = Gasoline Range Organics

Table 3 (Page 1 of 1) Summary of Well Construction and Water Level Data NC DOT Parcel 132 Sylva, Jackson County, North Carolina H&H Job No. ROW-704

Monitoring \	Well ID	Screened Interval (ft bgs)	Total Depth (ft bgs)	Depth to Water (ft bgs)
TMW-	1	4-14	14.0	11.61*

Notes:

bgs = below ground surface

^{* =} Water level had not reached equilibrium

Table 4 (Page 1 of 1) Summary of Groundwater Analytical Results NC DOT Parcel 132 Sylva, Jackson County, North Carolina H&H Job No. ROW-704

Sample ID Date	TMW-1 (132) 10/18/2022	NC 2L Standards ¹	NC UST GCL ²	NC 2B Standards ³	Water Quality Criteria ⁴
Units	μg/L				
VOCs (8260)			P-9, -		
Benzene	11.6	1	5,000	51	NE
Ethylbenzene	10.7	600	80,000	NE	97
n-Hexane	7.38 J	400	ŇE	NE	NE
Isopropylbenzene	2.10 J	70	30,500	NE	250
Methyl tert-butyl ether (MTBE)	0.928	20	20,000	NE	1,500
Naphthalene	7.45	6	6,000	NE	12
n-Propylbenzene	2.69	70	26,100	NE	80
Toluene	2.45	600	260,000	11	NE
1,3,5-Trimethylbenzene	1.81	400	24,100	NE	215
Xylene (Total)	24.1	500	50,000	NE	670
<u>PAHs (8270)</u>					
Naphthalene	<u>14.2</u>	6	6,000	NE	12

Notes:

- 1) NC DEQ 15A NCAC 2L .0202 Groundwater Quality Standards (2L Standards) (April 2022).
- 2) NC DEQ Division of Waste Management (DWM) Underground Storage Tank (UST) Section, Gross Contamination Levels (GCLs) for Groundwater (September 2022).
- 3) NC DEQ Water Quality Standards for Surface Waters Class C (July 2021).
- 4) Lower of EPA Recommended Water Quality Criteria for Aquatic Life & Human Health Class C or NC In-Stream Target Values for Surface Water Class C (July 2021).

The nearest discharge is to a Class C surface water body (Mill Creek). Based on the classification of the receiving water body, surface water standards and criteria are based on Class C surface water standards.

Bold concentrations exceed the 2LStandard.

<u>Underlined</u> concentrations exceed the NC DEQ Water Quality Standards for Surface Waters - Class C.

or EPA Recommended Water Quality Criteria for Aquatic Life & Human Health - Class C or NC In-Stream Target Values for Surface Water - Class C.

Only constituents detected in at least one sample are shown.

EPA Method follows parameter in parentheses.

VOCs = volatile organic compounds; PAHs = polynuclear aromatic hydrocarbons

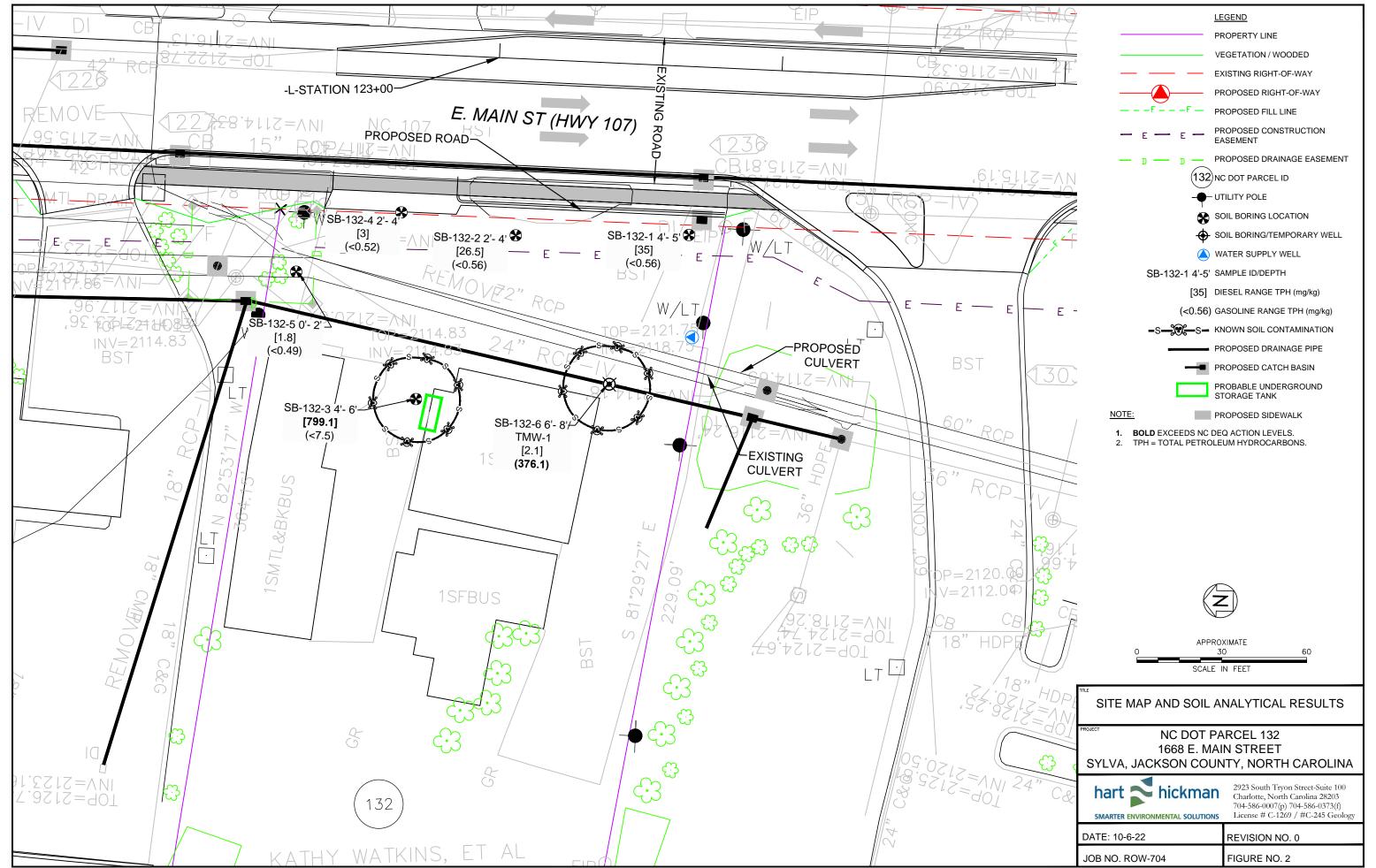
NE = not established

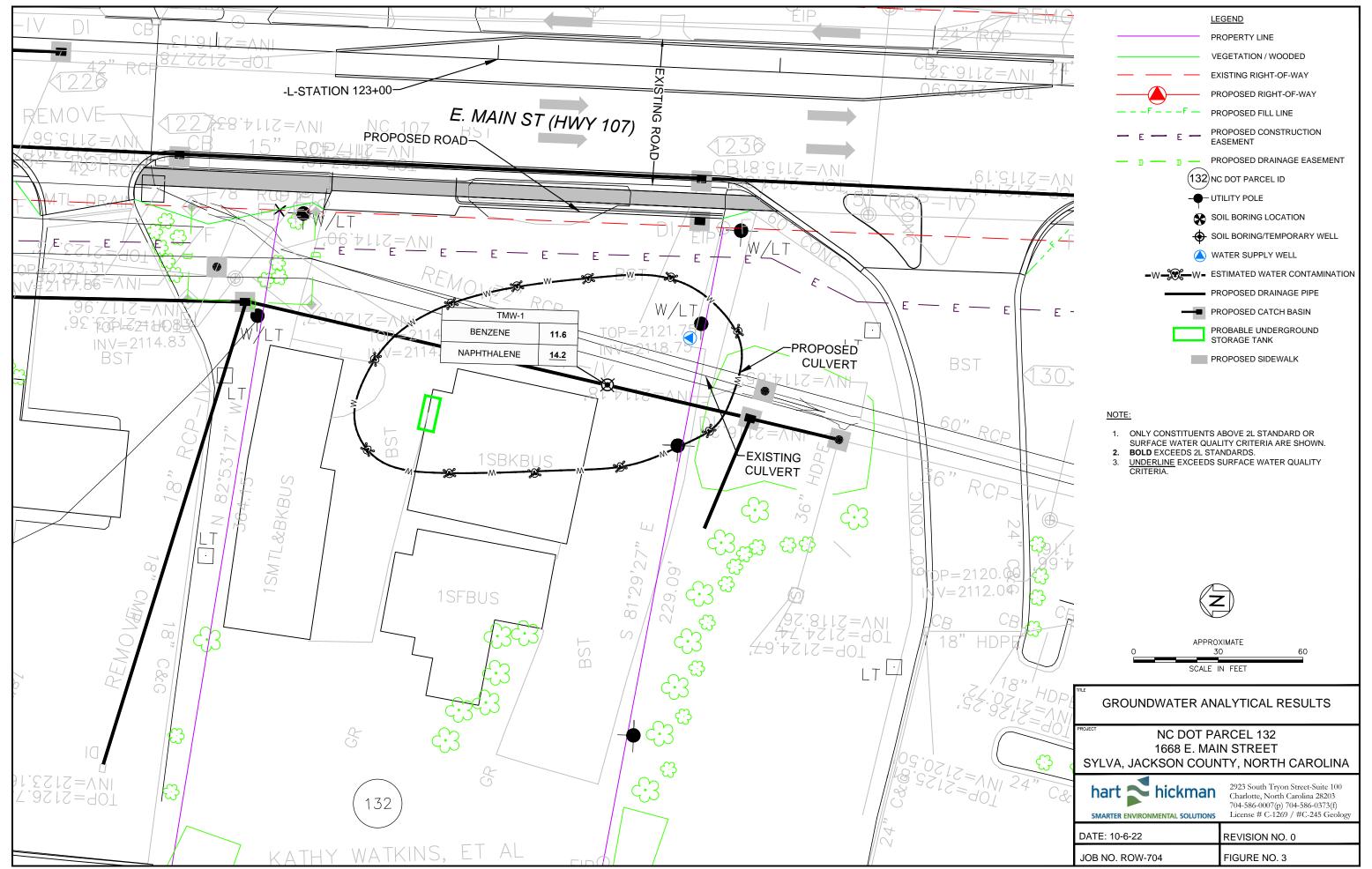
J = estimated value above the method detection limit but below the reporting limit

Path: S.AAA-Master Projects/NC DOT Right-of-Way -ROW/ROW-700s/ROW-704 Jackson County Phase Ils/FIGURES/PARCEL 132/Figure-1_PARCEL 132.mxd

U.S.G.S. QUADRANGLE MAP

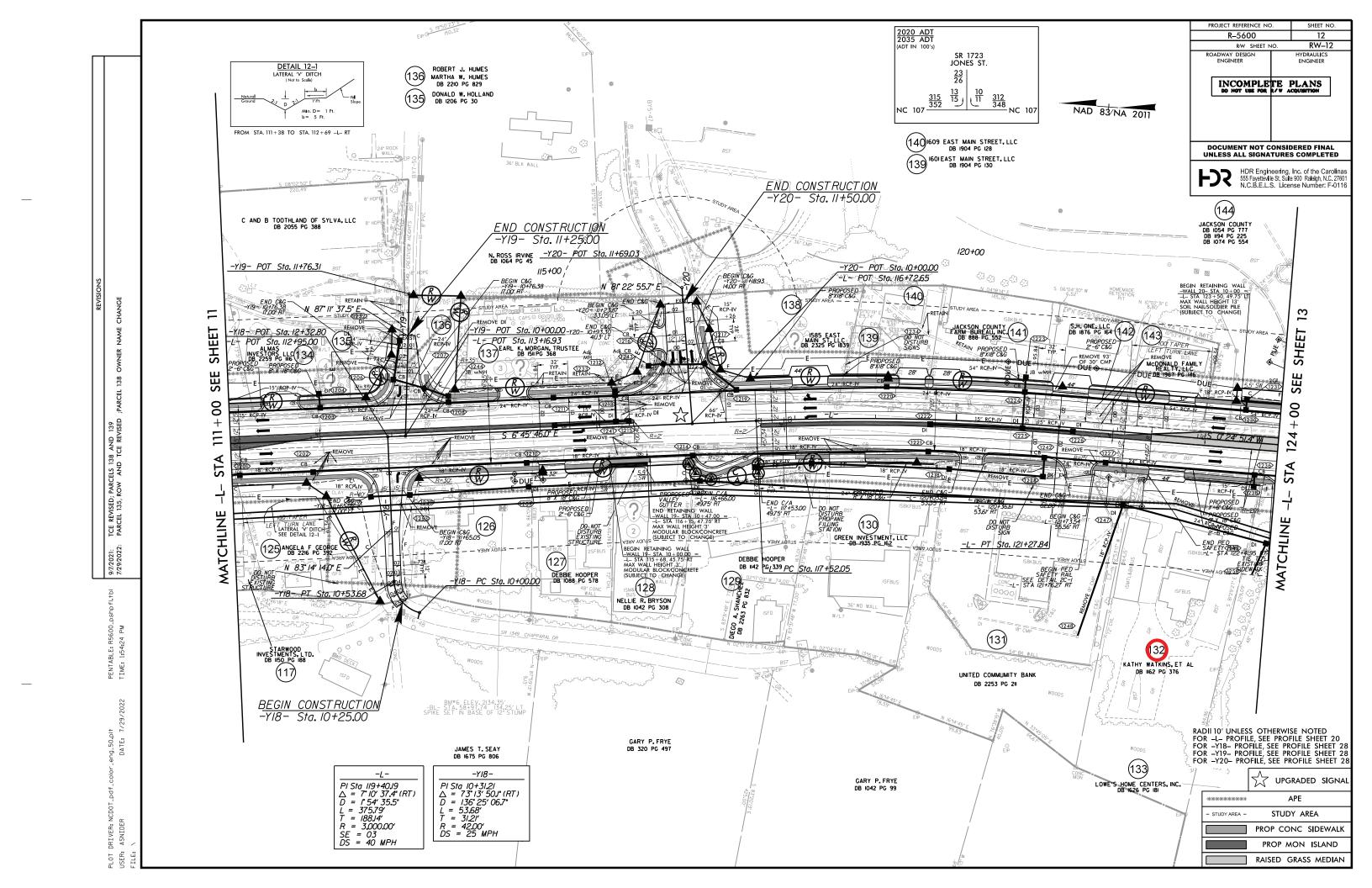
SYLVA SOUTH, NORTH CAROLINA 2022


QUADRANGLE 7.5 MINUTE SERIES (TOPOGRAPHIC)


NCDOT PARCEL 132 1668 E. MAIN ST SYLVA, NORTH CAROLINA

2923 South Tryon Street - Suite 100 Charlotte, North Carolina 28203 704-586-0007 (p) 704-586-0373 (f) License # C-1269 / # C-245 Geology

DATE: 10-5-22	REVISION NO: 0		
JOB NO: ROW-704	FIGURE NO: 1		



Appendix A

NC DOT Preliminary Plan

Appendix B

Historical Environmental Documents

Division of Waste Management - UST Section MEMO - Recommendation for State Lead Cleanup

To: Wayne Randolph, TFB Head **Date**: 2022-06-01

From: Caroline LaFond, CAB

Via: Carin Kromm, CAB Head

Subject: Recommendation for State Lead Cleanup – Deceased/Elderly RP or Orphan Site

Incident Name: Ray's Grocery Incident #: 5325 UST #: AS-307

Address: 1674 East Main Street, Sylva

County: Jackson

Facility ID: 0-021894

Submitted by: Brett Engard, CAB

Risk: High

Rank: H-145-D

The attached file for the subject incident has been submitted for Recommendation for State Lead Cleanup. The submittal has been reviewed, and it appears to be eligible for State Lead. The property and business were owned by Mr. Ray and Ms. Martha Coward (both deceased). The USTs were owned by Iredell Leasing Corporation, Inc. (Suspension of Revenue 2009), operated by Mr. Gene Davis (Deceased). Mr. Davis. Davis also owned Davis Oil Company which is referred to in some of the historical Incident documents (e.g., telephone logs, 1992 Letter from County Tax Assessor's Office). Davis Oil Company is listed by the Secretary of State's office as being active, with Ms. Dorothy Davis (spouse) as being the listed company officer. In response to a NORR sent to Ms. Davis' Forest City, VA address, Mr. Byron Davis (son) called me to discuss and to request documents related to the incident.

