March 18, 2022

Mr. Gordon Box, PG Geotechnical Engineering Unit North Carolina Department of Transportation 1020 Birch Ridge Drive Raleigh, NC 27610

RE: PHASE II INVESTIGATION OF PARCEL 99 Julius Conrad Frazier 2301 Sandy Ridge Road, High Point, NC 27265 ESP Project No. IS14.314

TIP Number:	U-4758
WBS Number:	40251.1.1
County:	GUILFORD
Description:	Johnson St – Sandy Ridge Road from Skeet Club Road to I-40

Dear Mr. Box:

ESP Associates, Inc. (ESP) is pleased to submit this report on our GeoEnvironmental Phase II Investigation of the subject parcel. This work was performed in accordance with your Request for Proposal dated December 7, 2021 and our Cost Proposal dated December 13, 2021.

We appreciate the opportunity to assist you during this phase of the project. If you should have any questions concerning this report, or if we may be of further assistance, please contact us.

Sincerely,

ESP Associates, Inc.

Edward D. Billington, PG Senior Geologist/Geophysicist EDB/CRP/CJW

not considered Final unless all signatures are completed

TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	HISTORY 1
2.1	Phase I Report 1
2.2	Background Research1
3.0	SITE OBSERVATIONS
4.0	METHODS
4.1	Geophysics
4.2	Borings
4.3	Soil Sample Protocol
4.4	Groundwater
5.0	RESULTS
5.1	Geophysics
5.2	Sample Data 4
5.3	Sample Observations
6.0	CONCLUSIONS
6.1	Geophysics
6.2	Soil
7.0	RECOMMENDATIONS
8.0	LIMITATIONS

TABLES

Table 1	Soil Sample PID Readings	
---------	--------------------------	--

Table 2Soil Sample UVF Results Summary

TABLE OF CONTENTS (continued)

FIGURES

- Figure 1 Parcel 99, Julius Conrad Frazier, Site Vicinity Map
- Figure 2 Parcel 99, Julius Conrad Frazier, Site Photographs, 1 of 2
- Figure 3 Parcel 99, Julius Conrad Frazier, Site Photographs, 2 of 2
- Figure 4 Parcel 99, Julius Conrad Frazier, EM61 Early Time Gate Data
- Figure 5 Parcel 99, Julius Conrad Frazier, EM61 Differential Data
- Figure 6 Parcel 99, Julius Conrad Frazier, Detail Area, EM61 Differential Data
- Figure 7 Parcel 99, Julius Conrad Frazier, GPR Images of Probable USTs, 1 of 2
- Figure 8 Parcel 99, Julius Conrad Frazier, GPR Images of Probable USTs, 2 of 2
- Figure 9 Parcel 99, Julius Conrad Frazier, EM61 Early Time Gate Data on Plan Sheet
- Figure 10 Parcel 99, Julius Conrad Frazier, EM61 Differential Data on Plan Sheet
- Figure 11 Parcel 99, Julius Conrad Frazier, Boring Locations on Plan Sheet
- Figure 12 Parcel 99, Julius Conrad Frazier, Soil Analytical Results on Plan Sheet
- Figure 13 Legend for Plan Sheet Figures

APPENDICES

- Appendix A Soil Boring Logs
- Appendix B RED Lab Laboratory Testing Report
- Appendix C Chain-of-Custody Form

1.0 INTRODUCTION

The North Carolina Department of Transportation (NCDOT) is planning to improve Johnson Street – Sandy Ridge Road from Skeet Club Road to I-40 in High Point. The NCDOT requested that ESP Associates, Inc. (ESP) perform a Phase II geoenvironmental investigation of the proposed right-of-way (ROW), proposed temporary construction easement, proposed permanent utility easement (PUE), proposed permanent drainage easement (PDE), and the proposed permanent drainage/utility easement (DUE) (collectively, easements) for Parcel 99 to locate abandoned underground storage tanks (USTs) and buried drums, sample soil, and delineate potential contaminated soil. Parcel 99 is located at 2301 Sandy Ridge Road in High Point on the north side of the intersection with Sandy Camp Road (Figure 1).

2.0 HISTORY

2.1 Phase I Report

According to the 2015 Johnson Street – Sandy Ridge Road Environmental Report for Planning (Phase I Report) for U-4758, Parcel 99 may have been a former gas station where a "suspect groundwater monitoring well" and a possible former fuel dispenser were observed. No USTs were observed on site. There is a single-story building with an adjacent barn to the northeast. This site was anticipated to present low geoenvironmental impacts to the project.

2.2 Background Research

We checked the following online sources with the results summarized below:

- North Carolina Department of Environmental Quality (NCDEQ) Division of Waste Management Site Locator Tool
 - Nothing found for this site.
 - NCDEQ UST Databases
 - Nothing found for this site.
 - Guilford County GIS
 - Property owner is listed as 350 South Land Holdings, LLC (formerly Julius Conrad Frazier).

3.0 SITE OBSERVATIONS

During our February and March 2022 field work, the site contained an active, one-story building occupied by the business Shrimp Connection (Figures 2 and 3). The ground surface in the study area was covered by grass, gravel, debris, and leaf litter in the wooded areas. There was a concrete pad located on the southwest corner of the building which appeared to be a former fuel dispenser location. A possible heating oil line that was disconnected and continued underground was seen on the west side of the house. A discarded, apparently empty above-ground storage tank (AST)

was located in the wooded area approximately 200 feet north of the barn. No monitoring wells were observed on the site.

4.0 METHODS

A portion of the study area was cleared by a subcontractor, HPC, on February 7, 2022 using a rubber-tracked bushhog equipped with a mulching head. ESP performed a geophysical study of the area designated by the NCDOT on February 10 and March 1, 2, and 4, 2022. The geophysical investigation area was approximately 2.0 acres in size and encompassed the accessible areas of the parcel. We performed direct-push drilling and sampling of subsurface soils to depths of 10 feet on March 8, 2022. A photoionization detector (PID) was used to screen subsurface soils in the field and select soil samples for laboratory analysis. Groundwater was encountered during the drilling investigation at one boring (B99-11) located by a dry creek.

4.1 Geophysics

ESP performed a metal detector study over the accessible areas of the site using a Geonics EM61 MK2 with a line spacing of approximately three feet followed by ground-penetrating radar (GPR) data collected over selected EM61 anomalies (Figures 4, 5, and 6). Location control was provided in real-time using a differential global positioning system (DGPS).

4.2 Borings

ESP performed direct-push drilling on Parcel 99 using a subcontractor, SAEDACCO of Fort Mill, South Carolina. Fifteen borings were drilled, designated B99-1 through B99-15 (Figure 11). The soil borings were advanced to 10 feet depth below ground surface (bgs) using a hand auger for the first 5 feet and a GeoProbe 54DT drill rig for the second 5 feet. Soil samples were obtained from each boring using the hand auger cuttings and a 5-foot long Macro-Core® tube. Soil cores from the Macro-Core tubes varied in recovery from 36 to 100 percent. The sampling equipment was decontaminated prior to drilling and between borings by the driller by scrubbing the equipment with a Liquinox® detergent solution.

4.3 Soil Sample Protocol

Representative soil samples were taken from the borings at approximate one-foot intervals by the ESP field geologist while wearing nitrile disposable gloves. Each sample was placed in a sealed plastic bag and then kept in a warm area for approximately 10 to 15 minutes prior to measuring volatile organic compound (VOC) levels in the head space with the PID. The maximum PID readings per boring ranged from 0.2 to 4.9 parts per million (ppm) (Table 1).

Thirteen soil samples were selected for ultraviolet fluorescence (UVF) laboratory analysis, as listed in Table 2. For each selected sample, an approximate 10-gram soil sample was collected from the sample bag using a Terra CoreTM sampler and placed into a laboratory-supplied 40-

milliliter volatile organic analysis (VOA) vial containing methanol. Once sealed, the vial was labeled with the sample identification number and then shaken vigorously for about one minute. The samples were packed on ice and sent via overnight delivery to RED Lab, LLC (RED Lab), located in Wilmington, North Carolina, following proper chain-of-custody procedures (Appendix C).

RED Lab used a QED Hydrocarbon Analyzer to quantitatively analyze the soil samples using the UVF method for benzene, toluene, ethylbenzene, and xylene (BTEX); gasoline range organics (GRO); diesel range organics (DRO); total petroleum hydrocarbons (TPH); total aromatics; polycyclic aromatic hydrocarbons (PAHs); and benzo(a)pyrene (BaP).

4.4 Groundwater

Groundwater was encountered at a depth of 3.5 feet in Boring B99-11, located by a dry creek (Figure 11). At the instruction of the NCDOT, the groundwater was not sampled, as the PID readings of the site soil samples did not indicate soil contamination.

5.0 **RESULTS**

5.1 Geophysics

The EM61 early time gate data show the response from both shallow and deeper metallic objects (Figure 4). The differential response reduces the effect of shallow anomalies and emphasizes anomalies from larger and more deeply buried metallic objects, such as USTs (Figures 5 and 6). Our evaluation of the EM61 data indicated several anomalies that could not be attributed to known cultural features. GPR data collected over these anomalies indicated that they were caused buried debris, a culvert, metal siding on the east side of the barn, and 4 probable USTs, designated UST-1 through UST-4. GPR data collected over the 4 probable USTs are shown on Figures 7 and 8, respectively.

UST-1 is located by the northwest corner of the building, UST-2 is located on the west side of the building, and UST-3 and UST-4 are located at the front of the building by the southwest corner. Based on the GPR data, UST-1 is buried approximately 2 feet bgs and has an approximate diameter of 3 feet, a minimum length of 5 feet, and an approximate volume of 300 gallons. Due to obstructions, GPR data could not be collected over the entire length of UST-1. UST-2 is buried approximately 3 feet bgs and has an approximate diameter of 4 feet, an approximate length of 8 feet, and an approximate volume of 750 gallons.

UST-3 and UST-4 are located side-by-side by the southeast corner of the building. UST-3 is offset to the north by approximately 2 feet compared to UST-4. Based on the GPR data, both probable USTs are buried approximately 3 feet bgs and have approximate diameters of 6 feet, approximate lengths of 12 feet, and approximate volumes of 2,500 gallons each. Apparent product lines extend north from the tanks and turn east towards the relic dispenser island.

In the vicinity of UST-3 and UST-4, the Phase I report indicated a probable monitoring well. GPR data collected in the vicinity of the two USTs indicated 2 shallow reflectors about 6 inches bgs. One of these reflectors was excavated and appeared to be a fill port for UST-4 (Figure 3.H).

5.2 Sample Data

The soil sample UVF hydrocarbon analysis results for BTEX, GRO, DRO, and PAHs are presented in Table 2. The RED Lab laboratory report, which also includes results for TPH, total aromatics, and BaP, is provided in Appendix B. Values are provided in mg/kg (ppm).

5.3 Sample Observations

The results of the laboratory testing indicate that BTEX, GRO, PAHs, and BAP were below the laboratory detection limits in the 13 samples tested (Table 2). DRO was detected in 6 samples, with readings below the NCDEQ action level of 100 ppm for DRO (Figure 12).

6.0 CONCLUSIONS

The results of the Phase II investigation of Parcel 99 for NCDOT Project U-4758 indicates the presence of 4 probable USTs within the proposed ROW and easements. DRO was detected in 6 soil samples but below the NCDEQ Action Level of 100 ppm.

6.1 Geophysics

The geophysical data indicated the presence of 4 probable USTs. UST-2, UST-3, and UST-4 are located on the south and west sides of the building within the proposed ROW and UST-1 is located on the north side of the building just outside of the proposed ROW but within the proposed PUE (Figure 11). The probable USTs are buried approximately 2 and 3 feet bgs with estimated volumes ranging from 300 to 2,500 gallons.

6.2 Soil

The results of the Phase II investigation for Parcel 99 of NCDOT Project U-4758 did not indicate soil contamination above the NCDEQ Action Levels for GRO and DRO in the upper 10 feet in the areas sampled. DRO was detected in 6 samples at levels below the NCDEQ Action Level of 100 ppm for DRO (Figure 12).

7.0 **RECOMMENDATIONS**

ESP recommends that the 4 probable USTs on Parcel 99 that are located within the proposed ROW and easements be removed in accordance with NCDEQ regulations. ESP also recommends that soil removed in the vicinity of the USTs, the product lines, and the dispenser island be screened for petroleum hydrocarbon contamination, properly handled, segregated, and disposed of offsite in accordance with NCDEQ regulations.

8.0 LIMITATIONS

ESP's professional services have been performed, findings obtained, and recommendations prepared in accordance with customary principles and practices in the fields of environmental science and engineering. ESP is not responsible for the independent conclusions, opinions, or recommendations made by others based on the data presented in this report.

The passage of time may result in a change in the environmental characteristics at this site and surrounding properties. ESP does not warrant against future operations or conditions, or against operations or conditions present of a type or at a location not investigated. ESP does not assume responsibility for other environmental issues that may be associated with the subject site.

TABLES

Boring	Sample Depth Range with PID > 10 ppm (feet bgs)	Maximum PID Reading (ppm) and Sample Depth (feet bgs)
B99-1	None	0.2 (7.0 – 7.5)
B99-2	None	0.3 (1.0 – 1.5, 6.0 – 6.5)
B99-3	None	0.3 (1.0 – 1.5, 9.0 – 9.5)
B99-4	None	4.9 (9.0 - 9.5)
B99-5	None	0.7 (9.0 - 9.5)
B99-6	None	0.8 (1.0 – 1.5)
B99-7	None	0.4 (9.0 - 9.5)
B99-8	None	0.6 (2.0 – 2.5)
B99-9	None	0.3 (6.0 - 6.5)
B99-10	None	0.6 (6.0 - 6.5)
B99-11	None	0.5 (8.0 - 8.5)
B99-12	None	0.6 (1.0 – 1.5)
B99-13	None	1.3 (8.0 - 8.5)
B99-14	None	1.0 (1.0 – 1.5)
B99-15	None	1.1 (8.0 - 8.5)

TABLE 1SOIL SAMPLE PID READINGS

Boring	Sample ID (depth in feet bgs)	Date Collected	BTEX (C6-C9) (mg/kg)	GRO (C5-C10) (mg/kg)	DRO (C10-C35) (mg/kg)	PAHs (mg/kg)
B99-2	S-6	3/8/22	<0.39	<0.39	0.96	< 0.13
B99-4	S-7	3/8/22	<0.36	<0.36	5.1	<0.12
B99-4	S-9	3/8/22	<0.64	<0.64	10.6	<0.2
B99-5	S-9	3/8/22	<0.54	<0.54	3.5	<0.17
B99-6	S-1	3/8/22	<0.29	<0.29	<0.29	<0.09
B99-6	S-9	3/8/22	<0.25	<0.25	<0.25	<0.08
B99-8	S-2	3/8/22	<0.38	<0.38	<0.38	<0.12
B99-9	S-6	3/8/22	<0.42	<0.42	<0.42	<0.13
B99-10	S-6	3/8/22	<0.42	<0.42	2.5	<0.13
B99-11	S-3	3/8/22	<0.27	<0.27	<0.27	<0.09
B99-12	S-7	3/8/22	<0.38	<0.38	<0.38	<0.12
B99-13	S-8	3/8/22	<0.32	<0.32	<0.32	<0.1
B99-15	S-8	3/8/22	<0.28	<0.28	2.0	<0.09

TABLE 2SOIL SAMPLE UVF RESULTS SUMMARY

FIGURES

project no. IS14.314	FIGURE 1 – PARCEL 99, JULI
AS SHOWN	SITE VICINITY
^{DATE} 3/17/2022	NCDOT PROJECT
CRP/EDB	GUILFORD COUNTY, NC

T U-4758 ROM SKEET CLUB RD TO I-40 ORTH CAROLINA

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

A. Photograph from southeast corner of parcel, looking west.

C. Photograph of the area of buried debris near the west end of the parcel, looking west. Pin flags were for GPR data collection.

B. Photograph of north end of the building, looking east towards the location of the proposed detention pond.

D. Photograph of approximate location og UST-1 located on the north end of the building, looking west.

PROJECT NO. IS14.314	FIGURE 2 – PARCEL 99, JULI
scale N/A	SITE PHOTOGRAF
^{DATE} 3/17/2022	NCDOT PROJEC
CRP/EDB	GUILFORD COUNTY, NO

IUS CONRAD FRAZIER PHS, 1 OF 2

CT U-4758 ROM SKEET CLUB RD TO I-40 IORTH CAROLINA

ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

E. Photograph of approximate location of UST-2 on the west side of the building, looking north.

G. Photograph of probable former dispenser island for UST-3 and UST-4, looking north.

F. Photograph of approximate location of UST-3 (left) and UST-4 (right), looking northeast.

H. Photograph of probable fill port for UST-4, looking west. Ellipse shows the approximate location of the probable fill port for UST-3.

project no. IS14.314	FIGURE 3 – PARCEL 99, JULI
scale N/A	SITE PHOTOGRAF
^{DATE} 3/17/2022	
CRP/EDB	GUILFORD COUNTY, NO

IUS CONRAD FRAZIER PHS, 2 OF 2

CT U-4758 ROM SKEET CLUB RD TO I-40 ORTH CAROLINA

ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

B. Example GPR Line 1 (left) over short axis and Line 2 (right) over long axis of probable UST-1. UST-1 has minimum length of 5 feet but due to the side of the building and obstructions, the full length of UST-1 could not be determined.

A. Approximate location of example GPR lines over probable UST-1 (top) located on the northwest corner of the building and probable UST-2 (bottom) located on the west side of the building.

PROJECT NO. IS14.314	FIGURE 7 - PARCEL 99, JULIL
AS SHOWN	GPR IMAGES OF PROBA
^{DATE} 3/17/2022	NCDOT PROJECT
BY CRP/EDB	GUILFORD COUNTY, NO

US CONRAD FRAZIER ABLE USTS, 1 OF 2

T U-4758 OM SKEET CLUB RD TO I-40 DRTH CAROLINA

ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

A. Approximate location of example GPR lines over 2 probable USTs located at the southwest corner of the building.

B. Example GPR Line 3 over short axes of 2 probable USTs.

C. Example GPR Lines 5 (left) and 6 (right) over long axis of the western UST (Line 5) and the eastern UST (Line 6).

FIGURE 8 - PARCEL 99, JUL	PROJECT NO. IS14.314	JULI	
GPR IMAGES OF	AS SHOWN	GPR IMAGES OF PR	ОВА
	^{DATE} 3/17/2022		
GUILFORD COUI	BY CRP/EDB	GUILFORD COUNT	υ Γκ Υ, ΝΟ

