SEE SHEET 3 FOR PLAN SHEET LAYOUT AT TIME OF INVESTIGATION

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

CONTENTS

<u>LINE</u> **STATION** <u>PLAN</u> II+00 - 70+00 4-9 -YI-12+42 - 17+50 -Y2-11+41 - 14+63 8-10

ROADWAY SUBSURFACE INVESTIGATION

APPENDIX A

<u>TITLE</u>	SHEETS
BORING LOGS	II-37
ROCK CORE PHOTO	38
SOIL AND ROCK TEST RESULTS	39-41

COUNTY WAKE PROJECT DESCRIPTION PROPOSED FUJIFILM ACCESS ROAD IN HOLLY SPRINGS **INVENTORY**

APPENDIX B

<u>TITLE</u>		<u>SHEETS</u>
ADDITIONAL	BORING LOGS	42-49
ADDITIONAL	SOIL TEST RESULTS	50-51

APPENDIX B BORE LOG AND SOIL TEST DATA COLLECTED PRIOR TO CHANGE OF PROPOSED CONSTRUCTION LIMITS

STATE PROJECT REFERENCE NO. HE-0002

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF PREPARING THE SCOPE OF WORK TO BE INCLUDED IN THE REQUEST FOR PROPOSAL. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENCINEERING UNIT AT 1(99) 707-6550. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

SOIL AND ROCK BOUNDARIES WITHIN A BOREHOLE ARE BASED ON GEOTECHNICAL INTERPRETATION UNLESS ENCOUNTERED IN A SAMPLE, INTERPRETED BOUNDARIES MAY NOT NECESSARILY REFLECT ACTUAL SUBSURFACE CONDITIONS BETWEEN SAMPLED STRATA AND BOREHOLE INFORMATION MAY NOT NECESSARILY REFLECT ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS. THE LABBORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION, THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR PINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISTY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- THE SITE DIFFERING FROM THOSE MODELS.

 IN THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR CUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS! TOONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

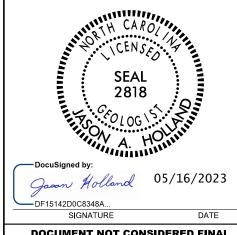
 BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

J. HOLLAND

C. SWAFFORD

J. ROSE

SUMMIT PLLC


INVESTIGATED BY <u>J.</u> HOLLAND

DRAWN BY _ **J. HOLLAND**

SUBMITTED BY SCHNABEL ENG.

DATE _MAY 2023

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

ENCE REFER

49

PROJECT REFERENCE NO. SHEET NO.

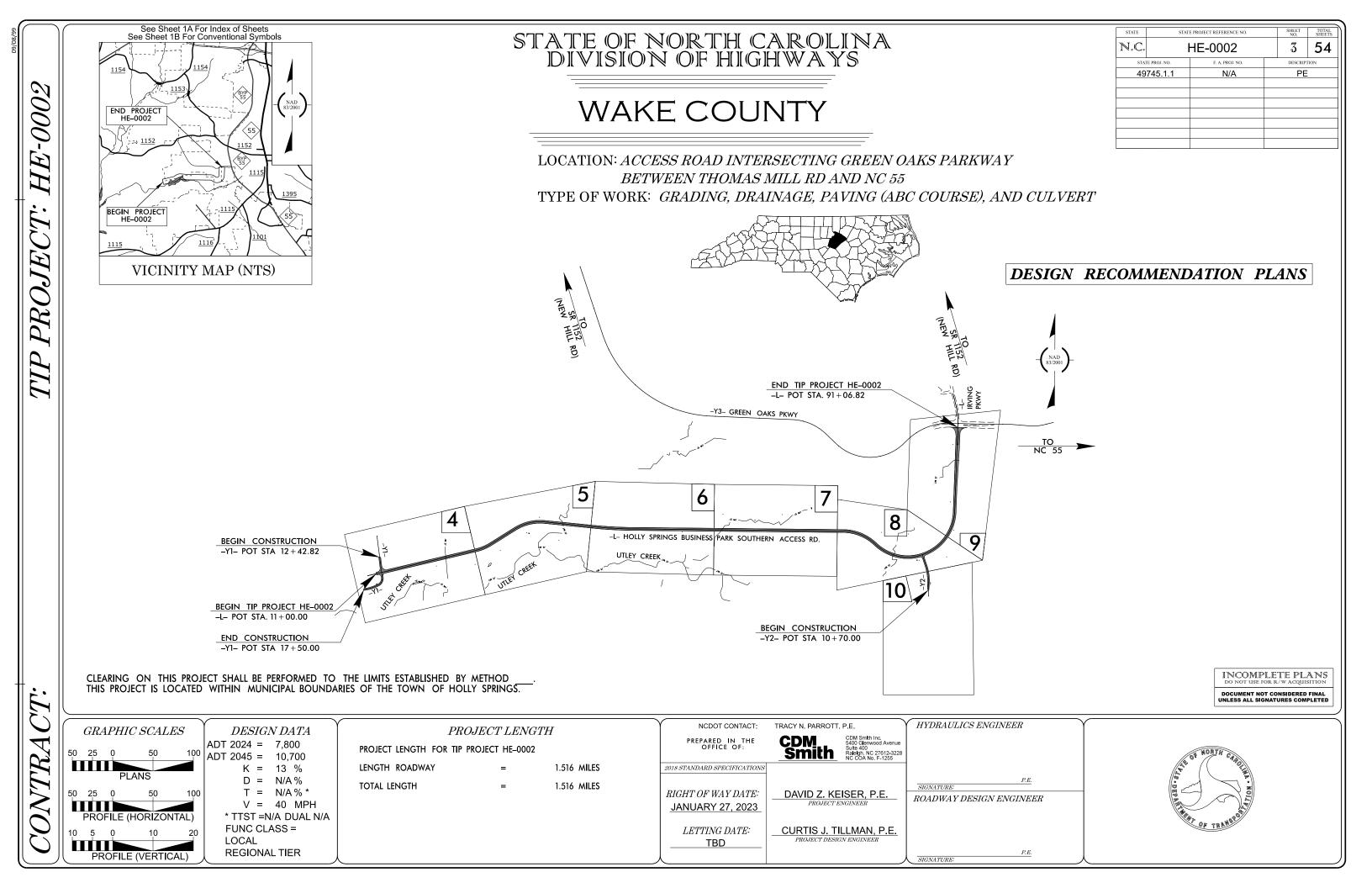
HE-0002

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

			<u> </u>
SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	<u>WELL GRADED</u> - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM D1586). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING:	GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN	AQUIFER - A WATER BEARING FORMATION OR STRATA.
CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES >	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	ROCK (WR) 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS ORGANIC MATERIALS	MINERALOGICAL COMPOSITION	CRYSTALLINE CRYSTA	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.
(LASS. (5 35% PASSING *200) (> 35% PASSING *200)	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	ROCK (CR) WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, GNEISS, GABBRO, SCHIST, ETC.	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 CLASS. A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 B-2-7 A-3 A-6, A-7	COMPRESSIBILITY	NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM
SYMBOL COORDOOD STATE OF THE ST	SLIGHTLY COMPRESSIBLE LL < 31	ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.	OF SLOPE.
000000000000000000000000000000000000000	MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
7. PASSING 10 50 MX GRANULAR SILT- CLAY MUCK,	PERCENTAGE OF MATERIAL	(CP) SHELL BEDS, ETC.	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
*40 38 MX 58 MX 51 MN PEAT *200 15 MX 25 MX 18 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN 36 MN	GRANULAR SILT - CLAY	WEATHERING	ROCKS OR CUTS MASSIVE ROCK.
MATERIAL 33 PIA 23 PIA 18 PIA 33 PIA 33 PIA 35 PIA 36 PIA	ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER HAMMER IF CRYSTALLINE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
PASSING *40 SOUS WITH	LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	HORIZONTAL.
LL — — 40 MX 41 MN 40 MX 41 MN 40 MX 41 MN 40 MX 41 MN LITTLE OR HIGHLY	MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
CROUP INDEX 0 0 0 4 MY 8 MY 12 MY 16 MY NO MY AMOUNTS OF ORGANIC	GROUND WATER	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE
HIGHAL TYPES CTONE EPAGS ORGANIC SUILS	✓ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	(SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
OF MAJOR GRAYEL, AND SAND FINE SILTY OR CLAYEY SILTY CLAYEY MATTER MATERIALS SAND SAND GRAYEL AND SAND SOILS SOILS	▼ STATIC WATER LEVEL AFTER 24 HOURS	CRYSTALS ARE DULL AND DISCOLORED, CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS. MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
CEN RATING FAIR TO	─────────────────────────────────────	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY, ROCK HAS	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.
AS SUBGRADE EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABL		DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30	SPRING OR SEEP	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH	FIELD.
PRIMARY SOIL TYPE COMPACTNESS OR RANGE OF STANDARD RANGE OF UNCONFINED PENETRATION RESISTENCE COMPRESSIVE STRENGTH	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION	(MOD, SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES "CLUNK" SOUND WHEN STRUCK, IF IESTED, WOULD YIELD SPT REFUSAL	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED. LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
CONSISTENCY (N-VALUE) (TONS/FT ²)	WITH SOIL DESCRIPTION → OF ROCK STRUCTURES	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT	ITS LATERAL EXTENT.
GENERALLY VERY LOOSE < 4	SOIL SYMBOL SOIL SYMBOL SUPPLIED THE TEST BORING SLOPE INDICATOR INSTALLATION	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
LOOSE	시 전	IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTILED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTILING IN SOILS
(NON-COHESIVE) DENSE 30 TO 50 VERY DENSE > 50	ARTIFICIAL FILL (AF) OTHER AUGER BORING COME PENETROMETER THAN ROADWAY EMBANKMENT AUGER BORING COME PENETROMETER	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE. PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
VERY SOFT < 2 < 0.25		SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK (V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	OF AN INTERVENING IMPERVIOUS STRATUM.
GENERALLY SOFT 2 TO 4 0.25 TO 0.5	TECT DODING	VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u>	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0 MATERIAL STIFF 8 TO 15 1 TO 2	INFERRED ROCK LINE MONITORING WELL WITH CORE	COMPLETE ROCK REDUCED TO SOIL, ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS	ROCK QUALITY DESIGNATION (RQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
(COHESIVE) VERY STIFF 15 TO 30 2 TO 4	TTTTT ALLUVIAL SOIL BOUNDARY A PIEZOMETER ON SPT N-VALUE	ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
HARD > 30 > 4 TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
		VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES	ROCK.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	UNDERCUT UNCLASSIFIED EXCAVATION - UNCLASSIF	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK. HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO
BOULDER COBBLE GRAVEL COARSE FINE SILT CLAY	SHALLOW UNDERCUT UNDE	TO DETACH HAND SPECIMEN.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
(BLDR.) (COB.) (GR.) (CSE. SD.) (F SD.) (SL.) (CL.)	ABBREVIATIONS	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.005 0.005	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF
SIZE IN. 12 3	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED		
		MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL
SOIL MOISTURE - CORRELATION OF TERMS	CL CLAY MOD MODERATELY 7- UNIT WEIGHT	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE	A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE FIELD MOISTURE CHINE FOR FIELD MOISTURE DESCRIPTION	CL CLAY MOD MODERATELY Y - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC Y _d - DRY UNIT WEIGHT CSE COARSE ORG ORGANIC		WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY
	CL CLAY CPT - CONE PENETRATION TEST NP - NON PLASTIC CSE COARSE DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST MOD MODERATELY Y - UNIT WEIGHT Y - DRY UNIT WEIGHT ORG ORGANIC SAMPLE ABBREVIATIONS	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
SOIL MOISTURE SCALE (ATTERBERG LIMITS) FIELD MOISTURE DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION - SATURATED - USUALLY LIQUID; VERY WET, USUALLY	CL CLAY MOD MODERATELY	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL. THIN PIECES CAN BE BROKEN BY FINGER PRESSURE.	WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEMMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
SOIL MOISTURE SCALE (ATTERBERG LIMITS) - SATURATED - (SAT.) SOIL MOISTURE DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION USUALLY LIQUID; VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE	CL CLAY CPT - CONE PENETRATION TEST NP - NON PLASTIC CSE COARSE DMT - DILATOMETER TEST DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC E - VOID RATIO SL SAND, SANDY SS SPLIT SPOON F - FINE SL SILT, SILTY T - UNIT WEIGHT C - VOID RATIO T - PRESSUREMETER TEST SAMPLE ABBREVIATIONS S - SULK S - SULK SS - SPLIT SPOON ST - SHELBY TUBE	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PICCES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEMENTS WITHIN A STRATUM EQUAL TO 00 GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
SOIL MOISTURE SCALE (ATTERBERG LIMITS) FIELD MOISTURE DESCRIPTION - SATURATED - USUALLY LIQUID; VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE PLASTIC PLASTIC SEMICOL ID: PERCULDS: PROVINCE TO	CL CLAY MOD MODERATELY Y - UNIT WEIGHT PLASTIC ST. CORRES ORG ORGANIC DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK - VOID RATIO SD SAND, SANDY SS - SPILIT SPOON F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLICHLY RS - ROCK FRAC FRACTURED, FRACTURES TOR - MODERATED TRIAXIAL TO STANDARD STAN	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL.	WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEMMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
SOIL MOISTURE SCALE (ATTERBERG LIMITS) - SATURATED - (SAT.) PLASTIC PLAS	CL CLAY CPT - CONE PENETRATION TEST CSE COARSE DMT - DILATOMETER TEST DPT - DYNAMIC PENETRATION TEST E - VOID RATIO F - FINE FOSS FOSSILIFEROUS MOD MODERATELY MP - NON PLASTIC SAMPLE ABBREVIATIONS S - BULK SS - SPLIT SPOON SS - SPLIT SPOON ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PICCES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING BEDDING	WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SECHENTS WITHIN A STRATUM EQUAL TO 04 GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
SOIL MOISTURE SCALE (ATTERBERG LIMITS) FIELD MOISTURE DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION - SATURATED - USUALLY LIQUID; VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE PLASTIC RANGE (P1) PLASTIC LIMIT PLASTIC LIMIT FIELD MOISTURE USUALLY LIQUID; VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE - WET - (W) SEMISOLID; REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE	CLCLAY CPT - CONE PENETRATION TEST NP - NON PLASTIC CSE COARSE DMT - DILATOMETER TEST ORG ORGANIC DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC E - VOID RATIO F - FINE SL SAND, SANDY SS - SPLIT SPOON F - FINE SL SLI SLITY FRACE FRACTURED, FRACTURES TCR - TRICONE REFUSAL FRACS FRACMENTS W - MOISTURE CONTENT CBR - CALIFORNIA BEARING	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PICCES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDEND 4 FEET	WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SR0D) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BM-3 N:690678.8350 E:204I477.6800
SOIL MOISTURE SCALE (ATTERBERG LIMITS) - SATURATED - USUALLY LIQUID; VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE - WET - (W) - WET - (W) - WOIST - (M) - WOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	CL CLAY CPT - CONE PENETRATION TEST CSE COARSE DMT - DILATOMETER TEST OFF ORGANIC DMT - DILATOMETER TEST DMT - DILATOMETER TEST DMT - DILATOMETER TEST DMT - PRESSUREMETER TEST E - VOID RATIO F - FINE SL SAP. SAPROLITIC SS SAND, SANDY SS SPLIT SPOON F - FINE SL SLI.T, SILTY FRACT FRACTURED, FRACTURES TCR - TRICONE REFUSAL FRACS FRAGMENTS W - MOISTURE CONTENT HI HIGHLY V - VERY MOD MODERATELY J - UNIT WEIGHT S - BULK S - SMMPLE ABBREVIATIONS S - SPLIT SPOON SS - SPLIT SPOON FR - FINE SS - ROCK FRACTURED, FRACTURES TCR - TRICONE REFUSAL HI HIGHLY V - VERY RATIO	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM SPACING VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET	WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO 040 REFATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BM-3 N:690678.8350 E:2041477.6800 ELEVATION: 304.616 FEET
SOIL MOISTURE SCALE (ATTERBERG LIMITS) FIELD MOISTURE DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION - SATURATED - (SAT.) - SEMISOLID; REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE SHOULD AT OR NEAR OPTIMUM MOISTURE SHOULDES ADDITIONAL WATER TO	CL CLAY CPT - CONE PENETRATION TEST CSE COARSE DMT - DILATOMETER TEST DMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS SAP SAPROLITIC S - BULK S - SPLIT SPOON F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY FRACTURED, FRACTURES TCR - TRICONE REFUSAL FRACS FRAGMENTS W - MOISTURE CONTENT CBR - CALIFORNIA BEARING HI HIGHLY V - VERY RATIO	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PICCES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING IERM SPACING VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET	WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEMENTS WITHIN A STRATUM EQUAL TO 0 OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. JOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BM-3 N:690678.8350 E:2041477.6800 ELEVATION: 304.616 FEET NOTES:
SOIL MOISTURE SCALE (ATTERBERG LIMITS) - SATURATED - USUALLY LIQUID; VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE - WET - (W) - WET - (W) - WOIST - (M) - WOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	CL CLAY	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM SPACING VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE MORE THAN 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINCKLY BEDDED 0.16 - 1.5 FEET	WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEMENTS WITHIN A STRATUM EQUAL TO OR ORGEATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. JOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BM-3 N:690678.8350 E:2041477.6800 ELEVATION: 304.616 FEET NOTES:
SOIL MOISTURE SCALE (ATTERBERG LIMITS) - SATURATED - USUALLY LIQUID: VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE - WET - (W) - REQUIRES ADDITIONAL WATER TO	CL CLAY CPT - CONE PENETRATION TEST NP - NON PLASTIC CSE COARSE DMT - DILATOMETER TEST ORGA. ORGANIC DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC e - VOID RATIO F - FINE SL SILT, SILTY FOSS FOSSILIFEROUS SL SLIGHTLY FRACTURES TOR - TRICONE REFUSAL FRACT FRACTURES HI HIGHLY EQUIPMENT EQUIPMENT USED ON SUBJECT PROJECT DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE: X - UNIT WEIGHT A P - ON TONE MEIGHT A SAMPLE ABBREVIATIONS SAMPLE ABBREVIATIONS SS - SPLIT SPOON SS - SPLIT SPOON SS - SPLIT SPOON SS - SPLIT SPOON F - FINE FRACTURED, FRACTURES TOR - TRICONE REFUSAL FRACTURED, FRACTURES TOR - TRICONE REFUSAL FRACTORIAN ORGANIC BATIO EQUIPMENT USED ON SUBJECT PROJECT DRILL UNITS: CME-45C CLAY BITS A AUTOMATIC MANUAL	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM SPACING BEDDING VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4.FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THICKLY BEDDED 0.06 - 1.5 FEET CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.003 - 0.16 FEET VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET	WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO 040 REFATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BM-3 N:690678.8350 E:2041477.6800 ELEVATION: 304.616 FEET
SOIL MOISTURE SCALE (ATTERBERG LIMITS) FIELD MOISTURE DESCRIPTION USUALLY LIQUID; VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE LIQUID LIMIT PLASTIC LIMIT OM OPTIMUM MOISTURE SL SHRINKAGE LIMIT ON OPTIMUM MOISTURE SHRINKAGE LIMIT - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE PLASTICITY	CL CLAY CPT - CONE PENETRATION TEST CPT - CONE PENETRATION TEST CPC - COARSE DMT - DILATOMETER TEST DMT - DILATOMETER TEST DMT - DILATOMETER TEST DMT - DILATOMETER TEST DMT - PRESSUREMETER TEST DMT - DILATOMETER TEST DMT - PRESSUREMETER TEST DMT - DILATOMETER TEST DMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS S SAND, SANDY S SPLIT SPOON F - FINE SL SILT, SILTY ST - SHELBY TUBE SS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL FRAGS FRAGMENTS W - MOISTURE CONTENT CBR - CALIFORNIA BEARING HI HIGHLY V - VERY RATIO EQUIPMENT USED ON SUBJECT PROJECT DRILL UNITS: ADVANCING TOOLS: ADVANCING TOOLS: ADVANCING TOOLS: CME-45C CME-55 S*HOLLOW AUGERS CORE SIZE: - B - H	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM SPACING VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.03 - 0.16 FEET CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.000 FEET	WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SR0D) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK; BM-3 N:690678.8350 E:204I477.6800 ELEVATION: 304.616 FEET NOTES: BORING AND GROUND SURFACE ELEVATIONS OBTAINED FROM 'HE0002_CON_SAM_FS_ETM' FILE DATED 02/06/2023
SOIL MOISTURE SCALE (ATTERBERG LIMITS) - SATURATED - USUALLY LIQUID; VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE - WET - (W) - MOIST - (M) - DRY - (D) - DRY - (D) - PLASTIC LIMIT - PLASTIC LIMIT - PLASTIC LIMIT - MOIST - (M) - DRY - (D) - PLASTICITY - DRY - (D) - DRY - (D)	CL CLAY	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PICCES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM SPACING VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.03 - 0.16 FEET CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED 0.0008 FEET THINLY LAMINATED 0.0008 - 0.03 FEET THINLY LAMINATED 0.0008 FEET	WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SR0D) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK; BM-3 N:690678.8350 E:204I477.6800 ELEVATION: 304.616 FEET NOTES: BORING AND GROUND SURFACE ELEVATIONS OBTAINED FROM 'HE0002_CON_SAM_FS_ETM' FILE DATED 02/06/2023
SOIL MOISTURE SCALE (ATTERBERG LIMITS) FIELD MOISTURE DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION - SATURATED - USUALLY LIQUID; VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE - WET - (W) SEMISOLID; REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE SL SHRINKAGE LIMIT - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE PLASTICITY PLASTICITY PLASTICITY PLASTICITY PLASTICITY PLASTICITY INDEX (PI) DRY STRENGTH	CL CLAY CPT - CONE PENETRATION TEST NP - NON PLASTIC CSE COARSE ORG ORGANIC DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST DPT - OYNAMIC PENETRATION TEST SAP SAPROLITIC E - VOID RATIO F - FINE SL SILT, SILTY FOSS FOSSILIFEROUS SLI SILT, SILTY FOSS FOSSILIFEROUS SLI SILT SUIGHTLY FRAC FRACTURES TOR - TRICONE REFUSAL FRAGS FRAGMENTS W - MOISTURE CONTENT CBR - CALIFORNIA BEARING HI HIGHLY CME-45C CLAY BITS W - MOLT AUGER CME-550 HARD FACED FINGER BITS W - NO YOUNDER W - MOLT AUGER	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PICCES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM SPACING VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET THICKLY BEDDED 0.16 - 1.5 FEET CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET THICKLY BEDDED 0.03 - 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY BEDDED 0.03 - 0.16 FEET THINLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED 0.008 FEET THINLY DECEMBER OF THE ORDER O	WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SR0D) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK; BM-3 N:690678.8350 E:204I477.6800 ELEVATION: 304.616 FEET NOTES: BORING AND GROUND SURFACE ELEVATIONS OBTAINED FROM 'HE0002_CON_SAM_FS_ETM' FILE DATED 02/06/2023
SOIL MOISTURE SCALE (ATTERBERG LIMITS) - SATURATED - USUALLY LIQUID: VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE - WET - (W)	CL CLAY	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PICCES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM SPACING VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.03 - 0.16 FEET CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED 0.0008 FEET THINLY LAMINATED 0.0008 - 0.03 FEET THINLY LAMINATED 0.0008 FEET	WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SR0D) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK; BM-3 N:690678.8350 E:204I477.6800 ELEVATION: 304.616 FEET NOTES: BORING AND GROUND SURFACE ELEVATIONS OBTAINED FROM 'HE0002_CON_SAM_FS_ETM' FILE DATED 02/06/2023
SOIL MOISTURE SCALE (ATTEREERG LIMITS) - SATURATED - USUALLY LIQUID: VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE - WET - (W)	CL CLAY CPT - CONE PENETRATION TEST NP - NON PLASTIC CSE COARSE ORG ORGANIC DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST DPT - OYNAMIC PENETRATION TEST SAP SAPROLITIC E - VOID RATIO F - FINE SL SILT, SILTY FOSS FOSSILIFEROUS FRAC FRACTURES TOR - TRICONE REFUSAL FRAGS FRAGMENTS W - MOISTURE CONTENT CME-45C CME-45C CME-55 AUVANCING TOOLS: HAMMER TYPE: CASING W/ ADVANCER POST HOLE DIGGER WAND TOOLS: TUNGCARBIDE INSERTS W - MOYADVANCER HAND TOOLS: HAND AUGER	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PICCES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING IERM SPACING VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 4.15 - 4 FEET THICKLY BEDDED 0.16 - 1.5 FEET CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET THICKLY BEDDED 0.03 - 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED 0.008 FEET ORDER FEET 0.008 FEET ORDER FEET 0.008 FEET 0.008 FEET 0.008 FEET 0.00	WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SR0D) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK; BM-3 N:690678.8350 E:2041477.6800 ELEVATION: 304.616 FEET NOTES: BORING AND GROUND SURFACE ELEVATIONS OBTAINED FROM 'HE0002_CON_SAM_FS_ETM' FILE DATED 02/06/2023
SOIL MOISTURE SCALE (ATTERBERG LIMITS) PLASTIC SHRINKAGE LIMIT OM OPTIMUM MOISTURE SHRINKAGE LIMIT NON PLASTIC SLIGHTLY PL	CL CLAY	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PICES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM SPACING VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET CLOSE 1.1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET THICKLY LAMINATED 0.008 FEET THINLY LAMINATED (0.008 FEET THINLY LAMINATED CO.008 FEET THINLY LAMINATED (0.008 FEET THINLY LAMINATED COUNTY THINLY LAMINATED COUNTY FEET SAMPLE. FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. RUBBING WITH FINGER FREES NUMEROUS GRAINS, HEAT, PRESSURE, ETC. RUBBING WITH FINGER FREES NUMEROUS GRAINS SAMPLE. GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SR0D) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK; BM-3 N:690678.8350 E:2041477.6800 ELEVATION: 304.616 FEET NOTES: BORING AND GROUND SURFACE ELEVATIONS OBTAINED FROM 'HE0002_CON_SAM_FS_ETM' FILE DATED 02/06/2023
SOIL MOISTURE SCALE (ATTERBERG LIMITS) - SATURATED - USUALLY LIQUID: VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE - WET - (W)	CL CLAY	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PICCES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING IERM SPACING VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 4.15 - 4 FEET THICKLY BEDDED 0.16 - 1.5 FEET CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET THICKLY BEDDED 0.03 - 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED 0.008 FEET ORDER FEET 0.008 FEET ORDER FEET 0.008 FEET 0.008 FEET 0.008 FEET 0.00	WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. 10PSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK; BM-3 N:690678.8350 E:2041477.6800 ELEVATION: 304.616 FEET NOTES: BORING AND GROUND SURFACE ELEVATIONS OBTAINED FROM 'HE0002_CON_SAM_FS_ETM' FILE DATED 02/06/2023


