

August 4, 2023

MEMORANDUM TO: Clark S. Morrison, PhD, PE

State Pavement Design Engineer

North Carolina Department of Transportation

FROM: Joshua D. Fregosi, PE

Program Manager Kleinfelder, Inc

STATE PROJECT: 67015.1.1 (BR-0015)

COUNTY: Davidson

DESCRIPTION: Bridge No. 67 and No. 68 Replacements on US 29/US 70 NB &

SB over SR 1192 (W. 5th Avenue)

SUBJECT: Pavement and Subgrade Investigation Report

Kleinfelder, Inc. has completed the evaluation of the pavement and subgrade investigation for this project and presents the following.

This project consists of the widening of US 29/US 70 (-L-) and replacement of Bridge No. 67 and No. 68 over SR 1192 (-Y1-). At the project location, US 29/US 70 is a four-lane highway consisting of two lanes in the northbound and southbound direction with a grass median dividing the highway. Additionally, the project consists of the widening of SR 1192 (-Y1-), Forest Rose Drive (-DRW1-), and US 29/US 70 northbound exit ramps (-RPD-,-RPD_RT-) to National Boulevard as well as a realignment of Murphy Drive (-Y2-), onramp to US 29/US70 southbound (-RPB-), and US 29/US 70 southbound exit ramp (-LPB-) to SR 1192.

The soils encountered beneath the existing roadway consisted of both roadway embankment and residual soils. Predominant soil types encountered consisted of silty clays (A-7) with lesser amounts of sandy silts (A-4).

Anticipated borrow will likely consist of soil types listed above that meet the Piedmont and Western Area criteria for Acceptance of Borrow Material, Table 1018-1 of the 2024 Standard Specification.

The existing pavement was observed to be in good condition on US 29/US 70 (-L-). Surface pavement distress was not observed on US 29/US 70. The existing pavement was observed to be in worse condition on West 5th Avenue (-Y1-) and Murphy Drive (-Y2-). Surface pavement distress on the West 5th Avenue is primarily characterized by low severity transverse and longitudinal cracking, moderate to high severity fatigue cracking, and rutting (with and without spalling). Transverse, longitudinal, and fatigue crack widths ranged from 3 to 10 mm. Rutting was encountered ranging from 3 to 6 mm deep. Surface pavement distress on Murphy Drive is primarily characterized by moderate to high severity fatigue cracking with spalling. Fatigue crack widths ranged from 6 to 13 mm. Rutting was encountered ranging from 3 to 6 mm deep.

The length of the mainline (US 29/US 70, -L-) is approximately 0.71 mile.

Areas of Special Geotechnical Interest

1. Highly Plastic Soils Encountered Beneath the Existing Roadway and Grass Median Highly plastic soils (PI > 25) were encountered at the following locations based on laboratory test results on the soils:

LINE	STATION AND OFFSET	PI
-L-	18+30 WB ISS	48
-L-	19+60 EB ISS	34
-L-	25+90 WB ISS	35
-L-	31+50 WB OSS	43
-L-	32+75 EB DECEL LN	33
-L-	38+70 WB ISS	39
-L-	42+80 EB ISL	37
-Y1-	15+70 RT LN	35
-Y2-	16+20 LT LN	34

2. Groundwater:

Groundwater was not observed during this investigation.


3. Samples Classified as Wet

The subgrade soils at the following locations were classified as wet based on the visual inspection and laboratory test results on the soils:

LINE	STATION AND OFFSET	MOISTURE (%)
-L-	31+50 WB OSS	35.0
-L-	38+70 WB ISS	25.9
-Y1-	15+70 RT LN	24.8
-Y2-	16+20 LT LN	32.8

Prepared by, KLEINFELDER, INC. NC Firm License No. F-1312

AB2F7FFB796A411... Daniel H. Kubinski, PE

North Carolina License No. 046042

Joshua D. Fregosi, PE Program Manager

Document Not Considered Final Unless All Signatures Are Completed

DHK/JDF:jrs

Pavement and Subgrade Investigation ATTACHMENT:

Pavement Core Evaluation

15
-00
BR-
.••
CE
EN
ER
EFI

CONTENTS

DESCRIPTION TITLE SHEET

PLAN SHEETS

LEGEND, ABBREVIATIONS

ROADWAY TITLE SHEET

LABORATORY TEST RESULTS

PAVEMENT INVESTIGATION DATA SHEET

KESSLER DUAL MASS DCP DATA SHEETS PAVEMENT CORE PHOTOGRAPHS

SHEET NO.

2 - 2A

4 - 6

8 - 17

18 - 19

20 - 24

7015

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

ROADWAY SUBSURFACE INVESTIGATION

COUNTY DAVIDSON

PROJECT DESCRIPTION BRIDGE NO. 67 AND NO. 68 REPLACEMENTS ON US 29/US 70 NB & SB OVER **SR** 1192 (W. 5TH AVENUE)

PAVEMENT AND SUBGRADE INVESTIGATION

STATE PROJECT REFERENCE NO. NO. BR-0015

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FILED BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT (9)9) 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

CENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MICHORY WAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MICHORY DESCRIPTIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MICHORY DESCRIPTIONS AND AS MICH. AS OTHER POONLY WATER EACTORS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

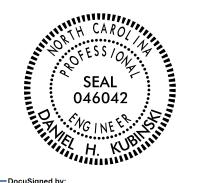
THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT, THE DEPARTMENT DOES NOT WARRANT OR QUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPHION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO PERFORM INDEPENDENT SUBSURFACE INVESTIGATIONS AND MAKE INTERPRETATIONS AS NECESSARY TO CONFIRM CONDITIONS ENCOUNTERED ON THE PROJECT, THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

NOTES:

1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

D. KUBINSKI M. FOSTER TRIGON EXPLORATION INVESTIGATED BY _KLEINFELDER, INC DRAWN BY __D. KUBINSKI CHECKED BY J. FREGOSI SUBMITTED BY KLEINFELDER, INC


PERSONNEL

Prepared in the Office of:

KLEINFELDER 422 Gallimore Dairy Road, Suite B

DATE AUGUST 2023

Greensboro, North Carolina 27409 NC Engineering Firm License No. F-1312

Daniel H. Kulinskis/30/2023

-AB2F7FERZRAA11AF

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

PROJECT REFERENCE NO. SHEET NO.

BR-0015

2

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM DISSO). SOIL CLASSIFICATION	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD VIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOUL VIELD SPT REFUSAL. SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN Ø.1 FOOT PER 60	<u>ALLUVIUM (ALLUV.)</u> - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. <u>AQUIFER</u> - A WATER BEARING FORMATION OR STRATA.
IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	BLOWS IN NON-COASTAL PLAIN MATERIAL. THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK.	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS: WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES >	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED. MINERALOGICAL COMPOSITION	ROCK (WR) 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) ORGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	CRYSTALLINE ROCK (CR) FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED, ROCK TYPE INCLUDES GRANITE,	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 CLASS A-1 A-1 A-2 A-4, A-5 A-6 A-7	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	NON-COXSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
00000000000000000000000000000000000000	COMPRESSIBILITY SLIGHTLY COMPRESSIBLE LL < 31	ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
SYMBOL 000000000000000000000000000000000000	MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SEDIMENTARY ROCK SEDIME	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
*10 50 MX SILT- MUCK, 440 30 MX 50 MX 51 MN SOILS CRUC PEAT	PERCENTAGE OF MATERIAL	(CP) SHELL BEDS, ETC. WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
*200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN 36 MN 36 MN	ORGANIC MATERIAL GRANULAR SILT - CLAY SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER	ROCKS OR CUTS MASSIVE ROCK. DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
MATERIAL PASSING *40 LL	TRACE OF ORGANIC MATTER 2 - 3%. 3 - 5%. TRACE 1 - 10%. LITTLE ORGANIC MATTER 3 - 5%. 5 - 12%. LITTLE 10 - 20%. MODERATELY ORGANIC 5 - 10%. 12 - 20%. SOME 20 - 35%.	HAMMER IF CRYSTALLINE. VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, (V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF	HORIZONTAL. DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE
PI 6 MX NP 10 MX 10 MX 11 MN 11 MN 10 MX 10 MX 11 MN 11 MN MODERATE ORGANIC	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE GROUND WATER	OF A CRYSTALLINE NATURE.	LINE OF DIP, MEASURED CLOCKWISE FROM NORTH. FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX ANOUNTS OF SOILS	WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO (SLI.) I INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELOSPAR CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE. FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
MATERIALS SAND SANU GHAVEL AND SANU SUILS SUILS	▼ STATIC WATER LEVEL AFTER <u>24</u> HOURS ▼ PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.
GEN.RATING AS SUBGRADE EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE OF THE POOR POOR POOR UNSUITABLE OF THE POOR POOR POOR POOR POOR POOR POOR POO	E SPRING OR SEEP	DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM,
PI 0F A-7-5 SUBGROUP IS ≤ LL - 30 ; PI 0F A-7-6 SUBGROUP IS > LL - 30 CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
COMPACTNESS OR RANGE OF STANDARD RANGE OF UNCONFINED	TT 25/025	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH (MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES 'CLUNK' SOUND WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE COMPRESSIVE STRENGTH (N-VALUE) COMPRESSIVE STRENGTH (N-VALUE) (TONS/FT ²)	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION WITH SOIL DESCRIPTION OF ROCK STRUCTURES	IF TESTED, WOULD YIELD SPT REFUSAL SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.
GENERALLY VERY LOOSE < 4 CONTROL CONT	SOIL SYMBOL SOIL SYMBOL SPI MIT TEST BORING SLOPE INDICATOR INSTALLATION	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
MATERIAL MEDIUM DENSE 10 TO 30 N/A	ARTIFICIAL FILL (AF) OTHER ANGER POPING CONE PENETROMETER	IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
(NON-COHESIVE) DENSE 30 TO 50 VERY DENSE > 50	THAN ROADWAY EMBANKMENT TEST	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
VERY SOFT < 2 < 0.25 GENERALLY SOFT 2 TO 4 0.25 TO 0.5	— INFERRED SOIL BOUNDARY — CORE BORING SOUNDING ROD	(V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <i>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</i>	OF AN INTERVENING IMPERVIOUS STRATUM. RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0 MATERIAL STIFF 8 TO 15 1 TO 2	INFERRED ROCK LINE MONITORING WELL TEST BORING WITH CORE	COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS	ROCK QUALITY DESIGNATION (RQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
(COHESIVE) VERY STIFF 15 TO 30 2 TO 4 HARD > 30 > 4	TTTTT ALLUVIAL SOIL BOUNDARY A PIEZOMETER INSTALLATION SPT N-VALUE	ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PAREN ROCK.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO
BOULDER CORRIE GRAVEL COARSE FINE SILT CLAY	SHALLOW UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
(BLDR.) (COB.) (GR.) SANU SANU (SL.) (CL.)	ABBREVIATIONS	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS.	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.05 0.005 SIZE IN. 12 3	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB, HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A STANDARD PRODUCE PROD
SOIL MOISTURE - CORRELATION OF TERMS	CL CLAY MOD MODERATELY γ - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC $\gamma_{ m d}$ - DRY UNIT WEIGHT	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK.	WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION	CSE COARSE ORG ORGANIC DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY	DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	PIECES CAN BE BROKEN BY FINGER PRESSURE.	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
(SAT.) FROM BELOW THE GROUND WATER TABLE	F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
PLASTIC SEMISOLID; REQUIRES DRYING TO	FRAC FRACTURED, FRACTURES TOR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL FRAGS FRAGMENTS W - MOISTURE CONTENT CBR - CALIFORNIA BEARING	FINGERNAIL. FRACTURE SPACING BEDDING	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
(PI) PLASTIC LIMIT ATTAIN OPTIMUM MOISTURE	HI, - HIGHLY V - VERY RATIO	TERM SPACING TERM THICKNESS	BENCH MARK: N/A
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	EQUIPMENT USED ON SUBJECT PROJECT	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET	ELEVATION: N/A FEET
SL SHRINKAGE LIMIT	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE: □ CME-45C □ CLAY BITS □ AUTOMATIC □ MANUAL	MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET	NOTES:
- DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE	6' CONTINUOUS ELIGHT AUGER	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED < 0.008 FEET	PAVEMENT CORE WITH KESSLER DUAL MASS DCP TEST
PLASTICITY	X CME-55	INDURATION	HAND AUGER WITH KESSLER DUAL MASS DCP TEST
PLASTICITY INDEX (PI) DRY STRENGTH	CME-550 HARD FACED FINGER BITS	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	- PAVEMENT CORE
NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC 6-15 SLIGHT	VANE SHEAR TEST UNGCARBIDE INSERTS	FRIABLE RUBBING WITH FINGER FREES NUMEROUS GRAINS; GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
MODERATELY PLASTIC 16-25 MEDIUM HIGHLY PLASTIC 26 OR MORE HIGH	CASING W/ ADVANCER POST HOLE DIGGER PORTABLE HOIST TRICONE STEEL TEETH	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR	TOTAL TOTAL AND AUGER	CRAINS ARE DISCIONET TO SERAPATE WITH STEEL PROPE.	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).		DIFFICULT TO BREAK WITH HAMMER.	
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	X KESSLER DUAL MASS DCP	EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE; SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-

PROJECT REFERENCE NO.	SHEET NO.
BR-0015	2A

ABBREVIATIONS

N/A - NOT APPLICABLE

NM - NOT MEASURED

KDCP - KESSLER DUAL MASS DCP

PS - PAVED SHOULDER

WB - WESTBOUND

EB - EASTBOUND

LT - LEFT

RT - RIGHT

OSS - OUTSIDE SHOULDER

ISS - INSIDE SHOULDER

OSL - OUTSIDE LANE

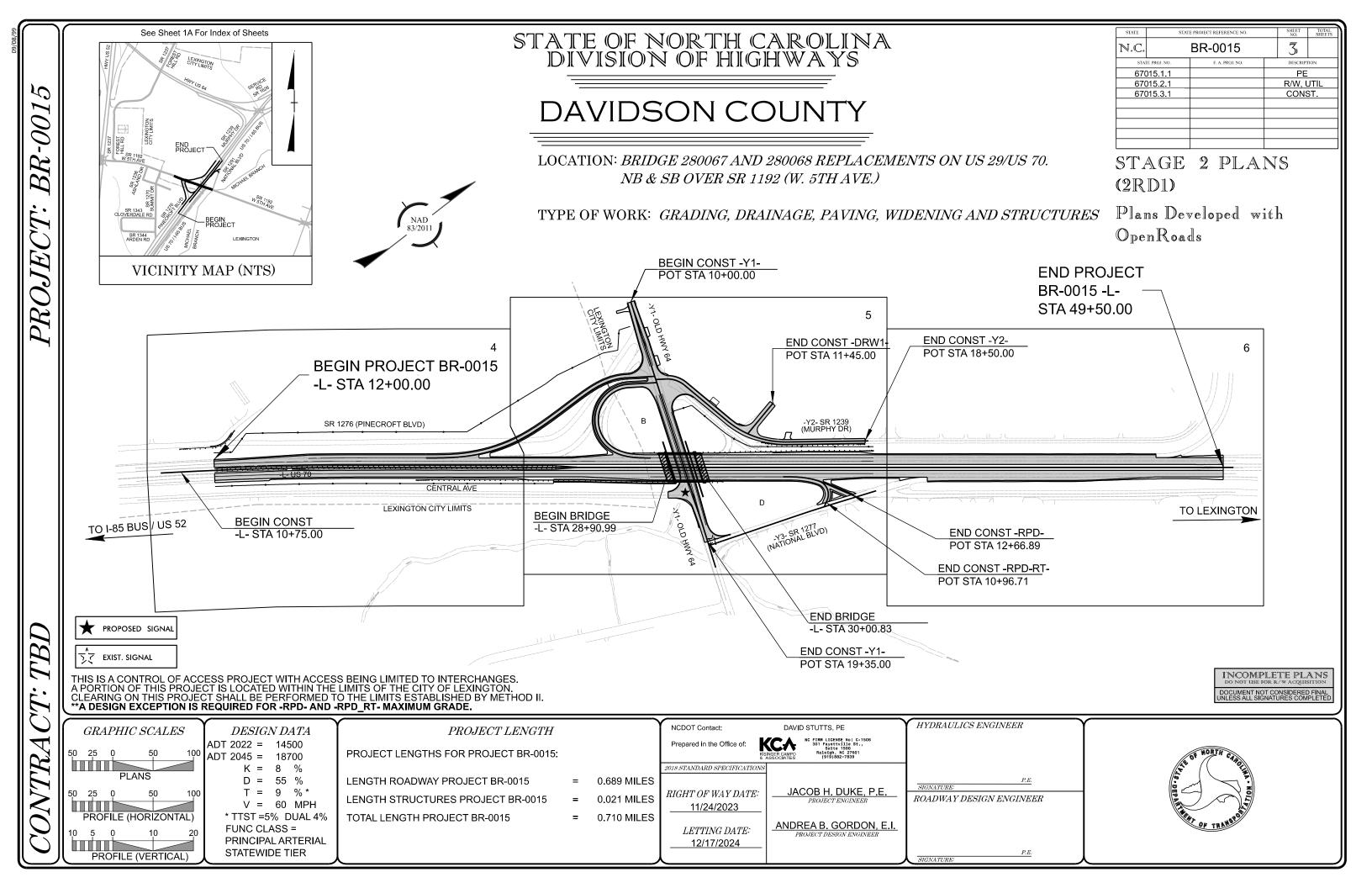
DECEL - DECELERATION

ACCEL - ACCELERATION

LN - LANE

WL - WHITE LINE

YL - YELLOW LINE


AG - AT GRADE

F - FILL

C - CUT

CR - CROWN

SU - SUPERELEVATION

BR-0015 1" = 100' | SHEET 4

BR-0015 1" = 100' | SHEET 5

PAVEMENT INVESTIGATION DATA SHEET

TIP (WBS): BR-0015 (67015.1.1)

County: Davidson

Project: Bridge No. 67 and No. 68 Replacements on US 29/US 70 NB & SB over SR 1192 (W. 5th Avenue)