IUS CONRAD FRAZIER ABLE USTS, 2 OF 2

CT U-4758 ROM SKEET CLUB RD TO I-40 IORTH CAROLINA

ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

FEET

3/17/2022

CRP/EDB

-10 U4758_rdy_row.dgn

- V4758_rdy_ss.dgn

NCDOT PROJECT U-4758 IOHNSON ST– SANDY RIDGE RD FROM SKEET CLUB RD TO I-40 GUILFORD COUNTY, NORTH CAROLINA

Greensboro, NC 27409

336.334.7724

DUNCTION During the Solution		STATE OF NORTH	CAROLD	NA, DIVISION OF HIGHWA	AYS	
Att IR. Collary: Non-No B Solid SLL C	BOUNDARIES AND PROPERTY:	CONVENTIONA		AN SHEET STMBC	723	WATER-
Controllig Bandard Googe Water Mater Civ Line Bit Abandood See Abandood </th <th>State Line</th> <th>RAILROADS: Note: Not to Se</th> <th>uie "3</th> <th>.U.E. = Subsurface Unity Engineering</th> <th></th> <th>Water Manhola</th>	State Line	RAILROADS: Note: Not to Se	uie "3	.U.E. = Subsurface Unity Engineering		Water Manhola
Name Spin Line Rit Signer Minister Name Spin Line Na	County Line	Standard Gauge	SU TRANSPORTATION	Hedge	000000000000000000000000000000000000000	Water Mater
Chy Lies Switch B Alandedd Chy Lies Orderad	Township Line	RR Signal Milepost	миенат за	Woods Line		Wates Value
Bit Advanced Bit Advanced Wingweid	City Line	Switch	SWIGH	Orchard	0000	Water Hudsont
Bet Dennemid Bet Dennemid EXEMPTION STRUCTURES: MADR: MADR: MADR: MADR: MADR: MADR: Compared Preparty Conner Preparty Mountains & Bet Conner Texture Bit Dennemid Diversity Manual Moule of Variance And Variance A	Reservation Line	RR Abandoned		Vineyard	Rineyand	Water Hydrant
Name Processor Pro	Property Line	RR Dismantled		EXISTING STRUCTURES:		UG Water Line LOS
Compute Transmit Image: Property Carrier	Existing Iron Pin Q			MAJOR:		UG Water Line LOS
Company Normal Secondary Note and Ver Control Point Primary Normal Primary Norma	Computed Property Corper	RIGHT OF WAY & PROJECT CO	NTROL:	Bridge, Tunnel or Box Culvert	0840	UG Water Line LOS
Precast Supervise Primery Notic Control Print Printery Notic Control Print Pri	Property Monument	Secondary Horiz and Vert Control Point	•	Bridge Wing Wall, Head Wall and End Wall -) **** (Above Ground Water
Decomposition Decompos	Parcel /Sequence Number	Primary Horiz Control Point	ò	MINOR:		TV:
Dating print bits	Frieting Easter Line	Primary Horiz and Vert Control Point		Head and End Wall	CONC HW	TV Pedestal
Imposed Chain Live Fance Imposed Chain L	Existing rence Line	Exist Permanent Easment Pin and Cap	0	Pipe Culvert		TV Tower
Imposed Board Link Faces Imposed Board Rev Face Imposed Rev	Proposed Woven wire rence	New Permanent Easement Pin and Cap	۲	Footbridge	≻≺	UG TV Cable Hand
Proposed basised wire frames View Report Records UG TV Cable 105 Proposed Verland Boundary New Repit of Way Line Starm Seever Manhale UG TV Cable 105 Proposed Verland Boundary New Repit of Way Line Starm Seever Manhale UG TV Cable 105 Existing Rinder Annuel Boundary New Repit of Way Line with Pin and Cap- UG TV Cable 105 UG TV Cable 105 Record Contamination Area: Sail TX TX New Repit of Way Line with Pin and Cap- UG TV Cable 105 UG Filter Optic Cable New Repit of Way Line with Pin and Cap- Torreste of Genitie BW Marker Torreste of Genitie BW Marker Torreste of Genitie BW Marker Genitie Casle Genitie Casle New Report Bole Genitie Contamination Area: Year Torreste of Annuel Boundary Genitie Casle Torreste of Annuel Boundary Genitie Casle BULLINKOS AND OTHER CULTURE: Cass Printy Vent or UG Tank Cap New Remonent Diving Searment Tore Prover Line Tooler Rever Cable Hand Hale Stanibury Searce Chen Stand Gene Line Cos I (Line) New Remonent Diving Searment Tore UG Power Line Los D (S Line) Stanibury Searce Chen Stand Meel Weel Stanibury Searce Chen Marketre Stanibury Searce Chen <td>Proposed Chain Link Fence</td> <td>Vertical Benchmark</td> <td>Ť</td> <td>Drainage Box: Catch Basin, DI or JB</td> <td>□∞</td> <td>UG TV Cable LOS E</td>	Proposed Chain Link Fence	Vertical Benchmark	Ť	Drainage Box: Catch Basin, DI or JB	□ ∞	UG TV Cable LOS E
Existing Registed Werland Starm Starm <td>Proposed Barbed Wire Fence</td> <td>Existing Right of Way Marker</td> <td><u> </u></td> <td>Paved Ditch Gutter</td> <td></td> <td>UG TV Cable LOS (</td>	Proposed Barbed Wire Fence	Existing Right of Way Marker	<u> </u>	Paved Ditch Gutter		UG TV Cable LOS (
Proposed Welland Boundary Image: Standard March Boundary	Existing Wetland Boundary	Existing Right of Way Line		Storm Sewer Manhole	®	U/G TV Cable LOS I
Easting Inderagered Animal Boundary IN New Eight of Way Line with Pin and Cap UTILITIES: UTILITIES: Existing Inderagered Panil Boundary IN New Eight of Way Line with IN UTILITIES: GAS: Existing Inderagered Panil Boundary IN New Eight of Way Line with IN IN GAS: Rown Contentination Area: Sall IN IN IN IN Gas Line Line Sall <	Proposed Wetland Boundary	New Right of Way Line		Storm Sewer		UG Fiber Optic Cabl
Easting Indengend Plant Boundary New Right of Way Line with min and Cap UTILITIES: UIC Flaet Copert Soundary UIC Flaet Copert Soundary Known Contentination Area: Sall XetXet Right of Way Line with Concrete of Strahls RW Marker OWNER: Disting Nation Fole Gas: Concrete of Strahls RW Marker Concrete of Strahls RW Marker OWNER: Disting Nation Fole OWNER: Gas: Concrete of Strahls RW Marker Concrete of Strahls RW Marker OWNER: Disting Nation Line Pole OWNER: Gas: Contentioned Strahl XetXet New Control of Access OWNER: Disting Nation Line Pole OWNER: OWNER: Building Owner Transformer Marker Disting Nation Line Pole OWNER: Disting Nation Line Pole OWNER: Sanifary Sever Mash Stram Owner Transformer Marker Disting Nation Line Pole OWNER: Sanifary Sever Mash Stram Condition New Remonent Distings Essement Tot UG Power Line LOS B (SLUE?) Sanifary Sever Mash Stram ROUDS AND RELATED FEATURES: Existing Table Sever Line LOS B (SLUE?) Sanifary Sever Mash Building Sanitery Sever Line Pole OWNER <td>Existing Endangered Animal Boundary</td> <td>No. Bisha China dia ang Pisana di Com</td> <td>~~`•</td> <td></td> <td></td> <td>U/G Fiber Optic Cabl</td>	Existing Endangered Animal Boundary	No. Bisha China dia ang Pisana di Com	~~`•			U/G Fiber Optic Cabl
Lasting functor (rogerly boundary A New Right of Way Line with Concrete of Xinnets POWER: Gal: New Control of Access Line with Concrete CA Marker Existing Power Pole 6 New Control of Access Line with Control indication Area: Sell XX XX XX Existing Control of Access	Existing Endangered Plant Boundary	New Right of Way Line with Pin and Cap—		UTILITIES:		U/G Fiber Optic Cabl
Known Centemination Area: Soil X = 1 - X: Concerve Gale Gas Valve Potential Contamination Area: Soil X = - X: Concerve GA Marker Proposed Pole Gas Valve Potential Contamination Area: Water X = X: Concerve GA Marker Proposed Pole Gas Valve Potential Contamination Area: Water X = X: Concerve GA Marker Proposed Pole Gas Marker Contentination Area: Water X = X: Concerve GA Marker Concerve GA Marker UG Gas Line LOS E EULIDINCS AND OTHER CULTURE: Construction Easement TL Power Marker Concerve GA Sign Q New Temporary Construction Easement TL Power Tole LOS B (S UE ?) Gas Marker Sign New Permanent Drainage Lutiting Easement Tut UG Power Cable Hand Hole Sonitary Sever Kanh Sonitary Sever Raine New Permanent Drainage Lutiting Easement Tut UG Power Line LOS B (S UE ?) Gas Marker Sonitary Sever Raine New Permanent Drainage Lutiting Easement Tut UG Power Cable Hand Hole Sonitary Sever Raine Sonitary Sever Raine New Permanent Drainage Lutiting Easement Tut UG Power Cable Hand Hole Sonitary Sever Cable<	Existing Historic Property Boundary	New Right of Way Line with		POWER:		GAS:
Patential Contamination Area: Sell IX IX<	Known Contamination Area: Soil	New Control of Access Line with	~ ~	Existing Power Pole	•	Gas Valve
Known Contamination Area: Water	Potential Contamination Area: Soil	Concrete C/A Marker	- © - © -	Proposed Power Pole	9	Gas Meter
Protential Contramination Area: Water Water <td>Known Contamination Area: Water - 25 25 25</td> <td>Existing Control of Access</td> <td>—</td> <td>Existing Joint Use Pole</td> <td>-+-</td> <td>U/G Gas Line LOS B</td>	Known Contamination Area: Water - 25 25 25	Existing Control of Access	— 	Existing Joint Use Pole	- + -	U/G Gas Line LOS B
Conteminated Site: Known or Potential >SX, ZX, BUILDUNGS AND OTHER CULTURE: Existing Easement Line E Power Manhole © UG Gas Line LOS E Sign C Power Manhole © UG Gas Line LOS E SANTAKY SEVEE: Sign C Power Transformer © SANTAKY SEVEE: SANTAKY SEVEE: Sign C Power Transformer © SANTAKY SEVEE: SANTAKY SEVEE: Sign C Power Transformer © SANTAKY SEVEE: SANTAKY SEVEE: Sign C Power Transformer © Santary Sever Anahole C Year Outline C New Permanent Drainage / Ultily Easement DU UG Power Line LOS D (S.U.E.') D Now Fermanet Main Santary Sever Clean New Arriad Ultility Easement DU D D D D Santary Sever Clean D New Arriad Ultility Easement DU D D D D D D D D D D D D D D D D D D D <td>Potential Contamination Area: Water - 32 32 -</td> <td>New Control of Access</td> <td></td> <td>Proposed Joint Use Pole</td> <td>-0-</td> <td>U/G Gas Line LOS C</td>	Potential Contamination Area: Water - 32 32 -	New Control of Access		Proposed Joint Use Pole	-0-	U/G Gas Line LOS C
BUILDINGS AND OTHER CULTURE: New Temporary Construction Easement t Power line Tower StantTARY SEVER. Ges Pump Yent or UG Tank Cap 0 New Temporary Drainage Easement TDE Power Transformer StantTARY SEVER. Sind 9 New Permanent Drainage Cultifity Easement TDE Power Line LOS B (S.U.E.*) StantTARY SEVER. Sonalary Sever Main New Permanent Drainage Cultifity Easement TUR UG Power Line LOS D (S.U.E.*) StantTARY SEVER. Sonalary Sever Main New Permanent Drainage Severnet TUR UG Power Line LOS D (S.U.E.*) StantTARY Sever Clean School New Permanent Drainage Severnet TUR UG Power Line LOS D (S.U.E.*) Above Ground Senitr School New Permanent Drainage Senement TUR UG Power Line LOS D (S.U.E.*) Above Ground Senitr School TRADS AND RELATED FEATURES: Existing Edge of Povement ELEPHONE: SS Forced Main Line Strating Cub Proposed Stales Still Telephone Rele O MIIIty Pole SS Forced Main Line Drain Proposed Cub Ramp CBD CBD CBD CBD Utility Pole with Base Drain Proposed Cub Ramp C	Contaminated Site: Known or Potential	Existing Easement Line	ī	Power Manhole	Ð	UG Gas Line LOS D
Cas Pomp Ventor UG Tank Cap 0 New Temporary Drainage Easement Tot Power Transformer Cas Power Cable Hand Hale SANITAR' SEVER: Sign 0 New Permanent Drainage Kasement Dot H-frome Pola	BUILDINGS AND OTHER CULTURE:	New Temporary Construction Easement -	E	Power Line Tower	\boxtimes	Above Ground Gos L
Sign 9 New Permanent Drainage Easement Dt UG Power Cable Hand Hole Sanitary Sever Manh Well 9 New Permanent Drainage / Utility Easement Dut H-Frame Pole Sanitary Sever Manh Sign New Permanent Unlithy Easement Dut UG Power Unle LOS B (SU.E.*) Sanitary Sever Manh Foundation New Permanent Unlithy Easement Dut UG Power Unle LOS D (SU.E.*) Make Ground Sanitary Sever Hank Areo Outline New Temporary Utility Easement Aute UG Power Unle LOS D (SU.E.*) Above Ground Sanitary Sever Hank Building New Aerial Unlity Easement Aute UG Power Unle LOS D (SU.E.*) Above Ground Sanitary Sever Hank Church Existing Edge of Povement Existing Edge of Povement Existing Telephone Pole Image: Spored Main Line Stream or Body of Woter Proposed Slope Stakes Cut Existing Metal Guardrail Image: Spored Main Line Jurisdictional Stream Buffer Zone 1 Existing Cable Guiderail Image: Spored Main Line Image: Spored Main Line Buffer Zone 1 Existing Cable Guiderail Image: Spored Main Line	Gas Pump Vent or U/G Tank Cap 0	New Temporary Drainage Easement	TDE	Power Transformer	2	
Weil 9 New Permanent Drainage / Utility Easement Out H-Frame Pole Sanitary Sever Manh Small Mine A New Permanent Utility Easement rut UG Power Line LOS B (S.U.E.*) UG Sanitary Sever Manh Area Outline New Temporary Utility Easement rut UG Power Line LOS D (S.U.E.*) UG Sanitary Sever Manh Building New Temporary Utility Easement rut UG Power Line LOS D (S.U.E.*) UG Sanitary Sever Manh School New Temporary Utility Easement rut UG Power Line LOS D (S.U.E.*) UG Sanitary Sever Manh School Feasemant Aure UG Power Line LOS D (S.U.E.*) Move Ground Sanita Church Feasemant Aure UG Power Line LOS D (S.U.E.*) School Dam Froposed Slope Stakes Fill	Sign Ş	New Permanent Drainage Easement	PDE	U/G Power Cable Hand Hole		SANITARY SEWER:
Small Mine * New Permanent Utility Easement rut UG Power Line LOS B (S.U.E.*) Sanitary Sever Clean Foundation New Temporary Utility Easement rut UG Power Line LOS D (S.U.E.*) Hober Ground Sanitary Sever Clean Area Outline New Aeriol Utility Easement rut UG Power Line LOS D (S.U.E.*) Above Ground Sanitary Sever Clean Building Factor RAADS AND RELATED FEATURES: Existing Edge of Powement Existing Telephone Pole Image: Sporad Main Line Building Factor Factor Factor MisceLLANEOUS: Dam Proposed Slope Stakes Cut Factor MisceLLANEOUS: Builditorion Stream Factor Factor MisceLLANEOUS: Utility Pole Straom or Body of Water Proposed Guardrail Factor MisceLLANEOUS: Utility Unitive cared Object Buffer Zone 1 #1 Existing Cable Guiderail Factor MisceLLANEOUS: Utility Unitive Signals Buffer Zone 2 Fraposed Cable Guiderail G Telephone Cable LOS B (S.U.E.*) Utility Unitive multic Signals Buildry Sever Clean Factor Froposed Cable Guidera	Well 2	New Permanent Drainage / Utility Easement	DU!	H-Frame Pole	••	Sanitary Sewer Manho
Foundation Image: Sever I in a Contract Severe I in a Contrect S	Small Mine 🔶 🛠	New Permanent Utility Easement		U/G Power Line LOS B (S.U.E.*)		Sanitary Sewer Cleand
Area Outline Aue UG Power Line LOS D (S.U.E.*) Above Ground Sanitr Cemetery Image: Second Sanitr Aue UG Power Line LOS D (S.U.E.*) Above Ground Sanitr Building Image: Second Sanitr Second Sanitr Second Sanitr Second Sanitr Second Sanitr Church Image: Second Sanitr Existing Edge of Powerent Image: Second Sanitr Second Main Line Dam Image: Second Sanitr Existing Carbo Group Sanitr Image: Second Main Line Second Main Line Dam Image: Second Sanitr Existing Carbo Group Sanitr Image: Second Main Line Second Main Line Dam Image: Second Sanitr Existing Carbo Group Sanitr Image: Second Main Line Second Main Line Mydro, Pool or Reservoir Image: Second Sanitr Image: Second Main Line Image: Second Main Line Jurisdictional Stream Image: Second Sanitr Image: Second Main Line Image: Second Main Line Jurisdictional Stream Image: Second Sanitr Image: Second Sanitr Image: Second Sanitr Image: Second Sanitr Jurisdictional Stream Image: Second Sanitr Image: Second Sanitr Image: Second Sanitr Image: Second Sanitr Image: Second Sanitr </td <td>Foundation</td> <td>New Temporary Utility Easement</td> <td>TUE</td> <td>U/G Power Line LOS C (S.U.E.*)</td> <td></td> <td>U/G Sanitary Sewer L</td>	Foundation	New Temporary Utility Easement	TUE	U/G Power Line LOS C (S.U.E.*)		U/G Sanitary Sewer L
Cemetery Filter Hold Guidrand State St	Area Outline	New Aerial Utility Easement		U/G Power Line LOS D (S.U.E.*)		Above Ground Sanita
Building Image: Charch	Cemetery	Here seneroniny coordinant	ADE	TELERHONE.		SS Forced Main Line
School Existing Edge of Pavement Existing Edge of Pavement Existing Telephone Pole Image: Stream Proposed Stope Stakes Cut Image: Stream Proposed Stope Stakes Fill Image: Stream Proposed Curb Ramp Image: Stream Proposed Stope Stakes Fill Image: Stream Proposed Curb Ramp Image: Stream Proposed Stope Stakes Fill Image: Stream Proposed Stope Stakes Fill Image: Stream Proposed Stope Stakes Fill Image: Stream Proposed Curb Ramp Image: Stream Proposed Stope Stakes Fill Image: Stream Proposed Curb Ramp Image: Stream Proposed Guardrail Image: Stream Proposed Guardrail Image: Stream Proposed Guardrail Image: Stream Proposed Guardrail Image: Stream Proposed Curb Ramp Image: Stream Proposed Curb Ramp Image: Stream Proposed Curb Ramp Image: Stream Proposed Guardrail Image: Stream Proposed Guardrail Image: Stream Proposed Curb Ramp <	Building	ROADS AND RELATED FEATURE	5	TELEPHONE:		SS Forced Main Line
Church Existing Curb Proposed Slope Stakes Cut Proposed Slope Stakes Cut Proposed Slope Stakes Fill Proposed Slope Stakes Fill Proposed Slope Stakes Fill MISCELLANEOUS: HYDROLOGY: Proposed Slope Stakes Fill	School	Existing Edge of Povement		Existing Telephone Pole	-	SS Forced Main Line
Dam Proposed Slope Stakes Cut £ Telephone Manhole MISCELLAREOUS: HYDROLOGY: Proposed Slope Stakes Fill £ Telephone Pedestal II Utility Pole Stream or Body of Water Proposed Curb Ramp CB Utility Pole III Utility Pole Hydro, Pool or Reservoir Proposed Curb Ramp CB UG Telephone Cable LOS B (S.U.E.*) Utility Unknown UG Buffer Zone 1 Existing Cable Guiderail F F UG Telephone Cable LOS D (S.U.E.*) Utility Unknown UG Buffer Zone 2 HK 2 Proposed Cable Guiderail F UG Telephone Cable LOS D (S.U.E.*) Utility Unknown UG Buffer Zone 2 HK 2 Proposed Cable Guiderail F F UG Telephone Cable LOS D (S.U.E.*) Utility Unknown UG Buffer Zone 2 HK 2 Proposed Cable Guiderail F HI H	Church	Existing Curch		Proposed Telephone Pole	-0-	
HYDROLOGY: Proposed Slope Stakes Fill Image: Stakes Current Stream or Body of Water Image: Stakes Still Proposed Curb Ramp Image: Stakes Still Stream Image: Stakes Still Stream Image: Stakes Still Stream Image: Stakes Still Proposed Curb Ramp Image: Stakes Still Stream Image: Stake Stake Still Stream Image: Stake Stake Still Stream Image: Stake	Dam	Proposed Slope Staker Cut	c	Telephone Manhole	œ	MISCELLANEOUS:
Stream or Body of Water Proposed Stope Stokes Fill Telephone Cell Tower Image: Coll Tower	HYDROLOGY:	Proposed Slope Stakes Eill	F	Telephone Pedestal		Utility Pole
Hydro, Pool or Reservoir Image: Curb Kamp	Stream or Body of Water	Proposed Stope Stakes Fill	~~~~	Telephone Cell Tower	, š ,	Utility Pole with Base
Jurisdictional Stream	Hydro, Pool or Reservoir	Froposed Coro Kamp		U/G Telephone Cable Hand Hole	5	Utility Located Object
Buffer Zone 1 Image: Stream in the strea	Jurisdictional Stream	Existing Metal Guardrall		U/G Telephone Cable LOS B (S.U.E.*)		Utility Traffic Signal Bo
Buffer Zone 2 Buffer Zone 2<	Buffer Zone 1 tr 1	Proposed Guardrall		U/G Telephone Cable LOS C (S.U.E.*)		Utility Unknown U/G
Flow Arrow Proposed Cable Guideral Image: Cable Guidera Image: Cable Guideral	Buffer Zone 2 82 2	Present Cable Guiderall		U/G Telephone Cable LOS D (S.U.E.*)	r	UG Tank; Water, Gas
Disappearing Stream Image: Construction of the construction	Flow Arrow	Froposed Cable Guiderall		U/G Telephone Conduit LOS B (S.U.E.*)		Underground Storage
Spring Pavement Removal VXXXX UG Telephone Conduit LOS D (S.U.E.*) Image: Conduit C	Disappearing Stream	Equality Symbol	v	U/G Telephone Conduit LOS C (S.U.E.*)		A/G Tank; Water, Gas
Wetland * VEGETATION: UG Test Hole LOS # Proposed Lateral, Tail, Head Ditch * Single Tree @ False Sump © Single Shrub @ UG Fiber Optics Cable LOS B (S.U.E.*) UG Test Hole LOS # UG Fiber Optics Cable LOS D (S.U.E.*) We Fiber Optics Cable LOS D (S.U.E.*) UG Test Hole LOS # UG Fiber Optics Cable LOS D (S.U.E.*)	Spring	Pavement Removal	000000	U/G Telephone Conduit LOS D (S.U.E.*)		Geoenvironmental Bor
Proposed Lateral, Tail, Head Ditch Single Tree & UG Fiber Optics Cable LOS C (S.U.E.*) Abandoned According False Sump O UG Fiber Optics Cable LOS D (S.U.E.*) End of Information End of Information	Wetland *	VEGETATION:	-	U/G Fiber Optics Cable LOS B (S.U.E.*)		U/G Test Hole LOS A
False Sump Single Shrub a UG Fiber Optics Cable LOS D (S.U.E.*) End of Information	Proposed Lateral, Tail, Head Ditch	Single Tree	ŵ	U/G Fiber Optics Cable LOS C (S.U.E.*)	r w	Abandoned According
·	False Sump	Single Shrub	0	U/G Fiber Optics Cable LOS D (S.U.E.*)	1 ro	End of Information —
	· · · ·					

FIGURE 13	PROJECT NO. IS14.314
LEGEND FOR PLAN SHI	scale N/A
	^{DATE} 3/17/2022
GUILFORD COUNTY, NOR	BY CRP/EDB

	MOUSCE &	BRITING NO.	SHEET NO.
		ě	
		~	
		~	
100 B (01150)		v	
LOS B (S.U.E*)			
LOS C (S.U.E*)			
LOS D (S.U.E*)			
Vater Line			
		ពា	
		\otimes	
land Hole		Ð	
OS B (S.U.E.*)		h-	
OS C (S.U.E.*)			
OS D (SUE*)			
Cable LOS B (SUE	*\		
Cable LOS B (S.U.E			
Cable LOS C (S.U.)		
Cable LOS D (S.U.	E.*)		
		0	
		¢	
OS B (S.U.E.*)			
DS C (S.U.E.*)			
OS D (S.U.E.*)			
So D (S.C.C.)		A/3 G	
203 2110			
:			
tanhole		•	
leanout		۲	
wer Line			
anitary Sewer		A/S Senitory	Sever
Line LOS B (S.U.E.*	I ———		
Line LOS C (S.U.E.	.)		
Line LOS D (S.U.E.	۰ ۱		
	-		
		•	
Base			
bject		0	
nal Box			
UG Line LOS B /S	U.E.*)		
Gas Oil	J.L.)		
, Gus, Oli			L
rage Tank, Approx. l	.oc. —	(157)	
, Gas, Oil]
al Boring		•	
OS A (S.U.E.*)		Θ	
rding to Utility Reco	rds —	AATU	JR
on		E.O	.I.

