

North Carolina Department of Transportation

Phase II Investigation State Project: R-5709 WBS Element: 50205.1.1 Hoke County

Parcel 335
Wayne Michael George Property
8692 NC 211 Hwy
Aberdeen, North Carolina
November 3, 2021

Wood Environment & Infrastructure Solutions, Inc.

Project: 20478R5709

Andrew Frantz, REM Senior Scientist

Helen Corley, LG, BCES
Principal Hydrogeologist

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	GEOLOGY	2
2.1	Regional Geology	2
2.2	Site Geology	2
3.0	FIELD ACTIVITIES	2
3.1	Preliminary Activities	2
3.2	Site Reconnaissance and Vegetation Clearing	3
3.3	Geophysical Survey Results and Utility Locating	3
3.4	Soil Sampling	4
3.4.	1 Soil Sampling for On-Site UVF Analysis	4
3.4.	2 Soil Sampling for Off-Site Lab Analysis of PCBs	5
4.0	SOIL SAMPLING RESULTS	6
4.1	On-Site UVF Analysis	6
4.2	Off-Site Lab Results of PCBs	6
4.3	Risk Assessment	7
5.0	CONCLUSIONS	8
6.0	RECOMMENDATIONS	9

TABLES

Table 1 Summary of PID Screening ResultsTable 2 UVF Hydrocarbon Soil Sampling ResultsTable 3 PCB Soil Sampling Results

FIGURES

Figure 1 Vicinity Map
Figure 2 Site Map with Boring Locations
Figure 3 UVF Analytical Results Map
Figure 4 PCB Analytical Results Map

APPENDICES

Appendix A Boring Logs
 Appendix B Photographic Log
 Appendix C Geophysical Report
 Appendix D UVF Hydrocarbon Analytical Results
 Appendix E Risk Calculator Output and Laboratory Analytical Report

1.0 INTRODUCTION

In response to the North Carolina Department of Transportation (NCDOT) Request for Proposal, dated June 2, 2021, Wood Environment & Infrastructure Solutions, Inc. (Wood) has performed a Phase II Investigation for Parcel 335 (Site). The investigation was conducted in accordance with Wood's Technical and Cost proposal dated June 18, 2021, and NCDOT's July 6, 2021, Notice to Proceed. NCDOT contracted Wood to perform the Phase II Investigation at the parcel, within areas that will be affected by the proposed widening of NC 211 Hwy from US 15-501 in Aberdeen, North Carolina to SR 1244 (West Palmer Street)/SR 1311 (Mockingbird Hill Road) in Raeford, North Carolina.

The Site is located along the southwestern side of NC 211 Hwy, as shown on the Vicinity Map, **Figure 1**. The parcel, which is located at 8692 NC 211 Hwy, is currently occupied by a vacant dilapidated building. The Site is identified as Parcel 335, Wayne Michael George property, within the NCDOT MicroStation survey file and is in Aberdeen of Hoke County, North Carolina. The area of investigation at Parcel 335 encompasses the entire 0.571-acre parcel as shown on **Figure 2**.

The Site was reported as a possible former gasoline station in the 2019 NCDOT Phase I Report. Wood reviewed the North Carolina Laserfiche online database and NCDEQ environmental documentation for Parcel 335 was not present. Wood reviewed the NCDOT Historical Aerial Imagery Index, and Parcel 335 was not covered by photographs in the index.

The following report describes a geophysical survey and subsurface field investigation at the Site, with results from our ultraviolet fluorescence (UVF) onsite soil analyses, offsite lab analyses for polychlorinated biphenyls (PCB) and evaluation of potential soil contamination within the Site.

2.0 GEOLOGY

2.1 Regional Geology

The Site is located within the Coastal Plain Physiographic Province of North Carolina. According to the 1985 State Geologic Map of North Carolina, the area is within the Pinehurst Formation and is underlain by medium- to coarse-grained sand with cross-bedding and rhythmic bands of clayey sand.

2.2 Site Geology

Site geology was observed through the advancement of 22 shallow soil borings (P335-B1 to P335-B22). The borings were advanced to approximate depths of 2 to 15 feet below ground surface bgs. Groundwater was not encountered during boring advancement. Figure 2 presents the boring locations and Site layout. Soils encountered in the borings consisted mostly of tan to brown sand overlying tan to orange to white clayey sand. Staining and petroleum odors were not observed in the borings. Based on observations of topography of the Site vicinity, the groundwater flow direction is inferred to be generally toward the southwest. Boring logs are presented in **Appendix A**.

3.0 FIELD ACTIVITIES

3.1 Preliminary Activities

Prior to commencing field sampling activities at the Site, several tasks were accomplished in preparation for the subsurface investigation. A Health and Safety Plan (HASP) was created with the Site-specific health and safety information necessary for the field activities, including protocols for COVID-19. The North Carolina underground utility location service (North Carolina 811) was contacted on August 24, 2021, for the parcel.

Eastern Solutions, LLC of Charlotte, North Carolina (Eastern Solutions) was retained to perform vegetation clearing at the parcel to facilitate access for geophysical survey equipment and the direct-push drill rig. Pyramid Geophysical Services of Greensboro, North Carolina (Pyramid) was retained to conduct a geophysical investigation. Probe Utility Locating (PUL) was retained to perform utility locating activities at the Site. Innovative

Environmental Technologies, Inc. (IET) of Concord, North Carolina was retained by Wood to perform the direct push sampling for soil borings, and UVF instrumentation was rented from Red Lab, LLC (Red Lab) of Wilmington, North Carolina.

Boring locations were strategically placed within the parcel to maximize the opportunity to encounter potential contaminated soil and evaluate areas of subsurface design features.

3.2 Site Reconnaissance and Vegetation Clearing

Wood personnel visited the parcel on June 8, 2021, and observed a dilapidated building, an old car, and an old RV at the Site. At the time of the initial site reconnaissance, the parcel was observed to be overgrown with tall grass. A photographic log is included in **Appendix B**.

The vegetation clearing was conducted by Eastern Solutions personnel on August 4, 2021. Eastern Solutions used a brush hog was used to mow the tall grass at the Site. On August 11, 2021, while observing geophysical survey activities at neighboring Parcel 368, Wood personnel were approached by Mr. James Schieler who resides at 8820 Aberdeen Road (Parcel 369), located to the southeast of the Site across NC 211 Hwy. Mr. Schieler informed Wood that past activities at Parcel 335 may have included handling/cleaning electrical transformers; however, he was not able to provide a timeframe for these activities.

3.3 Geophysical Survey Results and Utility Locating

The geophysical survey was conducted by Pyramid personnel between August 10 and 12, 2021. Pyramid conducted a geophysical investigation using electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys across the investigation area. A total of 13 EM anomalies were identified, the majority of which were attributed to visible cultural features at the ground surface. Of the 13 EM anomalies identified, two anomalies were consistent with buried structures such as USTs. The GPR survey of the two anomalies identified the presence of two possible USTs. Possible UST #1 is located near the northwestern Site corner and measured approximately six feet wide. The length of possible UST #1 could not be determined since the anomaly extended beneath a concrete slab with an old RV parked on top. The top of possible UST #1 was estimated at 1-foot bgs. Possible UST #2 is in the center portion of the Site and measured approximately 15.5 feet long by 7 feet wide. The top of possible UST #2 was estimated at 1.5 feet bgs. In

addition, two no confidence anomalies were identified in the center portion of the Site. The GPR survey of the no confidence anomalies did not identify evidence of buried structures consistent with USTs. The complete Pyramid geophysics report is included as **Appendix C**.

Utility locating was performed by PUL personnel on August 26, 2021. The utility locating effort identified a buried water line located along the northeastern Site boundary along NC 211 Hwy.

3.4 Soil Sampling

On September 7, 2021, Wood and IET mobilized to the Site to advance 22 shallow soil borings (P335-B1 to P335-B22). The borings were advanced via direct-push technology to approximate depths ranging from 2 to 15 feet bgs. Boring locations targeted potential environmental sources at the Site and future drainage features. The purpose of soil sampling was to assess if the soil had been impacted at the Site and if so, to estimate the volume of impacted soil that might require special handling during NCDOT construction activities. Figure 2 indicates the boring locations and type of soil analyses per boring location.

Additionally, Wood personnel used a stainless-steel hand auger and a shovel to confirm the depths of the two possible USTs. Two holes were dug above possible UST #1 and three holes were dug above possible UST #2. The tops of possible USTs #1 and #2 were measured at approximately 1.5 feet and 2 feet bgs, respectively. It was noted that the tops of each possible UST were flatter in shape than would be expected for a buried tank and may indicate objects other than tanks at these locations; however, further excavation is needed to determine the full nature of the buried objects.

3.4.1 Soil Sampling for On-Site UVF Analysis

Thirteen soil borings (P335-B1 to P335-B13) were advanced for the collection of soil sample for on-Site UVF analysis. IET advanced a soil sampler to the target depth at each boring location using an AMS PowerProbe. To minimize the potential for cross-contamination between samples, a new polyvinyl chloride (PVC) sleeve (tube) was inserted into the sampler for each soil interval. Visual and olfactory observations relative to the soil cores were recorded by Wood personnel. The soil types encountered in the borings were

recorded to prepare soil boring logs. Wood conducted field screening for volatile organic compounds (VOCs) of the soil borings with a photoionization detector (PID). The portion of each soil core with the highest PID reading was selected from the 0–5 foot interval and the 5-10 foot interval for analysis of total petroleum hydrocarbons (TPH), diesel range organics (DRO), gasoline range organics (GRO), benzene, toluene, ethylbenzene, and xylene (BTEX), total aromatics, and polycyclic aromatic hydrocarbons (PAH) by UVF. In borings extended to 15 feet bgs near possible UST #2, an additional portion was selected from the 10-15 foot interval for the analyses indicated above. Borings located near possible UST #1 were not advanced to 15 feet bgs due to the small size and shallow depth of the possible tank. Neither groundwater nor bedrock were encountered in the borings. Thirty soil samples were collected from the 13 borings for on-Site UVF analysis.

3.4.2 Soil Sampling for Off-Site Lab Analysis of PCBs

Polychlorinated Biphenyls (PCBs) are a group of man-made chemicals known for their stability, non-flammability, and electrical insulating properties. PCBs were commonly manufactured and used in equipment such as electrical transformers until production was banned in the United States in 1979. Since no timeframe of the potential handling/cleaning of transformers at the Site was provided by Mr. Schieler, soil samples were collected for off-Site analysis of PCBs.

In addition to the UVF soil samples, a soil sample was collected from the 0-2 foot interval from borings P335-B4, P335-B7, P335-B8, P335-B9, P335-B10, P335-B12, and P335-B13 for off-Site PCB analysis. Furthermore, IET advanced an additional nine borings (P335-B14 to P335-B22) for the collection of soil samples from the 0-2 foot interval for off-Site PCB analysis. A total of 16 soil samples were collected from the Site for off-Site PCB analysis from gridded locations as indicated in Figure 2. The soil samples were placed in laboratory-provided containers, placed in a cooler on ice, and delivered under chain-of-custody protocol to Pace Analytical Services, LLC (Pace), in Huntersville, North Carolina.

4.0 SOIL SAMPLING RESULTS

4.1 On-Site UVF Analysis

Based on September 7, 2021, PID screening and UVF hydrocarbon analysis, evidence of petroleum hydrocarbon impacts was not identified. The NCDEQ Action Levels of 100 milligrams per kilogram (mg/kg) for DRO and 50 mg/kg for GRO were not exceeded in the 13 UVF borings advanced at the Site.

PID readings for the 13 borings ranged from 9.9 parts per million (ppm) in sample P335-B1-8-10 collected from 8 to 10 feet bgs to 20.0 ppm in sample P335-B8-0-2 collected from 0 to 2 feet bgs. The PID field screening results for samples selected for UVF analysis are summarized in **Table 1** and the full list of PID readings are provided on the boring logs in Appendix A.

Results from the on-Site UVF petroleum soil analyses are presented in **Table 2**, with instrument generated tables in **Appendix D**. Several categories of analyses were measured such as: DRO, GRO, TPH, PAHs, and total aromatics. **Figure 3** presents the GRO and DRO results for the September 2021 investigation.

GRO or DRO detections in the 30 soil samples collected at the Site for UVF did not exceed their respective NCDEQ Action Levels. The hydrocarbon results from the QED QROS Hydrocarbon Analyzer are provided in Appendix D.

4.2 Off-Site Lab Results of PCBs

The laboratory analytical report and chain-of-custody form for the off-Site soil sample analysis conducted by Pace is included in **Appendix E**. The results of the 16 soil samples analyzed for PCBs by Pace are summarized below as well as in **Table 3** and **Figure 4**:

- Detectable concentrations of PCBs were identified in samples B335-B10-0-2, P335-B14-0-2, P335-B17-0-2, P335-B19-0-2, and P335-B21-0-2.
- Table notes direct the user of the NCDEQ Inactive Hazardous Sites Branch (IHSB)
 Preliminary Soil Remediation Goals (PSRGs), dated June 2021, to total the detected

PCB Arochlor concentrations for a sample and compare the sum to the PCB (high risk) PSRG. The total concentrations of detected PCB Arochlors identified in samples P335-B10-0-2 (74.9 micrograms per kilogram [μ g/kg]), P335-B14-0-2 (581 μ g/kg), P335-B17-0-2 (82.6 μ g/kg), and P335-B19-0-2 (989 μ g/kg) exceeded the PCB high risk NCDEQ IHSB Protection of Groundwater PSRG of 55 μ g/kg.

- The total concentrations of detected PCB Arochlors identified in samples P335-B14-0-2 (581 μ g/kg) and P335-B19-0-2 (989 μ g/kg) exceeded the PCB high risk NCDEQ IHSB Residential PSRG of 230 μ g/kg.
- The total concentration of detectable PCBs identified in sample P335-B19-0-2 (989 μg/kg) exceeded the PCB high risk NCDEQ IHSB Industrial Commercial PSRG of 950 μg/kg.

4.3 Risk Assessment

The NCDEQ Risk Calculator (June 2021 Version) was used to evaluate cumulative exposure risk for the Site using the sample with highest total PCB Arochlor concentration (P335-B19-0-2). This risk assessment was performed in general accordance with the NCDEQ Risk Calculator User Guide (February 2021 Version). Two exposure pathways were evaluated for the Site: direct contact with soil for construction workers and direct contact with soil for trespassers/recreators. The default acceptable cumulative carcinogenic risk threshold is 1.0 x 10⁻⁰⁴ and the default acceptable cumulative target hazard index threshold is 1.0. The NCDEQ Risk Calculator results show that neither the cumulative carcinogenic risk threshold nor the cumulative target hazard index was exceeded for the Site. The NCDEQ Risk Calculator output is provided in Appendix E.

5.0 CONCLUSIONS

Based on the Site observations and UVF analysis, petroleum-impacted soil contamination was not identified as defined by localized exceedances of the NCDEQ Action Levels of 50 mg/kg for GRO and 100 mg/kg for DRO.

Based on the off-Site PCB analyses, PCB-impacted soil contamination was identified as defined by localized exceedances of the NCDEQ IHSB PSRGs. Since the PCB source is uncertain/unknown and since initial sample results for total PCBs are less than 50 mg/kg, the sampled soil would be considered non-hazardous and could go to a subtitle D landfill.

The following bulleted summary is based upon Wood's evaluation of field observations and on-Site and off-Site analyses of samples collected from the Site on September 7, 2021.

- The Site is occupied by a dilapidated building, an old car, and an old RV. The geophysical survey identified two possible USTs at the Site. Possible UST #1 measured approximately six feet wide. The length of possible UST #1 could not be determined since the anomaly extended beneath a concrete slab with an old RV parked on top. Possible UST #2 is in the center portion of the Site and measured approximately 15.5 feet long by 7 feet wide.
- Wood personnel used a stainless-steel hand auger and a shovel to confirm the
 depths of the two possible USTs. The tops of possible USTs #1 and #2 were
 measured at approximately 1.5 feet and 2 feet bgs, respectively. It was noted that
 the tops of each possible UST were flatter in shape than expected for a buried tank
 and may indicate objects other than tanks at these locations; however, further
 excavation is needed to determine the full nature of the buried objects.
- Thirteen soil borings were advanced to roughly 10 to 15 feet within the investigation area to collect soil samples for on-Site UVF analysis. Thirty soil samples were collected for on-Site UVF analysis. UVF analysis of 24 soil samples collected did not identify petroleum-impacted soil.
- Sixteen soil samples were collected from seven of the 13 UVF soil borings and an additional nine soil borings for off-Site PCB analysis. The 16 PCB soil samples were collected from approximately 0-2 feet bgs.

- The off-Site PCB analysis identified total PCB concentrations in soil samples P335-B10-0-2, P335-B14-0-2, P335-B17-0-2, and P335-B19-0-2 which exceed the PCB high risk NCDEQ IHSB Protection of Groundwater PSRG. In addition, the total concentrations identified in samples P335-B14-0-2 and P335-B19-0-2 exceed the PCB high risk NCDEQ IHSB Residential PSRG. Furthermore, the total concentration identified in P335-B19-0-2 exceeds the PCB high risk NCDEQ IHSB Industrial/Commercial PSRG.
- The highest total PCB concentration (sample P335-B19-0-2) was used to evaluate
 cumulative exposure risk for the Site. Two exposure pathways were evaluated for the
 Site: direct contact with soil for construction workers and direct contact with soil for
 trespassers/recreators. The NCDEQ Risk Calculator results show that neither the
 cumulative carcinogenic risk threshold nor the cumulative target hazard index was
 exceeded for the Site.

6.0 RECOMMENDATIONS

Based on these Phase II Investigation results, Wood does not recommend further soil investigation for petroleum-impacted soils.

Wood does recommend further soil sampling for definition of PCB concentrations in shallow soils prior to construction in the expanded ROW and/or disturbance in the PUE. The largest measured PCB concentration of 989 μ g/kg, sample P335-B19 - 0-2 ft, was collected along the proposed cut line. However, a considerable area between the cut line and edge of parcel along NC 211 Hwy has not yet been assessed for potential PCB impact. Wood notes that the PCB impacts identified in borings P335-B10, P335-B14, and P335-B17 are located outside of the proposed ROW. Special handling of PCB-impacted soil should occur during construction activities, which may include excavation and disposed off-Site.

Depending on how much of Parcel 335 will be acquired by NCDOT, one or two of the potential USTs should be investigated through excavation and removed prior to road construction. The eastern potential UST lies along the proposed ROW line.