Route: I-85 Business, West 5th Avenue, Murphy Drive

Date: May 2023
Notes By: Dan Kubinski

		Widt	h (ft)	(ft)			Paver	ment Sec	ction Thi	ickness	(in)			Subgrade						
Position (Sta.,Lane,Shldr.)	Cut/Fill	Lane(s)	Shoulder	Offset Distance	Crown or Superelevation	Gross to Top of Soil	Asphalt	Concrete	ABC Stone	PADL	Soil Stabilization		Moisture Sample No.	Description	AASHTO Classification	Ξ	Probe Depth (ft)	Asphalt Notes, Severity and Cracking Type	Northing	Easting
L_1830_WB_ISS	С	12.0	1.0 PS	0.0 YL		8.75	6.75	0.00	2.00	0.00	0.00	0.00	S-1	RES: Moist, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7-5		5.0	No pavement distress observed	757,186	1,621,293
L_1830_WB_OSL	С	12.0	4.5 PS	3.0 WL	CR	21.00	7.25	9.25	4.50	0.00	0.00	0.00	N/A	RES: Moist, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7	N/A	5.0	No pavement distress observed	757,198	1,621,278
L_1830_WB_OSS	С	12.0	4.5 PS	1.0 WL		8.50	8.50	0.00	0.00	0.00	0.00	0.00	N/A	RES: Moist, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7	N/A	5.0	No pavement distress observed	757,201	1,621,274
L_1960_EB_ISS	С	12.0	1.5 PS	0.5 YL		7.25	7.25	0.00	0.00	0.00	0.00	0.00	S-2	RES: Moist, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7-5	30.1	5.0	No pavement distress observed	757,274	1,621,392
L_1960_EB_OSL	С	12.0	4.0 PS	3.0 WL	CR	22.25	8.25	9.25	4.75	0.00	0.00	0.00	N/A	RES: Moist, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7	N/A	5.0	No pavement distress observed	757,260	1,621,409
L_1960_EB_OSS	С	12.0	4.0 PS	2.0 WL		22.00	10.25	0.00	11.75	0.00	0.00	0.00	N/A	RES: Moist, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7	N/A	5.0	No pavement distress observed	757,257	1,621,413
L_2590_WB_ISS	AG	12.0	1.0 PS	0.0 YL	CR	8.50	8.50	0.00	0.00	0.00	0.00	0.00	S-3	RES: Moist, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7-5	28.4	5.0	No pavement distress observed	757,786	1,621,759
L_3150_WB_OSS	AG	12.0	7.0 PS	4.0 WL	CR	9.25	9.25	0.00	0.00	0.00	0.00	0.00	S-4	RES: Moist, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7-5	35.0	5.0	No pavement distress observed	758,245	1,622,081
L_3275_EB_DECEL_LN	AG	12.0	3.5 PS	2.5 WL	CR	17.75	10.75	0.00	7.00	0.00	0.00	0.00	S-5	RES: Moist, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7-5	26.7	5.0	No pavement distress observed	758,292	1,622,226
L_3870_WB_ISS	С	12.0	1.0 PS	0.5 YL		7.00	7.00	0.00	0.00	0.00	0.00	0.00	S-6	RES: Wet, Reddish Brown, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7-6	25.9	5.0	No pavement distress observed	758,798	1,622,544
L_3870_WB_DECEL_LN	С	12.0	2.0 PS	6.5 WL	CR	18.00	11.00	0.00	7.00	0.00	0.00	0.00	N/A	RES: Wet, Reddish Brown, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7	N/A	5.0	No pavement distress observed	758,817	1,622,519
L_3870_WB_OSS	С	12.0	2.0 PS	1.5 WL		7.50	7.50	0.00	0.00	0.00	0.00	0.00	N/A	RES: Wet, Reddish Brown, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7	N/A	5.0	No pavement distress observed	758,821	1,622,514
L_4000^	С	N/A	N/A	N/A	N/A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	S-18* N/A	RES: Moist, Olive Gray and Reddish Brown, Moderately Plastic, Silty CLAY (0.0 - 2.2'), Reddish Brown, Slightly Plastic to Non Plastic, Fine Sandy SILT, Trace Mica (2.2 - 6.8')	A-7-5 A-4	33.2 N/A	6.8	Hand auger boring performed for roadway investigation with KDCP test in center grass median	758,893	1,622,633
L_4280_EB_ISL	С	12.0	1.0 PS	1.0' YL		23.00	8.50	9.50	5.00	0.00	0.00	0.00	S-7	RES: Moist, Reddish Brown, Highly Plastic, Silty CLAY, Trace Mica (0.0 - 5.0')	A-7-5	38.4	5.0	No pavement distress observed	759,107	1,622,815
L_4280_EB_ACCEL_LN	С	12.0	4.0 PS	4.5 WL	CR	18.00	9.50	0.00	8.50	0.00	0.00	0.00	N/A	RES: Moist, Reddish Brown, Highly Plastic, Silty CLAY, Trace Mica (0.0 - 5.0')	A-7	N/A	5.0	No pavement distress observed	759,088	1,622,839
L_4280_EB_OSS	С	12.0	4.0 PS	2.0 WL		7.00	7.00	0.00	0.00	0.00	0.00	0.00	N/A	RES: Moist, Reddish Brown, Highly Plastic, Silty CLAY, Trace Mica (0.0 - 5.0')	A-7	N/A	5.0	No pavement distress observed	759,084	1,622,844
L_4600^	С	N/A	N/A	N/A	N/A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	S-20* N/A	RES: Moist, Reddish Brown, Moderately Plastic, Silty CLAY, Trace Mica (0.0 - 3.0'), Brown, Non Plastic, Coarse to Fine Sandy SILT, Trace Mica (3.0 - 6.5')	A-7-5 A-4	26.8	6.5	Hand auger boring performed for roadway investigation with KDCP test in center grass median	759,367	1,623,000
L_4800^	С	N/A	N/A	N/A	N/A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	N/A N/A	RES: Moist, Yellowish Brown and Reddish Brown, Moderately Plastic, Silty CLAY (0.0 - 1.0'), Brown, Non Plastic, Coarse to Fine Sandy SILT, Trace Mica (1.0 - 6.7')	A-7 A-4	N/A N/A	6.7	Hand auger boring performed for roadway investigation with KDCP test in center grass median	759,525	1,623,123
Y1_1570_LT_PS	F	12.5	4.5 PS	1.0 WL		5.00	5.00	0.00	NM	0.00	0.00	0.00	N/A	No auger probe + KDCP test performed; Utility Conflicts	N/A	N/A	N/A	No pavement distress observed	758,098	1,621,920
Y1_1570_LT_LN	F	12.5	4.5 PS	2.5 WL	CR	6.00	6.00	0.00	NM	0.00	0.00	0.00	N/A	No auger probe + KDCP test performed; Utility Conflicts	N/A	N/A	N/A	Low transverse and longitudinal cracking (3 - 6 mm crack width); Moderate to high fatigue cracking (3 - 6 mm crack width); Rutting (3 - 6 mm depth)	758,095	1,621,919
Y1_1570_RT_LN	F	12.5	4.0 PS	3.0 WL	OI.	7.00	7.00	0.00	0.00	0.00	0.00	0.00	S-8	RE: Wet, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7-6	24.8	5.0	Low transverse and longitudinal cracking (3 - 6 mm crack width); Moderate to high fatigue cracking with spalling (3 - 10 mm crack width); Rutting (3 mm depth)	758,077	1,621,912
Y1_1570_RT_PS	F	12.5	4.0 PS	1.0 WL		4.00	4.00	0.00	NM	0.00	0.00	0.00	N/A	No auger probe + KDCP test performed; Utility Conflicts	N/A	N/A	N/A	No pavement distress observed	758,073	1,621,911
Y2_1620_LT_LN Note(s):	С	9.0	0.5 PS	2.0 WL	CR	10.00	3.00	0.00	7.00	0.00	0.00	0.00	S-9	RES: Wet, Red, Highly Plastic, Silty CLAY (0.0 - 5.0')	A-7-5	32.8	5.0	Moderate to high fatigue cracking with spalling (6 - 13 mm crack width); Rutting (4 mm depth)	758,472	1,622,178

				PROJECT	T NUMBER			TIP				R	OUTE		
DYNAMIC	CONE PEN	NETROME	FER DATA	6701	15.1.1			BR-001	15			US 2	29/US 7	70	
	AND IN-S	SITU CBR		COL	JNTY		FIELD	PROFES	SSIONA	AL .		C	CREW		
				Davi	idson	Ш		Dan Kubii	nski			Trigon	Explor	ation	
TES	ST LOCATION		ION		RFORMED										
		_WB_ISS			3/23										
DATUM	CUT/FILL		THING		TING				CORR	ELATED C	BR V	ALUES			
T/ABC	С		',186		1,293										
			ATION IN CE												
1.6	79.5	0.0	0.0	0.0	0.0	4									
2.7	81.0	0.0	0.0	0.0	0.0	4	0.0	2(0.0	40.0	60.	.0	80.0		100.0
4.3	82.7	0.0	0.0	0.0	0.0	4	٦		\prod				\Box		刊
6.2	84.5	0.0	0.0	0.0	0.0	4					Щ	B/A	BC ST	ONE	
8.7	86.2	0.0	0.0	0.0	0.0	4									\Box
10.9	88.0	0.0	0.0	0.0	0.0	4	4 📙		$\perp \downarrow \perp$	$\sqcup \sqcup \sqcup$	$\bot \bot$		Щ'	Щ	Щ
13.4	89.8	0.0	0.0	0.0	0.0	4	1	/							
16.0	91.6	0.0	0.0	0.0	0.0	4									
18.3	93.6	0.0	0.0	0.0	0.0	4									
19.6	95.5	0.0	0.0	0.0	0.0	4	8 –	+++	>	+	+	\bot		++	4
20.4	97.4	0.0	0.0	0.0	0.0										
21.3	99.5	0.0	0.0	0.0	0.0	4					\Rightarrow				
22.2	101.6	0.0	0.0	0.0	0.0	4				نلها ۱ ا	+	+			
23.1	103.6	0.0	0.0	0.0	0.0		12 —	+++	++		+++	+	++	++	+
23.8	105.5	0.0	0.0	0.0	0.0				$ \downarrow $	++					
24.5	107.7	0.0	0.0	0.0	0.0	4			$ \mathcal{U} $						
25.1	109.8	0.0	0.0	0.0	0.0	1			1						
25.8	111.8	0.0	0.0	0.0	0.0	1	16 —	 	++	 	++	++	++	++	+
26.5	113.9	0.0	0.0	0.0	0.0	4									
27.0	116.0	0.0	0.0	0.0	0.0	1									
27.7	118.0	0.0	0.0	0.0	0.0	1		$ \cdot \cdot \chi$							
28.4	119.6	0.0	0.0	0.0	0.0	4	20 —	+++	++	 	+	+	$\dashv \uparrow$	++	\forall
29.2	121.7	0.0	0.0	0.0	0.0	4			>						
29.9	123.7	0.0	0.0	0.0	0.0	1]						
30.7	125.3	0.0	0.0	0.0	0.0	୍ଷ 🌡	24	$ \mathcal{A} $							
31.5	126.7	0.0	0.0	0.0	0.0	를	24		\Box						\Box
32.6	0.0	0.0	0.0	0.0	0.0	<u>۽</u> 1	.	$ \cdot $ $ \cdot $	1						
33.9	0.0	0.0	0.0	0.0	0.0	ığ 🌡			 						
35.3	0.0	0.0	0.0	0.0	0.0	į	28		Щ		Щ	Щ	4	Щ	Щ
37.1	0.0	0.0	0.0	0.0	0.0	1 §			\overline{H}		7 [1	<u> </u>		1
39.6	0.0	0.0	0.0	0.0	0.0	Depth Below Datum (Inches)			$V \cdot $						
42.5	0.0	0.0	0.0	0.0	0.0	를	. []								
45.1	0.0	0.0	0.0	0.0	0.0	-	32 —	+++	$\downarrow \downarrow \downarrow$	+++	++	$+\!+\!+$	++	++	4
47.3	0.0	0.0	0.0	0.0	0.0	4		$ \cdot \cdot $	1						
49.3	0.0	0.0	0.0	0.0	0.0	4		$ \cdot \cdot \cdot\rangle$							
51.1	0.0	0.0	0.0	0.0	0.0	4									
52.9	0.0	0.0	0.0	0.0	0.0	4	36 —	+	++	+++	+	$\dashv \dashv$	++	++	+
54.4	0.0	0.0	0.0	0.0	0.0	4		(
57.8	0.0	0.0	0.0	0.0	0.0	4]							
59.9	0.0	0.0	0.0	0.0	0.0	4		1117							
61.7	0.0	0.0	0.0	0.0	0.0	4	40 —	+++	++	++++	+	+	$\dashv \vdash$	++	+
63.3	0.0	0.0	0.0	0.0	0.0	4]							
65.3	0.0	0.0	0.0	0.0	0.0	4		(
66.9	0.0	0.0	0.0	0.0	0.0	4		\							
69.9	0.0	0.0	0.0	0.0	0.0	4	44		++		+	$\dashv \dashv \dashv$	$\dashv \dagger$	\Box	\forall
71.8	0.0	0.0	0.0	0.0	0.0	4									
73.2	0.0	0.0	0.0	0.0	0.0	4		$ \cdot $							
74.7	0.0	0.0	0.0	0.0	0.0	4	40		∤						
76.3	0.0	0.0	0.0	0.0	0.0		48 🗀								

77.9

Note(s): WB - Westbound DECEL - Deceleration EB - Eastbound
OSS - Outside Shoulder ACCEL - Acceleration LN - Lane ISS - Inside Shoulder

0.0

AG - At Grade F - Fill OSL - Outside Lane

0.0

0.0

0.0 0.0

C - Cut SG - Subgrade T/ABC - Top of ABC Stone B/ABC - Bottom of ABC Stone Ex. Gr. - Existing Grade

SHEET 8

TAN V WILL	CONE PE	NETROME:	TER DATA		5 1 1				TIP BR-00					OUTE 29/US 7	'n	
, I IAWINIC		NETROME	ILNDAIA		JNTY		EIF			SSION	ΔΙ			CREW	J	
	AND IN-	JIIU ODK			dson		LIE		n Kul		AL			Explora	ation	
TES	ST LOCATIO	N DESCRIPT	TION		RFORMED			De	an Kul	MON			rngoll	LAPIOI	auon	
163		WB_OSL	ION		3/23											
DATUM	CUT/FILL		THING		TING					COPI	RELATED	CBR VA	LUES			
T/ABC	C		,198		1,278					COIN	CLAILD .	JDIN VA				
ואסטכ		/E PENETRA	•		·											
0.7	74.7	0.0	0.0	0.0	0.0											
1.6	75.7	0.0	0.0	0.0	0.0		0.	0	:	20.0	40.0	60.	.0	80.0		100
2.3	77.8	0.0	0.0	0.0	0.0		0					-				\Box
2.9	80.0	0.0	0.0	0.0	0.0	1							4			
3.4	82.2	0.0	0.0	0.0	0.0	1										
3.9	84.5	0.0	0.0	0.0	0.0	1								DO OT		뉙
4.5	86.9	0.0	0.0	0.0	0.0	1	4		_/				В/А	BC ST	JNE	ᅫ
5.4	89.3	0.0	0.0	0.0	0.0	1										
6.1	91.6	0.0	0.0	0.0	0.0	1										
7.2	93.8	0.0	0.0	0.0	0.0	1										
7.5	95.8	0.0	0.0	0.0	0.0		8	$\neg \neg$	\neg	\Box						П
9.5	97.8	0.0	0.0	0.0	0.0				-							
12.2	103.7	0.0	0.0	0.0	0.0	1			}							
14.8	0.0	0.0	0.0	0.0	0.0	1	12									Ш
17.4	0.0	0.0	0.0	0.0	0.0	1	12									
20.1	0.0	0.0	0.0	0.0	0.0				$-$ \langle							
22.1	0.0	0.0	0.0	0.0	0.0	1			}							
24.4	0.0	0.0	0.0	0.0	0.0		16			\bot						Щ
26.5	0.0	0.0	0.0	0.0	0.0											
28.7	0.0	0.0	0.0	0.0	0.0					%						
30.8	0.0	0.0	0.0	0.0	0.0					4						
32.6	0.0	0.0	0.0	0.0	0.0		20			-/-	+++-	-		+		Н
34.7	0.0	0.0	0.0	0.0	0.0	1				1			+			
36.7	0.0	0.0	0.0	0.0	0.0											
38.9	0.0	0.0	0.0	0.0	0.0	<u>ش</u>					1					
40.8	0.0	0.0	0.0	0.0	0.0	ă Ř	24	\dashv	+	+	 		++	+ + +	+	H
42.6	0.0	0.0	0.0	0.0	0.0	Datum (Inches)										
44.4	0.0	0.0	0.0	0.0	0.0	Ë										
45.9	0.0	0.0	0.0	0.0	0.0	ä					7					
47.5	0.0	0.0	0.0	0.0	0.0	Below	28		$\dashv \dashv$	1						\forall
48.8	0.0	0.0	0.0	0.0	0.0	æ				4	↓					
50.2	0.0	0.0	0.0	0.0	0.0	Depth				+++	$\top \mid \mathbf{I} \mid$					
51.7	0.0	0.0	0.0	0.0	0.0] <u></u>	22		[]							
53.1	0.0	0.0	0.0	0.0	0.0		32									П
53.6	0.0	0.0	0.0	0.0	0.0				I							
54.8	0.0	0.0	0.0	0.0	0.0											
56.3	0.0	0.0	0.0	0.0	0.0		36		$\perp \! \! \perp$				$\perp \perp \perp$	$\perp \perp \downarrow$	$\bot \bot$	Ц
57.3	0.0	0.0	0.0	0.0	0.0											
58.5	0.0	0.0	0.0	0.0	0.0				- \							
59.8	0.0	0.0	0.0	0.0	0.0											
61.0	0.0	0.0	0.0	0.0	0.0		40	4	4	+ + +	+	\Box	+	+	+	Ц
62.4	0.0	0.0	0.0	0.0	0.0											
63.7	0.0	0.0	0.0	0.0	0.0											
65.2	0.0	0.0	0.0	0.0	0.0											
66.1	0.0	0.0	0.0	0.0	0.0		44	-	\dashv	+++	 		+	+		\dashv
66.9	0.0	0.0	0.0	0.0	0.0											
68.0	0.0	0.0	0.0	0.0	0.0											
69.5	0.0	0.0	0.0	0.0	0.0											
71.2	0.0	0.0	0.0	0.0	0.0		48									ш
72.9	0.0	0.0	0.0	0.0	0.0											

WB - Westbound EB - Eastbound OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane

DECEL - Deceleration ACCEL - Acceleration LN - Lane AG - At Grade F - Fill

					NUMBER			TIP	ROUTE
DYNAMIC	CONE PE		TER DATA		15.1.1			BR-0015	US 29/US 70
	AND IN-S	SITU CBR			JNTY		FIEL	D PROFESSIONAL	CREW
	TI COLT	N DECCE	FION		idson			Dan Kubinski T	rigon Exploration
TES	ST LOCATIO		IION		RFORMED				
DATUM		WB_OSS	TUNC		3/23	-		CORRELATED CRR VAL	UEO
DATUM	CUT/FILL C		THING 7,201		1,274	-		CORRELATED CBR VAL	UES
SG			,201 ATION IN CE		•				
1.9	49.3	0.0	0.0	0.0	0.0				
2.9	50.9	0.0	0.0	0.0	0.0		0.0	20.0 40.0 60.0	80.0 100
3.7	52.3	0.0	0.0	0.0	0.0		0 -	20.0 40.0 00.0	00.0 100
4.4	53.6	0.0	0.0	0.0	0.0	-			
5.4	55.1	0.0	0.0	0.0	0.0				
6.4	56.6	0.0	0.0	0.0	0.0				
7.6	58.2	0.0	0.0	0.0	0.0		4 -		
8.6	60.0	0.0	0.0	0.0	0.0				
10.0	61.8	0.0	0.0	0.0	0.0	1		$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	
11.7	63.4	0.0	0.0	0.0	0.0	1			
13.9	64.8	0.0	0.0	0.0	0.0	1	8		
16.0	66.8	0.0	0.0	0.0	0.0	1			$\Rightarrow \square \square \square \square$
17.6	68.0	0.0	0.0	0.0	0.0	1			
18.4	69.6	0.0	0.0	0.0	0.0	1 .	12	<u> </u>	
19.1	71.1	0.0	0.0	0.0	0.0		'^		
19.8	72.9	0.0	0.0	0.0	0.0	1			
20.4	74.6	0.0	0.0	0.0	0.0				
20.9	76.4	0.0	0.0	0.0	0.0	1 .	16		
21.6	78.2	0.0	0.0	0.0	0.0	1			
22.1	80.0	0.0	0.0	0.0	0.0				
22.5	81.8	0.0	0.0	0.0	0.0			 	
23.1	83.5	0.0	0.0	0.0	0.0		20	╎╎╎╎╎╎╏	
23.8	85.1	0.0	0.0	0.0	0.0				
24.3	86.8	0.0	0.0	0.0	0.0				
24.8	88.5	0.0	0.0	0.0	0.0	(Si			
25.4	90.3	0.0	0.0	0.0	0.0	(Inches)	24	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
26.1	93.8	0.0	0.0	0.0	0.0	<u>ا</u> ۋ			
26.6	95.2	0.0	0.0	0.0	0.0	Datum			
27.2	97.0	0.0	0.0	0.0	0.0	ے د	28		
27.7	98.6	0.0	0.0	0.0	0.0	Below	_ [$ \cdot \cdot \cdot A'\cdot \cdot \cdot A'\cdot \cdot $	
28.2	100.1	0.0	0.0	0.0	0.0	- B			
28.6	102.0	0.0	0.0	0.0	0.0	Depth			
29.4	104.1	0.0	0.0	0.0	0.0		32	┼┼┼╫┼┼┼╂┼┼┼┼╂	
29.8	106.2	0.0	0.0	0.0	0.0	-			
30.4	108.3	0.0	0.0	0.0	0.0	1			
30.8	110.5	0.0	0.0	0.0	0.0	-			
31.3	113.0	0.0	0.0	0.0	0.0	-	36	┼┼┼┼┼┼┼┼┼┼┼	
31.8	115.2	0.0	0.0	0.0	0.0	-			
32.5 33.5	118.5 121.1	0.0	0.0	0.0	0.0	-			
34.5	121.1	0.0	0.0	0.0	0.0	-	.	 	
35.6	126.2	0.0	0.0	0.0	0.0	1 '	40		
37.0	0.0	0.0	0.0	0.0	0.0	1			
38.5	0.0	0.0	0.0	0.0	0.0				
40.0	0.0	0.0	0.0	0.0	0.0	1	44		
41.6	0.0	0.0	0.0	0.0	0.0	1	~~		
43.1	0.0	0.0	0.0	0.0	0.0				
44.6	0.0	0.0	0.0	0.0	0.0				
46.1	0.0	0.0	0.0	0.0	0.0	1 .	48 L		
47.8	0.0	0.0	0.0	0.0	0.0				
٦٢.٥	0.0	0.0	0.0	0.0	5.0				

