

December 14, 2016

Mr. Terry Fox, L.G. North Carolina Department of Transportation Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Reference: Preliminary Site Assessment Marvin Smith Property (Parcel #187) 5314 Raeford Road Fayetteville, Cumberland County, North Carolina State Project: U-4405 WBS Element 39049.1.1 SIES Project No. 2016.0054.NDOT

Dear Mr. Fox:

Solutions-IES, Inc., (SIES) has completed the Preliminary Site Assessment conducted at the abovereferenced property. The work was performed in accordance with the Technical and Cost proposal dated September 26, 2016, and the North Carolina Department of Transportation's (NCDOT's) Notice to Proceed dated September 26, 2016. Activities associated with the assessment consisted of conducting a geophysical investigation, collecting soil samples for analysis, and reviewing applicable North Carolina Department of Environmental Quality (NCDEQ) records. The purpose of this report is to document the field activities, present the laboratory analyses, and provide recommendations regarding the property.

Location and Description

The Marvin Smith Property (Parcel #187) is located at 5314 Raeford Road in Fayetteville, Cumberland County, North Carolina. The property is situated on the north side of Raeford Road approximately 230 feet east of the intersection of Raeford Road and Pompton Drive (**Figure 1**). The property consists of an active auto parts and service shop (Rocket Auto Parts and Service). According to the NCDOT information, general service automotive repairs have historically occurred at the site. No visual evidence of underground storage tanks (USTs) was noted during the assessment activities.

An asphalt parking area is located in front of the building with access to the service areas and rear of the facility on the west side of the building (**Figure 2**). The proposed easement was not marked on the date of the field work, but NCDOT plan sheets show that the easement will not affect the building.

The NCDOT requested a Preliminary Site Assessment for the right-of-way and proposed easement because the property contains an active automotive repair and salvage yard. The scope of work as

defined in the Request for Technical and Cost Proposal was to evaluate the site with respect to the presence of known and unknown USTs, and assess whether contamination exists on the right-of-way/proposed easement. Because the property contains an automotive repair facility, the NCDOT directed SIES to evaluate the right-of-way/easement for the presence of solvents in addition to petroleum. An estimate of the quantity of impacted soil was to be provided, should impacted soils be encountered.

SIES reviewed the on-line NCDEQ Incident Management database and no incident number was assigned to the site. SIES also examined the UST registration database and found no tanks registered to the property address.

Geophysical Survey

Prior to SIES' mobilization to the site, Pyramid Environmental & Engineering of Greensboro, NC (Pyramid) conducted a geophysical survey in the right-of-way/proposed easement to determine if unknown USTs were present in that area. The geophysical survey consisted of an electromagnetic survey using a Geonics EM61 time-domain electromagnetic induction meter to locate buried metallic objects, specifically USTs.

A survey grid was laid out along the right-of-way/proposed easement with the X-axis oriented approximately parallel to Raeford Road and the Y-axis oriented approximately perpendicular to Raeford Road. The grid was positioned to cover the entire right-of-way/proposed easement, as shown on **Figure 2** of the geophysical survey report in **Attachment A**.

The survey lines were spaced five feet apart and magnetic data were collected continuously along each survey line with a data logger. After collection, the data were reviewed in the field with graphical computer software.

Access was available to all areas of the study area, and several anomalies were detected with the geophysical survey. The anomalies were attributed to visible cultural features, metallic debris, underground utilities, signage, or vehicles. The data did not show evidence of metallic USTs within the right-of-way/proposed easement. For these reasons, a ground penetrating radar survey was not required to verify any unknown EM anomalies. Pyramid's detailed report of findings and interpretations is presented in **Attachment A**.

Site Assessment Activities

On October 26, 2016, SIES mobilized to the site to conduct a Geoprobe[®] direct-push investigation to evaluate subsurface soil conditions on the property to a depth of 10 feet below ground surface (ft bgs). Three direct-push borings (187-SB-1 through 187-SB-3) were advanced throughout the right-of-

2

way/proposed easement (**Figure 2**). The soil boring logs are included as **Attachment B**. Borings 187-SB-1 through 187-SB-3 were located to evaluate the subsurface conditions in the right-of-way/easement along Raeford Road (see photos in **Attachment C**).

Continuous sampling using a Geoprobe[®] resulted in generally good recovery of soil samples from the direct-push borings. Soil samples were collected and contained in four-foot long acetate sleeves inside the direct-push Macro-Core[®] sampler. Each of the sleeves was divided into two-foot long sections for soil sample screening. Soil from each two-foot interval was placed in a resealable plastic bag and the bag was set aside for volatilization of organic compounds from the soil to the bag headspace. A photoionization detector (PID) probe was inserted into the bag and the reading was recorded (**Table 1**).

If the PID concentrations in a boring were consistently low, one sample from the bottom interval was selected for analysis. Multiple samples were analyzed from borings 187-SB-1 and 187-SB-2 following the initial analysis to evaluate if detected concentrations were increasing or decreasing with depth. The PID results are summarized in **Table 1**.

The selected soil samples were submitted to an on-site mobile laboratory for analysis of total petroleum hydrocarbons (TPH) diesel range organics (DRO) and gasoline range organics (GRO) using ultraviolet fluorescence (UVF) methodology. To evaluate the property with respect to solvents, the soil sample with the highest DRO or GRO result from each boring was submitted to Pace Analytical in Huntersville, NC, for analysis of volatile organic compounds (VOCs) using Method 8260. Each boring was backfilled with bentonite and drill cuttings to the surface after completion.

The lithology encountered by the direct-push samples was generally consistent throughout the site. The ground surface was covered with about 0.5 feet of gravel or topsoil. Below this surface cover was a mottled light brown and red silty clay to a depth of about eight ft bgs. Below this clay was a tan silty clay. No bedrock or groundwater was noted in any of the borings.

According to the 1985 Geologic Map of North Carolina, the site is within of Coastal Plain Physiographic Province in North Carolina near the contact between the Cretaceous Black Creek and Middendorf Formations. The strata of the Black Creek Formation consist of gray to black clay, thin lenses of fine-grained sand and thick lenses of cross-bedded sand. The lithology may also include glauconite and fossils. In comparison, the Middendorf Formation consists of sand, sandstone, and mudstone that are laterally discontinuous. The soils observed at the site are consistent with the MIddendorf Formation as the parent material.

Analytical Results

The laboratory data are summarized in **Table 1** and the analytical report is presented in **Attachment D**. Six soil samples were submitted for analysis, all of which contained detectable DRO compounds ranging from 0.18 to 23 milligrams per kilogram (mg/kg). No soil sample contained detectable GRO concentrations. The action levels are 50 mg/kg for GRO and 100 mg/kg for DRO¹. None of the soil samples analyzed for this site contained DRO or GRO concentrations above their respective action levels.

The soil sample with the highest UVF DRO concentration from each boring was submitted for laboratory analysis for VOCs using Method 8260. As presented in **Attachment D**, no compounds were detected above the method reporting limit. However, the reporting limit was set at a concentration higher than the detection limit, which is the lowest concentration at which a compound can be detected and is usually below applicable action levels for solvents. If a concentration was detected above the detection limit, but below the reporting limit, it was assigned an estimated, or "J", value. No J flagged values were reported.

Conclusions and Recommendations

A Preliminary Site Assessment was conducted to evaluate the Marvin Smith Property (Parcel #187) at 5314 Raeford Road in Fayetteville, Cumberland County, North Carolina. A geophysical survey conducted at the site indicated that no metallic USTs were detected within the right-of-way/proposed easement on the site. Three soil borings were advanced to evaluate the subsurface soil conditions along the right-of-way/proposed easement. None of the six soil samples analyzed had a GRO or DRO concentration above the action level. Analysis of three soil samples for VOCs indicated that no compounds were detected; therefore, none were present above applicable action levels.

The UVF analytical results (**Table 1**) of the soil samples collected on October 26, 2016 indicate that none of the soil samples contained DRO or GRO concentrations above the action level. Therefore, no estimate of the volume of soil requiring possible remediation was made.

¹ NCDEQ, Guidelines for North Carolina Action Limits for Total Petroleum Hydrocarbons (TPH), July 26, 2016.

SIES appreciates the opportunity to work with the NCDOT on this project. Because DRO compounds were detected in the soil samples, SIES recommends that a copy of this report be submitted to the Division of Waste Management, UST Section, in the Fayetteville Regional Office. If you have any questions, please contact us at (919) 873-1060.

Sincerely,

michae W. Brusan

Michael W. Branson, P.G. Project Manager

Attachments

/ John Palmer, P.G. Senior Hydrogeologist

TABLE 1 SOIL FIELD SCREENING AND ANALYTICAL RESULTS SMITH PROPERTY (PARCEL #187) FAYETTEVILLE, CUMBERLAND COUNTY, NORTH CAROLINA STATE PROJECT: U-4405

WBS ELEMENT 39049.1.1

SIES PROJECT NO. 2016.0054.NDOT

		PID READING		ANALYTICAL RESULTS			
SAMPLE ID	DEPTH (ft)	(ppm)	SAMPLE ID	(mg	/kg)		
		(ppiii)		UVF GRO	UVF DRO		
	ŀ	Action Level (mg/k	.g)	50	100		
	0 - 2	0.0					
187-SB-1	2 - 4	0.6					
107-00-1	4 - 6	2.0	187-SB-1-4-6	<0.18	0.18		
	6 - 8	2.1	187-SB-1-6-8	<0.6	23		
	8 - 10	1.1	187-SB-1-8-10	<0.54	12		
	0 - 2	0.8					
	2 - 4	1.0					
187-SB-2	4 - 6	1.2					
	6 - 8	1.8	187-SB-2-6-8	<0.15	2.1		
	8 - 10	3.2	187-SB-2-8-10	<0.73	8.7		
	0 - 2	0.0					
	2 - 4	0.3					
187-SB-3	4 - 6	0.0					
	6 - 8	0.1					
	8 - 10	2.5	187-SB-3-8-10	<0.64	2.2		

1) ft - feet

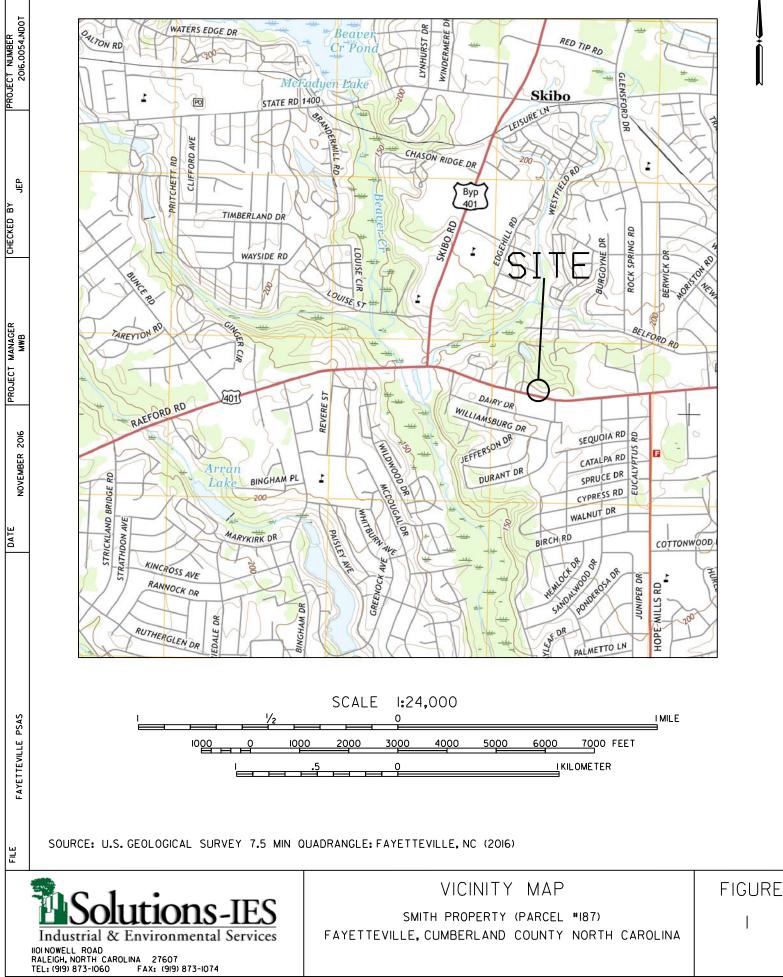
2) ppm - parts per million.

3) PID - photoionization ionization detector

4) mg/kg - milligrams per kilogram.

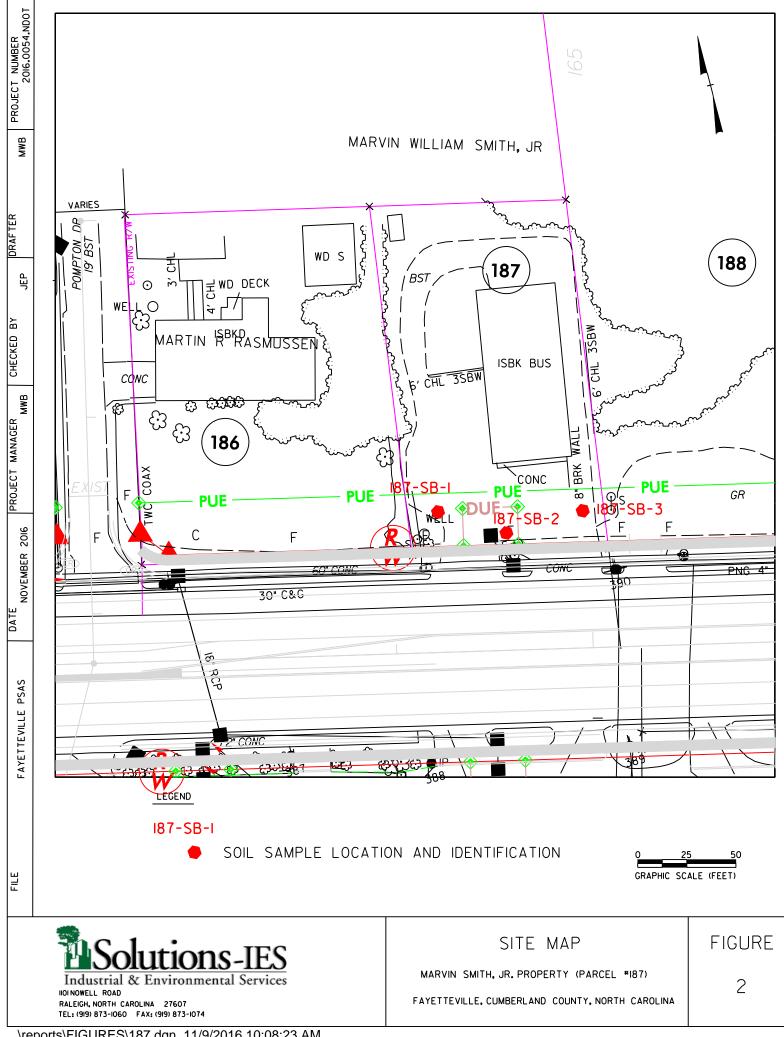
5) UVF DRO - Diesel range organics by UVF.

6) UVF GRO - Gasoline range organics by UVF.


7) Action level based upon NCDEQ memo *Guidelines for North Carolina Action Limits for Total Petroleum Hydrocarbons* - July 29, 2016.

8) Soil samples were collected on October 26, 2016.

9) **Bold** values are above the detection level.



FIGURES

Ν

...\reports\FIGURES\187 FIG 1.dgn 10/5/2016 10:07:35 AM

...\reports\FIGURES\187.dgn 11/9/2016 10:08:23 AM

ATTACHMENT A

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 187 – MARVIN WILLIAM SMITH, JR. NCDOT PROJECT U-4405

5314 RAEFORD RD., FAYETTEVILLE, CUMBERLAND COUNTY, NC NOVEMBER 4, 2016

Report prepared for:

Mike Branson Solutions, IES 1101 Nowell Road Raleigh, North Carolina 27607

Prepared by:

Eric C. Cross, P.G. NC License #2181

Canavello

Reviewed by:

Douglas A. Canavello, P.G.

NC License #1066

503 INDUSTRIAL AVENUE, GREENSBORO, NC 27406 P: 336.335.3174 F: 336.691.0648 C257: GEOLOGY C1251: ENGINEERING

Table of Contents

Executive Summary	1
Introduction	2
Field Methodology	
Discussion of Results	
Summary and Conclusions	
Limitations	

Figures

Figure 1 – Parcel 187 Geophysical Survey Boundaries and Site Photographs Figure 2 – Parcel 187 EM61 Results Contour Map

LIST OF ACRONYMS

DFDual Frequency EMElectromagnetic GPRGround Penetrating Radar GPSGlobal Positioning System NCDOTNorth Carolina Department of Transportation
GPRGround Penetrating Radar GPSGlobal Positioning System NCDOTNorth Carolina Department of Transportation
GPSGlobal Positioning System NCDOTNorth Carolina Department of Transportation
NCDOTNorth Carolina Department of Transportation
1 1
ROWRight-of-Way
SVESoil Vapor Extraction
USTUnderground Storage Tank

EXECUTIVE SUMMARY

Project Description: Pyramid Environmental conducted a geophysical investigation for Solutions, IES (Solutions) at Parcel 187, located at 5314 Raeford Road, Fayetteville, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project U-4405). Solutions directed Pyramid as to the geophysical survey boundaries at the project site, which were designed to extend from the existing edge of pavement to the proposed ROW lines and/or easement lines within the property, whichever distance was greater. Conducted from October 12-17, 2016, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: All EM anomalies were directly attributed to visible cultural features and known utilities. A GPR survey was not required. Collectively, the geophysical data <u>did not show any evidence of unknown metallic USTs at Parcel 187</u>.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Solutions, IES (Solutions) at Parcel 187, located at 5314 Raeford Road, Fayetteville, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project U-4405). Solutions directed Pyramid as to the geophysical survey boundaries at the project site, which were designed to extend from the existing edge of pavement to the proposed ROW lines and/or easement lines within the property, whichever distance was greater. Conducted from October 12-17, 2016, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included an automotive repair facility surrounded by asphalt parking areas and grass medians. Aerial photographs showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of an electromagnetic (EM) induction-metal detection survey. Pyramid collected the EM data using a Geonics EM61 metal detector integrated with a Trimble AG-114 GPS antenna. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is geo-referenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8 foot intervals along north-south trending or east-west trending, generally

parallel survey lines spaced five feet apart. The data were downloaded to a computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 11.0 software programs.

GPR data were not required at this property due to all EM anomalies being directly attributed to visible cultural features at the ground surface or known utilities (see Discussion of Results below).

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tar	ıks
on NCDOT Projects	

High Confidence	Intermediate Confidence	Low Confidence	No Confidence
Known UST	Probable UST	Possible UST	Anomaly noted but not
Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphal/concrete patch, etc.	Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The following table presents the list of EM anomalies and the cause of the metallic response, if known:

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Vehicles	
2	Vehicles	
3	Sign	
4	Sign and Bollards	
5	Suspected Utilities	
6	Sign	

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

All of the EM anomalies recorded by the survey are directly attributed to visible cultural features such as vehicles, signs, bollards, and utilities. For this reason, a GPR survey was not required to verify any unknown anomalies.

