

August 4, 2023

MEMORANDUM TO: Clark S. Morrison, PhD, PE

State Pavement Design Engineer

North Carolina Department of Transportation

FROM: Joshua D. Fregosi, PE

Program Manager Kleinfelder, Inc

STATE PROJECT: 67015.1.1 (BR-0015)

COUNTY: Davidson

DESCRIPTION: Bridge No. 67 and No. 68 Replacements on US 29/US 70 NB &

SB over SR 1192 (W. 5th Avenue)

SUBJECT: Pavement and Subgrade Investigation Report

Kleinfelder, Inc. has completed the evaluation of the pavement and subgrade investigation for this project and presents the following.

This project consists of the widening of US 29/US 70 (-L-) and replacement of Bridge No. 67 and No. 68 over SR 1192 (-Y1-). At the project location, US 29/US 70 is a four-lane highway consisting of two lanes in the northbound and southbound direction with a grass median dividing the highway. Additionally, the project consists of the widening of SR 1192 (-Y1-), Forest Rose Drive (-DRW1-), and US 29/US 70 northbound exit ramps (-RPD-,-RPD_RT-) to National Boulevard as well as a realignment of Murphy Drive (-Y2-), onramp to US 29/US70 southbound (-RPB-), and US 29/US 70 southbound exit ramp (-LPB-) to SR 1192.

The soils encountered beneath the existing roadway consisted of both roadway embankment and residual soils. Predominant soil types encountered consisted of silty clays (A-7) with lesser amounts of sandy silts (A-4).

Anticipated borrow will likely consist of soil types listed above that meet the Piedmont and Western Area criteria for Acceptance of Borrow Material, Table 1018-1 of the 2024 Standard Specification.

The existing pavement was observed to be in good condition on US 29/US 70 (-L-). Surface pavement distress was not observed on US 29/US 70. The existing pavement was observed to be in worse condition on West 5th Avenue (-Y1-) and Murphy Drive (-Y2-). Surface pavement distress on the West 5th Avenue is primarily characterized by low severity transverse and longitudinal cracking, moderate to high severity fatigue cracking, and rutting (with and without spalling). Transverse, longitudinal, and fatigue crack widths ranged from 3 to 10 mm. Rutting was encountered ranging from 3 to 6 mm deep. Surface pavement distress on Murphy Drive is primarily characterized by moderate to high severity fatigue cracking with spalling. Fatigue crack widths ranged from 6 to 13 mm. Rutting was encountered ranging from 3 to 6 mm deep.

The length of the mainline (US 29/US 70, -L-) is approximately 0.71 mile.

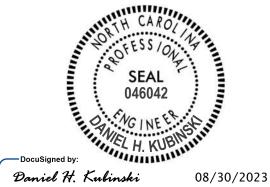
Areas of Special Geotechnical Interest

1. Highly Plastic Soils Encountered Beneath the Existing Roadway and Grass Median Highly plastic soils (PI > 25) were encountered at the following locations based on laboratory test results on the soils:

LINE	STATION AND OFFSET	PI
-L-	18+30 WB ISS	48
-L-	19+60 EB ISS	34
-L-	25+90 WB ISS	35
-L-	31+50 WB OSS	43
-L-	32+75 EB DECEL LN	33
-L-	38+70 WB ISS	39
-L-	42+80 EB ISL	37
-Y1-	15+70 RT LN	35
-Y2-	16+20 LT LN	34

2. Groundwater:

Groundwater was not observed during this investigation.


3. Samples Classified as Wet

The subgrade soils at the following locations were classified as wet based on the visual inspection and laboratory test results on the soils:

LINE	STATION AND OFFSET	MOISTURE (%)
-L-	31+50 WB OSS	35.0
-L-	38+70 WB ISS	25.9
-Y1-	15+70 RT LN	24.8
-Y2-	16+20 LT LN	32.8

Prepared by, KLEINFELDER, INC. NC Firm License No. F-1312

AB2F7FFB796A411... Daniel H. Kubinski, PE

North Carolina License No. 046042

Joshua D. Fregosi, PE Program Manager

Document Not Considered Final Unless All Signatures Are Completed

DHK/JDF:jrs

Pavement and Subgrade Investigation ATTACHMENT:

Pavement Core Evaluation

-00
BR-
.••
CE
EN
ER
EF

CONTENTS

DESCRIPTION TITLE SHEET

PLAN SHEETS

LEGEND, ABBREVIATIONS

ROADWAY TITLE SHEET

LABORATORY TEST RESULTS

PAVEMENT INVESTIGATION DATA SHEET

KESSLER DUAL MASS DCP DATA SHEETS PAVEMENT CORE PHOTOGRAPHS

SHEET NO.

2 - 2A

4 - 6

8 - 17

18 - 19

20 - 24

7015

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

ROADWAY SUBSURFACE INVESTIGATION

COUNTY DAVIDSON

PROJECT DESCRIPTION BRIDGE NO. 67 AND NO. 68 REPLACEMENTS ON US 29/US 70 NB & SB OVER **SR** 1192 (W. 5TH AVENUE)

PAVEMENT AND SUBGRADE INVESTIGATION

STATE PROJECT REFERENCE NO. NO. BR-0015

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FILED BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT (9)9) 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

CENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS NIDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MICHORY WAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MICHORY DESCRIPTIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MICHORY DESCRIPTIONS AND AS MELLINIAR THE REACTORS. INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

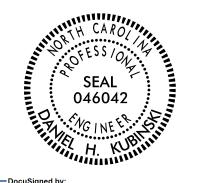
THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT, THE DEPARTMENT DOES NOT WARRANT OR QUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPHION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO PERFORM INDEPENDENT SUBSURFACE INVESTIGATIONS AND MAKE INTERPRETATIONS AS NECESSARY TO CONFIRM CONDITIONS ENCOUNTERED ON THE PROJECT, THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

NOTES:

1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

D. KUBINSKI M. FOSTER TRIGON EXPLORATION INVESTIGATED BY _KLEINFELDER, INC DRAWN BY __D. KUBINSKI CHECKED BY J. FREGOSI SUBMITTED BY KLEINFELDER, INC


PERSONNEL

Prepared in the Office of:

KLEINFELDER 422 Gallimore Dairy Road, Suite B

DATE AUGUST 2023

Greensboro, North Carolina 27409 NC Engineering Firm License No. F-1312

Daniel H. Kulinskis/30/2023

-AB2F7FERZRAA11AF

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

PROJECT REFERENCE NO. SHEET NO.

BR-0015

2

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM DI556). SOIL CLASSIFICATION	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. <u>UNIFORMLY GRADED</u> - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. <u>GAP-GRADED</u> - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL. SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL. THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN	<u>ALLUVIUM (ALLUV.)</u> - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. <u>AQUIFER</u> - A WATER BEARING FORMATION OR STRATA.
IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	REPRESENTED BY A ZONE OF WEATHERED ROCK.	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS: WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES >	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED. MINERALOGICAL COMPOSITION	ROCK (WR) 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS ORGANIC MATERIALS CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) ORGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	CRYSTALLINE ROCK (CR) FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE.	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	ONEISS, GABBRO, SCHIST, ETC. NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN FOR TOWN AND A COARSE COARSE TO THE TOWN AND A COARSE TO THE TOWN AND A COARSE TOWN AND A	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
00000000000000000000000000000000000000	COMPRESSIBILITY SLIGHTLY COMPRESSIBLE LL < 31	ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
SYMBOL 000000000000000000000000000000000000	MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDE BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
*10 50 MX GRANULAR SIL1- MUCK,	PERCENTAGE OF MATERIAL	(CP) SHELL BEDS, ETC. WEATHERING	<u>DIKE</u> - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
**40 38 MX 50 MX 51 MN 51 MN 35 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN 56 MN 5	GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER	ROCKS OR CUTS MASSIVE ROCK. DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
MATERIAL PASSING *40 LL	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%	HAMMER IF CRYSTALLINE. VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, (V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF	HORIZONTAL. <u>DIP DIRECTION (DIP AZIMUTH)</u> - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE
PI 6 MX NP IW MX IW MX II MN II MN IW MX IW MX II MN II MN MODERATE ORGANIC	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE GROUND WATER	OF A CRYSTALLINE NATURE.	LINE OF DIP, MEASURED CLOCKWISE FROM NORTH. FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE
USUAL TYPES STONE FRAGS. OF MAIN SULTY OR CLAYEY SILTY CLAYEY MATTER	✓ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO (SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY, IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED, CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE. FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
MATERIALS SAND SAND GRAVEL AND SAND SUILS SUILS	STATIC WATER LEVEL AFTER 24 HOURS	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN (MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY, ROCK HAS	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.
GEN. RATING AS SUBGRADE EXCELLENT TO COOD FAIR TO POOR POOR UNSUITABL	PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA SPRING OR SEEP	DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ;PI OF A-7-6 SUBGROUP IS > LL - 30		MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
CONSISTENCY OR DENSENESS SOMEOSTATES OF RANGE OF STANDARD RANGE OF UNCONFINED	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES 'CLUNK' SOUND WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE COMPACTNESS OR CONSISTENCY PENETRATION RESISTENCE COMPRESSIVE STRENGTH (N-VALUE) (TONS/FT ²)	ROADWAY EMBANKMENT (RE) 25/825 DIP & DIP DIRECTION WITH SOIL DESCRIPTION OF ROCK STRUCTURES	IF TESTED, WOULD YIELD SPT REFUSAL SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.
GENERALLY VERY LOOSE < 4	SOIL SYMBOL SPIND SLOPE INDICATOR POPT ONT TEST BORING SLOPE INDICATOR INSTALLATION	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
CRANULAR	M	IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
(NON-COHESIVE) DENSE 30 TO 50 VERY DENSE > 50	ARTIFICIAL FILL (AF) OTHER AUGER BORING CONE PENETROMETER THAN ROADWAY EMBANKMENT AUGER BORING CONE PENETROMETER TEST	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
VERY SOFT < 2 < 0.25 GENERALLY SOFT 2 TO 4 0.25 TO 0.5	— INFERRED SOIL BOUNDARY — CORE BORING SOUNDING ROD	(V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <i>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</i>	OF AN INTERVENING IMPERVIOUS STRATUM. RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
SILT-CLAY	INFERRED ROCK LINE MONITORING WELL TEST BORING WITH CORE	COMPLETE ROCK REDUCED TO SOIL, ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	ROCK QUALITY DESIGNATION (RQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
(COHESIVE) VERY STIFF 15 TO 30 2 TO 4	TTTTT ALLUVIAL SOIL BOUNDARY A PIEZOMETER INSTALLATION - SPT N-VALUE	SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
HARD > 30 > 4 TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS	SAPPOLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PAREN ROCK.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270	UNDERCHT UNCLASSIFIED EXCAVATION - TANK UNCLASSIFIED EXCAVATION -	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053 BOULDER COBBLE GRAYEL COARSE CAND FINE CAND SILT CLAY	UNSUITABLE WASTE UNCLASSIFIED EXCAVATION - UNDERCUT UN	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN.	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
(BLDR.) (COB.) (GR.) SANU SANU (SL.) (CL.)	ABBREVIATIONS	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.05 0.005 SIZE IN. 12 3	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED CL CLAY MOD MODERATELY 7 - UNIT WEIGHT	BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS IN OR BPF) OF A 140 LB, HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL
SOIL MOISTURE - CORRELATION OF TERMS SOIL MOISTURE SCALE FIELD MOISTURE COURSE FOR SISTER MOISTURE OFFICE ASSOCIATION.	CPT - CONE PENETRATION TEST NP - NON PLASTIC $\gamma_{ m d}$ - DRY UNIT WEIGHT CSE COARSE ORG ORGANIC	POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY
(ATTERBERG LIMITS) DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE.	TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY (SAT.) FROM BELOW THE GROUND WATER TABLE	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH	STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
	F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL.	THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
PLASTIC SEMISOLID; REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL FRAGS FRAGMENTS W - MOISTURE CONTENT CBR - CALIFORNIA BEARING	FRACTURE SPACING BEDDING	BENCH MARK: N/A
(PI) PL PLASTIC LIMITATTAIN OPTIMUM MOISTURE	HI HIGHLY V - VERY RATIO	TERM SPACING TERM THICKNESS VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET	
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	EQUIPMENT USED ON SUBJECT PROJECT DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	WIDE	ELEVATION: N/A FEET
SL _ SHRINKAGE LIMIT	CME-45C CLAY BITS AUTOMATIC MANUAL	CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET	NOTES:
- DRY - (D) ATTAIN OPTIMUM MOISTURE	X CME-55 CONTINUOUS FLIGHT AUGER CORE SIZE:	THINLY LAMINATED < 0.008 FEET	• PAVEMENT CORE WITH KESSLER DUAL MASS DCP TEST
PLASTICITY	X 8*HOLLOW AUGERS L-H	INDURATION	→ HAND AUGER WITH KESSLER DUAL MASS DCP TEST → PAVEMENT CORE
<u>PLASTICITY INDEX (PI)</u> <u>DRY STRENGTH</u> NON PLASTIC 0-5 VERY LOW	CME-550 HARD FACED FINGER BITS -N	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. RUBBING WITH FINGER FREES NUMEROUS GRAINS;	Y TATEMENT CORE
SLIGHTLY PLASTIC 6-15 SLIGHT	VANE SHEAR TEST CASING WY ADVANCER HAND TOOLS:	GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
MODERATELY PLASTIC 16-25 MEDIUM HIGHLY PLASTIC 26 OR MORE HIGH	PORTABLE HOIST TRICONE STEEL TEETH X HAND AUGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER,	
COLOR	TRICONE TUNGCARB. SOUNDING ROD	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE;	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	X CORE BIT (4 INCH DIAMETER) VANE SHEAR TEST	DIFFICULT TO BREAK WITH HAMMER.	
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	KESSLER DUAL MASS DCP	EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE; SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-

PROJECT REFERENCE NO.	SHEET NO.
BR-0015	2A

ABBREVIATIONS

N/A - NOT APPLICABLE

NM - NOT MEASURED

KDCP - KESSLER DUAL MASS DCP

PS - PAVED SHOULDER

WB - WESTBOUND

EB - EASTBOUND

LT - LEFT

RT - RIGHT

OSS - OUTSIDE SHOULDER

ISS - INSIDE SHOULDER

OSL - OUTSIDE LANE

DECEL - DECELERATION

ACCEL - ACCELERATION

LN - LANE

WL - WHITE LINE

YL - YELLOW LINE


AG - AT GRADE

F - FILL

C - CUT

CR - CROWN

SU - SUPERELEVATION

BR-0015 1" = 100' | SHEET 4

BR-0015 1" = 100' | SHEET 5

PAVEMENT INVESTIGATION DATA SHEET

TIP (WBS): BR-0015 (67015.1.1)

County: Davidson

Project: Bridge No. 67 and No. 68 Replacements on US 29/US 70 NB & SB over SR 1192 (W. 5th Avenue)

Route: I-85 Business, West 5th Avenue, Murphy Drive

Date: May 2023
Notes By: Dan Kubinski

		Widt	h (ft)	(ft)			Paver	ment Sec	ction Thi	ickness	(in)			Subgrade						
Position (Sta.,Lane,Shldr.)	Cut/Fill	Lane(s)	Shoulder	Offset Distance	Crown or Superelevation	Gross to Top of Soil	Asphalt	Concrete	ABC Stone	PADL	Soil Stabilization		Moisture Sample No.	Description	AASHTO Classification	Ξ	Probe Depth (ft)	Asphalt Notes, Severity and Cracking Type	Northing	Easting
L_1830_WB_ISS	С	12.0	1.0 PS	0.0 YL		8.75	6.75	0.00	2.00	0.00	0.00	0.00	S-1	RES: Moist, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7-5		5.0	No pavement distress observed	757,186	1,621,293
L_1830_WB_OSL	С	12.0	4.5 PS	3.0 WL	CR	21.00	7.25	9.25	4.50	0.00	0.00	0.00	N/A	RES: Moist, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7	N/A	5.0	No pavement distress observed	757,198	1,621,278
L_1830_WB_OSS	С	12.0	4.5 PS	1.0 WL		8.50	8.50	0.00	0.00	0.00	0.00	0.00	N/A	RES: Moist, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7	N/A	5.0	No pavement distress observed	757,201	1,621,274
L_1960_EB_ISS	С	12.0	1.5 PS	0.5 YL		7.25	7.25	0.00	0.00	0.00	0.00	0.00	S-2	RES: Moist, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7-5	30.1	5.0	No pavement distress observed	757,274	1,621,392
L_1960_EB_OSL	С	12.0	4.0 PS	3.0 WL	CR	22.25	8.25	9.25	4.75	0.00	0.00	0.00	N/A	RES: Moist, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7	N/A	5.0	No pavement distress observed	757,260	1,621,409
L_1960_EB_OSS	С	12.0	4.0 PS	2.0 WL		22.00	10.25	0.00	11.75	0.00	0.00	0.00	N/A	RES: Moist, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7	N/A	5.0	No pavement distress observed	757,257	1,621,413
L_2590_WB_ISS	AG	12.0	1.0 PS	0.0 YL	CR	8.50	8.50	0.00	0.00	0.00	0.00	0.00	S-3	RES: Moist, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7-5	28.4	5.0	No pavement distress observed	757,786	1,621,759
L_3150_WB_OSS	AG	12.0	7.0 PS	4.0 WL	CR	9.25	9.25	0.00	0.00	0.00	0.00	0.00	S-4	RES: Moist, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7-5	35.0	5.0	No pavement distress observed	758,245	1,622,081
L_3275_EB_DECEL_LN	AG	12.0	3.5 PS	2.5 WL	CR	17.75	10.75	0.00	7.00	0.00	0.00	0.00	S-5	RES: Moist, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7-5	26.7	5.0	No pavement distress observed	758,292	1,622,226
L_3870_WB_ISS	С	12.0	1.0 PS	0.5 YL		7.00	7.00	0.00	0.00	0.00	0.00	0.00	S-6	RES: Wet, Reddish Brown, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7-6	25.9	5.0	No pavement distress observed	758,798	1,622,544
L_3870_WB_DECEL_LN	С	12.0	2.0 PS	6.5 WL	CR	18.00	11.00	0.00	7.00	0.00	0.00	0.00	N/A	RES: Wet, Reddish Brown, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7	N/A	5.0	No pavement distress observed	758,817	1,622,519
L_3870_WB_OSS	С	12.0	2.0 PS	1.5 WL		7.50	7.50	0.00	0.00	0.00	0.00	0.00	N/A	RES: Wet, Reddish Brown, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7	N/A	5.0	No pavement distress observed	758,821	1,622,514
L_4000^	С	N/A	N/A	N/A	N/A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	S-18* N/A	RES: Moist, Olive Gray and Reddish Brown, Moderately Plastic, Silty CLAY (0.0 - 2.2'), Reddish Brown, Slightly Plastic to Non Plastic, Fine Sandy SILT, Trace Mica (2.2 - 6.8')	A-7-5 A-4	33.2 N/A	6.8	Hand auger boring performed for roadway investigation with KDCP test in center grass median	758,893	1,622,633
L_4280_EB_ISL	С	12.0	1.0 PS	1.0' YL		23.00	8.50	9.50	5.00	0.00	0.00	0.00	S-7	RES: Moist, Reddish Brown, Highly Plastic, Silty CLAY, Trace Mica (0.0 - 5.0')	A-7-5	38.4	5.0	No pavement distress observed	759,107	1,622,815
L_4280_EB_ACCEL_LN	С	12.0	4.0 PS	4.5 WL	CR	18.00	9.50	0.00	8.50	0.00	0.00	0.00	N/A	RES: Moist, Reddish Brown, Highly Plastic, Silty CLAY, Trace Mica (0.0 - 5.0')	A-7	N/A	5.0	No pavement distress observed	759,088	1,622,839
L_4280_EB_OSS	С	12.0	4.0 PS	2.0 WL		7.00	7.00	0.00	0.00	0.00	0.00	0.00	N/A	RES: Moist, Reddish Brown, Highly Plastic, Silty CLAY, Trace Mica (0.0 - 5.0')	A-7	N/A	5.0	No pavement distress observed	759,084	1,622,844
L_4600^	С	N/A	N/A	N/A	N/A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	S-20* N/A	RES: Moist, Reddish Brown, Moderately Plastic, Silty CLAY, Trace Mica (0.0 - 3.0'), Brown, Non Plastic, Coarse to Fine Sandy SILT, Trace Mica (3.0 - 6.5')	A-7-5 A-4	26.8	6.5	Hand auger boring performed for roadway investigation with KDCP test in center grass median	759,367	1,623,000
L_4800^	С	N/A	N/A	N/A	N/A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	N/A N/A	RES: Moist, Yellowish Brown and Reddish Brown, Moderately Plastic, Silty CLAY (0.0 - 1.0'), Brown, Non Plastic, Coarse to Fine Sandy SILT, Trace Mica (1.0 - 6.7')	A-7 A-4	N/A N/A	6.7	Hand auger boring performed for roadway investigation with KDCP test in center grass median	759,525	1,623,123
Y1_1570_LT_PS	F	12.5	4.5 PS	1.0 WL		5.00	5.00	0.00	NM	0.00	0.00	0.00	N/A	No auger probe + KDCP test performed; Utility Conflicts	N/A	N/A	N/A	No pavement distress observed	758,098	1,621,920
Y1_1570_LT_LN	F	12.5	4.5 PS	2.5 WL	CR	6.00	6.00	0.00	NM	0.00	0.00	0.00	N/A	No auger probe + KDCP test performed; Utility Conflicts	N/A	N/A	N/A	Low transverse and longitudinal cracking (3 - 6 mm crack width); Moderate to high fatigue cracking (3 - 6 mm crack width); Rutting (3 - 6 mm depth)	758,095	1,621,919
Y1_1570_RT_LN	F	12.5	4.0 PS	3.0 WL	OI.	7.00	7.00	0.00	0.00	0.00	0.00	0.00	S-8	RE: Wet, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7-6	24.8	5.0	Low transverse and longitudinal cracking (3 - 6 mm crack width); Moderate to high fatigue cracking with spalling (3 - 10 mm crack width); Rutting (3 mm depth)	758,077	1,621,912
Y1_1570_RT_PS	F	12.5	4.0 PS	1.0 WL		4.00	4.00	0.00	NM	0.00	0.00	0.00	N/A	No auger probe + KDCP test performed; Utility Conflicts	N/A	N/A	N/A	No pavement distress observed	758,073	1,621,911
Y2_1620_LT_LN Note(s):	С	9.0	0.5 PS	2.0 WL	CR	10.00	3.00	0.00	7.00	0.00	0.00	0.00	S-9	RES: Wet, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7-5	32.8	5.0	Moderate to high fatigue cracking with spalling (6 - 13 mm crack width); Rutting (4 mm depth)	758,472	1,622,178

				PROJECT	T NUMBER			TIP				F	ROUTE		
DYNAMIC	CONE PE	NETROME [*]	TER DATA	6701	15.1.1			BR-001	5			US	29/US	70	
	AND IN-S	SITU CBR		COL	JNTY		FIELD	PROFES	SSIONA	L.		(CREW		
					idson	匚		Dan Kubir	nski			Trigon	ı Exploi	ration	
TES	ST LOCATION		TION		RFORMED										
		_WB_ISS			3/23										
DATUM	CUT/FILL		THING		TING				CORRE	ELATED C	BR V	ALUES	š		
T/ABC	С		7,186		1,293										
			ATION IN CE												
1.6	79.5	0.0	0.0	0.0	0.0			_	_	_	_	_	_	_	_
2.7	81.0	0.0	0.0	0.0	0.0		0.0	20	0.0	40.0	60	0.0	80.0)	100.0
4.3	82.7	0.0	0.0	0.0	0.0		0					H	Щ		刀
6.2	84.5	0.0	0.0	0.0	0.0		L					B/A	BC ST	ONE	_
8.7	86.2	0.0	0.0	0.0	0.0										
10.9	88.0	0.0	0.0	0.0	0.0		4						Ш		
13.4	89.8	0.0	0.0	0.0	0.0		7 '	$\lceil \rceil \rceil \rceil$							
16.0	91.6	0.0	0.0	0.0	0.0										
18.3	93.6	0.0	0.0	0.0	0.0										
19.6	95.5	0.0	0.0	0.0	0.0		8 –			\bot	44	Щ	$\perp \downarrow \downarrow$	$\perp \downarrow \downarrow$	Щ
20.4	97.4	0.0	0.0	0.0	0.0		_ ĭ ˈ								
21.3	99.5	0.0	0.0	0.0	0.0						\Rightarrow				
22.2	101.6	0.0	0.0	0.0	0.0						\Rightarrow	+			
23.1	103.6	0.0	0.0	0.0	0.0	1	12	+++	$\sqcup \sqcup$	- \$	44	\coprod	++	44	Щ.
23.8	105.5	0.0	0.0	0.0	0.0	1				+ $ $					
24.5	107.7	0.0	0.0	0.0	0.0	1			$ \mathcal{X} $						
25.1	109.8	0.0	0.0	0.0	0.0	1		$ \cdot \cdot $	1			$ \cdot $			
25.8	111.8	0.0	0.0	0.0	0.0	1	16 —	+	+++	$\dashv \downarrow \downarrow$	++	++	++	+++	Щ.
26.5	113.9	0.0	0.0	0.0	0.0	1	1	($ \cdot $						
27.0	116.0	0.0	0.0	0.0	0.0			$ \cdot \setminus $							
27.7	118.0	0.0	0.0	0.0	0.0	1		$ \cdot \cdot \setminus$							
28.4	119.6	0.0	0.0	0.0	0.0	1	20 —	+++	\longrightarrow	+++	$+\!+\!-$	++	┼┼┼	$+\!+\!+$	+
29.2	121.7	0.0	0.0	0.0	0.0	1			$ \cdot $			$ \cdot $			
29.9	123.7	0.0	0.0	0.0	0.0	1			1						
30.7	125.3	0.0	0.0	0.0	0.0	1 _@	.		$ \cdot $						
31.5	126.7	0.0	0.0	0.0	0.0	į	24 —	++	+++	+++	++	++	┼┼┼	+++	\dashv
32.6	0.0	0.0	0.0	0.0	0.0	Ě	.	ローレ	∤						
33.9	0.0	0.0	0.0	0.0	0.0	i ş	.] !		1 1						
35.3	0.0	0.0	0.0	0.0	0.0	ä	. 1		$ \cdot $			$ \cdot $			
37.1	0.0	0.0	0.0	0.0	0.0	I §	28 —	1		+++	++	++	++	+++	\dashv
39.6	0.0	0.0	0.0	0.0	0.0	Depth Below Datum (Inches)	. 1		$ \cdot $						
42.5	0.0	0.0	0.0	0.0	0.0	1 §	.		$I \mid \cdot $						
45.1	0.0	0.0	0.0	0.0	0.0	ĕ									
47.3	0.0	0.0	0.0	0.0	0.0	1	32	П,	}	\dashv	+	\vdash	++	+++	\forall
49.3	0.0	0.0	0.0	0.0	0.0	1]						
51.1	0.0	0.0	0.0	0.0	0.0	1			1						
52.9	0.0	0.0	0.0	0.0	0.0	1	3.0								
54.4	0.0	0.0	0.0	0.0	0.0	1	36 —		\Box	$\dashv \dagger \vdash$	\top			++	\Box
57.8	0.0	0.0	0.0	0.0	0.0	1		$ \cdot \cdot $							
59.9	0.0	0.0	0.0	0.0	0.0	4]							
61.7	0.0	0.0	0.0	0.0	0.0	1	40								
63.3	0.0	0.0	0.0	0.0	0.0	1	40								\Box
65.3	0.0	0.0	0.0	0.0	0.0	4		}							
66.9	0.0	0.0	0.0	0.0	0.0	4									
69.9	0.0	0.0	0.0	0.0	0.0	4	44								
71.8	0.0	0.0	0.0	0.0	0.0	4	**								\Box
73.2	0.0	0.0	0.0	0.0	0.0	4			$ \cdot $						
74.7	0.0	0.0	0.0	0.0	0.0	4		$ \cdot \cdot $	1 1						
					1	4	48		<u> </u>				Ш		
76.3	0.0	0.0	0.0	0.0	0.0	4	40 —								

77.9

Note(s): WB - Westbound DECEL - Deceleration EB - Eastbound
OSS - Outside Shoulder ACCEL - Acceleration LN - Lane ISS - Inside Shoulder

0.0

AG - At Grade F - Fill OSL - Outside Lane

0.0

0.0

0.0 0.0

C - Cut SG - Subgrade T/ABC - Top of ABC Stone B/ABC - Bottom of ABC Stone Ex. Gr. - Existing Grade

SHEET 8

TAN V WILL	CONE PE	NETROME:	TER DATA		5 1 1				TIP BR-00					OUTE 29/US 7	'n	
, I IAWINIC		NETRONIE	ILNDAIA		JNTY		EIF			SSION	ΔΙ			CREW	J	
	AND IN-	JIIU ODK			dson		LIE		n Kul		AL			Explora	ation	
TES	ST LOCATIO	N DESCRIPT	TION		RFORMED			De	an Kul	MON			rngoll	LAPIOI	ation	
163		WB_OSL	ION		3/23											
DATUM	CUT/FILL		THING		TING					COPI	RELATED	CBR VA	LUES			
T/ABC	C		,198		1,278					COIN	CLAILD .	JDIN VA				
ואסטכ		/E PENETRA	•		·											
0.7	74.7	0.0	0.0	0.0	0.0											
1.6	75.7	0.0	0.0	0.0	0.0		0.	0	:	20.0	40.0	60.	.0	80.0		100
2.3	77.8	0.0	0.0	0.0	0.0		0					-				\Box
2.9	80.0	0.0	0.0	0.0	0.0	1							4			
3.4	82.2	0.0	0.0	0.0	0.0	1										
3.9	84.5	0.0	0.0	0.0	0.0	1								DO OT		뉙
4.5	86.9	0.0	0.0	0.0	0.0	1	4		_/				В/А	BC ST	JNE	ᅫ
5.4	89.3	0.0	0.0	0.0	0.0	1										
6.1	91.6	0.0	0.0	0.0	0.0	1										
7.2	93.8	0.0	0.0	0.0	0.0	1										
7.5	95.8	0.0	0.0	0.0	0.0		8	$\neg \neg$	\neg	\Box						П
9.5	97.8	0.0	0.0	0.0	0.0				-							
12.2	103.7	0.0	0.0	0.0	0.0	1			}							
14.8	0.0	0.0	0.0	0.0	0.0	1	12									Ш
17.4	0.0	0.0	0.0	0.0	0.0	1	12									
20.1	0.0	0.0	0.0	0.0	0.0				$-$ \langle							
22.1	0.0	0.0	0.0	0.0	0.0	1			}							
24.4	0.0	0.0	0.0	0.0	0.0		16			\bot						Щ
26.5	0.0	0.0	0.0	0.0	0.0											
28.7	0.0	0.0	0.0	0.0	0.0					%						
30.8	0.0	0.0	0.0	0.0	0.0					4						
32.6	0.0	0.0	0.0	0.0	0.0		20			-/-	+++	-		+		Н
34.7	0.0	0.0	0.0	0.0	0.0	1				1			+			
36.7	0.0	0.0	0.0	0.0	0.0											
38.9	0.0	0.0	0.0	0.0	0.0	<u>ش</u>					1					
40.8	0.0	0.0	0.0	0.0	0.0	ă Ř	24	\dashv	+	+	 		++	+ + +	+	H
42.6	0.0	0.0	0.0	0.0	0.0	Datum (Inches)										
44.4	0.0	0.0	0.0	0.0	0.0	Ĕ										
45.9	0.0	0.0	0.0	0.0	0.0	ä										
47.5	0.0	0.0	0.0	0.0	0.0	Below	28		$\dashv \dashv$	1						\forall
48.8	0.0	0.0	0.0	0.0	0.0	8				4	↓					
50.2	0.0	0.0	0.0	0.0	0.0	Depth				+++	$\top \mid \mathbf{I} \mid$					
51.7	0.0	0.0	0.0	0.0	0.0] <u></u>	22		[]							
53.1	0.0	0.0	0.0	0.0	0.0		32									П
53.6	0.0	0.0	0.0	0.0	0.0				I							
54.8	0.0	0.0	0.0	0.0	0.0											
56.3	0.0	0.0	0.0	0.0	0.0		36		$\perp \! \! \perp$				$\perp \downarrow \downarrow \downarrow$	$\perp \perp \downarrow$	$\bot \bot$	Ц
57.3	0.0	0.0	0.0	0.0	0.0											
58.5	0.0	0.0	0.0	0.0	0.0				- \							
59.8	0.0	0.0	0.0	0.0	0.0											
61.0	0.0	0.0	0.0	0.0	0.0		40	4	4	+ + +	+	\Box	+	+	+	Ц
62.4	0.0	0.0	0.0	0.0	0.0											
63.7	0.0	0.0	0.0	0.0	0.0											
65.2	0.0	0.0	0.0	0.0	0.0											
66.1	0.0	0.0	0.0	0.0	0.0		44	-	\dashv	+++	 		+	+		\dashv
66.9	0.0	0.0	0.0	0.0	0.0											
68.0	0.0	0.0	0.0	0.0	0.0											
69.5	0.0	0.0	0.0	0.0	0.0											
71.2	0.0	0.0	0.0	0.0	0.0		48									ш
72.9	0.0	0.0	0.0	0.0	0.0											

WB - Westbound EB - Eastbound OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane

DECEL - Deceleration ACCEL - Acceleration LN - Lane AG - At Grade F - Fill

					NUMBER			TIP	ROUTE
DYNAMIC	CONE PEI		TER DATA		15.1.1			BR-0015	US 29/US 70
	AND IN-S	SITU CBR			JNTY		FIEL	D PROFESSIONAL	CREW
	TICOLTIC	U DECCE	FION		idson			Dan Kubinski	Trigon Exploration
TES	T LOCATIO		IION		RFORMED	-			
DATUM	L_1830_\		TUNC		3/23	-		CORDEL ATED OR	DVALUEC
DATUM	CUT/FILL C		THING ,201		1,274	-		CORRELATED CB	R VALUES
SG	CUMULATIV		•		•	1			
1.9	49.3	0.0	0.0	0.0	0.0				
2.9	50.9	0.0	0.0	0.0	0.0	1	0.0	20.0 40.0	60.0 80.0 1
3.7	52.3	0.0	0.0	0.0	0.0	1	0 -	20.0 +0.0	
4.4	53.6	0.0	0.0	0.0	0.0	1			
5.4	55.1	0.0	0.0	0.0	0.0	1			
6.4	56.6	0.0	0.0	0.0	0.0	1			
7.6	58.2	0.0	0.0	0.0	0.0	1	4 -		
8.6	60.0	0.0	0.0	0.0	0.0	1			
10.0	61.8	0.0	0.0	0.0	0.0	1		$ \cdot \cdot V \cdot \cdot \cdot \cdot \cdot $	
11.7	63.4	0.0	0.0	0.0	0.0	1			
13.9	64.8	0.0	0.0	0.0	0.0	1	8		
16.0	66.8	0.0	0.0	0.0	0.0	1			
17.6	68.0	0.0	0.0	0.0	0.0	1			
18.4	69.6	0.0	0.0	0.0	0.0	1 ,	12		
19.1	71.1	0.0	0.0	0.0	0.0	1	·-		
19.8	72.9	0.0	0.0	0.0	0.0	1			
20.4	74.6	0.0	0.0	0.0	0.0	1			
20.9	76.4	0.0	0.0	0.0	0.0	1 1	16 -		
21.6	78.2	0.0	0.0	0.0	0.0				
22.1	80.0	0.0	0.0	0.0	0.0				
22.5	81.8	0.0	0.0	0.0	0.0				
23.1	83.5	0.0	0.0	0.0	0.0	2	20		
23.8	85.1	0.0	0.0	0.0	0.0	1		$ \cdot \cdot \cdot $	
24.3	86.8	0.0	0.0	0.0	0.0				
24.8	88.5	0.0	0.0	0.0	0.0	જૂ .	.	 	
25.4	90.3	0.0	0.0	0.0	0.0	(Inches)	24		
26.1	93.8	0.0	0.0	0.0	0.0] <u>=</u>		$ \ \ \ \ \ \ \ \ \ \$	
26.6	95.2	0.0	0.0	0.0	0.0	Datum			
27.2	97.0	0.0	0.0	0.0	0.0	lä,	28		
27.7	98.6	0.0	0.0	0.0	0.0	Below	-	 (
28.2	100.1	0.0	0.0	0.0	0.0	ج 9			
28.6	102.0	0.0	0.0	0.0	0.0	Depth			
29.4	104.1	0.0	0.0	0.0	0.0		32 -	┤┤┤ ╂┼┼┤	
29.8	106.2 108.3	0.0	0.0	0.0	0.0	-			
30.4 30.8	110.5	0.0	0.0	0.0	0.0	1			
31.3	113.0	0.0	0.0	0.0	0.0	1			
31.8	115.0	0.0	0.0	0.0	0.0	1 3	36		
32.5	118.5	0.0	0.0	0.0	0.0	1			
33.5	121.1	0.0	0.0	0.0	0.0	1		 (
34.5	123.6	0.0	0.0	0.0	0.0	1.	40		
35.6	126.2	0.0	0.0	0.0	0.0	1 '	••		
37.0	0.0	0.0	0.0	0.0	0.0	1			
38.5	0.0	0.0	0.0	0.0	0.0	1			
40.0	0.0	0.0	0.0	0.0	0.0	1 4	44		
41.6	0.0	0.0	0.0	0.0	0.0	1			
43.1	0.0	0.0	0.0	0.0	0.0	1			
44.6	0.0	0.0	0.0	0.0	0.0	1			
46.1	0.0	0.0	0.0	0.0	0.0	1 4	₄₈ L		
47.8	0.0	0.0	0.0	0.0	0.0	1			