Note(s):
WB - Westbound
EB - Eastbound
OSS - Outside Shoulder DECEL - Deceleration ACCEL - Acceleration LN - Lane ISS - Inside Shoulder AG - At Grade F - Fill OSL - Outside Lane

C - Cut SG - Subgrade T/ABC - Top of ABC Stone B/ABC - Bottom of ABC Stone Ex. Gr. - Existing Grade

SHEET 9

				PROJECT	NUMBER				TIP)				ROUTE	
DYNAMIC	CONE PE	NETROME [*]	TER DATA	6701	5.1.1				BR-00	015			- L	S 29/US 7	0
	AND IN-	SITU CBR		COL	INTY		FIE	LD	PROF	ESSIO	NAL			CREW	
				Davi	dson			D	an Kul	binski			Trig	on Explora	ation
TES	ST LOCATIO	N DESCRIPT	TION	DATE PE	RFORMED										
	L_1960	_EB_ISS		5/2	2/23										
DATUM	CUT/FILL	NOR1	THING	EAS	TING					COF	RRELAT	ED CBI	R VALUE	S	
SG	С	757	,274	1,62	1,392										
	CUMULATIV	VE PENETRA	ATION IN CE	NTIMETERS											
2.1	63.2	0.0	0.0	0.0	0.0										
3.5	66.1	0.0	0.0	0.0	0.0			.0	:	20.0	40.	0	60.0	80.0	10
5.0	70.3	0.0	0.0	0.0	0.0		0								
5.8	74.5	0.0	0.0	0.0	0.0										
6.9	79.0	0.0	0.0	0.0	0.0							-			
8.1	83.2	0.0	0.0	0.0	0.0		4				>				
9.0	87.6	0.0	0.0	0.0	0.0		4			$\overline{\mathcal{L}}$					
10.4	91.2	0.0	0.0	0.0	0.0					/					
12.1	94.6	0.0	0.0	0.0	0.0				$ \ \ /$	'					
13.4	98.2	0.0	0.0	0.0	0.0		8	Щ		\perp			\bot		
15.2	101.4	0.0	0.0	0.0	0.0		•		I						
17.2	105.3	0.0	0.0	0.0	0.0				7	+		<u> </u>			
20.2	109.1	0.0	0.0	0.0	0.0									+++	+
23.5	111.9	0.0	0.0	0.0	0.0		12	Щ.	$\vdash \vdash$	+					\mp
25.0	115.2	0.0	0.0	0.0	0.0							++	$\pm \Box$	-	
25.7	119.1	0.0	0.0	0.0	0.0							5	>	_	
26.4	123.2	0.0	0.0	0.0	0.0										
26.8	126.7	0.0	0.0	0.0	0.0		16	-	\vdash	+					
27.3	0.0	0.0	0.0	0.0	0.0										
27.9	0.0	0.0	0.0	0.0	0.0				{	\mathbf{S}					
28.7	0.0	0.0	0.0	0.0	0.0					1					
29.1	0.0	0.0	0.0	0.0	0.0		20	\vdash		 					
29.6	0.0	0.0	0.0	0.0	0.0										
30.2	0.0	0.0	0.0	0.0	0.0]						
30.6	0.0	0.0	0.0	0.0	0.0	83 1	24								
31.1	0.0	0.0	0.0	0.0	0.0	뒫	24								
31.6	0.0	0.0	0.0	0.0	0.0	Datum (Inches)			/						
32.1	0.0	0.0	0.0	0.0	0.0	ag I			/						
32.9	0.0	0.0	0.0	0.0	0.0		28	Ц.				+			
33.5 34.2	0.0	0.0	0.0	0.0	0.0	Below									
34.2	0.0	0.0	0.0	0.0	0.0	- E									
35.5	0.0	0.0	0.0	0.0	0.0	Depth									
36.2	0.0	0.0	0.0	0.0	0.0	1 -	32	$\vdash\vdash$	\vdash	+		++	+	 	
36.7	0.0	0.0	0.0	0.0	0.0	1									
37.4	0.0	0.0	0.0	0.0	0.0										
38.1	0.0	0.0	0.0	0.0	0.0	1			(
38.9	0.0	0.0	0.0	0.0	0.0	1	36	\vdash	\sqcap			+		 	
40.0	0.0	0.0	0.0	0.0	0.0	1			1						
41.2	0.0	0.0	0.0	0.0	0.0	1									
41.8	0.0	0.0	0.0	0.0	0.0	1	40								
43.0	0.0	0.0	0.0	0.0	0.0	1	40		$I \sqcap$						
45.1	0.0	0.0	0.0	0.0	0.0	1			[] [
46.6	0.0	0.0	0.0	0.0	0.0	1									
49.2	0.0	0.0	0.0	0.0	0.0	1	44	Щ	$\Delta \perp$	\bot	$\sqcup \sqcup$	$\bot \downarrow \downarrow$	\bot		
51.0	0.0	0.0	0.0	0.0	0.0	1			/						
53.9	0.0	0.0	0.0	0.0	0.0	1									
56.1	0.0	0.0	0.0	0.0	0.0	1			$I \mid I$						
58.4	0.0	0.0	0.0	0.0	0.0	1	48	Ш							
	0.0	0.0	0.0	0.0	0.0	-									

WB - Westbound EB - Eastbound OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane

DECEL - Deceleration ACCEL - Acceleration LN - Lane AG - At Grade F - Fill

DATUM T/ABC	AND IN-S		ICK DATA		5.1.1	_		I D		-001				1			US 2	.9/U	o / U		
DATUM T/ABC		IIIO CRK			INITY													DE.	v .		
DATUM T/ABC	T LOCATION				INTY	ļ	FIE				SSION	AL				— ·		REV			_
DATUM T/ABC	LOCATION	. DECORIDE	uo.u		dson	_			Dan k	Cubir	nski					I ri	gon i	⊨xpi	oration		_
T/ABC	1 4000		ION		RFORMED	4															
T/ABC	L_1960_				2/23	-															
	CUT/FILL	NORT			TING						CORR	ELA	TEI	о СВ	R V	ALU	ES				
-	С	757,			1,409																
C	CUMULATIV	E PENETRA	ATION IN CE	NTIMETERS																	
1.2	0.0	0.0	0.0	0.0	0.0																
2.5	0.0	0.0	0.0	0.0	0.0		0.	0		20	.0	4	0.0		60	0.0		80.	.0	10	0.00
3.2	0.0	0.0	0.0	0.0	0.0		0				-		П								7
4.0	0.0	0.0	0.0	0.0	0.0						14		╁	+							
4.7	0.0	0.0	0.0	0.0	0.0												_		_		
5.1	0.0	0.0	0.0	0.0	0.0	1														Щ	
5.6	0.0	0.0	0.0	0.0	0.0	1	4									╀╌	B/AE	SC S	TONE		1
6.1	0.0	0.0	0.0	0.0	0.0	1				$\overline{\mathcal{A}}$		П	П					П			1
6.7	0.0	0.0	0.0	0.0	0.0	1			1												1
7.3	0.0	0.0	0.0	0.0	0.0	1			f												1
7.9	0.0	0.0	0.0	0.0	0.0	1	8	+	\forall	\dashv	\dashv	\forall	\dagger	$\dashv \dashv$	\dashv	\vdash	+	\dashv	$\dashv \vdash$	\dashv	1
8.6	0.0	0.0	0.0	0.0	0.0	1			}												1
9.3	0.0					1			U												1
		0.0	0.0	0.0	0.0	-			$ \rangle $												1
10.4	0.0	0.0	0.0	0.0	0.0	-	12	+	╫	\dashv	++	+	+	$\dashv \dashv$	+	\vdash	+	╁	++	+	1
11.7	0.0	0.0	0.0	0.0	0.0	4			I												
13.6	0.0	0.0	0.0	0.0	0.0				$ \langle \rangle$												
16.6	0.0	0.0	0.0	0.0	0.0				}												
20.1	0.0	0.0	0.0	0.0	0.0		16	-	+	\dashv	\dashv	++	+	$\dashv\dashv$	-	\vdash	+	╁		+	┨
23.1	0.0	0.0	0.0	0.0	0.0				1/1												
26.3	0.0	0.0	0.0	0.0	0.0				X												
29.1	0.0	0.0	0.0	0.0	0.0				17												
32.1	0.0	0.0	0.0	0.0	0.0		20	+		\dashv	+	++	+	$\dashv\dashv$	-	\vdash	+	╁	-	+	┨
35.5	0.0	0.0	0.0	0.0	0.0				$ 1\rangle$												
38.2	0.0	0.0	0.0	0.0	0.0	1]												
41.1	0.0	0.0	0.0	0.0	0.0	1 🚊			/												
44.5	0.0	0.0	0.0	0.0	0.0	(Inches)	24	-	+	\dashv		++-	+	\dashv	-	-	₩	╫	_	-	4
47.2	0.0	0.0	0.0	0.0	0.0	1 🖺			1)												
50.6	0.0	0.0	0.0	0.0	0.0	Datum (Ш												
53.6	0.0	0.0	0.0	0.0	0.0	横			$ 1\rangle$												
56.5	0.0	0.0	0.0	0.0	0.0	×	28	+	+	+		₩	+	\dashv	+	⊢	+	+	++	₩	4
60.1	0.0	0.0	0.0	0.0	0.0	Below															1
63.2	0.0	0.0	0.0	0.0	0.0	 			1												
66.4	0.0	0.0	0.0	0.0	0.0	Depth			I												1
69.4	0.0	0.0	0.0	0.0	0.0	1 -	32	+	+	+	+	+	+	╫	+	\vdash	₩	₩	+	+	1
				0.0		-			$ \cdot $												1
73.5	0.0	0.0	0.0		0.0	1															
76.1	0.0	0.0	0.0	0.0	0.0	-				$\setminus \mid \mid$											1
79.0	0.0	0.0	0.0	0.0	0.0	4	36	+	+	$\vdash\vdash$		+	+	\dashv	+	\vdash	+	+	+	+	4
82.2	0.0	0.0	0.0	0.0	0.0	4				∖∐											1
85.1	0.0	0.0	0.0	0.0	0.0	4			1	/											1
87.7	0.0	0.0	0.0	0.0	0.0	4															1
90.0	0.0	0.0	0.0	0.0	0.0		40	+	+	+	_	\vdash	+	\dashv	-	\vdash	+	+	+	+	4
92.5	0.0	0.0	0.0	0.0	0.0																1
94.6	0.0	0.0	0.0	0.0	0.0																1
97.3	0.0	0.0	0.0	0.0	0.0																1
0.0	0.0	0.0	0.0	0.0	0.0		44	-	++	+		+	+	\dashv	-	\vdash	+	\dashv		+	4
0.0	0.0	0.0	0.0	0.0	0.0																1
0.0	0.0	0.0	0.0	0.0	0.0	1															1
0.0	0.0	0.0	0.0	0.0	0.0	1															1
0.0	0.0	0.0	0.0	0.0	0.0	1	48			Ш			Ш			Ш				Ш	J
0.0	0.0	0.0	0.0	0.0	0.0	1															

Note(s): WB - Westbound DECEL - Deceleration EB - Eastbound
OSS - Outside Shoulder ACCEL - Acceleration

LN - Lane AG - At Grade F - Fill ISS - Inside Shoulder OSL - Outside Lane

C - Cut SG - Subgrade T/ABC - Top of ABC Stone B/ABC - Bottom of ABC Stone Ex. Gr. - Existing Grade

SHEET 10

ΥΝΔΜΙ	CONF PE	NETROME ¹	TER DATA	PROJECT 6701				R	TIP R-0015				OUTE 29/US		
· · · · · · · · · · · · · · · · · · ·		SITU CBR	LINDAIA	COU			FIF		OFESSIO	NAI			CREW		
	ANDIN	JITO ODIK		Davi			- 115		Kubinski	IVAL		Trigon		ation	
TES	ST LOCATIO	N DESCRIPT	TION	DATE PER				Dan	. Kabinoki			9011		3.,011	
		EB OSS		5/2		1									
DATUM	CUT/FILL		THING	EAS		1			COF	RRELATED C	BR VA	LUES			
T/ABC	С		,257	1,621	-	1									
.,, .,, .		VE PENETRA				1									
1.8	51.7	0.0	0.0	0.0	0.0	1									
3.0	53.7	0.0	0.0	0.0	0.0	1	0.0	0	20.0	40.0	60	.0	80.0		100
4.0	55.3	0.0	0.0	0.0	0.0	1	О Г	_							
5.4	57.1	0.0	0.0	0.0	0.0	1				\cup					
7.1	58.9	0.0	0.0	0.0	0.0	1									
9.0	60.7	0.0	0.0	0.0	0.0	1									
11.1	62.4	0.0	0.0	0.0	0.0	1	4					\dashv	\dashv	\vdash	\dashv
11.9	63.9	0.0	0.0	0.0	0.0	1						-	+		
12.3	65.3	0.0	0.0	0.0	0.0	1					+	+			
12.7	67.0	0.0	0.0	0.0	0.0	1								H	
13.1	68.7	0.0	0.0	0.0	0.0	1	8 -					1 1 3			
13.6	70.3	0.0	0.0	0.0	0.0	1							+		
14.0	71.7	0.0	0.0	0.0	0.0	1					ן ן נ	R/A	BC ST	ONE	ήl
14.3	73.2	0.0	0.0	0.0	0.0	1	12					D, A	.JU 01	JITE	l
14.6	74.8	0.0	0.0	0.0	0.0	1	' - [
14.9	76.4	0.0	0.0	0.0	0.0	1			/						
15.4	78.0	0.0	0.0	0.0	0.0	1)						
16.1	79.5	0.0	0.0	0.0	0.0	1	16							Щ	
16.6	81.2	0.0	0.0	0.0	0.0	1			$N \sqcup I$						
17.0	82.7	0.0	0.0	0.0	0.0	1			M						
17.4	84.5	0.0	0.0	0.0	0.0	1			$ \langle $						
17.8	86.2	0.0	0.0	0.0	0.0	1	20		-			\dashv	-		+
18.2	88.0	0.0	0.0	0.0	0.0	1			KI						
18.7	89.7	0.0	0.0	0.0	0.0	1									
19.3	91.0	0.0	0.0	0.0	0.0	œ									
19.7	92.8	0.0	0.0	0.0	0.0	Datum (Inches)	24	+	$\forall \forall \vdash$		++	$\dashv \dashv \dashv$	+	++	\dashv
20.2	94.6	0.0	0.0	0.0	0.0	Ĭ			N						
20.6	95.9	0.0	0.0	0.0	0.0	Ē									
21.1	96.7	0.0	0.0	0.0	0.0	Dat D			🕻						
21.5	97.5	0.0	0.0	0.0	0.0	Below	28	$\dashv \vdash$				$\dashv \dashv \dashv$	\top	$\sqcap \vdash$	$\dashv \dashv$
22.0	98.3	0.0	0.0	0.0	0.0	Be									
22.4	99.2	0.0	0.0	0.0	0.0	Depth									
22.9	100.2	0.0	0.0	0.0	0.0	ے ا	32								
23.4	101.3	0.0	0.0	0.0	0.0		32								
23.8	102.5	0.0	0.0	0.0	0.0				🐧						
25.0	106.1	0.0	0.0	0.0	0.0				(
25.7	107.9	0.0	0.0	0.0	0.0		36	$\bot \bot$			\perp	$\perp \downarrow \downarrow \downarrow$	$\perp \!\!\! \perp$	Ш	\perp
26.4	109.8	0.0	0.0	0.0	0.0		-		[[
27.4	111.7	0.0	0.0	0.0	0.0				1 -	 					
28.5	113.3	0.0	0.0	0.0	0.0										
30.0	115.0	0.0	0.0	0.0	0.0		40				+	$\dashv \dashv \dashv$	+	++	+
32.1	116.5	0.0	0.0	0.0	0.0										
34.8	118.1	0.0	0.0	0.0	0.0			<	\square						
37.3	119.9	0.0	0.0	0.0	0.0										
40.2	0.0	0.0	0.0	0.0	0.0		44	++	HH		++	$\dashv \dashv \dashv$	+	++	+
42.3	0.0	0.0	0.0	0.0	0.0										
44.4	0.0	0.0	0.0	0.0	0.0				🕽						
46.2	0.0	0.0	0.0	0.0	0.0				1						
48.2	0.0	0.0	0.0	0.0	0.0		48 L								
50.0	0.0	0.0	0.0	0.0	0.0	1									

WB - Westbound
EB - Eastbound
OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane

DECEL - Deceleration ACCEL - Acceleration LN - Lane AG - At Grade F - Fill

					NUMBER				TI					ROUTE		
DYNAMIC	CONE PE		TER DATA	6701						0015			Ū	S 29/US		
	AND IN-S	SITU CBR			INTY		FIL				IONAL			CREW		
					dson	_			an K	ubinsl	ki		Trigo	on Explo	ration	
TES	T LOCATION		ION		RFORMED											
	L_2590_		11016	5/3							0000					
DATUM	CUT/FILL	NORT			TING					С	ORRELATE	ED CBR /	ALUE	5		
SG	AG		,786		1,759											
	CUMULATIV															
3.7	94.0	0.0	0.0	0.0	0.0	-	_	•		20.0	40.0	_	·0.0			400.0
5.8	95.1	0.0	0.0	0.0	0.0	-	0	0.0		20.0	40.0	,	60.0	80.0	υ ———	100.0
8.9	96.3	0.0	0.0	0.0	0.0	4	•	1			$ \ \ \ \ $					
13.3	97.5	0.0	0.0	0.0	0.0	-			X	11	$ \ \ \ \ $					
18.3	98.6 99.7	0.0	0.0	0.0	0.0	1			1		$ \ \ \ \ $					
20.1		0.0	0.0	0.0	0.0	-	4	\vdash	+	+	++++	+	++	+++	+	\dashv
21.1 21.8	100.8 101.8	0.0	0.0	0.0	0.0	-			1							
21.8	101.8			0.0		-			'							
22.7	102.8 103.7	0.0	0.0	0.0	0.0	1			\downarrow		$ \ \ \ \ $					
23.5	103.7	0.0	0.0	0.0	0.0		8	+	+	+	+++	##	+	+++	+	+
24.2	104.7	0.0	0.0	0.0	0.0							\Box				
25.8	105.7	0.0	0.0	0.0	0.0	1					$ \cdot $	\Box				
26.7	100.3	0.0	0.0	0.0	0.0	1					$ \cdot \cdot \cdot \Gamma$	$\uparrow \downarrow \downarrow \downarrow$	$\downarrow \downarrow \downarrow$	_		
27.5	107.3	0.0	0.0	0.0	0.0	1	12	\sqcap	\top	\top		\Box		op op	$\dashv \dashv$	\sqcap
28.2	108.1	0.0	0.0	0.0	0.0											
28.8	109.6	0.0	0.0	0.0	0.0	1				دا ا	$ec{ec{ec{ec{ec{ec{ec{ec{ec{ec{$					
29.4	110.4	0.0	0.0	0.0	0.0	1	16			1						
29.4	111.3	0.0	0.0	0.0	0.0	1			1		$ \top \top$			T		1
30.7	112.1	0.0	0.0	0.0	0.0	1					$ \ \ \ \ $					
31.6	113.1	0.0	0.0	0.0	0.0											
32.3	114.0	0.0	0.0	0.0	0.0		20		#	4	+++	+	+	+ + +	+	\dashv
33.3	114.7	0.0	0.0	0.0	0.0											
34.4	115.5	0.0	0.0	0.0	0.0	1					$ \ \ \ \ $					
35.6	116.4	0.0	0.0	0.0	0.0	~					$ \ \ \ \ $					
36.9	117.3	0.0	0.0	0.0	0.0	Ě	24	\vdash	+	+		++++	++	+++	+	+
38.6	118.3	0.0	0.0	0.0	0.0	Depth Below Datum (Inches)		\	1		$ \ \ \ \ $					
41.4	119.2	0.0	0.0	0.0	0.0	Ē					$ \ \ \ \ $					
44.6	120.0	0.0	0.0	0.0	0.0] ă			$ \mathbf{A} $		$ \ \ \ \ $					
47.8	120.9	0.0	0.0	0.0	0.0	8	28	\vdash	\forall	\top	\Box	+++	+	+ + +	\top	$\dashv \vdash$
51.1	121.7	0.0	0.0	0.0	0.0	8					$ \ \ \ \ $					
54.8	122.6	0.0	0.0	0.0	0.0	툍			$ \cdot $	ŊΙ,	$ \ \ \ \ $					
58.8	123.3	0.0	0.0	0.0	0.0	۵	32			$ \Delta $						\perp
63.2	124.2	0.0	0.0	0.0	0.0		JZ			ΤΣ						
67.0	125.1	0.0	0.0	0.0	0.0						$ \mathbf{y} + \mathbf{I}$					
70.0	126.2	0.0	0.0	0.0	0.0					1						
72.8	0.0	0.0	0.0	0.0	0.0		36		$\perp \perp$	4	\Box	+	+	$+\!$	+	Щ.
75.2	0.0	0.0	0.0	0.0	0.0						$ \downarrow \downarrow $					
77.3	0.0	0.0	0.0	0.0	0.0											
79.1	0.0	0.0	0.0	0.0	0.0											
80.7	0.0	0.0	0.0	0.0	0.0		40	-	+	+	 	+++	+	+++	+	+
82.2	0.0	0.0	0.0	0.0	0.0											
83.8	0.0	0.0	0.0	0.0	0.0							լ				
85.2	0.0	0.0	0.0	0.0	0.0						<u> </u>	\rightarrow				
86.4	0.0	0.0	0.0	0.0	0.0		44	+	+	+	 	+++	+	+++	+	+
87.8	0.0	0.0	0.0	0.0	0.0						$ \cdot $	 				
89.1	0.0	0.0	0.0	0.0	0.0											
90.4	0.0	0.0	0.0	0.0	0.0	-]≯	1				
91.6	0.0	0.0	0.0	0.0	0.0	Į.	48	<u> </u>								
92.8	0.0	0.0	0.0	0.0	0.0	Ш										

