

December 12, 2016

Mr. Terry Fox, L.G. North Carolina Department of Transportation Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Reference: Preliminary Site Assessment Edward Schantz Property (Parcel #139) 6006 Raeford Road Fayetteville, Cumberland County, North Carolina State Project: U-4405 WBS Element 39049.1.1 SIES Project No. 2016.0054.NDOT

Dear Mr. Fox:

Solutions-IES, Inc., (SIES) has completed the Preliminary Site Assessment conducted at the abovereferenced property. The work was performed in accordance with the Technical and Cost proposal dated September 26, 2016, and the North Carolina Department of Transportation's (NCDOT's) Notice to Proceed dated September 26, 2016. Activities associated with the assessment consisted of conducting a geophysical investigation, collecting soil samples for analysis, and reviewing applicable North Carolina Department of Environmental Quality (NCDEQ) records. The purpose of this report is to document the field activities, present the laboratory analyses, and provide recommendations regarding the property.

Location and Description

The Edward Schantz Property (Parcel #139) is located at 6006 Raeford Road in Fayetteville, Cumberland County, North Carolina. The property is situated on the north side of Raeford Road approximately 200 feet west of the intersection of Raeford Road and Skibo Road. Beaver Creek borders the property on the west side (**Figure 1**). The property consists of an active auto service, salvage, and body shop (Ed's Auto Service and Salvage/Cross Creek Body Shop). No visual evidence of underground storage tanks (USTs) was noted during the assessment activities.

A concrete parking area occupies the area in front of the building and salvage yard in the rear of the facility (**Figure 2**). The proposed easement had not been marked at the site at the time of the field work, but NCDOT plan sheets show that the easement will not affect the building.

The NCDOT requested a Preliminary Site Assessment for the right-of-way and proposed easement because the property contains an active automotive repair and salvage yard. The scope of work as

defined in the Request for Technical and Cost Proposal was to evaluate the site with respect to the presence of known and unknown USTs, and assess whether contamination exists on the right-of-way/proposed easement. Because the property contains an automotive repair facility, the NCDOT directed SIES to evaluate the right-of-way/easement for the presence of solvents in addition to petroleum. An estimate of the quantity of impacted soil is to be provided, should impacted soils be encountered.

SIES reviewed the on-line NCDEQ Incident Management database and no incident number was assigned to the site. SIES also examined the UST registration database and found no tanks registered to the property address.

Geophysical Survey

Prior to SIES' mobilization to the site, Pyramid Environmental & Engineering of Greensboro, NC (Pyramid) conducted a geophysical survey in the right-of-way/proposed easement to determine if unknown USTs were present in that area. The geophysical survey consisted of an electromagnetic survey using a Geonics EM61 time-domain electromagnetic induction meter to locate buried metallic objects, and ground penetrating radar (GPR) using a Geophysical Survey Systems Inc. Utility Scan DF with a dual frequency 300/800 MHz antenna. The instruments were used specifically to locate USTs.

A survey grid was laid out along the right-of-way/proposed easement with the X-axis oriented approximately parallel to Raeford Road and the Y-axis oriented approximately perpendicular to Raeford Road. The grid was positioned to cover the entire right-of-way/proposed easement. The grid was positioned to cover the entire right-of-way/proposed easement, as shown on **Figure 2** of the geophysical survey report in **Attachment A**.

The survey lines were spaced five feet apart and magnetic data were collected continuously along each survey line with a data logger. After collection, the data were reviewed in the field with graphical computer software. Following the electromagnetic survey, a GPR survey was conducted to further evaluate any significant metallic anomalies.

Access was available to all areas of the property, and several anomalies were detected with the geophysical survey. The anomalies were attributed to visible cultural features, metallic debris, underground utilities, signage, or vehicles. Pyramid's detailed report of findings and interpretations is presented in **Attachment A**.

Site Assessment Activities

On October 27, 2016, SIES mobilized to the site to conduct a Geoprobe[®] direct-push investigation to evaluate subsurface soil conditions on the property to a depth of 10 feet below ground surface (ft bgs). Four direct-push holes (139-SB-1 through 139-SB-4) were advanced throughout the right-of-way/proposed easement (**Figure 2**). As shown on the figure, a northwest oriented easement is located on the west side of the building to an area behind a chain-link fence. SIES proposed one boring in that area; however, Hurricane Matthew caused Beaver Creek to flood and significantly undercut the concrete in the vicinity, creating an unsafe area from which to advance a soil boring. Therefore, no subsurface soil sampling was conducted behind the fence. The soil boring logs are included as **Attachment B**. Borings 139-SB-1 through 139-SB-4 were located to evaluate the subsurface conditions in the right-of-way/easement along Raeford Road (see photos in **Attachment C**).

Continuous sampling using a Geoprobe[®] resulted in generally good recovery of soil samples from the direct-push holes. Soil samples were collected and contained in four-foot long acetate sleeves inside the direct-push Macro-Core[®] sampler. Each of the sleeves was divided into two-foot long sections for soil sample screening. Soil from each two-foot interval was placed in a resealable plastic bag and the bag was set aside for volatilization of organic compounds from the soil to the bag headspace. A photoionization detector (PID) probe was inserted into the bag and the reading was recorded (**Table 1**).

Two samples per boring were submitted for analysis; the depth interval with the highest PID reading and one from the bottom (**Table 1**). The selected soil samples were submitted to an on-site mobile laboratory for analysis of total petroleum hydrocarbons (TPH) diesel range organics (DRO) and gasoline range organics (GRO) using ultraviolet fluorescence (UVF) methodology. To evaluate the property with respect to solvents, the soil sample with the highest DRO or GRO result from each boring was submitted to Pace Analytical in Huntersville, NC, for analysis of volatile organic compounds (VOCs) using Method 8260. Each boring was backfilled with bentonite and drill cuttings to the surface after completion.

The lithology encountered by the direct-push samples was generally consistent throughout the site. The ground surface was covered with about 0.5 feet of concrete. Below this surface cover was a light brown fine-grained sand. In borings 139-SB-1 through 139-SB-3, the sand is present to a depth ranging from six to eight ft bgs and is underlain by a mottled red and brown clayey sand. This clayey sand thins in the direction of Beaver Creek and is absent in boring 139-SB-4, which is closest to the creek. No bedrock or groundwater was noted in any of the borings.

According to the 1985 Geologic Map of North Carolina, the site is within of Coastal Plain Physiographic Province in North Carolina near the contact between the Cretaceous Black Creek and Middendorf

3

Formations. The strata of the Black Creek Formation consist of gray to black clay, thin lenses of finegrained sand and thick lenses of cross-bedded sand. The lithology may also include glauconite and fossils. In comparison, the Middendorf Formation consists of sand, sandstone, and mudstone that are laterally discontinuous. The soils observed at the site are consistent with the MIddendorf Formation as the parent material.

Analytical Results

The laboratory data are summarized in **Table 1** and the complete report is presented in **Attachment D**. Eight soil samples were submitted for analysis (two samples per boring). Of these samples, four contained detectable GRO compounds ranging from 0.6 to 9.7 milligrams per kilogram (mg/kg). Six of the soil samples contained detectable DRO compounds ranging from 1.3 to 38 mg/kg. The action levels are 50 mg/kg for GRO and 100 mg/kg for DRO¹. None of the soil samples analyzed for this site contained DRO or GRO concentrations above their respective action levels.

The soil sample with the highest UVF concentrations from each boring was submitted for VOC analysis using Method 8260. As shown on **Table 1** and presented in **Attachment D**, acetone was detected in three of the four soil samples analyzed at concentrations ranging from 0.12 to 0.16 mg/kg. Acetone is a common solvent used in various industries, including degreasers used in automotive repair shops and as a laboratory equipment cleaner. Its consistent presence throughout the investigation area suggests it may be a result of site activities rather than a laboratory artifact. Solvent releases are under the jurisdiction of the NCDEQ's Division of Waste Management Hazardous Waste Section. Action levels for compounds are given in that agency's Preliminary Soil Remediation Goals (PSRGs). The Protection of Groundwater PSRG, the most stringent action level, for acetone is 24 mg/kg. None of the concentrations detected in the soil from the site are above this action level.

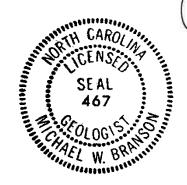
Conclusions and Recommendations

A Preliminary Site Assessment was conducted to evaluate the Edward Schantz Property (Parcel #139) located at 6006 Raeford Road in Fayetteville, Cumberland County, North Carolina. A geophysical survey conducted at the site indicated that no metallic USTs were detected within then right-of-way/proposed easement on the site. Four soil borings were advanced to evaluate the subsurface soil conditions along the right-of-way/proposed easement. None of the eight soil samples analyzed had a GRO or DRO concentration above the action level. Analysis of four soil samples for VOCs indicated that acetone was present in three of the four samples, but the concentrations were below the applicable action level.

¹ NCDEQ, *Guidelines for North Carolina Action Limits for Total Petroleum Hydrocarbons (TPH)*, July 26, 2016,

None of the soil samples had contaminant concentrations above applicable action levels (Table 1). Therefore, no estimate of the volume of soil requiring possible remediation was made.

SIES appreciates the opportunity to work with the NCDOT on this project. Because compounds were detected above the reporting limit in the soil samples, SIES recommends that a copy of this report be submitted to the Division of Waste Management, UST Section, in the Fayetteville Regional Office. If you have any questions, please contact us at (919) 873-1060.


Sincerely,

Michael W. Brusan

Michael W. Branson, P.G. Project Manager

Attachments

John Palmer, P.G. Senior Hydrogeologist

TABLE 1 SOIL FIELD SCREENING AND ANALYTICAL RESULTS SHANTZ PROPERTY (PARCEL #139) FAYETTEVILLE, CUMBERLAND COUNTY, NORTH CAROLINA STATE PROJECT: U-4405 WBS ELEMENT 39049.1.1 SIES PROJECT NO. 2016.0054.NDOT

				ΔΝΑΙ	YTICAL RESU	II Т S	
SAMPLE ID	DEPTH (ft)	PID READING	SAMPLE ID	(mg/kg)			
		(ppm)		UVF GRO	UVF DRO	Acetone	
	,	Action Level (mg/k	g)	50	100	24*	
	0 - 2	0.6					
139-SB-1	2 - 4	0.4					
139-30-1	4 - 6	0.6	139-SB-1-4-6	<0.59	<0.59		
	6 - 8	0.0					
	8 - 10	0.6	139-SB-1-8-10	<0.78	<0.78	<0.112	
	0 - 2	0.3					
	2 - 4	0.3					
139-SB-2	4 - 6	1.8	139-SB-2-4-6	<0.67	10.1	0.160	
	6 - 8	1.0					
	8 - 10	0.8	139-SB-2-8-10	0.92	1.3		
	0 - 2	0.6					
	2 - 4	0.5					
139-SB-3	4 - 6	0.9					
	6 - 8	1.1	139-SB-3-6-8	<0.67	38	0.129	
	8 - 10	0.8	139-SB-3-8-10	9.7	13.3		
	0 - 2	0.3					
	2 - 4	0.3					
139-SB-4	4 - 6	0.3					
	6 - 8	0.4	139-SB-4-6-8	6.2	21.6		
	8 - 10	0.6	139-SB-4-8-10	0.60	33.1	0.147	

1) ft - feet

2) ppm - parts per million.

3) PID - photoionization ionization detector

4) mg/kg - milligrams per kilogram.

5) UVF DRO - Diesel range organics by UVF.

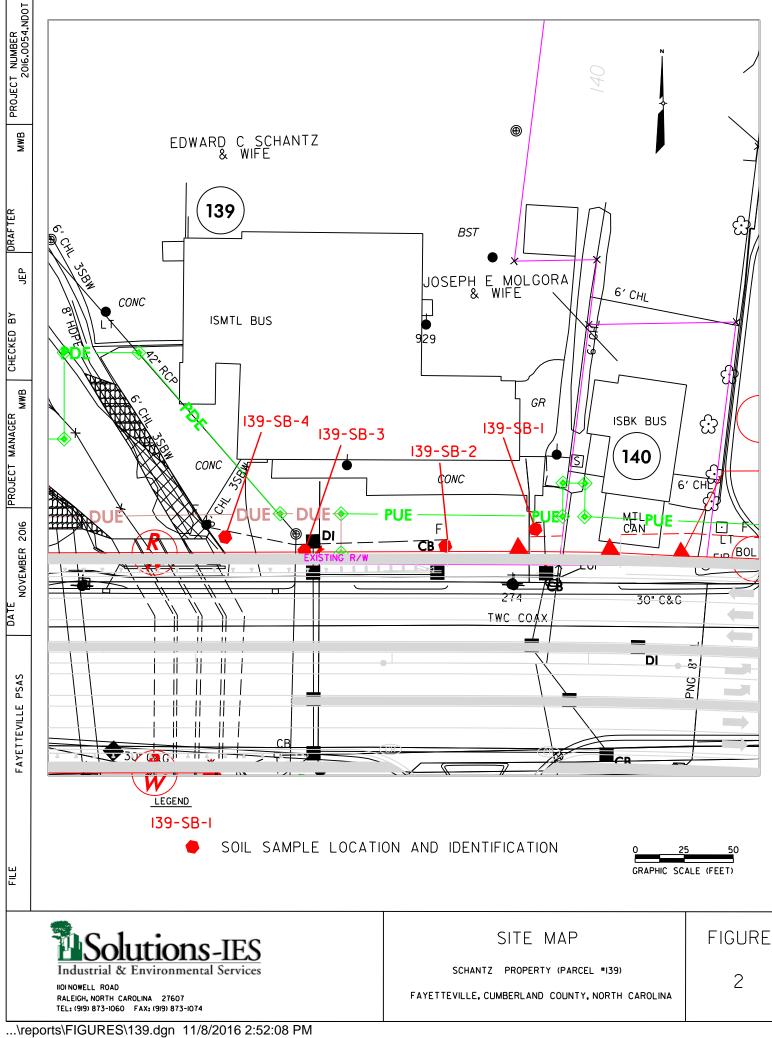
6) UVF GRO - Gasoline range organics by UVF.

7) Action level based upon NCDEQ memo Guidelines for North Carolina Action Limits for Total Petroleum Hydrocarbons - July 29, 2016.

8) Soil samples were collected on October 27, 2016.

9) **Bold** values are above the detection level.

10) * - Soil-to-groundwater Maximum Soil Contaminant Concentration



FIGURES

Ν

...\reports\FIGURES\139 FIG 1.dgn 10/5/2016 10:01:09 AM

ATTACHMENT A

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 139 – EDWARD SCHANTZ NCDOT PROJECT U-4405

6006 RAEFORD RD., FAYETTEVILLE, CUMBERLAND COUNTY, NC

NOVEMBER 4, 2016

Report prepared for:

Mike Branson Solutions, IES 1101 Nowell Road Raleigh, North Carolina 27607

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by

Conovello

Reviewed by: _____

Douglas A. Canavello, P.G. NC License #1066

503 INDUSTRIAL AVENUE, GREENSBORO, NC 27406 P: 336.335.3174 F: 336.691.0648 C257: GEOLOGY C1251: ENGINEERING

Table of Contents

Executive Summary	.1
Introduction	
Field Methodology	
Discussion of Results	
Summary and Conclusions	
Limitations	

Figures

Figure 1 – Parcel 139 Geophysical Survey Boundaries and Site Pho-	tographs
Figure 2 – Parcel 139 EM61 Results Contour Map	
Figure 3 – Parcel 139 GPR Transect Locations and Select Images	

Appendices

Appendix A – GPR Transect Images

LIST OF ACRONYMS

DFDual Frequency EMElectromagnetic GPRGround Penetrating Radar GPSGlobal Positioning System NCDOTNorth Carolina Department of Transportation
GPRGround Penetrating Radar GPSGlobal Positioning System NCDOTNorth Carolina Department of Transportation
GPSGlobal Positioning System NCDOTNorth Carolina Department of Transportation
NCDOTNorth Carolina Department of Transportation
1 1
ROWRight-of-Way
SVESoil Vapor Extraction
USTUnderground Storage Tank

EXECUTIVE SUMMARY

Project Description: Pyramid Environmental conducted a geophysical investigation for Solutions, IES (Solutions) at Parcel 139, located at 6006 Raeford Road, Fayetteville, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project U-4405). Solutions directed Pyramid as to the geophysical survey boundaries at the project site, which were designed to extend from the existing edge of pavement to the proposed ROW lines and/or easement lines within the property, whichever distance was greater. Conducted from October 12-17, 2016, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. Minor EM features on the east portion of the survey were suspected to be associated with buried metallic debris, and were investigated by GPR. The GPR scans revealed a suspected utility/conduit extending across the survey area from west to east. No additional structures were observed. Collectively, the geophysical data <u>did not show any evidence of unknown metallic USTs at Parcel 139</u>.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Solutions, IES (Solutions) at Parcel 139, located at 6006 Raeford Road, Fayetteville, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project U-4405). Solutions directed Pyramid as to the geophysical survey boundaries at the project site, which were designed to extend from the existing edge of pavement to the proposed ROW lines and/or easement lines within the property, whichever distance was greater. Conducted from October 12-17, 2016, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included an automotive repair facility surrounded by concrete parking space. Aerial photographs showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61 metal detector integrated with a Trimble AG-114 GPS antenna. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is geo-referenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8 foot intervals along north-south trending or east-west trending, generally

parallel survey lines spaced five feet apart. The data were downloaded to a computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 11.0 software programs.

GPR data were acquired across select EM anomalies on October 17, 2016, using a Geophysical Survey Systems, Inc. (GSSI) UtilityScan DF unit equipped with a dual frequency 300/800 MHz antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 4 feet, based on dielectric constants calculated by the DF unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the DF unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tanks on NCDOT Projects								
High Confidence	Intermediate Confidence	Low Confidence	No Confidence					
Known UST	Probable UST	Possible UST	Anomaly noted but not					
Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphal/concrete patch, etc.	Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.					

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The

following table presents the list of EM anomalies and the cause of the metallic response, if known:

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Trailer	
2	Metal Pole	
3	Metal Debris	
4	Manhole	
5	Suspected Metallic Debris	\otimes
6	Vehicles	
7	Light Pole	
8	Rebar Piece	
9	Trash Can	

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

The majority of the EM anomalies recorded by the survey were directly attributed to visible cultural features such as a trailer, metal poles, a manhole, vehicles, a rebar piece and a trash can. Isolated minor EM anomalies on the east potion of the survey area (Anomaly 5) were suspected to be associated with minor buried debris, and were investigated further with GPR.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property, as well as select transect images. A total of 9 GPR transects were performed at the site across EM anomalies and other areas of interest. Transects 1-3 were performed across a suspected utility/conduit that was observed during reconnaissance GPR scans. This suspected conduit was not evident on the EM differential results contour map included in this report; however, review of the more sensitive bottom coil EM results did provide evidence of a linear feature extending across the property from west to east that was suggestive of a utility/conduit. These GPR transects recorded an isolated, discreet hyperbolic reflector that is consistent with a utility/conduit.

Transects 4-9 were performed across the area containing the minor EM features suspected to be associated with buried metallic debris (Anomaly 5). These transects did not record any significant reflector or disruptions in the data that would be suggestive of distinct objects. It is likely these EM features are associated with minor debris lacking any significant structure.

Collectively, the geophysical data <u>did not show any evidence of unknown metallic USTs</u> <u>at Parcel 139</u>.

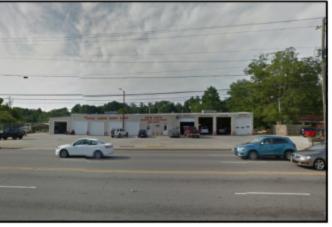
SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 139 in Fayetteville, Cumberland County, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. Minor EM features on the east portion of the survey were suspected to be associated with buried metallic debris, and were investigate by GPR.
- The GPR scans revealed a suspected utility/conduit extending across the survey area from west to east. No additional structures were observed.
- Collectively, the geophysical data <u>did not show any evidence of unknown metallic</u> <u>USTs at Parcel 139</u>.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Solutions, IES in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and


may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

NÎ

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

NC STATE PLANE, EASTING (NAD83, FEET)

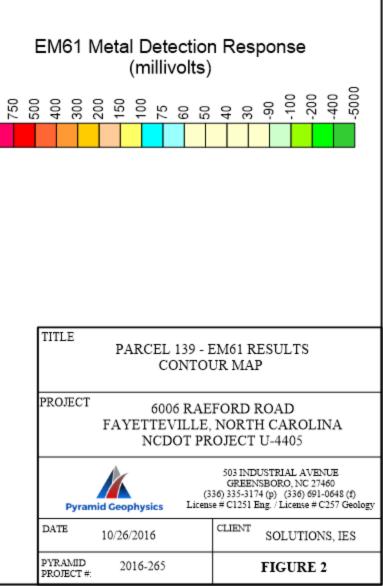
View of Survey Area (Facing Approximately North)

View of Survey Area (Facing Approximately Northeast)

	PARCEL 139 - GEOPHYSICAL SURVEY BOUNDARIES AND SITE PHOTOGRAPHS										
PROJECT	PROJECT 6006 RAEFORD ROAD FAYETTEVILLE, NORTH CAROLINA NCDOT PROJECT U-4405										
503 INDUSTRIAL AVENUE GREENSBORO, NC 27460 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geolo											
DATE	10/31/16		CLIENT SOLUTIONS, IES								
PYRAMID PROJECT #:	2016-265		FIGURE 1								

N1

EM61 METAL DETECTION RESULTS

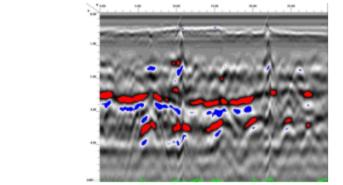

NC STATE PLANE, EASTING (NAD83, FEET)

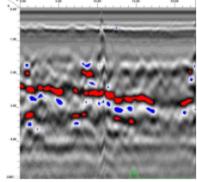
NUMBERS IN BLUE (x) CORRESPOND TO ANOMALY TABLE INCLUDED IN THE REPORT

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM61 data were collected on October 13, 2016, using a Geonics EM61 instrument. GPR data were collected on October 14, 2016, using a GSSI UtilityScan DF unit with a dual frequency 300/800 MHz antenna.