The incident occurred in 1989 when petroleum was seen on an unnamed tributary to Mill Creek/Bumgarner Branch, and petroleum was observed to be seeping from the embankment. The UST contents were pumped, and the UST was excavated in 1991. Based on the information in the incident file, Iredell Leasing Corporation completed the UST removal. Iredell Leasing Corporation collected and submitted laboratory samples. The analytical results on file state TPH concentrations in three soil samples collected were < 10 mg/kg. No additional site assessment was completed after the removal of the LUST.

Mr. Davis apparently offered to sell Mr. Coward the remaining three 4,000-gallon gasoline USTs, may or may not have completed the paperwork and per Mr. Davis, Mr. Coward sent tank fee payments to Mr. Davis who in turn sent them to the DEQ. Adams Oil Co. reportedly delivered oil to Mr. Coward from 1991 through approximately 1993 or 1994 but stopped when they realized the UST may not be registered and that one UST has leaked on-Site in the past. The remaining USTs are reported to have been removed in 1994 by TEPCO; however, no documentation or UST Closure Report was prepared or submitted to the UST Section. Mr. Ray Coward paid for the removal of the remaining three USTs. In 1998 a UST-2 Form was produced/provided to the UST Section.

The original LUST was located on property, owned by Ms. Roxy Davis (no relation), adjacent (south) of the property owned by Mr. Coward. Ms. Davis who sold the property to Rhoda Dunphy (Bk 523/Pg 21), then to Charles and Peggy Cagle (Bk 878/Pg 612), then to Jemsite Development, LLC (Bk 1513/Pg 24), then to Lowes Home Centers, Inc (Pg 1626/Pg 181). Ms. Dunphy granted access to install a groundwater monitoring well on the property, but no record of a groundwater monitoring well was in the incident file.

A water supply well is located between the former LUST and the unnamed tributary and was observed by ARO Staff on 3/22/22. A second water supply well may be located further west near the residential structure on-Site. ARO Staff. The commercial building on-Site (former Rays Grocery) is occupied by an exercise company; the other commercial building may be occupied by Mountain Home and Lawn. During the Site visit, no water meter was observed. ARO Staff contacted the Tuckaseigee Water and Sewer Authority, who stated that the following addresses are not in their system for water service:

- 1668 E. Main Street (currently: Mountain Home and Lawn)
- 1674 E. Main Street (former Ray's Grocery)
- 1676 E. Main Street (Residential)

Tuckaseigee Water and Sewer Authority stated that the only account they have on file is Sewer at <u>1676 E. Main Street (Residential)</u>. Please note, the street addresses were amended sometime after the original UST incident was filed. The former address was: 476 E. Main Street.

Site Status:

1972: Year the building was built on the property (per Jackson County Tax Dept. Property Card)

Aug 1974: Four 4,000-gallon gasoline USTs installed (per TIMS)

Dec 1989: 4,000-gallon premium UST leak

Jan 1990: NOVs sent to Ray's Grocery (Mr. Ray Coward) and Iredell Leasing Company, Inc., (Mr. Gene Davis)

Jan 1990: NORR sent to Iredell Leasing Company, Inc., (Mr. Gene Davis)

Feb 1990: LUST Removed

~1990: Adams Oil Company delivers gasoline to three USTs on-Site

~1991: Adams Oil Company delivers gasoline to two of the three USTs on-Site

Apr 1992: County Assessor states that they have no record of UST sale to Mr. Ray Coward

Jul 1994: Last delivery by Adams Oil Company to the Site

Aug 1994: Remaining three USTs removed from the Site by TEPCO

Apr 1997: UST-10 Form Received

Oct 1998: Telephone logs on behalf of Mr. Ray Coward regarding status of petroleum spill incident, and

potential sale of property to "large company" - No UST Closure Reports have been received.

Nov 1998: Attorney correspondence on behalf of Mr. Ray Coward to Mr. Charlie O. Sims (TEPCO) to produce

UST Closure Report.

Mar 2022: Correspondence sent to Ms. Dorothy Davis from ARO IM, cc'd current property owners

Mar 2022: ARO Site Visit

Apr 2022: ARO contacted by Byron Davis, son of Mr. Gene Davis (Deceased) and Ms. Dorothy Davis

Jun 2022: State Lead Recommendation Package assembled.

Attachments:

- State Lead Recommendation Form
- Secretary of State, Suspension of Revenue Iredell Leasing Corporation
- Obituary (Mr. Fred Eugene "Gene" Davis)
- Obituary (Ms. Margret Coward, with Mr. Ray Coward date of passing 2008)
- RRA Statement and RRA Forms
- Recommendations and Estimated Costs
- Property Card, Tax Department Documents, current Deed
- Topographic Map, Site Map
- UST-2, UST-10B, and UST-61 Forms
- NOVs and NORRs
- Miscellaneous Records and Other Correspondence

RECOMMENDATION OF SITE FOR STATE LEAD CLEANUP

Incide	nt Name:	Ray's	s Grocery	UST #:AS-3	307	Incident #:	5325
Site Ad	dress:	1674	l East Mail Street	-"		Site Priority Risk/Rank:	H145D (4/5/22)
City:		Sylva	3	County:	Jackso	on County	
Currer	it Landowr	ner:	Gene Davis (Deceased)	Address:	Unkn	own	
Recom	mended b	y:	Brett Engard	Region:	ARO	Date of Last Site Visit:	3/22/2022
Step 1:	Has a wat	er sup	vater supply well within 1000' ply been contaminated? ater been provided?	-		yes □ no □ yes □ no - Unknov □ yes 図 no	vn
Step 2:	□ Th □ Th □ Th □ Th □ Th □ Th	ne RO ne RO ne RO ne RP I ne RP I	ecommended for State Lead Clean has not been able to positively ide has not been able to positively ide has positively identified the source has been identified but refuses to has been identified but claims final is continuing its investigation of so health and the environment. (Add	ntify the sountify the RP e(s) but RP comply with ncial hardshources and R	annot b investigip or ba Ps, but	of contamination e located, or is deceased gative requirements nkruptcy immediate action is nece	
Step 3:			ent documenting or supporting the etroleum to soil and/or groundwa		termina	ation (RRA Form) based u	pon a confirmed
Step 4:	Attach cov	ver me	emo with a summary of site history	and chrono	logy of	events, including RO acti	ons taken to date.
Step 5:		1-Hour opogra ORRs, ternat	le a link to scans of the entire origing Release and UST Leak Reporting Rephic map with site location clearly NOVs, and any other corresponde the water requests and any informations and any and any supplemental informations.	Form (Form or identified note issued a tion on avail	61) and nd rece	ranking forms	es:
Step 6:	□ U:□ U:□ U:□ The	ST is a ST is a ST is a ne UST	oply for any UST located at the site heating oil tank 100 gallons or less heating oil tank greater than 1100 farm or residential, 1100 gallons of is a non-regulated, commercial UST	s gallons for or less of mo			ooses
			(4: 4,000-gallon gasoline) have bee spensers were not assessed during				oum station
			ium gasoline UST leaked in 1989 a				
			acent unnamed tributary to Mill/B				
		•	JST and the unnamed tributary. The			• • • • • • • • • • • • • • • • • • • •	
			acent property (owned by Roxy Q			· · · · · · · · · · · · · · · · · · ·	
			's Home Improvement Co. Based c				
			e" Davis (Deceased) is listed as the				
			nce to Ms. Davis and received a ph				
			oparent that the USTs may have co				· ·
approx	kimately 19	994 WI	nen the USTS were removed; there	e is no record	a or rep	orting for the UST closure	e except for a

UST-2 Form and invoice dated 1994. Ms. Kathy Watkins, Mr. Stephen Coward, and Ms. Brenda Dillard (daughters and								
son) own the property. There is a residential structure on the property, and a possible second water supply well which								
was not observed by ARO Staff on 3/22/22. There are two commercial and one residential structures on-Site which								
Are not supplied by City water.	Are not supplied by City water.							
Caroline LaFond	Caroline LaFond	06/02/22						
Regional Supervisor	Signature	Date						
Attachment: State Lead Recommendation P Incident File	ackage ⊠ ⊠							

Legend

- W Existing Water Supply Well
- W Location of Historical Water Supply Well
- S Location of Gasoline Seep
- * All features are approximate in location and are based on historical hand drawn sketches of the site.
- Former Canopy and Pumps
-] Former 4K-gal Reg. Gasoline LUST 🛛 🗶
- Former 4K-gal Unleaded and Premium USTs
- - Property Line

Appendix C Pyramid Geophysical Survey Report

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2022-260)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 132 NCDOT PROJECT R-5600 (45818.1.FR1)

1668 EAST MAIN STREET, SYLVA, NC

October 21, 2022

Report prepared for: David Graham, P.G.

Hart & Hickman, P.C.

2923 South Tryon Street, Suite 100

Charlotte, NC 28203

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by:

Douglas A. Canavello, P.G.

NC License #1066

GEOPHYSICAL INVESTIGATION REPORT

Parcel 132 - 1668 East Main Street Sylva, Jackson County, North Carolina

Table of Contents

xecutive Summary	1
ntroduction	
ield Methodology	2
Discussion of Results	
Discussion of EM Results	4
Discussion of GPR Results	
ummary & Conclusions	
imitations	

Figures

- Figure 1 Parcel 132 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 132 EM61 Metal Detection Contour Map
- Figure 3 Parcel 132 GPR Transect Locations and Select Images
- Figure 4 Parcel 132 Location and Size of One Probable UST
- Figure 5 Overlay of Metal Detection Results and One Probable UST on NCDOT Engineering Plans

Appendices

Appendix A – GPR Transect Images

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	Dual Frequency
EM	Electromagnetic
GPR	Ground Penetrating Radar
GPS	Global Positioning System
NCDOT	North Carolina Department of Transportation
ROW	
UST	Underground Storage Tank

EXECUTIVE SUMMARY

Project Description: Pyramid Geophysical Services (Pyramid), a department within Pyramid Environmental & Engineering, P.C., conducted a geophysical investigation for Hart & Hickman, P.C. (Hart & Hickman) at Parcel 132, located at 1668 East Main Street, in Sylva, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project R-5600). This survey was designed to include all portions of the property indicated to Pyramid by Hart & Hickman. Conducted from September 26-29, 2022, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of eight EM anomalies were identified. All of the EM anomalies were directly attributed to visible cultural features at the ground surface. GPR was performed across and around all sources of significant metallic interference to confirm that the interference did not obscure any significant structures such as USTs. The geophysical survey identified evidence of utilities and/or smaller fragments of buried debris.

One probable UST was identified at the northeast corner of the southern building. Probable UST #1 is approximately 12 feet long by 5.5 feet wide. Collectively, the geophysical data recorded evidence of one probable UST at Parcel 132. This probable UST is located outside of the survey area and was included in the survey at the request of Hart & Hickman.

INTRODUCTION

Pyramid Geophysical Services (Pyramid), a department within Pyramid Environmental & Engineering, P.C., conducted a geophysical investigation for Hart & Hickman, P.C. (Hart & Hickman) at Parcel 132, located at 1668 East Main Street, in Sylva, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project R-5600). This survey was designed to include all portions of the property indicated to Pyramid by Hart & Hickman. Conducted from September 26-29, 2022, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site consisted of two commercial buildings surrounded by asphalt, concrete, gravel, and grass surfaces. A suspected UST was identified outside of the survey area, at the northeast corner of the southern building, and was investigated using GPR to determine the size and orientation of the suspected UST at the request of Hart & Hickman. An aerial photograph, showing the survey area boundaries, and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8-foot intervals along north-south trending or east-west trending, generally parallel survey lines, spaced five feet apart. The data were downloaded to a computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies from September 28-29, 2022, using a Geophysical Survey Systems, Inc. (GSSI) SIR 4000 unit equipped with a 350 MHz HS antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the SIR 4000 unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the SIR 4000 unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tanks on NCDOT Projects									
High Confidence	Intermediate Confidence	Low Confidence	No Confidence						
Known UST	Probable UST	Possible UST	Anomaly noted but not						
Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphalt/concrete patch, etc.	Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.						

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The following table presents the list of EM anomalies and the cause of the metallic response, if known:

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Vehicle	✓
2	Building	✓
3	Building	✓
4	Reinforced Concrete Pipe	✓
5	Utility	
6	Sign	
7	Utility	
8	Mailboxes	

All of the EM anomalies were directly attributed to visible cultural features at the ground surface, including a vehicle, buildings, a reinforced concrete pipe, utilities, a sign, and mailboxes. GPR was performed across and around all sources of significant metallic interference to confirm that the interference did not obscure any significant structures such as USTs.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as select transect images. All of the transect images are included in **Appendix A**. A total of nine formal GPR transects were performed at the site.

GPR Transects 1-3 were performed as general reconnaissance scans at the request of Hart & Hickman. GPR Transects 4-7 were performed across and around areas of significant metallic interference. None of these transects showed evidence of significant structures such as USTs. Evidence of utilities and/or smaller fragments of buried debris was observed.

A suspected UST was identified outside of the survey area, at the northeast corner of the southern building, and was investigated using GPR to determine the size and orientation of the suspected UST at the request of Hart & Hickman. GPR Transects 8-9 were performed across the suspected UST. GPR Transect 8 showed a high-amplitude lateral reflector and GPR Transect 9 showed a large, high-amplitude hyperbolic reflector. These reflectors are typical of a UST. Probable UST #1 is approximately 12 feet long by 5.5 feet wide. **Figure 4** provides the location and size of the probable UST, overlain on an aerial, along with ground-level photographs.

Collectively, the geophysical data <u>recorded evidence of one probable UST at Parcel 132</u>. This probable UST is located outside of the survey area and was included in the survey at the request of Hart & Hickman. **Figure 5** provides an overlay of the metal detection results and one probable UST on the NCDOT engineering plans for reference.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 132 in Sylva, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic
 USTs within the accessible portions of the geophysical survey area.
- All of the EM anomalies were directly attributed to visible cultural features at the ground surface.
- GPR was performed across and around all sources of significant metallic interference to confirm that the interference did not obscure any significant structures such as USTs.
- The geophysical survey identified evidence of utilities and/or smaller fragments of buried debris.
- One probable UST was identified at the northeast corner of the southern building. Probable UST #1 is approximately 12 feet long by 5.5 feet wide.
- Collectively, the geophysical data <u>recorded evidence of one probable UST at Parcel</u>
 132. This probable UST is located outside of the survey area and was included in the survey at the request of Hart & Hickman.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Hart & Hickman, P.C. in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

View of Survey Area (Facing Approximately North)

View of Survey Area (Facing Approximately Northeast)

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

PARCEL 132 SYLVA, NORTH CAROLINA NCDOT PROJECT R-5600 PARCEL 132 GEOPHYSICAL SURVEY BOUNDARIES
AND SITE PHOTOGRAPHS

DATE	9/30/2022	CLIENT	HART & HICKMA
PYRAMID PROJECT #:	2022-260		FIGURE 1

N

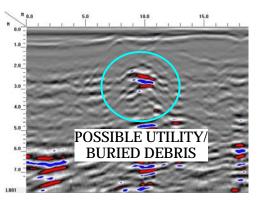
EM61 METAL DETECTION RESULTS

EVIDENCE OF ONE PROBABLE USTS WAS OBSERVED OUTSIDE OF THE SURVEY AREA. NO EVIDENCE OF METALLIC USTS WAS OBSERVED WITHIN THE SURVEY AREA.