Table 1: Summary of PID Screening Results R-5709, Parcel 335 - Wayne Michael George Property **Aberdeen, North Carolina Wood Project: 20478R5709**

Boring ID	Depth of Sample Interval	PID Reading
P335-B1	4-6	10.9
1 333 51	8-10	9.9
P335-B2	0-2	12.3
1 333 52	4-6	13.2
	2-4	12.2
P335-B3	6-8	12.5
	12-14	13.8
	2-4	13.6
P335-B4	8-10	15.2
	10-12	15.1
	2-4	15.2
P335-B5	8-10	15.2
	12-14	15.9
	2-4	18.0
P335-B6	6-8	17.5
	12-14	16.8
P335-B7	2-4	15.2
1 333 11	6-8	19.6
P335-B8	0-2	20.0
1 333 00	4-6	18.0
P335-B9	0-2	11.7
F333-09	6-8	13.7
P335-B10	2-4	14.9
F353-010	6-8	16.8
P335-B11	2-4	14.4
F333-011	4-6	15.0
P335-B12	2-4	14.5
F333-D12	6-8	15.1
D22E D12	0-2	14.7
P335-B13	6-8	14.6

Notes:

- 1. Samples collected on 9/7/21
- 2. Depths shown in feet below ground surface (bgs)

3. PID = Photoionization Detector Prepared By/Date: AJF 9/9/21 Checked By/Date: DRH 10/7/21

4. PID readings shown in parts per million (ppm)

Table 2: UVF Hydrocarbon Soil Sampling Results R-5709, Parcel 335 - Wayne Michael George Property Aberdeen, North Carolina

Wood Project: 20478R5709

Sample ID Number	Sample Depth	ВТЕХ	GRO	DRO	PAHs
Sumple 15 Number	(ft. bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
P335-B1-4-6	4-6	<0.25	<0.25	3.6	0.07
P335-B1-8-10	8-10	<0.25	<0.25	<0.1	< 0.005
P335-B2-0-2	0-2	<0.17	<0.17	8.4	0.22
P335-B2-4-6	4-6	<0.27	<0.27	17.9	0.4
P335-B3-2-4	2-4	<0.22	<0.22	0.26	0.006
P335-B3-6-8	6-8	<0.27	<0.27	<0.11	<0.006
P335-B3-12-14	12-14	<0.22	<0.22	0.14	0.014
P335-B4-2-4	2-4	<0.2	<0.2	0.4	0.01
P335-B4-8-10	8-10	<0.2	<0.2	0.06	0.002
P335-B4-10-12	10-12	<0.2	<0.2	0.22	0.005
P335-B5-2-4	2-4	<0.27	<0.27	<0.11	0.002
P335-B5-8-10	8-10	<0.17	<0.17	< 0.07	0.001
P335-B5-12-14	12-14	<0.22	<0.22	0.13	0.003
P335-B6-2-4	2-4	<0.22	<0.22	< 0.09	0.002
P335-B6-6-8	6-8	<0.3	<0.3	<0.12	<0.006
P335-B6-12-14	12-14	<0.3	<0.3	<0.13	< 0.007
P335-B7-2-4	2-4	<0.4	<0.4	0.08	0.006
P335-B7-6-8	6-8	<0.27	<0.27	<0.11	<0.006
P335-B8-0-2	0-2	<0.27	35.9	1.2	0.03
P335-B8-4-6	4-6	<0.25	<0.25	1	0.017
P335-B9-0-2	0-2	<0.5	<0.5	28.5	0.8
P335-B9-6-8	6-8	<0.25	<0.25	<0.1	< 0.005
P335-B10-2-4	2-4	<0.27	<0.27	4.8	0.03
P335-B10-6-8	6-8	<0.25	<0.25	<0.1	0.002
P335-B11-2-4	2-4	<0.27	<0.27	0.09	0.006
P335-B11-4-6	4-6	<0.3	<0.3	13.3	0.1
P335-B12-2-4	2-4	<0.22	<0.22	10.4	0.1
P335-B12-6-8	6-8	<0.3	<0.3	<0.15	0.002
P335-B13-0-2	0-2	<0.3	<0.3	0.09	0.016
P335-B13-6-8	6-8	<0.2	<0.2	<0.08	<0.004
NC State Acti	on Level	N/A	50	100	N/A

Notes:

1. Samples collected on September 7, 2021

2. Depths shown in feet below ground surface (bgs)

3. Concentrations shown in milligrams per kilogram (mg/kg)

4. BTEX = Benzene, toluene, ethylbenzene, xylene

5. GRO = Gasoline Range Organics

6. DRO = Diesel Range Organics

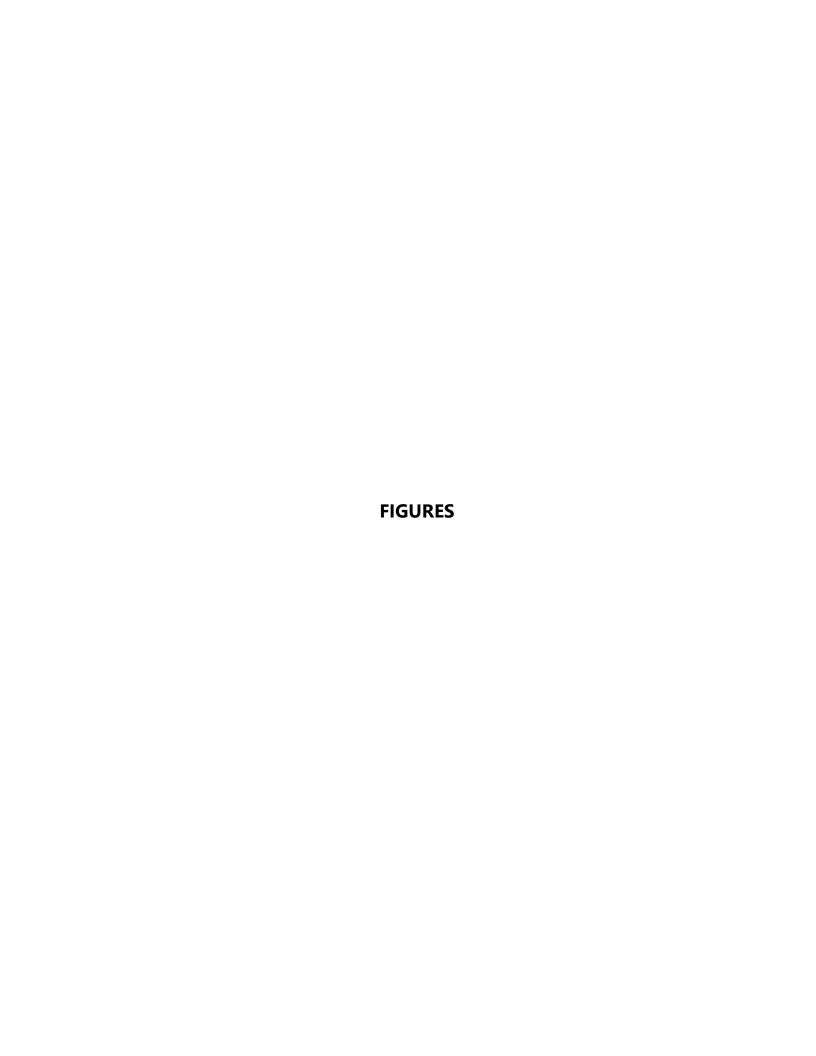
7. PAHs = Polycyclic aromatic hydrocarbons

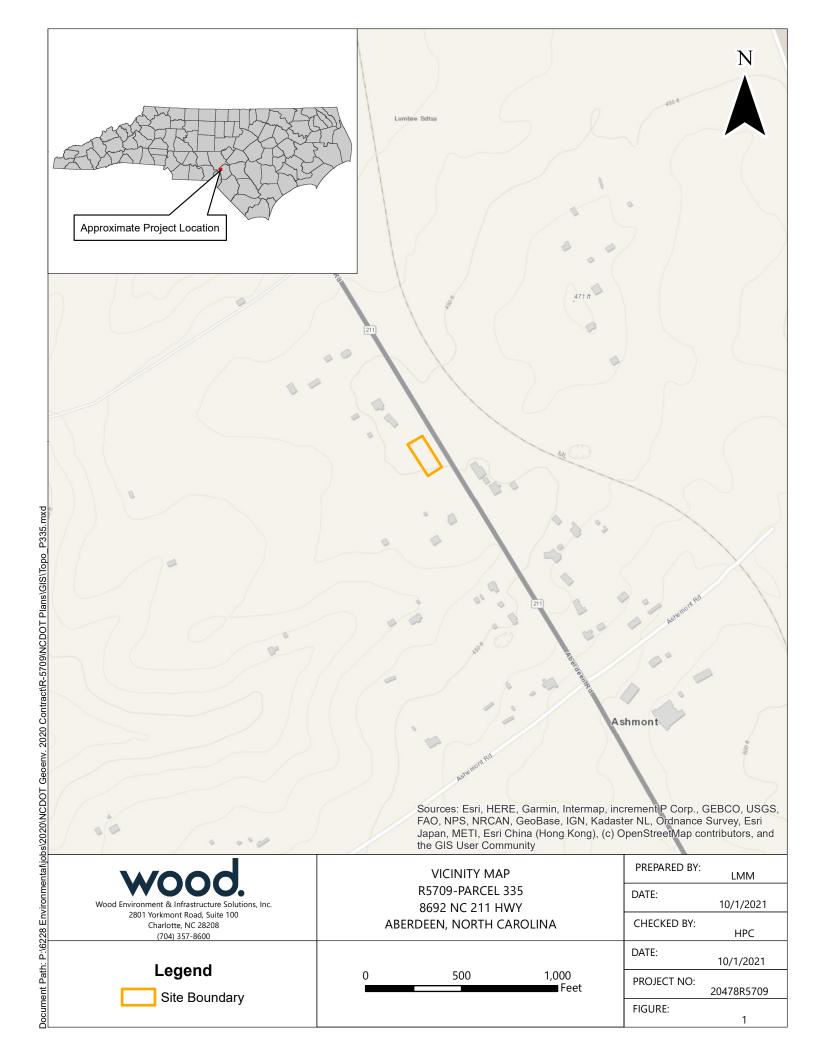
8. N/A = Not applicable

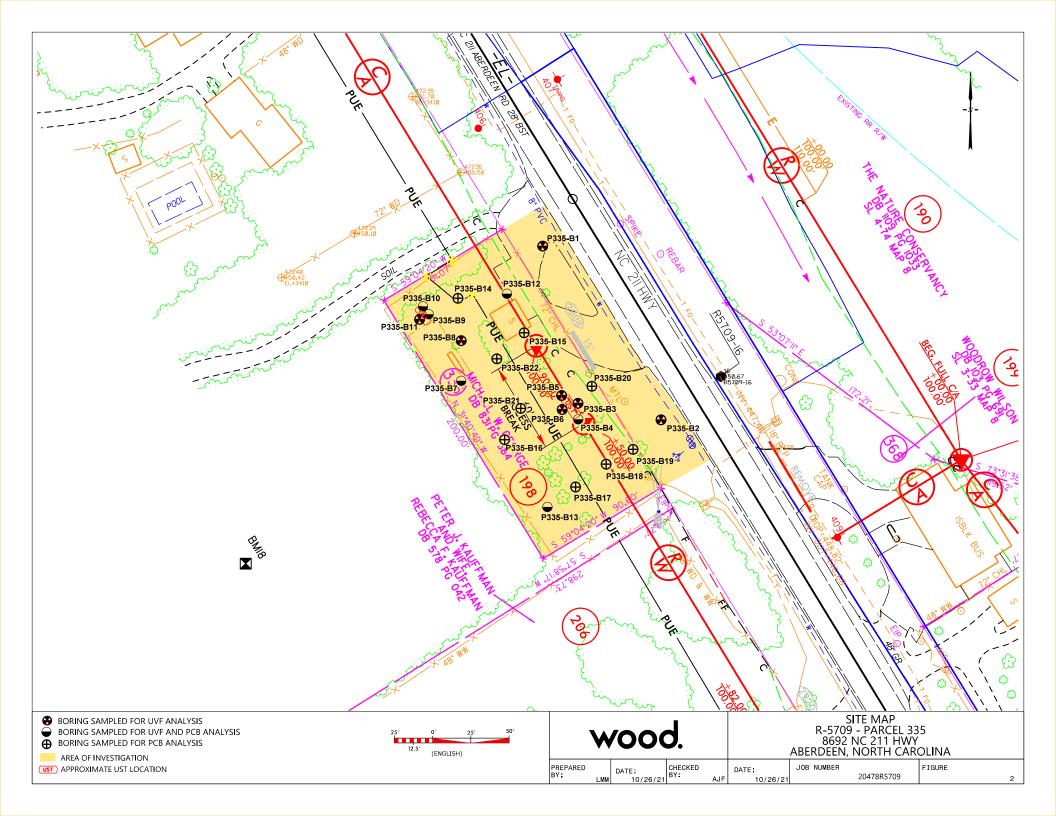
9. Bold values exceed respective NC State Action Level

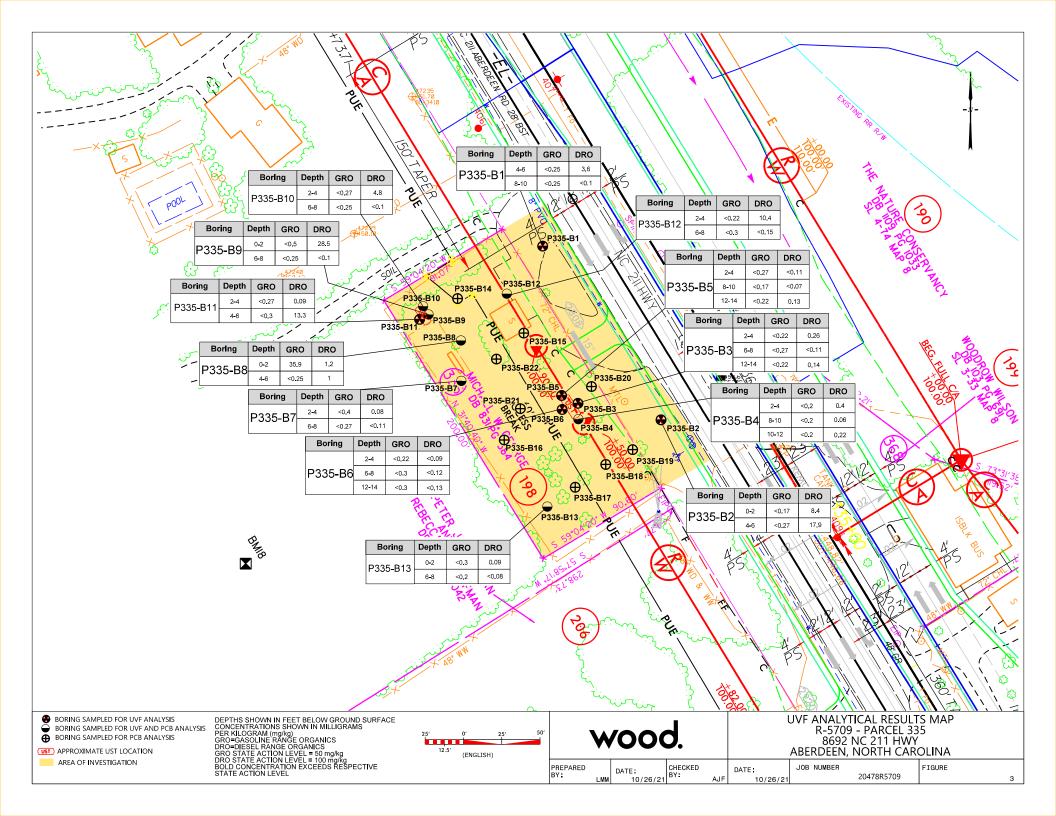
Prepared By/Date: DRH 9/9/21

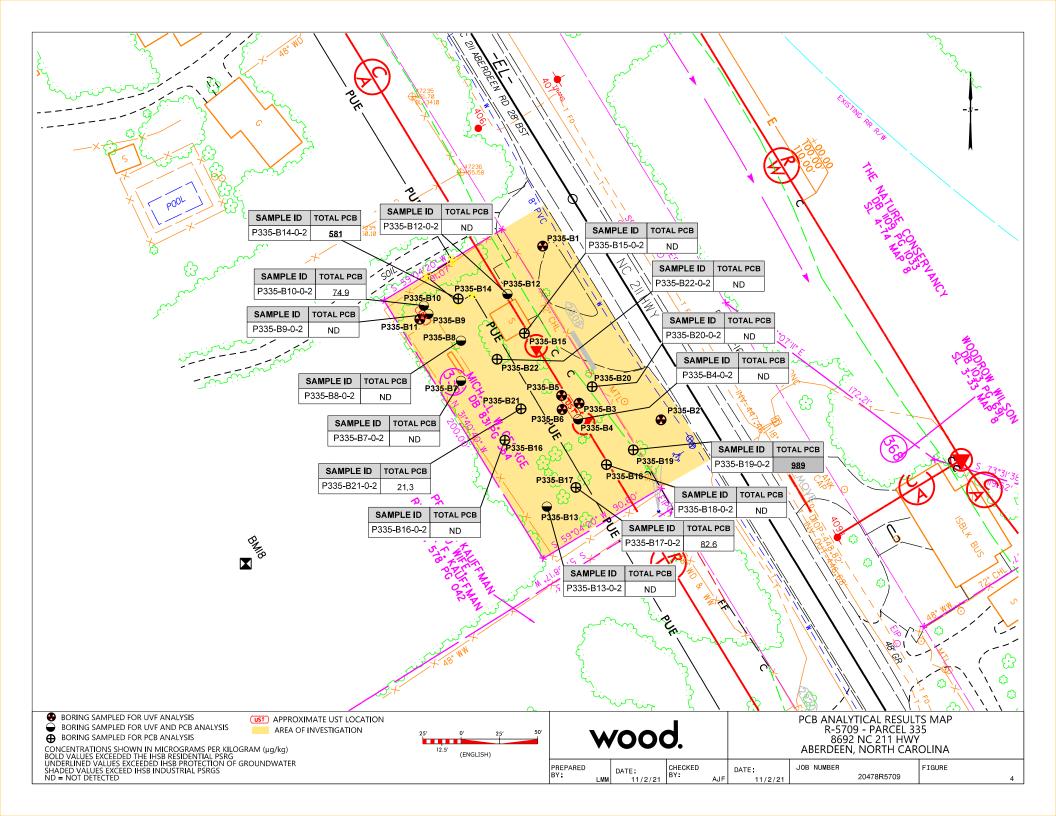
Checked By/Date: MAS 9/30/21


Table 3: PCB Soil Sampling Results in µg/kg R-5709, Parcel 335 - Wayne Michael George Propert Aberdeen, North Carolina Wood Project: 20478R5709


Sample ID	PCB-1016 (Aroclor 1016)	PCB-1221 (Aroclor 1221)	PCB-1232 (Aroclor 1232)	PCB-1242 (Aroclor 1242)	PCB-1248 (Aroclor 1248)	PCB-1254 (Aroclor 1254)	PCB-1260 (Aroclor 1260)	Total PCBs
P335-B4-0-2	<13.9	<14.7	<13.3	<7.2	<9.5	<7.1	<9.1	0.0
P335-B7-0-2	<12.7	<13.4	<12.1	<6.5	<8.7	<6.5	<8.3	0.0
P335-B8-0-2	<15.5	<16.3	<14.8	<8.0	<10.5	<7.9	<10.1	0.0
P335-B9-0-2	<15.8	<16.6	<15.1	<8.1	<10.8	<8.1	<10.3	0.0
P335-B10-0-2	<12.5	<13.1	<11.9	<6.4	<8.5	74.9	<8.1	<u>74.9</u>
P335-B12-0-2	<15.6	<16.5	<15.0	<8.0	<10.7	<8.0	<10.2	0.0
P335-B13-0-2	<14.3	<15.1	<13.7	<7.4	<9.8	<7.4	<9.4	0.0
P335-B14-0-2	<16.2	<17.1	<15.5	<8.3	<11.0	<u>581</u>	<10.6	<u>581</u>
P335-B15-0-2	<12.9	<13.6	<12.4	<6.6	<8.8	<6.6	<8.4	0.0
P335-B16-0-2	<12.7	<13.4	<12.1	< 6.5	<8.7	<6.5	<8.3	0.0
P335-B17-0-2	<12.6	<13.2	<12.0	<6.5	<8.6	53.3	29.3 J	<u>82.6</u>
P335-B18-0-2	<12.6	<13.3	<12.1	<6.5	<8.6	<6.5	<8.3	0.00
P335-B19-0-2	<25.4	<26.8	<24.3	<13.1	<17.3	<u>651</u>	<u>338</u>	<u>989</u>
P335-B20-0-2	<12.7	<13.4	<12.2	<6.5	<8.7	<6.5	<8.3	0.0
P335-B21-0-2	<12.8	<13.5	<12.2	<6.6	<8.7	<6.6	21.3 J	21.3
P335-B22-0-2	<12.5	<13.2	<12.0	<6.4	<8.5	<6.4	<8.2	0.00
IHSB Protection of Groundwater PSRGs	940	5.9	5.9	55	54	91	240	55*
IHSB Residential PSRGs	820	200	180	230	230	230	240	230*
IHSB Industrial/Commercial PSRGs	10,000	840	730	950	940	970	990	950*


Notes:


- 1. Concentrations shown in micrograms per kilogram (µg/kg) relative to the Method Detection Limit
- 2. Samples collected on 9/7/2021 from a depth of 0-2 feet below ground surface at each sample location
- 3. IHSB = North Carolina Department of Environmental Quality Inactive Hazardous Sites Branch
- 4. PSRGs = Preliminary Soil Remediaiton Goals, dated June 2021
- 5. Bold values exceeded IHSB Residential PSRGs
- 6. Double underlined values exceeded IHSB Protection of Groundwater PSRGs
- 7. Shaded values exceeded IHSB Industrial PSRGs
- 8. J = Indicates compound was detected at a concentration below the Reporting Limit (lowest calibration standard), detection is considered an estimate
- 9. * = high risk


