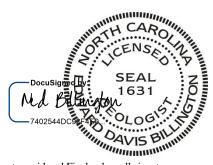
February 18, 2022

Mr. Gordon Box, PG Geotechnical Engineering Unit North Carolina Department of Transportation 1020 Birch Ridge Drive Raleigh, NC 27610

RE: PHASE II INVESTIGATION OF PARCEL 176 Circle K Store 1526, Circle K Stores, Inc. 8400 Norcross Road, Colfax, NC 27235 ESP Project No. IS14.314

TIP Number:	U-4758
WBS Number:	40251.1.1
County:	GUILFORD
Description:	Johnson St – Sandy Ridge Road from Skeet Club Road to I-40

Dear Mr. Box:


ESP Associates, Inc. (ESP) is pleased to submit this report on our GeoEnvironmental Phase II Investigation of the subject parcel. This work was performed in accordance with your Request for Proposal dated December 7, 2021 and our Cost Proposal dated December 13, 2021.

We appreciate the opportunity to assist you during this phase of the project. If you should have any questions concerning this report, or if we may be of further assistance, please contact us.

Sincerely,

ESP Associates, Inc.

Edward D. Billington, PG Senior Geologist/Geophysicist EDB/CRP/???

not considered Final unless all signatures are completed

TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	HISTORY 1
2.1	Phase I Report 1
2.2	Background Research1
2.3	Other Information
3.0	SITE OBSERVATIONS
4.0	METHODS
4.1	Geophysics
4.2	Borings
4.3	Soil Sample Protocol
4.4	Groundwater
5.0	RESULTS
5.1	Geophysics
5.2	Sample Data
5.3	Sample Observations
6.0	CONCLUSIONS
6.1	Geophysics
6.2	Soil
6.3	Estimated Quantities7
7.0	RECOMMENDATIONS
8.0	LIMITATIONS

TABLES

Table 1	Soil Sample PID Readings
Table 2	Soil Sample UVF Results Summary
Table 3	Monitoring Well Locations With 2019 Monitoring Report Results

TABLE OF CONTENTS (continued)

FIGURES

Figure 1	Parcel 176, Circle K Stores, Inc., Site Vicinity Map
Figure 2	Parcel 176, Circle K Stores, Inc., Site Photographs, 1 of 2
Figure 3	Parcel 176, Circle K Stores, Inc., Site Photographs, 2 of 2
Figure 4	Parcel 176, Circle K Stores, Inc., Monitoring Well Locations on Plan Sheet
Figure 5	Parcel 176, Circle K Stores, Inc., EM61 Early Time Gate Data
Figure 6	Parcel 176, Circle K Stores, Inc., EM61 Differential Data
Figure 7	Parcel 176, Circle K Stores, Inc., Detail Area, EM61 Differential Data
Figure 8	Parcel 176, Circle K Stores, Inc., GPR Images of Four Automobile Fuel USTs
Figure 9	Parcel 176, Circle K Stores, Inc., GPR Images of Two Truck Diesel USTs
Figure 10	Parcel 176, Circle K Stores, Inc., EM61 Early Time Gate Data on Plan Sheet
Figure 11	Parcel 176, Circle K Stores, Inc., EM61 Differential Data on Plan Sheet
Figure 12	Parcel 176, Circle K Stores, Inc., Detail Area, EM61 Differential Data on Plan Sheet
Figure 13	Parcel 176, Circle K Stores, Inc., Boring Locations on Plan Sheet
Figure 14	Parcel 176, Circle K Stores, Inc., Soil Analytical Results on Plan Sheet
Figure 15	Parcel 176, Circle K Stores, Inc., Soil Contamination Shown for Project I-5712
Figure 16	Legend for Plan Sheet Figures

APPENDICES

- Appendix A Soil Boring Logs
- Appendix B RED Lab Laboratory Testing Report
- Appendix C Chain-of-Custody Form
- Appendix D Relevant NCDEQ Information

1.0 INTRODUCTION

The North Carolina Department of Transportation (NCDOT) is planning to improve Johnson Street – Sandy Ridge Road from Skeet Club Road to I-40 in High Point. The NCDOT requested that ESP Associates, Inc. (ESP) perform a Phase II geoenvironmental investigation of Parcel 176 to locate underground storage tanks (USTs), sample soil, and delineate potential contaminated soil. Parcel 176 is located at 8400 Norcross Road in Colfax on the west side of the intersection with Sandy Ridge Road (Figure 1).

2.0 HISTORY

2.1 Phase I Report

According to the 2015 Johnson Street – Sandy Ridge Road Environmental Report for Planning (Phase I Report) for U-4758, Parcel 176 is an active gasoline service station with 7 USTs on site. Petroleum releases were recorded in 1986 (closed in 1987) and in 2014. This site was anticipated to present low geoenvironmental impacts to the project.

2.2 Background Research

We checked the following NCDEQ online sources: Division of Waste Management Site Locator Tool and linked files, the UST Incident Management Database, and the Registered Tanks Database.

Tank ID	Туре	Volume, gallons	Tank Basin
1	Gasoline	10,000	Automobile
2	Gasoline	10,000	Automobile
3	Gasoline	8,000	Automobile
4	Kerosene	8,000	Other
5	Diesel	20,000	Truck
6	Diesel	20,000	Truck
7	Diesel	8,000	Automobile

The Registered Tanks Database indicated 7 USTs were installed on September 30, 1984:

The Site Locator Tool shows above-ground storage tank (AST) Incident No. 3216 and UST Incident Nos. 44346, 44550, 47300, and 47682 with linked online files for each. There are comments for each of these incidents in the UST Incident Management Database. ESP observed overlap between the referenced incidents in the online files and database comments.

Significant information from the incidents is provided below:

• AST Incident No. 3216 with Notice of Violation dated April 28, 1986. This report indicated that eight petroleum spills occurred from January 1, 1985 to

February 12, 1986 with volumes ranging from 5 to 50 gallons. Investigations were associated with the sump pit to the west (Figure D-1). The incident was closed out on October 13, 1987.

- UST Incident No. 44346 dated June 20, 2014. The online files for this incident were limited to two cost reimbursement memos.
 - The UST Incident Management Database included comments that indicated the following:
 - 4,000-gallons of diesel were released from the diesel UST (UST No. 7, automobile tank basin) via the flex connector in the sump on June 20, 2014 (Figure D-2). The diesel sump assessment report indicated total petroleum hydrocarbons (TPH) of 1,900 milligrams per kilogram (mg/kg) detected via soft dig sampling near the sump and the diesel UST No. 7. Free product (FP) was detected in monitoring wells MW-2 and MW-3 with thicknesses of 2.72 and 5.54 feet, respectively. The NCDEQ indicated that a Comprehensive Site Assessment (CSA) and FP recovery were required. Benzene, toluene, ethylbenzene, and xylene (BTEX) were detected in soil and groundwater (GW) samples collected during the CSA investigation, indicating a release from the gasoline tanks. A letter was sent by NCDEQ requesting additional information to complete the CSA.
 - Note dated 11/12/2019. Additional GW and FP assessment indicated no GW contamination had migrated off of the site. FP was detected in three monitoring wells within the automobile tank basin at thicknesses greater than 2 feet. The NCDEQ indicated that FP needs to be addressed and the CSA needs to be completed by January 20, 2019.
 - The 2015 report discussed below referenced an Initial Abatement Action (IAA) completed on September 2, 2014 and a Phase II Limited Site Assessment (LSA) completed on November 21, 2014. The LSA reported no contaminants above the Ground Water Quality Standards; however, the site was classified as a high risk due to nearby potable water wells. Additional GW monitoring was performed in April and July of 2015, when low levels of MTBE and benzene were detected above the North Carolina Code 2L Drinking Water Standards (NCAC 2L) Standards.
- UST Incident No. 44550 dated July 30, 2015. The following reports were included in the linked files:
 - Initial Abatement Action (IAA) and Limited Site Assessment (LSA) dated December 7, 2015. Soil samples tested from the base of the excavation for a new product line from the 20,000-gallon truck diesel USTs indicated petroleum contamination (Figure D-3). Approximately 63 tons of contaminated soil were removed but no over-excavation could be performed due to various obstacles. The LSA included installation of two

monitoring wells (MW-5 and MW-6) and six soil borings around the two 20,000-gallon USTs. Groundwater was encountered approximately 42 feet below ground surface (bgs). There was no contamination in the soil or groundwater identified above regulatory limits.

- GW Monitoring Report dated November 11, 2019. This is the most recent GW report received by the NCDEQ and addresses GW contamination in the vicinity of the automobile tank pit in the southeastern corner of the parcel. The GW report concluded that dissolved groundwater concentrations exceed 2L Standards in monitoring wells MW-1 and MW-14 (Figure D-4). Light Non-Aqueous Phase Liquid (LNAPL) was observed in MW-2, MW-3, and MW-11. Groundwater flow in the area is generally towards the eastsoutheast (Figure D-5). The GW sample results are provided in Figure D-6 and summarized in Table 3. The closest water-supply wells are located approximately 550 feet downgradient and are used for potable supply.
- UST Incident No. 47300 dated October 7, 2020. A UST-61 form was submitted for a release discovered on October 7, 2020. During diesel fuel delivery, approximately 40 to 50 gallons of diesel fuel were released around the fill ports for UST Nos. 5 and 6. The released fuel flowed into a stormwater inlet and the soils were impacted. After the remediation of the area, soil samples indicated that the contamination did not exceed the soil to groundwater maximum soil contaminant concentrations (MSCCs). A NCDEQ Letter of No Further Action was issued on December 16, 2020.
- UST Incident No. 47682 dated March 29, 2021. Approximately 60 to 80 gallons of gasoline were released from the fill port on UST No. 7. A vacuum truck was utilized to remove the contaminated water from the stormwater inlet. No documents are linked to this Incident.

2.3 Other Information

ESP's recent email correspondence with Carin Kromm, L.G., NCDEQ Winston-Salem Regional Office, indicated that the 2019 GW monitoring report was the latest report received. The site incident manager, Gene Mao, Guilford County, also indicated no further GW reports have been received. However, Mr. Mao did provide a copy of a 20-Day report regarding the October 7, 2020 diesel spill referenced above (Incident No. 47300).

The Guilford County GIS indicates that the property owner is listed as Circle K Stores, Inc.

3.0 SITE OBSERVATIONS

During our December 2021 and January 2022 field work, the site was occupied by an active Circle K gas station (Figure 2 and 3). The ground surface in the study area was covered by grass and concrete pavement. There are three tank beds located within the study area. The automobile fuel

tank bed is located on the southeastern corner, the truck diesel tank bed is located on the north side of the diesel canopy, and the kerosene tank bed is located north of the building. The automobile tank bed is partially within the proposed temporary construction easement for NCDOT Project U-5748. In addition, the kerosene tank bed and part of the truck diesel tank bed are located with the proposed temporary construction easement for NCDOT Project I-5712.

The inventory report provided by Circle K lists three 8,000-gallon tanks (one regular gasoline, one diesel, and one kerosene), two 10,000-gallon tanks (one regular gasoline and one supreme gasoline), and two 20,000-gallon diesel tanks. One AST is located at the northwest end of the diesel canopy and is listed as a 6,000-gallon Diesel Exhaust Fluid (DEF) tank. A total of 15 monitoring wells should be present on the parcel, including 3 not numbered and one not found (MW-10) (Figure 4). Note that Figure 4 also shows the 2 offsite monitoring wells, MW-13 and MW-14. The coordinates for the identified monitoring wells are provided in Table 3.

4.0 METHODS

ESP performed a geophysical study of the area designated by the NCDOT on December 28 and 29, 2021 and January 24 and 25, 2022. The geophysical investigation area was approximately 3.1 acres and encompassed the accessible areas of the parcel. We performed direct-push drilling and sampling of subsurface soils to depths of 10 feet on January 24 and 25, 2022. A photoionization detector (PID) was used to screen subsurface soils in the field and select soil samples to send for laboratory analysis. Groundwater was not encountered during the drilling investigation.

4.1 Geophysics

ESP performed a metal detector study over the accessible areas of the site using a Geonics EM61 MK2 with a line spacing of approximately three feet followed by ground-penetrating radar (GPR) data collected over selected EM61 anomalies (Figures 5, 6, and 7). Location control was provided in real-time using a differential global positioning system (DGPS).

4.2 Borings

ESP performed direct-push drilling on Parcel 176 using a subcontractor, SAEDACCO of Fort Mill, South Carolina. Twenty borings were drilled, designated B176-1 through B176-20 (Figure 13). The soil borings were advanced using a hand auger and a GeoProbe 54DT drill rig. Soil samples were obtained to a depth of approximately 10 feet using hand auger cuttings and 4-foot long Macro-Core® tubes. Soil cores varied in recovery from 80 to 100 percent. The sampling equipment was decontaminated prior to drilling and between borings by the driller using a pressure washer with Liquinox® detergent solution.

4.3 Soil Sample Protocol

Representative soil samples were taken from hand auger cuttings and the Macro-Core (core) tubes at approximate one-foot intervals by the ESP field geologist while wearing nitrile disposable gloves. Each sample was placed in a sealed plastic bag and then kept in a warm area for approximately 10 to 15 minutes prior to measuring volatile organic compound (VOC) levels in the head space with the PID. The maximum PID readings per boring ranged from 0.5 to 43.7 parts per million (ppm) (Table 1).

Seventeen soil samples were selected for ultraviolet fluorescence (UVF) laboratory analysis, as listed in Table 2. For each selected sample, an approximate 10-gram soil sample was collected from the sample bag using a Terra CoreTM sampler and placed into a laboratory-supplied 40-milliliter volatile organic analysis (VOA) vial containing methanol. Once sealed, the vial was labeled with the sample identification number and then shaken vigorously for about one minute. The samples were packed on ice and sent via overnight delivery to RED Lab, LLC (RED Lab), located in Wilmington, North Carolina, following proper chain-of-custody procedures (Appendix C).

RED Lab used a QED Hydrocarbon Analyzer to quantitatively analyze the soil samples using the UVF method for BTEX; gasoline range organics (GRO); diesel range organics (DRO); TPH; total aromatics; polycyclic aromatic hydrocarbons (PAHs); and benzo(a)pyrene (BaP).

4.4 Groundwater

Groundwater was not encountered in the 20 borings.

5.0 RESULTS

5.1 Geophysics

The EM61 early time gate data show the response from both shallow and deeper metallic objects (Figure 5). The differential response reduces the effect of shallow anomalies and emphasizes anomalies from larger and more deeply buried metallic objects, such as USTs (Figures 6 and 7). Our evaluation of the EM61 data indicated several anomalies at the north end of the building that could not be attributed to known cultural features; GPR data collected over these anomalies indicated that they were caused by reinforced concrete. GPR data collected over the 4 known USTs in the automobile tank bed and over the 2 USTs in the truck diesel tank bed are shown on Figures 8 and 9, respectively.

The automobile fuel tank bed GPR data indicated that the four tanks are buried approximately 6 feet bgs. The two northern USTs have approximate diameters of 9 feet and lengths of 22 feet. The two southern USTs have approximate diameters of 8 feet and lengths of 25 feet. The truck diesel tank bed GPR data indicated that the two tanks are buried approximately 6 feet bgs and have

approximated diameters of 11 feet and lengths of 30 feet. No GPR data were collected over the kerosene tank bed due to two dumpsters located directly on top of the UST.

The EM61 early time gate response and differential response are shown on the plan sheet for NCDOT Project U-4758 on Figures 9, 10, and 12.

5.2 Sample Data

The soil sample UVF hydrocarbon analysis results for BTEX, GRO, DRO, and PAHs are presented in Table 2. The RED Lab laboratory report, which also includes results for TPH, total aromatics, and BaP, is provided in Appendix B. Values are provided in mg/kg, or ppm.

5.3 Sample Observations

The results of the laboratory testing indicate that BTEX and BAP were below the laboratory detection limits in the 17 samples tested. GRO was detected in one sample with values of 17.9 ppm, below the NCDEQ action level of 50 ppm for GRO. DRO was detected in 12 samples, with one sample above the NCDEQ action level of 100 ppm for DRO with a value of 868.2 ppm (Sample S1 in Boring B176-13). PAHs were detected in 3 samples with values ranging from 0.83 to 12.1 ppm.

6.0 CONCLUSIONS

The results of the Phase II investigation of Parcel 176 for NCDOT Project U-4758 indicates one boring location where DRO was above the NCDEQ Action Level for DRO. Groundwater was not encountered in the upper 10 feet at the site. However, groundwater contamination is known to be present on the parcel, based on previous investigations.

6.1 Geophysics

The geophysical data did not indicate the presence of abandoned USTs. The 4 known USTs in the automobile fuel tank bed on the southeast corner of the site are located partially within the proposed temporary construction easement for NCDOT Project U-4758. The two known USTs in the truck diesel tank bed and the single kerosene UST are within the proposed temporary construction easement for NCDOT Project I-5712 (Figure 15).

6.2 Soil

The results of the Phase II investigation for Parcel 176 of NCDOT Project U-4758 indicates that DRO was detected in Sample S1 (1.0 - 1.5 feet bgs) in Boring B176-13 at levels above the NCDEQ Action Level of 100 ppm for DRO (Figure 14). This boring is located outside of the proposed ROW and easements for Project U-4758 but within the proposed temporary construction easement for Project I-5712 (Figure 15).

6.3 Estimated Quantities

Based on the laboratory results and field observations, the petroleum contamination appears to be between ground surface and 4 feet bgs at and in the vicinity of Boring B176-13. The PID readings and UVF results from adjacent borings indicates the contamination does not extend to those borings. Using an average contaminated soil thickness of 4.0 feet and an area of 491 square feet, the volume of contaminated soil above 10 feet bgs is estimated as follows:

<u>Total Estimated Volume of Contaminated Soil above 10 feet depth bgs</u> 491 square feet * 4.0 feet = 1,964 cubic feet = 73 cubic yards

Assuming 100 pounds per cubic foot, the estimated amount of contaminated soil to be removed for construction is approximately 98 tons in the vicinity of Boring B176-13.

Additional soil contamination may be discovered when the 7 USTs and the dispenser islands are removed, so this should be considered when planning demolition and construction.

7.0 **RECOMMENDATIONS**

ESP recommends that the 4 known USTs in the automobile tank bed at the southeast corner that are located partially within the proposed temporary construction easement be removed in accordance with NCDEQ regulations. ESP also recommends that soil removed from the site as part of NCDOT construction activities in the vicinity of B176-13 be screened for petroleum hydrocarbon contamination, properly handled, segregated, and disposed of in accordance with NCDEQ regulations. Additionally, soil removed in the vicinity of the USTs, the product lines, and the dispenser islands also should be screened for petroleum hydrocarbon contamination, properly handled, segregated, not disposed of in accordance with NCDEQ regulations.

For NCDOT Project I-5712, the two USTs in the truck diesel tank pit, the kerosene UST, and Boring P176-13 are within the proposed temporary construction easement as shown on the 25 percent plans (Figure 15).

Groundwater was not encountered in the upper 10 feet in the study area. Based on the planned cut depths and proposed drainage features, it does not appear that groundwater will be encountered during construction. However, if groundwater is encountered during construction, it may be contaminated and should be screened for petroleum hydrocarbons, properly handled, segregated, and disposed of in accordance with NCDEQ regulations.

8.0 LIMITATIONS

ESP's professional services have been performed, findings obtained, and recommendations prepared in accordance with customary principles and practices in the fields of environmental science and engineering. ESP is not responsible for the independent conclusions, opinions, or recommendations made by others based on the data presented in this report.

The passage of time may result in a change in the environmental characteristics at this site and surrounding properties. ESP does not warrant against future operations or conditions, or against operations or conditions present of a type or at a location not investigated. ESP does not assume responsibility for other environmental issues that may be associated with the subject site.