Note(s):
WB - Westbound
EB - Eastbound
OSS - Outside Shoulder DECEL - Deceleration ACCEL - Acceleration LN - Lane ISS - Inside Shoulder AG - At Grade F - Fill OSL - Outside Lane

C - Cut SG - Subgrade T/ABC - Top of ABC Stone B/ABC - Bottom of ABC Stone Ex. Gr. - Existing Grade

SHEET 9

				PROJECT	NUMBER				TIE					ROUTE		
DYNAMIC	CONE PE	NETROMET	TER DATA	6701	5.1.1				BR-0	015				JS 29/US	70	
	AND IN-	SITU CBR		COU	INTY		FIE	LD	PROF	ESSIC	DNAL			CREW		
				Davi	dson			D	an Ku	binski			Tri	gon Explo	ration	
TES	ST LOCATIO	N DESCRIPT	TION	DATE PER	RFORMED											
	L_1960	_EB_ISS		5/2	/23											
DATUM	CUT/FILL	NORT		EAS	TING					CO	RRELA	LED CE	BR VALUI	ES		
SG	С		,274		1,392											
		VE PENETRA														
2.1	63.2	0.0	0.0	0.0	0.0											
3.5	66.1	0.0	0.0	0.0	0.0		0	.0		20.0	40	.0	60.0	80.0	1	100
5.0	70.3	0.0	0.0	0.0	0.0	4	Ů			$\bigcup \bigcup$						
5.8	74.5	0.0	0.0	0.0	0.0	4				7_						
6.9	79.0	0.0	0.0	0.0	0.0	-										
8.1	83.2	0.0	0.0	0.0	0.0	4	4	<u> </u>	$\sqcup \sqcup$	+	\Rightarrow			-	\square	
9.0	87.6	0.0	0.0	0.0	0.0					$\langle \langle \rangle \rangle$						
10.4	91.2	0.0	0.0	0.0	0.0	-				\mathcal{M}						
12.1	94.6	0.0	0.0	0.0	0.0											
13.4	98.2	0.0	0.0	0.0	0.0	-	8	\vdash	H	+	+++	\vdash		+++	+++	\dashv
15.2 17.2	101.4 105.3	0.0	0.0	0.0	0.0				14							
20.2	105.3	0.0	0.0	0.0	0.0	-				$\uparrow \uparrow$		+			<u> </u>	
23.5	111.9	0.0	0.0	0.0	0.0							+			 	
25.0	115.2	0.0	0.0	0.0	0.0	1	12	\vdash	$\sqcap \sqcap$	\top	++					ᅦ
25.7	119.1	0.0	0.0	0.0	0.0	1						U				
26.4	123.2	0.0	0.0	0.0	0.0	1								-		
26.8	126.7	0.0	0.0	0.0	0.0	1	16				سلرا					
27.3	0.0	0.0	0.0	0.0	0.0	1	10			П		#	-			
27.9	0.0	0.0	0.0	0.0	0.0	1			<	47						
28.7	0.0	0.0	0.0	0.0	0.0	1				≯⊟						
29.1	0.0	0.0	0.0	0.0	0.0	1	20	Ц.		+						ᅵ
29.6	0.0	0.0	0.0	0.0	0.0	1										
30.2	0.0	0.0	0.0	0.0	0.0	1										
30.6	0.0	0.0	0.0	0.0	0.0	1										
31.1	0.0	0.0	0.0	0.0	0.0	i š	24	-		+					+	\dashv
31.6	0.0	0.0	0.0	0.0	0.0	Datum (Inches)										
32.1	0.0	0.0	0.0	0.0	0.0	Ę			/							
32.9	0.0	0.0	0.0	0.0	0.0	ă			/							
33.5	0.0	0.0	0.0	0.0	0.0	Below	28	\vdash		+		$\dashv \vdash$		+++	+++	ᅦ
34.2	0.0	0.0	0.0	0.0	0.0	å										
34.9	0.0	0.0	0.0	0.0	0.0	Depth										
35.5	0.0	0.0	0.0	0.0	0.0	ے [32									
36.2	0.0	0.0	0.0	0.0	0.0		JZ									٦
36.7	0.0	0.0	0.0	0.0	0.0											
37.4	0.0	0.0	0.0	0.0	0.0											
38.1	0.0	0.0	0.0	0.0	0.0		36	\sqcup	$\downarrow \downarrow \downarrow$	+	$+\!+\!-$	\Box		+++	+	4
38.9	0.0	0.0	0.0	0.0	0.0											
40.0	0.0	0.0	0.0	0.0	0.0											
41.2	0.0	0.0	0.0	0.0	0.0											
41.8	0.0	0.0	0.0	0.0	0.0		40	+) 	+	+++			+++	+++	\dashv
43.0	0.0	0.0	0.0	0.0	0.0				/							
45.1	0.0	0.0	0.0	0.0	0.0	4										
46.6	0.0	0.0	0.0	0.0	0.0	4			\mathbb{N}							
49.2	0.0	0.0	0.0	0.0	0.0		44	\vdash	\rightarrow	+	++					\dashv
51.0	0.0	0.0	0.0	0.0	0.0	4			I							
53.9	0.0	0.0	0.0	0.0	0.0	-			/							J
56.1	0.0	0.0	0.0	0.0	0.0	-	40									- [
58.4	0.0	0.0	0.0	0.0	0.0	4	48									_
60.7	0.0	0.0	0.0	0.0	0.0	1										

WB - Westbound EB - Eastbound OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane

DECEL - Deceleration ACCEL - Acceleration LN - Lane AG - At Grade F - Fill

DATUM T/ABC	AND IN-S		ICK DATA		5.1.1	_		I D		-001				1			US 2	.9/U	o / U		
DATUM T/ABC		IIIO CRK			INITY													DE.	v .		
DATUM T/ABC	T LOCATION				INTY	ļ	FIE				SSION	AL				— ·		REV			_
DATUM T/ABC	LOCATION	. DECORIDE	uo.u		dson	_			Dan k	Cubir	nski					I ri	gon i	⊨xpi	oration		_
T/ABC	1 4000		ION		RFORMED	4															
T/ABC	L_1960_				2/23	-															
	CUT/FILL	NORT			TING						CORR	ELA	TEI	о СВ	R V	ALU	ES				
-	С	757,			1,409																
C	CUMULATIV	E PENETRA	ATION IN CE	NTIMETERS																	
1.2	0.0	0.0	0.0	0.0	0.0																
2.5	0.0	0.0	0.0	0.0	0.0		0.	0		20	.0	4	0.0		60	0.0		80.	.0	10	0.00
3.2	0.0	0.0	0.0	0.0	0.0		0				-		П								7
4.0	0.0	0.0	0.0	0.0	0.0						14		╁	+							
4.7	0.0	0.0	0.0	0.0	0.0												_		_		
5.1	0.0	0.0	0.0	0.0	0.0	1														Щ	
5.6	0.0	0.0	0.0	0.0	0.0	1	4			\neg						╀╌	B/AE	SC S	TONE		1
6.1	0.0	0.0	0.0	0.0	0.0	1		П		\mathcal{A}		П	П					П			1
6.7	0.0	0.0	0.0	0.0	0.0	1			1												1
7.3	0.0	0.0	0.0	0.0	0.0	1			f												1
7.9	0.0	0.0	0.0	0.0	0.0	1	8	+	\forall	\dashv	\dashv	\forall	\dagger	$\dashv \dashv$	\dashv	\vdash	+	\dashv	$\dashv \vdash$	\dashv	1
8.6	0.0	0.0	0.0	0.0	0.0	1			}												1
9.3	0.0					1			U												1
		0.0	0.0	0.0	0.0	-			$ \rangle $												1
10.4	0.0	0.0	0.0	0.0	0.0	-	12	+	╫	\dashv	++	+	+	╫	+	\vdash	+	╁	++	+	1
11.7	0.0	0.0	0.0	0.0	0.0	4			I												
13.6	0.0	0.0	0.0	0.0	0.0				$ \langle \rangle$												
16.6	0.0	0.0	0.0	0.0	0.0				}												
20.1	0.0	0.0	0.0	0.0	0.0		16	-	+	\dashv	\dashv	++	+	$\dashv\dashv$	-	\vdash	+	╁		+	┨
23.1	0.0	0.0	0.0	0.0	0.0				1/1												
26.3	0.0	0.0	0.0	0.0	0.0				X												
29.1	0.0	0.0	0.0	0.0	0.0				17												
32.1	0.0	0.0	0.0	0.0	0.0		20	+		\dashv	+	++	+	$\dashv\dashv$	-	\vdash	+	╁	-	+	┨
35.5	0.0	0.0	0.0	0.0	0.0				$ 1\rangle$												
38.2	0.0	0.0	0.0	0.0	0.0	1]												
41.1	0.0	0.0	0.0	0.0	0.0	٦,			/												
44.5	0.0	0.0	0.0	0.0	0.0	(Inches)	24	-	+	\dashv		++-	+	\dashv	-	-	₩	╫		-	4
47.2	0.0	0.0	0.0	0.0	0.0	1 🖺			1)												
50.6	0.0	0.0	0.0	0.0	0.0	Datum (Ш												
53.6	0.0	0.0	0.0	0.0	0.0	横			$ 1\rangle$												
56.5	0.0	0.0	0.0	0.0	0.0	×	28	+	+	+		+	+	╫	+	⊢	+	+	++	₩	4
60.1	0.0	0.0	0.0	0.0	0.0	Below															1
63.2	0.0	0.0	0.0	0.0	0.0	 			1												
66.4	0.0	0.0	0.0	0.0	0.0	Depth			I												1
69.4	0.0	0.0	0.0	0.0	0.0	1 -	32	+	+	+	+	+	+	╫	+	\vdash	₩	₩	+	+	4
				0.0		1			$ \cdot $												1
73.5	0.0	0.0	0.0		0.0	1															
76.1	0.0	0.0	0.0	0.0	0.0	-				١١											1
79.0	0.0	0.0	0.0	0.0	0.0	4	36	+	+	$\vdash\vdash$	+	+	+	\dashv	+	\vdash	+	+	+	+	4
82.2	0.0	0.0	0.0	0.0	0.0	4				∖∐											1
85.1	0.0	0.0	0.0	0.0	0.0	4			1	/											1
87.7	0.0	0.0	0.0	0.0	0.0	4															1
90.0	0.0	0.0	0.0	0.0	0.0		40	+	+	+	_	₩	+	\dashv	-	\vdash	+	+	+	+	4
92.5	0.0	0.0	0.0	0.0	0.0																1
94.6	0.0	0.0	0.0	0.0	0.0																1
97.3	0.0	0.0	0.0	0.0	0.0																1
0.0	0.0	0.0	0.0	0.0	0.0		44	-	++	+		+	+	\dashv	-	\vdash	+	+		+	4
0.0	0.0	0.0	0.0	0.0	0.0																1
0.0	0.0	0.0	0.0	0.0	0.0	1															1
0.0	0.0	0.0	0.0	0.0	0.0	1															1
0.0	0.0	0.0	0.0	0.0	0.0	1	48			Ш			Ш			Ш				Ш	J
0.0	0.0	0.0	0.0	0.0	0.0	1															

Note(s): WB - Westbound DECEL - Deceleration EB - Eastbound
OSS - Outside Shoulder ACCEL - Acceleration

LN - Lane AG - At Grade F - Fill ISS - Inside Shoulder OSL - Outside Lane

C - Cut SG - Subgrade T/ABC - Top of ABC Stone B/ABC - Bottom of ABC Stone Ex. Gr. - Existing Grade

SHEET 10

ΥΝΔΜΙ	CONF PE	NETROME ¹	TER DATA	PROJECT 6701				R	TIP R-0015				OUTE 29/US		
· · · · · · · · · · · · · · · · · · ·		SITU CBR	LENDAIA	COU			FIF		OFESSIO	NAI			CREW		
	ANDIN	JITO ODIK		Davi			- 115		Kubinski	IVAL		Trigon		ation	
TES	ST LOCATIO	N DESCRIPT	TION	DATE PER				Dan	. Kabinoki			9011		3.,011	
		EB OSS		5/2		1									
DATUM	CUT/FILL		THING	EAS		1			COF	RRELATED C	BR VA	LUES			
T/ABC	С		,257	1,621	-	1									
.,, .,, .		VE PENETRA				1									
1.8	51.7	0.0	0.0	0.0	0.0	1									
3.0	53.7	0.0	0.0	0.0	0.0	1	0.0	0	20.0	40.0	60	.0	80.0		100
4.0	55.3	0.0	0.0	0.0	0.0	1	О Г	_							
5.4	57.1	0.0	0.0	0.0	0.0	1				\cup					
7.1	58.9	0.0	0.0	0.0	0.0	1									
9.0	60.7	0.0	0.0	0.0	0.0	1									
11.1	62.4	0.0	0.0	0.0	0.0	1	4					\dashv	\dashv	\vdash	\dashv
11.9	63.9	0.0	0.0	0.0	0.0	1						-	+		
12.3	65.3	0.0	0.0	0.0	0.0	1					+	+			
12.7	67.0	0.0	0.0	0.0	0.0	1								낻	
13.1	68.7	0.0	0.0	0.0	0.0	1	8 -					1 1 3			
13.6	70.3	0.0	0.0	0.0	0.0	1							+		
14.0	71.7	0.0	0.0	0.0	0.0	1					ן ן נ	R/A	BC ST	ONE	ήl
14.3	73.2	0.0	0.0	0.0	0.0	1	12					D, A	.JU 01	JITE	l
14.6	74.8	0.0	0.0	0.0	0.0	1	' - [
14.9	76.4	0.0	0.0	0.0	0.0	1			/						
15.4	78.0	0.0	0.0	0.0	0.0	1)						
16.1	79.5	0.0	0.0	0.0	0.0	1	16							Щ	
16.6	81.2	0.0	0.0	0.0	0.0	1			$N \sqcup I$						
17.0	82.7	0.0	0.0	0.0	0.0	1			M						
17.4	84.5	0.0	0.0	0.0	0.0	1			$ \langle $						
17.8	86.2	0.0	0.0	0.0	0.0	1	20		-			\dashv	-		+
18.2	88.0	0.0	0.0	0.0	0.0	1			KI						
18.7	89.7	0.0	0.0	0.0	0.0	1									
19.3	91.0	0.0	0.0	0.0	0.0	œ									
19.7	92.8	0.0	0.0	0.0	0.0	Datum (Inches)	24	+	$\forall \forall \vdash$		++	$\dashv \dashv \dashv$	+	++	$\dashv \dashv$
20.2	94.6	0.0	0.0	0.0	0.0	Ĭ			N						
20.6	95.9	0.0	0.0	0.0	0.0	Ĕ									
21.1	96.7	0.0	0.0	0.0	0.0	Dat D			🕻						
21.5	97.5	0.0	0.0	0.0	0.0	Below	28	$\dashv \vdash$				$\dashv \dashv \dashv$	\top	$\sqcap \vdash$	$\dashv \dashv$
22.0	98.3	0.0	0.0	0.0	0.0	Be									
22.4	99.2	0.0	0.0	0.0	0.0	Depth									
22.9	100.2	0.0	0.0	0.0	0.0	ے ا	32								
23.4	101.3	0.0	0.0	0.0	0.0		32								
23.8	102.5	0.0	0.0	0.0	0.0				🐧						
25.0	106.1	0.0	0.0	0.0	0.0				(
25.7	107.9	0.0	0.0	0.0	0.0		36	$\bot \bot$			\perp	$\perp \downarrow \downarrow \downarrow$	$\perp \!\!\! \perp$	Ш	\perp
26.4	109.8	0.0	0.0	0.0	0.0		-		[[
27.4	111.7	0.0	0.0	0.0	0.0				1 -	 					
28.5	113.3	0.0	0.0	0.0	0.0										
30.0	115.0	0.0	0.0	0.0	0.0		40				+	$\dashv \dashv \dashv$	+	++	+
32.1	116.5	0.0	0.0	0.0	0.0										
34.8	118.1	0.0	0.0	0.0	0.0			<	\square						
37.3	119.9	0.0	0.0	0.0	0.0										
40.2	0.0	0.0	0.0	0.0	0.0		44	++	HH		++	$\dashv \dashv \dashv$	+	++	+
42.3	0.0	0.0	0.0	0.0	0.0										
44.4	0.0	0.0	0.0	0.0	0.0				🕽						
46.2	0.0	0.0	0.0	0.0	0.0				1						
48.2	0.0	0.0	0.0	0.0	0.0		48 L								
50.0	0.0	0.0	0.0	0.0	0.0										

WB - Westbound
EB - Eastbound
OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane

DECEL - Deceleration ACCEL - Acceleration LN - Lane AG - At Grade F - Fill

					NUMBER				TI					ROUTE		
DYNAMIC	CONE PE		TER DATA	6701						0015			Ū	S 29/US		
	AND IN-S	SITU CBR			INTY		FIL				IONAL			CREW		
					dson	_			an K	ubinsl	ki		Trigo	on Explo	ration	
TES	T LOCATION		ION		RFORMED											
	L_2590_		11016	5/3							0000	ID 6				
DATUM	CUT/FILL	NORT			TING					С	ORRELATE	ED CBR /	ALUE	5		
SG	AG		,786		1,759											
	CUMULATIV															
3.7	94.0	0.0	0.0	0.0	0.0	-	_	•		20.0	40.0	_	·0.0			400.0
5.8	95.1	0.0	0.0	0.0	0.0	-	0	0.0		20.0	40.0	,	60.0	80.0	υ ———	100.0
8.9	96.3	0.0	0.0	0.0	0.0	4	•	1			$ \ \ \ \ $					
13.3	97.5	0.0	0.0	0.0	0.0	-			X	11	$ \ \ \ \ $					
18.3	98.6 99.7	0.0	0.0	0.0	0.0	1			1		$ \ \ \ \ $					
20.1		0.0	0.0	0.0	0.0	-	4	\vdash	+	+	++++	+	++	+++	+	\dashv
21.1 21.8	100.8 101.8	0.0	0.0	0.0	0.0	-			1							
21.8	101.8			0.0		-			'							
22.7	102.8 103.7	0.0	0.0	0.0	0.0	1			\downarrow		$ \ \ \ \ $					
23.5	103.7	0.0	0.0	0.0	0.0		8	+	+	+	+++	##	+	+++	+	+
24.2	104.7	0.0	0.0	0.0	0.0							\Box				
25.8	105.7	0.0	0.0	0.0	0.0	1					$ \cdot $	\Box				
26.7	100.3	0.0	0.0	0.0	0.0	1					$ \cdot \cdot \cdot \Gamma$	$\uparrow \downarrow \downarrow \downarrow$	$\downarrow \downarrow \downarrow$	_		
27.5	107.3	0.0	0.0	0.0	0.0	1	12	\sqcap	\top	\top		\Box		op op	$\dashv \dashv$	\sqcap
28.2	108.1	0.0	0.0	0.0	0.0											
28.8	109.6	0.0	0.0	0.0	0.0	1				دا ا	$ec{ec{ec{ec{ec{ec{ec{ec{ec{ec{$					
29.4	110.4	0.0	0.0	0.0	0.0	1	16			1						
29.4	111.3	0.0	0.0	0.0	0.0	1			1		$ \top \top$			T		1
30.7	112.1	0.0	0.0	0.0	0.0	1					$ \ \ \ \ $					
31.6	113.1	0.0	0.0	0.0	0.0											
32.3	114.0	0.0	0.0	0.0	0.0		20		#	4	+++	+	+	$+\!\!+\!\!\!+$	+	\dashv
33.3	114.7	0.0	0.0	0.0	0.0											
34.4	115.5	0.0	0.0	0.0	0.0	1					$ \ \ \ \ $					
35.6	116.4	0.0	0.0	0.0	0.0	~					$ \ \ \ \ $					
36.9	117.3	0.0	0.0	0.0	0.0	Ě	24	\vdash	+	+		++++	++	+++	+	+
38.6	118.3	0.0	0.0	0.0	0.0	Depth Below Datum (Inches)		\	1		$ \ \ \ \ $					
41.4	119.2	0.0	0.0	0.0	0.0	Ē					$ \ \ \ \ $					
44.6	120.0	0.0	0.0	0.0	0.0] ă			$ \mathbf{A} $		$ \ \ \ \ $					
47.8	120.9	0.0	0.0	0.0	0.0	8	28	\vdash	\forall	\top	\Box	+++	+	+ + +	\top	$\dashv \vdash$
51.1	121.7	0.0	0.0	0.0	0.0	8					$ \ \ \ \ $					
54.8	122.6	0.0	0.0	0.0	0.0	툍			$ \cdot $	ŊΙ,	$ \ \ \ \ $					
58.8	123.3	0.0	0.0	0.0	0.0	۵	32			$ \Delta $						\perp
63.2	124.2	0.0	0.0	0.0	0.0		JZ			ΤΣ						
67.0	125.1	0.0	0.0	0.0	0.0						$ \mathbf{y} + \mathbf{I}$					
70.0	126.2	0.0	0.0	0.0	0.0					1						
72.8	0.0	0.0	0.0	0.0	0.0		36		$\perp \perp$	4	\Box	+	+	$+\!$	+	Щ.
75.2	0.0	0.0	0.0	0.0	0.0						$ \downarrow \downarrow $					
77.3	0.0	0.0	0.0	0.0	0.0											
79.1	0.0	0.0	0.0	0.0	0.0											
80.7	0.0	0.0	0.0	0.0	0.0		40	-	+	+	 	+++	+	+++	+	+
82.2	0.0	0.0	0.0	0.0	0.0											
83.8	0.0	0.0	0.0	0.0	0.0							լ				
85.2	0.0	0.0	0.0	0.0	0.0						<u> </u>	\rightarrow				
86.4	0.0	0.0	0.0	0.0	0.0		44	+	+	+	 	+++	+	+++	+	+
87.8	0.0	0.0	0.0	0.0	0.0						$ \cdot $	 				
89.1	0.0	0.0	0.0	0.0	0.0											
90.4	0.0	0.0	0.0	0.0	0.0	-]≯	1				
91.6	0.0	0.0	0.0	0.0	0.0	Į.	48	<u> </u>								
92.8	0.0	0.0	0.0	0.0	0.0	Ш										

Note(s):
WB - Westbound
EB - Eastbound
OSS - Outside Shoulder
ISS - Inside Shoulder DECEL - Deceleration ACCEL - Acceleration LN - Lane

AG - At Grade F - Fill OSL - Outside Lane

C - Cut SG - Subgrade T/ABC - Top of ABC Stone B/ABC - Bottom of ABC Stone Ex. Gr. - Existing Grade

SHEET 11

TAN V MIC	CONE PE	NETROME:	TER DATA		NUMBER 5.1.1	+			BR-0						OUTE 29/US 7	'n	
INMINIC		SITU CBR	ILNDAIA		INTY		EIE	יחו		ESSIO	NΔI				REW	J	
	VIAD III-	JIIO OBK			dson	┢	FIE		an Ku		1AL		Т		Explora	tion	
TES	ST LOCATIO	N DESCRIP	TION		RFORMED			ال	an Ru	UII I JKI			-	ngon			
120		WB OSS			3/23	1											
DATUM	CUT/FILL		THING		TING	1				COF	RELA	TED CE	BR VAL	UES			
SG	AG		,245		2,081	1											
			ATION IN CE		-	1											
1.3	87.1	0.0	0.0	0.0	0.0												
2.3	88.4	0.0	0.0	0.0	0.0		0.	0		20.0	4	0.0	60.0		80.0		100
3.0	89.6	0.0	0.0	0.0	0.0		0				JT						
3.8	90.9	0.0	0.0	0.0	0.0							\geq	Щ				
4.4	92.3	0.0	0.0	0.0	0.0								\leq				
5.0	93.3	0.0	0.0	0.0	0.0		4					\leq					
5.7	94.3	0.0	0.0	0.0	0.0		4						\rightarrow				
6.3	95.3	0.0	0.0	0.0	0.0												
6.9	96.1	0.0	0.0	0.0	0.0						\mathbf{x}						
7.7	97.1	0.0	0.0	0.0	0.0		8	_	Щ	44	+		\Box	Щ	$\perp \downarrow \downarrow$		Ш
8.5	98.0	0.0	0.0	0.0	0.0		-				++						
9.2	99.3	0.0	0.0	0.0	0.0				ـر ا ا	4/							
10.0	100.1	0.0	0.0	0.0	0.0												
10.7	101.2	0.0	0.0	0.0	0.0		12	+	$\vdash \vdash$	+	++	$\vdash \vdash$	++	$\dashv \dashv$	+	++	+
11.3	102.1	0.0	0.0	0.0	0.0												
12.2	103.2	0.0	0.0	0.0	0.0												
13.1	104.3	0.0	0.0	0.0	0.0												
14.0	105.3	0.0	0.0	0.0	0.0		16	+	\vdash	+	\dashv	\vdash	$\dashv +$	\vdash	-	$\dashv \vdash$	+
14.7	106.3	0.0	0.0	0.0	0.0)								
15.8	107.2	0.0	0.0	0.0	0.0												
16.8	108.2	0.0	0.0	0.0	0.0												
18.0	109.1	0.0	0.0	0.0	0.0		20	\top		\top	$\neg \neg$					$\neg \neg$	\top
19.3	110.2	0.0	0.0	0.0	0.0												
20.1	111.3	0.0	0.0	0.0	0.0												
20.9	112.3	0.0	0.0	0.0	0.0	es)	24										
22.2	113.3	0.0	0.0	0.0	0.0	뒫	27										
23.5	0.0	0.0	0.0	0.0	0.0	= =											
25.5	0.0	0.0	0.0	0.0	0.0	afr.											
29.2	0.0	0.0	0.0	0.0	0.0	- 2	28	_		\perp		\vdash	-	$\sqcup \sqcup$	\perp		Щ
32.6	0.0	0.0	0.0	0.0	0.0	Depth Below Datum (Inches)			}								
36.3	0.0	0.0	0.0	0.0	0.0	를 급			(
40.0	0.0	0.0	0.0	0.0	0.0	Je p				$ \cdot $							
43.4	0.0	0.0	0.0	0.0	0.0	-	32	+	$\dashv \dashv$	+	++	++	++	++	+++	++	+
47.1 50.0	0.0	0.0	0.0	0.0	0.0												
50.9 54.8	0.0	0.0	0.0	0.0	0.0					$ \uparrow \rangle$							
58.5	0.0	0.0	0.0	0.0	0.0					$ \rangle$							
62.2	0.0	0.0	0.0	0.0	0.0		36	\top	$\sqcap \uparrow$	14	$\!$					$\dashv \vdash$	$\forall \exists$
64.8	0.0	0.0	0.0	0.0	0.0							$L \cdot $					
67.4	0.0	0.0	0.0	0.0	0.0						_\\$	$\Gamma \cdot $					
69.6	0.0	0.0	0.0	0.0	0.0		40										
71.8	0.0	0.0	0.0	0.0	0.0		40										
73.7	0.0	0.0	0.0	0.0	0.0						N						
75.8	0.0	0.0	0.0	0.0	0.0						∣≤						
77.7	0.0	0.0	0.0	0.0	0.0		44	4	$\sqcup \sqcup$	+		$\sqcup \bot$		Ш	$\downarrow \downarrow \downarrow$	$\bot \bot$	Ш
79.4	0.0	0.0	0.0	0.0	0.0												
81.1	0.0	0.0	0.0	0.0	0.0												
82.7	0.0	0.0	0.0	0.0	0.0												
84.1	0.0	0.0	0.0	0.0	0.0		48			\perp							
	0.0	0.0	0.0	0.0	0.0	-											

WB - Westbound
EB - Eastbound
OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane

DECEL - Deceleration ACCEL - Acceleration LN - Lane

AG - At Grade F - Fill

DVNASS	CONE DE	NETDOM:			NUMBER				TIP							OUT			
DYNAMIC		NETROMET	IER DATA		5.1.1				BR-00							29/US			_
	AND IN-S	SITU CBR			INTY		FI		PROFI		NAL					REV			
TEO	TIOCATIO	N DECORIO	ION		dson	_		D	an Kul	oinski				T	rigon	⊨xpl	oration		_
TES		N DESCRIPT			RFORMED	-													
		_DECEL_LN			/23	4													
DATUM	CUT/FILL		HING		TING	4				CO	RREL	ATED	CBR	VAL	UES				
T/ABC	AG		,292		2,226	-													
		/E PENETRA				_													
1.9	0.0	0.0	0.0	0.0	0.0		_	_									_		
3.6	0.0	0.0	0.0	0.0	0.0		0	.0		20.0		40.0		60.0		80	.0	10	0.00
5.3	0.0	0.0	0.0	0.0	0.0		Ů		+										
8.3	0.0	0.0	0.0	0.0	0.0)									
11.6	0.0	0.0	0.0	0.0	0.0					$1 \perp$									
14.2	0.0	0.0	0.0	0.0	0.0		4	Ш	\Box		Ш	4		_	\perp				1
17.2	0.0	0.0	0.0	0.0	0.0				$ \langle $										
20.1	0.0	0.0	0.0	0.0	0.0				}					11	D/A		STONE		
22.4	0.0	0.0	0.0	0.0	0.0			4		4	Ш	\perp		1	OIA	JU 3	, i ONE	ᅱ	
24.2	0.0	0.0	0.0	0.0	0.0		8		Щ	\bot	ш	4	$+\!-\!\!\!\!\!-$	Щ	$\perp \!\!\! \perp$	Ц.	\perp	Щ	1
26.2	0.0	0.0	0.0	0.0	0.0		-		N										
27.9	0.0	0.0	0.0	0.0	0.0					7									
30.2	0.0	0.0	0.0	0.0	0.0														1
32.6	0.0	0.0	0.0	0.0	0.0		12	\perp	+	+	$\sqcup \sqcup$	+	$+\!\!-\!\!\!+\!\!\!\!-$	\perp	\dashv	- -	_	Щ	1
35.4	0.0	0.0	0.0	0.0	0.0	1													
38.7	0.0	0.0	0.0	0.0	0.0				/										
41.5	0.0	0.0	0.0	0.0	0.0				I										
44.5	0.0	0.0	0.0	0.0	0.0		16	\vdash	\Box		\vdash	+-		\perp	\dashv	\dashv			4
47.0	0.0	0.0	0.0	0.0	0.0				I										
49.6	0.0	0.0	0.0	0.0	0.0				$ \setminus $										
52.5	0.0	0.0	0.0	0.0	0.0]										
55.0	0.0	0.0	0.0	0.0	0.0		20	\vdash	+		\vdash	+		+	-	\dashv			4
57.7	0.0	0.0	0.0	0.0	0.0				$ \langle $										
60.5	0.0	0.0	0.0	0.0	0.0)										
63.5	0.0	0.0	0.0	0.0	0.0	1													
67.3	0.0	0.0	0.0	0.0	0.0	- Pe	24	\vdash	+	+-	+	+		+				-	-
71.1	0.0	0.0	0.0	0.0	0.0	을			J										
74.6	0.0	0.0	0.0	0.0	0.0	Ē			/										
78.2	0.0	0.0	0.0	0.0	0.0	d t													
81.0	0.0	0.0	0.0	0.0	0.0	Below Datum (Inches)	28	+	\vdash	+	++	+	+	+	\dashv	\dashv	+	₩	1
83.9	0.0	0.0	0.0	0.0	0.0	3elc													1
86.6	0.0	0.0	0.0	0.0	0.0	ŧ													
89.5	0.0	0.0	0.0	0.0	0.0	Depth			$ \cdot $										
91.9	0.0	0.0	0.0	0.0	0.0	1	32	\vdash		+	++	+	+	+	$\dashv \dashv$	╁	$\dashv \vdash$	+	1
94.6	0.0	0.0	0.0	0.0	0.0				(
94.6	0.0	0.0	0.0	0.0	0.0)										
100.8	0.0	0.0	0.0	0.0	0.0				(
						-	36	+	+	+	++	+	+	+	$\dashv \dashv$	\dashv	\dashv	+	1
103.7	0.0	0.0	0.0	0.0	0.0	-													1
107.4	0.0	0.0	0.0	0.0	0.0	-			I										
111.3	0.0	0.0	0.0	0.0	0.0														
114.3	0.0	0.0	0.0	0.0	0.0		40	\vdash	+	+	+	+	+	+	$\dashv \dashv$	┪	+	+	1
117.5	0.0	0.0	0.0	0.0	0.0				I										
0.0	0.0	0.0	0.0	0.0	0.0				$I \mid I$										
0.0	0.0	0.0	0.0	0.0	0.0														
0.0	0.0	0.0	0.0	0.0	0.0		44	\vdash	$\forall \vdash$	+	$\forall \forall$	+	+	\top	$\dashv \dashv$	╁	$\dashv \vdash$	\forall	1
0.0	0.0	0.0	0.0	0.0	0.0				}										1
0.0	0.0	0.0	0.0	0.0	0.0														
0.0	0.0	0.0	0.0	0.0	0.0														1
0.0	0.0	0.0	0.0	0.0	0.0		48												_
0.0	0.0	0.0	0.0	0.0	0.0	1													

Note(s): WB - Westbound DECEL - Deceleration EB - Eastbound
OSS - Outside Shoulder ACCEL - Acceleration LN - Lane ISS - Inside Shoulder

AG - At Grade F - Fill OSL - Outside Lane

C - Cut SG - Subgrade T/ABC - Top of ABC Stone B/ABC - Bottom of ABC Stone Ex. Gr. - Existing Grade

SHEET 12

ЭУМАМІС	CONF PE	NETROME ¹	TER DATA		NUMBER 5.1.1				TIP R-0015			ROUTE 3 29/US 70	
		SITU CBR	LINDAIA		JNTY		FIEI		OFESSI	ONAL	00	CREW	
	, D 114-4				idson				Kubinsk		Trigo	n Explorat	ion
TES	ST LOCATIO	N DESCRIPT	TION		RFORMED						90		
		WB_ISS			3/23	1							
DATUM	CUT/FILL		THING		TING				CC	RRELATED C	BR VALUES	3	
SG	С		,798		2,544								
		VE PENETRA	-		-								
2.4	53.1	87.4	110.2	0.0	0.0								
4.8	54.1	87.9	110.6	0.0	0.0		0.0		20.0	40.0	60.0	80.0	100
7.3	55.3	88.5	111.1	0.0	0.0		0						
9.5	56.1	88.9	111.6	0.0	0.0				1				
11.7	57.2	89.5	112.0	0.0	0.0				$I \sqcup I \sqcup$				
13.4	58.3	90.0	112.4	0.0	0.0				$\setminus \mid \mid \mid \mid \mid$				
14.6	59.3	90.5	112.9	0.0	0.0		4 -	$\forall \forall$	$\dagger \dagger \dagger$		++++	+ 	+++
15.6	60.3	91.1	113.3	0.0	0.0				1	ot ot ot ot ot ot ot ot			
16.2	61.1	91.5	113.5	0.0	0.0								
17.0	62.1	92.0	114.1	0.0	0.0					 	+		⊥
17.9	62.7	92.5	114.5	0.0	0.0		8	\sqcap					Ħ
18.7	63.6	93.0	114.8	0.0	0.0								
19.3	64.4	93.3	115.2	0.0	0.0					++	+	1	
19.7	65.0	93.7	115.6	0.0	0.0		12						
20.5	65.9	94.2	116.1	0.0	0.0		'-						
20.8	66.7	94.7	116.4	0.0	0.0								
21.0	67.5	95.2	116.7	0.0	0.0					\top			
21.4	68.2	95.7	117.1	0.0	0.0		16						
22.1	68.8	96.1	117.4	0.0	0.0								
22.6	69.3	96.5	118.0	0.0	0.0				\perp 1).				
23.2	70.1	97.0	118.6	0.0	0.0				115	.			
24.0	70.9	97.3	119.1	0.0	0.0		20	$\sqcup \sqcup$			+++++	+++	$\sqcup \sqcup$
24.6	71.6	97.8	119.5	0.0	0.0					$\mathcal{V} \cap \mathcal{V}$			
25.1	72.3	98.2	119.8	0.0	0.0								
25.6	73.1	98.7	120.3	0.0	0.0								
26.1	73.7	99.2	120.8	0.0	0.0	- Pes	24	+					-
26.9	74.5	99.7	121.0	0.0	0.0	<u> </u>							
27.4	75.2	100.2	121.4	0.0	0.0	Ę							
27.8	75.8	100.6	121.9	0.0	0.0	at P						-	
28.3	76.3	100.9	122.4	0.0	0.0	8	28	+++					+++
28.8	76.9	101.3	122.7	0.0	0.0	Depth Below Datum (Inches)					 		
29.4	77.7	101.7	123.0	0.0	0.0	돭							
29.8	78.1	102.2	123.6	0.0	0.0	_ □	.						<u> </u>
30.4	78.5	102.6	123.9	0.0	0.0		32	\Box	$\dashv \dagger$				
31.0	79.0	103.1	124.3	0.0	0.0							,	
32.6	79.5	103.4	124.6	0.0	0.0								<u> </u>
33.4	80.0	103.8	125.5	0.0	0.0		36					2	
34.1	80.6	104.2	125.9	0.0	0.0		30 F						
35.0	81.0	104.7	126.3	0.0	0.0								<u></u>
36.4	81.6	105.2	126.6	0.0	0.0								-
38.6	82.2	105.6	126.9	0.0	0.0		40	Ш	$\downarrow \downarrow \downarrow$		+		
40.5	82.6	106.1	127.3	0.0	0.0								
42.2	83.1	106.6	127.7	0.0	0.0								‡ I
43.6	83.7	107.0	0.0	0.0	0.0					+ $+$ $+$ $+$ $+$ $+$ $+$			
45.0	84.1	107.7	0.0	0.0	0.0		44	$\vdash\vdash$	+	++++	+		<u></u>
46.5	84.8	108.2	0.0	0.0	0.0						1 1 + + +		
47.8	85.3	108.6	0.0	0.0	0.0					$ \cdot \cdot \cdot \cdot $			
49.2	85.8	108.9	0.0	0.0	0.0								
50.7	86.4	109.4	0.0	0.0	0.0		48 L						
51.9	86.8	109.8	0.0	0.0	0.0	٦.							