13 HEET FIGURES

T U-4758 POM SKEET CLUB RD TO I-40 DRTH CAROLINA

ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

APPENDIX A SOIL BORING LOGS

	FCD			FIE			BORING NO.
	LJI						
PRO	IECT NAME:	NCDOT U-	4758 Phase	 	PROJ. NO.: IS14.314		B99-1
		Approxima	tely 152.0 So				T: 1 of 1
		Direc		na Auger	DATE STARTED: <u>3/8/2022</u>		H: 10.0 ft
DRILI	FR [.]		Scott Hur	nt	SAMPLE METHOD: Hand Auger & Macrocore		V: Drv ft
DRILI	_ RIG:		Geoprobe 54	4DT	LOGGED BY: A. Roseman	COMMEN	T: Elev: 944.8'
t)		£	(1)				
ЭЕРТН (f	SAMPLE NO.	SAMPLE DEPTH (1	PID READING (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
				0.0'-0.3'	Topsoil	ŀ	land Auger 0.0'-5.0'
				0.3'-2.8'	Vellow to Red Coarse to Fine Sandy CLAV, Moist		
1	S-1	1.0-1.5	0.1	0.3-2.0	Tellow to free Coarse to Fine Sandy CLAT, Moist		
-							
•							
2	S-2	2.0-2.5	0.1				
				2.8'-8.3'	Orange, Fine Sandy SILT, Moist		
	_						
_3	S-3	3.0-3.5	0.0				
- 1	S /	1015	0.1				
_4	5-4	4.0-4.3	0.1				
-							
5	S-5	5.0-5.5	0.1			1	Macrocore 5.0'-10.0'
						(Core Rec 4.7'/5.0'
•							
6	S-6	6.0-6.5	0.1				
-				6 9'	Crading to Tap		
-				0.0			
7	S-7	7.0-7.5	0.2				
	0.0	0.0.0.5	0.1				
_8	5-8	8.0-8.5	0.1	8.3'-8.8'	White to Tan Silty SAND, Moist		
-							
9	S-9	9.0-9.5	0.1	8.8'-9.5'	Tan, Coarse to Fine Sandy SILT		
- Ŭ							
e				9.5'-10.0'	White to Tan Silty SAND, Moist		
10							
• ——			-				
_11							
40							
- 12							
-							
13							
14							
•							
15		1		1			

	FCP			FIE			BORING NO.
PROJ	IECT NAME:	NCDOT U-	4758 Phase		PROJ. NO.: <u>IS14.314</u>		B99-2
		Approxima	Direct Due				
			SAEDACC	50 CO	DATE STARTED: <u>3/8/2022</u>		1: 100 ft
DRILL	FR [.]		Scott Hun	nt	SAMPLE METHOD: Macrocore		1: 10:0 It
DRILL	_ RIG:		Geoprobe 54	4DT	LOGGED BY: A. Roseman	COMMENT	Г: Elev: 942.2'
ť)		£	(1)				
DEPTH (f	SAMPLE NO.	SAMPLE DEPTH (f	PID READIN((ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
-				0.0'-0.3'	Topsoil	M	lacrocore 0.0'-5.0'
				0.3'-1.3'	Gray to Brown Sandy SILT, Moist	C	ore Rec 1.875.0
1	S-1	1.0-1.5	0.3		- , , , ,		
				1 3'-5 3'	Asphalt and Concrete Debris		
				1.0-0.0			
_2	S-2	2.0-2.5	no sample				
-							
_3	S-3	3.0-3.5	no sample				
	S 1	4045	no sample				
_4	3-4	4.0-4.5	no sample				
-							
5	S-5	5.0-5.5	no sample				
- Ŭ	-						
					Refusal at 5.3'. Offset 3.0' north and drilled to 6.0'		
6	S-6	6.0-6.5	0.3	6.0'-10.0'	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M	lacrocore 6.0'/10.0'
6	S-6	6.0-6.5 Sample	0.3 es highlighted	6.0'-10.0' red selecte	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M C	acrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6	S-6	6.0-6.5 Sample	0.3 es highlighteo	6.0'-10.0' d red selecte	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6 	S-6	6.0-6.5 Sample 7.0-7.5	0.3 es highlighted 0.2	6.0'-10.0'	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
_6 _7	S-6 S-7	6.0-6.5 Sample 7.0-7.5	0.3 es highlighted 0.2	6.0'-10.0'	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
_6 	S-6 S-7	6.0-6.5 Sample 7.0-7.5	0.3 es highlightec 0.2	6.0'-10.0'	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6 7 	S-7 S-8	6.0-6.5 Sample 7.0-7.5 8.0-8.5	0.3 es highlighted 0.2 0.2	6.0'-10.0'	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
_6 	S-7 S-7 S-8	6.0-6.5 Sample 7.0-7.5 8.0-8.5	0.3 es highlightec 0.2 0.2	6.0'-10.0'	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6 7 8 8	S-6 S-7 S-8	6.0-6.5 Sample 7.0-7.5 8.0-8.5	0.3 es highlightec 0.2 0.2	6.0'-10.0'	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6 7 8 9	S-6 S-7 S-8 S-9	6.0-6.5 Sample 7.0-7.5 8.0-8.5 9.0-9.5	0.3 es highlighted 0.2 0.2 0.2 0.2	6.0'-10.0' red selecte	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6 7 8 9	S-6 S-7 S-8 S-9	6.0-6.5 Sample 7.0-7.5 8.0-8.5 9.0-9.5	0.3 es highlightec 0.2 0.2 0.2	6.0'-10.0'	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6 7 8 9 9	S-6 S-7 S-8 S-9	6.0-6.5 Sample 7.0-7.5 8.0-8.5 9.0-9.5	0.3 es highlightec 0.2 0.2 0.2 0.1	6.0'-10.0'	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6 7 8 9 10	S-6 S-7 S-8 S-9	6.0-6.5 Sample 7.0-7.5 8.0-8.5 9.0-9.5	0.3 es highlighted 0.2 0.2 0.2 0.1	6.0'-10.0'	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6 7 8 9 10	S-6 S-7 S-8 S-9	6.0-6.5 Sample 7.0-7.5 8.0-8.5 9.0-9.5	0.3 es highlightec 0.2 0.2 0.2	6.0'-10.0'	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6 7 8 9 10 11	S-6 S-7 S-8 S-9	6.0-6.5 Sample 7.0-7.5 8.0-8.5 9.0-9.5	0.3 es highlightec 0.2 0.2 0.1	6.0'-10.0'	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6 7 8 9 10 11	S-6 S-7 S-8 S-9 S-9	6.0-6.5 Sample 7.0-7.5 8.0-8.5 9.0-9.5	0.3 es highlightec 0.2 0.2 0.2 0.1	6.0'-10.0' red selecte	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist C C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6 7 8 9 10 11	S-6 S-7 S-8 S-9	6.0-6.5 Sample 7.0-7.5 8.0-8.5 9.0-9.5	0.3 es highlightec 0.2 0.2 0.1	6.0'-10.0'	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6 7 8 9 10 11 11	S-6 S-7 S-7 S-8 S-9	6.0-6.5 Sample 7.0-7.5 8.0-8.5 9.0-9.5 	0.3 es highlightec 0.2 0.2 0.1	6.0'-10.0' red selecte	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6 7 8 9 10 11 11 12	S-6 S-7 S-8 S-9 S-9	6.0-6.5 Sample 7.0-7.5 8.0-8.5 9.0-9.5 	0.3 es highlightec 0.2 0.2 0.1	6.0'-10.0' red selecte	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist C C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6 7 8 9 10 11 11	S-6 S-7 S-7 S-8 S-9	6.0-6.5 Sample 7.0-7.5 8.0-8.5 9.0-9.5 	0.3 0.2 0.2 0.2 0.1 0.1	6.0'-10.0' red selecte	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6 7 8 9 10 11 11 12 13	S-6 S-7 S-7 S-8 S-9	6.0-6.5 Sample 7.0-7.5 8.0-8.5 9.0-9.5 9.0-9.5	0.3 es highlightec 0.2 0.2 0.1 0.1	6.0'-10.0' red selecte	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6 7 8 9 10 11 11 12 13	S-6 S-7 S-7 S-8 S-9 S-9	6.0-6.5 Sample 7.0-7.5 8.0-8.5 9.0-9.5 	0.3 es highlightec 0.2 0.2 0.1 0.1 0.1 0.1	6.0'-10.0' red selecte	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist C C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
	S-6 S-7 S-8 S-9 S-9	6.0-6.5 Sample 7.0-7.5 8.0-8.5 9.0-9.5 9.0-9.5 1.00 1	0.3 es highlightec 0.2 0.2 0.1 0	6.0'-10.0' red selecte	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist C C C C C C C C C C C C C C C C C C C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6 7 8 9 10 11 11 12 13 13	S-6 S-7 S-7 S-8 S-9 S-9	6.0-6.5 Sample 7.0-7.5 8.0-8.5 9.0-9.5 9.0-9.5	0.3 es highlightec 0.2 0.2 0.1 0.1	6.0'-10.0' red selecte	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
6 7 8 9 10 11 11 12 13 14	S-6 S-7 S-7 S-8 S-9 S-9	6.0-6.5 Sample 7.0-7.5 8.0-8.5 9.0-9.5 	0.3 es highlightec 0.2 0.2 0.1 0	6.0'-10.0' red selecte	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist M C C C C C C C C C C C C C C C C C C C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'
	S-6 S-7 S-7 S-8 S-9 S-9	6.0-6.5 Sample 7.0-7.5 8.0-8.5 9.0-9.5 9.0-9.5 9.0-9.5 9.0-9.5	0.3 es highlightec 0.2 0.2 0.1 0	6.0'-10.0' red selecte	White to Orange to Brown Coarse to Fine Sandy SI	LT, Moist C C C C C C C C C C C C C C C C C C C	lacrocore 6.0'/10.0' ore Rec 3.4'/4.0'

	FCD			FIF			BORING NO.
	LJI						
PRO	JECT NAME:	NCDOT U-	-4758 Phase	 thurset of act	PROJ. NO.: IS14.314		B99-3
	ATION: OF BORING		ct Push & Ha			SHEE.	T: 1 of 1
DRILI	LING FIRM:		SAEDACC	O	DATE FINISHED: 3/8/2022	TOTAL DEPTH	H: 10.0 ft
DRILI	LER:		Scott Hun	ıt	SAMPLE METHOD: Hand Auger & Macrocore	DEPTH TO GV	V: Dry ft
DRILI	L RIG:		Geoprobe 54DT		LOGGED BY: A. Roseman	COMMEN	T: Elev: 944.8'
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
				0.0'-0.3'	Gravel	F	land Auger 0.0'-5.0'
	S-1	1.0-1.5	0.3	0.3'-2.3'	Red to Yellow Coarse to Fine Sandy CLAY, Moist		
2	S-2	2.0-2.5	0.1				
<u> </u>				2.3'-9.4'	Red to Yellow Fine Sandy SILT, Moist		
3	S-3	3.0-3.5	0.1				
4	S-4	4.0-4.5	0.1				
- <u> </u>							
5	S-5	5.0-5.5	0.2			Ν	Acrocore 5.0'-10.0'
						C	Core Rec 4.6'/5.0'
6	S-6	6.0-6.5	0.2				·
-							
7	S-7	7.0-7.5	0.2				
-							
8	S-8	8.0-8.5	0.1				
e							
•				9.4'-10.0'	White to Tan Silty SAND, Moist		
_9	S-9	9.0-9.5	0.3				
10							
11							
ŀ							
t							
_12							
t							
12							
·							
14							
-							
15	1	1		1			

	ECD			FIF			BORING NO.
	LJI						
PROJ	IECT NAME:	NCDOT U	-4758 Phase I	 	PROJ. NO.: IS14.314		B99-4
		Approxima	Direct Pus	Inwest of so			1 of 1
			SAEDACC	0	DATE STARTED: <u>3/8/2022</u>	TOTAL DEPTH	100 ft
DRILL	_ER:		Scott Hun	t	SAMPLE METHOD: Macrocore	DEPTH TO GW:	Dry ft
DRILL	RIG:		Geoprobe 54	1DT	LOGGED BY: A. Roseman	COMMENT:	Elev: 943.6'
ft)	ш	E (H)	U				
TH (ЪГ Ю.	APL TH (FIELD CLASSIFICATION AND		REMARKS
Ē	SAN	SAN	AEA (p		PHYSICAL DESCRIPTION		
				0.0'-0.3'	Gravel	Ma	acrocore 0.0'-5.0'
-					Ded to Oregona Cilture OLAVA Maint	Co	ore Rec 3.6'/5.0'
1	S-1	1.0-1.5	0.2	0.3'-3.2'	Red to Orange Slity CLAY, Moist		
-							
2	S-2	2.0-2.5	0.2				
·			-				
_3	S-3	3.0-3.5	0.2	2 2' 7 0'	Pod to Orongo Sondy SILT Moist		
-				5.2-7.0			
	0.4	40.45					
_4	S-4	4.0-4.5	no sample				
5	S-5	50-55	no sample			Ma	acrocore 5.0'-10.0'
		0.0 0.0	ine earripie			Co	ore Rec 3.5'/5.0'
•							
6	S-6	6.0-6.5	0.2				
-							
-							
7	S-7	7.0-7.5	0.3	7.0'-10.0'	Orange to White Silty SAND, Moist		
•							
			0.5				,
_8	S-8	8.0-8.5	2.5				-
9	S-9	90-95	4.9				
_ ~				9.3'	Grading to White and Gray		
-							
10							
·			-				
·							
_11							
•							·
10			_				
12							
13			-				
			1				
14							
ŀ			-				
t							
15							

	ECD			FIFI				BORING NO.
	LJI							
PROJ	JECT NAME:	Approving	-4758 Phase I	ll	PRO	J. NO.: <u>IS14.314</u>		B99-5
			Direct Pus	h	DATE STARTED: 3/8/2	192	SHEET	· 1 of 1
DRILL	_ING FIRM:		SAEDACC	0	DATE FINISHED: 3/8/2	022	TOTAL DEPTH	: 10.0 ft
DRILL	_ER:		Scott Hun	nt	SAMPLE METHOD: Macro	ocore	DEPTH TO GW	': Dry ft
DRILL	RIG:		Geoprobe 54	4DT	LOGGED BY: A. Ro	seman	COMMENT	: Elev: 943.8'
(ft)	щ	_Е (ft)	Ů Z					
DEPTH	SAMPL NO.	SAMPL DEPTH	PID READIN (ppm)		FIELD CLASSIFI PHYSICAL DE	CATION AND SCRIPTION		REMARKS
				0.0'-0.3'	Topsoil		M	acrocore 0.0'-5.0'
-				0.3'-3.4'	Red to Orange Silty CLAY,	Moist		ore Rec 4.475.0
_1	S-1	1.0-1.5	0.2					
•								
2	S-2	20-25	0.1					
	0-2	2.0-2.0	0.1					
•								
3	S-3	3.0-3.5	0.1					
				3 //-8 1'	Red to Orange Clavey SII	T Moist		
				5.4 -0.1	The to orange orayey or			
_4	S-4	4.0-4.5	0.1					
	S-5	5055	no sample				M	acrocore 5 0'-10 0'
5	5-5	5.0-5.5	no sample				C	ore Rec 4.0'/5.0'
6	S-6	6.0-6.5	0.2					
-				6 6'	Grading to Orango			
-				0.0	Grading to Orange			
_7	S-7	7.0-7.5	0.3					
8	S-8	80-85	0.6					
	0-0	0.0-0.0	0.0	8.1'-10.0'	White to Orange Silty SAN	D, Moist		
·								
9	S-9	9.0-9.5	0.7					
-								
10								
!								
11			_					
ŀ			_					
12								
• ——								
[
_13			-					
-								
1/			+					
- 14								
15		1						

	FCD			FIE			BORING NO.
		NODOTI					
PROJ	IECT NAME:	Approvima	-4/58 Phase I	ll thwest of por	PROJ. NO.: IS14.314		D99-0
TYPE			Direct Pus	h	DATE STARTED: 3/8/2022	SHEET	
DRILL	LING FIRM:	·	SAEDACC	0	DATE FINISHED: 3/8/2022	TOTAL DEPTH	: 10.0 ft
DRILL	ER:		Scott Hun	t	SAMPLE METHOD: Macrocore	DEPTH TO GW	: Dry ft
DRILL	RIG:		Geoprobe 54	1DT	LOGGED BY: A. Roseman	COMMENT	: Elev: 942.8'
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
-				0.0'-0.3'	Topsoil	M	acrocore 0.0'-5.0'
 	S-1	1.0-1.5	0.8	0.3'-2.6'	Red to Orange Sandy CLAY, Moist		
2	S-2	2.0-2.5	0.6				
		2.0 2.0					
a				2.6'-10.0'	Red to White to Orange Silty SAND, Moist		
3	S-3	3.0-3.5	0.7				
1	S_4	4045	no sample				
_4	3-4	4.0-4.3	no sample				
5	S-5	5.0-5.5	0.5			M	acrocore 5.0-8.0'
-				5.1'	Grading to Brown and White and Orange	C	ore Rec 3.0'/3.0'
-							
_6	S-6	6.0-6.5	0.5				
7	S-7	7.0-7.5	0.6				
-							
8	S-8	8.0-8.5	0.3			M	acrocore 8.0'-10.0
							ore Rec 2.072.0
		0.0.0.5					
_9	5-9	9.0-9.5	0.6	9.3'-10.0'	Grading to Red and Brown		
					<u> </u>		
10			+				
<u> </u>							
11			_				
ŀ							
10			_				
F							
13							·
. —			+				
_14							
t							
15							

	ECD			FIEI				BORING NO.
	LJI					5 205		
PROJ	ECT NAME:	NCDOT U-	4758 Phase I	 + f +	-t	PROJ. NO.: <u>IS14.314</u>		B99-7
			t Puch & Har	nd Auger		3/8/2022	SHEE	T: 1 of 1
DRILL	ING FIRM:	Direc	SAEDACC		DATE STARTED	3/8/2022	TOTAL DEPT	TH: 10.0 ft
DRILL	ER:		Scott Hun	ıt	SAMPLE METHOD: Hand Auger & Macrocore DEPTH TO G		W: Dry ft	
DRILL	RIG:		Geoprobe 54	4DT	LOGGED BY:	A. Roseman	COMMEN	IT: Elev: 943.5'
H (ft)	LE .	H (ft)	DNG (L					
DEPTH	SAMF NO	SAMF DEPTH	PIC READ (ppn		PHYSICA	L DESCRIPTION		REMARKS
				0.0'-0.3'	Topsoil			Hand Auger 0.0'-5.0'
·	Q 1	1015	0.2	0.3'-1.9'	Red Clayey SAND, M	oist		
- '	5-1	1.0-1.5	0.2					
•				1.9'-10.0'	Orange to White Silty	SAND, Moist		
_2	S-2	2.0-2.5	0.2					
3	S-3	3.0-3.5	0.2					
-								
· <u> </u>	S-4	4 0-4 5	0.2					
	U T	4.0 4.0	0.2					
a								
5	S-5	5.0-5.5	no sample					Macrocore 5.0'-10.0'
-								Core Rec 3.4'/5.0'
•								
_6	S-6	6.0-6.5	0.3					
7	S-7	7.0-7.5	0.2					
-								
•								
8	S-8	8.0-8.5	0.2	0 1'	Grading to White			
-				0.1	Grading to White			
	50	0.0.0.5	0.4					
_9	3-9	9.0-9.5	0.4					
10								
• ——								
•								
11								
i								
12								
ŀ								
_13								
ŀ			1					
4.4								
_14								
15								