Collectively, the geophysical data <u>did not show any evidence of unknown metallic USTs</u> <u>at Parcel 187</u>.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 data collected at Parcel 187 in Fayetteville, Cumberland County, North Carolina, provides the following summary and conclusions:

- The EM61 survey provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- All EM anomalies were directly attributed to visible cultural features and known utilities. A GPR survey was not required.
- Collectively, the geophysical data <u>did not show any evidence of unknown metallic</u> <u>USTs at Parcel 187</u>.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Solutions, IES in accordance with generally accepted guidelines for EM61 surveys. It is generally recognized that the results of the EM61 surveys are non-unique and may not represent actual subsurface conditions. The EM61 results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

NÎ

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

NC STATE PLANE, EASTING (NAD83, FEET)

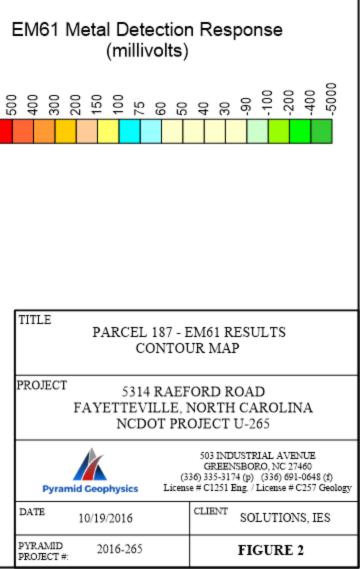
View of Survey Area (Facing Approximately North)

View of Survey Area (Facing Approximately West)

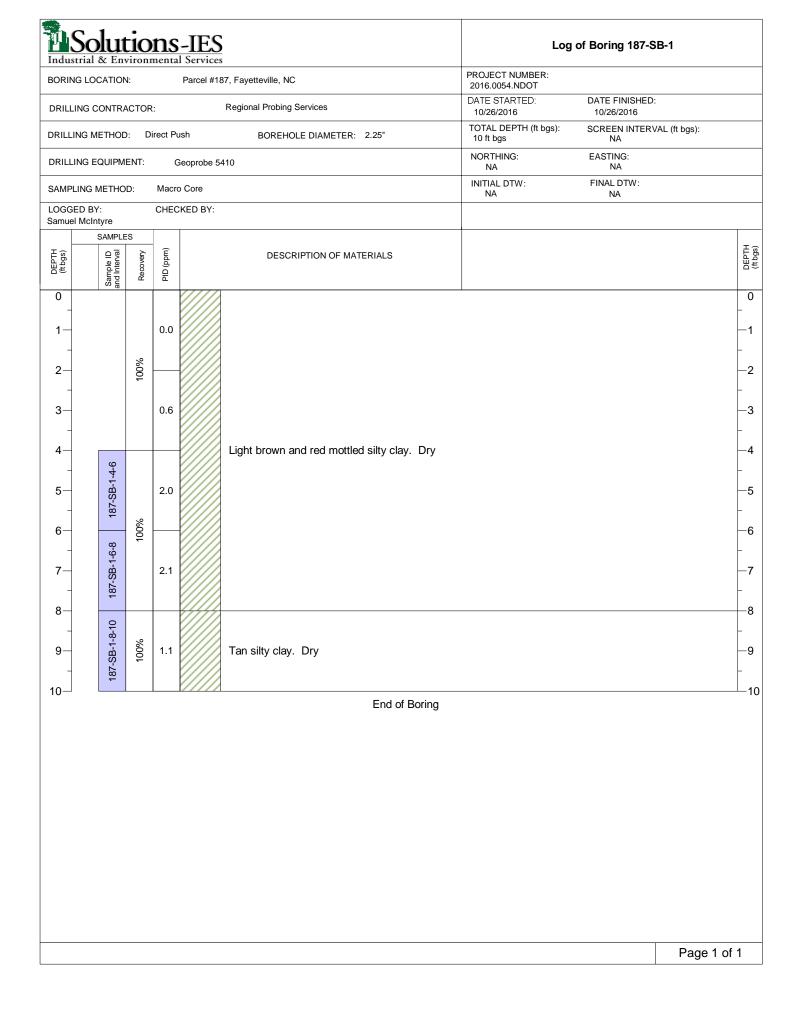
· ·			PHYSICAL SURVEY SITE PHOTOGRAPHS					
PROJECT 5314 RAEFORD ROAD FAYETTEVILLE, NORTH CAROLINA NCDOT PROJECT U-4405								
503 INDUSTRIAL AVENUE GREENSBORO, NC 27460 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology								
DATE	10/19/16		CLIENT SOLUTIONS, IES					
PYRAMID PROJECT #:	2016-265		FIGURE 1					

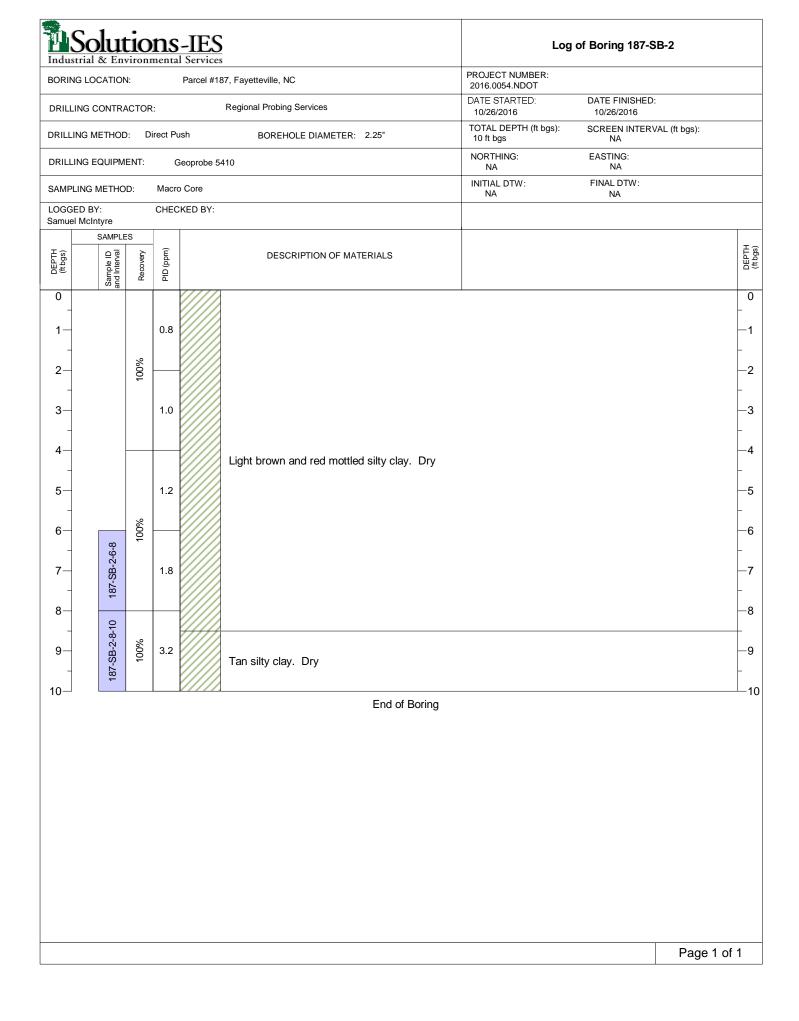
NÎ

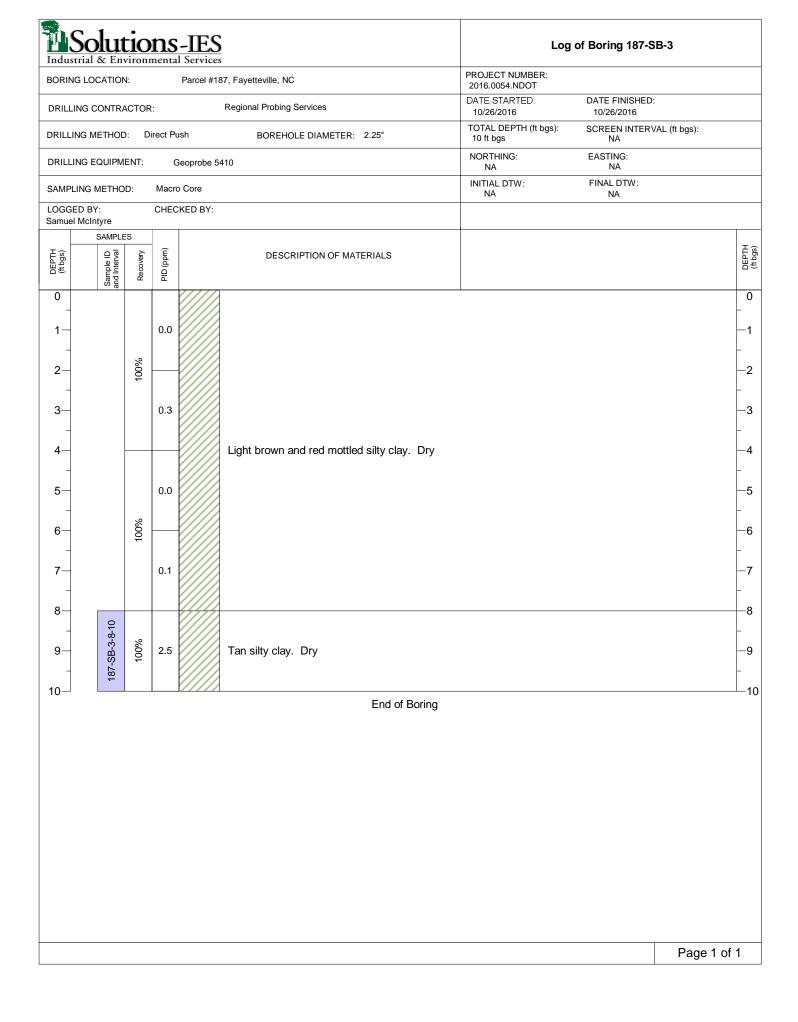
EM61 METAL DETECTION RESULTS


NC STATE PLANE, EASTING (NAD83, FEET)

NUMBERS IN BLUE (x) CORRESPOND TO ANOMALY TABLE INCLUDED IN THE REPORT


The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM61 data were collected on October 13, 2016, using a Geonics EM61 instrument. Verification GPR data were not required due to all anomalies being directly attributed to visible cultural features.


1000 750


NO EVIDENCE OF UNKNOWN METALLIC USTs OBSERVED

ATTACHMENT B

ATTACHMENT C

PHOTO I - VIEW OF SOIL BORING LOOKING NORTH PHOTO 2 - VIEW OF SOIL BORING LOOKING EAST

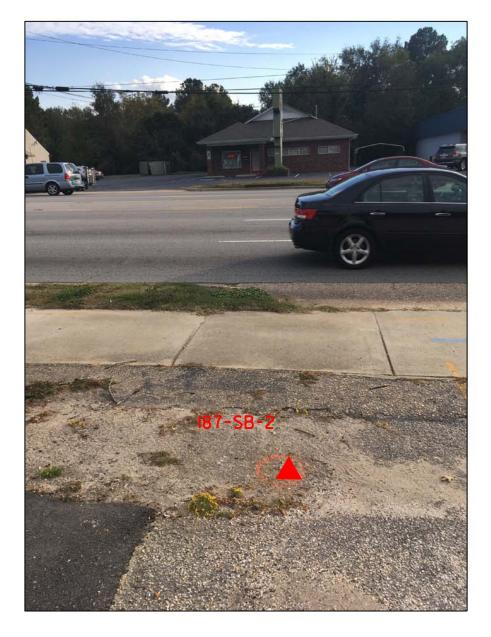
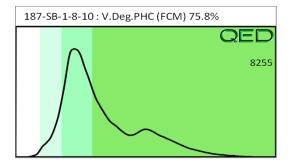
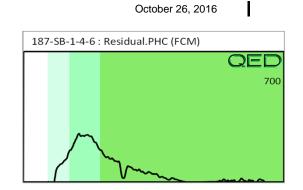
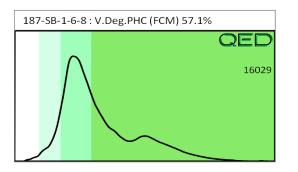
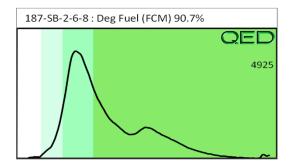


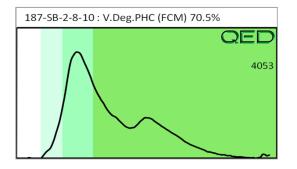
PHOTO 3 - VIEW OF SOIL BORING LOOKING SOUTH PHOTO 4 - VIEW OF SOIL BORING LOOKING WEST

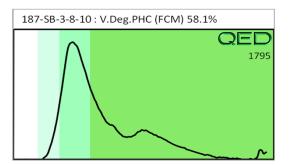

ATTACHMENT D


QĽ	QED ENVIRONMENTAL DIAGNOSTICS AND A CONSTRUCTION AND A CONSTRUCTICA AND A CONSTRUCTICA AND A CONSTRUCTICA AND A CONSTRUCTICA AN									<u>ROS</u>			
Address:	NCDOT Parcel 187: 5314 Raefo Fayetteville, NC	rd Road				-				Samples	ples taken extracted analysed		10/26/2016 10/26/2016 10/26/2016
Contact: Project:	2016.0054.NDOT										Operator		Candy Elliott
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP		Ratios		U04049 HC Fingerprint Match
							(,			% light	% mid	% heavy	
S	187-SB-1-8-10	21.8	<1.1	<0.54	12	12	6.8	0.31	0.003	0	89.3	10.7	V.Deg.PHC (FCM) 75.8%
S	187-SB-1-4-6	7.2	<0.18	<0.18	0.18	0.18	0.09	0.01	<0.001	0	97.3	2.7	Residual.PHC (FCM)
S	187-SB-1-6-8	23.9	<0.6	<0.6	23	23	13.8	0.61	0.006	0	88.1	11.9	V.Deg.PHC (FCM) 57.1%
S	187-SB-2-8-10	29.4	<1.5	<0.73	8.7	8.7	4.1	0.18	0.003	0	85.9	14.1	V.Deg.PHC (FCM) 70.5%
S	187-SB-2-6-8	6.0	<0.15	<0.15	2.1	2.1	0.95	0.05	<0.001	0	86.1	13.9	Deg Fuel (FCM) 90.7%
S	187-SB-3-8-10	25.6	<1.3	<0.64	2.2	2.2	1.3	0.05	<0.003	0	86.5	13.5	V.Deg.PHC (FCM) 58.1%
Initial Calibrator QC check OK													


(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present


QED Hydrocarbon Fingerprints


Project: 2016.0054.NDOT



Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

November 04, 2016

Mike Branson Solutions-IES 1101 Nowell Road Raleigh, NC 27607

RE: Project: Parcel 187 39049.1.1 Pace Project No.: 92317874

Dear Mike Branson:

Enclosed are the analytical results for sample(s) received by the laboratory on October 31, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lgle

Taylor Ezell taylor.ezell@pacelabs.com Project Manager

Enclosures

cc: Chemical Testing Engineer, Materials and Tests Unit Samuel McIntyre, Solutions-IES

Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

SAMPLE ANALYTE COUNT

Project: Parcel 187 39049.1.1 Pace Project No.: 92317874

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92317874001	187-SB-1-6-8	EPA 8260	DLK	70	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92317874002	187-SB-2-8-10	EPA 8260	DLK	70	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92317874003	187-SB-3-8-10	EPA 8260	DLK	70	PASI-C
		ASTM D2974-87	KDF	1	PASI-C

ANALYTICAL RESULTS

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

Sample: 187-SB-1-6-8	Lab ID: 923		Collected: 10/26/1				latrix: Solid	
Results reported on a "dry weight	-	-		-	-			a 1
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 826	0					
Acetone	ND	ug/kg	103	1		11/02/16 17:36	67-64-1	
Benzene	ND	ug/kg	5.1	1		11/02/16 17:36	71-43-2	
Bromobenzene	ND	ug/kg	5.1	1		11/02/16 17:36	108-86-1	
Bromochloromethane	ND	ug/kg	5.1	1		11/02/16 17:36	74-97-5	
Bromodichloromethane	ND	ug/kg	5.1	1		11/02/16 17:36	75-27-4	
Bromoform	ND	ug/kg	5.1	1		11/02/16 17:36	75-25-2	
Bromomethane	ND	ug/kg	10.3	1		11/02/16 17:36	74-83-9	
2-Butanone (MEK)	ND	ug/kg	103	1		11/02/16 17:36	78-93-3	
n-Butylbenzene	ND	ug/kg	5.1	1		11/02/16 17:36	104-51-8	
sec-Butylbenzene	ND	ug/kg	5.1	1		11/02/16 17:36	135-98-8	
tert-Butylbenzene	ND	ug/kg	5.1	1		11/02/16 17:36		
Carbon tetrachloride	ND	ug/kg	5.1	1		11/02/16 17:36		
Chlorobenzene	ND	ug/kg	5.1	1		11/02/16 17:36		
Chloroethane	ND	ug/kg	10.3	1		11/02/16 17:36		
Chloroform	ND	ug/kg	5.1	1		11/02/16 17:36		
Chloromethane	ND	ug/kg ug/kg	10.3	1		11/02/16 17:36		
2-Chlorotoluene				1		11/02/16 17:36		
	ND	ug/kg	5.1					
4-Chlorotoluene	ND	ug/kg	5.1	1		11/02/16 17:36		
1,2-Dibromo-3-chloropropane	ND	ug/kg	5.1	1		11/02/16 17:36		
Dibromochloromethane	ND	ug/kg	5.1	1		11/02/16 17:36		
1,2-Dibromoethane (EDB)	ND	ug/kg	5.1	1		11/02/16 17:36		
Dibromomethane	ND	ug/kg	5.1	1		11/02/16 17:36		
1,2-Dichlorobenzene	ND	ug/kg	5.1	1		11/02/16 17:36	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	5.1	1		11/02/16 17:36		
1,4-Dichlorobenzene	ND	ug/kg	5.1	1		11/02/16 17:36	106-46-7	
Dichlorodifluoromethane	ND	ug/kg	10.3	1		11/02/16 17:36	75-71-8	
1,1-Dichloroethane	ND	ug/kg	5.1	1		11/02/16 17:36	75-34-3	
1,2-Dichloroethane	ND	ug/kg	5.1	1		11/02/16 17:36	107-06-2	
1,1-Dichloroethene	ND	ug/kg	5.1	1		11/02/16 17:36	75-35-4	
cis-1,2-Dichloroethene	ND	ug/kg	5.1	1		11/02/16 17:36	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	5.1	1		11/02/16 17:36	156-60-5	
1,2-Dichloropropane	ND	ug/kg	5.1	1		11/02/16 17:36	78-87-5	
1,3-Dichloropropane	ND	ug/kg	5.1	1		11/02/16 17:36		
2,2-Dichloropropane	ND	ug/kg	5.1	1		11/02/16 17:36		
1,1-Dichloropropene	ND	ug/kg	5.1	1		11/02/16 17:36		
cis-1,3-Dichloropropene	ND	ug/kg	5.1	1		11/02/16 17:36		
trans-1,3-Dichloropropene	ND	ug/kg	5.1	1		11/02/16 17:36		
Diisopropyl ether	ND	ug/kg	5.1	1		11/02/16 17:36		
						11/02/16 17:36		
Ethylbenzene Hexachloro-1,3-butadiene	ND ND	ug/kg	5.1 5.1	1		11/02/16 17:36		
-		ug/kg		1				
2-Hexanone	ND	ug/kg	51.3	1		11/02/16 17:36		
Isopropylbenzene (Cumene)	ND	ug/kg	5.1	1		11/02/16 17:36		
p-lsopropyltoluene	ND	ug/kg	5.1	1		11/02/16 17:36		
Methylene Chloride	ND	ug/kg	20.5	1		11/02/16 17:36		
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	51.3	1		11/02/16 17:36		
Methyl-tert-butyl ether	ND	ug/kg	5.1	1		11/02/16 17:36	1634-04-4	