WB - Westbound
EB - Eastbound
OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane

DECEL - Deceleration ACCEL - Acceleration LN - Lane AG - At Grade F - Fill

DVNASSIC	COME DE	NETROME	TED DATA		NUMBER			TIP	5			OUTE	
DYNAMIC	CONE PEI		IEKDAIA	6701		_	IEI P	BR-001		_		29/US 70	
	AND IN-S	SITU CBR			INTY	F			SIONAL			CREW	
TEC	T I OCATIO	N DESCRIPT	TION		dson		L	an Kubir	ISKI		ı rigor	Exploration	
TES	T LOCATIOI				/23								
DATUM	L_3870_WB			EAS					COPPE	ATED CE	DD WALLIES		
DATUM	CUT/FILL C		THING			-			CORREL	ATED CE	BR VALUES		
T/ABC	CUMULATIV		,817		2,519								
			92.2										
1.3 2.6	40.4	70.7		111.2	0.0	-	0.0	2	0.0	40.0	60.0	80.0	100.0
	41.2	71.2	92.5	111.5		1	0.0	2	1	40.0	00.0	00.0	100.0
3.3 4.0	42.1 42.9	71.9	92.9	111.8	0.0	-							
4.6	43.9	72.4 72.9	93.3 93.7	112.1 112.4	0.0	-				<u> </u>	\Rightarrow		
5.2	44.7	73.3	94.0	112.4	0.0	-				-			
6.5	45.5	73.9	94.0	113.1	0.0	1	4		\vdash				
7.1	46.3	74.3	94.5	113.1	0.0	1				4++			
7.1	47.1	74.3	95.2	113.5	0.0	ł			-	7-	B/A	BC STON	E
8.4	47.1	75.4	95.6	114.3	0.0	ł	H						
8.9	48.4	75.4	96.0	114.5	0.0	1	8 —						
9.8	49.2	76.2	96.3	114.3	0.0	ł							
10.7	49.8	76.8	96.7	115.2	0.0	1							
11.3	50.5	77.3	97.1	115.5	0.0	1.	<u>, </u>		\leftarrow				
11.8	51.0	77.8	97.4	115.9	0.0	1 1	2		7				
12.7	51.5	78.3	97.7	0.0	0.0	1			$ \langle $				
13.7	52.3	78.7	98.1	0.0	0.0	ł			$ \cdot \cdot $				
14.5	52.9	79.1	98.5	0.0	0.0	1 1	<u>.</u>			>			
15.5	53.6	79.6	98.9	0.0	0.0	·	°П						
16.2	54.1	79.9	99.1	0.0	0.0	1			-	\P			
16.7	54.6	80.4	99.5	0.0	0.0	1					_		
17.2	55.2	80.9	99.9	0.0	0.0	2	o 🗀						
17.6	55.7	81.4	100.3	0.0	0.0	1					\geq		
18.1	56.4	81.8	100.8	0.0	0.0	1				_	_		
18.5	56.9	82.4	101.2	0.0	0.0	1 _				-			
18.9	57.6	82.6	101.7	0.0	0.0	<u>§</u> 2	4						
19.3	58.1	83.1	102.1	0.0	0.0	<u>i</u>							.
19.6	59.1	83.3	102.6	0.0	0.0	Ę							
20.2	59.6	83.7	103.0	0.0	0.0	i į							'
20.5	60.1	84.0	103.5	0.0	0.0	Depth Below Datum (Inches)	8	+++		 			+
20.8	60.6	84.5	103.9	0.0	0.0	Be B							
21.1	61.1	84.9	104.2	0.0	0.0	1 €							
21.5	61.5	85.2	104.7	0.0	0.0								4
22.1	62.0	85.6	105.1	0.0	0.0	1 ³	2						
22.9	62.5	86.1	105.5	0.0	0.0	1					:		
23.4	62.9	86.5	105.7	0.0	0.0								
24.3	63.8	86.8	106.1	0.0	0.0	3	, L						
25.6	64.4	87.1	106.4	0.0	0.0	1 '	ĭ						
27.1	65.0	87.5	106.8	0.0	0.0	1							
28.8	65.4	87.8	107.3	0.0	0.0								
30.0	65.9	88.1	107.6	0.0	0.0	4	<u>,</u> Ц	\bot	$\sqcup \sqcup$	\Box			
31.3	66.4	88.5	108.0	0.0	0.0	1 '							
31.6	66.9	89.2	108.5	0.0	0.0	1							
32.8	67.5	89.6	108.9	0.0	0.0								
34.1	67.9	90.0	109.2	0.0	0.0	4	4 📙	+	\vdash	+	+ + +		
35.3	68.3	90.5	109.4	0.0	0.0	1							
36.4	68.8	90.8	109.8	0.0	0.0	1							
37.5	69.3	91.1	110.1	0.0	0.0	1							
38.5	69.8	91.5	110.5	0.0	0.0	4	8 🗀						
39.4	70.2	91.9	110.8	0.0	0.0								

OSL - Outside Lane

Note(s): WB - Westbound DECEL - Deceleration EB - Eastbound
OSS - Outside Shoulder ACCEL - Acceleration LN - Lane AG - At Grade F - Fill ISS - Inside Shoulder

C - Cut SG - Subgrade T/ABC - Top of ABC Stone B/ABC - Bottom of ABC Stone Ex. Gr. - Existing Grade

SHEET 13

пумаміс	CONE PE	NETROME ¹	TER DATA		NUMBER 5.1.1			F	TIP BR-0015		115	ROUTE 3 29/US 70	
		SITU CBR	LINDAIA		JNTY		FIE		ROFESSIO	NAL	0.	CREW	
					idson				n Kubinski		Triac	n Explorati	on
TES	ST LOCATIO	N DESCRIPT	TION		RFORMED			341			90		
		WB_OSS			1/23								
DATUM	CUT/FILL		THING	EAS	TING				COF	RELATED C	BR VALUES	3	
SG	С		,821	1,62	2,514	1							
	CUMULATIV	VE PENETRA	ATION IN CE		-								
4.7	63.3	91.0	110.8	0.0	0.0								
8.1	64.0	91.4	111.1	0.0	0.0		0.	0	20.0	40.0	60.0	80.0	100
10.8	64.8	91.8	111.5	0.0	0.0		0						
13.2	65.6	92.2	111.8	0.0	0.0								
15.6	66.3	92.6	112.2	0.0	0.0			-1					
17.6	67.0	93.0	112.7	0.0	0.0			\perp					
19.4	67.6	93.4	113.0	0.0	0.0		4		$\overline{}$				
21.1	68.3	93.8	113.4	0.0	0.0				$1 \cup 1 \cup 1$				
22.6	68.9	94.2	113.8	0.0	0.0				V				
24.0	69.6	94.7	114.1	0.0	0.0				M				
25.3	70.3	95.1	114.5	0.0	0.0		8	$\neg \neg$					
26.9	70.9	95.5	0.0	0.0	0.0								
28.0	71.5	95.9	0.0	0.0	0.0								
28.9	72.1	96.3	0.0	0.0	0.0		40		$\perp \!\!\! \perp \!\!\! \mid \!\! \mid \!\! \mid \!\! \mid \!\! \mid \!\! \mid$				$\sqcup \sqcup$
29.7	72.6	96.7	0.0	0.0	0.0		12						
30.6	73.2	97.2	0.0	0.0	0.0						'		
31.4	73.7	97.6	0.0	0.0	0.0	-					'		
32.2	74.3	98.0	0.0	0.0	0.0	-	16						
32.9	74.9	98.5	0.0	0.0	0.0	-	'' [
33.6	75.4	99.0	0.0	0.0	0.0	-				\rightarrow			
34.5	76.1	99.3	0.0	0.0	0.0	-							
35.3	76.6	99.7	0.0	0.0	0.0		20						
36.0	77.8	100.0	0.0	0.0	0.0		_						
36.8	77.9	100.5	0.0	0.0	0.0					\rightarrow			
37.6	78.1	100.8	0.0	0.0	0.0	-							
38.4	78.7	101.2	0.0	0.0	0.0	es)	24	\dashv	-		++++	+++	\square
39.3	79.3	101.6	0.0	0.0	0.0	글							
40.2	79.3	101.8	0.0	0.0	0.0	Depth Below Datum (Inches)				$ \cdot $			
41.2	80.3	102.0	0.0	0.0	0.0	atu					≱ ∐		
43.1	80.8	102.1	0.0	0.0	0.0	- ×	28	+	+++			+++	+++
44.1	81.3	102.7	0.0	0.0	0.0	<u>€</u>							
45.0	81.3	103.0	0.0	0.0	0.0	₽ E							
46.0	82.3	103.4	0.0	0.0	0.0	Jep!							
						۱"	32	+		++++	++++		
47.0 47.9	82.9 83.4	104.0 104.4	0.0	0.0	0.0							$1 \square \square$	
48.7	83.9	104.4	0.0	0.0	0.0								
	1												⊭∣∣I
49.6	84.4	105.2	0.0	0.0	0.0		36	+	+++	++++	+ + 	+	H + H
50.6	84.9	105.6	0.0	0.0	0.0								$\sharp $
51.6 52.6	85.4 85.0	105.9	0.0	0.0	0.0								≝∣ I I
	85.9 86.4	106.3											
53.6	86.4	106.4	0.0	0.0	0.0		40	$\dashv \vdash$	++++	$\neg \neg \vdash \vdash$			
54.6	86.9	106.9	0.0	0.0	0.0								
55.4	87.4	107.3	0.0	0.0	0.0								
56.4	87.9	107.6	0.0	0.0	0.0					++++		+++	
57.2	88.4	108.0	0.0	0.0	0.0		44	$\dashv \vdash$				+++	
59.0	88.8	108.4	0.0	0.0	0.0	_							
60.1	89.3	108.8	0.0	0.0	0.0								
60.9	89.7	109.0	0.0	0.0	0.0		40						
61.9	90.2	110.1	0.0	0.0	0.0		48 [[]						
62.6	90.6	110.4	0.0	0.0	0.0								

WB - Westbound
EB - Eastbound
OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane

DECEL - Deceleration ACCEL - Acceleration LN - Lane AG - At Grade F - Fill

				PROJECT	NUMBER				TIP						ROU	TE		
DYNAMIC	CONE PE	NETROME	TER DATA	6701	5.1.1				BR-00	015				Į	US 29/I	JS 70		
	AND IN-S	SITU CBR		COL	INTY		F	ELD	PROF	ESSI	ONAL				CRE	W		
				Davi	dson				an Kul	binski				Triç	gon Ex	plorati	on	
TES	T LOCATIO	N DESCRIPT	TION	DATE PE	RFORMED													
	L_4	000		5/4	/23													
DATUM	CUT/FILL	NORT	THING	EAS	TING					CC	RREL	ATEC	CBR	VALUI	ES			
Ex. Gr.	С	758	,893	1,62	2,633													
	CUMULATIV	E PENETRA	ATION IN CE	NTIMETERS														
8.5	0.0	0.0	0.0	0.0	0.0													
14.0	0.0	0.0	0.0	0.0	0.0			0.0	:	20.0		40.0		60.0	8	0.0	1	0.00
19.9	0.0	0.0	0.0	0.0	0.0		0											7
26.4	0.0	0.0	0.0	0.0	0.0													
33.5	0.0	0.0	0.0	0.0	0.0													
38.6	0.0	0.0	0.0	0.0	0.0			1										
42.7	0.0	0.0	0.0	0.0	0.0		4	\neg				\Box						7
46.5	0.0	0.0	0.0	0.0	0.0													
49.4	0.0	0.0	0.0	0.0	0.0													
52.6	0.0	0.0	0.0	0.0	0.0		8	Ш										╛
55.9	0.0	0.0	0.0	0.0	0.0		0											1
58.7	0.0	0.0	0.0	0.0	0.0													
62.0	0.0	0.0	0.0	0.0	0.0													
65.1	0.0	0.0	0.0	0.0	0.0	1	12					Ш						
68.1	0.0	0.0	0.0	0.0	0.0	1	12	T										
71.1	0.0	0.0	0.0	0.0	0.0			1										
75.3	0.0	0.0	0.0	0.0	0.0													
77.4	0.0	0.0	0.0	0.0	0.0		16											_
80.1	0.0	0.0	0.0	0.0	0.0				\									
82.8	0.0	0.0	0.0	0.0	0.0				$ \cdot $									
85.3	0.0	0.0	0.0	0.0	0.0				$\Lambda \sqcup \bot$									
88.0	0.0	0.0	0.0	0.0	0.0		20		1		44	4	\bot		$\perp \perp \perp$	4		4
90.1	0.0	0.0	0.0	0.0	0.0				$\parallel \parallel \parallel$									
92.5	0.0	0.0	0.0	0.0	0.0				Ш									
94.6	0.0	0.0	0.0	0.0	0.0				$ \rangle $									
97.2	0.0	0.0	0.0	0.0	0.0	hes	24	\vdash	+	+	+	+	+	+	+++	+		4
99.1	0.0	0.0	0.0	0.0	0.0	2			$\parallel \parallel \parallel$									
101.4	0.0	0.0	0.0	0.0	0.0	Ē												
103.5	0.0	0.0	0.0	0.0	0.0	atr												
106.7	0.0	0.0	0.0	0.0	0.0	Š	28			+-	-	+		+		+-		-
108.6	0.0	0.0	0.0	0.0	0.0	કુ			/									
110.7	0.0	0.0	0.0	0.0	0.0	Depth Below Datum (Inches)			\mathbb{N}									
113.3	0.0	0.0	0.0	0.0	0.0	ఠ												
115.0	0.0	0.0	0.0	0.0	0.0	1	32	+	+	+	++-	+	++	+	++	+	-	1
117.7	0.0	0.0	0.0	0.0	0.0	1			$ \setminus $									
120.1	0.0	0.0	0.0	0.0	0.0				1									
120.1	0.0	0.0	0.0	0.0	0.0				$ \rangle$									
120.3	0.0	0.0	0.0	0.0	0.0	1	36	+	+	+	+	$\dashv \vdash$	+++	+	++	+	\vdash	1
125.4	0.0	0.0	0.0	0.0	0.0				$ \cdot $									
127.7	0.0	0.0	0.0	0.0	0.0	-			K									
130.4	0.0	0.0	0.0	0.0	0.0	1			$ \rangle$									1
130.4	0.0	0.0	0.0	0.0	0.0	-	40	\sqcap		\top		$\dashv \vdash$	\top	\top	+	\dagger		1
135.6	0.0	0.0	0.0	0.0	0.0	-												
	0.0	0.0	0.0	0.0		-			14									
138.0					0.0	-			$\ \cdot\ _{\mathcal{J}}$									
0.0	0.0	0.0	0.0	0.0	0.0	-	44	\sqcap	Z	\top	\top		$\neg \neg \neg$	\top		\top		1
0.0	0.0	0.0	0.0	0.0	0.0	-				>								
0.0	0.0	0.0	0.0	0.0	0.0	-												
0.0	0.0	0.0	0.0	0.0	0.0	-	40			+	++	+		+				1
0.0	0.0	0.0	0.0	0.0	0.0	l	48							_				_
0.0	0.0	0.0	0.0	0.0	0.0													

Note(s):
WB - Westbound
EB - Eastbound
OSS - Outside Shoulder
ISS - Inside Shoulder DECEL - Deceleration ACCEL - Acceleration LN - Lane

AG - At Grade F - Fill OSL - Outside Lane

C - Cut SG - Subgrade T/ABC - Top of ABC Stone B/ABC - Bottom of ABC Stone Ex. Gr. - Existing Grade

SHEET 14

DYNAMI	C CONE PE	NETROME:	TER DATA		511				BR-00					29/US	70	
C I IAWINI		SITU CBR	ILIVUATA		INTY		FIE	חו		ESSION	ΔΙ			CREW		
	AND IN	O ODIN			dson		1 1		an Kul					Explor	ation	
TES	ST LOCATIO	N DESCRIPT	TION		RFORMED				an Rui	on lold			mgor	- Apioi		
		EB_ISL			2/23	1										
DATUM	CUT/FILL		THING		TING	1				COR	RELATE	D CBR V	ALUES			
T/ABC	С		,107		2,815	1										
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ATION IN CE		-	1										
1.5	93.5	0.0	0.0	0.0	0.0	_										
2.2	97.0	0.0	0.0	0.0	0.0		0.	0	:	20.0	40.0	6	0.0	80.0		100
2.7	98.0	0.0	0.0	0.0	0.0		0	_		1						
3.6	99.8	0.0	0.0	0.0	0.0								+			
4.3	101.9	0.0	0.0	0.0	0.0											
4.9	0.0	0.0	0.0	0.0	0.0											41
5.5	0.0	0.0	0.0	0.0	0.0		4	\dashv	$\forall \forall$	1		$\dashv \dashv \dashv$	├ B/A	BC ST	ONE	_Н
6.1	0.0	0.0	0.0	0.0	0.0				/							
6.9	0.0	0.0	0.0	0.0	0.0				$\lceil \mid \mid \rceil$							
7.9	0.0	0.0	0.0	0.0	0.0		_		(
9.1	0.0	0.0	0.0	0.0	0.0		8	\neg	egthapprox = 1	+		$\neg \neg \neg$				\forall
11.0	0.0	0.0	0.0	0.0	0.0				$ \cdot $							
14.9	0.0	0.0	0.0	0.0	0.0				$ \Lambda $							
19.0	0.0	0.0	0.0	0.0	0.0		40)							
22.4	0.0	0.0	0.0	0.0	0.0		12			\top						\forall
25.5	0.0	0.0	0.0	0.0	0.0											
28.2	0.0	0.0	0.0	0.0	0.0	-			}							
31.1	0.0	0.0	0.0	0.0	0.0	-	46			.						
33.7	0.0	0.0	0.0	0.0	0.0	-	16		7							
36.0	0.0	0.0	0.0	0.0	0.0	-			\	\cup						
38.5	0.0	0.0	0.0	0.0	0.0	-				∤						
40.4	0.0	0.0	0.0	0.0	0.0	-	20									
42.6	0.0	0.0	0.0	0.0	0.0	-	20			\mathcal{P}						
44.7	0.0	0.0	0.0	0.0	0.0	-				$\sqcup \sqcup \sqcup$						
46.2	0.0	0.0	0.0	0.0	0.0					$\mathbf{J} + \mathbf{I}$						
48.3	0.0	0.0	0.0	0.0	0.0	es)	24				$\sqcup \sqcup$					Ш
50.1	0.0	0.0	0.0	0.0	0.0	할				811						
51.6	0.0	0.0	0.0	0.0	0.0	Ε										
53.4	0.0	0.0	0.0	0.0	0.0	atr										
						Ĭ	28	_		>	+					+
55.2	0.0	0.0	0.0	0.0	0.0	Depth Below Datum (Inches)				1						
56.9	0.0	0.0	0.0	0.0	0.0	표				(\cdot)						
58.6	0.0	0.0	0.0	0.0	0.0	Jep(1						
60.3	- : : -		0.0	0.0	- : :	-	32	+	 	+	+				$\vdash\vdash$	+
61.8	0.0	0.0	0.0	0.0	0.0					$ \ \ $						
63.6	0.0	0.0	0.0	0.0	0.0					/						
65.0	0.0	0.0	0.0	0.0	0.0											
66.9	0.0	0.0	0.0	0.0	0.0		36	+		+++	+++		++-	++	++	\dashv
68.8	0.0	0.0	0.0	0.0	0.0				$\left(\mid \cdot \mid \cdot \right)$							
70.3	0.0	0.0	0.0	0.0	0.0				4	+	<u>↓</u> │┃│					
71.9	0.0	0.0	0.0	0.0	0.0					+						
73.6	0.0	0.0	0.0	0.0	0.0		40	\top		+		$\neg \neg \vdash$		$\Box \Box$		$\forall \exists$
75.4	0.0	0.0	0.0	0.0	0.0											
77.2	0.0	0.0	0.0	0.0	0.0											
78.8	0.0	0.0	0.0	0.0	0.0											
80.4	0.0	0.0	0.0	0.0	0.0		44	\neg	\Box	+		$\neg \neg \neg$				\forall
82.3	0.0	0.0	0.0	0.0	0.0	-										
83.9	0.0	0.0	0.0	0.0	0.0											
85.7	0.0	0.0	0.0	0.0	0.0		40									
87.7	0.0	0.0	0.0	0.0	0.0		48									
89.7	0.0	0.0	0.0	0.0	0.0											

WB - Westbound EB - Eastbound OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane

DECEL - Deceleration ACCEL - Acceleration LN - Lane AG - At Grade F - Fill

D.VIII.					NUMBER					IP							ROL		70		
DYNAMIC	CONE PE		TER DATA		5.1.1					0015							29/		70		_
	AND IN-S	SITU CBR			JNTY		FII				SIONA	\L_					CRE				
	T. 00. T. T.	1.0000000			dson				an K	ubin	ski					I rigo	n Ex	plor	ation		_
TES	T LOCATION		TION		RFORMED																
	L_4280_EB				2/23	-															
DATUM	CUT/FILL	NORT			TING					(CORR	ELA	ΓED	CBR	VAL	UES	5				
T/ABC	С	759			2,839																
	CUMULATIV	E PENETRA	ATION IN CE	NTIMETERS	3																
1.6	85.4	0.0	0.0	0.0	0.0																
3.9	88.8	0.0	0.0	0.0	0.0		0	0.0		20.	0	40	0.0		60.0)	1	80.0		10	0.0
5.5	92.0	0.0	0.0	0.0	0.0		U		\vdash	\rightarrow											1
6.8	95.6	0.0	0.0	0.0	0.0				•	$\langle $											
8.0	99.0	0.0	0.0	0.0	0.0						+										
8.8	102.5	0.0	0.0	0.0	0.0		4								\perp			\perp	Щ		
9.3	106.2	0.0	0.0	0.0	0.0		4			\prod								\blacksquare	5	Ŧ	1
9.7	110.0	0.0	0.0	0.0	0.0										\sqcup	+	ı				
10.1	113.5	0.0	0.0	0.0	0.0								+	71							
10.5	117.4	0.0	0.0	0.0	0.0	1	8			Ш					Ш	В	ABC	c si	ONE]
10.8	0.0	0.0	0.0	0.0	0.0	1	Ü			H	>					Ŧ		T		Ŧ	1
11.1	0.0	0.0	0.0	0.0	0.0	1				A											
11.6	0.0	0.0	0.0	0.0	0.0	1															
12.0	0.0	0.0	0.0	0.0	0.0	1	12	Щ	Ш	1	$\perp \perp$		Щ	Щ.	Щ	$\perp \! \! \perp$	Щ	\bot	Ш		1
12.4	0.0	0.0	0.0	0.0	0.0	1				lΙ											
12.9	0.0	0.0	0.0	0.0	0.0	1				M											
13.4	0.0	0.0	0.0	0.0	0.0	1				71											
13.9	0.0	0.0	0.0	0.0	0.0		16	Ц.	Щ.	Д				Щ.	щ	Ш	Ш	_		_	1
14.4	0.0	0.0	0.0	0.0	0.0	1			($^{\prime}$											
15.1	0.0	0.0	0.0	0.0	0.0	1			∣∣'	$\setminus \setminus$											
15.8	0.0	0.0	0.0	0.0	0.0	1				21											
16.7	0.0	0.0	0.0	0.0	0.0	1	20	\vdash	$\perp \prime$	4					4		-	+	\longrightarrow	_	4
17.9	0.0	0.0	0.0	0.0	0.0	1			/												
19.1	0.0	0.0	0.0	0.0	0.0	1															
20.6	0.0	0.0	0.0	0.0	0.0	1_			I												
21.8	0.0	0.0	0.0	0.0	0.0	i ş	24	\vdash	+-	₩			-	+-	₩		++	┿	+++	+	┨
23.4	0.0	0.0	0.0	0.0	0.0	를			}												
25.3	0.0	0.0	0.0	0.0	0.0	Ę			/												
27.0	0.0	0.0	0.0	0.0	0.0	퓵			\backslash												
28.7	0.0	0.0	0.0	0.0	0.0	Depth Below Datum (Inches)	28	-) -	+	+	-	\vdash	+	+	+	₩	+	++	+	1
30.6	0.0	0.0	0.0	0.0	0.0	3eK			/												
32.7	0.0	0.0	0.0	0.0	0.0	Ě															
34.7	0.0	0.0	0.0	0.0	0.0	De P															
36.5	0.0	0.0	0.0	0.0	0.0	1	32	\vdash	+	\forall	++	-	\vdash	+	+	++	++	+	$\forall \forall$	+	1
38.5	0.0	0.0	0.0	0.0	0.0	1															
40.5	0.0	0.0	0.0	0.0	0.0	1			I												
42.9	0.0	0.0	0.0	0.0	0.0	1															
45.0	0.0	0.0	0.0	0.0	0.0	1	36	\vdash	#	$\dagger \dagger$			\vdash	\top	\forall	+	\dagger	\top	$\sqcap \vdash$	\neg	1
46.8	0.0	0.0	0.0	0.0	0.0	1															
48.9	0.0	0.0	0.0	0.0	0.0	1															
51.4	0.0	0.0	0.0	0.0	0.0	1															
54.5	0.0	0.0	0.0	0.0	0.0	1	40		\sqcap	\sqcap					\top	\sqcap		\top			1
57.4	0.0	0.0	0.0	0.0	0.0	1															
						1															
60.6	0.0	0.0	0.0	0.0	0.0	1	44		Γ	\perp								_[_	
63.7	0.0	0.0	0.0	0.0	0.0	-	44		\sqcap	\sqcap					\top	\sqcap		T			1
67.7	0.0	0.0	0.0	0.0	0.0	1															
70.8	0.0	0.0	0.0	0.0	0.0	1															
75.3	0.0	0.0	0.0	0.0	0.0	-	48														
79.1	0.0	0.0	0.0	0.0	0.0	-	40														-
82.3 Note(s):	0.0	0.0	0.0	0.0	0.0																

Note(s): WB - Westbound DECEL - Deceleration EB - Eastbound
OSS - Outside Shoulder ACCEL - Acceleration LN - Lane

AG - At Grade F - Fill ISS - Inside Shoulder OSL - Outside Lane

C - Cut SG - Subgrade T/ABC - Top of ABC Stone B/ABC - Bottom of ABC Stone Ex. Gr. - Existing Grade

SHEET 15

				PROJECT	NUMBER				TIP					ROUT	E	
DYNAMIC	CONE PE	NETROMET	ER DATA	6701	5.1.1			E	3R-001	5			US	S 29/US	S 70	
	AND IN-S	SITU CBR		COL	INTY		FIE	LD PI	ROFES	SSIONA	L			CREW	1	
				Davi	dson			Dai	n Kubir	nski			Trigo	n Explo	oration	
TES	ST LOCATIO	N DESCRIPT	ION	DATE PE	RFORMED											
	L_4280_	EB_OSS		5/2	/23											
DATUM	CUT/FILL	NORT	HING	EAS	TING					CORRE	ELATED	CBR V	ALUES	3		
SG	С	759,	084	1,62	2,844											
	CUMULATIV	/E PENETRA	TION IN CE	NTIMETERS												
1.3	0.0	0.0	0.0	0.0	0.0											
2.3	0.0	0.0	0.0	0.0	0.0		0.0)	20	.0	40.0	ε	0.0	80.	.0	100
3.5	0.0	0.0	0.0	0.0	0.0		0									
5.0	0.0	0.0	0.0	0.0	0.0											
6.5	0.0	0.0	0.0	0.0	0.0					<i>)</i>						
8.1	0.0	0.0	0.0	0.0	0.0		4									
9.4	0.0	0.0	0.0	0.0	0.0		7					-	•			
10.5	0.0	0.0	0.0	0.0	0.0						111					
11.1	0.0	0.0	0.0	0.0	0.0				$ \cdot $	'						
11.9	0.0	0.0	0.0	0.0	0.0		8 -	\perp			\bot		+	$+\!\!+\!\!\!+\!\!\!\!+$		\perp
12.8	0.0	0.0	0.0	0.0	0.0				$ \langle \cdot \cdot $							
13.9	0.0	0.0	0.0	0.0	0.0				I							
15.4	0.0	0.0	0.0	0.0	0.0				I							
17.2	0.0	0.0	0.0	0.0	0.0		12	$+\!+$	\rightarrow	$\dashv \dashv$	+++	+++	+++	+++	+	\dashv
19.1	0.0	0.0	0.0	0.0	0.0				$ \setminus $							
21.6	0.0	0.0	0.0	0.0	0.0				 							
23.9	0.0	0.0	0.0	0.0	0.0				$\perp l$							
26.3	0.0	0.0	0.0	0.0	0.0		16 -		\rightarrow		\rightarrow		+++	+++	-	-
28.9	0.0	0.0	0.0	0.0	0.0											
31.0	0.0	0.0	0.0	0.0	0.0				$I \sqcup I$							
33.0	0.0	0.0	0.0	0.0	0.0											
34.9	0.0	0.0	0.0	0.0	0.0		20		 							
36.9	0.0	0.0	0.0	0.0	0.0				/							
39.0	0.0	0.0	0.0	0.0	0.0											
41.0	0.0	0.0	0.0	0.0	0.0	ဖွ	24									
43.4	0.0	0.0	0.0	0.0	0.0	ğ	24		abla							
46.1	0.0	0.0	0.0	0.0	0.0	Datum (Inches)										
48.9	0.0	0.0	0.0	0.0	0.0	Ţ			$I \sqcup I$							
51.7	0.0	0.0	0.0	0.0	0.0		28	Щ	μ		$\bot \bot \bot$	$\perp \perp \perp$	$\bot \bot$	$\bot \bot \bot$		Щ
54.9	0.0	0.0	0.0	0.0	0.0	Below			$ \cdot $							
58.2	0.0	0.0	0.0	0.0	0.0	۾ P										
61.2	0.0	0.0	0.0	0.0	0.0	Depth										
63.9	0.0	0.0	0.0	0.0	0.0	!	32	\dashv	+	+	+++	+	+ + +	$+\!+\!1$	+	\dashv
66.5	0.0	0.0	0.0	0.0	0.0											
69.5	0.0	0.0	0.0	0.0	0.0											
72.7	0.0	0.0	0.0	0.0	0.0											
76.2	0.0	0.0	0.0	0.0	0.0	ļ	36 -	+	+	\dashv	+++	+++	+++	+++		\dashv
79.9	0.0	0.0	0.0	0.0	0.0											
83.7	0.0	0.0	0.0	0.0	0.0											
87.3	0.0	0.0	0.0	0.0	0.0											
91.2	0.0	0.0	0.0	0.0	0.0		40	+	+	$\dashv \dashv \dashv$	++	+++	+++	╁┼┼	+	\dashv
95.0	0.0	0.0	0.0	0.0	0.0			$\ \ $								
98.5	0.0	0.0	0.0	0.0	0.0											
102.1	0.0	0.0	0.0	0.0	0.0			$\parallel \parallel$								
105.4	0.0	0.0	0.0	0.0	0.0		44 -	$\dashv \dagger$	+	$\dashv \dashv$	+++	+++	+++	+++	+	\dashv
108.9	0.0	0.0	0.0	0.0	0.0											
112.7	0.0	0.0	0.0	0.0	0.0											
116.5	0.0	0.0	0.0	0.0	0.0											
120.3	0.0	0.0	0.0	0.0	0.0		48									
0.0	0.0	0.0	0.0	0.0	0.0	L										

Note(s): WB - Westbound EB - Eastbound OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane

DECEL - Deceleration ACCEL - Acceleration

LN - Lane AG - At Grade F - Fill

DATUM C Ex. Gr.	L_46		ER DATA	6701 COU			EII	- 1 D		R-001	15 SSIO	NIAI				JS 29.		U		
DATUM C Ex. Gr.	L_46			COU	NITV		CIL	I D	DD	OFF	CCIO	LAI								_
DATUM C Ex. Gr.	L_46	I DESCRIPT					FIL					NAL					EW			
DATUM C Ex. Gr. CU	L_46	I DESCRIPT			dson			[Dan	Kubi	nski				Tri	gon Ex	kplora	ation		_
Ex. Gr.	UT/FILL	200	ION		RFORMED															
Ex. Gr.				5/4																
CU		NORT			TING						COF	REL	ATEI	CBR V	VALU	ES				
	С	759,			3,000															
4.7				NTIMETERS																
	0.0	0.0	0.0	0.0	0.0															
8.2	0.0	0.0	0.0	0.0	0.0		0	.0		20	0.0		40.0		60.0		80.0		10	0.0
13.2	0.0	0.0	0.0	0.0	0.0		·	Ν												
19.3	0.0	0.0	0.0	0.0	0.0				$\setminus \mid \mid$											
24.3	0.0	0.0	0.0	0.0	0.0				\setminus											
28.5	0.0	0.0	0.0	0.0	0.0		4	Щ	\perp		Ш		\perp			Ш	\perp			1
32.0	0.0	0.0	0.0	0.0	0.0		·													
34.2	0.0	0.0	0.0	0.0	0.0															
36.2	0.0	0.0	0.0	0.0	0.0															
40.1	0.0	0.0	0.0	0.0	0.0		8	Щ	Щ		$\sqcup \sqcup$		4	$\perp \!\!\! \perp \!\!\! \perp$	\bot	$\downarrow \downarrow \downarrow$	4		4	1
42.4	0.0	0.0	0.0	0.0	0.0		-													
44.5	0.0	0.0	0.0	0.0	0.0				$\parallel \parallel$											
45.9	0.0	0.0	0.0	0.0	0.0															
48.7	0.0	0.0	0.0	0.0	0.0		12	Щ	\downarrow		\sqcup	_	4	$\perp \!\!\! \perp \!\!\! \perp$	\bot	$\perp \perp$	4	_	4	1
51.7	0.0	0.0	0.0	0.0	0.0		_		N											
55.2	0.0	0.0	0.0	0.0	0.0	1														
58.8	0.0	0.0	0.0	0.0	0.0	1														l
62.6	0.0	0.0	0.0	0.0	0.0	1	16	Щ			\sqcup		\perp		\bot	+		\perp	4	1
66.7	0.0	0.0	0.0	0.0	0.0	1														
71.1	0.0	0.0	0.0	0.0	0.0	1				\ \										
75.8	0.0	0.0	0.0	0.0	0.0	1					1									
80.1	0.0	0.0	0.0	0.0	0.0	1	20	Н			Н-		+		+	+	\bot		-	ļ
84.4	0.0	0.0	0.0	0.0	0.0	1			I											
92.2	0.0	0.0	0.0	0.0	0.0	1			\parallel											
95.7	0.0	0.0	0.0	0.0	0.0	1_														
99.2	0.0	0.0	0.0	0.0	0.0	es P	24	Н	-		\vdash		+		+	+	+		+	┨
102.8	0.0	0.0	0.0	0.0	0.0	Datum (Inches)			Ш											
106.5	0.0	0.0	0.0	0.0	0.0	Ē														
110.4	0.0	0.0	0.0	0.0	0.0	横														
115.1	0.0	0.0	0.0	0.0	0.0	Ž	28	H	╂		\vdash		+		+	+	+		+	1
119.4	0.0	0.0	0.0	0.0	0.0	Below														
121.6	0.0	0.0	0.0	0.0	0.0	Ē														
124.6	0.0	0.0	0.0	0.0	0.0	Depth														1
124.0	0.0	0.0	0.0	0.0	0.0	1	32	\vdash	╫	\vdash	\vdash	-	+	\dashv	+	+	+	\dashv	+	1
0.0	0.0	0.0	0.0	0.0	0.0															
0.0	0.0	0.0	0.0	0.0	0.0	1			$ \cdot $											
0.0	0.0	0.0	0.0	0.0	0.0	-			'											
0.0	0.0	0.0	0.0	0.0	0.0		36	+	$\dashv \dashv$	\vdash	\vdash	\dashv	+	$\dashv \dashv \dashv$	+	+	+	$\dashv \dashv$	+	1
0.0	0.0	0.0	0.0	0.0	0.0	-			$\setminus \mid$											
						-														
0.0	0.0	0.0	0.0	0.0	0.0	-														1
0.0	0.0	0.0	0.0	0.0	0.0	-	40	\vdash	\top	\vdash	\vdash	\dashv	\top	$\dashv \dashv$	+	+	\top	$\dashv \dashv$	+	1
0.0	0.0	0.0	0.0	0.0	0.0	-														
0.0	0.0	0.0	0.0	0.0	0.0	-														1
0.0	0.0	0.0	0.0	0.0	0.0	-														1
0.0	0.0	0.0	0.0	0.0	0.0		44	\vdash	+	\vdash	\vdash	\vdash	+	+	+	+	+	\dashv	+	1
0.0	0.0	0.0	0.0	0.0	0.0	4														
0.0	0.0	0.0	0.0	0.0	0.0															1
0.0	0.0	0.0	0.0	0.0	0.0				\setminus											
0.0	0.0	0.0	0.0	0.0	0.0		48	ш		<u> </u>										J
0.0 Note(s):	0.0	0.0	0.0	0.0	0.0															