Prepared By/Date: RMC 9/16/21
Checked By/Date: AJF 10/29/21

APPENDIX A
BORING LOGS

BORING #	P335-B1	BORING DEPTH (ft)	10	NUMBER	OF PAGES	1
PROJECT #	20478R5709	<u> </u>	PRO	DJECT NAME	NCI	OOT R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS	Partly	cloudy, 87°F
DRILLING SUB-	-CONTRACTOR	IET		DRILL RIG	AMS	PowerProbe

DEPTH (ft bas)	PID	SOIL DESCRIPTION	SAMPLE INFO
(ft bgs)	(ppm)	- ·	
1 -	5.4	Tan sand	
2			
3	10.1	Tan/brown sand	
4			
5	10.9		P335-B1-4-6 selected
6		Tan sand	for UVF analyses
7	8.2		
8		Tan/brown clayey sand	
9 -	9.9		P335-B1-8-10 selected for UVF
10			analyses
11		Boring terminated at 10 feet bgs	
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			

Log Completed By: AJF	Page: 1
-----------------------	----------------

BORING #	P335-B2	BORING DEPTH (ft)	10	NUM	IBER OF PAGES	1
PROJECT #	20478R5709	<u> </u>	PRO	OJECT NAME_	N	CDOT R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS_	Part	ly cloudy, 87°F
DRILLING SUB-CO	ONTRACTOR	IET		DRILL RIG	AM	S PowerProbe

DEPTH (ft bgs)	PID (ppm)	SOIL DESCRIPTION	SAMPLE INFO
		Tan sand	
1	12.3		P335-B2-0-2 selected
	12.3	Tan/brown sand	for UVF analyses
2			
3	11.5		
4	_		
_		Tan sand	
5	13.2		P335-B2-4-6 selected
			for UVF analyses
6			
7	-	Tan/orange clayey sand	
, , , , , , , , , , , , , , , , , , ,	13.1		
8	-		
9	-		
	11.4		
10	7		
		Boring terminated at 10 feet bgs	
11			
12			
13	4		
13			
14	=		
15	7		
16	7		
17			
18			
10	4		
19	_		
20	4		
20			
21	\dashv		
21			

Log Completed By: AJF	Page: 1
-----------------------	----------------

BORING #	P335-B3	BORING DEPTH (ft)	15	NUM	IBER OF PAGES	1
PROJECT #	20478R5709	<u> </u>	PR	OJECT NAME	N	CDOT R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS_	Part	ly cloudy, 87°F
DRILLING SUB-CO	ONTRACTOR	IET		DRILL RIG	АМ	S PowerProbe

DEPTH (ft bgs)		PID (ppm)	SOIL DESCRIPTION	SAMPLE INFO
			Tan/brown sand	
1		4.8		
2				
3		12.2		P335-B3-2-4 selected
4			Tan sand	for UVF analyses
5		12.4		
6				
7		12.5		P335-B3-6-8 selected
8	_	12.5	Tan/orange clayey sand	for UVF analyses
9		11.2		
10		11.2		
11		13.8		
12			Tan/brown clayey sand	
13	_	13.8		P335-B3-12-14 selected for UVF
14				analyses
15	_	6.7		
16			Boring terminated at 15 feet bgs	
17				
18				
19				
20				
21				

Log Completed By: AJF	Page: 1
-----------------------	----------------

BORING #	P335-B4	BORING DEPTH (ft)	15	NUM	IBER OF PAGES	1
PROJECT #	20478R5709	<u> </u>	PR	OJECT NAME_	N	CDOT R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS_	Part	ly cloudy, 87°F
DRILLING SUB-CC	ONTRACTOR	IET		DRILL RIG	АМ	S PowerProbe

DEPTH (ft bgs)	PID (ppm)	SOIL DESCRIPTION	SAMPLE INFO
		Tan sand	
1	13.2		
2			
3	13.6	Tan/brown sand	P335-B4-2-4 selected for UVF analyses
4			101 OVF allalyses
5	13.8		
6	-		
7			
8	15.2	Tan/orange clayey sand	
9	15.2		P335-B4-8-10 selected for UVF
10	_		analyses
11	15.1		P335-B4-10-12 selected for UVF
12			analyses
13	14.4		
14			
15	11.6	Tan/white clayey sand	
16		Boring terminated at 15 feet bgs Sample collected from 0-2 foot interval for off-site PCB analysis	
17			
18			
19			
20	_		
21			

Log Completed By: AJF	Page: 1
-----------------------	----------------

BORING #	P335-B5	BORING DEPTH (ft)	15	NUMBE	R OF PAGES	1
PROJECT #	20478R5709	<u> </u>	PRO	OJECT NAME	N	ICDOT R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS	Par	tly cloudy, 87°F
DRILLING SUB	-CONTRACTOR	IET		DRILL RIG	AM	IS PowerProbe

DEPTH	PID		
(ft bgs)	(ppm)	SOIL DESCRIPTION	SAMPLE INFO
		Tan/brown sand	
1	14.0		
2			
3	_		P335-B5-2-4 selected
	15.2	Tan sand	for UVF analyses
4			
5	- 14.5		
_	14.5	Tan/brown sand	
6			
7	15.0		
8	1		
		Tan/orange clayey sand	P335-B5-8-10
9	15.2		selected for UVF
10			analyses
11 -	_		P335-B54-10-12
	15.9		selected for UVF analyses
12			,
13	- 14.8		
14	-		
	14.0	Tan/white clayey sand	
15	14.0	Boring terminated at 15 feet bgs	
16		borning terminated at 15 leet bgs	
17			
- ' '	1		
18		_	
19	-		
20	1		
20		+	
21			

Log Completed By:	AJF	Page:	1

BORING #	P335-B6	BORING DEPTH (ft)	15	NUMBE	ER OF PAGES	1
PROJECT #	20478R5709	<u> </u>	PRO	DJECT NAME	N	ICDOT R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS	Par	tly cloudy, 87°F
DRILLING SUB-CO	ONTRACTOR	IET		DRILL RIG	AN	IS PowerProbe

DEPTH (ft bgs)		PID (ppm)	SOIL DESCRIPTION	SAMPLE INFO
1	_		Tan sand	
<u> </u>		15.9		
2				
3		18.0	Tan/brown sand	P335-B6-2-4 selected for UVF analyses
4				for OVF analyses
5	_	17.3		
6				
7			Tan sand	P335-B6-6-8 selected
8		17.5		for UVF analyses
•			Tan/orange clayey sand	
9		17.2		
10	_			
11	_	16.0		
12	_			
13		16.8		P335-B6-12-14 selected for UVF
14	_	10.0		analyses
15		14.2	Tan/white clayey sand	
16			Boring terminated at 15 feet bgs	
17	_			
18				
19	_			
20	_			
21				

Log Completed By: AJF	Page: 1
-----------------------	----------------

BORING #	P335-B7	BORING DEPTH (ft)	10	NUMBE	R OF PAGES	1
PROJECT #	20478R5709	<u> </u>	PRO	DJECT NAME	N	CDOT R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS	Part	ly cloudy, 87°F
DRILLING SUB	-CONTRACTOR	IET		DRILL RIG	АМ	S PowerProbe

DEPTH (ft bgs)		PID (ppm)	SOIL DESCRIPTION	SAMPLE INFO
(It bgs)		(ррііі)	Brown sand	
1		4.2	Sionii Said	
	_	4.2		
2				
3		15.2		P335-B7-2-4 selected
_		15.2	Tan/brown sand	for UVF analyses
4				
5	_	10.5		
		19.5	Tan sand	
6				
7	_	10.6		P335-B7-6-8 selected
_		19.6		for UVF analyses
8			To Joseph and	
9	_	47.2	Tan/orange clayey sand	
		17.3		
10			Desire a transition to all the transition to the contract of t	
11	_		Boring terminated at 10 feet bgs Sample collected from 0-2 foot interval for off-site PCB analysis	
12				
13	_			
14				
15	_			
16				
17	=			
-10				
18				
19	-			
20				
21	-			

Log Completed By: AJF	Page: 1
-----------------------	----------------

BORING #	P335-B8	BORING DEPTH (ft)	10	NUMBE	R OF PAGES	1
PROJECT #	20478R5709	<u> </u>	PRO	DJECT NAME	N	CDOT R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS	Par	tly cloudy, 87°F
DRILLING SUB-CO	ONTRACTOR	IET		DRILL RIG	AN	S PowerProbe

DEPTH (ft bgs)	PID (ppm)	SOIL DESCRIPTION	SAMPLE INFO
		Brown sand	
1	20.0		P335-B8-0-2 selected
	20.0	Tan/brown sand	for UVF analyses
2			
3	18.2		
	_		
4			
5	\dashv	Tan sand	P335-B8-4-6 selected
	18.0		for UVF analyses
6	\dashv		, , , , , , , , , , , , , , , , , , , ,
1			
7	16.5		
	10.5	Tan/orange clayey sand	
8			
	_		
9	15.0		
10	_		
10		Boring terminated at 10 feet bgs	
11	-	Sample collected from 0-2 foot interval for off-site PCB analysis	
		Sample concected from 0.2 look interval for on site 1.65 analysis	
12	7		
13			
14			
4-			
15	_		
16	\dashv		
17	\dashv		
	7		
18	<u></u>		
19			
	_		
20			
24	_		
21			

Log Completed By:	AJF	Page:	1

BORING #	P335-B9	BORING DEPTH (ft)	10	NUMBE	R OF PAGES	1
PROJECT #	20478R5709	<u> </u>	PRO	DJECT NAME	N	CDOT R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS	Part	ly cloudy, 87°F
DRILLING SUB-CO	ONTRACTOR	IET		DRILL RIG	АМ	S PowerProbe

DEPTH (ft bgs)	PID (ppm)	SOIL DESCRIPTION	SAMPLE INFO
		Tan/brown sand	
1 -	11.7		P335-B9-0-2 selected
] 11.7		for UVF analyses
2			
3 -	_		
	11.5	Tan sand	
4			
5 -	_		
	13.4	Tan/brown sand	
6		au, som sand	
7	13.7		P335-B9-6-8 selected for UVF analyses
8 -			ioi ovr allalyses
		Tan/orange clayey sand	
9	13.5		
10			
10		Boring terminated at 10 feet bgs	
11		Sample collected from 0-2 foot interval for off-site PCB analysis	
_			
12			
13	_		
14			
15	_		
16			
_			
17			
18	_		
19			
20			
21	-		

Log Completed By:	AJF	Page:	1

BORING #	P335-B10	BORING DEPTH (ft)	10	NUMBER	OF PAGES	1
PROJECT #	20478R5709		PRO	DJECT NAME	NCDO	T R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS	Partly c	loudy, 87°F
DRILLING SUB	-CONTRACTOR	IET		DRILL RIG	AMS Po	owerProbe

DEPTH (ft bgs)		PID (ppm)	SOIL DESCRIPTION	SAMPLE INFO
		•	Brown sand	
1		14.0		
2	-			
3	_			P335-B10-2-4
		14.9	Tan/brown sand	selected for UVF analyses
4				22.,000
5	_	13.7		
6	_	13.7	Tan sand	
				P335-B10-6-8
7		16.8		selected for UVF
8	_			analyses
9	_	140	Tan/orange clayey sand	
10	_	14.9		
10			Boring terminated at 10 feet bgs	
11			Sample collected from 0-2 foot interval for off-site PCB analysis	
12	_			
13	_			
14				
15				
16	_			
17	_			
18				
19				
20	_			
21				

Log Completed By: AJF	Page:	1
-----------------------	-------	---

BORING #	P335-B11	BORING DEPTH (ft)	10	NUM	IBER OF PAGES	1
PROJECT #	20478R5709		PRO	OJECT NAME	N	CDOT R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS_	Part	ly cloudy, 87°F
DRILLING SUB-CO	ONTRACTOR	IET		DRILL RIG	АМ	S PowerProbe

DEPTH (ft bgs)		PID (ppm)	SOIL DESCRIPTION	SAMPLE INFO
1	_		Tan sand	
		13.6		
2			Tan/brown sand	P335-B11-2-4
3		14.4		selected for UVF
4				analyses
5		15.0		P335-B11-4-6 selected for UVF
6	_			analyses
7	_	14.6	Tan sand	
8	_	14.6		
9			Tan/orange clayey sand	
		14.3		
10			Boring terminated at 10 feet bgs	
11				
12	_			
13	_			
14	_			
15	_			
16				
17				
18				
19				
20				
21	_			

Log Completed By:	AJF	Page: 1
		. age.

BORING #	P335-B12	BORING DEPTH (ft)	10	NUMBER C)F PAGES	1
PROJECT #	20478R5709		PRO	DJECT NAME	NCDOT	R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS	Partly clo	udy, 87°F
DRILLING SUB-	CONTRACTOR	IET		DRILL RIG	AMS Pov	verProbe

(ft bgs) (ppm) 1 13.2 2 Tan sand 3 Tan/brown sand 4 Tan/brown sand	P335-B12-2-4 selected for UVF analyses
2 Tan/brown sand 3 14.5	selected for UVF
3	selected for UVF
14.5	selected for UVF
14.5	
	analyses
∥ ⊣	
5 14.1 Tan sand	
6	
7 - 15.1	P335-B12-6-8 selected for UVF
Tan/brown clayey sand	analyses
9 -	
14.6	
10	
Boring terminated at 10 feet bgs 11 Sample collected from 0-2 foot interval for off-site F	'CB analysis
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	

Log Completed By: AJF	Page: 1
-----------------------	----------------

BORING #	P335-B13	BORING DEPTH (ft)	10	NUM	BER OF PAGES	1
PROJECT #	20478R5709		PRO	DJECT NAME_	N	ICDOT R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS	Par	tly cloudy, 87°F
DRILLING SUB-CO	ONTRACTOR	IET		DRILL RIG	AN	IS PowerProbe

DEPTH		PID	SOIL DESCRIPTION	SAMPLE INFO
(ft bgs)		(ppm)	JOIL DESCRIPTION	SAME EL INIO
1		14.7	Tan/brown sand	P335-B13-0-2 selected for UVF analyses
2				
4		14.0	Tan sand	
5				
6		13.8	Tan/brown sand	
7	_	14.6		P335-B13-6-8
8	_	14.0		selected for UVF analyses
9		13.2	Tan/orange clayey sand	
10				
11			Boring terminated at 10 feet bgs Sample collected from 0-2 foot interval for off-site PCB analysis	
12	_			
13				
14				
15				
16				
17 18				
19				
20				
21				

Log Completed By:	AJF	Page:	1

BORING #	P335-B14	BORING DEPTH (ft)	2	NUMBER O	F PAGES	1
PROJECT #	20478R5709	<u> </u>	PRO	OJECT NAME	NCD	OT R-5709
DATE DRILLED	9/7/2	2021	WEATHER (CONDITIONS	Partly o	cloudy, 87°F
DRILLING SUB	-CONTRACTOR	IET		DRILL RIG	AMS P	owerProbe

DEPTH (ft bgs)	PID (ppm)	SOIL DESCRIPTION	SAMPLE INFO
1	No PID screening	Tan/brown sand	
	performed		
2		Desire Associated at 2 feet by	
3		Boring terminated at 2 feet bgs Sample collected from 0-2 foot interval for off-site PCB analysis	
4	_		
5			
6		_	
7			
8			
9			
10			
11	-		
12			
13			
14		<u> </u>	
15	_		
16	_		
	_		
17			
18	1	 	
19			
20	_		
		†	
21			

Log Completed By:	AJF	Page: 1

BORING #	P335-B15	BORING DEPTH (ft)	2	NUMBER OF F	PAGES	1
PROJECT #	20478R5709		PRO	OJECT NAME	NC	DOT R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS	Partl	y cloudy, 87°F
DRILLING SUB	-CONTRACTOR	IET		DRILL RIG	AMS	PowerProbe

DEPTH (ft bgs)	PID (ppm)	SOIL DESCRIPTION	SAMPLE INFO
1	No PID screening	Tan/brown sand	
	performed		
2		Boring terminated at 2 feet bgs	
3		Sample collected from 0-2 foot interval for off-site PCB analysis	
4	_		
5	_	1	
6		+	
7			
8	_		
9	_		
10			
		+	
11			
12	_		
13	-		
14			
	_		
15			
16		-	
17			
18			
19	_		
20		+	
21			

Log Completed By:	AJF	Page: 1
Log completed by.	7.0.	rage.

BORING #	P335-B16	BORING DEPTH (ft)	2	NUMBER (OF PAGES	1
PROJECT #	20478R5709		PRO	DJECT NAME	NCDO	OT R-5709
DATE DRILLED	9/7/2	021	WEATHER C	CONDITIONS	Partly o	loudy, 87°F
DRILLING SUB-CO	ONTRACTOR	IET		DRILL RIG	AMS P	owerProbe

DEPTH (ft bgs)		PID (ppm)	SOIL DESCRIPTION	SAMPLE INFO
1	-	No PID screening	Brown sand	
		performed		
2			Boring terminated at 2 feet bgs	
3			Sample collected from 0-2 foot interval for off-site PCB analysis	
4	+			
5				
6				
7				
8	_			
9	_			
10				
11				
12				
13				
14	_			
15				
16				
17				
18	-			
19	-			
20				
21				

Log Completed By:	AJF	Page: 1
Log completed by.	7.0.	rage.

BORING #	P335-B17	BORING DEPTH (ft)	2	NUMBER O	F PAGES	1
PROJECT #	20478R5709		PRO	OJECT NAME	NCDO	T R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS	Partly cl	loudy, 87°F
DRILLING SUB	-CONTRACTOR	IET		DRILL RIG	AMS Po	owerProbe

DEPTH (ft bgs)	PID (ppm)	SOIL DESCRIPTION	SAMPLE INFO
1	No PID screening	Tan/brown sand	
	performed		
2		Boring terminated at 2 feet bgs	
3		Sample collected from 0-2 foot interval for off-site PCB analysis	
4	_		
5	_	1	
6		+	
7			
8	_		
9	_		
10			
		+	
11			
12	_		
13	-		
14			
	_		
15			
16		-	
17			
18			
19	_		
20		+	
21			

Log Completed By:	AJF	Page: 1
Log completed by.	7.0.	rage.

BORING #	P335-B18	BORING DEPTH (ft)	2	NUMBER O	F PAGES_	1
PROJECT #	20478R5709		PRO	OJECT NAME	NCDC	OT R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS	Partly c	loudy, 87°F
DRILLING SUB	-CONTRACTOR	IET		DRILL RIG	AMS P	owerProbe

DEPTH (ft bgs)	PID (ppm)	SOIL DESCRIPTION	SAMPLE INFO
1 -	No PID screening	Brown sand	
	performed		
2		Boring terminated at 2 feet bgs	
3] -	Sample collected from 0-2 foot interval for off-site PCB analysis	
4	-		
5	_		
6] 		
7 -	-		
8	- -		
9	_		
10	- -		
11	- -		
12	_		
13	<u> </u> 		
14] 		
15			
16	1 -		
17	-		
	- -		
18			
19	1		
20]		
21	-		

Log Completed By:	AJF	Page:	1

BORING #	P335-B19	BORING DEPTH (ft)	2	NUME	BER OF PAGES	1
PROJECT #	20478R5709		PRO	OJECT NAME	NC	DOT R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS	Partly	cloudy, 87°F
DRILLING SUB-CO	ONTRACTOR	IET		DRILL RIG	AMS	PowerProbe

DEPTH (ft bgs)	PID (ppm)	SOIL DESCRIPTION	SAMPLE INFO
1	No PID screening	Tan sand	
'	performed		
2			
3		Boring terminated at 2 feet bgs Sample collected from 0-2 foot interval for off-site PCB analysis	
		,	
4			
5			
6	_		
7	_		
8			
9	_		
10			
11			
12	_		
13	_		
14			
15	+		
16	1		
17]		
18	+		
19			
	+		
20			
21	+		

Log Completed By:	AJF	Page: 1
Log completed by.	7.0.	rage.