ROJECT REFERENCE NO.	SHEET NO.
HE-0002	2A

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SUPPLEMENTAL LEGEND GEOLOGICAL STRENGTH INDEX (GSI) TARLES

AASHTO LRFD Figure 10.4.6.4-1 — Determination of GSI for Join	ted Roc			HTO LRFD BRI	CAL STRENGTH INDEX (GSI) TABLES DGE DESIGN SPECIFICATIONS AASHTO LRFD Figure 10.4.6.4-2 — Determination of GSI for Tectonically Deformed Heterogeneous Rock Masses (Marinos and Hoek, 2000)
GEOLOGICAL STRENGTH INDEX (GSI) FOR JOINTED ROCKS (Hoek and Marinos, 2000)		s p		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos.P and Hoek E., 2000)
From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Quoting a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavorable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced if water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis.	SURFACE CONDITIONS	VERY GOOD Very rough, fresh unweathered surface: GOOD Rough, slightly weathered, iron stained surfaces	FAIR Smooth, moderately weathered and altered surfaces	POOR Slickensided, highly weathered surf with compact coatings or fillings or angular fragments VERY POOR Slickensided, highly weathered surf with soft clay coatings or fillings	From a describtion of the lithology, structure and surface conditions (barticularly of the bedding planes), choose a box in the chart. Tocate the position in the pox that corresponds to the condition of the discontinuities and estimate the average value of QSI from the controlled failures. Where neglective sillockers and slickens and estimate the peak-Brown criterion does not abply to structurally countings was blanar discontinuities are present, these will dominate the peak-and the continuities are bresent. YERY GOOD - Very Surface of Surface
STRUCTURE		DECREASING SI	URFACE QU	ALITY -	COMPOSITION AND STRUCTURE
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities BLOCKY - well interlocked un-	PIECES	90 80		N/A N/A	A. Thick bedded, very blocky sandstone The effect of pelitic coatings on the bedding planes is minimized by the confinement of the rock mass, in shallow tunnels or slopes these bedding planes may cause structurally controlled instability. 60
disturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets	OF ROCK	70 60			B. Sand- stone with stone and still stone with sand- sultstone sultstone or silty shale with sand- sultstone or clayey B. Weak sultstone or clayey B. C. D. E. Weak sultstone
VERY BLOCKY - interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets	OCKING		50		thin inter- layers of siltstone in similar amounts amounts amounts and stone layers amounts amounts amounts and stone layers amounts and the stone layers amounts amounts amounts amounts amounts and the stone layers amounts amounts amounts amounts amount and the stone layers amounts amounts amounts amounts amounts amount am
BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity	ASING INTERL		40	30	C. D. E. and G - may be more or less folded than illustrated but this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H. F. Tectonically deformed, intensively folded/faulted, sheared clayey shale or siltstone with broken and deformed sandstone layers forming an almost chaotic structure
DISINTEGRATED - poorly inter- locked, heavily broken rock mass with mixture of angular and rounded rock pieces	+ DECRE			20	G. Undisturbed silty or clayey shale with or clayey shale forming a chaotic structure with pockets of clay. Thin layers of sandstone layers H. Tectonically deformed silty or clayey shale forming a chaotic structure with pockets of clay. Thin layers of sandstone are transformed into small rock pieces.
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes	V	N/A N/A		10	Means deformation after tectonic disturbance DATE: 8-19-1

Schnabel Engineering South, P.C.
1133 Military Cutoff Road, Suite 210 / Wilmington, NC 28405

T 910.769.1621 schnabel-eng.com

May 8, 2023

STATE PROJECT: 49745.1.1

TIP NUMBER: HE-0002

COUNTY: WAKE

DESCRIPTION: PROPOSED FUJIFILM ACCESS ROAD IN HOLLY SPRINGS

SUBJECT: Geotechnical Roadway Inventory Report

Project Description

The project consists of constructing a new access road intersecting Green Oaks Parkway, between Thomas Mill Road and NC 55, SR 1153 intersection with Bennet Knoll Parkway, and SR 1152 intersection with SR1153 in the city of Holly Springs, North Carolina. At the time of this report, all design work from -L- Sta. 70+00 to the end of construction limits (-L- Sta. 91+06.82) and -Y2- Sta. 11+41.36 to 14+62.94 is to be done by others. Logs for borings advanced between -L- Sta. 71+00 – 91+00 and -Y2- 12+50 – 14+50 are appended to this report for reference. The original proposed project was 1.67 miles in length. The current plans show a total project length of 1.27 miles.

The field investigation was conducted in November and December of 2022 using a track-mounted CME 550X, with automatic hammer, and hand tools. Standard Penetration Tests (SPT) were performed at selected locations. Borings were advanced with hollow stem auger equipment, rock coring equipment, and hand tools along the project corridor. Hand augers were performed at locations the drill rig could not access. Representative soil samples were collected and forwarded to an approved testing facility for soil quality analysis, moisture content, California Bearing Ratio, specific gravity, organic content, and AASHTO classification. Representative rock samples were submitted for unconfined compressive strength testing. Rock soundings were advanced with hollow stem augers in areas where crystalline rock was suspected to occur above the proposed grade.

The following alignments were investigated

Line	Station			Length (ft)
-L-	11+00	to	91+07	8007
-Y1-	12+43	to	17+50	507
-Y2-	10+70	to	14+63	393
			Total=	8,907 feet (~1.69 miles)

Sheet 3A

Physiography and Geology

Based on a review of the Geologic map of North Carolina (1985) and the Geologic map of the Apex 7.5-Minute Quadrangle, Wake County, North Carolina (2016) the project is located in the Piedmont Physiographic Province, between the Utley Creek Syncline and Holly Springs Anticline. Soils in the area generally consist of Triassic residual sands, silts, and clays. Weathered rock and Late Triassic sedimentary rock of the Chatham Group, primarily consisting of interbedded Conglomerate, Sandstone, Siltstone, and Mudstones (Trcc, Trcs) underlie, and are interbedded within the Triassic residual soils. Topography along the project corridor is gently rolling, traversing through a heavily wooded area to the north of Utley Creek. Natural ground elevations range from 278.0 ± feet above sea level at the beginning of the alignment to 386.0± feet above sea level at the end of project limits.

Soil Properties

Soil and rock encountered along the project corridor are divided into five categories based on origin: artificial fill, roadway embankment soils, alluvial soils, Triassic residual soils, weathered rock, and non-crystalline rock.

Artificial fill soils consisting of medium dense, clayey SAND (A-2-6), medium stiff to very stiff, sandy SILT (A-4), were encountered along existing utility easements in areas where underground pipes were installed. Soils moistures were typically moist to saturated and varied in thickness from the ground surface to a maximum of 4.8 feet thick.

Roadway embankment soils consisting of medium dense, silty SAND and clayey SAND (A-2-4, A-2-6), medium stiff to very stiff, sandy SILT and clayey SILT (A-4, A-5), and very soft to hard, sandy CLAY, silty CLAY, and sandy and silty CLAY (A-6, A-7) were encountered along the -L-, and -Y1- alignments. Soils moistures were typically dry to moist and varied in thickness from the ground surface to a maximum of 14 feet. Within the cohesive roadway embankment soils, moisture contents ranged from 8.0 to 15.0%. The plasticity indices (PI) within the cohesive soils ranged from 7 to 12.

Alluvial soils consisting of medium dense, SAND and GRAVEL (A-1-b), soft, sandy SILT and clayey SILT (A-4, A-5), and soft to medium stiff, sandy CLAY, silty CLAY (A-6, A-7-6) were encountered along the -L- and -Y1- alignments. Soils moistures were typically moist and varied in thickness from the ground surface to at least 3 feet thick. Within the cohesive alluvial soils, moisture contents ranged from 18.0 to 21.0%. The plasticity indices (PI) within the cohesive sediments ranged from 2 to 22.

Triassic Residual soils consisting of loose to very dense silty SAND and clayey SAND (A-2-4, A-2-6), medium stiff to hard, sandy SILT and clayey SILT (A-4, A-5), and soft to hard, sandy CLAY, silty CLAY, and sandy and silty CLAY (A-6, A-7, A-7-6) were encountered along the -L-, -Y1-, and -Y2- alignments. Soil moistures were typically dry to moist and varied in thickness from the ground surface to a maximum of 21 feet. Within the cohesive Triassic residual soils, moisture contents ranged from 6.0 to 27.0%. Plasticity indices (PI) within the cohesive sediments range from 3 to 26.

Weathered rock consisting of gray, white, red, brown, purple, and orange, CONGLOMERATE, SILTSTONE, AND MUDSTONE, was encountered underlying Triassic residual soils at several locations along the project corridor. Weathered rock elevations in these borings varied from 260.2± feet above sea level to 380.0± feet above sea level. Auger and split spoon refusal were noted beneath some of these layers on NCR (Conglomerate, Siltstone, and Mudstone).

Non-Crystalline rock consisting of gray, white, red, brown, purple, and orange, CONGLOMERATE, BRECCIA, SILTSTONE, AND MUDSTONE, was encountered underlying Triassic residual soils and weathered rock at several locations along the corridor. Top of rock elevations in these borings varied from 255.2± feet above sea level to 352.3± feet above sea level. Rock core samples collected at -L- Sta. 63+63 consist of interbedded breccia and siltstone.

Groundwater

All borings were left open for a minimum of 24 hours to equilibrate with the surrounding conditions. Groundwater data was collected in November and December of 2022, during a time of average precipitation. Groundwater elevations generally varied with topography and ranged from 264.5± to 346.5± feet above sea level.

Areas of Special Geotechnical Interest

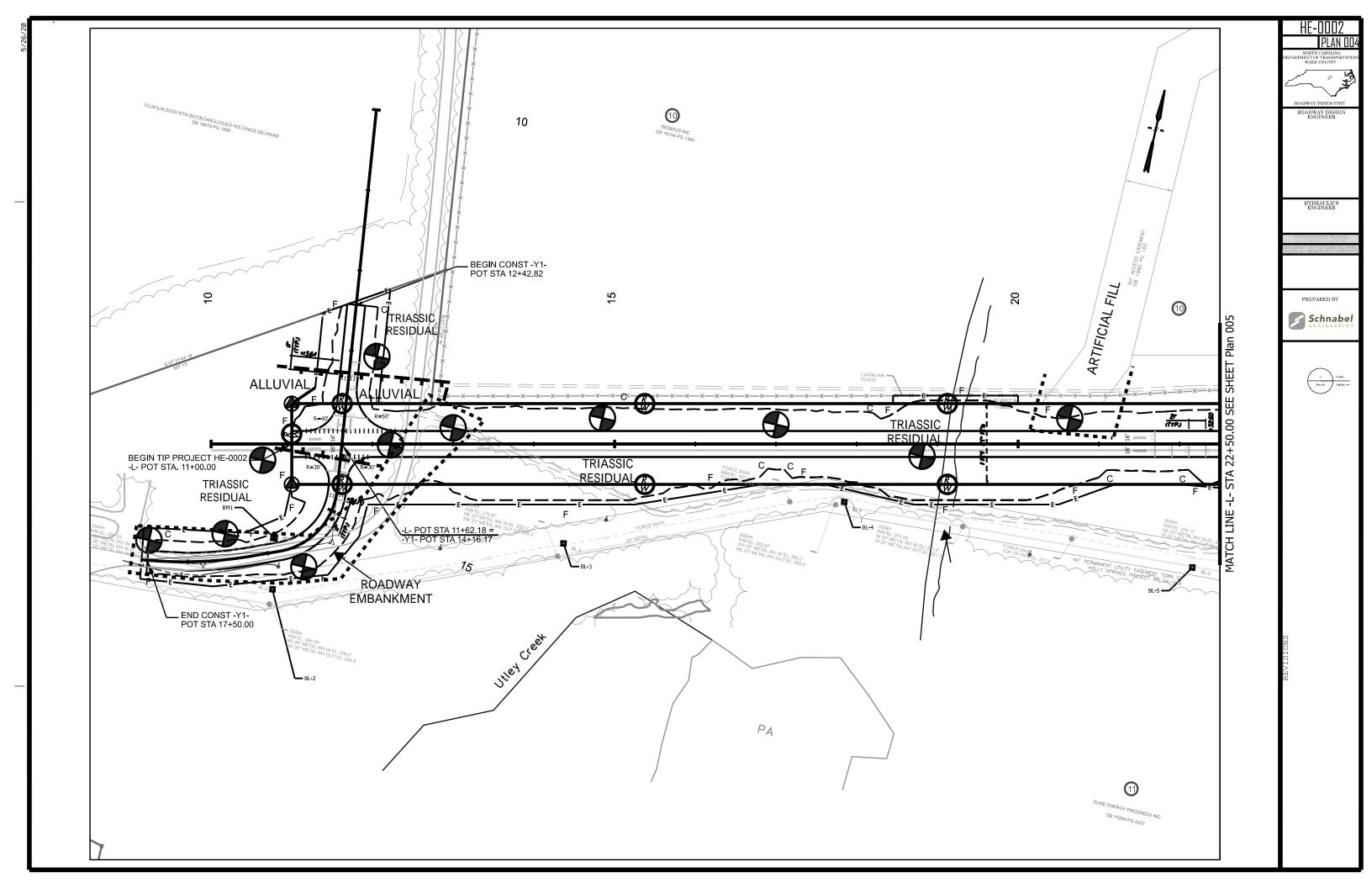
A. Alluvial Soils were encountered in the following sections

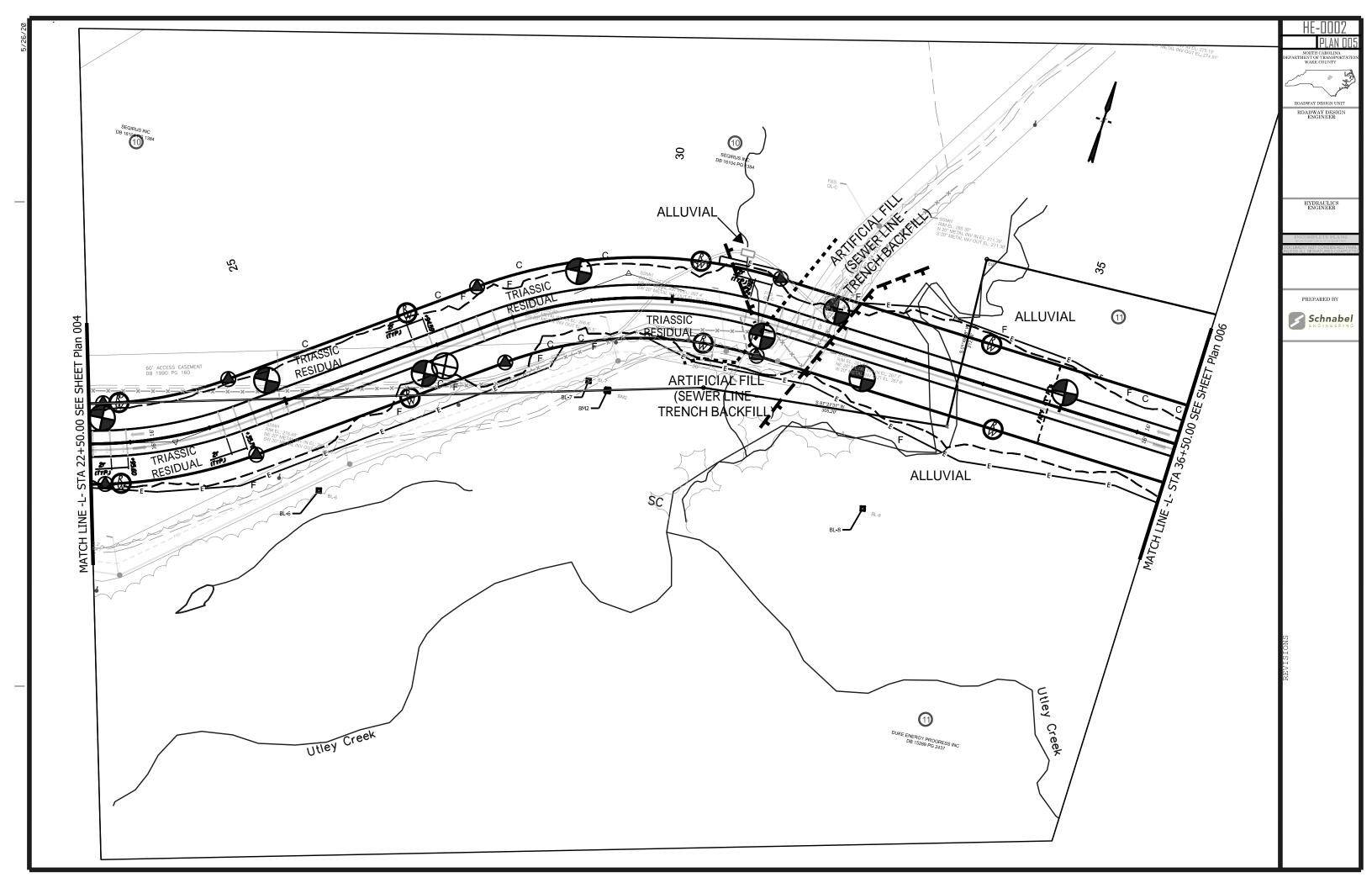
Alignment	Begin Station	End Station
-L-	30+60	31+15
-L-	32+35	37+35
-L-	40+75	43+35
-L-	50+75	52+75
-L-	70+75	72+30
-Y1-	13+25	14+25

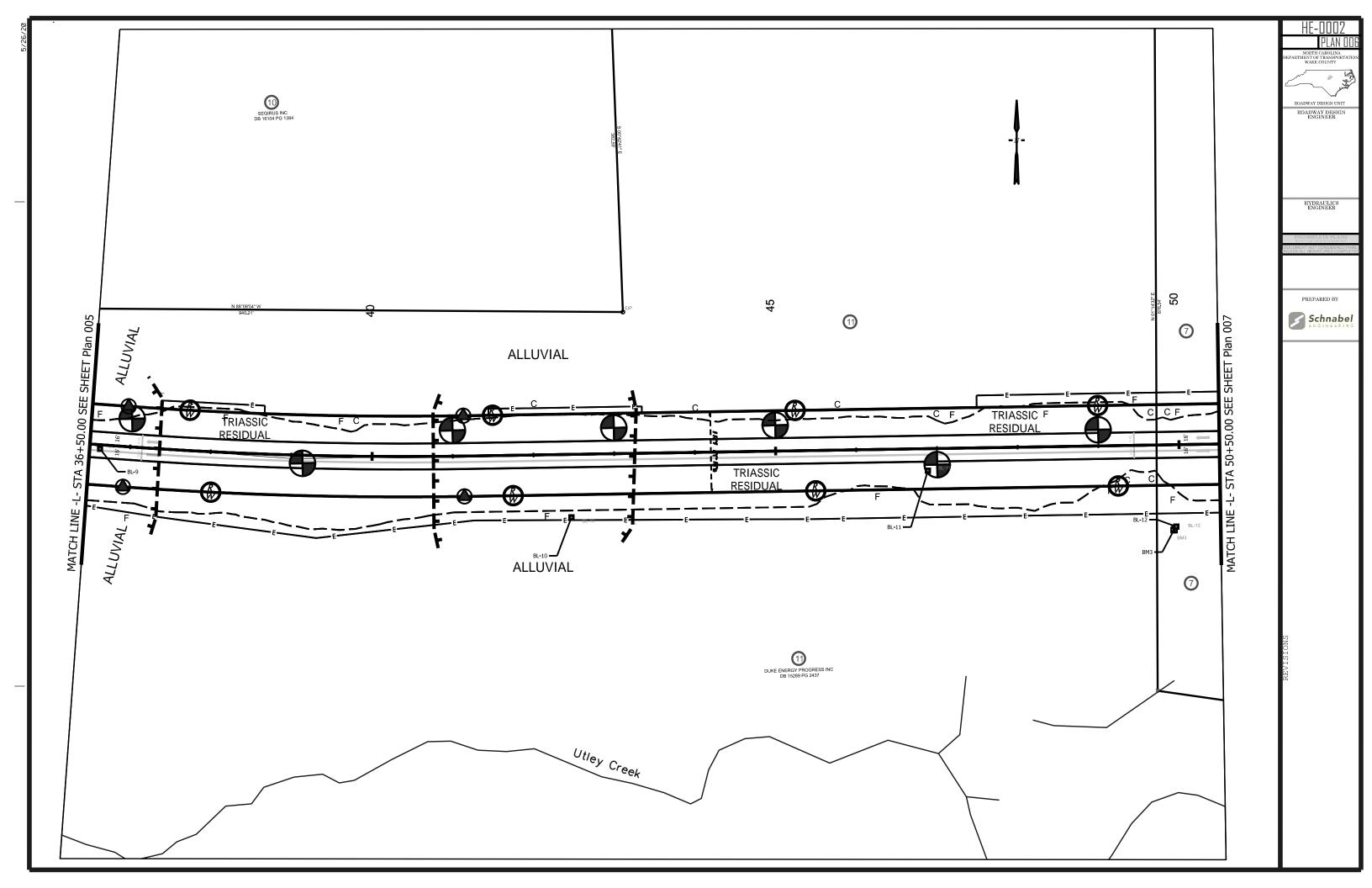
B. Groundwater was encountered within 6 feet of proposed grade in the following sections

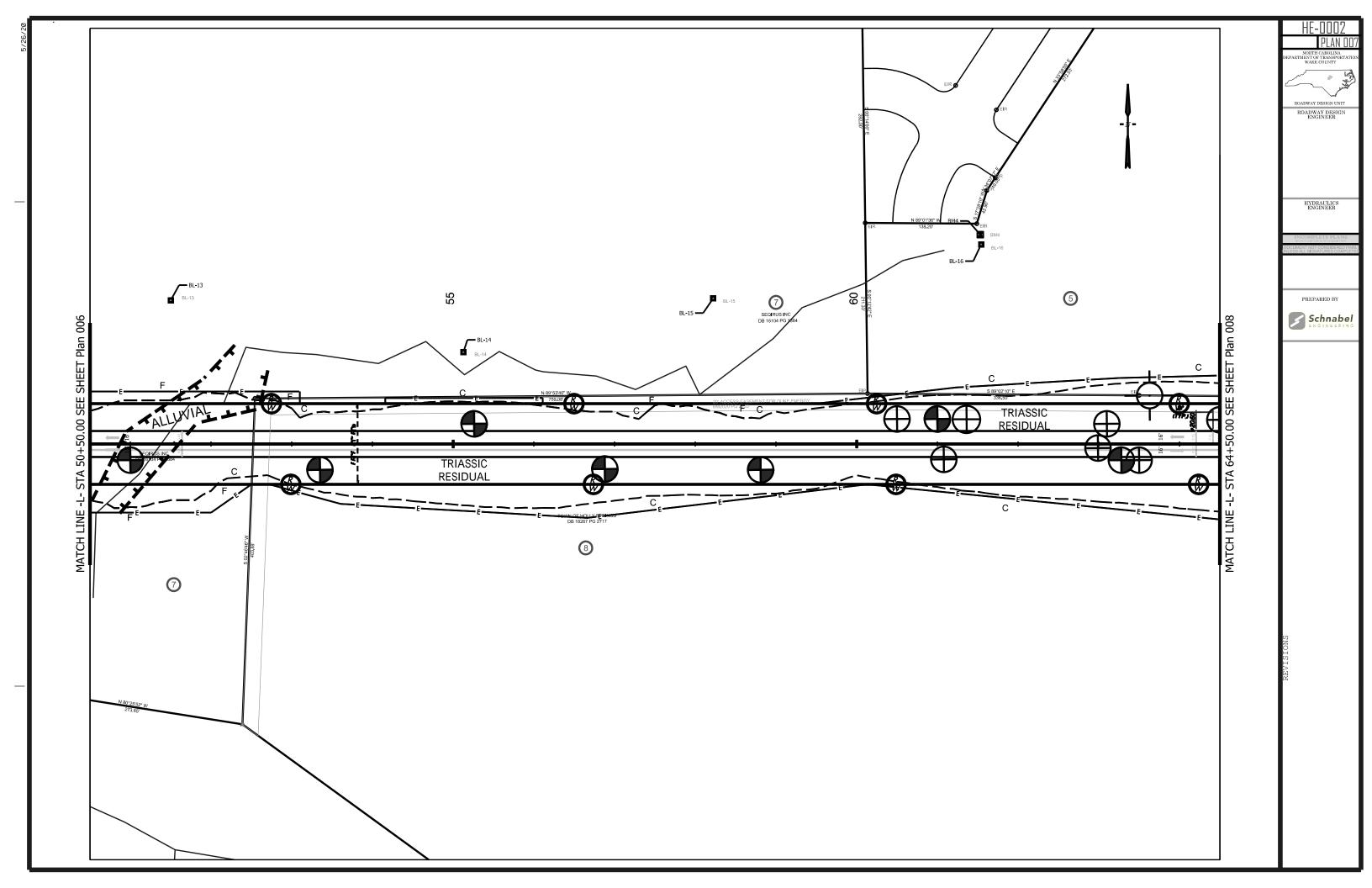
Alignment	Begin Station	End Station
-L-	26+25	34+75
-Y1-	15+25	15+75

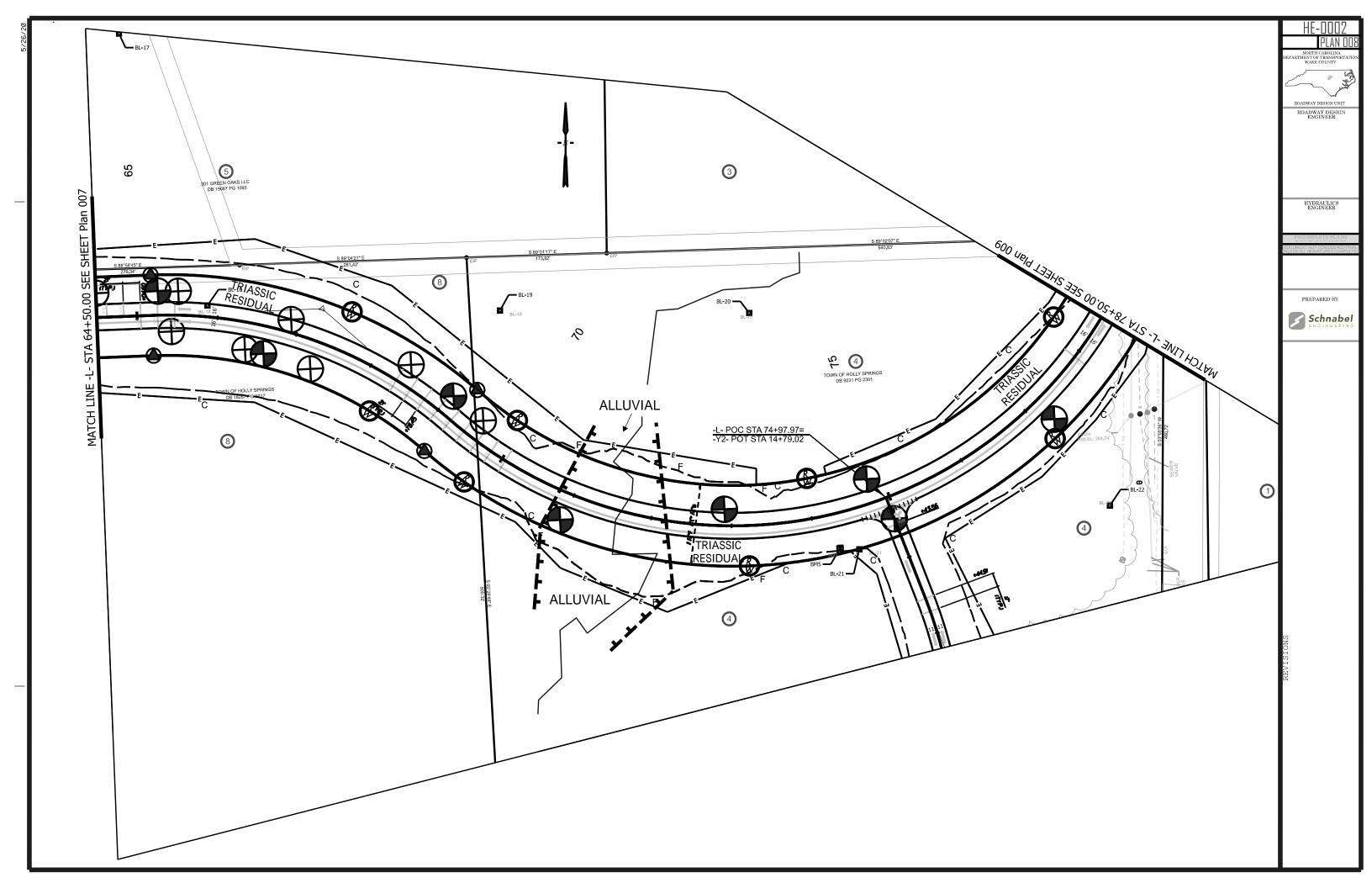
Schnabel Engineering 1133 Military Cutoff Road, Suite 210 Wilmington, NC 28405 Sheet 3B

