REFERENCE:

STATE	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
N.C.	SF-840286	1	19

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY STOKES

PROJECT DESCRIPTION BRIDGE NO. 286 ON SR 1236 (N. OLD US 52) OVER LITTLE YADKIN RIVER

CONTENTS

SHEET NO. **DESCRIPTION** TITLE SHEET 2.2A LEGEND (SOIL & ROCK) SUPPLEMENTAL LEGEND (GSI) 2B, 2C 3 SITE PLAN 4-7 CROSS SECTIONS 8-12, 14-15, 17-18 BORE LOGS AND CORE REPORTS CORE PHOTOGRAPHS 13, 16 SITE PHOTOGRAPH

INVESTIGATED BY J. E. BEVERLY DRAWN BY C. E. BURRIS CHECKED BY C. R. LAVENDER, III

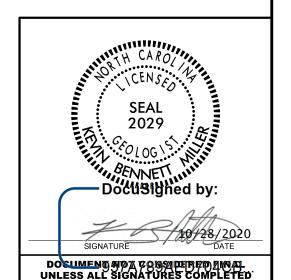
PERSONNEL J. K. STICKNEY

C. L. SMITH

B. E. FOSTER

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1(9)9 707-850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.


CEMERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IMP-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOL. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS NDICATED IN THE SUBSURFACE OR INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION, THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:

 I. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

 BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

SUBMITTED BY K. B. MILLER DATE OCTOBER 2020

PROJECT REFERENCE NO.	SHEET NO.
SF-840286	2

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS (PAGE 1 OF 2)

												(PA	4GE	I OF 2)
					SOII	_ DE	SCR	PTI	ON					GRADATION
BE PENE ACCORI IS	CONSIDERE TRATED WI DING TO TH BASED ON	TH A C E STAN THE AA	:ONTINU IDARD ASHTO	DATED JOUS F PENETI SYSTE	SEMI LIGHT RATION M. BAS	-CONSC POWE TEST	LIDATE R AUGE (AASH SCRIPT	D, OR R AND TO T IONS	WEATHER O YIELD I 206, AST GENERALL	.ESS TH 4 D1586 Y INCLU	IAN 100 3). SOIL JDE TH	0 BLOWS PE CLASSIFII E FOLLOWII	ER FOOT CATION NG:	<u>WELL GRADED</u> - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. <u>UNIFORMLY GRADED</u> - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. <u>GAP-GRADED</u> - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.
	ENCY, COLO AS MINERAL													ANGULARITY OF GRAINS
	VERY STIFF	.GRAY.S	ILTY CL	AY,MOIS	T WITE	INTER	RBEDDEL	FINE	SAND LA	ERS, HIGI	HLY PLA	ISTIC, A-7-6	•	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS: ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.
GENERAL			LE(ID A			CLASS!	FICA	HUN			MINERALOGICAL COMPOSITION
CLASS.		(≤ 35%							SING 200		ORO	GANIC MATERI	IALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.
GROUP CLASS.	A-1 A-1-a A-1-t	A-3	4 2 4		-2	la 2.7	A-4	A-5	A-6 A		1, A-2 A-3	A-4, A-5 A-6, A-7		ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE. COMPRESSIBILITY
SYMBOL	A-1-8 A-1-8		A-2-4	A-2-5	A-2-6	A 2 7		V	A	6	4-2	H-6, H-7	***********	SLIGHTLY COMPRESSIBLE LL < 31
% PASSING	000000000	3						1.7.1						MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50
*10	50 MX										NULAR	SILT- CLAY	MUCK,	PERCENTAGE OF MATERIAL
*40 *200	30 MX 50 M 15 MX 25 M		35 MX	35 MX	35 MX	35 MX	36 MN	36 MN	36 MN 36		OILS	SOILS	PEAT	GRANULAR SILT - CLAY <u>ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL</u>
MATERIAL														TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%
PASSING *40 LL	_	_	40 MX	41 MN	40 MX	41 MN	40 MX	41 MN	40 MX 41	MN		WITH		LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%
PI	6 MX	NP					10 MX		11 MN 11		LITTL	rate	HIGHLY ORGANIC	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE
GROUP INDEX	0	0		0	4	MX	8 MX	12 MX	16 MX NO	мх	AMOUN ORG	its of Anic	SOILS	GROUND WATER
USUAL TYPES OF MAJOR	STONE FRAGS			ILTY OF			SIL SOII		CLAYEY SOILS			TER		
MATERIALS	SAND	JANU		IMPLL I	nito on	***	3011	_3	30123	-		1		✓ PW PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA
GEN. RATING AS SUBGRADE		EXCEL	LENT TO	G00D			1	FAIR T	0 POOR	1	ir to 'oor	POOR	UNSUITABLE	
	ı	PI OF							6 SUBGROU		- 30			OM→ SPRING OR SEEP
		_	<u>C</u>	ONS:	ISTE	NCY			ISENE!					MISCELLANEOUS SYMBOLS
PRIMARY	SOIL TYPE		COMPA CON:	CTNES					STANDARI RESISTE ALUE)			GE OF UNC RESSIVE S (TONS/FT	STRENGTH	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION OF ROCK STRUCTURES
GENER				Y LOC					4 0 10					SOIL SYMBOL SPT OMT TEST BORING SLOPE INDICATOR INSTALLATION
GRANUL MATER:			MEDI	UM DE	NSE			10 T	0 30			N/A		M
(NON-C	OHESIVE)			DENSE Y DEN				>	0 50 50					THAN ROADWAY EMBANKMENT AUGER BORING CONE PENETHOMETER
CENEDA				RY SOI SOFT	FT			< 2 T	2			< 0.25 0.25 TO		── INFERRED SOIL BOUNDARY - CORE BORING
GENERA SILT-C	LAY		MEDI	UM ST	TIFF			4 T	0 8			Ø.5 TO 1	1.0	INFERRED ROCK LINE MWONITORING WELL TEST BORING WITH CORE
MATER: (COHES				STIFF BY STI	FF			8 TI				1 TO 2 2 TO 4		A ALLINIAL COTI POLINDARY A PIEZOMETER
				HARD	, T		D 05	>				> 4		installation)
					CTUF			KAIN	SIZE					RECOMMENDATION SYMBOLS
U.S. STD. S OPENING (N				4 4.7	6 ;	10 2.00	40 0.42				270 0 . 053			UNDERCUT UNCLASSIFIED EXCAVATION - UNCLASSIF
BOULDI (BLDR		OBBLE		GRAV (GR			COARS)	S	INE AND SD.)		SILT (SL.)	CLAY (CL.)	UNDERCUT UNDERCUT ACCEPTABLE DEGRADABLE ROCK EMBANKMENT OR BACKFILL
GRAIN M	M 3Ø5		 75			2.0	(CSE, S		0.25		0.05	0.005		ABBRE VIATIONS AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST
SIZE IN			3			2.0			0.2 3		0.03	0.003	,	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED
		SOIL	. MO	ISΤι	JRE	- C(ORRE	LAT	TON C	F TE	RMS			CL CLAY MOD MODERATELY γ - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC γ_d - DRY UNIT WEIGHT
	MOISTURE		E			D MOIS			GUIDE F	R FIEL	D MOI	STURE DES	SCRIPTION	CSE COARSE ORG ORGANIC DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS
, All	TENBENO E	.11-11-1-57												DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK
I						TURATI SAT.)	EU -					WET.USU OUND WATE		e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON F - FINE SL SILT, SILTY ST - SHELBY TUBE
PLASTIC LL	. 🕂 LIQUI	D LIMI	Т	_										FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK
RANGE <					- WE	T - (W	D		SEMISOL ATTAIN			DRYING TO STURE	J	FRAGS FRAGMENTS w - MOISTURE CONTENT CBR - CALIFORNIA BEARING
(PI) PL	. + PLAS	TIC LIN	ΤIΝ	_										HI HIGHLY V - VERY RATIO
10	1 L OPTIN	1UM MC	DISTUR	E	- MO	IST -	(M)		SOLID; A	OR NE	EAR OF	PTIMUM MO	DISTURE	EQUIPMENT USED ON SUBJECT PROJECT DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:
SI	. + SHRIN	IKAGE	LIMIT	_					DE0:					CME-45C CLAY BITS X AUTOMATIC MANUAL
					- DR	Y - (D)		ATTAIN			WATER TO STURE	U	CME-55 6° CONTINUOUS FLIGHT AUGER CORE SIZE:
						PLAS	TICI	ΤY						X 8* HOLLOW AUGERS
					PL	ASTIC	ITY IN	DEX (PI)		DF	RY STRENG		X CME-550 HARD FACED FINGER BITS X-N NO
	N PLASTIC IGHTLY PL						Ø-5 6-15					VERY LOW SLIGHT	1	VANE SHEAR TEST VANE SHEAR TEST HAND TOOLS:
MO	DERATELY SHLY PLAS	PLAST	IC				16-25 OR MO	RF				MEDIUM HIGH		X CASING X W/ ADVANCER POST HOLE DIGGER
	I LH3						DLOR					111011		PORTABLE HOIST TRICONE STEEL TEETH HAND AUGER
														TRICONE TUNGCARB. X SOUNDING ROD
	TIONS MAY													X CORE BIT VANE SHEAR TEST
					.,,		.,							

