CONTENTS SHEET NO

-4015/

REFERENCE

<u>SHEET NO.</u>	DESCRIPTION
I	TITLE SHEET
2	LEGEND
3	WALL NO.ISITE PLAN
4	WALL NO.IPROFILE
5-7	WALL NO.IBORING LOGS
8	WALL NO.2 SITE PLAN
9	WALL NO.2 PROFILE
IO-II	WALL NO.2 BORING LOGS
12	WALL NO.3 SITE PLAN
13	WALL NO. 3 PROFILE
14-18	WALL NO. 3 BORING LOGS

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY **GUILFORD**

PROJECT DESCRIPTION _GALLIMORE DAIRY RD. WIDENING FROM NC 68 (LYNWOOD SMITH EXPY.) TO AIRPARK RD IN GREENSBORO

SITE DESCRIPTION

WALL NO. 1: -L-	- STA. 27+25 TO	-L-STA.29+50	(LT)
WALL NO. 2: -L	- STA. 44 + 00 TO	-L-STA.45+00	(LT)
WALL NO. 3: -L	- STA. 48+00 TO	-L-STA.53+00	(LT)

INVENTORY

$\boldsymbol{\gamma}$ 501. Ś **PROJECT**

STATE N.C

STATE PROJECT REFERENCE NO.

SHEET NO.

1

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT (99) 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOL TEST DATA ARE NOT PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARRES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU UNPLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOLI MOISTURE CONDITIONS INCLATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOLI MOISTURE CONDITIONS MAY YARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE UBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPNION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONSTRUCTIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OF FOR AN EXTENSION OF TIME FOR ANY REASON RESULTIONS FOR MATERIAL COMPENSATION.

- NOTES: I. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT. 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