TABLES

Boring	Sample Depth Range with PID > 10 ppm (feet bgs)	Maximum PID Reading (ppm) and Sample Depth (feet bgs)
B176-1	None	0.6 (7.0 – 7.5)
B176-2	None	1.3 (4.0 – 4.5)
B176-3	None	0.6 (1.0 – 1.5, 8.0 – 8.5)
B176-4	None	1.5 (1.0 – 1.5)
B176-5	None	1.9 (1.0 – 1.5)
B176-6	None	1.6 (9.0 - 9.5)
B176-7	None	0.5 (4.0 - 4.5, 8.0 - 8.5)
B176-8	None	1.1 (9.0 – 9.5)
B176-9	None	0.8 (2.0 – 2.5)
B176-10	None	0.8 (5.0 - 5.5, 7.0 - 7.5)
B176-11	None	3.2 (9.0 - 9.5)
B176-12	None	1.2 (9.0 – 9.5)
B176-13	1.0 - 1.5	43.7 (1.0 – 1.5)
B176-14	None	1.6 (7.0 – 7.5)
B176-15	None	0.9 (1.0 – 1.5)
B176-16	None	0.8 (4.0 - 6.5)
B176-17	None	0.9 (5.0 - 5.5)
B176-18	None	1.1 (8.0 - 8.5)
B176-19	None	1.8 (2.0 – 2.5)
B176-20	None	1.4 (2.0 – 2.5)

TABLE 1SOIL SAMPLE PID READINGS

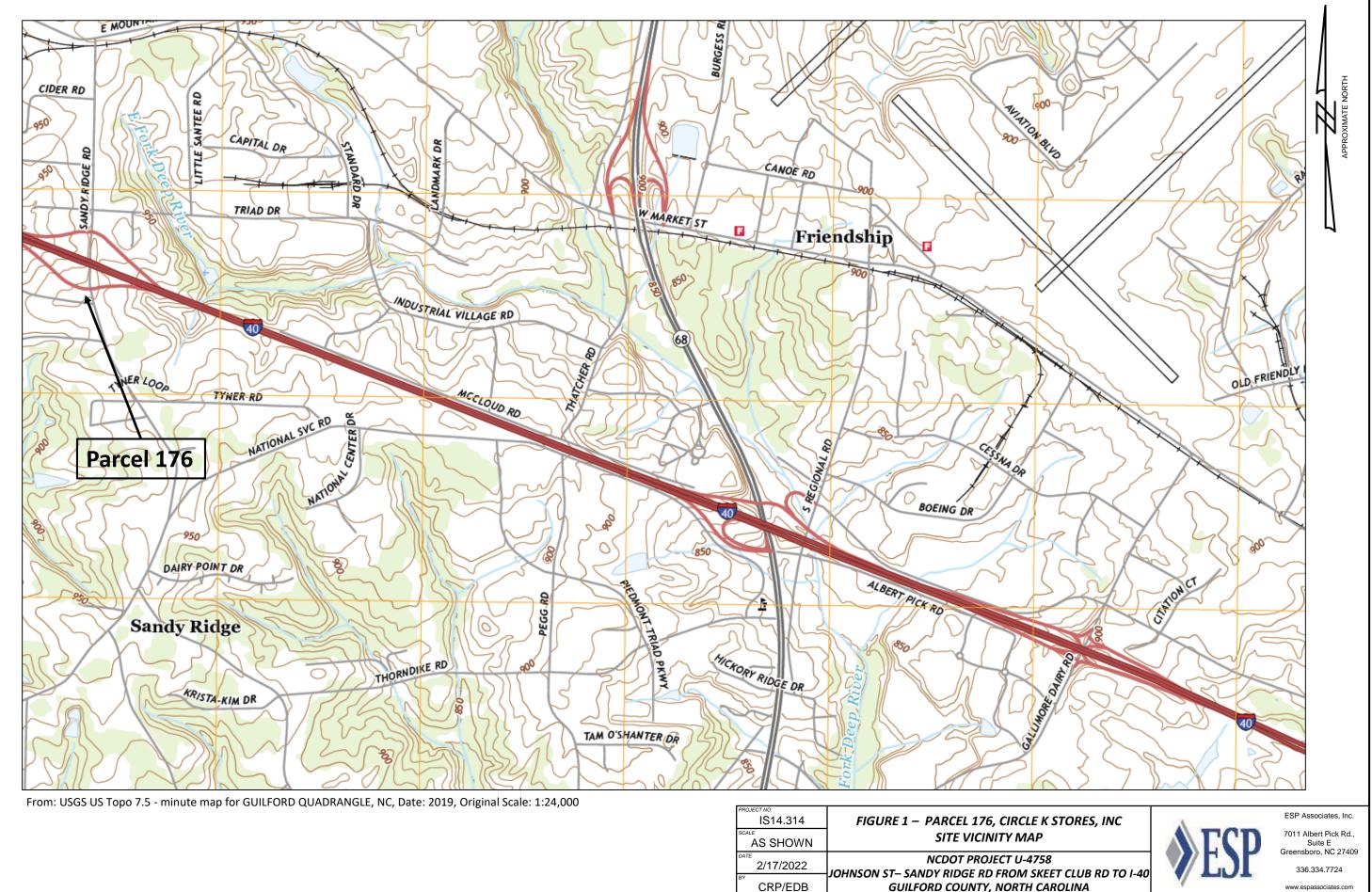
Boring	Sample ID (depth in feet bgs)	Date Collected	BTEX (C6-C9) (mg/kg)	GRO (C5-C10) (mg/kg)	DRO (C10-C35) (mg/kg)	PAHs (mg/kg)
B176-1	S5	1/24/22	<0.64	<0.64	<0.64	< 0.2
B176-1	S7	1/24/22	<0.53	<0.53	0.64	< 0.17
B176-2	S 4	1/24/22	< 0.34	< 0.34	< 0.34	< 0.11
B176-3	S 1	1/24/22	<0.59	<0.59	0.85	<0.19
B176-3	S 5	1/24/22	<0.54	<0.54	0.54	< 0.17
B176-5	S 4	1/24/22	<0.58	<0.58	<0.58	<0.19
B176-8	S 6	1/24/22	<0.49	<0.49	0.67	<0.16
B176-9	S2	1/24/22	<0.61	<0.61	<0.61	<0.2
B176-10	S 4	1/25/22	<0.54	<0.54	0.83	<0.17
B176-11	S2	1/24/22	<0.58	<0.58	<0.58	<0.19
B176-12	S 6	1/25/22	<0.66	<0.66	0.66	<0.21
B176-13	S 1	1/24/22	<7.5	<7.5	868.2	12.1
B176-13	S 4	1/24/22	<1.2	17.9	68.8	0.83
B176-13	S 8	1/24/22	<0.73	<0.73	11.7	<0.23
B176-17	S 5	1/25/22	< 0.52	< 0.52	19.8	1.0
B176-19	S 4	1/25/22	<0.33	< 0.33	0.33	<0.11
B176-20	S2	1/25/22	<0.57	<0.57	0.57	< 0.18

TABLE 2SOIL SAMPLE UVF RESULTS SUMMARY

TABLE 3MONITORING WELL LOCATIONS WITH 2019 MONITORING REPORT RESULTS

			Depth to	2019 Monitoring Report Results		Results
Monitoring Well	Northing	Easting	Groundwater, feet	Detected Compound	Detected Level, ug/L	NC 2L Groundwater Standard ug/L
				Benzene	15.4	1
				Toluene	27	600
MW-1	853361	1705573	39.39	Ethylbenzene	47.1	600
101 00 - 1	055501	1705575	39.39	Xylenes, Total	109	500
				MTBE	15.2	20
				Naphthalene	9.8	6
MW-2 ¹	853345	1705578	40.73	Free Product 1.95ft thick	-	-
MW-3 ¹	853332	1705603	42.59	Free Product 4.18ft thick	-	-
MW-4	853332	1705603	39.08	MTBE	0.4	20
MW-5	853458	1705250	39.40	Not Sampled	-	-
MW-6	853493	1705254	38.50	Not Sampled	-	-
MW-7	853364	1705550	39.18	MTBE	10.1	20
MW-8	853384	1705595	39.53	MTBE	7.2	20
MW-9	853356	1705624	39.59	MTBE	0.46	20
MW-10 ⁴	NL -		-	-	-	-
MW-11 ¹	853352	1705587	42.68	Free Product 4.30ft thick	-	-
MW-12D	853335	1705588	39.20	MTBE	1.1	20
MW-13	N	L ³	36.19	All Below Detection Limits	-	-
MW-14	N	L^3	38.77	MTBE	26.7	20
MW^2	853341	1705580	N/A	N/A	-	-
MW^2	853366	1705624	N/A	N/A	-	-
MW^2	853351	1705624	N/A	N/A	-	-

The complete summary of GW sampling results from the 2019 MR is provided in Appendix D-6 NL = Not Located


¹ Monitoring well not sampled due to free product

² Monitoring well not associated with 2019 Monitoring Report

³ Monitoring well not located during 2022 Phase II Investigation

⁴ MW-10 not located in the 2019 MR or 2022 Phase II Investigation

FIGURES

FIGURE 1 – PARCEL 176, CI	PROJECT NO. IS14.314
SITE VICINITY	AS SHOWN
NCDOT PROJECT JOHNSON ST- SANDY RIDGE RD FR	^{DATE} 2/17/2022
GUILFORD COUNTY, NO	BY CRP/EDB

A. Photograph from southeast corner of parcel, looking west.

C. Photograph from northeast end of parcel, looking west.

B. Photograph from southwest corner of parcel, looking east.

D. Photograph of west end of parcel, looking north.

PROJECT NO. IS14.314	FIGURE 2 – PARCEL 176,	
scale N/A	SITE PHOTOGRAP	
DATE 2/17/2022	NCDOT PROJECT JOHNSON ST- SANDY RIDGE RD FRO	
CRP/EDB	GUILFORD COUNTY, NO	

CIRCLE K STORES, INC PHS, 1 OF 2 T U-4758 ROM SKEET CLUB RD TO I-40 ORTH CAROLINA

ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

E. Photograph of the southeastern tank pit, looking south.

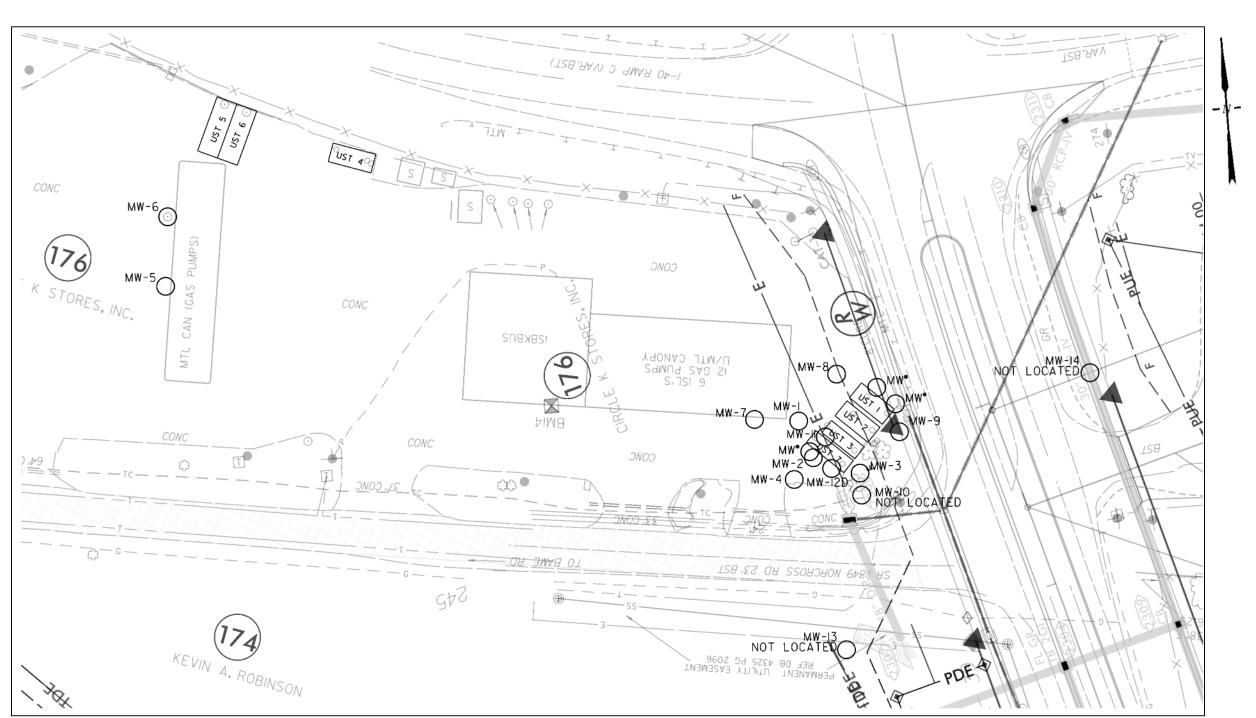
G. Photograph of the tank pit located on the north end of the diesel canopy, looking north.

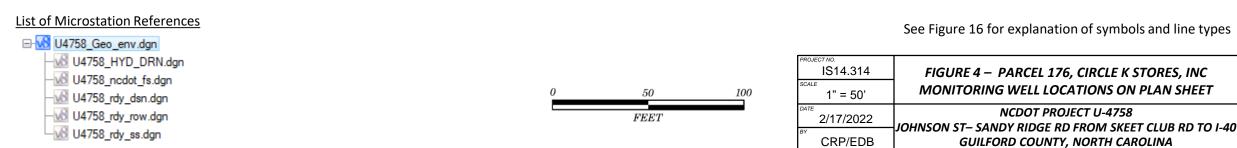
F. Photograph of the kerosene UST, looking northeast.

south east. DEF is reportedly non-hazardous.

FIGURE 3 – PARCEL 176, CI	PROJECT NO. IS14.314
SITE PHOTOGRAP	scale N/A
NCDOT PROJI JOHNSON ST- SANDY RIDGE RD	^{DATE} 2/17/2022
GUILFORD COUNTY, NO	BY CRP/EDB

H. Photograph of DEF AST located at the northwest end of the diesel canopy, looking

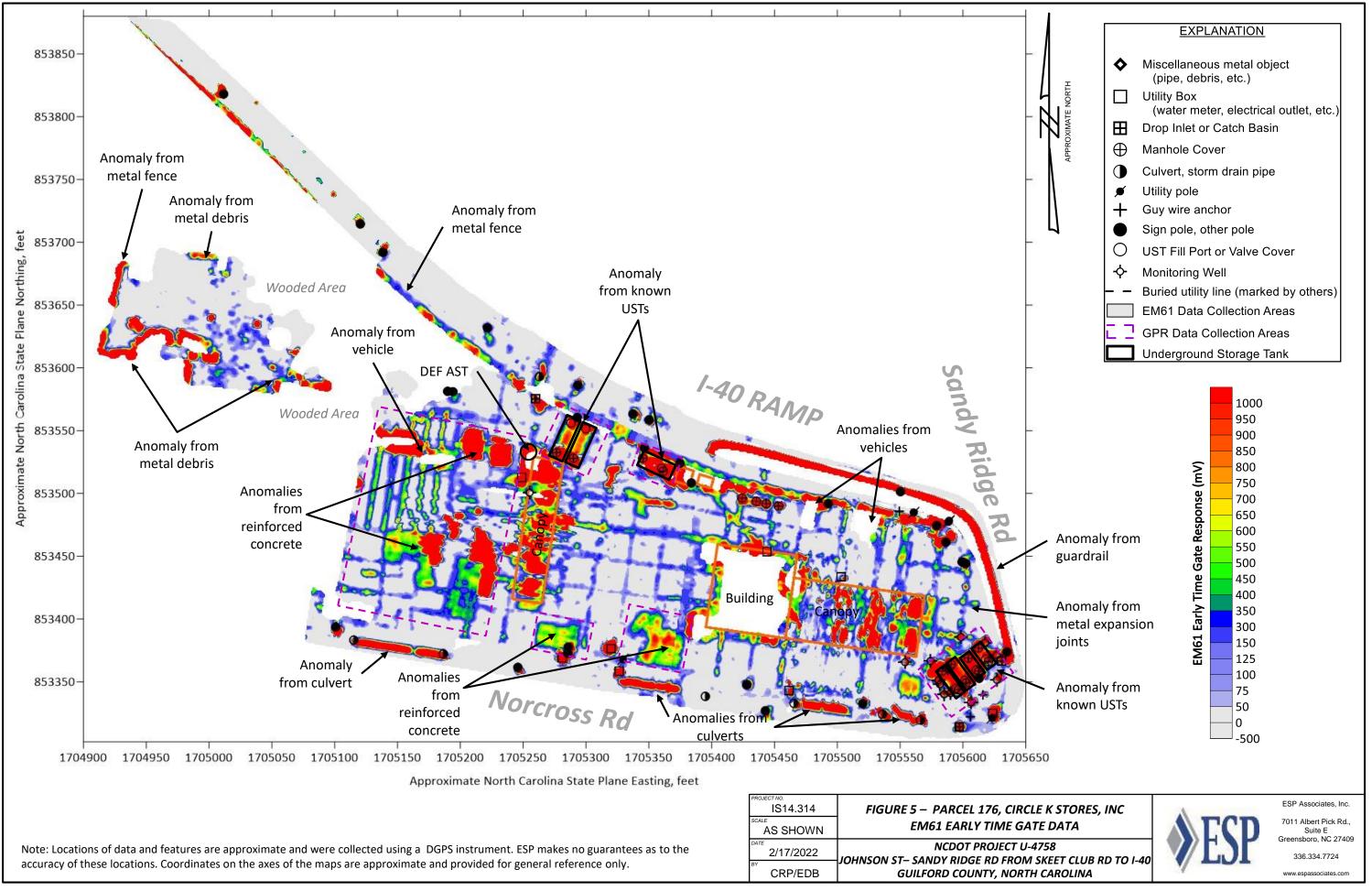

CIRCLE K STORES, INC NPHS, 2 OF 2 CT U-4758 ROM SKEET CLUB RD TO I-40 IORTH CAROLINA

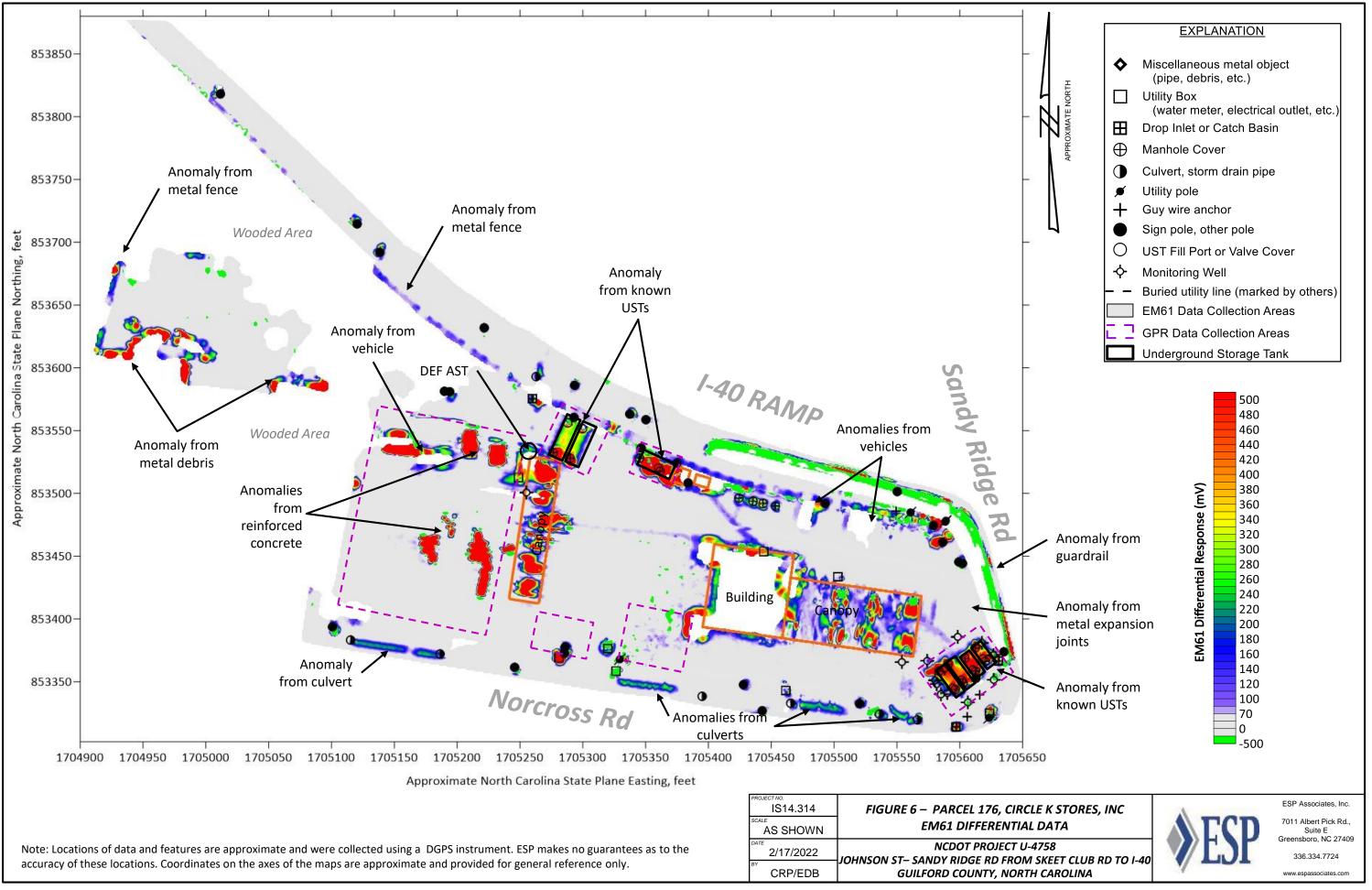

ESP Associates, Inc.