Note(s): WB - Westbound DECEL - Deceleration EB - Eastbound
OSS - Outside Shoulder ACCEL - Acceleration LN - Lane

AG - At Grade F - Fill ISS - Inside Shoulder OSL - Outside Lane

C - Cut SG - Subgrade T/ABC - Top of ABC Stone B/ABC - Bottom of ABC Stone Ex. Gr. - Existing Grade

SHEET 16

ΥΝΔΜΙ	CONE PE	NETROME:	TFR DATA	PROJECT 6701						IP -0015	;					OUTE 9/US 70)	
· · · · · · · · · · · · · · · · · · ·		SITU CBR	LINDAIA	COU			FI	ELD			SIONA	\L				REW		
	,	J.1.0 05.1		Davi		1			Dan K			-		Tri		xplora	ion	
TES	ST LOCATIO	N DESCRIPT	TION	DATE PER											ع ۱۰۰ د ق			
		1800		5/4														
DATUM	CUT/FILL	NOR1	THING	EAS	TING	1					CORR	ELATE	СВБ	R VALU	ES			
Ex. Gr.	С	759	,525	1,623	3,123	1												
	CUMULATIV	/E PENETR	ATION IN CE	NTIMETERS		1												
11.4	0.0	0.0	0.0	0.0	0.0													
20.0	0.0	0.0	0.0	0.0	0.0	1	(0.0		20.)	40.0		60.0		80.0		100
34.8	0.0	0.0	0.0	0.0	0.0	1	0											
40.5	0.0	0.0	0.0	0.0	0.0	1		\mathbf{I}										
44.8	0.0	0.0	0.0	0.0	0.0	1												П
49.0	0.0	0.0	0.0	0.0	0.0	1		Ш										
52.9	0.0	0.0	0.0	0.0	0.0	1	4	T										П
56.7	0.0	0.0	0.0	0.0	0.0													
60.2	0.0	0.0	0.0	0.0	0.0													
63.3	0.0	0.0	0.0	0.0	0.0		8		Ш	Щ	Щ			$\sqcup \!\!\! \perp$			$\sqcup \sqcup$	Ц
66.5	0.0	0.0	0.0	0.0	0.0		٠											
72.5	0.0	0.0	0.0	0.0	0.0													
75.4	0.0	0.0	0.0	0.0	0.0													
78.3	0.0	0.0	0.0	0.0	0.0		12	1	++	$+\!\!+$	$+\!+\!+\!$	$\dashv \downarrow$	+	++	+	+	$\vdash\vdash\vdash$	Н
81.5	0.0	0.0	0.0	0.0	0.0													
84.5	0.0	0.0	0.0	0.0	0.0			$ \langle $										
87.6	0.0	0.0	0.0	0.0	0.0			1										
90.7	0.0	0.0	0.0	0.0	0.0		16	\dashv	+	++	++	$\dashv +$	++	++	++	++	++-	Н
93.9	0.0	0.0	0.0	0.0	0.0				\setminus									
96.6	0.0	0.0	0.0	0.0	0.0													
99.2	0.0	0.0	0.0	0.0	0.0													
101.8	0.0	0.0	0.0	0.0	0.0		20		\top	$\top \top$				\top	$\neg \neg$			Н
104.2	0.0	0.0	0.0	0.0	0.0													
106.9	0.0	0.0	0.0	0.0	0.0													
109.6	0.0	0.0	0.0	0.0	0.0	es)	24											
112.3	0.0	0.0	0.0	0.0	0.0	(Inches)	24											
115.7	0.0	0.0	0.0	0.0	0.0	= =			Ш									
118.3	0.0	0.0	0.0	0.0	0.0	Datum			/									
121.1	0.0	0.0	0.0	0.0	0.0		28	Н	/	-		\rightarrow					Ш.	Н
123.6	0.0	0.0	0.0	0.0	0.0	Below												
125.9 128.6	0.0	0.0	0.0	0.0	0.0	<u>۽</u>												
131.0	0.0	0.0	0.0	0.0	0.0	Depth			I									
133.2	0.0	0.0	0.0	0.0	0.0	1	32	+	+	+	++	$\dashv +$	++	++	+	++	++	Н
135.7	0.0	0.0	0.0	0.0	0.0													
138.0	0.0	0.0	0.0	0.0	0.0	1												
140.5	0.0	0.0	0.0	0.0	0.0	1												
0.0	0.0	0.0	0.0	0.0	0.0	1	36	\Box	#	$\dagger \dagger$	$\top \top$	$\dashv \vdash$	\top	+	\top		\sqcap	Н
0.0	0.0	0.0	0.0	0.0	0.0													
0.0	0.0	0.0	0.0	0.0	0.0	1												
0.0	0.0	0.0	0.0	0.0	0.0		40											
0.0	0.0	0.0	0.0	0.0	0.0		40											
0.0	0.0	0.0	0.0	0.0	0.0	1			\perp /									
0.0	0.0	0.0	0.0	0.0	0.0	1												
0.0	0.0	0.0	0.0	0.0	0.0	1	44	Щ	4	+	+	\bot		4		4	$\sqcup\sqcup$	Ц
0.0	0.0	0.0	0.0	0.0	0.0	1			/									
0.0	0.0	0.0	0.0	0.0	0.0	1												
0.0	0.0	0.0	0.0	0.0	0.0)									
0.0	0.0	0.0	0.0	0.0	0.0		48											Ш
0.0	0.0	0.0	0.0	0.0	0.0	1												

WB - Westbound
EB - Eastbound
OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane

DECEL - Deceleration ACCEL - Acceleration LN - Lane AG - At Grade F - Fill

					NUMBER	TIP						ROUTE				
DYNAMIC		NETROMET	ER DATA		5.1.1	_		BR-00				We	st 5th A		<u> </u>	
	AND IN-S	SITU CBR			INTY	F		PROFE		AL			CRE			
	TIOCATIC	U DECORIE	1011		dson			Dan Kubi	inski			Trig	on Exp	ioratio	n	
TES		N DESCRIPT	IUN		RFORMED											
DATING		_RT_LN	UINO		/23 TING				000)EL 45	ED OF		150			
DATUM	CUT/FILL	NORT	_		TING				COR	KELA1	ED CBF	₹ VALU	IES			
SG	F CUMULATIV	758,			1,912											
		/E PENETRA														
1.7	0.0	0.0	0.0	0.0	0.0			•		40	•	co o	0.4		400.0	
2.9	0.0	0.0	0.0	0.0	0.0		0.0	2	0.0	40.	.0	60.0	80	0.0	100.0	
4.1	0.0	0.0	0.0	0.0	0.0				$\downarrow \downarrow$							
5.0	0.0	0.0	0.0	0.0	0.0					\rightarrow						
6.6	0.0	0.0	0.0	0.0	0.0											
8.3	0.0	0.0	0.0	0.0	0.0		4		+	+				\vdash	+	
10.0	0.0	0.0	0.0	0.0	0.0			$ \cdot \cdot $								
12.0	0.0	0.0	0.0	0.0	0.0											
14.3	0.0	0.0	0.0	0.0	0.0			4								
16.7	0.0	0.0	0.0	0.0	0.0		8 –	+++	++	+	+	++	++-	++	+	
18.4	0.0	0.0	0.0	0.0	0.0											
20.6	0.0	0.0	0.0	0.0	0.0			$ \cdot / \cdot $								
23.2	0.0	0.0	0.0	0.0	0.0											
26.1	0.0	0.0	0.0	0.0	0.0	1 1	12 -		++	╁┼┤	+++		++-	++	+	
29.2	0.0	0.0	0.0	0.0	0.0			I								
33.3	0.0	0.0	0.0	0.0	0.0											
37.8	0.0	0.0	0.0	0.0	0.0			I + I								
43.1	0.0	0.0	0.0	0.0	0.0	. 1	16	+							+	
48.4	0.0	0.0	0.0	0.0	0.0											
52.5	0.0	0.0	0.0	0.0	0.0											
56.7	0.0	0.0	0.0	0.0	0.0	Ι,		$ \mathbf{I} + \mathbf{I} $								
63.7	0.0	0.0	0.0	0.0	0.0	. '	20			$\top \top \top$		Ш				
70.4	0.0	0.0	0.0	0.0	0.0											
73.1	0.0	0.0	0.0	0.0	0.0			I								
75.5	0.0	0.0	0.0	0.0	0.0	es)	24									
78.5	0.0	0.0	0.0	0.0	0.0	l 둳 '		$I \sqcup \bot$								
81.8	0.0	0.0	0.0	0.0	0.0	=										
85.2	0.0	0.0	0.0	0.0	0.0	턃										
89.7	0.0	0.0	0.0	0.0	0.0	<u>~</u> 2	28 –			$\perp \perp \perp$		Щ.			Ш	
94.3	0.0	0.0	0.0	0.0	0.0	∮ • •		N								
98.8	0.0	0.0	0.0	0.0	0.0	- B		}								
102.5	0.0	0.0	0.0	0.0	0.0	Depth Below Datum (Inches)		/								
107.0	0.0	0.0	0.0	0.0	0.0		32 -	+H+	++	+	+++	+	++	$\vdash \vdash$	+	
111.6	0.0	0.0	0.0	0.0	0.0											
118.1	0.0	0.0	0.0	0.0	0.0	ł		$\mid J \mid \mid$								
131.5	0.0	0.0	0.0	0.0	0.0	ł		I I								
0.0	0.0	0.0	0.0	0.0	0.0	. 3	36 –	$H \rightarrow +$	++	╁┼┼	+++	+++	++	$\vdash \vdash$	+	
0.0	0.0	0.0	0.0	0.0	0.0	-										
0.0	0.0	0.0	0.0	0.0	0.0	-										
0.0	0.0	0.0	0.0	0.0	0.0			$ \setminus \cdot $								
0.0	0.0	0.0	0.0	0.0	0.0	-	40		++	╁┼		+++	++-	$\vdash \vdash$	+	
0.0	0.0	0.0	0.0	0.0	0.0											
0.0	0.0	0.0	0.0	0.0	0.0											
0.0	0.0	0.0	0.0	0.0	0.0	ł										
0.0	0.0	0.0	0.0	0.0	0.0	∙ ′	44 -	7		$\dagger \dagger \dagger$	\top		$\sqcap \vdash$	\vdash	+	
0.0	0.0	0.0	0.0	0.0	0.0			$ I \mid I$								
0.0	0.0	0.0	0.0	0.0	0.0			$I \mid \cdot \mid \cdot \mid$								
0.0	0.0	0.0	0.0	0.0	0.0		40									
0.0	0.0	0.0	0.0	0.0	0.0	√	48 └─									
0.0 Note(s):	0.0	0.0	0.0	0.0	0.0											

Note(s):

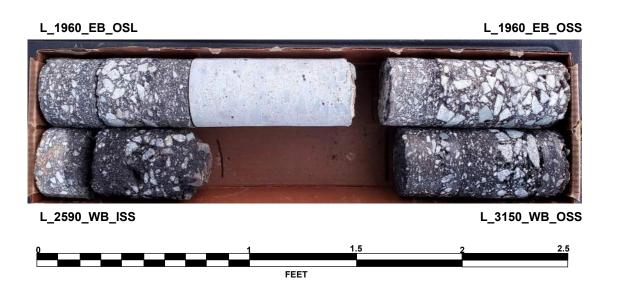
RT - Right LN - Lane PS - Paved Shoulder SG - Subgrade AG - At Grade T/ABC - Top of ABC Stone F - Fill B/ABC - Bottom of ABC Stone C - Cut Ex. Gr. - Existing Grade

SHEET 17

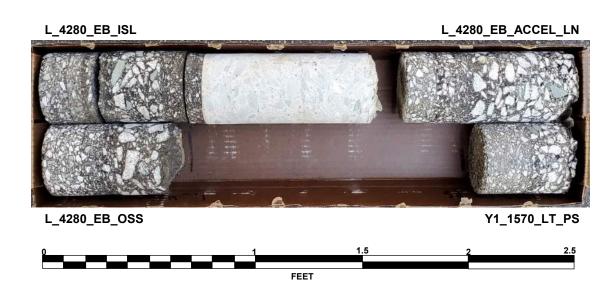
				PROJECT NUMBER		TIP						ROUTE							
YNAMIC	CONE PE		TER DATA	6701				BR-(N		ıy Dr	ive		
	AND IN-S	SITU CBR			INTY	F		PRO			\L					REW			
					dson			Dan Kı	ubins	ski				Trig	on E	xplo	ratior	1	
TES	ST LOCATIO		ION	DATE PERFORMED															
		LT_LN		5/4/23															
DATUM	CUT/FILL	_	THING	EASTING					(CORR	ELAT	ED C	BR V	/ALU	ES				
T/ABC	С		,472		1,622,178														
	CUMULATIV																		
1.0	66.9	0.0	0.0	0.0	0.0														
1.6	68.4	0.0	0.0	0.0	0.0		0.0		20.	0	40.	0	6	0.0		80.0)	10	0.0
2.1	69.9	0.0	0.0	0.0	0.0		ľГ					+	H	\vdash	$\overline{}$				Ì
2.6	71.7	0.0	0.0	0.0	0.0										_				i
3.0	73.4	0.0	0.0	0.0	0.0													-	ļ
3.3	75.1	0.0	0.0	0.0	0.0		4		Щ		$\perp \perp$						-		ı
3.7	76.9	0.0	0.0	0.0	0.0		•				+	+		\rightarrow					l
4.2	78.7	0.0	0.0	0.0	0.0							$+\!+\!-$	\top	l 🗀	Z/AD	C 97	ONE	_	l
4.6	80.3	0.0	0.0	0.0	0.0	1	<u> </u>	4	1		1	++	\vdash	 	,, AD	- 31 	DIVE	7	Į
5.1	81.9	0.0	0.0	0.0	0.0	1	8 –	_//_	+	+	\dashv	+	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	l
5.7	83.4	0.0	0.0	0.0	0.0	1													
6.3	84.9	0.0	0.0	0.0	0.0														
6.8	86.2	0.0	0.0	0.0	0.0	1		I											
7.1	87.6	0.0	0.0	0.0	0.0	1 1	12 –	-	+	+	\dashv	++	+	⊬	\vdash	+	+	+	ŀ
7.8	88.9	0.0	0.0	0.0	0.0	1		$ \rangle$	VΙ										
8.1	90.2	0.0	0.0	0.0	0.0	1			I										
8.8	91.5	0.0	0.0	0.0	0.0				$\ \ $										
9.3	93.0	0.0	0.0	0.0	0.0] 1	16 –	\vdash	4	++	\dashv	++	+	╁┼	+	+	+	+	ł
9.7	94.4	0.0	0.0	0.0	0.0				A										
10.4	95.6	0.0	0.0	0.0	0.0														
11.0	96.9	0.0	0.0	0.0	0.0				$\ \ $										
11.5	97.9	0.0	0.0	0.0	0.0] 2	20	\vdash	╫	+	$\dashv \vdash$	++-	+	\vdash	+	+	+	+	1
12.5	99.1	0.0	0.0	0.0	0.0	1			М										
13.1	100.4	0.0	0.0	0.0	0.0				KI.										
13.8	101.6	0.0	0.0	0.0	0.0	g .	.		}										
15.1	102.6	0.0	0.0	0.0	0.0] ទ្វី វិ	24		7		$\sqcap \uparrow$	\top		\sqcap		\top	\sqcap	\sqcap	1
17.9	103.7	0.0	0.0	0.0	0.0	Datum (Inches)			}										
21.2	104.8	0.0	0.0	0.0	0.0	Įį													
24.2	105.8	0.0	0.0	0.0	0.0	ړې ٍ	28 _				ot					\coprod			
27.2	106.9	0.0	0.0	0.0	0.0	Below	-0 -		1										
30.5	108.1	0.0	0.0	0.0	0.0	٦ڦ			$\ \ $										
32.8	109.3	0.0	0.0	0.0	0.0	Depth			(
34.8	110.4	0.0	0.0	0.0	0.0	۽ ۾	32		1	$\perp \perp$	\dashv	44	$\perp \!\!\! \perp$	Ш	$\perp \!\!\! \perp$	Щ	Ш	Ш	
36.7	111.5	0.0	0.0	0.0	0.0														
38.5	112.6	0.0	0.0	0.0	0.0	1				\									
40.3	113.9	0.0	0.0	0.0	0.0	1				$ \mathbf{x} $									
41.9	114.9	0.0	0.0	0.0	0.0		36 –	$\vdash \vdash$	+	<u> </u>	\dashv	+	\vdash	╀	\vdash	\vdash	\vdash	4	ŀ
43.8	115.9	0.0	0.0	0.0	0.0					$(\mid \mid)$									
45.6	117.0	0.0	0.0	0.0	0.0	1				1									
47.4	117.5	0.0	0.0	0.0	0.0	1					٢								
49.3	119.1	0.0	0.0	0.0	0.0	. 4	40	$\vdash\vdash$	+	+	+	++-	+	\vdash	+	+	+	\vdash	ł
51.2	120.0	0.0	0.0	0.0	0.0					$\ \cdot\ $	$[\mid]$								
53.2	121.3	0.0	0.0	0.0	0.0	1					'								
55.0	122.4	0.0	0.0	0.0	0.0					$ \zeta $									
57.0	123.4	0.0	0.0	0.0	0.0	. ∠	44 📙	$\vdash\vdash$	+	╁	\dashv	++	+	\vdash	+	+	+	+	ł
58.6	124.4	0.0	0.0	0.0	0.0	1				_	۱ _۱								
60.3	125.6	0.0	0.0	0.0	0.0	1				4				\vdash	\vdash				
62.1	0.0	0.0	0.0	0.0	0.0	1			-		\Rightarrow								
63.7	0.0	0.0	0.0	0.0	0.0] 4	48 🗀									ш.			J
65.4	0.0	0.0	0.0	0.0	0.0	1													

Note(s): RT - Right LN - Lane PS - Paved Shoulder SG - Subgrade AG - At Grade T/ABC - Top of ABC Stone F - Fill B/ABC - Bottom of ABC Stone C - Cut Ex. Gr. - Existing Grade

L_3870_WB_ISS


L_3870_WB_OSS

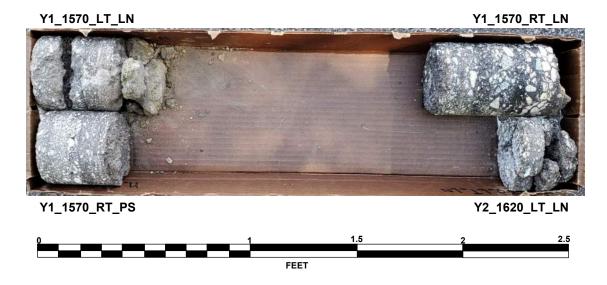
PAVEMENT CORE PHOTOGRAPHS


BR-0015 (67015.1.1)

Bridge No. 67 and No. 68 Replacements on US 29/US 70 NB & SB over SR 1192 (W. 5th Avenue)

BOX 2

BOX 1


BOX 3

PAVEMENT CORE PHOTOGRAPHS

BR-0015 (67015.1.1)

Bridge No. 67 and No. 68 Replacements on US 29/US 70 NB & SB over SR 1192 (W. 5th Avenue)

BOX 5

LABORATORY SUMMARY SHEET FOR SOIL SAMPLES

WBS NO. (TIP NO.): 67015.1.1 (BR-0015)

PROJECT ID: 41620 COUNTY: DAVIDSON

DESCRIPTION: BRIDGE NO. 67 AND NO. 68 REPLACEMENTS ON US 29/US 70 NB & SB OVER SR 1192 (W. 5TH AVENUE)

										Atterberg Limit	s	Gradation Results							
Sample No.	Boring Number	Alignment	Station	Offset	Sample Depth (ft.)	Natural Moisture Content (%)	AASHTO Class.	N-Value (blows/ft)	L.L.	P.L.	P.I.	Retained #4 Sieve	Pass #10 Sieve	Pass #40 Sieve	Pass #200 Sieve	Coarse Sand (%)	Fine Sand (%)	Silt (%)	Clay (%)
S-1	L_1830_WB_ISS	-L-	18+30	12' LT	0.0 - 5.0	27.1	A-7-5	-	82	34	48	3.0	95.0	84.0	59.0	18.7	22.2	18.6	40.5
S-2	L_1960_EB_ISS	-L-	19+60	12' RT	0.0 - 5.0	30.1	A-7-5		68	34	34	0.0	99.0	93.0	64.0	13.6	26.7	29.1	30.6
S-3	L_2590_WB_ISS	-L-	25+90	12' LT	0.0 - 5.0	28.4	A-7-5		69	34	35	1.0	98.0	92.0	66.0	11.3	26.7	21.6	40.4
S-4	L_3150_WB_OSS	-L-	31+50	39' LT	0.0 - 5.0	35.0	A-7-5		76	33	43	1.0	98.0	94.0	76.0	6.1	23.4	21.6	48.9
S-5	L_3275_EB_DECEL_LN	-L-	32+75	47' RT	0.0 - 5.0	26.7	A-7-5		64	31	33	1.0	99.0	96.0	75.0	5.8	26.0	31.9	36.3
S-6	L_3870_WB_ISS	-L-	38+70	12' LT	0.0 - 5.0	25.9	A-7-6		59	20	39	2.0	96.0	89.0	72.0	12.8	15.7	15.0	56.5
S-18*	L_4000^	-L-	40+00	0' CL	1.0 - 1.5	33.2	A-7-5		65	40	25	0.0	99.1	94.7	73.2	10.1	20.9	23.9	45.1
S-7	L_4280_EB_ISL	-L-	42+80	13' RT	0.0 - 5.0	38.4	A-7-5		79	42	37	0.0	100.0	98.0	73.0	5.2	26.5	15.6	52.7
S-20*	L_4600^	-L-	46+00	0' CL	1.0 - 2.0	26.8	A-7-5		51	33	18	0.0	99.0	96.0	51.0	13.0	41.3	13.6	32.1
S-8	Y1_1570_RT_LN	-Y1-	15+70	10' RT	0.0 - 5.0	24.8	A-7-6		59	24	35	1.0	99.0	93.0	69.0	13.2	21.2	19.4	46.2
S-9	Y2_1620_LT_LN	-Y2-	16+20	6' LT	0.0 - 5.0	32.8	A-7-5		65	31	34	1.0	99.0	97.0	80.0	5.1	19.5	20.3	55.1
CBR-1*	L_1450^	-L-	14+50	88' LT	8.5 - 18.5	27.0	A-7-5		60	44	16	0.0	100.0	93.1	56.6	14.7	35.3	23.4	26.6
CBR-2*	L_1850^	-L-	18+50	89' LT	0.0 - 10.0	30.6	A-7-5		60	35	25	0.0	100.0	95.2	75.9	9.9	19.4	26.1	44.7
CBR-3*	L_4200^	-L-	42+00	0' CL	0.0 - 2.5	37.3	A-7-5		73	37	36	8.0	91.0	96.6	78.4	7.2	18.6	28.9	45.2

^{*}Based on Roadway Investigation sample number

Michelle Stadel, P.E.

Lab Manager, NCDOT Certification No.: 111-02-1203

Victoria Siebert

Lab Technician, NCDOT Certification No.: 109-02-1003

[^]Based on Roadway Investigation boring number

ent: North Carolina Dept. of Transportation

Report No.: 23-CLT-00649 Rev. 1

Issued: 6/9/2023

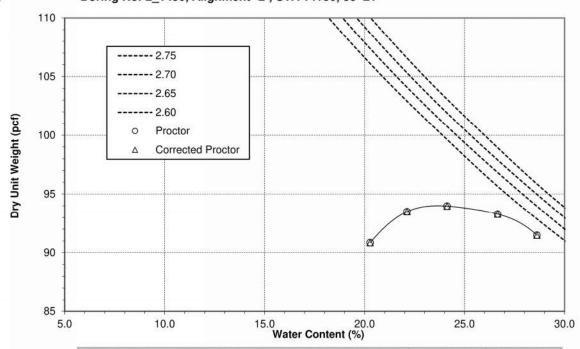
ect: **20235702.001A**

Sampled by: Mayson Foster

Dan Kubinski

Submitted by:

Field ID: L_1450, CBR-1 Date: 5/8/2023


NCDOT BR-0015 Roadway 02-000L - Lab

Date: 5/15/2023

Tested on 5/24/2023 by C. Blalock

Material Description: Brown Sandy Silt (A-7-5)
Location: Boring No. L_1450, Align

Boring No. L_1450, Alignment -L-, STA 14+50, 88' LT

Test Method: AASHTO T99 A	Uncorrected	Corrected
Maximum Dry Unit Weight (pcf)	94.0	na
Optimum Water Content (%)	23.6	na
Oversize Fraction, retained on 3/4 (%)	'	<5
Bulk Specific Gravity of Oversize Fraction		na

Rammer Type: Manual Specimen Preparation: Moist

Remarks:

AASHTO T-100, Soil Specific Gravity @ 20°C: 2.747

Reviewed on 6/9/2023 by Michelle Stadel,

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder.

Kleinfelder Charlotte Lab | 9009 Perimeter Woods Drive, Suite E | Charlotte, NC 28216 | (704) 598-1049

SHEET 21

Laboratory Test Report

Submitted by:

Dan Kubinski

North Carolina Dept. of Transportation Report No.: 23-CLT-00649 Rev. 1 Issued: 6/9/2023

 Project:
 20235702.001A
 Field ID:
 L_1450, CBR-1

 NCDOT BR-0015 Roadway
 Sampled by:
 Mayson Foster
 Date:
 5/8/2023

Sample Source: Boring No. L 1450, Alignment -L-, STA 14+50, 88' LT

Sample ID: CBR-1

Sample Description: Brown Sandy Silt (A-7-5)

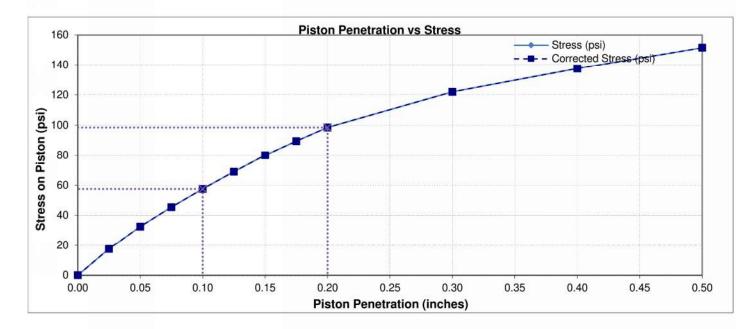
Material Used:

02-000L - Lab

Surcharge Weight: 10 lbs

Date Tested: 5/30/2023
Tested By: C. Blalock

Date:


5/15/2023

Condition of Sample: Soaked

Time Soaked: 96 hrs

AASHTO T193 - Standard Test Method for The California Bearing Ratio (CBR)

Dry Unit Wgt Before Soaking (pcf): Compaction Method: 90.8 Water Content Before Soaking (%): 21.2 Manual Dry Unit Wgt After Soaking (pcf): Max. Dry Unit Weight: 101.1 Water Content After Soak, Top in. (%): 30.3 94.0 pcf Swell (%): 5.65 Optimum Water Content: CBR (Corrected CBR) @ 0.1 in. Penetration: 5.8 (5.8) 23.6 % CBR (Corrected CBR) @ 0.2 in. Penetration: 6.6 (6.6)

Remarks:

Reviewed on 6/9/2023 by Michelle Stadel,

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder.

North Carolina Dept. of Transportation

NCDOT BR-0015 Roadway

Report No.: 23-CLT-00650 Rev. 1 Issued: 6/9/2023

Date:

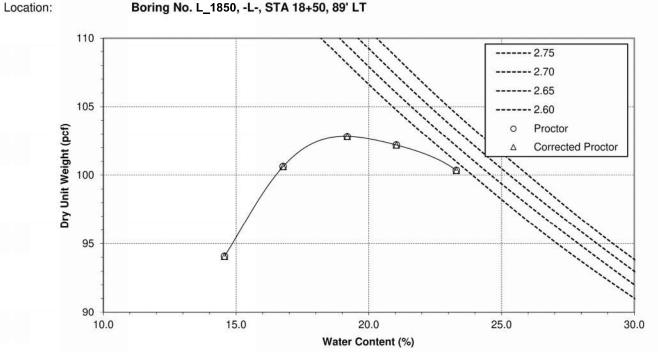
20235702.001A

Tested on

Sampled by: Mayson Foster

Field ID: L 1850, CBR-2

5/15/2023


Material Description:

Submitted by: Dan Kubinski Date: 5/9/2023

02-000L - Lab

by C. Blalock 5/24/2023

> Reddish Yellow Elastic Silt with Sand (A-7-5) Boring No. L_1850, -L-, STA 18+50, 89' LT

Test Method: AASHTO T99 A	Uncorrected	Corrected
Maximum Dry Unit Weight (pcf)	102.8	na
Optimum Water Content (%)	19.1	na
Oversize Fraction, retained on 3/4 (%)	'	<5
Bulk Specific Gravity of Oversize Fraction		na

Rammer Type: Manual Specimen Preparation: Moist

Remarks:

AASHTO T-100, Soil Specific Gravity at 20°C: 2.678

Reviewed on 6/9/2023 by Michelle Stadel,

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder

Kleinfelder Charlotte Lab | 9009 Perimeter Woods Drive, Suite E | Charlotte, NC 28216 | (704) 598-1049

KLEINFELDER

Project: 20235702.001A

Sample Source:

Material Used:

Sample ID:

02-000L - Lab

Sample Description:

Surcharge Weight:

SHEET 22

Laboratory Test Report

North Carolina Dept. of Transportation

CBR-2

10 lbs

NCDOT BR-0015 Roadway

Report No.:

23-CLT-00650 Rev. 1

Issued: 6/9/2023 Field ID: L 1850, CBR-2

Date: 5/9/2023

Sampled by: **Mayson Foster** Submitted by:

Date: 5/15/2023

Boring No. L_1850, -L-, STA 18+50, 89' LT

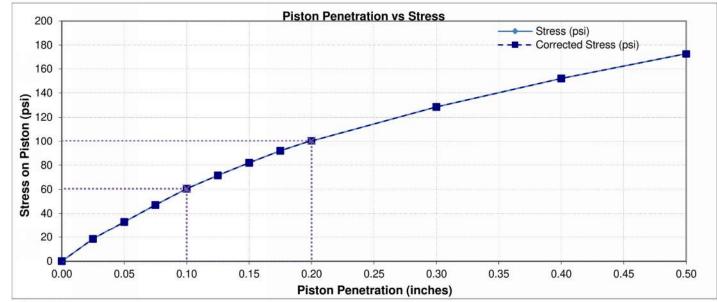
Dan Kubinski

5/30/2023

96 hrs

Tested By: Condition of Sample:

C. Blalock Soaked


Time Soaked:

Date Tested:

Reddish Yellow Elastic Silt with Sand (A-7-5)

AASHTO T-193 - Standard Test Method for The California Bearing Ratio

Dry Unit Wgt Before Soaking (pcf):	100.6	Compaction Method:
Water Content Before Soaking (%):	17.0	Manual
Dry Unit Wgt After Soaking (pcf):	106.1	Max. Dry Unit Weight:
Water Content After Soak, Top in. (%):	27.1	102.8 pcf
Swell (%):	4.1	Optimum Water Content:
CBR (Corrected CBR) @ 0.1 in. Penetration:	6.1 (6.1)	19.1 %
CBR (Corrected CBR) @ 0.2 in. Penetration:	6.7 (6.7)	

Remarks:

Reviewed on 6/9/2023 by Michelle Stadel,

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder

North Carolina Dept. of Transportation

Report No.: 23-CLT-00649 Rev. 1

6/9/2023 Issued:

20235702.001A

Project: 20235702.001A

KLEINFELDER

23-CLT-00649 Rev. 1

Field ID: L 1450, CBR-1

02-000L - Lab

Sampled by: **Mayson Foster** Date: 5/8/2023

Issued: 6/9/2023

Date:

NCDOT BR-0015 Roadway

North Carolina Dept. of Transportation

Submitted by:

Report No.:

Dan Kubinski

5/15/2023

SHEET 23

Tested By: C. Blalock Date Molded: 5/31/2023

Sample Location: Boring No. L-1450, CBR-1, 8.5' - 18.5'

Alignment -L-, STA 14+50, 88' LT

ASTM D5102 - Modified, Unconfined Compressive Strength of Compacted Soil-Lime Mixtures

Laboratory Test Report

	A	В	С	D
Sample Preparation:	AASHTO T99	AASHTO T99	AASHTO T99	AASHTO T99
Water Content (%):	25.7	26	25.9	26
Height (in):	4.632	4.619	4.644	4.62
Diameter (in):	4.00	4.00	3.999	4.002
Cross-Sectional Area (in ²):	12.57	12.59	12.56	12.58
Test Date:	6/7/2023	6/7/2023	6/7/2023	6/7/2023
Age (days):	7	7	7	7
Maximum Load (lbf):	860	830	850	850
h/d Conversion Factor	none	none	none	none
Compressive Strength (psi):	70	65	70	70
Dry Unit Weight (pcf):	89.6	89.2	88.4	88.5

Sample Preparation

Water Content (%):

Height (in):

Diameter (in):

Cross-Sectional Area (in2):

Test Date:

Age (days):

Maximum Load (lbf):

h/d Conversion Factor

Compressive Strength (psi):

Curing Details: Samples extruded, placed in plastic bags, and cured for 7 days at 73°F ± 4°. Specification: Per NCDOT, cast according to AASHTO T99 and broke per AASHTO T208.

Remarks:

(A) 3.0% Lime; Percent Strain = 2.0. (B) 3.0% Lime; Percent Strain = 2.4.

(C) 5% Lime; Percent Strain = 2.5. (D) 5% Lime; Percent Strain = 2.9.

Reviewed on 6/9/2023 by Michelle Stadel,

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder

NCDOT BR-0015 Roadway

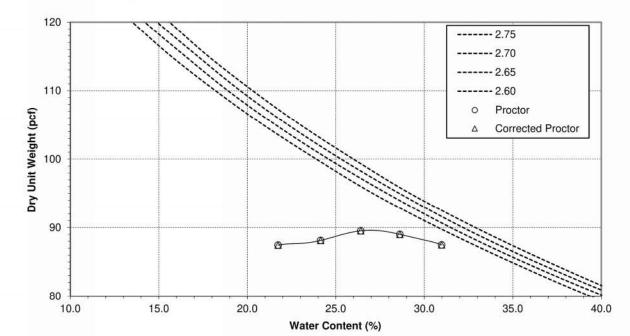
Field ID: L 1450, CBR-1

Sampled by: Submitted by:

Mayson Foster Dan Kubinski

Date: 5/8/2023 Date: 5/15/2023

02-000L - Lab


by C. Blalock 5/26/2023

Material Description: Brown Sandy Silt (A-7-5)

Location:

Tested on

Boring No. L-1450, Alignment -L-, STA 14+50, 88' LT, CBR-1, 8.5' - 18.5'

Test Method: AASHTO T99 A	Uncorrected	Corrected
Maximum Dry Unit Weight (pcf)	89.6	na
Optimum Water Content (%)	26.9	na
Oversize Fraction, retained on 3/4 (%)	i i	<5
Bulk Specific Gravity of Oversize Fraction		na

Rammer Type: Manual Specimen Preparation: Dry

Remarks: +4% Lime

Reviewed on 6/9/2023 by Michelle Stadel,

Michelle M. Stadel

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder

North Carolina Dept. of Transportation

5/25/2023

Report No.: 23-CLT-00651 Rev. 0 Issued: 6/9/2023

20235702.001A

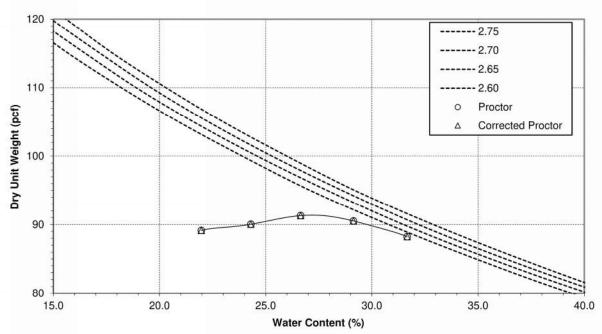
Tested on

Field ID: L-4200, CBR-3

5/15/2023

NCDOT BR-0015 Roadway

Dan Kubinski Sampled by: Submitted by: Dan Kubinski Date: 5/5/2023


Date:

02-000L - Lab

by C. Blalock

Material Description: Reddish Brown Elastic Silt with Sand (A-7-5)

Boring No. L-4200, Alignment -L-, STA 42+00, 0' CL, CBR-3, 0' - 2.5' Location:

Test Method: AASHTO T99 A	Uncorrected	Corrected
Maximum Dry Unit Weight (pcf)	91.4	na
Optimum Water Content (%)	27.2	na
Oversize Fraction, retained on 3/4 (%)		<5
Bulk Specific Gravity of Oversize Fraction		na

Rammer Type: Manual Specimen Preparation: Dry

Remarks: +4% Lime

AASHTO T100, Soil Specific Gravity = 2.727

Reviewed on 6/9/2023 by Michelle Stadel,

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder

Kleinfelder Charlotte Lab | 9009 Perimeter Woods Drive, Suite E | Charlotte, NC 28216 | (704) 598-1049

KLEINFELDER

North Carolina Dept. of Transportation Report No.: 23-CLT-00651 Rev. 0

Project: 20235702.001A

Field ID: L-4200, CBR-3 **NCDOT BR-0015 Roadway** Date: 5/5/2023 Sampled by: Dan Kubinski 02-000L - Lab Submitted by: Dan Kubinski Date: 5/15/2023

Tested By: C. Blalock Date Molded: 5/31/2023

Sample Location: Boring No. L-4200, CBR-3, 0' - 2.5'

Alignment -L-, STA 42+00, 0' CL

ASTM D5102 - Modified, Unconfined Compressive Strength of Compacted Soil-Lime Mixtures

	A	В	С	D
Sample Preparation:	AASHTO T208	AASHTO T208	AASHTO T208	AASHTO T208
Water Content (%):	25.4	25.5	26.2	25.9
Height (in):	4.641	4.623	4.628	4.615
Diameter (in):	3.99	4.01	4	4
Cross-Sectional Area (in ²):	12.53	12.6	12.57	12.57
Test Date:	6/7/2023	6/7/2023	6/7/2023	6/7/2023
Age (days):	7	7	7	7
Maximum Load (lbf):	760	770	820	910
h/d Conversion Factor	none	none	none	none
Compressive Strength (psi):	60	60	65	70
Dry Unit Weight (pcf):	91.9	91.6	90.1	90.5

Sample Preparation:

Water Content (%):

Height (in):

Diameter (in):

Cross-Sectional Area (in2):

Test Date:

Age (days):

Maximum Load (lbf): h/d Conversion Factor Compressive Strength (psi):

Curing Details: Samples extruded, placed in plastic bags, and cured for 7 days at 73°F ± 4°. Specification: Per NCDOT, cast according to AASHTO T99 and broke per AASHTO T208.