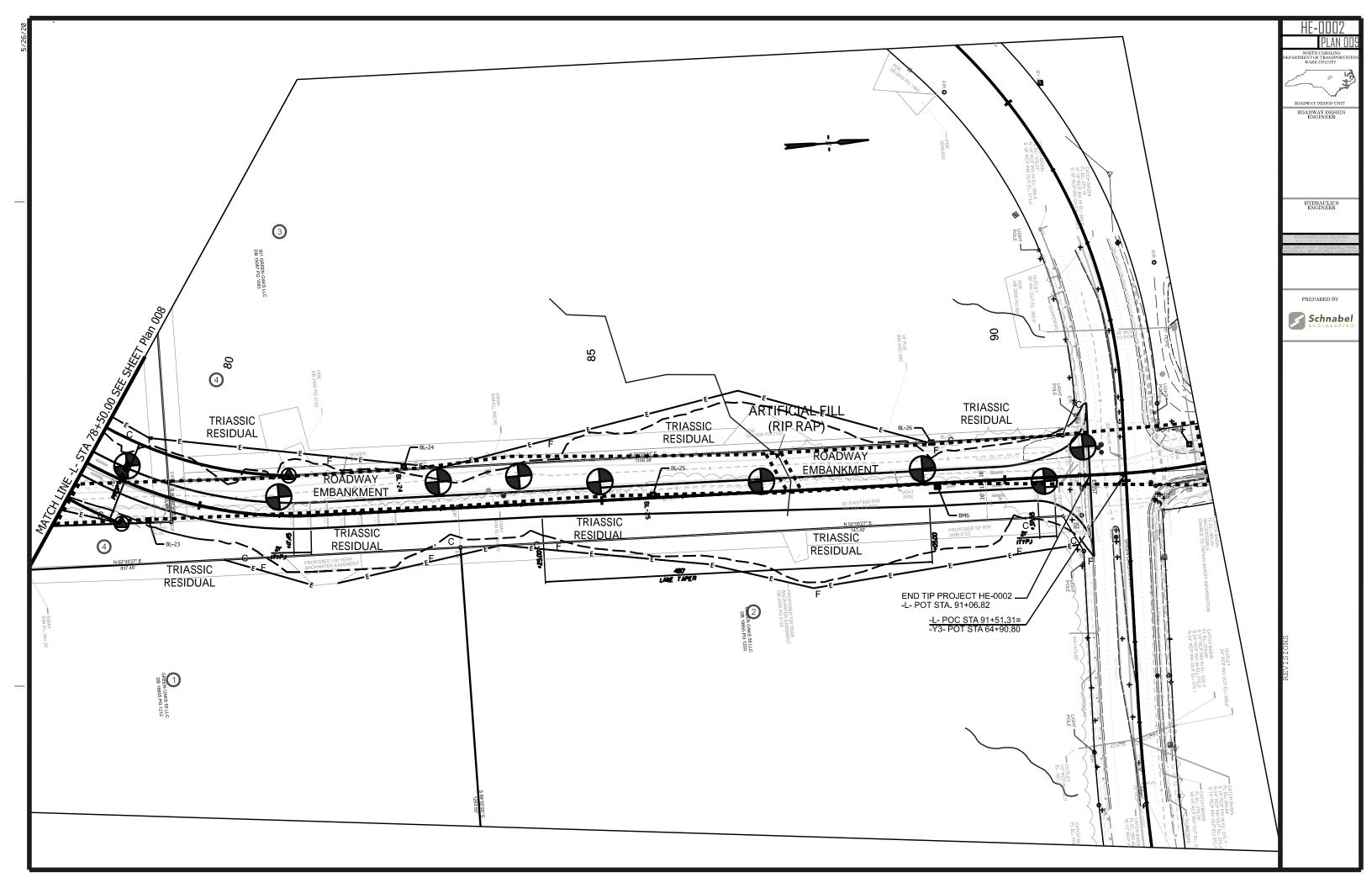

C. Non-crystalline rock was encountered above or within approximately 6 feet of the proposed grade within some of the cut sections along the project corridor. Rock soundings were advanced to the top of non-crystalline rock or deeper than the proposed grade to evaluate the presence of non-crystalline rock within cut sections. Rock core samples were collected at -L- station 63+63 to evaluate material properties.

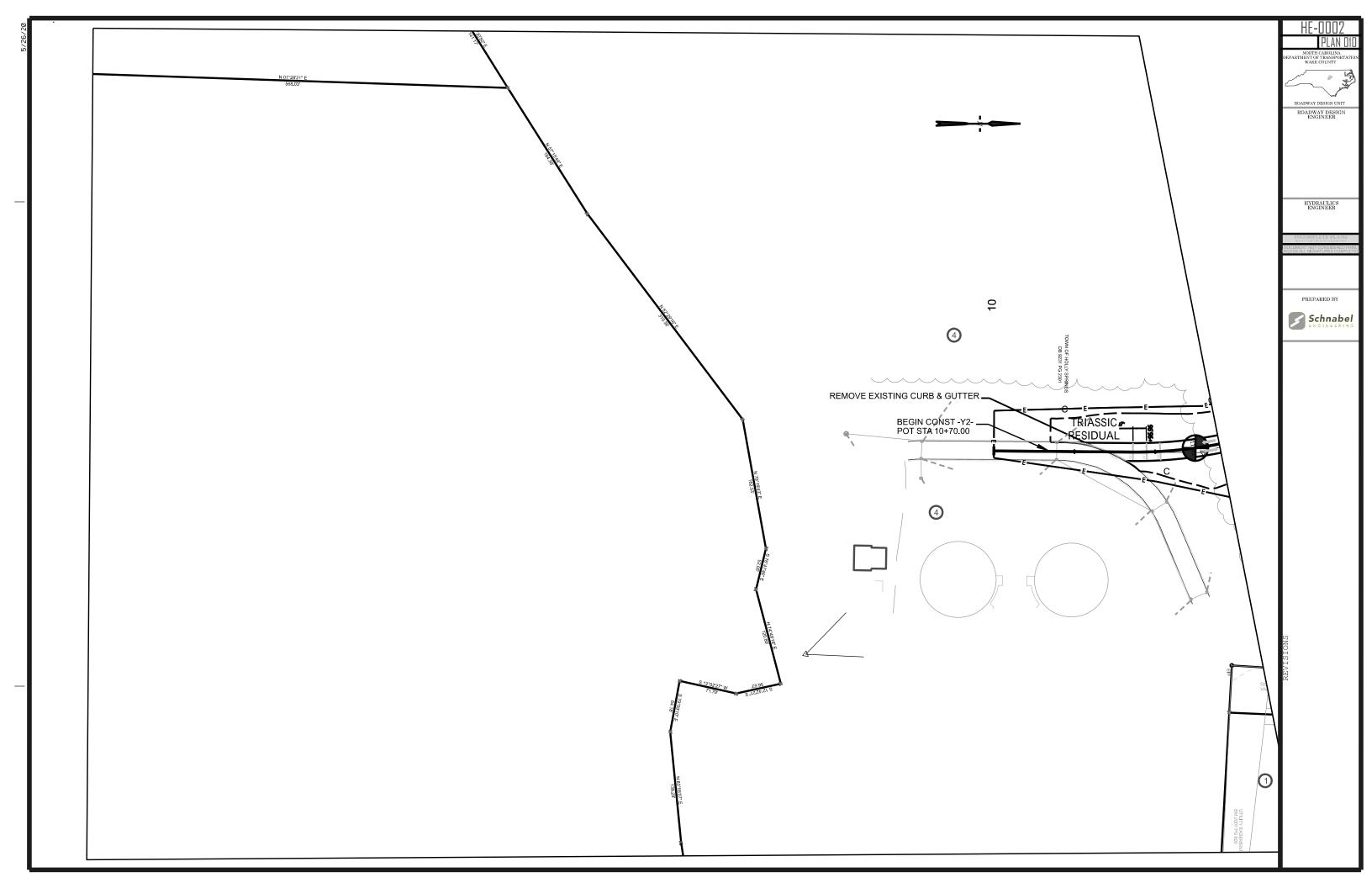

Degradable Rock was encountered above or within 6 feet of proposed grade in the following sections

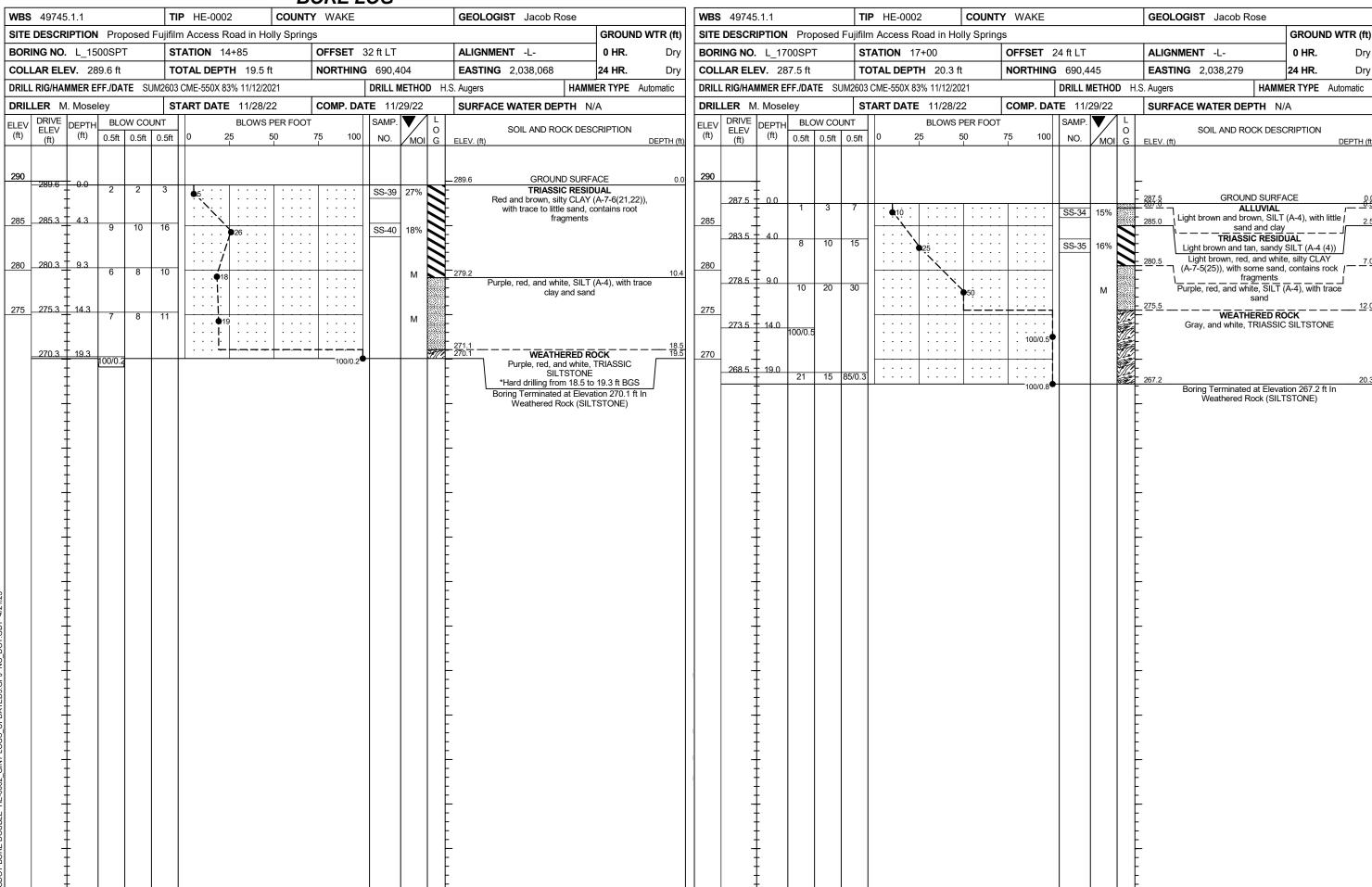

Alignment	Begin Station	End Station
-L-	26+25	27+25
-L-	44+75	47+25
-L-	52+75	70+25
-Y1-	12+43	13+75
-Y1-	16+25	17+50