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS (PAGE 2 OF 2)

ROCK DESCRIPTION HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL. SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN ILFOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL. THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK.

ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS: NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES 3 100 BLOWS PER FOOT IF TESTED. FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT FINE TO COARSE GRAIN IONEQUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, GNEISS, GABBRO, SCHIST, ETC.

FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YELLD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.

COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED SHELL BEDS, ETC. CRYSTALLINE ROCK (CR) NON-CRYSTALLINE ROCK (NCR) COASTAL PLAIN SEDIMENTARY ROCK WEATHERING **ERESH** ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING. ROCK RINGS UNDER VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN. CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS II OF A CRYSTALLINE NATURE. (V SLI.) ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO SLIGHT 1 INCH, OPEN JOINTS MAY CONTAIN CLAY, IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED, CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS. SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN MODERATE GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY, ROCK HAS DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK. ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH MODERATELY SEVERE (MOD, SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES "CLUNK" SOUND WHEN STRUCK. IF TESTED, WOULD YIELD SPT REFUSAL ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT SEVERE REDUCED IN STRENOTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. (SEV.) IF TESTED. WOULD YIELD SPT N VALUES > 100 BPF ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR VERY SEVERE (V SEV.) VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS ROCK HARDNESS CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES VERY HARD SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK. CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED HARD TO DETACH HAND SPECIMEN. CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE MODERATELY EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS.

HARU	POINT OF A GEOLOGIST'S PICK.
SOFT	CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE.
VERY SOFT	CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL.

MEDIUM

FRACTUR	<u> SPACING</u>	BEDDI	ING
<u>TERM</u>	SPACING	TERM	THICKNESS
VERY WIDE	MORE THAN 10 FEET	VERY THICKLY BEDDED	4 FEET
WIDE	3 TO 10 FEET	THICKLY BEDDED	1.5 - 4 FEET
MODERATELY CLOSE	1 TO 3 FEET	THINLY BEDDED	0.16 - 1.5 FEET
CLOSE	0.16 TO 1 FOOT	VERY THINLY BEDDED	0.03 - 0.16 FEET
VERY CLOSE	LESS THAN 0.16 FEET	THICKLY LAMINATED	0.008 - 0.03 FEET

THINLY LAMINATED

< 0.008 FFFT

CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.

INDURATION

FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. RUBBING WITH FINGER FREES NUMEROUS GRAINS. GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE. GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER. MODERATELY INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE; INDURATED DIFFICULT TO BREAK WITH HAMMER. SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE: EXTREMELY INDURATED SAMPLE BREAKS ACROSS GRAINS.

TERMS AND DEFINITIONS

ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. AQUIFER - A WATER BEARING FORMATION OR STRATA

ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.

ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS. OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC. ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT

WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.

CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE. COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM

CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.

DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.

DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.

 $\underline{\sf DIP}$ DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.

FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.

FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.

 $\underline{\mathsf{FLOAT}}$ - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.

FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM, $\underline{\mathsf{FORMATION}}$ - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.

JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.

LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.

LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.

MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.

PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVICIOS STRATIM AN INTERVENING IMPERVIOUS STRATUM.

RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.

ROCK QUALITY DESIGNATION (RQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.

<u>SAPROLITE (SAP.)</u> - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.

SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.

SLICKENSIDE - I - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT

STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB, HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.

STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.

STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.

TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.