	FCP			FIF			BORING NO.
	LJI	NODOTI					
PROJ	ECT NAME:	NCDOT U-	4/58 Phase	ll	PROJ. NO.: IS14.314		<u>раа-р</u>
		Approximat	ely 27.25 SO	umeast of so		011555	
		Direc	SAEDACC	na Auger :0	DATE STARTED: 3/8/2022		1: 1011 1: 100 ft
	FR.		Scott Hun	nt	SAMPLE METHOD: Hand Auger & Macrocore		1. 10.0 It
			Geoprobe 54	4DT	LOGGED BY: A. Roseman	COMMENT	Γ: Elev: 943.0'
ť)		f)	(1)				
DEPTH (f	SAMPLE NO.	SAMPLE DEPTH (f	PID READING (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
				0.0'-0.3'	Topsoil	Н	and Auger 0.0'-5.0'
	S-1	10-15	0.1	0.3'-5.0'	Red to Orange Clayey SAND		
		1.0 1.0	••••				
2	S-2	2.0-2.5	0.6				
-							
_3	S-3	3.0-3.5	0.2				
	C 4	4045	0.4				
_4	5-4	4.0-4.5	0.4				
5	S-5	50-55	0.2	5.0'-8.1'	Red to Orange, Micaceous, Clavey SILT, Moist		
						M	acrocore 5.0'-10.0'
						С	ore Rec 5.0'/5.0'
6	S-6	6.0-6.5	0.2				
-							
-							
7	S-7	7.0-7.5	0.2				
			0.0				
8_8	S-8	8.0-8.5	0.2	8.1'-10.0'	Brown to Orange, Micaceous, Fine Sandy SILT, Mo	oist	-
a	S-9	9 0-9 5	0.3				
	0.0	0.0 0.0	0.0				
10							·
F							
11							
_ 12							
12							
_ 13							
- <u> </u>							
14							
- <u> </u>							
15							<u> </u>

	ECD			FIE		06		BORING NO.
	C JI			1 16		00		
PROJ	ECT NAME:	NCDOT U-	4758 Phase I		PROJ. N	NO.: IS14.314		B99-9
		Approxima	Direct Due)	QUEET	· 1 of 1
			SAEDACC	0	DATE STARTED: 3/8/2022	- >		· 10.0 ft
DRILL	ER:		Scott Hun	t	SAMPLE METHOD: Macroco	- ore	DEPTH TO GW	: Dry ft
DRILL	RIG:		Geoprobe 54	1DT	LOGGED BY: A. Rose	man	COMMENT	: Elev: 939.3'
(ft)	щ	Ē.	Ű					
ОЕРТН	SAMPL NO.	SAMPL DEPTH	PID READIN (ppm)		FIELD CLASSIFICA PHYSICAL DESC	TION AND RIPTION		REMARKS
		_		0.0'-0.3'	Topsoil		Ma	acrocore 0.0'-5.0'
•				0.3'-3.8'	Red to Brown to Orange Sand	dv CLAY. Moist	Co	ore Rec 3.9'/5.0'
_1	S-1	1.0-1.5	0.2			.,		
•								
_2	S-2	2.0-2.5	0.2					
•								
3	S-3	3.0-3.5	0.2					
- °								-
•				3.8'-8.7'	Orange to Brown Coarse San	dv SILT. Moist		
4	S-4	4.0-4.5	no sample		••••••••••••••••••••••••••••••••••••••	,,		
•								
-	0.5							
_5	5-5	5.0-5.5	no sample				Ma	acrocore 5.0'-10.0'
							Co	ore Rec 4.1'/5.0'
6	S-6	6.0-6.5	0.3					
7	S-7	7.0-7.5	0.2					
•								·
0	C 0	0005	0.1					
_0	3-0	0.0-0.5	0.1					
				8 7'-10 0'	White to Tan to Gray Silty SA	ND Moist		
9	S-9	9.0-9.5	0.1	0.7 - 10.0		ND, WOISt		
•								
10								
. 11								·
								·
12								
								·
40								
_13								
14								
.								
15	1							

	ECD			FIE				BORING NO.
	C JI							
PROJ	ECT NAME:	NCDOT U-	-4758 Phase I			PROJ. NO.: IS14.314		B99-10
		Approxima	Direct Pus	t of southeas		. 3/8/2022		- 1 of 1
			SAEDACC	0	DATE STARTEL): <u>3/8/2022</u>): <u>3/8/2022</u>		1011 100 ft
DRILL	ER:		Scott Hun	t	SAMPLE METHOD	D: Macrocore	DEPTH TO GW	/: Dry ft
DRILL	RIG:		Geoprobe 54	1DT	LOGGED BY	Y: A. Roseman	COMMENT	: Elev: 939.2'
(ft)	щ	E (ft)	Ű					
DEPTH	SAMPL NO.	SAMPL DEPTH	PID READIN (ppm)		FIELD CL PHYSIC	ASSIFICATION AND		REMARKS
-				0.0'-0.3'	Topsoil		M	acrocore 0.0'-5.0'
-				0.3'-2.8'	Tan to Brown Sand	ly CLAY, Moist		ore Rec 3.575.0
1	S-1	1.0-1.5	0.5					
-	S 0	2025	0.4					
	5-2	2.0-2.5	0.4					
-				2 8' 40 0'	Top to White to Pro	war Candy Cll T. Maiat		
3	S-3	3.0-3.5	0.2	2.0-10.0		own Sandy SILT, Moist		
-								
-								
4	S-4	4.0-4.5	no sample					
-	о <i>г</i>		no comple				N	
_5	5-5	5.0-5.5	no sample				C	ore Rec 3.5'/5.0'
-								
6	S-6	6.0-6.5	0.6					
- ⁻								
-								
7	S-7	7.0-7.5	0.4					-
			0.4					
8_8	S-8	8.0-8.5	0.4					_
-								
9	S-9	9.0-9.5	1.1					
-								
·								
10								
_11								
-								
12								
ŀ								
13								
ŀ								
_14								
[
15								
	FCP			FIFI			BORING NO.	
------------	---------------	----------------------	-------------------------	------------	--	-------------	---	
	LJI	NODOTU					D00 11	
PROJ	ECT NAME:	Approvima	-4/58 Phase I	II	PROJ. NO.: IS14.314		D99-11	
TYPE			Direct Pus	h	DATE STARTED: 3/8/2022	SHEF	[
DRILL	LING FIRM:		SAEDACC	0	DATE FINISHED: 3/8/2022	TOTAL DEPTH	H: 10.0 ft	
DRILL	ER:		Scott Hun	ıt	SAMPLE METHOD: Macrocore	DEPTH TO GW	/: 3.5 ft	
DRILL	RIG:		Geoprobe 54	4DT	LOGGED BY: A. Roseman		Г: <u>Elev: 923.4'</u>	
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS	
•				0.0'-0.3'	Topsoil	N C	lacrocore 0.0'-5.0' core Rec 3 8'/5 0'	
1	S-1	1.0-1.5	0.3	0.3'-2.7'	Tan Coarse Sandy CLAY, Moist			
2	S-2	20-25	0.1					
	0-2	2.0-2.0	0.1					
				2 7'-8 3'	Tan to Grav Micaceous Sandy SILT Moist			
3	S-3	3.0-3.5	0.3					
_4	S-4	4.0-4.5	no sample					
•								
5	S-5	5.0-5.5	no sample			N	lacrocore 5.0'-10.0'	
-						C	core Rec 3.3'/5.0	
6	S-6	6.0-6.5	0.3					
•								
	0.7							
_ /	5-7	7.0-7.5	0.3					
-								
8	S-8	8.0-8.5	0.5					
				9 2' 10 0'	Orange to White to Cray Silty SAND Wet			
-				8.3-10.0	Grange to write to Gray Silty SAND, wet			
9	S-9	9.0-9.5	0.4				_	
10								
ŀ								
11							·	
·								
_12								
[
13								
			1					
14								
<u> </u>								
15								
			1					

	FCD			FIF			BORING NO.
		NODOTU					DOD 10
PROJ	IECT NAME:	Approving	-4758 Phase I	II orthoast of sou	PROJ. NO.: IS14.314		B99-12
TYPE			Direct Pus	sh		SHEET	• 1 of 1
DRILL	_ING FIRM:		SAEDACC	0	DATE FINISHED: 3/8/2022	TOTAL DEPTH	l: 10.0 ft
DRILL	ER:		Scott Hun	nt	SAMPLE METHOD: Macrocore	DEPTH TO GW	/: Dry ft
DRILL	- RIG:		Geoprobe 54	4DT	LOGGED BY: A. Roseman	COMMENT	: Elev: 929.0'
ft)	ш	щ(t	U			_	
ОЕРТН (SAMPL NO.	SAMPL DEPTH (PID READIN (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
				0.0'-0.3'	Topsoil	M	acrocore 0.0'-5.0'
				0.3'-9.8'	Tan Sandy CLAY, Moist	С	ore Rec 3.7'/5.0'
1	S-1	1.0-1.5	0.6	0.0 0.0			
-							
-							
2	S-2	2.0-2.5	0.5				
· · · · · · · · · · · · · · · · · · ·							
	6.2	2025	0.5				
_3	S-3	3.0-3.5	0.5				
-							
4	S-4	4 0-4 5	no sample				
-	-						
a							
5	S-5	5.0-5.5	0.4				
						M	acrocore 5.0'-10.0'
-							
6	S-6	6.0-6.5	0.3				
-	0.7	7075	0.5				
_ ′	5-1	7.0-7.5	0.5				
-							
8	S-8	8.0-8.5	0.3				
				0.41			
				8.4'	Grading to Gray with Orange		
9	S-9	9.0-9.5	0.4				
-				9.8'-10.0'	Orange Clavev SAND. Moist		
10							
11							
-							
-							
12							
<u> </u>							
_13			1				
			1				
			_				
14			+				
15			+				

	FCD			FIE			BORING NO.
		NODOTI					DOD 12
PROJ	IECT NAME:	Approvimo	-4/58 Phase I	ll modao of p	PROJ. NO.: IS14.314		D99-13
			Direct Pus	h euge of pa			. 1 of 1
			SAEDACC	:0	DATE STARTED: 3/8/2022		1001 ft
DRILL	_ER:		Scott Hun	ıt	SAMPLE METHOD: Macrocore	DEPTH TO GW	/: Drv ft
DRILL	_ RIG:		Geoprobe 54	4DT	LOGGED BY: A. Roseman	COMMENT	: Elev: 926.2'
£		шÛ	Ċ				
DЕРТН (I	SAMPLE NO.	SAMPLE DEPTH (PID READIN (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
-				0.0'-0.3'	Topsoil	M	acrocore 0.0'/5.0'
-				0.3'-2.3'	Tan and Brown Sandy CLAY. Moist	С	ore Rec 4.6'/5.0'
1	S-1	1.0-1.5	0.2	0.0 2.0			
2	S-2	2.0-2.5	0.3	0.01.7.01			
				2.3-1.2	Tan and Gray Clayey SAND, Moist		
_		0.0.05					
_3	S-3	3.0-3.5	0.3				
-							
- 1	S_4	1015	0.3				
_4	5-4	4.0-4.0	0.0				
-							
5	S-5	5.0-5.5	no sample			M	acrocore 5.0'-10.0'
						С	ore Rec 4.0'/5.0'
6	S-6	6.0-6.5	0.2				
-			_				
7	S-7	7.0-7.5	0.3				
				7.2'-10.0'	Gray to Brown to White Micaceous Sandy SILT, Me	DIST	
_8	S-8	8.0-8.5	1.3				
·	8.0	0005	0.4				
_9	3-9	9.0-9.5	0.4				
-							
10							
· · · ·							
•							
11							
							·
12							
_13							
11							
_ 14							
[
15							

	ECD			FIE			BORING NO.
	CJI			1 1 -			
PRO	IECT NAME:	NCDOT U	-4758 Phase	 	PROJ. NO.: IS14.314		B99-14
		Approxima	Direct Pue	nwest from e		<u>eucct</u>	· 1 of 1
	ING FIRM		SAEDACC	0	DATE STARTED: <u>3/8/2022</u>		· 10.0 ft
DRILI	ER:		Scott Hun	t	SAMPLE METHOD: Macrocore	DEPTH TO GW	: Dry ft
DRILI	RIG:		Geoprobe 54	4DT	LOGGED BY: A. Roseman	COMMENT	: Elev: 932.5'
(ft)	щ	-E (ft)	Ů Z (
DEPTH	SAMPI NO.	SAMPI DEPTH	PID READIN (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
				0.0'-0.3'	Topsoil	M	acrocore 0.0'-5.0'
				0.3'-10.0'	Brown Sandy CLAY, Moist		
_1	S-1	1.0-1.5	1.0				
·							
2	S-2	20-25	0.4	1.7'	Grading to Tan		
	02	2.0 2.0	0.1.				
m							
3	S-3	3.0-3.5	0.4				
-							
_4	S-4	4.0-4.5	no sample				
5	S-5	50-55	0.6			M	acrocore 5 0'-10 0'
	00	0.0-0.0	0.0			C	ore Rec 5.0'/5.0'
6	S-6	6.0-6.5	0.3				
				6.2'	Grading to Tan and Gray		
_7	S-7	7.0-7.5	0.5				
-							
8	S-8	8 0-8 5	0.3				
- Ŭ							
-							
9	S-9	9.0-9.5	0.7				
- 10							
_10							-
[1				
11							
12							-
ŀ							
-			1				
_13							
[1				
14							
•							
15							

	ECD			FIE			BORING NO.
	LJI						
PROJ	ECT NAME:	NCDOT U-	4758 Phase	 	PROJ. NO.: IS14.314		B99-15
		Approximat	Direct Pus			SHEE.	T: 1 of 1
			SAEDACC	0	DATE STARTED: <u>3/8/2022</u>		H: 10.0 ft
DRILL	ER:		Scott Hun	nt	SAMPLE METHOD: Macrocore	DEPTH TO GV	V: Drv ft
DRILL	RIG:		Geoprobe 54	4DT	LOGGED BY: A. Roseman	COMMEN	T: Elev: 933.5'
(H)	ш	E (#)	Ū			_	
ЕРТН (SAMPL NO.	SAMPL EPTH (PID READIN (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
				0.0'-0.3'	Topsoil	Ν	lacrocore 0.0'-5.0'
				0 3'-3 4'	Red to Tan Sandy CLAY Moist	0	Core Rec 5.0'/5.0'
1	S-1	1.0-1.5	0.2	0.0 0.1			
•							
_2	S-2	2.0-2.5	0.3				
3	S-3	30-35	0.4				
		5.0 0.0	U . T				
				3 4'-4 5'	Red to Tan to White Coarse Sandy SILT Moist		
4	S-4	4.0-4.5	0.4	0.4 4.0			
				4.5'-7.9'	Tan to Orange, Micaceous Fine Sandy SILT, Mo	ist	
_5	S-5	5.0-5.5	0.2				acrocore 5 0'-10 0'
						C	Core Rec 4.3'/5.0'
. 6	5-6	6065	0.9				
_0	3-0	0.0-0.5	0.3				-
7	S-7	7.0-7.5	0.8				
-				7.9'-10.0'	Tan to White to Gray Silty Coarse SAND, Moist		
8	S-8	8.0-8.5	1.1				
- <u> </u>	8.0	0.0.0.5	0.4				
_ 9	3-8	9.0-9.0	0.4				
10							
! <u> </u>							
_11							
10							
13							
ŀ							
14							
<u> </u>							
15	1		1	1			

APPENDIX B

RED LAB LABORATORY TESTING REPORT

			6		REC	٥L٨	B					Λ	
\mathbf{O}	ED			9	APID ENVIRON	MENTAL DIAGNO	DSTICS				_	J	<u>QROS</u>
				Hydroca	arbon An	alysis R	esults						
Client: Address:	ESP GREENSBORO, NC								Sa Sampl Samp	imples les extr les ana	taken acted Ilysed		Tuesday, March 8, 2022 Tuesday, March 8, 2022 Friday, March 11, 2022
Contact:	NED BILLINGTON									Ор	erator		TORI KELLY
Project:	1514.314												
													U00904
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP		Ratios		HC Fingerprint Match
										% light	% mid	% heavy	
S	B99-2, S-6	15.7	<0.39	<0.39	0.96	0.96	0.33	<0.13	<0.016	0	76.4	23.6	V.Deg.Diesel 78.5%,(FCM)
S	B99-4, S-9	25.5	<0.64	<0.64	10.6	10.6	2.9	<0.2	<0.025	0	86.2	13.8	Deg.Diesel 63.6%,(FCM),(BO)
S	B99-5, S-9	21.5	<0.54	<0.54	3.5	3.5	1.4	<0.17	<0.022	0	76.1	23.9	Deg.Fuel 60.5%,(FCM)
S	B99-6, S-9	10.1	<0.25	<0.25	<0.25	<0.25	<0.05	<0.08	<0.01	0	0	0	,(FCM)
S	B99-8, S-2	15.2	<0.38	<0.38	<0.38	<0.38	<0.08	<0.12	<0.015	0	0	0	PHC not detected
S	B99-9, S-6	16.7	<0.42	<0.42	<0.42	<0.42	<0.08	<0.13	<0.017	0	0	0	PHC not detected
S	B99-10, S-6	16.9	<0.42	<0.42	2.5	2.5	0.58	<0.13	<0.017	0	100	0	Deg.Diesel 75.8%,(FCM)
S	B99-11, S-3	10.9	<0.27	<0.27	<0.27	<0.27	<0.05	<0.09	<0.011	0	0	0	,(FCM)
S	BPP-12, S-7	15.2	<0.38	<0.38	<0.38	<0.38	<0.08	<0.12	<0.015	0	0	0	PHC not detected,(BO)
S	BPP-13, S-8	12.8	<0.32	<0.32	<0.32	<0.32	<0.06	<0.1	<0.013	0	100	0	Residual HC
	Init	ial Calibrator	QC check	OK					Final F	CMQC	Check	OK	100.8 %
Results gen Fingerprints	erated by a QED HC-1 analyser. Co provide a tentative hydrocarbon iden	oncentration value	es in mg/kg previations a	for soil sample ire:- FCM = F	es and mg/L f Results calcula	or water sam ated using Fu	ples. Soil val ndamental Cali	ues are not ibration Mod	corrected for	or moistu nfidence	re or sto for samp	ne conte ole finger	ent rprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present

Q	ED		E				B				_	\int	<u>QROS</u>
				Hydroca	arbon An	alysis R	esults						
Client: Address:	ESP GREENSBORO, NC								Sa Sampl Samp	mples es exti les ana	taken racted alysed		Tuesday, March 8, 2022 Tuesday, March 8, 2022 Friday, March 11, 2022
Contact:	NED BILLINGTON									Ор	erator		TORI KELLY
Project:	1514.314												
													U00904
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP		Ratios		HC Fingerprint Match
										% light	% mid	% heavy	
S	B99-15, S-8	11.4	<0.28	<0.28	2	2	0.38	<0.09	<0.011	0	100	0	Deg.Diesel 54.5%,(FCM)
s	B99-6, S-1	11.6	<0.29	<0.29	<0.29	0.15	0.15	<0.09	<0.012	0	57.2	42.8	Residual HC
S	B99-4, S-7	14.4	< 0.36	<0.36	5.1	5.1	3.1	<0.12	<0.014	0	83.4	16.6	Deg.Fuel 80.6%,(FCM)
	Ini	tial Calibrator	QC check	OK					Final F	CM QC	Check	OK	99.2 %
Results gen Fingerprints	erated by a QED HC-1 analyser. C provide a tentative hydrocarbon iden	oncentration value tification. The abl	es in mg/kg previations a	for soil sampl are:- FCM = F	es and mg/L f Results calcula	for water sam ated using Fu	ples. Soil val ndamental Cal	ues are not ibration Mo	corrected for de : % = cor	or moistu nfidence	ire or sto for samp	one cont ole finge	ent rprint match to library

APPENDIX C CHAIN-OF-CUSTODY FORM

Client Name:	ESP							RED Lab, I	LC			
Address:	A.15-							5598 Marvin K Moss Lane				
•	ON FIL	E	-					Wilmingto	C Bldg, Sul	ng 2003		
Contact:	NED BI	LINGTON = T())	211					Fach LIVE sa	mple will be	analyzed for		
Email:	The state	D 1514	1014					total BTEX,	total BTEX, GRO, DRO, TPH, PAH total			
Phone #:	ONF	VE	1	RAPI		ONMENTAL DIA	GNOSTICS	aromatics a	nd BaP. Stand	dard GC		
			1					Solvents: VC	C, 1,1 DCE, 1,1	2 cis DCE, 1,2		
Collected by:	ANNAF	Cosonar			ISTODY		CAL REQUEST FORM	trans DCE, T analytes in t	rans DCE, TCE, and PCE. Specify target analytes in the space provided below.			
Sample Collection	TAT Requested		Analysi	is Type								
Date/Time	24 Hour	48 Hour	UVE	GC	- Initials	S	Sample ID	Total Wt.	Tare Wt.	Sample Wt.		
2-8-22					CLE	B99-7 .5-1	f 0'	48.7	19.8	8.9		
		1	1		1	B99-4,5-9	}	49.9	39.7	10.2		
						B99-5,5-9	1	45.8	39.3	6.5		
						B99-6; S-9		50.0	40.1	9.9		
					<u> </u>	1399-8, S-Z		49.1	39.9	9.2		
						B99-9,5-6	•	48.5	40.1	8.4		
						B99-10,5-6		41.1	2014	8.5		
					+	1299-17 5-3		51.0	20 7	97		
					+	199 12 C.C.	•	607	29 0	10.0		
2.0.77			-		APP	B1-13,5-0 R99-15 C-B		627	40.41	11.3		
2-0-77					1.0P	B99-6 5-1		42.0	40.0	8.6		
2-8-77					CRP	899-4.5-7		49.8	40.1	g.7		
2000						<u>N 1 1 0 .</u>			10.1			
<u></u>												
4		C.										
COMMENTS/REQU	JESTS:	X				TARGET GC/UVF AN	ALYTES:	9				
A Relinqu	uished by				Accep	oted by	Date/Time	RE	D Lab USE	ONLY		
al -			3-9-77		-			(12)	et .			
Relinqu	uished by		0100		Accep	oted by	Date/Time		2-707	7-1		
				1000	al 1.	100111	and an and the second and the second state of the second state of the second state of the second state of the s	The Ale	3-202	6		

REPORT ON GEOENVIRONMENTAL PHASE II GEOPHYSICAL SERVICES

PARCEL 155, CHARLES R. AND MATTIE W. NUCKLES, 2708 SANDY RIDGE RD., COLFAX, NC

WBS 40251.1 ESP Project No. IS14.335

Prepared For: NCDOT Geotechnical Engineering Unit 1020 Birch Ridge Drive Raleigh, NC 27610

Prepared By:

ESP Associates, Inc 7011 Albert Pick Road Suite E Greensboro, NC 27409

January 26, 2023

January 26, 2023

Mr. Gordon Box, PG ghbox@ncdot.gov Geotechnical Engineering Unit North Carolina Department of Transportation 1020 Birch Ridge Drive Raleigh, NC 27610

Reference: **REPORT ON GEOENVIRONMENTAL PHASE II GEOPHYSICAL SERVICES** PARCEL 155, CHARLES R. AND MATTIE W. NUCKLES, 2708 SANDY RIDGE RD., COLFAX, NC ESP Project No. IS14.335

TIP Number:	U-4758
WBS Number:	40251.1
County:	GUILFORD
Description:	Johnson St - Sandy Ridge Road from Skeet Club Road to I-40

Dear Mr. Box:

ESP Associates, Inc. (ESP) is pleased to submit this report on our GeoEnvironmental Phase II Geophysical Investigation of the subject parcel. This work was performed in accordance with your Request for Proposal dated December 6, 2022 and our Cost Proposal dated December 22, 2022.