BORING #	P335-B20	BORING DEPTH (ft)	2	NUMBER	OF PAGES	1
PROJECT #	20478R5709		PRO	OJECT NAME	NCDOT	R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS	Partly clo	oudy, 87°F
DRILLING SUB	-CONTRACTOR	IET		DRILL RIG	AMS Po	werProbe

DEPTH (ft bgs)	PID (ppm)	SOIL DESCRIPTION	SAMPLE INFO
1 -	No PID screening	Tan/brown sand	
	performed		
2		Boring terminated at 2 feet bgs	
3		Sample collected from 0-2 foot interval for off-site PCB analysis	
4			
5			
6			
7 -			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			

Log Completed By: AJF	Page: 1
-----------------------	----------------

BORING #	P335-B21	BORING DEPTH (ft)	2	NUMBER O	F PAGES	1
PROJECT #	20478R5709		PRO	DJECT NAME	NCD	OT R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS	Partly	cloudy, 87°F
DRILLING SUB-CO	ONTRACTOR	IET		DRILL RIG	AMS F	owerProbe

DEPTH (ft bgs)		PID (ppm)	SOIL DESCRIPTION	SAMPLE INFO
1		No PID screening	Tan sand	
		performed		
2			Boring terminated at 2 feet bgs	
3	_		Sample collected from 0-2 foot interval for off-site PCB analysis	
4				
5				
6				
7	_			
8	_			
9				
10				
11				
12	_			
13	_			
14				
15				
16				
17	_			
18				
19				
20				
21	_			

Log Completed By:	AJF	Page: 1
9		. age.

BORING #	P335-B22	BORING DEPTH (ft)	2	NUME	BER OF PAGES	1
PROJECT #	20478R5709		PRO	OJECT NAME	NC	DOT R-5709
DATE DRILLED	9/7/2	021	WEATHER (CONDITIONS	Partly	cloudy, 87°F
DRILLING SUB-CO	ONTRACTOR	IET		DRILL RIG	AMS	PowerProbe

DEPTH (ft bgs)	PID (ppm)	SOIL DESCRIPTION	SAMPLE INFO
1 -	No PID screening	Tan/brown sand	
	performed		
2			
3		Boring terminated at 2 feet bgs Sample collected from 0-2 foot interval for off-site PCB analysis	
4]		
5			
6			
7 -			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
]		
18			
19]		
20			
21			

Log Completed By:	AJF	Page: 1
Log completed by.	7.0.	rage.

APPENDIX B PHOTOGRAPHIC LOG

Photograph 1: Building located at parcel 335, facing southwest.

Photograph 2: Fence line along Highway 211 at parcel 335, facing southeast.

Photograph 3: Area of possible UST #1, facing southeast.

Photograph 4:Area of possible UST #2 and no confidence anomalies, facing west.

Photograph 5: Parcel 335 prior to vegetation clearing, facing north.

Photograph 6: View of IET advancing direct push soil sampler at parcel 335.

Photograph 7: View of on-Site UVF analysis setup.

APPENDIX C GEOPHYSICAL REPORT

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2021-201)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 335 NCDOT PROJECT R-5709 (50205.1.1)

9255 ABERDEEN RD., ABERDEEN, NC August 25, 2021

Report prepared for: Helen P. Corley, LG, RSM, BCES

Wood, PLC

2801 Yorkmont Road #100 Charlotte, NC 28208

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by:

Douglas A. Canavello, P.G. NC License #1066

GEOPHYSICAL INVESTIGATION REPORT

Parcel 335 - 9255 Aberdeen Rd. Aberdeen, Hoke County, North Carolina

Table of Contents

Executive Summary	1
Introduction	2
Field Methodology	2
Discussion of Results	
Discussion of EM Results	3
Discussion of GPR Results	
Summary & Conclusions	
Limitations	

Figures

- Figure 1 Parcel 335 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 335 EM61 Metal Detection Contour Map
- Figure 3 Parcel 335 GPR Transect Locations and Select Images
- Figure 4 Parcel 335 Locations and Sizes of Two Possible USTs and Two No Confidence Anomalies
- Figure 5 Overlay of Metal Detection Results, Two No Confidence Anomalies, and Two Possible USTs on NCDOT Engineering Plans

Appendices

Appendix A – GPR Transect Images

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	Dual Frequency
EM	Electromagnetic
GPR	Ground Penetrating Radar
GPS	_
NCDOT	North Carolina Department of Transportation
ROW	
UST	Underground Storage Tank

Project Description: Pyramid Environmental (Pyramid) conducted a geophysical investigation for Wood, PLC at Parcel 335, located at 9255 Aberdeen Rd., in Aberdeen, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project R-5709). The survey was designed to include all accessible portions of the property, as indicated by Wood, PLC. Conducted from August 10-12, 2021, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of eleven EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. One EM anomaly containing three distinct metallic features was characteristic of buried structures. GPR was performed across the features associated with the significant unknown buried metal anomaly, as well as around all sources of significant metallic interference, to confirm that the interference did not obscure any significant structures such as USTs.

One possible UST was identified within the area containing unknown buried metal. This possible UST was approximately 15.5 feet long and 7 feet wide. Two no confidence anomalies were also identified within the area containing unknown buried metal. The west anomaly is approximately 28.5 feet long and 11 feet wide. The south anomaly is approximately 10 feet long and 6 feet wide. A second possible UST was identified at the north end of the property, adjacent to vehicles. This possible UST was approximately 6 feet wide. Its length was unverified due to the adjacent vehicle preventing full access across the possible UST.

Collectively, the geophysical data <u>recorded evidence of two possible USTs and two no</u> confidence anomalies at Parcel 335.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Wood, PLC at Parcel 335, located at 9255 Aberdeen Rd., in Aberdeen, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project R-5709). The survey was designed to include all accessible portions of the property, as indicated by Wood, PLC. Conducted from August 10-12, 2021, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site consisted of a vacant lot containing grass and dirt surfaces. An aerial photograph showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8-foot intervals along north-south trending or east-west trending, generally parallel survey lines, spaced five feet apart. The data were downloaded to a

computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on August 12, 2021, using a Geophysical Survey Systems, Inc. (GSSI) SIR 4000 control unit coupled to a 350 MHz HS antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the SIR 4000 unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the DF unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tanks on NCDOT Projects			
High Confidence	Intermediate Confidence	Low Confidence	No Confidence
Known UST	Probable UST	Possible UST	Anomaly noted but not
Active tank - spatial location, orientation,	Sufficient geophysical data from both magnetic and radar surveys that is	Sufficient geophysical data from either magnetic or radar surveys	characteristic of a UST. Should be noted in the text and may be called
and approximate	characteristic of a tank. Interpretation may	that is characteristic of a tank.	out in the figures at the
depth determined by	be supported by physical evidence such as fill/vent pipe, metal cover plate,	Additional data is not sufficient enough to confirm or deny the	geophysicist's discretion.
geophysics.	asphalt/concrete patch, etc.	presence of a UST.	

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The

following table presents the list of EM anomalies and the cause of the metallic response, if known:

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Fence	✓
2	RV/Car	✓
3	Pipes	✓
4	One Possible UST	✓
5	Debris	
6	Fence/Utility	
7	Gate	
8	Fence	
9	Gate	
10	Vehicles/Hydrant	✓
11	One Possible UST	✓
12	Two No Confidence Anomalies	✓
13	Metal Debris	

The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface, including fences, an RV, vehicles, pipes, visible debris, utilities, gates, and a hydrant. EM Anomaly 4 indicated buried metal extending beyond the interference from surface structures and was investigated by GPR. EM Anomalies 11 and 12 were associated with three distinct buried metallic features that were suggestive of buried structures and was investigated by GPR. GPR was also performed around the various vehicles and the RV to confirm that the metallic interference did not obscure any significant structures such as USTs.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as select transect images. All of the transect images are included in **Appendix A**. A total of seventeen formal GPR transects were performed at the site.

GPR Transects 1-2 were performed across the north metallic feature associated with EM Anomaly 10. These transects recorded a relatively distinct hyperbolic reflector and an intermittent, discreet lateral reflector that are typical of a UST. Due to the somewhat deteriorated nature of these reflectors, this structure is being classified as one possible UST. The possible UST is approximately 15.5 feet long and 7 feet wide.

GPR Transects 3-6 were performed across the remaining two metallic features associated with EM Anomaly 10. These transects recorded discreet, isolated lateral reflectors in both directions that are suggestive of buried structures such as former foundations or other infrastructure. The sizes and shapes of these features are not characteristic of USTs. Therefore, the two features are being classified as two no confidence anomalies. The west feature (No Confidence Anomaly #1) is approximately 28.5 feet long and 11 feet wide. The south feature (No Confidence Anomaly #2) is approximately 10 feet long and 6 feet wide.

GPR Transects 12-13 were performed on the north side of the RV. These transects recorded a distinct hyperbolic reflector and a discreet lateral reflector that are typical of a UST. The full length of the structure could not be verified due to the presence of a vehicle. However, the combined EM and GPR data result in this feature being classified as one possible UST. The possible UST is approximately six feet wide with an unknown length.

The remaining GPR transects did not record any evidence of additional significant buried structures such as USTs. **Figure 4** provides the locations and sizes of the two possible USTs and two no confidence anomalies, overlain on an aerial, along with ground-level photographs.

Collectively, the geophysical data <u>recorded evidence of two possible USTs and two no confidence anomalies at Parcel 335</u>. **Figure 5** provides an overlay of the metal detection results, the two no confidence anomalies, and the two possible USTs on the NCDOT engineering plans for reference.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 335 in Aberdeen, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. One EM anomaly containing three distinct metallic features was characteristic of buried structures.
- GPR was performed across the features associated with the significant unknown buried metal anomaly, as well as around all sources of significant metallic interference, to confirm that the interference did not obscure any significant structures such as USTs.
- One possible UST was identified within the area containing unknown buried metal.
 This possible UST was approximately 15.5 feet long and 7 feet wide.
- Two no confidence anomalies were also identified within the area containing unknown buried metal. The west anomaly is approximately 28.5 feet long and 11 feet wide. The south anomaly is approximately 10 feet long and 6 feet wide.
- A second possible UST was identified at the north end of the property, adjacent to vehicles. This possible UST was approximately 6 feet wide. Its length was unverified due to the adjacent vehicle preventing full access across the possible UST.
- Collectively, the geophysical data <u>recorded evidence of two possible USTs and two</u> no confidence anomalies at Parcel 335.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Wood, PLC, in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project

have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

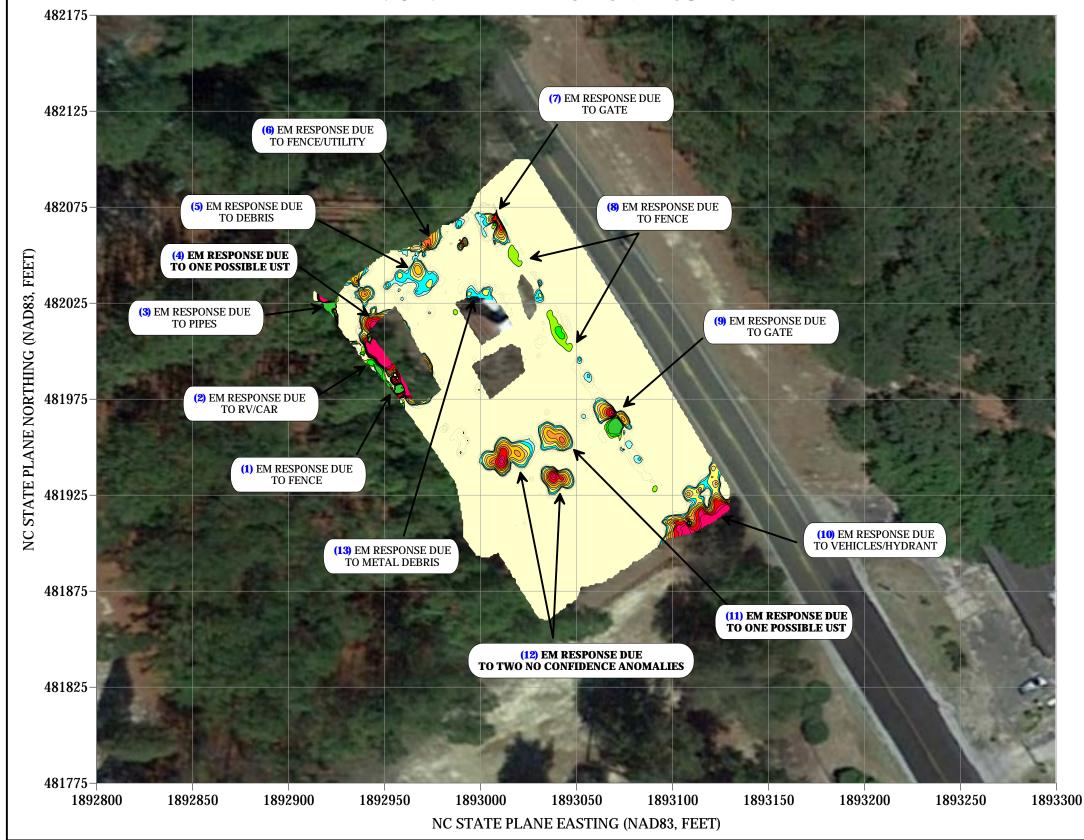
View of Survey Area (Facing Approximately Northwest)

View of Survey Area (Facing Approximately Northwest)

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology

PROJECT

PARCEL 335 ABERDEEN, NORTH CAROLINA NCDOT PROJECT R-5709


PARCEL 335 -

TITLE

GEOPHYSICAL SURVEY BOUNDARIES AND SITE PHOTOGRAPHS

DATE	8/16/2021	CLIENT	Wood, PLC
PYRAMID PROJECT #:	2021-201		FIGURE 1

EM61 METAL DETECTION RESULTS

EVIDENCE OF TWO POSSIBLE USTS AND TWO NO CONFIDENCE ANOMALIES WAS OBSERVED.

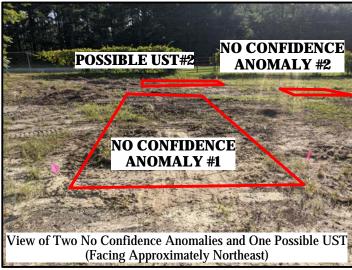
The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on August 10, 2021, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI SIR 4000 instrument with a 350 MHz HS antenna on August 12, 2021.

EM61 Metal Detection Response (millivolts)

N

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

PARCEL 335 ABERDEEN, NORTH CAROLINA NCDOT PROJECT R-5709 TITLE


PARCEL 335 -EM61 METAL DETECTION CONTOUR MAP

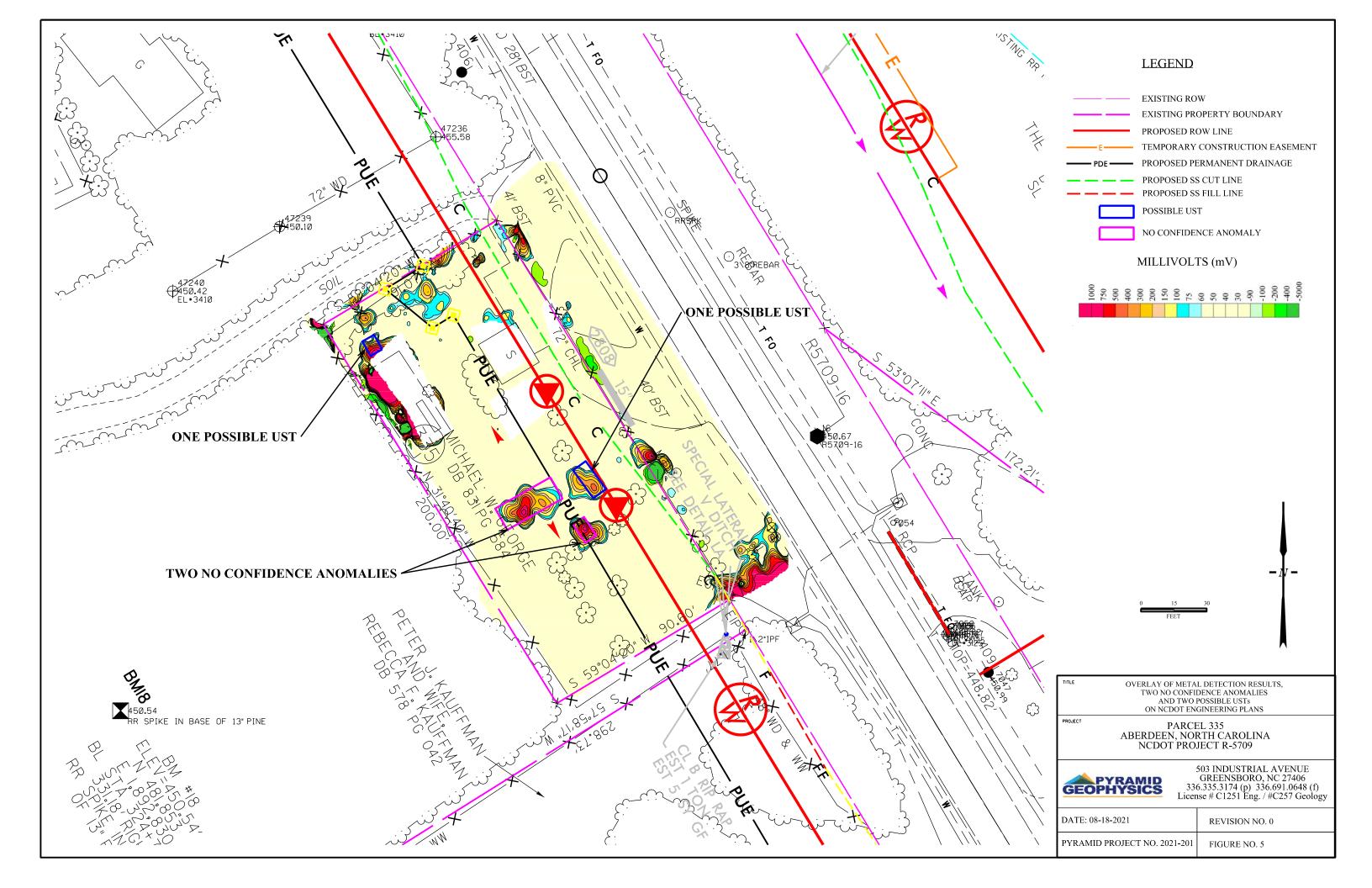

DATE	8/16/2021	CLIENT	Wood, PLC
PYRAMID PROJECT #:	2021-201		FIGURE 2

GPR TRANSECT LOCATIONS 482175-482125-WIDTH OF ONE POSSIBLE UST 482075-NC STATE PLANE NORTHING (NAD83, FEET) **GPR TRANSECT 1 (T1) GPR TRANSECT 2 (T2)** 482025 WIDTH OF ONE NO CONFIDENCE ANOMALY WIDTH OF ONE 481925-**GPR TRANSECT 6 (T6) GPR TRANSECT 4 (T4)** 481875-PARTIAL LENGTH OF ONE POSSIBLE UST WIDTH OF ONE POSSIBLE UST 481825-**GPR TRANSECT 12 (T12)** GPR TRANSECT 13 (T13) 481775-1892800 1892850 1892900 1892950 1893000 1893050 1893100 1893150 1893200 1893250 1893300 NC STATE PLANE EASTING (NAD83, FEET) DATE CLIENT TITLE PROJECT 8/16/2021 Wood, PLC PARCEL 335 503 INDUSTRIAL AVENUE PARCEL 335 -GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology ABERDEEN, NORTH CAROLINA GPR TRANSECT LOCATIONS AND SELECT IMAGES PYRAMID PROJECT #: NCDOT PROJECT R-5709 FIGURE 3 2021-201