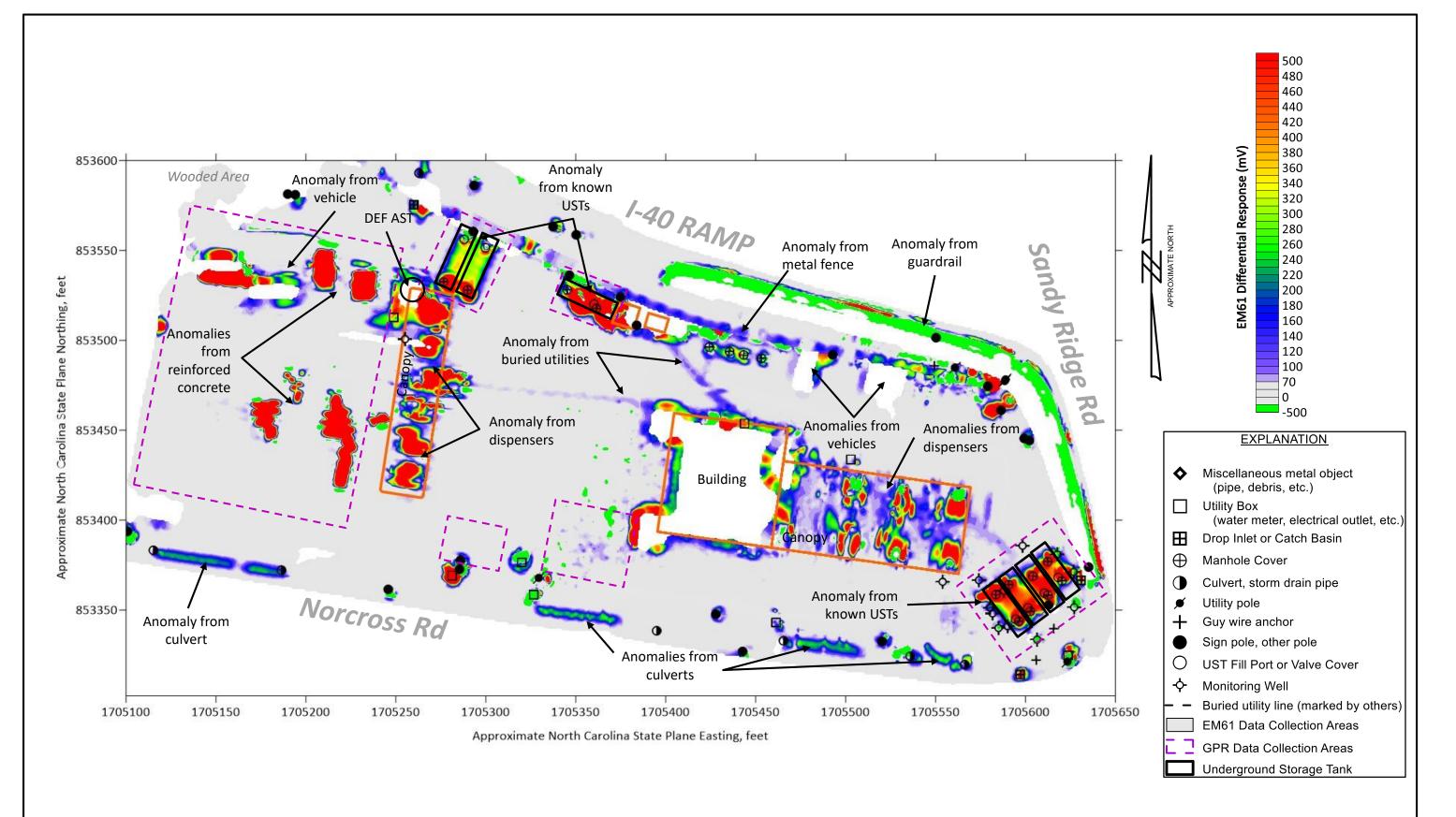
7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

MW* - Monitoring well not associated with the 2019 Monitoring Report






ESP Associates, Inc.

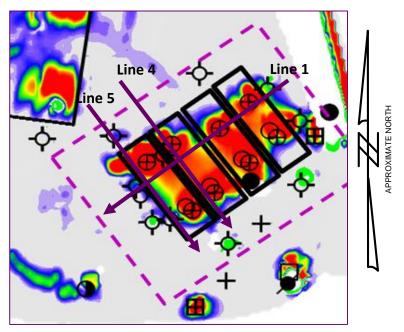
7011 Albert Pick Rd., Suite E Greensboro, NC 27409

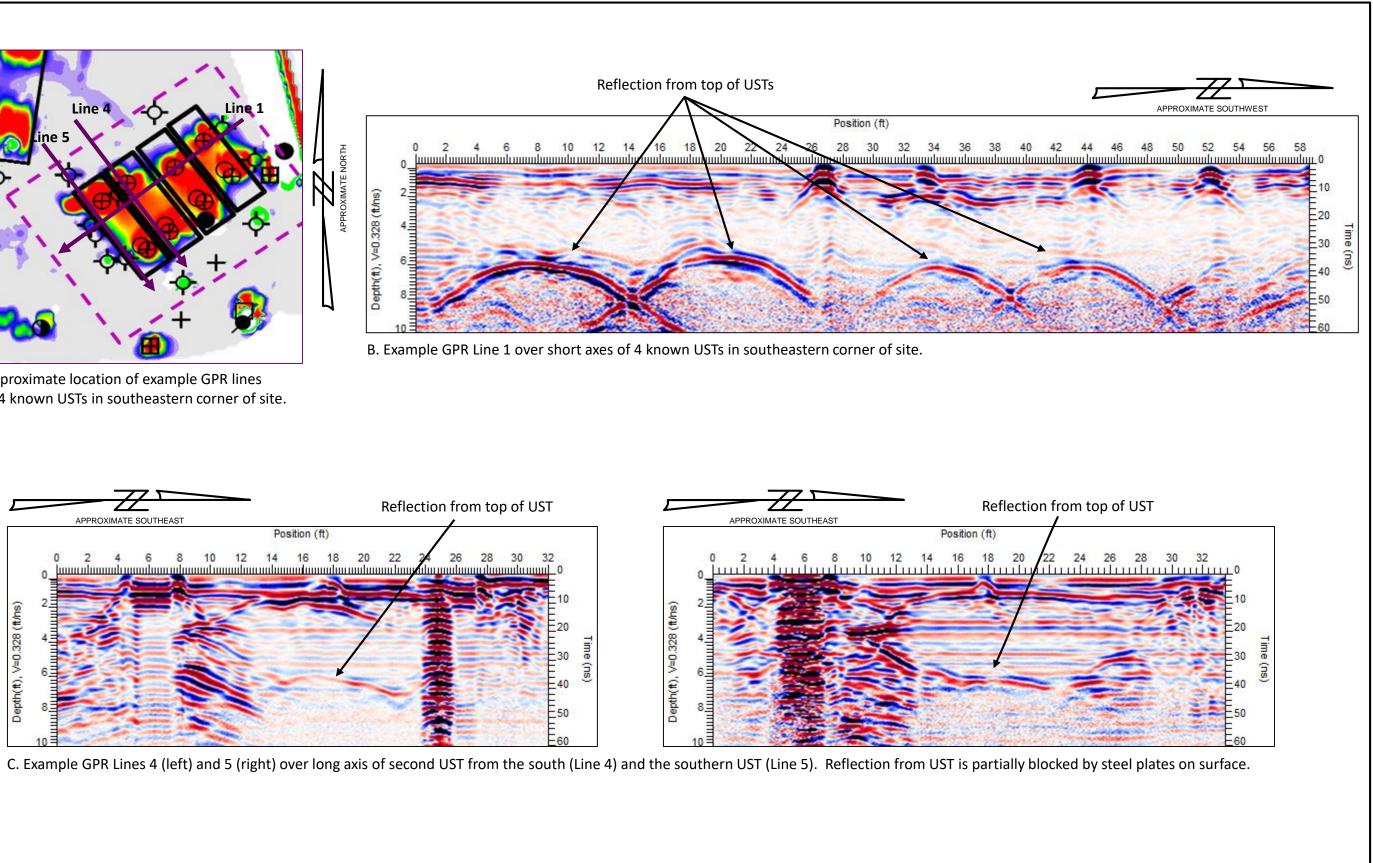
336.334.7724

FIGURE 7 – PARCEL 176, C DETAIL AREA, EM61 DII NCDOT PROJEC JOHNSON ST– SANDY RIDGE RD FF	PROJECT NO. IS14.314	
	AS SHOWN	
	^{DATE} 2/17/2022	
GUILFORD COUNTY, NO	BY CRP/EDB	

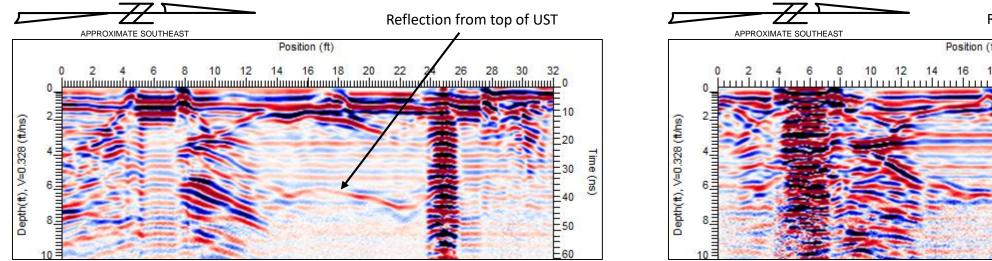
Note: Locations of data and features are approximate and were collected using a DGPS instrument. ESP makes no guarantees as to the accuracy of these locations. Coordinates on the axes of the maps are approximate and provided for general reference only.

IRCLE K STORES, INC FERENTIAL DATA T U-4758


T U-4758 POM SKEET CLUB RD TO I-40 DRTH CAROLINA


ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

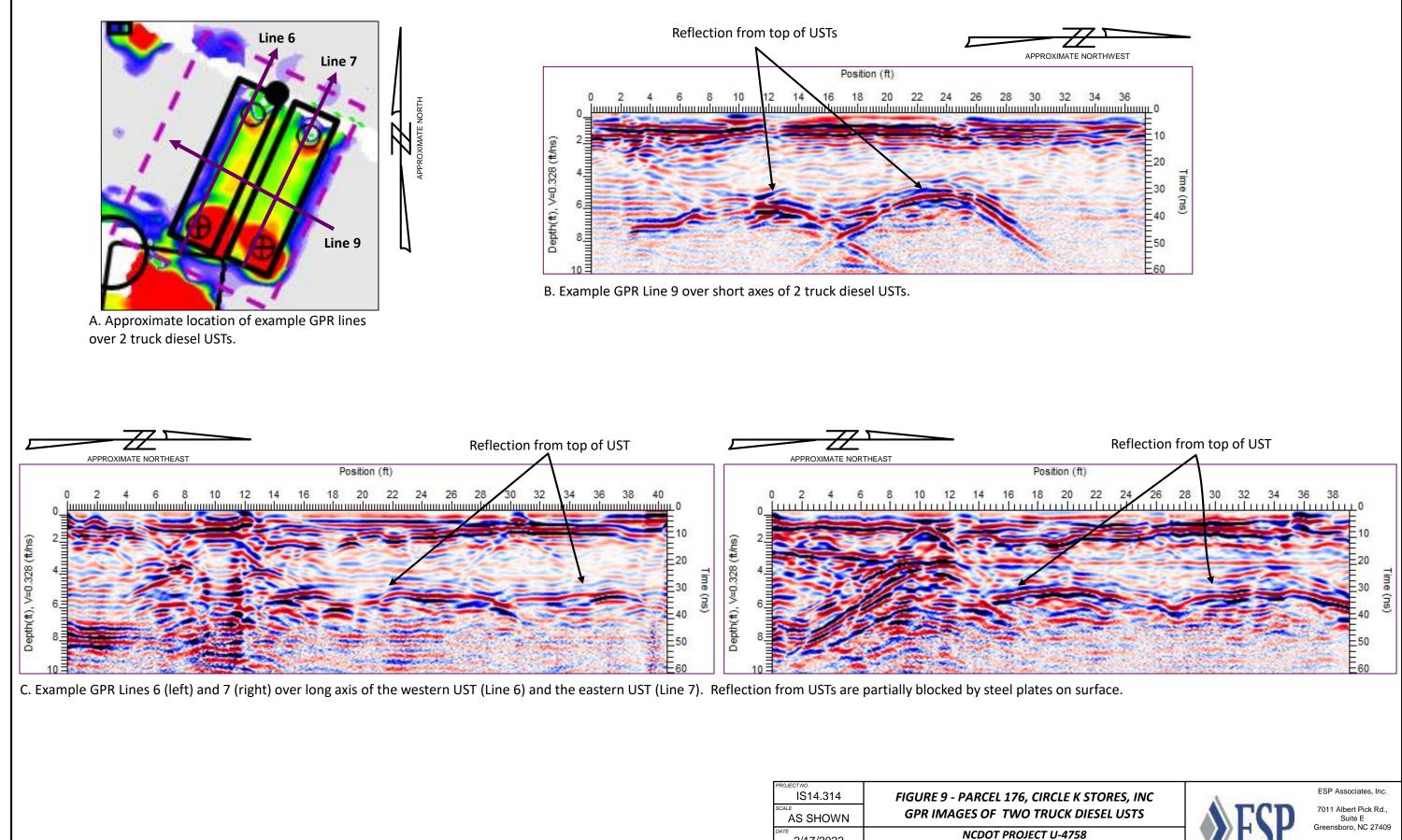

336.334.7724

A. Approximate location of example GPR lines over 4 known USTs in southeastern corner of site.

B. Example GPR Line 1 over short axes of 4 known USTs in southeastern corner of site.

ROJECT NO. IS14.314	FIGURE 8 - PARCEL 176, CIR
AS SHOWN	GPR IMAGES OF FOUR AUTO
2/17/2022	NCDOT PROJECT JOHNSON ST– SANDY RIDGE RD FRC
CRP/EDB	GUILFORD COUNTY, NOI
	IS14.314 AS SHOWN ATE 2/17/2022