We appreciate the opportunity to assist you during this phase of the project. If you should have any questions concerning this report, or if we may be of further assistance, please contact us.

Sincerely,

ESP Associates, Inc.

Edward D. Billington, PG Senior Managing Geophysicist

CRP/CWA/EDB

Electronic submission via email

not considered Final unless all signatures are completed

ESP Associates, Inc. 7011 Albert Pick Road, Suite E - Greensboro, NC 27409 336.334.7724 • fax 803.802.2515 www.espassociates.com

Table of Contents

1.0 INT	RODUCTION	1
1.1	Purpose of Work	1
1.2	Background Information	1
2.0 FIE		1
2.1	Site Observations	1
2.2	Geophysical Data Collection	1
3.0 DIS	SCUSSION OF RESULTS	2
4.0 CO	NCLUSIONS AND RECOMMENDATIONS	2
5.0 LIN	NITATIONS	2

FIGURES

Figure 1	Parcel 155, C.R. & M.W. Nuckles, Site Vicinity Map
Figure 2	Parcel 155, C.R. & M.W. Nuckles, Site Photographs
Figure 3	Parcel 155, C.R. & M.W. Nuckles, EM61 Early Time Gate Data
Figure 4	Parcel 155, C.R. & M.W. Nuckles, EM61 Differential Data
Figure 5	Parcel 155, C.R. & M.W. Nuckles, EM61 Early Time Gate Data on Plan Sheet
Figure 6	Parcel 155, C.R. & M.W. Nuckles, EM61 Differential Data on Plan Sheet
Figure 7	Legend for Plan Sheet Figures

1.0 INTRODUCTION

1.1 **Purpose of Work**

The NCDOT is planning to widen 4.4 miles of Johnson Street and Sandy Ridge Road from Skeet Club Road to Interstate 40 in High Point. The proposed work would help reduce congestion and traffic delays by widening the road from two to four lanes. The NCDOT requested that ESP provide geophysical services to locate underground storage tanks (USTs) at Parcel 155 and, after the parcel is acquired, remove the heating oil tank reported to be present by the current owner. Parcel 155 is located at 2708 Sandy Ridge Rd. in Colfax, NC (Figure 1).

1.2 Background Information

We checked the following online sources with the results summarized below:

- NCDEQ Registered Tank Database:
 - Nothing found for this site.
- North Carolina Department of Environmental Quality (NCDEQ) Division of Waste Management Site Locator Tool and the UST Database:
 - Nothing found for this site.
- Guilford County GIS:
 - Property owner is listed as NCDOT (formerly Charles R. and Mattie W. Nuckles).

2.0 FIELD PROCEDURES

2.1 Site Observations

During our January 17, 2023 site visit, there was a single-family residence currently occupied by Mattie W. Nuckles (Figure 2). According to the resident, the former heating oil UST was located outside the kitchen window on the rear side of the house and may have been filled with sand when abandoned. Currently, there is a wooden deck located outside the kitchen window (Figure 2B). A cut metal pipe that penetrated through the brick foundation was seen near the northwest corner of the deck by the kitchen window; this pipe may have been the product line for the former heating oil UST. The site contained multiple concrete pavers, drain lines, drain grates, and cut-off metal fence posts. The site also contained an abandoned well, a chicken coop, a shed, a wooden deck, and a propane AST. The ground surface was covered by concrete pavement and grass.

2.2 Geophysical Data Collection

On January 18,19, and 20, 2023, ESP Staff Scientist Cody Allen, GIT collected metal detection data and ground-penetrating radar (GPR) images at the site. The metal detection data were collected over the accessible areas of the site using a Geonics EM61 MK2 instrument (EM61) at an approximate three-foot line spacing. The EM61 data were processed and reviewed by ESP personnel Edward (Ned) Billington, PG and Ryan Pastrana, PG (Figures 3 and 4). GPR data were collected over selected EM61 anomalies using a Sensors and Software Noggin 250 GPR system. Approximate locations of the EM61 data, relevant site

features, and GPR mark-outs were obtained using a Geode differential GPS (DGPS) instrument connected to a MESA field computer.

The EM61 early time gate response and differential response are shown on the plan sheet on Figures 5 and 6, respectively. The plan sheet data were provided by the NCDOT on January 20, 2023 and include the 75 percent Right of Way (ROW) design plans.

3.0 DISCUSSION OF RESULTS

The EM61 early time gate data show the response from both shallow and deeper metallic objects (Figure 3). The differential response reduces the effect of shallow anomalies and emphasizes anomalies from larger and more deeply buried metallic objects, such as USTs (Figure 4). Our evaluation of the EM61 data indicated several anomalies that could not be attributed to known features; GPR data collected over these anomalies indicated that they were caused by metal drain grates, metal drain pipes, the metal shed door, and the metal carport.

The presence of the wooden deck prevented exploration of that area for the presence of the former heating oil UST. ESP personnel attempted to remove the deck planks in order to probe the soil beneath the deck but the screws were rusted and the planks could not be removed without causing damage to the deck.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Our review of the geophysical data collected for Parcel 155 does not indicate the presence of metallic USTs within the accessible areas of the geophysical study area. However, the former heating oil UST could be located beneath the wooden deck on the east (rear) side of the house near the kitchen window. Once the deck is removed for construction, this area should be investigated for the reported UST.

5.0 LIMITATIONS

ESP's professional services have been provided in accordance with generally accepted guidelines for performing geophysical surveys. It is recognized that the results of geophysical surveys are non-unique, subject to interpretation, and limited by the specific equipment, methodology, and site conditions. It is possible that not all subsurface features of interest have been identified by this work. The passage of time may result in a change in the conditions at this site. ESP does not warrant against future operations or conditions, or against operations or conditions present of a type or at a location not included as part of this work.

FIGURE 1 – PARCEL 155,	PROJECT NO. IS14.335	
SITE VICIN	SCALE NTS	
	DATE 1/25/2023	
GUILFORD COUNTY,	^{BY} CWA/CRP	
		_

T U-4758 ROM SKEET CLUB RD TO I-40 ORTH CAROLINA

336.334.7724

www.espassociates.com

A. Photograph of west side of site and front of house, facing east.

C. Photograph of south side of house showing AC unit, satellite dish, and propane AST, facing north.

B. Photograph of east side of site and rear of house, facing west. The former heating oil UST is reportedly located outside the kitchen widow beneath the deck.

PROJECT NO. IS14.335	FIGURE 2 – PARCEL 155, C.
SCALE N/A	SITE PHOTOG
DATE 1/25/2023	
CWA/CRP	GUILFORD COUNTY, NO

C. Photograph of north side of house, showing metal carport, building, facing southeast.

.R. & M.W. NUCKLES GRAPHS CT U-4758

ROM SKEET CLUB RD TO I-40 ORTH CAROLINA

ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

www.espassociates.

EXPLANATION

Miscellaneous metal object (pipe, debris, etc.) \diamond Utility Box (water meter, electrical outlet, etc.) Ħ Drop Inlet or Catch Basin \bigcirc Culvert, storm drain pipe Utility pole ø Guy wire anchor Sign pole, other pole Buried utility line (marked by others) EM61 Data Collection Areas **GPR** Data Collection Areas

ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

www.espassociates.

500
480
460
440
420
400
380
360
340
320
300
280
260
240
220
200
180
160
140
120
100
70
0
-8000

EXPLANATION

Miscellaneous metal object (pipe, debris, etc.) Utility Box (water meter, electrical outlet, etc.) Ħ Drop Inlet or Catch Basin \bigcirc Culvert, storm drain pipe Utility pole ø +Guy wire anchor Sign pole, other pole Buried utility line (marked by others) EM61 Data Collection Areas **GPR** Data Collection Areas

ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

www.espassociates.

Note: Not to Scale

BOUNDARIES AND PROPERTY:	
State Line	
County Line	
Township Line	
City Line	
Perendition line	- <u> </u>
	- ĕ
Computed Property Corner	- ^
Existing Concrete Monument (ECM)	- 22
Parcel/Sequence Number	- 19
Existing Fence Line	xx
Proposed Woven Wire Fence	
Proposed Chain Link Fence	
Proposed Barbed Wire Fence	
Existing Wetland Boundary	
Proposed Wetland Boundary	
Existing Endangered Animal Boundary	
Existing Endangered Plant Boundary	
Existing Historic Property Boundary	
Known Contamination Area: Soil	- - 392 - s - 392 - s -
Potential Contamination Area: Soil	107 1- 107 1-
Known Contemination Area. Water	``@`-`*-``@`-*-
	205 ·· 206 ··
	 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
f anteminated Star Fnaun ar Vatantial	
	as as
BUILDINGS AND OTHER CULT	URE:
BUILDINGS AND OTHER CULT Gas Pump Vent or U/G Tank Cap	- 0
BUILDINGS AND OTHER CULT Gas Pump Vent or U/G Tank Cap Sign	- 0 - 9
BUILDINGS AND OTHER CULT Gas Pump Vent or U/G Tank Cap Sign Well	- 0 - 9 - 8
BUILDINGS AND OTHER CULT Gas Pump Vent or U/G Tank Cap Sign Well Small Mine	- 0 - 9 - 9 - 8
BUILDINGS AND OTHER CULT Gas Pump Vent or U/G Tank Cap Sign Well Small Mine Foundation	- 0 - 9 - 9 - 9 - •
BUILDINGS AND OTHER CULT Gas Pump Vent or U/G Tank Cap Sign Well Small Mine Foundation Area Outline	- 0 - 9 - 9 - 8 - × - ×
BUILDINGS AND OTHER CULTO Gas Pump Vent or U/G Tank Cap Sign Well Small Mine Foundation Area Outline Cemetery	- 0 - 9 - 9 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
BUILDINGS AND OTHER CULTO Gas Pump Vent or U/G Tank Cap Sign Well Small Mine Foundation Area Outline Cemetery Building	→ → → → → → → → → → → → → → → → → → →
BUILDINGS AND OTHER CULTO Gas Pump Vent or U/G Tank Cap Sign Well Small Mine Foundation Area Outline Cemetery Building School	
BUILDINGS AND OTHER CULTO Gas Pump Vent or U/G Tank Cap Sign Well Small Mine Foundation Area Outline Cemetery Building School Church	
BUILDINGS AND OTHER CULTO Gas Pump Vent or U/G Tank Cap Sign Well Small Mine Foundation Area Outline Cemetery Building School Church Dam	
BUILDINGS AND OTHER CULT Gas Pump Vent or U/G Tank Cap Sign Well Small Mine Foundation Area Outline Cemetery Building School Church Dam HYDROLOGY:	
BUILDINGS AND OTHER CULT Gas Pump Vent or U/G Tank Cap Sign Well Small Mine Foundation Area Outline Cemetery Building School Church Dam HYDROLOGY: Stream or Body of Water	
BUILDINGS AND OTHER CULT Gas Pump Vent or U/G Tank Cap Sign Well Small Mine Foundation Area Outline Cemetery Building School Church Dam HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir	
BUILDINGS AND OTHER CULT         Gas Pump Vent or U/G Tank Cap         Sign         Well         Small Mine         Foundation         Area Outline         Cemetery         Building         School         Church         Dam         HYDROLOGY:         Stream or Body of Water         Hydro, Pool or Reservoir         Jurisdictional Stream	
BUILDINGS AND OTHER CULT         Gas Pump Vent or U/G Tank Cap         Sign         Well         Small Mine         Foundation         Area Outline         Cemetery         Building         School         Church         Dam         HYDROLOGY:         Stream or Body of Water         Hydro, Pool or Reservoir         Jurisdictional Stream         Buffer Zone 1	
BUILDINGS AND OTHER CULT         Gas Pump Vent or U/G Tank Cap         Sign         Well         Small Mine         Foundation         Area Outline         Cemetery         Building         School         Church         Dam         HYDROLOGY:         Stream or Body of Water         Jurisdictional Stream         Buffer Zone 1         Buffer Zone 2	
BUILDINGS AND OTHER CULT         Gas Pump Vent or U/G Tank Cap         Sign         Well         Small Mine         Foundation         Area Outline         Cemetery         Building         School         Church         Dam         HYDROLOGY:         Stream or Body of Water         Hydro, Pool or Reservoir         Jurisdictional Stream         Buffer Zone 1         Buffer Zone 2	
BUILDINGS AND OTHER CULT         Gas Pump Vent or U/G Tank Cap         Sign         Well         Small Mine         Foundation         Area Outline         Cemetery         Building         School         Church         Dam         HYDROLOGY:         Stream or Body of Water         Hydro, Pool or Reservoir         Jurisdictional Stream         Buffer Zone 1         Buffer Zone 2         Flow Arrow         Disappeagring Stream	
BUILDINGS AND OTHER CULT         Gas Pump Vent or U/G Tank Cap         Sign         Well         Small Mine         Foundation         Area Outline         Cemetery         Building         School         Church         Dam         HYDROLOGY:         Stream or Body of Water         Jurisdictional Stream         Buffer Zone 1         Buffer Zone 2         Flow Arrow         Disappearing Stream	
BUILDINGS AND OTHER CULT         Gas Pump Vent or U/G Tank Cap         Sign         Well         Small Mine         Foundation         Area Outline         Cemetery         Building         School         Church         Dam         HYDROLOGY:         Stream or Body of Water         Hydro, Pool or Reservoir         Jurisdictional Stream         Buffer Zone 1         Buffer Zone 2         Flow Arrow         Disappearing Stream         Spring         Wetland	
BUILDINGS AND OTHER CULT         Gas Pump Vent or U/G Tank Cap         Sign         Well         Small Mine         Foundation         Area Outline         Cemetery         Building         School         Church         Dam         HYDROLOGY:         Stream or Body of Water         Hydro, Pool or Reservoir         Jurisdictional Stream         Buffer Zone 1         Buffer Zone 2         Flow Arrow         Disappearing Stream         Spring         Wetland	
BUILDINGS AND OTHER CULT         Gas Pump Vent or U/G Tank Cap         Sign         Well         Small Mine         Foundation         Area Outline         Cemetery         Building         School         Church         Dam         HYDROLOGY:         Stream or Body of Water         Hydro, Pool or Reservoir         Jurisdictional Stream         Buffer Zone 1         Buffer Zone 2         Flow Arrow         Disappearing Stream         Spring         Wetland         Proposed Lateral, Tail, Head Ditch	

#### CONVENTIONAL PLAN SHEET SYMBOLS RAILROADS: Standard Gauge O MILEPOST 35 **RR Signal Milepost** SWITCH Switch -**RR** Abandoned _____ **RR** Dismantled RIGHT OF WAY & PROJECT CONTROL: Primary Horiz Control Point $\odot$ Primary Horiz and Vert Control Point -Secondary Horiz and Vert Control Point -----Vertical Benchmark — X Existing Right of Way Monument- $\Delta$ Proposed Right of Way Monument — (Rebar and Cap) Proposed Right of Way Monument -۲ (Concrete) $\diamond$ Existing Permanent Easement Monument -----Proposed Permanent Easement Monument — ۲ (Rebar and Cap) Α Existing C/A Monument Proposed C/A Monument (Rebar and Cap) — . Proposed C/A Monument (Concrete) —— $\odot$ Existing Right of Way Line Proposed Right of Way Line Existing Control of Access Line — Proposed Control of Access Line Proposed ROW and CA Line -Existing Easement Line — — — Е — Proposed Temporary Construction Easement - -Proposed Temporary Drainage Easement — Proposed Permanent Drainage Easement _____ PDE _____ Proposed Permanent Drainage/Utility Easement ______DUE_____ Proposed Permanent Utility Easement _____ PUE _____ Proposed Aerial Utility Easement ______ AUE_____ ROADS AND RELATED FEATURES: Existing Edge of Pavement — Existing Curb — ___£___ Proposed Slope Stakes Cut — ___£___ Proposed Slope Stakes Fill — (CR) Proposed Curb Ramp -Existing Metal Guardrail -. . . Proposed Guardrail _____0____0____ Existing Cable Guiderail — _____ Proposed Cable Guiderail — • Equality Symbol $\times$ Pavement Removal -**VEGETATION:** ය Single Tree Single Shrub ٥ Hedge —

STATE OF NORTH CAROLINA, DIVISION OF HIGHWAYS

#### WATER: Water Manhole ഹാഹാഹാഹാഹ Woods Line Water Meter — - 0000 Orchard Water Valve — Vineyard Vineyard · Water Hydrant **EXISTING STRUCTURES:** U/G Water Line MAIOR U/G Water Line Bridge, Tunnel or Box Culvert -----CONC U/G Water Line Bridge Wing Wall, Head Wall and End Wall - ) conc 🗤 ( U/G Water Line MINOR: Above Ground Head and End Wall — CONC HT Pipe Culvert TV: TV Pedestal — Footbridge — TV Tower -----СВ Drainage Box: Catch Basin, DI or JB -----U/G TV Cable Paved Ditch Gutter -U/G TV Test H Storm Sewer Manhole S U/G TV Cable Storm Sewer -U/G TV Cable **UTILITIES:** * SUE - Subsurface Utility Engineering U/G TV Cable LOS - Level of Service - A,B,C or D (Accuracy) U/G Fiber Opti POWER: U/G Fiber Opti Existing Power Pole -U/G Fiber Opti 6 Proposed Power Pole GAS. Existing Joint Use Pole -Gas Valve — -**b**-Proposed Joint Use Pole -Gas Meter ----Power Manhole -Ø U/G Gas Line $\boxtimes$ Power Line Tower -U/G Gas Line Power Transformer - $\square$ U/G Gas Line U/G Power Cable Hand Hole ۳. U/G Gas Line H-Frame Pole — -----Above Ground U/G Power Line Test Hole (SUE – LOS A)* — A SANITARY SEWE U/G Power Line (SUE - LOS B)* -----Sanitary Sewer Sanitary Sewer U/G Power Line (SUE - LOS D)* -U/G Sanitary S TELEPHONE: Above Ground **Existing Telephone Pole** -0 SS Force Main Proposed Telephone Pole -0-SS Force Main Telephone Manhole T SS Force Main SS Force Main Telephone Pedestal ,ā, Telephone Cell Tower MISCELLANEOUS HH Utility Pole — U/G Telephone Cable Hand Hole -----U/G Telephone Test Hole (SUE – LOS A)* — . Utility Pole with U/G Telephone Cable (SUE - LOS B)* ------Utility Located Utility Traffic Sig Utility Unknown U/G Telephone Conduit (SUE - LOS B)* ------U/G Tank; Wate Underground St A/G Tank; Wate U/G Fiber Optics Cable (SUE - LOS B)* ------Geoenvironmer Abandoned Acc End of Informat

PROJECT NO. IS14.335	FIGURE 7
scale N/A	LEGEND FOR PLAN SH
DATE 1/25/2023	
CWA/CRP	GUILFORD COUNTY, NO

PROJECT RE	EFERENCE NO. SHEET NO.
	۲
	0
	8
	Ś
e Test Hole (SUE – LOS A)*—	
B (SUE - LOS B)*	
	z
Water Line	A/G Water
waler Line	
	n
	Ň
	N N
	ш А
ole (SUE – LOS A)*	
(SUE – LOS B)*	Tv
(SUE – LOS C)*	tv
(SUE – LOS D)*	Ty
c Cable (SUE – LOS B)*	TV F0
c Cable (SUE – LOS C)*	T¥ F0
c Cable (SUE – LOS D)*	TV F0
	\$
	¢
Test Hole (SUE – LOS A)*	•
(SUE - LOS B)*	c
(SUE – LOS C)*	s
(SUE – LOS D)*	s
Gas Line	A/G Gos
.r.: Manhole ———	æ
	۳ ۵
evertine	U III
	A/C Sanitary Sewer
Sanitary Sewer	
Line lest fiole (SUE - LOS A)	· •
Line (SUE - LOS B)*	F35
Line (SUE – LOS D)*	
5:	
	•
Base	
Object	o
gnal Box	5
ul/G Line (SUE – LOS B)* —	
er, Gas, Oil	
torage Tank, Approx. Loc. ——	 (UST)
er, Gas, Oil	
tal Boring	
cording to Utility Records —	AATUR
lion	E.O.L

**EET FIGURES** 

U-4758 OM SKEET CLUB RD TO I-40 RTH CAROLINA



ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

www.espassociates.com

March 22, 2022



Mr. Gordon Box, PG Geotechnical Engineering Unit North Carolina Department of Transportation 1020 Birch Ridge Drive Raleigh, NC 27610

#### RE: **PHASE II INVESTIGATION OF PARCEL 175 Bessemer Improvement Company** 3016 Sandy Ridge Road, Colfax, NC 27235 ESP Project No. IS14.314

TIP Number:	U-4758
WBS Number:	40251.1.1
County:	GUILFORD
Description:	Johnson St – Sandy Ridge Road from Skeet Club Road to I-40

Dear Mr. Box:

ESP Associates, Inc. (ESP) is pleased to submit this report on our GeoEnvironmental Phase II Investigation of the subject parcel. This work was performed in accordance with your Request for Proposal dated December 7, 2021 and our Cost Proposal dated December 13, 2021.