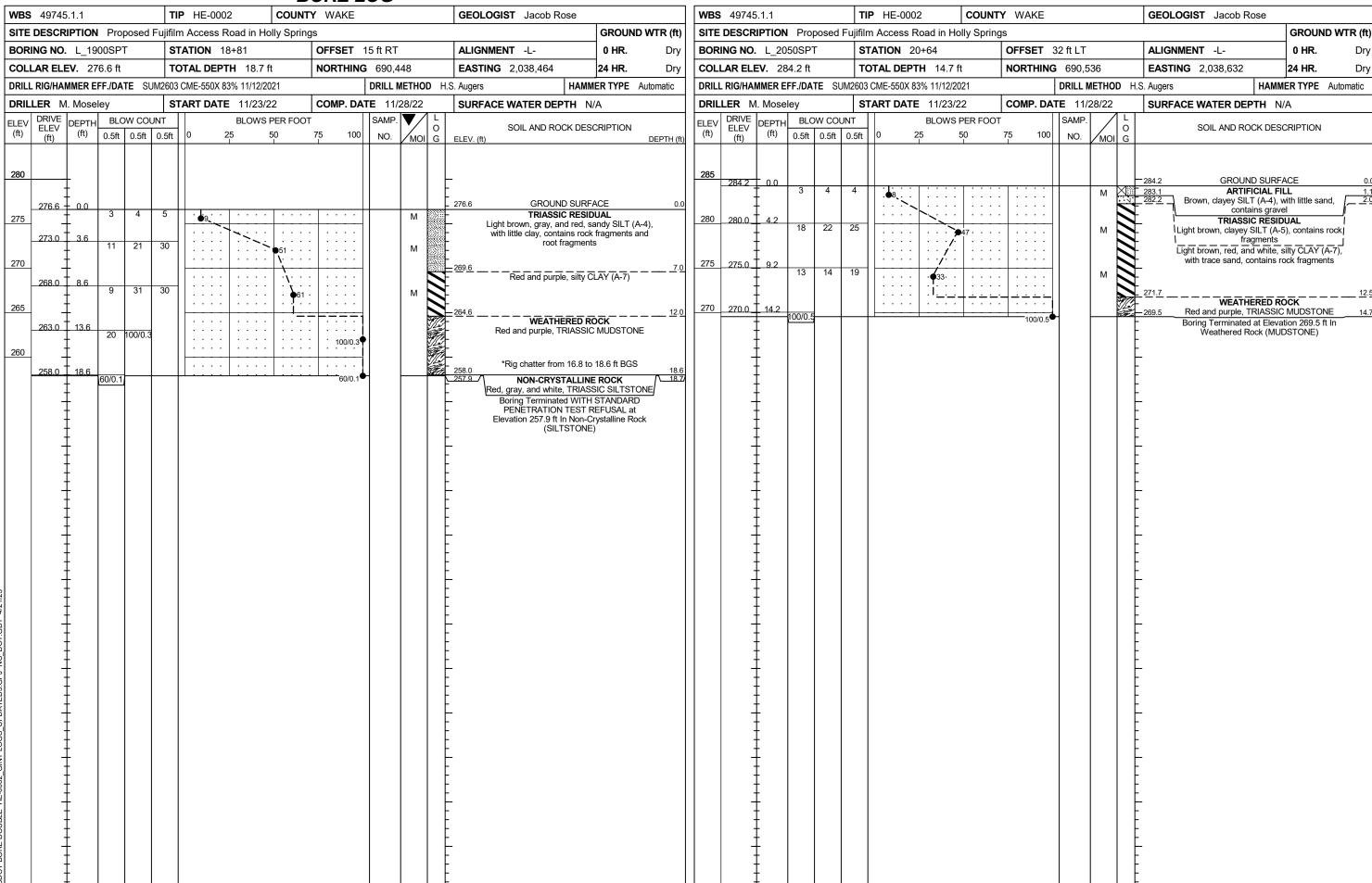

D. Artificial Fill soils were encountered in the following sections

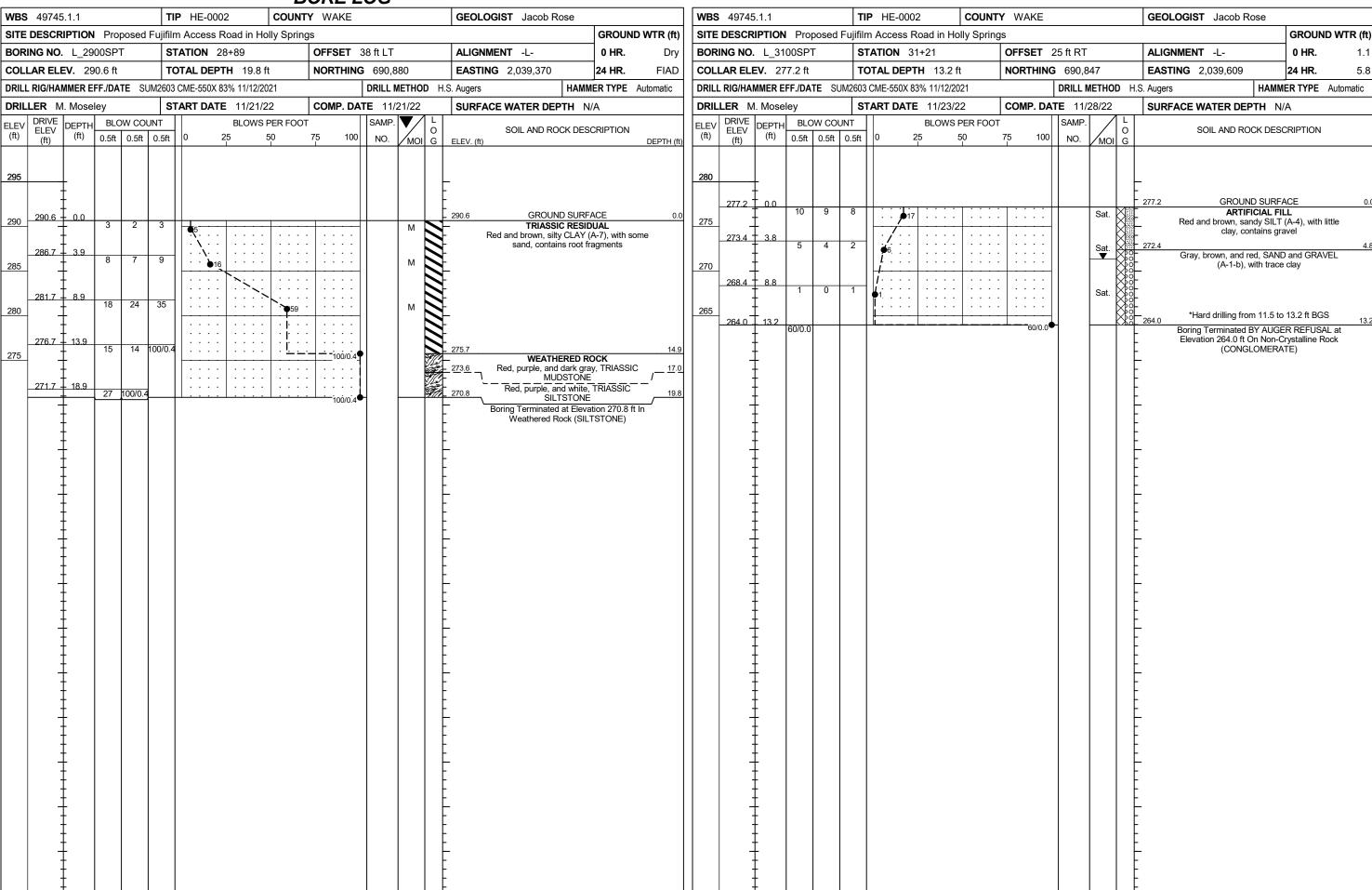

Alignment	Begin Station	End Station
-L-	20+15	20+45
-L-	30+19	32+10

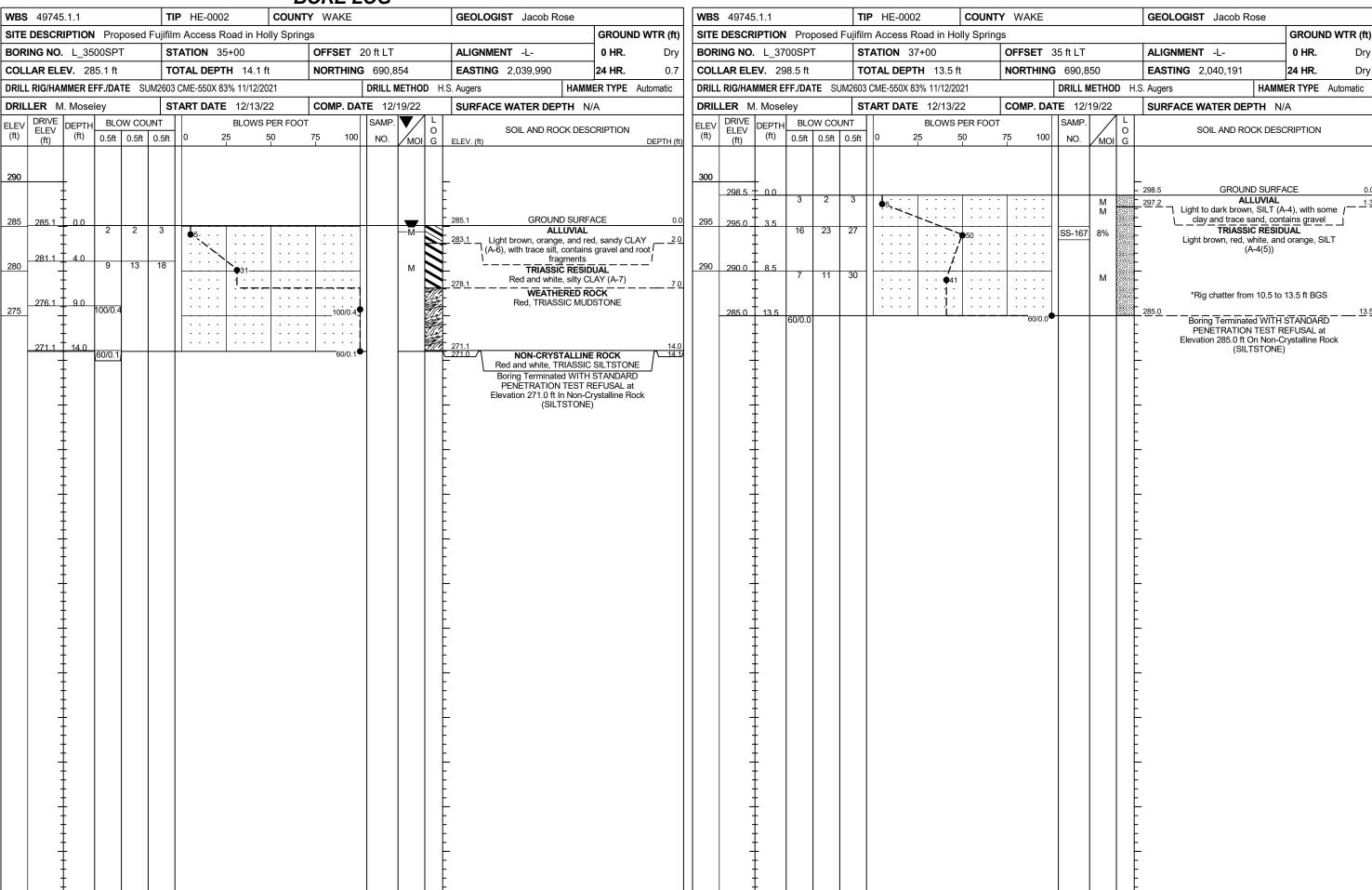


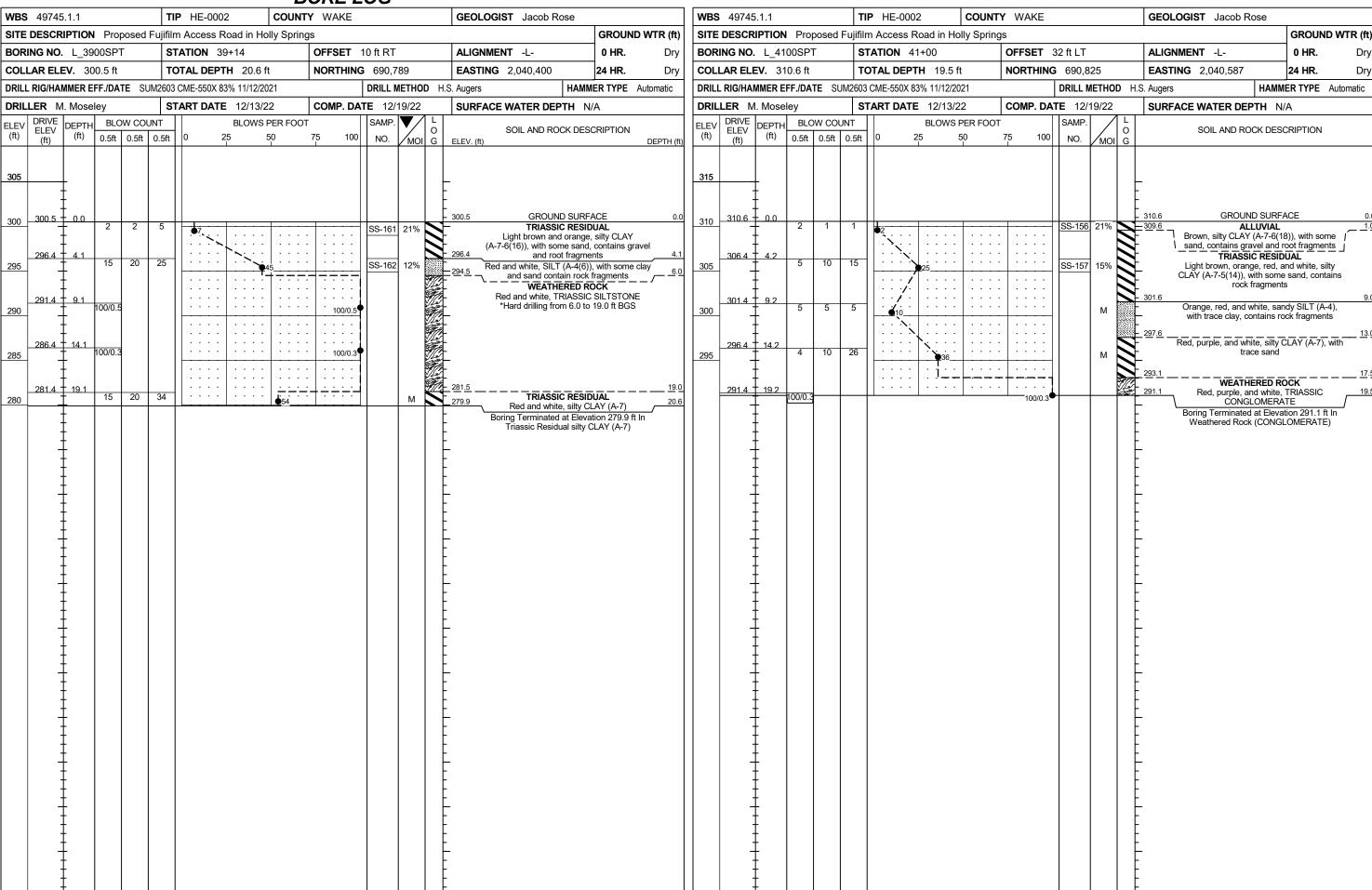


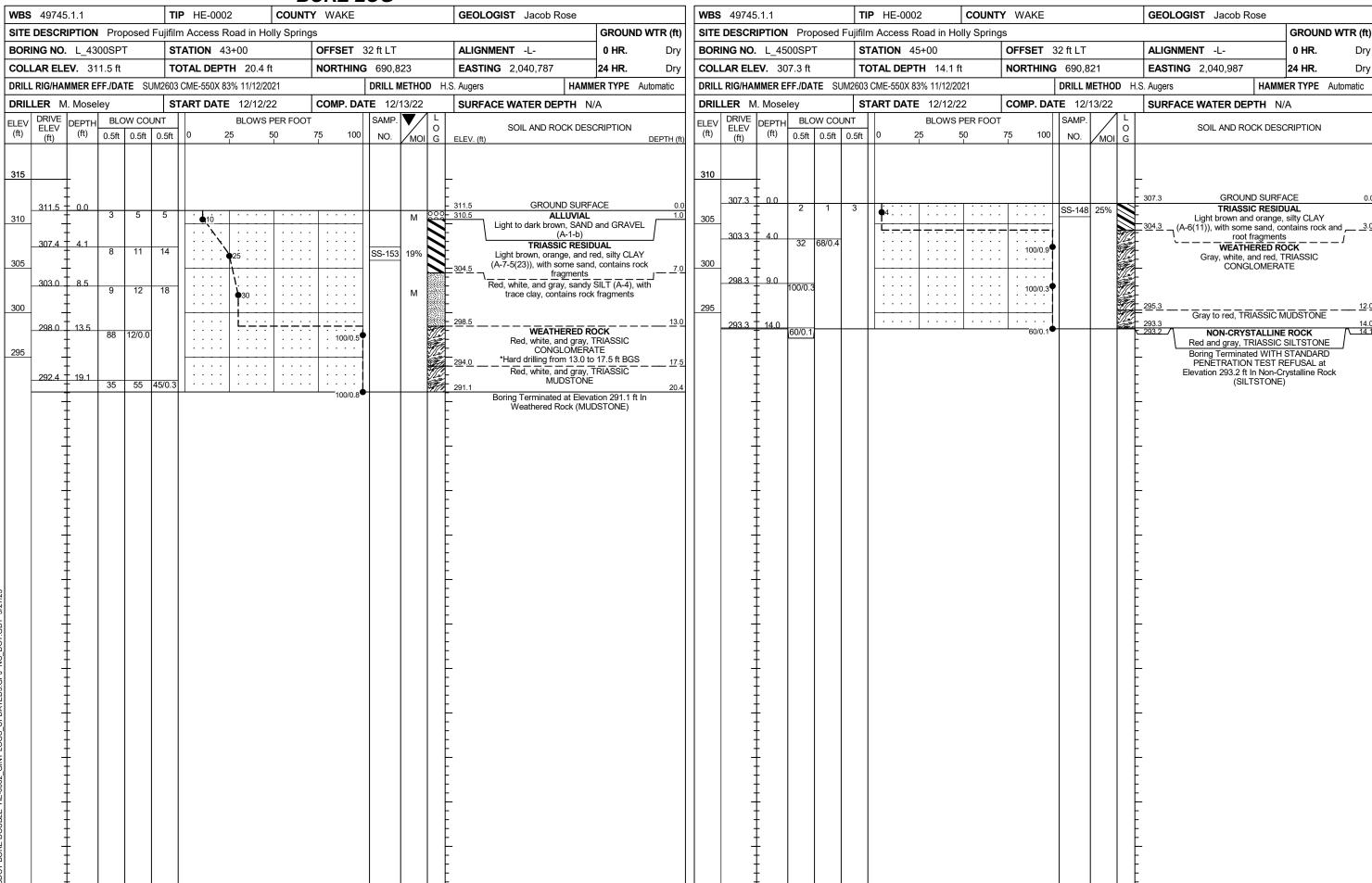


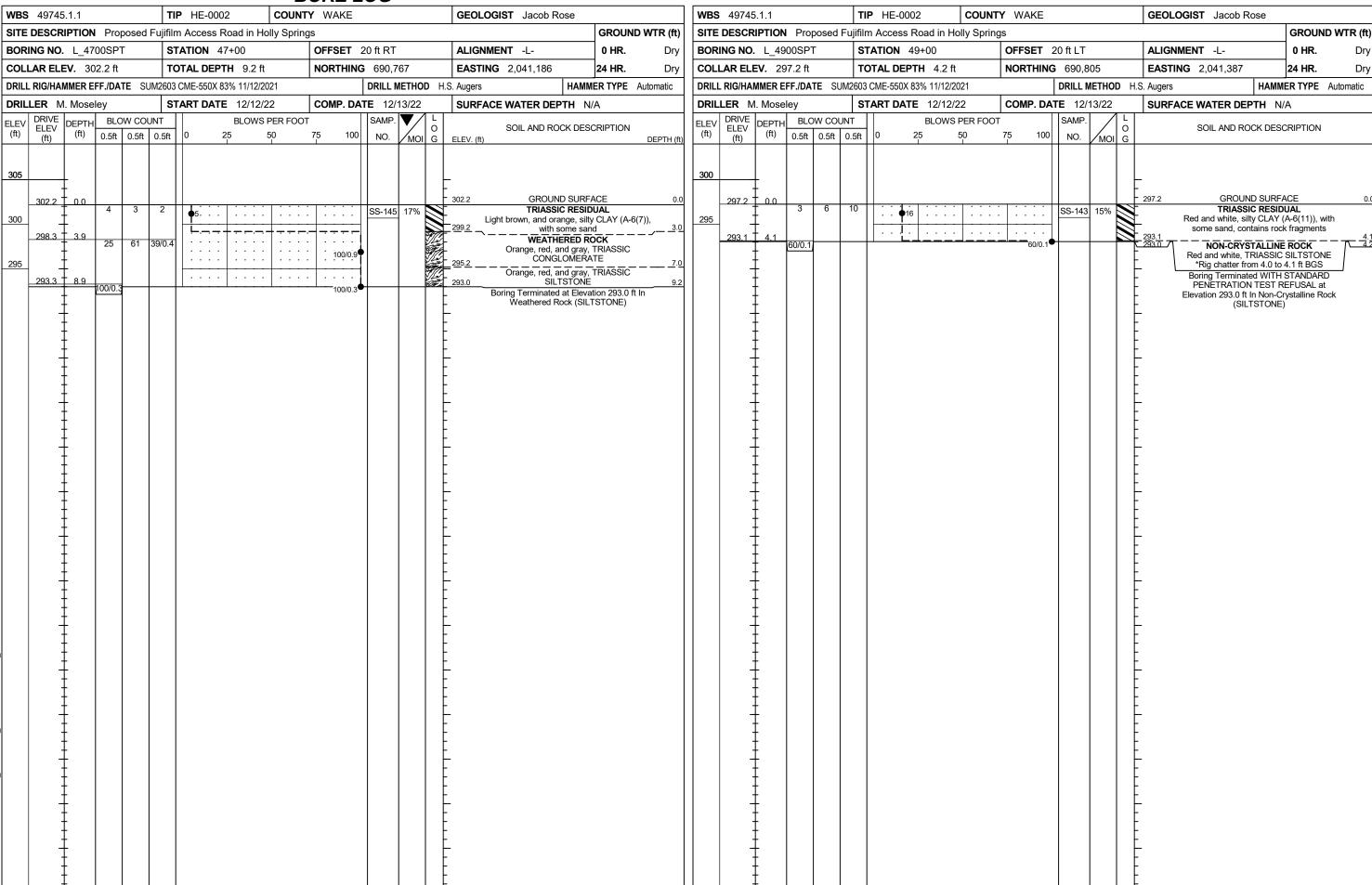


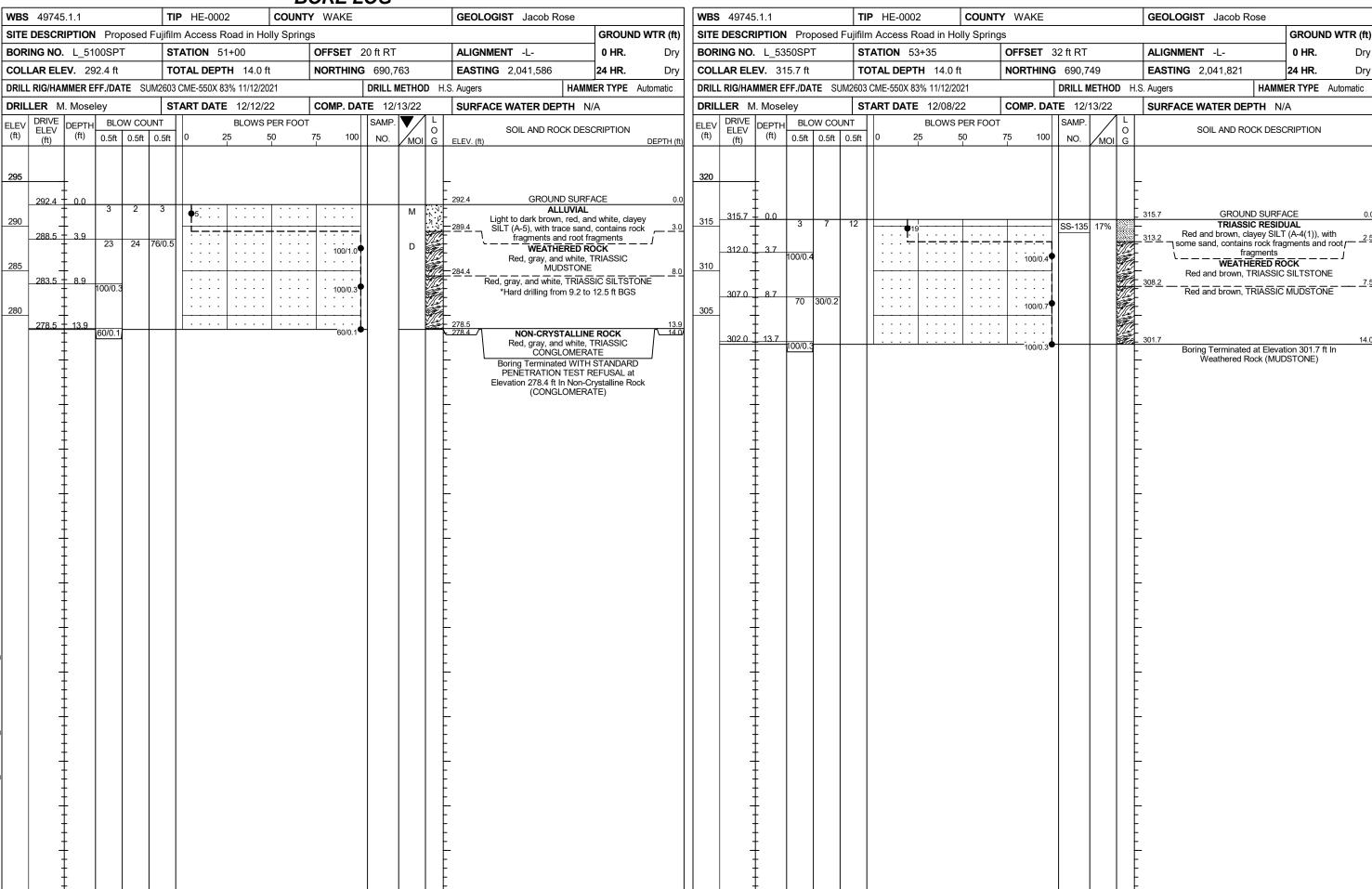

	BORE LOG							
WBS 49745.1.1 TIP HE-0002	COUNTY WAKE	GEOLOGIST Jacob Rose		WBS 49745.1.1		JNTY WAKE	GEOLOGIST Jacob Rose	
SITE DESCRIPTION Proposed Fujifilm Access Road in Ho	ly Springs		GROUND WTR (ft)	SITE DESCRIPTION Pro	pposed Fujifilm Access Road in Holly Sp	rings		GROUND WTR (ft)
BORING NO. L_1050SPT STATION 10+64	OFFSET 20 ft RT	ALIGNMENT -L-	0 HR. Dry	BORING NO. L_1300SP	PT STATION 13+00	OFFSET 20 ft LT	ALIGNMENT -L-	0 HR. Dry
COLLAR ELEV. 274.6 ft TOTAL DEPTH 9.4 ft	NORTHING 690,257	EASTING 2,037,670	24 HR . Dry	COLLAR ELEV. 285.7 ft	t TOTAL DEPTH 19.1 ft	NORTHING 690,350	EASTING 2,037,891	24 HR . Dry
DRILL RIG/HAMMER EFF./DATE SUM2603 CME-550X 83% 11/12/20	21 DRILL METHOD	H.S. Augers HAN	MMER TYPE Automatic	DRILL RIG/HAMMER EFF./DA	ATE SUM2603 CME-550X 83% 11/12/2021	DRILL METHOD	H.S. Augers	AMMER TYPE Automatic
DRILLER M. Moseley START DATE 11/29/2		SURFACE WATER DEPTH	N/A	DRILLER M. Moseley	START DATE 11/28/22	COMP. DATE 11/29/22	SURFACE WATER DEPTH	N/A
		SOIL AND ROCK DE	ESCRIPTION DEPTH (ft)	(ft) ELEV (ft) 0.5ft	OW COUNT BLOWS PER FO	75 100 NO. MOI	C SOIL AND ROCK E	DESCRIPTION
275	SS-59 15%	274.6 GROUND SUF TRIASSIC RES Light brown, silty CLAY (A root and rock fra 270.6 WEATHERED Purple and red, TRIASS "Rig chatter from 4.2 265.2 Boring Terminated at Ele Weathered Rock (S	SIDUAL N-7-6(19)), contains agments 4.0 ROCK SIC SILTSTONE to 9.4 ft BGS 9.4 evation 265.2 ft In	285 285.7 - 0.0 10 281.9 - 3.8 9	12 15	SS-44 23%	285.7 GROUND SL ROADWAY EME Light brown, silty SANL gravel and root 281.2 TRIASSIC RE Light brown, red, purple, CLAY (A-7-5	BANKMENT D (A-2-4), contains t fragments 4.5 ESIDUAL gray, and white, silty
NCDOT BORE DOUBLE HE-0002_GINT LOGS_UPDATED5.GPJ NC_DOT.GDT 3/27/23		Weathered Rock (S	SILTSTONE)	275	6 9	SS-45 27% SS-45 D	270.7 White, gray, and red, s *Rig chatter from 15. WEATHEREI CONGLOMI Boring Terminated at E Weathered Rock (CO	5(24,16)) 15.0 silty SAND (A-2-4) 3 to 18.8 ft BGS 17.0 D ROCK 19.1 Elevation 266.6 ft In

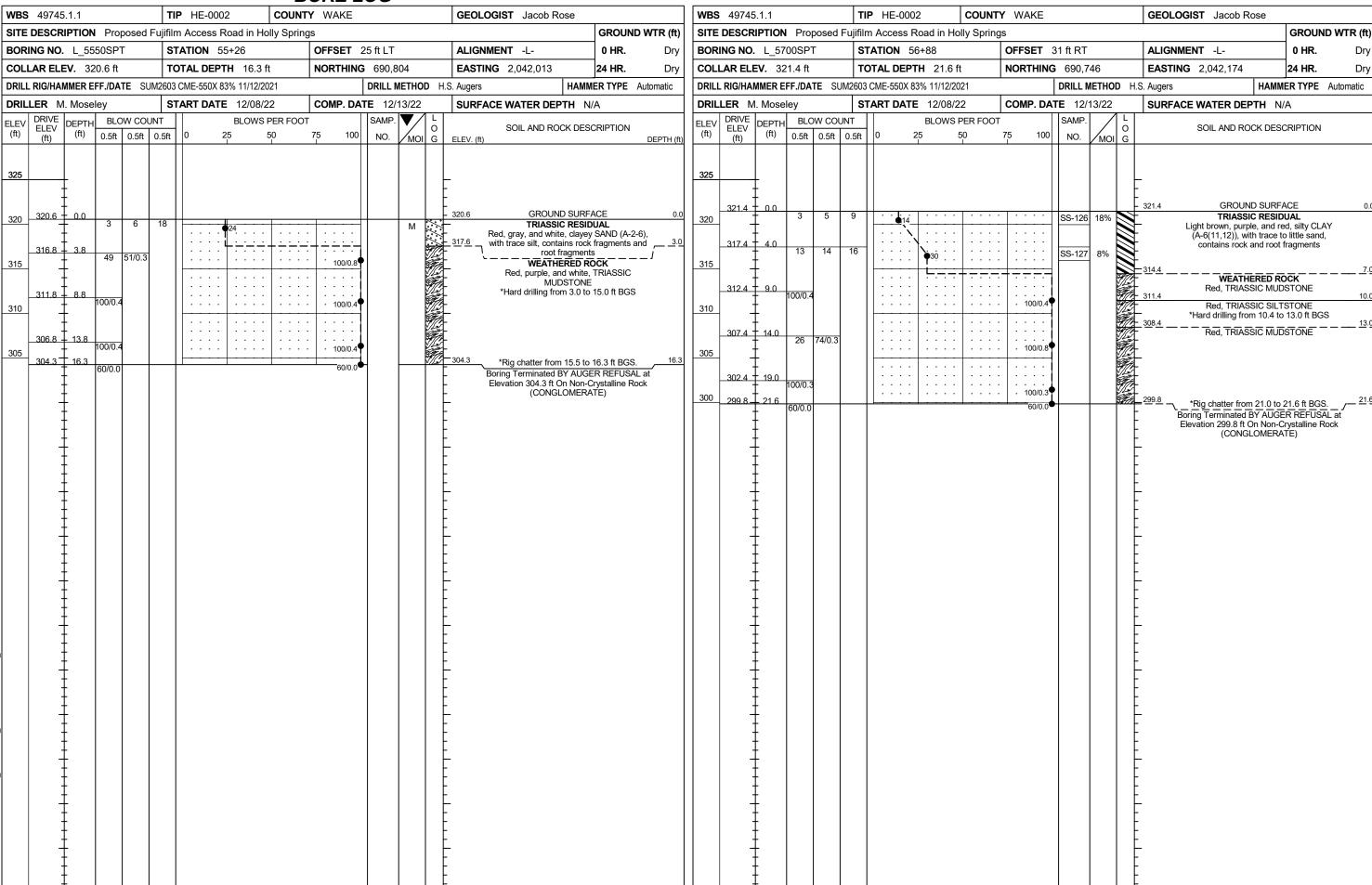


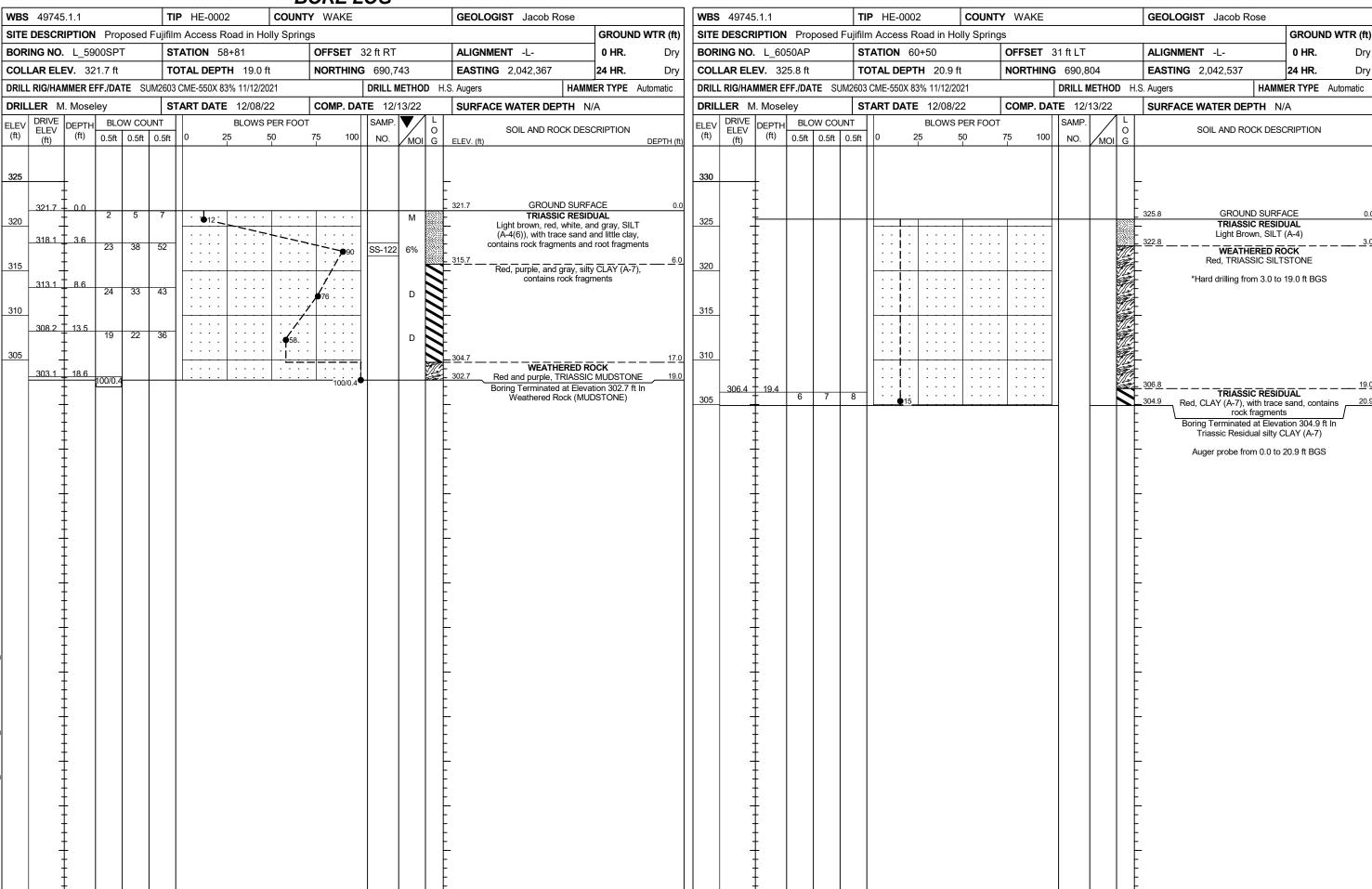

BORE LOG	,			
WBS 49745.1.1 TIP HE-0002 COUNTY WAKE	GEOLOGIST Jacob Rose		IP HE-0002 COUNTY WAKE	GEOLOGIST Jacob Rose
SITE DESCRIPTION Proposed Fujifilm Access Road in Holly Springs	GROUND WTR (ft)	SITE DESCRIPTION Proposed Fujifilm	m Access Road in Holly Springs	GROUND WTR (ft)
BORING NO. L_2250SPT STATION 22+66 OFFSET 32 ft LT	ALIGNMENT -L- 0 HR. Dry	BORING NO. L_2500SPT ST	TATION 24+87 OFFSET 32 ft LT	ALIGNMENT -L- 0 HR. Dry
COLLAR ELEV. 289.5 ft TOTAL DEPTH 19.3 ft NORTHING 690,582	EASTING 2,038,829 24 HR. Dry	COLLAR ELEV. 288.5 ft	OTAL DEPTH 19.1 ft NORTHING 690,669	EASTING 2,039,019 24 HR. Dry
DRILL RIG/HAMMER EFF./DATE SUM2603 CME-550X 83% 11/12/2021 DRILL METHOD H	S. Augers HAMMER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE SUM2603	3 CME-550X 83% 11/12/2021 DRILL METHOD	H.S. Augers HAMMER TYPE Automatic
DRILLER M. Moseley START DATE 11/23/22 COMP. DATE 11/28/22	SURFACE WATER DEPTH N/A	-	TART DATE 11/23/22 COMP. DATE 11/28/22	SURFACE WATER DEPTH N/A
DRIVE CHAPTER DEPTH BLOW COUNT BLOWS PER FOOT SAMP. L O NO. MOI G	SOIL AND ROCK DESCRIPTION ELEV. (ft) DEPTH (ft)	ELEV (ft)	BLOWS PER FOOT SAMP. 0 25 50 75 100 NO. MOI	L O SOIL AND ROCK DESCRIPTION G
290	-289.5 GROUND SURFACE 0.0	290		<u> </u>
280 285.6 3.9 10 16 15 31 SS-22 12% 280 280.6 8.9 7 12 16 SS-22 12% 275 275.6 13.9 30 70/0.4 100/0.4 100/0.4 100/0.4	TRIASSIC RESIDUAL Brown, white, and red, sandy SILT (A-4(0,3)), with trace clay, contains rock fragments	285 284.7 3.8 8 10 12 280 279.7 8.8 6 8 11 275 274.7 13.8 20 60 40/0.2	55	GROUND SURFACE TOPSOIL Brown, sandy SILT (A-4), contains root fragments TRIASSIC RESIDUAL Light brown, red, white, and gray, sandy SILT (A-4(0,3)), contains rock fragments WEATHERED ROCK Red and purple, TRIASSIC MUDSTONE Boring Terminated at Elevation 269.4 ft In Weathered Rock (MUDSTONE) Boring Terminated at Elevation 269.4 ft In Weathered Rock (MUDSTONE)
ICDOT BORE DOUBLE HE-0002_GINT LOGS_UPDATI	-			