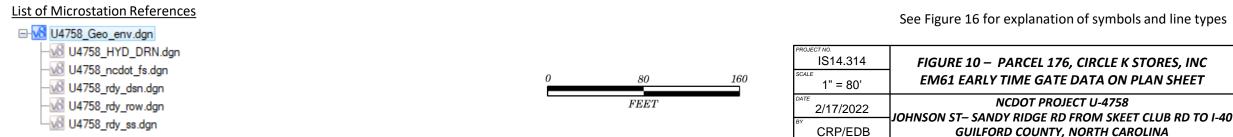
RCLE K STORES, INC OMOBILE FUEL USTS


Г U-4758 OM SKEET CLUB RD TO I-40 ORTH CAROLINA

ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

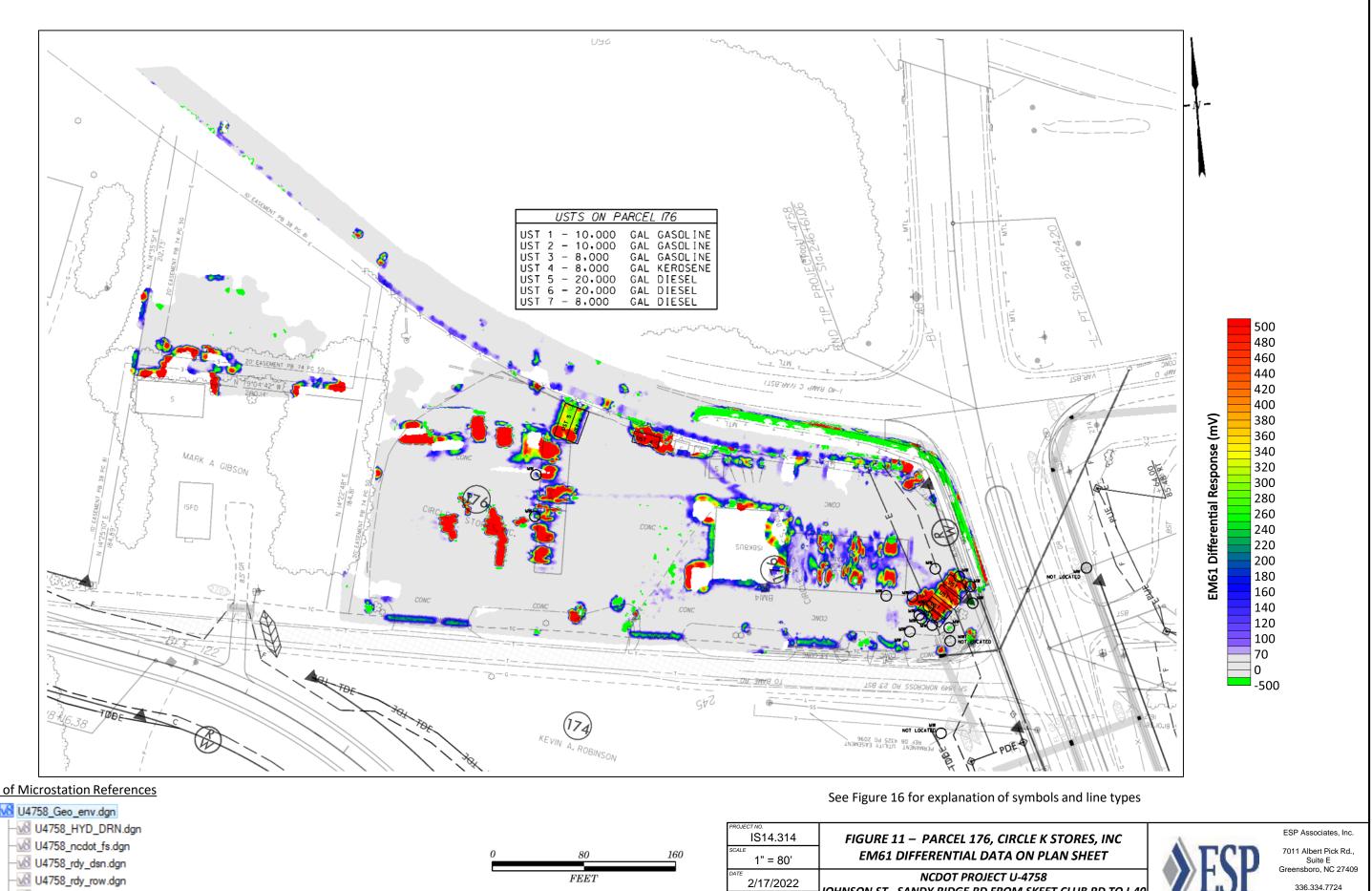
336.334.7724

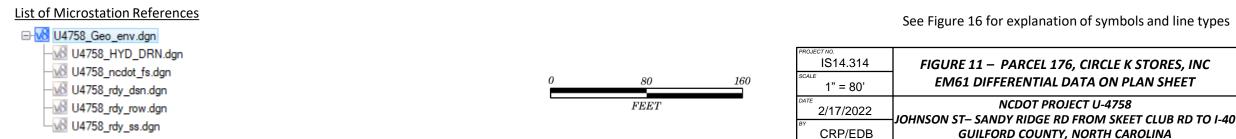


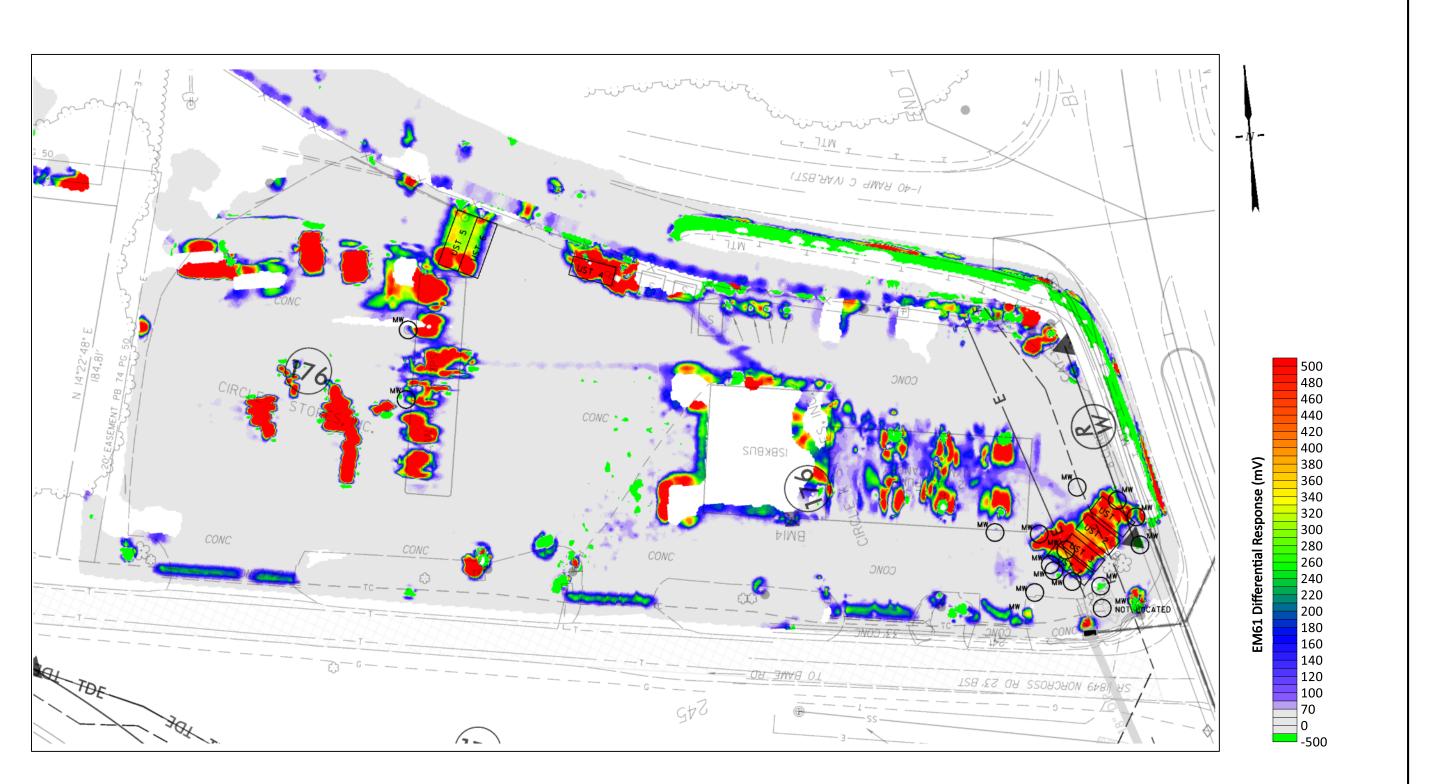
PROJECT NO. IS14.314	FIGURE 9 - PARCEL 176, CIR
AS SHOWN	GPR IMAGES OF TWO TR
DATE 2/17/2022	NCDOT PROJECT JOHNSON ST– SANDY RIDGE RD FRC
CRP/EDB	GUILFORD COUNTY, NOI
	AS SHOWN DATE 2/17/2022 BY

OM SKEET CLUB RD TO I-40 ORTH CAROLINA

336.334.7724

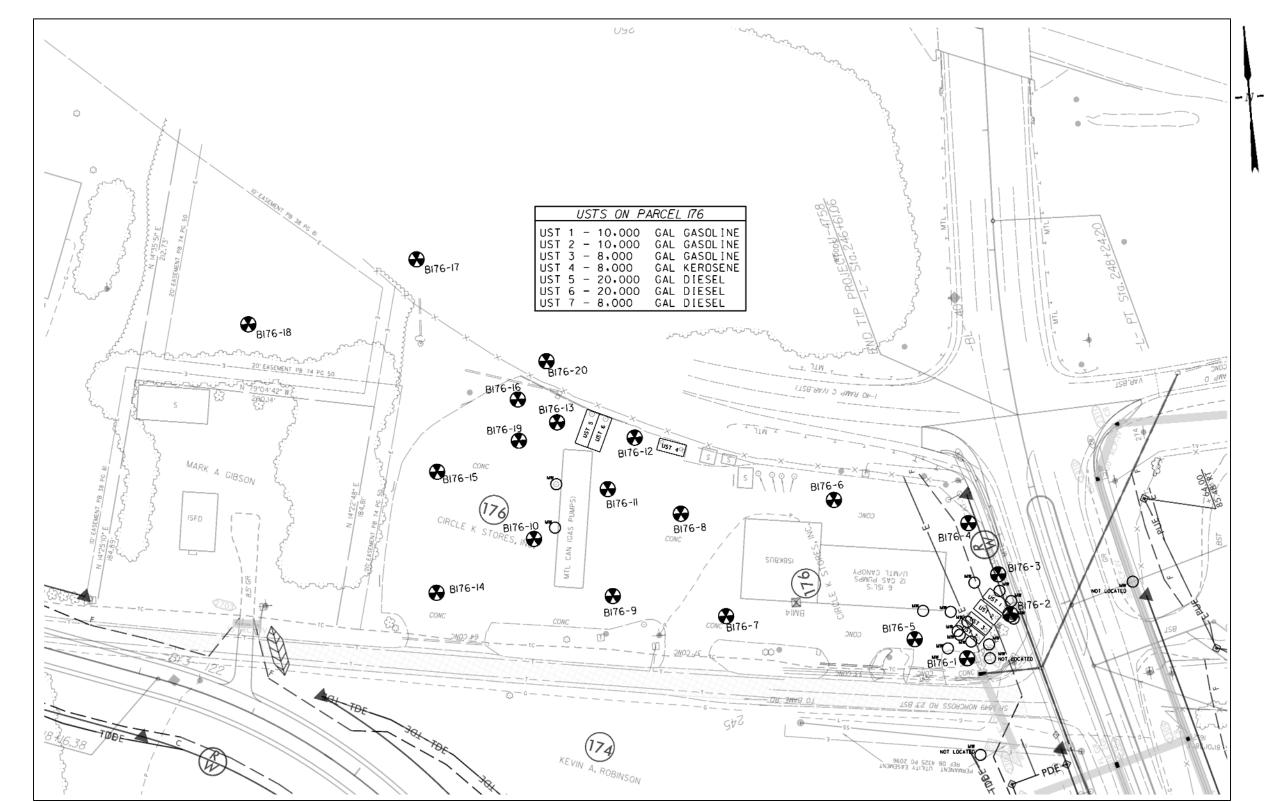


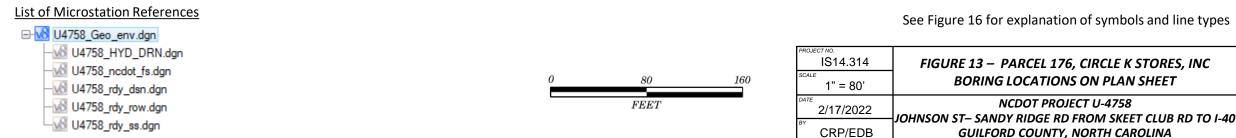




7011 Albert Pick Rd., Suite E Greensboro, NC 27409

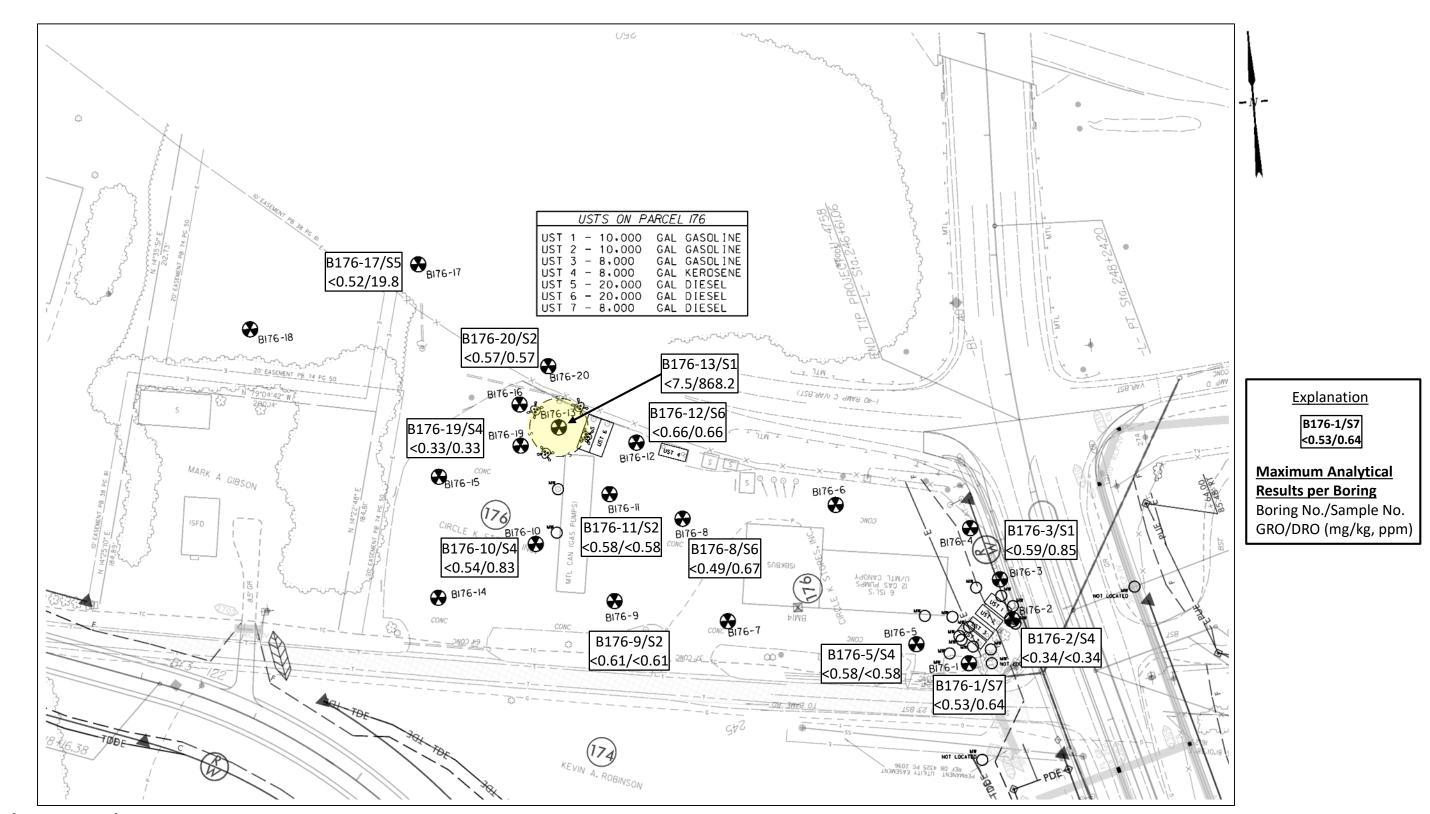
336.334.7724

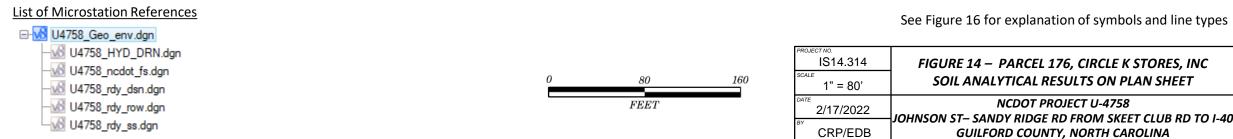




List of Microstation References			See Figure 16 for explanation of
- 🐼 U4758_HYD_DRN.dgn - 🐼 U4758_ncdot_fs.dgn - 🐼 U4758_rdy_dsn.dgn	0 50 100	PROJECT NO. IS14.314 SCALE 1" = 50'	FIGURE 12 – PARCEL 176, CIR DETAIL AREA, EM61 DIFFERENTIAL
	FEET	2/17/2022 ^{BY} CRP/EDB	NCDOT PROJECT L JOHNSON ST– SANDY RIDGE RD FROI GUILFORD COUNTY, NOR