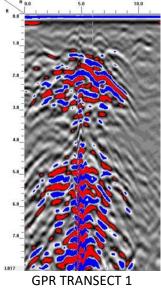
LOCATIONS OF TWO POSSIBLE USTS AND TWO NO CONFIDENCE ANOMALIES 482175-APPROXIMATE DIMENSIONS OF TWO POSSIBLE USTs AND TWO NO CONFIDENCE ANOMALIES **POSSIBLE UST #1: UNKNOWN* X 6' WIDE POSSIBLE UST #2: 15.5' LONG X 7' WIDE** 482125-**NO CONFIDENCE ANOMALY #1: 28.5' LONG X 11' WIDE** NO CONFIDENCE ANOMALY #2: 10' LONG X 6' WIDE *The length of Possible UST #1 could not be determined due to the possible UST being located partially underneath a vehicle. 482075-FEET) POSSIBLE NC STATE PLANE NORTHING (NAD83, **UST #1** 482025 POSSIBLE UST#2 NO CONFIDENCE **ANOMALY #1** 481925-NO CONFIDENCE ANOMALY #2 481875 481825-481775 1892800 1892850 1892900 1892950 1893000 1893050 1893100 1893150 1893200 1893250 1893300

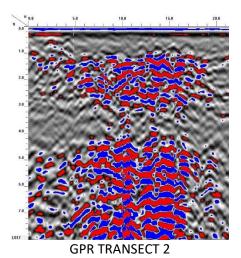
503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

PARCEL 335 ABERDEEN, NORTH CAROLINA NCDOT PROJECT R-5709

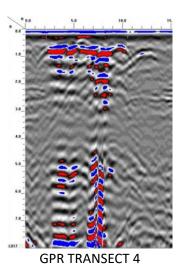

NC STATE PLANE EASTING (NAD83, FEET)

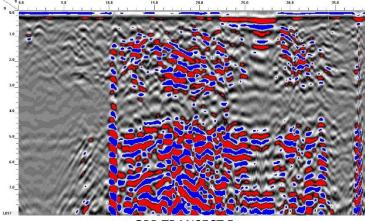
TITLE

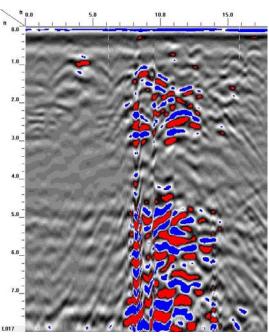

PARCEL 335 -LOCATIONS AND SIZES OF TWO POSSIBLE USTS AND TWO NO CONFIDENCE ANOMALIES


DATE	8/16/2021	CLIENT	Wood, PLC
PYRAMID PROJECT #:	2021-201		FIGURE 4

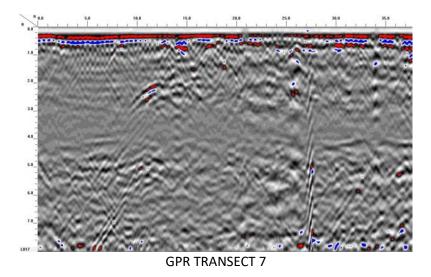
N

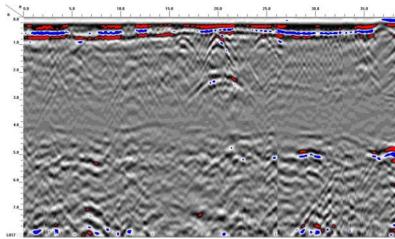




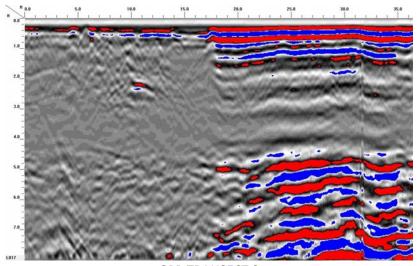


GPR TRANSECT 3

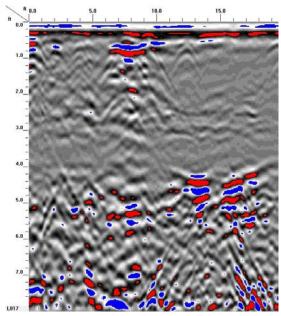


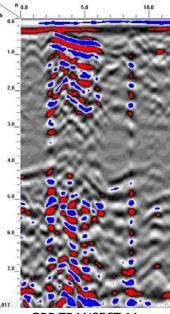


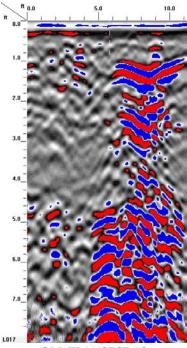
GPR TRANSECT 5

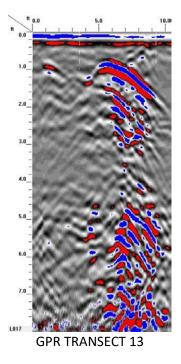


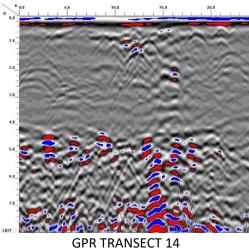
GPR TRANSECT 6

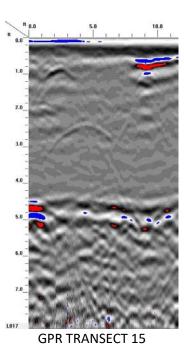


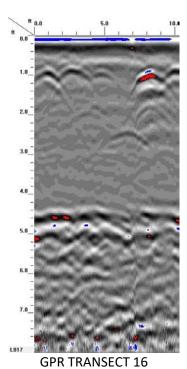

GPR TRANSECT 8

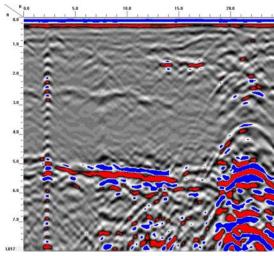

GPR TRANSECT 9


GPR TRANSECT 10




GPR TRANSECT 11




GPR TRANSECT 12

GPR TRANSECT 17

APPENDIX D UVF HYDROCARBON ANALYTICAL RESULTS

Hydrocarbon Analysis Results

Client: Wood

Address 2801 Yorkmont Rd

Charlotte, NC 28208

Samples taken Samples extracted Samples analysed Tuesday, September 7, 2021 Tuesday, September 7, 2021 Tuesday, September 7, 2021

Operator DRH

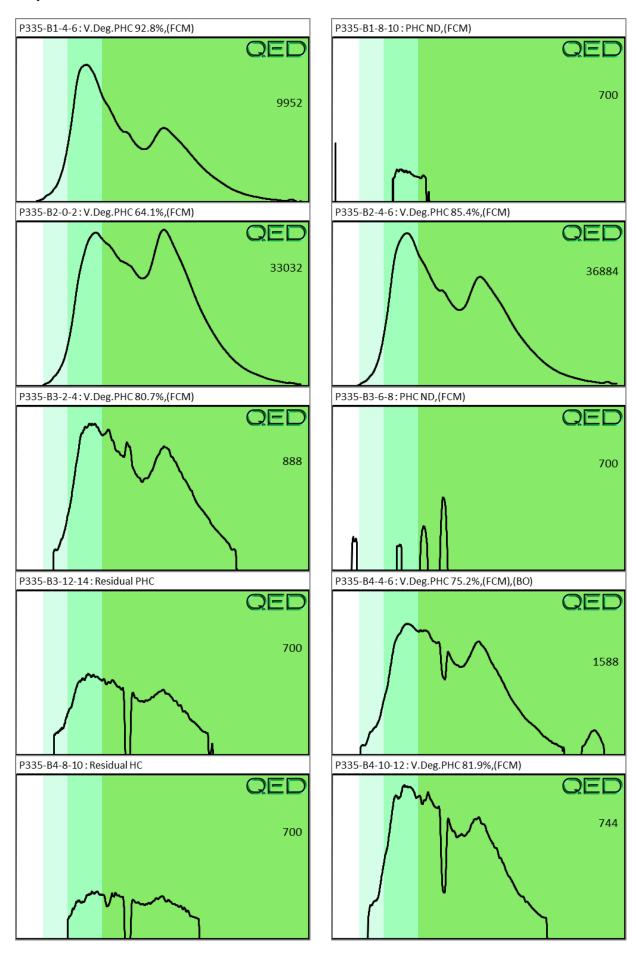
Project: P335

Contact: Helen Corley

													H09382
Matrix	Sample ID	Dilution used	втех	GRO	DRO	ТРН	Total Aromatics	16 EPA PAHs	ВаР	% Ratios		3	HC Fingerprint Match
			C6-C9	C5-C10	C10-C35	C5-C35	C10-C35			C5:10	C10:C 18	C18+	
Soil	P335-B1-4-6	10.0	<0.25	<0.25	3.6	3.6	1.5	0.07	0.001	0	82.4	17.6	V.Deg.PHC 92.8%,(FCM)
Soil	P335-B1-8-10	10.0	<0.25	<0.25	<0.1	<0.25	<0.005	<0.005	<0.003	0	100	0	PHC ND,(FCM)
Soil	P335-B2-0-2	7.0	<0.17	<0.17	8.4	8.4	4.5	0.22	0.005	0	70.8	29.2	V.Deg.PHC 64.1%,(FCM)
Soil	P335-B2-4-6	11.0	<0.27	<0.27	17.9	17.9	8.7	0.4	0.007	0	81.3	18.7	V.Deg.PHC 85.4%,(FCM)
Soil	P335-B3-2-4	9.0	<0.22	<0.22	0.26	0.26	0.13	0.006	<0.001	0	75.6	24.4	V.Deg.PHC 80.7%,(FCM)
Soil	P335-B3-6-8	11.0	<0.27	<0.27	<0.11	<0.27	<0.006	<0.006	<0.003	0	0	0	PHC ND,(FCM)
Soil	P335-B3-12-14	9.0	<0.22	<0.22	0.14	0.14	0.13	0.014	<0.003	0	89.8	10.2	Residual PHC
Soil	P335-B4-2-4	8.0	<0.2	<0.2	0.4	0.4	0.2	0.01	<0.001	0	75.7	24.3	V.Deg.PHC 75.2%,(FCM),(BO)
Soil	P335-B4-8-10	8.0	<0.2	<0.2	0.06	0.06	0.029	0.002	<0.002	0	78.4	21.6	Residual HC
Soil	P335-B4-10-12	8.0	<0.2	<0.2	0.22	0.22	0.09	0.005	<0.002	0	82	18	V.Deg.PHC 81.9%,(FCM)
	Initial Ca	librator (QC check	OK					Final FC	CM QC	Check	OK	101.1%

Analysis by QED HC-1 Analyser

Concentration values in mg/kg for soil and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for hydrocarbon identification: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate detected

HC = Hydrocarbon : PHC = Petroleum HC : FP = Fingerprint only : % Ratios estimated carbon number proportions : (OCR)/(Q) = Outside cal range, values and HC match estimates : ND = Not Detected

(B) = Blank Drift : (M) = Adjusted value : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : SB = sample selected as site background

(TD) = Calibration outside limit

Project: P335

Hydrocarbon Analysis Results

Client: Wood

Address 2801 Yorkmont Rd

Charlotte, NC 28208

Samples taken Samples extracted Samples analysed Tuesday, September 7, 2021 Tuesday, September 7, 2021 Tuesday, September 7, 2021

Operator DRH

Project: P335

Contact: Helen Corley

Matrix	Sample ID	Dilution used	втех	GRO	DRO	ТРН	Total Aromatics	16 EPA PAHs	ВаР	% Ratios		5	HC Fingerprint Match
			C6-C9	C5-C10	C10-C35	C5-C35	C10-C35			C5:10	C10:C 18	C18+	
Soil	P335-B5-2-4	11.0	<0.27	<0.27	<0.11	0.02	0.02	0.002	<0.003	0	49.7	50.3	Residual HC
Soil	P335-B5-8-10	7.0	<0.17	<0.17	<0.07	0.009	0.009	0.001	<0.002	0	53.1	46.9	Residual HC
Soil	P335-B5-12-14	9.0	<0.22	<0.22	0.13	0.13	0.06	0.003	<0.003	0	81.2	18.8	V.Deg.PHC 88.1%,(FCM)
Soil	P335-B6-2-4	9.0	<0.22	<0.22	<0.09	0.02	0.02	0.002	<0.003	0	40.6	59.4	Residual HC
Soil	P335-B6-6-8	12.0	<0.3	<0.3	<0.12	<0.3	<0.006	<0.006	<0.004	0	0	0	PHC ND,(FCM)
Soil	P335-B6-12-14	13.0	<0.3	<0.3	<0.13	<0.3	<0.007	<0.007	<0.004	0	0	0	PHC ND,(FCM)

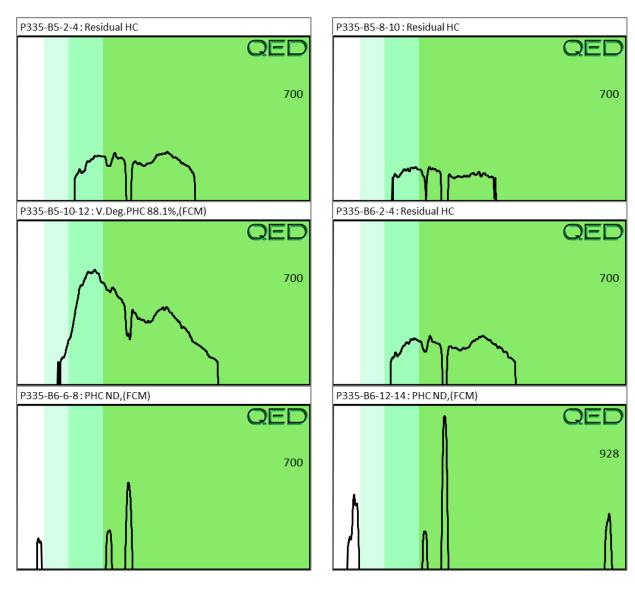
Initial Calibrator QC check OK

Final FCM QC Check OK

97.0%

Analysis by QED HC-1 Analyser

Concentration values in mg/kg for soil and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for hydrocarbon identification: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate detected

HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only: % Ratios estimated carbon number proportions: (OCR)/(Q) = Outside cal range, values and HC match estimates: ND = Not Detected

(B) = Blank Drift: (M) = Adjusted value: (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result: (BO) = Background Organics detected: SB = sample selected as site background

(TD) = Calibration outside limit

Project: P335

Hydrocarbon Analysis Results

Client: Wood

Address: 2801 Yorkmont Rd

Charlotte, NC 28208

Samples taken Samples extracted Tuesday, September 7, 2021 Tuesday, September 7, 2021

Samples analysed

Tuesday, September 7, 2021

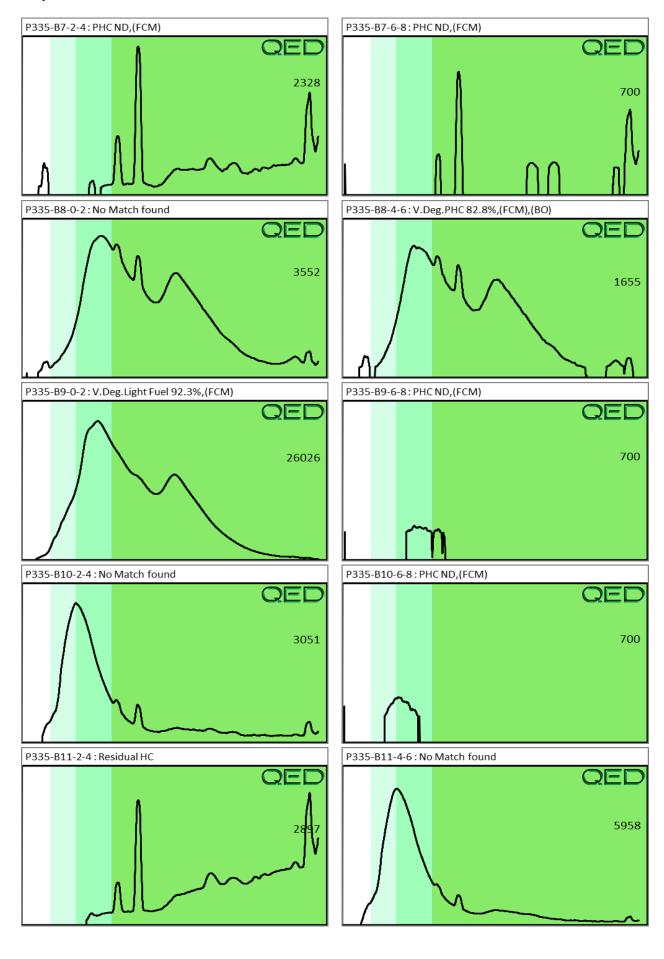
Contact: Helen Corley DRH Operator

Project: P335

													H09382
Matrix	Sample ID	Dilution used	втех	GRO	DRO	ТРН	Total Aromatics	16 EPA PAHs	ВаР	% Ratios		\$	HC Fingerprint Match
			C6-C9	C5-C10	C10-C35	C5-C35	C10-C35			C5:10	C10:C 18	C18+	
Soil	P335-B7-2-4	16.0	<0.4	<0.4	0.08	0.08	0.07	0.006	<0.005	0	26.6	73.4	PHC ND,(FCM)
Soil	P335-B7-6-8	11.0	<0.27	<0.27	<0.11	<0.27	<0.006	<0.006	<0.003	0	0	0	PHC ND,(FCM)
Soil	P335-B8-0-2	11.0	<0.27	35.9	1.2	37.15	0.6	0.03	0.002	98.6	1.1	0.3	No Match found
Soil	P335-B8-4-6	10.0	<0.25	<0.25	1	1	0.4	0.017	<0.001	0	85.9	14.1	V.Deg.PHC 82.8%,(FCM),(BO)
Soil	P335-B9-0-2	23.0	<0.5	<0.5	28.5	28.5	19	0.8	0.012	0	89.3	10.7	V.Deg.Light Fuel 92.3%,(FCM)
Soil	P335-B9-6-8	10.0	<0.25	<0.25	<0.1	<0.25	<0.005	<0.005	<0.003	0	100	0	PHC ND,(FCM)
Soil	P335-B10-2-4	11.0	<0.27	<0.27	4.8	4.8	1.5	0.03	<0.004	0	97.1	2.9	No Match found
Soil	P335-B10-6-8	10.0	<0.25	<0.25	<0.1	0.02	0.02	0.002	<0.003	0	100	0	PHC ND,(FCM)
Soil	P335-B11-2-4	11.0	<0.27	<0.27	0.09	0.09	0.09	0.006	<0.001	0	35.3	64.7	Residual HC
Soil	P335-B11-4-6	15.0	<0.3	<0.3	13.3	13.3	4.4	0.1	<0.001	0	97.2	2.8	No Match found
	Initial C	alibrator	QC check	OK					Final F	CM QC	Check	OK	95.8%

Analysis by QED HC-1 Analyser

Concentration values in mg/kg for soil and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for hydrocarbon identification: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate detected

HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only: % Ratios estimated carbon number proportions: (OCR)/(Q) = Outside cal range, values and HC match estimates: ND = Not Detected

(B) = Blank Drift: (M) = Adjusted value: (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result: (BO) = Background Organics detected: SB = sample selected as site background

(TD) = Calibration outside limit

Project: P335

Hydrocarbon Analysis Results

Client: Wood

Address: 2801 Yorkmont Rd

Charlotte, NC 28208

Samples taken Samples extracted Tuesday, September 7, 2021 Tuesday, September 7, 2021

Samples analysed Tuesday, September 7, 2021

Contact: Helen Corley Operator DRH

Project: P335

Matrix	Sample ID	Dilution used	BTEX	GRO	DRO	ТРН	Total Aromatics	16 EPA PAHs	ВаР	% Ratios		5	HC Fingerprint Match
			C6-C9	C5-C10	C10-C35	C5-C35	C10-C35			C5:10	C10:C 18	C18+	
Soil	P335-B12-2-4	9.0	<0.22	<0.22	10.4	10.4	1.8	0.1	0.001	0	84.5	15.5	V.Deg.Light Fuel 86.2%,(FCM)
Soil	P335-B12-6-8	15.0	<0.3	<0.3	<0.15	0.026	0.026	0.002	<0.005	0	34	66	PHC ND,(FCM)
Soil	P335-B13-0-2	15.0	<0.3	<0.3	0.09	0.09	0.08	0.016	0.005	0	39.1	60.9	Residual HC,(BO)
Soil	P335-B13-6-8	8.0	<0.2	<0.2	<0.08	<0.2	<0.004	<0.004	<0.002	0	0	0	PHC ND,(FCM)