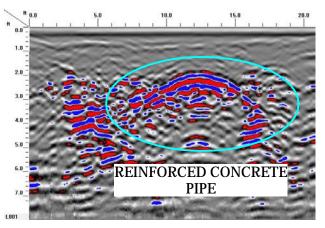
The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on September 26, 2022, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI SIR 4000 instrument with a 350 MHz HS antenna on September 28-29, 2022.

EM61 Metal Detection Response (millivolts)

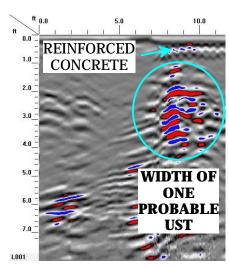
N


503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

PARCEL 132 SYLVA, NORTH CAROLINA NCDOT PROJECT R-5600 TITLE


PARCEL 132 -EM61 METAL DETECTION CONTOUR MAP

DATE	9/30/2022	CLIENT	HART & HICKMAN
PYRAMID PROJECT #:	2022-260		FIGURE 2


GPR TRANSECT LOCATIONS 610850-610825-610800-610775 NC STATE PLANE NORTHING (NAD83, FEET) 610750-610725-610700 610675-610650-610625-610600-747800 747825 747850 747875 747900 747925 747950

GPR TRANSECT 4 (T4)

GPR TRANSECT 7 (T7)

GPR TRANSECT 9 (T9)

747650

747675

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology

747700

747725

PROJECT

747750

747775

PARCEL 132 SYLVA, NORTH CAROLINA NCDOT PROJECT R-5600

NC STATE PLANE EASTING (NAD83, FEET)

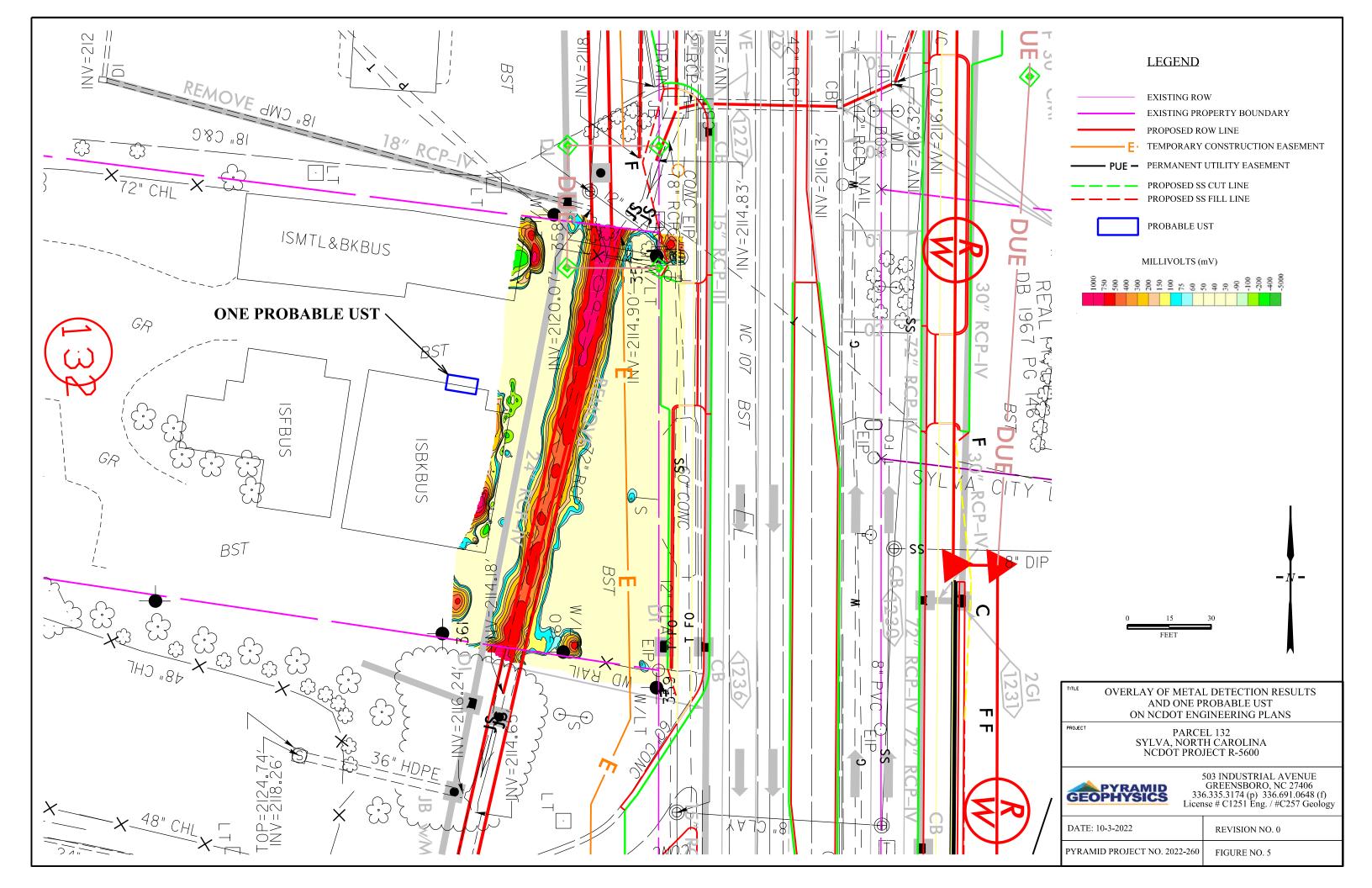
TITLE PARCEL 132 -GPR TRANSECT LOCATIONS AND SELECT IMAGES

DATE	9/30/2022	CLIENT	HART & HICKMAN
PYRAMID PROJECT #:	2022-260		FIGURE 3

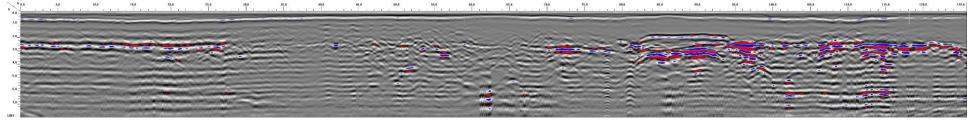
LOCATION OF ONE PROBABLE UST

View of One Probable UST (Facing Approximately South)

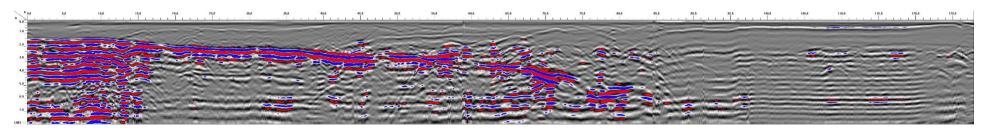
View of One Probable UST (Facing Approximately West)

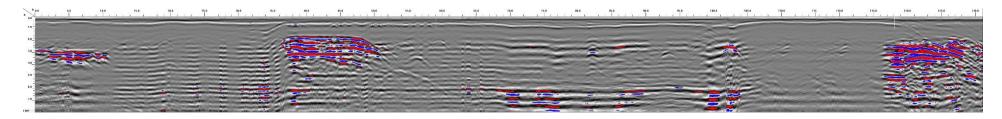


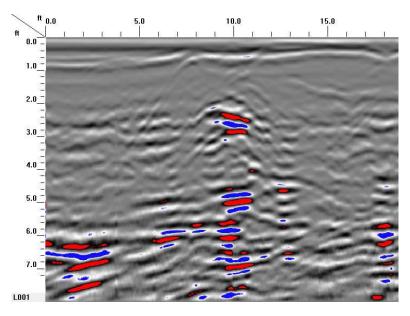
503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

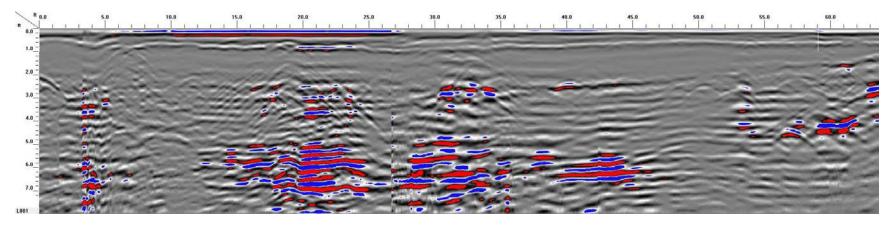

PARCEL 132 SYLVA, NORTH CAROLINA NCDOT PROJECT R-5600 TITLE

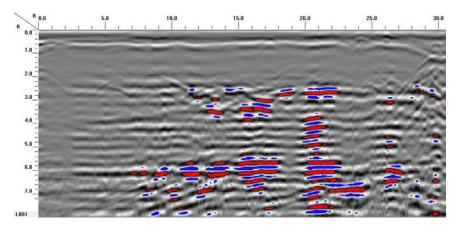
PARCEL 132 -LOCATION AND SIZE OF ONE PROBABLE UST


DATE	9/30/2022	CLIENT	HART & HICKMAN
PYRAMID PROJECT #:	2022-260		FIGURE 4

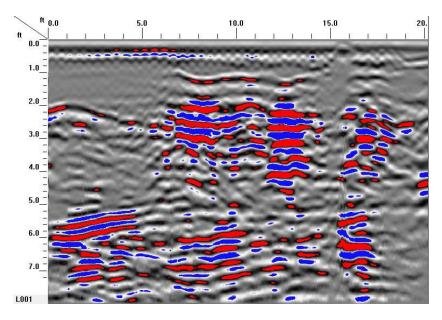


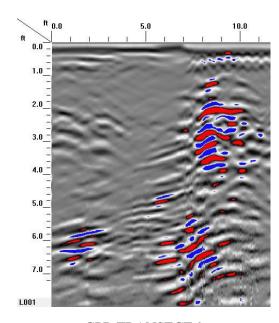

GPR TRANSECT 1


GPR TRANSECT 2


GPR TRANSECT 3

GPR TRANSECT 4


GPR TRANSECT 5


GPR TRANSECT 6

GPR TRANSECT 7

GPR TRANSECT 8

GPR TRANSECT 9

Appendix D

Soil Boring Logs, Well Construction Record, and Well Abandonment Record

Client: NC DOT

Project: ROW-704

Address: Parcel 132 - 1668 E. Main Street, Sylva, North Carolina

BORING LOG

Boring No. SB-132-1

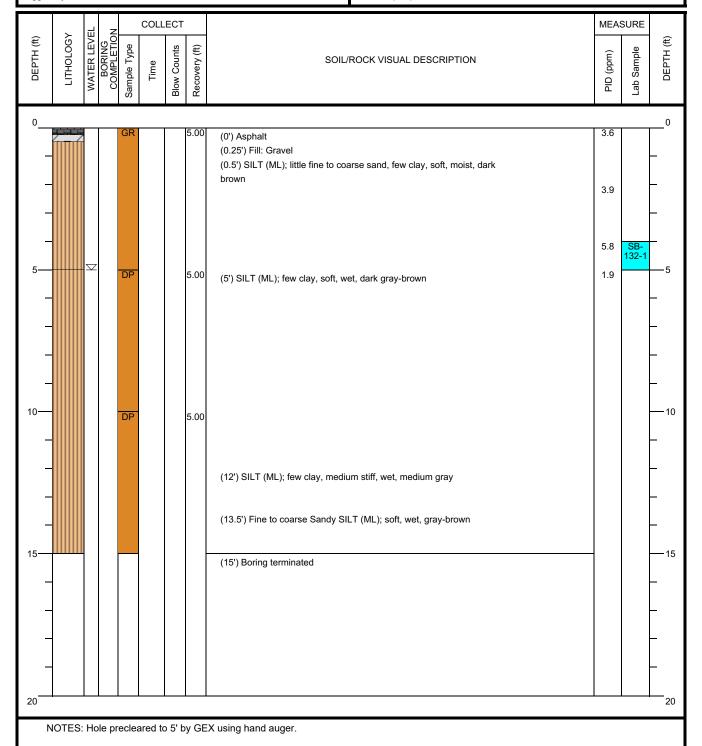
Page: 1 of 1

Drilling Start Date: 10/18/22
Drilling End Date: 10/18/22

Drilling Company: GEX

Drilling Method: Direct Push

Drilling Equipment: **GeoProbe 7822 DT**Driller: **David Hall**


Logged By: ABM

Boring Depth (ft): 15.0
Boring Diameter (in): 2.25

Sampling Method(s): Direct Push, Grab

DTW During Drilling (ft): 5.0

DTW After Drilling (ft):
Ground Surface Elev. (ft):

Client: NC DOT Project: **ROW-704**

Address:

Parcel 132 - 1668 E. Main Street, Sylva, North Carolina

BORING LOG

Boring No. SB-132-2

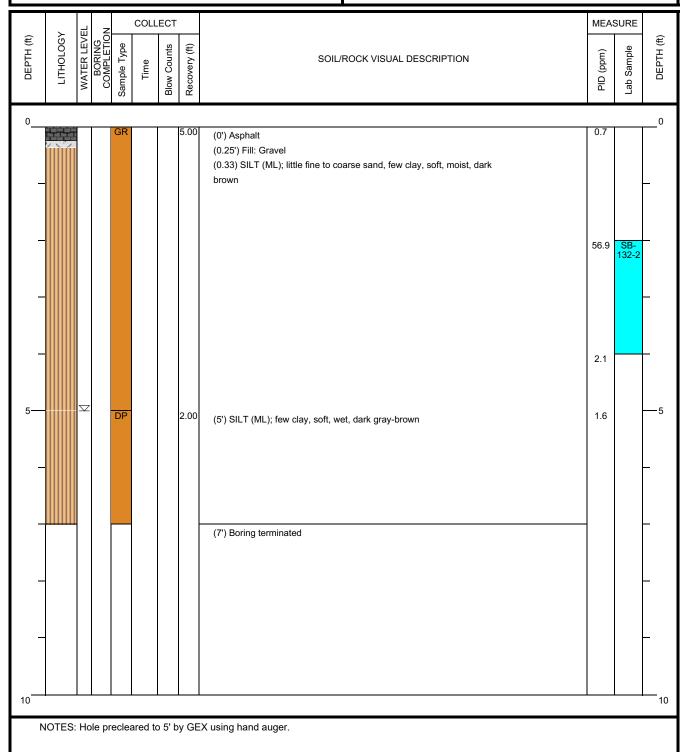
Page: 1 of 1

Drilling Start Date: 10/18/22 Drilling End Date: 10/18/22 Drilling Company: GEX

Drilling Method: **Direct Push** Drilling Equipment: GeoProbe 7822 DT

David Hall

ABM Logged By:


Driller:

Boring Depth (ft): 7.0 Boring Diameter (in): 2.25

Sampling Method(s): Direct Push, Grab

DTW During Drilling (ft):

DTW After Drilling (ft): Ground Surface Elev. (ft):

Client: NC DOT Project:

Parcel 132 - 1668 E. Main Street, Sylva, North Carolina Address:

ROW-704 Page:

BORING LOG

1 of 1

Boring No. SB-132-3

Drilling Start Date: 10/18/22 Drilling End Date: 10/18/22 Drilling Company: GEX

Drilling Method: **Direct Push** Drilling Equipment: GeoProbe 7822 DT

Driller: David Hall Logged By: ABM

Boring Depth (ft): 8.0 Boring Diameter (in): 2.25

Direct Push, Grab Sampling Method(s):

DTW During Drilling (ft):

DTW After Drilling (ft): Ground Surface Elev. (ft):

	_	님	z		COLL	ECT			MEA	SURE	
DEPTH (ft)	LITHOLOGY	WATER LEVEL	BORING COMPLETION	Sample Type	Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm)	Lab Sample	DEPTH (ft)
0				0.0		1	I= 00I				0
_				GR			5.00	(0') Asphalt (0.25') Fill: Gravel (0.33') Clayey SILT (ML); medium stiff, moist, red-brown	0.3		_
_									0.5		_
_									54.4	SB- 132-3	_
5		\Box		DP			3.00	(6') Fine Sandy SILT (ML); few clay, medium stiff, moist, yellow-gray	2.0		 5
_								(8') Boring terminated			_
_											_
10	<u> </u>	1]			<u> </u>		10
١	OTES	: Hc	le pr	eclea	ared to	o 5' b	y GE	X using hand auger.			