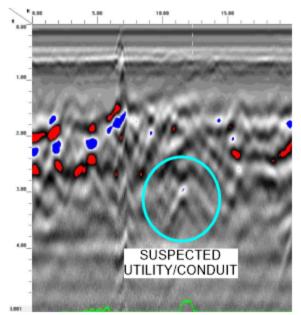
1000

NO EVIDENCE OF UNKNOWN METALLIC USTs OBSERVED

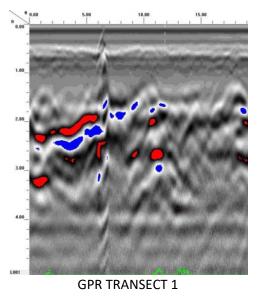


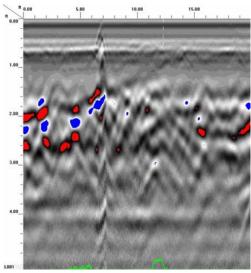

NÎ

LOCATIONS OF GPR TRANSECTS

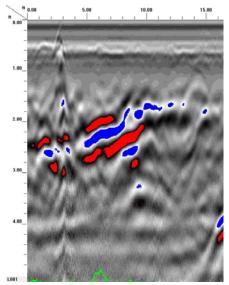


NC STATE PLANE, EASTING (NAD83, FEET)

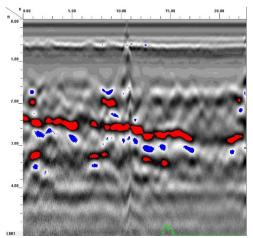

GPR TRANSECT 4 (T4)

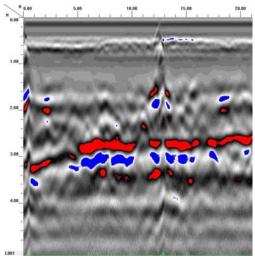


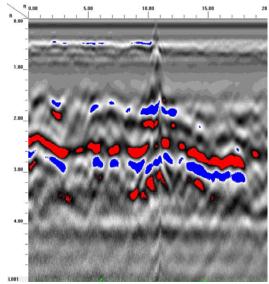
GPR TRANSECT 3 (T3)

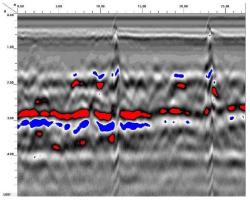

TITLE PA	TITLE PARCEL 139 - GPR TRANSECT LOCATIONS AND SELECT IMAGES								
PROJECT 6006 RAEFORD ROAD FAYETTEVILLE, NORTH CAROLINA NCDOT PROJECT U-4405									
Pyram	503 INDUSTRIAL AVENUE GREENSBORO, NC 27460 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology								
DATE	10/26/2016		CLIENT SOLUTIONS, IES						
PYRAMID PROJECT #:	2016-265		FIGURE 3						

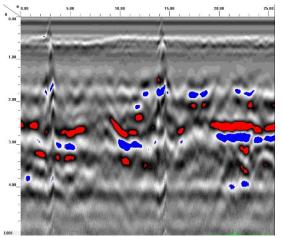
Appendix A – GPR Transect Images

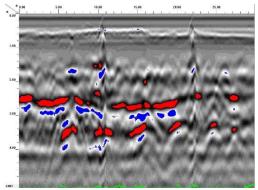



GPR TRANSECT 2


GPR TRANSECT 3


GPR TRANSECT 4


GPR TRANSECT 5


GPR TRANSECT 6

GPR TRANSECT 7

GPR TRANSECT 8

GPR TRANSECT 9

ATTACHMENT B

	olut		ns nenta	-IES) s	Log of Boring 139-SB-1			
			iiciitu		39, Fayetteville, NC	PROJECT NUMBER: 2016.0054.NDOT			
RILLING	G CONTRA	CTOR	:		Regional Probing Services	DATE STARTED: 10/27/2016	DATE FINISHED: 10/27/2016		
RILLING	G METHOD): D	irect Pu	ısh	BOREHOLE DIAMETER: 2.25"	TOTAL DEPTH (ft bgs): 10 ft bgs	SCREEN INTERVAL (ft bgs): NA		
RILLING	G EQUIPMI	ENT:	G	eoprobe 5	5410	NORTHING:	EASTING:		
	IG METHO			o Core		NA INITIAL DTW:	NA FINAL DTW:		
DGGED amuel M	BY:			KED BY:		NA	NA		
	SAMPLE	S							
(ft bgs)	Sample ID and Interval	Recovery	PID (ppm)		DESCRIPTION OF MATERIALS			L DEDTH	
0	ar o				Concrete.				
								_	
1_			0.6						
2—		80%						_	
_		Ø						-	
3—			0.4					_	
-					Light brown fine sand. Dry.			-	
4—	Q							_	
5—	139-SB-1-4-6		0.6		•				
5	39-SF		0.0						
6—	-	100%						_	
-		¢-						-	
7—			0.0						
8—									
	3-10				Light brown and red mottled clayey sand.	Dry.			
9—	139-SB-1-8-10	100%	0.6					_	
-	139-5	-						-	
0					3	End of Boring			
							Pag	e 1 of 1	

Industri	olut	vironi	mental	-ICA I Service) s	Log	of Boring 139-SB-2			
BORING I	LOCATION	1:		Parcel #1	39, Fayetteville, NC	PROJECT NUMBER: 2016.0054.NDOT				
DRILLING	G CONTRA	ACTOR	R:		Regional Probing Services	DATE STARTED: 10/27/2016	DATE FINISHED: 10/27/2016			
DRILLING	G METHOD): D	irect Pu	ish	BOREHOLE DIAMETER: 2.25"	TOTAL DEPTH (ft bgs): 10 ft bgs	SCREEN INTERVAL (ft bgs): NA			
DRILLING	G EQUIPMI	ENT:	G	eoprobe 5	5410	NORTHING: NA	EASTING: NA			
SAMPLIN	IG METHO	D:	Macro	Core		INITIAL DTW: NA	FINAL DTW: NA			
LOGGED Samuel M			CHEC	KED BY:						
T .	SAMPLE		(E		
DEPTH (ft bgs)	Sample ID and Interval	Recovery	PID (ppm)		DESCRIPTION OF MATERIALS			DEPTH		
0	ਛ ਨ				Concrete.			(
1-			0.3		•			-1		
-		_						-		
2—		75%			•			-2		
3—			0.3							
_										
4—	9				Light brown fine sand. Dry.					
5—	139-SB-2-4-6		1.8					-		
-	139-S	_								
6—		100%								
7—			1.0					-7		
-										
8—	0							-8		
9—	139-SB-2-8-10	100%	0.8		Light brown and red mottled clayey sand. Dr	у.				
_	139-SI	1						-		
10					<u>}</u> E	End of Boring				
						-				
							Page	1 of 1		

ORING LOCATION: Parcel #138. Fayetteville, NC PPC/JECT NUMBER: 2016.0004.NDOT DRILLING CONTRACTOR: Regional Phobing Services 100272016 DATE FINISHED: 100272016 INICLING EQUIPMENT: Geoprobe 5410 BOREHOLE DIAMETER: 2.25" TOTAL DEPTH (It bags): 0 it bags SCREEN INTERVAL (It bgs): 10 it bags INILLING EQUIPMENT: Geoprobe 5410 NOR THINC: EASTING: NA INICURS EQUIPMENT: Geoprobe 5410 INICURS EQUIPMENT: EASTING: NA <t< th=""><th>ndustria</th><th>al & Env</th><th>vironi</th><th>nenta</th><th>-IES</th><th><mark>D</mark>s</th><th>LOG</th><th>of Boring 139-SB-3</th><th></th></t<>	ndustria	al & Env	vironi	nenta	-IES	<mark>D</mark> s	LOG	of Boring 139-SB-3	
Regional Probing Services 10277016 10277016 IRILLING METHOD: Direct Push BOREHOLE DIAMETER: 2.25" TOTAL DETTHIN(I: bags): 10 ft bgs SCREEN INTERVAL (ft bgs): NA IRILLING ACUIPMENT: Geograde 5410 NORTHING: EASTING: NA MAPUING METHOD: Macro Core INITAL DTW: FINAL DTW: NA OGGED PY: CHECKED BY: CHECKED BY: CHECKED BY: amail Michtyre DESCRIPTION OF MATERIALS FINAL DTW: NA 0 0.6 0.6 0.6 0.6 0.6 0 0.5 0.6 0.6 0.6 0.6 0.6 0 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0 0.6	ORING L	OCATION	۷:		Parcel #1	39, Fayetteville, NC			
RILLING METHOD: Direct Push BOREHOLE DIAMETER: 2.25' TOTAL DEPTH (It bags): SCREEN INTERVAL (It bags): INTELLING EQUIPMENT: Geoprobe 5410 Northing: EASTING: NAMPLING METHOD: Macro Core NITTAL DTW: FINAL DTW: NAMPLING METHOD: Macro Core Description OF MATERIALS SAMPLES Geoprobe 5410 DESCRIPTION OF MATERIALS DESCRIPTION OF MATERIALS Geoprobe 5410 Light brown fine sand. Dry. Geoprobe 5410 Light brown and red mottled clayey sand. Dry. Light brown and red mottled clayey sand. Dry. Description Dry. Dry. Description Dry. Description Dry.	RILLING	CONTRA	ACTOR	:		Regional Probing Services			
NALLING EQUIPMENT: Geoprode S410 NA NA AMPLING METHOD: Macro Care INITIAL DTW: FINAL DTW: MILLING WETHOD: Macro Care CHECKED BY: CHECKED BY: Mamel Michingre SAMPLES 0 Cencrete. Image: Sample Sam	RILLING	METHOD): D	irect Pu	ısh	BOREHOLE DIAMETER: 2.25"	TOTAL DEPTH (ft bgs): 10 ft bgs	SCREEN INTERVAL (ft bgs): NA	
MARPLING METHOD: Macro Core INTIAL DTW: FINAL DTW: OGGED BY: CHECKED BY: CHECKED BY: amuel Michryre ESCRIPTION OF MATERIALS Image: Concrete. 0 Image: Concrete. Image: Concrete. 1 0.6 Image: Concrete. 2 0.6 Image: Concrete. 3 0.5 Image: Concrete. 4 0.5 Image: Concrete. 5 0.5 Image: Concrete. 6 0.9 Image: Concrete. 7 0.9 Image: Concrete. 9 0.9 Image: Concrete. 1 1 Image: Concrete.	RILLING	EQUIPM	ENT:	G	eoprobe 5	410			
CHECKED BY: CHECKED BY: CHECKED BY: DESCRIPTION OF MATERIALS 0<	AMPLING	G METHO	D:	Macro	Core		INITIAL DTW:		
SAMPLES 60 0 60 0				CHEC	KED BY:				
0 0.8 Concrete. 1 0.6 0.6 2 0.5 0.5 4 0.5 0.5 5 0.9 0.9 6 0.9 0.9 9 0.9 1.1 9 0.8 Light brown and red mottled clayey sand. Dry.		SAMPLE		_					г
0 0.8 Concrete. 1 0.6 0.6 2 0.5 0.5 4 0.5 0.5 5 0.9 0.9 6 0.9 0.9 9 0.9 1.1 9 0.8 Light brown and red mottled clayey sand. Dry.	(ft bgs)	ample ID d Interval	Recovery	mqq) Ole		DESCRIPTION OF MATERIALS			DEPTH
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	aŭ				Concrete.			- 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-			0.6					
3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	_		. 0	-					-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2—		100%						-2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3—			0.5					-:
$\begin{bmatrix} - & - & - & - & - & - & - & - & - & - $	-								-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4—					Light brown fine sand. Dry.			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5—			0.9					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_		.0						
8- 0 0 0 0 9- 0 0 0 0 0- 0 0 0	6—	8	100%						-6
8- 9- 0.8 Light brown and red mottled clayey sand. Dry.	7—	B-3-6-		1.1					_
9 - 0.8 Light brown and red mottled clayey sand. Dry.	_	139-5							-
	8—	-10							
	9—	SB-3-8	100%	0.8		Light brown and red mottled clayey sand.	Dry.		
End of Boring	_	139-5							-
	0						End of Boring		
								Page 1	

	al & Env OCATION			l Service Parcel #1	s 39, Fayetteville, NC	PROJECT NUMBER:						
	CONTRA				Regional Probing Services	2016.0054.NDOT DATE STARTED:	DATE FINISHED:					
	METHOD		irect Pu	ish	BOREHOLE DIAMETER: 2.25"	10/27/2016 TOTAL DEPTH (ft bgs): 10 ft bgs	10/27/2016 SCREEN INTERVAL (ft bgs) NA	:				
RILLING	EQUIPM	ENT:	G	eoprobe 5		NORTHING: NA	EASTING: NA					
AMPLING	G METHO	D:	Macro			INITIAL DTW: NA	FINAL DTW:					
OGGED I amuel Mc			CHEC	KED BY:			NA					
	SAMPLE							г				
(ft bgs)	Sample ID and Interval	Recovery	PID (ppm)		DESCRIPTION OF MATERIALS			DEPTH				
0	a v				Concrete.			0				
1-			0.3									
_		%						-				
2—		100%					-2					
3—			0.3					-:				
-								-				
4-												
5—			0.3		Light brown fine sand. Dry.							
-		%			Light blown inte stand. Bry.			-				
6—	8-9	100%						-6				
7—	139-SB-4-6-8		0.4					-7				
_	139											-
8	8-10								-			
9—	139-SB-4-8-10	100%	0.6					-9				
0	139											
0						End of Boring						
							Par	ge 1 of 1				

ATTACHMENT C

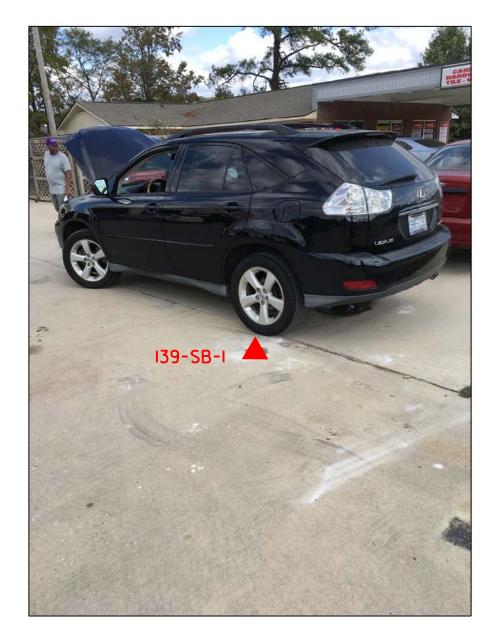


PHOTO I SOIL BORING LOOKING NORTHEAST

PHOTO 2 SOIL BORING LOOKING NORTH

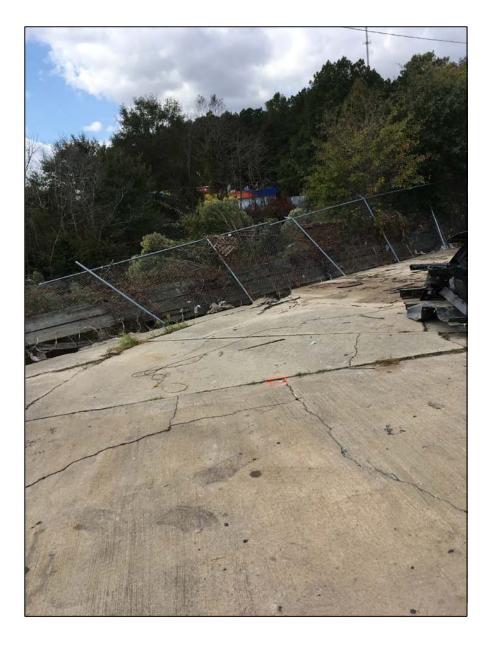
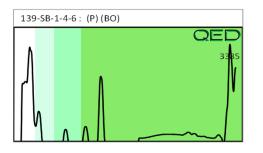


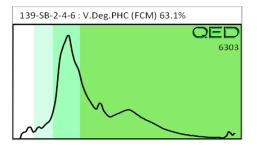
PHOTO 3

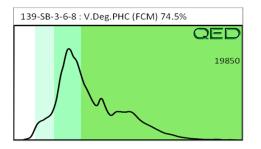
PHOTO 4 SOIL BORING LOOKING NORTH INVESTIGATION AREA DAMAGED BY HURRICANE MATTHEW

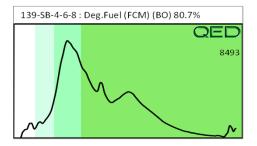
PHOTO 5

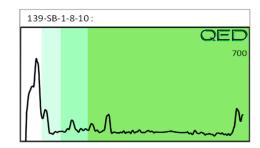
INVESTIGATION AREA DAMAGED BY HURRICANE MATTHEW

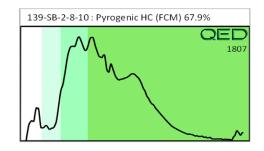

ATTACHMENT D

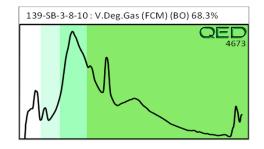

QED REDLAB Hydrocarbon Analysis Results											<u> </u>			
Client: Address:	NCDOT Parcel: 139 6006 Raeford Road Fayetteville, NC									Samples taken Samples extracted Samples analysed			10/27/2016 10/27/2016 10/27/2016	
Contact: Project:	2016.0054.NDOT										Operator		Candy Elliott	
													U04049	
Matrix	Sample ID	Dilution used	BTEX (C6 C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP	Ratios			HC Fingerprint Match	
										% light	% mid	% heavy		
S	139-SB-1-4-6		< 0.59	< 0.59	< 0.59					0	0	0		
_	400 00 4 0 40	23.5				< 0.59	<0.12	< 0.02	< 0.002	-	0		(P) (BO)	
s	139-SB-1-8-10	31.1	<0.78	<0.78	<0.78	<0.78	<0.16	<0.02	<0.003	0	0 74.6	100		
s	139-SB-2-4-6	31.1 26.9	<0.78 <0.67	<0.78 <0.67	<0.78 10.1	<0.78 10.1	<0.16 4.6	<0.02 0.22	<0.003 0.003	0	74.6	100 25.4	V.Deg.PHC (FCM) 63.1%	
s s	139-SB-2-4-6 139-SB-2-8-10	31.1 26.9 26.7	<0.78 <0.67 <0.67	<0.78 <0.67 0.92	<0.78 10.1 1.3	<0.78 10.1 2.2	<0.16 4.6 1.3	<0.02 0.22 0.28	<0.003 0.003 0.018	0 0 44.2	74.6 40.4	100 25.4 15.3	V.Deg.PHC (FCM) 63.1% Pyrogenic HC (FCM) 67.9%	
\$ \$ \$	139-SB-2-4-6 139-SB-2-8-10 139-SB-3-6-8	31.1 26.9 26.7 26.9	<0.78 <0.67 <0.67 <0.67	<0.78 <0.67 0.92 <0.67	<0.78 10.1 1.3 38	<0.78 10.1 2.2 38	<0.16 4.6 1.3 20	<0.02 0.22 0.28 0.92	<0.003 0.003 0.018 0.009	0 0 44.2 0	74.6 40.4 82.4	100 25.4 15.3 17.6	V.Deg.PHC (FCM) 63.1% Pyrogenic HC (FCM) 67.9% V.Deg.PHC (FCM) 74.5%	
S S	139-SB-2-4-6 139-SB-2-8-10	31.1 26.9 26.7	<0.78 <0.67 <0.67 <0.67 <0.56	<0.78 <0.67 0.92	<0.78 10.1 1.3	<0.78 10.1 2.2	<0.16 4.6 1.3	<0.02 0.22 0.28	<0.003 0.003 0.018	0 0 44.2	74.6 40.4	100 25.4 15.3 17.6 5.5	V.Deg.PHC (FCM) 63.1% Pyrogenic HC (FCM) 67.9%	
\$ \$ \$ \$	139-SB-2-4-6 139-SB-2-8-10 139-SB-3-6-8 139-SB-3-8-10	31.1 26.9 26.7 26.9 22.5	<0.78 <0.67 <0.67 <0.67 <0.56	<0.78 <0.67 0.92 <0.67 9.7	<0.78 10.1 1.3 38 13.3	<0.78 10.1 2.2 38 23	<0.16 4.6 1.3 20 3.9	<0.02 0.22 0.28 0.92 0.16	<0.003 0.003 0.018 0.009 0.002	0 0 44.2 0 73.2	74.6 40.4 82.4 21.3	100 25.4 15.3 17.6 5.5 11.7	V.Deg.PHC (FCM) 63.1% Pyrogenic HC (FCM) 67.9% V.Deg.PHC (FCM) 74.5% V.Deg.Gas (FCM) (BO) 68.3%	

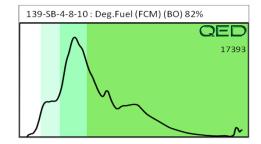

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present


QED Hydrocarbon Fingerprints


Project: 2016.0054.NDOT







10/27/2016

Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

November 03, 2016

Mike Branson Solutions-IES 1101 Nowell Road Raleigh, NC 27607

RE: Project: NCDOT FAYETTVILLE:PARCEL 139 Pace Project No.: 92317871

Dear Mike Branson:

Enclosed are the analytical results for sample(s) received by the laboratory on October 31, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

LGle

Taylor Ezell taylor.ezell@pacelabs.com Project Manager

Enclosures

CERTIFICATIONS

Project: NCDOT FAYETTVILLE:PARCEL 139

Pace Project No.: 92317871

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

SAMPLE ANALYTE COUNT

Project: NCDOT FAYETTVILLE:PARCEL 139

Pace Project No.: 92317871

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92317871001	139-SB-1-8-10	EPA 8260	DLK	70	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92317871002	139-SB-2-4-6	EPA 8260	DLK	70	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92317871003	139-SB-3-6-8	EPA 8260	DLK	70	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92317871004	139-SB-4-8-10	EPA 8260	DLK	70	PASI-C
		ASTM D2974-87	KDF	1	PASI-C

Project: NCDOT FAYETTVILLE:PARCEL 139

Pace Project No.: 92317871

Sample: 139-SB-1-8-10	Lab ID: 923		Collected: 10/27/1				Matrix: Solid	
Results reported on a "dry weight	t" basis and are adj	iusted for p	ercent moisture, sa	mple si	ze and any dil	utions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Mether	nod: EPA 82	60					
Acetone	ND	ug/kg	112	1		11/01/16 16:11	67-64-1	
Benzene	ND	ug/kg	5.6	1		11/01/16 16:11	71-43-2	
Bromobenzene	ND	ug/kg	5.6	1		11/01/16 16:11	108-86-1	
Bromochloromethane	ND	ug/kg	5.6	1		11/01/16 16:11	74-97-5	
Bromodichloromethane	ND	ug/kg	5.6	1		11/01/16 16:11	75-27-4	
Bromoform	ND	ug/kg	5.6	1		11/01/16 16:11	75-25-2	
Bromomethane	ND	ug/kg	11.2	1		11/01/16 16:11	74-83-9	
2-Butanone (MEK)	ND	ug/kg	112	1		11/01/16 16:11		
n-Butylbenzene	ND	ug/kg	5.6	1		11/01/16 16:11		
sec-Butylbenzene	ND	ug/kg	5.6	1		11/01/16 16:11		
tert-Butylbenzene	ND	ug/kg	5.6	1		11/01/16 16:11		
Carbon tetrachloride	ND	ug/kg	5.6	1		11/01/16 16:11		
Chlorobenzene	ND		5.6	1		11/01/16 16:11		
		ug/kg						
Chloroethane	ND	ug/kg	11.2	1		11/01/16 16:11		
Chloroform	ND	ug/kg	5.6	1		11/01/16 16:11		
Chloromethane	ND	ug/kg	11.2	1		11/01/16 16:11		
2-Chlorotoluene	ND	ug/kg	5.6	1		11/01/16 16:11		
4-Chlorotoluene	ND	ug/kg	5.6	1		11/01/16 16:11		
1,2-Dibromo-3-chloropropane	ND	ug/kg	5.6	1		11/01/16 16:11		
Dibromochloromethane	ND	ug/kg	5.6	1		11/01/16 16:11		
1,2-Dibromoethane (EDB)	ND	ug/kg	5.6	1		11/01/16 16:11		
Dibromomethane	ND	ug/kg	5.6	1		11/01/16 16:11	74-95-3	
1,2-Dichlorobenzene	ND	ug/kg	5.6	1		11/01/16 16:11	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	5.6	1		11/01/16 16:11	541-73-1	
1,4-Dichlorobenzene	ND	ug/kg	5.6	1		11/01/16 16:11	106-46-7	
Dichlorodifluoromethane	ND	ug/kg	11.2	1		11/01/16 16:11	75-71-8	
1,1-Dichloroethane	ND	ug/kg	5.6	1		11/01/16 16:11	75-34-3	
1,2-Dichloroethane	ND	ug/kg	5.6	1		11/01/16 16:11	107-06-2	
1,1-Dichloroethene	ND	ug/kg	5.6	1		11/01/16 16:11	75-35-4	
cis-1,2-Dichloroethene	ND	ug/kg	5.6	1		11/01/16 16:11	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	5.6	1		11/01/16 16:11	156-60-5	
1,2-Dichloropropane	ND	ug/kg	5.6	1		11/01/16 16:11		
1,3-Dichloropropane	ND	ug/kg	5.6	1		11/01/16 16:11		
2,2-Dichloropropane	ND	ug/kg	5.6	1		11/01/16 16:11		
1,1-Dichloropropene	ND	ug/kg	5.6	1		11/01/16 16:11		
cis-1,3-Dichloropropene	ND	ug/kg	5.6	1		11/01/16 16:11		
trans-1,3-Dichloropropene	ND	ug/kg	5.6	1		11/01/16 16:11	10061-02-6	
Diisopropyl ether	ND	ug/kg ug/kg	5.6	1		11/01/16 16:11		
Ethylbenzene	ND		5.6	1		11/01/16 16:11		
Hexachloro-1,3-butadiene	ND	ug/kg	5.6	1		11/01/16 16:11		
		ug/kg						
2-Hexanone	ND	ug/kg	55.9	1		11/01/16 16:11		
Isopropylbenzene (Cumene)	ND	ug/kg	5.6	1		11/01/16 16:11		
p-lsopropyltoluene	ND	ug/kg	5.6	1		11/01/16 16:11		
Methylene Chloride	ND	ug/kg	22.4	1		11/01/16 16:11		
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	55.9	1		11/01/16 16:11		
Methyl-tert-butyl ether	ND	ug/kg	5.6	1		11/01/16 16:11	1634-04-4	

Project: NCDOT FAYETTVILLE:PARCEL 139

Pace Project No.: 92317871

Sample: 139-SB-1-8-10	Lab ID: 923	17871001	Collected: 10/27/1	6 14:15	Received: 1	0/31/16 08:52 N	Matrix: Solid	
Results reported on a "dry weight	t" basis and are adj	usted for p	ercent moisture, sa	mple si	ze and any dilu	ıtions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Mether	nod: EPA 82	260					
Naphthalene	ND	ug/kg	5.6	1		11/01/16 16:11	91-20-3	
n-Propylbenzene	ND	ug/kg	5.6	1		11/01/16 16:11	103-65-1	
Styrene	ND	ug/kg	5.6	1		11/01/16 16:11	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	5.6	1		11/01/16 16:11	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	5.6	1		11/01/16 16:11	79-34-5	
Tetrachloroethene	ND	ug/kg	5.6	1		11/01/16 16:11	127-18-4	
Toluene	ND	ug/kg	5.6	1		11/01/16 16:11	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	5.6	1		11/01/16 16:11	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	5.6	1		11/01/16 16:11	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	5.6	1		11/01/16 16:11	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	5.6	1		11/01/16 16:11	79-00-5	
Trichloroethene	ND	ug/kg	5.6	1		11/01/16 16:11	79-01-6	
Trichlorofluoromethane	ND	ug/kg	5.6	1		11/01/16 16:11	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	5.6	1		11/01/16 16:11	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	5.6	1		11/01/16 16:11	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	5.6	1		11/01/16 16:11	108-67-8	
Vinyl acetate	ND	ug/kg	55.9	1		11/01/16 16:11	108-05-4	
Vinyl chloride	ND	ug/kg	11.2	1		11/01/16 16:11	75-01-4	
Xylene (Total)	ND	ug/kg	11.2	1		11/01/16 16:11	1330-20-7	
m&p-Xylene	ND	ug/kg	11.2	1		11/01/16 16:11	179601-23-1	
o-Xylene	ND	ug/kg	5.6	1		11/01/16 16:11	95-47-6	
Surrogates								
Toluene-d8 (S)	102	%	70-130	1		11/01/16 16:11	2037-26-5	
4-Bromofluorobenzene (S)	94	%	70-130	1		11/01/16 16:11	460-00-4	
1,2-Dichloroethane-d4 (S)	123	%	70-132	1		11/01/16 16:11	17060-07-0	
Percent Moisture	Analytical Mether	nod: ASTM	D2974-87					
Percent Moisture	13.5	%	0.10	1		11/01/16 11:49		