Remarks:

(A) 3.0% Lime; Percent Strain = 2.2. (B) 3.0% Lime; Percent Strain = 2.1.

(C) 5% Lime; Percent Strain = 2.1. (D) 5% Lime; Percent Strain = 2.4.

Reviewed on 6/9/2023 by Michelle Stadel,

SHEET 24

6/9/2023

Issued:

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registeredesign professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder

PAVEMENT CORE EVALUATION

BR-0015 (67015.1.1)

BRIDGE NO. 67 AND NO. 68 REPLACEMENTS ON US 29/US 70 NB & SB OVER SR 1192 (W. 5TH AVENUE)

LINE	STATION		LAYER THICKNESS	PAVEMENT	REMARKS
		(in)	(in)	LAYERS	
	1000 14/0 100		4.00	S	3 Lifts; Delamination between 2nd and 3rd lift; Low oxidation
-L-	1830_WB_ISS	2.00	2.75	В	1 Lift; Low oxidation
	6.75" Asphalt				
			4.25	S	3 Lifts; Low oxidation
	1830_WB_OSL		3.00	В	1 Lift; Delamination between base asphalt and concrete layer; Low oxidation
-L-	7.25" Asphalt	4.50	9.25	C	1 Lift
	9.25" Concrete			-	
			3.75	S	3 Lifts; Low oxidation
-L-	1830_WB_OSS	0.00	4.75	В	2 Lifts; Low oxidation
-L-	8.50" Asphalt	0.00			
			4.25	S	3 Lifts; Delamination between 2nd and 3rd lift; Low oxidation
-L-	1960_EB_ISS	0.00	3.00	В	1 Lift; Low oxidation
_	7.25" Asphalt				
			3.00	S	2 Lifts; Delamination between surface asphalt and base asphalt layers; Low oxidation
	1960_EB_OSL		3.25	B	1 Lift; Low oxidation
-L-	8.25" Asphalt	4.75	2.00	S	1 Lift; Delamination between surface asphalt and concrete layer; Low oxidation
	9.25" Concrete		9.25	C	1 Lift
			3.00	S	2 Lifts; Low oxidation
	1960_EB_OSS		7.25	В	2 Lifts; Low oxidation
-L-	10.25" Asphalt	11.75		-	
	,				
			4.50	S	3 Lifts; Delamination between 2nd and 3rd lift; Low oxidation
-L-	2590_WB_ISS	0.00	4.00	В	1 Lift; Low oxidation
	8.50" Asphalt	0.00			
	0.450 14/0 000		5.25	S	3 Lifts; Low oxidation
-L-	3150_WB_OSS	0.00	2.50	<u>B</u>	1 Lift; Low oxidation
	9.25" Asphalt		1.50	S	1 Lift; Low oxidation
			5.00	S	3 Lifts; Delamination between 2nd and 3rd lift; Low oxidation
	3275_EB_DECEL_LN		5.75	B	1 Lift; Low oxidation
-L-	10.75" Asphalt	7.00	5.70		I may not offendoll
			4.00	S	2 Lifts; Low oxidation
-L-	3870_WB_ISS	0.00	3.00	В	1 Lift; Low oxidation
-L-	7.00" Asphalt	0.00			
			4.00	S	2 Lifts; Low oxidation
-L-	3870_WB_DECEL_LN	7.00	7.00	В	2 Lifts; Low oxidation
	11.00" Asphalt				
	+		4.00	S	2 Lifts; Low oxidation
	3870 WB OSS		3.50	<u>S</u>	1 Lift; Low oxidation
-L-	7.50" Asphalt	0.00	3.30	U	1 Lity Low Oxidation
	7.00 Aprilate				
Noto/o\.	1		ı		1

Note(s):

NM - Not Measured
PS - Paved Shoulder
WB - Westbound
EB - Eastbound
LT - Left
RT - Right

OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane DECEL - Deceleration ACCEL - Acceleration LN - Lane

S - Asphalt Surface Course
I - Asphalt Intermediate Course
B - Asphalt Base Course
C - Concrete

PAVEMENT CORE EVALUATION

BR-0015 (67015.1.1)

BRIDGE NO. 67 AND NO. 68 REPLACEMENTS ON US 29/US 70 NB & SB OVER SR 1192 (W. 5TH AVENUE)

	07471011		LAYER THICKNESS	PAVEMENT	N US 29/US 70 NB & SB OVER SR 1192 (W. STI AVENUE)
LINE	STATION	(in)	(in)	LAYERS	REMARKS
	4000 ED ICI		3.75	S	3 Lifts; Delamination between 2nd and 3rd lift; Low oxidation
-L-	4280_EB_ISL	5.00	2.75	В	1 Lift; Low oxidation
-L-	8.50" Asphalt 9.50" Concrete	5.00	2.00	S	2 Lifts; Delamination between 1st and 2nd lift; Low oxidation
	9.50 Concrete		9.50	С	
			3.75	S	3 Lifts; Low oxidation
-L-	4280_EB_ACCEL_LN	8.50	5.75	В	1 Lift; Low oxidation
-L-	9.50" Asphalt	6.50			
			3.50	S	3 Lifts; Low oxidation
-L-	4280_EB_OSS	0.00	3.50	В	1 Lift; Low oxidation
-L-	7.00" Asphalt	0.00			
			2.50	S	1 Lift; Low oxidation
-Y1-	1570_LT_PS	NM	2.50	<u> </u>	1 Lift; Low oxidation
	5.00" Asphalt	INIV			
			6.00	S	2 Lifts; Low oxidation; Cracked completely through 1st surface asphalt layer
-Y1-	1570_LT_LN	NM			
	6.00" Asphalt	1 1111			
			4.00	S	2 Lifts; Low oxidation
-Y1-	1570_RT_LN	0.00	3.00		1 Lift; Low oxidation
	7.00" Asphalt				
			4.00	S	2 Lifts; Low oxidation
-Y1-	1570_RT_PS	NM			
	4.00" Asphalt				
			0.00		
	4000 LT LN		3.00	S	2 Lifts; Low oxidation; Cracked completely through surface asphalt layer
-Y2-	1620_LT_LN	7.00			
	3.00" Asphalt				

Note(s):

NM - Not Measured PS - Paved Shoulder WB - Westbound EB - Eastbound LT - Left RT - Right OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane DECEL - Deceleration ACCEL - Acceleration LN - Lane

S - Asphalt Surface Course I - Asphalt Intermediate Course B - Asphalt Base Course C - Concrete

	CONTENTS					
	<u>LINE</u>	STATION				
	-L-	12+00.00 - 49+50.00				
	-YI-	10+00.00 - 19+35.00				
'	-Y2-	10+00.00 - 18+50.00				
)	-RPB-	10+00.00 - 19+28.28				
)	-RPD-	10+00.00 - 12+66.89				
	-RPD-RT-	10+00.00 - 10+96.71				
	-LPB-	10+00.00 - 15+92.00				
	-DRWI-	10+00.00 - 11+45.00				

APPENDICES

APPENDIX

SEE SHEET 3 FOR PLAN SHEET LAYOUT AT TIME OF INVESTIGATION

BORE LOGS

LABORATORY RESULTS

PROFILE

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

<u>PLAN</u>

5

SHEETS

34 - 37

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

ROADWAY SUBSURFACE INVESTIGATION

COUNTY DAVIDSON

PROJECT DESCRIPTION BRIDGE NO. 67 AND NO. 68 REPLACEMENTS ON US 29/US 70 NB & SB OVER **SR** 1192 (W. 5TH AVENUE)

INVENTORY

STATE	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
N.C.	BR-0015	1	

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FILED BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT (9)9) 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

CENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS NIDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MICHORY WAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MICHORY DESCRIPTIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MICHORY DESCRIPTIONS AND AS MELLINIAR THE REACTORS. INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT, THE DEPARTMENT DOES NOT WARRANT OR QUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPHION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO PERFORM INDEPENDENT SUBSURFACE INVESTIGATIONS AND MAKE INTERPRETATIONS AS NECESSARY TO CONFIRM CONDITIONS ENCOUNTERED ON THE PROJECT, THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:

 1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

PERSONNEL M. FOSTER J. KARDON D. KUBINSKI TRIGON EXPLORATION

INVESTIGATED BY _KLEINFELDER, INC

DRAWN BY __D. KUBINSKI

CHECKED BY J. FREGOSI


SUBMITTED BY KLEINFELDER, INC

DATE _AUGUST 2023

Prepared in the Office of:

KLEINFELDER

422 Gallimore Dairy Road, Suite B Greensboro, North Carolina 27409 NC Engineering Firm License No. F-1312

Joshua V. Fregosb_{8/08/2023}

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

7015


BR-0015 2

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM D1586). SOIL CLASSIFICATION	<u>UNIFORMLY GRADED</u> - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. <u>GAP-GRADED</u> - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60	AQUIFER - A WATER BEARING FORMATION OR STRATA.
IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	BLOWS IN NON-COASTAL PLAIN MATERIAL. THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK.	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE,	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING
VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6 SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > ROCK (WR) 100 BLOWS PER FOOT IF TESTED.	A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
CENERAL CRANILLAR MATERIALS SILT-CLAY MATERIALS	MINERALOGICAL COMPOSITION	FINE TO COARSE CRAIN ICNEOUS AND METAMORPHIC ROCK THAT	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND
CLASS. (\leq 35% PASSING *200) (> 35% PASSING *200) ORGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	CRYSTALLINE WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE,	SURFACE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
CLASS. A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-7-6 A-3 A-6, A-7	COMPRESSIBILITY SLIGHTLY COMPRESSIBLE LL < 31	ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
SYMBOL 000000000000000000000000000000000000	MODERATELY COMPRESSIBLE LL = 31 - 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED
7. PASSING SILT-	HIGHLY COMPRESSIBLE LL > 50 PERCENTAGE OF MATERIAL	SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED SHELL BEDS, ETC.	BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
"10 50 MX GRANULAR CLLY MUCK, SOILS SOILS CAY PEAT		WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
*200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN 36 MN	ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
MATERIAL PASSING *40	TRACE OF ORGANIC MATTER 2 - 3%, 3 - 5%, TRACE 1 - 10%, LITTLE ORGANIC MATTER 3 - 5%, 5 - 12%, LITTLE 10 - 20%,	HAMMER IF CRYSTALLINE.	HORIZONTAL.
174531NO 40	MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, (V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE
PI 5 MA NP 18 MA 11 MN 11 MN 18 MA 18 MA 11 MN 11 MN MODERATE HIGHET	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	OF A CRYSTALLINE NATURE.	LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
GROUP INDEX W W 4 MX 8 MX 12 MX 16 MX NU MX AMUUNIS UF SOILS	GROUND WATER	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO (SLI,) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY, IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
USUAL TYPES STONE FRAGS. FINE SILTY OR CLAYEY SILTY CLAYEY MATTER		CRYSTALS ARE DULL AND DISCOLORED, CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
MATERIALS SAND SAND GRAVEL AND SAND SOILS SOILS	STATIC WATER LEVEL AFTER 24 HOURS	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
GEN. RATING EXCELLENT TO GOOD FAIR TO POOR FAIR TO POOR UNSUITABLE		(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY, ROCK HAS DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED	PARENT MATERIAL.
AS SUBURADE PURK	SPRING OR SEEP	WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM,
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30 CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
DANCE OF CTANDARD DANCE OF UNCONFINED	MISCELLAINEUUS STABOLS	(MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES "CLUNK" SOUND WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE COMPACTINESS OR PENETRATION RESISTENCE COMPRESSIVE STRENGTH	ROADWAY EMBANKMENT (RE) DIP & DIP DIRECTION OF POSSY, STRUCTURES	<u>IF TESTED, WOULD YIELD SPT REFUSAL</u>	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
IN-VALUE) (TUNS/FT-)	WITH SOIL DESCRIPTION OF ROCK STRUCTURES	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT (SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED	ITS LATERAL EXTENT.
GENERALLY VERY LOOSE	SOIL SYMBOL SOIL SYMBOL SLOPE INDICATOR INSTALLATION	TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
MATERIAL MEDIUM DENSE 10 10 300 N/A	ARTIFICIAL FILL (AF) OTHER AUGER BORING CONE PENETROMETER	IF TESTED, WOULD YIELD SPI N VALUES > 100 BPF	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
(NON-COHESIVE) VERY DENSE > 50	THAN ROADWAY EMBANKMENT TEST	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
VERY SOFT < 2 < 0.25	— INFERRED SOIL BOUNDARY — CORE BORING ■ SOUNDING ROD	(V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u>	OF AN INTERVENING IMPERVIOUS STRATUM.
GENERALLY SOFT 2 TO 4 0.25 TO 0.5 SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0	INFERRED ROCK LINE MW MONITORING WELL TEST BORING	COMPLETE ROCK REDUCED TO SOIL, ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
MATERIAL STIFF 8 TO 15 1 TO 2	A PIEZOMETER	SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE
(COHESIVE) VERY STIFF 15 TO 30 2 TO 4 HARD > 30 > 4	TTTTT ALLUVIAL SOIL BOUNDARY ALLUVIAL SOIL BOUNDARY INSTALLATION SPT N-VALUE	ALSO AN EXAMPLE.	RUN AND EXPRESSED AS A PERCENTAGE.
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270	UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION -	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	LEZ UNSUITABLE WASTE LEZ ACCEPTABLE, BUT NUT TO BE	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO
BOULDER COBBLE GRAVEL COARSE FINE SILT CLAY	SHALLOW UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 FEEL OF ACCEPTABLE DEGRADABLE ROCK EMBANKMENT OR BACKFILL	TO DETACH HAND SPECIMEN.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
(BLDR.) (COB.) (GR.) (SE. SD.) (F SD.) (SL.) (CL.)	ABBREVIATIONS	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.005	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	BY MODERATE BLOWS.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF
SIZE IN. 12 3	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL
SOIL MOISTURE - CORRELATION OF TERMS	CL CLAY MOD MODERATELY 7 - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC 7- DRY UNIT WEIGHT	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK.	WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION	CSE COARSE ORG ORGANIC	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY
(ATTERBERG LIMITS) DESCRIPTION COLDE TOWN TEED HOLDSTONE DESCRIPTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE.	TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY (SAT.) FROM BELOW THE GROUND WATER TABLE	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH	■ LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
	F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
PLASTIC SEMISOLID; REQUIRES DRYING TO	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL	FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
(PI) PL PLASTIC LIMIT ATTAIN OPTIMUM MOISTURE	FRAGS FRAGMENTS	FRACTURE SPACING BEDDING TERM SPACING TERM THICKNESS	BENCH MARK: GPS-2 (N. 758,007.44 FT, E. 1,621,938.93 FT)
	EQUIPMENT USED ON SUBJECT PROJECT	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET	ELEVATION: 732.299 FEET
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET	
SL SHRINKAGE LIMIT	CME-45C CLAY BITS X AUTOMATIC MANUAL	CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET	NOTES:
- DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE	6' CONTINUOUS FLIGHT AUGER CORE SIZE:	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED < 0.008 FEET	FIAD - FILLED IMMEDIATELY AFTER DRILLING
PLASTICITY	X CME-55 X 8* HOLLOW AUGERS CORE SIZE:	INDURATION	ROADWAY AND RETAINING WALL BORING ELEVATIONS TAKEN FROM PROJECT TIN FILE "BROOIS.TIN" DATED 9/23/2022.
PLASTICITY INDEX (PI) DRY STRENGTH	CME-550 HARD FACED FINGER BITS	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	
NON PLASTIC 0-5 VERY LOW	TUNGCARBIDE INSERTS	RUBBING WITH FINGER FREES NUMEROUS GRAINS:	BRIDGE BORING ELEVATIONS WERE SURVEYED BY TRANSYSTEMS CORPORATION USING A SUB CENTIMETER GPS AND BASE STATION.
SLIGHTLY PLASTIC 6-15 SLIGHT MODERATELY PLASTIC 16-25 MEDIUM	VANE SHEAR TEST CASING W/ ADVANCER HAND TOOLS:	GENILE BLUW BY HAMMER DISINTEGRATES SAMPLE.	HAND AUGER AND DYNAMIC CONE PENETROMETER TEST
HIGHLY PLASTIC 26 OR MORE HIGH	POST HOLE DIGGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR	TOTAL TOTAL CONTROL TO THE PROPERTY OF THE PRO	CRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE.	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	X INICONE 2-7/16 TUNG-CARB. SOUNDING ROD VANE SHEAR TEST	INDURATED DIFFICULT TO BREAK WITH HAMMER.	
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	TAINE SPIERR TEST DYNAMIC CONE PENETROMETER	EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE;	2.75 2.75
		SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-14

August 4, 2023 Kleinfelder File No. GSO23L155050

STATE PROJECT: 67015.1.1 (BR-0015)

COUNTY: Davidson

DESCRIPTION: Bridge No. 67 and No. 68 Replacements on US 29/US 70 NB & SB over SR

1192 (W. 5th Avenue)

SUBJECT: GEOTECHNICAL REPORT - INVENTORY

PROJECT DESCRIPTION

This project consists of the widening of US 29/US 70 (-L-) and replacement of Bridge No. 67 and No. 68 over SR 1192 (-Y1-). At the project location, US 29/US 70 is a four-lane highway consisting of two lanes in the northbound and southbound direction with a grass median dividing the highway. Additionally, the project consists of the widening of SR 1192 (-Y1-), Forest Rose Drive (-DRW1-), and US 29/US 70 northbound exit ramps (-RPD-, -RPD_RT-) to National Boulevard as well as a realignment of Murphy Drive (-Y2-), onramp to US 29/US 70 southbound (-RPB-), and US 29/US 70 southbound exit ramp (-LPB-) to SR 1192.

Bridge No. 67 and No. 68 will be approximately 110 feet long (W.P. # 1 to W.P. #2) and 109.3 feet wide (out to out). The bridge will consist of a concrete deck with precast concrete girders. Abutment MSE retaining walls are proposed at end bent no. 1 and end bent no. 2. At end bent no. 1, a retaining wall will extend along US 29/US 70 northbound from station 24+60.37 -L- (54' RT) to 29+16.75 -L- (60' RT) and turn to run parallel along SR 1192 from station 29+16.75 -L- (60' RT) to 15+30.00 -Y1- (46' RT). At end bent no. 2, a retaining wall will extend parallel to SR 1192 from station 15+53.00 -Y1- (34' LT) to 17+73.00 -Y1- (34' LT). Maximum cut and fill heights to achieve finished grade are anticipated to be approximately and 31 feet and 24 feet, respectively.

The geotechnical investigation was conducted in April and May 2023. Standard Penetration Test borings were advanced with a CME-55 drill rig with an automatic hammer. Hand augers were also performed in areas where the use of a drill rig was restricted, or overhead and underground utility conflicts were observed. Representative soil samples were collected for visual classification in the field and selected samples were submitted for laboratory analysis by Kleinfelder, Inc.

The following alignments, totaling 1.43 miles, were investigated. Plan sheets of these alignments are included in this report.

<u>LINE</u>	<u>STATIONS</u>
-L-	12+00.00 - 49+50.00
-Y1-	10+00.00 - 19+35.00
-Y2-	10+00.00 - 18+50.00
-RPB-	10+00.00 - 19+28.28
-RPD-	10+00.00 - 12+66.89
-RPD-RT-	10+00.00 - 10+96.71
-LPB-	10+00.00 - 15+92.00
-DRW1-	10+00.00 - 11+45.00

PHYSIOGRAPHY AND GEOLOGY

According to the 1985 Geologic Map of North Carolina, the project is located in the Charlotte Belt of the Piedmont Physiographic Province. The Charlotte Belt typically consists of metamorphosed igneous rocks and the bedrock unit encompassing the site is Metamorphosed Mafic Rock (PzZm). The Piedmont is characterized by gently rolling topography, well rounded hills, and long low ridges with a few hundred feet of elevation difference between the hills and valleys. It contains deeply weathered bedrock and relatively few rock outcrops. Erratic weathering of the rock can often result in varying depths of the residual soil profile. Additionally, it is not uncommon to encounter lenses or boulders of bedrock and zones of weathered rock within the residual soil, well above the general bedrock level.

The project corridor is comprised primarily of residential and rural properties. The general topography along the project is flat to gently sloping.

Surface water is drained from the corridor by the existing roadway ditches and culverts. Michael Branch runs along the east side of the project parallel to US 29/US 70.

SOIL PROPERTIES

Soils encountered during this investigation are separated into three categories based on origin. They consist of roadway embankment, alluvial soil, and residual soil.

Roadway embankment is defined as any material placed to raise grade for roadway construction and is present along the existing roadways on the project and inside exit/entry ramps. The roadway embankment encountered generally consist of moist to wet, soft to very stiff, fine sandy silts (A-4), clayey silts (A-5), and silty clays (A-7) with trace mica, gravel, and concrete fragments. The plasticity index of the roadway embankment clayey silt (A-5) tested is 9. The plasticity index of the roadway embankment silty clays (A-7) tested ranged from 22 to 38.

Alluvial soils are formed by deposition and are present underlying roadway embankment at the existing bridge abutments on US 29/US 70 (-L-), SR 1192 (-Y1-), and Central Avenue (-Y3-). The alluvial soils encountered generally consist of moist to saturated, very soft to stiff, silty clays (A-7) with trace mica and organic matter, and moist, loose, clayey fine to coarse sands (A-2-6).

The onsite residual soils are the product of the in-place chemical and mechanical weathering of the parent bedrock, and oftentimes maintain the same layering and lineation of the parent bedrock. Residual soils are derived from the weathering of underlying mafic metamorphic rock. The majority of the residual soil encountered consist of moist to saturated, soft to hard, fine and coarse to fine sandy silts (A-4), clayey silts (A-5), silty clays (A-7) with trace mica, rock fragments, and quartz fragments and wet, very dense, silty coarse to fine sands (A-2-4). The plasticity index of the residual silty clays (A-7) tested ranged from 12 to 44.

ROCK PROPERTIES

Weathered rock was encountered on and along US 29/US 70 (-L-) at the existing bridge abutments and Central Avenue (-Y3-) at elevations ranging from 666.4 to 691.5 feet Mean Sea Level (MSL). The weathered rock consists of Metagabbro. Crystalline rock was not encountered during the field investigation.

GROUNDWATER

Groundwater was encountered at elevations ranging from 694.9 to 722.1 feet. Typically, the groundwater depth ranges from 11.2 to 21.1 feet below the existing ground surface, where encountered.

AREAS OF SPECIAL GEOTECHNICAL INTEREST

1) Highly Plastic Clays: Highly plastic clays (PI > 25) were encountered on the project at the following locations:

LINE	STATIONS	<u>OFFSETS</u>
-L-	12+25 to 25+75	LT to RT
-L-	30+75 to 32+75	LT to RT
-L-	33+25 to 33+75	LT to RT
-L-	35+75 to 39+75	LT to RT
-L-	41+75 to 45+75	LT to RT
-Y1-	10+25 to 12+25	LT to RT
-Y1-	13+25 to 14+75	LT to RT
-Y2-	12+25 to 16+06	LT to RT
-RPB-	10+00 to 16+75	LT to RT
-RPB-	18+75 to 19+14	LT to RT
-LPB-	12+34 to 13+54	LT
-DRW1-	10+00 to 11+45	LT to RT

2) Groundwater: The following areas exhibit a high-water table, seasonal high groundwater, or the potential for groundwater related construction problems:

<u>LINE</u>	<u>STATIONS</u>	<u>OFFSETS</u>	
-Y1-	15+75 to 17+50	LT to RT	

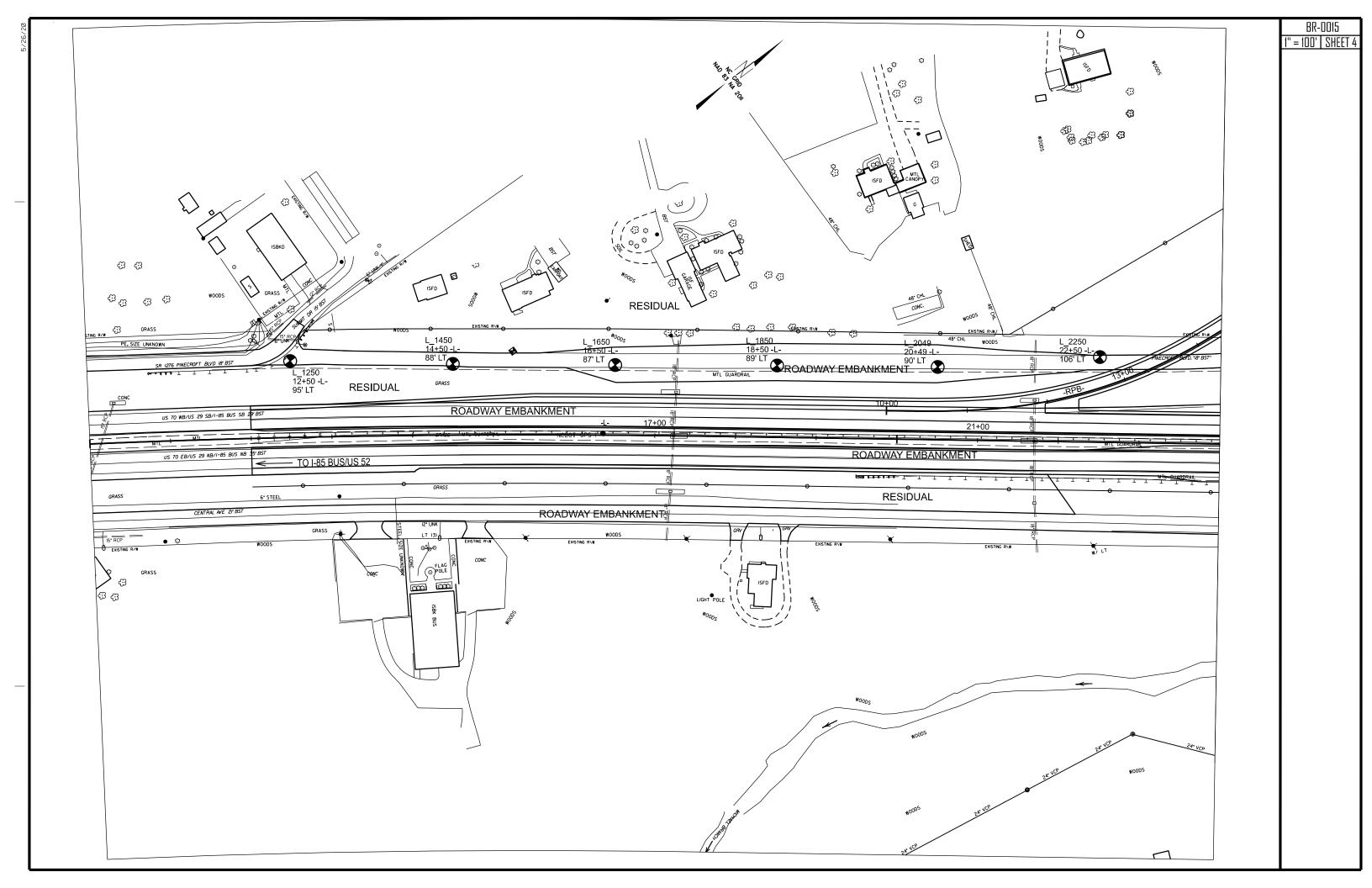
3) Alluvial Soil: Alluvial soil was encountered on the project at the following locations:

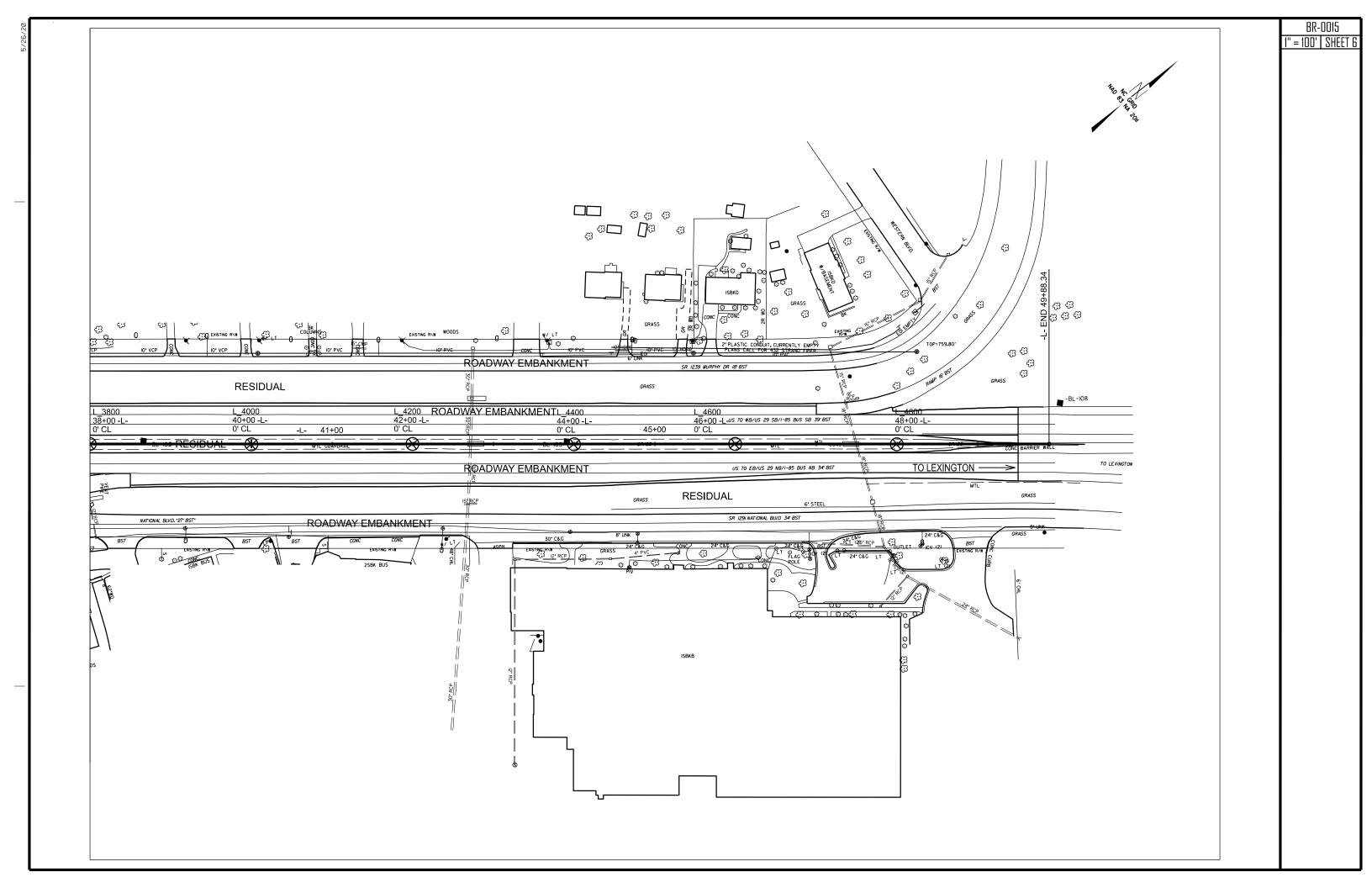
<u>LINE</u>	<u>STATIONS</u>	<u>OFFSETS</u>
-L-	27+25 to 28+25	RT
-L-	28+25 to 29+25	LT to RT
-Y1-	14+50 to 17+50	RT

4) Wet Samples: Soils classified as wet based on visual inspection and laboratory test results were encountered at the following locations:

<u>LINE</u>	<u>STATIONS</u>	<u>OFFSETS</u>
-L-	20+50 to 22+25	LT
-L-	26+00 to 27+25	RT
-L-	42+00 to 45+75	LT to RT
-LPB-	12+84 to 15+25	RT

Prepared by,


KLEINFELDER, INC. NC License No. F-1312


Daniel H. Kubinski, PE Senior Professional

DHK/JDF:jrs

Bulk Samples

Sample No.	<u> Alignment</u>	Station No.	<u>Offset</u>	Depth (ft)	Tests Performed
CBR-1	-L-	14+50	88' LT	8.5 - 18.5	CBR
CBR-2	-L-	18+50	89' LT	0.0 - 10.0	CBR
CBR-3	_l _	42±00	O' CI	0.0 - 2.5	No Test