We appreciate the opportunity to assist you during this phase of the project. If you should have any questions concerning this report, or if we may be of further assistance, please contact us.

Sincerely,

ESP Associates, Inc.

Edward D. Billington, PG Senior Geologist/Geophysicist EDB/CRP/CJW



not considered Final unless all signatures are completed

#### TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	HISTORY
2.1	Phase I Report 1
2.2	Background Research1
2.3	Other Information
3.0	SITE OBSERVATIONS
4.0	METHODS
4.1	Geophysics
4.2	Borings
4.3	Soil Sample Protocol
4.4	Groundwater
5.0	RESULTS
5.1	Geophysics
5.2	Sample Data 4
5.3	Sample Observations
6.0	CONCLUSIONS
6.1	Geophysics
6.2	Soil
7.0	RECOMMENDATIONS
8.0	LIMITATIONS

#### TABLES

Table 1	Soil Sample PID Readings
---------	--------------------------

- Table 2Soil Sample UVF Results Summary
- Table 3Monitoring Well Location With 2019 Monitoring Report Results

#### TABLE OF CONTENTS (continued)

#### FIGURES

- Figure 1 Parcel 175, Bessemer Improvement Co., Site Vicinity Map
- Figure 2 Parcel 175, Bessemer Improvement Co., Site Photographs
- Figure 3 Parcel 175, Bessemer Improvement Co., EM61 Early Time Gate Data
- Figure 4 Parcel 175, Bessemer Improvement Co., EM61 Differential Data
- Figure 5 Parcel 175, Bessemer Improvement Co., EM61 Early Time Gate Data on Plan Sheet
- Figure 6 Parcel 175, Bessemer Improvement Co., EM61 Differential Data on Plan Sheet
- Figure 7 Parcel 175, Bessemer Improvement Co., Boring Locations on Plan Sheet
- Figure 8 Parcel 175, Bessemer Improvement Co., Soil Analytical Results on Plan Sheet
- Figure 9 Legend for Plan Sheet Figures

#### **APPENDICES**

- Appendix A Soil Boring Logs
- Appendix B RED Lab Laboratory Testing Report
- Appendix C Chain-of-Custody Form
- Appendix D Relevant NCDEQ Information

#### **1.0 INTRODUCTION**

The North Carolina Department of Transportation (NCDOT) is planning to improve Johnson Street – Sandy Ridge Road from Skeet Club Road to I-40 in High Point. The NCDOT requested that ESP Associates, Inc. (ESP) perform a Phase II geoenvironmental investigation of the proposed right-of-way (ROW) and proposed permanent utility easement (PUE) for Parcel 175 to locate underground storage tanks (USTs), sample soil, and delineate potential contaminated soil. Parcel 175 is located at 3016 Sandy Ridge Road in Colfax on the east side of Sandy Ridge Road near the intersection with Norcross Road (Figure 1).

#### 2.0 HISTORY

#### 2.1 Phase I Report

According to the 2015 Johnson Street – Sandy Ridge Road Environmental Report for Planning (Phase I Report) for U-4758, Parcel 175 is a former hydraulic repair and sales business that currently operates as a truck parts specialist. This property appears in the NCDEQ database as Incident No. 6287 (UST #WS-2734). The waste-oil UST leak was reported on 7/18/1990 and was closed out 2/6/2006. This site was anticipated to present low geoenvironmental impacts to the project.

#### 2.2 Background Research

We checked the following online sources with the results summarized below:

- NCDEQ Division of Waste Management Site Locator Tool
  - The site is shown as having had **UST Incident No. 6287**. Linked documents included the following:
    - UST Closure Report dated July 10, 1990. This report indicated that (1) 1,000-gallon gasoline UST, (1) 2,000-gallon diesel UST, and (1) 1,000-gallon waste-oil UST were removed (Appendix D1). Soil samples were collected and laboratory analysis did not detect gasoline range organics (GRO) or diesel range organics (DRO) beneath the gasoline and diesel USTs. However, analysis of the bottom soil samples taken from the waste-oil UST pit indicated total petroleum hydrocarbons (TPH) concentrations as oil and grease of 4,016 parts per milligram (ppm), or milligrams per kilogram (mg/kg) at the west end, and 12,982 ppm at the east end, both above the NCDEQ soil quality action level of 25 ppm.
    - Phase 1 Limited Site Assessment Report (LSA) dated February 1, 2006. This report indicated that a one temporary monitoring well was installed and one soil boring was drilled at the waste-oil UST location with both groundwater and soil samples collected for laboratory analysis. The results from the soil samples indicated that compounds detected were below the soil-to-groundwater maximum soil contaminant concentrations (MSCCs).

Groundwater samples did not detect any concentrations that exceed the North Carolina Code 2L Drinking Water Standards (NCAC 2L) Standards.

- Notice of No Further Action dated February 6, 2006. The NCDEQ classified the site as low risk and issued a notice of No Further Action.
- NCDEQ UST Databases
  - Nothing found for this site.
- Guilford County GIS
  - Property owner is listed as Bessemer Improvement Company.

### 2.3 Other Information

There was one monitoring well observed on the west side of the parcel, next to Sandy Ridge Road. This is an offsite monitoring well associated with **UST incident No. 44550** for Parcel 176 - Circle K Store 1526 and designated MW-14 (Table 3 and Appendix D2).

• **Ground Monitoring Report dated November 11, 2019**. This is the most recent GW report received by the NCDEQ and addresses GW contamination in the vicinity of the automobile tank pit in the southeastern corner of the Parcel 176. The GW report concluded that dissolved groundwater concentrations for MTBE exceed 2L Standards in monitoring well MW-14 (Appendix D-2). Groundwater flow in the area is generally towards the east-southeast (Appendix D-3). The GW sample results are provided in Appendix D-4 and summarized in Table 3 for MW-14. The closest water-supply wells are located approximately 550 feet downgradient and are used for potable supply.

#### 3.0 SITE OBSERVATIONS

During our February and March 2022 field work, the site contained an active building occupied by the business Truck Parts Specialist (Figure 2 and 3). The ground surface in the study area was covered by grass, gravel, asphalt pavement, and concrete pavement. No evidence was seen for existing USTs. There was one monitoring well (MW-14) observed on site.

#### 4.0 METHODS

ESP performed a geophysical study of the area designated by the NCDOT on February 18 and March 2, 2022. The geophysical investigation area was approximately 0.9 acres and encompassed the accessible areas of the subject parcel. We performed direct-push drilling and sampling of subsurface soils to depths of 10 to 15 feet on March 7, 2022. A photoionization detector (PID) was used to screen soil samples in the field and select soil samples to send for laboratory analysis. Groundwater was not encountered during the drilling investigation.

#### 4.1 Geophysics

ESP performed a metal detector study over the accessible areas of the site using a Geonics EM61 MK2 with a line spacing of approximately three feet followed by ground-penetrating radar (GPR) data collected over selected EM61 anomalies (Figures 3 and 4). Location control was provided in real-time using a differential global positioning system (DGPS).

#### 4.2 Borings

ESP performed direct-push drilling on Parcel 175 using a subcontractor, SAEDACCO of Fort Mill, South Carolina. Ten borings were drilled, designated B175-1 through B175-10 (Figure 7 and Appendix A). The soil borings were advanced using a hand auger and a GeoProbe 54DT drill rig. Soil samples were obtained to a depth of approximately 10 or 15 feet using hand auger cuttings and 5-foot long Macro-Core® tubes. Soil cores varied in recovery from 60 to 96 percent. The sampling equipment was decontaminated prior to drilling and between borings by the driller using Liquinox® detergent solution.

#### 4.3 Soil Sample Protocol

Representative soil samples were taken from hand auger cuttings and the Macro-Core (core) tubes at approximate one-foot intervals by the ESP field geologist while wearing nitrile disposable gloves. Each sample was sealed in a plastic bag and then kept in a warm area for approximately 10 to 15 minutes prior to measuring volatile organic compound (VOC) levels in the head space with the PID. The maximum PID readings per boring ranged from 0.7 to 2.3 ppm (Table 1).

Eight soil samples were selected for ultraviolet fluorescence (UVF) laboratory analysis, as listed in Table 2. For each selected sample, an approximate 10-gram soil sample was collected from the sample bag using a Terra Core[™] sampler and placed into a laboratory-supplied 40-milliliter volatile organic analysis (VOA) vial containing methanol. Once sealed, the vial was labeled with the sample identification number and then shaken vigorously for about one minute. The samples were packed on ice and sent via overnight delivery to RED Lab, LLC (RED Lab), located in Wilmington, North Carolina, following proper chain-of-custody procedures (Appendix C).

RED Lab used a QED Hydrocarbon Analyzer to quantitatively analyze the soil samples using the UVF method for BTEX, GRO, DRO, TPH, total aromatics, polycyclic aromatic hydrocarbons (PAHs), and benzo(a)pyrene (BaP).

#### 4.4 Groundwater

Groundwater was not encountered in the 10 borings.

#### 5.0 RESULTS

5.1 Geophysics

The EM61 early time gate data show the response from both shallow and deeper metallic objects (Figure 3). The differential response reduces the effect of shallow anomalies and emphasizes anomalies from larger and more deeply buried metallic objects, such as USTs (Figure 4). Our evaluation of the EM61 data indicated one anomaly at the northeast end of the study area that could not be attributed to known cultural features; GPR data collected over this anomaly indicated that it was caused by reinforced concrete. The GPR data did not indicate buried objects below the concrete slab.

The EM61 early time gate response and differential response are shown on the plan sheet for NCDOT Project U-4758 on Figures 5 and 6.

#### 5.2 Sample Data

The soil sample UVF hydrocarbon analysis results for BTEX, GRO, DRO, and PAHs are presented in Table 2. The RED Lab laboratory report, which also includes results for TPH, total aromatics, and BaP, is provided in Appendix B. Values are provided in mg/kg, or ppm.

#### 5.3 Sample Observations

The results of the laboratory testing indicate that BTEX, GRO, DRO, PAHs, and BaP were below the laboratory detection limits in the 8 samples tested.

#### 6.0 CONCLUSIONS

The results of the Phase II investigation of Parcel 175 for NCDOT Project U-4758 indicate that there is no evidence for USTs in the proposed ROW or proposed PUE. The laboratory testing did not indicate the presence of petroleum compounds above the NCDEQ action levels for GRO or DRO. Groundwater was not encountered in the 10 borings. However, groundwater petroleum contamination is known to be present in MW-14, based on previous investigations associated with Parcel 175.

#### 6.1 Geophysics

The geophysical data did not indicate the presence of abandoned USTs.

#### 6.2 Soil

DRO, GRO, BTEX and PAHs were not detected in any of the soil samples tested.

#### 7.0 **RECOMMENDATIONS**

No limitations on construction activities or special handling of excavated soil are recommended for Parcel 175.

Groundwater was not encountered in the 10 borings. Based on the planned cut depths and proposed drainage features, it does not appear that groundwater will be encountered during construction. However, if groundwater is encountered during construction, it may be contaminated and should be screened for petroleum hydrocarbons, properly handled, segregated, and disposed of in accordance with NCDEQ regulations.

#### 8.0 LIMITATIONS

ESP's professional services have been performed, findings obtained, and recommendations prepared in accordance with customary principles and practices in the fields of environmental science and engineering. ESP is not responsible for the independent conclusions, opinions, or recommendations made by others based on the data presented in this report.

The passage of time may result in a change in the environmental characteristics at this site and surrounding properties. ESP does not warrant against future operations or conditions, or against operations or conditions present of a type or at a location not investigated. ESP does not assume responsibility for other environmental issues that may be associated with the subject site.

TABLES

Boring	Sample Depth Range with PID > 10 ppm (feet bgs)	Maximum PID Reading (ppm) and Sample Depth (feet bgs)
B175-1	None	1.7 (12.0 – 12.5)
B175-2	None	2.2 (11.0-11.5)
B175-3	None	2.3 (1.0 – 1.5)
B175-4	None	1.7 (6.0 – 6.5)
B175-5	None	1.2 (11.0 – 11.5)
B175-6	None	0.7 (9.0 - 9.5)
B175-7	None	0.9 (8.0 - 8.5)
B175-8	None	1.0 (6.0 - 6.5)
B175-9	None	0.9 (9.0 - 9.5)
B175-10	None	0.7 (6.0 - 6.5)

# TABLE 1SOIL SAMPLE PID READINGS

Boring	Sample ID (depth in feet bgs)	Date Collected	BTEX (C6-C9) (mg/kg)	GRO (C5-C10) (mg/kg)	DRO (C10-C35) (mg/kg)	PAHs (mg/kg)
B175-1	S-14	3/7/22	<0.4	<0.4	<0.4	<0.13
B175-2	S-1	3/7/22	<0.64	<0.64	<0.64	<0.2
B175-3	S-14	3/7/22	<0.36	<0.36	<0.36	<0.12
B175-4	S-6	3/7/22	<0.6	<0.6	<0.6	<0.19
B175-5	S-14	3/7/22	<0.74	<0.37	<0.37	<0.12
B175-6	S-7	3/7/22	<0.26	<0.26	<0.26	<0.08
B175-8	S-9	3/7/22	<0.35	<0.35	<0.35	<0.11
B175-10	S-6	3/7/22	<0.2	<0.2	<0.2	<0.07

TABLE 2SOIL SAMPLE UVF RESULTS SUMMARY

# TABLE 3MONITORING WELL LOCATION WITH 2019 MONITORING REPORT RESULTS

Monitoring		Easting	Depth to Groundwater, feet	2019 Monitoring Report Results			
Well	Northing			Detected Compound	Detected Level, ug/L	NC 2L Groundwater Standard ug/L	
MW-14	853357	1705739	38.77	MTBE	26.7	20	

The complete summary of GW sampling results from the 2019 MR for Parcel 176 is provided in Appendix D-4.

## FIGURES


IS14.314 SCALE AS SHOWN	FIGURE 1 – PARCEL 175, BESSEMER IMPROVE SITE VICINITY MAP
DATE 3/22/2022	NCDOT PROJECT U-4758
CRP/EDB	GUILFORD COUNTY, NORTH CAROLINA



A. Photograph from northwest corner of building, facing east.



C. Photograph of drilling Boring B175-1 on west side of parcel, facing west.



B. Photograph from west side of parcel, facing east with MW-14 in foreground.



D. Photograph from northeast corner of parcel, facing east, I-40 ramp to right.

PROJECT NO. IS14.314 SCALE N/A	FIGURE 2 – PARCEL 175, BESSE SITE PHOTOG
^{DATE} 3/22/2022	NCDOT PROJEC
CRP/EDB	GUILFORD COUNTY, NO

EMER IMPROVEMENT CO. GRAPHS CT U-4758

ROM SKEET CLUB RD TO I-40 IORTH CAROLINA



ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724



Note: Locations of data and features are approximate and were collected using a DGPS instrument. ESP makes no guarantees as to the accuracy of these locations. Coordinates on the axes of the maps are approximate and provided for general reference only.



Greensboro, NC 27409

336.334.7724





### List of Microstation Pofe

List of Microstation References			
□- <mark>₩</mark> U4758_Geo_env.dgn -₩ U4758_HYD_DRN.dgn			See Figure 9 for explanation of
<u>₩</u> U4758_ncdot_fs.dgn <u>₩</u> U4758_rdy_dsn.dgn <u>₩</u> U4758_rdy_row.dgn	60 120	PROJECT NO. IS14.314 SCALE 1" = 60'	FIGURE 5 – PARCEL 175, BESSEI EM61 EARLY TIME GATE D
U4758_rdy_ss.dgn	FEET	^{DATE} 3/22/2022 ^{BY} CRP/EDB	NCDOT PROJEC JOHNSON ST- SANDY RIDGE RD FR GUILFORD COUNTY NO

### f symbols and line types

EMER IMPROVEMENT CO. DATA ON PLAN SHEET

CT U-4758 ROM SKEET CLUB RD TO I-40 GUILFORD COUNTY, NORTH CAROLINA



ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724



### List of Microstation References



GUILFORD COUNTY, NORTH CAROLINA



ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724



### List of Microstation References

List of Microstation References			
□- <mark>\}</mark> U4758_Geo_env.dgn -\]U4758_HYD_DRN.dgn			See Figure 9 for explanation of
— 😡 U4758_ncdot_fs.dgn — 😡 U4758_rdy_dsn.dgn — 😡 U4758_rdy_row.dgn	60 120	PROJECT NO. IS14.314 SCALE 1" = 60'	FIGURE 7 – PARCEL 175, BESSE BORING LOCATIONS (
W8 U4758_rdy_ss.dgn	FEET	^{DATE} 3/22/2022	
		CRP/EDB	GUILFORD COUNTY, NO