ANALYTICAL RESULTS

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

Sample: 187-SB-1-6-8	Lab ID: 923	17874001	Collected: 10/26/1	6 14:00	Received: 1	0/31/16 08:52	Matrix: Solid	
Results reported on a "dry weight	" basis and are adj	usted for p	ercent moisture, sa	mple siz	ze and any dilu	itions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 82	260					
Naphthalene	ND	ug/kg	5.1	1		11/02/16 17:36	6 91-20-3	
n-Propylbenzene	ND	ug/kg	5.1	1		11/02/16 17:36	6 103-65-1	
Styrene	ND	ug/kg	5.1	1		11/02/16 17:36	6 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	5.1	1		11/02/16 17:36	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	5.1	1		11/02/16 17:36	6 79-34-5	
Tetrachloroethene	ND	ug/kg	5.1	1		11/02/16 17:36	6 127-18-4	
Toluene	ND	ug/kg	5.1	1		11/02/16 17:36	5 108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	5.1	1		11/02/16 17:36	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	5.1	1		11/02/16 17:36	5 120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	5.1	1		11/02/16 17:36	6 71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	5.1	1		11/02/16 17:36	3 79-00-5	
Trichloroethene	ND	ug/kg	5.1	1		11/02/16 17:36	6 79-01-6	
Trichlorofluoromethane	ND	ug/kg	5.1	1		11/02/16 17:36	6 75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	5.1	1		11/02/16 17:36	6 96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	5.1	1		11/02/16 17:36	6 95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	5.1	1		11/02/16 17:36	6 108-67-8	
Vinyl acetate	ND	ug/kg	51.3	1		11/02/16 17:36	6 108-05-4	
Vinyl chloride	ND	ug/kg	10.3	1		11/02/16 17:36	6 75-01-4	
Xylene (Total)	ND	ug/kg	10.3	1		11/02/16 17:36	6 1330-20-7	
m&p-Xylene	ND	ug/kg	10.3	1		11/02/16 17:36	6 179601-23-1	
o-Xylene	ND	ug/kg	5.1	1		11/02/16 17:36	6 95-47-6	
Surrogates								
Toluene-d8 (S)	100	%	70-130	1		11/02/16 17:36	6 2037-26-5	
4-Bromofluorobenzene (S)	95	%	70-130	1		11/02/16 17:36	6 460-00-4	
1,2-Dichloroethane-d4 (S)	119	%	70-132	1		11/02/16 17:36	6 17060-07-0	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	13.8	%	0.10	1		11/01/16 11:50)	

ANALYTICAL RESULTS

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

Sample: 187-SB-2-8-10	Lab ID: 923		Collected: 10/26/1				Aatrix: Solid	
Results reported on a "dry weight	t" basis and are adj	usted for p	ercent moisture, sa	mple si	ze and any dil	utions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Meth	od: EPA 82	60					
Acetone	ND	ug/kg	119	1		11/01/16 19:09	67-64-1	
Benzene	ND	ug/kg	5.9	1		11/01/16 19:09	71-43-2	
Bromobenzene	ND	ug/kg	5.9	1		11/01/16 19:09	108-86-1	
Bromochloromethane	ND	ug/kg	5.9	1		11/01/16 19:09	74-97-5	
Bromodichloromethane	ND	ug/kg	5.9	1		11/01/16 19:09	75-27-4	
Bromoform	ND	ug/kg	5.9	1		11/01/16 19:09	75-25-2	
Bromomethane	ND	ug/kg	11.9	1		11/01/16 19:09	74-83-9	
2-Butanone (MEK)	ND	ug/kg	119	1		11/01/16 19:09		
n-Butylbenzene	ND	ug/kg	5.9	1		11/01/16 19:09		
sec-Butylbenzene	ND	ug/kg	5.9	1		11/01/16 19:09		
tert-Butylbenzene	ND	ug/kg	5.9	1		11/01/16 19:09		
Carbon tetrachloride	ND	ug/kg	5.9	1		11/01/16 19:09		
Chlorobenzene	ND		5.9	1		11/01/16 19:09		
		ug/kg		1				
Chloroethane	ND	ug/kg	11.9			11/01/16 19:09		
Chloroform	ND	ug/kg	5.9	1		11/01/16 19:09		
Chloromethane	ND	ug/kg	11.9	1		11/01/16 19:09		
2-Chlorotoluene	ND	ug/kg	5.9	1		11/01/16 19:09		
4-Chlorotoluene	ND	ug/kg	5.9	1		11/01/16 19:09		
1,2-Dibromo-3-chloropropane	ND	ug/kg	5.9	1		11/01/16 19:09		
Dibromochloromethane	ND	ug/kg	5.9	1		11/01/16 19:09		
1,2-Dibromoethane (EDB)	ND	ug/kg	5.9	1		11/01/16 19:09		
Dibromomethane	ND	ug/kg	5.9	1		11/01/16 19:09	74-95-3	
1,2-Dichlorobenzene	ND	ug/kg	5.9	1		11/01/16 19:09	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	5.9	1		11/01/16 19:09	541-73-1	
1,4-Dichlorobenzene	ND	ug/kg	5.9	1		11/01/16 19:09	106-46-7	
Dichlorodifluoromethane	ND	ug/kg	11.9	1		11/01/16 19:09	75-71-8	
1,1-Dichloroethane	ND	ug/kg	5.9	1		11/01/16 19:09	75-34-3	
1,2-Dichloroethane	ND	ug/kg	5.9	1		11/01/16 19:09	107-06-2	
1,1-Dichloroethene	ND	ug/kg	5.9	1		11/01/16 19:09	75-35-4	
cis-1,2-Dichloroethene	ND	ug/kg	5.9	1		11/01/16 19:09	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	5.9	1		11/01/16 19:09	156-60-5	
1,2-Dichloropropane	ND	ug/kg	5.9	1		11/01/16 19:09	78-87-5	
1,3-Dichloropropane	ND	ug/kg	5.9	1		11/01/16 19:09		
2,2-Dichloropropane	ND	ug/kg	5.9	1		11/01/16 19:09		
1,1-Dichloropropene	ND	ug/kg	5.9	1		11/01/16 19:09		
cis-1,3-Dichloropropene	ND	ug/kg	5.9	1		11/01/16 19:09		
trans-1,3-Dichloropropene	ND	ug/kg	5.9	1				
Diisopropyl ether	ND	ug/kg	5.9	1		11/01/16 19:09		
Ethylbenzene	ND		5.9	1		11/01/16 19:09		
Hexachloro-1,3-butadiene	ND	ug/kg	5.9	1		11/01/16 19:09		
		ug/kg						
2-Hexanone	ND	ug/kg	59.4	1		11/01/16 19:09		
Isopropylbenzene (Cumene)	ND	ug/kg	5.9	1		11/01/16 19:09		
p-lsopropyltoluene	ND	ug/kg	5.9	1		11/01/16 19:09		
Methylene Chloride	ND	ug/kg	23.8	1		11/01/16 19:09		
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	59.4	1		11/01/16 19:09		
Methyl-tert-butyl ether	ND	ug/kg	5.9	1		11/01/16 19:09	1634-04-4	

ANALYTICAL RESULTS

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

Sample: 187-SB-2-8-10	Lab ID: 923	17874002	Collected: 10/26/1	6 14:05	Received: 1	0/31/16 08:52 N	/latrix: Solid	
Results reported on a "dry weight	t" basis and are adj	iusted for p	ercent moisture, sa	mple si	ze and any dilu	ıtions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 82	260					
Naphthalene	ND	ug/kg	5.9	1		11/01/16 19:09	91-20-3	
n-Propylbenzene	ND	ug/kg	5.9	1		11/01/16 19:09	103-65-1	
Styrene	ND	ug/kg	5.9	1		11/01/16 19:09	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	5.9	1		11/01/16 19:09	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	5.9	1		11/01/16 19:09	79-34-5	
Tetrachloroethene	ND	ug/kg	5.9	1		11/01/16 19:09	127-18-4	
Toluene	ND	ug/kg	5.9	1		11/01/16 19:09	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	5.9	1		11/01/16 19:09	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	5.9	1		11/01/16 19:09	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	5.9	1		11/01/16 19:09	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	5.9	1		11/01/16 19:09	79-00-5	
Trichloroethene	ND	ug/kg	5.9	1		11/01/16 19:09	79-01-6	
Trichlorofluoromethane	ND	ug/kg	5.9	1		11/01/16 19:09	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	5.9	1		11/01/16 19:09	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	5.9	1		11/01/16 19:09	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	5.9	1		11/01/16 19:09	108-67-8	
Vinyl acetate	ND	ug/kg	59.4	1		11/01/16 19:09	108-05-4	
Vinyl chloride	ND	ug/kg	11.9	1		11/01/16 19:09	75-01-4	
Xylene (Total)	ND	ug/kg	11.9	1		11/01/16 19:09	1330-20-7	
m&p-Xylene	ND	ug/kg	11.9	1		11/01/16 19:09	179601-23-1	
o-Xylene	ND	ug/kg	5.9	1		11/01/16 19:09	95-47-6	
Surrogates								
Toluene-d8 (S)	103	%	70-130	1		11/01/16 19:09	2037-26-5	
4-Bromofluorobenzene (S)	96	%	70-130	1		11/01/16 19:09	460-00-4	
1,2-Dichloroethane-d4 (S)	117	%	70-132	1		11/01/16 19:09	17060-07-0	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	19.0	%	0.10	1		11/01/16 11:50		

ANALYTICAL RESULTS

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

Sample: 187-SB-3-8-10	Lab ID: 923		Collected: 10/26/1				Matrix: Solid	
Results reported on a "dry weight	t" basis and are adj	usted for pe	rcent moisture, sa	mple si	ze and any dilı	ıtions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 826	0					
Acetone	ND	ug/kg	109	1		11/01/16 19:28	67-64-1	
Benzene	ND	ug/kg	5.4	1		11/01/16 19:28	71-43-2	
Bromobenzene	ND	ug/kg	5.4	1		11/01/16 19:28	108-86-1	
Bromochloromethane	ND	ug/kg	5.4	1		11/01/16 19:28	74-97-5	
Bromodichloromethane	ND	ug/kg	5.4	1		11/01/16 19:28	75-27-4	
Bromoform	ND	ug/kg	5.4	1		11/01/16 19:28	75-25-2	
Bromomethane	ND	ug/kg	10.9	1		11/01/16 19:28		
2-Butanone (MEK)	ND	ug/kg	109	1		11/01/16 19:28		
n-Butylbenzene	ND	ug/kg	5.4	1		11/01/16 19:28		
sec-Butylbenzene	ND	ug/kg	5.4	1		11/01/16 19:28		
tert-Butylbenzene	ND	ug/kg	5.4	1		11/01/16 19:28		
Carbon tetrachloride	ND	ug/kg	5.4	1		11/01/16 19:28		
Chlorobenzene	ND	ug/kg	5.4	1		11/01/16 19:28		
Chloroethane	ND	ug/kg ug/kg	10.9	1		11/01/16 19:28		
Chloroform	ND	ug/kg ug/kg	5.4	1		11/01/16 19:28		
Chloromethane	ND		5.4 10.9	1		11/01/16 19:28		
		ug/kg						
2-Chlorotoluene	ND	ug/kg	5.4	1		11/01/16 19:28		
4-Chlorotoluene	ND	ug/kg	5.4	1		11/01/16 19:28		
1,2-Dibromo-3-chloropropane	ND	ug/kg	5.4	1		11/01/16 19:28		
Dibromochloromethane	ND	ug/kg	5.4	1		11/01/16 19:28		
1,2-Dibromoethane (EDB)	ND	ug/kg	5.4	1		11/01/16 19:28		
Dibromomethane	ND	ug/kg	5.4	1		11/01/16 19:28		
1,2-Dichlorobenzene	ND	ug/kg	5.4	1		11/01/16 19:28	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	5.4	1		11/01/16 19:28		
1,4-Dichlorobenzene	ND	ug/kg	5.4	1		11/01/16 19:28		
Dichlorodifluoromethane	ND	ug/kg	10.9	1		11/01/16 19:28	75-71-8	
1,1-Dichloroethane	ND	ug/kg	5.4	1		11/01/16 19:28	75-34-3	
1,2-Dichloroethane	ND	ug/kg	5.4	1		11/01/16 19:28	107-06-2	
1,1-Dichloroethene	ND	ug/kg	5.4	1		11/01/16 19:28	75-35-4	
cis-1,2-Dichloroethene	ND	ug/kg	5.4	1		11/01/16 19:28	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	5.4	1		11/01/16 19:28	156-60-5	
1,2-Dichloropropane	ND	ug/kg	5.4	1		11/01/16 19:28	78-87-5	
1,3-Dichloropropane	ND	ug/kg	5.4	1		11/01/16 19:28	142-28-9	
2,2-Dichloropropane	ND	ug/kg	5.4	1		11/01/16 19:28	594-20-7	
1,1-Dichloropropene	ND	ug/kg	5.4	1		11/01/16 19:28	563-58-6	
cis-1,3-Dichloropropene	ND	ug/kg	5.4	1		11/01/16 19:28	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/kg	5.4	1		11/01/16 19:28		
Diisopropyl ether	ND	ug/kg	5.4	1		11/01/16 19:28		
Ethylbenzene	ND	ug/kg	5.4	1		11/01/16 19:28		
Hexachloro-1,3-butadiene	ND	ug/kg	5.4	1		11/01/16 19:28		
2-Hexanone	ND	ug/kg	54.4	1		11/01/16 19:28		
Isopropylbenzene (Cumene)	ND	ug/kg	5.4	1		11/01/16 19:28		
p-lsopropyltoluene	ND	ug/kg ug/kg	5.4	1		11/01/16 19:28		
Methylene Chloride	ND	ug/kg ug/kg	21.8	1		11/01/16 19:28		
4-Methyl-2-pentanone (MIBK)	ND	ug/kg ug/kg	54.4	1		11/01/16 19:28		
Methyl-tert-butyl ether	ND		5.4	1		11/01/16 19:28		
	NU	ug/kg	5.4	1		11/01/10 19:20	1034-04-4	

ANALYTICAL RESULTS

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

Sample: 187-SB-3-8-10	Lab ID: 923	17874003	Collected: 10/26/1	6 14:10	Received: 1	0/31/16 08:52 N	/latrix: Solid	
Results reported on a "dry weight	t" basis and are adj	usted for p	ercent moisture, sa	mple si	ze and any dilu	utions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Mether	nod: EPA 82	260					
Naphthalene	ND	ug/kg	5.4	1		11/01/16 19:28	91-20-3	
n-Propylbenzene	ND	ug/kg	5.4	1		11/01/16 19:28	103-65-1	
Styrene	ND	ug/kg	5.4	1		11/01/16 19:28	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	5.4	1		11/01/16 19:28	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	5.4	1		11/01/16 19:28	79-34-5	
Tetrachloroethene	ND	ug/kg	5.4	1		11/01/16 19:28	127-18-4	
Toluene	ND	ug/kg	5.4	1		11/01/16 19:28	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	5.4	1		11/01/16 19:28	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	5.4	1		11/01/16 19:28	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	5.4	1		11/01/16 19:28	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	5.4	1		11/01/16 19:28	79-00-5	
Trichloroethene	ND	ug/kg	5.4	1		11/01/16 19:28	79-01-6	
Trichlorofluoromethane	ND	ug/kg	5.4	1		11/01/16 19:28	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	5.4	1		11/01/16 19:28	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	5.4	1		11/01/16 19:28	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	5.4	1		11/01/16 19:28	108-67-8	
Vinyl acetate	ND	ug/kg	54.4	1		11/01/16 19:28	108-05-4	
Vinyl chloride	ND	ug/kg	10.9	1		11/01/16 19:28	75-01-4	
Xylene (Total)	ND	ug/kg	10.9	1		11/01/16 19:28	1330-20-7	
m&p-Xylene	ND	ug/kg	10.9	1		11/01/16 19:28	179601-23-1	
o-Xylene	ND	ug/kg	5.4	1		11/01/16 19:28	95-47-6	
Surrogates								
Toluene-d8 (S)	101	%	70-130	1		11/01/16 19:28	2037-26-5	
4-Bromofluorobenzene (S)	97	%	70-130	1		11/01/16 19:28	460-00-4	
1,2-Dichloroethane-d4 (S)	120	%	70-132	1		11/01/16 19:28	17060-07-0	
Percent Moisture	Analytical Mether	nod: ASTM	D2974-87					
Percent Moisture	17.6	%	0.10	1		11/01/16 11:51		

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

QC Batch: 335217

QC Batch Method: EPA 8260

Analysis Method: Analysis Description: EPA 8260 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 92317874002, 92317874003

METHOD BLANK: 1858123 Matrix: Solid Associated Lab Samples: 92317874002, 92317874003 Blank Reporting Result Limit Qualifiers Parameter Units Analyzed 1,1,1,2-Tetrachloroethane ND 5.1 11/01/16 11:53 ug/kg 1,1,1-Trichloroethane ND 51 11/01/16 11:53 ug/kg 1,1,2,2-Tetrachloroethane ug/kg ND 51 11/01/16 11:53 ND 5.1 1,1,2-Trichloroethane ug/kg 11/01/16 11:53 1,1-Dichloroethane ug/kg ND 5.1 11/01/16 11:53 1,1-Dichloroethene ug/kg ND 5.1 11/01/16 11:53 1,1-Dichloropropene ug/kg ND 5.1 11/01/16 11:53 1,2,3-Trichlorobenzene ug/kg ND 5.1 11/01/16 11:53 1,2,3-Trichloropropane ug/kg ND 5.1 11/01/16 11:53 1.2.4-Trichlorobenzene ug/kg ND 5.1 11/01/16 11:53 1,2,4-Trimethylbenzene ND 5.1 11/01/16 11:53 ug/kg ND 5.1 11/01/16 11:53 1,2-Dibromo-3-chloropropane ug/kg 1.2-Dibromoethane (EDB) ND 5.1 11/01/16 11:53 ug/kg 1,2-Dichlorobenzene ND 5.1 11/01/16 11:53 ug/kg ND 5.1 1,2-Dichloroethane ug/kg 11/01/16 11:53 1,2-Dichloropropane ug/kg ND 5.1 11/01/16 11:53 1,3,5-Trimethylbenzene ug/kg ND 5.1 11/01/16 11:53 1,3-Dichlorobenzene ug/kg ND 5.1 11/01/16 11:53 1,3-Dichloropropane ND 5.1 11/01/16 11:53 ug/kg 11/01/16 11:53 1,4-Dichlorobenzene ug/kg ND 5.1 2,2-Dichloropropane ug/kg ND 5.1 11/01/16 11:53 2-Butanone (MEK) ug/kg ND 102 11/01/16 11:53 2-Chlorotoluene ug/kg ND 5.1 11/01/16 11:53 2-Hexanone ND 51.1 11/01/16 11:53 ug/kg 4-Chlorotoluene ND 5.1 11/01/16 11:53 ug/kg 4-Methyl-2-pentanone (MIBK) ug/kg ND 51.1 11/01/16 11:53 Acetone ug/kg ND 102 11/01/16 11:53 Benzene ug/kg ND 5.1 11/01/16 11:53 Bromobenzene ug/kg ND 5.1 11/01/16 11:53 Bromochloromethane ND 11/01/16 11:53 ug/kg 5.1 Bromodichloromethane ug/kg ND 51 11/01/16 11:53 Bromoform ug/kg ND 5.1 11/01/16 11:53 Bromomethane ug/kg ND 10.2 11/01/16 11:53 Carbon tetrachloride ug/kg ND 5.1 11/01/16 11:53 Chlorobenzene ug/kg ND 5.1 11/01/16 11:53 Chloroethane ug/kg ND 10.2 11/01/16 11:53 Chloroform ND 11/01/16 11:53 ug/kg 5.1 ND Chloromethane ug/kg 10.2 11/01/16 11:53 cis-1,2-Dichloroethene ug/kg ND 5.1 11/01/16 11:53 cis-1,3-Dichloropropene ND 5.1 11/01/16 11:53 ug/kg Dibromochloromethane ug/kg ND 5.1 11/01/16 11:53