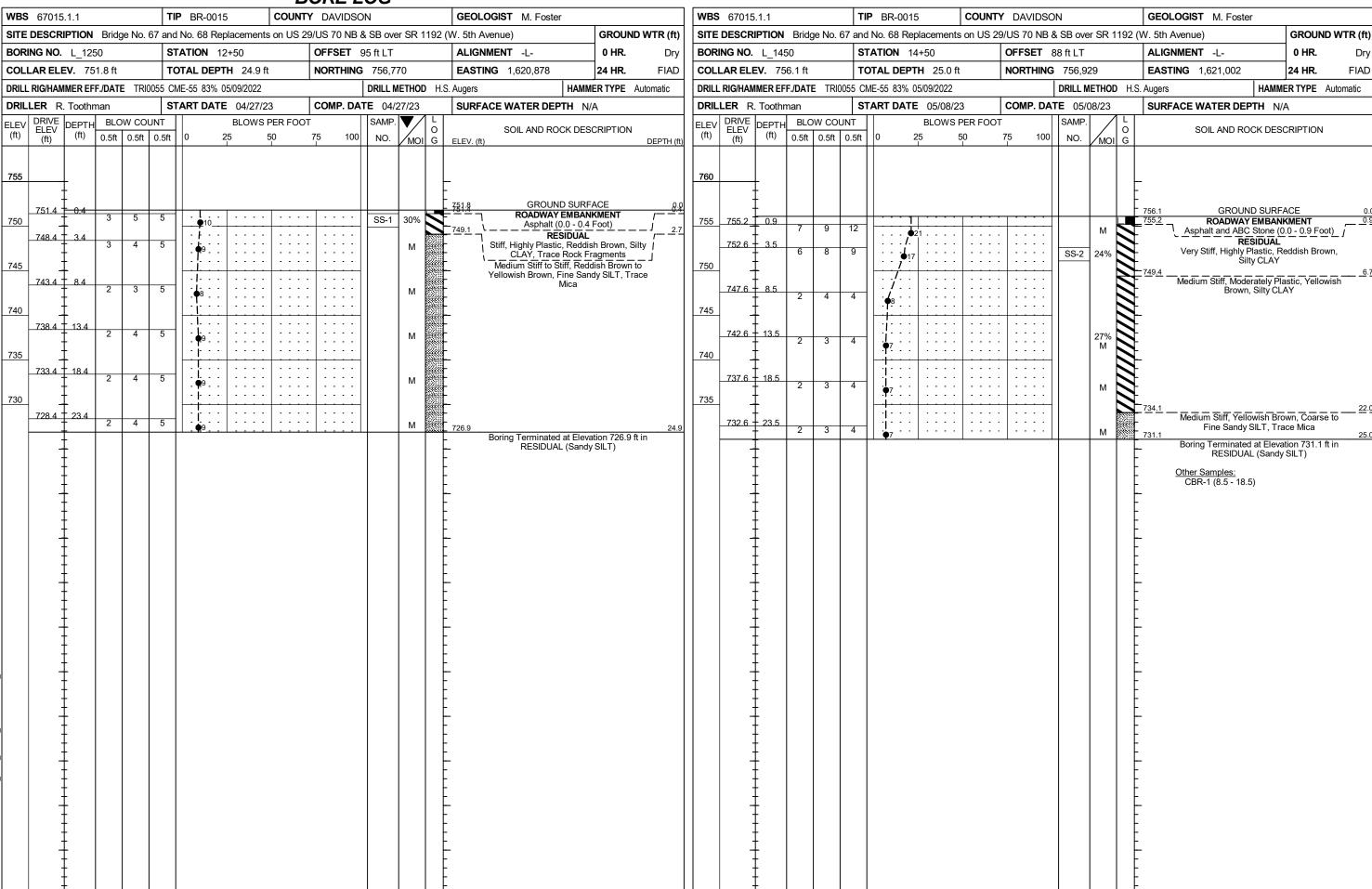
FRENCE BR 0015

30IECT: 670L

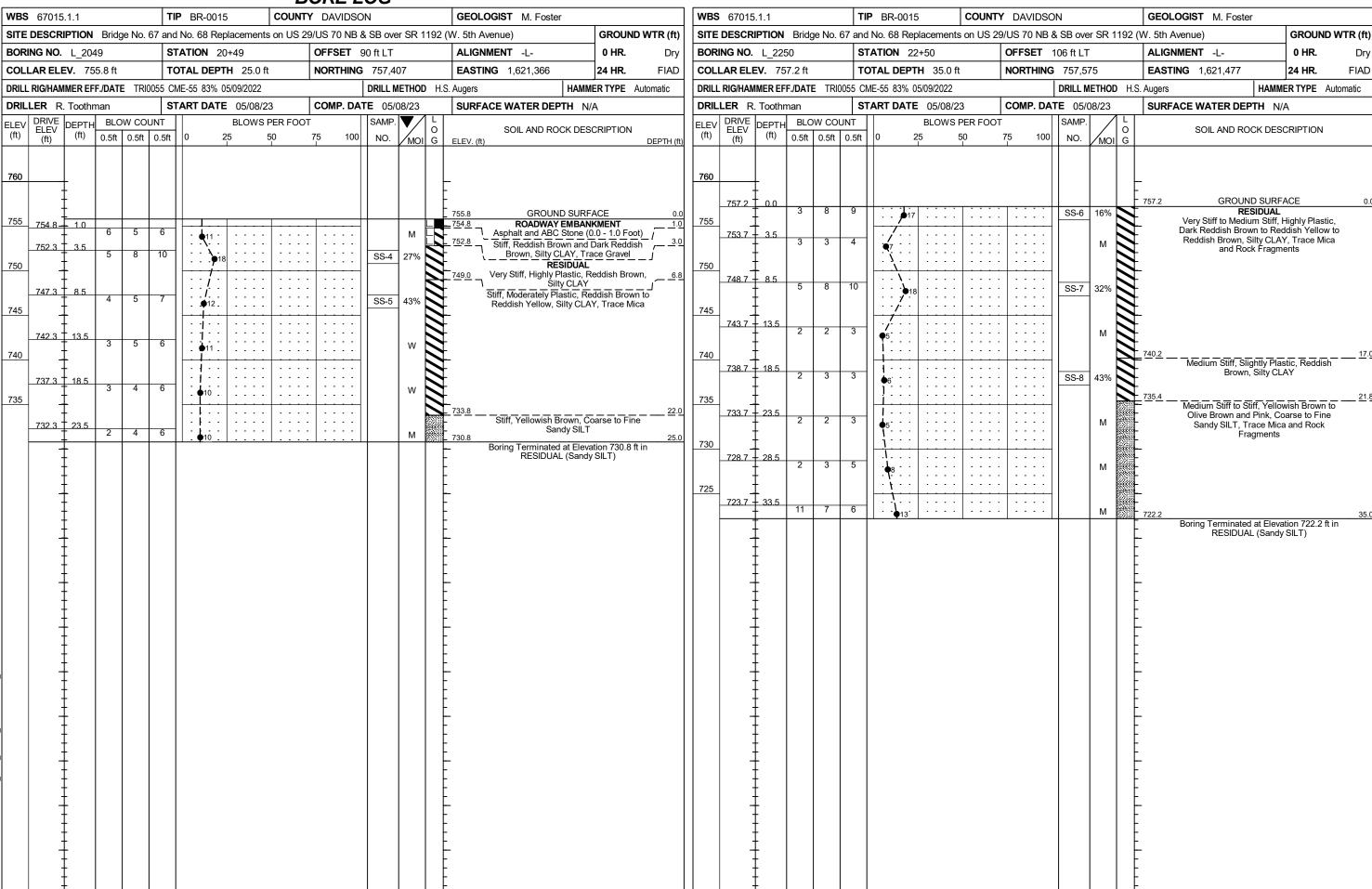
PROJECT REFERENCE NO. SHEET NO. 7

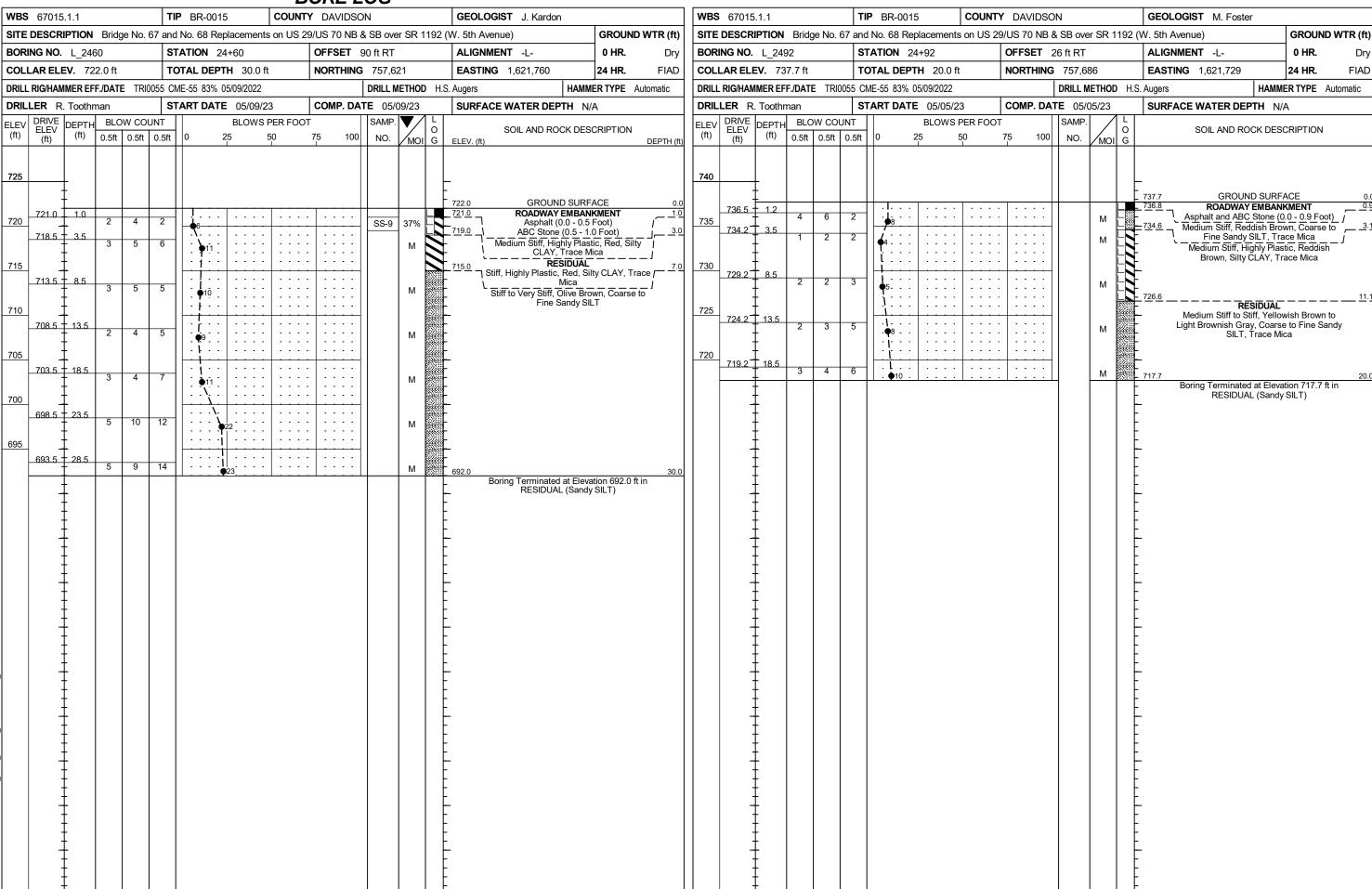
NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS

GEOTECHNICAL ENGINEERING UNIT

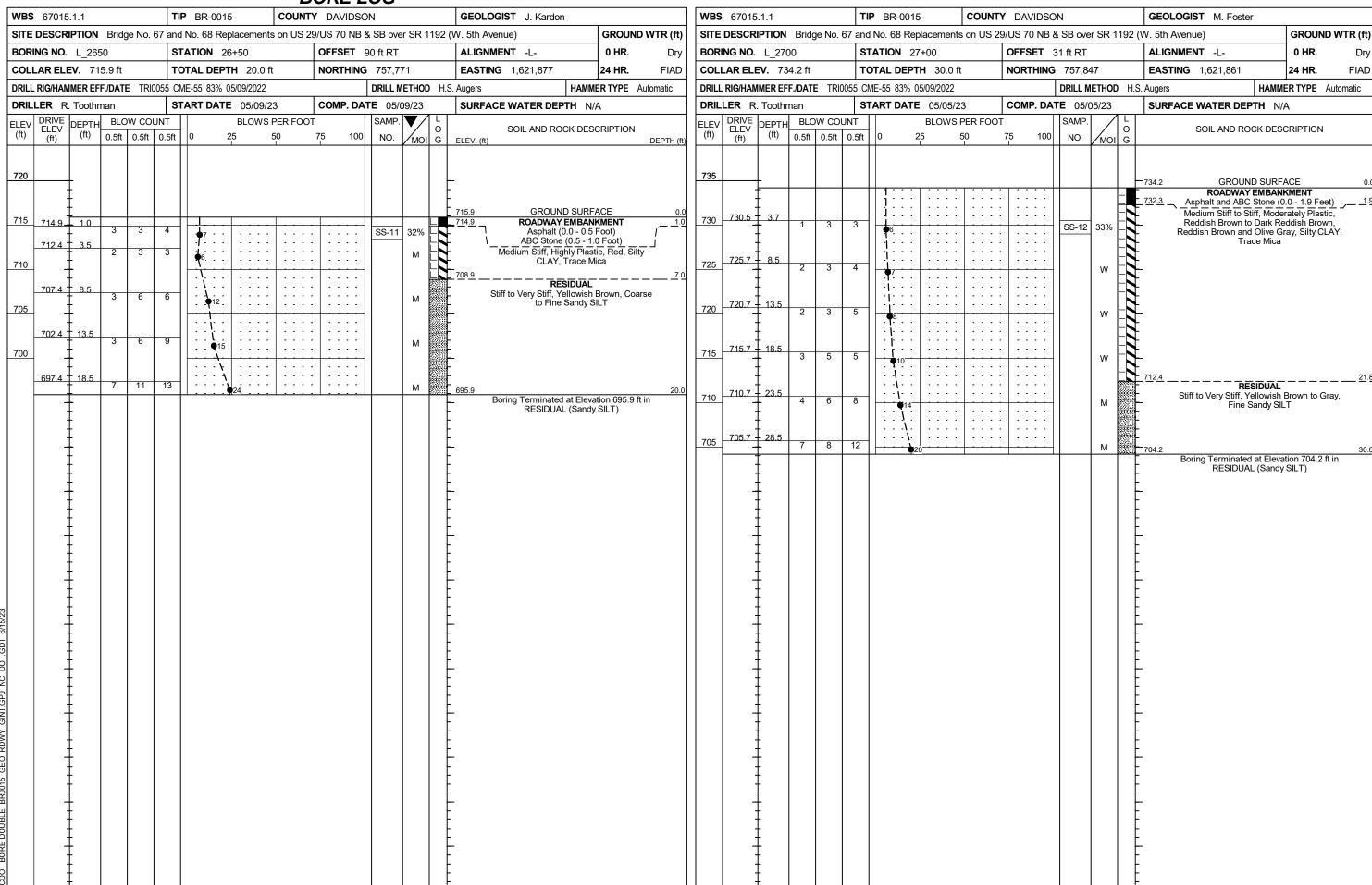

SUBSURFACE INVESTIGATION

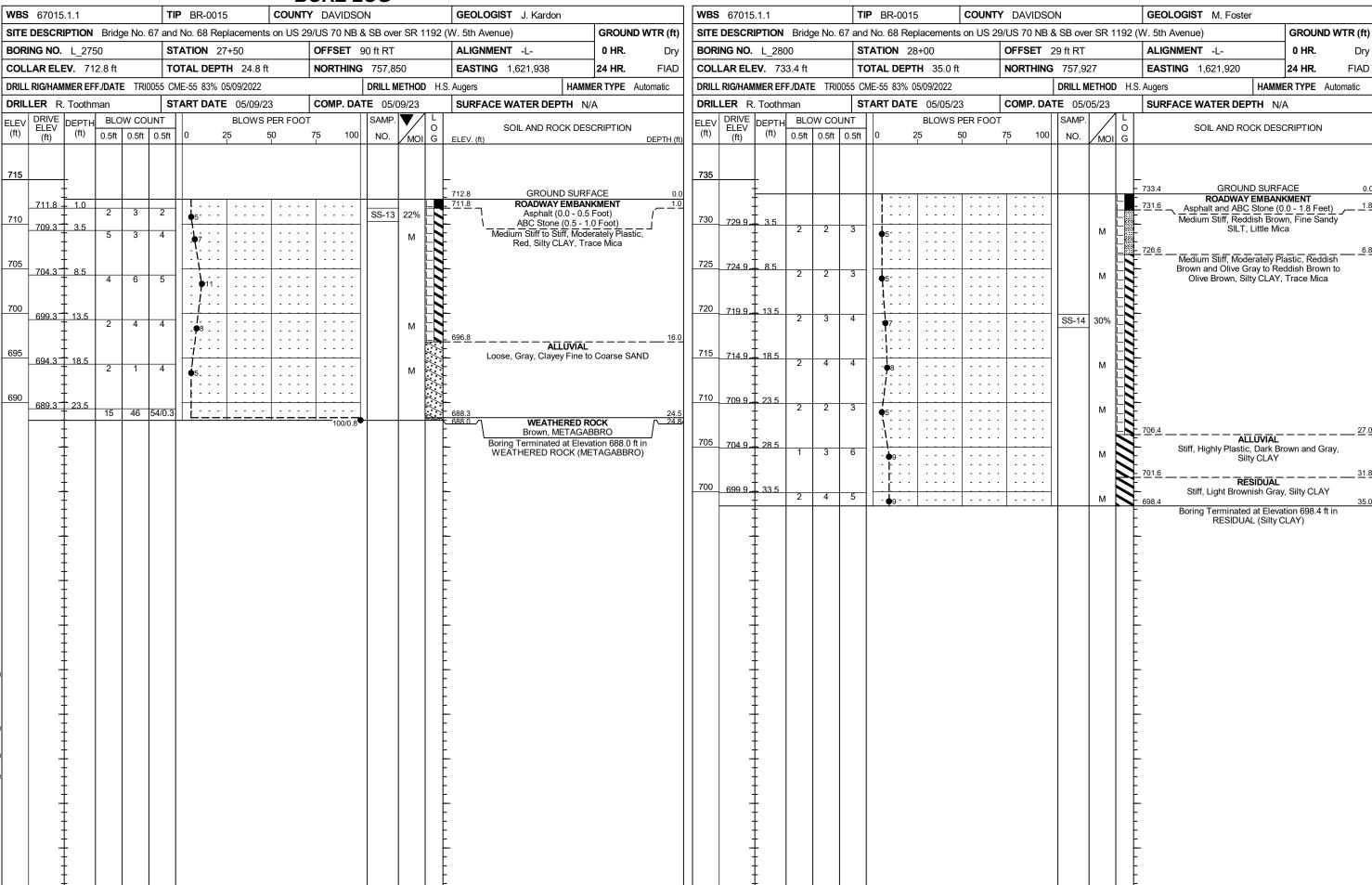
APPENDIX A BORE LOGS

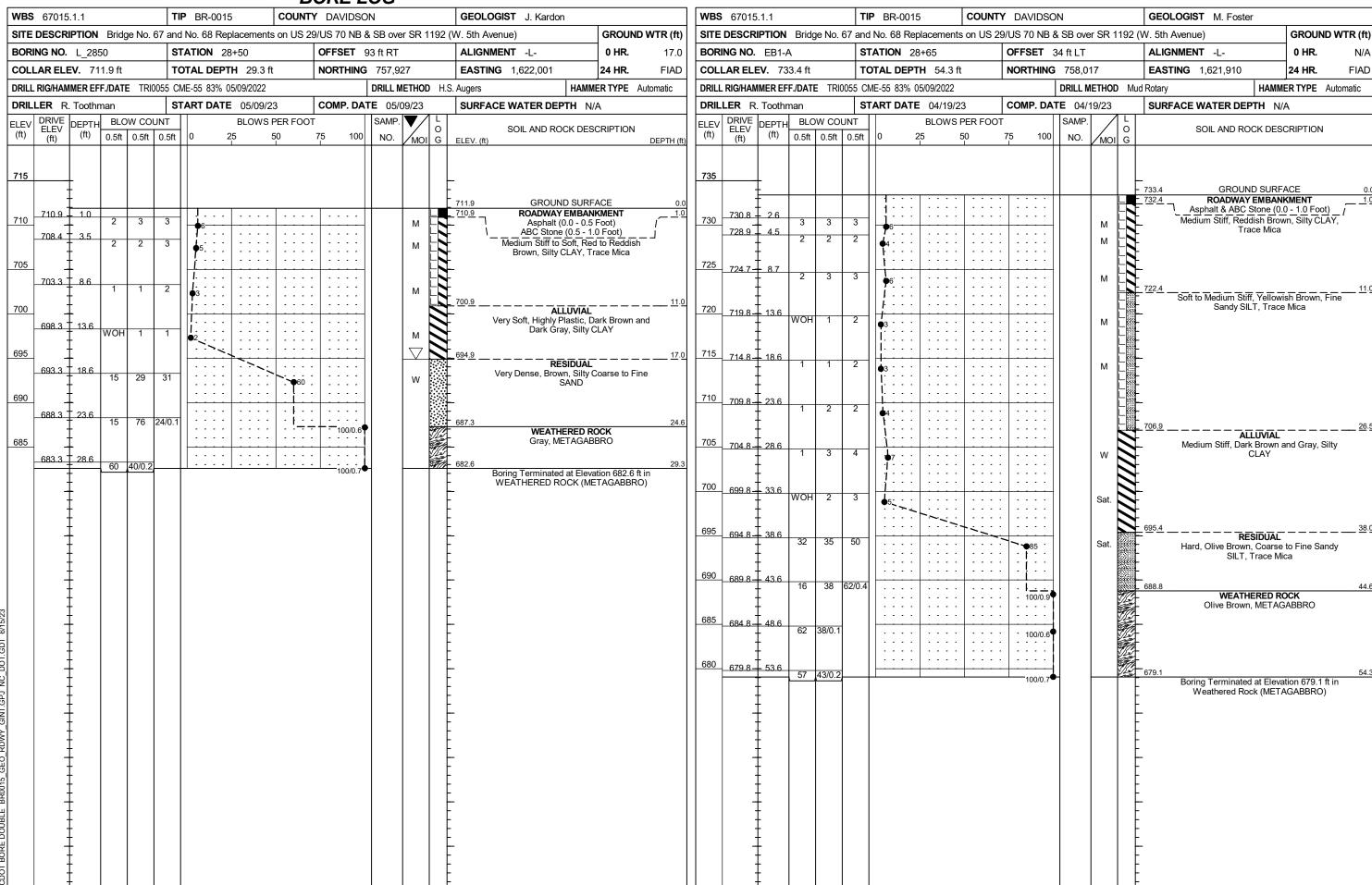

Prepared in the Office of:

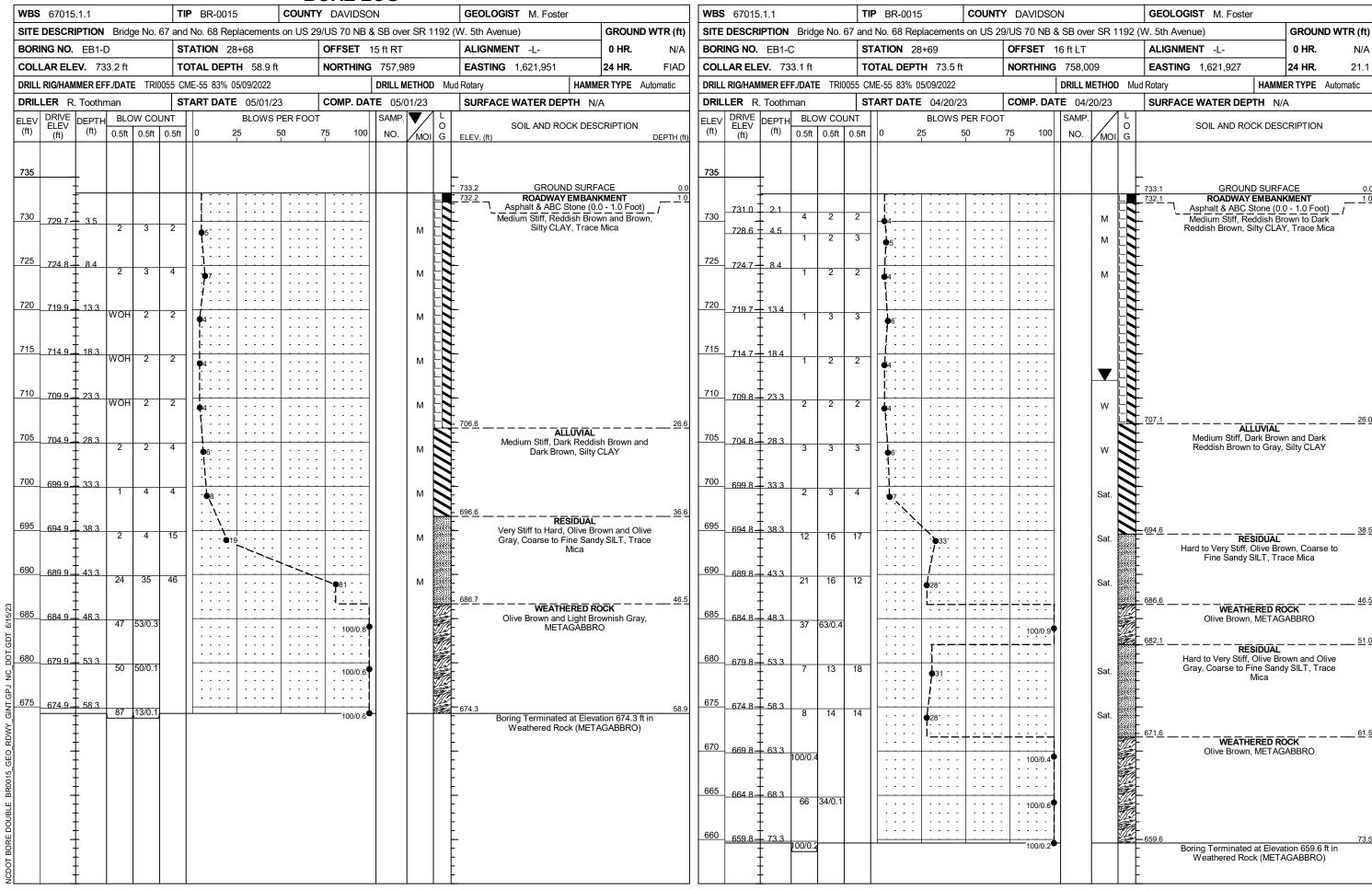

KLEINFELDER

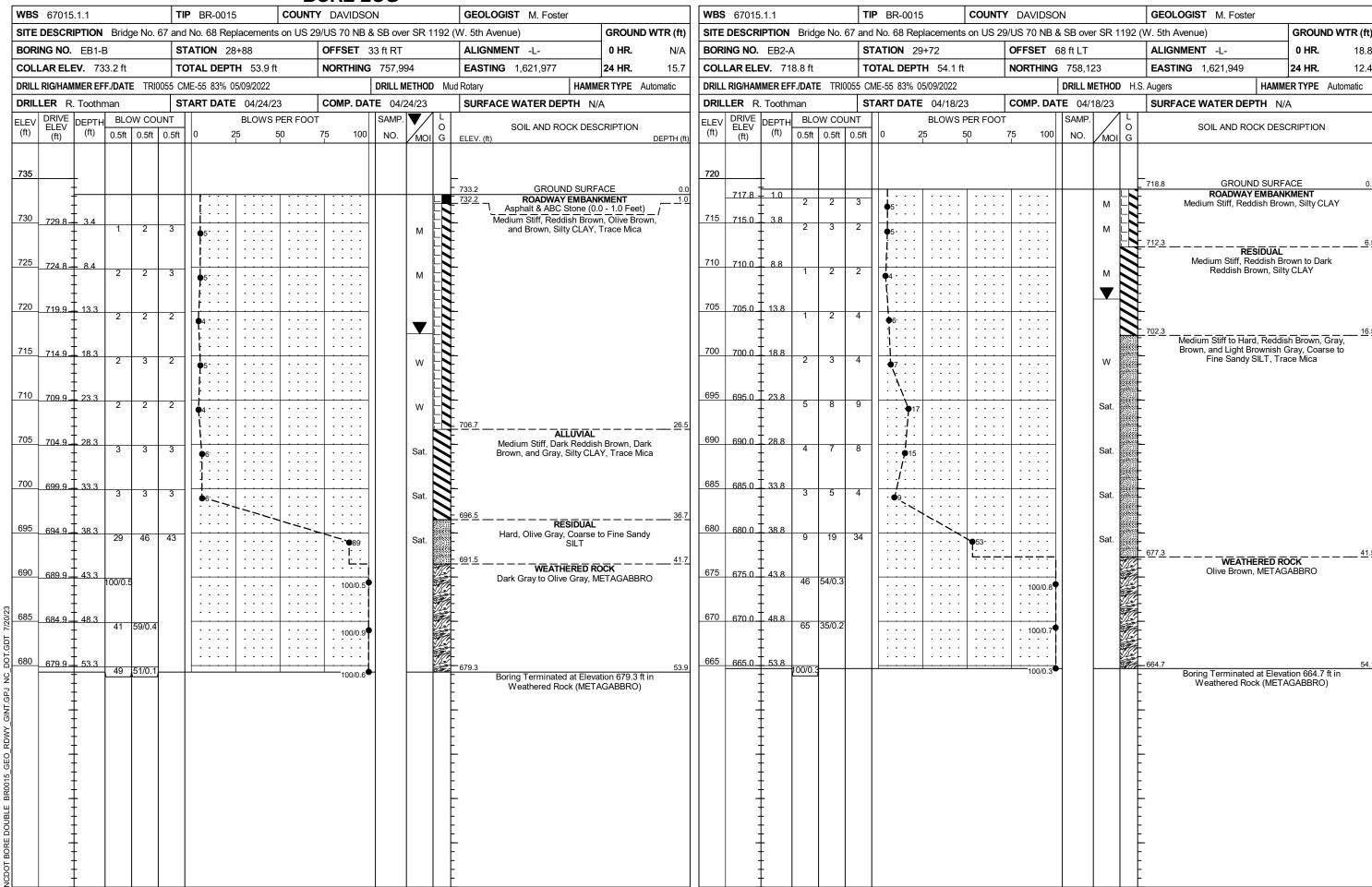
422 Gallimore Dairy Road, Suite B
Greensboro, North Carolina 27409
NC Engineering Firm License No. F-1312




	BORE LOG				
WBS 67015.1.1 TIP BR-0015 COU	JNTY DAVIDSON GE	OLOGIST M. Foster	WBS 67015.1.1 TIP BR-0015 C	COUNTY DAVIDSON	GEOLOGIST M. Foster
SITE DESCRIPTION Bridge No. 67 and No. 68 Replacements on L	JS 29/US 70 NB & SB over SR 1192 (W. 5tl	h Avenue) GROUND WTR (ft)	SITE DESCRIPTION Bridge No. 67 and No. 68 Replacements or	1 US 29/US 70 NB & SB over SR 1	192 (W. 5th Avenue) GROUND WTR (ft)
BORING NO. L_1650 STATION 16+50	OFFSET 87 ft LT ALI	IGNMENT -L- 0 HR. Dry	BORING NO. L_1850 STATION 18+50	OFFSET 89 ft LT	ALIGNMENT -L- 0 HR. Dry
COLLAR ELEV. 753.2 ft TOTAL DEPTH 20.1 ft	NORTHING 757,089 EAS	STING 1,621,124 24 HR. FIAD	COLLAR ELEV. 753.2 ft TOTAL DEPTH 20.0 ft	NORTHING 757,249	EASTING 1,621,245 24 HR. FIAD
DRILL RIG/HAMMER EFF./DATE TRI0055 CME-55 83% 05/09/2022	DRILL METHOD H.S. Auge	ers HAMMER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE TRI0055 CME-55 83% 05/09/2022	DRILL METHOD	H.S. Augers HAMMER TYPE Automatic
DRILLER R. Toothman START DATE 05/08/23	COMP. DATE 05/08/23 SUF	RFACE WATER DEPTH N/A	DRILLERR. ToothmanSTART DATE05/08/23	COMP. DATE 05/08/23	SURFACE WATER DEPTH N/A
ELEV (ft) DRIVE (ELEV (ft) O.5ft O.5ft O.5ft O.5ft DEPTH O.5ft O.5	75 100 NO. MOI G ELEV	SOIL AND ROCK DESCRIPTION (. (ft) DEPTH (ft)	ELEV Column Col		SOIL AND ROCK DESCRIPTION G
755 750 749 6 - 3.6 4 10 8 745 740 739 6 - 13.6 2 3 4 735 734 6 - 18.6	75 100 NO. MOI G ELEV - 753.2 - 750.2 - 741.5	GROUND SURFACE ROADWAY EMBANKMENT Asphalt and ABC Stone (0.0 - 1.0 Foot) Very Stiff, Highly Plastic, Dark Reddish Brown and Brown, Silty CLAY, Trace Gravel RESIDUAL Very Stiff to Stiff, Highly Plastic, Reddish Brown to Reddish Yellow, Silty CLAY Medium Stiff, Yellowish Brown, Fine Sandy SILT, Trace Mica	755 750 750 749.7 - 3.5 2 3 4 740 735 735 734.7 - 18.5	/	
DOJ BOJ H					
<u> </u>					






BORE	LOG					
WBS 67015.1.1 TIP BR-0015 COUNTY DAVIDS	DSON GEOLOGIST J. Kardon		WBS 67015.1.1	TIP BR-0015 COUNTY	DAVIDSON	GEOLOGIST M. Foster
SITE DESCRIPTION Bridge No. 67 and No. 68 Replacements on US 29/US 70 N	NB & SB over SR 1192 (W. 5th Avenue)	GROUND WTR (ft)	SITE DESCRIPTION Bridge No. 6	67 and No. 68 Replacements on US 29	9/US 70 NB & SB over SR 11	192 (W. 5th Avenue) GROUND WTR (ft)
BORING NO. L_2550 STATION 25+50 OFFSET	T 90 ft RT ALIGNMENT -L-	0 HR. Dry	BORING NO. L_2599	STATION 25+99	OFFSET 35 ft RT	ALIGNMENT -L- 0 HR. Dry
COLLAR ELEV. 718.8 ft TOTAL DEPTH 15.0 ft NORTHIN	ING 757,692 EASTING 1,621,815	24 HR. FIAD	COLLAR ELEV. 735.6 ft	TOTAL DEPTH 25.0 ft	NORTHING 757,765	EASTING 1,621,802 24 HR. FIAD
DRILL RIG/HAMMER EFF./DATE TRI0055 CME-55 83% 05/09/2022	DRILL METHOD H.S. Augers HAMME	ER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE TRI0	0055 CME-55 83% 05/09/2022	DRILL METHOD	H.S. Augers HAMMER TYPE Automatic
	DATE 05/09/23 SURFACE WATER DEPTH N/A	Α	DRILLER R. Toothman		COMP. DATE 05/05/23	SURFACE WATER DEPTH N/A
	SAMP. V C SOIL AND ROCK DESC NO. MOI G ELEV. (ft)	CRIPTION DEPTH (ft)	ELEV (ft) DRIVE (ft) DEPTH BLOW COU	UNT BLOWS PER FOOT 0.5ft 0 25 50	75 100 NO. MOI	O SOIL AND ROCK DESCRIPTION G
720 712.8 1.0 5 2 3 715 715.3 3.5 2 4 6 710 710.3 8.5 2 3 3 705 705.3 13.5 3 5 6 • • • • • • • • • • • • • • • • • •	718.8 GROUND SURFA 718.8 GROUND SURFA ROADWAY EMBANK Asphalt (0.0 - 0.5 F ABC Stone (0.5 - 1.0 Medium Stiff to Stiff, Highly Silty CLAY, Trace RESIDUAL No. 10 Medium Stiff, Reddish Brown Trace Mica	ACE 0.0 KMENT 1.0 Foot) 1 9 Plastic, Red, Mica 6.0 m, Clayey SILT, 12.0 15.0 ation 703.8 ft in	740 735 734.6	3	M M M M M M M M M M M M M M M M M M M	G ROUND SURFACE 0.0 ROADWAY EMBANKMENT 0.7 Asphalt and ABC Stone (0.0 - 0.7 Foot) Medium Stiff, Highly Plastic, Reddish Brown, Silty CLAY, Trace Mica Medium Stiff, Reddish Brown, Fine Sandy SILT, Trace Mica 7.5 RESIDUAL Medium Stiff, Reddish Yellow, Silty CLAY Medium Stiff, Reddish Yellow and Light Brown to Reddish Yellow, Silty CLAY T18.6 Medium Stiff, Reddish Yellow and Light Brownish Gray, Coarse to Fine Sandy SILT, Trace Mica and Rock Fragments T10.6 Boring Terminated at Elevation 710.6 ft in RESIDUAL (Sandy SILT) Boring Terminated at Elevation 710.6 ft in RESIDUAL (Sandy SILT)
						- - -