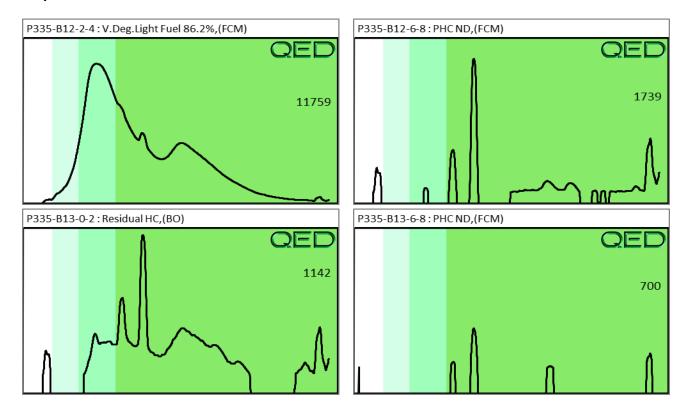
Initial Calibrator QC check OK

Final FCM QC Check OK

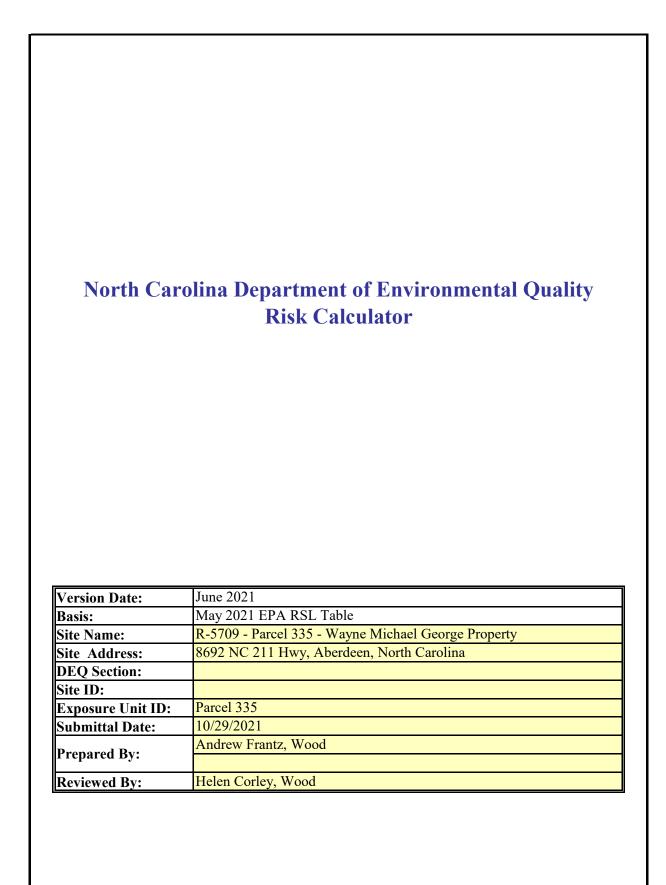
103.5%

Analysis by QED HC-1 Analyser

Concentration values in mg/kg for soil and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for hydrocarbon identification: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate detected

HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only: % Ratios estimated carbon number proportions: (OCR)/(Q) = Outside cal range, values and HC match estimates: ND = Not Detected


(B) = Blank Drift: (M) = Adjusted value: (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result: (BO) = Background Organics detected: SB = sample selected as site background

(TD) = Calibration outside limit

Project: P335

APPENDIX E RISK CALCULATOR OUTPUT AND LABORATORY ANALYTICAL REPORT

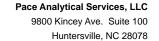
Complete Exposure Pathways		Input Form 1A
Version Date: June 2021 Basis: May 2021 EPA RSL T	able	
Site ID:		
Exposure Unit ID: Parcel 335	5	
Note: Risk output will only be calc	ulated for complete exposure pathways.	
Receptor	Pathway	Check box if pathway complete
DIRECT CON	TACT SOIL AND WATER PATHWAYS	
Resident	Soil	
Resident	Groundwater Use	
Non-Residential Worker	Soil	
Non-Residential Worker	Groundwater Use	
Construction Worker	Soil	√
Doorootor/Tragnagar	Soil	∀
Recreator/Trespasser	Surface Water	
VAP	OR INTRUSION PATHWAYS	
	Groundwater to Indoor Air	
Resident	Soil Gas to Indoor Air	
	Indoor Air	
	Groundwater to Indoor Air	
Non-Residential Worker	Soil Gas to Indoor Air	
	Indoor Air	
CONTAM	IINANT MIGRATION PATHWAYS	
Groundwater	Source Soil	
Groundwater	Source Groundwater	
Surface Water	Source Soil	
Surface water	Source Groundwater	

Exposure Point Concentrations Version Date: June 2021 Basis: May 2021 EPA RSL Table Site ID: Exposure Unit ID: Parcel 335 Soil Exposure Point Concentration Table Description of Exposure Point Concentration Selection: Maximum concentrations for detected constituents from the September 2021 investigation were used for exposure point concentration. Per NCDEQ Risk Calculator User Guide (Feb. 2021) the concentrations of detected PCBs were totaled and entered as the sum as PCBs (high risk). Additionally, the method detection limit (MDL) was used as the concentration where the MDL was NOTE: If the chemical list is changed from a prior calculator run, remember to select "See All Chemicals" on the data output sheet or newly added chemicals will not be included in risk calculation Chemical Screening COPC Rationale for Exposure Point Minimum Maximum Location of Concentration Potential Potential Detection Range of Background Toxicity Value Notes: CAS Number Units Maximum Used for ARAR/TBC ARAR/TBC Flag Selection or Concentration Concentration Concentration (Screening For the chemicals highlighted in blue, data entry notes are provided in the Value Frequency Detection Limits (Qualifier) (Qualifier) (Y/N)Deletion (mg/kg) Concentration Screening Value Source PSRG Table link on the Main Menu Level) (n/c) 1.0401 1336-36-3 ~Polychlorinated Biphenyls (high risk) 0.0469 1.0401 P335-B19-0-2 mg/kg

Risk for Individual Pathways	Output Form 1A
------------------------------	----------------

Version Date: June 2021

Basis: May 2021 EPA RSL Table


Site ID:

Exposure Unit ID: Parcel 335

nini	ECT CONTACT SOIL AND WATE	P CALCIII ATO	DC										
Receptor	Pathway	Carcinogenic Risk	Hazard Index	Risk exceeded?									
Resident	Soil	NC	NC	NC									
Resident	Groundwater Use*	NC	NC	NC									
Non-Residential Worker	Soil	NC	NC	NC									
Non-Residential Worker	Groundwater Use*	NC	NC	NC									
Construction Worker	Soil	1.4E-07	0.0E+00	NO									
Pagrantor/Traspassor	Soil	2.3E-06	0.0E+00	NO									
Recreator/Trespasser	Surface Water*	NC	NC	NC									
VAPOR INTRUSION CALCULATORS Receptor Pathway Carcinogenic Risk Hazard Index Risk exceeded?													
Receptor	Pathway	_	Hazard Index	Risk exceeded?									
	Groundwater to Indoor Air	NC	NC	NC									
Resident	Soil Gas to Indoor Air	NC	NC	NC									
	Indoor Air	NC	NC	NC									
	Groundwater to Indoor Air	NC	NC	NC									
Non-Residential Worker	Soil Gas to Indoor Air	NC	NC	NC									
	Indoor Air	NC	NC	NC									
	CONTAMINANT MIGRATION CA	LCULATORS											
Pathway	Source	Target Rec	eptor Concentratio	ons Exceeded?									
Groundwater	Source Soil	Exceedence of	2L at Receptor?	NC									
Groundwater	Source Groundwater	Exceedence of	2L at Receptor?	NC									
Surface Water	Source Soil	Exceedence of	2B at Receptor?	NC									
Surface Water	Source Groundwater	Exceedence of	2B at Receptor?	NC									

Notes:

- 1. If lead concentrations were entered in the exposure point concentration tables, see the individual calculator sheets for lead concentrations in comparison to screening levels. Note that lead is not included in cumulative risk calculations.
- 2. * = If concentrations in groundwater exceed the NC 2L Standards or IMAC, or concentrations in surface water exceed the NC 2B Standards, appropriate remediation and/or institutional control measures will be necessary to be eligible for a risk-based closure.
- 3. NM = Not Modeled
- 4. NC = Pathway not calculated

(704)875-9092

September 15, 2021

Mr. Andrew Frantz WOOD E&I 2801 Yorkmont Road Suite 100 Charlotte, NC 28208

RE: Project: NCDOT R5709 Pace Project No.: 92560135

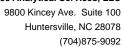
Dear Mr. Frantz:

Enclosed are the analytical results for sample(s) received by the laboratory on September 08, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Charlotte

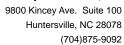
If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Ryan Brumfield ryan.brumfield@pacelabs.com (770)734-4200 Project Manager

Enclosures

cc: Mr. Andrew Frantz, WOOD E&I

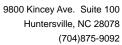


CERTIFICATIONS

Project: NCDOT R5709
Pace Project No.: 92560135

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221



SAMPLE SUMMARY

Project: NCDOT R5709
Pace Project No.: 92560135

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92560135001	P335-B4-0-2	Solid	09/07/21 11:15	09/08/21 07:30
92560135002	B335-B7-0-2	Solid	09/07/21 12:40	09/08/21 07:30
92560135003	B335-B8-0-2	Solid	09/07/21 12:45	09/08/21 07:30
92560135004	B335-B9-0-2	Solid	09/07/21 12:50	09/08/21 07:30
92560135005	B335-B10-0-2	Solid	09/07/21 12:55	09/08/21 07:30
92560135006	B335-B12-0-2	Solid	09/07/21 13:50	09/08/21 07:30
92560135007	B335-B13-0-2	Solid	09/07/21 13:00	09/08/21 07:30
92560135008	B335-B14-0-2	Solid	09/07/21 13:05	09/08/21 07:30
92560135009	B335-B15-0-2	Solid	09/07/21 13:10	09/08/21 07:30
92560135010	B335-B16-0-2	Solid	09/07/21 13:15	09/08/21 07:30
92560135011	B335-B17-0-2	Solid	09/07/21 13:20	09/08/21 07:30
92560135012	B335-B18-0-2	Solid	09/07/21 13:25	09/08/21 07:30
92560135013	B335-B19-0-2	Solid	09/07/21 13:30	09/08/21 07:30
92560135014	B335-B20-0-2	Solid	09/07/21 13:35	09/08/21 07:30
92560135015	B335-B21-0-2	Solid	09/07/21 13:40	09/08/21 07:30
92560135016	B335-B22-0-2	Solid	09/07/21 13:45	09/08/21 07:30

SAMPLE ANALYTE COUNT

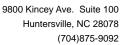
Project: NCDOT R5709
Pace Project No.: 92560135

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92560135001	P335-B4-0-2	EPA 8082A	BAJ	8	PASI-C
		SW-846	KDF	1	PASI-C
92560135002	B335-B7-0-2	EPA 8082A	BAJ	8	PASI-C
		SW-846	KDF	1	PASI-C
92560135003	B335-B8-0-2	EPA 8082A	BAJ	8	PASI-C
		SW-846	KDF	1	PASI-C
92560135004	B335-B9-0-2	EPA 8082A	BAJ	8	PASI-C
		SW-846	KDF	1	PASI-C
92560135005	B335-B10-0-2	EPA 8082A	BAJ	8	PASI-C
		SW-846	KDF	1	PASI-C
92560135006	B335-B12-0-2	EPA 8082A	BAJ	8	PASI-C
		SW-846	KDF	1	PASI-C
92560135007	B335-B13-0-2	EPA 8082A	BAJ	8	PASI-C
		SW-846	KDF	1	PASI-C
92560135008	B335-B14-0-2	EPA 8082A	BAJ	8	PASI-C
		SW-846	KDF	1	PASI-C
92560135009	B335-B15-0-2	EPA 8082A	BAJ	8	PASI-C
		SW-846	KDF	1	PASI-C
92560135010	B335-B16-0-2	EPA 8082A	BAJ	8	PASI-C
		SW-846	KDF	1	PASI-C
92560135011	B335-B17-0-2	EPA 8082A	BAJ	8	PASI-C
		SW-846	KDF	1	PASI-C
92560135012	B335-B18-0-2	EPA 8082A	BAJ	8	PASI-C
		SW-846	KDF	1	PASI-C
92560135013	B335-B19-0-2	EPA 8082A	BAJ	8	PASI-C
		SW-846	KDF	1	PASI-C
92560135014	B335-B20-0-2	EPA 8082A	BAJ	8	PASI-C
		SW-846	KDF	1	PASI-C
92560135015	B335-B21-0-2	EPA 8082A	BAJ	8	PASI-C
		SW-846	KDF	1	PASI-C
92560135016	B335-B22-0-2	EPA 8082A	BAJ	8	PASI-C
		SW-846	KDF	1	PASI-C

PASI-C = Pace Analytical Services - Charlotte

Project: NCDOT R5709
Pace Project No.: 92560135

Date: 09/15/2021 02:25 PM


Sample: P335-B4-0-2	Lab ID:	92560135001	I Collected	d: 09/07/21	11:15	Received: 09/	08/21 07:30 IVI	atrix: Solid	
Results reported on a "dry wei	ight" basis and are	adjusted for	r percent mo	isture, san	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EPA	8082A Prepa	aration Meth	nod: El	PA 3546			
	Pace Anal	ytical Services	s - Charlotte						
PCB-1016 (Aroclor 1016)	ND	ug/kg	38.0	13.9	1	09/10/21 11:10	09/10/21 17:40	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/kg	38.0	14.7	1	09/10/21 11:10	09/10/21 17:40	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/kg	38.0	13.3	1	09/10/21 11:10	09/10/21 17:40	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/kg	38.0	7.2	1	09/10/21 11:10	09/10/21 17:40	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/kg	38.0	9.5	1	09/10/21 11:10	09/10/21 17:40	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/kg	38.0	7.1	1	09/10/21 11:10	09/10/21 17:40	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/kg	38.0	9.1	1	09/10/21 11:10	09/10/21 17:40	11096-82-5	
Surrogates									
Decachlorobiphenyl (S)	41	%	10-160		1	09/10/21 11:10	09/10/21 17:40	2051-24-3	
Percent Moisture	Analytical	Method: SW-8	846						
	Pace Anal	ytical Services	s - Charlotte						
Percent Moisture	11.6	%	0.10	0.10	1		09/09/21 13:38		N2

Project: NCDOT R5709
Pace Project No.: 92560135

Date: 09/15/2021 02:25 PM

Sample: B335-B7-0-2	Lab ID:	92560135002	Collected	d: 09/07/21	12:40	Received: 09/	/08/21 07:30 Ma	atrix: Solid	
Results reported on a "dry we	ight" basis and are	adjusted for	percent mo	isture, san	nple s	ize and any dilut	ions.		
			Report		•	-			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EPA 8	082A Prepa	aration Metl	nod: E	PA 3546			
	Pace Anal	ytical Services	- Charlotte						
PCB-1016 (Aroclor 1016)	ND	ug/kg	34.7	12.7	1	09/10/21 11:10	09/10/21 18:09	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/kg	34.7	13.4	1	09/10/21 11:10	09/10/21 18:09	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/kg	34.7	12.1	1	09/10/21 11:10	09/10/21 18:09	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/kg	34.7	6.5	1	09/10/21 11:10	09/10/21 18:09	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/kg	34.7	8.7	1	09/10/21 11:10	09/10/21 18:09	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/kg	34.7	6.5	1	09/10/21 11:10	09/10/21 18:09	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/kg	34.7	8.3	1	09/10/21 11:10	09/10/21 18:09	11096-82-5	
Surrogates									
Decachlorobiphenyl (S)	93	%	10-160		1	09/10/21 11:10	09/10/21 18:09	2051-24-3	
Percent Moisture	Analytical	Method: SW-84	16						
	Pace Anal	ytical Services	- Charlotte						
Percent Moisture	5.1	%	0.10	0.10	1		09/09/21 13:38		N2

Date: 09/15/2021 02:25 PM

ANALYTICAL RESULTS

Project: NCDOT R5709
Pace Project No.: 92560135

Sample: B335-B8-0-2	Lab ID:	9256013500	O3 Collected	d: 09/07/21	12:45	Received: 09/	08/21 07:30 Ma	atrix: Solid	
Results reported on a "dry wei	ight" basis and are	adjusted fo	or percent mo	isture, san	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EPA	A 8082A Prepa	aration Meth	nod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
PCB-1016 (Aroclor 1016)	ND	ug/kg	42.2	15.5	1	09/10/21 11:10	09/10/21 18:24	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/kg	42.2	16.3	1	09/10/21 11:10	09/10/21 18:24	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/kg	42.2	14.8	1	09/10/21 11:10	09/10/21 18:24	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/kg	42.2	8.0	1	09/10/21 11:10	09/10/21 18:24	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/kg	42.2	10.5	1	09/10/21 11:10	09/10/21 18:24	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/kg	42.2	7.9	1	09/10/21 11:10	09/10/21 18:24	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/kg	42.2	10.1	1	09/10/21 11:10	09/10/21 18:24	11096-82-5	
Surrogates									
Decachlorobiphenyl (S)	63	%	10-160		1	09/10/21 11:10	09/10/21 18:24	2051-24-3	
Percent Moisture	Analytical	Method: SW	-846						
	Pace Anal	ytical Service	es - Charlotte						
Percent Moisture	22.6	%	0.10	0.10	1		09/09/21 13:38		N2

Project: NCDOT R5709
Pace Project No.: 92560135

Date: 09/15/2021 02:25 PM

Sample: B335-B9-0-2	Lab ID:	9256013500	O4 Collected	d: 09/07/21	12:50	Received: 09/	/08/21 07:30 Ma	atrix: Solid	
Results reported on a "dry wei	ight" basis and are	adjusted fo	or percent mo	isture, san	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EPA	\ 8082A Prepa	aration Metl	hod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
PCB-1016 (Aroclor 1016)	ND	ug/kg	43.1	15.8	1	09/10/21 11:10	09/10/21 18:38	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/kg	43.1	16.6	1	09/10/21 11:10	09/10/21 18:38	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/kg	43.1	15.1	1	09/10/21 11:10	09/10/21 18:38	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/kg	43.1	8.1	1	09/10/21 11:10	09/10/21 18:38	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/kg	43.1	10.8	1	09/10/21 11:10	09/10/21 18:38	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/kg	43.1	8.1	1	09/10/21 11:10	09/10/21 18:38	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/kg	43.1	10.3	1	09/10/21 11:10	09/10/21 18:38	11096-82-5	
Surrogates									
Decachlorobiphenyl (S)	130	%	10-160		1	09/10/21 11:10	09/10/21 18:38	2051-24-3	
Percent Moisture	Analytical	Method: SW	-846						
	Pace Anal	ytical Service	es - Charlotte						
Percent Moisture	22.6	%	0.10	0.10	1		09/09/21 13:38		N2

N2

09/09/21 13:39

Percent Moisture

Date: 09/15/2021 02:25 PM

ANALYTICAL RESULTS

Project: NCDOT R5709
Pace Project No.: 92560135

Sample: B335-B10-0-2	Lab ID:	92560135005	Collecte	d: 09/07/21	12:55	Received: 09/	/08/21 07:30 Ma	atrix: Solid	
Results reported on a "dry we	ight" basis and are	e adjusted for	percent me	oisture, san	nple s	ize and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EPA 8	3082A Prep	aration Met	hod: E	PA 3546			
	Pace Anal	ytical Services	- Charlotte						
PCB-1016 (Aroclor 1016)	ND	ug/kg	34.1	12.5	1	09/14/21 09:51	09/15/21 09:48	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/kg	34.1	13.1	1	09/14/21 09:51	09/15/21 09:48	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/kg	34.1	11.9	1	09/14/21 09:51	09/15/21 09:48	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/kg	34.1	6.4	1	09/14/21 09:51	09/15/21 09:48	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/kg	34.1	8.5	1	09/14/21 09:51	09/15/21 09:48	12672-29-6	
PCB-1254 (Aroclor 1254)	74.9	ug/kg	34.1	6.4	1	09/14/21 09:51	09/15/21 09:48	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/kg	34.1	8.1	1	09/14/21 09:51	09/15/21 09:48	11096-82-5	
Surrogates									
Decachlorobiphenyl (S)	105	%	10-160		1	09/14/21 09:51	09/15/21 09:48	2051-24-3	
Percent Moisture	Analytical	Method: SW-8	46						