Project: NCDOT FAYETTVILLE:PARCEL 139

92317871

Pace Project No .:

Sample: 139-SB-2-4-6	Lab ID: 923		Collected: 10/27/1				Aatrix: Solid	
Results reported on a "dry weight	-	-		-	-			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 826	60					
Acetone	160	ug/kg	137	1		11/01/16 16:30	67-64-1	
Benzene	ND	ug/kg	6.8	1		11/01/16 16:30	71-43-2	
Bromobenzene	ND	ug/kg	6.8	1		11/01/16 16:30	108-86-1	
Bromochloromethane	ND	ug/kg	6.8	1		11/01/16 16:30	74-97-5	
Bromodichloromethane	ND	ug/kg	6.8	1		11/01/16 16:30	75-27-4	
Bromoform	ND	ug/kg	6.8	1		11/01/16 16:30	75-25-2	
Bromomethane	ND	ug/kg	13.7	1		11/01/16 16:30	74-83-9	
2-Butanone (MEK)	ND	ug/kg	137	1		11/01/16 16:30		
n-Butylbenzene	ND	ug/kg	6.8	1		11/01/16 16:30	104-51-8	
sec-Butylbenzene	ND	ug/kg	6.8	1		11/01/16 16:30		
tert-Butylbenzene	ND	ug/kg	6.8	1		11/01/16 16:30		
Carbon tetrachloride	ND	ug/kg	6.8	1		11/01/16 16:30		
Chlorobenzene	ND	ug/kg	6.8	1		11/01/16 16:30		
Chloroethane	ND	ug/kg	13.7	1		11/01/16 16:30		
Chloroform	ND	ug/kg	6.8	1		11/01/16 16:30		
Chloromethane	ND	ug/kg	13.7	1		11/01/16 16:30		
2-Chlorotoluene	ND	ug/kg	6.8	1		11/01/16 16:30		
4-Chlorotoluene	ND	ug/kg	6.8	1		11/01/16 16:30		
1.2-Dibromo-3-chloropropane	ND		6.8	1		11/01/16 16:30		
Dibromochloromethane	ND	ug/kg	6.8	1		11/01/16 16:30		
		ug/kg						
1,2-Dibromoethane (EDB)	ND	ug/kg	6.8	1		11/01/16 16:30		
Dibromomethane	ND	ug/kg	6.8	1		11/01/16 16:30		
1,2-Dichlorobenzene	ND	ug/kg	6.8	1		11/01/16 16:30		
1,3-Dichlorobenzene	ND	ug/kg	6.8	1		11/01/16 16:30		
1,4-Dichlorobenzene	ND	ug/kg	6.8	1		11/01/16 16:30		
Dichlorodifluoromethane	ND	ug/kg	13.7	1		11/01/16 16:30		
1,1-Dichloroethane	ND	ug/kg	6.8	1		11/01/16 16:30		
1,2-Dichloroethane	ND	ug/kg	6.8	1		11/01/16 16:30		
1,1-Dichloroethene	ND	ug/kg	6.8	1		11/01/16 16:30		
cis-1,2-Dichloroethene	ND	ug/kg	6.8	1		11/01/16 16:30		
trans-1,2-Dichloroethene	ND	ug/kg	6.8	1		11/01/16 16:30		
1,2-Dichloropropane	ND	ug/kg	6.8	1		11/01/16 16:30	78-87-5	
1,3-Dichloropropane	ND	ug/kg	6.8	1		11/01/16 16:30	142-28-9	
2,2-Dichloropropane	ND	ug/kg	6.8	1		11/01/16 16:30	594-20-7	
1,1-Dichloropropene	ND	ug/kg	6.8	1		11/01/16 16:30	563-58-6	
cis-1,3-Dichloropropene	ND	ug/kg	6.8	1		11/01/16 16:30	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/kg	6.8	1		11/01/16 16:30	10061-02-6	
Diisopropyl ether	ND	ug/kg	6.8	1		11/01/16 16:30	108-20-3	
Ethylbenzene	ND	ug/kg	6.8	1		11/01/16 16:30	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/kg	6.8	1		11/01/16 16:30	87-68-3	
2-Hexanone	ND	ug/kg	68.4	1		11/01/16 16:30	591-78-6	
Isopropylbenzene (Cumene)	ND	ug/kg	6.8	1		11/01/16 16:30	98-82-8	
p-Isopropyltoluene	ND	ug/kg	6.8	1		11/01/16 16:30		
Methylene Chloride	ND	ug/kg	27.4	1		11/01/16 16:30		
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	68.4	1		11/01/16 16:30		
Methyl-tert-butyl ether	ND	ug/kg	6.8	1		11/01/16 16:30		

Project: NCDOT FAYETTVILLE:PARCEL 139

Pace Project No.: 92317871

Sample: 139-SB-2-4-6	Lab ID: 923	17871002	Collected: 10/27/1	6 14:20	Received: 1	0/31/16 08:52 N	/latrix: Solid	
Results reported on a "dry weight	t" basis and are adj	iusted for p	ercent moisture, sa	mple si	ze and any dilı	itions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 82	260					
Naphthalene	ND	ug/kg	6.8	1		11/01/16 16:30	91-20-3	
n-Propylbenzene	ND	ug/kg	6.8	1		11/01/16 16:30	103-65-1	
Styrene	ND	ug/kg	6.8	1		11/01/16 16:30	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	6.8	1		11/01/16 16:30	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	6.8	1		11/01/16 16:30	79-34-5	
Tetrachloroethene	ND	ug/kg	6.8	1		11/01/16 16:30	127-18-4	
Toluene	ND	ug/kg	6.8	1		11/01/16 16:30	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	6.8	1		11/01/16 16:30	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	6.8	1		11/01/16 16:30	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	6.8	1		11/01/16 16:30	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	6.8	1		11/01/16 16:30	79-00-5	
Trichloroethene	ND	ug/kg	6.8	1		11/01/16 16:30	79-01-6	
Trichlorofluoromethane	ND	ug/kg	6.8	1		11/01/16 16:30	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	6.8	1		11/01/16 16:30	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	6.8	1		11/01/16 16:30	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	6.8	1		11/01/16 16:30	108-67-8	
Vinyl acetate	ND	ug/kg	68.4	1		11/01/16 16:30	108-05-4	
Vinyl chloride	ND	ug/kg	13.7	1		11/01/16 16:30	75-01-4	
Xylene (Total)	ND	ug/kg	13.7	1		11/01/16 16:30	1330-20-7	
m&p-Xylene	ND	ug/kg	13.7	1		11/01/16 16:30	179601-23-1	
o-Xylene	ND	ug/kg	6.8	1		11/01/16 16:30	95-47-6	
Surrogates								
Toluene-d8 (S)	102	%	70-130	1		11/01/16 16:30	2037-26-5	
4-Bromofluorobenzene (S)	94	%	70-130	1		11/01/16 16:30	460-00-4	
1,2-Dichloroethane-d4 (S)	120	%	70-132	1		11/01/16 16:30	17060-07-0	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	14.2	%	0.10	1		11/01/16 11:49		

Project: NCDOT FAYETTVILLE:PARCEL 139

92317871

Pace Project No .:

Sample: 139-SB-3-6-8	Lab ID: 923		Collected: 10/27/1				Aatrix: Solid	
Results reported on a "dry weight	t" basis and are adj	usted for pe	rcent moisture, sa	mple si	ze and any dilı	ıtions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 826	0					
Acetone	129	ug/kg	106	1		11/01/16 16:50	67-64-1	
Benzene	ND	ug/kg	5.3	1		11/01/16 16:50	71-43-2	
Bromobenzene	ND	ug/kg	5.3	1		11/01/16 16:50	108-86-1	
Bromochloromethane	ND	ug/kg	5.3	1		11/01/16 16:50	74-97-5	
Bromodichloromethane	ND	ug/kg	5.3	1		11/01/16 16:50	75-27-4	
Bromoform	ND	ug/kg	5.3	1		11/01/16 16:50	75-25-2	
Bromomethane	ND	ug/kg	10.6	1		11/01/16 16:50	74-83-9	
2-Butanone (MEK)	ND	ug/kg	106	1		11/01/16 16:50	78-93-3	
n-Butylbenzene	ND	ug/kg	5.3	1		11/01/16 16:50	104-51-8	
sec-Butylbenzene	ND	ug/kg	5.3	1		11/01/16 16:50		
ert-Butylbenzene	ND	ug/kg	5.3	1		11/01/16 16:50		
Carbon tetrachloride	ND	ug/kg	5.3	1		11/01/16 16:50		
Chlorobenzene	ND	ug/kg	5.3	1		11/01/16 16:50	108-90-7	
Chloroethane	ND	ug/kg	10.6	1		11/01/16 16:50		
Chloroform	ND	ug/kg	5.3	1		11/01/16 16:50		
Chloromethane	ND	ug/kg	10.6	1		11/01/16 16:50		
2-Chlorotoluene	ND	ug/kg	5.3	1		11/01/16 16:50		
4-Chlorotoluene	ND	ug/kg	5.3	1		11/01/16 16:50		
.2-Dibromo-3-chloropropane	ND	ug/kg	5.3	1		11/01/16 16:50		
Dibromochloromethane	ND	ug/kg	5.3	1		11/01/16 16:50		
1,2-Dibromoethane (EDB)	ND	ug/kg	5.3	1		11/01/16 16:50		
Dibromomethane	ND	ug/kg	5.3	1		11/01/16 16:50		
1,2-Dichlorobenzene	ND	ug/kg	5.3	1		11/01/16 16:50		
1,3-Dichlorobenzene	ND	ug/kg	5.3	1		11/01/16 16:50		
1,4-Dichlorobenzene	ND	ug/kg	5.3	1		11/01/16 16:50		
Dichlorodifluoromethane	ND	ug/kg	10.6	1		11/01/16 16:50		
1,1-Dichloroethane	ND	ug/kg	5.3	1		11/01/16 16:50		
1,2-Dichloroethane	ND	ug/kg	5.3	1		11/01/16 16:50		
1,1-Dichloroethene	ND		5.3	1		11/01/16 16:50		
cis-1,2-Dichloroethene	ND	ug/kg ug/kg	5.3	1		11/01/16 16:50		
rans-1,2-Dichloroethene	ND	ug/kg ug/kg	5.3	1		11/01/16 16:50		
1,2-Dichloropropane	ND		5.3	1		11/01/16 16:50		
	ND	ug/kg	5.3	1		11/01/16 16:50		
1,3-Dichloropropane	ND	ug/kg	5.3	1		11/01/16 16:50		
2,2-Dichloropropane	ND	ug/kg	5.3	1		11/01/16 16:50		
I,1-Dichloropropene	ND	ug/kg	5.3			11/01/16 16:50		
cis-1,3-Dichloropropene		ug/kg		1				
rans-1,3-Dichloropropene	ND	ug/kg	5.3	1		11/01/16 16:50		
Diisopropyl ether	ND	ug/kg	5.3	1		11/01/16 16:50		
Ethylbenzene	ND	ug/kg	5.3	1		11/01/16 16:50		
Hexachloro-1,3-butadiene	ND	ug/kg	5.3	1		11/01/16 16:50		
2-Hexanone	ND	ug/kg	53.2	1		11/01/16 16:50		
sopropylbenzene (Cumene)	ND	ug/kg	5.3	1		11/01/16 16:50		
o-Isopropyltoluene	ND	ug/kg	5.3	1		11/01/16 16:50		
Methylene Chloride	ND	ug/kg	21.3	1		11/01/16 16:50		
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	53.2	1		11/01/16 16:50		
Methyl-tert-butyl ether	ND	ug/kg	5.3	1		11/01/16 16:50	1634-04-4	

Project: NCDOT FAYETTVILLE:PARCEL 139

Pace Project No.: 92317871

Sample: 139-SB-3-6-8	Lab ID: 923	17871003	Collected: 10/27/1	6 14:25	Received: 1	0/31/16 08:52 M	Matrix: Solid	
Results reported on a "dry weight	t" basis and are adj	usted for p	ercent moisture, sa	mple siz	ze and any dilı	ıtions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 82	260					
Naphthalene	ND	ug/kg	5.3	1		11/01/16 16:50	91-20-3	
n-Propylbenzene	ND	ug/kg	5.3	1		11/01/16 16:50	103-65-1	
Styrene	ND	ug/kg	5.3	1		11/01/16 16:50	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	5.3	1		11/01/16 16:50	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	5.3	1		11/01/16 16:50	79-34-5	
Tetrachloroethene	ND	ug/kg	5.3	1		11/01/16 16:50	127-18-4	
Toluene	ND	ug/kg	5.3	1		11/01/16 16:50	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	5.3	1		11/01/16 16:50	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	5.3	1		11/01/16 16:50	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	5.3	1		11/01/16 16:50	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	5.3	1		11/01/16 16:50	79-00-5	
Trichloroethene	ND	ug/kg	5.3	1		11/01/16 16:50	79-01-6	
Trichlorofluoromethane	ND	ug/kg	5.3	1		11/01/16 16:50	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	5.3	1		11/01/16 16:50	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	5.3	1		11/01/16 16:50	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	5.3	1		11/01/16 16:50	108-67-8	
Vinyl acetate	ND	ug/kg	53.2	1		11/01/16 16:50	108-05-4	
Vinyl chloride	ND	ug/kg	10.6	1		11/01/16 16:50	75-01-4	
Xylene (Total)	ND	ug/kg	10.6	1		11/01/16 16:50	1330-20-7	
m&p-Xylene	ND	ug/kg	10.6	1		11/01/16 16:50	179601-23-1	
o-Xylene	ND	ug/kg	5.3	1		11/01/16 16:50	95-47-6	
Surrogates								
Toluene-d8 (S)	101	%	70-130	1		11/01/16 16:50	2037-26-5	
4-Bromofluorobenzene (S)	92	%	70-130	1		11/01/16 16:50	460-00-4	
1,2-Dichloroethane-d4 (S)	123	%	70-132	1		11/01/16 16:50	17060-07-0	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	8.7	%	0.10	1		11/01/16 11:49		

Project: NCDOT FAYETTVILLE:PARCEL 139

92317871

Pace Project No .:

Sample: 139-SB-4-8-10	Lab ID: 923		Collected: 10/27/1				Aatrix: Solid	
Results reported on a "dry weight	" basis and are adj	usted for pe	rcent moisture, sa	mple si	ze and any dilu	ıtions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 826	0					
Acetone	147	ug/kg	121	1		11/01/16 17:10	67-64-1	
Benzene	ND	ug/kg	6.1	1		11/01/16 17:10	71-43-2	
Bromobenzene	ND	ug/kg	6.1	1		11/01/16 17:10	108-86-1	
Bromochloromethane	ND	ug/kg	6.1	1		11/01/16 17:10	74-97-5	
Bromodichloromethane	ND	ug/kg	6.1	1		11/01/16 17:10	75-27-4	
Bromoform	ND	ug/kg	6.1	1		11/01/16 17:10	75-25-2	
Bromomethane	ND	ug/kg	12.1	1		11/01/16 17:10	74-83-9	
2-Butanone (MEK)	ND	ug/kg	121	1		11/01/16 17:10	78-93-3	
n-Butylbenzene	ND	ug/kg	6.1	1		11/01/16 17:10	104-51-8	
sec-Butylbenzene	ND	ug/kg	6.1	1		11/01/16 17:10	135-98-8	
ert-Butylbenzene	ND	ug/kg	6.1	1		11/01/16 17:10	98-06-6	
Carbon tetrachloride	ND	ug/kg	6.1	1		11/01/16 17:10	56-23-5	
Chlorobenzene	ND	ug/kg	6.1	1		11/01/16 17:10	108-90-7	
Chloroethane	ND	ug/kg	12.1	1		11/01/16 17:10		
Chloroform	ND	ug/kg	6.1	1		11/01/16 17:10		
Chloromethane	ND	ug/kg	12.1	1		11/01/16 17:10		
2-Chlorotoluene	ND	ug/kg	6.1	1		11/01/16 17:10		
I-Chlorotoluene	ND	ug/kg	6.1	1		11/01/16 17:10		
1,2-Dibromo-3-chloropropane	ND	ug/kg	6.1	1		11/01/16 17:10		
Dibromochloromethane	ND	ug/kg	6.1	1		11/01/16 17:10		
I,2-Dibromoethane (EDB)	ND	ug/kg	6.1	1		11/01/16 17:10		
Dibromomethane	ND	ug/kg	6.1	1		11/01/16 17:10		
1,2-Dichlorobenzene	ND	ug/kg	6.1	1		11/01/16 17:10		
1,3-Dichlorobenzene	ND	ug/kg	6.1	1		11/01/16 17:10		
1,4-Dichlorobenzene	ND	ug/kg ug/kg	6.1	1		11/01/16 17:10		
Dichlorodifluoromethane	ND	ug/kg	12.1	1		11/01/16 17:10		
	ND		6.1	1		11/01/16 17:10		
I,1-Dichloroethane		ug/kg	6.1	1		11/01/16 17:10		
1,2-Dichloroethane	ND	ug/kg						
I,1-Dichloroethene	ND	ug/kg	6.1	1		11/01/16 17:10 11/01/16 17:10		
cis-1,2-Dichloroethene	ND	ug/kg	6.1	1				
rans-1,2-Dichloroethene	ND	ug/kg	6.1	1		11/01/16 17:10		
I,2-Dichloropropane	ND	ug/kg	6.1	1		11/01/16 17:10		
I,3-Dichloropropane	ND	ug/kg	6.1	1		11/01/16 17:10		
2,2-Dichloropropane	ND	ug/kg	6.1	1		11/01/16 17:10		
1,1-Dichloropropene	ND	ug/kg	6.1	1		11/01/16 17:10		
cis-1,3-Dichloropropene	ND	ug/kg	6.1	1		11/01/16 17:10		
rans-1,3-Dichloropropene	ND	ug/kg	6.1	1		11/01/16 17:10		
Diisopropyl ether	ND	ug/kg	6.1	1		11/01/16 17:10		
Ethylbenzene	ND	ug/kg	6.1	1		11/01/16 17:10		
Hexachloro-1,3-butadiene	ND	ug/kg	6.1	1		11/01/16 17:10		
2-Hexanone	ND	ug/kg	60.7	1		11/01/16 17:10		
sopropylbenzene (Cumene)	ND	ug/kg	6.1	1		11/01/16 17:10	98-82-8	
o-Isopropyltoluene	ND	ug/kg	6.1	1		11/01/16 17:10	99-87-6	
Methylene Chloride	ND	ug/kg	24.3	1		11/01/16 17:10	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	60.7	1		11/01/16 17:10	108-10-1	
Methyl-tert-butyl ether	ND	ug/kg	6.1	1		11/01/16 17:10	1634-04-4	

Project: NCDOT FAYETTVILLE:PARCEL 139

Pace Project No.: 92317871

Sample: 139-SB-4-8-10	Lab ID: 923	17871004	Collected: 10/27/1	6 14:30	Received: 1	0/31/16 08:52 N	/latrix: Solid	
Results reported on a "dry weight	t" basis and are adj	iusted for p	ercent moisture, sa	mple si	ze and any dilu	ıtions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Mether	nod: EPA 82	260					
Naphthalene	ND	ug/kg	6.1	1		11/01/16 17:10	91-20-3	
n-Propylbenzene	ND	ug/kg	6.1	1		11/01/16 17:10	103-65-1	
Styrene	ND	ug/kg	6.1	1		11/01/16 17:10	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	6.1	1		11/01/16 17:10	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	6.1	1		11/01/16 17:10	79-34-5	
Tetrachloroethene	ND	ug/kg	6.1	1		11/01/16 17:10	127-18-4	
Toluene	ND	ug/kg	6.1	1		11/01/16 17:10	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	6.1	1		11/01/16 17:10	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	6.1	1		11/01/16 17:10	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	6.1	1		11/01/16 17:10	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	6.1	1		11/01/16 17:10	79-00-5	
Trichloroethene	ND	ug/kg	6.1	1		11/01/16 17:10	79-01-6	
Trichlorofluoromethane	ND	ug/kg	6.1	1		11/01/16 17:10	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	6.1	1		11/01/16 17:10	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	6.1	1		11/01/16 17:10	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	6.1	1		11/01/16 17:10	108-67-8	
Vinyl acetate	ND	ug/kg	60.7	1		11/01/16 17:10	108-05-4	
Vinyl chloride	ND	ug/kg	12.1	1		11/01/16 17:10	75-01-4	
Xylene (Total)	ND	ug/kg	12.1	1		11/01/16 17:10	1330-20-7	
m&p-Xylene	ND	ug/kg	12.1	1		11/01/16 17:10	179601-23-1	
o-Xylene	ND	ug/kg	6.1	1		11/01/16 17:10	95-47-6	
Surrogates								
Toluene-d8 (S)	100	%	70-130	1		11/01/16 17:10	2037-26-5	
4-Bromofluorobenzene (S)	87	%	70-130	1		11/01/16 17:10	460-00-4	
1,2-Dichloroethane-d4 (S)	124	%	70-132	1		11/01/16 17:10	17060-07-0	
Percent Moisture	Analytical Mether	nod: ASTM	D2974-87					
Percent Moisture	27.1	%	0.10	1		11/01/16 11:49		

EPA 8260

8260 MSV 5035A Volatile Organics

Project: NCDOT FAYETTVILLE:PARCEL 139

EPA 8260

Pace Project No.: 92317871

QC Batch: 335217

QC Batch Method:

Analysis Method: Analysis Description:

Associated Lab Samples: 92317871001, 92317871002, 92317871003, 92317871004

METHOD BLANK: 1858123

Matrix: Solid

Associated Lab Samples:	92317871001, 9231787	1002, 92317871003, 92317871004
-------------------------	----------------------	--------------------------------

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	5.1	11/01/16 11:53	
1,1,1-Trichloroethane	ug/kg	ND	5.1	11/01/16 11:53	
1,1,2,2-Tetrachloroethane	ug/kg	ND	5.1	11/01/16 11:53	
1,1,2-Trichloroethane	ug/kg	ND	5.1	11/01/16 11:53	
1,1-Dichloroethane	ug/kg	ND	5.1	11/01/16 11:53	
1,1-Dichloroethene	ug/kg	ND	5.1	11/01/16 11:53	
1,1-Dichloropropene	ug/kg	ND	5.1	11/01/16 11:53	
1,2,3-Trichlorobenzene	ug/kg	ND	5.1	11/01/16 11:53	
1,2,3-Trichloropropane	ug/kg	ND	5.1	11/01/16 11:53	
1,2,4-Trichlorobenzene	ug/kg	ND	5.1	11/01/16 11:53	
1,2,4-Trimethylbenzene	ug/kg	ND	5.1	11/01/16 11:53	
1,2-Dibromo-3-chloropropane	ug/kg	ND	5.1	11/01/16 11:53	
1,2-Dibromoethane (EDB)	ug/kg	ND	5.1	11/01/16 11:53	
1,2-Dichlorobenzene	ug/kg	ND	5.1	11/01/16 11:53	
1,2-Dichloroethane	ug/kg	ND	5.1	11/01/16 11:53	
1,2-Dichloropropane	ug/kg	ND	5.1	11/01/16 11:53	
1,3,5-Trimethylbenzene	ug/kg	ND	5.1	11/01/16 11:53	
1,3-Dichlorobenzene	ug/kg	ND	5.1	11/01/16 11:53	
1,3-Dichloropropane	ug/kg	ND	5.1	11/01/16 11:53	
1,4-Dichlorobenzene	ug/kg	ND	5.1	11/01/16 11:53	
2,2-Dichloropropane	ug/kg	ND	5.1	11/01/16 11:53	
2-Butanone (MEK)	ug/kg	ND	102	11/01/16 11:53	
2-Chlorotoluene	ug/kg	ND	5.1	11/01/16 11:53	
2-Hexanone	ug/kg	ND	51.1	11/01/16 11:53	
4-Chlorotoluene	ug/kg	ND	5.1	11/01/16 11:53	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	51.1	11/01/16 11:53	
Acetone	ug/kg	ND	102	11/01/16 11:53	
Benzene	ug/kg	ND	5.1	11/01/16 11:53	
Bromobenzene	ug/kg	ND	5.1	11/01/16 11:53	
Bromochloromethane	ug/kg	ND	5.1	11/01/16 11:53	
Bromodichloromethane	ug/kg	ND	5.1	11/01/16 11:53	
Bromoform	ug/kg	ND	5.1	11/01/16 11:53	
Bromomethane	ug/kg	ND	10.2	11/01/16 11:53	
Carbon tetrachloride	ug/kg	ND	5.1	11/01/16 11:53	
Chlorobenzene	ug/kg	ND	5.1	11/01/16 11:53	
Chloroethane	ug/kg	ND	10.2	11/01/16 11:53	
Chloroform	ug/kg	ND	5.1	11/01/16 11:53	
Chloromethane	ug/kg	ND	10.2	11/01/16 11:53	
cis-1,2-Dichloroethene	ug/kg	ND	5.1	11/01/16 11:53	
cis-1,3-Dichloropropene	ug/kg	ND	5.1	11/01/16 11:53	
Dibromochloromethane	ug/kg	ND	5.1	11/01/16 11:53	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NCDOT FAYETTVILLE:PARCEL 139

Pace Project No.: 92317871

METHOD BLANK: 1858123 Matrix: Solid Associated Lab Samples: 92317871001, 92317871002, 92317871003, 92317871004 Plank Poportion