of symbols and line types

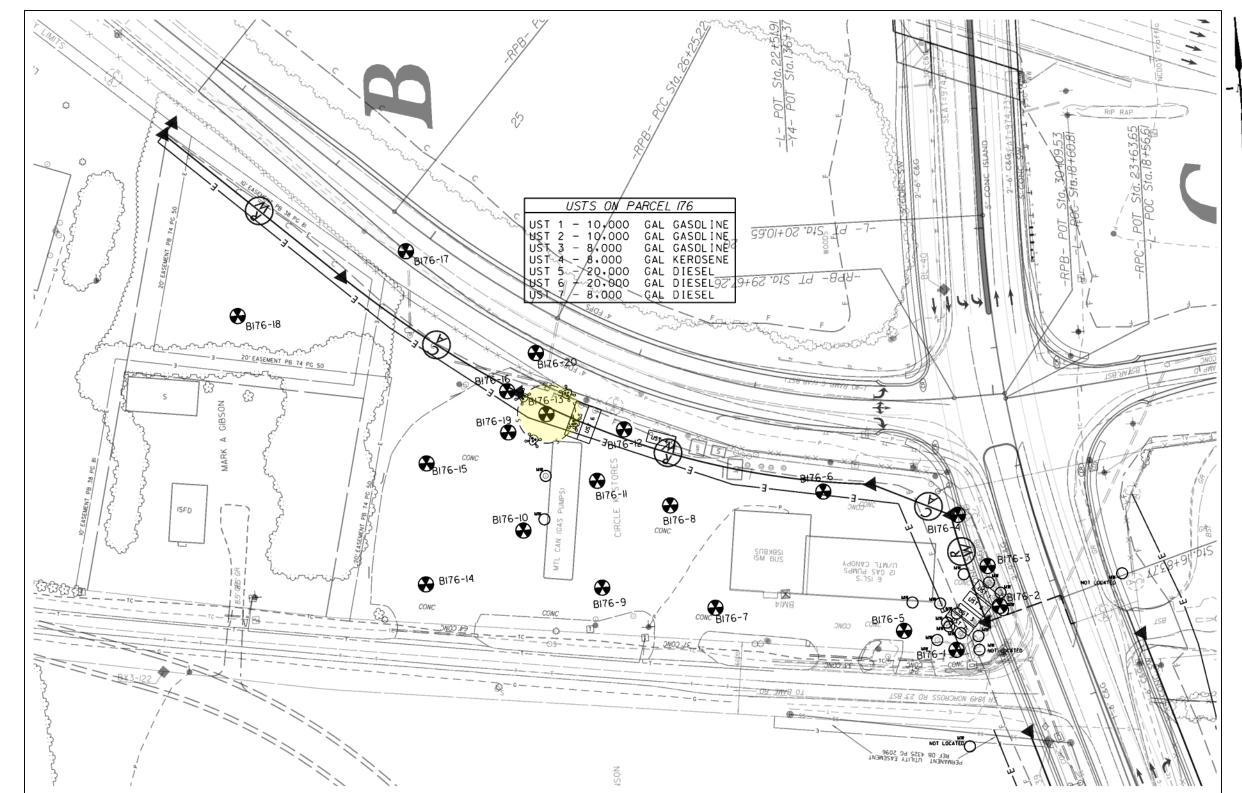


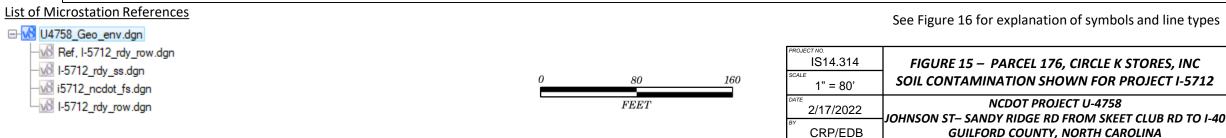


ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724


GUILFORD COUNTY, NORTH CAROLINA



ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

			NA, DIVISION OF HIGHWA		
BOUNDARIES AND PROPERTY:			AN SHEET SYMBC S.U.E. = Subsurface Utility Engineering	DLS	WATER:
State Line	RAILROADS: Note: Not to S		.U.E Subsurface Utility Engineering		Water Manhole
County Line	Standard Gauge	SU TRANSPORTATION	Hedge		Water Meter
Township Line	RR Signal Milepost	MULTION 25	Woods Line		Water Valve
City Line	Switch	SWIGH	Orchard		Water Hydrant
Reservation Line	RR Abandoned		Vineyard	Nineyard	,
Property Line	RR Dismantled		EXISTING STRUCTURES:		UG Water Line LOS
Existing Iron Pin g			MAJOR:		
Computed Property Corner	RIGHT OF WAY & PROJECT CO	ONTROL:	Bridge, Tunnel or Box Culvert	0840	U/G Water Line LOS
Property Monument	Secondary Horiz and Vert Control Point	•	Bridge Wing Wall, Head Wall and End Wall -) **** (Above Ground Water
Parcel/Sequence Number 20	Primary Horiz Control Point	ŏ	MINOR	, , , , , , , , , , , , , , , , , , ,	TV:
Existing Fence Line	Primary Horiz and Vert Control Point		Head and End Wall		TV Pedestal
Proposed Waven Wire Fence	Exist Permanent Easment Pin and Cap	0	Pipe Culvert		TV Tower
Proposed Waven Wire Fence	New Permanent Easement Pin and Cap	۲	Footbridge	≻⊀	U/G TV Cable Hand
Proposed Chain Link Fence	Vertical Benchmark	Ť	Drainage Box: Catch Basin, DI or JB	□ ≈	U/G TV Cable LOS B
Proposed Barbed Wire Fence	Existing Right of Way Marker	_	Paved Ditch Gutter		U/G TV Cable LOS C
Existing Wetland Boundary	Existing Right of Way Line		Storm Sewer Manhole	8	U/G TV Cable LOS D
Proposed Wetland Boundary	New Right of Way Line		Storm Sewer		UG Fiber Optic Cable
Existing Endangered Animal Boundary	. ,	-			U/G Fiber Optic Cable
Existing Endangered Plant Boundary	New Right of Way Line with Pin and Cap—		UTILITIES:		U/G Fiber Optic Cable
Existing Historic Property Boundary	New Right of Way Line with Concrete or Granite RW Marker		POWER:		GAS:
Known Contamination Area: Soil	New Control of Access Line with	• •	Existing Power Pole	•	Gas Valve
Potential Contamination Area: Soil	Concrete C/A Marker	- © - © -	Proposed Power Pole	6	Gas Meter
Known Contamination Area: Water	Existing Control of Access	—— <u>(\$)</u> ——	Existing Joint Use Pole	- + -	UG Gas Line LOS B
Potential Contamination Area: Water	New Control of Access	<u>_</u>	Proposed Joint Use Pole	-0-	U/G Gas Line LOS C
Contaminated Site: Known or Potential 💥 🎘	Existing Easement Line	<i>•</i>	Power Manhole	Ð	U/G Gas Line LOS D
BUILDINGS AND OTHER CULTURE:	New Temporary Construction Easement -	F	Power Line Tower	\boxtimes	Above Ground Gas Li
Gas Pump Vent or UG Tank Cap 0	New Temporary Drainage Easement	TDE	Power Transformer	2	
Sign Ş	New Permanent Drainage Easement	PDE	U/G Power Cable Hand Hole		SANITARY SEWER:
Well 2	New Permanent Drainage / Utility Easement		H-Frame Pole		Sanitary Sewer Manho
Small Mine 🔶 🛠		ru:	U/G Power Line LOS B (S.U.E.*)		Sanitary Sewer Cleano
Foundation	New Temporary Utility Easement		U/G Power Line LOS C (S.U.E.*)		UG Sanitary Sewer Li
Area Outline		AUE	U/G Power Line LOS D (S.U.E.*)		Above Ground Sanita
Cemetery		ADE	TELEPHONE:		SS Forced Main Line
Building	ROADS AND RELATED FEATUR	ES:			SS Forced Main Line
School	Existing Edge of Pavement		Existing Telephone Pole	+	SS Forced Main Line
Church	Existing Curb		Proposed Telephone Pole	-0-	
Dam	Proposed Slope Stakes Cut		Telephone Manhole	œ	MISCELLANEOUS:
HYDROLOGY:	Proposed Slope Stakes Cur Proposed Slope Stakes Fill	£	Telephone Pedestal		Utility Pole
Stream or Body of Water	Proposed Curb Ramp		Telephone Cell Tower	. . .	Utility Pole with Base
Hydro, Pool or Reservoir	Existing Metal Guardrail	CD	U/G Telephone Cable Hand Hole	5	Utility Located Object
Jurisdictional Stream	Proposed Guardrail		U/G Telephone Cable LOS B (S.U.E.*)		Utility Traffic Signal Bo
Buffer Zone 1 min at 1	Existing Cable Guiderail		U/G Telephone Cable LOS C (S.U.E.*)		Utility Unknown U/G
Buffer Zone 2 82 2	Existing Cable Guiderail		U/G Telephone Cable LOS D (S.U.E.*)		UG Tank; Water, Gas
Flow Arrow	Proposed Cable Guiderail		U/G Telephone Conduit LOS B (S.U.E.*)		Underground Storage
Disappearing Stream	Equality Symbol	•	U/G Telephone Conduit LOS C (S.U.E.*)		A/G Tank; Water, Gas
Spring or	Pavement Removal		UG Telephone Conduit LOS D (S.U.E.*)		Geoenvironmental Bori
Wetland *	VEGETATION:		UG Fiber Optics Cable LOS B (S.U.E.*)		U/G Test Hole LOS A
Proposed Lateral, Tail, Head Ditch	Single Tree	G	UG Fiber Optics Cable LOS C (S.U.E.*)		Abandoned According
False Sump	Single Shrub	0	UG Fiber Optics Cable LOS D (S.U.E.*)		End of Information —

PROJECT NO. IS14.314	FIGURE 16
scale N/A	LEGEND FOR PLAN SHE
2/17/2022	NCDOT PROJECT U JOHNSON ST– SANDY RIDGE RD FROM
CRP/EDB	GUILFORD COUNTY, NOR

Roisci	MPROVICE NO.	SHEET IND.
	· ®	
	. 0	
	. 8	
	୍	
LOS B (S.U.E*)		
LOS C (S.U.E*)		·
LOS D (S.U.E*)		
Water Line	6/2 WO	ter
	េព	
	8	
Hand Hole	· 5	
LOS B (S.U.E.*)		
LOS C (S.U.E.*)		
LOS D (S.U.E.*)		
Cable LOS B (S.U.E.*)		
Cable LOS D (S.U.E.*)	A /	
	 	
	• ¢	
OS B (S.U.E.*)	·	
OS C (S.U.E.*)		
OS D (S.U.E.*)		
Gas Line	A/0.00	<u></u>
-		
Manhole Cleanout		
wer Line	۲	
	A/S Society	Sever
Somer -		
Line LOS B (S.U.E.*)		
Line LOS C (S.U.E.*)		
Line LOS D (S.U.E.*)	/11-	
Basa	•	
Base	· 🖸	
Object	•	
nal Box	. 3	
U/G Line LOS B (S.U.E.*)		
r, Gas, Oil]
orage Tank, Approx. Loc. —		
r, Gas, Oil]
al Boring	•	
OS A (S.U.E.*)	œ	
ording to Utility Records —	AATL	JR
on	- E.O	.I.

HEET FIGURES

U-4758 OM SKEET CLUB RD TO I-40 RTH CAROLINA

ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

APPENDIX A SOIL BORING LOGS

	ESP			FIELD BORING LOG	BORING NO.
LOCA		Approximate	ely 43' south	east of southeast corner of gas canopy	B176-1
		Hand Auger and Direct Push SAEDACCO Robert Miller Geoprobe 54DT		O DATE FINISHED: 1/24/2022 TOTAL DEPT er SAMPLE METHOD: Hand Auger / 4' Macrocore DEPTH TO GV	H: 10.0 ft
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)	FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION	REMARKS
				0.0'-0.2' Topsoil H 0.3'-8.3' Red Sandy CLAY, Moist	Hand Auger 0.0'-5.0'
_1	S-1	1.0-1.5	0.1		
2	S-2	2.0-2.5	0.2		
 	S-3	3.0-3.5	0.3		
4	S-4	4.0-4.5	0.4		
5	S-5	5.0-5.5	0.5	 	Macrocore 5.0'-9.0' Core Rec 3.5'/4.0'
6	S-6	6.0-6.5	0.3		
7	S-7	7.0-7.5	0.6		
8	S-8	8.0-8.5	0.3	N 8.3'-10.0' Reddish Brown and White Micaceous Silty CLAY, Moist 0	Macrocore 9.0'-10.0' Core Rec 1.0'/1.0'
	S-9	9.0-9.5	0.4		
12					
13					
 14					
15					

Parcel 176 Boring Logs B27-1 2/7/2022

	ESP			FIE	LD BORING LOG		BORING NO.
PROJ	ECT NAME:	NCDOT U-	4758 Phase I	11	PROJ. NO.: IS14.314		B176-2
LOCA	TION:	Approximat	tely 52' east o	of southeast	corner of gas canopy		
	OF BORING		Direct Pus SAEDACC		DATE STARTED: 1/24/2022 DATE FINISHED: 1/24/2022	SHEET: TOTAL DEPTH:	
DRILL			Robert Mill		SAMPLE METHOD: 4' Macrocore	DEPTH TO GW:	
DRILL	RIG:		Geoprobe 54	4DT	LOGGED BY: A. Roseman	COMMENT:	Elev: 969.3'
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
				0.0'-0.3'	Topsoil	Ma Co	re Rec 3.7'/4.0'
	S-1	1.0-1.5	1.1	0.3'-8.7'	Red Silty CLAY, Moist		
2	S-2	2.0-2.5	0.9				
3	S-3	3.0-3.5	1.0				
4	S-4	4.0-4.5	1.3			Ma Co	re Rec 4.0'-8.0'
5	S-5	5.0-5.5	0.8				
6	S-6	6.0-6.5	0.6				<u></u>
7	S-7	7.0-7.5	0.7				
8	S-8	8.0-8.5	1.1	8.7'-10'	Yellow-Brown Clayey SILT, Moist	Ma Co	crocore 8.0'-10.0' re Rec 2.0'/2.0'
9	S-9	9.0-9.5	0.5				
10							
12							
13							
14							
15							

Parcel 176 Boring Logs B27-2 2/7/2022

	ESP			FIE	LD BORING LOG		BORING NO.
PROJ	ECT NAME:	NCDOT U-4	4758 Phase	II	PROJ. NO.: IS14.314		B176-3
					east corner of gas canopy		
	OF BORING	Hand	Auger and D SAEDACC		DATE STARTED: 1/24/2022 DATE FINISHED: 1/24/2022	SHEET TOTAL DEPTH	
DRILL	ER:		Robert Mill		SAMPLE METHOD: Hand Auger/4' Macrocore	DEPTH TO GW	Dry ft
DRILL			Geoprobe 54	4DT	LOGGED BY: A. Roseman	COMMENT	Elev: 969.7'
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
-				0.0'-0.3'	Concrete	Ha	and Auger 0.0'-2.0'
<u>1</u>	S-1	1.0-1.5	0.6	0.3'-8.7'	Red Sandy CLAY, Moist		
2	S-2	2.0-2.5	0.4				acrocore 2.0'-4.0' ore Rec 2.0'/2.0'
3	S-3	3.0-3.5	0.4				
4	S-4	4.0-4.5	0.1				acrocore 4.0'/8.0' pre Rec 4.0'/4.0'
5	S-5	5.0-5.5	0.5				
6	S-6	6.0-6.5	0.5				
7	S-7	7.0-7.5	0.4				
8	S-8	8.0-8.5	0.6	8.7'-10.0'	Red Micaceous Silty CLAY, Moist		acrocore 8.0'-10.0' ore Rec 2.0'/2.0'
9	S-9	9.0-9.5	0.5		·····		
10							
- <u>11</u>							
12							
13							
14							
15							

Parcel 176 Boring Logs B27-3 2/7/2022

	FSP			FIE	LD BORIN	G LOG		BORING NO.
PRO	JECT NAME:	NCDOT U-	-4758 Phase			PROJ. NO.: IS14.314		B176-4
					east corner of gas canop	ру		
	OF BORING		Direct Pus		DATE STARTED:		SHEET:	
DRIL DRIL	LING FIRM:		SAEDACC Robert Mill		DATE FINISHED: SAMPLE METHOD:		TOTAL DEPTH: DEPTH TO GW:	
	L RIG:		Geoprobe 54		LOGGED BY:			Elev: 970.2'
(ft)	щ	н) (ff)	Ű					
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)			SSIFICATION AND		REMARKS
				0.0'-0.3'	Concrete			acrocore 0.0'-4.0' ore Rec 3.3'/4.0'
·			1.5	0.3'-5.8'	Red Sandy CLAY, M	oist		
_1	S-1	1.0-1.5	1.5					
2	S-2	2.0-2.5	0.7					-
! <u> </u>								
3	S-3	3.0-3.5	0.6					
	6.4	40.45	0.5					
_4	S-4	4.0-4.5	0.5					acrocore 4.0'-8.0' ore Rec 4.0'/4.0'
•								
_5	S-5	5.0-5.5	0.6					
•								<u>_</u>
6	S-6	6.0-6.5	0.6	5.8'-10.0'	Red Micaceous Clay	ey SILT, Moist		
7	S-7	7.0-7.5	0.9					
	3-7	7.0-7.5	0.9					
a								
8	S-8	8.0-8.5	0.8					acrocore 8.0'-10.0' ore Rec 2.0'/2.0'
9	S-9	9.0-9.5	1.2					
n								
10								
• <u> </u>								
!								
_11								
12								
!								
13								
!			_					
14								
15								

Parcel 176 Boring Logs B27-4 2/7/2022

	ESP			FIELD BORING LOG	BORING NO.
PROJ	ECT NAME:	NCDOT U-4	4758 Phase	I PROJ. NO.: IS14.314	B176-5
				buthwest of southeast corner of gas canopy	
	OF BORING	Hand A	Auger and D SAEDACC		
DRILL	ER:		Robert Mill	er SAMPLE METHOD: Hand Auger/4' Macrocore DEPTH TO GW	: Dry ft
DRILL			Geoprobe 54	DT LOGGED BY: A. Roseman COMMENT	: Elev: 969.6
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)	FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION	REMARKS
•				0.0'-0.3' Concrete H	and Auger 0.0'-1.5'
1	S-1	1.0-1.5	1.9	0.3'-10.0' Red-Brown Sandy CLAY, Moist	
•					
	0.0	0.0.0.5	1.7		acrocore 1.5'-4.0' ore Rec 2.5'/2.5'
_2	S-2	2.0-2.5	1.7	2.0' Grading to Gray C	Die Rec 2.572.5
•					
3	S-3	3.0-3.5	1.0	3.3' Grading to Yellow-Brown	
4	S-4	4.0-4.5	0.5		acrocore 4.0'-8.0' ore Rec 4.0'/4.0'
					0'-5.0' Petroleum Odor
5	S-5	5.0-5.5	0.4	4. 	
a					
6	S-6	6.0-6.5	0.7		
•					
7	S-7	7.0-7.5	0.7		
•					
	0.0	0.0.0.5	0.4		
8	S-8	8.0-8.5	0.4		acrocore 8.0'-10.0' ore Rec 2.0'/2.0'
9	S-9	9.0-9.5	1.0		
•					
10					
11					
12					
•					
13					
14					
15					

Parcel 176 Boring Logs B27-5 2/7/2022

	FSP			FIE	LD BORING LO	G		BORING NO.
PRO	ECT NAME:	NCDOT U-	4758 Phase		PROJ. NO			B176-6
					east corner of building			Biroo
	OF BORING		Direct Pus		DATE STARTED: 1/24/2022		SHEET:	
	LING FIRM:		SAEDACC Robert Mill		DATE FINISHED: 1/24/2022		TOTAL DEPTH:	
	_ER: _ RIG:		Geoprobe 54		SAMPLE METHOD: <u>4' Macroco</u> LOGGED BY: A. Rosema		DEPTH TO GW: COMMENT:	
							COMMENT.	
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)		FIELD CLASSIFICATIO PHYSICAL DESCRIF			REMARKS
				0.0'-0.3'	Concrete			re Rec 4.0'/4.0'
			0.7	0.3'-5.8'	Dark Gray Sandy CLAY, Moist			
_1	S-1	1.0-1.5	0.7					
-				1.5'	Grading to Red			
2	S-2	2.0-2.5	0.4					
3	S-3	3.0-3.5	0.5					
4	S-4	4.0-4.5	0.5				Ma Co	re Rec 4.0'-8.0'
5	S-5	5.0-5.5	0.4	5.8'-10.0'	Orange and Red Micaceous Cla	vey SILT, Moist		
6	S-6	6.0-6.5	0.6		<u> </u>			
 7	S-7	7.0-7.5	0.5					
 8	S-8	8.0-8.5	0.9				Ma	icrocore 8.0'-10.0 re Rec 2.0'/2.0'
•								Te Rec 2.072.0
9	S-9	9.0-9.5	1.6	9.0'	Grading to White			
10								
 11								
•								
12								
 13								
<u> </u>								
14								•
15								

Parcel 176 Boring Logs B27-6 2/7/2022

	FSP			FIE		OG		BORING NO.
PRO	JECT NAME:	NCDOT U-	-4758 Phase			IO.: IS14.314		B176-7
LOCA	TION:	Approxima			nwest corner of building			
	OF BORING		Direct Pus		DATE STARTED: 1/24/202		SHEET:	
DRILI DRILI	LING FIRM:		SAEDACC Robert Mill		DATE FINISHED: 1/24/202 SAMPLE METHOD: 4' Macro		TOTAL DEPTH: DEPTH TO GW:	
	L RIG:		Geoprobe 54		LOGGED BY: A. Roser		COMMENT:	
(Ħ)	ш	ц(I)	Ŭ					
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)		FIELD CLASSIFICA PHYSICAL DESCF			REMARKS
				0.0'-0.3'	Concrete			crocore 0.0'-4.0' re Rec 3.5'/4.0'
-	0 /	1015	0.4	0.3'-7.7'	Red-Brown and Gray Sandy C	CLAY, Moist		
_1	S-1	1.0-1.5	0.4					
				1.9'	Grading to Brown-Red			
2	S-2	2.0-2.5						
a								
3	S-3	3.0-3.5	0.4					
·								
_4	S-4	4.0-4.5	0.5				Ma Co	crocore 4.0-8.0' re Rec 4.0'/4.0'
5	S-5	5.0-5.5	0.3					
								<u>-</u>
6	S-6	6.0-6.5	0.3					
-0		0.0-0.0	0.0					
•								
_7	S-7	7.0-7.5	0.4					
•				7.7'-10.0'	Brown-Red Silty CLAY, Moist			
8	S-8	8.0-8.5	0.5					crocore 8.0'-10.0'
•							Co	re Rec 2.0'/2.0'
	S 0	0.0.0.5	0.3					
9	S-9	9.0-9.5	0.3					
<u> </u>								
10								
11								
•								
40								
12								
13								
14								
-								
15								

Parcel 176 Boring Logs B27-7 2/7/2022

	FSP			FIE	LD BORIN	G LOG		BORING NO.
PRO.	IECT NAME:	NCDOT U-	4758 Phase	II		PROJ. NO.: IS14.314		B176-8
					est corner of building	<u></u>		
	OF BORING		Direct Pus		DATE STARTED:		SHEET	
DRILI DRILI	LING FIRM:		SAEDACC Robert Mill		DATE FINISHED:			
	_ER: _ RIG:		Geoprobe 54		SAMPLE METHOD: LOGGED BY:		DEPTH TO GW: COMMENT	Elev: 971.5'
			-					
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)		PHYSICA	SSIFICATION AND		REMARKS
				0.0'-0.3'	Concrete			acrocore 0.0'-4.0' ore Rec 4.0'/4.0'
	0.4	4045	0.9	0.3'-5.6'	Red Silty CLAY, Mois	st		
_1	S-1	1.0-1.5	0.9					
2	S-2	2.0-2.5	0.3					
3	S-3	3.0-3.5	0.5					
4	S-4	4.0-4.5	0.3				Ma Co	acrocore 4.0'-8.0' ore Rec 4.0'/4.0'
5	S-5	5.0-5.5	0.4					
				5.6'-10.0'	Red and Orange Mic	aceous Clayey SILT, Moist		
6	S-6	6.0-6.5	0.7					
_0	3-0	0.0-0.5	0.7					
•								
7	S-7	7.0-7.5	0.5					
·								
8	S-8	8.0-8.5	0.7				Ma	acrocore 8.0'-10.0'
-								ore Rec 2.0'/2.0'
·								=
9	S-9	9.0-9.5	1.1	9.0'	Grading to Yellow			
•								
10								
11								
12								
13								
-								
14								
ľ								
15								

Parcel 176 Boring Logs B27-8 2/7/2022

	FSP			FIE	LD BORIN	G LOG		BORING NO.
PRO	JECT NAME:	NCDOT U-	4758 Phase			PROJ. NO.: IS14.314		B176-9
LOC	ATION:	Approxima	tely 107' feet	west of sout	hwest corner of building			
	E OF BORING LING FIRM:		Direct Pus SAEDACC		DATE STARTED: DATE FINISHED:		SHEET: TOTAL DEPTH:	
DRIL			Robert Mill		SAMPLE METHOD:		DEPTH TO GW:	
	L RIG:		Geoprobe 54	4DT	LOGGED BY:			Elev: 972.5'
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)			SSIFICATION AND AL DESCRIPTION		REMARKS
				0.0'-0.3'	Concrete		Ma	acrocore 0.0'-4.0' re Rec 4.0'/4.0'
	.	1015	0.0	0.3'-5.6'	Red Silty CLAY, Moi	st		
_1	S-1	1.0-1.5	0.6					
•								
2	S-2	2.0-2.5	0.8					
3	S-3	3.0-3.5	0.4					
4	S-4	4.0-4.5	0.4				Ma	acrocore 4.0'-8.0'
- -		4.0 4.0	0.1					re Rec 4.0'/4.0'
5	S-5	5.0-5.5	0.3					
				5.6'-10.0'	Orange-Red Micace	ous Clayey SILT, Moist		
6	S-6	6.0-6.5	0.5					
7	S-7	7.0-7.5	0.5					
8	S-8	8.0-8.5	0.6					acrocore 8.0'-10.0' re Rec 2.0'/2.0'
•								
9	S-9	9.0-9.5	0.5					
10								
<u> </u>			+					
11								
 			1					
<u> </u>								
12			+					
[<u> </u>								
13			1					
! <u> </u>								
14								
 								
<u> </u>								
15								

Parcel 176 Boring Logs B27-9 2/7/2022

	FSP			FIE	LD BORING LOG		BORING NO.
PROJ	ECT NAME:	NCDOT U-	4758 Phase	II	PROJ. NO.: IS14.314		B176-10
LOCA	TION:	Approximat	tely 39' north	from southw	est corner of diesel canopy		
	OF BORING		Direct Pus SAEDACC		DATE STARTED: 1/25/2022		
DRILL	LING FIRM:		Robert Mill		DATE FINISHED: 1/25/2022 SAMPLE METHOD: 4' Macrocore	TOTAL DEPTH: DEPTH TO GW:	
DRILL			Geoprobe 54		LOGGED BY: A. Roseman		Elev: 971.3'
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
ā	0	S D	2	0.0'-0.3'	Concrete	Ma	acrocore 0.0'-4.0'
-				0.3'-6.2'		Co	ore Rec 4.0'-4.0'
	S-1	1.0-1.5	0.5	0.3-0.2	Red Silty CLAY, Moist		
2	S-2	2.0-2.5	0.4				
3	S-3	3.0-3.5	0.5				
4	S-4	4.0-4.5	0.7				acrocore 4.0'-8.0'
							ore Rec 4.0'-4.0'
5	S-5	5.0-5.5	0.8				
6	S-6	6.0-6.5	0.7				
7	S-7	7.0-7.5	0.8	6.2'-10.0'	Red and Orange Micaceous Clayey SILT, Mois		
 8	S-8	8.0-8.5	0.7			Ma	acrocore 8.0'-10.0' pre Rec 2.0'/2.0'
•							
9	S-9	9.0-9.5	1.1	8.9'	Grading to Black		
10							
12							
13							
·							
15							
13							

Parcel 176 Boring Logs B27-10 2/7/2022

	FSP			FIE	LD BORING LOG		BORING NO.
PRO	JECT NAME:	NCDOT U-	-4758 Phase		PROJ. NO.: IS14.314		B176-11
LOC	ATION:	Approxima	tely 42' south	east of north	neast corner of diesel canopy		
	E OF BORING LING FIRM:		Direct Pus SAEDACC		DATE STARTED: 1/24/2022 DATE FINISHED: 1/24/2022	SHEET: TOTAL DEPTH:	
DRIL			Robert Mill		SAMPLE METHOD: 4' Macrocore	DEPTH TO GW:	
	L RIG:		Geoprobe 54	4DT	LOGGED BY: A. Roseman		Elev: 970.8'
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
•				0.0'-0.3'	Concrete	Ma	acrocore 0.0'-4.0' pre Rec 4.0'/4.0'
·	-			0.3'-5.3'	Red Silty CLAY, Moist		ne Rec 4.074.0
_1	S-1	1.0-1.5	0.9				
_2	S-2	2.0-2.5	1.9				
•							
3	S-3	3.0-3.5	1.3				
m							
4	S-4	4.0-4.5	2.1			Ma	acrocore 4.0'-8.0'
-4	0-4	4.0-4.3	2.1			Co	pre Rec 4.0'/4.0'
•							
_5	S-5	5.0-5.5	1.9	5.3'-10.0'	Red-Brown Micaceous Clayey SILT, Moist		
6	S-6	6.0-6.5	2.0				
•							
7	S-7	7.0-7.5	1.9				
8	S-8	8.0-8.5	3.0	8.0'	Grading to Yellow	M	acrocore 8.0'-10.0'
_0 	5-0	8.0-8.5	3.0	8.0		Co	ore Rec 2.0'/2.0'
•							
9	S-9	9.0-9.5	3.2				
•							
10							
•							
11							
12							
<u> </u>							
13							
F							
14							
<u> </u>							
15							
	1	1	1	1		I	

Parcel 176 Boring Logs B27-11 2/7/2022

	FCP			FIF	LD BORING LOG		BORING NO.
		NODOTU	1750 Diana				D176 10
			-4758 Phase Itely 35' west		PROJ. NO.: IS14.314		B176-12
	TION: OF BORING		Direct Pus		DATE STARTED: 1/25/2022	SHEE	Γ: 1 of 1
	LING FIRM:		SAEDACC		DATE FINISHED: 1/25/2022	TOTAL DEPTH	
DRILL			Robert Mill	er	SAMPLE METHOD: 4' Macrocore	DEPTH TO GW	
DRILL	_ RIG:		Geoprobe 54	4DT	LOGGED BY: A. Roseman	COMMEN	Γ: Elev: 970.4'
(ft)	щ	SAMPLE DEPTH (ft)	ŮZ (
DEPTH (ft)	SAMPLE NO.	MPI	PID READING (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
DEF	AS -	SA DEF	RE				
				0.0'-0.3'	Concrete		lacrocore 0.0'-4.0'
• ———				0.3'-5.6'	Red Silty CLAY, Moist	C	core Rec 4.0'/4.0'
1	S-1	1.0-1.5	0.6				
•							
			0.7				
2	S-2	2.0-2.5	0.7				
3	S-3	3.0-3.5	0.5				
•							
4	S-4	4.0-4.5	0.3				lacrocore 4.0'-8.0'
•						C	ore Rec 4.0'/4.0'
;	0.5						
_5	S-5	5.0-5.5	0.5				
				5.6'-10.0'	Orange Micaceous Clayey SILT, Moist		
6	S-6	6.0-6.5	0.8				
- Ŭ							
•							
7	S-7	7.0-7.5	0.5				
			0.7				
8	S-8	8.0-8.5	0.7	8.0'	Grading to Yellow		lacrocore 8.0'-10.0'
9	S-9	9.0-9.5	1.2				
•							
10							
·							
11							
12							
			_	İ			
·							
13							
			_				
14							
[<u> </u>							
15							

Parcel 176 Boring Logs B27-12 2/7/2022

	FSP			FIE	LD BORING LOG		BORING NO.		
PRO.	IECT NAME:	NCDOT U-	4758 Phase	II	PROJ. NO.: IS14.314		B176-13		
LOCA	TION:	Approximat	tely 15' north	from the nor	thwest corner of diesel canopy				
	OF BORING	Hand	Auger and D		DATE STARTED: 1/24/2022	SHEET			
DRILI DRILI	LING FIRM:		SAEDACC Robert Mill		DATE FINISHED: <u>1/24/2022</u>	TOTAL DEPTH			
	_ER: _ RIG:		Geoprobe 54		SAMPLE METHOD: Hand Auger and 4' Macrocore LOGGED BY: A. Roseman	DEPTH TO GW COMMENT	: Dry ft : Elev: 969.2'		
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION	PHYSICAL DESCRIPTION			
				0.0'-0.3'	Concrete	H	and Auger 0.0'-5.0'		
1	S-1	1.0-1.5	43.7	0.3'-4.7'	Gray and Black Silty CLAY, Moist	0.	5'-1.5' petroleum odor		
	5-1	1.0-1.5	43.7						
2	S-2	2.0-2.5	3.8	1.8'	Grading to Red				
-									
3	S-3	3.0-3.5	0.6						
4	S-4	4.0-4.5	3.6						
				4.7'-10.0'	Red Micaceous Clayey SILT, Moist				
5	S-5	5.0-5.5	1.3			М	acrocore 5.0'-9.0'		
						C	ore Rec 4.0'/4.0'		
6	S-6	6.0-6.5	1.1						
7	S-7	7.0-7.5	0.9						
-				7.3'	Grading to Yellow-Brown				
8	S-8	8.0-8.5	3.2						
9	S-9	9.0-9.5	1.6				acrocore 9.0'-10.0' ore Rec 1.0'/1.0'		
·									
10									
-									
. 11							e		
! <u> </u>									
12									
13									
-									
14									
15									

Parcel 176 Boring Logs B27-13 2/7/2022

	FSP			FIE	LD BORING LOG		BORING NO.
PROJ		NCDOT U-	4758 Phase		PROJ. NO.: IS14.3	14	B176-14
LOCA	TION:	Approx. 45	' north from e	edge of paver	ment from the middle of the fourth entrance of	off of Norcross	
	OF BORING		Direct Pus		DATE STARTED: 1/25/2022	SHEET:	
DRILL	_ING FIRM: _ER:	Robert Miller			DATE FINISHED: 1/25/2022 SAMPLE METHOD: 4' Macrocore	TOTAL DEPTH: DEPTH TO GW:	
DRILL			Geoprobe 54DT		LOGGED BY: A. Roseman	COMMENT:	
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
DEI	SA	S.∕ DEI	RE (
•				0.0'-0.3'	Concrete		crocore 0.0'-4.0' re Rec 4.0'/4.0'
1	S-1	1.0-1.5	1.1	0.3'-10.0'	Red Silty CLAY, Moist		
2	S-2	2.0-2.5	1.0				
3	S-3	3.0-3.5	0.8				
•							
4	S-4	4.0-4.5	0.6			Ma Co	crocore 4.0'-8.0' re Rec 4.0'/4.0'
5	S-5	5.0-5.5	1.1				
6	S-6	6.0-6.5	0.8				
7	S-7	7.0-7.5	1.6				
 8	S-8	8.0-8.5	1.1				crocore 8.0'-10.0' re Rec 2.0'/2.0'
9	S-9	9.0-9.5	1.2	8.8'	Grading to White		
10							
 11							
12							
- <u>'</u>							
13							
14							
15							

Parcel 176 Boring Logs B27-14 2/7/2022

	FSP			FIE	LD BORING	LOG		BORING NO.
PRO	JECT NAME:	NCDOT U-	-4758 Phase			ROJ. NO.: IS14.314		B176-15
	ATION:		tely 100' wes			1014.014		
	OF BORING		Direct Pus		DATE STARTED: 1/2		SHEET:	
	LING FIRM:		SAEDACC		DATE FINISHED: 1/2		TOTAL DEPTH:	
	LER: L RIG:		Robert Mill Geoprobe 54		SAMPLE METHOD: 4' LOGGED BY: A.		DEPTH TO GW:	Dry ft Elev: 970.1'
_	1	a a fi	-			Ruseman		Liev. 970.1
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)		PHYSICAL I	IFICATION AND DESCRIPTION		REMARKS
				0.0'-0.3'	Concrete			acrocore 0.0'-4.0' ore Rec 4.0'/4.0'
·				0.3'-6.3'	Dark Gray Silty CLAY, N	loist		
_1	S-1	1.0-1.5	0.9					
				1.8'	Grading to Red			
2	S-2	2.0-2.5	0.6	1.0	Grading to rice			
•								
3	S-3	3.0-3.5	0.5					
_3	5-5	3.0-3.3	0.5					
·								
4	S-4	4.0-4.5	0.4				Ma	acrocore 4.0'-8.0'
								ore Rec 4.0'/4.0'
5	S-5	5.0-5.5	0.4					
- 5	5-5	5.0-5.5	0.4					
								-
6	S-6	6.0-6.5	0.3			- - - - -		
-				6.3'-9.3'	Red Micaceous Clay SI	_ I , MOISt		
7	S-7	7.0-7.5	0.2					
		1.0 1.0	0.2					
•								
8	S-8	8.0-8.5	0.7					acrocore 8.0'-10.0' ore Rec 2.0'/2.0'
·				8.7'	Grading to Orange			
9	S-9	9.0-9.5	0.5					
				9.3'-10.0	Orange and White Sand	ly SILT, Moist		
10								
 								
11								_
•								
12								<u></u> _
[<u> </u>								
13								
i								
14								
[
15								

Parcel 176 Boring Logs B27-15 2/7/2022

	FSP			FIE	LD BORING LOG		BORING NO.
PROJ	ECT NAME:	NCDOT U-4	4758 Phase		PROJ. NO.: IS14.314		B176-16
LOCA	TION:	Approximat	ely 48' north	west from the	e northwest corner of the diesel canopy		
	OF BORING		Direct Pus SAEDACC		DATE STARTED: 1/25/2022	SHEET:	
DRILL	_ING FIRM: _ER:		Robert Mill		DATE FINISHED: 1/25/2022 SAMPLE METHOD: 4' Macrocore	_ TOTAL DEPTH: DEPTH TO GW:	
DRILL			Geoprobe 54		LOGGED BY: A. Roseman	COMMENT:	
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
	0)	<u>ں رہ</u>	~~	0.0'-0.3'	Concrete	Ma	acrocore 0.0'-4.0'
				0.3'-5.8'	Red Silty CLAY, Moist	Co	re Rec 4.0'/4.0'
1	S-1	1.0-1.5	0.3				
2	S-2	2.0-2.5	0.6				
 	S-3	3.0-3.5	0.3				
_ <u>_</u> 	5-5	3.0-3.3	0.5				
4	S-4	4.0-4.5	0.8			Ma	acrocore 4.0'-8.0'
						Co	re Rec 4.0'/4.0'
5	S-5	5.0-5.5	0.8				
 6	S-6	6.0-6.5	0.8	5.8'-10.0'	Yellow-Brown, Micaceous Clayey SILT, Moist		
_7 ·	S-7	7.0-7.5	0.5				
8	S-8	8.0-8.5	1.0			Ma	acrocore 8.0'-10.0'
						Co	re Rec 2.0'/2.0'
9	S-9	9.0-9.5	1.3	9.0'	Grading to Yellow		
<u> 10 </u>							
11							
12							
ļ ——							
13							
14							
F							
45							
15				I			

Parcel 176 Boring Logs B27-16 2/7/2022

	ESP			FIE	LD BORING LOG		BORING NO.
PROJ	ECT NAME:	NCDOT U-	4758 Phase	11	PROJ. NO.: IS14.314		B176-17
LOCA	TION:	Approximat	tely 15' east o	of the gas sto	pres sign on the I-40 East exit ramp		
	OF BORING	Hand	Auger and D		DATE STARTED: 1/25/2022	SHEET	
	LING FIRM:		SAEDACC Robert Mill		DATE FINISHED: <u>1/25/2022</u>	TOTAL DEPTH	
	_ER: _ RIG:		Geoprobe 54		SAMPLE METHOD: Hand Auger and 4' Macrocore LOGGED BY: A. Roseman	DEPTH TO GW COMMENT	
					LOGGED B1. A. Rosenian	CONNENT	. Elev. N/A
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
				0.0'-0.3'	Gravel and Topsoil	Н	and Auger 0.0'-5.0'
				0.3'-5.4'	Red Sandy CLAY, Moist		
1	S-1	1.0-1.5	0.4				_
·							
2	S-2	2.0-2.5	0.5				
	5-2	2.0-2.5	0.5				
[=
3	S-3	3.0-3.5	0.3				
-							
a							
4	S-4	4.0-4.5	0.5	4.0'	Grading to Yellow		
a							
•							
_5	S-5	5.0-5.5	0.9			M	acrocore 5.0'-9.0' ore Rec 3.2'/4.0'
a				5.4'-8.8'	Orange and White Silty SAND, Moist		01010000.274.0
6	S-6	6.0-6.5	0.4				
0	3-0	0.0-0.5	0.4				
7	S-7	7.0-7.5	0.4				
8	S-8	8.0-8.5	0.4				
				8.8'-10.0'	Yellow-Brown Micaceous Clayey SILT, Moist		
			0.0				
9	S-9	9.0-9.5	0.6				acrocore 9.0'-10.0' ore Rec 1.0'/1.0'
10							
11							
12							
t							
10							
13							
14							
ŀ							
15						<u> </u>	

Parcel 176 Boring Logs B27-17 2/7/2022

	FSP			FIE	LD BORING LOG		BORING NO.
PRO	ECT NAME:	NCDOT U-	4758 Phase		PROJ. NO.: IS14.314		B176-18
					northwest corner of garage		BITOTO
	OF BORING		Direct Pus		DATE STARTED: 1/25/2022	SHEET	
	ING FIRM:		SAEDACC Robert Mill		DATE FINISHED: 1/25/2022	TOTAL DEPTH	
DRILL DRILL			Geoprobe 54		SAMPLE METHOD: <u>4' Macrocore</u> LOGGED BY: A. Roseman	DEPTH TO GW	: Dry ft : Elev: 966.9'
					LOGOLD BT. A. Roseman		
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
				0.0'-0.3'	Topsoil		acrocore 0.0'-4.0' ore Rec 3.5'/4.0'
				0.3'-6.2'	Red Silty CLAY, Moist		
_1	S-1	1.0-1.5	0.6				
2	S-2	2.0-2.5	0.4				
3	S-3	3.0-3.5	0.3				
<u> </u>	5-3	3.0-3.5	0.3				
·							
4	S-4	4.0-4.5	0.3				acrocore 4.0'-8.0'
							ore Rec 4.0'/4.0'
5	S-5	5.0-5.5	0.7				
	0-0	5.0-5.5	0.7				
•				5.3'	Grading to Orange		
6	S-6	6.0-6.5	0.6	6.2'-10.0'	Orange Micaceous Clayey SILT, Moist		
	0.7	7075					
_7	S-7	7.0-7.5	0.9				
•							
8	S-8	8.0-8.5	1.1			M	acrocore 8.0'-10.0' ore Rec 2.0'/2.0'
							ore Rec 2.0/2.0
9	S-9	9.0-9.5	1.0	9.0'	Grading to Yellow-Brown		
 	0.0	0.0 0.0		0.0			
•							
10							
11							
-							
•							<u>_</u>
12							
13							
							_
! <u> </u>							
14							
 							
15							

Parcel 176 Boring Logs B27-18 2/7/2022

	ESP			FIE	LD BORING L	OG		BORING NO.
PRO	ECT NAME:	NCDOT U-	4758 Phase			NO.: IS14.314		B176-19
			tely 20' west			<u></u>		811010
	OF BORING		Direct Pus		DATE STARTED: 1/25/20		SHEET:	
DRILI DRILI	LING FIRM:		SAEDACC Robert Mill		DATE FINISHED: 1/25/20		TOTAL DEPTH:	
	_ER: _ RIG:		Geoprobe 54		SAMPLE METHOD: <u>4' Macr</u> LOGGED BY: A. Rose		DEPTH TO GW: COMMENT:	
DEPTH (ft)	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)		FIELD CLASSIFIC/ PHYSICAL DESC			REMARKS
				0.0'-0.3'	Concrete		Ma Co	acrocore 0.0'-4.0' re Rec 3.4'/4.0'
-	0.4	4045	1.0	0.3'-4.4'	Red Silty CLAY, Moist			
_1	S-1	1.0-1.5	1.2					
-								
2	S-2	2.0-2.5	1.8					
•								
3	S-3	3.0-3.5	0.7					
	5-5	0.0-0.0	0.1					
<u> </u>								
4	S-4	4.0-4.5	1.0				Ma	acrocore 4.0'-8.0' re Rec 4.0'/4.0'
·				4.4'-10.0'	Red Micaceous Clayey SILT	, Moist		
5	S-5	5.0-5.5	0.6					
		0.0 0.0						
•								
6	S-6	6.0-6.5	0.8					
7	S-7	7.0-7.5	1.0					
				7.2'	Grading to Yellow-Brown			
	-							
8	S-8	8.0-8.5	1.1				Ma Co	acrocore 8.0'-10.0' ore Rec 2.0'/2.0'
-								
9	S-9	9.0-9.5	0.9					
·								
40								
10								
			<u> </u>					
<u>11</u>								
12								
<u> </u>								
13								
14								
- <u>14</u>								
l								
15								