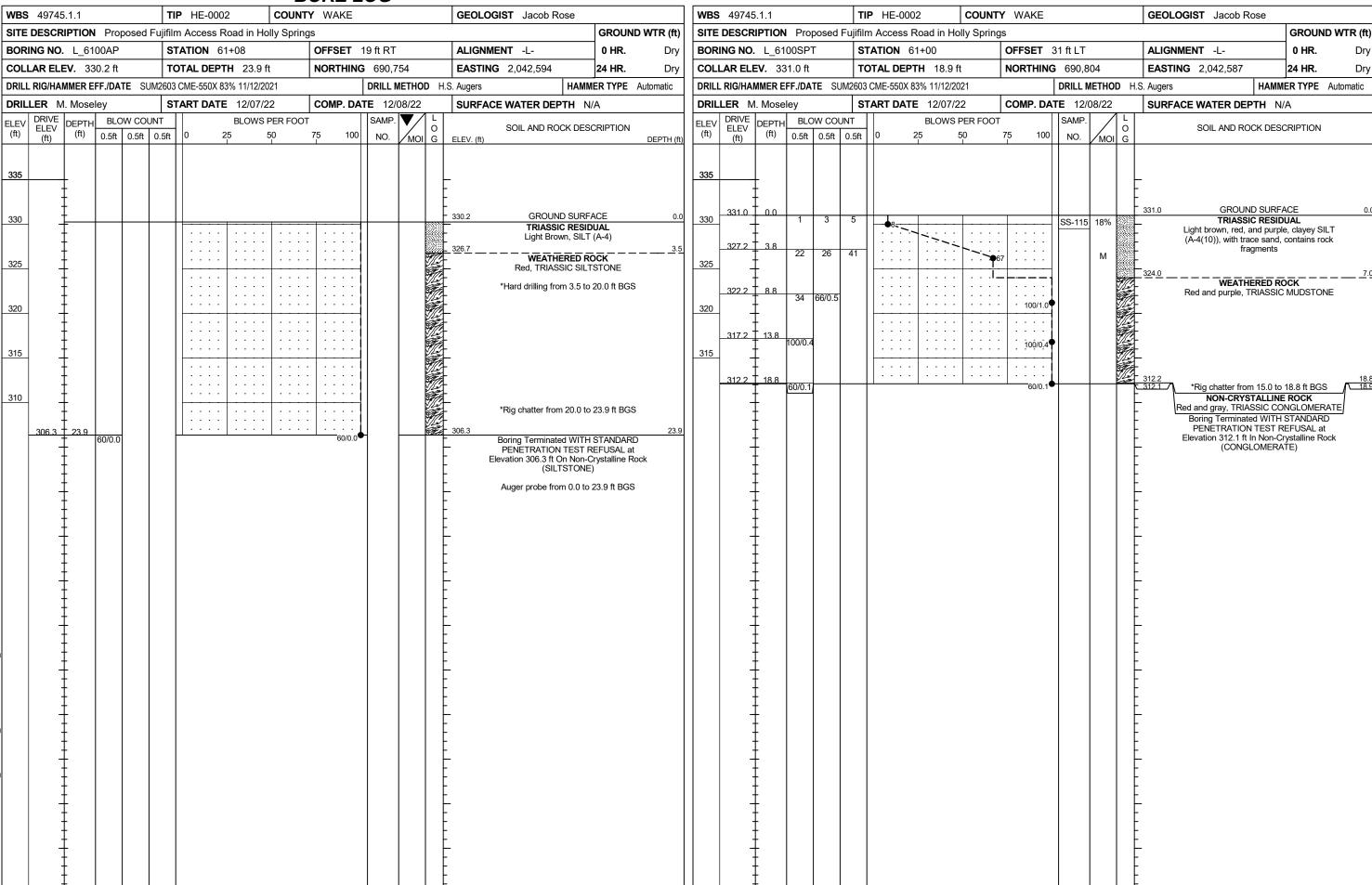


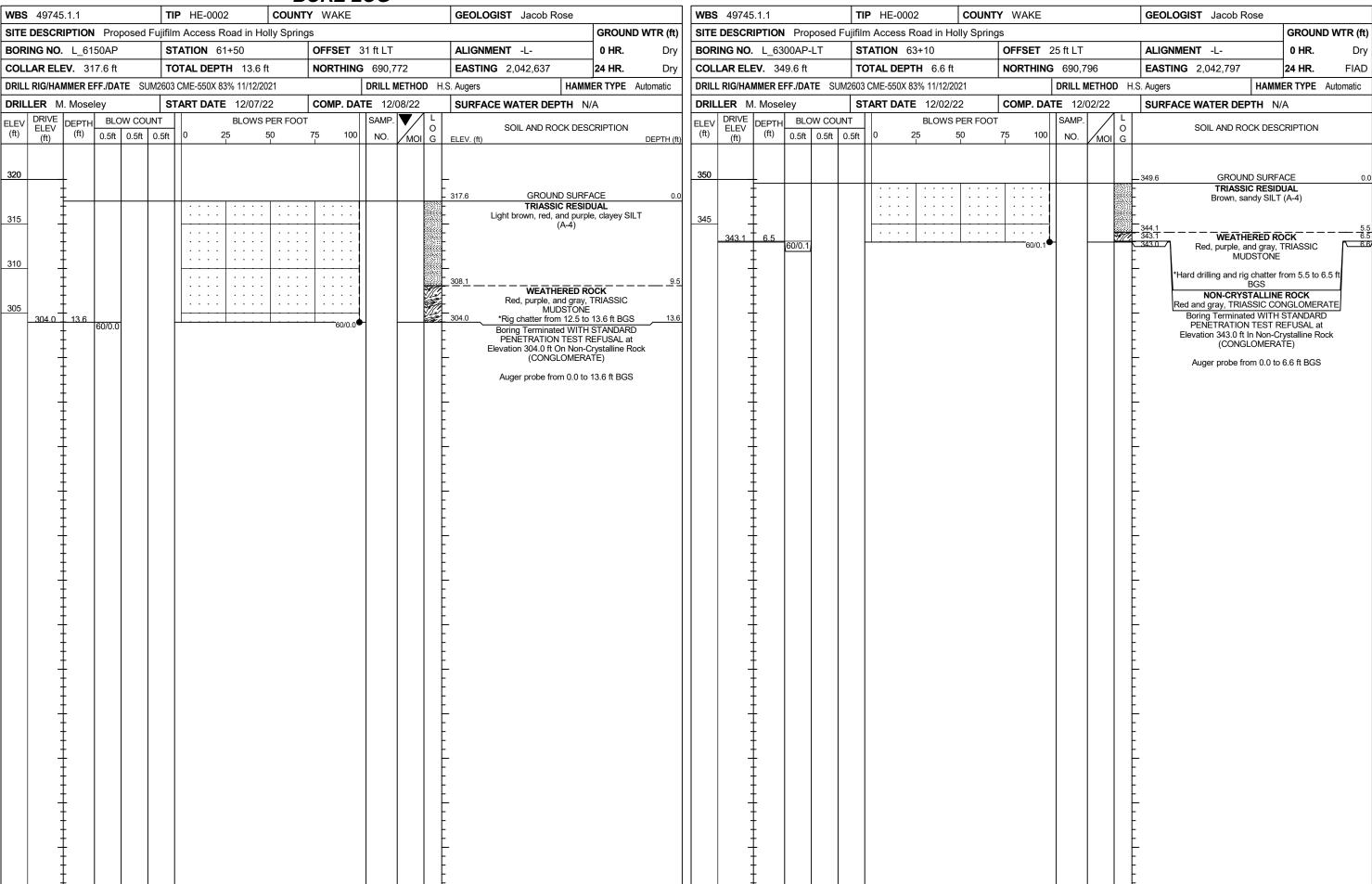


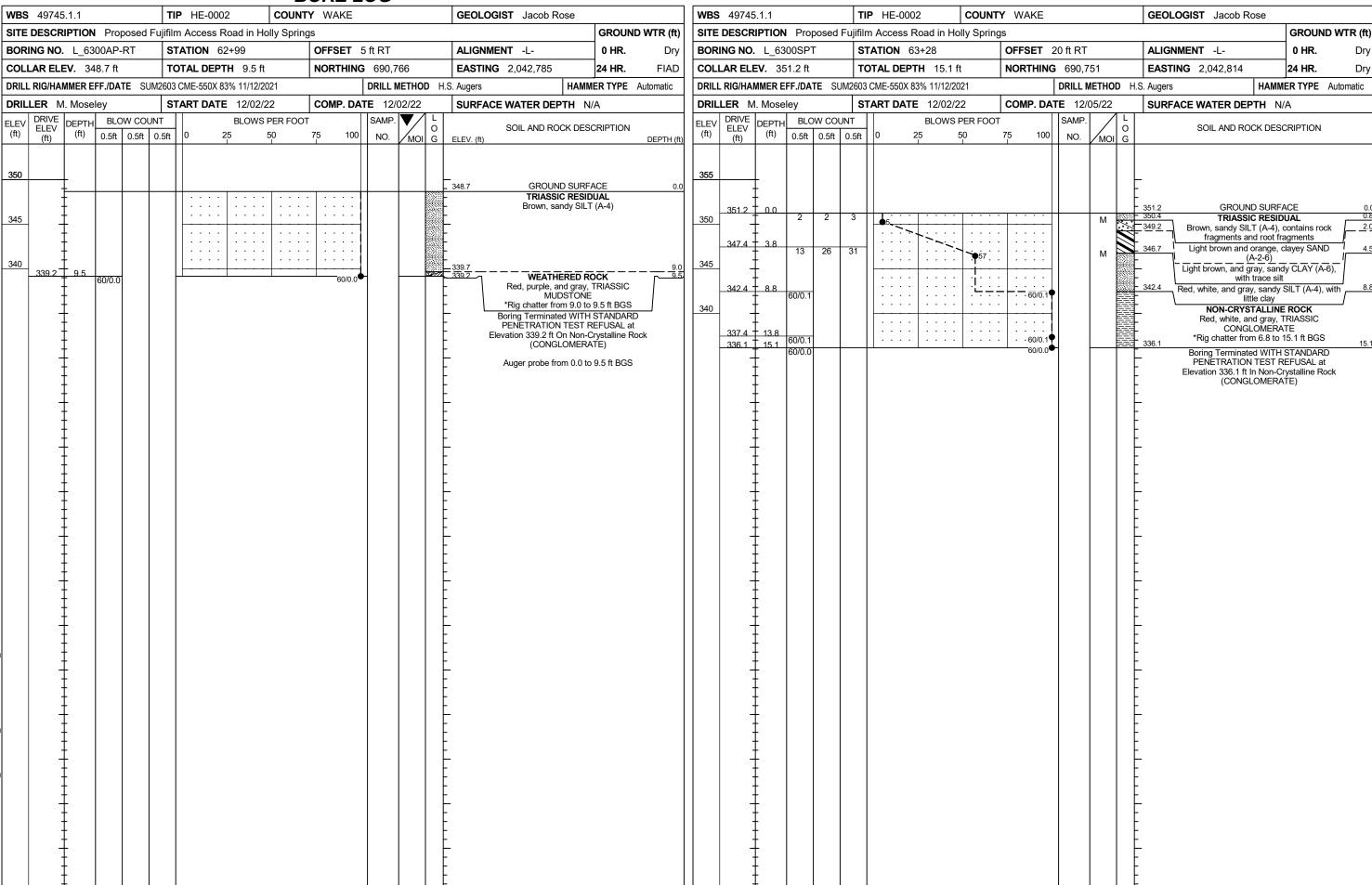

	BORE LOG						
WBS 49745.1.1 TIP HE-0002 CO	INTY WAKE	GEOLOGIST Jacob Rose		WBS 49745.1.1	TIP HE-0002 COL	UNTY WAKE	GEOLOGIST Jacob Rose
SITE DESCRIPTION Proposed Fujifilm Access Road in Holly S	_ _	_	GROUND WTR (ft)	SITE DESCRIPTION Proposed I	- i		GROUND WTR (ft)
BORING NO. L_3200SPT STATION 32+00	OFFSET 32 ft LT	ALIGNMENT -L-	0 HR. Dry	BORING NO. L_3250SPT	STATION 32+55	OFFSET 38 ft RT	ALIGNMENT -L- 0 HR. Dry
COLLAR ELEV. 282.8 ft TOTAL DEPTH 15.5 ft	NORTHING 690,896	EASTING 2,039,693	24 HR. FIAD	COLLAR ELEV. 279.6 ft	TOTAL DEPTH 12.9 ft	NORTHING 690,821	EASTING 2,039,741 24 HR. 1.9
DRILL RIG/HAMMER EFF./DATE SUM2603 CME-550X 83% 11/12/2021	DRILL METHOD H.	, 	MER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE SU		DRILL METHOD	
		SURFACE WATER DEPTH N	I/A	-			SURFACE WATER DEPTH N/A
	75 100 NO. MOI G	SURFACE WATER DEPTH N SOIL AND ROCK DESELEV. (ft) 282.8 GROUND SURFACE ARTIFICIAL F Red and brown, clayey S TRIASSIC RESII Light brown and red, clayey trace sand 273.3 Light gray and red, silty 267.3 Boring Terminated at Eleva Triassic Residual silty in the silty of the s	ECRIPTION DEPTH (ft) FACE 0.0 ILL 0.8 SAND (A-2-6) DUAL SILT (A-5), with 9.5 CLAY (A-7) 15.5 ation 267.3 ft In	DRILLER M. Moseley	0.5ft 0 25 50	75 100 NO. MOI G	
NCDOT BORE DOUBLE HE-0002_GINT LOGS_UPDATEDS.GPJ NC_DOT.GDT 3/27/23							