BENCH MARK: BM #2 - RAILROAD SPIKE IN 20" HICKORY -L- STA 23+37 N 935643 E 1587181 ELEVATION: 844.92 FEET

FIAD = FILLED IMMEDIATELY AFTER DRILLING

CAR = CASING ADVANCER REFUSAL

EB2-A COLLAR ELEVATION TAKEN FROM TIN FILE 840286_LS_TIN

DATE: 8-15-14

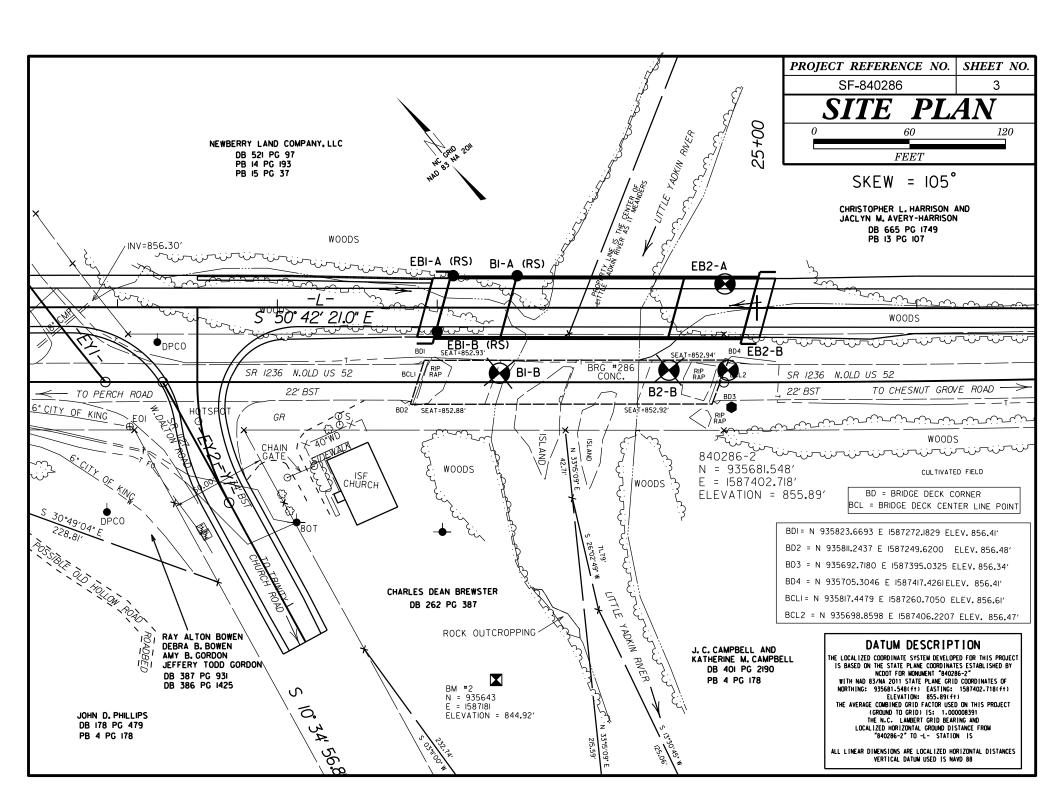
SF-840286 **2B**

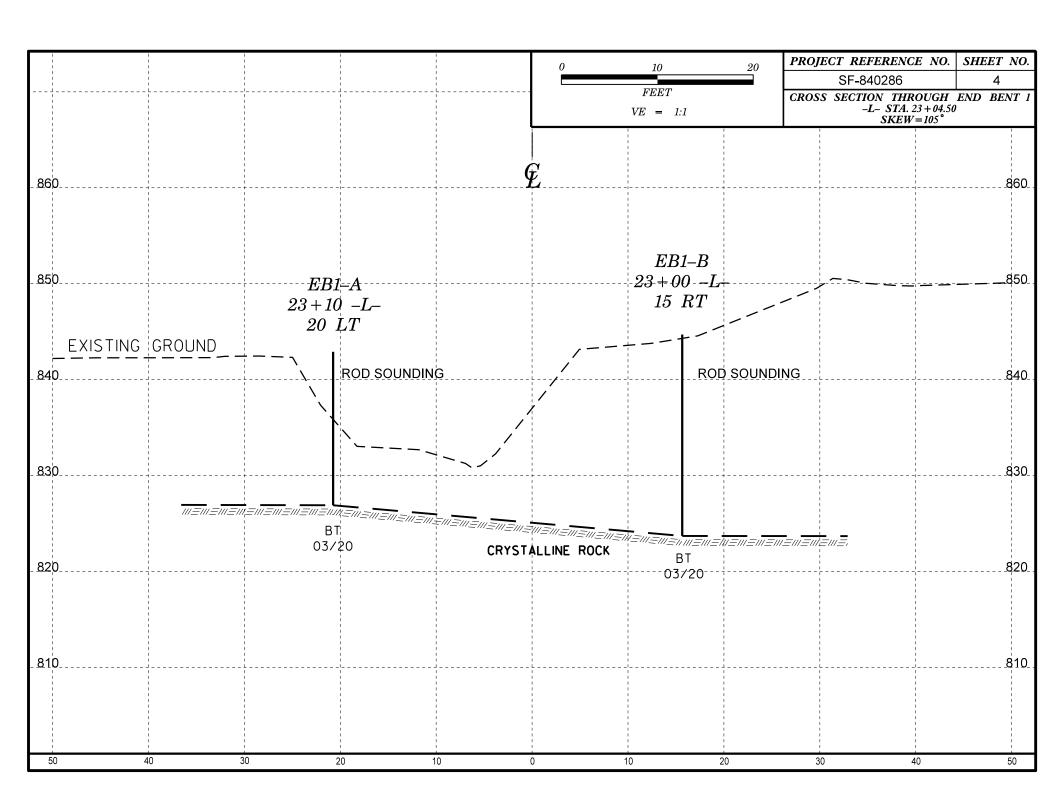
NORTH CAROLINA DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