N/A

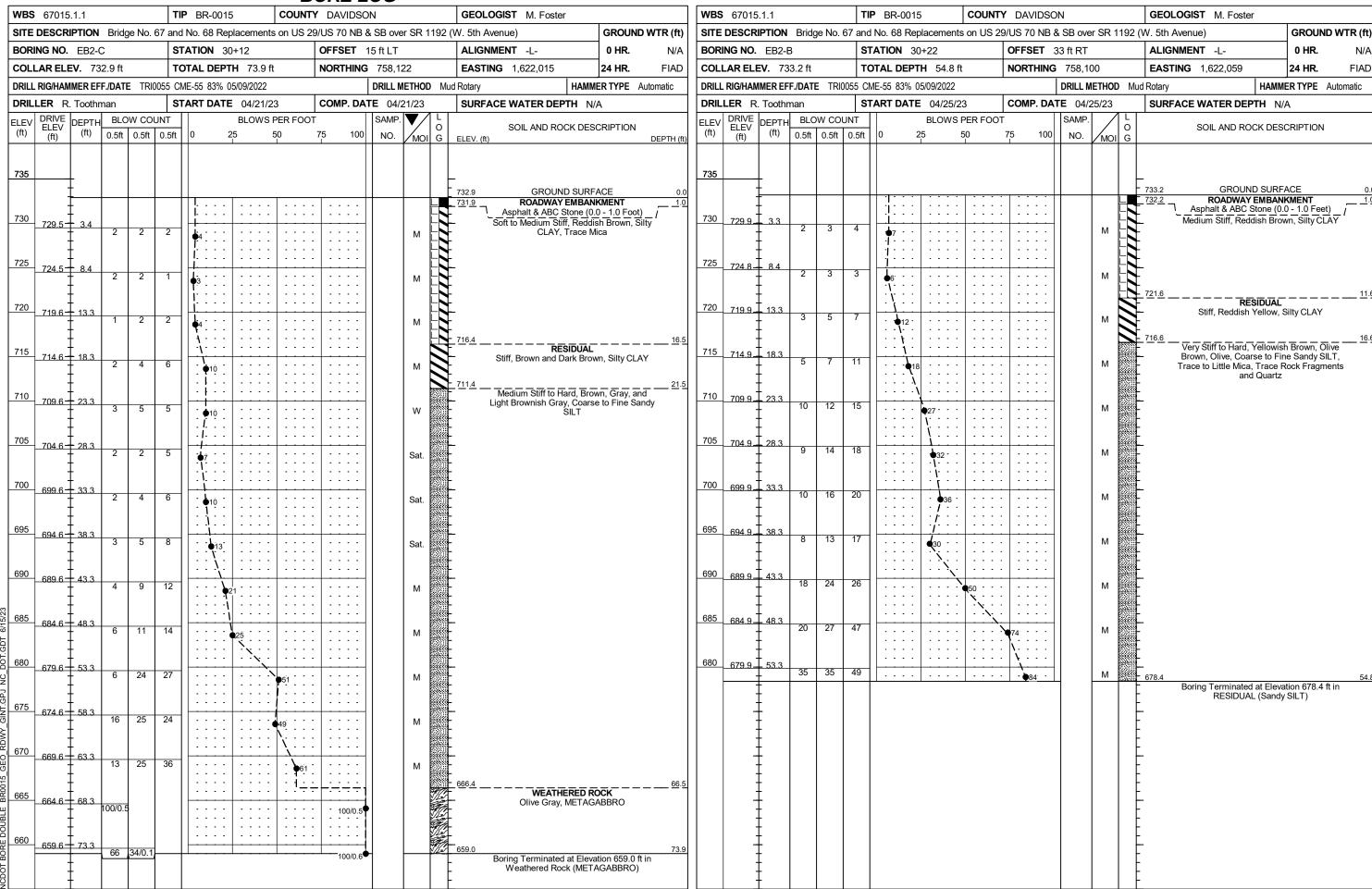
FIAD

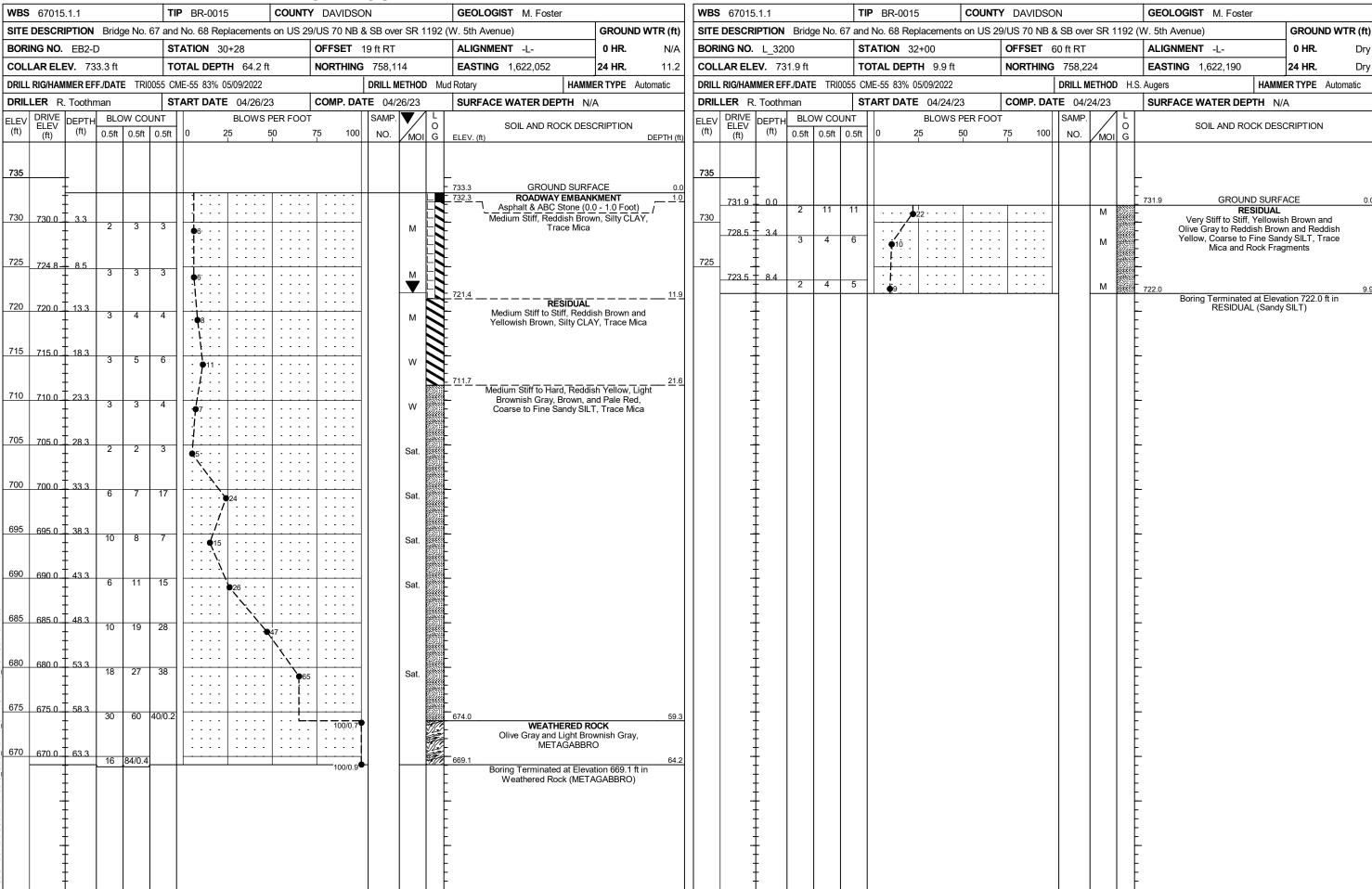
GROUND WTR (ft)

0 HR.

24 HR.

RESIDUAL 11.6


GROUND SURFACE


ROADWAY EMBANKMENT

and Quartz

RESIDUAL (Sandy SILT)

HAMMER TYPE Automatic

	BORE							
WBS 67015.1.1	TIP BR-0015 COUNTY DAVIDS	SON	GEOLOGIST M. Foster		WBS 67015.1.1		NTY DAVIDSON	GEOLOGIST M. Foster
SITE DESCRIPTION Bridge No. 67 at	nd No. 68 Replacements on US 29/US 70 NE	B & SB over SR 1192 (W	/. 5th Avenue)	GROUND WTR (ft)	SITE DESCRIPTION Bridge No.	67 and No. 68 Replacements on US		192 (W. 5th Avenue) GROUND WTR (ft)
BORING NO. L_3400	STATION 34+00 OFFSET	81 ft LT	ALIGNMENT -L-	0 HR. Dry	BORING NO. L_3600	STATION 36+00	OFFSET 85 ft LT	ALIGNMENT -L- 0 HR. Dry
COLLAR ELEV. 742.6 ft	TOTAL DEPTH 20.0 ft NORTHIN	NG 758,469	EASTING 1,622,201	24 HR. FIAD	COLLAR ELEV. 748.1 ft	TOTAL DEPTH 20.0 ft	NORTHING 758,629	EASTING 1,622,320 24 HR. Dry
DRILL RIG/HAMMER EFF./DATE TRI0055	CME-55 83% 05/09/2022	DRILL METHOD H.S. A	Augers HAMM	ER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE TRI	10055 CME-55 83% 05/09/2022	DRILL METHOD	H.S. Augers HAMMER TYPE Automatic
			SURFACE WATER DEPTH N/	'A	DRILLER R. Toothman	START DATE 05/04/23	COMP. DATE 05/04/23	SURFACE WATER DEPTH N/A
ELEV (ft) DEPTH BLOW COUNT (ft) 0.5ft 0.5ft 0.5ft		SAMP. L O NO. MOI G E	SOIL AND ROCK DES	CRIPTION DEPTH (ft)	ELEV CHIP CHIP CHIP CHIP CHIP CHIP CHIP CHIP	0.5ft 0 25 50	75 100 NO. MOI	O SOIL AND ROCK DESCRIPTION G
745	1 •6	SS-15 26%	42.6 GROUND SURF. RESIDUAL		748.1 70.0 3 4	5	M	748.1 GROUND SURFACE 0.0 RESIDUAL Stiff Highly Plastic, Dark Raddish Brown to
739.1 3.5 3 5 6	11	M	Medium Stiff to Stiff, Mode Reddish Brown, Silty CLA'	erately Plastic, Y, Trace Mica	745 744.6 3.5 4 5	8	SS-16 32%	Stiff, Highly Plastic, Dark Reddish Brown to Red to Reddish Yellow, Silty CLAY
735 734.1 8.5 2 4 3			35.8 Medium Stiff, Yellowish Bro SILT, Trace Mi	wn, Fine Sandy	740 739.6 8.5 5 7	8		736.4
730 729.1 13.5 2 3 4	• • • • • • • • • • • • • • • • • • •	M			735 734.6 13.5 3 4	6	· · · · · · ·	Stiff to Medium Stiff, Reddish Yellow, Fine Sandy SILT
725 724.1 18.5 2 3 5		M	'22.6 Boring Terminated at Eleva	20.0 ation 722 6 ft in	730 729.6 18.5 3 4	4		728.1 20.0 Boring Terminated at Elevation 728.1 ft in
NCDOT BORE DOUBLE BRU015_GEO_KDWY_GINI.GFJ NC_DOI.GD1 b715/23			RESIDUAL (Sandy	SILT)				RESIDUAL (Sandy SILT)

										<u> </u>	<u>KE</u>	<u></u>	<u> </u>																																					
WBS	67015	5.1.1			TIP	BR-00	15		COUN	ITY	DAVID	SON				GI	EOLC	GIST	M. F	oster						WBS	S 670	15.1.1				TIF	P BI	R-0015	j	C	OUNT	/ DAV	/IDSO	N			GEC	OLOG	IST N	/I. Fost	er			
SITE	DESCR	IPTION	Bridg	e No. 6	7 and	No. 68 R	eplace	ments	on US	29/U	IS 70 N	IB & S	SB ove	er SR	119	2 (W. 5	oth Av	enue)				GR	ROUND	WTR	(ft)	SITE	DESC	RIPTI	ON B	Bridge	No. 6	7 and	No.	68 Rep	laceme	nts on	US 29	9/US 70	0 NB 8	SB ov	er SR	1192	(W. 5th					GRO	OUND V	VTR (ft)
BORII	NG NO.	L_380	00		STA	ATION (38+00			O	FFSET	. CL	-			AL	LIGNI	MENT	-L-			01	HR.		Dry	BOF	RING N	0 . L_	_4000			ST	ΓΑΤΙΟ	ON 40	+00			OFFS	ET (CL			ALI	GNME	ENT -L	L-		0 H	R.	Dry
COLL	AR EL	EV . 74	1.1 ft		TO	TAL DEF	TH 7	7.0 ft		N	ORTHI	NG	758,7	35		E/	ASTIN	IG 1,	622,5	10		24 I	HR.		Dry	COL	LAR E	LEV.	744.6	5 ft		то	OTAL	. DEPT	H 6.8	ft		NORT		758,8					1,62	2,633		24 H	R.	FIAD
DRILL	RIG/HAI	MER EF	F./DATE	N/A								D	RILL N	/ETH	OD H	land Au	iger				HAM	MER TY	YPE N	I/A		DRIL	L RIG/H	AMME	R EFF./C	DATE	N/A									DRILL	METHO	D Ha	and Auge	er			HAM	MER TY	PE N/A	
		1. Foste				ART DAT					OMP. [SL	JRFA	CE W	ATER	DEPT	TH N	I/A				DRII	LLER						ΓART	DATE	04/2	7/23		COME	P. DAT	Γ E 04/	27/23	4	SUR	RFAC	E WAT	ER DE	PTH 1	N/A		
ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)	BLO 0.5ft	W COL		0	25 25	OWS PI		OT 75	1		SAMP. NO.	17	0	ELE	EV. (ft)	SC	OIL AND	D ROC	K DES	SCRIP [*]	TION	DEP ⁻	ΓΗ (ft)	ELEV (ft)	DRIV ELE (ft)	E DEF	PTH ft) 0.	.5ft 0	COUI 0.5ft (NT 0.5ft	0	2		/S PER 50	RFOOT	75	100	SAMP NO.	/	O O OI G			SOIL	AND R	OCK DE	SCRIPT	ION	
745																_										745		<u> </u>	+				•			. .				S-18	33% M		744.6 - 742.4	S	oft to Me	R edium s	ND SUR ESIDUA Stiff, Mod		Plastic,	0.
740	- -	<u> </u>										-	S-17	25% M		741.		Med Reddis	dium S	stiff to S wn to Y	IDUAL Stiff, Hi	ighly P	Plastic, own, Sil	ty	0.0	740	_	I I					<u> ·</u>			<u>: :</u>					M_		737.8	\ Me	edium S	Tı Stiff, Red SILT	ace Mic ddish Bro , Trace I	a own, Fin Mica	e Sandy	6.6
DWY GINT GPJ NC_DOT GDT 6/15/23							.					:		M		734.	.1		Termii	Cl	LAY at Elew	ation 7	734.1 ft		7.0																M		- 737.8	Во	R Kesslenetrome	rminate ESIDU er dual eter tes	ed at Ele AL (Sand NOTE: mass dy t perforr	vation 7: dy SILT) vnamic c ned on 5 ger borii	one 5/4/2023	
CDOI BORE DOUBLE BROVIS_GEC	- -	+ + + + + + + + + + + + + + + + + + +																										+ + + + + + + + + + + + + + + + + + + +																						

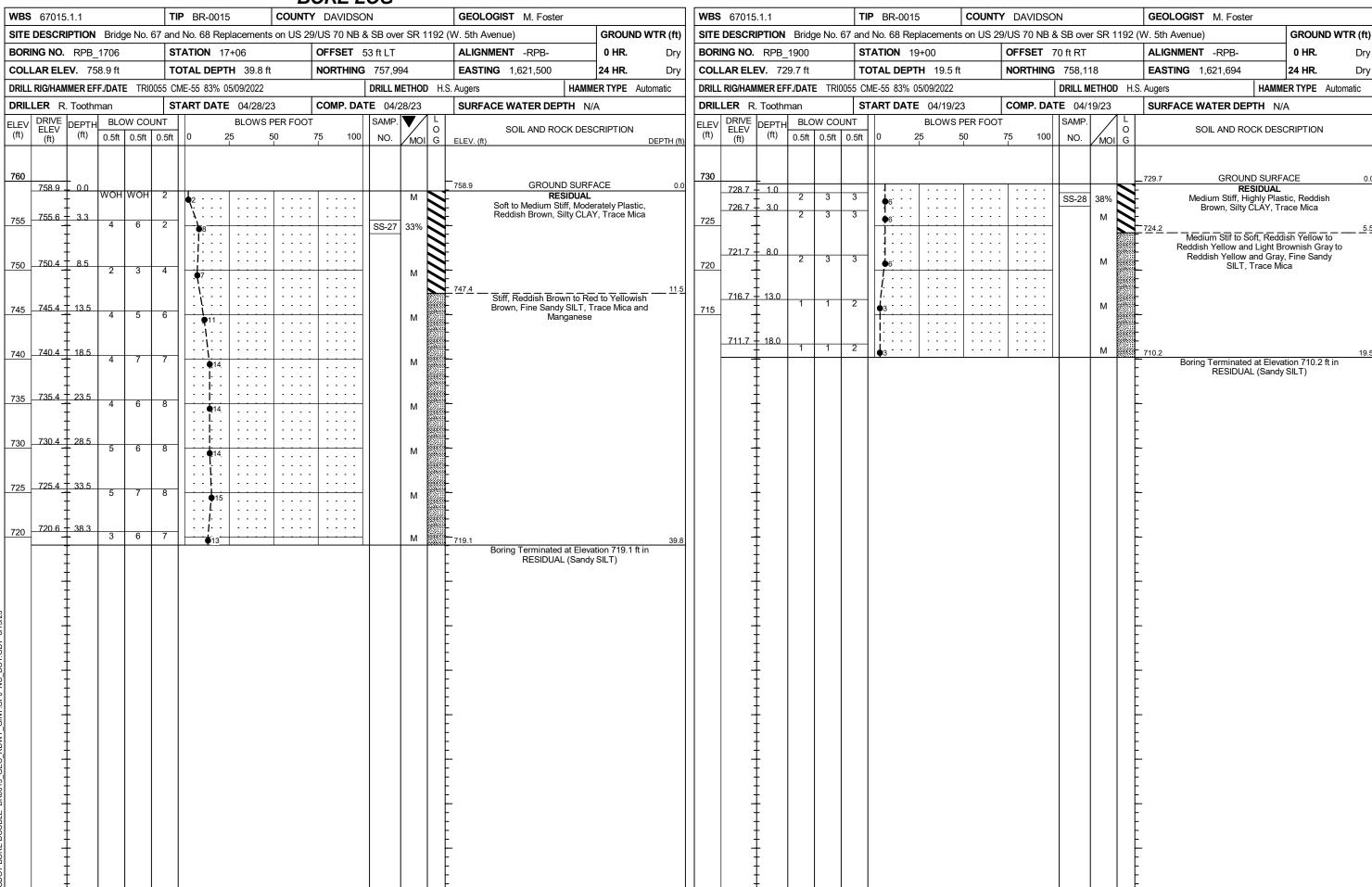
											<u>KE</u>																																													
WBS	67015	.1.1			TIP	BR-001	5	(COUN	TY I	DAVID	SON					GEO	LOG	IST I	M. Fo	ster							WB	S 670)15.1	.1				TIP	BR-0	015		(COUN	TY [DAVID	OSON	l			(GEOLO	ogis ⁻	r D.	Kubin	ski				
SITE	DESCRI	PTION	Bridge	e No. 6	and No	. 68 Re	placer	nents c	n US	29/U	S 70 N	B&	SB ov	er SF	R 119	92 (W	/. 5th	Aven	ue)				G	ROU	ND V	VTR ((ft)	SITE	E DES	CRIP	ΓΙΟΝ	Bridg	ge No	o. 67	and N	No. 68	Repla	ceme	ents o	n US	29/US	3 70 N	NB &	SB ove	er SR	119	2 (W.	5th A	venue	!)			G	ROUN	D WT	R (ft)
BORIN	IG NO.	L_420	00		STAT	ION 4	2+00			OI	FFSET	. CI	•				ALIG	NME	NT -	·L-			0	HR.			Ory	BOF	RING N	1 0 . l	440	0			STA	NOITA	44+	00			OF	FSE	r CI	-			/	ALIGN	MEN.	Γ -L-			0	HR.		Dry
COLL	AR ELE	V . 747	7.0 ft		TOT	L DEP	TH 7	0 ft		N	ORTHI	NG	759,0)51			EAS	TING	1,62	22,75	5		24	4 HR.		FI	AD	COL	LAR I	ELEV	. 74	7.3 ft			TO	TAL DI	EPTH	6.5	ft		NC	ORTH		759,2				EASTI	NG	1,622,	878		24	HR.		FIAD
DRILL I	RIG/HAM	MER EFF	F./DATE	N/A									RILL	METH	OD	Hand	Auger					HAM	MER	TYPE	N/A			DRIL	L RIG/F	IAMMI	REF	/DAT	E N/	/A									I	ORILL N	/ETH	DD I	Hand A	luger				HAN	MER 1	YPE	N/A	
		Foster				T DAT					OMP. I						SURF	FACE	WA1	ΓER [DEPT	П Н	N/A						LLER							ART DA					_	OMP.	DATI	= 05/	02/23	3	_ 5	SURFA	ACE V	VATE	R DEF	PTH	N/A			
ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)	0.5ft	0.5ft	NT 0.5ft 0		BLC 25	WS PE		OT 75	1	11	NO.	1 1/	' 1 (ור	ELEV. (ft)	SOIL	AND	ROC	K DE	SCRI	IPTIO		DEPTI	-l (ft)	ELE\ (ft)	/ DRIN ELE (ft)	/E DI	EPTH (ft)	0.5ft	0.5f	OUN ft 0.	T 5ft	0	25		/S PE 50	R FO	75 	1	100	SAMP. NO.	1 /	O O OI G			S	OIL AN	ND RC	OCK DE	ESCRII	PTION		
750		-														L												750		1																	-									
	-	-										Ш				<u> </u>	47.0				DUND			E			0.0			<u> </u>									•		• • •		.				┺	7.3		G		ID SUF				0.0
745	-	-					<u> </u>	• •		:		_		379	%	#		Ме	dium S	Stiff to	RESI Soft,	High	ly Pla	stic, E	Brown	1		745		‡														S-19	30% M	6	74	5.8	Soft,	Highly	Plasti	c, Red Trace	dish B	own, S	Silty <i>r</i>	
	-	-				· · · ·			: : :					M		7	743 <u>.3</u>	_	nd Re		M	1ica					3.7			‡															"		}	ľ	Medi	ım Stif	f, Olive	e, Coar	se to F	ine Sa	ndy	
740	-	- -			11		: :		: : :					"		▓ .	740.0	S	oft, Re	ddish	Yello	ow, Fi e Mic	ne Sa a	andy S	SILT,		7.0			‡								 		 		 					- 74	0.8				Trace				6.5
00015_GEO_RDWY_GINT.GPJ NC_DOT.GDT 6/15/23																	440.0		ring Ti f feer San BR-3	ermin RESID	ated a	at Ele	vation	1 740. T)	Oft in		7.0			 																			Borin	g Term	ninatec	d at Ele	evation dy SIL	740.8 T)	ft in	
LE BY	-	- -														-														+																	-									
	-	-														F														‡																	F									
JAE	-	- -														F														Ŧ																	F									
M IOI BK]	-														E														Ŧ																	E									
	-	-												1		F														+			1														F									

GROUND WTR (ft)

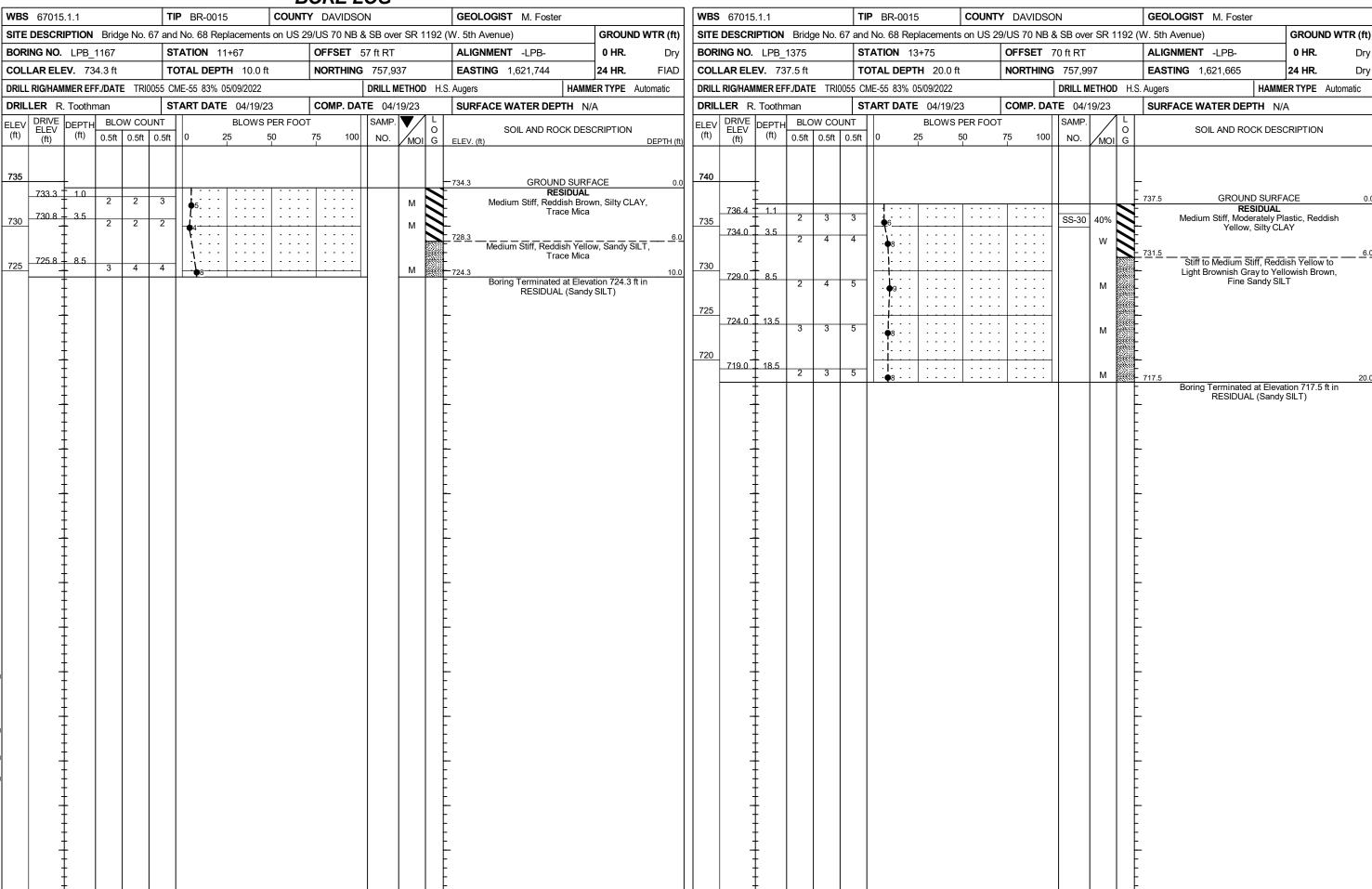
FIAD

		BORE LOG													
WBS 67015.1.1	TIP BR-0015 COUN	NTY DAVIDSON	SEOLOGIST D. Kubinski		WBS	s 6701	5.1.1	TIP BR-0015	COUN	TY DAVIDS	NC			GEOLOGIST D. Kubinski	
SITE DESCRIPTION Bridge No. 6	67 and No. 68 Replacements on US	29/US 70 NB & SB over SR 1192 (W.	5th Avenue)	GROUND WTR (ft)	SITE	DESC	RIPTION Bridge No. 67	7 and No. 68 Replac	ements on US	29/US 70 NB	& SB over	SR 1	1192 (\	V. 5th Avenue)	GROUND WTR
BORING NO. L_4600	STATION 46+00	OFFSET CL	ALIGNMENT -L-	0 HR. Dry	BOR	RING NO	L_4800	STATION 48+0	0	OFFSET	CL			ALIGNMENT -L-	0 HR.
COLLAR ELEV. 746.7 ft	TOTAL DEPTH 6.5 ft	NORTHING 759,367	EASTING 1,623,000	24 HR. FIAD	COL	LAR EL	. EV. 744.6 ft	TOTAL DEPTH	6.7 ft	NORTHIN	759,525	5		EASTING 1,623,123	24 HR . FI
DRILL RIG/HAMMER EFF./DATE N/A		DRILL METHOD Hand A	uger HAMM	ER TYPE N/A	DRILI	L RIG/HA	MMER EFF./DATE N/A	_			DRILL ME) Han	d Auger HAMME	R TYPE N/A
DRILLER D. Kubinski	START DATE 05/02/23		SURFACE WATER DEPTH N/	A			D. Kubinski	START DATE		COMP. DA		3/23		SURFACE WATER DEPTH N/A	١
ELEV (ft) DRIVE (ft) DEPTH BLOW COU	JNT BLOWS PER FO 0.5ft 0 25 50	75 100 NO. MOI G EL	SOIL AND ROCK DESC EV. (ft)	CRIPTION DEPTH (ft)	ELEV (ft)	DRIVE ELEV (ft)	DEPTH BLOW COUNTY (ft) 0.5ft 0.5ft 0	NT E 0.5ft 0 25	LOWS PER FOO	OT 75 100	SAMP.	MOI	O G	SOIL AND ROCK DESC	RIPTION
750			6.7 GROUND SURF.	ACE 0.0	745		<u> </u>							.744.6 GROUND SURFA .743.6 RESIDUAL Soft, Yellowish Brown and R	eddish Brown /
745		S-20 27%	RESIDUAL Soft to Medium Stiff, Mode Reddish Brown, Silty CLA' Medium Stiff, Brown, Coarse	rately Plastic	740		‡							\ Silty CLAY Soft to Medium Stiff, Brown, i Sandy SILT, Trace 737.9	Mica
			SILT, Trace Mi 0.2 Boring Terminated at Eleva RESIDUAL (Sandy	ca 6.5 ation 740.2 ft in										Boring Terminated at Elevat RESIDUAL (Sandy: NOTE:	ion 737.9 ft in SILT)
			NOTE: Kessler dual mass dyn penetrometer test performe	ed on 5/4/2023			‡							Kessler dual mass dyna penetrometer test performe adjacent to hand auge	d on 5/4/2023
			adjacent to hand auge	er boring.			‡								
							-								
							‡						-		
6/15/23							‡								
01.GDT 6/1							Ŧ								
GPJ NC_D															
RDWY_GINT															
0015_GEO_							‡								
OUBLE BR							Ŧ								
OT BORE D. + +							‡								
							+								

										RE I																											
WBS						P BR-00				DAVIDS					IST M. Fos	ster				BS 6701					P BR-00		- 1	JNTY D					DGIST N	И. Foster			
-				lge No		d No. 68 R	•	ents on					192 (W.	5th Aven	ue)			ND WTR (f	` ├─				ge No.			•	ents on l				er SR 119	92 (W. 5th Av	venue)			GROUND	WTR (ft)
		. Y1_1			S	TATION	10+42				62 ft RT		A	LIGNME	NT -Y1-		0 HR.		1 -	ORING NO				-	TATION			-		43 ft LT			MENT -			0 HR.	Dry
COLL	AR EL	EV . 7	53.3 ft		T	OTAL DEF	PTH 24	.8 ft	N	ORTHIN	G 758,2				1,621,398		24 HR.			DLLAR EI	LEV . 7	32.2 ft		TC	OTAL DEF	TH 10.	0 ft	NO	RTHING	758,2	36	EASTIN	NG 1,62	1,629		24 HR.	FIAD
DRILL	RIG/HAI	MMER E	FF./DA	TE TR	0055 C	ME-55 83%	05/09/20	22					H.S. Au	gers		HAN	MMER TYPE	Automatic	DR	ILL RIG/HA	AMMER E	FF./DAT	E TRI	0055 CN	ME-55 83%	05/09/202	22					H.S. Augers			HAMMEI	RTYPE A	utomatic
		R. Tooth				TART DAT				OMP. D	ATE 05/			URFACE	WATER D	EPTH	N/A		DF	RILLER					TART DAT				MP. DA	TE 05/0		SURFA	CE WAT	ER DEP	TH N/A		
ELEV (ft)	DRIVE ELEV (ft)	DEPTI (ft)	0.5ft	OW CC	0.5ft	0	BLOV 25	VS PER 50	FOOT 75	5 100		MOI	O G ELE	EV. (ft)	SOIL AND F	ROCK DE	ESCRIPTION	N DEPTH	ELE (ft	DRIVE ELEV (ft)	DEPTI (ft)	O.5ft	0.5ft	0.5ft	0	BLOW 25	VS PER F	FOOT 75	100	SAMP. NO.	моі		SOIL	AND ROO	CK DESCI	RIPTION	
755	753.3	- - - -	3	5	7	. •12		· · ·			SS-21	28%	- 753		F	JND SUF	AL .		.0 73		<u> </u> 											 - - 732.2		GROUNE			8.9
750	750.0	3.3	4	6	6	- 12						М		S R	tiff, Highly Pla eddish Yellow	astic, Red v, Silty CL	ddish Brown LAY, Trace N	and Vlica	73	0	7 + 3.5	4	5		11_					SS-22				Asphalt (0 RES	.0 - 0.4 F	<u>oot)</u>	
745	745.0	8.3	5	7	6								745	5 <u>.8</u> — —	Stiff, Yellowish	h Brown,	Coarse to F		.5 72		‡		4	5	9.						М	725.4				dish Brown CLAY n, Fine San	6.8
740		‡ ‡ 		,		- ·• 13·						M			Sandy	SILT, Tra	ace Mica			723.7	7 + 8.5	2	3	3	6						М	722.2		SILT, T	race Mica	on 722.2 ft SILT)	10.0
740	740.0	13.3	4	6	7	13-		.				М	Ė								†											-	1	KESIDOAL	. (Garidy C	νι Ε Ι <i>)</i>	
735	735.0	18.3	3	4	5	• • 9 •						М	E								‡											-					
730	730.0	23.3	3	4	5	-		-				М	- - - 728	. =				24			† †											-					
		+				—							- 726	Bo	ring Terminat RESIDU	ted at Ele JAL (San	evation 728.5 ndy SILT)		.0		+											-					
	-	† 											-								Ŧ											-					
	-	† 											-								‡											-					
	-	† † †											-								‡											-					
	-	† †											E								‡											-					
23		 - -											E								† †											-					
3DT 6/15/	-	 											<u> </u>								+											-					
NC_DOT.	-	 											<u> </u>								‡											-					
SINT.GPJ	-	 											-								‡											-					
RDWY 0		<u> </u>											- -								<u> </u>											-					
0015_GEC		 - -											-								+											-					
UBLE BR	-	-											E E								Ī											<u>-</u>					
BORE DO	-	<u> </u>											E F								Ī											<u> </u>					
NCDOT		Ŧ											 								Ŧ											F					


B(ORE LOG						
WBS 67015.1.1 TIP BR-0015 COUNTY	/ DAVIDSON	GEOLOGIST M. Foster		WBS 67015.1.1	TIP BR-0015 COUN	ITY DAVIDSON	GEOLOGIST M. Foster
SITE DESCRIPTION Bridge No. 67 and No. 68 Replacements on US 29	9/US 70 NB & SB over SR 1192 (W	. 5th Avenue) GROUI	UND WTR (ft)	SITE DESCRIPTION Bridge No. 67	7 and No. 68 Replacements on US	29/US 70 NB & SB over SR 1192	(W. 5th Avenue) GROUND WTR (fi
BORING NO. Y1_1455 STATION 14+55	OFFSET 40 ft RT	ALIGNMENT -Y1- 0 HR.	R. Dry	BORING NO. Y1_1512	STATION 15+12	OFFSET 46 ft RT	ALIGNMENT -Y1- 0 HR. Dr
COLLAR ELEV. 718.8 ft TOTAL DEPTH 10.0 ft	NORTHING 758,088	EASTING 1,621,794 24 HR.	R. FIAD	COLLAR ELEV. 715.1 ft	TOTAL DEPTH 19.9 ft	NORTHING 758,063	EASTING 1,621,845 24 HR. FIAI
DRILL RIG/HAMMER EFF./DATE TRI0055 CME-55 83% 05/09/2022	DRILL METHOD H.S. A	ugers HAMMER TYPE	E Automatic	DRILL RIG/HAMMER EFF./DATE TRI005	55 CME-55 83% 05/09/2022	DRILL METHOD H.S	S. Augers HAMMER TYPE Automatic
	COMP. DATE 05/08/23	SURFACE WATER DEPTH N/A		DRILLER R. Toothman	START DATE 05/10/23	COMP. DATE 05/10/23	SURFACE WATER DEPTH N/A
ELEV (ft) DRIVE ELEV (ft) DEPTH BLOW COUNT BLOWS PER FOOT 0 25 50	75 100 SAMP. L O NO. MOI G E	SOIL AND ROCK DESCRIPTION LEV. (ft)	ON DEPTH (ft)	ELEV CHIP CHIP CHIP CHIP CHIP CHIP CHIP CHIP	NT BLOWS PER FO	OT SAMP. L O NO. MOI G	SOIL AND ROCK DESCRIPTION
720 718.8 = 0.0 1 2 3 \$\int_5\cdots\$ \cdots\$ \cdots\$ \\ \frac{1}{5}\cdots\$ \cdots\$ \cdots\$ \cdots\$ \\ \frac{1}{5}\cdots\$ \cdots\$ \cdots\$ \cdots\$ \cdots\$ \\ \frac{1}{5}\cdots\$ \cdots\$ \cdots\$ \cdots\$ \cdots\$ \\ \frac{1}{5}\cdots\$ \cdots\$ \cdots\$ \cdots\$ \\ \frac{1}{5}\cdots\$ \cdots\$ \cdots\$ \cdots\$ \cdots\$ \\ \frac{1}{5}\cdots\$ \cdots\$ \cdots\$ \cdots\$ \cdots\$ \\ \frac{1}{5}\cdots\$ \cdots\$ \cdots\$ \cdots\$ \\ \frac{1}{5}\cdots\$ \cdots\$ \cdots\$ \\ \frac{1}{5}\cdots\$ \cdots\$ \cdots\$ \cdots\$ \cdots\$ \\ \frac{1}{5}\cdots\$ \cdots\$ \cdots\$ \cdots\$ \cdots\$ \\ \frac{1}{5}\cdots\$ \cdots\$ \cdots\$ \cdots\$ \cdots\$ \\ \frac{1}{5}\cdots\$ \cdots\$ \cdots\$ \cdots\$ \\ \frac{1}{5}\cdots\$ \cdots\$ \cdots\$ \cdots\$ \cdots\$ \\ \frac{1}{5}\cdots\$ \cdots\$ \cdots	M L	18.8 GROUND SURFACE ROADWAY EMBANKMENT		720			_ F
718.8 + 0.0	M M		Idish Brown Mica 7.5 Ce Mica 10.0	715 715.1 0.0 2 3 711.7 3.4 2 2 710 706.7 8.4 WOH 1 700 696.7 - 18.4	2	M SS-23 39% N:	715.1 GROUND SURFACE ROADWAY EMBANKMENT Medium Stiff, Reddish Brown, Silty CLAY, Trace Mica and Gravel 711.0 Medium Stiff, Slightly Plastic, Reddish Yellow, Clayey SILT, Trace Mica ALLUVIAL Medium Stiff to Stiff, Highly Plastic, Dark Gray and Dark Brown to Dark Reddish Brown and Dark Brown, Silty CLAY, Trace Mica and Organic Matter (Topsoil, Wood Fragments) Boring Terminated at Elevation 695.2 ft in ALLUVIAL (Silty CLAY)
E BR0015, GEO, RDWY, GINT, GPJ, NO.							
NCDOT BORE DOUBL							· - - - - -