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Dibromomethane	ug/kg	ND	5.1	11/01/16 11:53	
Dichlorodifluoromethane	ug/kg	ND	10.2	11/01/16 11:53	
Diisopropyl ether	ug/kg	ND	5.1	11/01/16 11:53	
Ethylbenzene	ug/kg	ND	5.1	11/01/16 11:53	
Hexachloro-1,3-butadiene	ug/kg	ND	5.1	11/01/16 11:53	
Isopropylbenzene (Cumene)	ug/kg	ND	5.1	11/01/16 11:53	
m&p-Xylene	ug/kg	ND	10.2	11/01/16 11:53	
Methyl-tert-butyl ether	ug/kg	ND	5.1	11/01/16 11:53	
Methylene Chloride	ug/kg	ND	20.4	11/01/16 11:53	
n-Butylbenzene	ug/kg	ND	5.1	11/01/16 11:53	
n-Propylbenzene	ug/kg	ND	5.1	11/01/16 11:53	
Naphthalene	ug/kg	ND	5.1	11/01/16 11:53	
o-Xylene	ug/kg	ND	5.1	11/01/16 11:53	
p-Isopropyltoluene	ug/kg	ND	5.1	11/01/16 11:53	
sec-Butylbenzene	ug/kg	ND	5.1	11/01/16 11:53	
Styrene	ug/kg	ND	5.1	11/01/16 11:53	
tert-Butylbenzene	ug/kg	ND	5.1	11/01/16 11:53	
Tetrachloroethene	ug/kg	ND	5.1	11/01/16 11:53	
Toluene	ug/kg	ND	5.1	11/01/16 11:53	
trans-1,2-Dichloroethene	ug/kg	ND	5.1	11/01/16 11:53	
trans-1,3-Dichloropropene	ug/kg	ND	5.1	11/01/16 11:53	
Trichloroethene	ug/kg	ND	5.1	11/01/16 11:53	
Trichlorofluoromethane	ug/kg	ND	5.1	11/01/16 11:53	
Vinyl acetate	ug/kg	ND	51.1	11/01/16 11:53	
Vinyl chloride	ug/kg	ND	10.2	11/01/16 11:53	
Xylene (Total)	ug/kg	ND	10.2	11/01/16 11:53	
1,2-Dichloroethane-d4 (S)	%	125	70-132	11/01/16 11:53	
4-Bromofluorobenzene (S)	%	95	70-130	11/01/16 11:53	
Toluene-d8 (S)	%	102	70-130	11/01/16 11:53	

LABORATORY CONTROL SAMPLE: 1858124

1,1-Trichloroethane 1,2,2-Tetrachloroethane	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
				/01/00		Quanners
1,1,1,2-Tetrachloroethane	ug/kg	54.2	59.3	109	74-137	
1,1,1-Trichloroethane	ug/kg	54.2	60.8	112	67-140	
1,1,2,2-Tetrachloroethane	ug/kg	54.2	59.6	110	72-141	
1,1,2-Trichloroethane	ug/kg	54.2	63.7	117	78-138	
1,1-Dichloroethane	ug/kg	54.2	61.4	113	69-134	
1,1-Dichloroethene	ug/kg	54.2	62.2	115	67-138	
1,1-Dichloropropene	ug/kg	54.2	59.5	110	69-139	
1,2,3-Trichlorobenzene	ug/kg	54.2	63.7	118	70-146	
1,2,3-Trichloropropane	ug/kg	54.2	66.4	122	69-144	
1,2,4-Trichlorobenzene	ug/kg	54.2	60.1	111	68-148	
1,2,4-Trimethylbenzene	ug/kg	54.2	59.8	110	74-137	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: NCDOT FAYETTVILLE:PARCEL 139

Pace Project No.: 92317871

LABORATORY CONTROL SAMPLE: 1858124

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2-Dibromo-3-chloropropane	ug/kg	54.2	69.7	129	65-140	
1,2-Dibromoethane (EDB)	ug/kg	54.2	63.8	118	77-135	
1,2-Dichlorobenzene	ug/kg	54.2	62.6	115	77-141	
1,2-Dichloroethane	ug/kg	54.2	65.5	121	65-137	
1,2-Dichloropropane	ug/kg	54.2	59.8	110	72-136	
1,3,5-Trimethylbenzene	ug/kg	54.2	58.5	108	76-133	
1,3-Dichlorobenzene	ug/kg	54.2	60.2	111	74-138	
1,3-Dichloropropane	ug/kg	54.2	60.7	112	71-139	
1,4-Dichlorobenzene	ug/kg	54.2	59.8	110	76-138	
2,2-Dichloropropane	ug/kg	54.2	63.0	116	68-137	
2-Butanone (MEK)	ug/kg	108	138	127	58-147	
2-Chlorotoluene	ug/kg	54.2	61.1	113	73-139	
2-Hexanone	ug/kg	108	140	129	62-145	
4-Chlorotoluene	ug/kg	54.2	59.7	110	76-141	
4-Methyl-2-pentanone (MIBK)	ug/kg	108	146	135	64-149	
Acetone	ug/kg	108	150	138	53-153	
Benzene	ug/kg	54.2	61.3	113	73-135	
Bromobenzene	ug/kg	54.2	61.5	113	75-133	
Bromochloromethane	ug/kg	54.2	67.2	124	73-134	
Bromodichloromethane	ug/kg	54.2	64.1	118	71-135	
Bromoform	ug/kg	54.2	61.7	114	66-141	
Bromomethane	ug/kg	54.2	63.2	116	53-160	
Carbon tetrachloride	ug/kg	54.2	59.1	109	60-145	
Chlorobenzene	ug/kg	54.2	58.0	107	78-130	
Chloroethane	ug/kg	54.2	62.4	115	64-149	
Chloroform	ug/kg	54.2	63.4	117	70-134	
Chloromethane	ug/kg	54.2	65.4	121	52-150	
cis-1,2-Dichloroethene	ug/kg	54.2	67.2	124	70-133	
cis-1,3-Dichloropropene	ug/kg	54.2	61.6	114	68-134	
Dibromochloromethane	ug/kg	54.2	64.8	120	71-138	
Dibromomethane	ug/kg	54.2	61.8	114	74-130	
Dichlorodifluoromethane	ug/kg	54.2	65.0	120	40-160	
Diisopropyl ether	ug/kg	54.2	67.5	124	69-141	
Ethylbenzene	ug/kg	54.2	58.1	107	75-133	
Hexachloro-1,3-butadiene	ug/kg	54.2	56.2	107	68-143	
Isopropylbenzene (Cumene)	ug/kg	54.2	58.2	107	76-143	
m&p-Xylene	ug/kg	108	119	110	75-136	
Methyl-tert-butyl ether	ug/kg	54.2	66.5	123	68-144	
Methylene Chloride	ug/kg	54.2	68.5	126	45-154	
n-Butylbenzene	ug/kg	54.2	59.0	109	72-137	
n-Propylbenzene	ug/kg	54.2	58.5	108	76-136	
Naphthalene	ug/kg	54.2	67.0	124	68-151	
o-Xylene	ug/kg	54.2	59.2	109	76-141	
p-Isopropyltoluene	ug/kg	54.2	58.2	107	76-140	
sec-Butylbenzene	ug/kg	54.2	58.5	108	79-139	
Styrene	ug/kg	54.2	59.3	109	79-137	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: NCDOT FAYETTVILLE:PARCEL 139

Pace Project No.: 92317871

LABORATORY CONTROL SAMPLE: 1858124

		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Fetrachloroethene	ug/kg	54.2	49.5	91	71-138		
oluene	ug/kg	54.2	59.8	110	74-131		
ans-1,2-Dichloroethene	ug/kg	54.2	61.3	113	67-135		
ans-1,3-Dichloropropene	ug/kg	54.2	62.8	116	65-146		
chloroethene	ug/kg	54.2	61.2	113	67-135		
chlorofluoromethane	ug/kg	54.2	63.4	117	59-144		
yl acetate	ug/kg	108	103	95	40-160		
/l chloride	ug/kg	54.2	59.0	109	56-141		
ene (Total)	ug/kg	163	178	110	76-137		
-Dichloroethane-d4 (S)	%			118	70-132		
Bromofluorobenzene (S)	%			98	70-130		
uene-d8 (S)	%			101	70-130		

MATRIX SPIKE SAMPLE:	1858924						
		92317912001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	18.6	15.8	85	70-130	
1,1,1-Trichloroethane	ug/kg	ND	18.6	18.1	98	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	ND	18.6	16.9	91	70-130	
1,1,2-Trichloroethane	ug/kg	ND	18.6	17.4	94	70-130	
1,1-Dichloroethane	ug/kg	ND	18.6	18.7	101	70-130	
1,1-Dichloroethene	ug/kg	ND	18.6	19.5	105	49-180	
1,1-Dichloropropene	ug/kg	ND	18.6	18.0	97	70-130	
1,2,3-Trichlorobenzene	ug/kg	ND	18.6	14.4	78	70-130	
1,2,3-Trichloropropane	ug/kg	ND	18.6	18.0	97	70-130	
1,2,4-Trichlorobenzene	ug/kg	ND	18.6	14.2	77	70-130	
1,2,4-Trimethylbenzene	ug/kg	ND	18.6	17.8	96	70-130	
1,2-Dibromo-3-chloropropane	ug/kg	ND	18.6	15.2	82	70-130	
1,2-Dibromoethane (EDB)	ug/kg	ND	18.6	17.9	97	70-130	
1,2-Dichlorobenzene	ug/kg	ND	18.6	17.3	93	70-130	
1,2-Dichloroethane	ug/kg	ND	18.6	19.5	105	70-130	
1,2-Dichloropropane	ug/kg	ND	18.6	17.1	92	70-130	
1,3,5-Trimethylbenzene	ug/kg	ND	18.6	17.8	96	70-130	
1,3-Dichlorobenzene	ug/kg	ND	18.6	16.5	89	70-130	
1,3-Dichloropropane	ug/kg	ND	18.6	17.0	92	70-130	
1,4-Dichlorobenzene	ug/kg	ND	18.6	16.5	89	70-130	
2,2-Dichloropropane	ug/kg	ND	18.6	18.3	99	70-130	
2-Butanone (MEK)	ug/kg	ND	37.1	38.2J	103	70-130	
2-Chlorotoluene	ug/kg	ND	18.6	16.5	89	70-130	
2-Hexanone	ug/kg	ND	37.1	32.1J	86	70-130	
4-Chlorotoluene	ug/kg	ND	18.6	17.4	94	70-130	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	37.1	36.6J	99	70-130	
Acetone	ug/kg	ND	37.1	40.4J	109	70-130	
Benzene	ug/kg	ND	18.6	18.5	100	50-166	
Bromobenzene	ug/kg	ND	18.6	18.0	97	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: NCDOT FAYETTVILLE:PARCEL 139

Pace Project No.: 92317871

MATRIX SPIKE SAMPLE:	1858924						
		92317912001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromochloromethane	ug/kg	ND	18.6	19.5	105	70-130	
Bromodichloromethane	ug/kg	ND	18.6	17.8	96	70-130	
Bromoform	ug/kg	ND	18.6	14.1	76	70-130	
Bromomethane	ug/kg	ND	18.6	17.1	92	70-130	
Carbon tetrachloride	ug/kg	ND	18.6	17.0	92	70-130	
Chlorobenzene	ug/kg	ND	18.6	17.2	93	43-169	
Chloroethane	ug/kg	ND	18.6	20.4	110	70-130	
Chloroform	ug/kg	ND	18.6	18.8	102	70-130	
Chloromethane	ug/kg	ND	18.6	19.5	105	70-130	
cis-1,2-Dichloroethene	ug/kg	ND	18.6	18.3	99	70-130	
cis-1,3-Dichloropropene	ug/kg	ND	18.6	16.5	89	70-130	
Dibromochloromethane	ug/kg	ND	18.6	16.6	90	70-130	
Dibromomethane	ug/kg	ND	18.6	18.1	97	70-130	
Dichlorodifluoromethane	ug/kg	ND	18.6	21.2	114	70-130	
Diisopropyl ether	ug/kg	ND	18.6	20.3	109	70-130	
Ethylbenzene	ug/kg	ND	18.6	18.0	97	70-130	
Hexachloro-1,3-butadiene	ug/kg	ND	18.6	14.1	76	70-130	
sopropylbenzene (Cumene)	ug/kg	ND	18.6	17.8	96	70-130	
m&p-Xylene	ug/kg	ND	37.1	36.2	98	70-130	
Methyl-tert-butyl ether	ug/kg	ND	18.6	20.0	108	70-130	
Methylene Chloride	ug/kg	ND	18.6	23.6	69	70-130 M1	
n-Butylbenzene	ug/kg	ND	18.6	17.3	93	70-130	
n-Propylbenzene	ug/kg	ND	18.6	18.4	99	70-130	
Naphthalene	ug/kg	ND	18.6	16.4	88	70-130	
o-Xylene	ug/kg	ND	18.6	17.7	95	70-130	
o-Isopropyltoluene	ug/kg	ND	18.6	17.4	94	70-130	
sec-Butylbenzene	ug/kg	ND	18.6	18.2	98	70-130	
Styrene	ug/kg	ND	18.6	17.3	93	70-130	
ert-Butylbenzene	ug/kg	ND	18.6	16.3	88	70-130	
Tetrachloroethene	ug/kg	ND	18.6	14.9	81	70-130	
Toluene	ug/kg	ND	18.6	18.4	99	52-163	
rans-1,2-Dichloroethene	ug/kg	ND	18.6	19.4	104	70-130	
rans-1,3-Dichloropropene	ug/kg	ND	18.6	15.9	86	70-130	
Frichloroethene	ug/kg	ND	18.6	16.9	91	49-167	
Frichlorofluoromethane	ug/kg	ND	18.6	20.9	113	70-130	
/inyl acetate	ug/kg	ND	37.1	20.9J	56	70-130 M1	
/inyl chloride	ug/kg	ND	18.6	18.9	102	70-130	
1,2-Dichloroethane-d4 (S)	%				114	70-132	
4-Bromofluorobenzene (S)	%				98	70-130	
Toluene-d8 (S)	%				100	70-130	

SAMPLE DUPLICATE: 1858923

		92317874002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	ND		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

_

Project: NCDOT FAYETTVILLE:PARCEL 139

Pace Project No.: 92317871

SAMPLE DUPLICATE: 1858923

		92317874002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1-Trichloroethane	ug/kg	ND	ND		
1,1,2,2-Tetrachloroethane	ug/kg	ND	ND		
1,1,2-Trichloroethane	ug/kg	ND	ND		
1,1-Dichloroethane	ug/kg	ND	ND		
1,1-Dichloroethene	ug/kg	ND	ND		
1,1-Dichloropropene	ug/kg	ND	ND		
1,2,3-Trichlorobenzene	ug/kg	ND	ND		
1,2,3-Trichloropropane	ug/kg	ND	ND		
1,2,4-Trichlorobenzene	ug/kg	ND	ND		
1,2,4-Trimethylbenzene	ug/kg	ND	ND		
1,2-Dibromo-3-chloropropane	ug/kg	ND	ND		
1,2-Dibromoethane (EDB)	ug/kg	ND	ND		
1,2-Dichlorobenzene	ug/kg	ND	ND		
1,2-Dichloroethane	ug/kg	ND	ND		
1,2-Dichloropropane	ug/kg	ND	ND		
1,3,5-Trimethylbenzene	ug/kg	ND	ND		
1,3-Dichlorobenzene	ug/kg	ND	ND		
1,3-Dichloropropane	ug/kg	ND	ND		
1,4-Dichlorobenzene	ug/kg	ND	ND		
2,2-Dichloropropane	ug/kg	ND	ND		
2-Butanone (MEK)	ug/kg	ND	ND		
2-Chlorotoluene	ug/kg	ND	ND		
2-Hexanone	ug/kg	ND	ND		
4-Chlorotoluene	ug/kg	ND	ND		
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	ND		
Acetone	ug/kg	ND	ND		
Benzene	ug/kg	ND	ND		
Bromobenzene	ug/kg	ND	ND		
Bromochloromethane	ug/kg	ND	ND		
Bromodichloromethane	ug/kg	ND	ND		
Bromoform	ug/kg	ND	ND		
Bromomethane	ug/kg	ND	ND		
Carbon tetrachloride	ug/kg	ND	ND		
Chlorobenzene		ND	ND		
Chloroethane	ug/kg ug/kg	ND	ND		
Chloroform		ND	ND		
	ug/kg	ND			
Chloromethane	ug/kg	ND	ND		
cis-1,2-Dichloroethene	ug/kg	ND	ND		
cis-1,3-Dichloropropene	ug/kg	ND	ND		
Dibromochloromethane	ug/kg	ND	ND		
Dibromomethane	ug/kg		ND		
Dichlorodifluoromethane	ug/kg	ND	ND		
Diisopropyl ether	ug/kg	ND	ND		
Ethylbenzene	ug/kg	ND	ND		
Hexachloro-1,3-butadiene	ug/kg	ND	ND		
Isopropylbenzene (Cumene)	ug/kg	ND	ND		
m&p-Xylene	ug/kg	ND	ND		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

_

Project: NCDOT FAYETTVILLE:PARCEL 139

Pace Project No.: 92317871

SAMPLE DUPLICATE: 1858923

		92317874002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Methyl-tert-butyl ether	ug/kg	ND	ND		
Methylene Chloride	ug/kg	ND	ND		
n-Butylbenzene	ug/kg	ND	ND		
n-Propylbenzene	ug/kg	ND	ND		
Naphthalene	ug/kg	ND	ND		
o-Xylene	ug/kg	ND	ND		
p-Isopropyltoluene	ug/kg	ND	ND		
sec-Butylbenzene	ug/kg	ND	ND		
Styrene	ug/kg	ND	ND		
tert-Butylbenzene	ug/kg	ND	ND		
Tetrachloroethene	ug/kg	ND	ND		
Toluene	ug/kg	ND	ND		
trans-1,2-Dichloroethene	ug/kg	ND	ND		
trans-1,3-Dichloropropene	ug/kg	ND	ND		
Trichloroethene	ug/kg	ND	ND		
Trichlorofluoromethane	ug/kg	ND	ND		
Vinyl acetate	ug/kg	ND	ND		
Vinyl chloride	ug/kg	ND	ND		
Xylene (Total)	ug/kg	ND	ND		
1,2-Dichloroethane-d4 (S)	%	117	110	26	6
4-Bromofluorobenzene (S)	%	96	95	20)
Toluene-d8 (S)	%	103	101	22	2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	NCDOT FAYETTV	ILLE:PARCEL 139	1			
Pace Project No.:	92317871					
QC Batch:	335136		Analysis Meth	od:	ASTM D2974-8	37
QC Batch Method:	ASTM D2974-87		Analysis Desc	ription:	Dry Weight/Per	rcent Moisture
Associated Lab Sar	mples: 92317871	001, 92317871002	, 92317871003, 92	317871004		
SAMPLE DUPLICA	TE: 1857839					
			92317879001	Dup		
Parar	neter	Units	Result	Result	RPD	Qualifiers
Percent Moisture		%	14.4	15	2	5
Percent Moisture SAMPLE DUPLICA	TE: 1857840	%	14.4	15	2	5
	TE: 1857840	%	92317874003	15 Dup	2	5
		% Units			2 RPD	5 Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: NCDOT FAYETTVILLE:PARCEL 139

Pace Project No.: 92317871

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-C Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: NCDOT FAYETTVILLE:PARCEL 139

Pace Project No.: 92317871

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92317871001	139-SB-1-8-10	EPA 8260	335217		·
92317871002	139-SB-2-4-6	EPA 8260	335217		
92317871003	139-SB-3-6-8	EPA 8260	335217		
92317871004	139-SB-4-8-10	EPA 8260	335217		
92317871001	139-SB-1-8-10	ASTM D2974-87	335136		
92317871002	139-SB-2-4-6	ASTM D2974-87	335136		
92317871003	139-SB-3-6-8	ASTM D2974-87	335136		
92317871004	139-SB-4-8-10	ASTM D2974-87	335136		

57		D Sample Cond	ocument Na		UR)	Document Revised Page 1		16
Pace A	nalytical [°]		Document N			Issuing Au		
		F-C/	AR-CS-033-R	ev.01		Pace Qual	ty Office	
Laboratory receiving sa Asheville	mples: Eden	Greenwoo	d 🗌	Hunte	ersville	Raleigh	D Me	echanicsville 🗌
Sample Condition Upon Receipt	Client Name:	Solution	y _	È ES	Project #:	WO#:9		871
Courier:	Fed Ex	UPS UUS		Cli	ent	92317871	0) W (00 W)0	
Custody Seal Present?	Yes XNo	Seals Intact?	Yes	[Х]No	L	Date/Initials Person	Examining Con	tents: <u><u><u>P</u>10Bi</u>]16</u>
Packing Material:	Bubble Wrap	Bubble Bags			Other:			
IR Gun ID:	<u>T1505</u> Cooler Temp Correc	Type o	() () ()	Wet 🔲 B		one Samp cal Tissue Frozen?		ng process has begun
Temp should be above freezing			40		BIOIOBI			
USDA Regulated Soil (A, water sample)	e United States: C	4, NY, or SC (check maps)? Did sa includ	mples originate from ing Hawaii and Puerto Comments/Dis	Rico)? 🗌 Yes	e (internationally, XNo
Chain of Custody Present?		V Yes]N/A 1.		E.		
Samples Arrived within Hold Tin	ne?	X Yes]N/A 2.				
Short Hold Time Analysis (<72 h	nr.)?	X Yes]N/A 3.	I			
Rush Turn Around Time Reques	sted?	/ Ves]N/A 4.	1			
Sufficient Volume?		¥ Yes]N/A 5.				
Correct Containers Used?		∐ y Yes]N/A 6.				
-Pace Containers Used?		Yes	No []N/A				
Containers Intact?		Yes	No []N/A 7.		7		
Samples Field Filtered?		Yes	X No]N/A 8.	Note if sed	iment is visible in the	e dissolved con	tainer
Sample Labels Match COC?		Yes]N/A 9.				
-Includes Date/Time/ID/Anal	ysis Matrix: <u> </u>	cnl.				ð		
Headspace in VOA Vials (>5-6mi	m)?	Yes	No []N/A 10.				
Trip Blank Present?		Yes	🕅 No 🗌]N/A 11.	120 10			
Trip Blank Custody Seals Presen		☐ Yes	X No]N/A		-		
CLIENT NOTI	FICATION/RESOLUTIO	N				Field D	ata Required?	□Yes □No
Person Contacted:					Date/Time	:		
Comments/Sample Discrepancy:								
Discrepancy.					-			
_					-	•		
-					3			
-					۰۰ 	1	7	
Project Manager SCURF	Review:	Č			D	The $10/31$	16	
Project Manager SRF Re	view:	ć			D	ate: 10/31	16	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers)

r	-42	544	1	Pa	ceAl	nalyti	ical®		-	Sa	Sample Condition Upon Receipt(SCUR) Document No.:							-+				Page Jing A					-	
												F-C/	AR-CS		Rev.0	1								Office				
	heck											inati	on			Pro	ject	Ĩ.	In	# •	92	23	1 '	79	7			
	erifi					e aco	cepta	ance	ran	ge fo	or										3	desce lierte		e de la companya de la				
	serv									127 11									1: F					Dat	e: 1	1/0	9/1	6
	Botto	om h	ialt d	01.00	X IS	to lis	st nu	Imbe	er of	bott	les							CI	_IEN	IT: !	92-S	OLU.	TION	S				
								l i		[<u> </u>	1		1		1				1				
	Unpreserved (N/A) (CI-)	3	2		-		& NaOH (>9)	E)	erved	(-t)		y) (ci			V)(CI-										6			
	(N/A	Unpreserved (N/A)	Unpreserved (N/A)	(A)	t) (ch	-	NaO	2) (C	bres	(A/N		//N)		5)	4/N)		2 			2	N/A)	ab)	lab)		3-9.7		(¥	
	rved	rved	rved	ed (N	H < 2	H < 2		H > 1	L C	/ed (I	2)	erved	H < 2)	оН < 2)	IH4CI		(A)		. (//N)	s kit ((A - I	- A/		9 (9		(N)	
	orese	orese	orese	eserv	04 (p	03 (p	ceta	d) H	ass ja	esen	> Hd	prese	4 (pł	04 (ber N	(A))3 (N	(A)	(N/A	35 kit	4/Ga:	ic (N	tic (h		2)250		vials	
				Jupr	H2S	HNG	ZN A	NaO	ed Gl	Unpr	HCI (r Un	H2SO	r H2S	LAm	N)	2520	N) du	3PO4	t)-50	łd/?-(Plast	Plas		HN)		ation	
	BP4U-125 mL Plastic	BP3U-250 mL Plastic	BP2U-500 mL Plastic	BP1U-1 liter Plastic Unpreserved (N/A)	BP3S-250 mL Plastic H2SO4 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP32-250 mL Plastic ZN Acetate	BP3C-250 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCI (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (Cl-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-2PH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	mL Sterile Plastic (N/A – lab)	10-004	BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)		VSGU-20 mL Scintiliation vials (N/A)	
	mLP	mLP	mLP	er Pla	mLP	mLp	mLP	mLP	de-m	er An	er An	mL /	er An	mLA	IA)-2	אר ענ	יר עכ	שך ענ	nL VC	ials p	als p	mL St	mLS		mLP		nL Sc	
	-125	-250	-500	-1 lite	-250	-250	-250	-250	i-Mi	-1 lit	⊢1 lít	-250	-1 lite	-250	(DG3	-40 r	40 m	-40 r	-40 n	(6 v	(3 vi	125	250		-250	ainer	-20 r	
ltem#	BP4U	BP3U	3P2U	SP1U	BP3S-	BP3N	3P3Z-	3P3C	NGFL	AG1U	AG1H	AG3U	AG15	AG3S-	AG3A	H6D0	/G9T-	/69/	0G9D	/OAK	//GK	SP5T-	SP2T-250		3P3A	Cubitainer	vsgu	ND
-	$\overline{}$			_	$\overline{\ }$	$\overline{)}$					$\overline{\langle}$		$\overline{\langle}$				-	-		6					$\overline{\ }$		-	
- 11						\sim							\sim	$ \rightarrow $					•	Ø				$ \rightarrow $				
	\backslash	30 											$ \geq $		$\left \right\rangle$	8				6	-				$ \setminus $			
:	\backslash				\backslash	\backslash	\backslash	\backslash			/		\backslash	\sum	\sum				-	6				\backslash	X			
125	\setminus				\backslash	\setminus	\setminus	\backslash			\backslash		\backslash	\setminus	\backslash				а 	6				\setminus	\setminus			
	\backslash				\square	\angle	$\overline{\ }$	\backslash			$\overline{\ }$		$\overline{\ }$	\sum	\backslash									\backslash	\backslash			
-	$\overline{)}$				$\overline{)}$	$\overline{)}$	$\overline{)}$	$\overline{)}$			\subset		$\overline{\ }$	$\overline{\ }$	$\overline{)}$									$\overline{)}$	$\overline{)}$			
	$\overline{)}$				$\overline{)}$	$\overline{}$	$\overline{}$				$\overline{}$		$\overline{}$	$\overline{}$										$\overline{)}$	$\overline{)}$			
_						\rightarrow	\rightarrow				$\overline{-}$		\sim	$ \frown $	$ \rightarrow $									$\left(\right)$				
	\backslash						$ \ge $						$ \geq $	$ \geq $										\backslash	\backslash			
	\backslash				\sum	\sum	\sum	\sum			\sum		\sum	\sum	\mathbf{n}				1					\backslash	\backslash			
.0	\backslash				\setminus	\backslash	\setminus	\backslash			\backslash		\setminus	\backslash	\backslash		1							\backslash	\backslash			
1	\backslash				\backslash	\langle	\backslash	\backslash			\langle			\backslash	\backslash									\backslash				
2	$\left\langle \right\rangle$				$\overline{)}$	$\overline{\ }$	$\overline{)}$	$\overline{)}$			$\overline{)}$		$\overline{)}$	$\overline{)}$	\sum			0	· · ·					\backslash	\backslash			
	N				V							1	N	N														

	pH Adjustment Log for Preserved Samples											
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #						

ŵ.