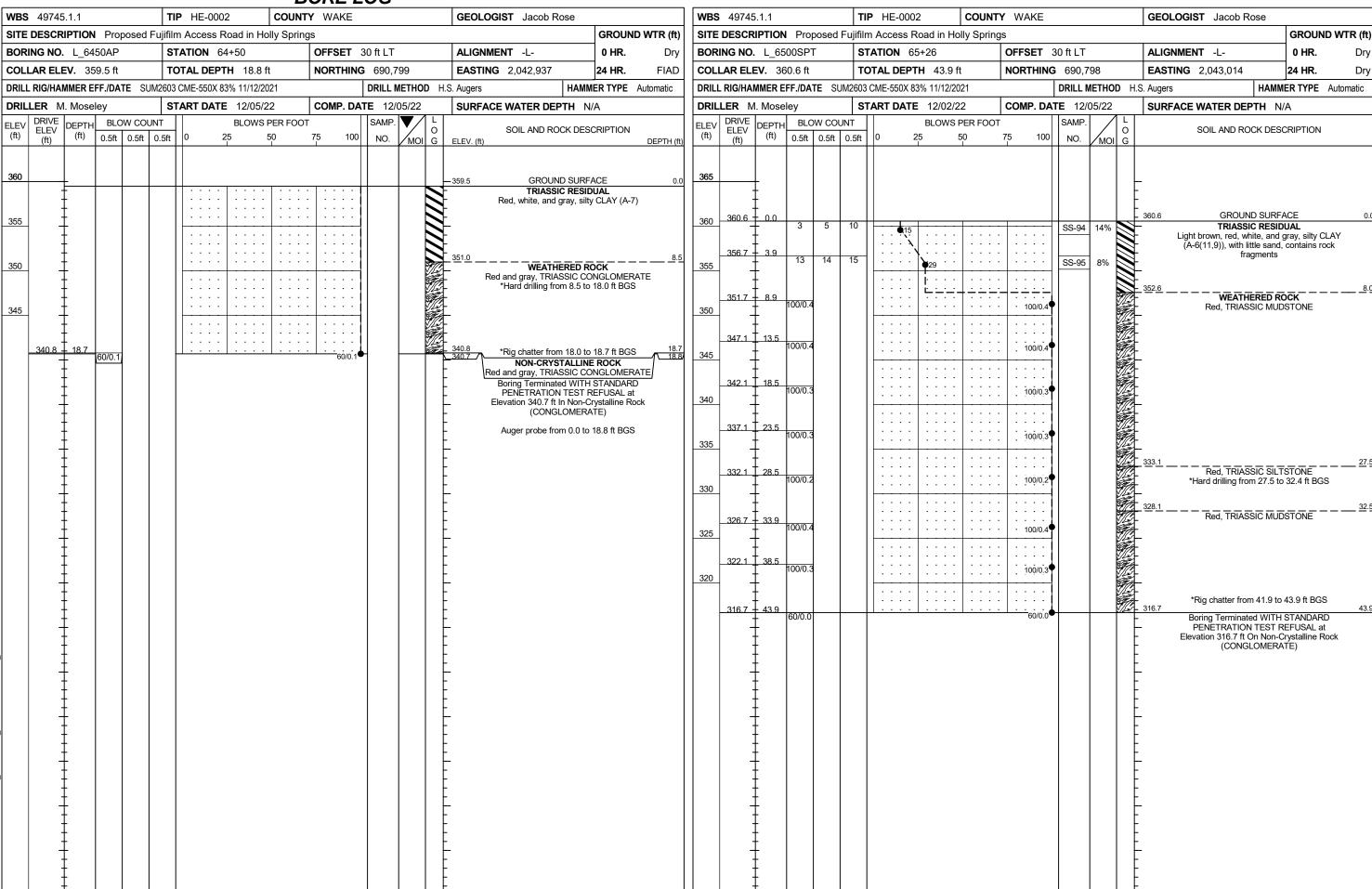


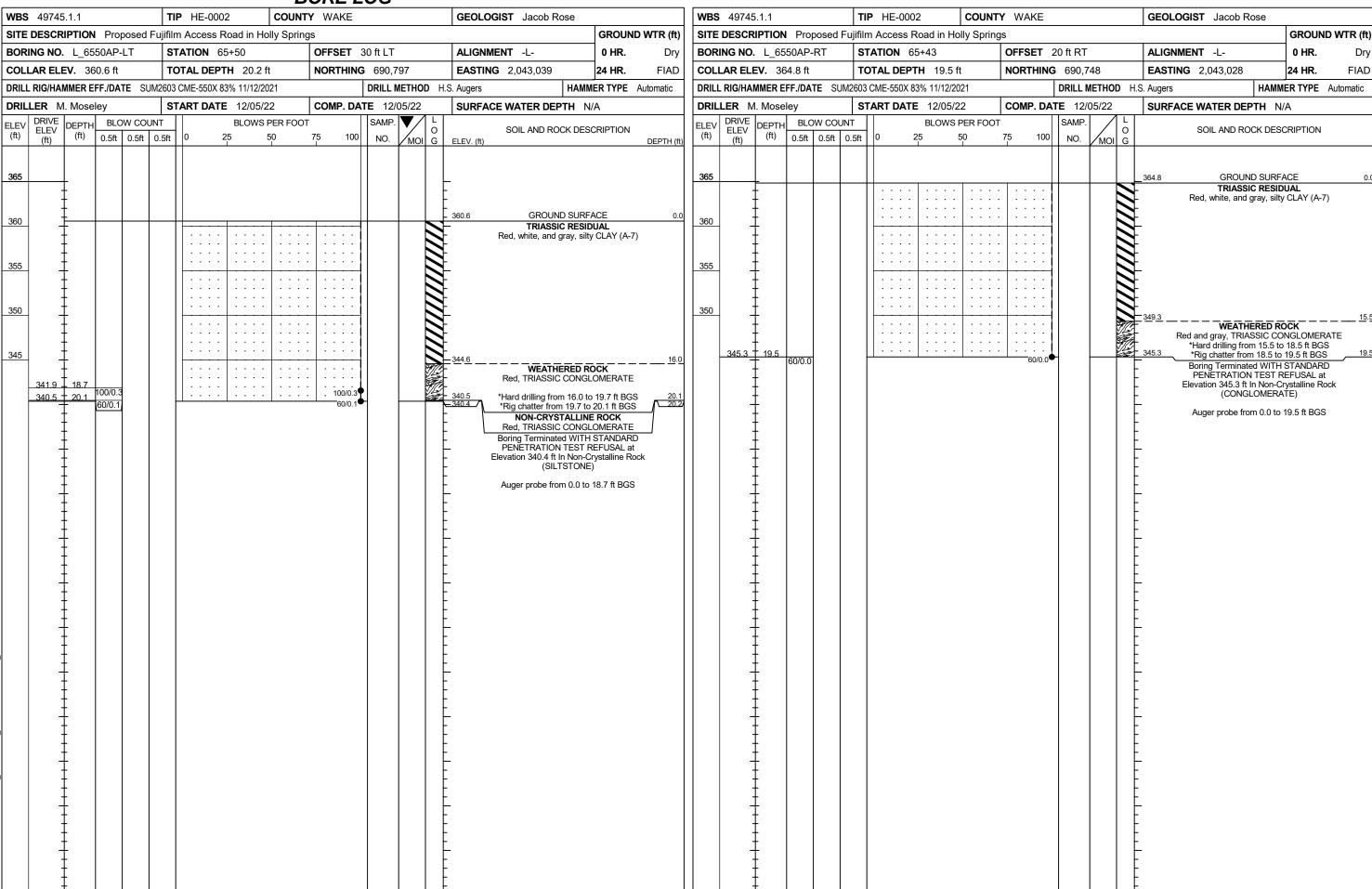


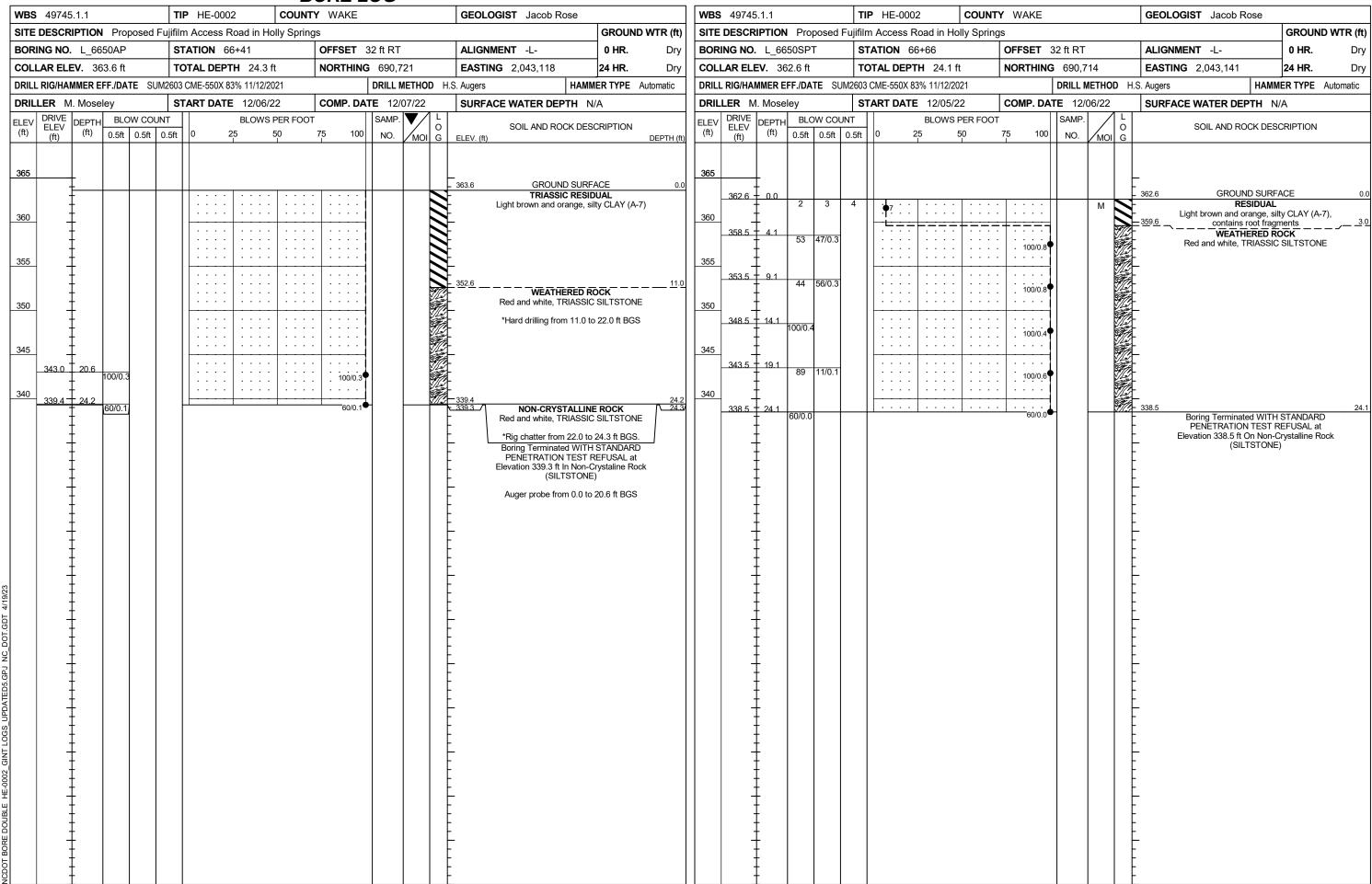


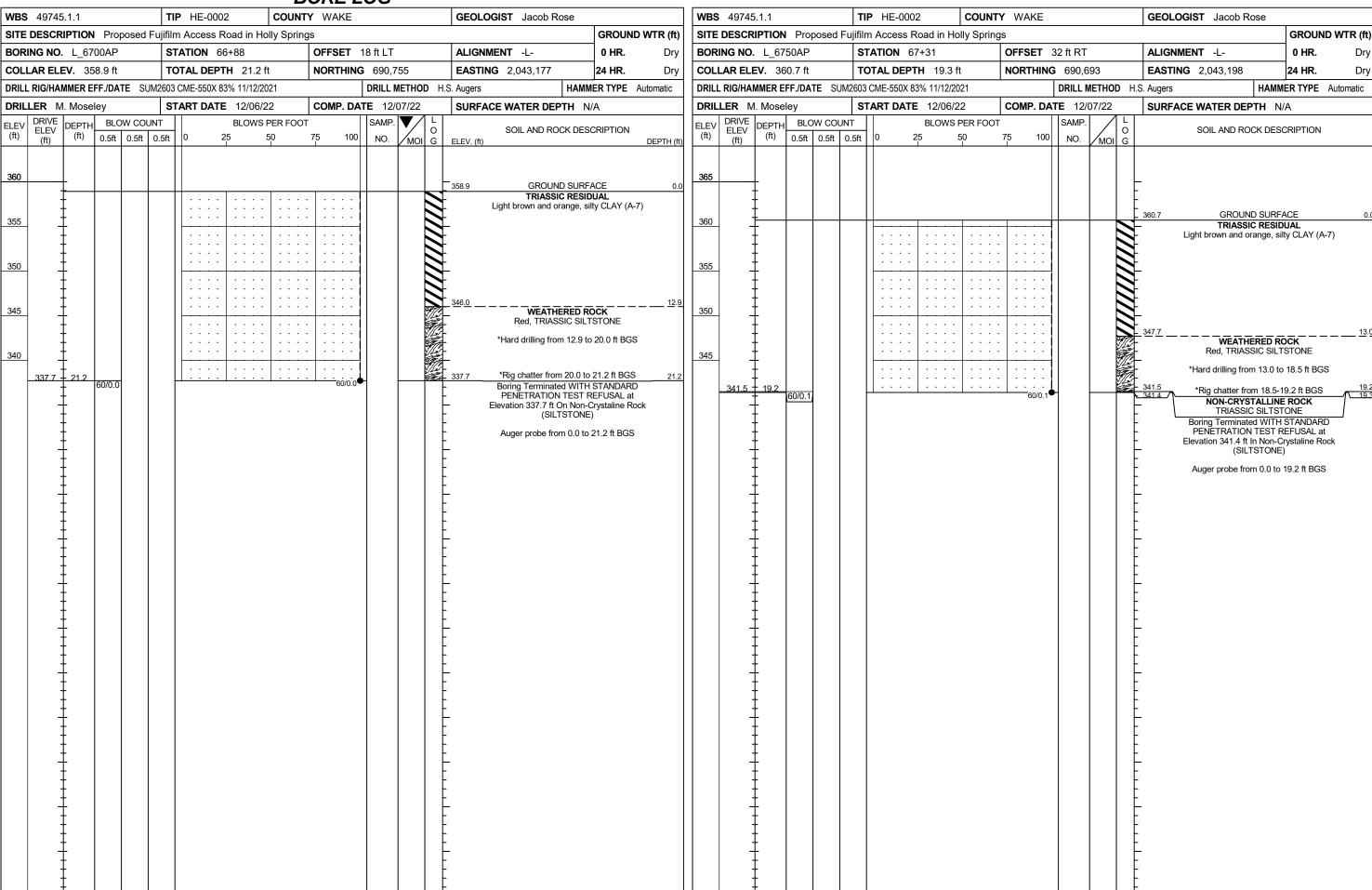
Dry

FIAD

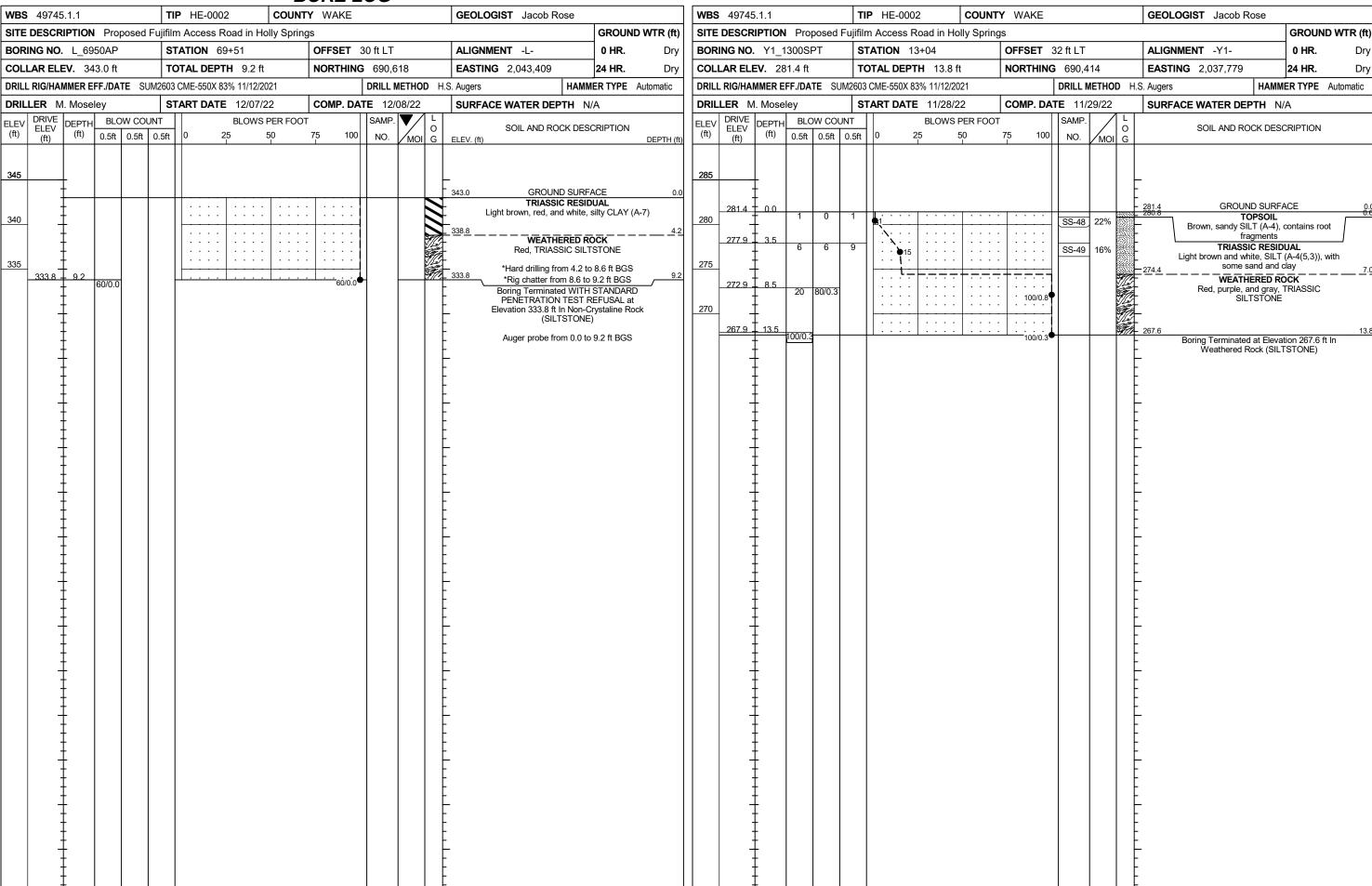


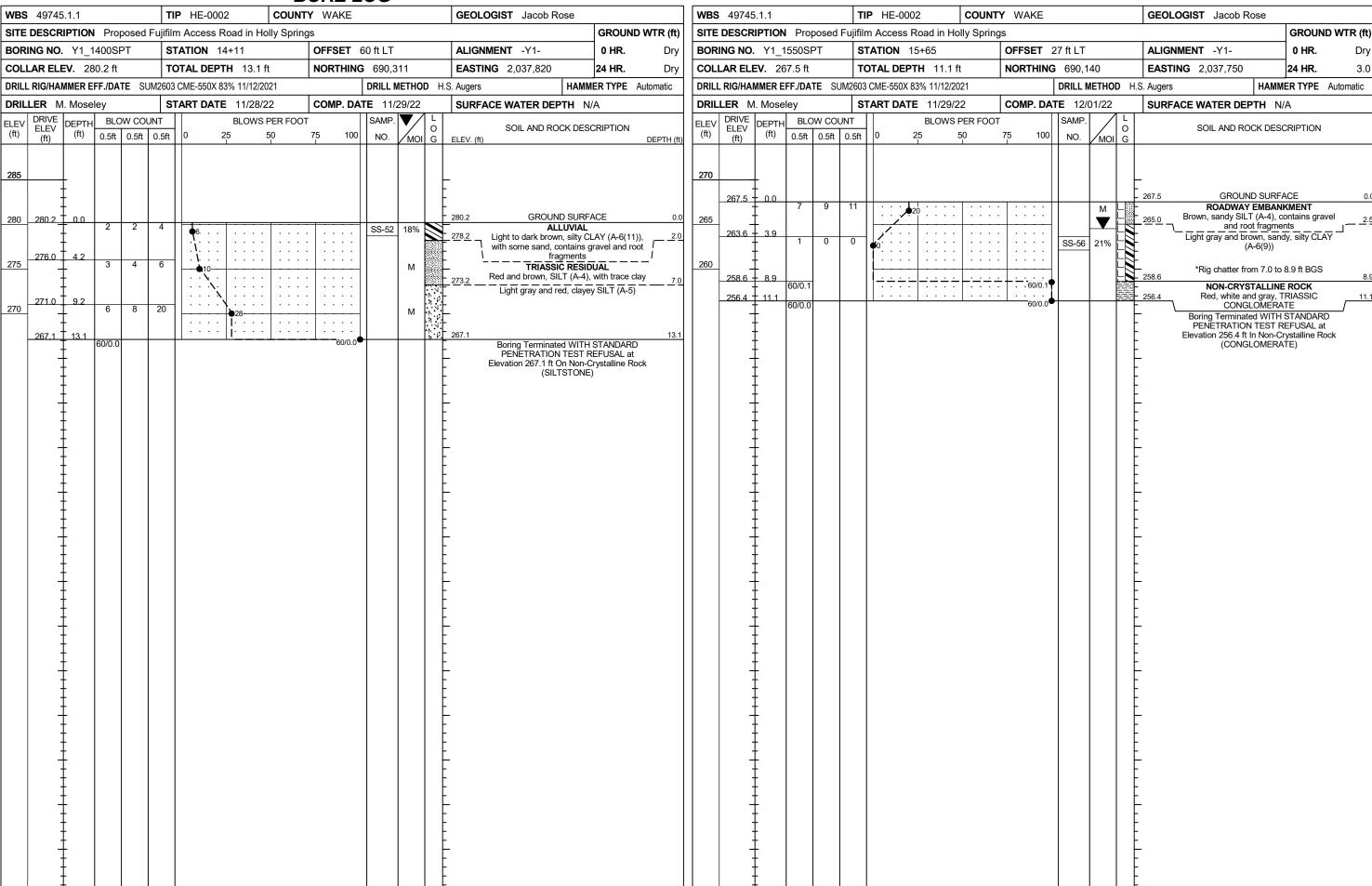

	D	ORE LOG		
WBS 49745.1.1	TIP HE-0002 COUNT	Y WAKE	GEOLOGIST Jacob Rose	
SITE DESCRIPTION Proposed Fu	ujifilm Access Road in Holly Spring	S		GROUND WTR (ft)
BORING NO. L_6350AP	STATION 63+50	OFFSET 20 ft RT	ALIGNMENT -L-	0 HR . Dry
COLLAR ELEV. 353.3 ft	TOTAL DEPTH 6.8 ft	NORTHING 690,750	EASTING 2,042,836	24 HR . FIAD
DRILL RIG/HAMMER EFF./DATE SUM2	2603 CME-550X 83% 11/12/2021	DRILL METHOD H.S	5. Augers HAMM	ER TYPE Automatic
DRILLER M. Moseley	START DATE 12/02/22	COMP. DATE 12/02/22	SURFACE WATER DEPTH N	/A
DRIVE DEPTH BLOW COUNT Count	T BLOWS PER FOOT 1.5ft 0 25 50	75 100 100 100	SOIL AND ROCK DESC	CRIPTION DEPTH (f
	.Sft 0 25 50	75 100 NO. /MOI G		DEPTH (I


SHEET 28

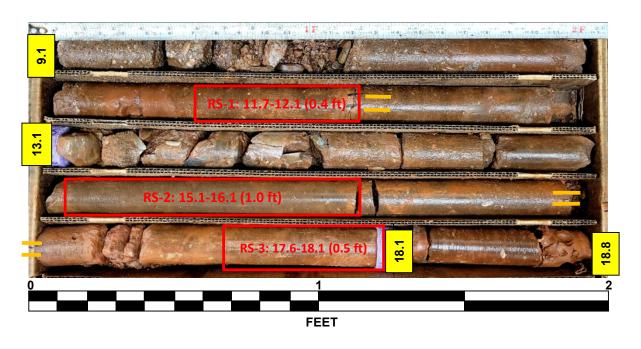

WEST 49745-11 TP H-0.0022 COMPY WARE GEOLOGIST Jacob Rose WEST 49745 WEST 49745 STEE DESCRIPTION Proposed Figilith nocesses Rose in help by prings GROUND WTR (IV MEST 49745 ME						_				UK		.00			1							
BORNING No. L \$3550COME STATION S195 FREET S0 1LT ALCOMENT -1 OHR DIV											KE				GEOL	OGIST Jacob R	ose					
COLLAR ELEV. 363 3 ft						-i-			lly Spring						_			-	` '			
DRILL RIGHAMMER FF,DATE SU/2003 CNE-50X (875 117120221 DRILL METHOD NY Cosing or Core HAMMER TYPE Automatic DRILLER RIGHAM DRILLE	BORI	NG NO.	L_63	50CO	RE	S	STATION 63	3+63		OFFS	SET (60 ft LT			ALIGN	MENT -L-		0 HR.	Dry	BOR	ING NO	. L_6
Defiller M. Hoseley	COLL	AR ELE	EV. 35	3.3 ft		Т	OTAL DEPT	H 19.1 ft		NORT	THING	690,8	330		EASTI	NG 2,042,850		24 HR.	FIAD	COL	LAR EL	EV.
SECON SECO	DRILL	RIG/HAI	MMER E	FF./DA	TE SUN	/260	3 CME-550X 83	3% 11/12/20	21			DRILL	METHO	N C	N Casing w	// Core	HAMM	ER TYPE	Automatic	DRILI	RIG/HA	MMER
10	DRIL		l. Mose	ley		S	TART DATE	12/14/2	2	COMI	P. DA	TE 12/	/14/22		SURFA	ACE WATER DEF	TH N	Ά		DRIL	LER M	1. Mos
(iii) (iii							<u> </u>									SOIL AND RO	CK DES	CRIPTION		COR	E SIZE	NQ2
300 300	(11)	(ft)	(11)	0.5ft	0.5ft	0.5ft	0 2	5 5	50 	75 	100	NO.	/MOI	G	ELEV. (ft)				DEPTH (ft)		RUN ELEV	DEPT
355 3 GROLAD SURFACE 0.0 TRANSPORT RESIDUAL figurents Brown, Sull range roles and root fragments and root fr																				(π)	(ft)	(ft)
3033 GROUND SUPFACE Dr.	355		<u> </u>												_					344.17	344.2	1 91
Section Sect		_																			011.2	0.1
Section Sect															353.3				0.0			†
345 345 346 347 348 348 348 348 349 340 340 340 340 341 341 342 342 344 344 344 345 346 347 348 348 348 348 348 348 348		-	-								• •				-	Brown, SILT (A-4),	contains	rock fragme	ents			ŧ
345 346 347 348 348 348 349 340 340 340 340 340 340 340		-	+											-	-	and roo	t fragme	nts				1
345 Section		-	_												-					340	340.2	13.1
345 346 NON-CRYSTALLINE ROCK PRoblemon with opaque clasts, TRASSIC BRECCIA signification very signification stems that when the summering, spacing, thickly bedded, subangular clasts RS-1 340 RS-1 340 RS-2 RS-2 RS-3 355 RS-3	350																					
345 346 NON-CRYSTALLINE ROCK Red-brown with open clasts, TRIASSIC BRECCA: British way slight wear slight wear whethering, 10.5 Spacing, thickly bedded, subangular clasts REC-100%, CSH-20-30 Spacing, thickly bedded, subangular clasts REC-100%, Red-brown trialscills LISTONE with some sand-stand clasts REC-100%, ROD-100%, CSH-20-30 Gray, brown and red, TRIASSIC BRECCIA REC-100%, ROD-100%, CSH-100-30 REC-100%, ROD-100%, ROD-100%			Ī												_							t
345 346 NON-CRYSTALLINE ROCK Red-brown with open clasts, TRIASSIC BRECCA: British way slight wear slight wear whethering, 10.5 Spacing, thickly bedded, subangular clasts REC-100%, CSH-20-30 Spacing, thickly bedded, subangular clasts REC-100%, Red-brown trialscills LISTONE with some sand-stand clasts REC-100%, ROD-100%, CSH-20-30 Gray, brown and red, TRIASSIC BRECCIA REC-100%, ROD-100%, CSH-100-30 REC-100%, ROD-100%, ROD-100%		-	t				• • • •				• •				-							†
335 335.2 336 335.2 337 335.2 338 338 335.2 338 338 335.2 338 335.2 338 335.2 338 335.2 338 335.2 338 335.2 338 335.2 338 335.2 338 335.2 338 335.2 338 338 335.2 338 335.2 338 335.2 338 335.2 338 335.2 338 335.2 338 335.2 338 335.2 338 33 335.2 338 335.2 338 335.2 338 338 335.2 338 32.2 348 32.2 348 32.2 348 32.2 348 32.2 348 32.2		-	-												-							1
34.2 MON-GRYSTALLINE ROCK 9.1		_	1												≣'							
341.2 Some Content of the Content																				335	335.2	T 18.1
RS-1	245	-	Ī												='					333	-	t
Non-CRYSTALLINE ROCK Red-brown with opaque clasts, TRIASSIC BRECCIA, slight to very slight weathering, medium to medium that, close feature spacing, thickly bedded, subangular clasts 10,5	345	_	†				<u> </u>			+					_						334.2	19.1
340 RS-1 RS-2 RS-2 RS-2 RS-2 RS-2 RS-3 RS-1 R		-	+												344.2							1
RS-1		_	_												342.8	BRECCIA, slight to	very slig	ht weatherir	ng, _{10.5}			
RS-1																			e _		·	Ī
340.4 ROD=29% GSI=20-30 12.9 RS-2 339.2 Red-brown, TRIASSIC SILTSTONE with some sand-sized clasts and		_	Ī									DQ 1	-			RE(C=100%					t
NON-CRYSTALLINE ROCK Red-brown, TRIASSIC SILTSTONE with some sand-sized clasts 14.1		-	<u> </u>									K3-1	1		340.4	RC	D=29%		12.9		-	+
RS-2 Some sand-sized clasts 14.1 REC=100% RQD=100% GSI=80-90 Gray, brown and red, TRIASSIC BRECCIA RQD=0% GSI=10-20 Dark brown to red-brown with white 18.6 334.2 Gravel-sized clasts, TRIASSIC SILTSTONE RQD=69% GSI=0-50 TRIASSIC RESIDUAL Dark brown to red-brown, silty CLAY (A-7) REC=100% RQD=69% GSI=0-50 TRIASSIC RESIDUAL Dark brown to red-brown, silty CLAY (A-7) RQD=0% RQD=0	340	_	-				<u> </u>			-						NON-CRYS	TALLINE					1
RS-2 RS-3 Dark brown to red-brown with white gravel-sized clasts, TRIASSIC SILTSTONE REC=100% RQD=69% SI=40-50 TRIASSIC RESIDUAL Dark brown to red-brown, silty CLAY (A-7) RS-100% RQD=69% NON-CRYSTALINE ROCK Dark brown to red-brown, TRIASSIC SILTSTONE RS-100% RQD=0% RQD=0		-	_												339.2				14.1			
RS-2 GSI=80-90 Gray, brown and red, TRIASSIC BRECCIA REC=83% ROD=0% SSI=10-20 Dark brown to red-brown with white 18.6 18.8 19.1 REC=100% ROD=69% GSI=40-50 TRIASSIC RESIDUAL Dark brown to red-brown, slity CLAY (A-7) REC=100% ROD=0%																						Ī
REC=83% RQD=0% GSI=10-20 Dark brown to red-brown with white gravel-sized clasts, TRIASSIC SILTSTONE REC=100% RQD=69% GSI=40-50 TRIASSIC RESIDUAL Dark brown to red-brown, silty CLAY (A-7) REC=100% RQD=0% RQD=0% SILTSTONE REC=100% RQD=0% GSI=10-20 Boring Terminated at Elevation 334.2 ft In Non-Crystalline Rock (SILTSTONE) Auger probe from 0.0 to 9.1 ft BGS. Auger refusal at 9.1 ft BGS. Coring begins at 9.1 ft BGS. Coring begins at 9.1 ft BGS. Loss of drilling fluid circulation to the		-	Ť									RS-2										t
RS-3 Dark brown to red-brown with white gravel-sized clasts, TRIASSIC SILTSTONE RCD=69% GSI=40-50 TRIASSIC RESIDUAL Dark brown to red-brown, sitty CLAY (A-7) REC=100% RQD=0% RQD=0% RSD=0% RSD=0%		-	†										1		. [Gray, brown and re	d, TRIAS	SIC BRECO	CIA			+
RS-3 GSI=10-20 Dark brown to red-brown with white gravel-sized clasts, TRIASSIC SILTSTONE REC=100% RQD=69% GSI=40-50 TRIASSIC RESIDUAL Dark brown to red-brown, silty CLAY (A-7) REC=100% RQD=0% RQD		-	<u> </u>																		_	1
gravel-sized clasts, TRIASSIC SILTSTONE REC=100% RQD=69% GSI=40-50 TRIASSIC RESIDUAL Dark brown to red-brown, sitty CLAY (A-7) REC=100% RQD=0% ROD=0% SILTSTONE REC=100% RQD=0% GSI=10-20 Boring Terminated at Evation 334.2 ft In Non-Crystalline Rock (SILTSTONE) Auger probe from 0.0 to 9.1 ft BGS. Auger refusal at 9.1 ft BGS. Coring begins at 9.1 ft BGS. Coring begins at 9.1 ft BGS. Loss of drilling fluid circulation to the	335	_	L									RS-3]			GS	I=10-20					
REC=100% RQD=69% GSI=40-50 TRIASSIC RESIDUAL Dark brown to red-brown, silty CLAY (A-7) REC=100% RQD=0% NON-CRYSTALLINE ROCK Dark brown to red-brown, TRIASSIC SILTSTONE REC=100% RQD=0% GSI=10-20 GSI=10-20 Boring Terminated at Elevation 334.2 ft In Non-Crystalline Rock (SILTSTONE) Auger probe from 0.0 to 9.1 ft BGS. Auger refusal at 9.1 ft BGS. Coring begins at 9.1 ft BGS. Coring begins at 9.1 ft BGS. Loss of drilling fluid circulation to the															334.5				NE 18.8			Ť
TRIASSIC RESIDUAL Dark brown to red-brown, sitly CLAY (A-7) REC=100% RQD=0% NON-CRYSTALLINE ROCK Dark brown to red-brown, TRIASSIC SILTSTONE REC=100% RQD=0% GSI=10-20 Boring Terminated at Elevation 334.2 ft In Non-Crystalline Rock (SILTSTONE) Auger probe from 0.0 to 9.1 ft BGS. Auger refusal at 9.1 ft BGS. Coring begins at 9.1 ft BGS. Loss of drilling fluid circulation to the		-	Ī											١								t
Dark brown to red-brown, silty CLAY (A-7) REC=100% RQD=0% NON-CRYSTALLINE ROCK Dark brown to red-brown, TRIASSIC SILTSTONE REC=100% RQD=0% GSI=10-20 Boring Terminated at Elevation 334.2 ft In Non-Crystalline Rock (SILTSTONE) Auger probe from 0.0 to 9.1 ft BGS. Auger refusal at 9.1 ft BGS. Coring begins at 9.1 ft BGS. Coring begins at 9.1 ft BGS. Loss of drilling fluid circulation to the		=	+											ŀ		GS	I=40-50			1		ŧ
REC=100% RQD=0% NON-CRYSTALLINE ROCK Dark brown to red-brown, TRIASSIC SILTSTONE REC=100% RQD=0% GSI=10-20 Boring Terminated at Elevation 334.2 ft In Non-Crystalline Rock (SILTSTONE) Auger probe from 0.0 to 9.1 ft BGS. Auger refusal at 9.1 ft BGS. Coring begins at 9.1 ft BGS. Loss of drilling fluid circulation to the		-	-											-					-7)			1
RQD=0% NON-CRYSTALLINE ROCK Dark brown to red-brown, TRIASSIC SILTSTONE REC=100% RQD=0% GSI=10-20 Boring Terminated at Elevation 334.2 ft In Non-Crystalline Rock (SILTSTONE) Auger probe from 0.0 to 9.1 ft BGS. Auger refusal at 9.1 ft BGS. Coring begins at 9.1 ft BGS. Loss of drilling fluid circulation to the		-	_																			
Dark brown to red-brown, TRIASSIC SILTSTONE REC=100% RQD=0% GSI=10-20 Boring Terminated at Elevation 334.2 ft In Non-Crystalline Rock (SILTSTONE) Auger probe from 0.0 to 9.1 ft BGS. Auger refusal at 9.1 ft BGS. Coring begins at 9.1 ft BGS. Loss of drilling fluid circulation to the															L	RC	QD=0%	BUCK	_	ı	_	T
REC=100% RQD=0% GSI=10-20 Boring Terminated at Elevation 334.2 ft In Non-Crystalline Rock (SILTSTONE) Auger probe from 0.0 to 9.1 ft BGS. Auger refusal at 9.1 ft BGS. Coring begins at 9.1 ft BGS. Loss of drilling fluid circulation to the		_	Ī											Ī	_	Dark brown to re	ed-brown					t
RQD=0% GSI=10-20 Boring Terminated at Elevation 334.2 ft In Non-Crystalline Rock (SILTSTONE) Auger probe from 0.0 to 9.1 ft BGS. Auger refusal at 9.1 ft BGS. Coring begins at 9.1 ft BGS. Loss of drilling fluid circulation to the		-	†											ŀ	-							+
Boring Terminated at Elevation 334.2 ft In Non-Crystalline Rock (SILTSTONE) Auger probe from 0.0 to 9.1 ft BGS. Auger refusal at 9.1 ft BGS. Coring begins at 9.1 ft BGS. Loss of drilling fluid circulation to the		-	+													RO	QD=0%			1		1
Non-Crystalline Rock (SILTSTONE) - Auger probe from 0.0 to 9.1 ft BGS. Auger refusal at 9.1 ft BGS. Coring begins at 9.1 ft BGS. Loss of drilling fluid circulation to the		_	<u> </u>												. [tion 334.2 ft	In			
Auger refusal at 9.1 ft BGS. Coring begins at 9.1 ft BGS. Loss of drilling fluid circulation to the																						†
Coring begins at 9.1 ft BGS. Loss of drilling fluid circulation to the		-	†												-						-	†
		_	<u> </u>												_	Coring begi	ns at 9.1	ft BGS.				‡
		-	-												-							1
																						L