Parcel 176 Boring Logs B27-19 2/7/2022

LOCATIO TYPE OF DRILLING DRILLER DRILL RIG	DN: BORING G FIRM: R: IG:	Approxima	4758 Phase tely 50' north Direct Pus SAEDACC	west of B176	PROJ. NO.: IS14.314		B176-20
LOCATIO TYPE OF DRILLING DRILLER DRILL RIG	DN: BORING G FIRM: R: IG:	Approxima	tely 50' north Direct Pus	west of B176			
DRILLING DRILLER DRILL RIG	G FIRM: R: IG:			•h			
DRILLER DRILL RI	R: IG:		SAEDACC		DATE STARTED: 1/25/2022	SHEET:	
DRILL RI	IG:		Robert Mil		DATE FINISHED: 1/25/2022	TOTAL DEPTH:	
			Geoprobe 5		SAMPLE METHOD: <u>4' Macrocore</u> LOGGED BY: A. Roseman	DEPTH TO GW: COMMENT:	
DEPTH (f	Щ.						
	SAMPLE NO.	SAMPLE DEPTH (ft)	PID READING (ppm)		FIELD CLASSIFICATION AND PHYSICAL DESCRIPTION		REMARKS
·				0.0'-0.3'	Topsoil	Ma	crocore 0.0'-4.0' re Rec 4.0'/4.0'
				0.3'-4.0'	Red Silty CLAY, Moist		
<u>1</u> S-1	1	1.0-1.5	0.8				
2 S-2	2	2.0-2.5	1.4				
<u>3</u> S-3	3	3.0-3.5	0.9				
- <u>4</u> S-4	4	4.0-4.5	0.8	4.0'-10.0'	Orange Micaceous Clayey SILT, Moist	Ma Co	crocore 4.0'-8.0' re Rec 4.0'/4.0'
5 S-5	5	5.0-5.5	0.6				
<u>6</u> S-6	6	6.0-6.5	0.6				
_7 S-7	7	7.0-7.5	0.2				
8S-8	8	8.0-8.5	0.4	8.0'	Grading to Gray		crocore 8.0'/10.0' re Rec 2.0'/2.0'
9 S-9	9	9.0-9.5	0.6				
10							
11							
12							
13							
 							
14			1				
<u>k</u> +							
15							

Parcel 176 Boring Logs B27-20 2/7/2022

APPENDIX B

RED LAB LABORATORY TESTING REPORT

Hydrocarbon Analysis Results

Client: Address:	ESP GREENSBORO, NC								Sa Sampl Sampl		racted		Monday, January 24, 2022 Monday, January 24, 2022 Thursday, January 27, 2022
Contact:	NED BILLINGTON									Ор	erator		CLAIRE NAKAMURA
Project:	1514.314												
													U04049
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP		Ratios		HC Fingerprint Match
										% light	% mid	% heavy	
S	B176-1, S5	25.5	<0.64	<0.64	<0.64	<0.64	<0.13	<0.2	<0.025	0	0	0	PHC not detected,(BO)
S	B176-1, S7	21.1	<0.53	<0.53	0.64	0.64	0.61	<0.17	<0.021	0	18.1	81.9	Residual HC,(BO)
S	B176-2, S4	13.6	<0.34	<0.34	<0.34	<0.34	<0.07	<0.11	<0.014	0	100	0	,(FCM)
S	B176-3, S1	23.6	<0.59	<0.59	0.85	0.85	0.43	<0.19	<0.024	0	87.6	12.4	V.Deg.PHC 49.3%,(FCM)
S	B176-3, S5	21.7	<0.54	<0.54	0.54	0.54	0.31	<0.17	<0.022	0	0	100	PHC not detected,(BO)
S	B176-5, S4	23.2	<0.58	<0.58	<0.58	<0.58	<0.12	<0.19	<0.023	0	100	0	PHC not detected
S	B176-8, S6	19.4	<0.49	<0.49	0.67	0.67	0.64	<0.16	<0.019	0	10.9	89.1	Residual HC,(BO)
S	B176-9, S2	24.5	<0.61	<0.61	<0.61	<0.61	<0.12	<0.2	<0.025	0	0	0	PHC not detected
S	B176-10, S4	21.5	<0.54	<0.54	0.83	0.83	0.79	<0.17	<0.021	0	7.5	92.5	Residual HC,(BO)
S	B176-11, S2	23.2	<0.58	<0.58	<0.58	<0.58	<0.12	<0.19	<0.023	0	100	0	Residual HC
		Initial Calibrator (QC check	OK					Final F	CM QC	Check	OK	102.7 %
Fingerprints	erated by a QED HC-1 analyser. provide a tentative hydrocarbon 3S) = Site Specific or Library Bac	identification. The abbre	viations are:	- FCM = Res	sults calculate	d using Funda	amental Calibra	ation Mode :	% = confide				nt match to library

Hydrocarbon Analysis Results

	ESP GREENSBORO, NC								Sa Sampl Sampl		racted		Monday, January 24, 2022 Monday, January 24, 2022 Thursday, January 27, 2022
Contact:	NED BILLINGTON									Ор	erator		CLAIRE NAKAMURA
Project:	1514.314												
													U04049
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP		Ratios		HC Fingerprint Match
										% light	% mid	% heavy	
S	B176-12, S6	26.5	<0.66	<0.66	0.66	0.66	0.47	<0.21	<0.027	0	27.3	72.7	Residual HC,(BO)
S	B176-13, S1	302.0	<7.5	<7.5	868.2	868.2	337.6	12.1	<0.3		96.8	3.2	Undeg.Diesel 93.3%,(FCM)
S	B176-13, S4	24.5	<1.2	17.9	68.8	86.7	22.2	0.83	<0.025	89.5	10.2	0.3	Deg.Diesel 94.1%,(FCM)
S	B176-13, S8	29.2	<0.73	<0.73	11.7	11.7	3.7	<0.23	<0.029	0	86	14	Deg.Diesel 97.3%,(FCM)
S	B176-17, S5	20.8	<0.52	<0.52	19.8	19.8	9.5	1	<0.021	0	84.9	15.1	Road Tar 93.6%,(FCM)
	Initia	Calibrator	QC check	OK					Final F	CM QC	Check	OK	103.3 %
Results gen	erated by a QED HC-1 analyser. Conce	ntration values	in mg/kg fo	r soil samples	and mg/L for	water sample	es. Soil value	s are not co	rrected for n	noisture	or stone	content	
Fingerprints	provide a tentative hydrocarbon identifica	ion. The abbre	viations are	- FCM = Re	sults calculate	d using Funda	amental Calibra	ation Mode :	% = confide	ence for	sample fi	ingerprir	nt match to library
(SBS) or (LE	S) = Site Specific or Library Background	Subtraction ap	plied to resu	lt : (PFM) = P	oor Fingerprir	t Match : (T) =	= Turbid : (P) =	Particulate	present				

Hydrocarbon Analysis Results

Client: Address	ESP SS: GREENSBORO, NC									mples es exti les ana	racted		Monday, January 24, 2022 Monday, January 24, 2022 Thursday, January 27, 2022
ontact:	NED BILLINGTON									Ор	erator		CLAIRE NAKAMURA
roject:	1514.314												
					1		Total						U04049
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Aromatics (C10-C35)	16 EPA PAHs	BaP		Ratios		HC Fingerprint Match
							(010-033)			% light	% mid	% heavy	
S	B176-19, S4	13.3	<0.33	<0.33	0.33	0.33	0.21	<0.11	<0.013	0	0	100	,(FCM),(BO)
S	B176-20, S2	22.8	<0.57	<0.57	0.57	0.57	0.29	<0.18	<0.023	0	0	100	PHC not detected,(BO)
		Initial Calibrator	QC check	OK					Final F	CM QC	Check	OK	101.

QED

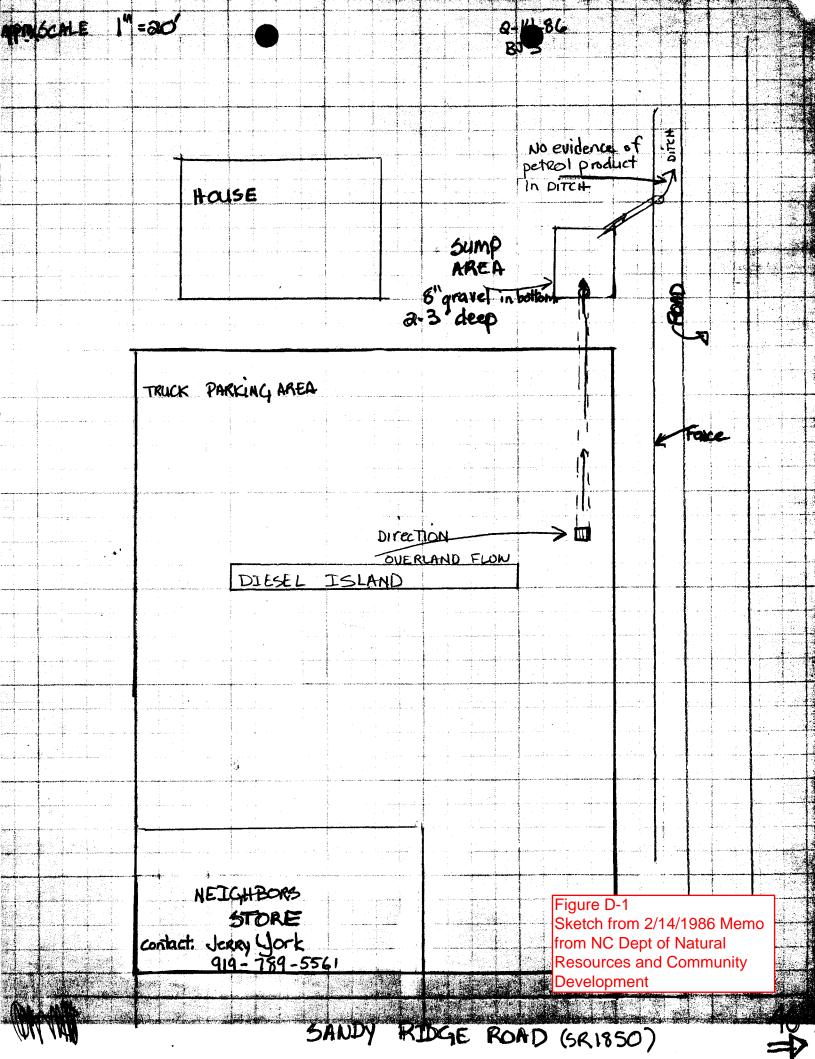
APPENDIX C CHAIN-OF-CUSTODY FORM

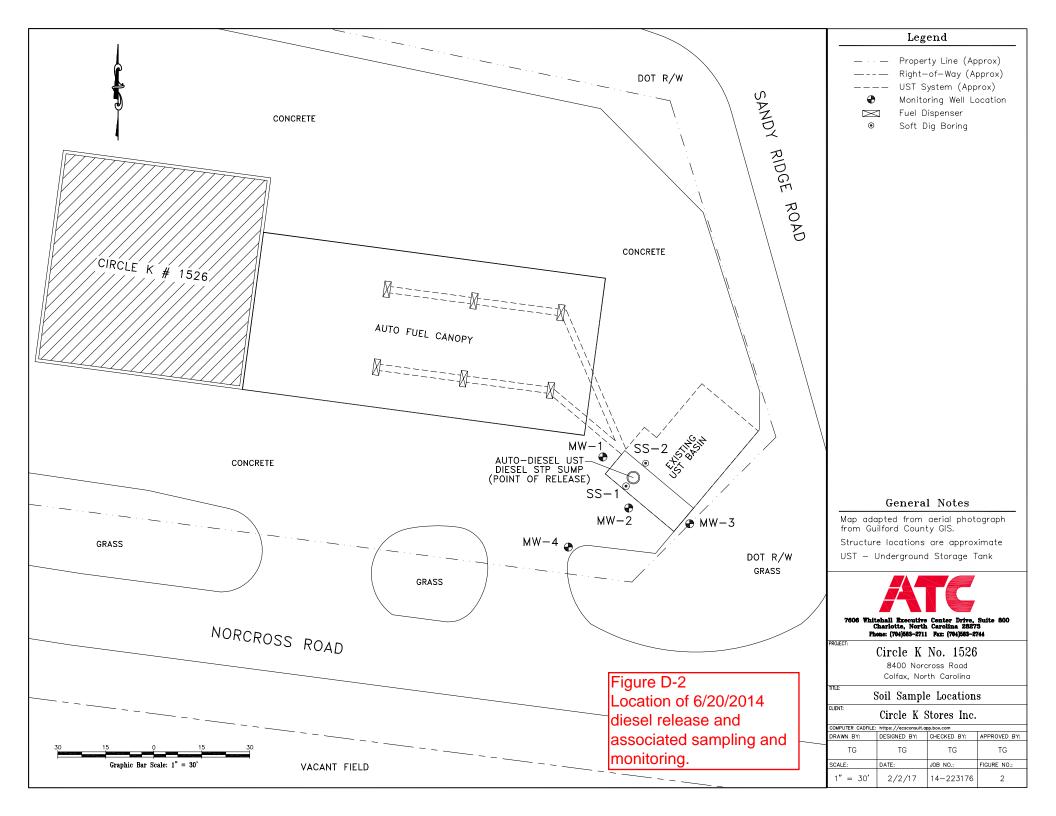
Client Name:	ESP						ò
Address:	ONFIL	Ē					TM
Contact:		LINGTON					
Project Ref.:	IS14.3					DLA	
Email:	ON FI						
Phone #:	ONFE			RAP	D ENVIE	RONMENTAL DIAGN	OSTICS
Collected by:	ANNAR		CHAIN	N OF CL	JSTODY	AND ANALYTICA	L REQUEST F
Sample Collection	TAT Ree	quested	Analys	sis Type	Initials	Sam	nple ID
Date/Time	24 Hour	48 Hour	UVF	GC	IIIIIdis	Jan	ipie iD
1-24-22		\checkmark	V		CRP	BI76-1, S5	
1-24-22					1	B176-1, S7	
1-24-22						B176-2,54	
1-24-22						B176-3, SI	
1-24-22						B176-3, 55	
1-24-22						3176-5,54	
1-24-22						B176-8, S6	
1-24-22						B176-9, SZ	
1-25.22						B176-10,94	
1-24-22						B176-11, SZ	
1-25-22						B176-12,56	
1-24-22						B176-13, SI	
1-24-22						B176-13,54	
1-24-22						B176-13, SB	
1-25-22						B176-17,55	
1-25-22		1				B176-19, 54	
1-25-22		V	1		cep	B176-20,52	
					0	1000	
COMMENTS/REQU	JESTS:					TARGET GC/UVF ANALY	TES:
Relinqu	uished by				Accep	oted by	Date/Time
At			1-26-22				
Poling	uished by				Accor	oted by	Date/Time

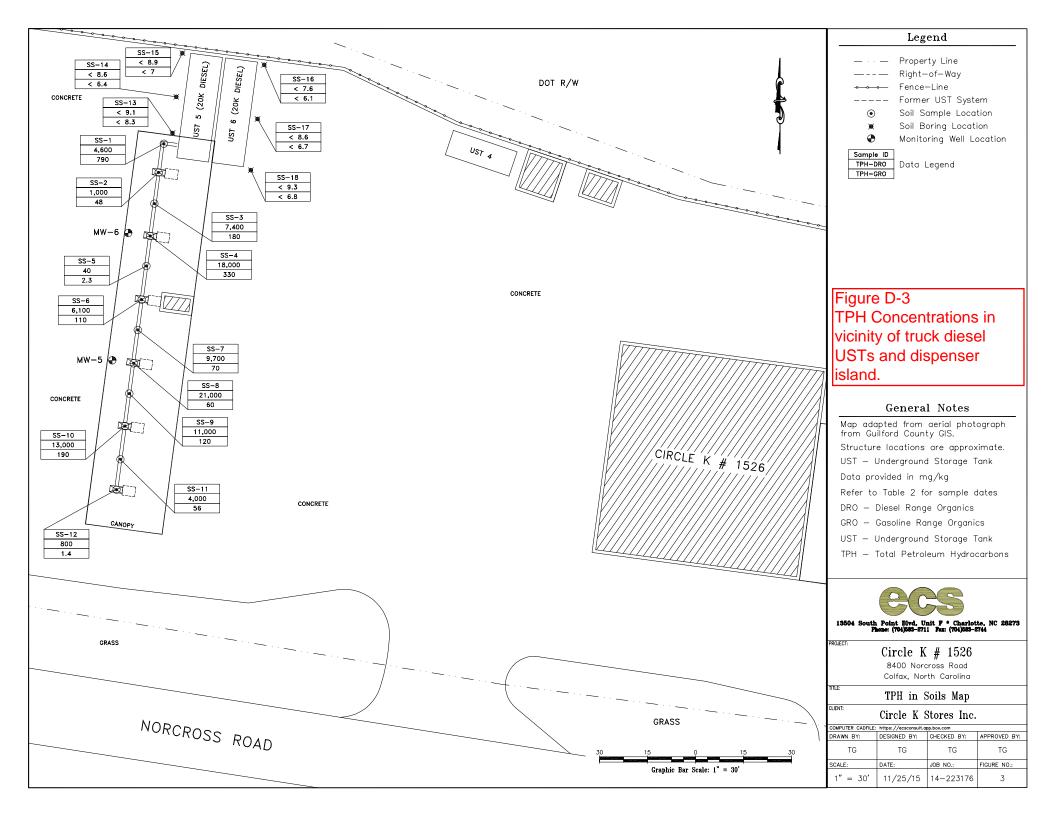
RED Lab, LLC

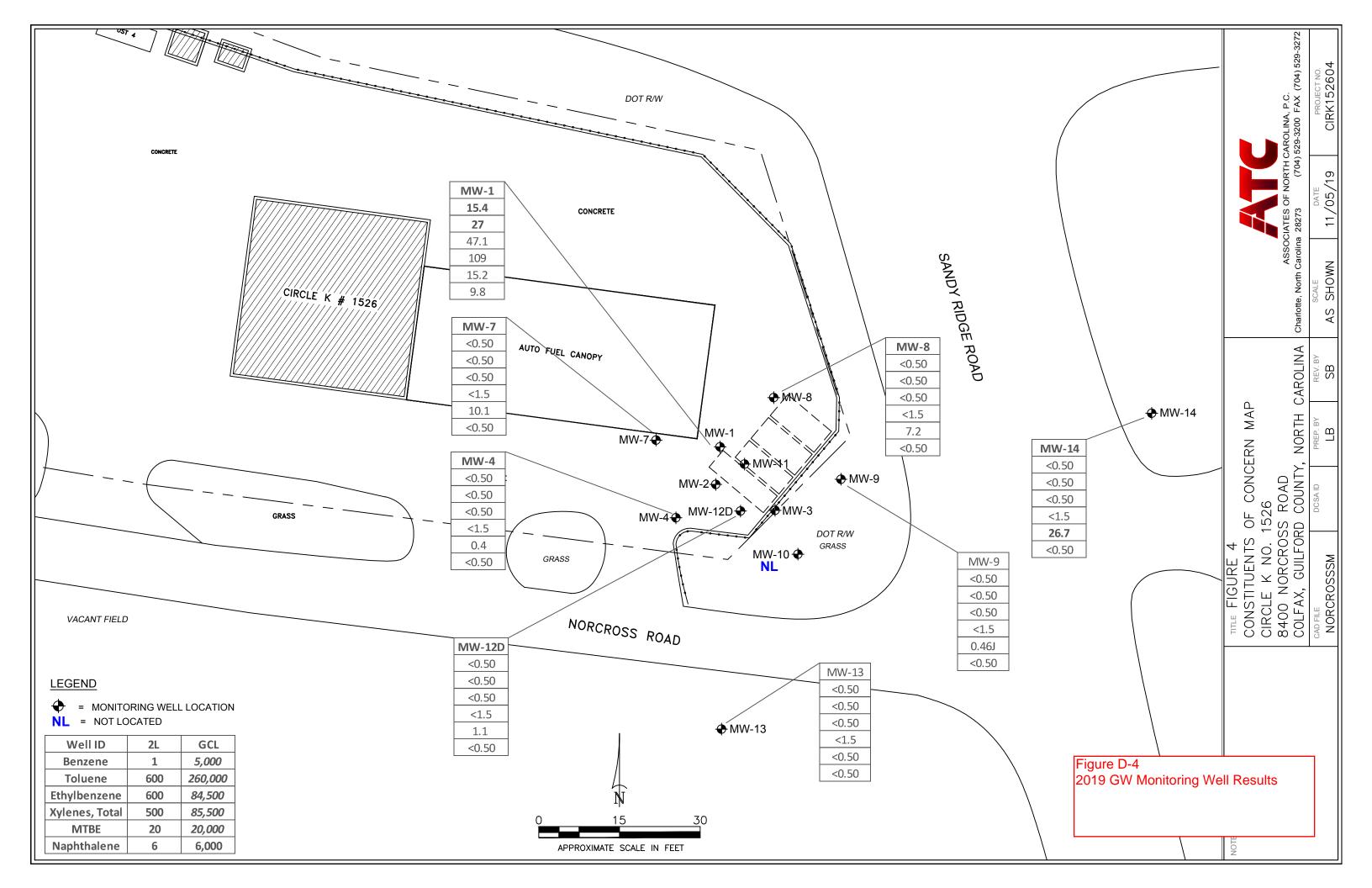
L_

5598 Marvin K Moss Lane


MARBIONC Bldg, Suite 2003


Wilmington, NC 28409


Each UVF sample will be analyzed for total BTEX, GRO, DRO, TPH, PAH total aromatics and BaP. Standard GC Analyses are for BTEX and Chlorinated Solvents: VC, 1,1 DCE, 1,2 cis DCE, 1,2 trans DCE, TCE, and PCE. Specify target analytes in the space provided below.