		1
	5	0
	D.	1
	B	
	в	
WW	P	
ww.pacelabs.i	7	
ace	12	
lab	Z	
IS.C	5	
com	à	

CHAIN-OF-CUSTODY / Analytical Request Document

			[12	1	10	9	œ	7	ი	UI	4	ω	N		-	ITEM #			Req	Phor	Ema		Addr	Com	Sec Requ															
*Important Note: By signing this form								ADDITIONAL COMMENTS									139-58-4-8-10	a.n.c.gc-191	25-2-4-4	20	129-1-2-16	SAMPLE ID (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE	Section D Required Client Information		Requested Due Date/TAT:	Phone: 19.8.73. OCC Fax:	2105 Nrc	(i)	Address: (01 NEWELL RD	Company:	Section A Required Client Information:	Pace Analytical www.pacelabs.com														
ORIGINAL m you are accepting Pace's NET 3				70) water (+				Ð	Unrinking Water Waster Solitikolid Oli Oli Oli Oli Oli Oli Solitikolid Oli Oli Solitikolid Oli Solitikolid Solitikolid Solitikolid Solitikolid Oli Oli Solitikolid Solitikolid Solitikolid Solitikolid Solitikolid Oli Oli Solitikolid Sol	DE		Project Number:	Project Name:	Purchase Order No.:		Copy To:	Report To: 加度を	Section B Required Project Information:																	
0 day payment terms and agreeing	SAMPLER	SAMPLER NAME AND SIGNATURE	SAMPLER NAME AND SIGNATURE		the law		G. Mund /SH	RELINQUISHED BY / AFFILIATION									5					SAMPLE TYPE (G=GRAB C=C START TIME	COLLECTED		Zolk.0054. NDOT	NODET FANGTEVILLE:	No.:			E BRANSEN	ct Information:															
b late charges of 1.5% per month for	SAMUEL INCLATINE Adduct Co. U.C.			R NAME AND SIGNATURE	R NAME AND SIGNATURE	R NAME AND SIGNATURE	NAME AND SIGNATURE	NAME AND SIGNATURE	NAME AND SIGNATURE	R NAME AND SIGNATURE	01010	~	E)	ES Lobort	DATE									1430	1465			balin inter	DATE ENDIGRAB		-	Pa	PHRCE1 131	P: R	A	0	A	N	The Chain-of-Custody is a Li							
or any invoices not paid within 30 days.									500 00 Pm		0	TIME ACCEF									6 X	V Y	C X T	+	X X	# OF CONTAINERS Unpreserved H ₂ SO ₄ HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol	Preservatives		Pace Profile #:	THULCE EZ	Pace Quote Reference:	Address:	Company Name:	T WBS:	Section C Invoice Information:	The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.										
V	DATE Signed				alo Bill	2) Paur	Inh Pace	ACCEPTED BY / AFFILIATION									XX	X	XT	<	XX	Other X 420 NAHS04 Analysis Test VOCS 8240	Y/ N J	Requested		ELL			R	39049.1.1		nt fields must be completed a														
	0/21/2010			Alle	1	6	[03] K (DATE																Analysis Filtered	STATE:	Site Location	UST	NPDES	REGULATORY AGENCY			iccurately.														
F-/	Ter	mp in	°C		Irm wil	11ad	08SZ	TIME																I (Y/N)	NC		RCRA	GROUND WATER	AGENCY		Page:															
ALL-Q-020rev.0	Rec	eived e (Y/N	on		ج ا	-	4	SAMPL									SUC		20	105	1/ 4/	Residual Chlorine (Y/N)	TANK TO				٦	NATER		002	C C															
-May-2007	Seale	ustod ed Cc (Y/N) ples li (Y/N)	oler		Х S		XNX	SAMPLE CONDITIONS														923 17 97 1 Pace Project No./ Lab I.D.					OTHER	DRINKING WATER		TENC	001															
																						P.									Pag	e 24 of 2														

,

December 12, 2016

Mr. Terry Fox, L.G. North Carolina Department of Transportation Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Reference: Preliminary Site Assessment Joseph Molgora Property (Parcel #140) 6002 Raeford Road Fayetteville, Cumberland County, North Carolina State Project: U-4405 WBS Element 39049.1.1 SIES Project No. 2016.0054.NDOT

Dear Mr. Fox:

Solutions-IES, Inc., (SIES) has completed the Preliminary Site Assessment conducted at the abovereferenced property. The work was performed in accordance with the Technical and Cost proposal dated September 26, 2016, and the North Carolina Department of Transportation's (NCDOT's) Notice to Proceed dated September 26, 2016. Activities associated with the assessment consisted of conducting a geophysical investigation, collecting soil samples for analysis, and reviewing applicable North Carolina Department of Environmental Quality (NCDEQ) records. The purpose of this report is to document the field activities, present the laboratory analytical results, and provide recommendations regarding the property.

Location and Description

The Joseph Molgora Property (Parcel #140) is located at 6002 Raeford Road in Fayetteville, Cumberland County, North Carolina. The property is located on the north side of Raeford Road, approximately 150 feet west of the intersection of Raeford Road and Skibo Road (**Figure 1**). The property consists of a former gas station and convenience store, and as of the date of the field work, a computer repair shop (We Fix It) occupied the building. The NCDOT information indicated that two underground storage tanks (USTs) were located under the edge of the building. A review of on-line UST registry information indicated that no USTs are registered at the site. According to the *UST Closure Report* (Environmental Hydrogeological Consultants, Inc., dated November 22, 2004), two 3,000-gallon gasoline USTs and one 500-gallon kerosene UST were installed in the 1960's and were taken out of service in the 1970's or early 1980's.

A concrete parking area occupies the area in front of the building. An attached canopy in front of the building may have covered a dispenser island and two UST fill ports were observed near the east side of the canopy (**Figure 2**). The proposed easement had not been marked at the site on the date of the geophysical field work, but NCDOT plan sheets show that the easement will affect the canopy, but not the building.

NCDOT requested a Preliminary Site Assessment for the right-of-way and proposed easement because of the previous site use as a gas station. The scope of work defined in the Request for Technical and Cost Proposal was to evaluate the site with respect to the presence of known and unknown USTs, and to assess where contamination exists on the right-of-way/proposed easement. An estimate of the quantity of impacted soil was to be provided, should impacted soils be encountered.

SIES reviewed the on-line NCDEQ Incident Management database and Incident Number FA-2945 was assigned to the site. A further review of files regarding the incident from the NCDEQ Fayetteville Regional Office indicated that in November 2004, the landowner at that time, Ms. Carol Rhyner, closed three USTs at the site, two 3,000-gallon gasoline USTs and one 550-gallon kerosene UST. The tanks were closed in-place and soil samples collected from six soil borings around the USTs. One sample detected contamination at 12 milligrams per kilogram (mg/kg) diesel range organics (DRO) total petroleum hydrocarbons (TPH). No other soil contamination was detected.

Following the UST closure, S&ME conducted soil and groundwater sampling to further evaluate the site. Five soil samples were collected and analyzed for TPH DRO and GRO. The sample collected from the boring at the kerosene UST (located between the canopy and the road) contained GRO at a concentration of 1,100 mg/kg and DRO at a concentration of 3,400 mg/kg. These concentrations were above the 2004 action level of 10 mg/kg. No other soil contamination was detected. One groundwater sample from the kerosene UST area and one from the gasoline UST area were collected and analyzed for volatile petroleum constituents. The analytical results indicated the presence of MTBE at concentrations of 8.7 and 33 micrograms per liter (μ g/L), which were below the 2004 groundwater quality standard of 200 μ g/L.

No additional reports were available in the NCDEQ files. A No Further Action Letter was issued to the landowner on January 26, 2006. The letter references a report received by the NCDEQ in January 2006 that implies additional work was conducted at the site, but no documentation is available for review. The USTs and soil contamination appear to be located within the existing and proposed NCDOT right-of-way/easement. As a convenience to the reader, relevant excerpts from the file documents are presented in **Attachment A** and the complete file reports are added to the end of this report.

2

SIES also examined the UST registration database to obtain UST ownership information and found that no USTs have been registered for the property.

Geophysical Survey

Pyramid Environmental & Engineering of Greensboro, NC (Pyramid) conducted a geophysical survey to confirm the presence of the known USTs in the right-of-way/proposed easement and determine if additional USTs were present in that area. The geophysical survey consisted of time-domain electromagnetics (TDEM) and ground penetrating radar. A Geonics EM61 TDEM induction meter was used to locate buried metallic objects, specifically USTs. The GPR data were collected with a Geophysical Survey Systems, Inc. Utility Scan DF unit equipped with dual frequency 300/800 MHz antennae.

A survey grid was laid out along the right-of-way/proposed easement with the X-axis oriented approximately parallel to Raeford Road and the Y-axis oriented approximately perpendicular to Raeford Road. The grid was positioned to cover the entire right-of-way/proposed easement. The survey lines were spaced approximately five feet apart and magnetic data were collected continuously along each survey line with a data logger. After collection, the data were reviewed in the field with graphical computer software.

During the course of the survey, Pyramid was interrupted from completing the work by a representative of the landowner. Access to complete the survey was denied and the survey was not completed. However, prior to the interruption of the geophysical survey, electromagnetic data were collected and a preliminary GPR survey was conducted, although data were not recorded. Several anomalies were detected, but were generally attributed to reinforced concrete, underground utilities, signage, or USTs. Two anomalies were detected under the canopy that Pyramid interpreted as probable USTs, based on the NCDOT criteria. Because of the terminated survey, no measurements could be taken to calculate the UST sizes. Pyramid's detailed report of findings and interpretations is presented in **Attachment B**.

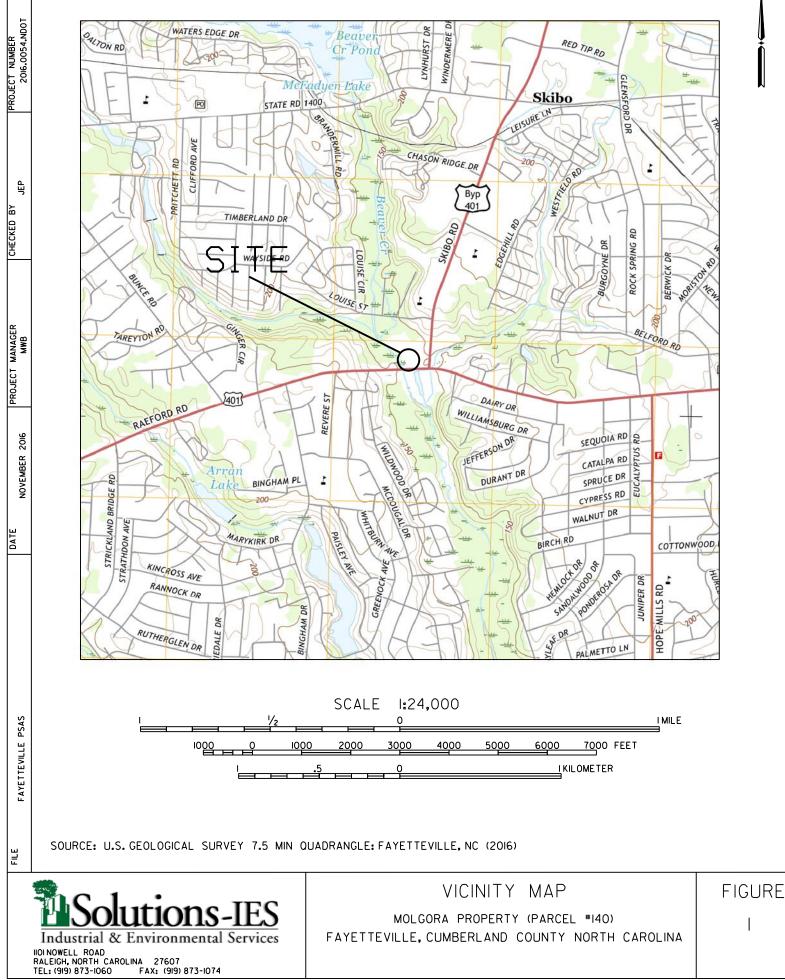
Following the interruption in the geophysical survey, SIES discussed the situation with the NCDOT. The NDOT contacted the landowner representative and attempted to gain access for further work. No response was received from the representative. Based on the unresponsiveness of the landowner and their representative, the NCDOT directed SIES to discontinue our efforts to collect data from this site and submit the geophysical survey.

3

SIES appreciates the opportunity to work with the NCDOT on this project. If you have any questions, please contact us at (919) 873-1060.

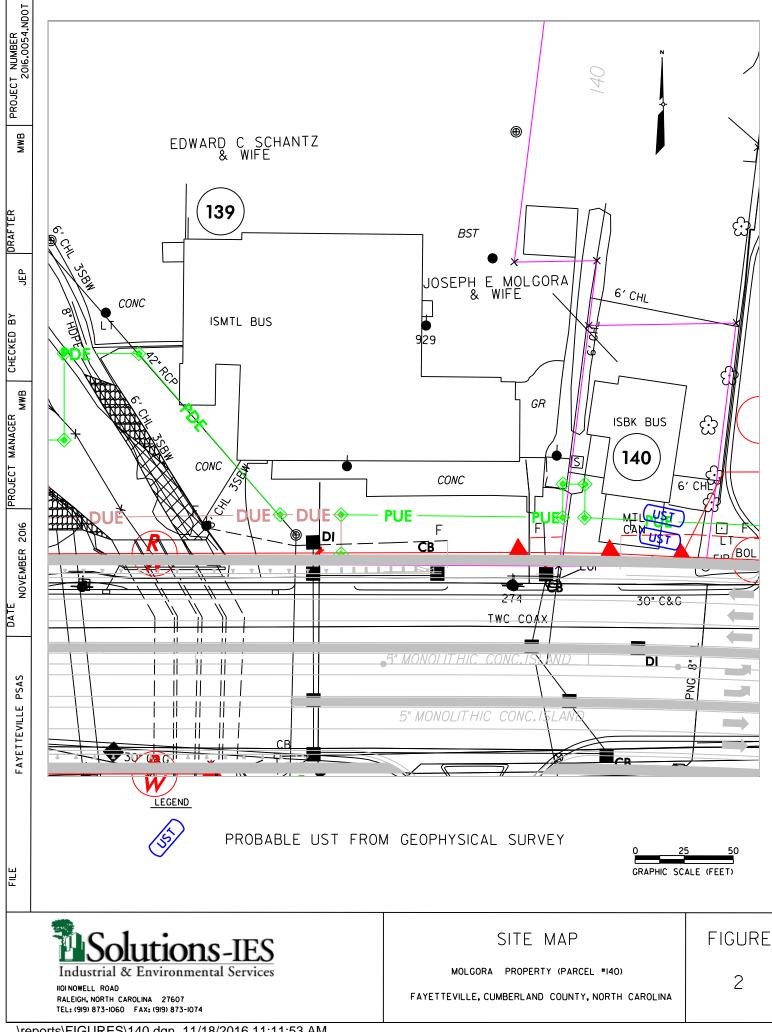
Sincerely,

W. Brusson Micha


Michael W. Branson, P.G. Project Manager

Attachments

John Palmer, P.G. Senior Hydrogeologist


Manual Mickey ANNIH MANAROSA CARO/ EAL 467 ·********

FIGURES

Ν

...\reports\FIGURES\140 FIG 1.dgn 10/5/2016 10:02:40 AM

...\reports\FIGURES\140.dgn 11/18/2016 11:11:53 AM

ATTACHMENT A

UNDERGROUND STORAGE TANK CLOSURE REPORT

11-22-04

I. General Information

- A. Ownership of UST(s)
 - 1. Name of UST owner: Ms. Carol Rhyner
 - Owner address & telephone number 7802 West Hazzlewood St. Phoenix, AZ 85033 623-631-3435

B. Facility Information

- 1. Facility name: Unknown
- 2. Facility ID #: Unknown
- Facility address, telephone number & county: 6002 Raeford Rd Fayetteville, NC Unknown/unoccupied
- C. Contacts

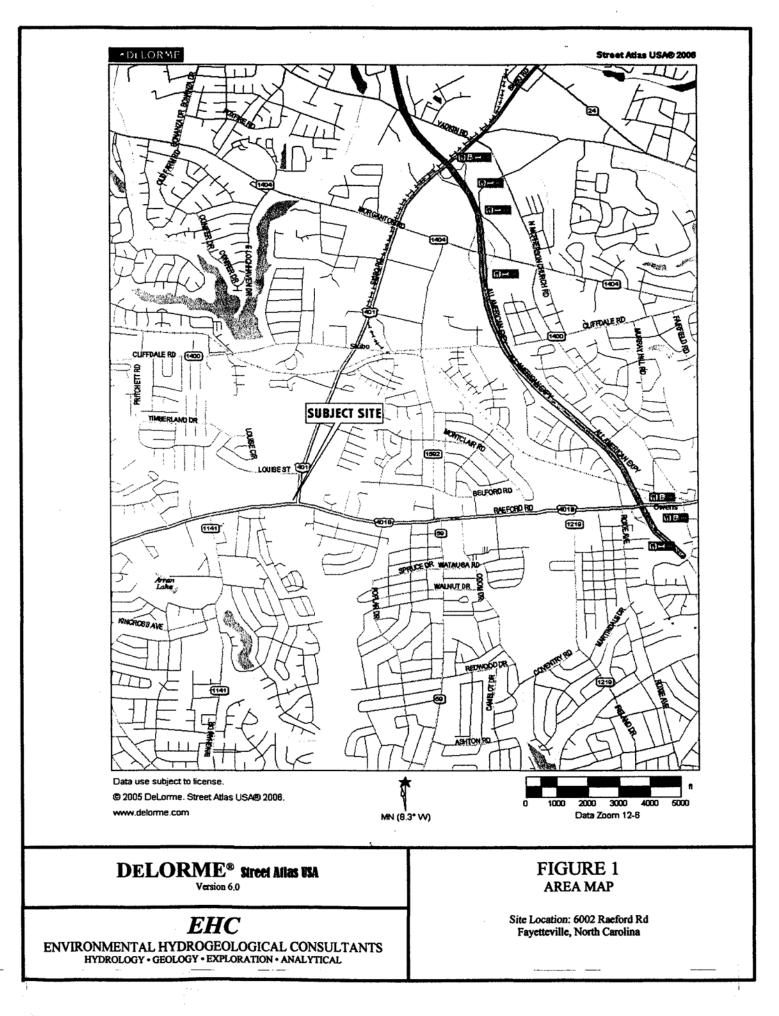
- Name, address, telephone number & job title of primary contact person: Ms. Carol Rhyner - Owner 7802 West Hazzlewood St. Phoenix, AZ 85033 623-631-3435
- Name, address & telephone number of closure contractor: Environmental Hydrogeological Consultants, Inc.
 P.O. Box 902 / 207 West 4th Avenue Red Springs, North Carolina 28377 (910) 843-4456
- Name, address & telephone number of primary consultant: Environmental Hydrogeological Consultants, Inc.
 P.O. Box 902 / 207 West 4th Avenue

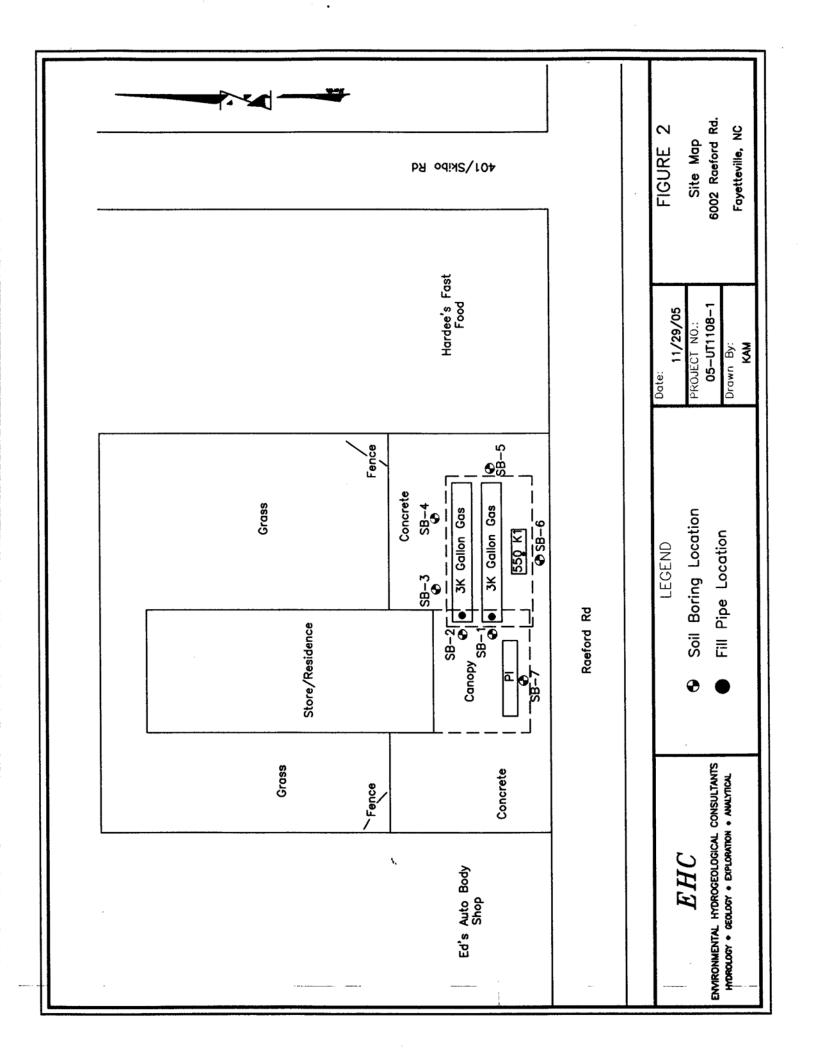
Red Springs, North Carolina 28377 (910) 843-4456

4. Name, address, telephone number & State certification number of laboratory: Environmental Science Corp.
12065 Lebanon Road Mt. Juliet, Tennessee 37122 (615) 758-5858

NC State Certification #ENV375,DW21704

D. UST Information:


Tank #	Installation Date	Size in Gallons	Tank Dimensions	Last Contents	Previous Contents (if any)
1	1960's ?	3,000	5' 4" x 18'	Gasoline	
2	1960's ?	3,000	5' 4" x 18'	Gasoline	
3	1960's ?	550	4' X 6'	Kerosene	
				· · · · ·	


E. Site Characteristics:

- 1. Describe any past releases at this site: None known
- 2. Is the facility active or inactive? If inactive, note the last time USTs were in operation: Inactive, since about late 1970's or early 1980's.
- 3. Describe surrounding property use (residential, commercial, farming, etc.): Commercial (Hardee's Fast Food, Auto Repair Shop, Gas Stations, etc.)
- 4. Describe site geology/hydrogeology: Tan/brown sandy clay material. Ground water was not encountered during soil borings.

II. Closure Procedures

- A. Describe preparations for closure including the steps taken to notify authorities, permits obtained & the steps taken to clean & purge the tank(s):
 Notified UST Section, USTs pumped out of remaining fuel/water and inerted with F-500.
- B. Note the amount of residual material pumped from the tank(s): Total of 150 gallons of water/fuel pumped from all three tanks
- C. Describe the storage, sampling & disposal of the residual material: EHC, Inc. personnel utilizing DOT 407/412 Vacuum Trailer pumped and transported to facility in Red Springs, NC under non-hazardous materials manifest.(see attached manifest).