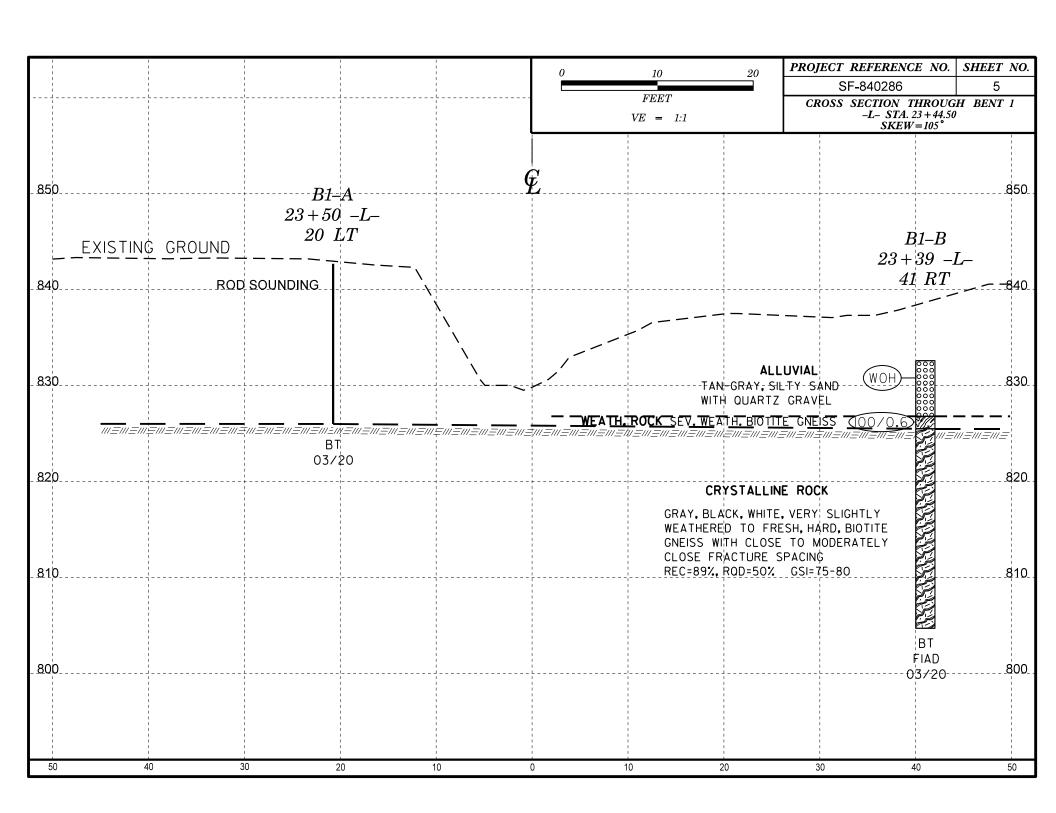
SUBSURFACE INVESTIGATION

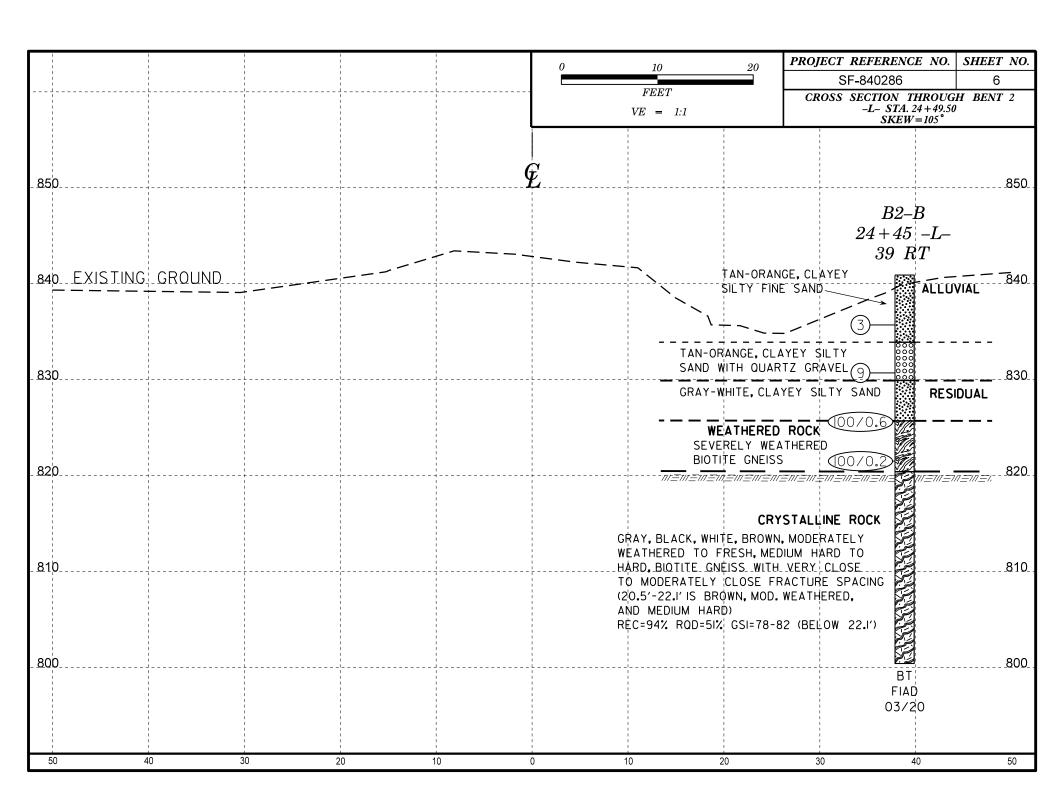
SUPPLEMENTAL LEGEND GEOLOGICAL STRENGTH INDEX (GSL) TARLES

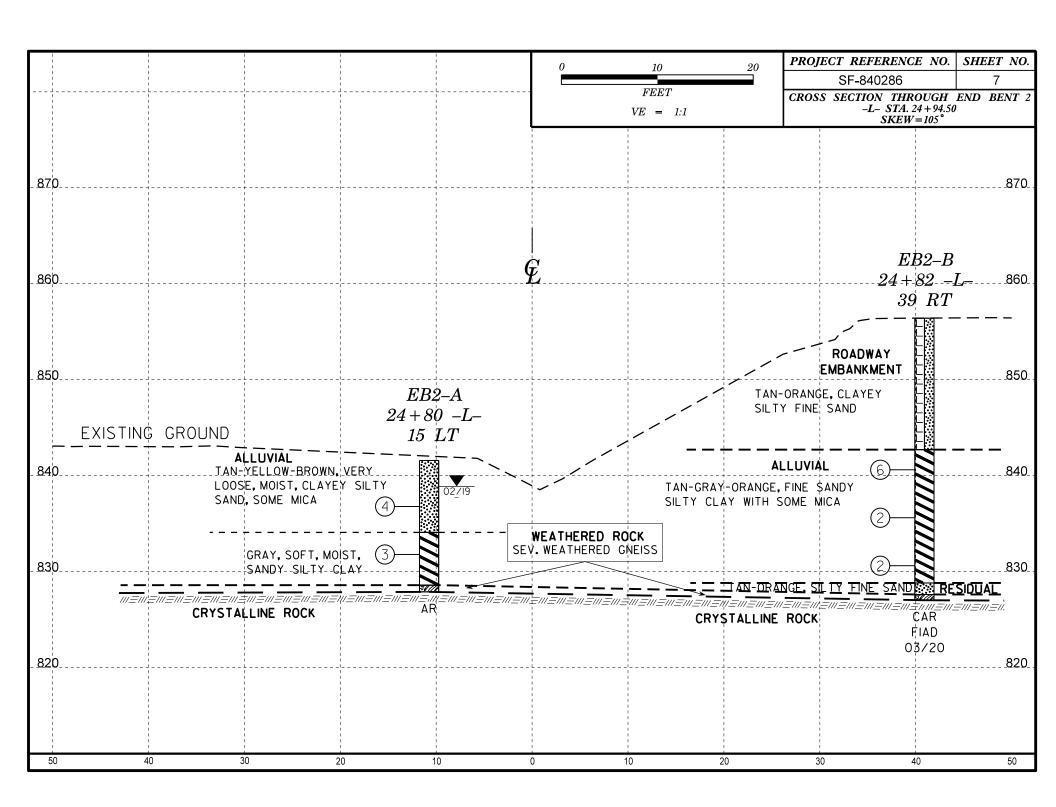
SUPPLEMENTAL LEGEND, GEOLOGIES FROM AASHTO LRFD BRIDGE I	DES.	IGN SPE	CIFICATIO	ONS (PAC	I) TABLE GE 1 OF	S 2)
GEOLOGICAL STRENGTH INDEX (GSI) FOR JOINTED ROCKS (Hoek and Marinos, 2000) From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Guoting a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavorable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced if water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis. STRUCTURE	SURFACE CONDITIONS	VERY GOOD Very rough, fresh unweathered surfaces	XX COOD S Surfaces S surfaces	FAIR Smooth, moderately weathered and altered surfaces	POOR Slickensided, highly weathered surfaces with compact coatings or fillings or angular fragments	VERY POOR Slickensided, highly weathered surfaces with soft clay coatings or fillings
		DEC	REHSING SO	JAPACE GUI	<u> </u>	
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities	CES	90			N/A	N/A
BLOCKY - well interlocked undisturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets	F ROCK PIECE!		70 60			
VERY BLOCKY - interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets	RLOCKING OF		5			
BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity	INTE			40	30	
DISINTEGRATED - poorly inter- locked, heavily broken rock mass with mixture of angular and rounded rock pieces	DECREASING				20	
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes	- II -	N/A	N/A			10