0.10

0.10 1

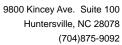
Pace Analytical Services - Charlotte

%

3.2

Project: NCDOT R5709
Pace Project No.: 92560135

Date: 09/15/2021 02:25 PM


Sample: B335-B12-0-2	Lab ID:	9256013500	O6 Collected	d: 09/07/21	13:50	Received: 09/	/08/21 07:30 Ma	atrix: Solid	
Results reported on a "dry we	ight" basis and are	adjusted fo	or percent mo	oisture, san	nple s	ize and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EP/	A 8082A Prepa	aration Metl	nod: E	PA 3546			
	Pace Anal	ytical Servic	es - Charlotte						
PCB-1016 (Aroclor 1016)	ND	ug/kg	42.7	15.6	1	09/10/21 11:10	09/10/21 19:07	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/kg	42.7	16.5	1	09/10/21 11:10	09/10/21 19:07	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/kg	42.7	15.0	1	09/10/21 11:10	09/10/21 19:07	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/kg	42.7	8.0	1	09/10/21 11:10	09/10/21 19:07	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/kg	42.7	10.7	1	09/10/21 11:10	09/10/21 19:07	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/kg	42.7	8.0	1	09/10/21 11:10	09/10/21 19:07	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/kg	42.7	10.2	1	09/10/21 11:10	09/10/21 19:07	11096-82-5	
Surrogates									
Decachlorobiphenyl (S)	124	%	10-160		1	09/10/21 11:10	09/10/21 19:07	2051-24-3	
Percent Moisture	Analytical	Method: SW	′-846						
	Pace Anal	ytical Servic	es - Charlotte						
Percent Moisture	23.2	%	0.10	0.10	1		09/09/21 13:39		N2

Project: NCDOT R5709
Pace Project No.: 92560135

Date: 09/15/2021 02:25 PM

Sample: B335-B13-0-2	Lab ID:	92560135007	Collected	d: 09/07/21	13:00	Received: 09/	08/21 07:30 Ma	atrix: Solid	
Results reported on a "dry wei	ight" basis and are	adjusted for	percent mo	isture, san	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EPA	8082A Prepa	aration Metl	hod: E	PA 3546			
	Pace Anal	ytical Services	s - Charlotte						
PCB-1016 (Aroclor 1016)	ND	ug/kg	39.1	14.3	1	09/10/21 11:10	09/10/21 19:22	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/kg	39.1	15.1	1	09/10/21 11:10	09/10/21 19:22	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/kg	39.1	13.7	1	09/10/21 11:10	09/10/21 19:22	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/kg	39.1	7.4	1	09/10/21 11:10	09/10/21 19:22	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/kg	39.1	9.8	1	09/10/21 11:10	09/10/21 19:22	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/kg	39.1	7.4	1	09/10/21 11:10	09/10/21 19:22	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/kg	39.1	9.4	1	09/10/21 11:10	09/10/21 19:22	11096-82-5	
Surrogates									
Decachlorobiphenyl (S)	39	%	10-160		1	09/10/21 11:10	09/10/21 19:22	2051-24-3	
Percent Moisture	Analytical	Method: SW-8	346						
	Pace Anal	ytical Services	s - Charlotte						
Percent Moisture	14.6	%	0.10	0.10	1		09/09/21 13:39		N2

Project: NCDOT R5709
Pace Project No.: 92560135

Date: 09/15/2021 02:25 PM

Sample: B335-B14-0-2	Lab ID:	9256013500	08 Collected	d: 09/07/21	13:05	Received: 09/	08/21 07:30 Ma	atrix: Solid	
Results reported on a "dry wei	ight" basis and are	adjusted fo	or percent mo	isture, san	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EPA	\ 8082A Prepa	aration Metl	hod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
PCB-1016 (Aroclor 1016)	ND	ug/kg	44.2	16.2	1	09/10/21 11:10	09/10/21 19:36	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/kg	44.2	17.1	1	09/10/21 11:10	09/10/21 19:36	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/kg	44.2	15.5	1	09/10/21 11:10	09/10/21 19:36	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/kg	44.2	8.3	1	09/10/21 11:10	09/10/21 19:36	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/kg	44.2	11.0	1	09/10/21 11:10	09/10/21 19:36	12672-29-6	
PCB-1254 (Aroclor 1254)	581	ug/kg	44.2	8.3	1	09/10/21 11:10	09/10/21 19:36	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/kg	44.2	10.6	1	09/10/21 11:10	09/10/21 19:36	11096-82-5	
Surrogates									
Decachlorobiphenyl (S)	87	%	10-160		1	09/10/21 11:10	09/10/21 19:36	2051-24-3	
Percent Moisture	Analytical	Method: SW	-846						
	Pace Anal	ytical Service	es - Charlotte						
Percent Moisture	24.1	%	0.10	0.10	1		09/09/21 13:39		N2

Project: NCDOT R5709
Pace Project No.: 92560135

Date: 09/15/2021 02:25 PM

Sample: B335-B15-0-2	Lab ID:	9256013500	9 Collected	d: 09/07/21	13:10	Received: 09/	08/21 07:30 Ma	atrix: Solid	
Results reported on a "dry wei	ight" basis and are	adjusted fo	or percent mo	isture, san	nple s	ize and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EPA	8082A Prepa	aration Metl	nod: E	PA 3546			
	Pace Anal	ytical Service	es - Charlotte						
PCB-1016 (Aroclor 1016)	ND	ug/kg	35.3	12.9	1	09/10/21 11:10	09/10/21 19:51	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/kg	35.3	13.6	1	09/10/21 11:10	09/10/21 19:51	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/kg	35.3	12.4	1	09/10/21 11:10	09/10/21 19:51	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/kg	35.3	6.6	1	09/10/21 11:10	09/10/21 19:51	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/kg	35.3	8.8	1	09/10/21 11:10	09/10/21 19:51	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/kg	35.3	6.6	1	09/10/21 11:10	09/10/21 19:51	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/kg	35.3	8.4	1	09/10/21 11:10	09/10/21 19:51	11096-82-5	
Surrogates									
Decachlorobiphenyl (S)	90	%	10-160		1	09/10/21 11:10	09/10/21 19:51	2051-24-3	
Percent Moisture	Analytical	Method: SW	-846						
	Pace Anal	ytical Service	s - Charlotte						
Percent Moisture	5.5	%	0.10	0.10	1		09/09/21 13:39		N2

Sample: B335-B16-0-2

PCB-1260 (Aroclor 1260)

Decachlorobiphenyl (S)

Date: 09/15/2021 02:25 PM

Surrogates

ANALYTICAL RESULTS

Collected: 09/07/21 13:15 Received: 09/08/21 07:30 Matrix: Solid

09/10/21 11:10 09/10/21 20:05 11096-82-5

09/10/21 11:10 09/10/21 20:05 2051-24-3

Project: NCDOT R5709 Pace Project No.: 92560135

Results reported on a "dry we	ight" basis and ar	e adjusted fo	or percent me Report	oisture, sar	nple s	ize and any dilut	ions.		
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	•		A 8082A Prepes - Charlotte		hod: E	PA 3546			
PCB-1016 (Aroclor 1016)	ND	ug/kg	34.7	12.7	1	09/10/21 11:10	09/10/21 20:05	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/kg	34.7	13.4	1	09/10/21 11:10	09/10/21 20:05	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/kg	34.7	12.1	1	09/10/21 11:10	09/10/21 20:05	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/kg	34.7	6.5	1	09/10/21 11:10	09/10/21 20:05	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/kg	34.7	8.7	1	09/10/21 11:10	09/10/21 20:05	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/kg	34.7	6.5	1	09/10/21 11:10	09/10/21 20:05	11097-69-1	

8.3

Percent Moisture Analytical Method: SW-846

ND

98

Pace Analytical Services - Charlotte

ug/kg

%

Lab ID: 92560135010

Percent Moisture 3.6 % 0.10 0.10 09/09/21 13:39 N2 1

34.7

10-160

Project: NCDOT R5709
Pace Project No.: 92560135

Date: 09/15/2021 02:25 PM

Sample: B335-B17-0-2	Lab ID:	92560135011	Collected	d: 09/07/21	13:20	Received: 09/	'08/21 07:30 Ma	atrix: Solid	
Results reported on a "dry wei	ight" basis and are	adjusted for	percent mo	oisture, san	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EPA	3082A Prepa	aration Meth	nod: E	PA 3546			
	Pace Anal	ytical Services	- Charlotte						
PCB-1016 (Aroclor 1016)	ND	ug/kg	34.3	12.6	1	09/10/21 11:10	09/10/21 20:20	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/kg	34.3	13.2	1	09/10/21 11:10	09/10/21 20:20	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/kg	34.3	12.0	1	09/10/21 11:10	09/10/21 20:20	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/kg	34.3	6.5	1	09/10/21 11:10	09/10/21 20:20	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/kg	34.3	8.6	1	09/10/21 11:10	09/10/21 20:20	12672-29-6	
PCB-1254 (Aroclor 1254)	53.3	ug/kg	34.3	6.5	1	09/10/21 11:10	09/10/21 20:20	11097-69-1	
PCB-1260 (Aroclor 1260)	29.3J	ug/kg	34.3	8.2	1	09/10/21 11:10	09/10/21 20:20	11096-82-5	
Surrogates									
Decachlorobiphenyl (S)	54	%	10-160		1	09/10/21 11:10	09/10/21 20:20	2051-24-3	
Percent Moisture	Analytical	Method: SW-8	46						
	Pace Anal	ytical Services	- Charlotte						
Percent Moisture	5.4	%	0.10	0.10	1		09/09/21 16:14		N2

Project: NCDOT R5709
Pace Project No.: 92560135

Date: 09/15/2021 02:25 PM

Sample: B335-B18-0-2	Lab ID:	925601350	12 Collected	d: 09/07/21	13:25	Received: 09/	/08/21 07:30 Ma	atrix: Solid	
Results reported on a "dry we	ight" basis and are	adjusted f	or percent mo	oisture, san	nple s	ize and any dilut	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EP/	A 8082A Prepa	aration Metl	nod: E	PA 3546			
	Pace Anal	ytical Servic	es - Charlotte						
PCB-1016 (Aroclor 1016)	ND	ug/kg	34.5	12.6	1	09/10/21 11:10	09/10/21 20:35	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/kg	34.5	13.3	1	09/10/21 11:10	09/10/21 20:35	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/kg	34.5	12.1	1	09/10/21 11:10	09/10/21 20:35	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/kg	34.5	6.5	1	09/10/21 11:10	09/10/21 20:35	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/kg	34.5	8.6	1	09/10/21 11:10	09/10/21 20:35	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/kg	34.5	6.5	1	09/10/21 11:10	09/10/21 20:35	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/kg	34.5	8.3	1	09/10/21 11:10	09/10/21 20:35	11096-82-5	
Surrogates									
Decachlorobiphenyl (S)	79	%	10-160		1	09/10/21 11:10	09/10/21 20:35	2051-24-3	
Percent Moisture	Analytical	Method: SW	′-846						
	Pace Anal	ytical Servic	es - Charlotte						
Percent Moisture	4.4	%	0.10	0.10	1		09/09/21 16:14		N2

Project: NCDOT R5709
Pace Project No.: 92560135

Date: 09/15/2021 02:25 PM

Sample: B335-B19-0-2	Lab ID:	92560135013	Collected	d: 09/07/21	13:30	Received: 09/	/08/21 07:30 Ma	atrix: Solid	
Results reported on a "dry wei	ight" basis and are	adjusted for	percent mo	oisture, san	nple s	ize and any dilut	ions.		
			Report		-				
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EPA 8	082A Prep	aration Metl	nod: E	PA 3546			
	Pace Anal	ytical Services	- Charlotte						
PCB-1016 (Aroclor 1016)	ND	ug/kg	69.4	25.4	2	09/10/21 11:10	09/13/21 10:55	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/kg	69.4	26.8	2	09/10/21 11:10	09/13/21 10:55	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/kg	69.4	24.3	2	09/10/21 11:10	09/13/21 10:55	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/kg	69.4	13.1	2	09/10/21 11:10	09/13/21 10:55	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/kg	69.4	17.3	2	09/10/21 11:10	09/13/21 10:55	12672-29-6	
PCB-1254 (Aroclor 1254)	651	ug/kg	69.4	13.1	2	09/10/21 11:10	09/13/21 10:55	11097-69-1	
PCB-1260 (Aroclor 1260)	338	ug/kg	69.4	16.6	2	09/10/21 11:10	09/13/21 10:55	11096-82-5	
Surrogates									
Decachlorobiphenyl (S)	107	%	10-160		2	09/10/21 11:10	09/13/21 10:55	2051-24-3	
Percent Moisture	Analytical	Method: SW-8	46						
	Pace Anal	ytical Services	- Charlotte						
Percent Moisture	4.0	%	0.10	0.10	1		09/09/21 16:14		N2

Project: NCDOT R5709
Pace Project No.: 92560135

Date: 09/15/2021 02:25 PM

Sample: B335-B20-0-2	Lab ID:	92560135014	Collected	d: 09/07/21	13:35	Received: 09/	08/21 07:30 Ma	atrix: Solid	
Results reported on a "dry wei	ight" basis and are	adjusted for	percent mo	oisture, san	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EPA 8	082A Prep	aration Metl	nod: El	PA 3546			
	Pace Anal	ytical Services	- Charlotte						
PCB-1016 (Aroclor 1016)	ND	ug/kg	34.7	12.7	1	09/10/21 11:10	09/10/21 21:04	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/kg	34.7	13.4	1	09/10/21 11:10	09/10/21 21:04	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/kg	34.7	12.2	1	09/10/21 11:10	09/10/21 21:04	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/kg	34.7	6.5	1	09/10/21 11:10	09/10/21 21:04	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/kg	34.7	8.7	1	09/10/21 11:10	09/10/21 21:04	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/kg	34.7	6.5	1	09/10/21 11:10	09/10/21 21:04	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/kg	34.7	8.3	1	09/10/21 11:10	09/10/21 21:04	11096-82-5	
Surrogates									
Decachlorobiphenyl (S)	59	%	10-160		1	09/10/21 11:10	09/10/21 21:04	2051-24-3	
Percent Moisture	Analytical	Method: SW-8	46						
	Pace Anal	ytical Services	- Charlotte						
Percent Moisture	5.6	%	0.10	0.10	1		09/09/21 16:15		N2

09/09/21 16:15

N2

Percent Moisture

Date: 09/15/2021 02:25 PM

ANALYTICAL RESULTS

Project: NCDOT R5709
Pace Project No.: 92560135

		-	Report		-	•			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EPA	4 8082A Prep	aration Metl	nod: E	PA 3546			
	Pace Anal	ytical Servic	es - Charlotte						
PCB-1016 (Aroclor 1016)	ND	ug/kg	34.9	12.8	1	09/10/21 11:10	09/10/21 21:18	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/kg	34.9	13.5	1	09/10/21 11:10	09/10/21 21:18	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/kg	34.9	12.2	1	09/10/21 11:10	09/10/21 21:18	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/kg	34.9	6.6	1	09/10/21 11:10	09/10/21 21:18	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/kg	34.9	8.7	1	09/10/21 11:10	09/10/21 21:18	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/kg	34.9	6.6	1	09/10/21 11:10	09/10/21 21:18	11097-69-1	
PCB-1260 (Aroclor 1260)	21.3J	ug/kg	34.9	8.3	1	09/10/21 11:10	09/10/21 21:18	11096-82-5	
Surrogates									
Decachlorobiphenyl (S)	60	%	10-160		1	09/10/21 11:10	09/10/21 21:18	2051-24-3	

0.10

0.10 1

Pace Analytical Services - Charlotte

%

4.7

Project: NCDOT R5709
Pace Project No.: 92560135

Date: 09/15/2021 02:25 PM

Sample: B335-B22-0-2	Lab ID:	92560135016	Collected	d: 09/07/21	13:45	Received: 09/	/08/21 07:30 Ma	atrix: Solid	
Results reported on a "dry we	ight" basis and are	adjusted for	percent mo	isture, san	nple s	ize and any dilut	ions.		
			Report		•	-			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB	Analytical	Method: EPA 8	082A Prepa	aration Meth	nod: E	PA 3546			
	Pace Anal	ytical Services	- Charlotte						
PCB-1016 (Aroclor 1016)	ND	ug/kg	34.1	12.5	1	09/10/21 11:10	09/10/21 22:45	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/kg	34.1	13.2	1	09/10/21 11:10	09/10/21 22:45	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/kg	34.1	12.0	1	09/10/21 11:10	09/10/21 22:45	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/kg	34.1	6.4	1	09/10/21 11:10	09/10/21 22:45	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/kg	34.1	8.5	1	09/10/21 11:10	09/10/21 22:45	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/kg	34.1	6.4	1	09/10/21 11:10	09/10/21 22:45	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/kg	34.1	8.2	1	09/10/21 11:10	09/10/21 22:45	11096-82-5	
Surrogates									
Decachlorobiphenyl (S)	87	%	10-160		1	09/10/21 11:10	09/10/21 22:45	2051-24-3	
Percent Moisture	Analytical	Method: SW-84	46						
	Pace Anal	ytical Services	- Charlotte						
Percent Moisture	2.0	%	0.10	0.10	1		09/09/21 16:15		N2

NCDOT R5709 Project: Pace Project No.: 92560135

PCB-1254 (Aroclor 1254)

Date: 09/15/2021 02:25 PM

QC Batch: 646354 Analysis Method: EPA 8082A QC Batch Method: EPA 3546 Analysis Description: 8082 GCS PCB

> Laboratory: Pace Analytical Services - Charlotte

92560135001, 92560135002, 92560135003, 92560135004, 92560135006, 92560135007, 92560135008, Associated Lab Samples:

92560135019, 92560135010, 92560135011, 92560135012, 92560135013, 92560135014, 92560135015,

92560135016

METHOD BLANK: 3390302 Matrix: Solid

Associated Lab Samples: 92560135001, 92560135002, 92560135003, 92560135004, 92560135006, 92560135007, 92560135008,

92560135009, 92560135010, 92560135011, 92560135012, 92560135013, 92560135014, 92560135015,

92560135016

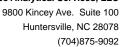
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	ND ND	32.6	11.9	09/10/21 22:16	
PCB-1221 (Aroclor 1221)	ug/kg	ND	32.6	12.6	09/10/21 22:16	
PCB-1232 (Aroclor 1232)	ug/kg	ND	32.6	11.4	09/10/21 22:16	
PCB-1242 (Aroclor 1242)	ug/kg	ND	32.6	6.1	09/10/21 22:16	
PCB-1248 (Aroclor 1248)	ug/kg	ND	32.6	8.1	09/10/21 22:16	
PCB-1254 (Aroclor 1254)	ug/kg	ND	32.6	6.1	09/10/21 22:16	
PCB-1260 (Aroclor 1260)	ug/kg	ND	32.6	7.8	09/10/21 22:16	
Decachlorobiphenyl (S)	%	94	10-160		09/10/21 22:16	

LABORATORY CONTROL SAMPLE:	3390303					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	164	160	97	54-130	
PCB-1260 (Aroclor 1260)	ug/kg	164	149	90	47-139	
Decachlorobiphenyl (S)	%			96	10-160	

MATRIX SPIKE SAMPLE:	3390304						
		92559545010	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	ND	180	139	77	17-131	
PCB-1260 (Aroclor 1260)	ug/kg	ND	180	124	69	10-142	
Decachlorobiphenyl (S)	%				70	10-160	

SAMPLE DUPLICATE: 3390305						
		92560135001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg		ND		30	
PCB-1221 (Aroclor 1221)	ug/kg	ND	ND		30	
PCB-1232 (Aroclor 1232)	ug/kg	ND	ND		30	
PCB-1242 (Aroclor 1242)	ug/kg	ND	ND		30	
PCB-1248 (Aroclor 1248)	ug/kg	ND	ND		30	

ug/kg


Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

ND

ND

REPORT OF LABORATORY ANALYSIS

30

Date: 09/15/2021 02:25 PM

QUALITY CONTROL DATA

Project: NCDOT R5709
Pace Project No.: 92560135

SAMPLE DUPLICATE: 3390305 92560135001 Dup Max RPD RPD Parameter Units Result Result Qualifiers PCB-1260 (Aroclor 1260) ND ND ug/kg 30 41 Decachlorobiphenyl (S) % 77