FA - 2945 Reid Feb 09 2005

December 27, 2004

Carol Rhyner 7802 West Hazelwood Street Phoenix, Arizona 85033

Attention: Ms. Carol Rhyner

Reference:

SOIL AND GROUNDWATER SAMPLING SERVICES 6002 Raeford Road Fayetteville, North Carolina Job No. 1034-04-049

Dear Ms. Rhyner:

S&ME, Inc. (S&ME) is pleased to present the findings of our soil and groundwater sampling services conducted on the above referenced property in accordance with our Proposal No EPRO-04-11-06 dated November 22, 2004.

PROJECT INFORMATION

Based on our November 19, 2004 telephone conversation, we understand that the subject property is a former store, which operated an underground storage tank (UST) system. According to you, at least two tanks, which contained gasoline and kerosene, are located on the property. Two former gasoline dispensers were located in front of the building and one former kerosene dispenser was located at the southeast corner of the building. To the best of your knowledge, the UST system has not been operated since at least the late 1970s or early 1980s.

On November 19, 2004, Mr. Jamie T. Honeycutt with S&ME visited the subject property (Figure 1). Three fill ports and vent pipes associated with three USTs and three former fuel dispenser locations were observed on the property. No other visual signs of fill ports or vent pipes associated with USTs or former fuel dispenser locations were observed on the property. According to you, no other USTs are located on the property.

(910) 323-1091 (910) 323-3499 fax www.smeinc.com

Table 2

Summary of Soil Analytical Data Soil and Groundwater Sampling Services

6002 Raeford Road Fayetteville, North Carolina S&ME Job No. 1034-04-049

<u>Analysis</u> Compound	Test Probe # 1 Southwest former gasoline dispenser	Test Probe # 2 Southeast former gasoline dispenser	Test Probe #3 (GW-1) Near former gasoline tanks	Test Probe #4 (GW-2) Near former kerosene tank	Test Probe # 5 Former kerosene dispenser	Reportable Concentration
	4'	4'	12'	12'	4'	
EPA Method 5030 Gasoline Range Organics	7.9	BDL	BDL	1,100	BDL	10
<u>EPA Method</u> <u>3550</u> Diesel Range Organics	NA	NA	NA	3,400	BDL	10

All quantities expressed in mg/Kg milligrams per kilograms (parts per million)

BDL: below method detection limits

NA: not analyzed

Constituents not listed were below the detection limit of the analytical method.

Regulatory standards as set forth in "Guidelines for Assessment and Corrective Action, North Carolina Underground Storage Tank Section"

Analytical results greater than applicable standards are given in bold print.

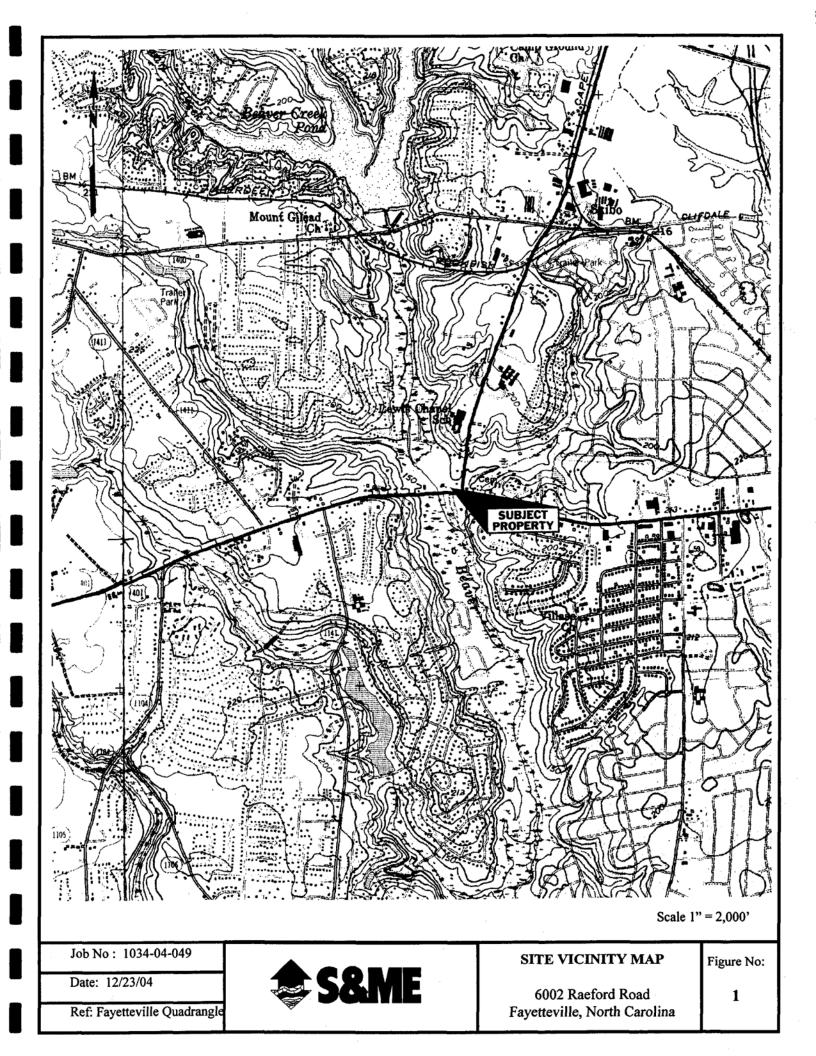
S&ME Job No. 1034-04-049 December 27, 2004

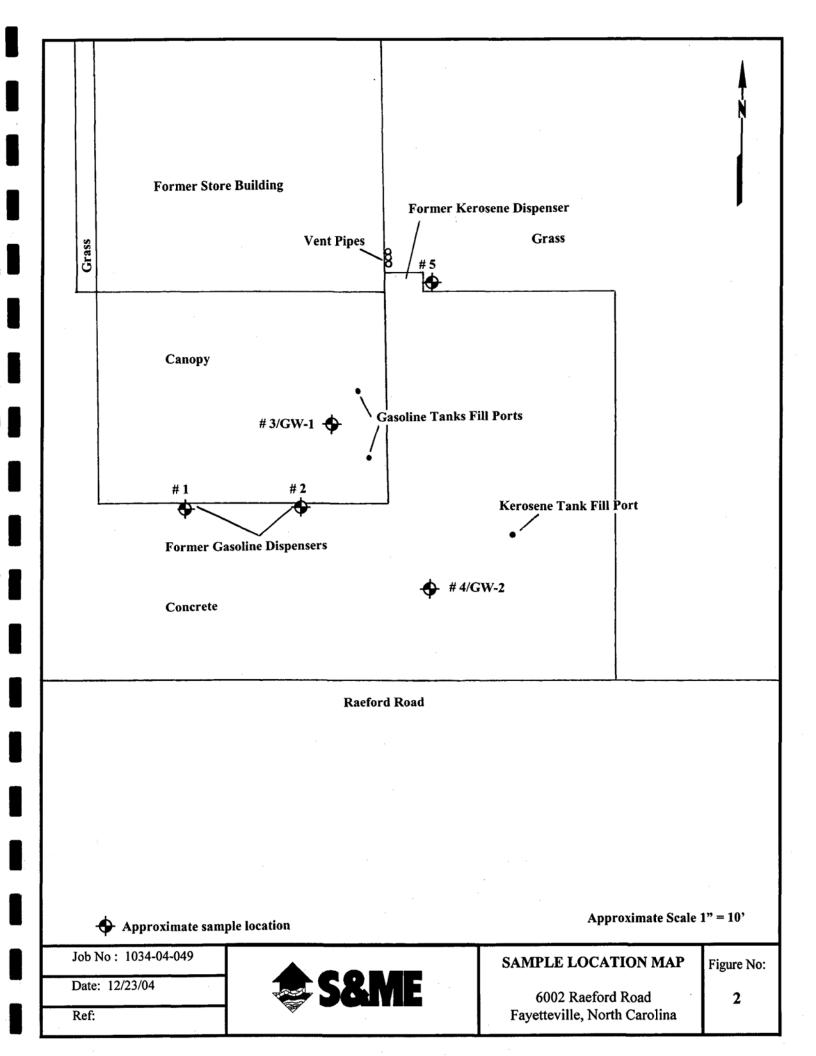
Table 3

Summary of Groundwater Quality Data Soil and Groundwater Sampling Services

6002 Raeford Road Fayetteville, North Carolina S&ME Job No. 1034-04-049

<u>Analysis</u>	Test Probe # 3 (GW-1)	Test Probe # 4 (GW-2)	2L Regulatory
Compound	Near former gasoline tanks	Near former kerosene tank	Standards
Method 624			
MTBE	8.7	33	200
Benzene	BDL	BDL	
Toluene	BDL	BDL	
Ethylbenzene	BDL	BDL	
Xylenes	BDL	BDL	
Isopropyl Ether	BDL	BDL	
Naphthalene	BDL	BDL	


Groundwater samples were not collected at any other location


All quantities expressed in ug/L micrograms per liter (parts per billion)

BDL: below method detection limits

Regulatory standards as set forth in 15A NCAC 2L, "Classifications and Standards Applicable to the Groundwaters of North Carolina" or in guidance documents issued by the NCDENR.

Analytical results greater than applicable standards are given in bold print.

North Carolina Department of Environment and Natural Resources

Michael F. Easley, Governor William G. Ross Jr., Secretary

Division of Waste Management Underground Storage Tank Section

Dexter R. Matthews, Director

January 26, 2006

Carol Rhyner 7802 West Hazzlewood Street Phoenix, AZ 85033

> Re: Notice of No Further Action 15A NCAC 2L .0115(h) Risk-based Assessment and Corrective Action for Petroleum Underground Storage Tanks

> > Rhyner Property 6002 Raeford Road Cumberland County FA-2945 Risk Classification: Low Ranking: L0R

Dear Ms. Rhyner:

The Underground Storage Tank (UST) Closure Report or Soil Contamination Report received by the Underground Storage Tank (UST) Section, Fayetteville Regional Office on January 26, 2006, has been reviewed. The review indicates that after tank closure or soil excavation soil contamination does not exceed the lower of the soil-to-groundwater or residential maximum soil contaminant concentrations (MSCCs), established in Title 15A NCAC 2L .0115(m).

The UST Section determines that no further action is warranted for this incident. This determination shall apply unless the UST Section later finds that the discharge or release poses an unacceptable risk or a potentially unacceptable risk to human health or the environment. Pursuant to Title 15A NCAC 2L .0115(e) you have a continuing obligation to notify the Department of any changes that might affect the risk or land use classifications that have been assigned.

This No Further Action determination applies only to the subject incident; for any other incidents at the subject site, the responsible party must continue to address contamination as required.

If you have any questions regarding this notice, please contact me at the address or telephone number listed below.

Sincerely,

James W. Brown Hydrogeologist II Fayetteville Regional Office UST Regional Offices

Asheville (ARO) – 2090 US Highway 70, Swannanoa, NC 28778 (828) 296-4500 Fayetteville (FAY) – 225 Green Street, Suite 714, Systel Building, Fayetteville, NC 28301 (910) 486-1541 Mooresville (MOR) – 610 East Center Avenue, Suite 301, Mooresville, NC 28115 (704) 663-1699 Raleigh (RRO) – 1628 Mail Service Center, Raleigh, NC 27699 (919) 791-4200 Washington (WAS) – 943 Washington Square Mall, Washington, NC 27889 (252) 946-6481 Wilmington (WIL) – 127 Cardinal Drive Extension, Wilmington, NC 28405 (910) 796-7215 Winston-Salem (WS) – 585 Waughtown Street, Winston-Salem, NC 27107 (336) 771-4600 Guilford County Environmental Health, 1203 Maple Street, Greensboro, NC 27405, (336) 641-3771

FTP: NFA closure NOR1005.dot

ATTACHMENT B

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 140 – JOSEPH E. MOLGORA NCDOT PROJECT U-4405

6002 RAEFORD RD., FAYETTEVILLE, CUMBERLAND COUNTY, NC

NOVEMBER 4, 2016

Report prepared for:

Mike Branson Solutions, IES 1101 Nowell Road Raleigh, North Carolina 27607

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by:

Conovello

viewed by: _____

Douglas A. Canavello, P.G. NC License #1066

503 INDUSTRIAL AVENUE, GREENSBORO, NC 27406 P: 336.335.3174 F: 336.691.0648 C257: GEOLOGY C1251: ENGINEERING

Table of Contents

Executive Summary	1
Introduction	
Field Methodology	
Discussion of Results	
Summary and Conclusions	
Limitations	

Figures

Figure 1 – Parcel 140 Geophysical Survey Boundaries and Site Photographs Figure 2 – Parcel 140 EM61 Results Contour Map

LIST OF ACRONYMS

DFDual Frequency EMElectromagnetic GPRGround Penetrating Radar GPSGlobal Positioning System NCDOTNorth Carolina Department of Transportation
GPRGround Penetrating Radar GPSGlobal Positioning System NCDOTNorth Carolina Department of Transportation
GPSGlobal Positioning System NCDOTNorth Carolina Department of Transportation
NCDOTNorth Carolina Department of Transportation
1 1
ROWRight-of-Way
SVESoil Vapor Extraction
USTUnderground Storage Tank

EXECUTIVE SUMMARY

Project Description: Pyramid Environmental conducted a geophysical investigation for Solutions, IES (Solutions) at Parcel 140, located at 6002 Raeford Road, Fayetteville, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project U-4405). Solutions directed Pyramid as to the geophysical survey boundaries at the project site, which were designed to extend from the existing edge of pavement to the proposed ROW lines and/or easement lines within the property, whichever distance was greater. Conducted from October 12-17, 2016, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area. It should be noted that Pyramid's survey was interrupted by the tenant/property owner, who prevented access during the investigation, impeding Pyramid's ability to complete the survey.

Geophysical Results: Widespread EM interference was observed across the survey area due to metal-reinforced concrete. Reconnaissance GPR scans showed evidence of two probable metallic USTs oriented lengthwise from west to east on the east side of the canopy located on the property. The tenant/property owner requested that Pyramid terminate the survey prior to formal GPR data being saved and measurement of the tanks being taken. Collectively, the geophysical data <u>showed evidence of two probable metallic USTs at Parcel 140</u>. The tenant/property owner prevented Pyramid from completing the survey.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Solutions, IES (Solutions) at Parcel 140, located at 6002 Raeford Road, Fayetteville, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project U-4405). Solutions directed Pyramid as to the geophysical survey boundaries at the project site, which were designed to extend from the existing edge of pavement to the proposed ROW lines and/or easement lines within the property, whichever distance was greater. Conducted from October 12-17, 2016, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area. It should be noted that Pyramid's survey was interrupted by the tenant/property owner, who prevented access during the investigation, impeding Pyramid's ability to complete the survey

The site included a commercial building with a canopy surrounded by concrete parking space. Two possible fill ports were observed in the concrete at the east edge of the canopy. Aerial photographs showing the survey area boundaries and a ground-level photograph are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61 metal detector integrated with a Trimble AG-114 GPS antenna. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is geo-referenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8 foot intervals along north-south trending or east-west trending, generally parallel survey lines spaced five feet apart. The data were downloaded to a computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 11.0 software programs.

Initial reconnaissance ground penetrating radar (GPR) scans were performed at the site; however, during this reconnaissance the tenant/property owner asked Pyramid to vacate the property, thereby preventing any data from being saved or the survey from being completed. The reconnaissance GPR was performed using a Geophysical Survey Systems, Inc. (GSSI) UtilityScan DF unit equipped with a dual frequency 300/800 MHz antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. A general discussion of what was observed is presented in the Discussion of Results below.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

	Geophysical Surveys for on NCE	OT Projects	geTanks
High Confidence	Intermediate Confidence Probable UST	Low Confidence Possible UST	No Confidence Anomaly noted but not
Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphal/concrete patch, etc.	Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The following table presents the list of EM anomalies and the cause of the metallic response, if known:

Metallic Anomaly		
#	Cause of Anomaly	Investigated with GPR
1	Widespread Reinforced Concrete	
2	Vehicles	
3	2 Probable USTs and Reinforced Concrete	Ø

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

Widespread interference was observed across the property due to the presence of metal reinforcement within the majority of the concrete in the survey area. Additionally, EM anomalies were observed on the west side of the survey area (Anomaly 2) that were associated with parked vehicles. Two suspected fill ports were observed on the east side of the canopy at the property, and a high amplitude EM signal was observed at this location. Pyramid performed reconnaissance GPR in this area to investigate for suspected USTs; however, no formal GPR data were saved due to the tenant/property owner preventing further access to the site.

Discussion of GPR Results

As mentioned above, Pyramid performed reconnaissance GPR across the location where two fill ports were observed adjacent to the canopy. The reconnaissance GPR recorded two distinct hyperbolic reflectors and two discreet lateral reflectors that provided evidence of two probable metallic USTs at the property. The two USTs were oriented lengthwise from west to east. Pyramid was prevented access to the property before being able to determine accurate sizes and depths, take photographs, or save any formal GPR files associated with the tanks. The USTs were partially marked with marking paint in the field. Although the survey was not complete, the reconnaissance scans were consistent with two probable USTs.

Collectively, the geophysical data showed <u>evidence of two probable metallic USTs at</u> <u>Parcel 140</u>. The tenant/property owner prevented Pyramid from completing the survey.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 data collected and GPR reconnaissance scans performed at Parcel 140 in Fayetteville, Cumberland County, North Carolina, provides the following summary and conclusions:

- The EM61 survey provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- Widespread EM interference was observed across the survey area due to metalreinforced concrete.
- Reconnaissance GPR scans showed evidence of two probable metallic USTs oriented lengthwise from west to east on the east side of the canopy.
- The tenant/property owner requested that Pyramid terminate the survey prior to formal GPR data being saved and measurement of the tanks being taken.
- Collectively, the geophysical data <u>showed evidence of two probable metallic USTs</u> <u>at Parcel 140</u>. The tenant/property owner prevented Pyramid from completing the survey.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Solutions, IES in accordance with generally accepted guidelines for EM61 and GPR surveys. It is

generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

NÎ

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

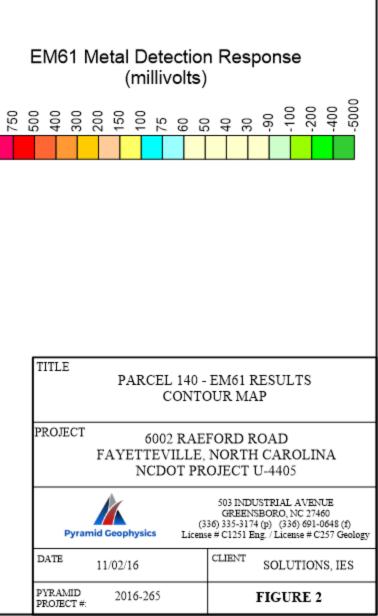
NC STATE PLANE, EASTING (NAD83, FEET)

View of Survey Area (Facing Approximately North. Additional Photos Not Available Due to Lack of Access)

			PHYSICAL SURVEY SITE PHOTOGRAPHS				
PROJECT	PROJECT 6002 RAEFORD ROAD FAYETTEVILLE, NORTH CAROLINA NCDOT PROJECT U-4405						
Pyrar	503 INDUSTRIAL AVENUE GREENSBORO, NC 27460 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology						
DATE	11/02/16		CLIENT SOLUTIONS, IES				
PYRAMID PROJECT #:	2016-265		FIGURE 1				

EM61 METAL DETECTION RESULTS

NC STATE PLANE, EASTING (NAD83, FEET)


NUMBERS IN BLUE (x) CORRESPOND TO ANOMALY TABLE INCLUDED IN THE REPORT

NC STATE PLANE, NORTHING (NAD83, FEET)

1000

EVIDENCE OF 2 PROBABLE METALLIC USTs OBSERVED

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM61 data were collected on October 13, 2016, using a Geonics EM61 instrument. Initial reconnaissance GPR verified the presence of 2 probable metallic USTs at the location indicated in the figure. Prior to finalizing and saving GPR data, the tenant/owner prevented further access to the property. No GPR data were saved. Approximately 75% of the outlines of the USTs were marked in the field with marking paint.

File Review Reports Joseph Molgora Property (Parcel #140) 6002 Raeford Road Fayetteville, Cumberland County, North Carolina State Project: U-4405 WBS Element 39049.1.1

UNDERGROUND STORAGE TANK CLOSURE REPORT

11-22-04

I. General Information

- A. Ownership of UST(s)
 - 1. Name of UST owner: Ms. Carol Rhyner
 - Owner address & telephone number 7802 West Hazzlewood St. Phoenix, AZ 85033 623-631-3435

B. Facility Information

- 1. Facility name: Unknown
- 2. Facility ID #: Unknown
- Facility address, telephone number & county: 6002 Raeford Rd Fayetteville, NC Unknown/unoccupied
- C. Contacts

- Name, address, telephone number & job title of primary contact person: Ms. Carol Rhyner - Owner 7802 West Hazzlewood St. Phoenix, AZ 85033 623-631-3435
- Name, address & telephone number of closure contractor: Environmental Hydrogeological Consultants, Inc.
 P.O. Box 902 / 207 West 4th Avenue Red Springs, North Carolina 28377 (910) 843-4456
- Name, address & telephone number of primary consultant: Environmental Hydrogeological Consultants, Inc.
 P.O. Box 902 / 207 West 4th Avenue

Red Springs, North Carolina 28377 (910) 843-4456

4. Name, address, telephone number & State certification number of laboratory: Environmental Science Corp.
12065 Lebanon Road Mt. Juliet, Tennessee 37122 (615) 758-5858

NC State Certification #ENV375,DW21704

D. UST Information:

Tank #	Installation Date	Size in Gallons	Tank Dimensions	Last Contents	Previous Contents (if any)
1	1960's ?	3,000	5' 4" x 18'	Gasoline	
2	1960's ?	3,000	5' 4" x 18'	Gasoline	
3	1960's ?	550	4' X 6'	Kerosene	
				· · · · ·	

E. Site Characteristics:

- 1. Describe any past releases at this site: None known
- 2. Is the facility active or inactive? If inactive, note the last time USTs were in operation: Inactive, since about late 1970's or early 1980's.
- 3. Describe surrounding property use (residential, commercial, farming, etc.): Commercial (Hardee's Fast Food, Auto Repair Shop, Gas Stations, etc.)
- 4. Describe site geology/hydrogeology: Tan/brown sandy clay material. Ground water was not encountered during soil borings.

II. Closure Procedures

- A. Describe preparations for closure including the steps taken to notify authorities, permits obtained & the steps taken to clean & purge the tank(s):
 Notified UST Section, USTs pumped out of remaining fuel/water and inerted with F-500.
- B. Note the amount of residual material pumped from the tank(s): Total of 150 gallons of water/fuel pumped from all three tanks
- C. Describe the storage, sampling & disposal of the residual material: EHC, Inc. personnel utilizing DOT 407/412 Vacuum Trailer pumped and transported to facility in Red Springs, NC under non-hazardous materials manifest.(see attached manifest).

D. Excavation:

1. Describe excavation procedures noting the condition of the soils and the dimensions of the

1. Describe excavation procedures noting the condition of the soils and the dimensions of the UST was abandoned in place.

- 2. Note the depth of tank burial(s)(from top of tank): USTs were approximately 2 feet below land surface
- 3. Quantity of soil removed: None.
- Describe soil type(s): N/A
- 5. Type and source of backfill used: N/A

E. Contaminated Soil:

- 1. Describe how it was determined to what extent to excavate the soil: N/A
- Describe method of temporary storage, sampling & treatment/disposal of soil: NA

III. Site Investigation

A. Provide information on field screening & observations, include methods used to calibrate field screening instrument(s):

Field screening via Olfactory Method.

B. Describe soil sampling points & sampling procedures used:

Stainless steel hand auger was used to collect soil boring samples. Five soil samples were collected from around the Gasoline USTs at approx. 10 ft below land surface. One soil sample was collected beside the K-1 UST at apprx. 8 ft below land surface. One soil sample was collected at the pump island at approximately 3 ft below land surface. SB 1 - SB 5 and SB 7 were submitted for laboratory analysis for Total Petroleum Hydrocarbons(TPH) 5030(Gasoline Range Organics). SB 6 was analyzed by 5030 and 3550(Diesel Range Organics). Please see attached site map for soil boring locations.

C. Describe groundwater or surface water sampling procedures used: Ground water was not encountered. D. Quality Control Measures:

On November 10, 2005 seven soil samples (SB-1, SB-2, SB-3, SB-4, SB-5, SB-6, & SB-7) were collected from the site by EHC personnel. The samples were placed in laboratory provided containers, packed in a cooler, iced, transported to EHC, Inc. and picked up by Federal Express on 11/11/05 for next day delivery to Environmental Science Corp. in Mt. Juliet, TN.

E. Investigation Results:

Laboratory results indicate TPH results are BDL (Below Detectable Limits) or below state action levels for SB 1, SB 2, SB 3, SB 4, SB 5, and SB 7. TPH results are only slightly above state action levels in SB 6 at 12 mg/kg via EPA 3550 analysis.

IV. Conclusions & Recommendations

Based on all of the available data including the soil chemistry results, it is our opinion no further action is required.

١.