Note(s):
WB - Westbound
EB - Eastbound
OSS - Outside Shoulder
ISS - Inside Shoulder DECEL - Deceleration ACCEL - Acceleration LN - Lane

AG - At Grade F - Fill OSL - Outside Lane

C - Cut SG - Subgrade T/ABC - Top of ABC Stone B/ABC - Bottom of ABC Stone Ex. Gr. - Existing Grade

SHEET 11

TAN V MIC	CONE PE	NETROME:	TER DATA		NUMBER 5.1.1	+			BR-0						OUTE 29/US 7	'n	
INMINIC		SITU CBR	ILNDAIA		INTY		EIE	יחו		ESSIO	NΔI				REW	J	
	VIAD III-	JIIO ODK			dson	┢	FIE		an Ku		1AL		Т		Explora	tion	
TES	ST LOCATIO	N DESCRIP	TION		RFORMED			ال	an Ru	UII I JKI			-	ngon			
120		WB OSS			3/23	1											
DATUM	CUT/FILL		THING		TING	1				COF	RELA	TED CE	BR VAL	UES			
SG	AG		,245		2,081	1											
			ATION IN CE		-	1											
1.3	87.1	0.0	0.0	0.0	0.0												
2.3	88.4	0.0	0.0	0.0	0.0		0.	0		20.0	4	0.0	60.0		80.0		100
3.0	89.6	0.0	0.0	0.0	0.0		0				JT						
3.8	90.9	0.0	0.0	0.0	0.0							\geq	Щ				
4.4	92.3	0.0	0.0	0.0	0.0								\leq				
5.0	93.3	0.0	0.0	0.0	0.0		4					\leq					
5.7	94.3	0.0	0.0	0.0	0.0		4						\rightarrow				
6.3	95.3	0.0	0.0	0.0	0.0												
6.9	96.1	0.0	0.0	0.0	0.0						\mathbf{x}						
7.7	97.1	0.0	0.0	0.0	0.0		8	_	Щ	44	+		\Box	Щ	$\perp \downarrow \downarrow$		Ш
8.5	98.0	0.0	0.0	0.0	0.0		-				$+\!+\!$						
9.2	99.3	0.0	0.0	0.0	0.0				ـر ا ا	4/							
10.0	100.1	0.0	0.0	0.0	0.0												
10.7	101.2	0.0	0.0	0.0	0.0		12	+	$\vdash \vdash$	+	++	$\vdash \vdash$	++	$\dashv \dashv$	+	++	+
11.3	102.1	0.0	0.0	0.0	0.0												
12.2	103.2	0.0	0.0	0.0	0.0												
13.1	104.3	0.0	0.0	0.0	0.0												
14.0	105.3	0.0	0.0	0.0	0.0		16	+	\vdash	+	\dashv	\vdash	$\dashv +$	\vdash	-	$\dashv \vdash$	+
14.7	106.3	0.0	0.0	0.0	0.0)								
15.8	107.2	0.0	0.0	0.0	0.0												
16.8	108.2	0.0	0.0	0.0	0.0												
18.0	109.1	0.0	0.0	0.0	0.0		20	\top		\top	$\neg \neg$					$\neg \neg$	\top
19.3	110.2	0.0	0.0	0.0	0.0												
20.1	111.3	0.0	0.0	0.0	0.0												
20.9	112.3	0.0	0.0	0.0	0.0	es)	24										
22.2	113.3	0.0	0.0	0.0	0.0	뒫	27										
23.5	0.0	0.0	0.0	0.0	0.0	<u>۔</u>											
25.5	0.0	0.0	0.0	0.0	0.0	afr.											
29.2	0.0	0.0	0.0	0.0	0.0	- 2	28	_		\perp		\vdash	-	$\sqcup \sqcup$	\perp		Щ
32.6	0.0	0.0	0.0	0.0	0.0	Depth Below Datum (Inches)			}								
36.3	0.0	0.0	0.0	0.0	0.0	를 급			(
40.0	0.0	0.0	0.0	0.0	0.0	Je p				$ \cdot $							
43.4	0.0	0.0	0.0	0.0	0.0	-	32	+	$\dashv \dashv$	+	++	++	++	++	+++	++	+
47.1 50.0	0.0	0.0	0.0	0.0	0.0												
50.9 54.8	0.0	0.0	0.0	0.0	0.0					$ \uparrow \rangle$							
58.5	0.0	0.0	0.0	0.0	0.0					$ \rangle$							
62.2	0.0	0.0	0.0	0.0	0.0		36	\top	$\sqcap \uparrow$	14	$\!$					$\dashv \vdash$	$\forall \exists$
64.8	0.0	0.0	0.0	0.0	0.0							$L \cdot $					
67.4	0.0	0.0	0.0	0.0	0.0						_\\$	$\Gamma \cdot $					
69.6	0.0	0.0	0.0	0.0	0.0		40										
71.8	0.0	0.0	0.0	0.0	0.0		40										
73.7	0.0	0.0	0.0	0.0	0.0						N						
75.8	0.0	0.0	0.0	0.0	0.0						∣≤						
77.7	0.0	0.0	0.0	0.0	0.0		44	4	$\sqcup \sqcup$	+		$\sqcup \bot$		Ш	$\downarrow \downarrow \downarrow$	$\bot \bot$	Ш
79.4	0.0	0.0	0.0	0.0	0.0												
81.1	0.0	0.0	0.0	0.0	0.0												
82.7	0.0	0.0	0.0	0.0	0.0												
84.1	0.0	0.0	0.0	0.0	0.0		48			\perp							
	0.0	0.0	0.0	0.0	0.0	-											

WB - Westbound
EB - Eastbound
OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane

DECEL - Deceleration ACCEL - Acceleration LN - Lane

AG - At Grade F - Fill

DVNASS	CONE DE	NETDOM:			NUMBER				TIP							OUT			
DYNAMIC		NETROMET	IER DATA		5.1.1				BR-00							29/US			_
	AND IN-S	SITU CBR			INTY		FI		PROFI		NAL					REV			
TEO	TIOCATIO	N DECORIO	ION		dson	_		D	an Kul	oinski				T	rigon	⊨xpl	oration		_
TES		N DESCRIPT			RFORMED	-													
		_DECEL_LN			/23	4													
DATUM	CUT/FILL		HING		TING	4				CO	RREL	ATED	CBR	VAL	UES				
T/ABC	AG		,292		2,226	-													
		/E PENETRA				_													
1.9	0.0	0.0	0.0	0.0	0.0		_	_									_		
3.6	0.0	0.0	0.0	0.0	0.0		0	.0		20.0		40.0		60.0		80	.0	10	0.00
5.3	0.0	0.0	0.0	0.0	0.0		Ů		+										
8.3	0.0	0.0	0.0	0.0	0.0)									
11.6	0.0	0.0	0.0	0.0	0.0					$1 \perp$									
14.2	0.0	0.0	0.0	0.0	0.0		4	Ш	\Box		Ш	4		_	\perp				1
17.2	0.0	0.0	0.0	0.0	0.0				$ \langle $										
20.1	0.0	0.0	0.0	0.0	0.0				}					11	D/A		STONE		
22.4	0.0	0.0	0.0	0.0	0.0			4		4	Ш	\perp		1	OIA	JU 3	, i ONE	ᅱ	
24.2	0.0	0.0	0.0	0.0	0.0		8		Щ	\bot	ш	4	$\perp \!\!\! \perp \!\!\! \perp$	4	$\perp \!\!\! \perp$	Ц.	\perp	Щ	1
26.2	0.0	0.0	0.0	0.0	0.0		-		N										
27.9	0.0	0.0	0.0	0.0	0.0					7									
30.2	0.0	0.0	0.0	0.0	0.0														1
32.6	0.0	0.0	0.0	0.0	0.0		12	\perp	+	+	$\sqcup \sqcup$	+	$+\!\!-\!\!\!+\!\!\!\!-$	\perp	\dashv	- -	_	Щ	1
35.4	0.0	0.0	0.0	0.0	0.0	1													
38.7	0.0	0.0	0.0	0.0	0.0				/										
41.5	0.0	0.0	0.0	0.0	0.0				I										
44.5	0.0	0.0	0.0	0.0	0.0		16	\vdash	\Box		\vdash	+-		\perp	\dashv	\dashv			4
47.0	0.0	0.0	0.0	0.0	0.0				I										
49.6	0.0	0.0	0.0	0.0	0.0				$ \setminus $										
52.5	0.0	0.0	0.0	0.0	0.0]										
55.0	0.0	0.0	0.0	0.0	0.0		20	\vdash	+		\vdash	+		+	-	\dashv			4
57.7	0.0	0.0	0.0	0.0	0.0				$ \langle $										
60.5	0.0	0.0	0.0	0.0	0.0)										
63.5	0.0	0.0	0.0	0.0	0.0	1													
67.3	0.0	0.0	0.0	0.0	0.0	- Pe	24	\vdash	+	+-	+	+		+				-	-
71.1	0.0	0.0	0.0	0.0	0.0	<u>=</u>			J										
74.6	0.0	0.0	0.0	0.0	0.0	Ē			/										
78.2	0.0	0.0	0.0	0.0	0.0	d t													
81.0	0.0	0.0	0.0	0.0	0.0	Below Datum (Inches)	28	+	\vdash	+	++	+	+	+	\dashv	\dashv	+	₩	1
83.9	0.0	0.0	0.0	0.0	0.0	3elc													1
86.6	0.0	0.0	0.0	0.0	0.0	ŧ													
89.5	0.0	0.0	0.0	0.0	0.0	Depth			$ \cdot $										
91.9	0.0	0.0	0.0	0.0	0.0	1	32	\vdash		+	++	+	+	+	$\dashv \dashv$	╁	$\dashv \vdash$	+	1
94.6	0.0	0.0	0.0	0.0	0.0				(
94.6	0.0	0.0	0.0	0.0	0.0)										
100.8	0.0	0.0	0.0	0.0	0.0				(
						-	36	+	+	+	++	+	+	+	$\dashv \dashv$	\dashv	\dashv	+	1
103.7	0.0	0.0	0.0	0.0	0.0	-													1
107.4	0.0	0.0	0.0	0.0	0.0	-			I										
111.3	0.0	0.0	0.0	0.0	0.0														
114.3	0.0	0.0	0.0	0.0	0.0		40	\vdash	+	+	+	+	+	+	$\dashv \dashv$	┪	+	+	1
117.5	0.0	0.0	0.0	0.0	0.0				I										
0.0	0.0	0.0	0.0	0.0	0.0				$I \mid I$										
0.0	0.0	0.0	0.0	0.0	0.0														
0.0	0.0	0.0	0.0	0.0	0.0		44	\vdash	$\forall \vdash$	+	$\dashv \vdash$	+	+	\top	$\dashv \dashv$	╁	$\dashv \vdash$	\forall	1
0.0	0.0	0.0	0.0	0.0	0.0				}										1
0.0	0.0	0.0	0.0	0.0	0.0														
0.0	0.0	0.0	0.0	0.0	0.0														1
0.0	0.0	0.0	0.0	0.0	0.0		48												_
0.0	0.0	0.0	0.0	0.0	0.0	1													

Note(s): WB - Westbound DECEL - Deceleration EB - Eastbound
OSS - Outside Shoulder ACCEL - Acceleration LN - Lane ISS - Inside Shoulder

AG - At Grade F - Fill OSL - Outside Lane

C - Cut SG - Subgrade T/ABC - Top of ABC Stone B/ABC - Bottom of ABC Stone Ex. Gr. - Existing Grade

SHEET 12

ЭУМАМІС	CONF PE	NETROME ¹	TER DATA		NUMBER 5.1.1				TIP R-0015			ROUTE 3 29/US 70	
		SITU CBR	LINDAIA		JNTY		FIEI		OFESSI	ONAL	00	CREW	
	, D 114-4				idson				Kubinsk		Trigo	n Explorat	ion
TES	ST LOCATIO	N DESCRIPT	TION		RFORMED						90		
		WB_ISS			3/23	1							
DATUM	CUT/FILL		THING		TING				CC	RRELATED C	BR VALUES	3	
SG	С		,798		2,544								
		VE PENETRA			-								
2.4	53.1	87.4	110.2	0.0	0.0								
4.8	54.1	87.9	110.6	0.0	0.0		0.0		20.0	40.0	60.0	80.0	100
7.3	55.3	88.5	111.1	0.0	0.0		0						
9.5	56.1	88.9	111.6	0.0	0.0				1				
11.7	57.2	89.5	112.0	0.0	0.0				$I \sqcup I \sqcup$				
13.4	58.3	90.0	112.4	0.0	0.0				$\setminus \mid \mid \mid \mid \mid$				
14.6	59.3	90.5	112.9	0.0	0.0		4 -	$\forall \forall$	$\dagger \dagger \dagger$		++++	+ 	+++
15.6	60.3	91.1	113.3	0.0	0.0				1	ot $ \ \ \ $			
16.2	61.1	91.5	113.5	0.0	0.0								
17.0	62.1	92.0	114.1	0.0	0.0					 	+		⊥
17.9	62.7	92.5	114.5	0.0	0.0		8	\sqcap					Ħ
18.7	63.6	93.0	114.8	0.0	0.0								
19.3	64.4	93.3	115.2	0.0	0.0					++	+	1	
19.7	65.0	93.7	115.6	0.0	0.0		12						
20.5	65.9	94.2	116.1	0.0	0.0		'-						
20.8	66.7	94.7	116.4	0.0	0.0								
21.0	67.5	95.2	116.7	0.0	0.0					\top			
21.4	68.2	95.7	117.1	0.0	0.0		16						
22.1	68.8	96.1	117.4	0.0	0.0								
22.6	69.3	96.5	118.0	0.0	0.0				\perp 1).				
23.2	70.1	97.0	118.6	0.0	0.0				115	.			
24.0	70.9	97.3	119.1	0.0	0.0		20	$\sqcup \sqcup$			+++++	+++	$\sqcup \sqcup$
24.6	71.6	97.8	119.5	0.0	0.0					$\mathcal{V} \cap \mathcal{V}$			
25.1	72.3	98.2	119.8	0.0	0.0								
25.6	73.1	98.7	120.3	0.0	0.0								
26.1	73.7	99.2	120.8	0.0	0.0	- Pes	24	+					-
26.9	74.5	99.7	121.0	0.0	0.0	<u> </u>							
27.4	75.2	100.2	121.4	0.0	0.0	Ę							
27.8	75.8	100.6	121.9	0.0	0.0	at P						-	
28.3	76.3	100.9	122.4	0.0	0.0	8	28	+++					+++
28.8	76.9	101.3	122.7	0.0	0.0	Depth Below Datum (Inches)					 		
29.4	77.7	101.7	123.0	0.0	0.0	돭							
29.8	78.1	102.2	123.6	0.0	0.0	_ □	.						<u> </u>
30.4	78.5	102.6	123.9	0.0	0.0		32	\Box	$\dashv \dagger$				
31.0	79.0	103.1	124.3	0.0	0.0							,	
32.6	79.5	103.4	124.6	0.0	0.0								<u> </u>
33.4	80.0	103.8	125.5	0.0	0.0		36					2	
34.1	80.6	104.2	125.9	0.0	0.0		30 F						
35.0	81.0	104.7	126.3	0.0	0.0								<u></u>
36.4	81.6	105.2	126.6	0.0	0.0								-
38.6	82.2	105.6	126.9	0.0	0.0		40	Ш	$\downarrow \downarrow \downarrow$		+		
40.5	82.6	106.1	127.3	0.0	0.0								
42.2	83.1	106.6	127.7	0.0	0.0								‡ I
43.6	83.7	107.0	0.0	0.0	0.0								
45.0	84.1	107.7	0.0	0.0	0.0		44	$\vdash\vdash$	+	++++	+ + + +		<u> </u>
46.5	84.8	108.2	0.0	0.0	0.0						1 1 + + +		
47.8	85.3	108.6	0.0	0.0	0.0					$ \cdot \cdot \cdot \cdot $			
49.2	85.8	108.9	0.0	0.0	0.0								
50.7	86.4	109.4	0.0	0.0	0.0		48 L						
51.9	86.8	109.8	0.0	0.0	0.0	٦.							