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Parcel 187 39049.1.1 Pace Project No.: 92317874

METHOD BLANK: 1858123		Matrix:	Solid		
Associated Lab Samples: 92	2317874002, 92317874003				
	·	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dibromomethane	ug/kg	ND	5.1	11/01/16 11:53	
Dichlorodifluoromethane	ug/kg	ND	10.2	11/01/16 11:53	
Diisopropyl ether	ug/kg	ND	5.1	11/01/16 11:53	
Ethylbenzene	ug/kg	ND	5.1	11/01/16 11:53	
Hexachloro-1,3-butadiene	ug/kg	ND	5.1	11/01/16 11:53	
Isopropylbenzene (Cumene)	ug/kg	ND	5.1	11/01/16 11:53	
m&p-Xylene	ug/kg	ND	10.2	11/01/16 11:53	
Methyl-tert-butyl ether	ug/kg	ND	5.1	11/01/16 11:53	
Methylene Chloride	ug/kg	ND	20.4	11/01/16 11:53	
n-Butylbenzene	ug/kg	ND	5.1	11/01/16 11:53	
n-Propylbenzene	ug/kg	ND	5.1	11/01/16 11:53	
Naphthalene	ug/kg	ND	5.1	11/01/16 11:53	
o-Xylene	ug/kg	ND	5.1	11/01/16 11:53	
p-Isopropyltoluene	ug/kg	ND	5.1	11/01/16 11:53	
sec-Butylbenzene	ug/kg	ND	5.1	11/01/16 11:53	
Styrene	ug/kg	ND	5.1	11/01/16 11:53	
tert-Butylbenzene	ug/kg	ND	5.1	11/01/16 11:53	
Tetrachloroethene	ug/kg	ND	5.1	11/01/16 11:53	
Toluene	ug/kg	ND	5.1	11/01/16 11:53	
trans-1,2-Dichloroethene	ug/kg	ND	5.1	11/01/16 11:53	
trans-1,3-Dichloropropene	ug/kg	ND	5.1	11/01/16 11:53	
Trichloroethene	ug/kg	ND	5.1	11/01/16 11:53	
Trichlorofluoromethane	ug/kg	ND	5.1	11/01/16 11:53	
Vinyl acetate	ug/kg	ND	51.1	11/01/16 11:53	
Vinyl chloride	ug/kg	ND	10.2	11/01/16 11:53	
Xylene (Total)	ug/kg	ND	10.2	11/01/16 11:53	
1,2-Dichloroethane-d4 (S)	%	125	70-132	11/01/16 11:53	
4-Bromofluorobenzene (S)	%	95	70-130	11/01/16 11:53	
Toluene-d8 (S)	%	102	70-130	11/01/16 11:53	

LABORATORY CONTROL SAMPLE: 1858124

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	54.2	59.3	109	74-137	
1,1,1-Trichloroethane	ug/kg	54.2	60.8	112	67-140	
1,1,2,2-Tetrachloroethane	ug/kg	54.2	59.6	110	72-141	
1,1,2-Trichloroethane	ug/kg	54.2	63.7	117	78-138	
1,1-Dichloroethane	ug/kg	54.2	61.4	113	69-134	
1,1-Dichloroethene	ug/kg	54.2	62.2	115	67-138	
1,1-Dichloropropene	ug/kg	54.2	59.5	110	69-139	
1,2,3-Trichlorobenzene	ug/kg	54.2	63.7	118	70-146	
1,2,3-Trichloropropane	ug/kg	54.2	66.4	122	69-144	
1,2,4-Trichlorobenzene	ug/kg	54.2	60.1	111	68-148	
1,2,4-Trimethylbenzene	ug/kg	54.2	59.8	110	74-137	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

LABORATORY CONTROL SAMPLE:	1858124					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dibromo-3-chloropropane	ug/kg	54.2	69.7	129	65-140	
1,2-Dibromoethane (EDB)	ug/kg	54.2	63.8	118	77-135	
1,2-Dichlorobenzene	ug/kg	54.2	62.6	115	77-141	
1,2-Dichloroethane	ug/kg	54.2	65.5	121	65-137	
,2-Dichloropropane	ug/kg	54.2	59.8	110	72-136	
I,3,5-Trimethylbenzene	ug/kg	54.2	58.5	108	76-133	
.3-Dichlorobenzene	ug/kg	54.2	60.2	111	74-138	
,3-Dichloropropane	ug/kg	54.2	60.7	112	71-139	
,4-Dichlorobenzene	ug/kg	54.2	59.8	110	76-138	
,2-Dichloropropane	ug/kg	54.2	63.0	116	68-137	
-Butanone (MEK)	ug/kg	108	138	127	58-147	
-Chlorotoluene	ug/kg	54.2	61.1	113	73-139	
-Hexanone	ug/kg	108	140	129	62-145	
-Chlorotoluene	ug/kg	54.2	59.7	110	76-141	
-Methyl-2-pentanone (MIBK)	ug/kg	108	146	135	64-149	
cetone	ug/kg	108	150	138	53-153	
enzene	ug/kg	54.2	61.3	113	73-135	
romobenzene	ug/kg	54.2	61.5	113	75-133	
romochloromethane	ug/kg	54.2	67.2	124	73-134	
romodichloromethane	ug/kg	54.2	64.1	118	71-135	
omoform	ug/kg	54.2	61.7	114	66-141	
omomethane	ug/kg	54.2	63.2	116	53-160	
rbon tetrachloride	ug/kg	54.2	59.1	109	60-145	
llorobenzene	ug/kg	54.2	58.0	107	78-130	
nloroethane	ug/kg	54.2	62.4	115	64-149	
loroform	ug/kg	54.2	63.4	117	70-134	
loromethane	ug/kg	54.2	65.4	121	52-150	
-1,2-Dichloroethene	ug/kg	54.2	67.2	124	70-133	
-1,3-Dichloropropene	ug/kg	54.2	61.6	114	68-134	
promochloromethane	ug/kg	54.2	64.8	120	71-138	
bromomethane	ug/kg	54.2	61.8	114	74-130	
chlorodifluoromethane	ug/kg	54.2	65.0	120	40-160	
isopropyl ether	ug/kg	54.2	67.5	124	69-141	
hylbenzene	ug/kg	54.2	58.1	107	75-133	
exachloro-1,3-butadiene	ug/kg	54.2	56.2	104	68-143	
opropylbenzene (Cumene)	ug/kg	54.2	58.2	107	76-143	
&p-Xylene	ug/kg	108	119	110	75-136	
ethyl-tert-butyl ether	ug/kg	54.2	66.5	123	68-144	
ethylene Chloride	ug/kg	54.2	68.5	126	45-154	
Butylbenzene	ug/kg	54.2	59.0	109	72-137	
Propylbenzene	ug/kg	54.2	58.5	108	76-136	
aphthalene	ug/kg	54.2	67.0	124	68-151	
Xylene	ug/kg	54.2	59.2	109	76-141	
Isopropyltoluene	ug/kg	54.2	58.2	107	76-140	
ec-Butylbenzene	ug/kg	54.2	58.5	108	79-139	
tyrene	ug/kg	54.2	59.3	109	79-137	
ert-Butylbenzene	ug/kg	54.2	52.8	97	74-143	
-	5.0					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

LABORATORY CONTROL SAMPLE: 1858124

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Tetrachloroethene	ug/kg	54.2	49.5	91	71-138	
Toluene	ug/kg	54.2	59.8	110	74-131	
rans-1,2-Dichloroethene	ug/kg	54.2	61.3	113	67-135	
ans-1,3-Dichloropropene	ug/kg	54.2	62.8	116	65-146	
richloroethene	ug/kg	54.2	61.2	113	67-135	
richlorofluoromethane	ug/kg	54.2	63.4	117	59-144	
nyl acetate	ug/kg	108	103	95	40-160	
nyl chloride	ug/kg	54.2	59.0	109	56-141	
rlene (Total)	ug/kg	163	178	110	76-137	
2-Dichloroethane-d4 (S)	%			118	70-132	
Bromofluorobenzene (S)	%			98	70-130	
oluene-d8 (S)	%			101	70-130	

MATRIX SPIKE SAMPLE:	1858924						
		92317912001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	18.6	15.8	85	70-130	
1,1,1-Trichloroethane	ug/kg	ND	18.6	18.1	98	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	ND	18.6	16.9	91	70-130	
1,1,2-Trichloroethane	ug/kg	ND	18.6	17.4	94	70-130	
1,1-Dichloroethane	ug/kg	ND	18.6	18.7	101	70-130	
1,1-Dichloroethene	ug/kg	ND	18.6	19.5	105	49-180	
1,1-Dichloropropene	ug/kg	ND	18.6	18.0	97	70-130	
1,2,3-Trichlorobenzene	ug/kg	ND	18.6	14.4	78	70-130	
1,2,3-Trichloropropane	ug/kg	ND	18.6	18.0	97	70-130	
1,2,4-Trichlorobenzene	ug/kg	ND	18.6	14.2	77	70-130	
1,2,4-Trimethylbenzene	ug/kg	ND	18.6	17.8	96	70-130	
1,2-Dibromo-3-chloropropane	ug/kg	ND	18.6	15.2	82	70-130	
1,2-Dibromoethane (EDB)	ug/kg	ND	18.6	17.9	97	70-130	
1,2-Dichlorobenzene	ug/kg	ND	18.6	17.3	93	70-130	
1,2-Dichloroethane	ug/kg	ND	18.6	19.5	105	70-130	
1,2-Dichloropropane	ug/kg	ND	18.6	17.1	92	70-130	
1,3,5-Trimethylbenzene	ug/kg	ND	18.6	17.8	96	70-130	
1,3-Dichlorobenzene	ug/kg	ND	18.6	16.5	89	70-130	
1,3-Dichloropropane	ug/kg	ND	18.6	17.0	92	70-130	
1,4-Dichlorobenzene	ug/kg	ND	18.6	16.5	89	70-130	
2,2-Dichloropropane	ug/kg	ND	18.6	18.3	99	70-130	
2-Butanone (MEK)	ug/kg	ND	37.1	38.2J	103	70-130	
2-Chlorotoluene	ug/kg	ND	18.6	16.5	89	70-130	
2-Hexanone	ug/kg	ND	37.1	32.1J	86	70-130	
4-Chlorotoluene	ug/kg	ND	18.6	17.4	94	70-130	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	37.1	36.6J	99	70-130	
Acetone	ug/kg	ND	37.1	40.4J	109	70-130	
Benzene	ug/kg	ND	18.6	18.5	100	50-166	
Bromobenzene	ug/kg	ND	18.6	18.0	97	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

MATRIX SPIKE SAMPLE:	1858924	92317912001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromochloromethane	ug/kg	ND	18.6	19.5	105	70-130	
Bromodichloromethane	ug/kg	ND	18.6	17.8	96	70-130	
Bromoform	ug/kg	ND	18.6	14.1	76	70-130	
Bromomethane	ug/kg	ND	18.6	17.1	92	70-130	
Carbon tetrachloride	ug/kg	ND	18.6	17.0	92	70-130	
Chlorobenzene	ug/kg	ND	18.6	17.2	93	43-169	
Chloroethane	ug/kg	ND	18.6	20.4	110	70-130	
Chloroform	ug/kg	ND	18.6	18.8	102	70-130	
Chloromethane	ug/kg	ND	18.6	19.5	105	70-130	
is-1,2-Dichloroethene	ug/kg	ND	18.6	18.3	99	70-130	
is-1,3-Dichloropropene	ug/kg	ND	18.6	16.5	89	70-130	
Dibromochloromethane	ug/kg	ND	18.6	16.6	90	70-130	
Dibromomethane	ug/kg	ND	18.6	18.1	97	70-130	
Dichlorodifluoromethane	ug/kg	ND	18.6	21.2	114	70-130	
Diisopropyl ether	ug/kg	ND	18.6	20.3	109	70-130	
thylbenzene	ug/kg	ND	18.6	18.0	97	70-130	
lexachloro-1,3-butadiene	ug/kg	ND	18.6	14.1	76	70-130	
sopropylbenzene (Cumene)	ug/kg	ND	18.6	17.8	96	70-130	
n&p-Xylene	ug/kg	ND	37.1	36.2	98	70-130	
lethyl-tert-butyl ether	ug/kg	ND	18.6	20.0	108	70-130	
lethylene Chloride	ug/kg	ND	18.6	23.6	69	70-130 M	1
-Butylbenzene	ug/kg	ND	18.6	17.3	93	70-130	-
-Propylbenzene	ug/kg	ND	18.6	18.4	99	70-130	
Japhthalene	ug/kg	ND	18.6	16.4	88	70-130	
-Xylene	ug/kg	ND	18.6	17.7	95	70-130	
-Isopropyltoluene	ug/kg	ND	18.6	17.4	94	70-130	
ec-Butylbenzene	ug/kg	ND	18.6	18.2	98	70-130	
Styrene	ug/kg	ND	18.6	17.3	93	70-130	
ert-Butylbenzene	ug/kg	ND	18.6	16.3	88	70-130	
etrachloroethene	ug/kg	ND	18.6	14.9	81	70-130	
oluene	ug/kg	ND	18.6	18.4	99	52-163	
rans-1,2-Dichloroethene	ug/kg	ND	18.6	19.4	104	70-130	
rans-1,3-Dichloropropene	ug/kg	ND	18.6	15.9	86	70-130	
richloroethene	ug/kg	ND	18.6	16.9	91	49-167	
richlorofluoromethane	ug/kg	ND	18.6	20.9	113	70-130	
'inyl acetate	ug/kg	ND	37.1	20.9J	56	70-130 70-130 M	1
inyl chloride	ug/kg	ND	18.6	18.9	102	70-130 M	
,2-Dichloroethane-d4 (S)	ug/kg %		10.0	10.9	102	70-130	
-Bromofluorobenzene (S)	%				98	70-132	
oluene-d8 (S)	%				98 100	70-130	

SAMPLE DUPLICATE:	1858923
-------------------	---------

		92317874002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	ND		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

Parameter	Units	92317874002 Result	Dup Result	RPD	Qualifiers
1,1,1-Trichloroethane	ug/kg	ND	ND		
1,1,2,2-Tetrachloroethane	ug/kg		ND		
1,1,2-Trichloroethane	ug/kg	ND	ND		
1,1-Dichloroethane	ug/kg	ND	ND		
1,1-Dichloroethene	ug/kg	ND	ND		
1,1-Dichloropropene	ug/kg	ND	ND		
1,2,3-Trichlorobenzene	ug/kg	ND	ND		
1,2,3-Trichloropropane	ug/kg	ND	ND		
1,2,4-Trichlorobenzene	ug/kg	ND	ND		
1,2,4-Trimethylbenzene	ug/kg	ND	ND		
1,2-Dibromo-3-chloropropane	ug/kg	ND	ND		
1,2-Dibromoethane (EDB)	ug/kg	ND	ND		
1,2-Dichlorobenzene	ug/kg	ND	ND		
1,2-Dichloroethane	ug/kg	ND	ND		
1,2-Dichloropropane	ug/kg	ND	ND		
1,3,5-Trimethylbenzene	ug/kg	ND	ND		
1,3-Dichlorobenzene	ug/kg	ND	ND		
1,3-Dichloropropane	ug/kg	ND	ND		
1,4-Dichlorobenzene	ug/kg	ND	ND		
2,2-Dichloropropane	ug/kg	ND	ND		
2-Butanone (MEK)	ug/kg	ND	ND		
2-Chlorotoluene	ug/kg	ND	ND		
2-Hexanone	ug/kg	ND	ND		
4-Chlorotoluene	ug/kg	ND	ND		
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	ND		
Acetone	ug/kg	ND	ND		
Benzene	ug/kg	ND	ND		
Bromobenzene	ug/kg	ND	ND		
Bromochloromethane	ug/kg	ND	ND		
Bromodichloromethane	ug/kg	ND	ND		
Bromoform	ug/kg	ND	ND		
Bromomethane	ug/kg	ND	ND		
Carbon tetrachloride	ug/kg	ND	ND		
Chlorobenzene	ug/kg	ND	ND		
Chloroethane	ug/kg	ND	ND		
Chloroform	ug/kg	ND	ND		
Chloromethane	ug/kg	ND	ND		
cis-1,2-Dichloroethene	ug/kg	ND	ND		
cis-1,3-Dichloropropene	ug/kg	ND	ND		
Dibromochloromethane	ug/kg	ND	ND		
Dibromomethane	ug/kg	ND	ND		
Dichlorodifluoromethane	ug/kg	ND	ND		
Diisopropyl ether	ug/kg	ND	ND		
Ethylbenzene	ug/kg	ND	ND		
Hexachloro-1,3-butadiene	ug/kg	ND	ND		
sopropylbenzene (Cumene)	ug/kg	ND	ND		
m&p-Xylene	ug/kg	ND	ND		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

SAMPLE DUPLICATE: 1858923					
		92317874002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Methyl-tert-butyl ether	ug/kg	ND	ND		
Methylene Chloride	ug/kg	ND	ND		
n-Butylbenzene	ug/kg	ND	ND		
n-Propylbenzene	ug/kg	ND	ND		
Naphthalene	ug/kg	ND	ND		
o-Xylene	ug/kg	ND	ND		
p-Isopropyltoluene	ug/kg	ND	ND		
sec-Butylbenzene	ug/kg	ND	ND		
Styrene	ug/kg	ND	ND		
tert-Butylbenzene	ug/kg	ND	ND		
Tetrachloroethene	ug/kg	ND	ND		
Toluene	ug/kg	ND	ND		
trans-1,2-Dichloroethene	ug/kg	ND	ND		
trans-1,3-Dichloropropene	ug/kg	ND	ND		
Trichloroethene	ug/kg	ND	ND		
Trichlorofluoromethane	ug/kg	ND	ND		
Vinyl acetate	ug/kg	ND	ND		
Vinyl chloride	ug/kg	ND	ND		
Xylene (Total)	ug/kg	ND	ND		
1,2-Dichloroethane-d4 (S)	%	117	110	26	
4-Bromofluorobenzene (S)	%	96	95	20	
Toluene-d8 (S)	%	103	101	22	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

QC Batch:335373QC Batch Method:EPA 8260

Analysis Description:

Matrix: Solid

Analysis Method:

EPA 8260 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 92317874001

METHOD BLANK: 1859105

Associated Lab Samples:	92317874001
-------------------------	-------------

Deveryoter	Linite	Blank	Reporting	A in a luim a d	Qualifier
Parameter	Units	Result	Limit	Analyzed	Qualifiers
,1,1,2-Tetrachloroethane	ug/kg	ND	4.7	11/02/16 12:39	
,1,1-Trichloroethane	ug/kg	ND	4.7	11/02/16 12:39	
,1,2,2-Tetrachloroethane	ug/kg	ND	4.7	11/02/16 12:39	
,1,2-Trichloroethane	ug/kg	ND	4.7	11/02/16 12:39	
,1-Dichloroethane	ug/kg	ND	4.7	11/02/16 12:39	
,1-Dichloroethene	ug/kg	ND	4.7	11/02/16 12:39	
,1-Dichloropropene	ug/kg	ND	4.7	11/02/16 12:39	
,2,3-Trichlorobenzene	ug/kg	ND	4.7	11/02/16 12:39	
,2,3-Trichloropropane	ug/kg	ND	4.7	11/02/16 12:39	
,2,4-Trichlorobenzene	ug/kg	ND	4.7	11/02/16 12:39	
,2,4-Trimethylbenzene	ug/kg	ND	4.7	11/02/16 12:39	
,2-Dibromo-3-chloropropane	ug/kg	ND	4.7	11/02/16 12:39	
,2-Dibromoethane (EDB)	ug/kg	ND	4.7	11/02/16 12:39	
,2-Dichlorobenzene	ug/kg	ND	4.7	11/02/16 12:39	
,2-Dichloroethane	ug/kg	ND	4.7	11/02/16 12:39	
,2-Dichloropropane	ug/kg	ND	4.7	11/02/16 12:39	
,3,5-Trimethylbenzene	ug/kg	ND	4.7	11/02/16 12:39	
,3-Dichlorobenzene	ug/kg	ND	4.7	11/02/16 12:39	
3-Dichloropropane	ug/kg	ND	4.7	11/02/16 12:39	
,4-Dichlorobenzene	ug/kg	ND	4.7	11/02/16 12:39	
2-Dichloropropane	ug/kg	ND	4.7	11/02/16 12:39	
-Butanone (MEK)	ug/kg	ND	94.3	11/02/16 12:39	
Chlorotoluene	ug/kg	ND	4.7	11/02/16 12:39	
-Hexanone	ug/kg	ND	47.2	11/02/16 12:39	
-Chlorotoluene	ug/kg	ND	4.7	11/02/16 12:39	
-Methyl-2-pentanone (MIBK)	ug/kg	ND	47.2	11/02/16 12:39	
cetone	ug/kg	ND	94.3	11/02/16 12:39	
enzene	ug/kg	ND	4.7	11/02/16 12:39	
romobenzene	ug/kg	ND	4.7	11/02/16 12:39	
romochloromethane	ug/kg	ND	4.7	11/02/16 12:39	
romodichloromethane	ug/kg	ND	4.7	11/02/16 12:39	
romoform	ug/kg	ND	4.7	11/02/16 12:39	
romomethane	ug/kg	ND	9.4	11/02/16 12:39	
arbon tetrachloride	ug/kg	ND	4.7	11/02/16 12:39	
hlorobenzene	ug/kg	ND	4.7	11/02/16 12:39	
hloroethane	ug/kg	ND	9.4	11/02/16 12:39	
hloroform	ug/kg	ND	4.7	11/02/16 12:39	
hloromethane	ug/kg	ND	9.4	11/02/16 12:39	
is-1,2-Dichloroethene	ug/kg	ND	4.7	11/02/16 12:39	
is-1,3-Dichloropropene	ug/kg	ND	4.7	11/02/16 12:39	
libromochloromethane	ug/kg	ND	4.7	11/02/16 12:39	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Matrix: Solid

Project: Parcel 187 39049.1.1 Pace Project No.: 92317874

METHOD BLANK: 1859105 Associated Lab Samples: 92317874001

5	11.5	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dibromomethane	ug/kg	ND	4.7	11/02/16 12:39	
Dichlorodifluoromethane	ug/kg	ND	9.4	11/02/16 12:39	
Diisopropyl ether	ug/kg	ND	4.7	11/02/16 12:39	
Ethylbenzene	ug/kg	ND	4.7	11/02/16 12:39	
Hexachloro-1,3-butadiene	ug/kg	ND	4.7	11/02/16 12:39	
Isopropylbenzene (Cumene)	ug/kg	ND	4.7	11/02/16 12:39	
m&p-Xylene	ug/kg	ND	9.4	11/02/16 12:39	
Methyl-tert-butyl ether	ug/kg	ND	4.7	11/02/16 12:39	
Methylene Chloride	ug/kg	ND	18.9	11/02/16 12:39	
n-Butylbenzene	ug/kg	ND	4.7	11/02/16 12:39	
n-Propylbenzene	ug/kg	ND	4.7	11/02/16 12:39	
Naphthalene	ug/kg	ND	4.7	11/02/16 12:39	
o-Xylene	ug/kg	ND	4.7	11/02/16 12:39	
p-Isopropyltoluene	ug/kg	ND	4.7	11/02/16 12:39	
sec-Butylbenzene	ug/kg	ND	4.7	11/02/16 12:39	
Styrene	ug/kg	ND	4.7	11/02/16 12:39	
tert-Butylbenzene	ug/kg	ND	4.7	11/02/16 12:39	
Tetrachloroethene	ug/kg	ND	4.7	11/02/16 12:39	
Toluene	ug/kg	ND	4.7	11/02/16 12:39	
trans-1,2-Dichloroethene	ug/kg	ND	4.7	11/02/16 12:39	
trans-1,3-Dichloropropene	ug/kg	ND	4.7	11/02/16 12:39	
Trichloroethene	ug/kg	ND	4.7	11/02/16 12:39	
Trichlorofluoromethane	ug/kg	ND	4.7	11/02/16 12:39	
Vinyl acetate	ug/kg	ND	47.2	11/02/16 12:39	
Vinyl chloride	ug/kg	ND	9.4	11/02/16 12:39	
Xylene (Total)	ug/kg	ND	9.4	11/02/16 12:39	
1,2-Dichloroethane-d4 (S)	%	117	70-132	11/02/16 12:39	
4-Bromofluorobenzene (S)	%	96	70-130	11/02/16 12:39	
Toluene-d8 (S)	%	101	70-130	11/02/16 12:39	

LABORATORY CONTROL SAMPLE: 1859106

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	51.8	56.4	109	74-137	
1,1,1-Trichloroethane	ug/kg	51.8	54.6	105	67-140	
1,1,2,2-Tetrachloroethane	ug/kg	51.8	56.7	110	72-141	
1,1,2-Trichloroethane	ug/kg	51.8	58.9	114	78-138	
1,1-Dichloroethane	ug/kg	51.8	55.0	106	69-134	
1,1-Dichloroethene	ug/kg	51.8	56.6	109	67-138	
1,1-Dichloropropene	ug/kg	51.8	52.6	102	69-139	
1,2,3-Trichlorobenzene	ug/kg	51.8	58.6	113	70-146	
1,2,3-Trichloropropane	ug/kg	51.8	60.9	118	69-144	
1,2,4-Trichlorobenzene	ug/kg	51.8	56.9	110	68-148	
1,2,4-Trimethylbenzene	ug/kg	51.8	56.2	109	74-137	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

LABORATORY CONTROL SAMPLE:	1859106					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dibromo-3-chloropropane	ug/kg	51.8	59.1	114	65-140	
1,2-Dibromoethane (EDB)	ug/kg	51.8	59.1	114	77-135	
1,2-Dichlorobenzene	ug/kg	51.8	60.1	116	77-141	
1,2-Dichloroethane	ug/kg	51.8	61.0	118	65-137	
,2-Dichloropropane	ug/kg	51.8	54.0	104	72-136	
,3,5-Trimethylbenzene	ug/kg	51.8	55.1	106	76-133	
,3-Dichlorobenzene	ug/kg	51.8	56.3	109	74-138	
,3-Dichloropropane	ug/kg	51.8	56.6	109	71-139	
4-Dichlorobenzene	ug/kg	51.8	57.0	110	76-138	
2-Dichloropropane	ug/kg	51.8	55.9	108	68-137	
Butanone (MEK)	ug/kg	104	119	115	58-147	
Chlorotoluene	ug/kg	51.8	57.3	111	73-139	
Hexanone	ug/kg	104	128	123	62-145	
-Chlorotoluene	ug/kg	51.8	56.5	109	76-141	
-Methyl-2-pentanone (MIBK)	ug/kg	104	130	126	64-149	
cetone	ug/kg	104	142	137	53-153	
enzene	ug/kg	51.8	56.3	109	73-135	
omobenzene	ug/kg	51.8	59.0	114	75-133	
omochloromethane	ug/kg	51.8	60.9	118	73-134	
omodichloromethane	ug/kg	51.8	60.1	116	71-135	
omoform	ug/kg	51.8	58.9	114	66-141	
omomethane	ug/kg	51.8	63.1	122	53-160	
rbon tetrachloride	ug/kg	51.8	54.4	105	60-145	
lorobenzene	ug/kg	51.8	55.2	107	78-130	
loroethane	ug/kg	51.8	58.2	112	64-149	
loroform	ug/kg	51.8	57.2	111	70-134	
loromethane	ug/kg	51.8	56.8	110	52-150	
-1,2-Dichloroethene	ug/kg	51.8	56.0	108	70-133	
-1,3-Dichloropropene	ug/kg	51.8	56.5	109	68-134	
promochloromethane	ug/kg	51.8	61.3	118	71-138	
promomethane	ug/kg	51.8	59.1	114	74-130	
chlorodifluoromethane	ug/kg	51.8	56.4	109	40-160	
isopropyl ether	ug/kg	51.8	59.2	114	69-141	
ylbenzene	ug/kg	51.8	55.6	107	75-133	
exachloro-1,3-butadiene	ug/kg	51.8	53.3	103	68-143	
opropylbenzene (Cumene)	ug/kg	51.8	55.6	107	76-143	
&p-Xylene	ug/kg	104	112	109	75-136	
ethyl-tert-butyl ether	ug/kg	51.8	60.3	117	68-144	
ethylene Chloride	ug/kg	51.8	62.5	121	45-154	
Butylbenzene	ug/kg	51.8	55.9	108	72-137	
Propylbenzene	ug/kg	51.8	55.8	108	76-136	
aphthalene	ug/kg	51.8	60.9	118	68-151	
Xylene	ug/kg	51.8	55.9	108	76-141	
Isopropyltoluene	ug/kg	51.8	55.0	106	76-140	
ec-Butylbenzene	ug/kg	51.8	55.7	108	79-139	
tyrene	ug/kg	51.8	57.4	111	79-137	
ert-Butylbenzene	ug/kg	51.8	50.3	97	74-143	
· · · · · ·	3.1.3					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

LABORATORY CONTROL SAMPLE: 1859106

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
etrachloroethene	ug/kg	51.8	45.8	88	71-138	
oluene	ug/kg	51.8	55.7	108	74-131	
ans-1,2-Dichloroethene	ug/kg	51.8	55.6	107	67-135	
ans-1,3-Dichloropropene	ug/kg	51.8	58.0	112	65-146	
ichloroethene	ug/kg	51.8	56.4	109	67-135	
chlorofluoromethane	ug/kg	51.8	59.3	114	59-144	
yl acetate	ug/kg	104	103	99	40-160	
yl chloride	ug/kg	51.8	50.8	98	56-141	
ene (Total)	ug/kg	155	168	108	76-137	
Dichloroethane-d4 (S)	%			114	70-132	
Bromofluorobenzene (S)	%			100	70-130	
uene-d8 (S)	%			99	70-130	

MATRIX SPIKE SAMPLE:	1859928						
		92318065004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	23.6	16.7	70	70-130	
1,1,1-Trichloroethane	ug/kg	ND	23.6	21.7	92	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	ND	23.6	20.5	87	70-130	
1,1,2-Trichloroethane	ug/kg	ND	23.6	21.2	89	70-130	
1,1-Dichloroethane	ug/kg	ND	23.6	22.3	94	70-130	
1,1-Dichloroethene	ug/kg	ND	23.6	22.9	97	49-180	
1,1-Dichloropropene	ug/kg	ND	23.6	22.2	94	70-130	
1,2,3-Trichlorobenzene	ug/kg	ND	23.6	15.9	67	70-130 N	/11
1,2,3-Trichloropropane	ug/kg	ND	23.6	20.6	87	70-130	
1,2,4-Trichlorobenzene	ug/kg	ND	23.6	15.4	65	70-130 N	/11
1,2,4-Trimethylbenzene	ug/kg	ND	23.6	20.0	84	70-130	
1,2-Dibromo-3-chloropropane	ug/kg	ND	23.6	17.1	72	70-130	
1,2-Dibromoethane (EDB)	ug/kg	ND	23.6	19.5	82	70-130	
1,2-Dichlorobenzene	ug/kg	ND	23.6	19.7	83	70-130	
1,2-Dichloroethane	ug/kg	ND	23.6	23.5	99	70-130	
1,2-Dichloropropane	ug/kg	ND	23.6	21.4	91	70-130	
1,3,5-Trimethylbenzene	ug/kg	ND	23.6	20.0	85	70-130	
1,3-Dichlorobenzene	ug/kg	ND	23.6	18.6	79	70-130	
1,3-Dichloropropane	ug/kg	ND	23.6	20.9	88	70-130	
1,4-Dichlorobenzene	ug/kg	ND	23.6	18.4	78	70-130	
2,2-Dichloropropane	ug/kg	ND	23.6	21.7	92	70-130	
2-Butanone (MEK)	ug/kg	ND	47.4	47.3J	100	70-130	
2-Chlorotoluene	ug/kg	ND	23.6	19.2	81	70-130	
2-Hexanone	ug/kg	ND	47.4	39.1J	83	70-130	
4-Chlorotoluene	ug/kg	ND	23.6	20.1	85	70-130	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	47.4	46.1J	97	70-130	
Acetone	ug/kg	ND	47.4	60.1J	122	70-130	
Benzene	ug/kg	ND	23.6	22.7	96	50-166	
Bromobenzene	ug/kg	ND	23.6	21.1	89	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

MATRIX SPIKE SAMPLE:	1859928						
		92318065004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromochloromethane	ug/kg	ND	23.6	24.7	104	70-130	
Bromodichloromethane	ug/kg	ND	23.6	19.6	83	70-130	
Bromoform	ug/kg	ND	23.6	13.8	58	70-130 I	M1
Bromomethane	ug/kg	ND	23.6	20.8	88	70-130	
Carbon tetrachloride	ug/kg	ND	23.6	18.6	79	70-130	
Chlorobenzene	ug/kg	ND	23.6	20.4	86	43-169	
Chloroethane	ug/kg	ND	23.6	23.5	99	70-130	
Chloroform	ug/kg	ND	23.6	22.4	95	70-130	
Chloromethane	ug/kg	ND	23.6	26.3	111	70-130	
cis-1,2-Dichloroethene	ug/kg	ND	23.6	23.4	99	70-130	
cis-1,3-Dichloropropene	ug/kg	ND	23.6	18.8	79	70-130	
Dibromochloromethane	ug/kg	ND	23.6	16.9	71	70-130	
Dibromomethane	ug/kg	ND	23.6	21.0	89	70-130	
Dichlorodifluoromethane	ug/kg	ND	23.6	28.1	119	70-130	
Diisopropyl ether	ug/kg	ND	23.6	24.1	102	70-130	
Ethylbenzene	ug/kg	ND	23.6	20.8	88	70-130	
Hexachloro-1,3-butadiene	ug/kg	ND	23.6	14.6	62	70-130 I	VI1
sopropylbenzene (Cumene)	ug/kg	ND	23.6	20.2	85	70-130	
n&p-Xylene	ug/kg	ND	47.4	42.1	89	70-130	
Methyl-tert-butyl ether	ug/kg	ND	23.6	23.1	97	70-130	
Methylene Chloride	ug/kg	ND	23.6	29.9	93	70-130	
n-Butylbenzene	ug/kg	ND	23.6	18.9	80	70-130	
n-Propylbenzene	ug/kg	ND	23.6	21.3	90	70-130	
Naphthalene	ug/kg	ND	23.6	20.4	86	70-130	
o-Xylene	ug/kg	ND	23.6	20.6	87	70-130	
o-Isopropyltoluene	ug/kg	ND	23.6	19.2	81	70-130	
sec-Butylbenzene	ug/kg	ND	23.6	20.0	85	70-130	
Styrene	ug/kg	ND	23.6	18.8	80	70-130	
ert-Butylbenzene	ug/kg	ND	23.6	18.1	76	70-130	
Tetrachloroethene	ug/kg	ND	23.6	17.0	72	70-130	
Toluene	ug/kg	ND	23.6	21.9	92	52-163	
rans-1,2-Dichloroethene	ug/kg	ND	23.6	22.8	96	70-130	
rans-1,3-Dichloropropene	ug/kg	ND	23.6	17.8	75	70-130	
Trichloroethene	ug/kg	ND	23.6	19.9	84	49-167	
Frichlorofluoromethane	ug/kg	ND	23.6	23.8	101	70-130	
/inyl acetate	ug/kg	ND	47.4	18.5J	39	70-130 I	M1
/inyl chloride	ug/kg	ND	23.6	24.0	101	70-130	
1,2-Dichloroethane-d4 (S)	%				120	70-132	
4-Bromofluorobenzene (S)	%				96	70-130	
Toluene-d8 (S)	%				103	70-130	

SAMPLE DUPLICATE: 1859927

		92318065001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	ND		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Qualifiers

QUALITY CONTROL DATA

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

SAMPLE DUPLICATE: 1859927 92318065001 Dup Parameter Units Result Result RPD ND 1,1,1-Trichloroethane ug/kg ND ND ug/kg 1,1,2,2-Tetrachloroethane ND ND 1,1,2-Trichloroethane ug/kg ND ND ND 1,1-Dichloroethane ug/kg ND ND 1,1-Dichloroethene ug/kg 1,1-Dichloropropene ug/kg ND ND ND 1,2,3-Trichlorobenzene ND ug/kg ND ND 1,2,3-Trichloropropane ug/kg 1,2,4-Trichlorobenzene ND ND ug/kg ND 1,2,4-Trimethylbenzene ug/kg ND ND 1,2-Dibromo-3-chloropropane ug/kg ND ND 1,2-Dibromoethane (EDB) ug/kg ND ug/kg ND 1,2-Dichlorobenzene ND 1,2-Dichloroethane ND ND ug/kg 1.2-Dichloropropane ND ND ug/kg ND 1,3,5-Trimethylbenzene ug/kg ND 1,3-Dichlorobenzene ND ND ug/kg ND 1,3-Dichloropropane ND ug/kg ND 1,4-Dichlorobenzene ND ug/kg ND ND 2,2-Dichloropropane ug/kg ND 2-Butanone (MEK) ND ug/kg ND 2-Chlorotoluene ug/kg ND ND 2-Hexanone ug/kg ND ND 4-Chlorotoluene ND ug/kg 4-Methyl-2-pentanone (MIBK) ND ND ug/kg Acetone ug/kg ND ND ND ND Benzene ug/kg ug/kg ND Bromobenzene ND ND Bromochloromethane ND ug/kg Bromodichloromethane ND ND ug/kg ND ND Bromoform ug/kg ND ND Bromomethane ug/kg ND ND Carbon tetrachloride ug/kg Chlorobenzene ug/kg ND ND Chloroethane ug/kg ND ND ND Chloroform ug/kg ND Chloromethane ug/kg ND ND ND cis-1,2-Dichloroethene ug/kg ND ND cis-1,3-Dichloropropene ND ug/kg ND Dibromochloromethane ND ug/kg ND ND Dibromomethane ug/kg ug/kg ND ND Dichlorodifluoromethane ND ND Diisopropyl ether ug/kg ND Ethylbenzene ug/kg ND ND Hexachloro-1,3-butadiene ug/kg ND ND Isopropylbenzene (Cumene) ug/kg ND m&p-Xylene ND ND ug/kg