VBS	49745	5.1.1			TIP	HE-00	002	С	OUNT	Y V	VAKE		GEOLOGIST Jacob F	Rose			
SITE DESCRIPTION Proposed Fu						Access	Road in	Holly	Spring	js .		<u>, </u>			GROUND WTR (ft)		
ORI	NG NO	. L_63	50CO	RE	STA	ΓΙΟΝ	63+63			OF	FSET 6	0 ft LT	ALIGNMENT -L-		0 HR.	Dry	
OLL	AR ELI	EV. 35	3.3 ft		TOT	AL DE	PTH 19.	.1 ft		NO	RTHING	690,830	EASTING 2,042,850		24 HR.	FIAD	
RILL	RIG/HAI	MMER E	FF./DA	TE SUM2	2603 CN	1E-550X	(83% 11/1	2/2021				DRILL METHOD NW	Casing w/ Core	HAMM	ER TYPE	Automatic	
RILL	LER M	1. Mose	ley		STAI	RT DA	TE 12/1	4/22		co	MP. DAT	E 12/14/22	SURFACE WATER DE	PTH N	'A		
ORE	SIZE	NQ2					N 10.0 f										
LEV (ft)	RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft) %	JN RQD (ft) %	SAMP. NO.	REC. (ft)	RQD (ft) %	L O G	ELEV. (ft		ESCRIPTION AND REMAR	KS .		DEPTH (1	
4.17	344.2 -	9.1	4.0	1:34/1.0	(2.0)	(2.0)		(4.4)	(0.7)		344.2		Begin Coring @ 9.1 ft NON-CRYSTALLINE ROC	V		9.	
	011.2	0.1	4.0	1.34/1.0	(3.8) 95%	(2.8) 70%		(1.4) 100%	(0.7) 50%	藍			que clasts, TRIASSIC BREC	CIA, slight		ght	
	-	t		1:08/1.0				(2.4)	(2.4)	差	342.8	weathering, medium na	ard, close fracture spacing, tl clasts	пскіу веа	ded, subar	igular 10.	
	=	ł		1:14/1.0				100%	100%	蠹	_		GSI = 20-30			.	
	-	-		1:05/1.0			RS-1			薑	-		ng, soft to medium hard, ver weathering, medium hard to			se	
40	340.2	13.1	5.0	1.44/4.0	(F.O)	(2.2)		(1.0)	(0.0)		340.4		fracture spacing NON-CRYSTALLINE ROC	K			
			5.0	1:41/1.0	(5.0) 100%	(3.2) 64%		83%	0%		339.2		SILTSTONE with some sar nedium hard, moderately clo	nd-sized c			
	=	t		1:17/1.0				(4.5) 100%	(3.6) 80%	蠥		to slight weathering, h	thinly laminated GSI = 80-90	se macture	s spacing,	very	
	-	<u> </u>		1:30/1.0			RS-2	10070	0070	蠹	=		TRIASSIC BRECCIA, mode				
	-	-		1:26/1.0						蓋	-		se fracture spacing, thickly be core loss from 12.9 - 13.1 f		gular clasts	S	
	-	1		1:19/1.0						蓋	_		GSI= 10-20 I-brown with white gravel-siz				
35 -	335.2	18.1			(4.0)	(0.4)	RS-3			鏖			re to moderate weathering, r close fracture spacing, very t			0	
	334.2	19.1	1.0	1:38/1.0	(1.0) 100%	(0.4) 40%		(0.2)	(0.0)		334.7 334.5		GSI=40-50 noderate weathering, soft to		ard, very o	lose 18	
Ī		1						100% (0.3)	(0.0)		334.2		se fracture spacing, thickly la el-sized clasts, very severe t		te weather	19	
	-	ł						100%			=		soft, very close fracture space TRIASSIC RESIDUAL	ing			
	-	ļ									=	Dark I	brown to red-brown, silty CL				
	-	_									=		NON-CRYSTALLINE ROC brown, TRIASSIC SILTSTON h hard, close fracture spacing GSI=10-20	NE, mode			
	-	+									_	Boring Terminate	ed at Elevation 334.2 ft In No (SILTSTONE)	on-Crystal	line Rock		
	-	Ī									_	Au	ger probe from 0.0 to 9.1 ft Auger refusal at 9.1 ft BGS				
	-	ŧ									=	Loss of drilling fluid o	Coring begins at 9.1 ft BGS circulation to the formation from	3.	1/1 1 ft R(38	
	-	+									-	Loss of drilling hald c	dictiation to the formation in	JIII 13.1 K	7 14.1 11 150	30.	
	-										_						
	_	t									_						
	-	ł									=						
	-	1									-						
	-										=						
	-	ŧ									=						
	_	+									_						
	_	1									_						
	-	†									=						
	-	+									_						
	-	1									=						
	-	†									=						
	-	+									-						
		1	l	1		1											

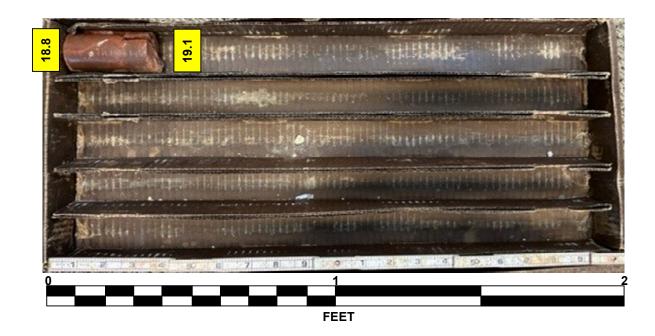




SITE DESCRIPTION Proposed Fujifilm Access Road in Holly Springs GROUND WTR (ft)	BORE LOG							
BORING NO. L_6850AP STATION 68+40 OFFSET 30 ft LT ALIGNMENT 1- 0 HR. Dry COLLAR ELEV. 352.8 ft TOTAL DEPTH 16.4 ft NORTHING 690.692 EASTING 2.043.232 LP DRIVE COLLAR ELEV. 352.8 ft TOTAL DEPTH 16.4 ft NORTHING 690.692 EASTING 2.043.2373 24 HR. Dry COLLAR ELEV. 352.8 ft TOTAL DEPTH 16.4 ft NORTHING 690.692 EASTING 2.043.2373 24 HR. Dry COLLAR ELEV. 349.8 ft TOTAL DEPTH 16.4 ft NORTHING 690.692 EASTING 2.043.2373 24 HR. Dry COLLAR ELEV. 349.8 ft TOTAL DEPTH 18.9 ft NORTHING 690.692 EASTING 2.043.2373 24 HR. Dry COLLAR ELEV. 349.8 ft TOTAL DEPTH 18.9 ft NORTHING 690.692 EASTING 2.043.2373 24 HR. Dry COLLAR ELEV. 349.8 ft TOTAL DEPTH 18.9 ft NORTHING 690.692 EASTING 2.043.2373 24 HR. Dry COLLAR ELEV. 349.8 ft TOTAL DEPTH 18.9 ft NORTHING 690.692 EASTING 2.043.2373 24 HR. Dry COLLAR ELEV. 349.8 ft TOTAL DEPTH 18.9 ft NORTHING 690.692 EASTING 2.043.2373 24 HR. Dry COLLAR ELEV. 349.8 ft TOTAL DEPTH 18.9 ft NORTHING 690.692 EASTING 2.043.2373 24 HR. Dry COLLAR ELEV. 349.8 ft TOTAL DEPTH 18.9 ft NORTHING 690.692 EASTING 2.043.2373 24 HR. Dry COLLAR ELEV. 349.8 ft TOTAL DEPTH 18.9 ft NORTHING 690.692 EASTING 2.043.2373 24 HR. Dry COLLAR ELEV. 349.8 ft TOTAL DEPTH 18.9 ft NORTHING 690.692 EASTING 2.043.2373 24 HR. Dry COLLAR ELEV. 349.8 ft TOTAL DEPTH 18.9 ft NORTHING 690.692 EASTING 2.043.2373 24 HR. Dry COLLAR ELEV. 349.8 ft TOTAL DEPTH 18.9 ft NORTHING 690.692 EASTING 2.043.2373 24 HR. Dry COLLAR ELEV. 349.8 ft TOTAL DEPTH 18.9 ft NORTHING 690.692 EASTING 2.043.2373 24 HR. Dry COLLAR ELEV. 349.8 ft TOTAL DEPTH 18.9 ft NORTHING 690.692 EASTING 2.043.2373 24 HR. Dry COLLAR ELEV. 349.8 ft TOTAL DEPTH 18.9 ft NORTHING 690.692 EASTING 2.043.2373 24 HR. Dry COLLAR ELEV. 349.8 ft TOTAL DEPTH 18.9 ft NORTHING 690.692 EASTING 2.043.2373 EAST	WBS 49745.1.1 TIP HE-0002 COUNTY WAKE	GEOLOGIST Jacob Rose		WBS 49745.1.1	TIP HE-0002 COUN	NTY WAKE	GEOLOGIST Jacob Rose	
COLLAR ELEV. 352.8 ft TOTAL DEPTH 16.4 ft NORTHING 690,692 EASTING 2,043,323 24 HR. Dry DRILL RETHOR EXAMPLE PETHORS SUNCESS OXES-50X 85% 11/1/22021 DRILL METHOD HS. Augers HAMMER PTP Automatic DRILLER M. Moseley START DATE 12/07/22 COMP. DATE 12	SITE DESCRIPTION Proposed Fujifilm Access Road in Holly Springs		GROUND WTR (ft)	SITE DESCRIPTION Proposed	d Fujifilm Access Road in Holly Spri	ngs		GROUND WTR (ft)
DRILL RIGHAMMER EFF.DATE SUM/2803 CME-550X 83% 1111/22021 DRILL METHOD H.S. Augers HAMMER TYPE Automatic	BORING NO. L_6850AP STATION 68+40 OFFSET 30 ft LT	ALIGNMENT -L-	0 HR . Dry	BORING NO. L_6900SPT	STATION 69+02	OFFSET 30 ft LT	ALIGNMENT -L-	0 HR. Dry
DRILLER M. Moseley START DATE 12/07/22 COMP. DATE 12/07/22 SURFACE WATER DEPTH N/A	COLLAR ELEV. 352.8 ft TOTAL DEPTH 16.4 ft NORTHING 690,6	92 EASTING 2,043,323	24 HR. Dry	COLLAR ELEV. 348.3 ft	TOTAL DEPTH 8.9 ft	NORTHING 690,650	EASTING 2,043,373	24 HR. Dry
ELEV DRIVE DEPTH BLOW COUNT (ft)	DRILL RIG/HAMMER EFF./DATE SUM2603 CME-550X 83% 11/12/2021 DRILL I	IETHOD H.S. Augers HAM	IMER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE S	SUM2603 CME-550X 83% 11/12/2021	DRILL METHOD	H.S. Augers HA	AMMER TYPE Automatic
City	DRILLER M. Moseley START DATE 12/07/22 COMP. DATE 12/	08/22 SURFACE WATER DEPTH	N/A	DRILLER M. Moseley	START DATE 12/06/22	COMP. DATE 12/07/22	SURFACE WATER DEPTH	N/A
Section Service Section Service Section Service Section Service Section Service Section Service Section Sect	(ft) ELEV (ft) 0.5ft 0.5ft 0.5ft 0 25 50 75 100 NO.	'/ O SOIL AND ROCK DE		350 (ft) (10 0.5ft 0.5ft		400	G	
	345 340 336.4 16.4	TRIASSIC RESI Light brown, red, and white 342.3 WEATHERED F Red, TRIASSIC SIL *Hard drilling from 10.5 i *Rig chatter from 16.2 t Boring Terminated WITI PENETRATION TEST Elevation 336.4 ft On Non- (SILTSTON)	ROCK LTSTONE to 16.2 ft BGS to 16.4 ft BGS H STANDARD REFUSAL at -Crystaline Rock IE)	348.3 0.0 2 3 345 344.4 3.9 39 61/0.3 340 339.4 8.9	3		345.3 Light brown, sandy SILT fragmer Light brown, red, and whi contains rock fragments WEATHEREI Red and white, TRIAS *Rig chatter from 4. Boring Terminated W PENETRATION TES Elevation 339.4 ft On No.	ite, silty CLAY (A-7), and root fragments DROCK SIC SILTSTONE 7 to 8.9 ft BGS SIT STANDARD ST REFUSAL at on-Crystalline Rock

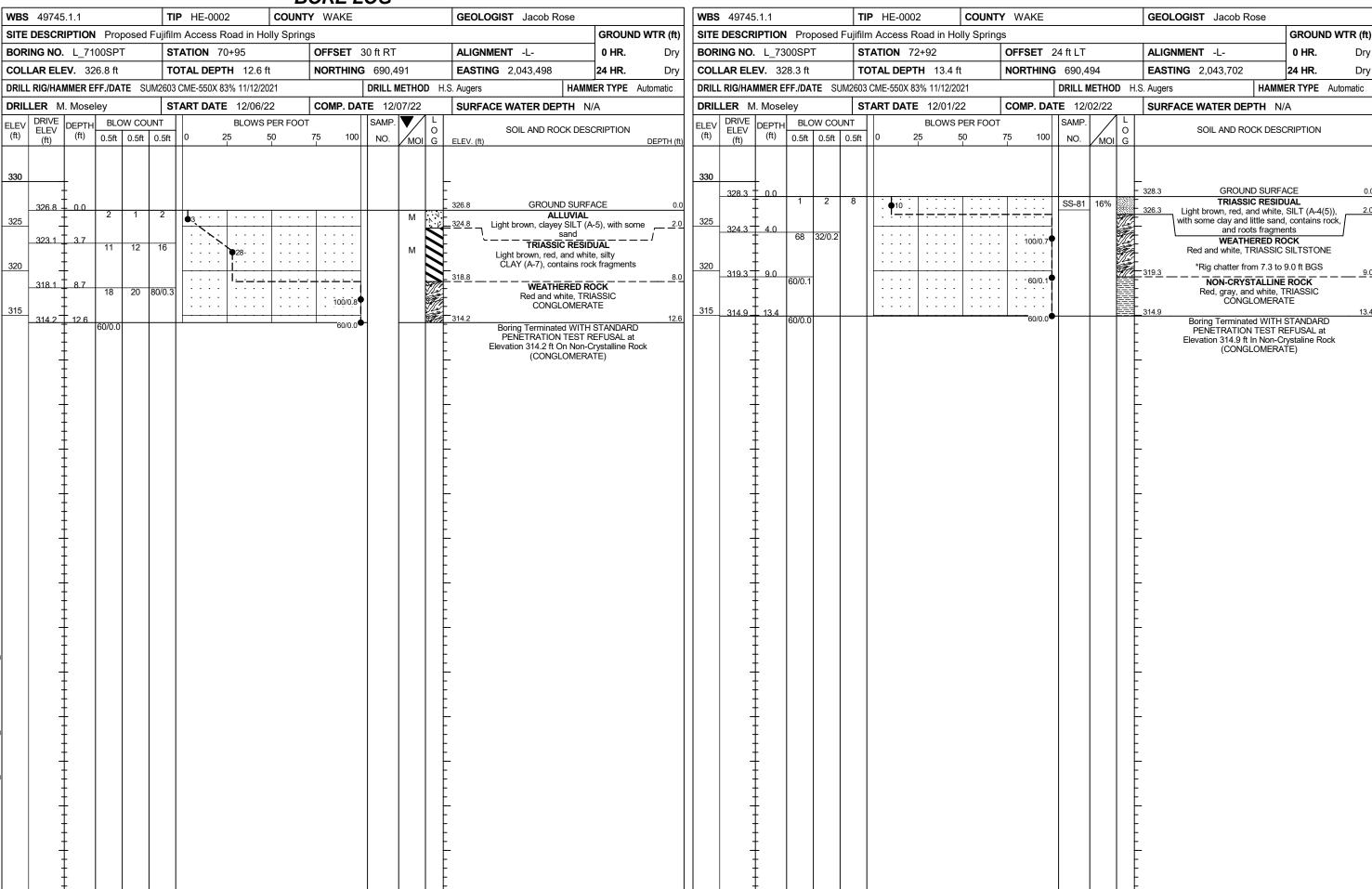


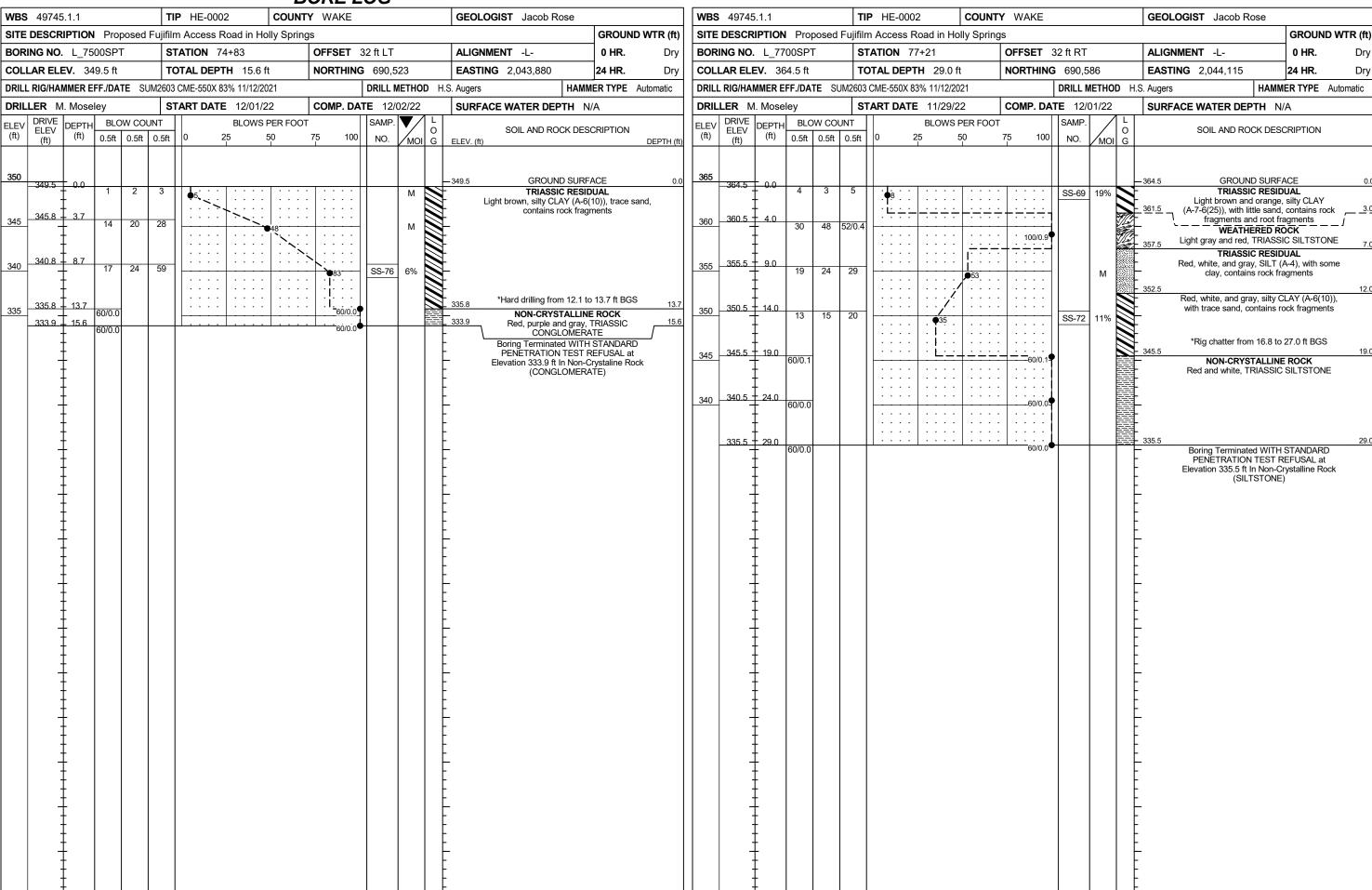
		ORE LOG	1						
WBS 49745.1.1	TIP HE-0002 COUNT	TY WAKE	GEOLOGIST Jacob Rose	_	WBS 49745.1.1		NTY WAKE	GEOLOGIST Jacob Rose	
SITE DESCRIPTION Proposed F	<u> </u>	-	1	GROUND WTR (ft)	· · · · · · · · · · · · · · · · · · ·	Fujifilm Access Road in Holly Spri	<u> </u>		GROUND WTR (ft)
BORING NO. Y1_1650SPT	STATION 16+50	OFFSET 32 ft RT	ALIGNMENT -Y1-	0 HR . Dry	BORING NO. Y1_1750SPT	STATION 17+50	OFFSET 25 ft RT	ALIGNMENT -Y1-	0 HR. Dry
COLLAR ELEV. 269.5 ft	TOTAL DEPTH 12.7 ft	NORTHING 690,157	EASTING 2,037,646	24 HR. Dry	COLLAR ELEV. 267.7 ft	TOTAL DEPTH 14.1 ft	NORTHING 690,128		24 HR. Dry
DRILL RIG/HAMMER EFF./DATE SUM	M2603 CME-550X 83% 11/12/2021	DRILL METHOD H.S	S. Augers HAMN	MER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE SU	UM2603 CME-550X 83% 11/12/2021	DRILL METHO	DD H.S. Augers HAMMER	R TYPE Automatic
DRILLER M. Moseley	START DATE 11/29/22	COMP. DATE 12/01/22	SURFACE WATER DEPTH N	I/A	DRILLER M. Moseley	START DATE 11/29/22	COMP. DATE 12/01/22	SURFACE WATER DEPTH N/A	ı
	START DATE 11/29/22 NT BLOWS PER FOOT 0.5ft 0 25 50	COMP. DATE 12/01/22 T 75 100 NO. MOI G	SURFACE WATER DEPTH N	ACE 0.0 IKMENT In, silty CLAY contains gravel 3.0 ents 5010AL), with little sand ay 0.9.0 ft BGS 9.0 E ROCK SIC SILTSTONE ER REFUSAL at Crystalline Rock		START DATE 11/29/22 UNT BLOWS PER FOO 0.5ft 0 25 50 17 27	OT 75 100 SAMP. NO. MOI	SURFACE WATER DEPTH N/A L O SOIL AND ROCK DESCR G GROUND SURFACE	CE 0.0 MENT (3)), with little 2.0 root fragments AND (A-2-4), ents CK 7.5 EL 1.5 ft BGS 14.1 BGS 14.1 TANDARD FUSAL at
NCDOT BORE DOUBLE HE-0002_GINT LOGS_UPDATED5.GPJ NC_DOT.GDT 4/21/23									