WB - Westbound
EB - Eastbound
OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane

DECEL - Deceleration ACCEL - Acceleration LN - Lane AG - At Grade F - Fill

DVNASSIC	CONFRE	NETROME	TED DATA		NUMBER			TIP	F.			OUTE	
DINAMIC	CONE PEI		IEK DATA	6701		_	IEI P	BR-001		_		29/US 70	
	AND IN-S	SITU CBR			INTY	F			SIONAL			CREW	
TEC	T I OCATIO	N DESCRIPT	TION		dson		L	an Kubir	ISKI		ı rigor	Exploration	
TES	T LOCATIOI				/23								
DATUM	L_3870_WB			EAS					COPPE	ATED CE	DD WALLIES		
DATUM	CUT/FILL C		THING			-			CORREL	ATED CE	BR VALUES		
T/ABC	CUMULATIV		,817		2,519								
			92.2										
1.3 2.6	40.4	70.7		111.2	0.0	-	0.0	2	0.0	40.0	60.0	80.0	100.0
	41.2	71.2	92.5	111.5		1	0.0	2	1	40.0	00.0	00.0	100.0
3.3 4.0	42.1 42.9	71.9	92.9	111.8	0.0	-							
4.6	43.9	72.4 72.9	93.3 93.7	112.1 112.4	0.0	-				<u> </u>	\Rightarrow		
5.2	44.7	73.3	94.0	112.4	0.0	-				-			
6.5	45.5	73.9	94.0	113.1	0.0	1	4		\vdash				
7.1	46.3	74.3	94.5	113.1	0.0	1				4++			
7.1	47.1	74.3	95.2	113.5	0.0	ł			-	7-	B/A	BC STON	E
8.4	47.1	75.4	95.6	114.3	0.0	ł	H						
8.9	48.4	75.4	96.0	114.5	0.0	1	8 —						
9.8	49.2	76.2	96.3	114.3	0.0	ł							
10.7	49.8	76.8	96.7	115.2	0.0	1							
11.3	50.5	77.3	97.1	115.5	0.0	1.	<u>, </u>		\leftarrow				
11.8	51.0	77.8	97.4	115.9	0.0	1 1	2		7				
12.7	51.5	78.3	97.7	0.0	0.0	1			$ \langle $				
13.7	52.3	78.7	98.1	0.0	0.0	ł			$ \cdot \cdot $				
14.5	52.9	79.1	98.5	0.0	0.0	1 1	<u>.</u>			>			
15.5	53.6	79.6	98.9	0.0	0.0	·	°П						
16.2	54.1	79.9	99.1	0.0	0.0	1			-	\P			
16.7	54.6	80.4	99.5	0.0	0.0	1					_		
17.2	55.2	80.9	99.9	0.0	0.0	2	o 🗀						
17.6	55.7	81.4	100.3	0.0	0.0	1					\geq		
18.1	56.4	81.8	100.8	0.0	0.0	1				_	_		
18.5	56.9	82.4	101.2	0.0	0.0	1 _				-			
18.9	57.6	82.6	101.7	0.0	0.0	<u>§</u> 2	4						
19.3	58.1	83.1	102.1	0.0	0.0	<u>i</u>							.
19.6	59.1	83.3	102.6	0.0	0.0	Ę							
20.2	59.6	83.7	103.0	0.0	0.0	i į							'
20.5	60.1	84.0	103.5	0.0	0.0	Depth Below Datum (Inches)	8	+++		 			+
20.8	60.6	84.5	103.9	0.0	0.0	Be B							
21.1	61.1	84.9	104.2	0.0	0.0	1 €							
21.5	61.5	85.2	104.7	0.0	0.0								4
22.1	62.0	85.6	105.1	0.0	0.0	1 ³	2						
22.9	62.5	86.1	105.5	0.0	0.0	1							
23.4	62.9	86.5	105.7	0.0	0.0								
24.3	63.8	86.8	106.1	0.0	0.0	3	, L						
25.6	64.4	87.1	106.4	0.0	0.0	1 '	Ĭ						
27.1	65.0	87.5	106.8	0.0	0.0	1							
28.8	65.4	87.8	107.3	0.0	0.0								
30.0	65.9	88.1	107.6	0.0	0.0	4	<u>,</u> Ц	\bot		\Box			
31.3	66.4	88.5	108.0	0.0	0.0	1 '							
31.6	66.9	89.2	108.5	0.0	0.0	1							
32.8	67.5	89.6	108.9	0.0	0.0								
34.1	67.9	90.0	109.2	0.0	0.0	4	4 📙	+	+++	+	+ + +		
35.3	68.3	90.5	109.4	0.0	0.0	1							
36.4	68.8	90.8	109.8	0.0	0.0	1							
37.5	69.3	91.1	110.1	0.0	0.0	1							
38.5	69.8	91.5	110.5	0.0	0.0	4	8 🗀						
39.4	70.2	91.9	110.8	0.0	0.0								

OSL - Outside Lane

Note(s): WB - Westbound DECEL - Deceleration EB - Eastbound
OSS - Outside Shoulder ACCEL - Acceleration LN - Lane AG - At Grade F - Fill ISS - Inside Shoulder

C - Cut SG - Subgrade T/ABC - Top of ABC Stone B/ABC - Bottom of ABC Stone Ex. Gr. - Existing Grade

SHEET 13

пумаміс	CONE PE	NETROME ¹	TER DATA		NUMBER 5.1.1			F	TIP BR-0015		115	ROUTE 3 29/US 70	
		SITU CBR	LINDAIA		JNTY		FIE		ROFESSIO	NAL	0.	CREW	
					idson				n Kubinski		Triac	n Explorati	on
TES	ST LOCATIO	N DESCRIPT	TION		RFORMED			341			90		
		WB_OSS			1/23								
DATUM	CUT/FILL		THING	EAS	TING				COF	RELATED C	BR VALUES	3	
SG	С		,821	1,62	2,514	1							
	CUMULATIV	VE PENETRA	ATION IN CE		-								
4.7	63.3	91.0	110.8	0.0	0.0								
8.1	64.0	91.4	111.1	0.0	0.0		0.	0	20.0	40.0	60.0	80.0	100
10.8	64.8	91.8	111.5	0.0	0.0		0						
13.2	65.6	92.2	111.8	0.0	0.0								
15.6	66.3	92.6	112.2	0.0	0.0			-1					
17.6	67.0	93.0	112.7	0.0	0.0			\perp					
19.4	67.6	93.4	113.0	0.0	0.0		4		$\overline{}$				
21.1	68.3	93.8	113.4	0.0	0.0				$1 \cup 1 \cup 1$				
22.6	68.9	94.2	113.8	0.0	0.0				V				
24.0	69.6	94.7	114.1	0.0	0.0				+ N $ -$				
25.3	70.3	95.1	114.5	0.0	0.0		8	$\neg \neg$					
26.9	70.9	95.5	0.0	0.0	0.0								
28.0	71.5	95.9	0.0	0.0	0.0								
28.9	72.1	96.3	0.0	0.0	0.0		40		$\perp \!\!\! \perp \!\!\! \mid \!\! \mid \!\! \mid \!\! \mid \!\! \mid \!\! \mid$				$\sqcup \sqcup$
29.7	72.6	96.7	0.0	0.0	0.0		12						
30.6	73.2	97.2	0.0	0.0	0.0						'		
31.4	73.7	97.6	0.0	0.0	0.0	-					'		
32.2	74.3	98.0	0.0	0.0	0.0	-	16						
32.9	74.9	98.5	0.0	0.0	0.0	-	'' [
33.6	75.4	99.0	0.0	0.0	0.0	-				\rightarrow			
34.5	76.1	99.3	0.0	0.0	0.0	-							
35.3	76.6	99.7	0.0	0.0	0.0		20						
36.0	77.8	100.0	0.0	0.0	0.0		_						
36.8	77.9	100.5	0.0	0.0	0.0					\rightarrow			
37.6	78.1	100.8	0.0	0.0	0.0	-							
38.4	78.7	101.2	0.0	0.0	0.0	es)	24	\dashv	-		++++	+++	\square
39.3	79.3	101.6	0.0	0.0	0.0	글							
40.2	79.3	101.8	0.0	0.0	0.0	Depth Below Datum (Inches)				$ \cdot $			
41.2	80.3	102.0	0.0	0.0	0.0	atu					≱ ∐		
43.1	80.8	102.1	0.0	0.0	0.0	- ×	28	+	+++			+++	+++
44.1	81.3	102.7	0.0	0.0	0.0	<u>€</u>							
45.0	81.3	103.0	0.0	0.0	0.0	₽ E							
46.0	82.3	103.4	0.0	0.0	0.0	Jep!							
						۱"	32	+		++++	++++		
47.0 47.9	82.9 83.4	104.0 104.4	0.0	0.0	0.0							$1 \square \square$	
48.7	83.9	104.4	0.0	0.0	0.0								
	1												⊭∣∣I
49.6	84.4	105.2	0.0	0.0	0.0		36	+	+++	++++	+ + 	+	H + H
50.6	84.9	105.6	0.0	0.0	0.0								$\sharp $
51.6 52.6	85.4 85.0	105.9	0.0	0.0	0.0								≝∣ I I
	85.9 86.4	106.3											
53.6	86.4	106.4	0.0	0.0	0.0		40	$\dashv \vdash$	++++	$\neg \neg \vdash \vdash$			
54.6	86.9	106.9	0.0	0.0	0.0								
55.4	87.4	107.3	0.0	0.0	0.0								
56.4	87.9	107.6	0.0	0.0	0.0					++++		+++	
57.2	88.4	108.0	0.0	0.0	0.0		44	$\dashv \vdash$				+++	
59.0	88.8	108.4	0.0	0.0	0.0	_							
60.1	89.3	108.8	0.0	0.0	0.0								
60.9	89.7	109.0	0.0	0.0	0.0		40						
61.9	90.2	110.1	0.0	0.0	0.0		48 [[]						
62.6	90.6	110.4	0.0	0.0	0.0								

WB - Westbound
EB - Eastbound
OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane

DECEL - Deceleration ACCEL - Acceleration LN - Lane AG - At Grade F - Fill

				PROJECT	NUMBER				TIP						ROU	TE		
DYNAMIC	CONE PE	NETROME	TER DATA	6701	5.1.1				BR-00	015				Į	US 29/I	JS 70		
	AND IN-S	SITU CBR		COL	INTY		F	ELD	PROF	ESSI	ONAL				CRE	W		
				Davi	dson				an Kul	binski				Triç	gon Ex	plorati	on	
TES	T LOCATIO	N DESCRIPT	TION	DATE PE	RFORMED													
	L_4	000		5/4	/23													
DATUM	CUT/FILL	NORT	THING	EAS	TING					CC	RREL	ATEC	CBR	VALUI	ES			
Ex. Gr.	С	758	,893	1,62	2,633													
	CUMULATIV	E PENETRA	ATION IN CE	NTIMETERS														
8.5	0.0	0.0	0.0	0.0	0.0													
14.0	0.0	0.0	0.0	0.0	0.0			0.0	:	20.0		40.0		60.0	8	0.0	1	0.00
19.9	0.0	0.0	0.0	0.0	0.0		0											7
26.4	0.0	0.0	0.0	0.0	0.0													
33.5	0.0	0.0	0.0	0.0	0.0													
38.6	0.0	0.0	0.0	0.0	0.0			1										
42.7	0.0	0.0	0.0	0.0	0.0		4	\neg				\Box						7
46.5	0.0	0.0	0.0	0.0	0.0													
49.4	0.0	0.0	0.0	0.0	0.0													
52.6	0.0	0.0	0.0	0.0	0.0		8	Ш										╛
55.9	0.0	0.0	0.0	0.0	0.0		0											1
58.7	0.0	0.0	0.0	0.0	0.0													
62.0	0.0	0.0	0.0	0.0	0.0													
65.1	0.0	0.0	0.0	0.0	0.0	1	12					Ш						
68.1	0.0	0.0	0.0	0.0	0.0	1	12	T										
71.1	0.0	0.0	0.0	0.0	0.0			1										
75.3	0.0	0.0	0.0	0.0	0.0													
77.4	0.0	0.0	0.0	0.0	0.0		16											_
80.1	0.0	0.0	0.0	0.0	0.0				\									
82.8	0.0	0.0	0.0	0.0	0.0				$ \cdot $									
85.3	0.0	0.0	0.0	0.0	0.0				$\Lambda \sqcup \bot$									
88.0	0.0	0.0	0.0	0.0	0.0		20		1		44	4	\bot		$\perp \perp \perp$	4		4
90.1	0.0	0.0	0.0	0.0	0.0				$\parallel \parallel \parallel$									
92.5	0.0	0.0	0.0	0.0	0.0				Ш									
94.6	0.0	0.0	0.0	0.0	0.0				$ \rangle $									
97.2	0.0	0.0	0.0	0.0	0.0	hes	24	\vdash	+	+	+	+	+	+	+++	+		4
99.1	0.0	0.0	0.0	0.0	0.0	2			$\parallel \parallel \parallel$									
101.4	0.0	0.0	0.0	0.0	0.0	Ē												
103.5	0.0	0.0	0.0	0.0	0.0	atr												
106.7	0.0	0.0	0.0	0.0	0.0	Š	28			+-	-	+		+		+-		-
108.6	0.0	0.0	0.0	0.0	0.0	કુ			/									
110.7	0.0	0.0	0.0	0.0	0.0	Depth Below Datum (Inches)			\mathbb{N}									
113.3	0.0	0.0	0.0	0.0	0.0	ఠ												
115.0	0.0	0.0	0.0	0.0	0.0	1	32	+	+	+	++-	+	++	+	++	+	-	1
117.7	0.0	0.0	0.0	0.0	0.0	1			$ \setminus $									
120.1	0.0	0.0	0.0	0.0	0.0				1									
120.1	0.0	0.0	0.0	0.0	0.0	1			$ \rangle$									
120.3	0.0	0.0	0.0	0.0	0.0	1	36	+	+	+	+	$\dashv \vdash$	+++	+	++	+	\vdash	1
125.4	0.0	0.0	0.0	0.0	0.0	1			$ \cdot $									
127.7	0.0	0.0	0.0	0.0	0.0	-			K									
130.4	0.0	0.0	0.0	0.0	0.0	1			$ \rangle$									1
130.4	0.0	0.0	0.0	0.0	0.0	-	40	\sqcap		\top		$\dashv \vdash$	\top	\top	+	\dagger		1
135.6	0.0	0.0	0.0	0.0	0.0	-												
	0.0	0.0	0.0	0.0		-			14									
138.0					0.0	-			$\ \cdot\ _{\mathcal{J}}$									
0.0	0.0	0.0	0.0	0.0	0.0	-	44	\sqcap	Z	\top	\top		$\neg \neg \neg$	\top		\top		1
0.0	0.0	0.0	0.0	0.0	0.0	-				>								
0.0	0.0	0.0	0.0	0.0	0.0	-												
0.0	0.0	0.0	0.0	0.0	0.0	-	40			+	++	+		+				1
0.0	0.0	0.0	0.0	0.0	0.0	l	48							_				_
0.0	0.0	0.0	0.0	0.0	0.0													

Note(s):
WB - Westbound
EB - Eastbound
OSS - Outside Shoulder
ISS - Inside Shoulder DECEL - Deceleration ACCEL - Acceleration LN - Lane

AG - At Grade F - Fill OSL - Outside Lane

C - Cut SG - Subgrade T/ABC - Top of ABC Stone B/ABC - Bottom of ABC Stone Ex. Gr. - Existing Grade

SHEET 14

ПАИУМІС	CONE PE	NETROME:	TER DATA		511				TIP BR-00	15				OUTE 29/US	70	
C I IAMINIC		SITU CBR	ILIVUATA		INTY		FIE			SSION	ΔI			CREW		
	VIAD 114-0	,,, o obit			dson		- 115		an Kubi					Explor	ation	
TES	ST LOCATIO	N DESCRIPT	TION		RFORMED			ان		1010			riigon	-APIOI		
120		EB_ISL			2/23	1										
DATUM	CUT/FILL		THING		TING	1				CORR	RELATED	CBR VA	ALUES			
T/ABC	С		,107		2,815	1										
			ATION IN CE		-	1										
1.5	93.5	0.0	0.0	0.0	0.0	_										
2.2	97.0	0.0	0.0	0.0	0.0		0.	0	20	0.0	40.0	60	.0	80.0		100
2.7	98.0	0.0	0.0	0.0	0.0		0									\Box
3.6	99.8	0.0	0.0	0.0	0.0								_			
4.3	101.9	0.0	0.0	0.0	0.0											
4.9	0.0	0.0	0.0	0.0	0.0						+++					<u>Ц</u> [
5.5	0.0	0.0	0.0	0.0	0.0		4	+	+				H_B/A	BC ST	ONE	$\!$
6.1	0.0	0.0	0.0	0.0	0.0											+
6.9	0.0	0.0	0.0	0.0	0.0											
7.9	0.0	0.0	0.0	0.0	0.0		_									
9.1	0.0	0.0	0.0	0.0	0.0		8		\Box	\sqcap				$\neg \vdash$		\top
11.0	0.0	0.0	0.0	0.0	0.0				$ \cdot $							
14.9	0.0	0.0	0.0	0.0	0.0				$ \setminus $							
19.0	0.0	0.0	0.0	0.0	0.0		40	_								∐ I
22.4	0.0	0.0	0.0	0.0	0.0		12									П
25.5	0.0	0.0	0.0	0.0	0.0											
28.2	0.0	0.0	0.0	0.0	0.0	-										
31.1	0.0	0.0	0.0	0.0	0.0	-	16									Ш
33.7	0.0	0.0	0.0	0.0	0.0	-	10		7							П
36.0	0.0	0.0	0.0	0.0	0.0	-				1						
38.5	0.0	0.0	0.0	0.0	0.0	-				₽						
40.4	0.0	0.0	0.0	0.0	0.0		20		_\					\perp		Щ
42.6	0.0	0.0	0.0	0.0	0.0					₽││						
44.7	0.0	0.0	0.0	0.0	0.0				(
46.2	0.0	0.0	0.0	0.0	0.0	_			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
48.3	0.0	0.0	0.0	0.0	0.0	es)	24				\Box		-			Щ
50.1	0.0	0.0	0.0	0.0	0.0	글				Y						
51.6	0.0	0.0	0.0	0.0	0.0	Ε				\triangleright						
53.4	0.0	0.0	0.0	0.0	0.0	atr										
55.2	0.0	0.0	0.0	0.0	0.0		28	_		>		-	-	-		┦
56.9	0.0	0.0	0.0	0.0	0.0	Depth Below Datum (Inches)			$ \cdot \cdot _{I}$	1						
58.6	0.0	0.0	0.0	0.0	0.0	ŧ			(
60.3	0.0	0.0	0.0	0.0	0.0	- Ge			$ \cdot \cdot $	1						
61.8	0.0	0.0	0.0	0.0	0.0	1	32	+		+	+++	+++		+	\vdash	\forall
63.6	0.0	0.0	0.0	0.0	0.0					}						
65.0	0.0	0.0	0.0	0.0	0.0											
66.9	0.0	0.0	0.0	0.0	0.0											
68.8	0.0	0.0	0.0	0.0	0.0		36	\top	\nearrow	\vdash		+++	+++	\dashv	$\dashv \dashv$	╁
70.3	0.0	0.0	0.0	0.0	0.0											
71.9	0.0	0.0	0.0	0.0	0.0				4	++	-					⊢l
73.6	0.0	0.0	0.0	0.0	0.0		40			+						
75.4	0.0	0.0	0.0	0.0	0.0		40									П
77.2	0.0	0.0	0.0	0.0	0.0											
78.8	0.0	0.0	0.0	0.0	0.0											
80.4	0.0	0.0	0.0	0.0	0.0		44									
82.3	0.0	0.0	0.0	0.0	0.0		44									П
83.9	0.0	0.0	0.0	0.0	0.0											
85.7	0.0	0.0	0.0	0.0	0.0											
87.7	0.0						48									
		0.0	0.0	0.0	0.0		-o '									

WB - Westbound EB - Eastbound OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane

DECEL - Deceleration ACCEL - Acceleration LN - Lane AG - At Grade F - Fill

D.VIII.					NUMBER					IP							ROL		70		
DYNAMIC	CONE PE		TER DATA		5.1.1					0015							29/		70		_
	AND IN-S	SITU CBR			JNTY		FII				SIONA	\L_					CRE				
	T. 00. T. T.	1.0000000			dson				an K	ubin	ski					I rigo	n Ex	plor	ation		_
TES	T LOCATION		TION		RFORMED																
	L_4280_EB				2/23	-															
DATUM	CUT/FILL	NORT			TING					(CORR	ELA	ΓED	CBR	VAL	UES	5				
T/ABC	С	759			2,839																
	CUMULATIV	E PENETRA	ATION IN CE	NTIMETERS	3																
1.6	85.4	0.0	0.0	0.0	0.0																
3.9	88.8	0.0	0.0	0.0	0.0		0	0.0		20.	0	40	0.0		60.0)	1	80.0		10	0.0
5.5	92.0	0.0	0.0	0.0	0.0		U		\vdash	\rightarrow											1
6.8	95.6	0.0	0.0	0.0	0.0				•	$\langle $											
8.0	99.0	0.0	0.0	0.0	0.0						+										
8.8	102.5	0.0	0.0	0.0	0.0		4								\perp			\perp	Щ		
9.3	106.2	0.0	0.0	0.0	0.0		4			\prod								\blacksquare	5	Ŧ	1
9.7	110.0	0.0	0.0	0.0	0.0										\sqcup	+	ı				
10.1	113.5	0.0	0.0	0.0	0.0								+	71						\perp	
10.5	117.4	0.0	0.0	0.0	0.0	1	8			Ш					Ш	В	ABC	c si	ONE]
10.8	0.0	0.0	0.0	0.0	0.0	1	Ü			H	>					Ŧ		T		Ŧ	1
11.1	0.0	0.0	0.0	0.0	0.0	1				A											
11.6	0.0	0.0	0.0	0.0	0.0	1															
12.0	0.0	0.0	0.0	0.0	0.0	1	12	Щ	Ш	1	$\perp \perp$		Щ	Щ.	Щ	$\perp \! \! \perp$	Щ	\bot	Ш		1
12.4	0.0	0.0	0.0	0.0	0.0	1				lΙ											
12.9	0.0	0.0	0.0	0.0	0.0	1				M											
13.4	0.0	0.0	0.0	0.0	0.0	1				71											
13.9	0.0	0.0	0.0	0.0	0.0		16	Ц.	Ш	Д				Щ.	щ	Ш	Ш	_		_	1
14.4	0.0	0.0	0.0	0.0	0.0	1			($^{\prime}$											
15.1	0.0	0.0	0.0	0.0	0.0	1			∣∣'	$\setminus \setminus$											
15.8	0.0	0.0	0.0	0.0	0.0	1				21											
16.7	0.0	0.0	0.0	0.0	0.0	1	20	\vdash	$\perp \prime$	4					₩		-	+	\longrightarrow	_	4
17.9	0.0	0.0	0.0	0.0	0.0	1			/												
19.1	0.0	0.0	0.0	0.0	0.0	1															
20.6	0.0	0.0	0.0	0.0	0.0	1_			I												
21.8	0.0	0.0	0.0	0.0	0.0	i ş	24	\vdash	+-	₩			-	+-	₩		++	┿	+++	+	┨
23.4	0.0	0.0	0.0	0.0	0.0	를			}												
25.3	0.0	0.0	0.0	0.0	0.0	Ę			/												
27.0	0.0	0.0	0.0	0.0	0.0	퓵			\backslash												
28.7	0.0	0.0	0.0	0.0	0.0	Depth Below Datum (Inches)	28	-) -	+	+	-	\vdash	+	+	+	₩	+	++	+	1
30.6	0.0	0.0	0.0	0.0	0.0	3eK			/												
32.7	0.0	0.0	0.0	0.0	0.0	Ě															
34.7	0.0	0.0	0.0	0.0	0.0	De P															
36.5	0.0	0.0	0.0	0.0	0.0	1	32	\vdash	+	\forall	++	-	\vdash	+	+	++	++	+	$\forall \forall$	+	1
38.5	0.0	0.0	0.0	0.0	0.0	1															
40.5	0.0	0.0	0.0	0.0	0.0	1			I												
42.9	0.0	0.0	0.0	0.0	0.0	1															
45.0	0.0	0.0	0.0	0.0	0.0	1	36	\vdash	#	$\dagger \dagger$			\vdash	\top	\forall	+	\dagger	\top	$\sqcap \vdash$	\neg	1
46.8	0.0	0.0	0.0	0.0	0.0	1															
48.9	0.0	0.0	0.0	0.0	0.0	1															
51.4	0.0	0.0	0.0	0.0	0.0	1															
54.5	0.0	0.0	0.0	0.0	0.0	1	40		\sqcap	\sqcap					\top	\sqcap		\top			1
57.4	0.0	0.0	0.0	0.0	0.0	1															
						1															
60.6	0.0	0.0	0.0	0.0	0.0	1	44		Γ	\perp								_[_	
63.7	0.0	0.0	0.0	0.0	0.0	-	44		\sqcap	\sqcap					\top	\sqcap		T			1
67.7	0.0	0.0	0.0	0.0	0.0	-															
70.8	0.0	0.0	0.0	0.0	0.0	1															
75.3	0.0	0.0	0.0	0.0	0.0	-	48														
79.1	0.0	0.0	0.0	0.0	0.0	1	40														-
82.3 Note(s):	0.0	0.0	0.0	0.0	0.0																

Note(s): WB - Westbound DECEL - Deceleration EB - Eastbound
OSS - Outside Shoulder ACCEL - Acceleration LN - Lane

AG - At Grade F - Fill ISS - Inside Shoulder OSL - Outside Lane

C - Cut SG - Subgrade T/ABC - Top of ABC Stone B/ABC - Bottom of ABC Stone Ex. Gr. - Existing Grade

SHEET 15

				PROJECT	NUMBER				TIP					ROUT	E	
DYNAMIC	CONE PE	NETROMET	ER DATA	6701	5.1.1			E	3R-001	5			US	S 29/US	S 70	
	AND IN-S	SITU CBR		COL	INTY		FIE	LD PI	ROFES	SSIONA	L			CREW	1	
				Davi	dson			Dai	n Kubir	nski			Trigo	n Explo	oration	
TES	ST LOCATIO	N DESCRIPT	ION	DATE PE	RFORMED											
	L_4280_	EB_OSS		5/2	/23											
DATUM	CUT/FILL	NORT	HING	EAS	TING					CORRE	ELATED	CBR V	ALUES	3		
SG	С	759,	084	1,62	2,844											
	CUMULATIV	/E PENETRA	TION IN CE	NTIMETERS												
1.3	0.0	0.0	0.0	0.0	0.0											
2.3	0.0	0.0	0.0	0.0	0.0		0.0)	20	.0	40.0	ε	0.0	80.	.0	100
3.5	0.0	0.0	0.0	0.0	0.0		0									
5.0	0.0	0.0	0.0	0.0	0.0											
6.5	0.0	0.0	0.0	0.0	0.0					<i>)</i>						
8.1	0.0	0.0	0.0	0.0	0.0		4									
9.4	0.0	0.0	0.0	0.0	0.0		7					-	•			
10.5	0.0	0.0	0.0	0.0	0.0						111					
11.1	0.0	0.0	0.0	0.0	0.0				$ \cdot $	'						
11.9	0.0	0.0	0.0	0.0	0.0		8 -	\perp			\bot		+	$+\!\!+\!\!\!+\!\!\!\!+$		\perp
12.8	0.0	0.0	0.0	0.0	0.0				$ \langle \cdot \cdot $							
13.9	0.0	0.0	0.0	0.0	0.0				I							
15.4	0.0	0.0	0.0	0.0	0.0				I							
17.2	0.0	0.0	0.0	0.0	0.0		12	$+\!+$	\rightarrow	$\dashv \dashv$	+++	+++	+++	+++	+	\dashv
19.1	0.0	0.0	0.0	0.0	0.0				$ \setminus $							
21.6	0.0	0.0	0.0	0.0	0.0				 							
23.9	0.0	0.0	0.0	0.0	0.0				$\perp l$							
26.3	0.0	0.0	0.0	0.0	0.0		16 -		\rightarrow		\rightarrow		+++	+++	-	-
28.9	0.0	0.0	0.0	0.0	0.0											
31.0	0.0	0.0	0.0	0.0	0.0				$I \sqcup I$							
33.0	0.0	0.0	0.0	0.0	0.0											
34.9	0.0	0.0	0.0	0.0	0.0		20		 							
36.9	0.0	0.0	0.0	0.0	0.0				/							
39.0	0.0	0.0	0.0	0.0	0.0											
41.0	0.0	0.0	0.0	0.0	0.0	ဖွ	24									
43.4	0.0	0.0	0.0	0.0	0.0	ğ	24		abla							
46.1	0.0	0.0	0.0	0.0	0.0	Datum (Inches)										
48.9	0.0	0.0	0.0	0.0	0.0	Ţ			$I \sqcup I$							
51.7	0.0	0.0	0.0	0.0	0.0		28	Щ	μ		$\bot \bot \bot$	$\perp \perp \perp$	$\bot \bot$	$\bot \bot \bot$		Щ
54.9	0.0	0.0	0.0	0.0	0.0	Below			$ \cdot $							
58.2	0.0	0.0	0.0	0.0	0.0	۾ P										
61.2	0.0	0.0	0.0	0.0	0.0	Depth										
63.9	0.0	0.0	0.0	0.0	0.0	!	32	\dashv	+	+	+++	+++	+ + +	$+\!+\!1$	+	\dashv
66.5	0.0	0.0	0.0	0.0	0.0											
69.5	0.0	0.0	0.0	0.0	0.0											
72.7	0.0	0.0	0.0	0.0	0.0											
76.2	0.0	0.0	0.0	0.0	0.0	ļ	36 -	+	+	\dashv	+++	+++	+++	+++		\dashv
79.9	0.0	0.0	0.0	0.0	0.0											
83.7	0.0	0.0	0.0	0.0	0.0											
87.3	0.0	0.0	0.0	0.0	0.0											
91.2	0.0	0.0	0.0	0.0	0.0		40	+	+	$\dashv \dashv \dashv$	++	+++	+++	╁┼┼	+	\dashv
95.0	0.0	0.0	0.0	0.0	0.0			$\ \ $								
98.5	0.0	0.0	0.0	0.0	0.0											
102.1	0.0	0.0	0.0	0.0	0.0			$\parallel \parallel$								
105.4	0.0	0.0	0.0	0.0	0.0		44 -	$\dashv \dagger$	+	$\dashv \dashv$	+++	+++	+++	+++	+	\dashv
108.9	0.0	0.0	0.0	0.0	0.0											
112.7	0.0	0.0	0.0	0.0	0.0											
116.5	0.0	0.0	0.0	0.0	0.0											
120.3	0.0	0.0	0.0	0.0	0.0		48									
0.0	0.0	0.0	0.0	0.0	0.0	L										

Note(s): WB - Westbound EB - Eastbound OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane

DECEL - Deceleration ACCEL - Acceleration

LN - Lane AG - At Grade F - Fill

DATUM C Ex. Gr.	L_46		ER DATA	6701 COU			EII	- 1 D		R-001	15 SSIO	NIAI				JS 29.		U		
DATUM C Ex. Gr.	L_46			COU	NITV		CIL	I D	DD	OFF	CCIO	LAI								_
DATUM C Ex. Gr.	L_46	I DESCRIPT					FIL					NAL					EW			
DATUM C Ex. Gr. CU	L_46	I DESCRIPT			dson			[Dan	Kubi	nski				Tri	gon Ex	kplora	ation		_
Ex. Gr.	UT/FILL	200	ION		RFORMED															
Ex. Gr.	-			5/4																
CU		NORT			TING						COF	REL	ATEI	CBR V	VALU	ES				
	С	759,			3,000															
4.7				NTIMETERS																
	0.0	0.0	0.0	0.0	0.0															
8.2	0.0	0.0	0.0	0.0	0.0		0	.0		20	0.0		40.0		60.0		80.0		10	0.0
13.2	0.0	0.0	0.0	0.0	0.0		·	Ν												
19.3	0.0	0.0	0.0	0.0	0.0				$\setminus \mid \mid$											
24.3	0.0	0.0	0.0	0.0	0.0				\setminus											
28.5	0.0	0.0	0.0	0.0	0.0		4	Щ	\perp		Ш		\perp			Ш	\perp			1
32.0	0.0	0.0	0.0	0.0	0.0		·													
34.2	0.0	0.0	0.0	0.0	0.0															
36.2	0.0	0.0	0.0	0.0	0.0															
40.1	0.0	0.0	0.0	0.0	0.0		8	Щ	Щ		$\sqcup \sqcup$		4	$\perp \!\!\! \perp \!\!\! \perp$	\bot	$\downarrow \downarrow \downarrow$	4		4	1
42.4	0.0	0.0	0.0	0.0	0.0		-													
44.5	0.0	0.0	0.0	0.0	0.0				$\parallel \parallel$											
45.9	0.0	0.0	0.0	0.0	0.0															
48.7	0.0	0.0	0.0	0.0	0.0		12	Щ	\downarrow		\sqcup	_	4	$\perp \!\!\! \perp \!\!\! \perp$	\bot	$\perp \perp$	4	_	4	1
51.7	0.0	0.0	0.0	0.0	0.0		_		N											
55.2	0.0	0.0	0.0	0.0	0.0	1														
58.8	0.0	0.0	0.0	0.0	0.0	1														l
62.6	0.0	0.0	0.0	0.0	0.0	1	16	Щ			\sqcup		\perp		\bot	+		\perp	4	1
66.7	0.0	0.0	0.0	0.0	0.0	1														
71.1	0.0	0.0	0.0	0.0	0.0	1				\ 										
75.8	0.0	0.0	0.0	0.0	0.0	1					1									
80.1	0.0	0.0	0.0	0.0	0.0	1	20	Н			Н-		\bot		+	+	\bot		-	ļ
84.4	0.0	0.0	0.0	0.0	0.0	1			I											
92.2	0.0	0.0	0.0	0.0	0.0	1			\parallel											
95.7	0.0	0.0	0.0	0.0	0.0	1_														
99.2	0.0	0.0	0.0	0.0	0.0	es P	24	Н	-		\vdash		+		+	+	+		+	┨
102.8	0.0	0.0	0.0	0.0	0.0	Datum (Inches)			Ш											
106.5	0.0	0.0	0.0	0.0	0.0	Ē														
110.4	0.0	0.0	0.0	0.0	0.0	横														
115.1	0.0	0.0	0.0	0.0	0.0	Ž	28	H	╂		\vdash		+		+	+	+		+	1
119.4	0.0	0.0	0.0	0.0	0.0	Below														
121.6	0.0	0.0	0.0	0.0	0.0	Ē														
124.6	0.0	0.0	0.0	0.0	0.0	Depth														1
124.0	0.0	0.0	0.0	0.0	0.0	1	32	\vdash	╫	\vdash	\vdash	-	+	\dashv	+	+	+	\dashv	+	1
0.0	0.0	0.0	0.0	0.0	0.0															
0.0	0.0	0.0	0.0	0.0	0.0	1			$ \cdot $											
0.0	0.0	0.0	0.0	0.0	0.0	-			'											
0.0	0.0	0.0	0.0	0.0	0.0		36	+	$\dashv \dashv$	\vdash	\vdash	\dashv	+	$\dashv \dashv \dashv$	+	+	+	\dashv	+	1
0.0	0.0	0.0	0.0	0.0	0.0	-			$\setminus \mid$											
						-														
0.0	0.0	0.0	0.0	0.0	0.0	-														1
0.0	0.0	0.0	0.0	0.0	0.0	-	40	\vdash	\top	\vdash	\vdash	\dashv	\top	$\dashv \dashv$	+	+	\top	$\dashv \dashv$	+	1
0.0	0.0	0.0	0.0	0.0	0.0	-														
0.0	0.0	0.0	0.0	0.0	0.0	-														1
0.0	0.0	0.0	0.0	0.0	0.0	-														1
0.0	0.0	0.0	0.0	0.0	0.0		44	\vdash	+	\vdash	\vdash	\vdash	+	+	+	+	+	\dashv	+	1
0.0	0.0	0.0	0.0	0.0	0.0															
0.0	0.0	0.0	0.0	0.0	0.0															1
0.0	0.0	0.0	0.0	0.0	0.0				\setminus											
0.0	0.0	0.0	0.0	0.0	0.0		48	ш		<u> </u>										J
0.0 Note(s):	0.0	0.0	0.0	0.0	0.0															

Note(s): WB - Westbound DECEL - Deceleration EB - Eastbound
OSS - Outside Shoulder ACCEL - Acceleration LN - Lane

AG - At Grade F - Fill ISS - Inside Shoulder OSL - Outside Lane

C - Cut SG - Subgrade T/ABC - Top of ABC Stone B/ABC - Bottom of ABC Stone Ex. Gr. - Existing Grade

SHEET 16

ΥΝΔΜΙ	CONE PE	NETROME:	TFR DATA	PROJECT 6701						IP -0015	;					OUTE 9/US 70)	
		SITU CBR	LINDAIA	COU			FI	ELD			SIONA	\L				REW		
	,	J.1.0 05.1		Davi		1			Dan K			-		Tri		xplora	ion	
TES	ST LOCATIO	N DESCRIPT	TION	DATE PER											ع ۱۰۰ د ق			
		1800		5/4														
DATUM	CUT/FILL	NOR1	THING	EAS	TING	1					CORR	ELATE	СВБ	R VALU	ES			
Ex. Gr.	С	759	,525	1,623	3,123	1												
	CUMULATIV	/E PENETR	ATION IN CE	NTIMETERS		1												
11.4	0.0	0.0	0.0	0.0	0.0													
20.0	0.0	0.0	0.0	0.0	0.0	1	(0.0		20.)	40.0		60.0		80.0		100
34.8	0.0	0.0	0.0	0.0	0.0	1	0											
40.5	0.0	0.0	0.0	0.0	0.0	1		\mathbb{N}										
44.8	0.0	0.0	0.0	0.0	0.0	1												П
49.0	0.0	0.0	0.0	0.0	0.0	1		Ш										
52.9	0.0	0.0	0.0	0.0	0.0	1	4	T										П
56.7	0.0	0.0	0.0	0.0	0.0													
60.2	0.0	0.0	0.0	0.0	0.0													
63.3	0.0	0.0	0.0	0.0	0.0		8		Ш	Щ	Щ			$\sqcup \!\!\! \perp$			$\sqcup \sqcup$	Ц
66.5	0.0	0.0	0.0	0.0	0.0		٠											
72.5	0.0	0.0	0.0	0.0	0.0													
75.4	0.0	0.0	0.0	0.0	0.0													
78.3	0.0	0.0	0.0	0.0	0.0		12	1	++	$+\!\!+$	$+\!+\!+\!$	$\dashv \downarrow$	+	++	+	+	$\vdash\vdash\vdash$	Н
81.5	0.0	0.0	0.0	0.0	0.0													
84.5	0.0	0.0	0.0	0.0	0.0			$ \langle $										
87.6	0.0	0.0	0.0	0.0	0.0			1										
90.7	0.0	0.0	0.0	0.0	0.0		16	\dashv	+	++	++	$\dashv +$	++	++	++	++	++-	Н
93.9	0.0	0.0	0.0	0.0	0.0				\setminus									
96.6	0.0	0.0	0.0	0.0	0.0													
99.2	0.0	0.0	0.0	0.0	0.0													
101.8	0.0	0.0	0.0	0.0	0.0		20		\top	$\top \top$				\top	$\neg \neg$			Н
104.2	0.0	0.0	0.0	0.0	0.0													
106.9	0.0	0.0	0.0	0.0	0.0													
109.6	0.0	0.0	0.0	0.0	0.0	es)	24											
112.3	0.0	0.0	0.0	0.0	0.0	(Inches)	24											
115.7	0.0	0.0	0.0	0.0	0.0	= =			Ш									
118.3	0.0	0.0	0.0	0.0	0.0	Datum			/									
121.1	0.0	0.0	0.0	0.0	0.0		28	Н	/	-		\rightarrow					Ш.	Н
123.6	0.0	0.0	0.0	0.0	0.0	Below												
125.9 128.6	0.0	0.0	0.0	0.0	0.0	₽ ₽												
131.0	0.0	0.0	0.0	0.0	0.0	Depth			I									
133.2	0.0	0.0	0.0	0.0	0.0	1	32	+	+	+	++	$\dashv +$	++	++	+	++	++	Н
135.7	0.0	0.0	0.0	0.0	0.0													
138.0	0.0	0.0	0.0	0.0	0.0	1												
140.5	0.0	0.0	0.0	0.0	0.0	1												
0.0	0.0	0.0	0.0	0.0	0.0	1	36	\Box	#	$\dagger \dagger$	$\top \top$	$\dashv \vdash$	\top	+	\top		\sqcap	Н
0.0	0.0	0.0	0.0	0.0	0.0													
0.0	0.0	0.0	0.0	0.0	0.0	1												
0.0	0.0	0.0	0.0	0.0	0.0		40											
0.0	0.0	0.0	0.0	0.0	0.0		40											
0.0	0.0	0.0	0.0	0.0	0.0	1			\perp /									
0.0	0.0	0.0	0.0	0.0	0.0	1												
0.0	0.0	0.0	0.0	0.0	0.0	1	44	Щ	4	+	+	\bot		4		4	$\sqcup\sqcup$	Ц
0.0	0.0	0.0	0.0	0.0	0.0	1			/									
0.0	0.0	0.0	0.0	0.0	0.0	1												
0.0	0.0	0.0	0.0	0.0	0.0)									
0.0	0.0	0.0	0.0	0.0	0.0		48											Ш
0.0	0.0	0.0	0.0	0.0	0.0	1												

WB - Westbound
EB - Eastbound
OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane

DECEL - Deceleration ACCEL - Acceleration LN - Lane AG - At Grade F - Fill

				PROJECT NUMBER		TIP						ROUTE				
DYNAMIC		NETROMET	ER DATA		5.1.1			BR-00				Wes	st 5th Av			
	AND IN-S	SITU CBR			INTY	F		PROFE		AL			CREW			
	TIOCATIC	U DECCRISE	ON		dson			Dan Kub	ınski			Frigo	on Explo	ration		
TES		N DESCRIPTI	UN		RFORMED											
DATING		_RT_LN	UINO		/23 TING				005	251.45						
DATUM	CUT/FILL	NORTI	_		EASTING				CORI	KELA1	ED CBF	VALUI	ES			
SG	F CHANN ATD	758,0			1,912											
		/E PENETRA														
1.7	0.0	0.0	0.0	0.0	0.0					40	•	60.0	00.		400.0	
2.9	0.0	0.0	0.0	0.0	0.0		0.0	2	20.0	40.	.0	60.0	80.0	,	100.0	
4.1	0.0	0.0	0.0	0.0	0.0				+							
5.0	0.0	0.0	0.0	0.0	0.0					\rightarrow						
6.6	0.0	0.0	0.0	0.0	0.0				H							
8.3	0.0	0.0	0.0	0.0	0.0		4		\bot	+		\square	\rightarrow	+++		
10.0	0.0	0.0	0.0	0.0	0.0			$ \cdot \cdot \prime$								
12.0	0.0	0.0	0.0	0.0	0.0											
14.3	0.0	0.0	0.0	0.0	0.0	-		4	,							
16.7	0.0	0.0	0.0	0.0	0.0		8	+++		┼┼┨	+++	+++	$\dashv \dashv$	+++		
18.4	0.0	0.0	0.0	0.0	0.0			Y		$ \ \ $						
20.6	0.0	0.0	0.0	0.0	0.0			/		$ \ \ $						
23.2	0.0	0.0	0.0	0.0	0.0					$ \ \ $						
26.1	0.0	0.0	0.0	0.0	0.0	1	12 -	+/+	+++	┼┼╂	+++	++-	+++	+++	\dashv	
29.2	0.0	0.0	0.0	0.0	0.0			I		$ \ \ $						
33.3	0.0	0.0	0.0	0.0	0.0											
37.8	0.0	0.0	0.0	0.0	0.0			I + 1		$ \ \ $						
43.1	0.0	0.0	0.0	0.0	0.0	1 1	16	 	+++	╅	+++	+++	$\dashv + \dagger$	+++	\dashv	
48.4	0.0	0.0	0.0	0.0	0.0					$ \ \ $						
52.5	0.0	0.0	0.0	0.0	0.0					$ \ \ $						
56.7	0.0	0.0	0.0	0.0	0.0		_	I + I		$ \ \ $						
63.7	0.0	0.0	0.0	0.0	0.0		20			$\uparrow \uparrow \uparrow \uparrow$			$\dashv \dagger$	\top	\sqcap	
70.4	0.0	0.0	0.0	0.0	0.0					$ \ \ $						
73.1	0.0	0.0	0.0	0.0	0.0			I + I		$ \ \ $						
75.5	0.0	0.0	0.0	0.0	0.0	es)	24									
78.5	0.0	0.0	0.0	0.0	0.0	Depth Below Datum (Inches)	-			$\sqcap \sqcap$						
81.8	0.0	0.0	0.0	0.0	0.0	ا ٿ				$ \ \ $						
85.2	0.0	0.0	0.0	0.0	0.0	agr				$ \ \ $						
89.7	0.0	0.0	0.0	0.0	0.0	ļč,	28 –		\bot	Щ		Щ	$\perp \! \! \perp \! \! \! \perp$	$\sqcup \sqcup$	Ш	
94.3	0.0	0.0	0.0	0.0	0.0	↓	-	N		$ \ \ $						
98.8	0.0	0.0	0.0	0.0	0.0	P P)		$ \ \ $						
102.5	0.0	0.0	0.0	0.0	0.0	e g		$ \cdot / \cdot $		$ \ \ $						
107.0	0.0	0.0	0.0	0.0	0.0		32	+H+	+	+ + +	+	++	$\dashv \dashv$	+	4	
111.6	0.0	0.0	0.0	0.0	0.0	-				$ \ \ $						
118.1	0.0	0.0	0.0	0.0	0.0	-				$ \ \ $						
131.5	0.0	0.0	0.0	0.0	0.0	-		I		$ \ \ $						
0.0	0.0	0.0	0.0	0.0	0.0	. 3	36 -	$H \rightarrow$	+++	┼┼╂	+++	++-	+++	+++	\dashv	
0.0	0.0	0.0	0.0	0.0	0.0					$ \ \ $						
0.0	0.0	0.0	0.0	0.0	0.0					$ \ \ $						
0.0	0.0	0.0	0.0	0.0	0.0			$ \setminus $		$ \ \ $						
0.0	0.0	0.0	0.0	0.0	0.0	- 4	10		++	╁┼╂	+++	HH	+++	++	\dashv	
0.0	0.0	0.0	0.0	0.0	0.0					$ \ \ $						
0.0	0.0	0.0	0.0	0.0	0.0					$ \ \ $						
0.0	0.0	0.0	0.0	0.0	0.0	-										
0.0	0.0	0.0	0.0	0.0	0.0	- 4	14 -	7		 		\Box	$\dashv \dashv$	+	\dashv	
0.0	0.0	0.0	0.0	0.0	0.0	-		$H \sqcup L$								
0.0	0.0	0.0	0.0	0.0	0.0	-		$I \sqcup \bot$		$ \ \ $						
0.0	0.0	0.0	0.0	0.0	0.0	1 .	18 L									
0.0	0.0	0.0	0.0	0.0	0.0	- 4	•• —									
0.0 Note(s):	0.0	0.0	0.0	0.0	0.0											

Note(s):

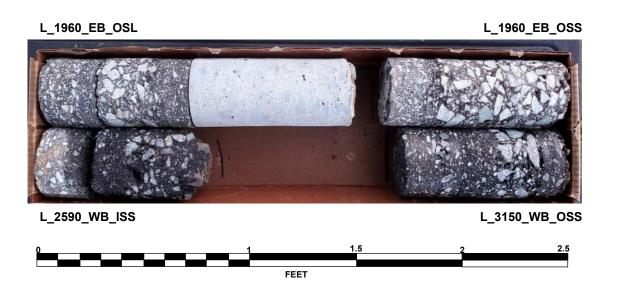
RT - Right LN - Lane PS - Paved Shoulder SG - Subgrade AG - At Grade T/ABC - Top of ABC Stone F - Fill B/ABC - Bottom of ABC Stone C - Cut Ex. Gr. - Existing Grade

SHEET 17

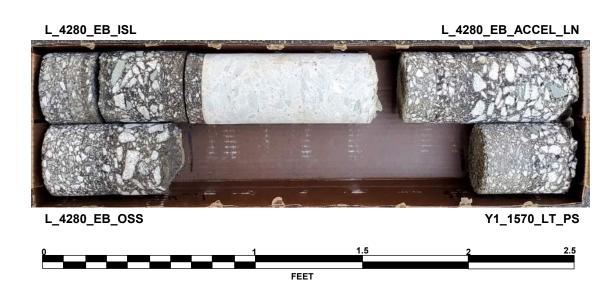
	PROJECT NUMI												ROUTE						
YNAMIC	CONE PE		TER DATA	6701				BR-(N		ıy Dr	ive		
	AND IN-S	SITU CBR			INTY	F		PRO			\L					REW			
					dson			Dan Kı	ubins	ski				Trig	on E	xplo	ratior	1	
TES	ST LOCATIO		ION		RFORMED														
		LT_LN		5/4/23															
DATUM	CUT/FILL	_	THING	EAS				(CORR	ELAT	ED C	BR V	/ALU	ES					
T/ABC	С		,472		2,178														
	CUMULATIV																		
1.0	66.9	0.0	0.0	0.0	0.0														
1.6	68.4	0.0	0.0	0.0	0.0		0.0		20.	0	40.	0	6	0.0		80.0)	10	0.0
2.1	69.9	0.0	0.0	0.0	0.0		ľГ					+	H	\vdash	$\overline{}$				Ì
2.6	71.7	0.0	0.0	0.0	0.0										_				i
3.0	73.4	0.0	0.0	0.0	0.0													-	ļ
3.3	75.1	0.0	0.0	0.0	0.0		4		Щ		$\perp \perp$						-		ı
3.7	76.9	0.0	0.0	0.0	0.0		•				+	+		\rightarrow					l
4.2	78.7	0.0	0.0	0.0	0.0							$+\!+\!-$	\top	l 🗀	Z/AD	C 97	ONE	_	l
4.6	80.3	0.0	0.0	0.0	0.0	1	<u> </u>	4	1		1	++	\vdash	片	,, AD	- 31 	DIVE	7	Į
5.1	81.9	0.0	0.0	0.0	0.0	1	8 –	_//_	+	+	\dashv	+	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	l
5.7	83.4	0.0	0.0	0.0	0.0	1													
6.3	84.9	0.0	0.0	0.0	0.0														
6.8	86.2	0.0	0.0	0.0	0.0	1		I											
7.1	87.6	0.0	0.0	0.0	0.0	1 1	12 –	$\dashv \leftarrow$	+	+	\dashv	++	+	⊬	\vdash	+	+	+	ŀ
7.8	88.9	0.0	0.0	0.0	0.0	1		$ \rangle$	VΙ										
8.1	90.2	0.0	0.0	0.0	0.0	1			I										
8.8	91.5	0.0	0.0	0.0	0.0	1			$\ \ $										
9.3	93.0	0.0	0.0	0.0	0.0] 1	16 –	\vdash	4	++	\dashv	++	+	╁┼	+	+	+	+	ł
9.7	94.4	0.0	0.0	0.0	0.0				A										
10.4	95.6	0.0	0.0	0.0	0.0														
11.0	96.9	0.0	0.0	0.0	0.0				$\ \ $										
11.5	97.9	0.0	0.0	0.0	0.0] 2	20 -	\vdash	╫	+	$\dashv \vdash$	++-	+	\vdash	+	+	+	+	1
12.5	99.1	0.0	0.0	0.0	0.0	1			М										
13.1	100.4	0.0	0.0	0.0	0.0				KI.										
13.8	101.6	0.0	0.0	0.0	0.0	g .	.		}										
15.1	102.6	0.0	0.0	0.0	0.0] ទ្វី វិ	24		7		$\sqcap \uparrow$	\top		\sqcap		\top	\sqcap	\sqcap	1
17.9	103.7	0.0	0.0	0.0	0.0	Datum (Inches)			}										
21.2	104.8	0.0	0.0	0.0	0.0	Įį													
24.2	105.8	0.0	0.0	0.0	0.0	ړې ٍ	28 _				ot					\coprod			
27.2	106.9	0.0	0.0	0.0	0.0	Below	-0 -		1										
30.5	108.1	0.0	0.0	0.0	0.0	٦ڦ			$\ \ $										
32.8	109.3	0.0	0.0	0.0	0.0	Depth			(
34.8	110.4	0.0	0.0	0.0	0.0	۽ ۾	32		1	$\perp \perp$	\dashv	44	$\perp \!\!\! \perp$	Ш	$\perp \!\!\! \perp$	Щ	Ш	Ш	
36.7	111.5	0.0	0.0	0.0	0.0														
38.5	112.6	0.0	0.0	0.0	0.0	1				\									
40.3	113.9	0.0	0.0	0.0	0.0	1				$ \mathbf{x} $									
41.9	114.9	0.0	0.0	0.0	0.0		36 –	$\vdash\vdash$	+	<u> </u>	\dashv	+	\vdash	╀	\vdash	\vdash	\vdash	4	ŀ
43.8	115.9	0.0	0.0	0.0	0.0					$(\mid \mid)$									
45.6	117.0	0.0	0.0	0.0	0.0	1				1									
47.4	117.5	0.0	0.0	0.0	0.0	1					٢								
49.3	119.1	0.0	0.0	0.0	0.0	. 4	40	$\vdash\vdash$	+	+	+	++-	+	\vdash	+	+	+	\vdash	ł
51.2	120.0	0.0	0.0	0.0	0.0					$\ \cdot\ $	$[\mid]$								
53.2	121.3	0.0	0.0	0.0	0.0	1					'								
55.0	122.4	0.0	0.0	0.0	0.0					$ \zeta $									
57.0	123.4	0.0	0.0	0.0	0.0	. ∠	44 📙	$\vdash\vdash$	+	╁	\dashv	++	+	\vdash	+	+	+	+	ł
58.6	124.4	0.0	0.0	0.0	0.0	1				_	۱ _۱								
60.3	125.6	0.0	0.0	0.0	0.0	1				4				\vdash	\vdash				
62.1	0.0	0.0	0.0	0.0	0.0	1					\Rightarrow								
63.7	0.0	0.0	0.0	0.0	0.0] 4	48 🗀									ш.			J
65.4	0.0	0.0	0.0	0.0	0.0	1													

Note(s): RT - Right LN - Lane PS - Paved Shoulder SG - Subgrade AG - At Grade T/ABC - Top of ABC Stone F - Fill B/ABC - Bottom of ABC Stone C - Cut Ex. Gr. - Existing Grade

L_3870_WB_ISS


L_3870_WB_OSS

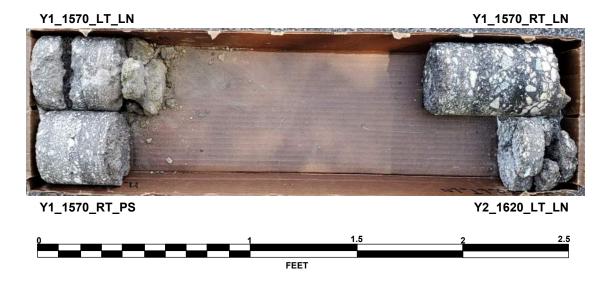
PAVEMENT CORE PHOTOGRAPHS


BR-0015 (67015.1.1)

Bridge No. 67 and No. 68 Replacements on US 29/US 70 NB & SB over SR 1192 (W. 5th Avenue)

BOX 2

BOX 1


BOX 3

PAVEMENT CORE PHOTOGRAPHS

BR-0015 (67015.1.1)

Bridge No. 67 and No. 68 Replacements on US 29/US 70 NB & SB over SR 1192 (W. 5th Avenue)

BOX 5

LABORATORY SUMMARY SHEET FOR SOIL SAMPLES

WBS NO. (TIP NO.): 67015.1.1 (BR-0015)

PROJECT ID: 41620 COUNTY: DAVIDSON

DESCRIPTION: BRIDGE NO. 67 AND NO. 68 REPLACEMENTS ON US 29/US 70 NB & SB OVER SR 1192 (W. 5TH AVENUE)

										Atterberg Limit	s	Gradation Results							
Sample No.	Boring Number	Alignment	Station	Offset	Sample Depth (ft.)	Natural Moisture Content (%)	AASHTO Class.	N-Value (blows/ft)	L.L.	P.L.	P.I.	Retained #4 Sieve	Pass #10 Sieve	Pass #40 Sieve	Pass #200 Sieve	Coarse Sand (%)	Fine Sand (%)	Silt (%)	Clay (%)
S-1	L_1830_WB_ISS	-L-	18+30	12' LT	0.0 - 5.0	27.1	A-7-5	-	82	34	48	3.0	95.0	84.0	59.0	18.7	22.2	18.6	40.5
S-2	L_1960_EB_ISS	-L-	19+60	12' RT	0.0 - 5.0	30.1	A-7-5		68	34	34	0.0	99.0	93.0	64.0	13.6	26.7	29.1	30.6
S-3	L_2590_WB_ISS	-L-	25+90	12' LT	0.0 - 5.0	28.4	A-7-5		69	34	35	1.0	98.0	92.0	66.0	11.3	26.7	21.6	40.4
S-4	L_3150_WB_OSS	-L-	31+50	39' LT	0.0 - 5.0	35.0	A-7-5		76	33	43	1.0	98.0	94.0	76.0	6.1	23.4	21.6	48.9
S-5	L_3275_EB_DECEL_LN	-L-	32+75	47' RT	0.0 - 5.0	26.7	A-7-5		64	31	33	1.0	99.0	96.0	75.0	5.8	26.0	31.9	36.3
S-6	L_3870_WB_ISS	-L-	38+70	12' LT	0.0 - 5.0	25.9	A-7-6		59	20	39	2.0	96.0	89.0	72.0	12.8	15.7	15.0	56.5
S-18*	L_4000^	-L-	40+00	0' CL	1.0 - 1.5	33.2	A-7-5		65	40	25	0.0	99.1	94.7	73.2	10.1	20.9	23.9	45.1
S-7	L_4280_EB_ISL	-L-	42+80	13' RT	0.0 - 5.0	38.4	A-7-5		79	42	37	0.0	100.0	98.0	73.0	5.2	26.5	15.6	52.7
S-20*	L_4600^	-L-	46+00	0' CL	1.0 - 2.0	26.8	A-7-5		51	33	18	0.0	99.0	96.0	51.0	13.0	41.3	13.6	32.1
S-8	Y1_1570_RT_LN	-Y1-	15+70	10' RT	0.0 - 5.0	24.8	A-7-6		59	24	35	1.0	99.0	93.0	69.0	13.2	21.2	19.4	46.2
S-9	Y2_1620_LT_LN	-Y2-	16+20	6' LT	0.0 - 5.0	32.8	A-7-5		65	31	34	1.0	99.0	97.0	80.0	5.1	19.5	20.3	55.1
CBR-1*	L_1450^	-L-	14+50	88' LT	8.5 - 18.5	27.0	A-7-5		60	44	16	0.0	100.0	93.1	56.6	14.7	35.3	23.4	26.6
CBR-2*	L_1850^	-L-	18+50	89' LT	0.0 - 10.0	30.6	A-7-5		60	35	25	0.0	100.0	95.2	75.9	9.9	19.4	26.1	44.7
CBR-3*	L_4200^	-L-	42+00	0' CL	0.0 - 2.5	37.3	A-7-5		73	37	36	8.0	91.0	96.6	78.4	7.2	18.6	28.9	45.2

^{*}Based on Roadway Investigation sample number

Michelle Stadel, P.E.

Lab Manager, NCDOT Certification No.: 111-02-1203

Victoria Siebert

Lab Technician, NCDOT Certification No.: 109-02-1003

[^]Based on Roadway Investigation boring number

ent: North Carolina Dept. of Transportation

Report No.: 23-CLT-00649 Rev. 1

Issued: 6/9/2023

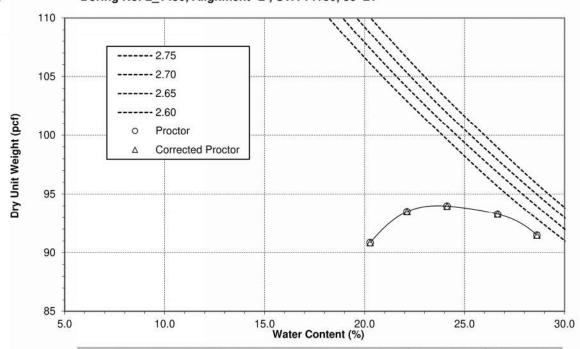
ect: **20235702.001A**

Sampled by: Mayson Foster

Dan Kubinski

Submitted by:

Field ID: L_1450, CBR-1 Date: 5/8/2023


NCDOT BR-0015 Roadway 02-000L - Lab

Date: 5/15/2023

Tested on 5/24/2023 by C. Blalock

Material Description: Brown Sandy Silt (A-7-5)
Location: Boring No. L_1450, Align

Boring No. L_1450, Alignment -L-, STA 14+50, 88' LT

Test Method: AASHTO T99 A	Uncorrected	Corrected
Maximum Dry Unit Weight (pcf)	94.0	na
Optimum Water Content (%)	23.6	na
Oversize Fraction, retained on 3/4 (%)		<5
Bulk Specific Gravity of Oversize Fraction	na	

Rammer Type: Manual Specimen Preparation: Moist

Remarks:

AASHTO T-100, Soil Specific Gravity @ 20°C: 2.747

Reviewed on 6/9/2023 by Michelle Stadel,

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder.