Client: NC DOT Project: **ROW-704**

Address:

Parcel 132 - 1668 E. Main Street, Sylva, North Carolina

BORING LOG

1 of 1

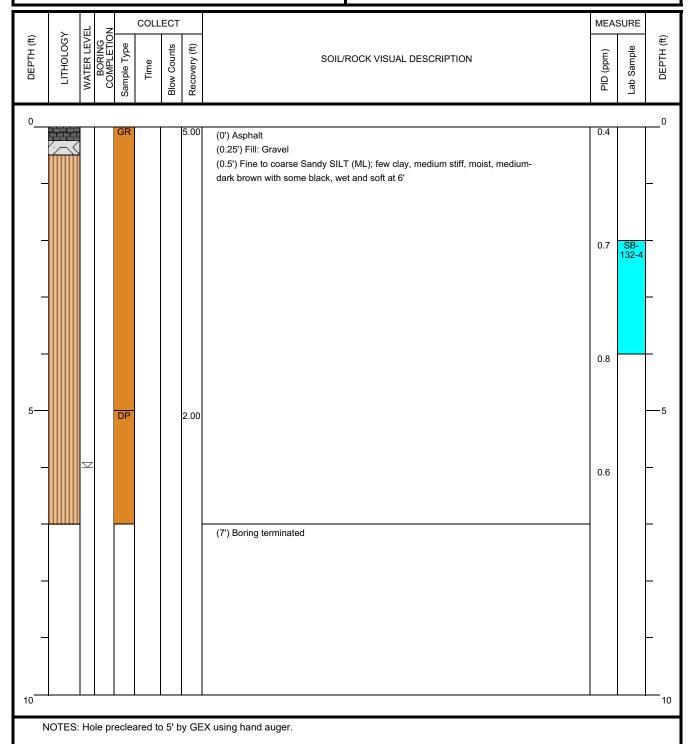
Boring No. SB-132-4

Page:

Drilling Start Date: 10/18/22 Drilling End Date: 10/18/22 Drilling Company: GEX

Drilling Method: **Direct Push** Drilling Equipment: GeoProbe 7822 DT

Driller: David Hall


ABM Logged By:

Boring Depth (ft): 7.0 Boring Diameter (in): 2.25

Sampling Method(s): Direct Push, Grab

DTW During Drilling (ft):

DTW After Drilling (ft): Ground Surface Elev. (ft):

Client: NC DOT

Project: ROW-704

Address: Parcel 132 - 1668 E. Main Street, Sylva, North Carolina

BORING LOG

1 of 1

Boring No. SB-132-5

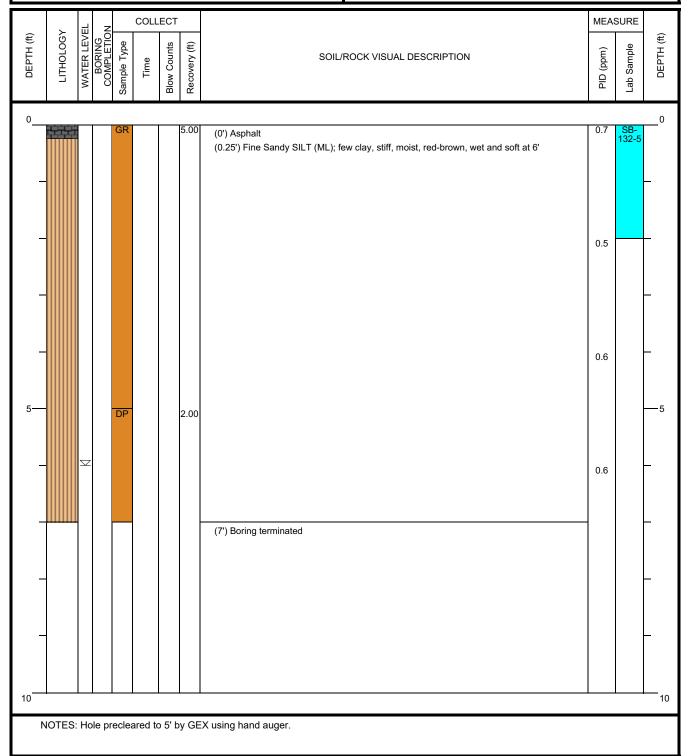
Page:

Drilling Start Date: 10/18/22

Drilling End Date: 10/18/22

Drilling Company: GEX
Drilling Method: Direct Push

Drilling Equipment: **GeoProbe 7822 DT**Driller: **David Hall**


Logged By: ABM

Boring Depth (ft): 7.0
Boring Diameter (in): 2.25

Sampling Method(s): Direct Push, Grab

DTW During Drilling (ft): 6.0

DTW After Drilling (ft):
Ground Surface Elev. (ft):

Client: NC DOT

Project: **ROW-704**

Address: Parcel 132 - 1668 E. Main Street, Sylva, North Carolina

DP, GR

WELL LOG

Well No. SB-132-6/TMW-1

Page: 1 of 1

Drilling Start Date: 10/18/22 Drilling End Date: 10/18/22 Drilling Company: GEX

Drilling Method: **Direct Push**

Drilling Equipment: GeoProbe 7822 DT

Driller: David Hall ABM Logged By:

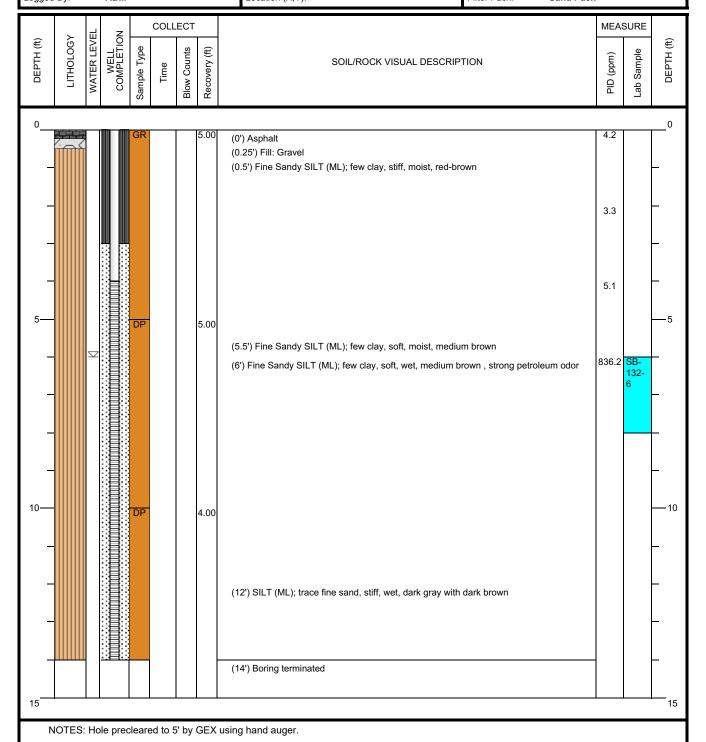
Boring Depth (ft): 14.0 2.25 Boring Diameter (in):

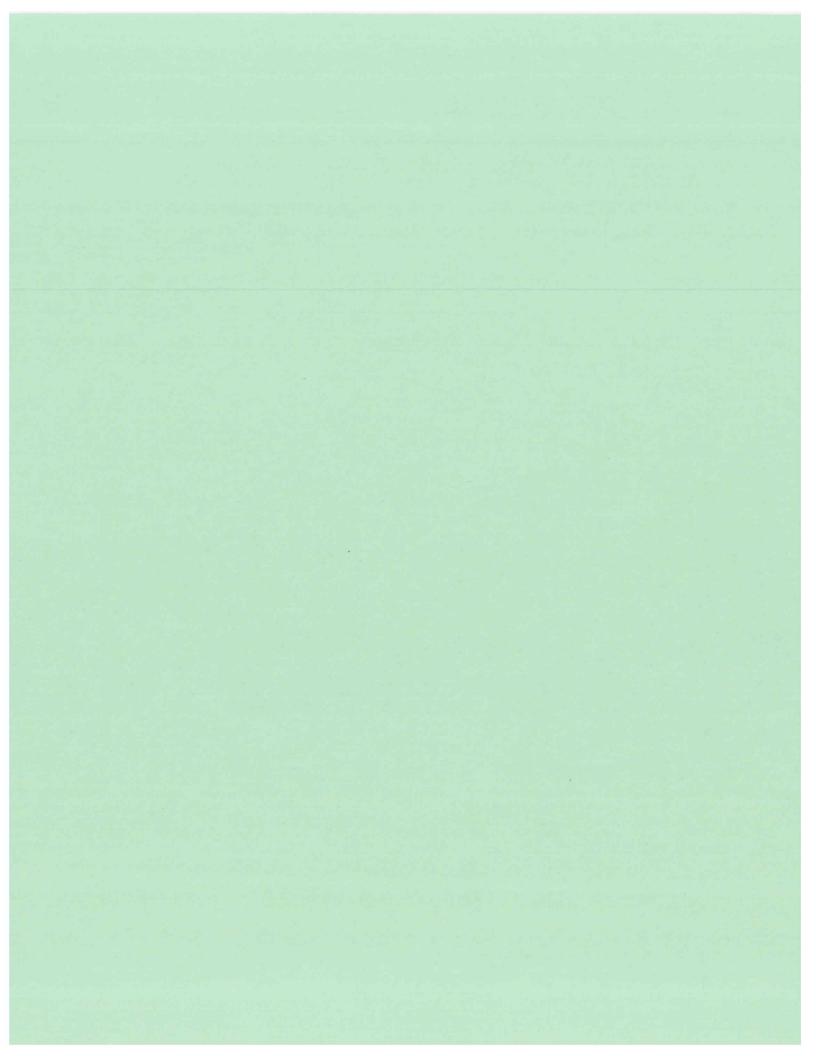
DTW During Drilling (ft): 6.0

DTW After Drilling (ft):

Sampling Method(s):

Top of Casing Elev. (ft):


Location (X,Y):


Well Depth (ft): 14.0 Well Diameter (in): 1.0 Screen Slot (in): 0.010

Riser Material: Sch 40 PVC

Sch 40 PVC Slotted Screen Material:

Seal Material(s): Bent. Pellets Filter Pack: Sand Pack

This form can be used for single or multiple wel	For Internal Use ONLY								
1. Well Contractor Information:									
DAVID HALL		I4. WATE	R ZONES	March Street		(a. (115.5)	THE STATE		
Well Contractor Name		FROM ft.	10	DESCRIP	TION				
A - 4459			· 						
		ft.		řt.	41.1.4				
NC Well Contractor Certification Number		FROM	TO	or multi-cased DIAMETE	wells) (OR LINI THICK	CR (if app NESS		ERIAL
GEOLOGIC EXPLORATION		ft.	1	t.	in.				
Company Name		16. INNER FROM	CASING OF	TUBING (ge	otherm	al closed THICK		MATE	20111
2. Well Construction Permit #:		ft.		t.	in.	Inick	VESS	MAJE	RIAL
List all applicable well construction permits (i.e.	County, State, Variance, etc.)	ft.	f	1.	in,				
3. Well Use (check well use):		17. SCREE	N	8			///E/		
Water Supply Well:		FROM ft.	TO ft.	DIAMETER in.	SLOT	SIZE	THICK	NESS	MATERIAL
□Agricultural	□Municipal/Public				<u> </u>				
Geothermal (Heating/Cooling Supply)	□Residential Water Supply (single)	ft.	ſŧ.	in.					
□Industrial/Commercial	□Residential Water Supply (shared)	18. GROUT FROM	то	MATERIA	Ĺ	EMP1	ACEMEN	Т МЕТН	OD & AMOUNT
Olrrigation Non-Water Supply Well:		ft.	fi	i.					
☑Monitoring	□Recovery	ft.	U						
Injection Well:	Literative	ft.	fi						
□Aquifer Recharge	☐Groundwater Remediation	19. SAND/G		CK (if applicat		U.U.For	14-11	22	
□Aquifer Storage and Recovery	□Salinity Barrier	FROM ft.	TO	MATERIA	L	-	EMPLAC	EMENT	METHOD
□Aquifer Test	□Stormwater Drainage	ft.	ft						
DExperimental Technology	□Subsidence Control								_
□Geothermal (Closed Loop)	□Tracer	FROM	TO LUG (at)	per				k type, g	rain size, etc.)
☐Geothermal (Heating/Cooling Return)	☐Other (explain under #21 Remarks)	0.0 ft.	14.0 ft	·		DIRE	CT PUS	Н	
4. Date Well(s) Completed: 10/18/22	2 Wall ID# TMW-1	ft,	ft	•					
		ft.	ſt.						
5a. Well Location: NCDOT - PARCEL 132		U.	ft	.					
		ft.	ft.	,					
Facility/Owner Name	Facility ID# (if applicable)	ft.	ft.	,					
1668 EAST MAIN STREET S	SYLVA 28//9	ft.	ft.	-					
Physical Address, City, and Zip		21. REMAR	KS	1. 72(11. A)		123			
JACKSON									
County	Parcel Identification No. (PIN)						_		
5b. Latitude and Longitude in degrees/mi	inutes/seconds or decimal degrees:	22. Certifica	tion:	- 43					
(if well field, one lat/long is sufficient)	20 42/ 42 22#			2.1	//	el			
35° 22' 24.60" N 8	3° 13' 13.22" w		~		100		_	11,	/02/22
6. Is (are) the well(s): Permanent or	☑Temporary	Signature of Co	entified Well (Contractor				Date	
o. 13 (are) the wen(s). Di Cimanent Ui	& remporary	By signing this	form, I here	by certify that	the well	(s) was	(were) con	nsirucieo	d in accordance dards and that a
	Yes or ⊠No	copy of this rec					Onstructi	т ыт	aurus ana mar a
If this is a repair, fill out known well construction repair under #21 remarks section or on the back o	information and explain the nature of the f this form.	23. Site diag	ram or add	itional well d	etails:				
8 November of the 1	• 20	You may use	the back o	f this page to	рготк	de addit	ional we	ll site o	details or well
8. Number of wells constructed: For multiple injection or non-water supply wells ()	DNLY with the same construction, you can	construction	details You	ı may also att	ach add	litional	pages if	necessa	ıry.
submit one form.	•	SUBMITTA	<u>L INSTUC</u>	TIONS					
9. Total well depth below land surface:	(ft.)	24a. For All	Wells: S	ubmit this fo	rm wi	thin 30	days of	compl	letion of well
For multiple wells list all depths if different (examp	ole- 3@200' and 2@100')	construction t					•	·	
10. Static water level below top of casing: If water level is above casing, use "4"	(ft.)	D		ater Quality Service Cent					iit,
11. Borehole diameter: 2.25	_ (in.)	24b. For Inic	ection Well	s: In additio	n to se	ndine t	he form i	to the s	ddress in 24a
DPT	above, also s	ubmit a co	py of this fo	rm wi	thin 30	days of	compl	etion of well	
12. Well construction method:	construction t	o the follow	ing:						
	Division		Quality, Unde					rogram,	
FOR WATER SUPPLY WELLS ONLY:				Service Cent		•			
l3a. Yield (gpm) Mo	ethod of test:	24c. For Wat	er Supply	& Injection V	Vells:	In addi	ion to se	nding t	he form to
13b. Disinfection type:	Amount:	the address(e: completion of	aoove,∈a Fwell cons	iso submit of truction to th	ne cop e coun	ry of th ity heal	is form th depart	within Iment (of the county
The second state of the se	, AMVUIII,	completion of well construction to the county health department of the county where constructed.							