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

SAMPLE	DUPLICATE:	1859927

SAMPLE DUPLICATE. 1059921		00040005004	D		
Parameter	Units	92318065001 Result	Dup Result	RPD	Qualifiers
Methyl-tert-butyl ether	ug/kg		ND		
Methylene Chloride	ug/kg	ND	ND		
n-Butylbenzene	ug/kg	ND	ND		
n-Propylbenzene	ug/kg	ND	ND		
Naphthalene	ug/kg	ND	2.1J		
o-Xylene	ug/kg	ND	ND		
p-Isopropyltoluene	ug/kg	ND	ND		
sec-Butylbenzene	ug/kg	ND	ND		
Styrene	ug/kg	ND	ND		
tert-Butylbenzene	ug/kg	ND	ND		
Tetrachloroethene	ug/kg	ND	ND		
Toluene	ug/kg	ND	ND		
trans-1,2-Dichloroethene	ug/kg	ND	ND		
trans-1,3-Dichloropropene	ug/kg	ND	ND		
Trichloroethene	ug/kg	ND	ND		
Trichlorofluoromethane	ug/kg	ND	ND		
Vinyl acetate	ug/kg	ND	ND		
Vinyl chloride	ug/kg	ND	ND		
Xylene (Total)	ug/kg	ND	ND		
1,2-Dichloroethane-d4 (S)	%	115	118	2	
4-Bromofluorobenzene (S)	%	97	92	10	
Toluene-d8 (S)	%	101	101	4	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	Parcel 187 39049.1	.1					
Pace Project No .:	92317874						
QC Batch:	335136		Analysis Meth	od:	ASTM D2974	-87	
QC Batch Method:	ASTM D2974-87		Analysis Desc	ription:	Dry Weight/Pe	ercent	Moisture
Associated Lab Sar	mples: 923178740	01, 923178740	002, 92317874003				
SAMPLE DUPLICA	TE: 1857839						
			92317879001	Dup			
Parar	neter	Units	Result	Result	RPD		Qualifiers
Percent Moisture		%	14.4	15.	2	5	
SAMPLE DUPLICA	TE: 1857840						
			92317874003	Dup			
Parar	neter	Units	Result	Result	RPD		Qualifiers
Percent Moisture		%	17.6	18.	0	2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Parcel 187 39049.1.1

Pace Project No.: 92317874

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-C Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Parcel 187 39049.1.1 Pace Project No.: 92317874

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92317874001	187-SB-1-6-8	EPA 8260	335373		
92317874002	187-SB-2-8-10	EPA 8260	335217		
92317874003	187-SB-3-8-10	EPA 8260	335217		
92317874001	187-SB-1-6-8	ASTM D2974-87	335136		
92317874002	187-SB-2-8-10	ASTM D2974-87	335136		
92317874003	187-SB-3-8-10	ASTM D2974-87	335136		

87			cument		int/SCUP)	Docum	nent Revised: Sept Page 1 of 2	. 21, 2016	
Pace	Analytical®	Sample Condi	ocumen	100	pr(SCOR)		Issuing Authority	y:	
		F-CA	R-CS-03	3-Rev.01			Pace Quality Offi	ce]
Laboratory receiving	samples:								
Asheville [Greenwood		Н	luntersvil		Raleigh	Mechani	csville
		0		_		110#	92317	'874	
Sample Condition Upon	Client Name:	Auticns	î	LE	5				٦
Receipt					Proje				
Courier:	Fed Ex [c		Client	0221787			
Commercial	Pace			_		9231707			
		e						0	
Custody Seal Present?	□Yes 🕅No	Seals Intact?	⊡Y€	es L	No	Date/In	itials Person Examin	ing Contents:	PIOBILLE
Packing Material:	Bubble Wrap	Bubble Bags	XIN	one	Other				1.0
Thermometer: IR Gun ID:	T1505	Type of	Ice:	Wet	Blue	None	Samples on i	ce, cooling proce	ss has begun
Correction Factor:	Cooler Temp Corre	cted (°C):	+2	C	_ 6	Biological Tissu	e Frozen?	Yes XNo	□N/A
Temp should be above free	ezing to 6°C				_		12.60	,	
USDA Regulated Soil (🗌) Did samples originate in a qu		ne United States: CA	NY or 9	SC (check	maps)?	Did samples or	iginate from a foreig	n source (interna	itionally,
		le officed States. CA	, 11, 01 .	Je (eneck	maps/.		iii and Puerto Rico)?		
						Cor	nments/Discrepan	cy:	
Chain of Custody Present?		XYes	No	□n/a	1.				
Samples Arrived within Hold	Time?	K Yes	No	□n/a	2.				
Short Hold Time Analysis (<	72 hr.)?	XYes	No	□n/a	3.	1			
Rush Turn Around Time Req	uested?	Yes	No	□n/a	4.				
Sufficient Volume?		Yes	No	□n/a	5.				
Correct Containers Used?		لٰک Yes	No	□n/a	6.				
-Pace Containers Used?		X Yes	No	□n/a					
Containers Intact?		X Yes	No	□n/a	7.	2			
Samples Field Filtered?		Yes	XNO	□n/a	8. Not	e if sediment is	visible in the disso	lved container	
Sample Labels Match COC?		Yes	No	□n/a	9.	· · ·			
-Includes Date/Time/ID/A	nalysis Matrix: <u>50</u>	nl							
Headspace in VOA Vials (>5-		Yes	No	□n/a	10.				
Trip Blank Present?		Yes	No	□n/a	11.				
Trip Blank Custody Seals Pre	sent?	☐ Yes	No	□n/a					
CLIENT N	OTIFICATION/RESOLUTIO	ON					Field Data Rec	quired? 🗌 Yes	No
Person Contacted:					Date	e/Time:			
Comments/Sample	1								
Discrepancy:									
	1					1			
). 								
		Anne				1			
Project Manager SCU	RF Review:	r II Y ID				Date:	11-10		
Project Manager SRF	Review:	AMB				Date:	11-1-76		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers)

103 M: P	Pa(Authoniality (Office	97	7 /1	I	
M: P	#:	92	23	17	97	7/1		
M: P		32						
	TE			_	01	<u>-r</u>		
TEN					ate:	11	./09	/16
LICIN	T: 9	2–S0	DLUT	IONS	\$			
1	1		1	1				
					3			
A	(N/A	lab)	- lab)		.3-9.		(W)	=
	s kit	A-	-A/N		04 (9		N)	
(N/A 35 ki	H/Ga	ic (N	tic (1		2)2S(vials	
P04	Hav-	Plast	Plas		(NHN)		ation	
A H3 er kit	r ki	erile	erile	e 2007-2009	astic	218 8 11 11 11	ntilla	17 E 17 75
L VO	ls pe	IL Ste	nL St		nL Pl		IL Sci	
40 m (6 vi)	3 via	25 n	50		250 r	iner	20 m	
-965) XĐ	5T-1	2T-2		3A-2	lbita	-NDS	GN
ă S		SI	S	\leftarrow	B	0	>	9
E)			\square	\square			
6				\backslash	\square			
6	,			\backslash	\mathbb{N}			
				$\overline{\}$	\square			
-	1	-		$\overline{)}$				
	+	1		$\left \right\rangle$	$\left \right\rangle$			
				$\left \right\rangle$				
_				$\left \right\rangle$	$\left(\right)$			
				$ \ge $	$\left \right\rangle$			
				\sum	\square			
				\sum	\square			
				\sum	\square			
ĸ				\backslash	\mathbf{N}			
20								

		pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #

www.pacelabs.c	Pace Analytic		2	
www.pacelabs.com	Pace Analytica	Non the second s)

CHAIN-OF-CUSTODY / Analytical Request Document

				Τ	Γ	12	11	10	9	∞ ·	7	ה נ	4 r	ω	2		ITEM #]	Requ	Phon	Email To:	RA	Address:	Com	Sect	
Inportant Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any involces not paid within 30 days.					ADDITIONAL COMMENTS									187-53-8-10	1-58-2-8	3-9-1-25-23		QUE	SAMDIE ID Oill/Solid	Section D Mat Required Client Information MATE		Requested Due Date/TAT:	ax:	ITO MPLANSON CONTRASTICS .COM	velocit and 2460%	(C) NOWELL RD	Company:	Section A Required Client Information:	Pace Analytical www.pacelabs.com
ccepting Pace's NET 30 day payme	ORIGINIAI	(ill's	Jan Coll	RELINQUISH									<i>i-</i>		516	MATRIX	G 약 상 성 CODE	C P P ₹ ₹ 5 (see valid code	s to left)	-	Project Number: 2016.00	Project Name:			Copy To:	Report To: MULE BL	Section B Required Project Information:	
PRINT N SIGNAT	SAMPLER NAME		1cm	4 SIES	RELINQUISHED BY AFFILIATION									ş.		10 24	DATE TIME DATE		COMPOSITE CON START EN			. COSY.NDOT	FAVETIENCE DARGE				BLANSON	ltion:	
PRINT Name of SAMPLER: SIGNATURE of SAMPLER: o late charges of 1.5% per month for	SAMPLER NAME AND SIGNATURE		rab//c	10/3:12016	DATE									140 6	o) 50til	le itor io	TIME					Pac	187	Pac	Ado	Cor	Atte	See	
any involves not paid within So days.		for face	Cell fort	8 Str	TIME ACCEPTED BY									*	XXX	×× ××	Unprese H ₂ SO ₄ HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanc Other	rved	(NA HSO4	Preservatives		1	Manager: TANKER EZELL	e Quote arence:	Address:	Company Name:	er : WBS	Section C Invoice Information:	
DATE Signed (MM/DD/YY):		HUL	flue	Parle	CEPTED BY / AFFILIATION		_							×	×	×	VOCS E	260			Requested An		s	-	I	RE	39049.1.1		
31/2014		10/31/16 1500	10/21/24 01/20	19/31/24 08S2	DATE TI			_													Requested Analysis Filtered (Y/N)	STATE:	Site Location	UST	NPDES [REGULATORY AGENCY			
Temp in	°C			R	TIME																(IN)	NC		RCRA	GROUND WATER	ENCY		Page:]
F-ALL-Q-020rev.07, 15-May-2007	l on N) y poler	42 7 N		イノ	SAMPLE CONDITIONS									2002	in 2	8	Residua Pace Project No./ Lab I.D.	1 Chlorin 923 1767	e (Y/N)	North And				C OTHER	WATER C DRINKING WATER		6809507) 1 ª)	
Samples Ir (Y/N)		Ň		K	ŝ												/ Lab I.D.	+	Ś						WATER				e 29 o

December 21, 2016

Mr. Terry Fox, L.G. North Carolina Department of Transportation Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Reference: Preliminary Site Assessment John Taylor Property (Parcel #198) 5201 Raeford Road Fayetteville, Cumberland County, North Carolina State Project: U-4405 WBS Element 39049.1.1 SIES Project No. 2016.0054.NDOT

Dear Mr. Fox:

Solutions-IES, Inc., (SIES) has completed the Preliminary Site Assessment conducted at the abovereferenced property. The work was performed in accordance with the Technical and Cost proposal dated September 26, 2016, and the North Carolina Department of Transportation's (NCDOT's) Notice to Proceed dated September 26, 2016. Activities associated with the assessment consisted of conducting a geophysical investigation, collecting soil samples for analysis, and reviewing applicable North Carolina Department of Environmental Quality (NCDEQ) records. The purpose of this report is to document the field activities, present the laboratory analyses, and provide recommendations regarding the property.

Location and Description

The John Taylor Property (Parcel #198) is located at 5201 Raeford Road in Fayetteville, Cumberland County, North Carolina. The property is situated on the south side of Raeford Road in the southwest quadrant of the intersection of Raeford Road and Sandalwood Drive (**Figure 1**). The property consists of an active gas station and convenience store (Circle K 2723034). Based on a review of on-line UST registry information, three gasoline underground storage tanks (USTs) were reportedly installed on the property in 1987.

An asphalt parking area surrounds the building and extends almost to the property boundaries. A detached canopy with three dispensers is located in front of the building. The canopy is on a concrete pad that extends to the west of the canopy where the USTs are located (**Figure 2**). The proposed easement has not been marked at the site on the date of the field work, but NCDOT plan sheets show that the easement will affect the canopy.

The NCDOT requested a Preliminary Site Assessment for the right-of-way and proposed easement because of the site use as a gas station. The scope of work as defined in the Request for Technical and Cost Proposal was to evaluate the site with respect to the presence of known and unknown USTs and assess where contamination exists on the right-of-way/proposed easement. An estimate of the quantity of impacted soil was to be provided, should impacted soils be encountered.

SIES reviewed the on-line NCDEQ Incident Management database and no incident number was assigned to the site. SIES also examined the UST registration database to obtain UST ownership information. According to the database, the USTs on the property are operated under Facility Number 00-0-0000028887. The active USTs include three gasoline tanks, the sizes of which are not indicated. The owner and operator of the tanks are listed as follows:

Owner Circle K Stores Inc. 2440 Whitehall Park Drive, Ste 800 Charlotte, NC 28273 Operator Circle K 2723034 5201 Raeford Road Fayetteville, NC 28304

Geophysical Survey

Prior to SIES' mobilization to the site, Pyramid Environmental & Engineering of Greensboro, NC (Pyramid) conducted a geophysical survey to confirm the presence of the known USTs and determine if additional USTs were present in in the area of the right-of-way/proposed easement. The geophysical survey consisted of an electromagnetic (EM) survey using a Geonics EM61 time-domain electromagnetic induction meter to locate buried metallic objects, and specifically looking for USTs.

A survey grid was laid out along the right-of-way/proposed easement with the X-axis oriented approximately parallel to Raeford Road and the Y-axis oriented approximately perpendicular to Raeford Road. The grid was positioned to cover the entire right-of-way/proposed easement.

The survey lines were spaced five feet apart and magnetic data were collected continuously along each survey line with a data logger. After collection, the EM data were reviewed in the field with graphical computer software. Several anomalies were detected and all were directly attributed to visible cultural features and known utilities. For these reasons, a ground penetrating radar survey was not required to verify any unknown EM anomalies.

Access was available to all areas of the study area and several EM anomalies were detected with the geophysical survey. No unknown metallic USTs were detected within the geophysical survey area. Pyramid's detailed report of findings and interpretations is presented in **Attachment A**.

Site Assessment Activities

On October 25, 2016, SIES mobilized to the site to conduct a Geoprobe[®] direct-push investigation to evaluate subsurface soil conditions on the property. Eight direct-push holes (198-SB-1 through 198-SB-8) were drilled in the right-of-way/proposed easement (**Figure 2**). As directed by the NCDOT, the Geoprobe[®] borings were terminated at 10 feet below ground surface (ft bgs) unless the location was in the vicinity of a known or suspected UST, which resulted in a boring terminated at 12 ft bgs. Borings 198-SB-1, 198-SB-2, and 198-SB-3 were advanced to 12 ft bgs and borings 198-SB-4 through 198-SB-8 were advanced to ten ft bgs. The soil boring logs are included as **Attachment B**. Borings 198-SB-1 through 198-SB-3 were located to evaluate the subsurface conditions near the existing USTs. Borings 198-SB-5 and 198-SB-6 were placed to assess the conditions at the canopy and dispensers. Borings 198-SB-4, 198-SB-7, and 198-SB-8 were located to evaluate the subsurface along the proposed drainage structures within the right-of-way/proposed easement (see photos in **Attachment C**).

Continuous sampling using a Geoprobe[®] resulted in good recovery of soil samples from the direct-push holes. Soil samples were collected and contained in four-foot long acetate sleeves inside the direct-push Macro-Core[®] sampler. Each of the sleeves was divided into two-foot long sections for soil sample screening. Soil from each two-foot interval was placed in a resealable plastic bag and the bag was set aside for volatilization of organic compounds from the soil to the bag headspace. A photoionization detector (PID) probe was inserted into the bag and the reading was recorded.

If the PID concentrations in a boring were consistently low, one sample from the bottom interval was selected for analysis. If the PID concentrations were elevated, the sample from the interval with the highest field screening reading was selected for analyses. The PID results are summarized in **Table 1**.

The selected soil samples were submitted to an on-site mobile laboratory for analysis of total petroleum hydrocarbons (TPH) diesel range organics (DRO) and gasoline range organics (GRO) using ultraviolet fluorescence (UVF) methodology. Each boring was backfilled with bentonite and drill cuttings to the surface after completion.

The lithology encountered by the direct-push samples indicated the presence of two different lithologic units. One unit was present in borings 198-SB-3, 198-SB-5, and 198-SB-6, and described as a tab silty sand throughout the boring. The remaining borings encountered a mottled light brown and red silty clay to a depth of about four to nine ft bgs. Below this silty clay was a light brown soft clay. No groundwater or bedrock was noted in any of the borings. From the limited number of borings at the site, it is unclear as to whether the sand is lenticular and laterally discontinuous or a distinctly different stratigraphic unit.

3

According to the 1985 Geologic Map of North Carolina, the site is within of Coastal Plain Physiographic Province in North Carolina near the contact between the Cretaceous Black Creek and Middendorf Formations. The strata of the Black Creek Formation consist of gray to black clay, thin lenses of fine-grained sand and thick lenses of cross-bedded sand. The lithology may also include glauconite and fossils. In comparison, the Middendorf Formation consists of sand, sandstone, and mudstone that are laterally discontinuous. The soils observed at the site are consistent with the Middendorf Formation as the parent material.

Analytical Results

The laboratory data are summarized in **Table 1** and the complete report is presented in **Attachment D**. Eight soil samples, one from each soil bring, were submitted for analysis. Of these samples, three contained detectable GRO compounds and seven contained detectable DRO compounds. Detected GRO concentrations ranged from 0.40 to 2.0 milligrams per kilogram (mg/kg). Detected DRO concentrations ranged from 0.31 to 18.6 mg/kg. The action levels are 50 mg/kg for GRO and 100 mg/kg for DRO¹. None of the soil samples analyzed for this site contained DRO or GRO concentrations above their respective action levels.

Conclusions and Recommendations

A Preliminary Site Assessment was conducted to evaluate the John Taylor Property (Parcel #198) located at 5201 Raeford Road in Fayetteville, Cumberland County, North Carolina. A geophysical survey conducted at the site indicated that no unknown metallic USTs were present within the geophysical survey area of the site. Eight soil borings were advanced to evaluate the subsurface soil conditions along the right-of-way/proposed easement, from which eight soil samples were collected. Three of the eight soil samples analyzed had a GRO concentration above the detection limit, and seven of the eight soil samples had DRO concentrations were present above the detection limit. However, none of the DRO or GRO concentrations were above their respective action limits.

None of the soil samples had contaminant concentrations above applicable action levels (**Table 1**). Therefore, no estimate of the volume of soil requiring possible remediation was made.

¹ NCDEQ, Guidelines for North Carolina Action Limits for Total Petroleum Hydrocarbons (TPH), July 26, 2016,

SIES appreciates the opportunity to work with the NCDOT on this project. Because compounds were detected above the method detection limit in the soil samples, SIES recommends that a copy of this report be submitted to the Division of Waste Management, UST Section, in the Fayetteville Regional Office. If you have any questions, please contact us at (919) 873-1060.