Kleinfelder Charlotte Lab | 9009 Perimeter Woods Drive, Suite E | Charlotte, NC 28216 | (704) 598-1049

SHEET 21

Laboratory Test Report

Submitted by:

Dan Kubinski

North Carolina Dept. of Transportation Report No.: 23-CLT-00649 Rev. 1 Issued: 6/9/2023

 Project:
 20235702.001A
 Field ID:
 L_1450, CBR-1

 NCDOT BR-0015 Roadway
 Sampled by:
 Mayson Foster
 Date:
 5/8/2023

Sample Source: Boring No. L 1450, Alignment -L-, STA 14+50, 88' LT

Sample ID: CBR-1

Sample Description: Brown Sandy Silt (A-7-5)

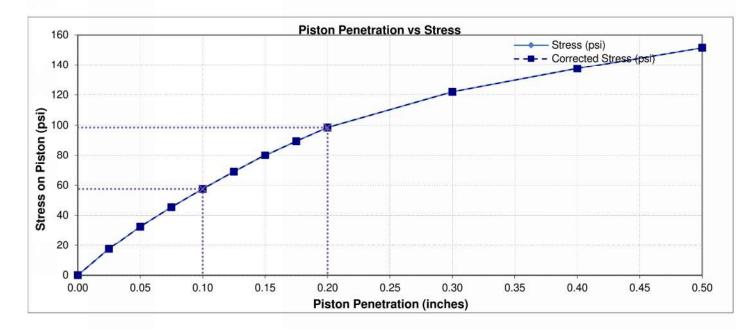
Material Used:

02-000L - Lab

Surcharge Weight: 10 lbs

Date Tested: 5/30/2023
Tested By: C. Blalock

Date:


5/15/2023

Condition of Sample: Soaked

Time Soaked: 96 hrs

AASHTO T193 - Standard Test Method for The California Bearing Ratio (CBR)

Dry Unit Wgt Before Soaking (pcf): Compaction Method: 90.8 Water Content Before Soaking (%): 21.2 Manual Dry Unit Wgt After Soaking (pcf): Max. Dry Unit Weight: 101.1 Water Content After Soak, Top in. (%): 30.3 94.0 pcf Swell (%): 5.65 Optimum Water Content: CBR (Corrected CBR) @ 0.1 in. Penetration: 5.8 (5.8) 23.6 % CBR (Corrected CBR) @ 0.2 in. Penetration: 6.6 (6.6)

Remarks:

Reviewed on 6/9/2023 by Michelle Stadel,

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder.

North Carolina Dept. of Transportation

NCDOT BR-0015 Roadway

Report No.: 23-CLT-00650 Rev. 1 Issued: 6/9/2023

Date:

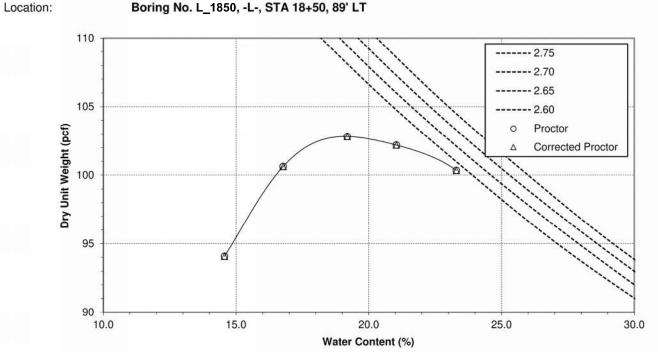
20235702.001A

Tested on

Sampled by: Mayson Foster

Field ID: L 1850, CBR-2

5/15/2023


Material Description:

Submitted by: Dan Kubinski Date: 5/9/2023

02-000L - Lab

by C. Blalock 5/24/2023

> Reddish Yellow Elastic Silt with Sand (A-7-5) Boring No. L_1850, -L-, STA 18+50, 89' LT

Test Method: AASHTO T99 A	Uncorrected	Corrected
Maximum Dry Unit Weight (pcf)	102.8	na
Optimum Water Content (%)	19.1	na
Oversize Fraction, retained on 3/4 (%)	'	<5
Bulk Specific Gravity of Oversize Fraction	na	

Rammer Type: Manual Specimen Preparation: Moist

Remarks:

AASHTO T-100, Soil Specific Gravity at 20°C: 2.678

Reviewed on 6/9/2023 by Michelle Stadel,

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder

Kleinfelder Charlotte Lab | 9009 Perimeter Woods Drive, Suite E | Charlotte, NC 28216 | (704) 598-1049

KLEINFELDER

Project: 20235702.001A

Sample Source:

Material Used:

Sample ID:

02-000L - Lab

Sample Description:

Surcharge Weight:

SHEET 22

Laboratory Test Report

North Carolina Dept. of Transportation

CBR-2

10 lbs

NCDOT BR-0015 Roadway

Report No.:

23-CLT-00650 Rev. 1

Issued: 6/9/2023 Field ID: L 1850, CBR-2

Date: 5/9/2023

Sampled by: **Mayson Foster** Submitted by:

Date: 5/15/2023

Boring No. L_1850, -L-, STA 18+50, 89' LT

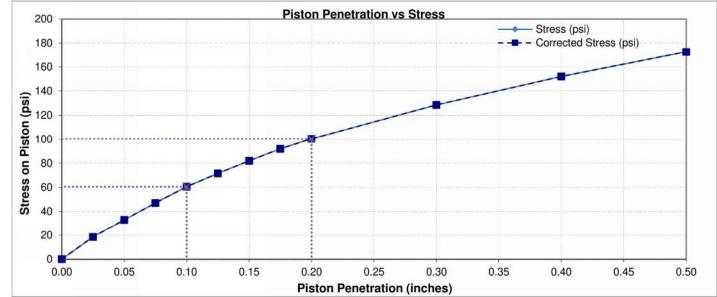
Dan Kubinski

5/30/2023

96 hrs

Tested By: Condition of Sample:

C. Blalock Soaked


Time Soaked:

Date Tested:

Reddish Yellow Elastic Silt with Sand (A-7-5)

AASHTO T-193 - Standard Test Method for The California Bearing Ratio

Dry Unit Wgt Before Soaking (pcf):	100.6	Compaction Method:
Water Content Before Soaking (%):	17.0	Manual
Dry Unit Wgt After Soaking (pcf):	106.1	Max. Dry Unit Weight:
Water Content After Soak, Top in. (%):	27.1	102.8 pcf
Swell (%):	4.1	Optimum Water Content:
CBR (Corrected CBR) @ 0.1 in. Penetration:	6.1 (6.1)	19.1 %
CBR (Corrected CBR) @ 0.2 in. Penetration:	6.7 (6.7)	

Remarks:

Reviewed on 6/9/2023 by Michelle Stadel,

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder

North Carolina Dept. of Transportation

Report No.: 23-CLT-00649 Rev. 1

6/9/2023 Issued:

20235702.001A

Project: 20235702.001A

KLEINFELDER

23-CLT-00649 Rev. 1

Field ID: L 1450, CBR-1

02-000L - Lab

Sampled by: **Mayson Foster** Date: 5/8/2023

Issued: 6/9/2023

Date:

NCDOT BR-0015 Roadway

North Carolina Dept. of Transportation

Submitted by:

Report No.:

Dan Kubinski

5/15/2023

SHEET 23

Tested By: C. Blalock Date Molded: 5/31/2023

Sample Location: Boring No. L-1450, CBR-1, 8.5' - 18.5'

Alignment -L-, STA 14+50, 88' LT

ASTM D5102 - Modified, Unconfined Compressive Strength of Compacted Soil-Lime Mixtures

Laboratory Test Report

	A	В	С	D
Sample Preparation:	AASHTO T99	AASHTO T99	AASHTO T99	AASHTO T99
Water Content (%):	25.7	26	25.9	26
Height (in):	4.632	4.619	4.644	4.62
Diameter (in):	4.00	4.00	3.999	4.002
Cross-Sectional Area (in ²):	12.57	12.59	12.56	12.58
Test Date:	6/7/2023	6/7/2023	6/7/2023	6/7/2023
Age (days):	7	7	7	7
Maximum Load (lbf):	860	830	850	850
h/d Conversion Factor	none	none	none	none
Compressive Strength (psi):	70	65	70	70
Dry Unit Weight (pcf):	89.6	89.2	88.4	88.5

Sample Preparation

Water Content (%):

Height (in):

Diameter (in):

Cross-Sectional Area (in2):

Test Date:

Age (days):

Maximum Load (lbf):

h/d Conversion Factor

Compressive Strength (psi):

Curing Details: Samples extruded, placed in plastic bags, and cured for 7 days at 73°F ± 4°. Specification: Per NCDOT, cast according to AASHTO T99 and broke per AASHTO T208.

Remarks:

(A) 3.0% Lime; Percent Strain = 2.0. (B) 3.0% Lime; Percent Strain = 2.4.

(C) 5% Lime; Percent Strain = 2.5. (D) 5% Lime; Percent Strain = 2.9.

Reviewed on 6/9/2023 by Michelle Stadel,

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder

NCDOT BR-0015 Roadway

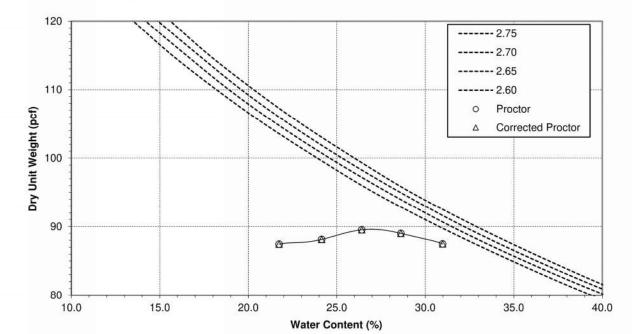
Field ID: L 1450, CBR-1

Sampled by: Submitted by:

Mayson Foster Dan Kubinski

Date: 5/8/2023 Date: 5/15/2023

02-000L - Lab


by C. Blalock 5/26/2023

Material Description: Brown Sandy Silt (A-7-5)

Location:

Tested on

Boring No. L-1450, Alignment -L-, STA 14+50, 88' LT, CBR-1, 8.5' - 18.5'

Test Method: AASHTO T99 A	Uncorrected	Corrected
Maximum Dry Unit Weight (pcf)	89.6	na
Optimum Water Content (%)	26.9	na
Oversize Fraction, retained on 3/4 (%)	, and the second	<5
Bulk Specific Gravity of Oversize Fraction	na	

Rammer Type: Manual Specimen Preparation: Dry

Remarks: +4% Lime

Reviewed on 6/9/2023 by Michelle Stadel,

Michelle M. Stadel

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder

Kleinfelder Charlotte Lab | 9009 Perimeter Woods Drive, Suite E | Charlotte, NC 28216 | (704) 598-1049

North Carolina Dept. of Transportation

5/25/2023

Report No.: 23-CLT-00651 Rev. 0 Issued: 6/9/2023

20235702.001A

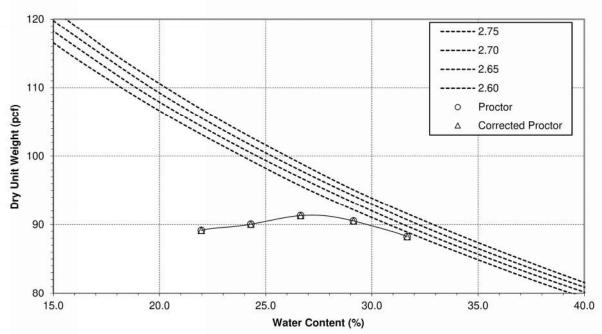
Tested on

Field ID: L-4200, CBR-3

5/15/2023

NCDOT BR-0015 Roadway

Dan Kubinski Sampled by: Submitted by: Dan Kubinski Date: 5/5/2023


Date:

02-000L - Lab

by C. Blalock

Material Description: Reddish Brown Elastic Silt with Sand (A-7-5)

Boring No. L-4200, Alignment -L-, STA 42+00, 0' CL, CBR-3, 0' - 2.5' Location:

Test Method: AASHTO T99 A	Uncorrected	Corrected
Maximum Dry Unit Weight (pcf)	91.4	na
Optimum Water Content (%)	27.2	na
Oversize Fraction, retained on 3/4 (%)	, and the second	<5
Bulk Specific Gravity of Oversize Fraction	na	

Rammer Type: Manual Specimen Preparation: Dry

Remarks: +4% Lime

AASHTO T100, Soil Specific Gravity = 2.727

Reviewed on 6/9/2023 by Michelle Stadel,

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registered design professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder

Kleinfelder Charlotte Lab | 9009 Perimeter Woods Drive, Suite E | Charlotte, NC 28216 | (704) 598-1049

KLEINFELDER

North Carolina Dept. of Transportation Report No.: 23-CLT-00651 Rev. 0

Project: 20235702.001A

Field ID: L-4200, CBR-3 **NCDOT BR-0015 Roadway** Date: 5/5/2023 Sampled by: Dan Kubinski 02-000L - Lab Submitted by: Dan Kubinski Date: 5/15/2023

Tested By: C. Blalock Date Molded: 5/31/2023

Sample Location: Boring No. L-4200, CBR-3, 0' - 2.5'

Alignment -L-, STA 42+00, 0' CL

ASTM D5102 - Modified, Unconfined Compressive Strength of Compacted Soil-Lime Mixtures

	A	В	С	D
Sample Preparation:	AASHTO T208	AASHTO T208	AASHTO T208	AASHTO T208
Water Content (%):	25.4	25.5	26.2	25.9
Height (in):	4.641	4.623	4.628	4.615
Diameter (in):	3.99	4.01	4	4
Cross-Sectional Area (in ²):	12.53	12.6	12.57	12.57
Test Date:	6/7/2023	6/7/2023	6/7/2023	6/7/2023
Age (days):	7	7	7	7
Maximum Load (lbf):	760	770	820	910
h/d Conversion Factor	none	none	none	none
Compressive Strength (psi):	60	60	65	70
Dry Unit Weight (pcf):	91.9	91.6	90.1	90.5

Sample Preparation:

Water Content (%):

Height (in):

Diameter (in):

Cross-Sectional Area (in2):

Test Date:

Age (days):

Maximum Load (lbf): h/d Conversion Factor Compressive Strength (psi):

Curing Details: Samples extruded, placed in plastic bags, and cured for 7 days at 73°F ± 4°. Specification: Per NCDOT, cast according to AASHTO T99 and broke per AASHTO T208.

Remarks:

(A) 3.0% Lime; Percent Strain = 2.2. (B) 3.0% Lime; Percent Strain = 2.1.

(C) 5% Lime; Percent Strain = 2.1. (D) 5% Lime; Percent Strain = 2.4.

Reviewed on 6/9/2023 by Michelle Stadel,

SHEET 24

6/9/2023

Issued:

Limitations: Pursuant to applicable building codes, the results presented in this report are for the exclusive use of the client and the registeredesign professional in responsible charge. The results apply only to the samples tested. If changes to the specifications were made and not communicated to Kleinfelder, Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder

PAVEMENT CORE EVALUATION

BR-0015 (67015.1.1)

BRIDGE NO. 67 AND NO. 68 REPLACEMENTS ON US 29/US 70 NB & SB OVER SR 1192 (W. 5TH AVENUE)

LINE	STATION		LAYER THICKNESS	PAVEMENT	REMARKS
		(in)	(in)	LAYERS	
	1000 14/0 100		4.00	<u>s</u>	3 Lifts; Delamination between 2nd and 3rd lift; Low oxidation
-L-	1830_WB_ISS	2.00	2.75	В	1 Lift; Low oxidation
	6.75" Asphalt				
			4.25	S	3 Lifts; Low oxidation
	1830_WB_OSL		3.00	В	1 Lift; Delamination between base asphalt and concrete layer; Low oxidation
-L-	7.25" Asphalt	4.50	9.25	C	1 Lift
	9.25" Concrete			-	
			3.75	S	3 Lifts; Low oxidation
-L-	1830_WB_OSS	0.00	4.75	В	2 Lifts; Low oxidation
-L-	8.50" Asphalt	0.00			
			4.25	S	3 Lifts; Delamination between 2nd and 3rd lift; Low oxidation
-L-	1960_EB_ISS	0.00	3.00	В	1 Lift; Low oxidation
_	7.25" Asphalt				
			3.00	S	2 Lifts; Delamination between surface asphalt and base asphalt layers; Low oxidation
	1960_EB_OSL		3.25	B	1 Lift; Low oxidation
-L-	8.25" Asphalt	4.75	2.00	S	1 Lift; Delamination between surface asphalt and concrete layer; Low oxidation
	9.25" Concrete		9.25	C	1 Lift
			3.00	S	2 Lifts; Low oxidation
	1960_EB_OSS		7.25	В	2 Lifts; Low oxidation
-L-	10.25" Asphalt	11.75		-	
	,				
			4.50	S	3 Lifts; Delamination between 2nd and 3rd lift; Low oxidation
-L-	2590_WB_ISS	0.00	4.00	В	1 Lift; Low oxidation
	8.50" Asphalt	0.00			
	0.450 14/0 000		5.25	S	3 Lifts; Low oxidation
-L-	3150_WB_OSS	0.00	2.50	<u>B</u>	1 Lift; Low oxidation
	9.25" Asphalt		1.50	S	1 Lift; Low oxidation
			5.00	S	3 Lifts; Delamination between 2nd and 3rd lift; Low oxidation
	3275_EB_DECEL_LN		5.75	B	1 Lift; Low oxidation
-L-	10.75" Asphalt	7.00	5.70		I may not offendoll
			4.00	S	2 Lifts; Low oxidation
-L-	3870_WB_ISS	0.00	3.00	В	1 Lift; Low oxidation
-L-	7.00" Asphalt	0.00			
			4.00	S	2 Lifts; Low oxidation
-L-	3870_WB_DECEL_LN	7.00	7.00	В	2 Lifts; Low oxidation
	11.00" Asphalt				
	+		4.00	S	2 Lifts; Low oxidation
	3870 WB OSS		3.50	<u>S</u>	1 Lift; Low oxidation
-L-	7.50" Asphalt	0.00	3.30	U	1 Lity Low Oxidation
	7.00 Aprilate				
Noto/o\.	1		ı		1

Note(s):

NM - Not Measured
PS - Paved Shoulder
WB - Westbound
EB - Eastbound
LT - Left
RT - Right

OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane DECEL - Deceleration ACCEL - Acceleration LN - Lane

S - Asphalt Surface Course
I - Asphalt Intermediate Course
B - Asphalt Base Course
C - Concrete

PAVEMENT CORE EVALUATION

BR-0015 (67015.1.1)
BRIDGE NO. 67 AND NO. 68 REPLACEMENTS ON US 29/US 70 NB & SB OVER SR 1192 (W. 5TH AVENUE)

LINE	STATION		LAYER THICKNESS	PAVEMENT	REMARKS
LINE	STATION	(in)	(in)	LAYERS	REWARKS
	4280_EB_ISL		3.75	S	3 Lifts; Delamination between 2nd and 3rd lift; Low oxidation
-L-	8.50" Asphalt	5.00	2.75	В	1 Lift; Low oxidation
-L-	9.50" Concrete	3.00	2.00	S	2 Lifts; Delamination between 1st and 2nd lift; Low oxidation
	9.50 Concrete		9.50	С	
			3.75	S	3 Lifts; Low oxidation
-L-	4280_EB_ACCEL_LN	8.50	5.75	В	1 Lift; Low oxidation
-L-	9.50" Asphalt	0.50			
			3.50	S	3 Lifts; Low oxidation
-L-	4280_EB_OSS	0.00	3.50	В	1 Lift; Low oxidation
_	7.00" Asphalt	0.00			
			2.50	S	1 Lift; Low oxidation
-Y1-	1570_LT_PS	NM	2.50	l	1 Lift; Low oxidation
	5.00" Asphalt				
			6.00	S	2 Lifts; Low oxidation; Cracked completely through 1st surface asphalt layer
-Y1-	1570_LT_LN	NM			
	6.00" Asphalt				
			4.00		
	4570 DT 1N		4.00 3.00	S	2 Lifts; Low oxidation
-Y1-	1570_RT_LN	0.00	3.00	I	1 Lift; Low oxidation
	7.00" Asphalt				
			4.00	S	O Life of any anidation
	4570 DT D0		4.00	აა	2 Lifts; Low oxidation
-Y1-	1570_RT_PS 4.00" Asphalt	NM			
	4.00 Aspirali				
			3.00	S	2 Lifts; Low oxidation; Cracked completely through surface asphalt layer
	1620_LT_LN		3.00	3	2 Litts, Low oxidation, Gracked completely unlough surface aspiral rayer
-Y2-	3.00" Asphalt	7.00			+
	J.UU ASPIIAIL				+
		1			

Note(s):

NM - Not Measured PS - Paved Shoulder WB - Westbound EB - Eastbound LT - Left RT - Right

OSS - Outside Shoulder ISS - Inside Shoulder OSL - Outside Lane DECEL - Deceleration ACCEL - Acceleration LN - Lane

S - Asphalt Surface Course I - Asphalt Intermediate Course B - Asphalt Base Course C - Concrete