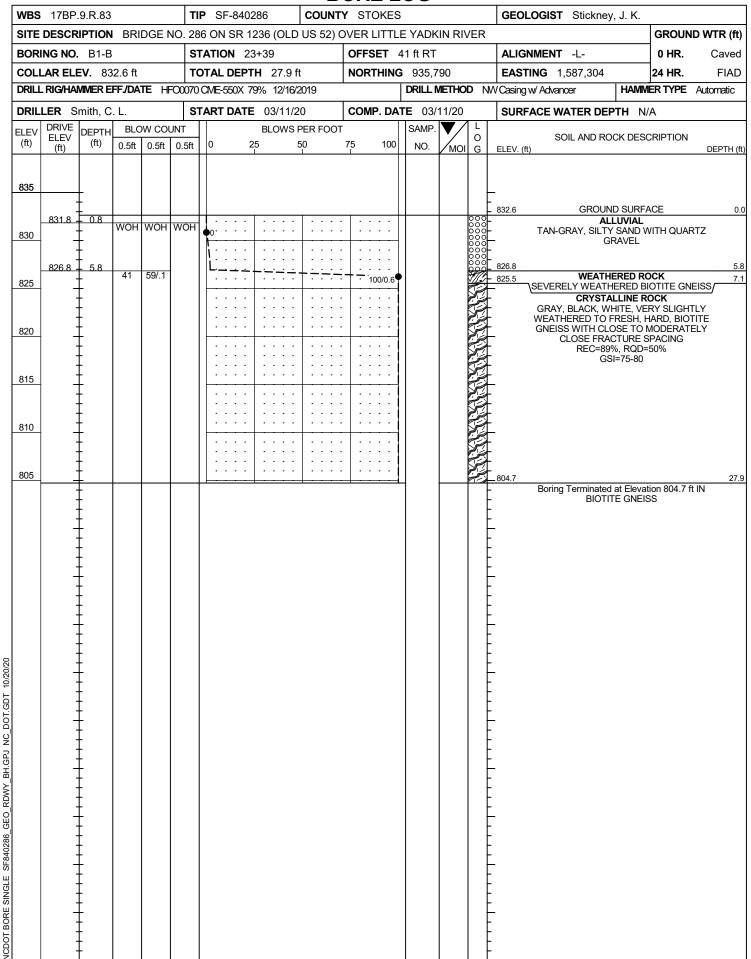

PROJECT REFERENCE NO.	SHEET NO.
SF-840286	2C

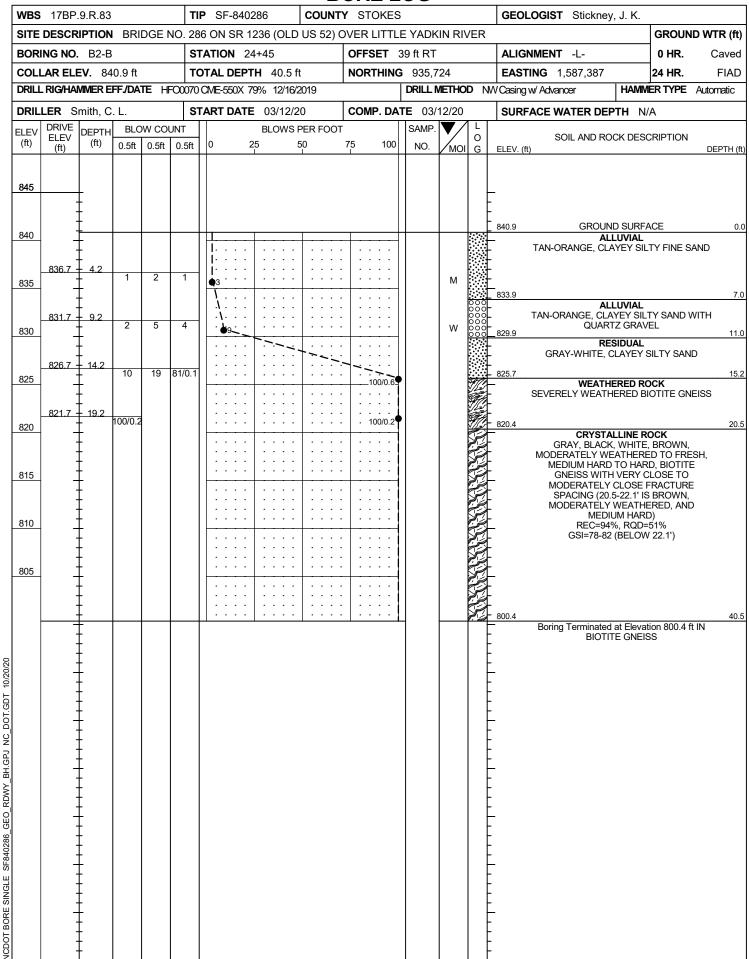

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT


SUBSURFACE INVESTIGATION


SUPPLEMENTAL LEGEND, GEOLOGICAL STRENGTH INDEX (GSI) TABLES FROM AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS (PAGE 2 OF 2)


FROM AASHTO LRFD BRIDGE DESIGN AASHTO LRFD Figure 10.4.6.4-2 — Determination of GSI for Tectonically Def	SPECIF.	ICATION	S (PAGE	2 OF 2	?)
GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos.P and Hoek E., 2000)					
From a description of the lithology, structure and surface conditions (particularly of the bedding planes), choose a box in the chart. Locate the position in the box that corresponds to the condition of the discontinuities and estimate the average value of GSI from the contours. Do not attempt to be too precise. Quoting a range from 33 to 37 is more realistic than giving GSI = 35. Note that the Hoek-Brown criterion does not apply to structurally controlled failures. Where unfavourably oriented continuous weak planar discontinuities are present, these will dominate the behaviour of the rock mass. The strength of some rock masses is reduced by the presence of groundwater and this can be allowed for by a slight shift to the right in the columns for fair, poor and very poor conditions. Water pressure does not change the value of GSI and it is dealt with by using effective stress analysis.	VERY GOOD - Very Rough, fresh unweathered surfaces	GOOD - Rough, slightly weathered surfaces	FAIR - Smooth, moderately weathered and altered surfaces	POOR - Very smooth, occasionally slickensided surfaces with compact coatings or fillings with angular fragments	VERY POOR - Very smooth, slicken- sided or highly weathered surfaces with soft clay coatings or fillings
COMPOSITION AND STRUCTURE				, ,	, ,
A. Thick bedded, very blocky sandstone The effect of pelitic coatings on the bedding planes is minimized by the confinement of the rock mass, in shallow tunnels or slopes these bedding planes may cause structurally controlled instability.	70 60	A			
B. Sand- stone with stone with siltstone in similar amounts D. Siltstone or silty shale with sand- stone layers stone layers layers		50 B 40	C [P/E	
C.D.E. and G - may be more or less folded than illustrated but this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H.			30	F/ 20	
G. Undisturbed silty or clayey shale with or without a few very thin sandstone layers H. Tectonically deformed silty or clayey shale forming a chaotic structure with pockets of clay. Thin layers of sandstone are transformed into small rock pieces.			\$		10
─────────────────────────────────────					DATE: 8-19-16