	ВО	DRE LOG							
WBS 67015.1.1	TIP BR-0015 COUNTY	DAVIDSON	GEOLOGIST M. Foster		WBS 67015.1.1	TIP BR-0015 COUNTY DAV	IDSON	GEOLOGIST D. Kubinski	
SITE DESCRIPTION Bridge No. 6	67 and No. 68 Replacements on US 2	29/US 70 NB & SB over SR 119	92 (W. 5th Avenue)	GROUND WTR (ft)	SITE DESCRIPTION Bridge No. 6	67 and No. 68 Replacements on US 29/US	70 NB & SB over SR 1	192 (W. 5th Avenue)	GROUND WTR (ft)
BORING NO. Y1_1550	STATION 15+50	OFFSET 45 ft LT	ALIGNMENT -Y1-	0 HR. Dry	BORING NO. Y1_1783	STATION 17+83 OFFS	ET 34 ft LT	ALIGNMENT -Y1-	0 HR. Dry
COLLAR ELEV. 717.8 ft	TOTAL DEPTH 13.5 ft N	NORTHING 758,135	EASTING 1,621,912	24 HR. Dry	COLLAR ELEV. 715.2 ft	TOTAL DEPTH 10.3 ft NORT	HING 758,045	EASTING 1,622,127	24 HR. FIAD
DRILL RIG/HAMMER EFF./DATE TRI00	55 CME-55 83% 05/09/2022	DRILL METHOD H.S.	Augers HAMN	MER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE N/A		DRILL METHOD Ha	ind Auger HAM/	MER TYPE N/A
DRILLER R. Toothman	START DATE 04/18/23	COMP. DATE 04/18/23	SURFACE WATER DEPTH N	/A	DRILLER D. Kubinski		P. DATE 05/02/23	SURFACE WATER DEPTH N	I/A
SITE DESCRIPTION Bridge No. 6	77 and No. 68 Replacements on US 2 STATION	29/US 70 NB & SB over SR 119 OFFSET 45 ft LT NORTHING 758,135 DRILL METHOD H.S. COMP. DATE 04/18/23 SAMP.	ALIGNMENT -Y1- EASTING 1,621,912 Augers HAMM SURFACE WATER DEPTH N SOIL AND ROCK DESELEV. (ft) 717.8 GROUND SURF ROADWAY EMBAN Stiff to Medium Stiff, Mode Reddish Brown, Silt	O HR. Dry 24 HR. Dry MER TYPE Automatic /A SCRIPTION DEPTH (ft) FACE 0.0 IKMENT erately Plastic, by CLAY 13.5 ation 704.3 ft in IT (Silty CLAY) due to potential	SITE DESCRIPTION Bridge No. 68	STATION 17+83 OFFS STATION 17+83 OFFS TOTAL DEPTH 10.3 ft NORT START DATE 05/02/23 COMFNT BLOWS PER INCREMENT 0 25 12	70 NB & SB over SR 1 ET 34 ft LT HING 758,045 DRILL METHOD Ha P. DATE 05/02/23 SAMP. NO. MOI G MOI G M M M M M M M M M M M M M	192 (W. 5th Avenue) ALIGNMENT -Y1- EASTING 1,622,127 and Auger HAMI	24 HR. FIAD MER TYPE N/A N/A SCRIPTION FACE 0.0 Coarse to Fine 2e Mica 10.3 vation 704.9 ft in by SILT)
NCDOT BORE DOUBLE BR0015_GEO_RDWY_GINT.								- - - - - -	


										<u> </u>	<u>IKE</u>	: <u>L</u>	<u>UC</u>	7																																							
WBS	67015	5.1.1			TIP	BR-00	15		COUN	ITY	DAVI	DSO	N				GI	EOLO	GIST	D. K	Cubins	ki					WE	3S 67	015.1.	.1			Т	ΓIP	BR-001	5		COU	NTY	DAVID	SON				GEOL	.OGIS	T D. K	Kubins	ki				
SITE	DESCR	IPTION	Bridg	e No. 6	7 and l	No. 68 R	eplace	nents	on US	29/U	JS 70 I	NB 8	SB	over	SR 1	1192	(W. 5	th Av	enue)				GF	ROUN	D WT	R (ft)	SIT	E DES	CRIP	TION	Bridge	e No.	67 an	nd No	o. 68 Re	eplacer	ments	on US	S 29/U	JS 70 N	IB & S	SB ove	r SR 1	1192	(W. 5th /	Avenu	e)			GRO	OUND V	VTR (ft)
BORI	NG NO.	Y1_1	800		ST	ATION	18+00			0	FFSE	T 3	5 ft F	RT			Αl	IGNN	MENT	-Y1-	-		0	HR.		Dry	ВС	RING I	۱O. ۱	Y1_19	00		s	TAT	TION 1	9+00			0	FFSET	35	ft LT			ALIG	MEN	T -Y1	-		0 H	R.	D	ry
COLL	AR EL	EV . 71	13.9 ft		TO	TAL DEF	TH 7	.0 ft		N	ORTH	IING	757	7,975			E/	ASTIN	IG 1	,622,1	20		24	HR.		FIAD	CC	LLAR	ELEV	. 705	.9 ft		Т	OTA	AL DEP	TH 6	.7 ft		N	ORTHI	NG	758,00)6		EAST	ING	1,622,2	238		24 H	R.	FIA	۱D
DRILL	RIG/HAI	MER EF	F./DATI	N/A	•								DRIL	L ME	THOE) Ha	and Au	ger				HAM	MER T	YPE	N/A		DR	LL RIG/	HAMM	ER EFF	./DATE	N/A	•						•		D	RILL M	ETHO	D Ha	nd Auger				НАМІ	IER TYP	PE N/A	١	
DRIL	ER D	. Kubin	ski		STA	ART DAT	FE 05	/04/23		С	OMP.	DAT	TE ()5/04	/23		SL	JRFA	CE W	ATER	DEP	TH N	N/A				DR	ILLER	D. K	Cubins	кi		s	STAR	RT DAT	E 05	/04/23	3	С	OMP. [DATE	05/0	4/23		SURF	ACE	WATER	R DEP	TH N	/A			
ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)	BLC 0.5ft	W COL	NT 0.5ft	0	BL0 25	OWS P		OT 75	,	100	SAN	ИР. Т		О	ELE	V. (ft)	SC	DIL AN	D ROC	CK DE	SCRIF	PTION		PTH (ft)	ELE (ft	DRI ELE (ff	VE DE	EPTH_ (ft)	BLO\ 0.5ft	W COI	UNT 0.5ft	0		BLC 25	OWS F	ER FO	75 75	1		SAMP. NO.	MOI	L O I G	•	;	SOIL AN	D RO	CK DE	SCRIPT	ION		_
715																	713. 				ROUNE	SIDUA	L			0.0	710)	<u> </u>																 - -								
710	- - - - - -	+ + + + + + + +					.					-			M			9		dium S sh Gra Termi RES		at Ele	vation	706.9		7.0	70		+ + + + + + + + + + + + + + + + + + + +												:		M M		705.9		to Mediu Coars	RES Im Stiff se to F		Brownis		,	6.7
																													 														M			Bori	ng Term RES	inated IDUAL	at Elev	ration 69 y SILT)	99.2 ft ir		6.7

									D)RE	L	JG									,																		
WE	S 670	015.1.1			TIF	BR-001	5	CO	UNTY	DAVID	SON				GEO	OLOGIST N	M. Foster				WBS	670	15.1.1			TIP	P BR-00)15	cc	OUNTY [DAVIDS	ON		GEOLO	OGIST	J. Kardo	on .		
SIT	E DES	CRIPTI	ON Bri	dge No. (67 and	No. 68 Re	placeme	nts on l					SR 1	192	-	h Avenue)			ROUND	WTR (ft)	SITE	DES	CRIPTIO	N Brid	ge No. 6	7 and	No. 68 F	Replacen	nents on					02 (W. 5th A	venue)	ı		GROUND	WTR (ft)
ВС	RING N	NO. Y2	_1050		ST	ATION 1	0+50			OFFSE	Γ 11	ft LT			ALI	GNMENT -	Y2-		0 HR.	Dry	BOR	ING N	O . Y2_	1250		ST	ATION	12+50		OF	FSET	20 ft RT	-	ALIGN	MENT	-Y2-		0 HR.	Dry
CC	LLAR	ELEV.	729.5 f	t	то	TAL DEP	TH 9.9	ft	!	NORTH	ING	758,22	5		EAS	STING 1,62	21,685	24	4 HR.	FIAD	COL	LAR E	ELEV. 7	30.5 ft		TO	TAL DE	PTH 1	5.0 ft	NC	ORTHING	G 758,2	259	EASTI	NG 1,	,621,885	:	24 HR.	FIAD
DR	LL RIG/I	HAMME	EFF./DA	TE TRIO	055 CM	E-55 83%	05/09/202	2			D	RILL ME	THOD) H.S	S. Auger	rs		HAMMER	TYPE A	utomatic	DRIL	RIG/H	AMMER E	FF./DAT	E TRI00	055 CM	1E-55 83%	6 05/09/2	022			DRILL I	METHOD	H.S. Augers			HAMME	RTYPE Au	tomatic
		R. To				ART DAT				COMP.					SUF	RFACE WAT	ER DEPT	TH N/A			DRIL		R. Tooth				ART DA	TE 05/	09/23	cc	OMP. DA	ATE 05/		SURFA	CE W	ATER DE	PTH N/A		
ELE (ft	V DRI ELE (ft	VE DEF	DTH BL 1) 0.51	OW COL	JNT 0.5ft	0	BLOW 25	'S PER F 50		[5 1		SAMP. NO.	٠/	101	ELEV.	SOIL	AND ROC	K DESCR	IPTION	DEPTH (f	ELEV (ft)	DRIN ELE (ft)	VE DEPT (ft)	0.5ft	0.5ft	0.5ft	0	25 1	WS PER 50	75 75	100	SAMP NO.	1 / 10	- D G	SC	OIL AND RO	OCK DESC	RIPTION	
73	729	7.5 0	0 1	3	4	7		. .			1 1		М		—729.5 -	RC	GROUND DADWAY E Stiff, Redd	MBANKM	ENT	0.	735		+											 - -					
72	726	3.0 3	5 21	3	4	7			· · · · · · · · · · · · · · · · · · ·		-		М		722.8	Silty CL	AY, Trace Fragi	Mica and ments	Concrete	6.	730		5 1.0	3	3	3	•6	: : :	I	I		SS-25	31%	- 730.5 - 729.5		ROADWAY Asphalt	ND SURFA Y EMBANK (0.0 - 0.5 F e (0.5 - 1.0	MENT pot)	0.0
72	721	1.1 8	3	2	2	 ↓ ↓4			· · ·		1 1		W		719.9 719.6		Stiff, Highly	ILT		9.0	725	727.	0 3.5	2	4	4						-	M L		- Mediu	um Stiff, Hi	ghly Plastic , Trace Mic	, Red, Silty	
		‡													- - - -	Boring Te ROADW	erminated a AY EMBAN	at Elevation	n 719.6 ft Silty CLA	in Y)	720	722.	0 7 8.5	3	3	3	6						M _						
		‡													- - -							717.	0 13.5	2	2	3			-				M L					on 715.5 ft i (Silty CLAY	
		+ + + + + + + + + + + + + + + + + + + +																					† † † † † † †											-					
		+													-								+																
		† †													- - - -								† † †																
DT 6/15/25		<u> </u>													- - - -								1											- - - -					
NC_DOL.6		† †																					‡ ‡											- - -					
WY_GINI.GE															- - - -								‡											- - - -					
015 650 11		+													- - - -								‡											- - - -					
OUBLE DRU		‡													- - -								‡											- - - -					
SDOI BURE L		‡																					-											- - - -					

		RE LOG						
WBS 67015.1.1	TIP BR-0015 COUNTY DA			WBS 67015.1.1		BR-0015 COUNTY DAVID		GEOLOGIST M. Foster
SITE DESCRIPTION Bridge	lo. 67 and No. 68 Replacements on US 29/US		GROUND WTR (ft)	SITE DESCRIPTION	Bridge No. 67 and No.	68 Replacements on US 29/US 70 N		. 5th Avenue) GROUND WTR (ft)
BORING NO. Y2_1450	STATION 14+50 OFF	FFSET 11 ft RT ALIGNMENT -Y2-	0 HR. Dry	BORING NO. RPB_	1495 STATIO	ON 14+95 OFFSE	50 ft LT	ALIGNMENT -RPB- 0 HR. Dry
COLLAR ELEV. 734.7 ft	TOTAL DEPTH 10.0 ft NOR	ORTHING 758,336		COLLAR ELEV. 76	4.4 ft TOTAL	L DEPTH 39.9 ft NORTHI	NG 757,777	EASTING 1,621,494 24 HR. Dry
DRILL RIG/HAMMER EFF./DATE			MER TYPE Automatic		F./DATE TRI0055 CME-55		DRILL METHOD H.S. A	ugers HAMMER TYPE Automatic
DRILLER R. Toothman			I/A					SURFACE WATER DEPTH N/A
COLLAR ELEV. 734.7 ft DRILL RIG/HAMMER EFF./DATE DRILLER R. Toothman ELEV (ft) DRIVE (ELEV (ft) 0.5ft 0 735 734.2 0.5 5 731.0 3.7	TOTAL DEPTH 10.0 ft NOF TRI0055 CME-55 83% 05/09/2022 START DATE 05/04/23 COP COUNT BLOWS PER FOOT 5ft 0.5ft 0 25 50 75	ORTHING 758,336 EASTING 1,622,074 DRILL METHOD H.S. Augers HAMM OMP. DATE 05/04/23 SURFACE WATER DEPTH N SAMP. L O SOIL AND ROCK DES	MER TYPE Automatic J/A SCRIPTION DEPTH (ft) FACE 0.0 NKMENT 5 Foot) 2.9 lish Yellow, Fine 22 Mica	COLLAR ELEV. 76 DRILL RIG/HAMMER EF DRILLER R. Toothr ELEV DRIVE DEPTH	4.4 ft TOTAL F./DATE TRI0055 CME-55	L DEPTH 39.9 ft NORTHI 5 83% 05/09/2022 T DATE 04/28/23 COMP. I BLOWS PER FOOT	DRILL METHOD H.S. A DATE 04/28/23 SAMP. ON MOI G TO NO.	EASTING 1,621,494 Dry ugers HAMMER TYPE Automatic SURFACE WATER DEPTH N/A SOIL AND ROCK DESCRIPTION
VCDOT BORE DOUBLE BR0015_GEO_RDWY_GINT.GPJ NC_DOT.GDT 6/15/23 + + + + + + + + + + + + + + + + + + +								

BORE LOG					
WBS 67015.1.1 TIP BR-0015 COUNTY DAVIDSON	GEOLOGIST M. Foster		WBS 67015.1.1	TIP BR-0015 COUNTY DAVIDSO	
SITE DESCRIPTION Bridge No. 67 and No. 68 Replacements on US 29/US 70 NB & SB ov	er SR 1192 (W. 5th Avenue)	GROUND WTR (ft)	SITE DESCRIPTION Bridge No. 67	and No. 68 Replacements on US 29/US 70 NB	& SB over SR 1192 (W. 5th Avenue) GROUND WTR (ft)
BORING NO. RPD_1183 STATION 11+83 OFFSET 15 ft LT	ALIGNMENT -RPD-	0 HR. Dry	BORING NO. RPD-RT_1055	STATION 10+55 OFFSET	37 ft RT ALIGNMENT -RPD-RT- 0 HR. Dry
COLLAR ELEV. 734.7 ft TOTAL DEPTH 10.0 ft NORTHING 758,4	63 EASTING 1,622,368	24 HR. FIAD	COLLAR ELEV. 730.3 ft	TOTAL DEPTH 9.8 ft NORTHING	EASTING 1,622,369 24 HR. FIAD
DRILL RIG/HAMMER EFF./DATE TRI0055 CME-55 83% 05/09/2022 DRILL I	METHOD H.S. Augers HAMME	ER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE TRI0055	5 CME-55 83% 05/09/2022	DRILL METHOD H.S. Augers HAMMER TYPE Automatic
DRILLER R. Toothman START DATE 05/04/23 COMP. DATE 05/04/23					TE 05/01/23 SURFACE WATER DEPTH N/A
ELEV ELEV Service	SOIL AND ROCK DESC		ELEV (ft) DRIVE ELEV (ft) DEPTH BLOW COUNT (ft) 0.5ft	BLOWS PER FOOT	SAMP. L O SOIL AND ROCK DESCRIPTION
(ft) (ft) 0.5ft 0.5ft 0.5ft 0 25 50 75 100 NO.	MOI G ELEV. (ft)	DEPTH (ft)	(ft) (ft) (11) 0.5ft 0.5ft 0.8	5ft 0 25 50 75 100	NO. MOI G
735 734.7 0.0 2 2 3 \$\frac{1}{2} \frac{1}{2} \frac^2 \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \f	734.7 GROUND SURFA M RESIDUAL	ACE 0.0	735		
	Medium Stiff, Brown, Coarse SILT, Trace Mic	e to Fine Sandy			
730 731.2 7 3.5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	м		730 730.3 0.0	2	730.3 GROUND SURFACE 0.0 RESIDUAL
	<u> </u>			[*] ••••• • • • • • • • • • • • • • • •	727 0 Medium Stiff, Moderately Plastic, Reddish 24
725 726.2 726.2 726.2 726.2 725 725 725 725 725 725 725 725 725 72	 		727.0 3.3 1 2 3		Medium Stiff, Yellowish Brown, Fine Sandy
725 2 3 4 7	M	10.0 tion 724.7 ft in	725		SILT, Trace Mica
	RESIDUAL (Sandy		722.0 8.3	i:::: :::: :::: ::::	
			2 3 4	4 •7	M 720.5 9.8 Boring Terminated at Elevation 720.5 ft in
					RESIDUAL (Sandy SILT)
			±		
	-				
			±		
	-				
	<u> </u>				
	<u> </u>				
			‡		
ğ <u>‡</u>					
z <u> </u>	<u> </u>		<u> </u>	1	

WRS									ORE I	-00						
	6701	5.1.1			TI	P BR-0015	5	COUNTY	DAVIDS	NC			GEOLOGIST M. Foster			
SITE	DESCI	RIPTION	Brid	ge No.	67 and	No. 68 Rep	olacements	on US 29)/US 70 NB	& SB ov	er SR	1192 (W. 5th Avenue)	GROUND WTR (ft)		
BORI	ING NO	. DRW	1_105	50	STATION 10+50				· · · · · · · · · · · · · · · · · · ·						ALIGNMENT -DRW1-	0 HR. Dry
		. EV . 73			-	OTAL DEPT			NORTHIN	3 758,3	376		EASTING 1,622,037	24 HR. FIAD		
DRILL	RIG/HA	MMER EF	F./DAT	E TRI	0055 CI	ME-55 83% 0)5/09/2022			DRILL	METHO	D H.S	. Augers HAMM	ER TYPE Automatic		
		R. Tooth				TART DATE		3	COMP. DA				SURFACE WATER DEPTH N/			
ELEV (ft)	DRIVE ELEV		BLC	OW CO	UNT		BLOWS F	ER FOOT		SAMP		LO	SOIL AND ROCK DES			
(1.)	(ft)	(1.7)	0.5ft	0.5ft	0.5ft		25 5 1	60 I	75 100	NO.	/MO	I G	ELEV. (ft)	DEPTH (f		
740																
740	707.5	†											737.5 GROUND SURF	ACE 0.		
	_737.5	+ 0.0	3	7	5	12				SS-31	31%		RESIDUAL Stiff, Highly Plastic, Reddi			
735	734.0	3.5				 			 	-			Red, Silty CLA	Y		
		‡	3	5	6	11 -					M					
730	1	‡				<u> . j</u>]			730.7 Medium Stiff to Stiff, Red	dish Brown to		
	729.0	8.5	2	4	4						М		Yellowish Brown to Light Sandy SILT, Trace	Brown, Fine Mica		
725		‡											, ,			
125	724.0	13.5	2	4	5	- 				1	١		•			
		‡	_	4	5	9					M					
720	7400	‡											-			
	719.0	18.5	2	4	5	· · · · · ● 9 · ·					М		717.5 Boring Terminated at Eleva	20.		

SHEET 33

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION
DIVISION OF HIGHWAYS
GEOTECHNICAL ENGINEERING UNIT
SUBSURFACE INVESTIGATION
APPENDIX B
LABORATORY RESULTS

PROJECT REFERENCE NO. SHEET NO. 34

Prepared in the Office of:

KLEINFELDER

422 Gallimore Dairy Road, Suite B
Greensboro, North Carolina 27409
NC Engineering Firm License No. F-1312

LABORATORY SUMMARY SHEET FOR SOIL SAMPLES

WBS NO. (TIP NO.): 67015.1.1 (BR-0015)

PROJECT ID: 41620 COUNTY: DAVIDSON

DESCRIPTION: BRIDGE NO. 67 AND NO. 68 REPLACEMENTS ON US 29/US 70 NB & SB OVER SR 1192 (W. 5TH AVENUE)

									,	Atterberg Limit	ts				Gradatio	on Results			
Sample No.	Boring Number	Alignment	Station	Offset	Sample Depth (ft.)	Natural Moisture Content (%)	AASHTO Class.	N-Value (blows/ft)	L.L.	P.L.	P.I.	Retained #4 Sieve	Pass #10 Sieve	Pass #40 Sieve	Pass #200 Sieve	Coarse Sand (%)	Fine Sand (%)	Silt (%)	Clay (%)
SS-1	L_1250	-L-	12+50	95' LT	0.4 - 1.9	30.3	A-7-6	10	74	34	40	0.0	98.8	85.5	68.7	19.9	14.4	11.9	53.8
SS-2	L_1450	-L-	14+50	88' LT	3.5 - 5.0	24.1	A-7-6	17	54	28	26	0.0	99.0	84.0	64.0	21.3	20.7	25.1	33.0
SS-3	L_1650	-L-	16+50	87' LT	3.6 - 5.1	26.7	A-7-5	18	76	33	43	0.0	99.0	93.8	79.2	11.5	11.5	36.4	40.6
SS-4	L_2049	-L-	20+49	90' LT	3.5 - 5.0	27.3	A-7-5	18	68	32	36	0.0	100.0	97.2	77.8	8.5	16.5	42.4	32.6
SS-5	L_2049	-L-	20+49	90' LT	8.5 - 10.0	42.8	A-7-5	12	58	40	18	0.0	100.0	97.3	65.0	12.2	29.2	26.3	32.3
SS-6	L_2250	-L-	22+50	106' LT	0.0 - 1.5	16.2	A-7-6	17	48	21	27	2.0	96.0	89.9	66.3	17.4	20.1	20.0	42.5
SS-7	L_2250	-L-	22+50	106' LT	8.5 - 10.0	31.5	A-7-5	18	86	42	44	16.0	100.0	95.5	81.8	9.0	11.7	19.0	60.3
SS-8	L_2250	-L-	22+50	106' LT	18.5 - 20.0	42.6	A-7-5	6	62	50	12	0.0	100.0	96.0	68.5	7.2	32.9	27.6	32.2
SS-9	L_2460	-L-	24+60	90' RT	1.0 - 2.5	37.1	A-7-5	6	78	45	33	0.0	100.0	97.8	86.5	4.2	13.2	23.4	59.2
SS-10	L_2599	-L-	25+99	35' RT	8.5 - 10.0	39.4	A-7-5	8	65	34	31	0.0	100.0	99.4	80.3	2.4	25.4	34.6	37.7
SS-11	L_2650	-L-	26+50	90' RT	1.0 - 2.5	32.1	A-7-5	7	73	35	38	2.0	97.0	94.5	79.0	8.8	16.4	21.4	53.4
SS-12	L_2700	-L-	27+00	31' RT	3.7 - 5.2	32.5	A-7-5	6	52	30	22	0.0	100.0	90.1	64.0	16.3	25.7	25.6	32.5
SS-13	L_2750	-L-	27+50	90' RT	1.0 - 2.5	21.7	A-7-5	5	56	31	25	3.0	92.0	88.3	63.3	18.1	24.2	23.0	34.6
SS-14	L_2800	-L-	28+00	29' RT	13.5 - 15.0	29.7	A-7-5	7	58	34	24	0.0	100.0	96.0	72.4	9.4	23.7	24.9	41.9
SS-15	L_3400	-L-	34+00	81' LT	0.0 - 1.5	25.8	A-7-5	6	64	44	20	14.0	94.0	85.0	60.0	14.4	28.8	23.9	32.9
SS-16	L_3600	-L-	36+00	85' LT	3.5 - 5.0	32.2	A-7-5	13	72	35	37	0.0	100.0	97.3	86.0	5.9	10.6	61.7	97.3
S-17	L_3800	-L-	38+00	0' CL	0.5 - 1.0	24.7	A-7-6		55	25	30	0.0	99.2	92.5	69.9	14.0	19.8	13.2	53.0
S-18	L_4000	-L-	40+00	0' CL	1.0 - 1.5	33.2	A-7-5		65	40	25	0.0	99.1	94.7	73.2	10.1	20.9	23.9	45.1
S-19	L_4400	-L-	44+00	0' CL	1.0 - 1.5	30.4	A-7-6		56	29	27	4.0	96.0	91.0	60.0	11.3	32.6	19.6	36.5
S-20	L_4600	-L-	46+00	0' CL	1.0 - 2.0	26.8	A-7-5		51	33	18	0.0	99.0	96.0	51.0	13.0	41.3	13.6	32.1
SS-21	Y1_1042	-Y1-	10+42	62' RT	0.0 - 1.5	27.7	A-7-5	12	69	37	32	0.0	100.0	95.2	76.1	10.9	16.2	20.3	52.6
SS-22	Y1_1250	-Y1-	12+50	43' LT	1.0 - 2.5	31.1	A-7-5	11	60	36	24	0.0	99.0	93.3	73.9	11.2	20.5	24.9	43.4
SS-23	Y1_1512	-Y1-	15+12	46' RT	3.4 - 4.1	38.7	A-5	4	50	41	9	0.0	99.0	94.3	66.6	11.8	28.5	25.9	33.8
SS-24	Y1_1550	-Y1-	15+50	45' LT	3.5 - 5.0	28.6	A-7-5	9	59	35	24	0.0	98.0	94.3	76.3	10.3	15.9	25.7	48.1
SS-25	Y2_1250	-Y2-	12+50	20' RT	1.0 - 2.5	31.3	A-7-5	6	67	33	34	0.0	100.0	96.8	77.3	7.2	20.7	23.3	48.8
SS-26	RPB_1495	-RPB-	14+95	50' LT	8.4 - 9.9	34.2	A-7-5	12	66	49	17	0.0	100.0	97.3	75.2	7.8	21.9	27.7	42.6
SS-27	RPB_1706	-RPB-	17+06	53' LT	3.3 - 4.8	32.7	A-7-5	13	64	43	21	0.0	99.9	96.1	73.2	9.4	22.0	16.1	52.5
SS-28	RPB_1900	-RPB-	19+00	70' RT	1.0 - 2.5	37.8	A-7-5	6	74	46	28	0.0	100.0	99.3	76.1	2.3	28.4	25.3	44.0
SS-29	RPD-RT_1055	-RPD-RT-	10+55	37' RT	0.0 - 1.5	30.7	A-7-5	4	51	31	20	1.0	97.0	89.7	64.7	16.0	25.8	33.5	24.7
SS-30	LPB_1375	-LPB-	13+75	70' RT	1.1 - 2.6	39.5	A-7-5	6	62	37	25	0.0	100.0	98.4	85.5	3.6	17.6	36.7	42.1
SS-31	DRW1_1050	-DRW1-	10+50	15' RT	0.0 - 1.5	30.7	A-7-5	12	62	34	28	0.0	99.4	92.2	72.4	13.8	17.3	21.8	47.1
CBR-1	L_1450	-L-	14+50	88' LT	8.5 - 18.5	27.0	A-7-5		60	44	16	0.0	100.0	93.1	56.6	14.7	35.3	23.4	26.6
CBR-2	L_1850	-L-	18+50	89' LT	0.0 - 10.0	30.6	A-7-5		60	35	25	0.0	100.0	95.2	75.9	9.9	19.4	26.1	44.7
CBR-3	L_4200	-L-	42+00	0' CL	0.0 - 2.5	37.3	A-7-5		73	37	36	8.0	91.0	96.6	78.4	7.2	18.6	28.9	45.2

	Mic	hell	le S	tad	lel,	P.E
--	-----	------	------	-----	------	-----

Lab Manager, NCDOT Certification No.: 111-02-1203

Lab Technician, NCDOT Certification No.: 111-03-1203

Clifford Blalock

Matt Johnson

Victoria Siebert

Lab Technician, NCDOT Certification No.: 111-01-1203 Lab Technician, NCDOT Certification No.: 109-02-1003

Laboratory Test Report

North Carolina Dept. of Transportation

Report No.: 23-CLT-00649 Rev. 1 Issued: 6/9/2023

20235702.001A

Sampled by: **Mayson Foster** Field ID: L 1450, CBR-1

NCDOT BR-0015 Roadway

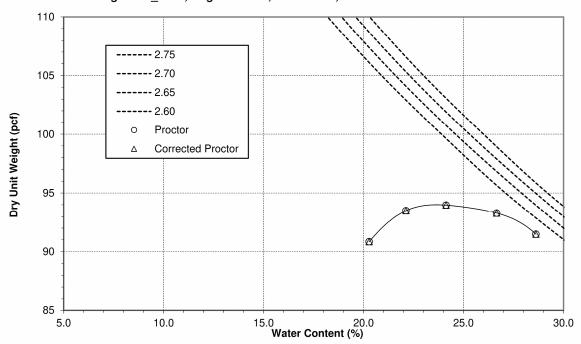
Material Description:

Dan Kubinski

Date: 5/8/2023

02-000L - Lab

Submitted by:


Date: 5/15/2023

Tested on 5/24/2023

by C. Blalock **Brown Sandy Silt (A-7-5)**

Location:

Boring No. L_1450, Alignment -L-, STA 14+50, 88' LT

Test Method: AASHTO T99 A	Uncorrected	Corrected		
Maximum Dry Unit Weight (pcf)	94.0	na		
Optimum Water Content (%)	23.6	na		
Oversize Fraction, retained on 3/4 (%)				
Bulk Specific Gravity of Oversize Fraction		na		

Rammer Type: Manual Specimen Preparation: Moist

Remarks:

AASHTO T-100, Soil Specific Gravity @ 20°C: 2.747

Reviewed on 6/9/2023 by Michelle Stadel,

Page 1 of 4

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder

Kleinfelder Charlotte Lab | 9009 Perimeter Woods Drive, Suite E | Charlotte, NC 28216 | (704) 598-1049

KLEINFELDER

SHEET 36

Laboratory Test Report

North Carolina Dept. of Transportation

Report No.:

Submitted by:

23-CLT-00649 Rev. 1

Issued: 6/9/2023 Field ID: L 1450, CBR-1

20235702.001A **NCDOT BR-0015 Roadway**

02-000L - Lab

Sampled by:

Mayson Foster Dan Kubinski

Date: 5/8/2023 Date: 5/15/2023

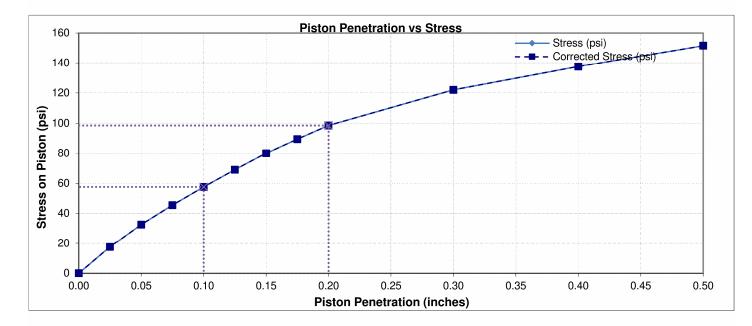
Sample Source: Boring No. L 1450, Alignment -L-, STA 14+50, 88' LT

Sample ID: CBR-1

Sample Description: Brown Sandy Silt (A-7-5)

Material Used:

Surcharge Weight: 10 lbs


Date Tested: 5/30/2023 C. Blalock Tested By:

Condition of Sample: Soaked

Time Soaked: 96 hrs

AASHTO T193 - Standard Test Method for The California Bearing Ratio (CBR)

Dry Unit Wgt Before Soaking (pcf):	90.8	Compaction Method:
Water Content Before Soaking (%):	21.2	Manual
Dry Unit Wgt After Soaking (pcf):	101.1	Max. Dry Unit Weight:
Water Content After Soak, Top in. (%):	30.3	94.0 pcf
Swell (%):	5.65	Optimum Water Content:
CBR (Corrected CBR) @ 0.1 in. Penetration:	5.8 (5.8)	23.6 %
CBR (Corrected CBR) @ 0.2 in. Penetration:	6.6 (6.6)	

Remarks:

Reviewed on 6/9/2023 by Michelle Stadel,

Michelle Mr Stadel

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder

Laboratory Test Report

North Carolina Dept. of Transportation

NCDOT BR-0015 Roadway

Report No.: 23-CLT-00650 Rev. 1 6/9/2023

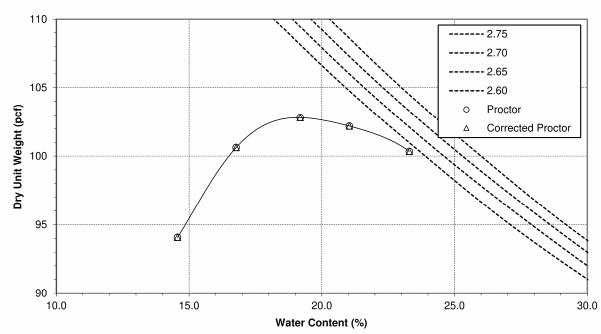
20235702.001A

Mayson Foster Sampled by:

Field ID: L 1850, CBR-2

Submitted by:

Date: 5/9/2023


Issued:

02-000L - Lab

Dan Kubinski Date: 5/15/2023

by C. Blalock Tested on 5/24/2023

Material Description: Reddish Yellow Elastic Silt with Sand (A-7-5) Boring No. L_1850, -L-, STA 18+50, 89' LT Location:

Test Method: AASHTO T99 A	Uncorrected	Corrected	
Maximum Dry Unit Weight (pcf)	102.8	na	
Optimum Water Content (%)	19.1	na	
Oversize Fraction, retained on 3/4 (%)			
Bulk Specific Gravity of Oversize Fraction		na	

Rammer Type: Manual Specimen Preparation: Moist

Remarks:

AASHTO T-100, Soil Specific Gravity at 20°C: 2.678

Reviewed on 6/9/2023 by Michelle Stadel,

Page 1 of 2

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder

KLEINFELDER

SHEET 37

Laboratory Test Report

North Carolina Dept. of Transportation Report No.:

20235702.001A

Sample Source:

Material Used:

Sample Description:

Sample ID:

NCDOT BR-0015 Roadway Sampled by: **Mayson Foster** 02-000L - Lab

Boring No. L_1850, -L-, STA 18+50, 89' LT

Reddish Yellow Elastic Silt with Sand (A-7-5)

23-CLT-00650 Rev. 1

Field ID: L 1850, CBR-2 Date: 5/9/2023

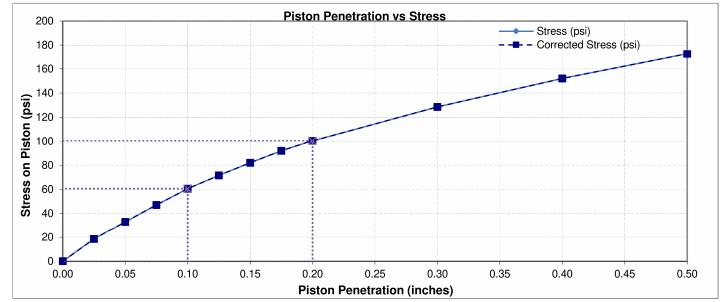
Submitted by: Dan Kubinski

Date: 5/15/2023

Issued: 6/9/2023

Date Tested: 5/30/2023 C. Blalock Tested By:

Time Soaked:


Condition of Sample: Soaked 96 hrs

Surcharge Weight: 10 lbs

CBR-2

AASHTO T-193 - Standard Test Method for The California Bearing Ratio

Dry Unit Wgt Before Soaking (pcf):	100.6	Compaction Method:
Water Content Before Soaking (%):	17.0	Manual
Dry Unit Wgt After Soaking (pcf):	106.1	Max. Dry Unit Weight:
Water Content After Soak, Top in. (%):	27.1	102.8 pcf
Swell (%):	4.1	Optimum Water Content:
CBR (Corrected CBR) @ 0.1 in. Penetration:	6.1 (6.1)	19.1 %
CBR (Corrected CBR) @ 0.2 in. Penetration:	6.7 (6.7)	

Remarks:

Reviewed on 6/9/2023 by Michelle Stadel,

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder