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NCDOT R5709
Pace Project No.: 92560135

QC Batch: 646939 Analysis Method: EPA 8082A
QC Batch Method: EPA 3546 Analysis Description: 8082 GCS PCB

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92560135005

METHOD BLANK: 3393413 Matrix: Solid

Associated Lab Samples: 92560135005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	ND	32.9	12.0	09/14/21 18:18	
PCB-1221 (Aroclor 1221)	ug/kg	ND	32.9	12.7	09/14/21 18:18	
PCB-1232 (Aroclor 1232)	ug/kg	ND	32.9	11.5	09/14/21 18:18	
PCB-1242 (Aroclor 1242)	ug/kg	ND	32.9	6.2	09/14/21 18:18	
PCB-1248 (Aroclor 1248)	ug/kg	ND	32.9	8.2	09/14/21 18:18	
PCB-1254 (Aroclor 1254)	ug/kg	ND	32.9	6.2	09/14/21 18:18	
PCB-1260 (Aroclor 1260)	ug/kg	ND	32.9	7.9	09/14/21 18:18	
Decachlorobiphenyl (S)	%	116	10-160		09/14/21 18:18	

LABORATORY CONTROL SAMPLE:	3393414					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	165	179	108	54-130	
PCB-1260 (Aroclor 1260)	ug/kg	165	189	114	47-139	
Decachlorobiphenyl (S)	%			126	10-160	

MATRIX SPIKE SAMPLE:	3393415						
		92560574001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	ND	1210	679	56	17-131	
PCB-1260 (Aroclor 1260)	ug/kg	ND	1210	778	64	10-142	
Decachlorobiphenyl (S)	%				59	10-160	

SAMPLE DUPLICATE: 3393416

Date: 09/15/2021 02:25 PM

		92560646001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	ND	ND		30	
PCB-1221 (Aroclor 1221)	ug/kg	ND	ND		30)
PCB-1232 (Aroclor 1232)	ug/kg	ND	ND		30	1
PCB-1242 (Aroclor 1242)	ug/kg	ND	ND		30	1
PCB-1248 (Aroclor 1248)	ug/kg	ND	ND		30	1
PCB-1254 (Aroclor 1254)	ug/kg	ND	ND		30	1
PCB-1260 (Aroclor 1260)	ug/kg	ND	ND		30	1
Decachlorobiphenyl (S)	%	40	51			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NCDOT R5709
Pace Project No.: 92560135

QC Batch: 646151 Analysis Method: SW-846

QC Batch Method: SW-846 Analysis Description: Dry Weight/Percent Moisture

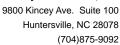
Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92560135001, 92560135002, 92560135003, 92560135004, 92560135005, 92560135006, 92560135007,

92560135008, 92560135009, 92560135010

SAMPLE DUPLICATE: 3389218

 Parameter
 Units
 92559954001 Result
 Dup Result
 Max RPD
 RPD
 Qualifiers


 Percent Moisture
 %
 19.9
 20.2
 2
 25 N2

SAMPLE DUPLICATE: 3389219

Date: 09/15/2021 02:25 PM

		92560200006	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	27.5	27.0	2	2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Analytical Services - Charlotte

Project: NCDOT R5709

Pace Project No.: 92560135

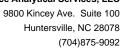
QC Batch: 646205 Analysis Method: SW-846

QC Batch Method: SW-846 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 92560135011, 92560135012, 92560135013, 92560135014, 92560135015, 92560135016

SAMPLE DUPLICATE: 3389693

92560062001 Dup Max RPD RPD Qualifiers Parameter Units Result Result 21.0 Percent Moisture % 21.0 0 25 N2


Laboratory:

SAMPLE DUPLICATE: 3389694

Date: 09/15/2021 02:25 PM

		92559793003	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	21.2	21.5	1	2	5 N2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: NCDOT R5709
Pace Project No.: 92560135

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

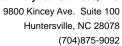
U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.


Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 09/15/2021 02:25 PM

N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: NCDOT R5709
Pace Project No.: 92560135

Date: 09/15/2021 02:25 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92560135001	P335-B4-0-2	EPA 3546	646354	EPA 8082A	646606
92560135002	B335-B7-0-2	EPA 3546	646354	EPA 8082A	646606
92560135003	B335-B8-0-2	EPA 3546	646354	EPA 8082A	646606
92560135004	B335-B9-0-2	EPA 3546	646354	EPA 8082A	646606
92560135005	B335-B10-0-2	EPA 3546	646939	EPA 8082A	647290
92560135006	B335-B12-0-2	EPA 3546	646354	EPA 8082A	646606
92560135007	B335-B13-0-2	EPA 3546	646354	EPA 8082A	646606
92560135008	B335-B14-0-2	EPA 3546	646354	EPA 8082A	646606
92560135009	B335-B15-0-2	EPA 3546	646354	EPA 8082A	646606
92560135010	B335-B16-0-2	EPA 3546	646354	EPA 8082A	646606
92560135011	B335-B17-0-2	EPA 3546	646354	EPA 8082A	646606
92560135012	B335-B18-0-2	EPA 3546	646354	EPA 8082A	646606
92560135013	B335-B19-0-2	EPA 3546	646354	EPA 8082A	646606
2560135014	B335-B20-0-2	EPA 3546	646354	EPA 8082A	646606
2560135015	B335-B21-0-2	EPA 3546	646354	EPA 8082A	646606
92560135016	B335-B22-0-2	EPA 3546	646354	EPA 8082A	646606
92560135001	P335-B4-0-2	SW-846	646151		
92560135002	B335-B7-0-2	SW-846	646151		
92560135003	B335-B8-0-2	SW-846	646151		
92560135004	B335-B9-0-2	SW-846	646151		
92560135005	B335-B10-0-2	SW-846	646151		
92560135006	B335-B12-0-2	SW-846	646151		
92560135007	B335-B13-0-2	SW-846	646151		
92560135008	B335-B14-0-2	SW-846	646151		
92560135009	B335-B15-0-2	SW-846	646151		
92560135010	B335-B16-0-2	SW-846	646151		
92560135011	B335-B17-0-2	SW-846	646205		
92560135012	B335-B18-0-2	SW-846	646205		
92560135013	B335-B19-0-2	SW-846	646205		
92560135014	B335-B20-0-2	SW-846	646205		
92560135015	B335-B21-0-2	SW-846	646205		
92560135016	B335-B22-0-2	SW-846	646205		

Document Name: Sample Condition Upon Receipt(SCUR) Document No.:

F-CAR-CS-033-Rev.07

Document Revised: October 28, 2020
Page 1 of 2
Issuing Authority:
Pace Carolinas Quality Office

Laboratory receiving samples: Asheville	unters	ville 🛚	Ralei	gh□	Mechanicsville Atlanta Kernersville
Sample Condition Upon Receipt Client Name:				Projec	W0#:92560135
Courter: Fed Ex UPS Commercial Pace	USPS Othe		ШС	lient	92560135
Custody Seal Present? Yes Mo Seals Inta	ct?	□Yes	Ø№	1	Date/Initials Person Examining Contents: 46 9/9/2
Packing Material: Bubble Wrap Bubble	Bags	None		Other	Biological Tissue Frozen?
Thermometer:	ype of I		Wet 🔲	Blue	□ Yes □ No R N/A
Cooler Temp: 5.3 Correction Factor: Add/Subtract (°C)	<u></u> 0		— !! C (check ma	aps)?	Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process has begun Did samples originate from a foreign source (Internationally,
☐Yes Mo				1	including Hawaii and Puerto Rico)? Tyes Ano Comments/Discrepancy:
Chain of Custody Present?	⊠Yes	□No	□N/A	1.	Commency osciepancy.
Samples Arrived within Hold Time?	Z Yes			1	, i
Short Hold Time Analysis (<72 hr.)?	Z]Yes ☐Yes	□No Dano	_□N/A □N/A	2. 3.	
Rush Turn Around Time Requested?	□ Yes	Z No	□N/A	4.	
Sufficient Volume?	₽Ves	□No	—————————————————————————————————————	5.	
Correct Containers Used? -Pace Containers Used?	Yes	□No □No	□N/A □N/A	6.	
Containers Intact?	Yes	□No	□N/A	7.	H
Dissolved analysis: Samples Field Filtered?	□Yes	□No	MN/A	8.	
Sample Labels Match COC7	2 Yes	□No	□N/A	9.	
-Includes Date/Time/ID/Analysis Matrix: SL		N			
Headspace in VOA Vials (>5-6mm)?	Yes	□No	N/A	10.	ii
Trip Blank Present?	Yes	No	□N/A	11.	3.00
Trip Blank Custody Seals Present?	Yes	No	IDN/A		
COMMENTS/SAMPLE DISCREPANCY					Field Data Required? Yes No
		_			
		_		Lot	t ID of split containers:
CLIENT NOTIFICATION/RESOLUTION			75		. To despine contain it. a.
2			5		
Person-contacted:			- Bate/Ti	me:	
Project Manager SCURF Review:		Ð			Date:
Project Manager SRF Review:	N/a		=		Date:

Pace Analytical*

Document Name:

Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07

Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority:
Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

Project # 110# · C

92560135

PM: RNB

Due Date: 09/15/21

CLIENT: 92-AMEC C

	BP4U-125 mt Plastic Unpreserved (N/A) (CI-)	BP3LL-250 mL Plastic Unpreserved (N/A)	8P2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H25O4 (pH < 2) (CI-)	8P3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	8P4C-125 mt Plastic NaOH (pH > 12) (CL)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Ambe H2SO4 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mt VOA Na25203 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mt VOA (13PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per l/tt)-VPH/Gas kit (N/A)	SP5T-125 m1 Sterile Plastic (N/A - lab)	SP2T-250 mL Ster(le Plastic (N/A – lab)	8P3A-250 mL Plassic (NH2)25O4 (9.3-9.7)	AGOU-100 mt Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Ambér Unpreserved vials (N/A)
1		111							1																		
2									l															\sum			
3									l																		
4									1																		
5																											-
6									l																		
7	\setminus								36																		
8																											
9									Ī																		
10																				24	12						
11									1																	ž.	
12									1																		

		pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#
	0.00 5					
	-					
	** 77					

Note: Whenever there is a discrepancy affecting North-Carolina-compliance-samples, a copy of this form-will be sent to the North Carolina DEHNR-Cartification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Pace Analytical*

Occument Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority:

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

Project W0#: 9256013

PM: RNB

Due Date: 09/15/2

CLIENT: 92-AMEC C

	hemy	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	8P1U-1 liter Plastid Unpreserved (N/A)	8P45-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CH)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CH)	AG1H-1 liter Amber HCI (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4CI (N/A)(CI-)	DGSH-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mt VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per Hit)-VPH/Gas kit (N/A)	SPST-125 ml Sterile Plastic (N/A - lab)	SP2T-250 mL Sterile Plastic (N/A - lab)	BP3A-250 mL Plastic (NH2)25O4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)	
	1		100					1		1														-					
	2									١																	_		
	3									l																			
ſ	4									1																			
	5																							_	\sum			î	!
	6																30												
	7																						Ö				22		
	8			7	ļ																				7				
	9																		S				<u> </u>			_			
v)	10																				12.5	::		<u> </u>					
	11																					_			/		ă		
	12												<u></u>			brackless							L.						

Ŋį.	-	pH Ad	justment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#
			111			
			-2			
	117					
			363			

Note: Whenever there is a discrepancy affecting North-Carolina-compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

4			[□ OTHER					(N/A)		0 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pace Project No./ Lab I.D.	38	888	38	38	XXX	3/20	800	000	200	200	010	SWOTTONOU DI IGNES
Page:		YAGENCY	OBC IND WATER	ONODNO II	☐ RCRA		S	(N/A) Pe					-					-							TAME
		REGULATORY AGENCY	NPDEN	N-DES	☐ UST	Site Location	STATE	Requested Analysis Filtered (Y/N)						-				F			-				DATE
	3							Requested A	ــــــ			CB®	_	×	 	(×	* ×	×	×	×	×	×	×	×	ACCEPTED BY / AFFILIATION
ation:		e: Wood							Preservatives		taeT a	HOO ₃ HCI Heathanol Meath				F									ACCEPTED BY
Invoice Information:	Attention:	Company Name:	Address	Pace Quote	Reference.	Pace Project Mensoer	Pace Profile #:					1 ⁵ 20 [†] hubueseu † OE COM		-	-		-	-	-	-	-	-	-	1	TIME
9	253									SOLLECTION	EMP AT C	E T 3J4MA2	+	12:40	12:45	12:50	12:55	13:50	13:00	13:05	13:10	13:15	13:20	13:25	DATE
1				*****				S	COLLECTED	COMPOSITE		¥ .	۱ °	09/07/21	09/07/21	09/07/21	12/20/60	09/07/21	09/07/21	09/07/21	09/07/21	09/07/21	09/07/21	09/07/21	NOL
ë	7			78R5709.02	20.00.00.00	60/02			<u>8</u>	COMPOSITE		DATE	⊢			-									BY / AFFILIAT
Required Project Information:	Report To: Andrew Frantz		20	Purchase Order No.: 20478R5709.02,****	Bridge Mame: MOCOT DC100	E NCDO	Der.	jë.		=GRAB C=C		MATRIX C	9 77 77	9	Ø	σ		၅	ဗ	U	ŋ	၅	ဗ	9 A	RELINQUISHED BY / AFFILIATION
Required P	Report To: ,	Copy To:		Purchase O	Devised Man	riged Nam	Project Number:		Codes		\$ 5 5 E		ľ												~
Required Client Information:	poom	2801 Yorkmont Rd	Charlotte, NC 28208	andrew.frantz@woodplc.com	Fax		Requested Due Data/TAT: Nomel		Section D Valid Matrix Codes Required Clert Information MATRIX CODE		Sample ID ARE Sample IDs MUST BE UNIQUE		P335-B4-0-2	P335-B7-0-2	P335-B8-0-2	P335-B9-0-2	P335-B10-0-2	P335-B12-0-2	P335-B13-0-2	P335-B14-0-2	P335-B15-0-2	P335-B16-0-2	P335-812-0-2	P335-B16-0-2	ADDITIONAL COMMENTS
equired (company:	Address:		Email To:	Phone:		Requested	ŀ	<u> </u>			# MBTI		2	3	•	so.	ø	7		ø	9	Ŧ	2	

F-ALL-Q-020rev.08, 12-Oct-2007

Samples Intact (VAY)

Custody Sealed Cooler (Y/N)

Received on Ice (Y/N)

J• ni qmeT

recommender. By signing this form you are accepting Pece's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any involces not peld within 30 days.

Page 31 of 32

SAMPLER NAME AND SIGNATURE
PRINT Name of SAMPLER:
SIGNATURE of SAMPLER:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section	Section A Required Client Information:	Section B Required Project Information:	70jeci	# Project	metion:				s i	Section C	υ.								قا	Page	1	,		
Compan		Report To: Andrew Empty	A DA		Fresh				٤	nvoice information:	omag ag	Ë			ĺ		ſ				{	,	8	
			į		riantz				<	Attention:									2	e Se			ŀ	
Address:	2801 Yorkmont Rd	Copy To:							O	ympany	Name	Company Name: Wood	又				REGUI	ATORY	REGUI ATORY AGENCY	>				1000
	Charlotte, NC 28208								<u>₹</u>	Address:							L	NODER	9	GBC/W CIWICES	T OF	100	0.42	
Email To:	andrew.frantz@woodpic.com	Jurchase () der	2	Purchase Order No.: 20478R5709.02.****	5709.02	****		ď.	se Quot	_							- L	ON O				ORINKING WAIER	¥.
Phone:	Fax:	Project Name:	1	ž	NCDOT R5709	209			<u> </u>	Pace Project	T T						Site I ocation	noine		,				
Reques	Requested Due Date/TAT: Normal P	Project Number	-pedr	30					ΣĮĞ	ce Profit	*						1	STATE:	2	2				
														Γ		Requeste	Requested Analysis Filtered (Y/N)	Filterec	I CAIN)					
	Section D Valid Matrix Codes Required Clert information MATRIX CODE	30 00	(fiel of	(GMD)		8	COLLECTED				Æ	Preservatives	tives		↑N/A									
	WASTE WATER WASTE WATER PRODUCT SOIL/SOLID OIL		ee valid codes	o=o 8A9e	COME STJ.	COMPOSITE	COMPOSITE	SITE				<u>-</u> -								(N/A				
,	Sample ID AR	- « - »	CODE (D) BAYT			_		O TA GMET	MTAINERS Stved					teeT eis					Chlorine (6	0	
# W311			KIRTAM	SAMPLE	DATE		DATE	A P		Unprese	FONH	ASOH HCI	O _S S _S BV	nethen	CBs					leubise;	26	8	00	-
1	P335-B19-0-2		Q	ဖ			09/07/21	╄	_	1 -	1	1	ī	5	_	‡	#	+	#	4		Project	Pace Project No./ Lab I.D.	ن و
2	P335-B20-0-2		1 -	Ű			00,07/21	4	+	┰	\pm	‡	‡		< ;	#	#	‡	+	+		7.		
3	P335-B21-0-2		‡	o			09/07/21	╄	+	╁	\pm	\pm	‡		< >	+	‡	#	#	\ddagger	700	٠,		
4	P335-B22-0-2	ĺ	5	Ø			09/07/21	1	+	+	\pm	#	#	T	<u> </u>	#	+	+	+	+				
NO.		_	厂			L		↓	+	+	\pm	\pm	‡		<u> </u>	+	-	‡	#	+	5	9		
9									+	F	\perp	\pm	‡	anai ti			‡	‡	\pm	+				9
7						L			\vdash	F	+	\pm	#	T		+	+	+	+	\pm				9
80			Г						\vdash	\perp	+	t	#	I		-		+	\ddagger	+				
6			Ι.						+	F	+	\perp	‡	-		+		+	+	+		ļ.		
10			Г	-					\vdash	F	+		‡	Caster T.A	90.95		+	+		\pm				
#				T					-	F	\vdash	\perp	t	2000	100		+	‡	+	+				T
12			П						╁	F	-	\vdash	‡		(8,46			‡	+	1		l		
	ADDITIONAL COMMENTS	100	KELIN	PONIS	RELINQUISHED BY / AFFILIATION	AFFILLAT	NOI	DATE		TIME	14		ACCE	PTEDE	Y / AF	ACCEPTED BY / AFFILIATION	\alpha	DATE		1] \$	SAMPI E CONDITIONS	SAGE SAGE	T
		$ \mathcal{C}\mathcal{V} $	7		That	1	\\ \(\)	9/9/	7	650		"	1	1/	1 (6		200					7
_			"	$^{\prime}$, , ,			8/6	\vdash	12.0	┝	N	٤	200	1	711		T		5 3	7]	;	1
									╁	<u>.</u>	+		4	3	3	7	-	Т	070	-1	Ž.	2	<u> </u>	
									+		+						$\ \cdot\ $	+						T
⊃aç						SAMPL	SAMPLEK NAME A	IND SIGNATURE	URE											0	uo uo	æji	toe	
ge 32	ia						PRINT Nam	PRINT Name of SAMPLER:	اين			4	3	<u>}</u>	12	rank				, uj dw	bevied (N/Y) e:	ustody led Coc (V/N)	ples int	
of 3	SIGNATUR						SIGNATUR	SIGNATURE of SAMPLER:	<u>;;</u>	9	Ž	4	tra	$\downarrow \downarrow$	\$ 6	DATE Signed (MIM/DD/YY):	9	8/2		θΤ) 의	lse2		_
2	паротан моне: ву зарина етв тотп уош аге вссеронд Ресу	% NET 30.	day Pa	yment	t terms and a	d ci fuleage	ste charges of	1.5% per month for any invoices not paid within 30 days	h for any	Imoices	not paid	with 3	O days.					-	L	F-ALL-	2-020rev.(F-ALL-Q-020rev.08, 12-Oct-2007	-2007	