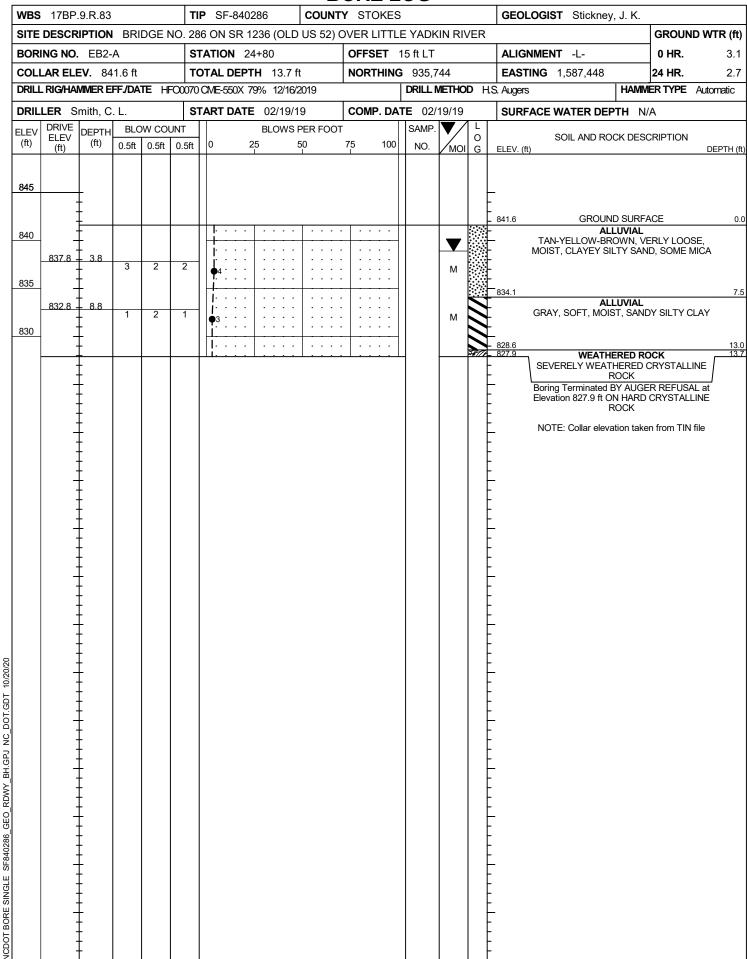


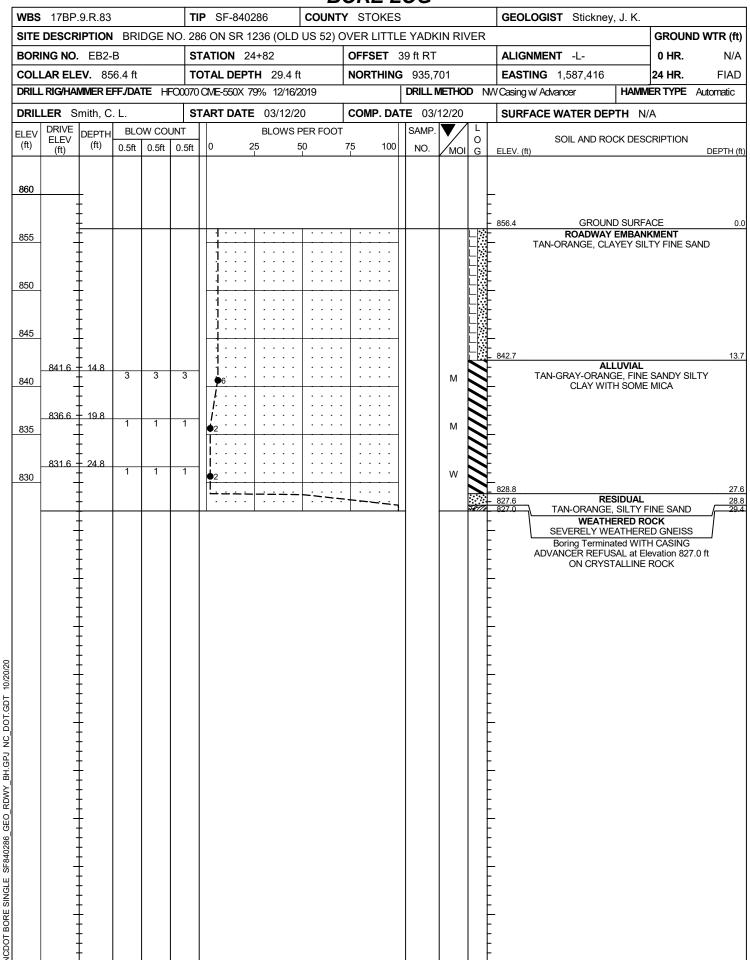


WRS	17BF) Q D	83				TIE		SE. 9	3402	86		T			y S			<u>OG</u>				GEOL	UG!	ST .	Sticks	nev/	ΙK			
				DDI	DCE	NO.						OL F							- VAD	IZINI	DIV	ED	GEOL	JGI	31	Sucki	iey,	J. N.	GB	OLIN.	D W/TD /
	DESCI					110.				23			<i>,</i> 0:	رن د	_				0 ft LT		IXIV	LK	ALIGN	M=:	NT				0 F		D WTR (N
	AR EL)							6.0	£1		\rightarrow				935,				EASTI						24 F		
	RIG/H/				TF +	 ÆΩY								<u> </u>		NOI	XIII	IIIVG) R	od Soundin		1,50	51,320	<u> </u>	HΔMI			Automatio
					- '	1 00									\neg		4D					- 1		_	10/07					_	Autorratio
	DRIVE				W CC	TIALL	_	AK	ו ט	AIE		/18/2 DWS) EC		COI	VIP.	DA	E 03		/20 7 /	L	SURFA	ACE	WA	IEK D	PEP	IH N	I/A		
(ft)	ELEV (ft)	DEP (ft		0.5ft		_	-	0		2			50			75 		100	NO.	1.	MOI	O G	ELEV. (ft)		SOIL	AND I	ROC	K DES	CRIPT	ION	DEPTH
845																							_								
		<u> </u>				+	_	<u> </u>					1			Τ.				+			842.9					SURF			
840		 						Ŀ	• •	- 1		· ·	- 1		· ·		· ·						-								
		Ī																					•								
835		Ŧ						-	-		-					+-							<u>-</u> -								
830		Ī												 	· ·	:	 						•								
		Ŧ								- 1	: :	: :	- 1		: :	1	: :	- 1					826.9								1
		‡					Ī		•••		•	• •			•	<u> </u>	• •	- 1					-	Bori		rminat POSSI					ON
		‡																				ļ									
		‡																				Ė	-								
		+																				F									
		Ŧ																				F	· -								
		‡																				F									
		‡																				F	- , ,								
		‡																				Ė	-								
		‡																				Ė									
		‡																				Ė	-								
		<u> </u>																				Ė									
		ŧ																				E	-								
		 																				F	•								
		Ŧ																				F									
		‡																				F	· · -								
		‡																				ļ	· ·								
		‡																				Ė	· - ·								
		‡																				ļ									
		‡																				E	-								
		<u> </u>																				F	_								
		Ŧ																				F	-								
		Ŧ																				ļ									

SITE DESCRIPTION BRIDGE NO. 286 ON SR 1236 (OLD US 52) OVER LITTLE YADKIN RIVER	SIST Stickney	/. J. K.	
STATION 23+00 OFFSET 15 ft RT ALIGNM		GROUND V	VTD /6
COLLAR ELEV. 844.7 ft	ENT	0 HR.	•
DRILLER Smith C. L. START DATE 03/18/20 COMP. DATE 03/18/20 SURFACE SUBJECT SURFACE			N/A
DRILLER Smith, C. L. START DATE 03/18/20 COMP. DATE 03/18/20 SURFACE DATE 03/18/20 SURFACE DATE D	1,587,290 و	24 HR. HAMMER TYPE Aut	N/A
DRIVE Color Colo			OHAUC
City	E WATER DEP	PTH N/A	
845	SOIL AND RO	CK DESCRIPTION	DEPTH
835			
835 830 825	GROUN	ID SURFACE	
835	ROD S	SOUNDING	
835			
830			
830			
825			
825			
825			
_ 823.7			
T			
		151 C 000 7 G 0N	2
	POSSIBLI	at Elevation 823.7 ft ON E WR / ROCK	
T			
<u> </u>			
<u> </u>			