ipie conection	IAINE	Juesieu	/ mary si	- iypc	Initials	San	nple ID	Total M/t	Tara W/+	Sample Wt.
Date/Time	24 Hour	48 Hour	UVF	GC	Initials	Jan		rotar wt.	Idle VVL.	Sample wt.
-24-22		\checkmark			CRP	B176-1, S5	1	50.5	40.3	10.2
-24-22		1	1		1	R176-1, S7	-	62.2	39.9	12.3
-24-22						B176-2, SH	х.	50.5	40.2	10.3
24-22						B176-3, SI			40.1	11.0
24-22				2		B176-3,55		52.1	40.1	12.0
24-22						3176-5,54	с.	51.3	40.1	11.2
24-22						BI76-8, S6		53.6	40.2	13.4
24-22						B176-9, SZ		50.7	40.1	10.6
-25.22						B176-10,94		52.2	40.)	12.1
-24-22						B176-11, SZ		Construction of the second	40.1	11.Z
-25-22						B176-12,56			39.9	9.8
-24-22						B176-13, SI			40.2	11.2
-24-22						B176-13, 54		0 .	40.2	10.6
24-22						B176-13, S8		P	40.2	8.9
-25-22						B176-17,55			40,1 .	12.5
-25-22		1				B176-19, 54	an ann an t-airt an t-ainteachan ann ann ann ann an t-airt an t-ainteachan ann an t-ainteachan ann ann an t-ain		40.2	10.5
-25-22		V	1	19.000 ggg (19.000 / 19.000 / 19.000 / 19.000 / 19.000 / 19.000 / 19.000 / 19.000 / 19.000 / 19.000 / 19.000 /	CCP	B176-20,52			40.3	11.4
						one cojota			1010	
				*****	-					
1994 - 1994 - 1994 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -										
MMENTS/REQU	ESTS:	J				TARGET GC/UVF ANALY	/TES:			
	9.9999 (19.999) 19.999						,	SP.		
Relinqu	ished by				Accep	ted by	Date/Time	REI	D Lab USE	ONLY
the		2	1-26-22					(17)		
Relinqu	ished by				Accep	ted by	Date/Time		-	
		9 9		ECN	Y21/2027	12:17 PM		Ref. No	-2022	2-2

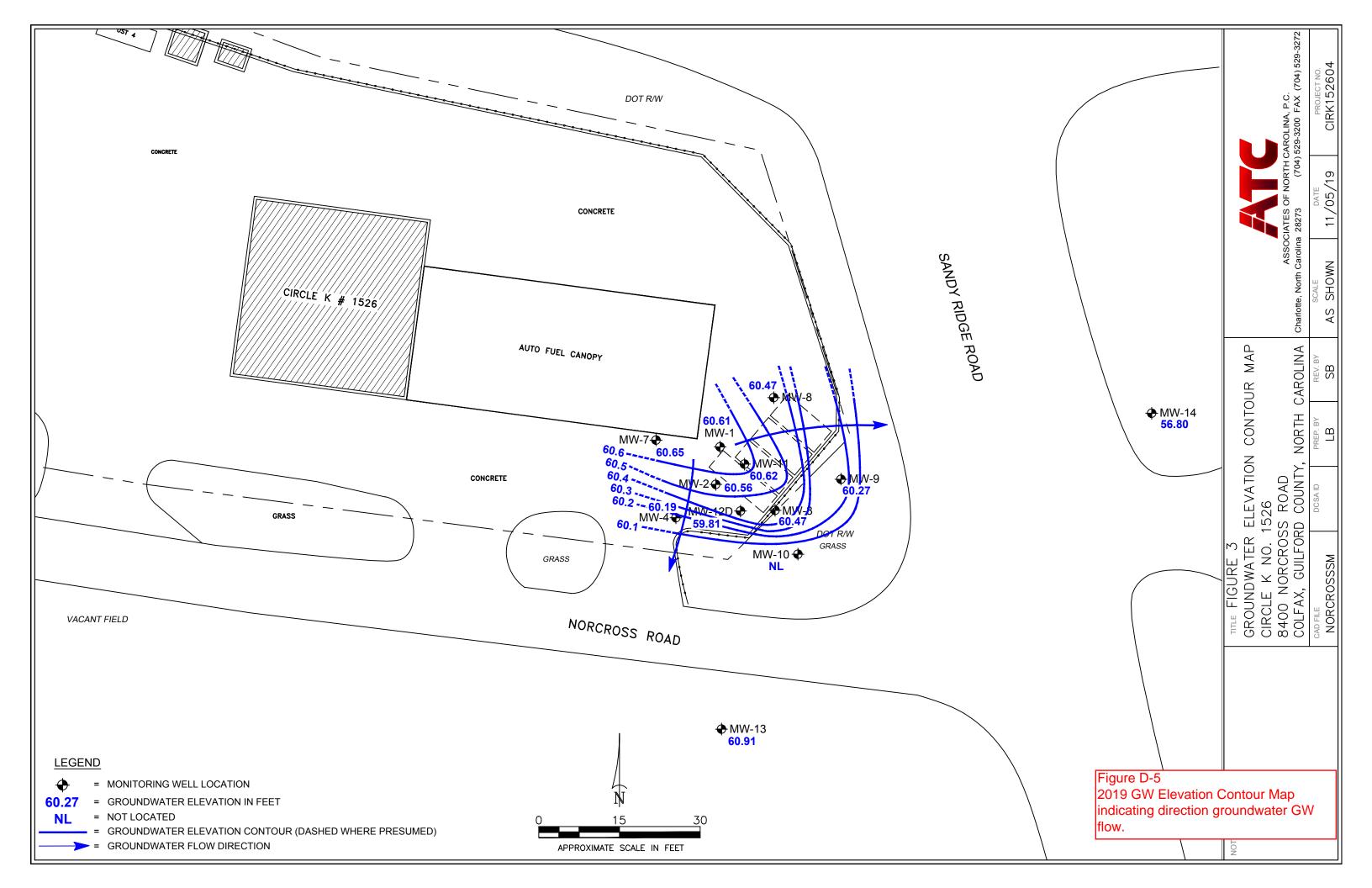

APPENDIX D RELEVANT NCDEQ INFORMATION

Table 4: Summary of Groundwater Sampling Results

Revision Date: 8/22/19 Incident Number and Name: 44346/Circle K 1526

Revision D	ate: 8/22/19				EPA Method 6200B																			D #: 0-001979												
	Method (e.g. EP	A 601)													EPA	Method	6200B														610			8270)	
	ant of Concern Date Collected	Sample ID	Incident Phase	Acetone	Benzene	Toluene	Ethylbenzene	Xylenes, Total	Methyl-tert-butyl ether	Naphthalene	Carbon Tetrachloride	Tetrachloroethylene	Isopropylbezene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Diisopropyl ether	n-Propyl Benzene	n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	Bromodichloromethane	Chlorodibromomethane	Dibromochloromethane	2-Hexanone	2-Butanone	4-Methyl-2-pentanone	Methyl Chloride	p-Isopropyltoluene	Chloroethane	Chloroform	Benzo(a)-anthracene	2-Methylnaphthalene	Acenaphthene	Fluorene	Naphthalene	Phenanthrene Pyrene
	8/6/2014	MW-1	IAA		< 1	< 1	< 1	< 3	60.5	< 2			< 1	< 2	< 1	NA	< 1	< 1	< 1	< 1	NA	NA			NA	NA		NA		NA	< 0.33	NA	NA	NA	NA	NA NA
	4/8/2015	MW-1	LSA		< 1.0	< 1.0	< 1.0	< 1.0	31	< 5.0			< 1.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	NA			NA	NA		NA		NA	< 5.0	NA	NA	NA	NA	NA NA
MW-1	7/8/2015	MW-1	LSA		< 1.0	< 1.0	< 1.0	< 1.0	27	< 5.0			< 1.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	NA			NA	NA		NA		NA	< 5.0	NA	NA	NA	NA	NA NA
	6/1/2017	MW-1	CSA		<0.50	<0.50	<0.50	0.48J	28	<1.0			<0.50	0.57	0.23J	0.19J	<0.50	<0.50	<0.50	<0.50	0.95	0.26J			<5.0	<5.0		<0.50		14	NA	0.17J	<0.30	<1.0	<1.0	0.061 0.035
	10/3/2019	MW-1	Post-CSA	24.8	15.4	27.4	47.1	109	15.2	9.8	<0.50	<0.50	7.7	45	32.5	1.9	12.5	2.4	3.4	<0.50	2.4	NA	0.77	26.2	7.7	9.7	0.75	3.1	0.48J	20.4	NA	NA	NA	NA	NA	NA NA
	8/6/2014	MW-2	IAA		< 1	< 1	< 1	< 3	12.9	< 2			< 1	< 2	< 1	NA	< 1	< 1	< 1	< 1	NA	NA			NA	NA		NA		NA	1.1 J	NA	NA	NA	NA	NA NA
	4/8/2015	MW-2	LSA		< 1.0	< 1.0	< 1.0	< 1.0	8.8	< 5.0			< 1.0	< 5.0	< 1.0	1.3	< 1.0	< 1.0	< 1.0	< 1.0	NA	NA			NA	NA		NA		NA	< 5.0	NA	NA	NA	NA	NA NA
MW-2	7/8/2015	MW-2	LSA		< 1.0	< 1.0	< 1.0	< 1.0	5.9	< 5.0			< 1.0	< 5.0	< 1.0	1.3	< 1.0	< 1.0	< 1.0	< 1.0	NA	NA			NA	NA		NA		NA	< 5.0	NA	NA	NA	NA	NA NA
	6/1/2017	MW-2	CSA																Free F	Product																
	10/3/2019	MW-2	Post-CSA		1	1	1	1		1					1						1	<u> </u>											1		<u> </u>	
	8/6/2014	MW-3	IAA		< 1	< 1	<1	< 3	10.5	< 2			<1	< 2	< 1	NA	<1	< 1	< 1	<1	NA	NA			NA	NA		NA		NA	< 0.33	NA	NA	NA	NA	NA NA
	4/8/2015	MW-3	LSA		< 1.0	2.5	1.6	7.2	12	< 5.0			< 1.0	< 5.0	< 1.0	15	< 1.0	< 1.0	< 1.0	< 1.0	NA	NA			NA	NA		NA		NA	< 5.0	NA	NA	NA	NA	NA NA
MW-3	7/8/2015	MW-3	LSA		6.1	34	18	90	12	<2			< 1.0	< 5.0	< 1.0	<1	< 1.0	< 1.0	< 1.0	< 1.0	NA	NA			NA	NA		NA		NA	< 5.0	NA	NA	NA	NA	NA NA
	6/1/2017	MW-3	CSA																Free P	Product																
	10/3/2019	MW-3	Post-CSA		- 1	. 1	- 1	- 2	1.4				- 1	<i>,</i>)	. 1	- 1	- 1	. 1	. 1	- 1	NIA	NIA			NIA	NIA		NIA		NIA	< 0.15					
	10/14/2014	MW-4	IAA		< 1 < 1.0	< 1 < 1.0	< 1 < 1.0	< 3 < 1.0	1.4 <1.0	< 2 < 5.0			< 1 < 1.0	< 2 < 5.0	< 1 < 1.0	< 1 < 1.0	< 1 < 1.0	<1	< 1 < 1.0	<1 <1.0	NA NA	NA NA			NA NA	NA NA		NA NA		NA NA	< 5.0	NA	NA	NA	NA	NA NA
MW-4	4/8/2015	MW-4 MW-4	LSA LSA		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0			< 1.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	NA	NA			NA	NA		NA		NA	< 5.0	NA NA	NA NA	NA NA	NA	NA NA
10100 -	7/8/2015 6/1/2017	MW-4	CSA		< 1.0	< 1.0	< 1.0	<1.50	1.2	< 1.0			< 1.0	< 3.0 0.39J	< 1.0	< 1.0		< 1.0		< 1.0	<0.50	<0.50			<5.0	<5.0		<0.50		6.4	NA	0.095J			NA <1.0	0.14 <1.0
	10/3/2019	MW-4	Post-CSA	<10	<0.50	<0.50	<0.50	<1.5	0.4	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50		<0.50	0.20J	+ +	<0.50	<5.0	<2.5	<2.5	<0.50	<0.50	<0.50	7.7	NA	NA	NA	NA	NA	NA NA
MW-5	10/3/2019	MW-5	Post-CSA	<10	<0.50	< 0.50	<0.50	<1.5	0.31J	<0.50		0.13J	<0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50		< 0.50	0.17J		<0.50	<5.0	<2.5	<2.5	<0.50	<0.50	<0.50	15.4	NA	NA	NA	NA	NA	NA NA
MW-6	10/3/2019	MW-6	Post-CSA	<10	< 0.50	<0.50	<0.50	<0.50	0.34J	< 0.50		0.24J	<0.50	< 0.50	<0.50	<0.50	<0.50	< 0.50		< 0.50	0.47J		<0.50	<5.0	<2.5	<2.5	< 0.50	<0.50	< 0.50	31.8	NA	NA	NA	NA	NA	NA NA
	6/1/2017	MW-7	CSA		0.25J	0.34J	0.15J	1.68J	5.6	<1.0			<0.50	0.59	0.98	3.3	<0.50	0.25J		< 0.50	<0.50	<0.50			<5.0	<5.0		<0.50		1.4	NA	0.46J	<0.30	0.084J		0.10 <1.0
MW-7	10/3/2019	MW-7	Post-CSA	<10	< 0.50	<0.50	<0.50	<1.5	10.1		<0.50	<0.50	<0.50	<0.50	<0.50	3.5	<0.50	<0.50		<0.50	<0.50	<u> </u>	<0.50	<5.0	<2.5	<2.5	<0.50	<0.50	<0.50	2.7	NA	NA	NA	NA	NA	NA NA
	6/1/2017	MW-8	CSA		0.23J	0.28J	0.18J	1.5	17	<1.0			<0.50	<0.50	0.96	7.4	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50			<5.0	<5.0		<0.50		5.4	NA	0.10J	<0.30	<1.0	<1.0	0.054 <1.0
MW-8	10/3/2019	MW-8	Post-CSA	<10	<0.50	<0.50	<0.50	<0.50	7.2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.65	<0.50	<0.50	<0.50	<0.50	0.33J	<0.50	<0.50	<5.0	<2.5	<2.5	<0.50	<0.50	<0.50	12.1	NA	NA	NA	NA	NA	NA NA
MW-9	6/1/2017	MW-9	CSA		0.53	0.45J	0.13J	6.64J	17	<1.0			<0.50	0.52	0.16J	14	<0.50	<0.50	<0.50	<0.50	0.47J	<0.50			2.8J	6.8		<0.50		12	NA	<1.0	<0.30	<1.0	0.16J	0.071 <1.0
10100-5	10/3/2019	MW-9	Post-CSA	<10	<0.50	<0.50	<0.50	<0.50	0.46J	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.21J	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<2.5	<2.5	<0.50	<0.50	<0.50	1.8	NA	NA	NA	NA	NA	NA NA
MW-10	6/1/2017	MW-10	CSA		9.6	76	68	310	<2.0	24			11	150	40	<2.0	26	15	6.6	<2.0	<2.0	<2.0			<20	<20		4.4		6.2	NA	26	<0.30	<1.0	15	<0.050 1.4
MW-11	6/1/2017	MW-11	CSA		94	480	180	880	6.5	66			32	440	120	<5.0	78	60	<5.0	<5.0	<5.0	<5.0			<50	<50		18		3.5J	NA	59	1.7J	4.0J	38	4.6 4.5
	10/3/2019	MW-11	Post-CSA		-		•												Free P	Product								-								
MW-12D	6/14/2016	MW-12D	CSA		<0.50	<0.50	<0.50	<1.50	0.93	<1.0			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50			<5.0	<5.0		<0.50		2.3	NA	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0
	10/3/2019	MW-12D	Post-CSA	<10	<0.50	<0.50	<0.50	<0.50	1.1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.17J	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	7.8	NA	NA	NA	NA	NA	NA NA
MW-13	10/3/2018	MW-13	Post-CSA		<0.5	<0.5	<0.5	<1.5	<0.5	<0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5		<0.5		<0.5	NA	NA	NA	NA	NA	NA NA
	10/3/2019	MW-13	Post-CSA	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<2.5	<2.5	<0.50	<0.50	<0.50	<0.50	NA	NA	NA	NA	NA	NA NA
MW-14	10/3/2018	MW-14	Post-CSA		<5	<5	<5	<15	297	<5			<5	<5	<5	<5	<5	<5	<5	<5	<5	<5			<5	<5		<5		17.8	NA	NA	NA	NA	NA	NA NA
	10/3/2019	MW-14	Post-CSA	<10	<0.50	<0.50	<0.50	<0.50	26.7	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50			<5.0	<2.5	<2.5	<0.50		<0.50	4.9	NA	NA	NA	NA	NA	NA NA
2L Standar				6,000	1	600	600	500	20	6	NE	0.7	70	400	400	70	70	70	70	70	NE	NE	0.4	40	NE	NE	5	NE	NE	70	0.05	30	80	300	6	200 200
	s contamination	level		6,000,000	5,000	260,000	84,500	85,500	20,000	6,000	NE	700	25,000	28,500	25,000	70,000	30,000	6,900	8,500	15,000	NE	NE	400	40,000	NE	NE	5,000	NE	NE	70,000	4.7	12,500	2,120	990	6,000	410 200
Results in	ug/L																																			

Concentrations in bold exceeded the 2L Standard

Concentrations in bold and italics exceeded the GCL

NA= Not Analyzed

J = Estimated Value

NE= Not Established

Facility ID #: 0-001979

Figure D-6 2019 MR - Summary of groundwater sampling results