f symbols and line types

EMER IMPROVEMENT CO. ON PLAN SHEET

NCDOT PROJECT U-4758 ST– SANDY RIDGE RD FROM SKEET CLUB RD TO I-40 GUILFORD COUNTY, NORTH CAROLINA



ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724





GUILFORD COUNTY, NORTH CAROLINA



ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

	STATE OF NORTH	CAROLI	NA, DIVISION OF HIGHWA	AYS	
BOUNDARIES AND PROPERTY:	CONVENTION		$AIN  S \square E E I  S I M B C$	JLS	WATER:
State Line	_ RAILROADS: Note: Note: S		. C.D Subsulface Childy Engineering		Water Manhole
County Line	Standard Gauge	SU TRASPORTINO	Hedge		Water Meter
Township Line	RR Signal Milepost	MULLIONT 25	Woods Line		Water Valve
City Line	Switch	SWIGH	Orchard		Water Hydrant
Reservation Line	RR Abandoned		Vineyard	Hineyand	IKG Water Line LC
Property Line	RR Dismantled		EXISTING STRUCTURES:		UG Water Line LC
Existing Iron Pin			MAJOR:		LKG Water Line LC
Computed Property Corner	RIGHT OF WAY & PROJECT CO	ONTROL:	Bridge, Tunnel or Box Culvert	0840	Above Ground Wal
Property Monument	Secondary Horiz and Vert Control Point	•	Bridge Wing Wall, Head Wall and End Wall	- ) *** (	
Parcel/Sequence Number @	Primary Horiz Control Point	0	MINOR:		TV: TV: Badastal
Existing Fence Line	Primary Horiz and Vert Control Point	•	Head and End Wall	CONC HØ	TV Fedestal
Proposed Waven Wire Fence	Exist Permanent Easment Pin and Cap	$\diamond$	Pipe Culvert		IV lower
Proposed Chain Link Fence	New Permanent Easement Pin and Cap	۲	Footbridge	≻≺	UG IV Cable Han
Proposed Barbed Wire Fence	Vertical Benchmark	×	Drainage Box: Catch Basin, DI or JB	<b>_</b> *	
Existing Wetland Boundary	_ Existing Right of Way Marker	$\triangle$	Paved Ditch Gutter		UNG TV Cable LOS
Proposed Wetland Boundary	Existing Right of Way Line		Storm Sewer Manhole	\$	U/G TV Cable LOS
Existing Endoppered Animal Boundary	New Right of Way Line		Storm Sewer		UG Fiber Optic Co
Existing Endangered Plant Boundary	<ul> <li>New Right of Way Line with Pin and Cap —</li> </ul>		IITH ITIES.		U/G Fiber Optic Co
Existing Historic Property Boundary		<b>v</b> –	CHLINES:		U/G Fiber Optic Co
Known Contamination Area: Soil	<ul> <li>New Right of Way Line with</li> <li>Concrete or Granite RW Marker</li> </ul>		POWEK:	1	GAS:
Potential Contamination Area: Soil	New Control of Access Line with		Existing Power Pole		Gas Valve
Known Contamination Area: Water	Concrete C/A Marker		Froposed Fower Fole	- 0 -	Gas Meter
Potential Contamination Area: Water	* Existing Control of Access		Existing Joint Use Pole		U/G Gas Line LOS
Contaminated Site: Known or Potential - ""	New Control of Access		Proposed Joint Use Pole	0- @	U/G Gas Line LOS
BUILDINGS AND OTHER CULTURE	Existing Easement Line	——E——	Power Manhole	· •	U/G Gas Line LOS
Cas Ruma Vani as LIC. Tank Can	New Temporary Construction Easement -	E	Power Line Tower		Above Ground Gas
Gas rump ventior GG. Tank Cap 0	New Temporary Drainage Easement	TDE	Power Transformer	- E	SANITARY SEWER:
Sign	New Permanent Drainage Easement	PDE	UG Power Cable Hand Hole		Sanitary Sewer Man
Well i	New Permanent Drainage / Utility Easement	DUE	H-Frame Pole		Sanitary Sewer Clea
	New Permanent Utility Easement	PU2	UG Power Line LOS B (S.U.E.*)		U/G Sanitary Sewer
	New Temporary Utility Easement		U/G Power Line LOS C (S.U.E.*)		Above Ground San
Area Outline	New Aerial Utility Easement	AUE	UG Power Line LOS D (S.U.E.*)	·	SS Forced Main Lir
Cemetery			TELEPHONE:		SS Forced Main Lir
Building	ROADS AND RELATED FEATUR	ES:	Existing Telephone Pole	·	SS Forced Main Lir
School	Existing Edge of Pavement		Proposed Telephone Pole	-0-	
Church	Existing Curb		Telephone Manhole	ø	MISCELLANEOUS:
Dam	Proposed Slope Stakes Cut	<u>c</u>	Telephone Pedestal	П	Utility Pole
HYDROLOGY:	Proposed Slope Stakes Fill	F	Telephone Cell Tower	· 👗	Utility Pole with Ba
Stream or Body of Water	Proposed Curb Ramp	œ	WG Telephone Cable Hand Hole		Utility Located Obje
Hydro, Pool or Keservoir	- Existing Metal Guardrail	· · · ·	UG Telephone Cable LOS B (S.U.E.*)	1	Utility Traffic Signal
Putter 7 1	Proposed Guardrail	<u> </u>	UG Telephone Cable LOS C ISULE	1	Utility Unknown UK
Buffer Zone 2	Existing Cable Guiderail		UG Telephone Cable LOS D (SUE*)		UG Tank; Water, O
Eleve Arrow	Proposed Cable Guiderail	<u> </u>	LVG Telephone Conduit LOS B (SILE*)		Underground Store
Disappeoring Stream	Equality Symbol	۲	LIG Telephone Conduit LOS C (SULE )		A/G Tank; Water, G
Saring	Pavement Removal	*****	LIG Telephone Conduit LOS D (SULE 1)		Geoenvironmental B
Wetland	VEGETATION:		UG Eller Online Conduit LOS D (S.U.E.*)		U/G Test Hole LOS
Proposed Lateral Tail Head Ditch	Single Tree	· 0	UG Fiber Optics Cable LOS C (S.U.S.)		Abandoned Accordi
Folse Sume	Single Shrub	. 0	UC Elles Onlis Cable LOS C (S.U.E.*)		End of Information
ruise sump			Uro Fiber Optics Cable LOS D (S.U.E.*)		

FIGURE 9– PARCEL 175, BESSEI	PROJECT NO. IS14.314
LEGEND FOR PLAN S	scale N/A
	^{DATE} 3/22/2022
GUILFORD COUNTY, NO	BY CRP/EDB

PROJECT &	PRIME NO.	SHEET IND.
	ιψ.	
	0	
	8	
	•	
	6/1 WO	ter
	$\otimes$	
	5	
	h-	
	tr-	
	T/-	
·)		
) —		
e.*) ——	N P3	
	0	
	ô	
		<u> </u>
	Ψ	
	Add Southers	Sever
I ——		
.) (		
<u>۱</u>		
	•	
	0	
	v T	
	2	
U.E.*)		
.oc. —	(UST)	
	æ	_
nds .	A A T I	10
rds —	AATU	JR
	.*)	

### IER IMPROVEMENT CO. HEET FIGURES

U-4758 OM SKEET CLUB RD TO I-40 RTH CAROLINA



ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

# APPENDIX A SOIL BORING LOGS

	FCD				BORING NO.
	LJI				
PROJ	ECT NAME:	NCDOT U-4	758 Phase	PROJ. NO.: IS14.314	B175-1
		Approximate	Ely 67.2 eas	a from edge of pavement south of driveway	1 of 1
		Direct		$\Omega \qquad \qquad DATE STARTED. 3772022 \qquad \qquad SHEET.$	15.0 ft
DRILL	ER:		Scott Hun	t SAMPLE METHOD: Hand Auger & Macrocore DEPTH TO GW:	Drv ft
DRILL	RIG:	(	Geoprobe 54	DT LOGGED BY: A. Roseman COMMENT:	Elev: 962.0'
ft)	ш	ш <del>(</del> £	U		
ЕРТН (	SAMPLI NO.	SAMPLI DEPTH (	PID READIN (ppm)	FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION	REMARKS
			<u>ш</u>	0.0'-0.3' Topsoil Ha	and Auger 0.0'-5.0'
1	S-1	1.0-1.5	0.6	0.3-15.0 Red, Micaceous, Clayey Sil 1, Moist	
	_				
2	S-2	2.0-2.5	0.4		
·					
	-				
_3	S-3	3.0-3.5	0.6		
1	S-4	40-45	0.8		
_ +	0-4	4.0 4.0	0.0		
_5	S-5	5.0-5.5	0.2	Ma	acrocore 5.0'-10.0'
				Cc	ore Rec 4.7'/5.0'
6	S-6	6.0-6.5	1.2		
-	0 -		1.0		
_ /	5-7	7.0-7.5	1.2		
8	S-8	8.0-8.5	1.3		
•					
9	S-9	9.0-9.5	1.2		
·					
_10	S-10	10.0-10.5	no sample	Ma Co	acrocore 10.0'-15.0'
•					
11	S-11	11 0-11 5	no samplo		
	5-11	11.0-11.0			
12	S-12	12.0-12.5	1.7		<del>-</del>
13	S-13	13.0-13.5	1.4		
		446.55			
_14	5-14	14.0-14.5	2.4		
L		Samples	highlighted r	ed selected for analytical	
15					

P175 Final Boring Logs B175-1 3/22/2022

	FCD			FIFI	D BORING LOG		BORING NO.
	LJI						
PROJ	ECT NAME:	NCDOT U-4	1758 Phase		PROJ. NO.: IS14.314		B1/5-2
	TION:	Approximati	ey 45.3' nort	heast from ec	dge of pavement south of driveway		1 - 1 4
		Direc		na Auger			: <u>1011</u> : 150 #
			Scott Hun	t	SAMPLE METHOD: Hand Auger & Macrocore		: <u>15.0</u> II
DRILL	_ RIG:	(	Geoprobe 54	L LDT	LOGGED BY: A. Roseman	COMMENT	: Elev: 964.0'
ţ)		<del>(</del>	, (J				
DEPTH (f	SAMPLE NO.	SAMPLE DEPTH (f	PID READINC (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
				0.0'-0.3'	Topsoil	H	and Auger 0.0'-5.0'
				0.3'-13.0'	Red, Micaceous, Clayey SILT, Moist		
1	S-1	1.0-1.5	1.5				
2	S-2	2.0-2.5	1.1				
•							
-							
_3	S-3	3.0-3.5	0.8				
	0.4	40.45	0.5				
_4	S-4	4.0-4.5	0.5				
5	S-5	50-55	no sample			м	acrocore 5.0'-10.0'
	•••	0.0 0.0	ne campie			C	ore Rec 4.0'/5.0'
•							
6	S-6	6.0-6.5	1.1				
•							
7	S-7	7.0-7.5	0.3				
8	S-8	8.0-8.5	0.5				
<u> </u>	S-0	9.0-9.5	1.0				
		0.0 0.0					
10	S-10	10.0-10.5	no sample			M	acrocore 10.0'-15.0'
						C	ore Rec 3.8'/5.0'
•							
11	S-11	11.0-11.5	2.2				
_12	S-12	12.0-12.5	2.0				
·				12.4'	Grading to Yellow		
12	S-12	13 0 12 5	0.0	13 0'-15 0'	Yellow to Grav to Red Micaceous, Coarso to Fina		
13	5-13	13.0-13.5	0.9	13.0-13.0	Sandy SILT, Moist		
14	S-14	14.0-14.5	2.0				
15							

P175 Final Boring Logs B175-2 3/22/2022

	FCP				BORING NO.
	LJI	NODOTIL			D175 0
PROJECT NAME: NCDOT 0-4758 Phase T				II PROJ. NO.: IS14.314	DI/0-3
		Approximate	ely 24.0 SOU		[
	ING FIRM:	Dilec	SAEDACC	O DATE FINISHED: 3/7/2022 TOTAL DEPTH	1: 15.0 ft
DRILL	ER:		Scott Hun	t SAMPLE METHOD: Hand Auger & Macrocore DEPTH TO GW	/: Dry ft
DRILI	RIG:	(	Geoprobe 54	4DT LOGGED BY: A. Roseman COMMENT	Г: Elev: 964.8'
ft)	ш	шĴ	Ċ		
Η	O.	IHLI TH (		FIELD CLASSIFICATION AND	REMARKS
Б	AA N	SAN EP	P A B A P (DF P )	PHYSICAL DESCRIPTION	
	••		Щ	0.0'-0.3' Topsoil H	and Auger 0.0'-5.0'
-					
1	C 1	1015	2.2	0.3'-7.2' Red, Micaceous, Clayey SILT, Moist	
_ !	5-1	1.0-1.5	2.3		
2	S-2	2.0-2.5	0.7		
<u> </u>					
3	S-3	3.0-3.5	0.3		
4	S-4	4.0-4.5	0.8		
-					
_5	S-5	5.0-5.5	0.5	N N	facrocore 5.0'-10.0'
-					ore Rec 4.5'/5.0'
•					
_6	S-6	6.0-6.5	1.3		
				6.8' Grading to Yellow	
_/	S-7	7.0-7.5	0.9	7 2'-8 3' Yellow to Gray. Coarse to Fine Sandy SILT. Moist	
·					
- <u> </u>	<b>C</b> 0	0005	13		
_0	3-0	0.0-0.5	1.5		
				8.3'-15.0' White to Gray Silty Coarse to Fine SAND, Moist	
9	S-9	9.0-9.5	0.8	+ +	
10	S-10	10.0-10.5	no sample	N	lacrocore 10.0'-15.0'
				C C	ore Rec 4.0'/5.0'
h					
11	S-11	11.0-11.5	0.7		
l					e
·					
12	S-12	12.0-12.5	0.6		
				<u> </u>	
_13	S-13	13.0-13.5	1.2		
<b></b>					
4.4	<u> 2 1 4</u>	140145	17		
14	5-14	14.0-14.5	1.7	<u> </u>	
15					<b>-</b>
1.0	1	1			

P175 Final Boring Logs B175-3 3/22/2022

	ECD			FIFI			BORING NO.
	<b>L</b> JI						
PROJ	ECT NAME:	Approviment	1758 Phase	h of driveness	PROJ. NO.: IS14.314		B175-4
TVPE			t Push & Har		DATE STARTED: 3/7/2022	SHEET	1 of 1
DRILI	_ING FIRM:	Direc	SAEDACC	0	DATE FINISHED: 3/7/2022 TOT	AL DEPTH:	15.0 ft
DRILI	ER:		Scott Hun	t	SAMPLE METHOD: Hand Auger & Macrocore DEP	TH TO GW:	Dry ft
DRILI	RIG:		Geoprobe 54	1DT	LOGGED BY: A. Roseman	COMMENT	Elev: 967.4'
(ft)	щ	Щ. (ft)	Q				
рертн	SAMPL NO.	SAMPL DEPTH	PID READIN (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
				0.0'-0.3'	Topsoil	Ha	and Auger 0.0'-5.0'
				0.3'-12.3'	Red, Micaceous, Clayey SILT, Moist		
_1	S-1	1.0-1.5	0.5				
2	S-2	20-25	0.7				
	0-2	2.0-2.0	0.1				
•							
3	S-3	3.0-3.5	0.4				
•							<u>.</u>
_4	S-4	4.0-4.5	0.5				
•							
5	S-5	50-55	no sample			M	ecrocore 5 0'-10 0'
	0-0	5.0-5.5	no sampie			Co	ore Rec 4.0'/5.0'
6	S-6	6.0-6.5	1.7	6.0'	Grading to Orange		
-							
7	S-7	7.0-7.5	0.5				
	0.0	0005	0.0				
8	5-8	8.0-8.5	0.9				
9	S-9	9.0-9.5	0.7				
•							
10	S-10	10.0-10.5	no sample			Ma	acrocore 10.0'-15.0'
•						Co	ore Rec 4.075.0
	_						
11	S-11	11.0-11.5	0.4				
•							
12	S-12	12 0-12 5	0.4				
	5.2	.2.0 12.0		12.3'-14.9'	Red to Orange to Black, Micacous Coarse to Fine Sandy	ý	
					SILT, Moist		
13	S-13	13.0-13.5	0.3				
_14	S-14	14.0-14.5	0.4	14.0'	Grading to Yellow-Brown		
15				14.9'-15.0'	White, Coarse Silty SAND, Moist		

P175 Final Boring Logs B175-4 3/22/2022

	FSP			FIFI	D BORING LOG		BORING NO.
	LJI						D175 5
PROJ	ECT NAME:	Approvimet	1/58 Phase	ll th of on romn	PROJ. NO.: IS14.314		D1/0-0
		Approximate	t Puch & Har	n or on-ramp		SHEE-	Γ: 1 of 1
		Direct	SAFDACC		DATE FINISHED: 3/7/2022		1. 1011 1. 150 ft
DRILL	FR.		Scott Hun	t	SAMPLE METHOD: Hand Auger & Macrocore	DEPTH TO GW	/: Drv ft
DRILL	RIG:	(	Geoprobe 54	1DT	LOGGED BY: A. Roseman	COMMEN	T: Elev: 966.7'
÷			. (1)				
DЕРТН (fi	SAMPLE NO.	SAMPLE DEPTH (fi	PID READING (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
				0.0'-0.3'	Topsoil	H	land Auger 0.0'-5.0'
-				0.3'-1.8'	Red, Micaceous Silty CLAY, Moist		
1	S-1	1.0-1.5	0.4				
_2	S-2	2.0-2.5	0.5	1.8'-8.5'	Red, Micaceous, Clayey SILT, Moist		
-	-						
_3	S-3	3.0-3.5	0.3	3 2'	Grading to Orange		
a				5.2	Grading to Grange		
_	<b>.</b> .	40.45	0.0				
_4 	S-4	4.0-4.5	0.2				
5	S-5	5.0-5.5	no sample			N	Acrocore 5.0'-10.0
			•			C	Core Rec 4.0'/5.0'
6	S-6	6.0-6.5	0.3				•
7	S-7	7.0-7.5	0.6				•
•							
8	S-8	8.0-8.5	0.9				-
-							
a				8.5'-10.0'	White to Gray, Micaceous, Coarse to Fine Silty SAI	ND, Moist	=
9	S-9	9.0-9.5	0.6				
10	S-10	10.0-10.5	no sample			N	Acrocore 10.0'-15.0'
l							
11	S-11	11 0 11 5	1.2				
	0-11	11.0-11.5	1.2				
10	S-12	12 0 12 5	0.0				
_ 12	3-12	12.0-12.3	0.9				
l							
12	S-13	13 0-12 5	0 9				
_ 13	0-10	10.0-10.0	0.0				
[							
1/	S-14	14 0-14 5	0.4				
- 14	0-14	14.0-14.0					
15							

P175 Final Boring Logs B175-5 3/22/2022

	FCP		FIELD BORING LOG													
PRO	JECT NAME:	NCDOT U-4	1758 Phase	ll th of opromo	PROJ. NO.: IS14.314		B1/5-0									
		Approximate	t Duch & Hor				T: 1 of 1									
		Dilec	SAFDACC		DATE STARTED: 3/7/2022	H: 150 ft										
DRILI	LER:		Scott Hun	t	SAMPLE METHOD: Hand Auger & Macrocore DEPTH TO GW											
DRILI	L RIG:		Geoprobe 54	1DT	LOGGED BY: A. Roseman	COMMEN	T: Elev: 960.1'									
ft)		шÊ	Ċ													
DEPTH (I	SAMPLE NO.	SAMPLE DEPTH (	PID READIN (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS									
				0.0'-0.3'	Topsoil	ŀ	land Auger 0.0'-5.0'									
1	S-1	1.0-1.5	0.2	0.3'-3.2'	Red, Micaceous, Clayey SILT, Moist											
-																
2	S-2	2.0-2.5	0.3													
				3.2'-15.0'	Orange, Micaceous, Fine Sandy SILT, Moist											
							<b>-</b>									
3	S-3	3.0-3.5	0.4													
	C 4	4045	0.4													
_4	5-4	4.0-4.5	0.4													
-																
5	S-5	5.0-5.5	no sample			N	Acrocore 5.0'-10.0'									
-						(	Core Rec 3.0'/5.0'									
•																
6	S-6	6.0-6.5	no sample													
	0.7		0.4													
_ /	5-7	7.0-7.5	0.4	7.2'	Grading to White and Tan											
8	S-8	8.0-8.5	0.6													
- ⁻																
•																
9	S-9	9.0-9.5	0.7													
•																
<u> 10 </u>	S-10	10.0-10.5	no sample			N	Acrocore 10.0'-15.0'									
•																
44	C 11	11 0 11 5	0.2													
_ ! !	3-11	11.0-11.5	0.3													
12	S-12	12.0-12.5	0.3													
·																
13	S-13	13.0-13.5	0.5	10.4												
				13.1'	Grading to Red and Brown and Black											
_14	S-14	14.0-14.5	0.5			T										
•																
15						T										
1.0																

P175 Final Boring Logs B175-6 3/22/2022

	FCD			FIE			BORING NO.
	LJI						
PROJ	ECT NAME:	NCDOT U-	4758 Phase	 	PROJ. NO.: IS14.314		B1/5-/
	TION:	Approxima	tely 87.9 nor	thwest of nor			T: 1 of 1
	ING FIRM	Direc	SAEDACC	CO	DATE STARTED: <u>3/7/2022</u>	OTAL DEPT	H: 10.0 ft
DRILL	ER:		Scott Hur	nt	SAMPLE METHOD: Hand Auger & Macrocore D	EPTH TO GV	V: Dry ft
DRILL	RIG:		Geoprobe 54	4DT	LOGGED BY: A. Roseman	COMMEN	T: Elev: 956.4'
(ft)	щ	ц( <b>t</b> )	Ű				
ΗL	MPL VO.	MPL					REMARKS
DEP	SAI	SA	RE/ d		FITISICAL DESCRIPTION		
				0.0'-0.3'	Topsoil	ŀ	Hand Auger 0.0'-5.0'
				0.3'-2.3'	Red. Micaceous, Clavey SILT, Moist		
1	S-1	1.0-1.5	0.5				
-							
·							=
_2	S-2	2.0-2.5	0.3	2 3'-9 9'	Red Micaceous Fine Sandy SILT Moist		
•				2.0 0.0			•
3	S-3	3.0-3.5	0.7				
		5.0 0.0					
a							
4	S-4	4.0-4.5	0.6				
a							
	• -						
_5	S-5	5.0-5.5	0.5			1	Macrocore 5.0'-10.0'
a							
6	S-6	60-65	0.4				
	00	0.0 0.0	0.1				
7	S-7	7.0-7.5	0.4				
				7.6'	Grading to Red. Orange, and Black		
	-						
_8	S-8	8.0-8.5	0.9				
<u>9</u>	S-9	90-95	0.8				
	00	0.0 0.0					
				9.9'-10 0'	White to Grav Silty Coarse to Fine SAND Moist		
10							
ŀ							
_11							
12							
, <u> </u>							
13							
<b>.</b>							
_14			-				
15			+				