															<u>OG</u>							
WBS 17						SF-8						Y S						GEOLOG	IST Stickne	y, J. K.		
SITE DES			DGE N						DLD	US 5	52) C					(IN RI	VER	1			-	ND WTR (f
BORING				-		TION						_			0 ft LT			ALIGNME			0 HR.	N/
COLLAR						AL DE						NOI	RTH		935,8				1,587,351	1	24 HR.	N/
DRILL RIG			IE H									· ·		_				od Sounding				Automatic
DRILLER	. <i>.</i> – I		 		TA	RT DA	TE						MP. I	DAT	E 03/		/ 	SURFACE	WATER DE	PTH N	/A	
ˈ/ft\ EL		EPTH (ft)	0.5ft	JNT 0.5ft	c)	25	BLO		PER F		75 	1	00	SAMP. NO.	/	O G	ELEV. (ft)	SOIL AND RO	OCK DES	CRIPTION	DEPTH
845	 																	_ . 842.7	GROUI	ND SURF	ACE	
840	Ī				\parallel			• •						:				- 042.7		SOUNDI		
	‡						:											•				
835	Ŧ						-	::	 			-	· ·					· - ·				
830	‡						:	: :	 		· · ·		: : : :					• • -				
	Ī							: :				.						826.0	ring Torminator	Lat Flova	tion 926 0 f	1 ON
	‡																	_ B0I -	ring Terminated POSSIBI	i at Eleva LE WR / I	ROCK	t ON
	‡																	· · -				
	Ī																	•				
	‡																	- · ·				
	Ŧ																	· · -				
	‡																					
	Ī																	- · ·				
	+																	· _ ·				
	Ī																	· · ·				
	‡																					
	Ŧ																	• - •				
	‡																	-				
	+																	· ·				
																		- · ·				
	Ŧ																	· - -				
	+																					
	‡																	- • •				
	Ŧ																	•				





CORE PHOTOGRAPHS

B1BBOXES 1 & 2: 7.1 - 38.0 FEET

CORE PHOTOGRAPHS

B2BBOX 1 & 2: 20.5 - 40.5 FEET

WE	1700	0 0 00			TID	SE 0.4	10286				E L				GEO! C	SICT OF	tiolen - · ·	1 1/2		
	17BP.			20E NO	l	SF-84							DIZINI F	W/FD	GEOLOG	GROUND WTR (ft)				
				JGE NO.			1236 (O	יבט טצ	o oz) (_				uv=K	AL IONIE	ENT '			1	• •
	NG NO.				_		23+39	0.51			SET				ALIGNM				0 HR.	Caved
	AR ELE			TE UEOO			PTH 27. (79% 12/		`	NOI	RTHING			10D NA	EASTING		7,304	LIANIN	24 HR.	FIAD
				IE HFOO					<i></i>	T					/ Casing w/ A					Automatic
	LER S		. L.				TE 03/1			CO	IP. DA	TE (3/11/2	0	SURFAC	E WATE	ER DEP	TH N	<u>/A</u>	
COR	E SIZE			DDILL	TOTA	AL RUI	N 20.8 f		ΡΔΤΔ	 										
(ft)	RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft)	RQD (ft) %	SAMP. NO.	REC. (ft) %	RQD (ft) %	L O G	ELEV. (ft)		D	ESCRIPTIC	N AND R	REMARK	S		DEPTH (f
325,54 825	825.5 <u>–</u> 824.7 /	- <u>Z</u> .1	0.8		(0.6)	(0.0)		(18.6)	(10.3)		825.5				Begin C	oring @ ALLINE F	7.1 ft			7.
	-	-	5.0		75% (4.4) 88%	(0.4) (0.4) 8%		89%	50%			G H	RAY, BI HARD, E	ACK, WI IOTITE G	HITE, VERY SNEISS WIT FRACT	SLIGHTL H CLOSE URE SPA	LY WEAT E TO MC ACING	THERED DERATE	TO FRES	H,
820	819.7 <u> </u>	_ 12.9 - -	5.0		(4.0) 80%	(2.0) 40%					-					9%, RQD 6SI=75-80				
815	814.7	- _ 17.9 -	5.0		(4.8)	(4.4)					-									
810	809.7	- - - 22.9			96%	88%					_									
	-	- -	5.0		(4.8) 96%	(3.5) 70%														
805	804.7	27.9									804.7		Porir	a Tormin	ated at Elev	ation 904	7 ft INI D	IOTITE (ONIEIGO	27
		-																		

	4	<u> </u>				<u> </u>		1 -			RE L									
WBS 17BP.9.R.83					L						Y STOKES				GEOLOGIST Stickney, J. K.					
SITE DESCRIPTION BRIDGE NO					· · · · · · · · · · · · · · · · · · ·														GROUND WTR (ft	
BORING NO. B2-B					STATION 24+45						OFFSET 39 ft RT			ALIGNMENT -L-			0 HR.	Caveo		
COLLAR ELEV. 840.9 ft DRILL RIG/HAMMER EFF/DATE HFOO					TOTAL DEPTH 40.5 ft					NORTHING 935,724							24 HR.	FIAD		
				IE HFOO										N Casing w/					Automatic	
DRILLER Smith, C. L.					START DATE 03/12/20						COMP. DATE 03/12/20 SURFACE WATER DEPTH N/A						'A			
CORE SIZE NX				TOTAL RUN 20.0 ft																
ELEV (ft)	RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft)	RQD (ft) %	SAMP. NO.	REC. (ft)	ATA RQD (ft) %	L O G	ELEV. (1	ft)	l	DESCRIPTIO	ON AND RE	EMARKS	S		DEPTH (
2 60-635	820.4 -	- 20.5	5.0		(4.2)	(0.4)		(10.0)	(10.1)		820.4			Begin Co	oring @ 2	20.5 ft			20	
815	815.4 + 25.5			84%	8%		94%	(10.1) 51%		620.4 - -	FRESH,	CRYSTALLINE ROCK GRAY, BLACK, WHITE, BROWN, MODERATELY WEATHERED TO FRESH, MEDIUM HARD TO HARD, BIOTITE GNEISS WITH VERY CLOSE TO MODERATELY CLOSE FRACTURE SPACING (20.5-22.1' IS BROWN,								
	815.4 -	- 25.5 - -	5.0		(4.9) 98%	(3.0) 60%					- - -	MODERATELY WEATHERED, AND MEDI REC=94%, RQD=51% GSI=78-82 (BELOW 22.1')					ÒIUM HA	ARD)		
810	810.4 -	- - 30.5 -	5.0		(4.7)	(3.0)					- -									
805	805.4	- - - 35.5			94%	60%					• • •									
803	-	-	5.0		(5.0) 100%	(3.7) 74%					- -									
	800.4 7 40.5			800.4 Boring Terminated at Elevation 800.4 ft IN									40							

SITE PHOTOGRAPH

Bridge No. 86 on -L- (SR 1236) over Little Yadkin River

Looking from End Bent 1 toward End Bent 2