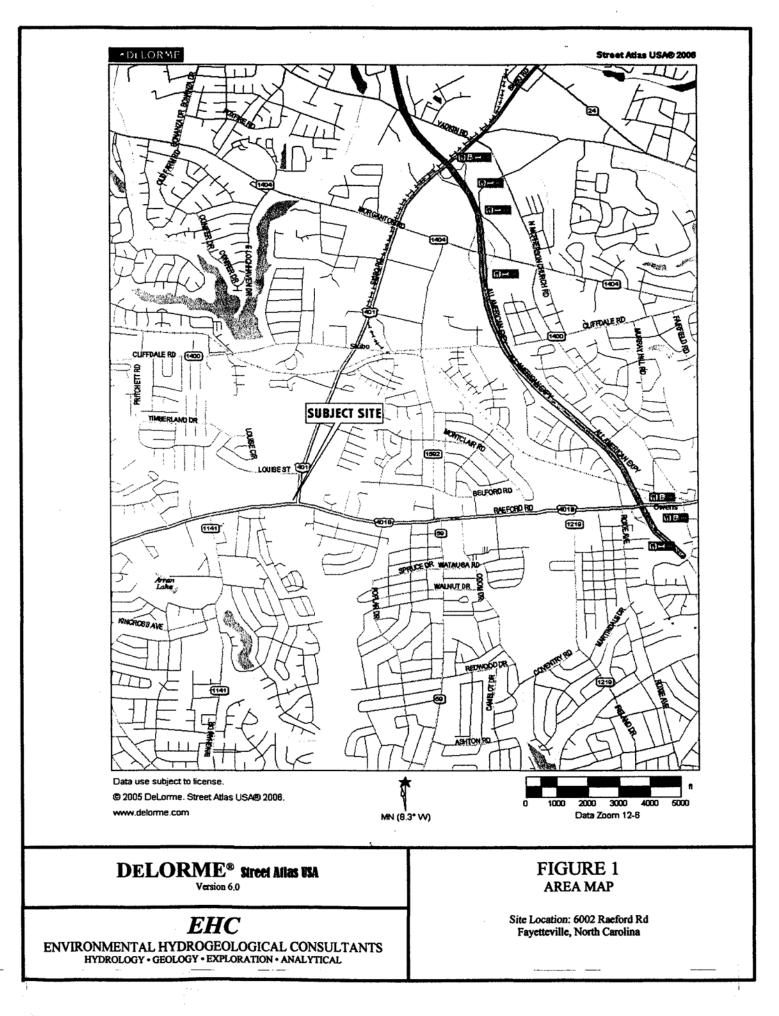
V. Signature of Professional Engineer or Licensed Geologist

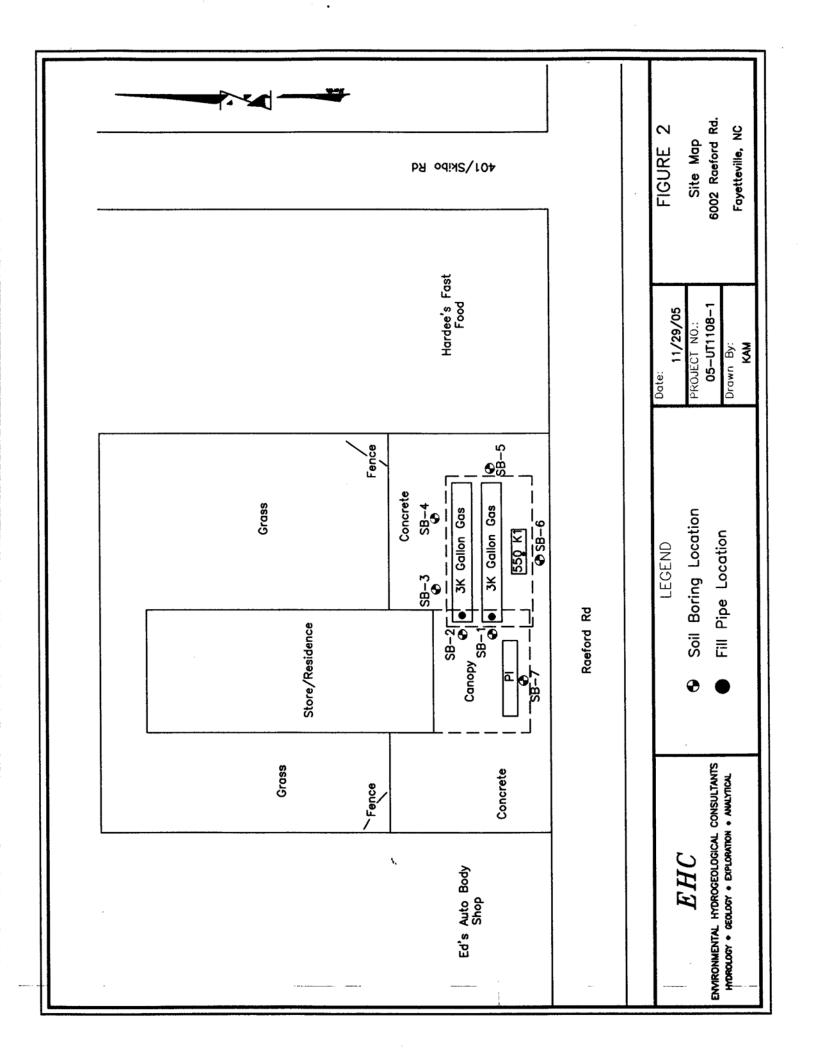
<u>SEAL</u>

Professional Engineer Registration #:

Licensed Geologist License #:

......


PE / PG: **Project Manager:**


VI. Enclosures

- A. Figures
 - 1. Area Map
 - 2. Site Map
 - Buildings
 - Underground utilities such as sewer lines & other conduits
 - Orientation of UST(s), pumps & product lines
 - Length, diameter & volume of UST(s)
 - Type of material(s) stored in UST(s) (currently & previously)
 - Sample location(s) (identified by letter or number)
 - Final limits of excavation
 - Scale
 - North arrow
- **B**. Appendices
 - Appendix A: Notification of Intent to Close (GW/UST-3)
 - Appendix B: Site Investigation Report for Permanent Closure or Change-in-Service of UST (GW/UST-2)

١.

- Appendix C: Certificate of Tank Disposal
- Appendix D: Soil, Water, Sludge Disposal Manifests
- Appendix E: Laboratory Analytical Results
- Appendix F: Chain-of-Custody Records
- Appendix G: Site Sensitivity Evaluation (SSE) (if applicable)

NON-HAZARDOUS WASTE MANIFEST EMERGENCY PHONE NO. 910-843-4456	EHC, INC. Environmental Hydrogeological Consultants, In P.O. Box 902 • 207 W. Fourth Avenue Red Springs, North Carolina 28377 Telephone: (910) 843-4456 • Fax: (910) 843-5376 www.environmentalnc.com	nc.	Manifest Document No. Page of EHC Project #	
	GENERATOR INFORMATION			
Name		US E	PA ID No.	
Street Address	Mailing Address	Phon	ne No.	
		Cont	act	

DESCRIPTION OF MATERIALS USDOT Proper Shipping Name Unit Containers Total Hazard UN / NA Packing HM (Complete All Items for Hazardous Materials) Class or Div ID No. Group Qty. Туре Quantity Wt./Vol. mix wiht 1203 Gasoline 1// water . a. l (t)150 1 6 b. C. ADDITIONAL INFORMATION ERG. No. Facility Use Profile Code a. 28 b. c.

GENERATOR'S CERTIFICATION

FAYETEVILLE

This is to certify that the above-described materials are properly classified, described, packaged, marked and labeled, and are in proper condition for transportation according to the applicable regulations of the Department of Transportation. I further certify that none of the materials described above are a hazardous waste as defined by EPA 40 CFR Part 261 or any applicable state law, and unless specifically identified above, the materials contain less than 1,000 ppm total halogens and do not contain quantifiable levels (2 ppm) of PCBs as defined by EPA 40 CFR Parts 279 and 761.

	TRANSPOR						
Transporter Environmental Hydrogeological Consultants, In		I hereby acknowledge receipt of the above-described materials for trait the generator site listed above.					
Address P.O. Box 902 • 207 W. Fourth Avenue Red Springs, NC 28377		Signature Ranna Hors					
Transporter or NCR 000136671 Unit No.		generator site and were transported to the fa	cility listed below.				
Phone (910) 843-4456		Signature Rance I	L C-21-05 Delivery Date				
	FACILI	Y INFORMATION					
Facility Environmental Hydrogeological Consultants, In	nc.	I hereby acknowledge receipt of the materials any discrepancy noted below.	covered by this manifest except for				
Address							
P.O. Box 902 • 207 W. Fourth Avenue		Signature	Receipt Date				
Red Springs, NC 28377		Discrepancies / Routing Codes / Handling Methods					
Facility or EPA ID No. NCR 000136671		a.	·				
Phone		_ b_					
Contact Thomas Ammons	post of the p	C.	· · · ·				

ENVIRONM SCIENCE					Mt. (615 1-80 Fax Tax	5 Lebanon Rd. Juliet, TN 3712 5) 758-5858 0-767-5859 (615) 758-5859 I.D. 62-0814289 1970	
		REPORT	OF ANALYSIS				
Mr. Thomas Ammons EHC, Inc. PO Box 902 Red Springs, NC 2				Nov	vember 17,20	005	
Date Received :	November 12, 20	005		ESC	C Sample # :	L222287-01	
Description :	6002 Raeford Rd			Sit	te ID :		
Sample ID :	SB-1 10 FT						
Collected By : Collection Date :	Allen McColl 11/10/05 11:30			Pro	oject # :	05-UT1108-1	
Parameter	447) · · · · · · · · · · · · · · · · · · ·	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids		93.6		ક	2540G	11/16/05	1
TPH (GC/FID) Lo		8.7	5.9	mg/kg	5030	11/15/05	55.5
Surrogate Recover		0.5		9. Do 5	5020	11/15/05	

96.

5030

% Rec.

11/15/05 55.5

Cheli Boucher, ESC Representative

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit (PQL)

a,a,a-Trifluorotoluene

Laboratory Certification Numbers: AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487, GA - 923, IN - C-TN-01 KY - 90010, KYUST - 0016, NC - ENV375,DW21704, ND - R-140, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ -0612, MN - 047-999-395, NY - 11742, NJ - 81002, WI - 998093910

Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 11/17/05 14:29 Printed: 11/17/05 14:29

Page 1 of 8

ENVIRONMENTAL SCIENCE CORP		ς.			Mt. (615 1-800 Fax Tax	5 Lebanon Rd. Juliet, TN 3712) 758-5858 0-767-5859 (615) 758-5859 I.D. 62-0814289 1970	
Mr. Thomas Ammons EHC, Inc. PO Box 902 Red Springs, NC 28377		REPORT (OF ANALYSIS	Nov	ember 17,200	05	
Date Received : Novem	ber 12, 2005 Raeford Rd				Sample # : e ID :	L222287-02	
Collected By : Allen	10 FT McColl 0/05 12:00					05-UT1108-1	
Parameter	D	ry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids		95.5		£	2540G	11/16/05	1
TPH (GC/FID) Low Fracti	on	6.0	5.8	mg/kg	5030	11/15/05	55.5

96.

•

Course and the second

% Rec.

5030

11/15/05 55.5

Cheli Boucher, ESC Representative

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Surrogate Recovery (70-130) a,a,a-Trifluorotoluene

Laboratory Certification Numbers: AIHA - 100789, AL - 40660, CA - I-2327, CT- PH-0197, FL - E87487, GA - 923, IN - C-TN-01 KY - 90010, KYUST - 0016, NC - ENV375,DW21704, ND - R-140, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ -0612, MN - 047-999-395, NY - 11742, NJ - 81002, WI - 998093910

Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 11/17/05 14:29 Printed: 11/17/05 14:29

Page 2 of 8

Environmental Science Corp.			·	Mt. (615 1-80 Fax Tax	5 Lebanon Rd. Juliet, TN 37122 5) 758-5858 0-767-5859 (615) 758-5859 I.D. 62-0814289
Mr. Thomas Ammons EHC, Inc. PO Box 902 Red Springs, NC 28377	REPORT	C OF ANALYSIS	Nov	rember 17,20	005
Date Received : November 12, 24 Description : 6002 Raeford Rd Sample ID : SB-3 10 FT Collected By : Allen McColl Collection Date : 11/10/05 13:15			Sit	Sample # : e ID : oject # :	L222287-03 05-UT1108-1
Parameter	Dry Result	Det. Limit	Units	Method	Date Dil.
Total Solids TPH (GC/FID) Low Fraction Surrogate Recovery (70-130) a,a,a-Trifluorotoluene	90.1 BDL 95.	5.3	% mg∕kg % Rec.	2540G 5030 5030	11/16/05 1 11/15/05 47.5 11/15/05 47.5

•

Cheli Boucher, ESC Representative

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit (PQL) Laboratory Certification Numbers: AIHA - 100789, AL - 40660, CA - I-2327, CT- PH-0197, FL - E87487, GA - 923, IN - C-TN-01 KY - 90010, KYUST - 0016, NC - ENV375,DW21704, ND - R-140, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ -0612, MN - 047-999-395, NY - 11742, NJ - 81002, WI - 998093910 Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 11/17/05 14:29 Printed: 11/17/05 14:29

_ - -

Page 3 of 8

Environmental Science Corp.				Mt. (615 1-80 Fax Tax	5 Lebanon Rd. Juliet, TN 37122) 758-5858 0-767-5859 (615) 758-5859 I.D. 62-0814289 1970	
Mr. Thomas Ammons EHC, Inc. PO Box 902 Red Springs, NC 28377	REPORT	OF ANALYSIS	Nov	rember 17,20	05	
Date Received : November 12, 2 Description : 6002 Raeford Ro Sample ID : SB-4 10 FT Collected By : Allen McColl Collection Date : 11/10/05 14:00	1		Sit	C Sample # : ce ID : oject # :	L222287-04 05-UT1108-1	
Parameter	Dry Result	Det. Limit	Units	Method	Date D	<u>il.</u>
Total Solids	84.8		÷	2540G	11/16/05 1	
TPH (GC/FID) Low Fraction	5.0	4.9	mg/kg	5030	11/15/05 4	1.5
Surrogate Recovery (70-130) a,a,a-Trifluorotoluene	96.		<pre>% Rec.</pre>	5030	11/15/05 4	1.5

•

Contraction of the second s

Cheli Boucher, ESC Representative

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

_ . _ .

Laboratory Certification Numbers: AIHA - 100789, AL - 40660, CA - I-2327, CT- PH-0197, FL - E87487, GA - 923, IN - C-TN-01 KY - 90010, KYUST - 0016, NC - ENV375,DW21704, ND - R-140, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ -0612, MN - 047-999-395, NY - 11742, NJ - 81002, WI - 998093910 Note:

.....

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 11/17/05 14:29 Printed: 11/17/05 14:29

Page 4 of 8

Environmental Science Corp.				Mt. (615 1-80 Fax Tax	5 Lebanon Rd. Juliet, TN 3712 5) 758-5858 0-767-5859 (615) 758-5859 I.D. 62-0814289 1970	
Mr. Thomas Ammons EHC, Inc. PO Box 902 Red Springs, NC 28377	REPORT	OF ANALYSIS	Nov	ember 17,20	005	
Date Received : November 12, 20 Description : 6002 Raeford Rd Sample ID : SB-5 10 FT Collected By : Allen McColl	05		Sit	Sample # : e ID : oject # :	L222287-05	
Collection Date : 11/10/05 14:30 Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	94.2		8	2540G	11/16/05	1
TPH (GC/FID) Low Fraction	BDL	5.5	mg/kg	5030	11/15/05	52
Surrogate Recovery (70-130) a,a,a-Trifluorotoluene	96.		<pre>% Rec.</pre>	5030	11/15/05	52

track and the set of a

Cheli Boucher, ESC Representative

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Laboratory Certification Numbers: AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487, GA - 923, IN - C-TN-01 KY - 90010, KYUST - 0016, NC - ENV375, DW21704, ND - R-140, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ -0612, MN - 047-999-395, NY - 11742, NJ - 81002, WI - 998093910 Note: This report shall not be reproduced except in full without the written approval from ESC

This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 11/17/05 14:29 Printed: 11/17/05 14:30

Page 5 of 8

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

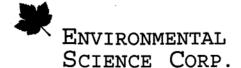
Tax I.D. 62-0814289

Est. 1970

Mr. Thomas Ammons EHC, Inc. PO Box 902 Red Springs, NC 28377	REPORT	OF ANALYSIS	Nov	ember 17,20	05	
Date Received : November 12, 2 Description : 6002 Raeford Rd				Sample # :	L222287-06	
Sample ID : SB-6 8 FT				eID :		
Collected By : Allen McColl Collection Date : 11/10/05 15:00			Pro	ject # :	05-UT1108-1	
Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	86.5		8	2540G	11/16/05	1
TPH (GC/FID) Low Fraction	6.1	5.5	mg/kg	5030	11/15/05	47.5
Surrogate Recovery (70-130) a,a,a-Trifluorotoluene	96.		<pre>% Rec.</pre>	5030	11/15/05	47.5
TPH (GC/FID) High Fraction	12.	4.6	mg/kg	DRO	11/16/05	1
Surrogate Recovery (50-150) o-Terphenyl	76.		<pre>% Rec.</pre>	DRO	11/16/05	1

۰,

Cheli Boucher, ESC Representative


Results listed are dry weight basis. BDL - Below Detection Limit

Det. Limit - Practical Quantitation Limit (PQL)

Laboratory Certification Numbers: AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487, GA - 923, IN - C-TN-01 KY - 90010, KYUST - 0016, NC - ENV375,DW21704, ND - R-140, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ -0612, MN - 047-999-395, NY - 11742, NJ - 81002, WI - 998093910

Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 11/17/05 14:29 Printed: 11/17/05 14:30

Page 6 of 8

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Mr. Thomas Ammons EHC, Inc. PO Box 902 Red Springs, NC 28377	REPORT	OF ANALYSIS	Nov	ember 17,20	005	
Date Received : November 12, 2 Description : 6002 Raeford Rd				Sample #	: L222287-07	
Sample ID : SB-7 3 FT			Sit	e ID :		
Collected By : Allen McColl Collection Date : 11/10/05 15:30			Pro	ject # :	05-UT1108-1	
Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids	90.0		8	2540G	11/16/05	1
TPH (GC/FID) Low Fraction	BDL	5.0	mg/kg	5030	11/15/05	45.5
Surrogate Recovery (70-130) a,a,a-Trifluorotoluene	96.		<pre>% Rec.</pre>	5030	11/15/05	45.5

Cheli Boucher, ESC Representative

Results listed are dry weight basis. BDL - Below Detection Limit

Det. Limit - Practical Quantitation Limit (PQL)

Laboratory Certification Numbers: AIHA - 100789, AL - 40660, CA - I-2327, CT- PH-0197, FL - E87487, GA - 923, IN - C-TN-01 KY - 90010, KYUST - 0016, NC - ENV375,DW21704, ND - R-140, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ -0612, MN - 047-999-395, NY - 11742, NJ - 81002, WI - 998093910

Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 11/17/05 14:29 Printed: 11/17/05 14:30

Page 7 of 8

ENVIRONMENTAL SCIENCE CORP.				Mt. (61) 1-8(Fax Tax	65 Lebanon Rd. Juliet, TN 3712: 5) 758-5858 00-767-5859 (615) 758-5859 I.D. 62-0814289 . 1970	2
Mr. Thomas Ammons EHC, Inc. PO Box 902 Red Springs, NC 28377	REPOR	T OF ANALYSIS	Nov	vember 17,20	005	
Date Received : November 12, Description : 6002 Raeford				C Sample #	: L222287-08	
Sample ID : TRIP BLANK				ce ID :		
Collected By : Allen McColl Collection Date : 11/10/05 00:0	0		Pro	oject # :	05-UT1108-1	
Parameter	Result	Det. Limit	Units	Method	Date	Dil.
TPH (GC/FID) Low Fraction	BDL	100	ug/l	5030	11/16/05	1
Surrogate Recovery (70-130) a,a,a-Trifluorotoluene	97.		<pre>% Rec.</pre>	5030	11/16/05	1

where the trade of the fair \$2, to a st

where you are the state on a read

Cheli Boucher, ESC Representative

BDL - Below Detection Limit

.

Det. Limit - Practical Quantitation Limit (PQL)

Laboratory Certification Numbers: AIHA - 100789, AL - 40660, CA - I-2327, CT- PH-0197, FL - E87487, GA - 923, IN - C-TN-01 KY - 90010, KYUST - 0016, NC - ENV375,DW21704, ND - R-140, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ -0612, MN - 047-999-395, NY - 11742, NJ - 81002, WI - 998093910 Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 11/17/05 14:29 Printed: 11/17/05 14:30

Page 8 of 8

Company Name/Address:		All	ernate billin	g information:				Anal	vsistCo	ntainer/P	reservative	[Chain of Custody Page <u>1</u> of <u>1</u>
EHC, Inc. PO Box 902 Red Springs, NC 28377 Report to: Thomas f	Ammon	Emi	ail to:	Fayette		16	0	5030-6RO				SCIEN 12065 L Mt. Juliet Phone (RONMENTAL ICE CORP. ebanon Road t, TN 37122 (615) 758-5858
Description: (000 2 Kae Phone: (910) 843-4456	Client Project	// G -/	ESC Ke				ĸ	0					(800) 767-5859
FAX: (910) 843-5376	05-UT	-1108-1		-			ち	X				FAX ((615) 758-5859
Collected by: Allen ME Coll	Site/Facility ID	#:	P.O.#:				1	1					and the start of the
Collected by (signature):	Sa	b MUST Be ame Day ext Day vo Day	200%	Date Resu Norm Email?X FAX?X	No_Yes	No. of Cntr	<u>S</u> S	3550				CoCode ENVH Template/Prelogin Shipped Via:	
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time							Remarks/Contaminant	Sample # (lab only)
5B-1	Grab	55	10'	11/10/05	11:30an	2	X						1722270
SB-2	1	1	1		12:00pm	2	X						-12
5 B-3					1:15m	2	X						-13
5B-4					2:00pm	2	X						
SB-5			V,		2:30pm	2	X						-75
SB-6			B		3:00pm	2		Х			 A start of the sta		-00-
SB-7	V	N/	3'	V	3:300-	2	X			·	 And A. Saling and A. Saling and		-37
Trip Blank					1	1							-05
											A STATE AND A STAT		
*Matrix: SS - Soil/Solid GW - Grou	ndwater WW	WasteWater	DW - Drin	king Water	OT - Other_						pH	T	emp
Remarks:				7907	· @99	51	EI.	33			Flow	0	ther
Relinquished by: (Signature)	Date:	65 Time:	Recei	ved by: (Signa		<u> </u>	<u> </u>		Sampl S Fed	es returneo Ex □Cou	I via: □ UPS rier □	Condition:	(lab use only)
Relinquished by: (Sign states	Date:	Time:	Recei	ved by: (Signa	ature)				Temp:	.6°°	Bottles Receive	3	Sec. 1
Relinquished by: (Signable)	Date:	Time:	Rece	for lab t	oy: (Sign atur	Ĵ	D	5	Date:		Time: 145	pH Checked: 2007	NCF:

FA - 2945 Reid Feb 09 2005

December 27, 2004

Carol Rhyner 7802 West Hazelwood Street Phoenix, Arizona 85033

Attention: Ms. Carol Rhyner

Reference:

SOIL AND GROUNDWATER SAMPLING SERVICES 6002 Raeford Road Fayetteville, North Carolina Job No. 1034-04-049

Dear Ms. Rhyner:

S&ME, Inc. (S&ME) is pleased to present the findings of our soil and groundwater sampling services conducted on the above referenced property in accordance with our Proposal No EPRO-04-11-06 dated November 22, 2004.

PROJECT INFORMATION

Based on our November 19, 2004 telephone conversation, we understand that the subject property is a former store, which operated an underground storage tank (UST) system. According to you, at least two tanks, which contained gasoline and kerosene, are located on the property. Two former gasoline dispensers were located in front of the building and one former kerosene dispenser was located at the southeast corner of the building. To the best of your knowledge, the UST system has not been operated since at least the late 1970s or early 1980s.

On November 19, 2004, Mr. Jamie T. Honeycutt with S&ME visited the subject property (Figure 1). Three fill ports and vent pipes associated with three USTs and three former fuel dispenser locations were observed on the property. No other visual signs of fill ports or vent pipes associated with USTs or former fuel dispenser locations were observed on the property. According to you, no other USTs are located on the property.

(910) 323-1091 (910) 323-3499 fax www.smeinc.com

The following services were provided by S&ME for the purpose of screening the site for potential impacts stemming from the former UST system at the subject property.

SUBSURFACE INVESTIGATION

On December 1, 2004, S&ME personnel observed three fill ports and vent pipes, associated with three USTs located at the front southeastern side of the building. S&ME personnel opened the fill ports for the tanks. The depth to the bottom of the tanks measured approximately 8 feet below land surface (bls). Approximately one to two inches of water with an odor similar to gasoline were observed in two tanks located next to each other, which are partially located under the front canopy of the building. Approximately two inches of water with an odor similar to kerosene were observed in the tank located southeast of the first two tanks.

Two former fuel dispenser locations were observed in front of the building. One former fuel dispenser location was observed at the southeast corner of the building.

S&ME advanced five Geoprobe test probes (#1 through #5) on the subject property. The approximate locations of the test probes are shown in Figure 2. Test probes #1, #2 and #5 were located at the former fuel dispenser locations. Test probe #3 (GW-1) was located near the fill ports for the two former gasoline tanks partially located under the front canopy of the building. Test probe #4 (GW-2) was originally located near the fill port for the former kerosene tank. An obstruction was encountered at this location and test probe #4 (GW-2) was offset further away from the fill port.

Soil samples were collected from each location at two-foot depth intervals. The soil samples were visually classified and field scanned with an Organic Vapor Analyzer (OVA) for the presence of volatile organic compounds (VOCs).

The soils encountered at the test probe locations primarily consisted of sand, clayey sand and sandy clay to a depth of approximately 12 feet bls. Pieces of concrete and asphalt were also encountered at the test probe locations. Groundwater was encountered at a depth of approximately 14 feet bls.