WELL ABANDONMENT RECORD This form can be used for single or multiple wells	For Internal Use ONLY:					
1. Well Contractor Information:	WELL ABANDONMENT DETAILS					
DAVID HALL	To Number of malle below the standards					
Well Contractor Name (or well owner personally abandoning well on his/her property)	7a. Number of wells being abandoned: For multiple injection or non-water supply wells ONLY with the same					
A - 4459	construction abandonment, you can submit one form.					
NC Well Contractor Certification Number	7b. Approximate volume of water remaining in well(s):(gal.					
GEOLOGIC EXPLORATION	FOR WATER SUPPLY WELLS ONLY:					
Company Name	- }					
2. Well Construction Permit #:	7c. Type of disinfectant used:					
List all applicable well construction permits (i.e. County, State, Variance, etc.) if known	7d. Amount of disinfectant used:					
3. Well use (check well use):						
Water Supply Well:	7e. Sealing materials used (check all that apply):					
□Agricultural □Municipal/Public	□ Neat Cement Grout □ Bentonite Chips or Pellets					
□Geothermal (Heating/Cooling Supply) □Residential Water Supply (sing						
□Industrial/Commercial □Residential Water Supply (share						
□Irrigation	☐ Specialty Grout ☐ Grave!					
Non-Water Supply Well:	☑ Bentonite Slurry ☐ Other (explain under 7g)					
②Monitoring □Recovery Injection Well:	7f. For each material selected above, provide amount of materials used:					
	1.0 GALLONS					
□Aquifer Storage and Recovery □Salinity Barrier						
□ Aquifer Test □ Stormwater Drainage	· · · · · · · · · · · · · · · · · · ·					
□Experimental Technology □Subsidence Control	7g. Provide a brief description of the abandonment procedure:					
□Geothermal (Closed Loop) □Tracer □Geothermal (Heating/Cooling Return) □Other (explain under 7g)	ABANDONED VIA TREMIE PIPE WITH BENTONITE SLURRY					
l. Date well(s) abandoned: 10/18/22						
5a. Well location: NCDOT – PARCEL 132						
Facility/Owner Name Facility ID# (if applicable)	8. Certification:					
1668 EAST MAIN STREET SYLVA 28779	Drul Hell 11/02/22					
Physical Address, City, and Zip JACKSON	Signature of Certified Well Contractor or Well Owner By signing this form. I hereby certify that the well(s) was (were) abandoned in					
Ounty Parcel Identification No. (PIN)	accordance with 15A NCAC 02C .0100 or 2C .0200 Well Construction Standards					
b. Latitude and longitude in degrees/minutes/seconds or decimal degrees:	and that a copy of this record has been provided to the well owner.					
f well field, one lat/long is sufficient)	9. Site diagram or additional well details:					
35° 22' 24.60" N 83° 13' 13.22"	You may use the back of this page to provide additional well site details or well abandonment details. You may also attach additional pages if necessary.					
CONSTRUCTION DETAILS OF WELL(S) BEING ABANDONED ttach well construction record(s) if available. For multiple injection or non-water sup	SUBMITTAL INSTRUCTIONS					
vells ONLY with the same construction abandonment, you can submit one form.	10a. For All Wells: Submit this form within 30 days of completion of well					
a. Well ID#: TMW-1	abandonment to the following					
b. Total well depth: 14.0 (ft.)	Division of Water Quality, Information Processing Unit, 1617 Mail Service Center, Raleigh, NC 27699-1617					
c. Borehole diameter: 2.25 (in.)	10b. For Injection Wells: In addition to sending the form to the address in 10a above, also submit one copy of this form within 30 days of completion of well abandonment to the following.					
d. Water level below ground surface:(ft.)	Division of Water Quality, Underground Injection Control Program, 1636 Mail Service Center, Raleigh, NC 27699-1636					
e. Outer casing length (if known):(ft.)	10c. For Water Supply & Injection Wells: In addition to sending the form to the address(es) above, also submit one copy of this form within 30 days of completion of well abandonment to the county health department of the county					
f. Inner casing/tubing length (if known):(ft.)	where abandoned.					
g. Screen length (if known):(ft.)						

Appendix E

Laboratory Analytical Reports

Hydrocarbon Analysis Results

Client: HART & HICKMAN, PC

Address: 2923 SOUTH TRYON STREET, SUITE 100

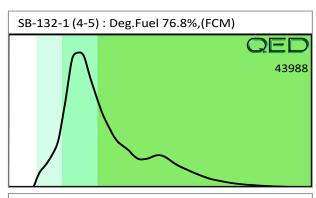
CHARLOTTE, NC 28203

Samples taken Samples extracted Samples analysed Tuesday, October 18, 2022 Tuesday, October 18, 2022

Friday, October 21, 2022

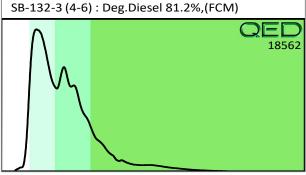
Contact: DAVE GRAHAM Operator MAX MOYER

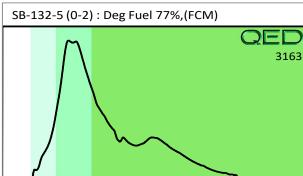
Project: ROW.704

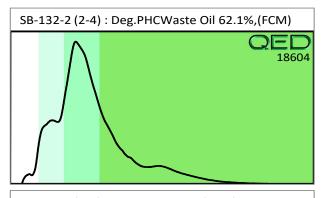

							U04049						
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	Ratios			HC Fingerprint Match
										% light	% mid	% heavy	
S	SB-132-1 (4-5)	22.2	<0.56	<0.56	35	35	24.8	1.2	<0.022	0	89.4	10.6	Deg.Fuel 76.8%,(FCM)
S	SB-132-2 (2-4)	22.4	<0.56	<0.56	26.5	26.5	7	0.45	<0.022	0	91.1	8.9	Deg.PHCWaste Oil 62.1%,(FCM)
S	SB-132-3 (4-6)	302.0	<7.5	<7.5	799.1	799.1	291.6	10.9	<0.3	0	92.1	7.9	Deg.Diesel 81.2%,(FCM)
S	SB-132-4 (2-4)	20.8	<0.52	<0.52	3	3	1.5	<0.17	<0.021	0	87	13	Deg Fuel 74.8%,(FCM)
s	SB-132-5 (0-2)	19.4	<0.49	<0.49	1.8	1.8	0.8	<0.16	<0.019	0	83.4	16.6	Deg Fuel 77%,(FCM)
S	SB-132-6 (6-8)	20.8	55.5	376.1	2.1	378.2	27.5	1.1	<0.021	99.7	0.3	0	Deg Gas 75.3%,(FCM)
	Initial (Calibrator	QC check	OK					Final F	CM QC	Check	OK	103.2 %

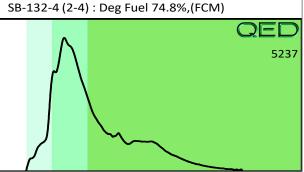
Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content

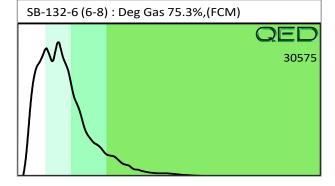
Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library

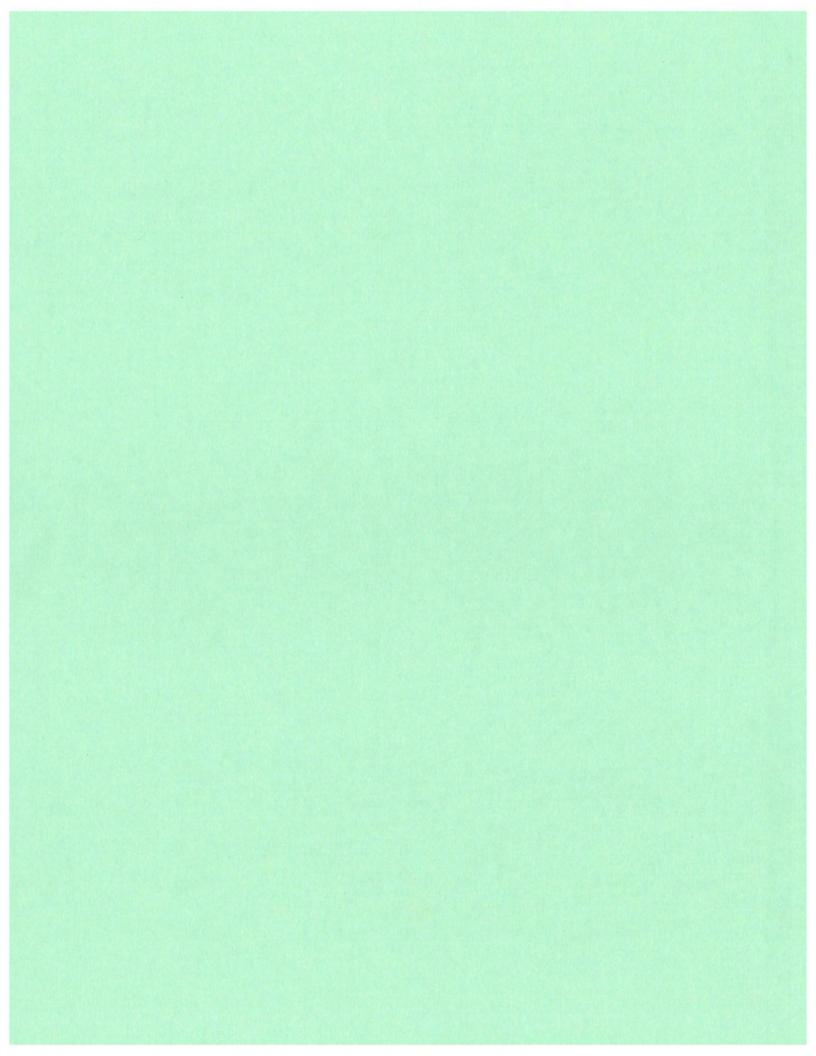

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present


Friday, October 21, 2022




Project:


ROW.704



Client Name: Address: Contact:	2923 S. 7 Charlotte Dave Gr	ryons4.S NC 28203	te 100	D) D	TM	Suite F	ib, LLC twatch V jton, NC	-
Project Ref.:	ROW.												analyzed for
Email:	deraha	m@harth	tckmen.con	7		-		communicated Versions			aromatics a		PH, PAH total
Phone #:	704-88	7-4630		RAPI	D ENVIR	RONM	ENTAL	DIAGNO	DSTICS		Analyses are	for BTEX an	d Chlorinated
Collected by:	Adam M	lichalah	CHAIN	OF CU	STODY	AND	ANAL	YTICAL	REQU	EST FORM	trans DCE, T	CE, and PCE.	2 cis DCE, 1,2 Specify target wided below.
Sample Collection	TAT Rec	quested	Analys	is Type	luitiala			C	l. ID		T - 4 - 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	T 10/	6 1 144
Date/Time	24 Hour	48 Hour	UVF	GC	Initials			Samp	ie iD		l lotal Wt.	Tare Wt.	Sample Wt.
10/18/22 1000		X	X		AM	SB	-132-11	1-5)	The state of the s	,	50.8	39.1	11.7
10118/22 1030		1	ĺ			SB-	-135-5	R-4).		552/43.6	500	400	11.6
10/18/12 11/00						58-	132-31	4-6)	10	ı	50.7	39,5	11.2
10/18/22/1130						SR-	132-4	2-4)			52,3	39.8	12.5
10/18/22 1230								0-2)			57.0	43.6	13.4
10/18/22 1245		V	V		V	SB-	135-6	6-8)		1 1	51.5	39.0	12.5
						/						V	
					1.								
							X			Til .			
					8							-	
							1						
									^				
	8												
*													
COMMENTS/REQU	ESTS: Re	port -	le MDLs	\$ "5"4	lass	TARG	ET GC/UV	F ANALYTE	ES:		9		
Relinqu	ished by				Accep	ted by			Date	/Time	RE	D Lab USE	ONLY
Adam N					Fed E)	,		10	119/22	1700		1	,)
	uished by	•				ted by			·	/Time	1	((0) +	4
					λ/	111	101-	0/22	10	30	Ref. No	<u></u>	
1			,		/ V	171	1011	MOL	1C				

10/27/2022

Hart & Hickman (Charlotte) David Graham 2923 South Tryon St. Ste 100 Charlotte, NC, 28203

Ref: Analytical Testing

Lab Report Number: 22-293-3100 Client Project Description: ROW.704

Dear David Graham:

Waypoint Analytical, LLC (Charlotte) received sample(s) on 10/20/2022 for the analyses presented in the following report.

The above referenced project has been analyzed per your instructions. The analyses were performed in accordance with the applicable analytical method.

The analytical data has been validated using standard quality control measures performed as required by the analytical method. Quality Assurance, method validations, instrumentation maintenance and calibration for all parameters were performed in accordance with guidelines established by the USEPA (including 40 CFR 136 Method Update Rule May 2021) unless otherwise indicated.

Certain parameters (chlorine, pH, dissolved oxygen, sulfite...) are required to be analyzed within 15 minutes of sampling. Usually, but not always, any field parameter analyzed at the laboratory is outside of this holding time. Refer to sample analysis time for confirmation of holding time compliance.

The results are shown on the attached Report of Analysis(s). Results for solid matrices are reported on an asreceived basis unless otherwise indicated. This report shall not be reproduced except in full and relates only to the samples included in this report.

Please do not hesitate to contact me or client services if you have any questions or need additional information.

Sincerely,

Angela D Overcash Senior Project Manager

Laboratory's liability in any claim relating to analyses performed shall be limited to, at laboratory's option, repeating the analysis in question at laboratory's expense, or the refund of the charges paid for performance of said analysis.

Certification Summary

Laboratory ID: WP CNC: Waypoint Analytical Carolina, Inc. (C), Charlotte, NC

State	Program	Lab ID	Expiration Date
North Carolina	State Program	37735	07/31/2023
North Carolina	State Program	402	12/31/2022
South Carolina	State Program	99012	07/31/2023
South Carolina	State Program	99012	12/31/2022

Page 1 of 1 00016/22-293-3100

Page 2 of 20

Sample Summary Table

Report Number: 22-293-3100

Client Project Description: ROW.704

Lab No	Client Sample ID	Matrix	Date Collected	Date Received
91186	TMW-1 (132)	Aqueous	10/18/2022 14:10	10/20/2022 12:49

Summary of Detected Analytes

Project: ROW.704

Report Number: 22-293-3100

Client Sample ID	Lab Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
TMW-1 (132)	V 91186					
8260D	Benzene	11.6	μg/L	0.180	10/25/2022 04:15	
8260D	Ethylbenzene	10.7	μg/L	0.170	10/25/2022 04:15	
8260D	n-Hexane	7.38	μg/L	1.30	10/25/2022 04:15	J
8260D	Isopropylbenzene	2.10	μg/L	0.180	10/25/2022 04:15	J
8260D	Methyl tert-butyl ether (MTBE)	0.928	μg/L	0.140	10/25/2022 04:15	
8260D	Naphthalene	7.45	μg/L	0.470	10/25/2022 04:15	
8260D	n-Propylbenzene	2.69	μg/L	0.190	10/25/2022 04:15	
8260D	Toluene	2.45	μg/L	0.220	10/25/2022 04:15	
8260D	1,3,5-Trimethylbenzene	1.81	μg/L	0.180	10/25/2022 04:15	
8260D	o-Xylene	2.53	μg/L	0.210	10/25/2022 04:15	
8260D	m,p-Xylene	21.6	μg/L	0.420	10/25/2022 04:15	
8260D	Xylene (Total)	24.1	μg/L	0.210	10/25/2022 04:15	
8270E	Naphthalene	14.2	μg/L	8.27	10/24/2022 22:42	

Client: Hart & Hickman (Charlotte)

Project: ROW.704

Lab Report Number: 22-293-3100

Date: 10/27/2022

CASE NARRATIVE

Volatile Organic Compounds - GC/MS Method 8260D

Analyte: Ethanol

QC Batch No: V25504/V25503

Relative Percent Difference (RPD) for the duplicate analysis was outside of the allowable QC limits.