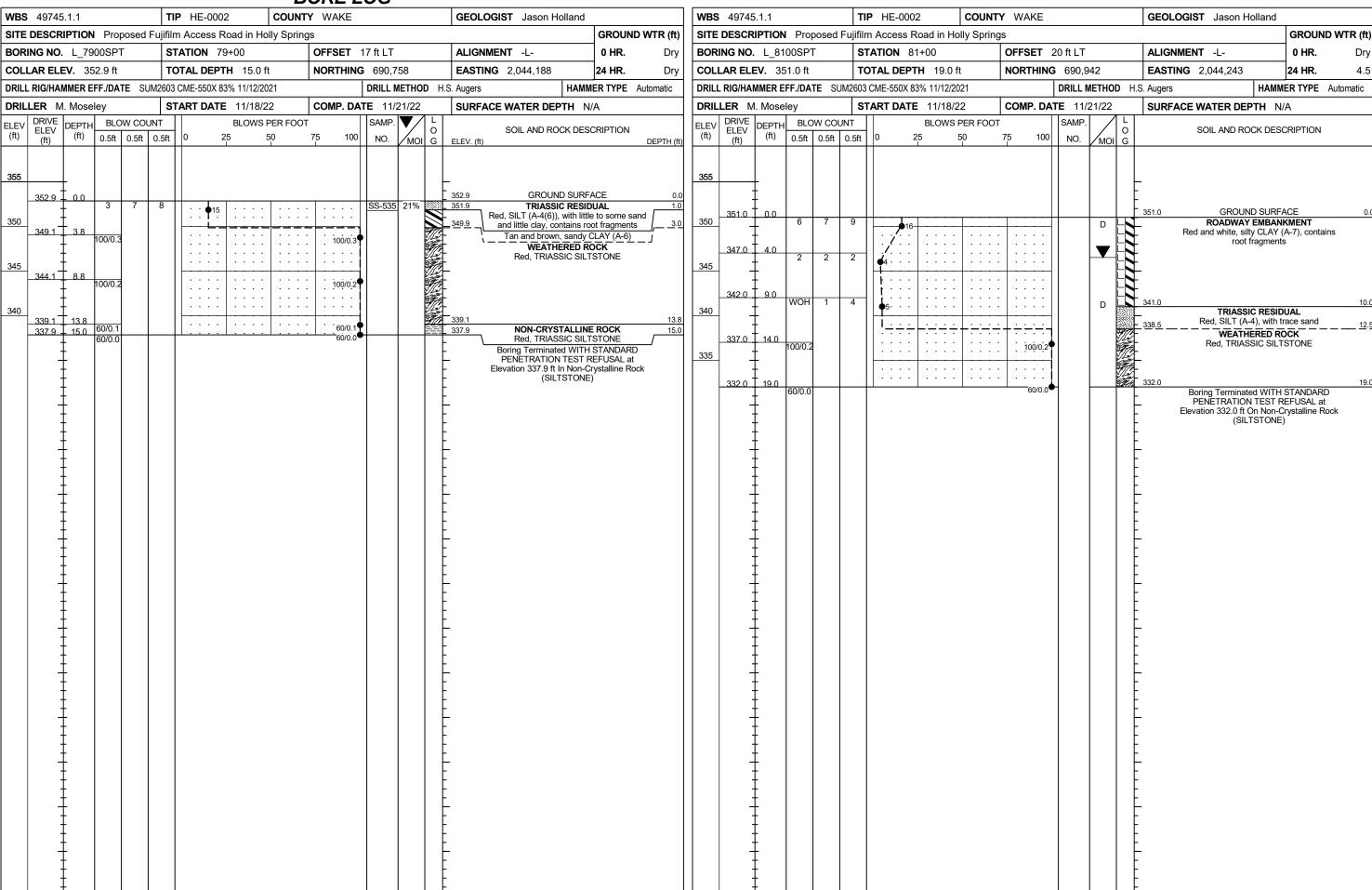

CORE PHOTOGRAPHIC RECORD HE-0002 PROPOSED FUJIFILM ACCESS ROAD IN HOLLY SPRINGS NORTH CAROLINA

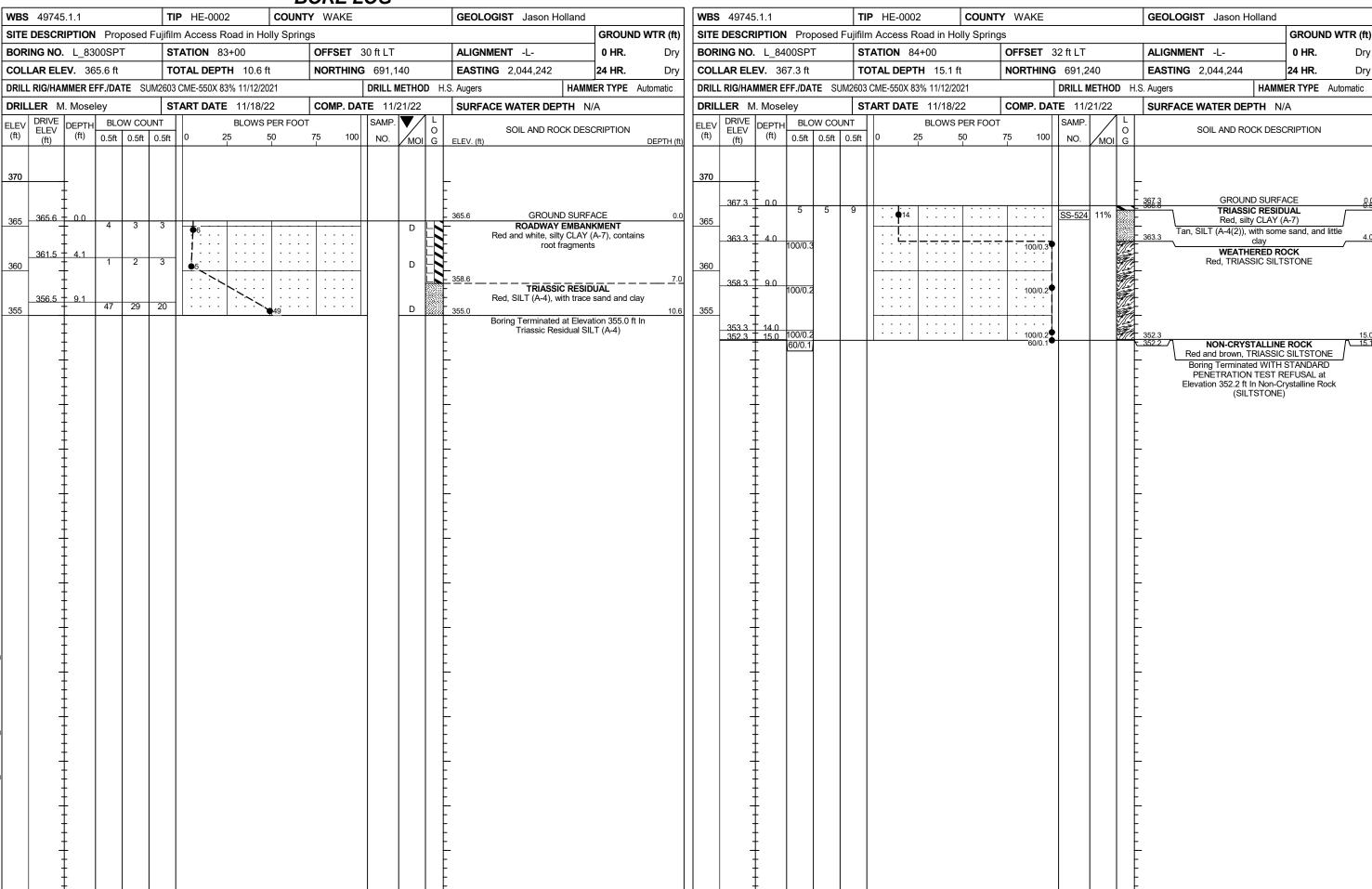
L_6350CORE

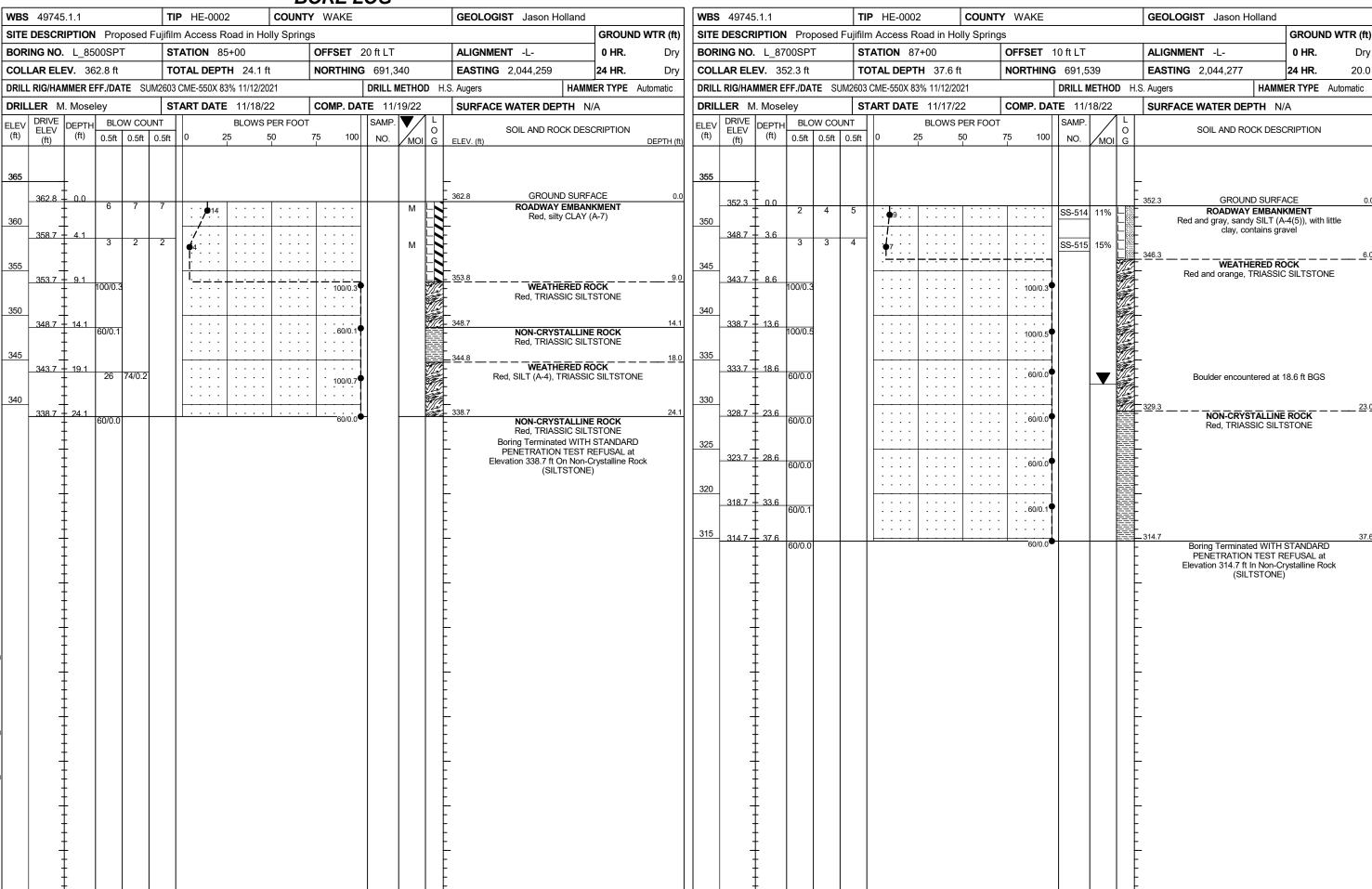
BOX 1 of 2: 9.1-18.8 FEET

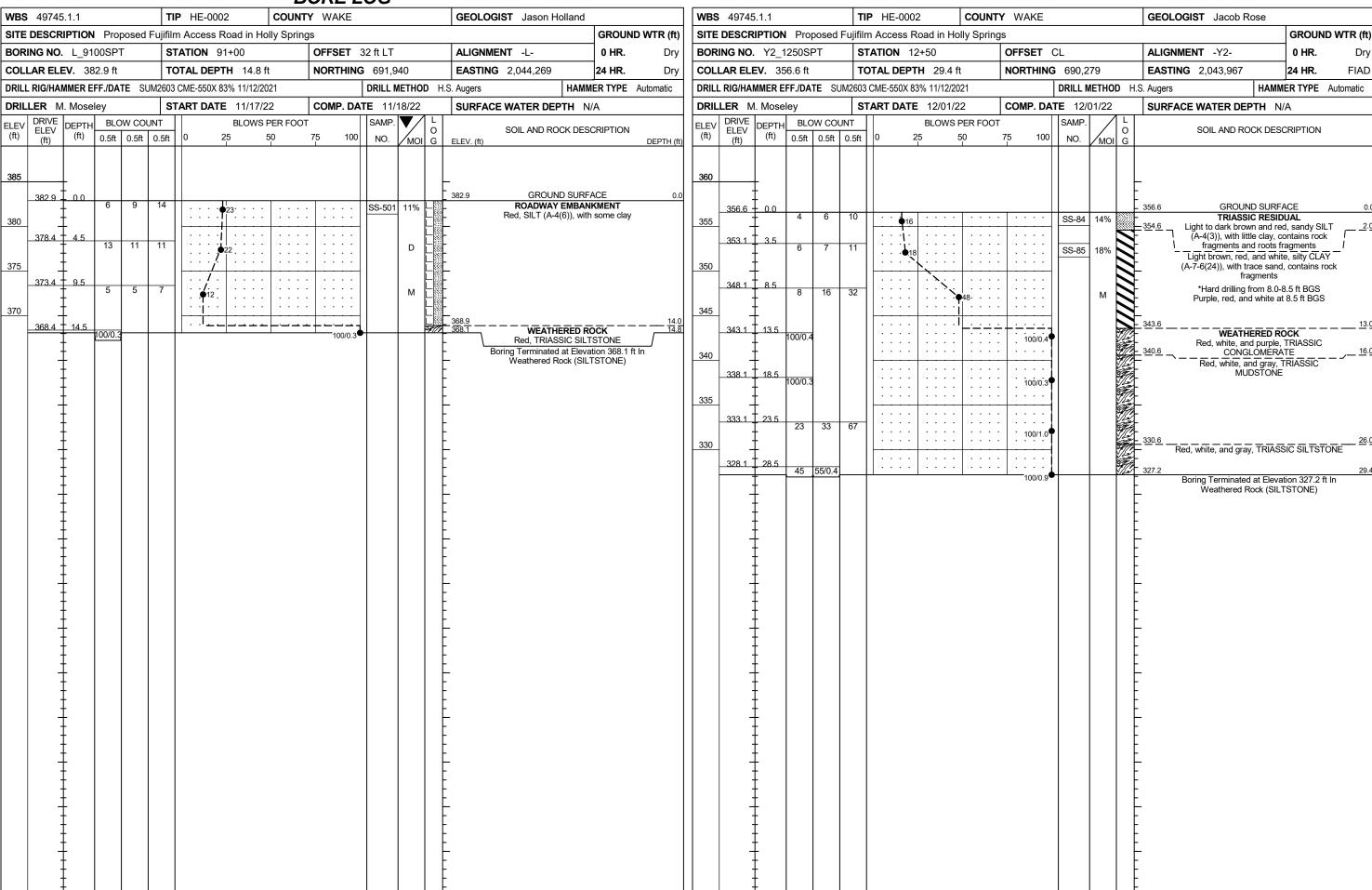

BOX 2 of 2: 18.8-19.1 FEET




						-L- SOIL	TEST F	RESULT	S						
SAMPLE	STATION	OFFRET	DEPTH INTERVAL	AASHTO	L.L	P.I.		% BY	WEIGHT		% PAS	SING (SI	IEVES)	%	%
NO.	STATION	OFFSET	DEPIHINIEKVAL	CLASS.	L.L		C. SAND	F. SAND	SILT	CLAY	10	40	200	MOISTURE	ORGANIC
SS-59	10+64	20' RT	0.0-1.5	A-7-6(19)	41	18	1.7	7.2	56.6	34.5	99.1	98	94	15	
SS-44	13+00	20' LT	4.5-5.3	A-7-5(24)	57	21	3.8	8	47.1	41.1	91.8	90	84	23	-
SS-45	13+00	20' LT	8.8-10.3	A-7-5(16)	44	13	1.1	6.1	64.5	28.4	99.7	99	95	27	-
SS-39	14+85	32' LT	0.0-1.5	A-7-6(21)	49	21	5.2	8.8	45.8	40.2	81.4	79	72	27	
SS-40	14+85	32' LT	4.3-5.8	A-7-6(22)	50	21	3.1	9.1	44.5	43.3	95.5	94	87	18	-
SS-34	17+00	24' LT	0.0-1.5	A-4(4)	26	7	7.8	16	50.8	25.4	95.3	91	78	15	-
SS-35	17+00	24' LT	4-5.5	A-7-5(25)	57	26	9.9	9.8	35.9	44.4	86.3	80	72	16	-
SS-21	22+66	32' LT	0.0-1.5	A-4(0)	22	4	20.7	19.3	45	15	67.6	57	44	10	-
SS-22	22+66	32' LT	3.9-5.4	A-4(3)	34	4	18.6	15.4	53.2	12.8	78.9	69	54	12	
SS-16	24+87	32' LT	0.5-1.5	A-4(0)	18	0	11	19.8	55.2	14	96.3	91	72	16	-
SS-17	24+87	32' LT	4.8-5.3	A-4(3)	36	5	22.3	14.1	43.6	20.1	80.7	68	54	15	-
SS-1001	26+73	28' RT	0.5-1.5	A-6(9)	33	14	11.1	16.3	44.6	27.9	92	86	71	19	-
SS-1002	26+73	28' RT	3.9-5.4	A-4(5)	36	10	25	15.7	41.3	18.1	80.9	66	51	9	-
SS-12	32+55	38' RT	0.0-1.5	A-4(0)	27	2	24.2	18.5	42.7	14.6	88.3	75	54	16	-
SS-167	37+00	35' LT	3.5-5	A-4(5)	29	7	4.5	18.1	54.9	22.6	98.8	96	82	8	-
SS-161	39+14	10' RT	0.0-1.5	A-7-6(16)	41	16	5.8	9.5	44.6	40	89.1	86	78	21	-
SS-162	39+14	10' RT	4.1-5.6	A-4(6)	35	10	17.3	14.8	43.9	24.1	97.2	87	69	12	-
SS-156	41+00	32' LT	0.0-1.0	A-7-6(18)	45	22	10.5	12	42.5	35.1	85.4	79	69	21	
SS-157	41+00	32' LT	4.2-5.7	A-7-5(14)	48	15	12.4	11.9	41.4	34.4	87.9	80	69	15	
SS-153	43+00	32' LT	4.1-5.6	A-7-5(23)	57	26	13.2	10.5	37.9	38.3	84.8	77	66	19	-
SS-148	45+00	32' LT	0.0-1.5	A-6(11)	35	15	10.3	14.6	44.2	31	94.2	88	75	25	-
SS-145	47+00	20' RT	0.0-1.5	A-6(7)	29	11	9.7	13.4	52.9	23.9	89.5	83	73	17	-
SS-143	49+00	20' LT	0.0-1.5	A-6(11)	35	14	8.9	10.6	51.1	29.4	90.1	84	76	15	-
SS-135	53+35	32' RT	0.0-1.5	A-4(1)	27	3	5	21.6	34.7	38.7	99.7	98	79	17	-
SS-126	56+88	31' RT	0.0-1.5	A-6(11)	35	12	6.6	7.1	51.8	34.5	98.2	93	87	18	-
SS-127	56+88	31' RT	4-5.5	A-6(12)	33	12	0.6	1.9	62.4	35.1	100	99	98	8	-
SS-122	58+81	32' RT	3.6-5.1	A-4(6)	29	7	1.4	13	67.1	18.6	100	99	91	6	-
SS-115	61+00	31' LT	0.0-1.5	A-4(10)	33	10	2.7	4.5	57.8	35.1	99.7	98	95	18	-
SS-94	65+26	30' LT	0.0-1.5	A-6(11)	36	12	7.5	9.8	49.4	33.3	95.3	90	83	14	-
SS-95	65+26	30' LT	3.9-5.4	A-6(9)	31	11	5.9	8.4	51.5	34.1	97.4	93	87	8	


	-Y1- SOIL TEST RESULTS														
SAMPLE	MPLE STATION OFFSET DEPTH INTERVAL AASHTO L.L P.I. % BY WEIGHT % PASSING (SIEVES)												%	%	
NO.	STATION	OFF SET	DEFININTERVAL	CLASS.	L.L	F.I.	C. SAND	F. SAND	SILT	CLAY	10	40	200	MOISTURE	ORGANIC
SS-48	13+04	32' LT	0.6-1.5	A-4(5)	29	8	11	10	57.9	21.1	83.9	77	69	22	-
SS-49	13+04	32' LT	3.5-5	A-4(3)	26	5	6	12.3	65	16.7	85.8	82	74	16	-
SS-52	14+11	60' LT	0.0-1.5	A-6(11)	36	14	8.7	13.5	49.4	28.4	82.3	77	67	18	-
SS-56	15+65	27' LT	3.9-5.4	A-6(9)	35	14	14.1	16.6	45	24.3	79.9	73	58	21	-
SS-62	16+50	32' RT	0.0-1.0	A-6(7)	29	12	8.6	21.5	50.5	19.4	96.1	92	73	7	-
SS-63	16+50	32' RT	5.0-5.5	A-4(8)	36	9	7.1	14.4	54.4	24.1	98.5	96	81	12	-
SS-65	17+50	25' RT	0.0-1.5	A-4(3)	25	7	11.6	21.2	49.6	17.6	87.3	82	64	5	-


						ROCK TE	EST RESUL	.TS				
BORING	SAMPLE NO.	CTATION	OFFSET	DEPTH	LENGTH	DIAMETER	AREA	VOLUME	VOLUME	UNIT WEIGHT	COMPRESSIVE	TESTING METHOD
BORING	SAMPLE NO.	STATION	OFFSET	INTERVAL (ft)	(in.)	(in.)	(sq. in.)	(in. ³)	(cf)	(pcf)	STRENGTH (psi)	TESTING METHOD
L_6350_CORE	RS-1	63+63	60FT LT	11.7-12.1	4.0	1.97	3.05	12.29	0.00711	156.9	2210	ASTM D-7012-14 METHOD C
L_6350_CORE	RS-2	63+63	60FT LT	15.1-16.1	4.46	1.97	3.06	13.65	0.00789	159.7	4500	ASTM D-7012-14 METHOD C
L_6350_CORE	RS-3	63+63	60FT LT	17.6-18.1	4.52	1.98	3.07	13.86	0.00802	156.6	840	ASTM D-7012-14 METHOD C



BORE LOG			
WBS 49745.1.1 TIP HE-0002 COUNTY WAKE	GEOLOGIST Jason Holland	WBS 49745.1.1 TIP HE-0002 COUNTY WAKE	GEOLOGIST Jason Holland
SITE DESCRIPTION Proposed Fujifilm Access Road in Holly Springs	GROUND WTR (ft)	SITE DESCRIPTION Proposed Fujifilm Access Road in Holly Springs	GROUND WTR (ft)
BORING NO. L_8900SPT STATION 89+00 OFFSET 15 ft LT	ALIGNMENT -L- 0 HR. Dry	BORING NO. L_9050SPT STATION 90+50 OFFSET 8 ft RT	ALIGNMENT -L- 0 HR. Dry
COLLAR ELEV. 376.9 ft TOTAL DEPTH 28.5 ft NORTHING 691,740	EASTING 2,044,279 24 HR. Dry	COLLAR ELEV. 387.0 ft TOTAL DEPTH 9.3 ft NORTHING 691,889	EASTING 2,044,307 24 HR. Dry
DRILL RIG/HAMMER EFF./DATE SUM2603 CME-550X 83% 11/12/2021 DRILL METHOD H			DD H.S. Augers HAMMER TYPE Automatic
DRILLER M. Moseley START DATE 11/17/22 COMP. DATE 11/18/22	SURFACE WATER DEPTH N/A	DRILLER M. Moseley START DATE 11/17/22 COMP. DATE 11/18/22	SURFACE WATER DEPTH N/A
ELEV (ft) DRIVE DEPTH BLOW COUNT BLOWS PER FOOT SAMP. V C C C C C C C C C	SOIL AND ROCK DESCRIPTION ELEV. (ft) DEPTH (ft)	ELEV (ft) DRIVE ELEV (ft) DEPTH (ft) BLOW COUNT (D.5ft) BLOWS PER FOOT (D.5ft) SAMP. MO. MO. MO.	O SOIL AND ROCK DESCRIPTION
380	_	390	
	- ODOLIND QUIDEAGE		- CPOLIND SUBFACE
376.9 0.0 2 3 3 3 6		387.0 0.0 5 6 6 . • 12 D	387.0 GROUND SURFACE 0.0 TRIASSIC RESIDUAL
375	Red, sandy, silty CLAY (A-6(10)), contains gravel		Red and orange, silty CLAY (A-7)
3/3-7 4 4 6 : • 10 : : : : : : : SS-509 11%		383.2 T 3.8	
370 +	<u>-</u>	380	380.0
368.4 † 8.5		378.2 8.8 100/0.5	377.7 Red and brown, TRIASSIC SILTSTONE 9.3
365	Red, silty CLAY (A-7)	1000.5	Boring Terminated at Elevation 377.7 ft In Weathered Rock (SILTSTONE)
363.4 + 13.5	-		F
3 6 14 • 20	-		
360 +	- -		-
358.4 † 18.5	-		F
355	- 355.4		E
353.4 23.5	WEATHERED ROCK Red, TRIASSIC SILTSTONE		E
100/0.2			[
350 348.4 + 28.5	- 355.4		-
346.4 26.3 60/0.0 60/0.0 60/0.0	Boring Terminated WITH STANDARD PENETRATION TEST REFUSAL at		
	Elevation 348.4 ft On Non-Crystalline Rock (SILTSTONE)		<u> </u>
	- (SILTSTONE)		‡
	-		
	-		
	-		
	_		
	-		
	-		
	-		F
	-		F
	_		[-
			[
			E
	-		<u> </u>
ố <u>†</u>	-		<u> </u>
	_		-
	-		
	- -		
	-		
	-		‡
	-		
	-		‡
	-		

DRILLER M. Moseley START DATE 12/01/22 COMP. DATE 12/02/22 SURFACE WATER DEPTH ELEV (ft) DRIVE ELEV (ft) DEPTH (ft) BLOW COUNT (ft) BLOWS PER FOOT (ft) SAMP. NO. MOI G ELEV. (ft) COMP. DATE 12/02/22 SURFACE WATER DEPTH 355 353.0 0.5ft 0.5ft 0.5ft 0 25 50 75 100 NO. MOI G ELEV. (ft) SOIL AND ROCK DI 355 353.0 353.0 GROUND SUI GROUND SUI TRIASSIC RES 350 351.0 Light brown and red, silty with trace sand, contain With trace sand, contain	0 HR.	D WTR (ft)
BORING NO. Y2_1450SPT	0 HR.	O WTR (ft)
COLLAR ELEV. 353.0 ft TOTAL DEPTH 18.8 ft NORTHING 690,472 EASTING 2,043,911 DRILL RIG/HAMMER EFF./DATE SUM2603 CME-550X 83% 11/12/2021 DRILL METHOD H.S. Augers HAI DRILLER M. Moseley START DATE 12/01/22 COMP. DATE 12/02/22 SURFACE WATER DEPTH ELEV (ft) DEPTH (ft) BLOW COUNT (ft) BLOWS PER FOOT 0.5ft SAMP. NO. NO. MOI G ELEV. (ft) SOIL AND ROCK DI ELEV. (ft) 355 353.0 0.0 3 4 8 12 SS-78 16% TRIASSIC RESAMBLE OF TRIASSIC		
DRILL RIG/HAMMER EFF./DATE SUM2603 CME-550X 83% 11/12/2021 DRILL METHOD H.S. Augers HAI DRILLER M. Moseley START DATE 12/01/22 COMP. DATE 12/02/22 SURFACE WATER DEPTH ELEV (ft) DEPTH (ft) BLOW COUNT (ft) BLOWS PER FOOT 0 25 50 75 100 NO. SAMP. NO. L O G ELEV. (ft) SOIL AND ROCK DI ELEV. (ft) 355 353.0 0.0 3 4 8 12 SS-78 16% 351.0 Light brown and red, silty with trace sand, contain	-	Dry
DRILLER M. Moseley START DATE 12/01/22 COMP. DATE 12/02/22 SURFACE WATER DEPTH ELEV (ft) DEPTH (ft) BLOW COUNT (ft) BLOW SPER FOOT 0 25 SAMP. NO. NO. NO. MOI G ELEV. (ft) SOIL AND ROCK DI ELEV. (ft) 353.0 0.0 3 4 8 12. SS-78 16% TRIASSIC RESONT OF 16% (sitty with trace sand, contain	24 HR.	Dry
DRIVE City DEPTH BLOW COUNT BLOWS PER FOOT SAMP. L O G ELEV. (ft) SOIL AND ROCK DI SOIL AND	MER TYPE	Automatic
DRIVE City DEPTH BLOW COUNT 0.5ft	N/A	
(ft) (ft) (ft) (ft) 0.5ft 0.5ft 0.5ft 0 25 50 75 100 NO. MOI G ELEV. (ft) 353.0 0.0 3 4 8		
353.0 GROUND SUI 353.0 GROUND SUI TRIASSIC RE: 351.0 Light brown and red, silty with trace sand, contain	SCRIPTION	DEPTH (ft
353.0 0.0 3 4 8 . •12		
353.0 0.0 3 4 8 . •12		
3 4 8 . • 12 · · · · · · · · · SS-78 16% TRIASSIC RES	RFACE	0.0
350 with trace sand, contain		(2)),
343.2 3.0	s rock fragmen	ts į
349.2 3.8 25 30 36 SS-79 5% Red and white, SILT (A-4 and little to sor	e sand	ау
345		
344.2 8.8 17 19 23		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
340 339.2 13.8 339.3		13.7
339.2 13.8 339.3 339.3 Seed, TRIASSIC S		
WEATHERED	ROCK	/
334.2 18.8 60/0.0 *Rig chatter from 17.2	to 18.8 ft BGS	
+ Boring Terminated WI - PENETRATION TES'		
+ - Elevation 334.2 ft On No	n-Crystalline Ro	
	12)	
 		
<u> </u>		

SHEET 49

						-L- SOIL	TEST R	RESULT	S						
SAMPLE	STATION	OEESET	DEPTH INTERVAL	AASHTO		P.I.		% BY	WEIGHT		% PAS	SING (SI	EVES)	%	%
NO.	STATION	OFFSET	DEPTHINTERVAL	CLASS.	L.L	F.II.	C. SAND	F. SAND	SILT	CLAY	10	40	200	MOISTURE	ORGANIC
SS-81	72+92	24' LT	0.0-1.5	A-4(5)	26	7	6.4	12.8	58.3	22.5	91.3	88	79	16	-
SS-76	74+83	32' LT	8.7-10.2	A-6(10)	30	11	1.4	7.5	62.2	28.8	99.9	99	94	6	-
SS-69	77+21	32' RT	0.0-1.5	A-7-6(25)	50	24	3.4	8.1	43.9	44.6	93.1	90	87	19	-
SS-72	77+21	32' RT	14-15.5	A-6(10)	31	11	1.9	6	60.8	31.3	99.8	99	95	11	-
SS-535	79+00	17' LT	0.0-1.5	A-4(6)	30	8	9.2	14.8	59.1	16.9	98.9	93	80	21	-
SS-524	84+00	32' LT	0.0-1.5	A-4(2)	23	4	6.2	13.8	65.2	14.7	88.9	84	76	11	-
SS-514	87+00	10' LT	0.0-1.5	A-4(5)	28	9	14.4	12.9	52.2	20.5	81.4	72	62	11	-
SS-515	87+00	10' LT	3.6-5.1	A-4(5)	28	9	14.1	17.6	50.4	17.8	84.5	77	62	15	-
SS-508	89+00	15' LT	0.0-1.5	A-6(10)	33	12	9.3	7.8	62.6	20.3	74.5	69	63	8	-
SS-509	89+00	15' LT	3.5-5	A-4(6)	28	9	11.4	9.1	58.8	20.7	70.5	64	58	11	-
SS-501	91+00	32' LT	0.0-1.5	A-4(6)	29	9	7.4	12.3	56	24.3	83	79	70	11	-

	-Y2- SOIL TEST RESULTS														
SAMPLE	STATION	OEESET	DEPTH INTERVAL	AASHTO	- 1 1	L.L P.I. % BY WEIGHT % PASSING (SIEVE								%	%
NO.	STATION	OFFSET	DEPTHINTERVAL	CLASS.	L.L	P.II.	C. SAND	F. SAND	SILT	CLAY	10	40	200	MOISTURE	ORGANIC
SS-84	12+50	CL	0.0-1.5	A-4(3)	27	5	10	15.8	60.4	13.8	68	63	54	14	-
SS-85	12+50	CL	3.5-5	A-7-6(24)	47	22	1.5	6.1	57	35.5	99.2	98	94	18	-
SS-78	14+51	CL	0.0-1.5	A-7-6(22)	46	21	2.6	8.7	50.1	38.5	98.6	97	91	16	-
SS-79	14+51	CL	3.8-5.3	A-4(5)	29	8	10.7	16.9	54.6	17.7	87.5	81	67	5	-
SS-80	14+51	CL	8.8-10.3	A-4(6)	28	9	11	15	57.4	16.7	91.6	83	72	5	-