Sincerely,

Michael W. Brusan

Michael W. Branson, P.G. Project Manager

Attachments

John Palmer, P.G. Senior Hydrogeologist

F	TAY AYETTEVILLE,	LOR PROPERTY) ANALYTICAL RI 7 (PARCEL #198) COUNTY, NORTH CT: U-4405 7 39049.1.1		
SAMPLE ID	DEPTH (ft)	PID READING (ppm)	SAMPLE ID	ANALYTICA (mg/	′kg)
		Action Lovel (mg/k	a)	UVF GRO 50	UVF DRO 100
		Action Level (mg/k	.g)	50	100
	0 - 2 2 - 4	0.7			
198-SB-1		19.3			
190-00-1	4 - 6 6 - 8	25.8 31.7	198-SB-1-6-8	<0.7	18.6
	6 - 8 8 - 10	0.9	190-90-1-0-0	<0.7	10.0
	10 - 10	8.2			
	0 - 2	0.2			
	2 - 4	0.0			
	<u> </u>	28.7	198-SB-2-4-6	<0.65	1.3
198-SB-2	6 - 8	10.1	190-00-2-4-0	<0.05	1.5
	8 - 10	3.8			
	10 - 12	5.1			
	0 - 2	5.1			
	2 - 4	14.1			
	4 - 6	8.2			
198-SB-3	6 - 8	1.7			
	8 - 10	1.7			
	10 - 12	20.8	198-SB-3-10-12	<0.57	<0.57
	0 - 2	0.0			
	2 - 4	0.1			
198-SB-4	4 - 6	0.0			
	6 - 8	0.2			
	8 - 10	0.0	198-SB-4-8-10	0.46	0.33
	0 - 2	0.0			
	2 - 4	0.1			
198-SB-5	4 - 6	0.0			
	6 - 8	0.3			
	8 - 10	56.4	198-SB-5-8-10	0.40	0.31
	0 - 2	0.0			
	2 - 4	0.1			
198-SB-6	4 - 6	0.3			
	6 - 8	0.3			
	8 - 10	20.3	198-SB-6-8-10	<0.58	0.89
	0 - 2	0.1			
	2 - 4	0.0			
198-SB-7	4 - 6	0.1			
	6 - 8	0.0			
	8 - 10	0.2	198-SB-7-8-10	<0.15	0.66
	0 - 2	0.1			
	2 - 4	0.0			
198-SB-8	4 - 6	0.1			
	6 - 8	0.2			
	8 - 10	0.1	198-SB-8-8-10	2.0	4.2

1) ft - feet

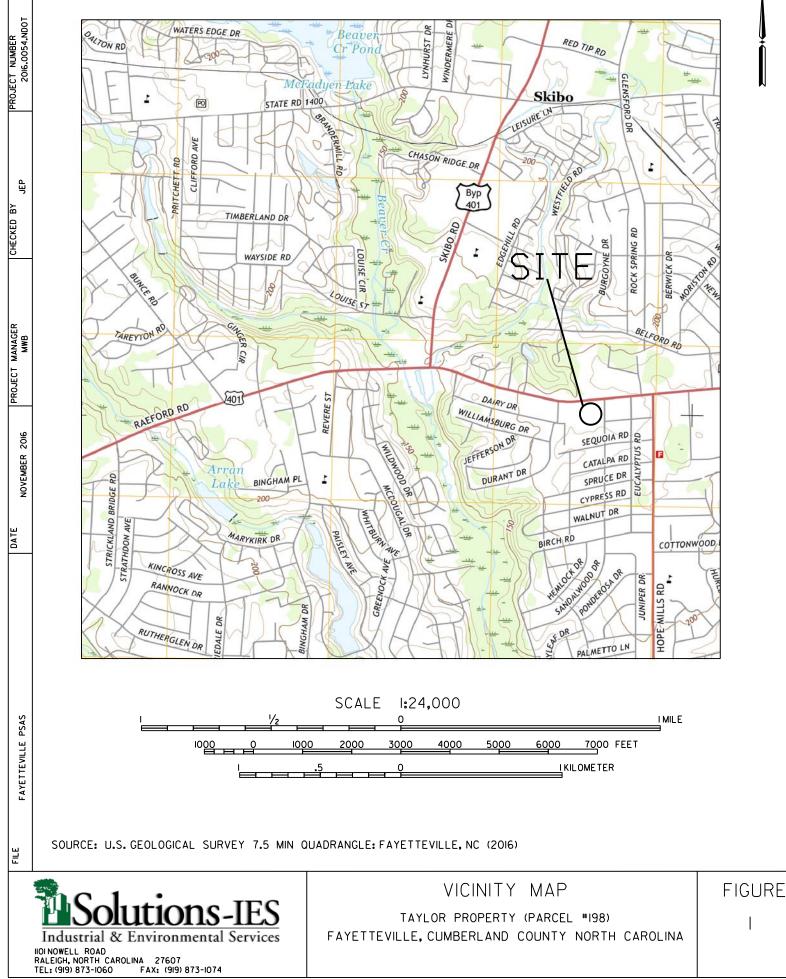
2) ppm - parts per million

3) PID - photoionization ionization detector.

4) mg/kg - milligrams per kilogram

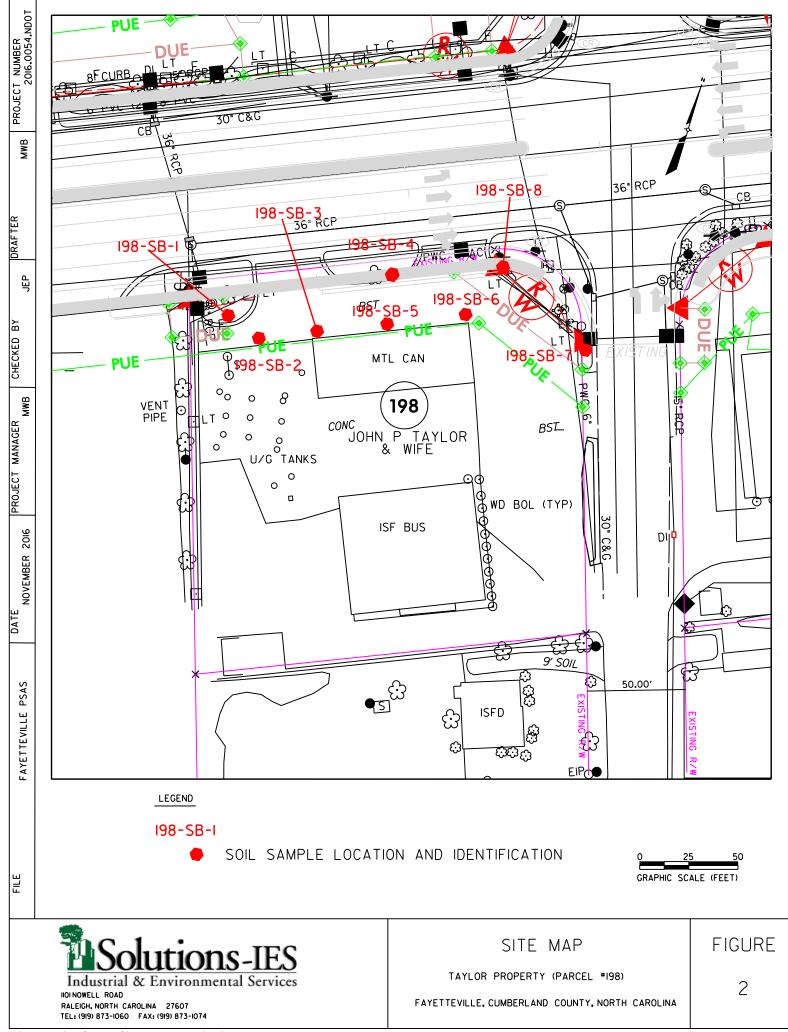
5) UVF DRO - Diesel range organics by UVF.

6) UVF GRO - Gasoline range organics by UVF.


7) Action level based upon NCDEQ memo Guidelines for North Carolina Action Limits for Total Petroleum Hydrocarbons - July 29, 2016.

8) Soil samples were collected on October 25, 2016.

9) Bold values are above the detection level.



FIGURES

Ν

...\reports\FIGURES\198 FIG 1.dgn 10/5/2016 10:08:50 AM

ATTACHMENT A

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 198 – JOHN TAYLOR NCDOT PROJECT U-4405

5201 RAEFORD RD., FAYETTEVILLE, CUMBERLAND COUNTY, NC

NOVEMBER 4, 2016

Report prepared for:

Mike Branson Solutions, IES 1101 Nowell Road Raleigh, North Carolina 27607

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by:

Conovello

viewed by: _____

Douglas A. Canavello, P.G. NC License #1066

503 INDUSTRIAL AVENUE, GREENSBORO, NC 27406 P: 336.335.3174 F: 336.691.0648 C257: GEOLOGY C1251: ENGINEERING

Table of Contents

Executive Summary	1
Introduction	
Field Methodology	
Discussion of Results	
Summary and Conclusions	
Limitations	

Figures

Figure 1 – Parcel 198 Geophysical Survey Boundaries and Site Photographs Figure 2 – Parcel 198 EM61 Results Contour Map

LIST OF ACRONYMS

DFDual Frequency EMElectromagnetic GPRGround Penetrating Radar GPSGlobal Positioning System NCDOTNorth Carolina Department of Transportation
GPRGround Penetrating Radar GPSGlobal Positioning System NCDOTNorth Carolina Department of Transportation
GPSGlobal Positioning System NCDOTNorth Carolina Department of Transportation
NCDOTNorth Carolina Department of Transportation
1 1
ROWRight-of-Way
SVESoil Vapor Extraction
USTUnderground Storage Tank

EXECUTIVE SUMMARY

Project Description: Pyramid Environmental conducted a geophysical investigation for Solutions, IES (Solutions) at Parcel 198, located at 5201 Raeford Road, Fayetteville, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project U-4405). Solutions directed Pyramid as to the geophysical survey boundaries at the project site, which were designed to extend from the existing edge of pavement to the proposed ROW lines and/or easement lines within the property, whichever distance was greater. Conducted from October 12-17, 2016, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: All EM anomalies were directly attributed to visible cultural features and known utilities. A GPR survey was not required. Collectively, the geophysical data <u>did not show any evidence of unknown metallic USTs at Parcel 198</u>.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Solutions, IES (Solutions) at Parcel 198, located at 5201 Raeford Road, Fayetteville, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project U-4405). Solutions directed Pyramid as to the geophysical survey boundaries at the project site, which were designed to extend from the existing edge of pavement to the proposed ROW lines and/or easement lines within the property, whichever distance was greater. Conducted from October 12-17, 2016, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included an active service station with a pump island and canopy surrounded by asphalt parking areas and grass medians. Aerial photographs showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of an electromagnetic (EM) induction-metal detection survey. Pyramid collected the EM data using a Geonics EM61 metal detector integrated with a Trimble AG-114 GPS antenna. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is geo-referenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8 foot intervals along north-south trending or east-west trending, generally

parallel survey lines spaced five feet apart. The data were downloaded to a computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 11.0 software programs.

GPR data were not required at this property due to all EM anomalies being directly attributed to visible cultural features at the ground surface or known utilities (see Discussion of Results below).

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tar	ıks
on NCDOT Projects	

High Confidence	Intermediate Confidence	Low Confidence	No Confidence
Known UST	Probable UST	Possible UST	Anomaly noted but not
Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphal/concrete patch, etc.	Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The following table presents the list of EM anomalies and the cause of the metallic response, if known:

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Storm Drains	
2	Manhole	
3	Telephone Pole and Utility Box	
4	Storm Drain	
5	Water Meter	
6	Light Pole	
7	Guy Wire	
8	Fire Hydrant	
9	Vehicle	
10	Sign	

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

All of the EM anomalies recorded by the survey are directly attributed to visible cultural features such as storm drains, a manhole, utility poles, known utilities, a water meter, guy wires, a fire hydrant, vehicles and signs. For this reason, a GPR survey was not required to verify any unknown anomalies.

Collectively, the geophysical data <u>did not show any evidence of unknown metallic USTs</u> <u>at Parcel 198</u>.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 data collected at Parcel 198 in Fayetteville, Cumberland County, North Carolina, provides the following summary and conclusions:

- The EM61 survey provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- All EM anomalies were directly attributed to visible cultural features and known utilities. A GPR survey was not required.

• Collectively, the geophysical data <u>did not show any evidence of unknown metallic</u> <u>USTs at Parcel 198</u>.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Solutions, IES in accordance with generally accepted guidelines for EM61 surveys. It is generally recognized that the results of the EM61 surveys are non-unique and may not represent actual subsurface conditions. The EM61 results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

NÎ

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

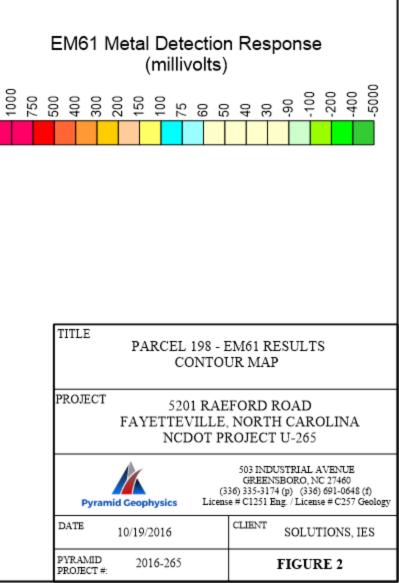
NC STATE PLANE, EASTING (NAD83, FEET)

View of Survey Area (Facing Approximately East)

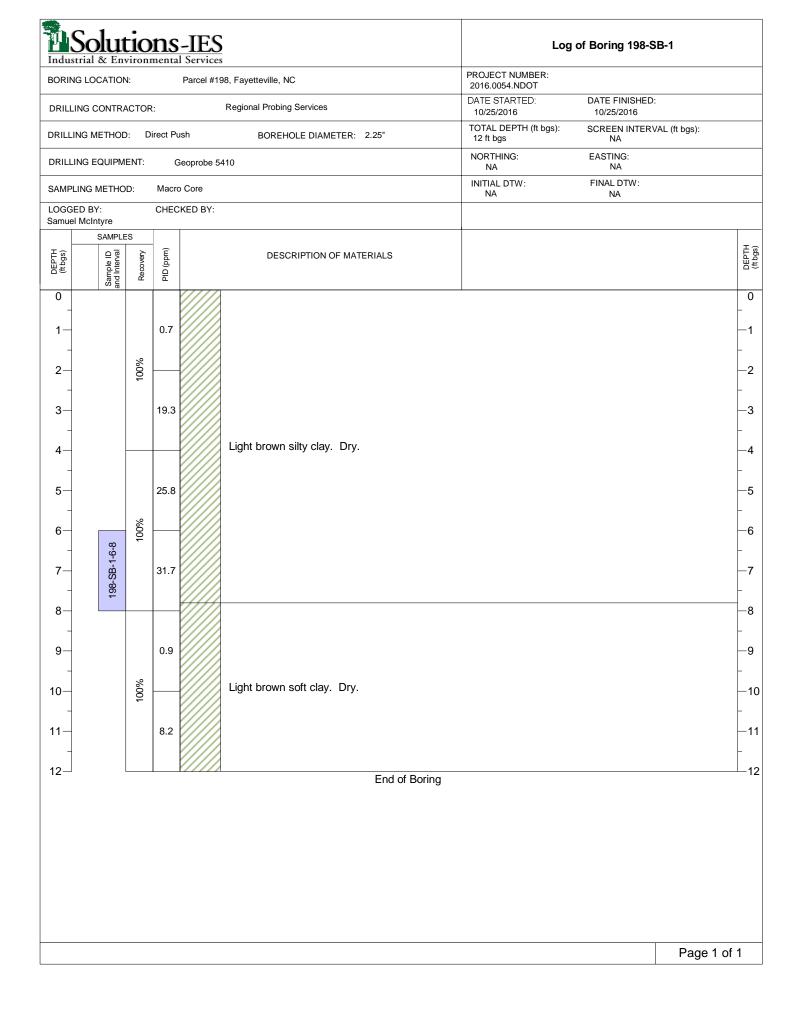
View of Northeast Survey Area (Facing Approximately West)

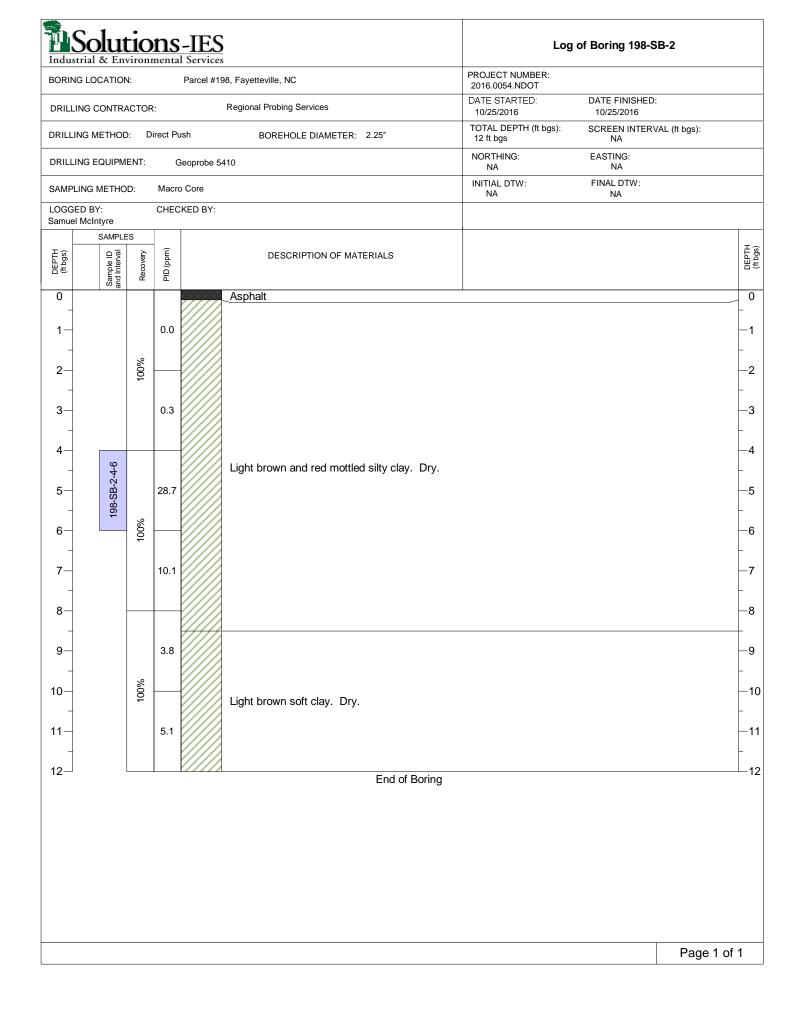
	Indicate in the		PHYSICAL SURVEY SITE PHOTOGRAPHS
PROJECT	FAYETTEV	ILLE,	EFORD ROAD , NORTH CAROLINA ROJECT U-4405
Pyra	mid Geophysics		503 INDUSTRIAL AVENUE GREENSBORO, NC 27460 836) 335-3174 (p) (336) 691-0648 (f) se # C1251 Eng. / License # C257 Geology
DATE	10/19/16		CLIENT SOLUTIONS, IES
PYRAMID PROJECT #	2016-265		FIGURE 1

EM61 METAL DETECTION RESULTS

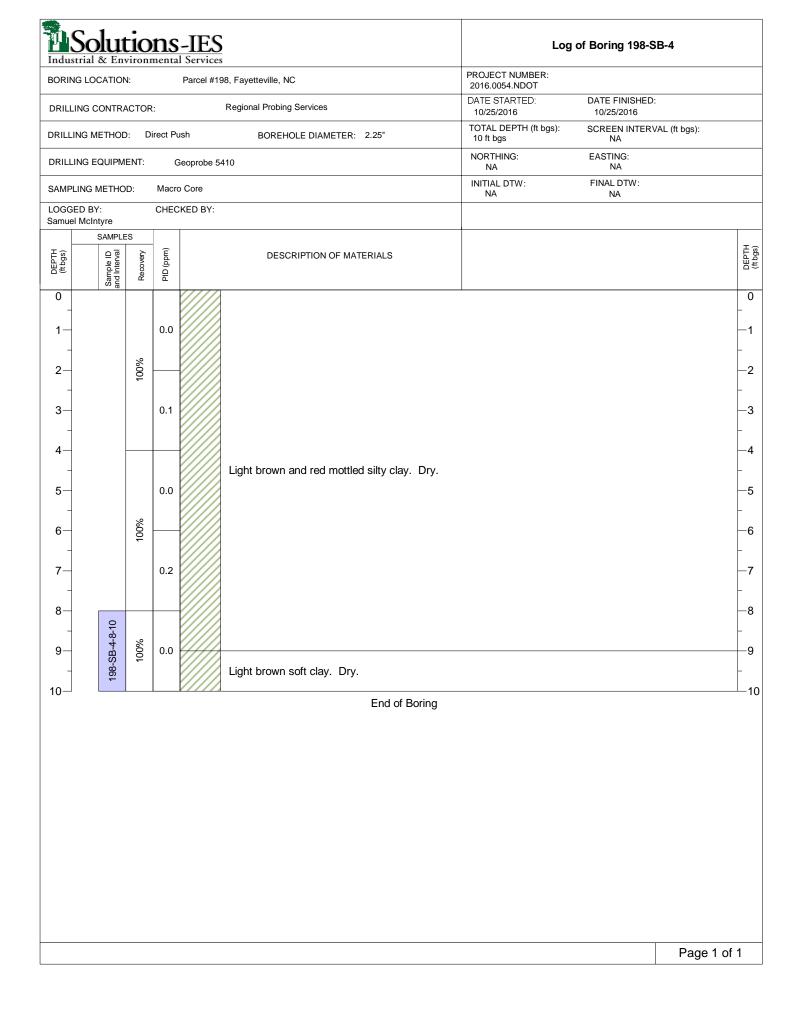


NC STATE PLANE, EASTING (NAD83, FEET)


NUMBERS IN BLUE (x) CORRESPOND TO ANOMALY TABLE INCLUDED IN THE REPORT


NO EVIDENCE OF UNKNOWN METALLIC USTs OBSERVED

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM61 data were collected on October 12, 2016, using a Geonics EM61 instrument. GPR verification data were not required due to all EM anomalies being directly attributed to visible cultural features.