01102

Hart & Hickman (Charlotte)
David Graham
2923 South Tryon St. Ste 100
Charlotte , NC 28203

Project ROW.704

Information:

Report Date: 10/27/2022 Received: 10/20/2022

Report Number: 22-293-3100 REPORT OF ANALYSIS

Lab No : 91186 Matrix: Aqueous

Sample ID: **TMW-1 (132)** Sampled: **10/18/2022 14:10**

Analytical Method: 8260D Prep Batch(es): V25503 10/24/22 14:00 **Prep Method:** 5030B Results Units MDL MQL DF Date / Time Ву Analytical Test **Analyzed Batch** Acetone μg/L <1.80 1.80 5.00 V25504 1 10/25/22 04:15 MSA Acrolein µg/L < 2.00 2.00 5.00 1 10/25/22 04:15 MSA V25504 Acrylonitrile µg/L < 0.230 0.230 5.00 1 10/25/22 04:15 MSA V25504 Benzene 11.6 μg/L 0.180 0.500 1 10/25/22 04:15 MSA V25504 Bromobenzene μg/L < 0.210 0.210 0.500 1 10/25/22 04:15 MSA V25504 Bromochloromethane < 0.420 μg/L 0.420 1.00 1 10/25/22 04:15 MSA V25504 Bromodichloromethane < 0.160 μg/L 0.160 0.500 1 10/25/22 04:15 MSA V25504 Bromoform <1.50 μg/L 1.50 5.00 1 10/25/22 04:15 MSA V25504 Bromomethane < 0.280 μg/L 0.280 1.00 1 10/25/22 04:15 MSA V25504 n-Butylbenzene μg/L < 0.185 0.185 1.00 1 10/25/22 04:15 MSA V25504 sec-Butyl benzene μg/L < 0.200 0.200 0.500 1 10/25/22 04:15 MSA V25504 tert-Butyl benzene < 0.920 μg/L 0.920 2.00 1 10/25/22 04:15 MSA V25504 Carbon Disulfide μg/L < 0.150 0.150 5.00 1 10/25/22 04:15 MSA V25504 Carbon Tetrachloride μg/L < 0.180 0.180 0.500 1 10/25/22 04:15 MSA V25504 Chlorobenzene μg/L < 0.190 0.190 V25504 0.500 1 10/25/22 04:15 MSA Chlorodibromomethane μg/L < 0.190 0.190 0.500 1 10/25/22 04:15 MSA V25504 Chloroethane μg/L < 0.430 0.430 1 10/25/22 04:15 MSA V25504 1.00 Chloroform μg/L < 0.220 0.220 0.500 1 10/25/22 04:15 MSA V25504 Chloromethane < 0.220 μg/L 0.220 0.500 1 10/25/22 04:15 MSA V25504 2-Chlorotoluene μg/L < 0.200 0.500 0.200 1 10/25/22 04:15 MSA V25504 4-Chlorotoluene 0.200 < 0.200 μg/L 0.500 1 10/25/22 04:15 MSA V25504 Di-Isopropyl Ether (DIPE) < 0.960 μg/L 0.960 5.00 1 10/25/22 04:15 MSA V25504

Qualifiers/ Definitions

DF

Dilution Factor

MQL

Method Quantitation Limit

Estimated value

1

01102

Hart & Hickman (Charlotte) David Graham 2923 South Tryon St. Ste 100 Charlotte, NC 28203

Project ROW.704

Information:

Report Date: 10/27/2022 Received: 10/20/2022

Report Number : 22-293-3100 REPORT OF ANALYSIS

Lab No : 91186 Matrix: Aqueous

Sample ID : **TMW-1 (132)** Sampled: **10/18/2022 14:10**

Analytical Method: 8260D	Pre	p Batch(es):	V25503	10/24/2	22 14:00)		
Prep Method: 5030B Test	Results	Units	MDL	MQL	DF	Date / Time	Ву	Analytical
	ricourto	- Crinto		ma _L		Analyzed		Batch
1,2-Dibromo-3-Chloropropane	<1.10	μg/L	1.10	2.00	1	10/25/22 04:15	MSA	V25504
1,2-Dibromoethane	<0.200	μg/L	0.200	0.500	1	10/25/22 04:15	MSA	V25504
Dibromomethane	<0.230	μg/L	0.230	0.500	1	10/25/22 04:15	MSA	V25504
1,2-Dichlorobenzene	<0.220	μg/L	0.220	0.500	1	10/25/22 04:15	MSA	V25504
1,3-Dichlorobenzene	<0.190	μg/L	0.190	0.500	1	10/25/22 04:15	MSA	V25504
1,4-Dichlorobenzene	<0.210	μg/L	0.210	0.500	1	10/25/22 04:15	MSA	V25504
Dichlorodifluoromethane	<1.20	μg/L	1.20	5.00	1	10/25/22 04:15	MSA	V25504
1,1-Dichloroethane	<0.240	μg/L	0.240	0.500	1	10/25/22 04:15	MSA	V25504
1,2-Dichloroethane	<0.150	μg/L	0.150	0.500	1	10/25/22 04:15	MSA	V25504
1,1-Dichloroethene	<0.150	μg/L	0.150	0.500	1	10/25/22 04:15	MSA	V25504
cis-1,2-Dichloroethene	<0.200	μg/L	0.200	0.500	1	10/25/22 04:15	MSA	V25504
trans-1,2-Dichloroethene	<0.180	μg/L	0.180	0.500	1	10/25/22 04:15	MSA	V25504
1,2-Dichloropropane	<0.190	μg/L	0.190	0.500	1	10/25/22 04:15	MSA	V25504
1,3-Dichloropropane	<0.130	μg/L	0.130	0.500	1	10/25/22 04:15	MSA	V25504
2,2-Dichloropropane	<0.210	μg/L	0.210	2.00	1	10/25/22 04:15	MSA	V25504
1,1-Dichloropropene	<0.200	μg/L	0.200	0.500	1	10/25/22 04:15	MSA	V25504
cis-1,3-Dichloropropene	<0.210	μg/L	0.210	0.500	1	10/25/22 04:15	MSA	V25504
trans-1,3-Dichloropropene	<0.150	μg/L	0.150	0.500	1	10/25/22 04:15	MSA	V25504
Ethanol	<42.0	μg/L	42.0	200	1	10/25/22 04:15	MSA	V25504
Ethylbenzene	10.7	μg/L	0.170	0.500	1	10/25/22 04:15	MSA	V25504
Ethyl Tertiary Butyl Ether (ETBE)	<1.80	μg/L	1.80	10.0	1	10/25/22 04:15	MSA	V25504
Hexachlorobutadiene	<0.350	μg/L	0.350	2.00	1	10/25/22 04:15	MSA	V25504

Qualifiers/ Definitions DF Dilution Factor

MQL Method Quantitation Limit

J Estimated value

01102

Hart & Hickman (Charlotte)
David Graham
2923 South Tryon St. Ste 100
Charlotte , NC 28203

Project ROW.704

Information:

Report Date: 10/27/2022

Received: 10/20/2022

Report Number: 22-293-3100 REPORT OF ANALYSIS

Lab No: 91186 Matrix: Aqueous

Sample ID: TMW-1 (132) Sampled: 10/18/2022 14:10

Analytical Method: 8260D Prep Batch(es): V25503 10/24/22 14:00 Prep Method: 5030B Test Results Units MDL MQL DF Date / Time Ву Analytical Analyzed **Batch** n-Hexane μg/L 7.38 J 1.30 10.0 V25504 1 10/25/22 04:15 MSA 2-Hexanone µg/L < 0.380 0.380 5.00 1 10/25/22 04:15 MSA V25504 Isopropylbenzene µg/L 2.10 J 0.180 5.00 1 10/25/22 04:15 MSA V25504 4-Isopropyl toluene < 0.089 μg/L 0.089 0.500 1 10/25/22 04:15 MSA V25504 Methyl Ethyl Ketone (MEK) μg/L < 0.710 0.710 5.00 1 10/25/22 04:15 MSA V25504 Methyl tert-butyl ether (MTBE) 0.928 μg/L 0.140 0.500 1 10/25/22 04:15 MSA V25504 4-Methyl-2-Pentanone μg/L <1.00 1.00 5.00 1 10/25/22 04:15 MSA V25504 Methylene Chloride < 0.330 μg/L 0.330 1.00 1 10/25/22 04:15 MSA V25504 Naphthalene 7.45 μg/L 0.470 1.00 1 10/25/22 04:15 MSA V25504 n-Propylbenzene μg/L 2.69 0.190 0.500 1 10/25/22 04:15 MSA V25504 Styrene μg/L < 0.220 0.220 0.500 1 10/25/22 04:15 MSA V25504 1,1,1,2-Tetrachloroethane μg/L < 0.160 0.160 0.500 1 10/25/22 04:15 MSA V25504 1,1,2,2-Tetrachloroethane μg/L < 0.160 0.160 0.500 1 10/25/22 04:15 MSA V25504 Tetrachloroethene < 0.220 μg/L 0.500 V25504 0.220 1 10/25/22 04:15 MSA Toluene μg/L 0.220 0.500 V25504 2.45 1 10/25/22 04:15 MSA 1,2,3-Trichlorobenzene μg/L < 0.380 0.380 1 10/25/22 04:15 MSA V25504 2.00 1,2,4-Trichlorobenzene μg/L < 0.310 0.310 1 10/25/22 04:15 MSA V25504 1.00 1,1,1-Trichloroethane μg/L < 0.160 0.160 0.500 1 10/25/22 04:15 MSA V25504 1,1,2-Trichloroethane < 0.096 μg/L 0.096 0.500 1 10/25/22 04:15 MSA V25504 Trichloroethene μg/L < 0.180 0.180 0.500 V25504 1 10/25/22 04:15 MSA Trichlorofluoromethane μg/L 0.180 0.500 1 10/25/22 04:15 MSA V25504 < 0.180

Qualifiers/ Definitions

1,2,3-Trichloropropane

DF D

Dilution Factor

MQL

Method Quantitation Limit

< 0.270

Estimated value

1 10/25/22 04:15 MSA

V25504

0.270

1.00

1

μg/L

01102

Hart & Hickman (Charlotte)
David Graham
2923 South Tryon St. Ste 100
Charlotte , NC 28203

Project ROW.704

Information:

Report Date: 10/27/2022

Received: 10/20/2022

Report Number: 22-293-3100 REPORT OF ANALYSIS

Lab No: 91186 Matrix: Aqueous

Sample ID : **TMW-1 (132)** Sampled: **10/18/2022 14:10**

Analytical Method: Prep Method:	8260D 5030B		Prep Batch(es):	V25503	10/24/2	22 14:00)		
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
1,3,5-Trimethylbenzene	e	1.81	μg/L	0.180	0.500	1	10/25/22 04:15	MSA	V25504
Vinyl Acetate		<1.00	μg/L	1.00	2.00	1	10/25/22 04:15	MSA	V25504
Vinyl Chloride		<0.170	μg/L	0.170	0.500	1	10/25/22 04:15	MSA	V25504
o-Xylene		2.53	μg/L	0.210	0.500	1	10/25/22 04:15	MSA	V25504
m,p-Xylene		21.6	μg/L	0.420	1.00	1	10/25/22 04:15	MSA	V25504
Xylene (Total)		24.1	μg/L	0.210	0.500	1	10/25/22 04:15		V25504
Analytical Method: Prep Method:	8270E 3510C		Prep Batch(es):	V25610	10/21/2	22 08:59	Э		
Test		Results	Units	MDL	MQL	DF	Date / Time Analyzed	Ву	Analytical Batch
Acenaphthene		<7.51	μg/L	7.51	21.1	1	10/24/22 22:42	JMV	V25611
Acenaphthylene		<7.32	μg/L	7.32	21.1	1	10/24/22 22:42	JMV	V25611
Anthracene		<6.90	μg/L	6.90	10.5	1	10/24/22 22:42	JMV	V25611
Benzo(a)anthracene		<5.93	μg/L	5.93	10.5	1	10/24/22 22:42	JMV	V25611
Benzo(a)pyrene		<4.90	μg/L	4.90	10.5	1	10/24/22 22:42	JMV	V25611
Benzo(b)fluoranthene		<4.75	μg/L	4.75	10.5	1	10/24/22 22:42	JMV	V25611
Benzo(g,h,i)perylene		<4.45	μg/L	4.45	10.5	1	10/24/22 22:42	JMV	V25611
Benzo(k)fluoranthene		<4.91	μg/L	4.91	10.5	1	10/24/22 22:42	JMV	V25611
Chrysene		<5.65	μg/L	5.65	10.5	1	10/24/22 22:42	JMV	V25611
Dibenz(a,h)anthracene		<6.34	μg/L	6.34	21.1	1	10/24/22 22:42	JMV	V25611
Fluoranthene		<6.33	μg/L	6.33	10.5	1	10/24/22 22:42	JMV	V25611

Qualifiers/ Definitions DF Di

Dilution Factor

MQL Method Quantitation Limit

J Estimated value

01102

Hart & Hickman (Charlotte) David Graham

2923 South Tryon St. Ste 100 Charlotte , NC 28203 Project ROW.704

Information:

Report Date: 10/27/2022 Received: 10/20/2022

Report Number: 22-293-3100 REPORT OF ANALYSIS

Lab No: 91186 Matrix: Aqueous

Sample ID: **TMW-1 (132)** Sampled: **10/18/2022 14:10**

Analytical Method: 8270E Prep Batch(es): V25610 10/21/22 08:59 3510C **Prep Method:** Test Results Units MDL MQL DF Date / Time Ву **Analytical** Analyzed **Batch** Fluorene μg/L <7.63 7.63 10.5 1 10/24/22 22:42 JMV V25611 Indeno(1,2,3-cd)pyrene μg/L <6.51 6.51 10.5 1 10/24/22 22:42 JMV V25611 1-Methylnaphthalene μg/L V25611 <7.70 7.70 10.5 1 10/24/22 22:42 JMV 2-Methylnaphthalene <7.27 μg/L 7.27 10.5 1 10/24/22 22:42 JMV V25611 Naphthalene 14.2 μg/L 8.27 1 10/24/22 22:42 JMV V25611 10.5 Phenanthrene <6.66 μg/L 6.66 1 10/24/22 22:42 JMV V25611 10.5 Pyrene < 5.69 μg/L 5.69 10.5 1 10/24/22 22:42 JMV V25611 Surrogate: 2-Fluorobiphenyl 72.4 Limits: 44-119% 1 10/24/22 22:42 JMV V25611 1 10/24/22 22:42 Surrogate: Nitrobenzene-d5 64.4 Limits: 44-120% V25611 Surrogate: 4-Terphenyl-d14 88.2 Limits: 50-134% 1 10/24/22 22:42 JMV V25611

Qualifiers/ Definitions

DF Dilution Factor

MQL Method Quantitation Limit

Estimated value

J

Quality Control Data

Client ID: Hart & Hickman (Charlotte)

Project Description: ROW.704
Report No: 22-293-3100

QC Prep: V25503 QC Analytical Batch(es): V25504
QC Prep Batch Method: 5030B Analysis Method: 8260D