One soil sample was selected from each test probe location and forwarded to Enco Laboratories in Cary, North Carolina. The soil samples collected from test probes #1 and #2 located at the former gasoline dispenser locations at the front of the building and the soil sample collected from test probe #3 (GW-1) located near the fill ports for the former gasoline tanks were analyzed for Gasoline Range Organics by EPA Method 5030. The soil samples collected from test probe #5 located at the former kerosene fuel dispenser location at the southeast corner of the building and test probe #4 (GW-2) located near the former kerosene tank were analyzed for Gasoline Range Organics by EPA Methods 5030/3550.

The Geoprobe was used to advance test probes #3 (GW-1) and #4 (GW-2) into the groundwater. A groundwater sample was collected using the Geoprobe at each of these two test probe locations from a depth interval of approximately 14 to 18 feet bls. The groundwater samples were also forwarded to Enco Laboratories in Cary, North Carolina. The groundwater samples were analyzed for volatile organics by EPA Method 624. After the sampling had been completed, the test probe and soil boring locations were backfilled with bentonite pellets and soil cuttings.

LABORATORY ANALYTICAL RESULTS

Soil Screening

A review of the soil field screening data shows that no measurable OVA readings were observed in any of the selected soil samples except for test probe #4 (GW-2) located near the former kerosene tank. A strong petroleum odor was observed at test probe #4 (GW-2) starting at a depth of approximately 8 bls. Table 1 summarizes the soil field screening data for the collected soil samples.

Laboratory results for the collected soil samples show that Gasoline Range Organics were detected at test probe #1, which was located at the southwest former gasoline dispenser location. At a depth of approximately 4 feet bls in test probe #1, a concentration of 7.9 milligrams per kilogram (mg/Kg), was reported, which is below the North Carolina Reportable Concentration level of 10 mg/Kg. Gasoline Range Organics and Diesel Range Organics were detected at test probe #4 (GW-2), which was located near the former kerosene tank, at a depth of approximately 12 feet bls at a concentration of 1,100 mg/Kg and 3,400 mg/Kg, respectively, which are above the North Carolina Reportable Concentration level of 10 mg/Kg. All other soil samples were below the method detection limits. Table 2 summarizes the laboratory analytical results for soil samples collected at the subject property.

Groundwater Quality

Methy tert-butyl ether (MTBE) was detected at test probes #3 (GW-1) and #4 (GW-2) at a concentration of 8.7 and 33 micrograms per liter (ug/L) respectively, which are below the North Carolina Groundwater Quality Standard of 200 ug/L for MTBE. No other analyzed volatile organic compounds were detected in any of the collected groundwater samples at the subject property. Table 3 summarizes the laboratory analytical results for the collected groundwater samples. Copies of the laboratory reports are included in Appendix I.

CONCLUSION

Based on the laboratory results, it appears that a release has occurred at the USTs located on the subject property at a concentration which exceeds the North Carolina Reportable Concentration level. However, no petroleum constituents were detected in the groundwater samples collected on the subject property at a concentration, which exceed the North Carolina Groundwater Quality Standards.

Based on these findings, we understand that a copy of this report should be forwarded to the North Carolina Department of Environment and Natural Resources (NCDENR) by the property owner.

4

The purpose of this soil and groundwater sampling program was to screen the immediate areas of the identified USTs and dispensers for petroleum fuel product constituents. No data was collected nor is any representation made regarding areas of the site other than the specific sampling locations or for other contaminants.

S&ME appreciates having the opportunity to provide our services to you. Should you have any questions, please do not hesitate to contact us at your convenience.

Very truly yours,

S&ME, INC.

amie Honerat

Jamie T. Honeycutt Environmental Staff Professional

Senior Review by: loth for

Ernest F. Parker, Jr. P.E., P.G. Senior Environmental Consultant

Table 1

OVA Readings Soil and Groundwater Sampling Services

6002 Raeford Road Fayetteville, North Carolina S&ME Job No. 1034-04-049

Location	Depth (ft.)	OVA Reading (ppm)
Test Probe # 1 (Southwest former gasoline dispenser)	0 - 4	0
Test Probe # 2 (Southeast former gasoline dispenser)	0 - 4	0
Test Probe # 3 (GW-1) (Near former gasoline tanks)	0-12	0
Test Probe # 4 (GW-2) (Near former kerosene tank)	0-6 8 10 12	0 12 160 + 1000
Test Probe # 5 (Former kerosene dispenser)	0-4	0

Notes: ppm = parts per million ft.: feet

Table 2

Summary of Soil Analytical Data Soil and Groundwater Sampling Services

6002 Raeford Road Fayetteville, North Carolina S&ME Job No. 1034-04-049

<u>Analysis</u> Compound	Test Probe # 1 Southwest former gasoline dispenser	Test Probe # 2 Southeast former gasoline dispenser	Test Probe #3 (GW-1) Near former gasoline tanks	Test Probe #4 (GW-2) Near former kerosene tank	Test Probe # 5 Former kerosene dispenser	Reportable Concentration
	4'	4'	12'	12'	4'	
EPA Method 5030 Gasoline Range Organics	7.9	BDL	BDL	1,100	BDL	10
<u>EPA Method</u> <u>3550</u> Diesel Range Organics	NA	NA	NA	3,400	BDL	10

All quantities expressed in mg/Kg milligrams per kilograms (parts per million)

BDL: below method detection limits

NA: not analyzed

Constituents not listed were below the detection limit of the analytical method.

Regulatory standards as set forth in "Guidelines for Assessment and Corrective Action, North Carolina Underground Storage Tank Section"

Analytical results greater than applicable standards are given in bold print.

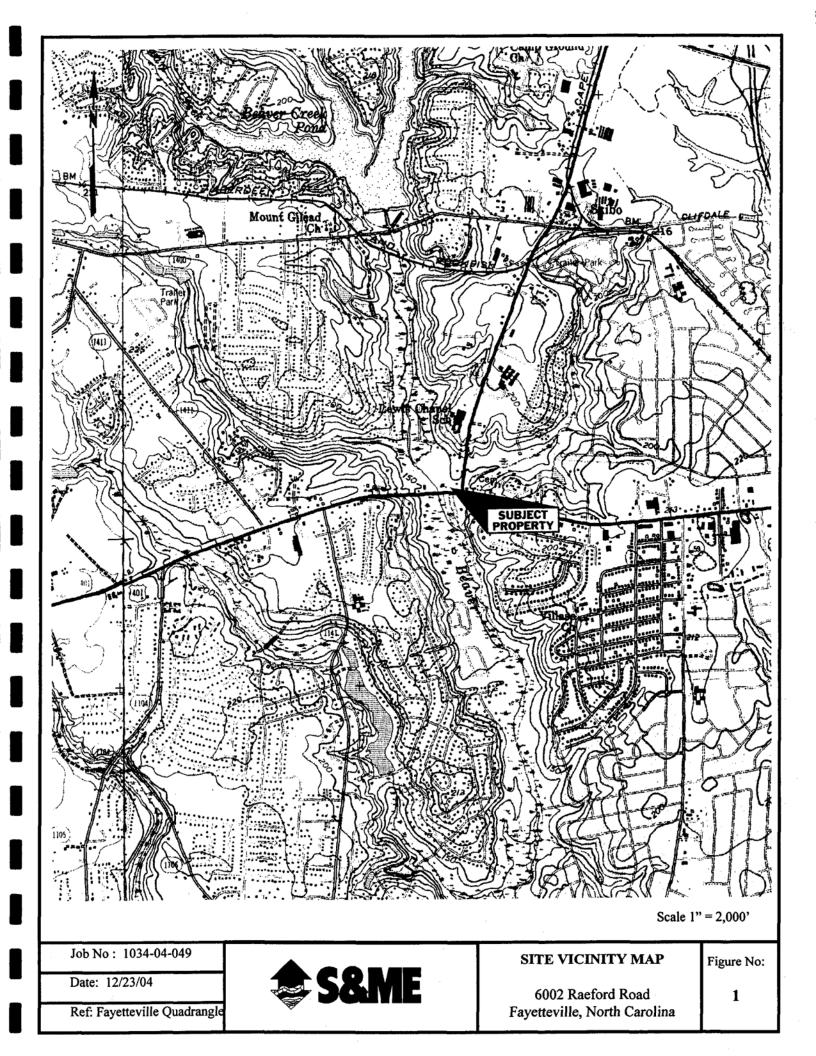
S&ME Job No. 1034-04-049 December 27, 2004

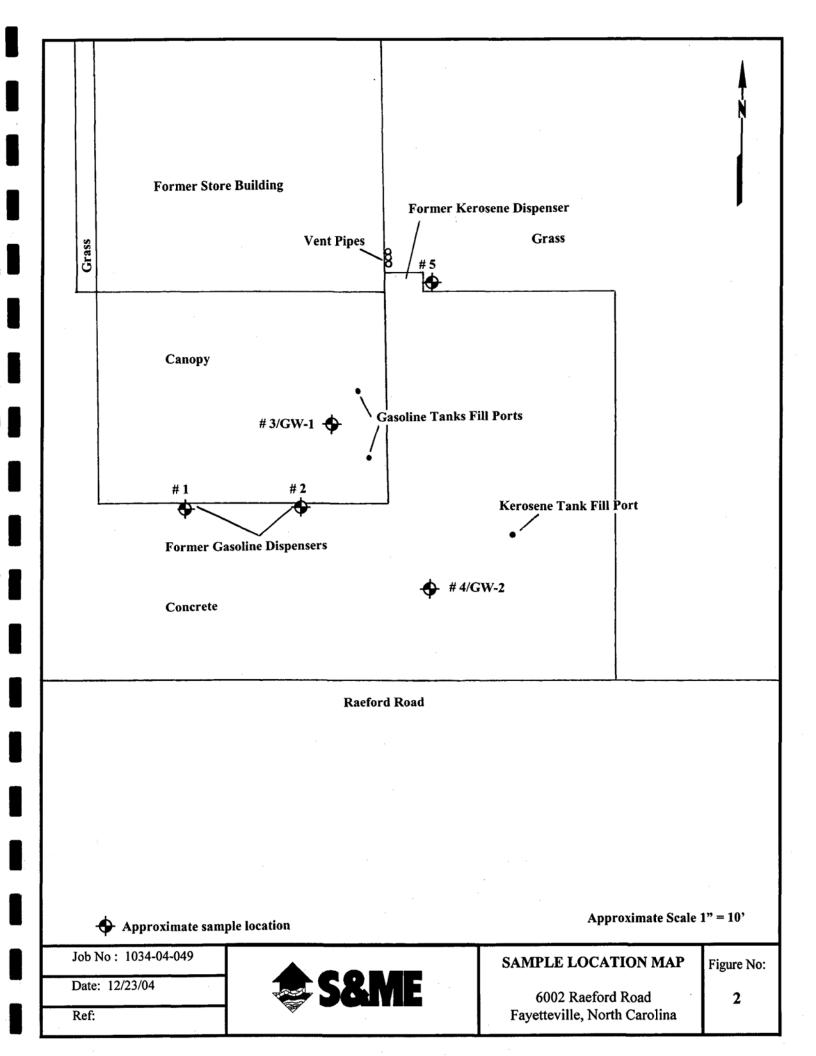
Table 3

Summary of Groundwater Quality Data Soil and Groundwater Sampling Services

6002 Raeford Road Fayetteville, North Carolina S&ME Job No. 1034-04-049

<u>Analysis</u>	Test Probe # 3 (GW-1)	Test Probe # 4 (GW-2)	2L Regulatory
Compound	Near former gasoline tanks	Near former kerosene tank	Standards
Method 624			
MTBE	8.7	33	200
Benzene	BDL	BDL	
Toluene	BDL	BDL	
Ethylbenzene	BDL	BDL	
Xylenes	BDL	BDL	
Isopropyl Ether	BDL	BDL	
Naphthalene	BDL	BDL	


Groundwater samples were not collected at any other location


All quantities expressed in ug/L micrograms per liter (parts per billion)

BDL: below method detection limits

Regulatory standards as set forth in 15A NCAC 2L, "Classifications and Standards Applicable to the Groundwaters of North Carolina" or in guidance documents issued by the NCDENR.

Analytical results greater than applicable standards are given in bold print.

Environmental Conservation Laboratories, Inc. 1015 Passport Way Cary, North Carolina 27513-2042 919 / 677-1669 Fax 919 / 677-9846 www.encolabs.com

CLIENT : S&ME, Inc. ADDRESS: 409 Chicago Dr. Suite 116 Fayetteville, NC 28306 REPORT # : CRY17023 DATE SUBMITTED: December 2, 2004 DATE REPORTED : December 8, 2004

PAGE 1 OF 9

ATTENTION: Mr. Jamie Honeycutt

SAMPLE IDENTIFICATION

Samples submitted and identified by client as:

REFERENCE: 1034-04-049

Raeford Rd.

12/01/04

CRY17023-1	:	#1	@	13:00
CRY17023-2	:	#2	@	13:30
CRY17023-3	:	#3	@	13:40
CRY17023-4	:	#4	@	15:00
CRY17023-5	:	#5	@	15:30
CRY17023-6	:	GW-1	@	16:00
CRY17023-7	:	GW-2	@	15:15

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. This data has been produced in accordance with NELAC Standards (July, 2002). This report shall not be reproduced except in full, without the written approval of the laboratory. Results for these procedures apply only to the samples as submitted.

Note: Analytical values are reported on a dry weight basis.

PROJECT MANAGER

Chuck Smith

REPORT # : CRY17023 DATE REPORTED: December 8, 2004 REFERENCE : 1034-04-049 PROJECT NAME : Raeford Rd.

PAGE 2 OF 9

RESULTS OF ANALYSIS

EPA METHOD 8015 MODIFIED - GASOLINE RANGE ORGANICS	<u>#1</u>	<u>#2</u>	Units
GRO (C6-C10)	7.9 D1	4.7 U D2	mg/Kg
<u>Surrogate:</u> 2,5-Dibromotoluene Date Analyzed	<u>% RECOV</u> 100 12/06/04 18:21	<u>% RECOV</u> 88 12/06/04 18:52	LIMITS 59-168

MISCELLANEOUS	METHOD	<u>#1</u>	#2	Units
Percent Solids Date Analyzed	ENCO WETS	72 91 12/03/04 10:30	90 12/03/04 10:30	alo

U = Compound was analyzed for but not detected to the level shown. D1 = Analyte value determined from a 1:117 dilution. D2 = Analyte value determined from a 1:85 dilution.

REPORT # : CRY17023 DATE REPORTED: December 8, 2004 **REFERENCE** : 1034-04-049 **PROJECT NAME** : Raeford Rd.

PAGE 3 OF 9

RESULTS OF ANALYSIS

EPA METHOD 8015 MODIFIED DIESEL RANGE ORGANICS	- <u>#3</u>	<u>#4</u>	Units
DRO (C10-C24)	NR	3400 D3	mg/Kg
Surrogate: o-Terphenyl Date Prepared Date Analyzed		<u>% RECOV</u> 88 12/02/04 09:00 12/02/04 18:25	LIMITS 34-140

EPA METHOD 8015 MODIFIED - GASOLINE RANGE ORGANICS	<u>#3</u>	<u>#4</u>	Units
GRO (C6-C10)	5.8 U D4	1100 D5	mg/Kg
Surrogate: 2,5-Dibromotoluene Date Analyzed	<u>% RECOV</u> 80 12/06/04 19:23	<u>% RECOV</u> * 12/06/04 20:24	LIMITS 59-168

MISCELLANEOUS	METHOD	<u>#3</u>	<u>#4</u>	Units
Percent Solids	ENCO WETS 72		93	00
Date Analyzed	12,	/03/04 10:30	12/03/04 10:30	

= Recovery unavailable due to high concentration of target analyte. NR = Analysis not requested for this sample. U = Compound was analyzed for but not detected to the level shown. D3 = Analyte value determined from a 1:20 dilution.

D4 = Analyte value determined from a 1:103 dilution.

D5 = Analyte value determined from a 1:100 dilution.

REPORT # : CRY17023 DATE REPORTED: December 8, 2004 REFERENCE : 1034-04-049 PROJECT NAME : Raeford Rd.

PAGE 4 OF 9

RESULTS OF ANALYSIS

EPA METHOD 624 - VOLATILE ORGANICS	<u>#5</u>	<u>GW-1</u>	Units
Methyl tert-butyl ether Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Isopropyl Ether Naphthalene	NR NR NR NR NR NR NR NR	8.7 1.0 U 1.0 U 1.0 U 2.0 U 1.0 U 1.0 U 2.0 U	ug/L ug/L ug/L ug/L ug/L ug/L ug/L
Surrogate: Dibromofluoromethane D8-Toluene Bromofluorobenzene Date Analyzed		<u>% RECOV</u> 90 93 91 12/03/04 18:53	LIMITS 73-138 77-118 70-130

EPA METHOD 8015 MODIFIED DIESEL RANGE ORGANICS	- <u>#5</u>	<u>GW-1</u>	Units
DRO (C10-C24)	3.6 U	NR	mg/Kg
Surrogate: o-Terphenyl Date Prepared Date Analyzed	<u>% RECOV</u> 87 12/02/04 09:00 12/02/04 15:01		LIMITS 34-140

NR = Analysis not requested for this sample. U = Compound was analyzed for but not detected to the level shown.

REPORT # : CRY17023 DATE REPORTED: December 8, 2004 REFERENCE : 1034-04-049 PROJECT NAME : Raeford Rd.

PAGE 5 OF 9

RESULTS OF ANALYSIS

EPA METHOD 8015 MODIFIED - GASOLINE RANGE ORGANICS	<u>#5</u>	<u>GW-1</u>	Units
GRO (C6-C10)	5.0 U D6	NR	mg/Kg
Surrogate: 2,5-Dibromotoluene Date Analyzed	<u>% RECOV</u> 81 12/06/04 19:53		LIMITS 59-168

MISCELLANEOUS	METHOD	<u>#5</u>	<u>GW-1</u>	Units
Percent Solids Date Analyzed	ENCO WETS 72	91 03/04 10:30	NR	\$

NR = Analysis not requested for this sample. U = Compound was analyzed for but not detected to the level shown. D6 = Analyte value determined from a 1:92 dilution.

REPORT # : CRY17023 DATE REPORTED: December 8, 2004 REFERENCE : 1034-04-049 PROJECT NAME : Raeford Rd.

PAGE 6 OF 9

RESULTS OF ANALYSIS

EPA METHOD 624 -			
VOLATILE ORGANICS	<u>GW-2</u>	LAB BLANK	Units
Methyl tert-butyl ether	33	1.0 U	ug/L
Benzene	1.0 U	1.0 U	ug/L
Toluene	1.0 U	1.0 U	ug/L
Ethylbenzene	1.0 U	1.0 U	ug/L
m-Xylene & p-Xylene	2.0 U	2.0 U	ug/L
o-Xylene	1.0 U	1.0 U	ug/L
Isopropyl Ether	1.0 U	1.0 U	ug/L
Naphthalene	2.0 U	2.0 U	ug/L
Surrogate:	% RECOV	% RECOV	LIMITS
Dibromofluoromethane	90	95	73-138
D8-Toluene	95	98	77-118
Bromofluorobenzene	93	96	70-130
Date Analyzed	12/03/04 19:19	12/03/04 08:52	,0 100

EPA METHOD 8015 MODIFIED - DIESEL RANGE ORGANICS	<u>GW-2</u>	LAB BLANK	Units
DRO (C10-C24)	NR	3.3 U	mg/Kg
Surrogate: o-Terphenyl Date Prepared Date Analyzed		<u>% RECOV</u> 83 12/02/04 09:00 12/02/04 12:18	LIMITS 34-140

NR = Analysis not requested for this sample. U = Compound was analyzed for but not detected to the level shown.

REPORT # : CRY17023 DATE REPORTED: December 8, 2004 **REFERENCE** : 1034-04-049 **PROJECT NAME : Raeford Rd.**

PAGE 7 OF 9

RESULTS OF ANALYSIS

EPA METHOD 8015 MODIFIED -GASOLINE RANGE ORGANICS

GRO (C6-C10)

<u>GW-2</u>	LAB BLANK	Units
NR	5.0 U D5	mg/Kg
	<u>% RECOV</u> 100 12/06/04 11:52	LIMITS 59-168

Surrogate:

2,5-Dibromotoluene Date Analyzed

NR = Analysis not requested for this sample. U = Compound was analyzed for but not detected to the level shown. D5 = Analyte value determined from a 1:100 dilution.

REPORT # : CRY17023 DATE REPORTED: December 8, 2004 REFERENCE : 1034-04-049 PROJECT NAME : Raeford Rd.

PAGE 8 OF 9

LABORATORY CERTIFICATIONS

Laboratory Certification: NCDENR:591

All analyses reported with this project were analyzed by the facility indicated unless identified below.

REPORT # : CRY17023 DATE REPORTED: December 8, 2004 REFERENCE : 1034-04-049 PROJECT NAME : Raeford Rd.

PAGE 9 OF 9

QUALITY CONTROL DATA

Parameter	% RECOVERY LCS/MS/MSD	LCS <u>LIMITS</u>	MS/MSD LIMITS	RPD <u>MS/MSD</u>	RPD LIMITS
EPA Method 624 1,1-Dichloroethene Benzene Trichloroethene Toluene Chlorobenzene	98/97/98 102/99/101 95/97/97 89/92/90 92/94/94	64-139 69-115 74-118 77-117 76-118	36-177 53-150 64-124 40-161 44-128	1 2 <1 2 <1	30 23 25 23 22
EPA Method 8015 MODIFIED DRO (C10-C24)	70/ 72/ 72	49-102	14-162	<1	31
EPA Method 8015 MODIFIED GRO (C6-C10)	90/ 85/ 87	51-115	45-162	2	24

< = Less Than
MS = Matrix Spike
MSD = Matrix Spike Duplicate
LCS = Laboratory Control Standard
RPD = Relative Percent Difference</pre>

CHAIN OF CUSTODY RECORD

P.O. No.: _____

Branch: _____

Department: _

								T	9 • 163					
5&ME J 1034 04					ford RD		Containers			/		/*	/	
amplers	: (signation of the second sec	iure) Negetu	Ð	a (v.						/ /		1.301 - 1.05	/ /	REMARKS
tation No.	Date	Time	Comp.	Grab			Number of		/ag		WE W	3	/	
	12-1	1:00		1	14				1					
		1:30		1	* 3				1		-			
		1:40			# 3				1					
		3:00			#4					1				
		3:30			₩ 5									
		2:00			Glus-1									
	V	3:15			GW-2									
						· · · · · · · · · · · · · · · · · · ·								
								ļ			L			
			<u> </u>									 		
										 				
		ļ												· · · · · · · · · · · · · · · · · · ·
elipquis	shed by:	(signature	e)		ate: Time:	Received by: (signature)		Reli	nquist	ned by	r: (sign	ature)		Date: Time: Received by: (signature)
Jame	Then	peul			104 6:00pm									
elinquis	shed by	(signature	e)		ate: Time:	Received by: (signature)		Relfi		ed by	: (sign	ature)		Date: Time: Received by: (signature)
elinquis	shed by	(signatur	e)	D	ate: Time:	Received by: (Signature)		Rem	harks					
	Thi	dooumen	+ was			ecific agreement to address	the unique	4	\cap	p?	H	62.	2	
E SFP-004	req	uirements o	of an S	S&ME	client. Prior to furth	er use, an S&ME professional	should be	L						

North Carolina Department of Environment and Natural Resources

Michael F. Easley, Governor William G. Ross Jr., Secretary

Division of Waste Management Underground Storage Tank Section

Dexter R. Matthews, Director

January 26, 2006

Carol Rhyner 7802 West Hazzlewood Street Phoenix, AZ 85033

> Re: Notice of No Further Action 15A NCAC 2L .0115(h) Risk-based Assessment and Corrective Action for Petroleum Underground Storage Tanks

> > Rhyner Property 6002 Raeford Road Cumberland County FA-2945 Risk Classification: Low Ranking: L0R

Dear Ms. Rhyner:

The Underground Storage Tank (UST) Closure Report or Soil Contamination Report received by the Underground Storage Tank (UST) Section, Fayetteville Regional Office on January 26, 2006, has been reviewed. The review indicates that after tank closure or soil excavation soil contamination does not exceed the lower of the soil-to-groundwater or residential maximum soil contaminant concentrations (MSCCs), established in Title 15A NCAC 2L .0115(m).

The UST Section determines that no further action is warranted for this incident. This determination shall apply unless the UST Section later finds that the discharge or release poses an unacceptable risk or a potentially unacceptable risk to human health or the environment. Pursuant to Title 15A NCAC 2L .0115(e) you have a continuing obligation to notify the Department of any changes that might affect the risk or land use classifications that have been assigned.

This No Further Action determination applies only to the subject incident; for any other incidents at the subject site, the responsible party must continue to address contamination as required.

If you have any questions regarding this notice, please contact me at the address or telephone number listed below.

Sincerely,

James W. Brown Hydrogeologist II Fayetteville Regional Office UST Regional Offices

Asheville (ARO) – 2090 US Highway 70, Swannanoa, NC 28778 (828) 296-4500 Fayetteville (FAY) – 225 Green Street, Suite 714, Systel Building, Fayetteville, NC 28301 (910) 486-1541 Mooresville (MOR) – 610 East Center Avenue, Suite 301, Mooresville, NC 28115 (704) 663-1699 Raleigh (RRO) – 1628 Mail Service Center, Raleigh, NC 27699 (919) 791-4200 Washington (WAS) – 943 Washington Square Mall, Washington, NC 27889 (252) 946-6481 Wilmington (WIL) – 127 Cardinal Drive Extension, Wilmington, NC 28405 (910) 796-7215 Winston-Salem (WS) – 585 Waughtown Street, Winston-Salem, NC 27107 (336) 771-4600 Guilford County Environmental Health, 1203 Maple Street, Greensboro, NC 27405, (336) 641-3771

FTP: NFA closure NOR1005.dot