P175 Final Boring Logs B175-7 3/22/2022

	FCD		FIELD BORING LOG													
	LJI															
PROJ	ECT NAME:	NCDOT U-4	1758 Phase	 	PROJ. NO.: IS14.314	B1/2-8										
LUCA			eiy 45.4 NOR	nd Auger	of northwest corner of building         Auger       DATE STARTED: 3/7/2022         SHEET:											
DRILI	LING FIRM:		SAEDACC	:0	DATE FINISHED: 3/7/2022	H: 10.0 ft										
DRILL	ER:		Scott Hun	ıt	SAMPLE METHOD: Hand Auger & Macrocore DE	EPTH TO GW	/: Dry ft									
DRILL	RIG:		Geoprobe 54	4DT	LOGGED BY: A. Roseman	COMMENT	Γ: Elev: n/a									
(ft)	щ	Э. ( <del>f</del> t)	Q													
TH	40.	MPL					REMARKS									
ЭЕР	SAI	SAI	FEA (p		PRISICAL DESCRIPTION											
				0.0'-0.3'	Topsoil	Н	and Auger 0.0'-5.0'									
				0 3'-8 4'	Red Clavey SILT Moist											
1	S-1	1.0-1.5	0.4	0.0 20.4												
-																
<u> </u>							<b>-</b>									
2	S-2	2.0-2.5	0.3													
<u> </u>																
2	6.2	2025	0.5													
_3	3-3	3.0-3.5	0.5													
F																
4	S-4	4.0-4.5	0.5													
5	S-5	5.0-5.5	0.3			N	Acrocore 5.0'-10.0'									
h							ore Rec 4.7'/5.0'									
_6	S-6	6.0-6.5	1.0													
[																
7	S-7	70-75	0.6													
	<u> </u>	1.0-1.0	0.0													
8	S-8	8.0-8.5	0.3													
-				8.4'-10.0'	Brown, Micaceous, Fine Sandy SILT, Moist											
ŀ																
9	S-9	9.0-9.5	0.7													
l																
40																
10																
11																
ŀ																
12																
h																
<u> </u>																
13																
<u> </u>																
14																
[																
15																

P175 Final Boring Logs B175-8 3/22/2022

	ECD			FIFI			BORING NO.
	LJI						
PROJ	ECT NAME:	NCDOT U-	4758 Phase		PROJ. NO.: <u>IS14.314</u>		B175-9
		Approximat	tely 78.3 non	nwest of non			T: 1 of 1
	ING FIRM:	Dilec	SAEDACC	:0	DATE STARTED: 3/7/2022	H: 10.0 ft	
DRILL	ER:		Scott Hun	it	SAMPLE METHOD: Hand Auger & Macrocore	DEPTH TO G	V: Dry ft
DRILL	RIG:		Geoprobe 54	4DT	LOGGED BY: A. Roseman	COMMEN	T: Elev: n/a
(ft)	щ	ц(ff)	Ű Z				
рертн	SAMPI NO.	SAMPL DEPTH	PID READIN (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
				0.0'-0.3'	Topsoil		Hand Auger 0.0'-5.0'
	-			0.3'-10.0'	Red, Micaceous, Silty, CLAY with Gravel, Moist		
_1	S-1	1.0-1.5	0.5				
•				1.8'	Same, no gravel		
2	S-2	2.0-2.5	0.3				
•							
•							
3	S-3	3.0-3.5	0.5				-
•							
4	0.4	40.45	0.4				
_4	5-4	4.0-4.5	0.4				
•							
5	S-5	5.0-5.5	0.4			1	Macrocore 5.0'-10.0'
							Core Rec 4.8'/5.0'
6	S-6	6.0-6.5	0.4				
-							
7	S 7	7075	0.4				
_ /	5-7	1.0-1.5	0.4				
•							
8	S-8	8.0-8.5	0.5				
•							=
_9	S-9	9.0-9.5	0.9				
•							•
10							
11							
•							
40							
_12							
•							
13							
- · · ·							
14							
15			1	Î			

P175 Final Boring Logs B175-9 3/22/2022

	FCP			FIFLD BORING LOG	BORING NO.
			B175 10		
PROJ	ECT NAME:	Approvima	tely 81 8' nort	PROJ. NO.: IS14.314	D175-10
TYPE	OF BORING		Direct Pus	h DATE STARTED: 3/7/2022 SHEET	
DRILL	ING FIRM:		SAEDACC	O DATE FINISHED: 3/7/2022 TOTAL DEPTH	I: 10.0 ft
DRILL	ER:		Scott Hun	t SAMPLE METHOD: Macrocore DEPTH TO GW	': Dry ft
DRILL	RIG:		Geoprobe 54	DT LOGGED BY: <u>A. Roseman</u> COMMENT	Elev: n/a
(ft)	Ш	LE (ft)	DN (		
TH	MPI.	MPI MPI		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION	REMARKS
DEF	SA	SADEF	RE U		
				0.0'-0.3' Topsoil N	acrocore 0.0'-5.0'
				0.3'-10.0' Red to Brown, Micaceous, Fine Sandy CLAY, Moist	ore Rec 3.7/5.0
1	S-1	1.0-1.5	0.2		
	0.0		0.4		
	5-2	2.0-2.5	0.4		
3	S-3	3.0-3.5	0.3		
·					
4	S-4	4.0-4.5	no sample		
•					
i	0.5				
_5	S-5	5.0-5.5	0.3		acrocore 5.0'-10.0'
6	S-6	60-65	0.7		
- Ŭ					
7	S-7	7.0-7.5	0.5		
•					
	-				
_8	S-8	8.0-8.5	0.3		
9	S-9	9.0-9.5	0.4		
•					
10					
• ———					
_ 11					
12					
13					
• ——					
_14					
l					
15					

P175 Final Boring Logs B175-10 3/22/2022

## **APPENDIX B**

### **RED LAB LABORATORY TESTING REPORT**





Hydrocarbon Analysis Results

Client: Address: Contact: Project:	ESP GREENSBORO, NC NED BILLINGTON 1514.314								Sa Sampl Samp	imples les extr les ana Op	taken racted alysed erator		Monday, March 7, 2022 Monday, March 7, 2022 Friday, March 11, 2022 CLAIRE NAKAMURA			
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP		Ratios		U00904 HC Fingerprint Match			
										% light	% mid	% heavy				
S	B175-1, S-14	16.1	<0.4	<0.4	<0.4	<0.4	<0.08	<0.13	<0.016	0	0	0	PHC not detected,(BO)			
S	B175-2, S-1	25.5	<0.64	<0.64	<0.64	<0.64	<0.13	<0.2	<0.025	0	0	0	PHC not detected			
S	B175-3, S-14	14.4	<0.36	<0.36	<0.36	<0.36	<0.07	<0.12	<0.014	0	0	0	,(FCM)			
S	B175-4, S-6	23.9	<0.6	<0.6	<0.6	<0.6	<0.12	<0.19	<0.024	0	0	0	PHC not detected			
S	B175-5, S-14	14.9	<0.74	<0.37	<0.37	<0.37	<0.07	<0.12	<0.015	73.8	0	26.2	Residual HC,(BO)			
S	B175-6, S-7	10.4	<0.26	<0.26	<0.26	<0.26	<0.05	<0.08	<0.01	0	0	0	,(FCM)			
S	B175-8, S-9	14.1	<0.35	<0.35	<0.35	<0.35	<0.07	<0.11	<0.014	0	0	0	,(FCM)			
S	B175-10, S-6	8.1	<0.2	<0.2	<0.2	<0.2	<0.04	<0.07	<0.008	0	0	0	,(FCM)			
		Initial Calibrator	QC check	OK					Final F	CM QC	Check	OK	103.8 %			
Results gen Fingerprints (SBS) or (LI	erated by a QED HC-1 analyser. provide a tentative hydrocarbon id 3S) = Site Specific or Library Backs	Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PEM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present														

# APPENDIX C CHAIN-OF-CUSTODY FORM

Client Name:	FSD							ten an an in an aear an	REDIah								
	LJF		-				à		5598 Mar	vin K Mose	lane						
Address:	ON FI	LE		Contraction of the local				TM	MARRION								
Contact:	NED BR	TNGTON	\$		Wilmington. NC 28409												
Project Ref.:	T514.3	14	-				Each UVF sample will be analyzed for										
Email:	CON FT	IE	-						total BTEX, GRO, DRO, TPH, PAH total								
Phone #:	ON FTI	15 15	-	RAPI	DENVIR	S	aromatics and BaP. Standard GC										
						Solvents: VC	C, 1,1 DCE, 1,	2 cis DCE, 1,2									
Collected by:	ANNAR	OSEMANO	CHAIN				trans DCE, TCE, and PCE. Specify target										
	TATO		Analysi			AND ANAL		analytes in the space provided be									
Sample Collection		quested			Initials		Sample ID		Total Wt.	Tare Wt.	Sample Wt.						
	24 Hour	48 Hour	UVF	GC	100	0175-1	6		110 1	20 C	07						
57-66	+	1			CKF	DITO-1.	5-14		48.6	21.5	0.1						
	+				+	DITJ-61	) -   / · _    /		10.5	291	9.7						
						RITE H			10.0	400	10.9						
						B175-5 C			495	40 1	9.4						
				en er i erfolig områend	1	R175-6 2	-7		49.7	40.1	9.6						
1						B175.8. C	-9		49.9	40.0	9.9						
3-7-22		V			Coll	BI75-10 C	-6		51.5	40.2	17.3						
									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.0	16.0						
1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				an an ann an 197 ann an Annaichean an Annaichean an Annaichean Annaichean an Annaichean an Annaichean Annaichea													
					1												
n an fhair an ann an an ann an ann an an an an an					1												
							nya ana ang ang ang ang ang ang ang ang an	*****									
				en fastellas la ne stant faste													
1							en e	ni ana ana amin' amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisia									
4										· · ·							
		1	1														
	1	1															
an a																	
	1	1															
COMMENTS/REQU	ESTS:			an Maria Maria Manada Angalan Sana Jan		TARGET GC/UV	F ANALYTES:		<b></b>	L	<b>-</b>						
D. I'			T					. /	v 								
Relinqu	Relinquished by		2022		Ассер	led by	Da	te/ IIme	RE	D Lab USE	ONLY						
Dallas	lished by		5-8-00	đ	A	tad by		to /Time o	(8)								
Keiinqi	usned by	1 <b></b>							3-2022-1								
				EUN	3/10/11	11.30AM			Ret. No								

# APPENDIX D RELEVANT NCDEQ INFORMATION







### Table 4: Summary of Groundwater Sampling Results

#### Revision Date: 8/22/19 Incident Number and Name: 44346/Circle K 1526

Analytical	Method (e.g. EP	PA 601)		EPA Method 6200B															610			827	0													
Contamina	nt of Concern						zene	Total	ert-butyl ether	ene	etrachloride proethvlene	lbezene	nethylbenzene	nethylbenzene	oyl ether	Benzene	enzene	benzene	lbenzene	chloromethane	oromomethane	chloromethane	eu	че	-2-pentanone	hloride	yyltoluene	hane	Ę	-anthracene	naphthalene	thene		ene	ırene	
Well ID	Date Collected	Sample ID	Incident Phase	Acetone	Benzene	Toluene	Ethylben	Xylenes, '	Methyl-t	Naphthal	Carbon T Tetrachlc	lsopropy	1,2,4-Trir	1,3,5-Trir	Diisoprop	n-Propyl	n-Butylbe	sec-Butyl	tert-Buty	Bromodi	Chlorodił	Dibromo	2-Hexano	2-Butano	4-Methyl	Methyl C	p-lsoprop	Chloroetl	Chlorofo	Benzo(a)	2-Methyl	Acenaphi	Fluorene	Naphthal	Phenanth	Pyrene
	8/6/2014	MW-1	IAA		< 1	< 1	< 1	< 3	60.5	< 2		< 1	< 2	< 1	NA	< 1	< 1	< 1	< 1	NA	NA			NA	NA		NA		NA	< 0.33	NA	NA	NA	NA	NA	NA
MW-1	4/8/2015	MW-1	LSA		< 1.0	< 1.0	< 1.0	< 1.0	31	< 5.0		< 1.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		NA NA			NA NA	NA		NA		NA	< 5.0	NA	NA	NA	NA		NA
	6/1/2017	MW-1	CSA		< 1.0	< 1.0	< 1.0	0.48J	28	< 1.0		< 1.0	0.57	0.23J	< 1.0 0.19J	< 1.0	< 1.0	< 1.0	< 1.0	0.95	0.26J			<5.0	<5.0		<0.50		14	NA	0.17J	<0.30	<1.0	<1.0	0.061	0.035
	10/3/2019	MW-1	Post-CSA	24.8	15.4	27.4	47.1	109	15.2	9.8	<0.50 <0.	0 7.7	45	32.5	1.9	12.5	2.4	3.4	<0.50	2.4	NA	0.77	26.2	7.7	9.7	0.75	3.1	0.48J	20.4	NA	NA	NA	NA	NA	NA	NA
	8/6/2014	MW-2	IAA		< 1	< 1	< 1	< 3	12.9	< 2		< 1	< 2	< 1	NA	< 1	< 1	< 1	< 1	NA	NA			NA	NA		NA		NA	1.1 J	NA	NA	NA	NA	NA	NA
	4/8/2015	MW-2	LSA		< 1.0	< 1.0	< 1.0	< 1.0	8.8	< 5.0		< 1.0	< 5.0	< 1.0	1.3	< 1.0	< 1.0	< 1.0	< 1.0	NA	NA			NA	NA		NA		NA	< 5.0	NA	NA	NA	NA	NA	NA
MW-2	7/8/2015	MW-2	LSA		< 1.0	< 1.0	< 1.0	< 1.0	5.9	< 5.0		< 1.0	< 5.0	< 1.0	1.3	< 1.0	< 1.0	< 1.0	< 1.0	NA	NA			NA	NA		NA		NA	< 5.0	NA	NA	NA	NA	NA	NA
	6/1/2017	MW-2	CSA Post CSA															Free F	Product																	
	8/6/2014	MW-3			< 1	< 1	< 1	< 3	10.5	< 2		< 1	< 2	< 1	NA	< 1	< 1	< 1	<1	NA	NA			NA	NA		NA		NA	< 0.33	NA	NA	NA	NA	NA	NA
	4/8/2015	MW-3	LSA		< 1.0	2.5	1.6	7.2	12	< 5.0		< 1.0	< 5.0	< 1.0	15	< 1.0	< 1.0	< 1.0	< 1.0	NA	NA			NA	NA		NA		NA	< 5.0	NA	NA	NA	NA	NA	NA
MW-3	7/8/2015	MW-3	LSA		6.1	34	18	90	12	<2		< 1.0	< 5.0	< 1.0	<1	< 1.0	< 1.0	< 1.0	< 1.0	NA	NA			NA	NA		NA		NA	< 5.0	NA	NA	NA	NA	NA	NA
	6/1/2017	MW-3	CSA		•		•	-				-						Free F	Product									·		-						
	10/3/2019	MW-3	Post-CSA			1		1		1										1		1	1									1				
	10/14/2014	MW-4	IAA		< 1	< 1	< 1	< 3	1.4	< 2		< 1	< 2	< 1	< 1	< 1	< 1	< 1	< 1	NA	NA			NA	NA		NA		NA	< 0.15	NA	NA	NA	NA	NA	NA
	4/8/2015	MW-4	LSA		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0		< 1.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	NA			NA	NA		NA		NA	< 5.0	NA	NA	NA	NA	NA	NA
10100-4	6/1/2015	MW-4	LSA		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 1 2	< 5.0		< 1.0	0.391	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<0.50	NA <0.50			<5.0	<5.0		NA <0.50		6.4	< 5.0 NA	0.0951	NA <0.30	NA 0.0521	NA	NA 0.14	NA
	10/3/2019	MW-4	Post-CSA	<10	<0.50	<0.50	<0.50	<1.5	0.4	<0.50	<0.50 <0.	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.20	<0.50	<0.50	<5.0	<2.5	<2.5	<0.50	<0.50	<0.50	7.7	NA	0.0555 NA	<0.50 NA	0.0525 NA	NA	0.14 NA	NA
MW-5	10/3/2019	MW-5	Post-CSA	<10	<0.50	< 0.50	< 0.50	<1.5	0.31J	<0.50	<0.50 0.1	J <0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	0.17J	<0.50	<0.50	<5.0	<2.5	<2.5	<0.50	<0.50	<0.50	15.4	NA	NA	NA	NA	NA	NA	NA
MW-6	10/3/2019	MW-6	Post-CSA	<10	<0.50	<0.50	<0.50	<0.50	0.34J	<0.50	0.71 0.2	J <0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.47J	<0.50	<0.50	<5.0	<2.5	<2.5	<0.50	<0.50	<0.50	31.8	NA	NA	NA	NA	NA	NA	NA
MW-7	6/1/2017	MW-7	CSA		0.25J	0.34J	0.15J	1.68J	5.6	<1.0		<0.50	0.59	0.98	3.3	<0.50	0.25J	<0.50	<0.50	<0.50	<0.50			<5.0	<5.0		<0.50		1.4	NA	0.46J	<0.30	0.084J	0.13J	0.10	<1.0
	10/3/2019	MW-7	Post-CSA	<10	<0.50	<0.50	<0.50	<1.5	10.1	<0.50	<0.50 <0.	0 <0.50	<0.50	<0.50	3.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<2.5	<2.5	<0.50	<0.50	<0.50	2.7	NA	NA	NA	NA	NA	NA	NA
MW-8	6/1/2017	MW-8	CSA		0.23J	0.28J	0.18J	1.5	17	<1.0		< 0.50	<0.50	0.96	7.4	< 0.50	<0.50	<0.50	<0.50	< 0.50	<0.50			<5.0	<5.0		< 0.50		5.4	NA	0.10J	<0.30	<1.0	<1.0	0.054	<1.0
	10/3/2019	MW-8	Post-CSA	<10	<0.50	<0.50	<0.50	<0.50	1.2	<0.50	<0.50 <0.	0 <0.50	< 0.50	<0.50	0.65	<0.50	<0.50	<0.50	<0.50	0.33J	<0.50	<0.50	<5.0	<2.5	<2.5	<0.50	<0.50	<0.50	12.1	NA	NA 11.0	NA 10.20	NA 11.0	NA 0.1Cl	NA	NA 11.0
MW-9	10/3/2019	MW-9	Post-CSA	<10	<0.53	<0.50	<0.50	<0.50	0.461	<0.50	<0.50 <0.	<0.50	<0.50	<0.50	0.211	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	2.8J <2.5	6.8 <2.5	<0.50	<0.50	<0.50	1.8	NA NA	<1.0 NA	<0.30 NA	<1.0 NA	0.16J NA	0.071 NA	<1.0 NA
MW-10	6/1/2017	MW-10	CSA		9.6	76	68	310	<2.0	24		11	150	40	<2.0	26	15	6.6	<2.0	<2.0	<2.0			<20	<20		4.4		6.2	NA	26	< 0.30	<1.0	15	<0.050	1.4
N 414/ 11	6/1/2017	MW-11	CSA		94	480	180	880	6.5	66		32	440	120	<5.0	78	60	<5.0	<5.0	<5.0	<5.0			<50	<50		18		3.5J	NA	59	1.7J	4.0J	38	4.6	4.5
1/1/1/-11	10/3/2019	MW-11	Post-CSA		•		•											Free F	Product																	
MW-12D	6/14/2016	MW-12D	CSA		<0.50	<0.50	<0.50	<1.50	0.93	<1.0		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50			<5.0	<5.0		<0.50		2.3	NA	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	10/3/2019	MW-12D	Post-CSA	<10	<0.50	<0.50	<0.50	<0.50	1.1	<0.50	<0.50 <0.	0 <0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.17J	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	7.8	NA	NA	NA	NA	NA	NA	NA
MW-13	10/3/2018	MW-13	Post-CSA		<0.5	< 0.5	< 0.5	<1.5	<0.5	< 0.5		<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5			<0.5	<0.5		< 0.5		< 0.5	NA	NA	NA	NA	NA	NA	NA
	10/3/2019	MW-13	Post-CSA	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50 <0.	0 <0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<2.5	<2.5	<0.50	<0.50	<0.50	<0.50	NA	NA	NA	NA	NA	NA	NA
MW-14	10/3/2018	MW-14	Post-CSA Post-CSA	 <10	<5 <0.50	<0.50	<5 <0.50	<15	297	<0.50	<0.50 <0	<5 0 <0.50	<0.50	<0.50	<5 <0.50	<0.50	<5 <0.50	<0.50	<5 <0.50	<5 <0.50	<5 <0.50	<0.50	<5.0	<5 <2.5	<5 <2.5	<0.50	<5 <0.50	<0.50	4.9	NA NA	NA	NA	NA	NA	NA	NA NA
2L Standar	d			6,000	1	600	600	500	20	6	NE 0.1	70	400	400	70	70	70	70	70	NE	NE	0.4	40	NE	NE	5	NE	NE	70	0.05	30	80	300	6	200	200
GCL = gros	contamination	n level		6,000,000	5,000	260,000	84,500	85,500	20,000	6,000	NE 70	) 25,000	28,500	25,000	70,000	30,000	6,900	8,500	15,000	NE	NE	400	40,000	NE	NE	5,000	NE	NE	70,000	4.7	12,500	2,120	990	6,000	410	200
Deculte in a	- /1																																			

Results in ug/L

Concentrations in bold exceeded the 2L Standard

Concentrations in bold and italics exceeded the GCL

NA= Not Analyzed

J = Estimated Value

NE= Not Established

Facility ID #: 0-001979

Figure D-4 UST Incident No. 44550 for Parcel 176 2019 MR - Summary of groundwater sampling results