ATTACHMENT B

Industrial BORING LO				Parcel #1	98, Fayetteville, NC	PROJECT NUMBER: 2016.0054.NDOT		
DRILLING C	ONTRA	ACTOR	ł:		Regional Probing Services	DATE STARTED: 10/25/2016	DATE FINISHED: 10/25/2016	
DRILLING M	IETHOD): D	irect Pu	ısh	BOREHOLE DIAMETER: 2.25"	TOTAL DEPTH (ft bgs): 12 ft bgs	SCREEN INTERVAL (ft bgs): NA	
DRILLING E	QUIPM	ENT:	G	eoprobe 5	410	NORTHING: NA	EASTING: NA	
SAMPLING I	METHO	D:	Macro	o Core		INITIAL DTW: NA	FINAL DTW: NA	
LOGGED BY Samuel McIn			CHEC	KED BY:				
			Ê		DESCRIPTION OF MATERIALS			DEPTH
DEPTH (ft bgs)	Sample ID and Interval	Recovery	PID (ppm)		DESCRIPTION OF MATERIALS			
0	5,6				Asphalt			
1-			5.1					-
2—		100%						
-		10						-
3—			14.1					
4-								_
5-			8.2					
-		9	0.2					-
6—		100%			. Tan silty sand. Dry.			-(
7—			1.7					
_ 8_								Ŀ
8								-
9—			1.7					-
10-		100%						
-	198-SB-3-10-12	Ļ						-
11	98-SB-		20.8					<i>'</i> -
12_	÷				End of Boring			

ORING LOCATION: RILLING CONTRACTO RILLING METHOD: I RILLING EQUIPMENT: AMPLING METHOD: DGGED BY: amuel McIntyre SAMPLES Signal Group By: amuel McIntyre 0 - 1 - 2 - 3 - 4 -	DR: Direct Pu: Macro CHECI	Re eoprobe 5410 Core ED BY:	Fayetteville, NC agional Probing Services BOREHOLE DIAMETER: 2.25" DESCRIPTION OF MATERIALS Asphalt	PROJECT NUMBER: 2016.0054.NDOT DATE STARTED: 10/25/2016 TOTAL DEPTH (ft bgs): 10 ft bgs NORTHING: NA INITIAL DTW: NA	DATE FINISHED: 10/25/2016 SCREEN INTERVAL (ft bgs): NA EASTING: NA FINAL DTW: NA	DEPTH
RILLING METHOD: RILLING EQUIPMENT: AMPLING METHOD: DGGED BY: amuel McIntyre SAMPLES (S0 1 1 2 - 3 - - - - - - - - - - - - -	Direct Pu: Gi Macro CHECI	h oprobe 5410 Core ED BY:	BOREHOLE DIAMETER: 2.25"	10/25/2016 TOTAL DEPTH (ft bgs): 10 ft bgs NORTHING: NA INITIAL DTW:	10/25/2016 SCREEN INTERVAL (ft bgs): NA EASTING: NA FINAL DTW:	
RILLING EQUIPMENT: AMPLING METHOD: DGGED BY: amuel McIntyre SAMPLES (S60 1- 2- 3- - - - - - - - - - - - - -	Grand CHECH	coprobe 5410 Core (ED BY:	DESCRIPTION OF MATERIALS	10 ft bgs NORTHING: NA INITIAL DTW:	NA EASTING: NA FINAL DTW:	
AMPLING METHOD: DGGED BY: amuel McIntyre SAMPLES (S60 1- 2- 3- - - - - - - - - - - - - -	Macro CHECI	Core (ED BY:	DESCRIPTION OF MATERIALS	NA INITIAL DTW:	NA FINAL DTW:	
DGGED BY: amuel McIntyre SAMPLES SAMPLES (50) (1) (1) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	CHECH	ED BY:		INITIAL DTW:	FINAL DTW:	
amuel McIntyre SAMPLES Sampl						
SAMPLES SAMPLES 100 2- 3- - - - - - - - - - - - - -	0.0	A				
is period ∞ 0	0.0	A				
0 - 1- 2- 3- -	0.0	A	sphalt			
2- 3- -						
2- 3- -						-
3-						
3-						-2
_	1					F.
4						-:
	+					
-						-
5-	0.0	Т	an silty sand. Dry.			-{
						-6
						-
7—	0.3					-7
8-	_					-8
						_
100%	56.4					-9
•		_	End of Borin	ng		_

ndustria	al & Env	viron	mental	-IES Service	S	PROJECT NUMBER:	of Boring 198-SB-6	
ORING L	OCATION	N:		Parcel #1	98, Fayetteville, NC	2016.0054.NDOT		
RILLING	CONTRA	ACTOR	R:		Regional Probing Services	DATE STARTED: 10/25/2016	DATE FINISHED: 10/25/2016	
RILLING	METHOD	D: D	irect Pu	sh	BOREHOLE DIAMETER: 2.25"	TOTAL DEPTH (ft bgs): 10 ft bgs	SCREEN INTERVAL (ft bgs) NA	:
RILLING	EQUIPM	ENT:	G	eoprobe 5	410	NORTHING: NA	EASTING: NA	
AMPLING	Э МЕТНО	D:	Macro	Core		INITIAL DTW: NA	FINAL DTW: NA	
OGGED E amuel Mc			CHEC	KED BY:				
	SAMPLE							т
(ft bgs)	Sample ID and Interval	Recovery	PID (ppm)		DESCRIPTION OF MATERIALS			HLAID
0	<u></u> 50 m				Asphalt			
1-			0.0					
-								-
2—		100%						_
_			0.1					-
3-			0.1					_
4—								-
-								-
5—			0.3		Tan silty sand. Dry.			
6—		100%						_
-								-
7_			0.3					
8—								
-	-8-10							-
9—	198-SB-6-8-10	100%	20.3					
0	198							_
0					End of Boring	9		
							Pa	ge 1 of 1

	Sol	ut Envi	10	<u>ns</u>	-IES		Log	of Boring 198-S	B-7
	G LOCA					98, Fayetteville, NC	PROJECT NUMBER: 2016.0054.NDOT		
DRILLI	ING CON	ITRA	CTOR	:		Regional Probing Services	DATE STARTED: 10/25/2016	DATE FINISHED: 10/25/2016	
DRILLI	NG MET	HOD:	Di	rect Pu	ush	BOREHOLE DIAMETER: 2.25"	TOTAL DEPTH (ft bgs): 10 ft bgs	SCREEN INTERV NA	AL (ft bgs):
DRILLI	NG EQL	IIPME	NT:	G	Geoprobe 5	410	NORTHING: NA	EASTING: NA	
SAMPL	ING ME	THOD	D:	Macro	o Core		INITIAL DTW:	FINAL DTW: NA	
LOGGE Samuel	ED BY: McIntyr	е		CHEC	KED BY:				
Ta				Ê					는 ⓒ
DEPTH (ft bgs)		and Interval	Recovery	PID (ppm)		DESCRIPTION OF MATERIALS			DEPTH (ft bgs)
0	ů	й Ē	-						0
1-				0.1					
_			.0						-
2-			100%			Light brown silty clay. Dry.			-2
3-				0.0		g			-3
-									_
4-		_							-4
5-				0.1					5
-			%						-
6-			100%						6
7-				0.0					-7
_						Light brown soft clay. Dry.			-
8-		3-10							
9—		198-SB-7-8-10	100%	0.2					-9
10		198-							-
10-		·				End of Boring			10
									Page 1 of 1

Indus	Sol trial &	ut	10	<u>ns</u>	-IES		Log	of Boring 198-S	B-8
	G LOCA					98, Fayetteville, NC	PROJECT NUMBER: 2016.0054.NDOT		
DRILLI	ING CO	NTRA	CTOR	:		Regional Probing Services	DATE STARTED: 10/25/2016	DATE FINISHED: 10/25/2016	
DRILLI	NG MET	HOD	: Di	rect Pu	ısh	BOREHOLE DIAMETER: 2.25"	TOTAL DEPTH (ft bgs): 10 ft bgs	SCREEN INTERV	AL (ft bgs):
DRILLI	NG EQL	JIPME	INT:	G	Geoprobe 5	410	NORTHING: NA	EASTING: NA	
SAMPL	ING ME	THO	D:	Macro	o Core		INITIAL DTW: NA	FINAL DTW: NA	
LOGGE Samuel	ED BY: McIntyr	e		CHEC	KED BY:				
۲ E		MPLE:		(m		DESCRIPTION OF MATERIALS			DEPTH (ft bgs)
DEPTH (ft bgs)		and Interval	Recovery	PID (ppm)					DEF DEF
0		σ 							0
1-				0.1					-1
_			%			Light brown silty clay. Dry.			
2-			100%						-2
3—				0.0					-3
4-									
4									-
5—				0.1					-5
6-			100%						-6
_			10						-
7—				0.2		Light brown soft clay. Dry.			-7
8-		-							-8
		198-SB-8-8-10	%	0.1					-
9		98-SB	100%	0.1					—9 -
10-		-				End of Boring			10
						Lind of boiling			
									Page 1 of 1

ATTACHMENT C

PHOTO I - VIEW OF SOIL BORING LOOKING WEST PHOTO 2 - VIEW OF SOIL BORING LOOKING EAST



PHOTO 3 - VIEW OF SOIL BORING LOOKING EAST PHOTO 4 - VIEW OF SOIL BORING LOOKING SOUTHEAST

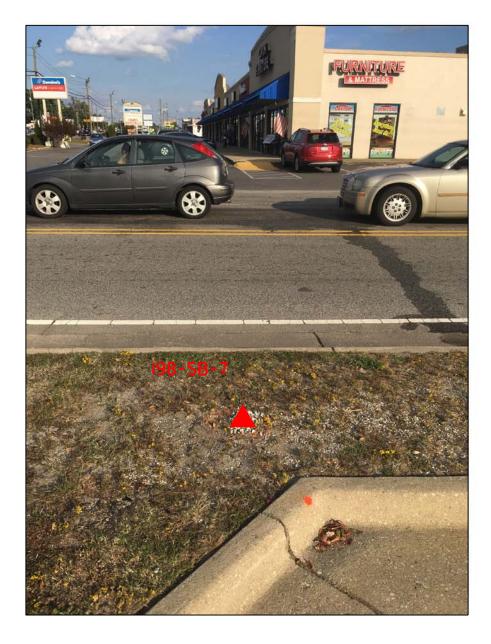
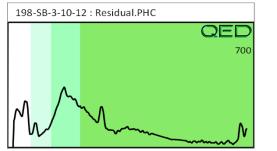


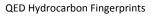
PHOTO 5 - VIEW OF SOIL BORING LOOKING EAST

PHOTO 6 - VIEW OF SOIL BORING LOOKING NORTH

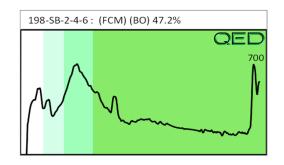

ATTACHMENT D

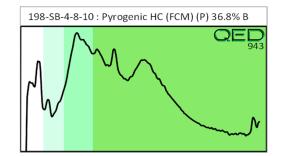

Q	ED		6	RAPI	REDI DENVIRONMENTA	AL DIAGNOSTICS					J		<u>ROS</u>
Client: Address:	NCDOT Site 198: 5201 Raeford Road Fayetteville, NC									Samples	ples taken extracted analysed		10/25/2016 10/25/2016 10/25/2016
Contact:											Operator		Candy Elliott
Project:	2016.0054.NDOT												
													U04049
Matrix			BTEX (C6	GRO	DRO	ТРН	Total Aromatics	16 EPA	BaP	Ratios		Ratios HC Fingerpri	
Matrix	Sample ID	Dilution used	- C9)	(C5 - C10)	(C10 - C35)	(C5 - C35)		PAHs					HC Fingerprint Match
Watrix	Sample ID			(C5 - C10)	(C10 - C35)	(C5 - C35)	(C10-C35)	PAHs		% light	% mid	% heavy	HC Fingerprint Match
Matrix	Sample ID 198-SB-1-6-8		- C9)	(C5 - C10) <0.7		(C5 - C35) 18.6		PAHs 0.43	0.005	% light 0			V.Deg.PHC (FCM) 65.9%
		used	- C9)	、 ,	18.6	• •	(C10-C35)			-	% mid	14.4	
S	198-SB-1-6-8	used 27.8	- C9) <0.7	<0.7	18.6	18.6	(C10-C35) 9.7	0.43	0.005	0	% mid 85.6	14.4 11.6 42.7	V.Deg.PHC (FCM) 65.9% (FCM) (BO) 47.2% Residual PHC
S S	198-SB-1-6-8 198-SB-2-4-6	used 27.8 25.8	- C9) <0.7 <0.65	<0.7 <0.65	18.6 1.3 <0.57	18.6	(C10-C35) 9.7 0.61	0.43	0.005	0	% mid 85.6 88.4	14.4 11.6 42.7	V.Deg.PHC (FCM) 65.9% (FCM) (BO) 47.2%
S S S	198-SB-1-6-8 198-SB-2-4-6 198-SB-3-10-12	used 27.8 25.8 22.7	- C9) <0.7 <0.65 <1.1 0.46	<0.7 <0.65 <0.57	18.6 1.3 <0.57 0.33	18.6 1.3 <0.57	(C10-C35) 9.7 0.61 <0.11	0.43 <0.02 <0.02	0.005 <0.003 <0.002	0 0 0 0	% mid 85.6 88.4 57.3	14.4 11.6 42.7 7.8	V.Deg.PHC (FCM) 65.9% (FCM) (BO) 47.2% Residual PHC
S S S S	198-SB-1-6-8 198-SB-2-4-6 198-SB-3-10-12 198-SB-4-8-10	used 27.8 25.8 22.7 7.5	- C9) <0.7 <0.65 <1.1 0.46	<0.7 <0.65 <0.57 0.46	18.6 1.3 <0.57 0.33 0.31	18.6 1.3 <0.57 0.79	(C10-C35) 9.7 0.61 <0.11 0.26	0.43 <0.02 <0.02 0.08	0.005 <0.003 <0.002 <0.001	0 0 0 66.7	% mid 85.6 88.4 57.3 25.6	14.4 11.6 42.7 7.8 5.3	V.Deg.PHC (FCM) 65.9% (FCM) (BO) 47.2% Residual.PHC Pyrogenic HC (FCM) (P) 36.8% B
\$ \$ \$ \$ \$ \$	198-SB-1-6-8 198-SB-2-4-6 198-SB-3-10-12 198-SB-4-8-10 198-SB-5-8-10	used 27.8 25.8 22.7 7.5 5.9	- C9) <0.7 <0.65 <1.1 0.46 <0.15	<0.7 <0.65 <0.57 0.46 0.4	18.6 1.3 <0.57 0.33 0.31 0.89	18.6 1.3 <0.57 0.79 0.71	(C10-C35) 9.7 0.61 <0.11 0.26 0.2	0.43 <0.02 <0.02 0.08 0.01	0.005 <0.003 <0.002 <0.001 <0.001	0 0 0 66.7 68.7	% mid 85.6 88.4 57.3 25.6 26	14.4 11.6 42.7 7.8 5.3 14.1	V.Deg.PHC (FCM) 65.9% (FCM) (BO) 47.2% Residual.PHC Pyrogenic HC (FCM) (P) 36.8% B Deg Gas (FCM) 65.3%
S S S S S S	198-SB-1-6-8 198-SB-2-4-6 198-SB-3-10-12 198-SB-4-8-10 198-SB-5-8-10 198-SB-6-8-10	used 27.8 25.8 22.7 7.5 5.9 23.2	<pre>- C9) </pre> <0.7 <0.65 <1.1 0.46 <0.15 <0.58 <0.29	<0.7 <0.65 <0.57 0.46 0.4 <0.58	18.6 1.3 <0.57 0.33 0.31 0.89 0.66	18.6 1.3 <0.57 0.79 0.71 0.89	(C10-C35) 9.7 0.61 <0.11 0.26 0.2 0.69	0.43 <0.02 <0.02 0.08 0.01 0.03	0.005 <0.003 <0.002 <0.001 <0.001 <0.002	0 0 0 66.7 68.7 0	% mid 85.6 88.4 57.3 25.6 26 85.9	14.4 11.6 42.7 7.8 5.3 14.1 26.5	V.Deg.PHC (FCM) 65.9% (FCM) (BO) 47.2% Residual.PHC Pyrogenic HC (FCM) (P) 36.8% B Deg Gas (FCM) 65.3% V.Deg.PHC (FCM) 56.5%

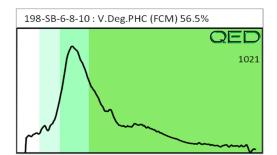
Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library

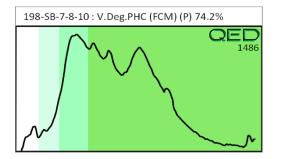

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present

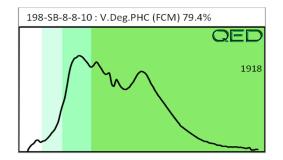
198-SB-5-8-10 : Deg Gas (FCM) 65.3%










10/25/2016