Analysis Description: Volatile Organic Compounds - GC/MS

Lab Reagent BlankLRB-V25503Matrix: AQU

Associated Lab Samples: 91186

Parameter	Units	Blank Result	MDL	MQL	Analyzed	% Recovery	% Rec Limits
Acetone	μg/L	<1.80	1.80	5.00	10/25/22 01:32		
Acrolein	μg/L	<2.00	2.00	5.00	10/25/22 01:32		
Acrylonitrile	μg/L	<0.230	0.230	5.00	10/25/22 01:32		
Benzene	μg/L	<0.180	0.180	0.500	10/25/22 01:32		
Bromobenzene	μg/L	<0.210	0.210	0.500	10/25/22 01:32		
Bromochloromethane	μg/L	<0.420	0.420	1.00	10/25/22 01:32		
Bromodichloromethane	μg/L	<0.160	0.160	0.500	10/25/22 01:32		
Bromoform	μg/L	<1.50	1.50	5.00	10/25/22 01:32		
Bromomethane	μg/L	<0.280	0.280	1.00	10/25/22 01:32		
n-Butylbenzene	μg/L	<0.185	0.185	1.00	10/25/22 01:32		
sec-Butyl benzene	μg/L	<0.200	0.200	0.500	10/25/22 01:32		
tert-Butyl benzene	μg/L	<0.920	0.920	2.00	10/25/22 01:32		
Carbon Disulfide	μg/L	<0.150	0.150	5.00	10/25/22 01:32		
Carbon Tetrachloride	μg/L	<0.180	0.180	0.500	10/25/22 01:32		
Chlorobenzene	μg/L	<0.190	0.190	0.500	10/25/22 01:32		
Chlorodibromomethane	μg/L	<0.190	0.190	0.500	10/25/22 01:32		
Chloroethane	μg/L	<0.430	0.430	1.00	10/25/22 01:32		
Chloroform	μg/L	<0.220	0.220	0.500	10/25/22 01:32		
Chloromethane	μg/L	<0.220	0.220	0.500	10/25/22 01:32		
2-Chlorotoluene	μg/L	<0.200	0.200	0.500	10/25/22 01:32		
4-Chlorotoluene	μg/L	<0.200	0.200	0.500	10/25/22 01:32		
Di-Isopropyl Ether (DIPE)	μg/L	<0.960	0.960	5.00	10/25/22 01:32		
1,2-Dibromo-3-Chloropropane	μg/L	<1.10	1.10	2.00	10/25/22 01:32		
1,2-Dibromoethane	μg/L	<0.200	0.200	0.500	10/25/22 01:32		
Dibromomethane	μg/L	<0.230	0.230	0.500	10/25/22 01:32		
1,2-Dichlorobenzene	μg/L	<0.220	0.220	0.500	10/25/22 01:32		
1,3-Dichlorobenzene	μg/L	<0.190	0.190	0.500	10/25/22 01:32		

Date: 10/27/2022 12:15 PM

Quality Control Data

Client ID: Hart & Hickman (Charlotte)

Project Description: ROW.704
Report No: 22-293-3100

QC Prep: V25503 QC Analytical Batch(es): V25504
QC Prep Batch Method: 5030B Analysis Method: 8260D

Analysis Description: Volatile Organic Compounds - GC/MS

Lab Reagent BlankLRB-V25503Matrix: AQU

Associated Lab Samples: 91186

Parameter	Units	Blank Result	MDL	MQL	Analyzed	% Recovery	% Rec Limits
1,4-Dichlorobenzene	μg/L	<0.210	0.210	0.500	10/25/22 01:32		
Dichlorodifluoromethane	μg/L	<1.20	1.20	5.00	10/25/22 01:32		
1,1-Dichloroethane	μg/L	<0.240	0.240	0.500	10/25/22 01:32		
1,2-Dichloroethane	μg/L	<0.150	0.150	0.500	10/25/22 01:32		
1,1-Dichloroethene	μg/L	<0.150	0.150	0.500	10/25/22 01:32		
cis-1,2-Dichloroethene	μg/L	<0.200	0.200	0.500	10/25/22 01:32		
trans-1,2-Dichloroethene	μg/L	<0.180	0.180	0.500	10/25/22 01:32		
1,2-Dichloropropane	μg/L	<0.190	0.190	0.500	10/25/22 01:32		
1,3-Dichloropropane	μg/L	<0.130	0.130	0.500	10/25/22 01:32		
2,2-Dichloropropane	μg/L	<0.210	0.210	2.00	10/25/22 01:32		
1,1-Dichloropropene	μg/L	<0.200	0.200	0.500	10/25/22 01:32		
cis-1,3-Dichloropropene	μg/L	<0.210	0.210	0.500	10/25/22 01:32		
trans-1,3-Dichloropropene	μg/L	<0.150	0.150	0.500	10/25/22 01:32		
Ethanol	μg/L	<42.0	42.0	200	10/25/22 01:32		
Ethylbenzene	μg/L	<0.170	0.170	0.500	10/25/22 01:32		
Ethyl Tertiary Butyl Ether (ETBE)	μg/L	<1.80	1.80	10.0	10/25/22 01:32		
Hexachlorobutadiene	μg/L	<0.350	0.350	2.00	10/25/22 01:32		
n-Hexane	μg/L	<1.30	1.30	10.0	10/25/22 01:32		
2-Hexanone	μg/L	<0.380	0.380	5.00	10/25/22 01:32		
Isopropylbenzene	μg/L	<0.180	0.180	5.00	10/25/22 01:32		
4-Isopropyl toluene	μg/L	<0.089	0.089	0.500	10/25/22 01:32		
Methyl Ethyl Ketone (MEK)	μg/L	<0.710	0.710	5.00	10/25/22 01:32		
Methyl tert-butyl ether (MTBE)	μg/L	<0.140	0.140	0.500	10/25/22 01:32		
4-Methyl-2-Pentanone	μg/L	<1.00	1.00	5.00	10/25/22 01:32		
Methylene Chloride	μg/L	<0.330	0.330	1.00	10/25/22 01:32		
Naphthalene	μg/L	<0.470	0.470	1.00	10/25/22 01:32		
n-Propylbenzene	μg/L	<0.190	0.190	0.500	10/25/22 01:32		

Date: 10/27/2022 12:15 PM

Page 2 of 8

Quality Control Data

Client ID: Hart & Hickman (Charlotte)

Project Description: ROW.704
Report No: 22-293-3100

QC Prep: V25503 QC Analytical Batch(es): V25504
QC Prep Batch Method: 5030B Analysis Method: 8260D

Analysis Description: Volatile Organic Compounds - GC/MS

Lab Reagent Blank

LRB-V25503

Matrix: AQU

Accordated	Lah Samples	01106
ASSOCIATED	1 40 541110165	91100

Parameter	Units	Blank Result	MDL	MQL	Analyzed	% Recovery	% Rec Limits
Styrene	μg/L	<0.220	0.220	0.500	10/25/22 01:32		
1,1,1,2-Tetrachloroethane	μg/L	<0.160	0.160	0.500	10/25/22 01:32		
1,1,2,2-Tetrachloroethane	μg/L	<0.160	0.160	0.500	10/25/22 01:32		
Tetrachloroethene	μg/L	<0.220	0.220	0.500	10/25/22 01:32		
Toluene	μg/L	<0.220	0.220	0.500	10/25/22 01:32		
1,2,3-Trichlorobenzene	μg/L	<0.380	0.380	2.00	10/25/22 01:32		
1,2,4-Trichlorobenzene	μg/L	<0.310	0.310	1.00	10/25/22 01:32		
1,1,1-Trichloroethane	μg/L	<0.160	0.160	0.500	10/25/22 01:32		
1,1,2-Trichloroethane	μg/L	<0.096	0.096	0.500	10/25/22 01:32		
Trichloroethene	μg/L	<0.180	0.180	0.500	10/25/22 01:32		
Trichlorofluoromethane	μg/L	<0.180	0.180	0.500	10/25/22 01:32		
1,2,3-Trichloropropane	μg/L	<0.270	0.270	1.00	10/25/22 01:32		
1,3,5-Trimethylbenzene	μg/L	<0.180	0.180	0.500	10/25/22 01:32		
Vinyl Acetate	μg/L	<1.00	1.00	2.00	10/25/22 01:32		
Vinyl Chloride	μg/L	<0.170	0.170	0.500	10/25/22 01:32		
o-Xylene	μg/L	<0.210	0.210	0.500	10/25/22 01:32		
m,p-Xylene	μg/L	<0.420	0.420	1.00	10/25/22 01:32		
4-Bromofluorobenzene (S)					10/25/22 01:32	100	80-124
Dibromofluoromethane (S)					10/25/22 01:32	98.8	75-129
1,2-Dichloroethane - d4 (S)					10/25/22 01:32	102	63-136
Toluene-d8 (S)					10/25/22 01:32	98.8	77-123

Laboratory Control Sample & LCSD

LCS-V25503

LCSD-V25503

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
Acetone	μg/L	40.0	40.3	38.1	101	95.2	40-166	5.6	20

Date: 10/27/2022 12:15 PM

Quality Control Data

Client ID: Hart & Hickman (Charlotte)

Project Description: ROW.704
Report No: 22-293-3100

QC Prep: V25503 QC Analytical Batch(es): V25504
QC Prep Batch Method: 5030B Analysis Method: 8260D

Analysis Description: Volatile Organic Compounds - GC/MS

Laboratory Control Sample & LCSD LCS-V25503 LCSD-V25503

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
Acrolein	μg/L	40.0	36.1	36.5	90.2	91.2	70-130	1.1	20
Acrylonitrile	μg/L	40.0	37.5	39.9	93.7	99.7	81-127	6.2	20
Benzene	μg/L	20.0	19.2	18.4	96.0	92.0	77-128	4.2	20
Bromobenzene	μg/L	20.0	18.4	18.1	92.0	90.5	78-129	1.6	20
Bromochloromethane	μg/L	20.0	19.5	18.6	97.5	93.0	78-135	4.7	20
Bromodichloromethane	μg/L	20.0	19.9	20.0	99.5	100	76-138	0.5	20
Bromoform	μg/L	20.0	18.7	18.3	93.5	91.5	71-135	2.1	20
Bromomethane	μg/L	20.0	20.5	20.6	103	103	41-168	0.4	20
n-Butylbenzene	μg/L	20.0	19.3	18.7	96.5	93.5	68-134	3.1	20
sec-Butyl benzene	μg/L	20.0	19.2	19.1	96.0	95.5	71-131	0.5	20
tert-Butyl benzene	μg/L	20.0	19.6	19.4	98.0	97.0	70-132	1.0	20
Carbon Disulfide	μg/L	20.0	19.2	18.7	96.0	93.5	59-135	2.6	20
Carbon Tetrachloride	μg/L	20.0	18.4	18.6	92.0	93.0	72-142	1.0	20
Chlorobenzene	μg/L	20.0	19.3	18.7	96.5	93.5	78-119	3.1	20
Chlorodibromomethane	μg/L	20.0	19.9	20.1	99.5	101	75-134	1.0	20
Chloroethane	μg/L	20.0	20.5	20.3	103	102	57-142	0.9	20
Chloroform	μg/L	20.0	18.9	18.9	94.5	94.5	77-130	0.0	20
Chloromethane	μg/L	20.0	17.6	17.0	88.0	85.0	47-145	3.4	20
2-Chlorotoluene	μg/L	20.0	19.3	18.7	96.5	93.5	74-126	3.1	20
4-Chlorotoluene	μg/L	20.0	19.1	18.8	95.5	94.0	78-129	1.5	20
Di-Isopropyl Ether (DIPE)	μg/L	20.0	19.1	19.1	95.5	95.5	60-154	0.0	20
1,2-Dibromo-3-Chloropropane	μg/L	20.0	17.6	19.8	88.0	99.0	63-134	11.7	20
1,2-Dibromoethane	μg/L	20.0	20.1	20.4	101	102	77-135	1.4	20
Dibromomethane	μg/L	20.0	18.2	18.3	91.0	91.5	76-138	0.5	20
1,2-Dichlorobenzene	μg/L	20.0	19.4	18.5	97.0	92.5	78-128	4.7	20
1,3-Dichlorobenzene	μg/L	20.0	19.2	18.9	96.0	94.5	77-125	1.5	20

Date: 10/27/2022 12:15 PM

Quality Control Data

Client ID: Hart & Hickman (Charlotte)

Project Description: ROW.704
Report No: 22-293-3100

QC Prep: V25503 QC Analytical Batch(es): V25504
QC Prep Batch Method: 5030B Analysis Method: 8260D

Analysis Description: Volatile Organic Compounds - GC/MS

Laboratory Control Sample & LCSD LCS-V25503 LCSD-V25503

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
1,4-Dichlorobenzene	μg/L	20.0	19.0	19.0	95.0	95.0	75-126	0.0	20
Dichlorodifluoromethane	μg/L	20.0	19.6	18.8	98.0	94.0	28-163	4.1	20
1,1-Dichloroethane	μg/L	20.0	19.0	18.6	95.0	93.0	70-130	2.1	20
1,2-Dichloroethane	μg/L	20.0	17.5	17.8	87.5	89.0	68-131	1.6	20
1,1-Dichloroethene	μg/L	20.0	19.5	18.9	97.5	94.5	70-154	3.1	20
cis-1,2-Dichloroethene	μg/L	20.0	19.0	18.4	95.0	92.0	76-141	3.2	20
trans-1,2-Dichloroethene	μg/L	20.0	19.2	18.9	96.0	94.5	76-135	1.5	20
1,2-Dichloropropane	μg/L	20.0	19.0	18.6	95.0	93.0	77-130	2.1	20
1,3-Dichloropropane	μg/L	20.0	19.9	19.3	99.5	96.5	76-132	3.0	20
2,2-Dichloropropane	μg/L	20.0	17.9	17.3	89.5	86.5	29-149	3.4	20
1,1-Dichloropropene	μg/L	20.0	19.3	18.3	96.5	91.5	71-136	5.3	20
cis-1,3-Dichloropropene	μg/L	20.0	18.9	19.3	94.5	96.5	65-140	2.0	20
trans-1,3-Dichloropropene	μg/L	20.0	19.4	19.3	97.0	96.5	67-140	0.5	20
Ethanol	μg/L	500	355	437	71.0	87.4	70-130	20.7*	20
Ethylbenzene	μg/L	20.0	19.1	18.5	95.5	92.5	80-127	3.1	20
Ethyl Tertiary Butyl Ether (ETBE)	μg/L	40.0	39.0	38.6	97.5	96.5	70-130	1.0	20
Hexachlorobutadiene	μg/L	20.0	18.8	18.9	94.0	94.5	61-134	0.5	20
n-Hexane	μg/L	20.0	18.7	18.8	93.5	94.0	70-130	0.5	20
2-Hexanone	μg/L	20.0	18.0	18.0	90.0	90.0	64-137	0.0	20
Isopropylbenzene	μg/L	20.0	19.5	18.8	97.5	94.0	70-130	3.6	20
4-Isopropyl toluene	μg/L	20.0	19.6	18.8	98.0	94.0	69-132	4.1	20
Methyl Ethyl Ketone (MEK)	μg/L	20.0	20.6	20.3	103	102	71-134	1.4	20
Methyl tert-butyl ether (MTBE)	μg/L	20.0	19.3	19.2	96.5	96.0	68-135	0.5	20
4-Methyl-2-Pentanone	μg/L	20.0	18.0	18.9	90.0	94.5	69-134	4.8	20
Methylene Chloride	μg/L	20.0	19.7	19.4	98.5	97.0	73-131	1.5	20
Naphthalene	μg/L	20.0	17.6	17.9	88.0	89.5	64-136	1.6	20

* QC Fail Date: 10/27/2022 12:15 PM Page 5 of 8

Page 15 of 20

Quality Control Data

Client ID: Hart & Hickman (Charlotte)

Project Description: ROW.704
Report No: 22-293-3100

QC Prep: V25503 QC Analytical Batch(es): V25504
QC Prep Batch Method: 5030B Analysis Method: 8260D

Analysis Description: Volatile Organic Compounds - GC/MS

Laboratory Control Sample & LCSD LCS-V25503 LCSD-V25503

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
n-Propylbenzene	μg/L	20.0	19.5	19.0	97.5	95.0	72-132	2.5	20
Styrene	μg/L	20.0	19.8	18.8	99.0	94.0	78-129	5.1	20
1,1,1,2-Tetrachloroethane	μg/L	20.0	20.0	19.6	100	98.0	79-134	2.0	20
1,1,2,2-Tetrachloroethane	μg/L	20.0	18.5	19.8	92.5	99.0	62-127	6.7	20
Tetrachloroethene	μg/L	20.0	19.2	18.3	96.0	91.5	80-129	4.8	20
Toluene	μg/L	20.0	18.7	18.0	93.5	90.0	76-131	3.8	20
1,2,3-Trichlorobenzene	μg/L	20.0	19.0	19.2	95.0	96.0	58-144	1.0	20
1,2,4-Trichlorobenzene	μg/L	20.0	19.1	19.5	95.5	97.5	66-139	2.0	20
1,1,1-Trichloroethane	μg/L	20.0	19.3	18.9	96.5	94.5	75-135	2.0	20
1,1,2-Trichloroethane	μg/L	20.0	19.2	19.8	96.0	99.0	70-140	3.0	20
Trichloroethene	μg/L	20.0	20.0	19.8	100	99.0	77-133	1.0	20
Trichlorofluoromethane	μg/L	20.0	20.4	19.8	102	99.0	62-148	2.9	20
1,2,3-Trichloropropane	μg/L	20.0	19.1	19.3	95.5	96.5	71-127	1.0	20
1,3,5-Trimethylbenzene	μg/L	20.0	19.4	19.0	97.0	95.0	75-131	2.0	20
Vinyl Acetate	μg/L	20.0	17.3	18.2	86.5	91.0	34-167	5.0	20
Vinyl Chloride	μg/L	20.0	19.8	18.7	99.0	93.5	57-141	5.7	20
o-Xylene	μg/L	20.0	19.4	18.7	97.0	93.5	78-128	3.6	20
m,p-Xylene	μg/L	40.0	39.1	37.6	97.7	94.0	77-133	3.9	20
4-Bromofluorobenzene (S)					102	100	80-124		
Dibromofluoromethane (S)					101	101	75-129		
1,2-Dichloroethane - d4 (S)					99.8	99.0	63-136		
Toluene-d8 (S)					99.8	98.8	77-123		

Date: 10/27/2022 12:15 PM

Page 6 of 8

Quality Control Data

Client ID: Hart & Hickman (Charlotte)

Project Description: ROW.704
Report No: 22-293-3100

QC Prep: V25610 QC Analytical Batch(es): V25611 QC Prep Batch Method: 3510C Analysis Method: 8270E

Analysis Description: Semivolatile Organic Compounds - GC/MS

Lab Reagent Blank

Associated Lab Samples: 91186

LRB-V25610

Matrix: AQU

Parameter	Units	Blank Result	MDL	MQL	Analyzed	% Recovery	% Rec Limits
Acenaphthene	μg/L	<7.12	7.12	20.0	10/24/22 12:46		
Acenaphthylene	μg/L	<6.94	6.94	20.0	10/24/22 12:46		
Anthracene	μg/L	<6.57	6.57	10.0	10/24/22 12:46		
Benzo(a)anthracene	μg/L	<5.65	5.65	10.0	10/24/22 12:46		
Benzo(a)pyrene	μg/L	<4.67	4.67	10.0	10/24/22 12:46		
enzo(b)fluoranthene	μg/L	<4.52	4.52	10.0	10/24/22 12:46		
enzo(g,h,i)perylene	μg/L	<4.24	4.24	10.0	10/24/22 12:46		
enzo(k)fluoranthene	μg/L	<4.68	4.68	10.0	10/24/22 12:46		
hrysene	μg/L	<5.38	5.38	10.0	10/24/22 12:46		
ibenz(a,h)anthracene	μg/L	<6.01	6.01	20.0	10/24/22 12:46		
uoranthene	μg/L	<6.03	6.03	10.0	10/24/22 12:46		
uorene	μg/L	<7.27	7.27	10.0	10/24/22 12:46		
ndeno(1,2,3-cd)pyrene	μg/L	<6.20	6.20	10.0	10/24/22 12:46		
-Methylnaphthalene	μg/L	<7.33	7.33	10.0	10/24/22 12:46		
-Methylnaphthalene	μg/L	<6.92	6.92	10.0	10/24/22 12:46		
aphthalene	μg/L	<7.88	7.88	10.0	10/24/22 12:46		
henanthrene	μg/L	<6.34	6.34	10.0	10/24/22 12:46		
yrene	μg/L	<5.42	5.42	10.0	10/24/22 12:46		
-Fluorobiphenyl (S)					10/24/22 12:46	70.8	44-119
itrobenzene-d5 (S)					10/24/22 12:46	61.2	44-120
-Terphenyl-d14 (S)					10/24/22 12:46	94.2	50-134

Laboratory Control Sample & LCSD

LCS-V25610 LCSD-V25610

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
Acenaphthene	μg/L	50.0	35.2	41.0	70.4	82.0	38-117	15.2	20.0

Date: 10/27/2022 12:15 PM

Page 7 of 8

Quality Control Data

Client ID: Hart & Hickman (Charlotte)

Project Description: ROW.704
Report No: 22-293-3100

QC Prep: V25610 QC Analytical Batch(es): V25611 QC Prep Batch Method: 3510C Analysis Method: 8270E

Analysis Description: Semivolatile Organic Compounds - GC/MS

Laboratory Control Sample & LCSD LCS-V25610 LCSD-V25610

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS %Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD
Acenaphthylene	μg/L	50.0	34.5	40.2	69.0	80.4	41-130	15.2	20.0
Anthracene	μg/L	50.0	39.4	43.5	78.8	87.0	57-123	9.8	20.0
Benzo(a)anthracene	μg/L	50.0	39.4	42.5	78.8	85.0	58-125	7.5	20.0
Benzo(a)pyrene	μg/L	50.0	46.1	50.1	92.2	100	54-128	8.3	20.0
Benzo(b)fluoranthene	μg/L	50.0	42.5	46.3	85.0	92.6	53-131	8.5	20.0
Benzo(g,h,i)perylene	μg/L	50.0	39.4	43.1	78.8	86.2	50-134	8.9	20.0
Benzo(k)fluoranthene	μg/L	50.0	42.1	45.6	84.2	91.2	53-131	7.9	20.0
Chrysene	μg/L	50.0	39.9	44.0	79.8	88.0	59-123	9.7	20.0
Dibenz(a,h)anthracene	μg/L	50.0	31.6	35.2	63.2	70.4	51-134	10.7	20.0
Fluoranthene	μg/L	50.0	39.7	43.3	79.4	86.6	57-128	8.6	20.0
Fluorene	μg/L	50.0	36.9	43.2	73.8	86.4	52-124	15.7	20.0
Indeno(1,2,3-cd)pyrene	μg/L	50.0	39.6	43.1	79.2	86.2	52-134	8.4	20.0
1-Methylnaphthalene	μg/L	50.0	28.7	33.0	57.4	66.0	41-119	13.9	20.0
2-Methylnaphthalene	μg/L	50.0	27.6	31.6	55.2	63.2	40-121	13.5	20.0
Naphthalene	μg/L	50.0	26.5	30.4	53.0	60.8	40-121	13.7	20.0
Phenanthrene	μg/L	50.0	39.8	44.0	79.6	88.0	59-120	10.0	20.0
Pyrene	μg/L	50.0	41.3	45.6	82.6	91.2	57-126	9.8	20.0
2-Fluorobiphenyl (S)					67.0	77.6	44-119		
Nitrobenzene-d5 (S)					51.8	58.8	44-120		
4-Terphenyl-d14 (S)					85.8	92.0	50-134		

Date: 10/27/2022 12:15 PM

Page 18 of 20

Shipment Receipt Form

Customer Number: 01102

Customer Name: Hart & Hickman (Charlotte)

Report Number: 22-293-3100

Shipping Method

		• • •			
○ Fed Ex	US Postal	Lab		Other :	
UPS	Client	O Courie	er	Thermometer ID:	IRT-15 3.8 C
Shipping conta	ainer/cooler uncompromi	sed?	Yes	○ No	
Number of cod	olers/boxes received		1		
Custody seals	intact on shipping conta	iner/cooler?	O Yes	○ No	Not Present
Custody seals	intact on sample bottles	?	O Yes	○ No	Not Presen
Chain of Custo	ody (COC) present?		Yes	○ No	
COC agrees v	vith sample label(s)?		Yes	○ No	
COC properly	completed		Yes	○ No	
Samples in pr	oper containers?		Yes	○ No	
Sample contai	iners intact?		Yes	○ No	
Sufficient sam	ple volume for indicated	test(s)?	Yes	○ No	
All samples re	ceived within holding tim	e?	Yes	○ No	
Cooler temper	ature in compliance?		Yes	○ No	
	es arrived at the laborato considered acceptable a egun.		Yes	○ No	
Water - Samp	le containers properly pre	eserved	Yes	○ No	○ N/A
Water - VOA v	rials free of headspace		Yes	○ No	○ N/A
Trip Blanks re	ceived with VOAs		O Yes	No	○ N/A
Soil VOA meth	nod 5035 – compliance c	riteria met	O Yes	○ No	● N/A
High conce	entration container (48 hr)	Lov	w concentration EnC	Core samplers (48 hr)
High conce	entration pre-weighed (me	ethanol -14 d	Lov	w conc pre-weighed	vials (Sod Bis -14 d)
Special preca	utions or instructions incl	uded?	○ Yes	No	
Comments:					

Signature: Angela D Overcash Date & Time: 10/27/2022 10:26:43

Hart &	. Tryon S	PC (H&H) tt, Suite100	Client Project Manager/Conta	ict		acc		tion payab nan.co			For La	boratory Use Only	
Project 0	Description el 132		Project/Site Location (City/Sta Sylva, NC	ate)		S	pecial Det	tection Lir ts Needec		Method of Ship Fed Ex Courier	ment UPS USPS Client Drop Off	Matrix Key WW – Wastewater GW DW – Drinking Water S – P - Product M - Misc	
Project I	Vumber		Project Manager Phone #			Proje	ct Manag	er Email		Purchase Order	Number	Site/Facility ID #	
ROV	V-704		704-586-0007			dgra	aham@	harth	ickman.com		- 41		
449 Spring Charlotte,	gbrook Road NC 28217 04-529-6364	ALYTICAL	Unless noted, all containers per Table II of 40 CFR Part 136	Number of Containers	Matrix (Refer to Key)	(G)rab or (C)omposite	8260VOCs	PAHs 8270				A Cool < 10C Na2S B Cool <= 6C C H2SO4 pH<2 D None Required E NaOH pH>10 F HNO3 pH<2 G HCL pH<2 H H3PO4 pH<2 I Cool <= 6C NA2S	203 (Micro Only)
Date	Time	Sam	ple Identification	Z S S Required Analysis / Preservative			ve	Comments	/Notes				
10/18/22	1410	TMVV-1 (132	(1)	5			✓	√					
lce	5	For Laboratory U stody eals	Ise Only Lab Comments			(Name licha	- Print) ak	(H&H)		Client Remarks/	Comments		
(Y) N		//N emp					IGNATUR			Date Time	Received by: (SIGNA		Date Time
	3.80	-		Relin	nquishe	d by: (S	IGNATUR	E)		Date Time	Received by: (SHONA	TURE	Date Time 16-20-27 1747

Appendix F

Groundwater Sampling Record

SMARTER ENVIRONMENTAL SOLUTIONS

LOW-FLOW GROUNDWATER SAMPLING RECORD

Stabilization Criteria

 Primary:
 Secondary:

 pH +/- 0.1 unit
 DO +/- 0.2 mg/L

S. Cond. +/- 5% ORP +/- 20 mV Turb. +/- 10% (<10 NTUs for metals)

Water Level: slight or stable drawdown during purging

Job No: ROW-704	
-----------------	--

Well ID: TMW-1

Well Location: Parcel 132

Total Well Depth (ftTOC): 14 Depth to Water (ftTOC): 11.61 Well Diameter: 1 inch Sampling Personnel: ABM Screen Interval (ftTOC): 4 - 14 Type of Pump: Peristaltic Tubing Material: Polyethylene Pump/Tubing set at: 14 ft Weather Conditions: Sunny, 37 F NOTES: Riser at 0.12' below ground surface Slow recharge - sampled when dry at 14:08 GROUNDWATER SAMPLING PARAMETERS Water Volume Pumping DO Temp. S. Cond. pH ORP Turk Time Level Pumped Rate (mg/l) (°C) (μS/cm) (SU) (mV) (NY)	Facility Name: DOT Right of	f Way				Date	e: 10/18/22		
Sampling Personnel: ABM Screen Interval (ftTOC): 4 - 14	Top of Casing Elevation (ft ma	sl):	Casing M	laterial: PVC	Volu	me of Water P	er Well Volum	ne:	gallons
Type of Pump: Peristalitic Tubing Material: Polyethylene Pump/Tubing set at: 14 ft Weather Conditions: Sunny, 37 F NOTES: Riser at 0.12' below ground surface Slow recharge - sampled when dry at 14:08 GROUNDWATER SAMPLING PARAMETERS GROUNDWATER SAMPLING PARAMETERS Time Level Pumped Rate (mg/l) (°C) (µS/cm) (SU) (mV) (N 14:05 13.18 0.75 L 150 mL/min 2.28 18.3 169.8 6.76 -201.9 71.1 Other Sample Parameters: Sampled at: 14:10 Parameters taken with: YSI Pro Plus and Hach 2100Q	Total Well Depth (ftTOC):	14	Depth to W	ater (ftTOC):	11.6	1	_ Well Diamet	ter: 1 inc	ch
Note Sunny 37 F Silver 10.12' below ground surface	Sampling Personnel:	ABM	,		Sc	creen Interval ((ftTOC):	4 -	14
Columbia	Type of Pump: Peristaltic		Tubing Ma	nterial: Polyethyl	ene	Pu	ımp/Tubing se	t at:	ft
Water Volume Pumping DO Temp. S. Cond. pH ORP Turing Time Level Pumped Rate (mg/l) (°C) (µS/cm) (SU) (mV) (N N N N N N N N N					N	OTES: Riser a	t 0.12' below	ground surfac	ce
Time 14:05 Level Pumped 13.18 Pumping Pumpin	Slow recharge - sampled wh	en dry at 14:08							
Time Level Pumped Rate (mg/l) (°C) (µS/cm) (SU) (mV) (N 14:05 13:18 0.75 L 150 mL/min 2.26 18.3 169.8 6.76 -201.9 71.1			GROUN	DWATER SAM	PLING PARAM	<u>IETERS</u>			
Sampled at: 14:10 Parameters taken with: YSI Pro Plus and Hach 2100Q	<u>Time</u> <u>Level</u>	Pumped	Rate	<u>(mg/l)</u>	(°C)	(μS/cm)	(SU)	<u>(mV)</u>	Turbidity (NTU) 71,100.00
- arameters taken man Territor has and ridon zroog									
Sample Delivered to: Lab by ABM at	Sampled at: 14	:10	Parameter	rs taken with:		YSI Pro F	Plus and Hach	2100Q	
'	Sample Delivered to: Lab			by	ABM		at		
Field Filtration: O Yes No If yes, which sample parameters were field filtered:	Field Filtration: OYes	No If y	yes, which samp	le parameters v	vere field filtered	d:			
Sample Parameter Containers (Types, Number of Containers, Preservatives): 3 40- mL VOA 8260, 2 1 L Amber 8270			ner of Containers	s Preservatives): 3.40- ml VC	DA 8260 2.11	Amher 8270		
	Tampio i alamotor Contanior	- (·) p = 0, i tallik		.,	,. 0 10 IIIL VC	O200, Z 1 L	7.111001 0210		