PERSONNEL

В.	GOODE

S. KABRA

F&R PERSONNEL

INVESTIGATED BY _**RK&K, LLP** DRAWN BY **B. GOODE**

CHECKED BY A. ASOUDEH

SUBMITTED BY _____RK&K, LLP

DATE ______ **APRIL 2022**

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION		GRADATION	ROCK DESCRIPTION
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THA BE PENETRATED WITH A CONTINUOUS FLICHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 200, ASTM DISB06. SOIL CLASSIFIC IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWIN CONSISTENCY, COLOR, TEXTURE, MOUSISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTOR	AT CAN R FOOT CATION NG: S SUCH	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES. ANGULARITY OF GRAINS	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TEST ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0. BLOWS IN NON-COASTAL PLAIN MATERIAL. THE TRANSITION BETWEEN SOIL AND ROCK REPRESENTED BY A 20NE OF WEATHERED ROCK.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF.GRAY.SLIY CLA.MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6		THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS: ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS: WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SP
SUIL LEGEND AND AASHTU CLASSIFICATION		MINERALOGICAL COMPOSITION	ROCK (WR) 100 BLOWS PER FOOT IF TESTED.
OERCENE OHNOL HI HH (ENHLS) SULTCH HH (ENHLS) ORGANIC MATERIA CLASS. (≤ 35% PASSING * 200) (> 35% PASSING * 200) (> 35% PASSING * 200)	ALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	CRYSTALLINE ROCK (CR) WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE IN GNEISS, GABBRO, SCHIST, ETC.
CROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 CLASS. A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 $A-76$ A-3 A-6, A-7		COMPRESSIBILITY	NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COAST
SYMBOL SCORE		SLIGHTLY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT
7. PASSING 10 50 MX GRANULAR SILT-	MUCK,	PERCENTAGE OF MATERIAL	SEDIMENTARY ROCK SPI REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SAND
*40 30 MX 50 MX 51 MN *200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN	PEAT	GRANULAR SILT - CLAY	
MATERIAL PASSING *40 LL 48 MX 41 MN 40 MX 41 MN 40 MX 41 MN 40 MX 41 MN 50ILS WITH PI 6 MX NP 18 MX 11 MN 11 MN 18 MX 11 MN 11 MN 11 MN 11 MN	HIGHLY	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITTLE ORGANIC MATTER 3 - 5% 5% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%	HAUMER IF CRYSTALLINE. VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY ((V SLL) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY, ROCK RINGS UNDER H DF A CRYSTAL LINE NATURE.
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX ND MX ANDURATE USUAL TYPES STONE FRAGS. FINE SILTY OR CLAYEY SILTY CLAYEY MATTER OF MAUGIN GRAVEL, AND GRAVEL,	ORGANIC SOILS	GROUND WATER V water level in bore hole immediately after drilling	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO R (SLI.) I INCH, OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASION/ CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMME
MATERIALS SAND SAND GRAVEL AND SAND SUILS SUILS SUILS GEN. RATING AS SUBGRADE EXCELLENT TO GOOD FAIR TO POOR FAIR TO POOR POOR	UNSUITABLE	STATIC WATER LEVEL AFTER <u>24</u> HOURS	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECT (MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLI DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGT WITH FRESH ROCK.
PI OF A-7-5 SUBGROUP IS < LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30			MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL
PRIMARY SOIL TYPE COMPACTNESS OR CONSISTENCY PENETRATION RESISTENCE COMPRESSIVE S' CONSISTENCY (CONSISTENCY CONSISTENCY CONSISTENCY (CONSISTENCY CONSISTENCY CONSI	ONFINED TRENGTH	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION	MOD.SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES 'CLUNK' SOUND IF TESTED, WOULD YIELD SPIT REFUSAL
GENERALLY VERY LOOSE < 4 GENERALLY LOOSE < 4 GRANULAR MEDIUM DENSE 10 TO 30		SLOPE INDICATOR ST SVING SIL SYMBOL	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCK SALL FELDSPARS TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. IF TESTED, WOULD SPT N VALUES > 100 BPF
MATERIAL (NON-COHESIVE) DENSE VERY DENSE 30 TO 50 VERY DENSE > 50 VERY SOFT < 2		ATTIFICIAL FILL (AF) OTHER THAN ROADWAY EMBANKMENT AUGER BORING CONE PENETROMETER THAN ROADWAY EMBANKMENT CORE BORING SOUNDING ROD	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC ELEMENTS AL SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS ((V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THA VESTICES OF DRICING, POOR EASTLE DEFINITION IN THE RESERVENCE OF ROLLY AND ALL OF RESERVENCES OF DRICING, POOR EASTLE DEFINITION OF A DEGREE THAN
CENERALLY SOFT 2 TO 4 0.25 TO 0 SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1. MATERIAL STIFF 8 TO 15 1 TO 2 (COHESIVE) VERY STIFF 15 TO 300 2 TO 4	0.5 .0	INFERRED ROCK LINE MU MONITORING WELL TEST BORING WITH CORE TTTTTT<	COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGER ALSO AN EXAMPLE.
HARD > 30 > 4			- ROCK HARDNESS
U.S. STD. SIEVE SIZE 4 10 40 60 200 270			VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMEN SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053 DOW DED COARSE FINE CUARSE <		SHALLOW UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 FEET OF	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER E TO DETACH HAND SPECIMEN.
BUDLDER COBBLE CHAYEL SAND SAND SLI (BLDR.) (COB.) (GR.) (CSE.SD.) (F SD.) (SL.) (CDN.) MM 26E 76 2.0 0.2E 0.4E 0.4E	(CL.)		MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES D HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE I BY MODERATE BLOWS.
SIZE IN. 12 3 SOIL MOISTURE - CORRELATION OF TERMS		BT - BORING TERMINATED MICA MICACEOUS WEA, - WEATHERED CL CLAY	MEDIUM CAN BE GROOVED OR COUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE (HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD POINT OF A GEOLOGIST'S PICK.
SOIL MOISTURE SCALE FIELD MOISTURE (ATTERBERG LIMITS) DESCRIPTION GUIDE FOR FIELD MOISTURE DESC	CRIPTION	CSE COARSE ORG ORGANIC DMT - DILATOMETER TEST PMT - PRESSURMETER TEST <u>SAMPLE ABBREVIATIONS</u> DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODENATE BLOWS OF A PICK POIN PIECES CAN BE BROKEN BY FINCER PRESSURE.
- SATURATED - USUALLY LIQUID; VERY WET, USUA (SAT.) FROM BELOW THE GROUND WATER	ALLY R TABLE	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON F - FINE SL SLIT, SLITY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLICHTLY RS - ROCK	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READLLY WITH POINT OF PICK. SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATC FINGERWALL.
RANGE - WET - (W) SEMISOLID: REQUIRES DRYING TO (PI) ATTAIN OPTIMUM MOISTURE		FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL FRAGS FRAGMENTS W - MOISTURE CONTENT CBR - CALIFORNIA BEARING	FRACTURE SPACING BEDDING
OM _ OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOI SL _ SHRINKAGE LIMIT	ISTURE	HL-HIGHLY V - VERY RATIO EQUIPMENT USED ON SUBJECT PROJECT DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE: DRILL UNITS: FOR UNITS:	TERM SPACING TERM VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED WIDE 3 TO 10 FEET THICKLY BEDDED MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0
- DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE)	Image: Construction Image: Construction Image: Construction Generation Imag	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.0
PLASTICITY			
PLASTICITY INDEX (PI) DRY_STRENGT NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC 6-15 STIGHT	TH		FRIABLE CENTRE BUDGET OF CONTROL OF CONTENT OF CONTENT.
MODERATELY PLASTIC 16-25 MEDIUM HIGHLY PLASTIC 26 OR MORE HIGH		Image: Second	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH S BREAKS EASILY WHEN HIT WITH HAMMER.
		TUNG,-CARB,	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL DIFFICULT TO BREAK WITH HAMMER.
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE	-GRAY).	U U U VANE SHEAR TEST X SOWERS DCP	EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPL SAMPLE BREAKS ACROSS GRAINS.

SHEET NO.

2

	TERMS AND DEFINITIONS
U. AN INFERRED	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
FOOT PER 60	AQUIFER - A WATER BEARING FORMATION OR STRATA.
IS OFTEN	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING
N VALUES >	A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
CK THAT	WHICH II IS ENCOUNTERED, BUT WHICH DUES NOT NECESSARILY RISE TO UR ABOVE THE GROUND SUBFACE.
LODES GRANITE,	
L PLAIN	COLLINGUM - ROCK ERAGMENTS MIXED WITH SOIL DEPOSITED BY CRAVITY ON SLOPE OR AT ROTTOM
IF TESTED.	OF SLOPE.
MAY NOT YIELD TONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
RINGS UNDER	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
DATINGS IF OPEN, AMMER BLOWS IF	HURIZUNIAL. <u>DIP DIRECTION (DIP AZIMUTH)</u> - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE
CK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE
. FELDSPAR BLOWS.	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE. <u>FISSILE</u> - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
S. IN Y. ROCK HAS	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIG≀NAL POSITION AND DISLODGED FROM PARENT MATERIAL
AS COMPARED	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
ELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
VHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
VIDENT BUT	ITS LATERAL EXTENT.
RE KAOLINIZED	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS
E DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
STRONG ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
ONLY MINOR	UF AN INTERVENING IMPERVIOUS STRATUM.
IN SMALL AND	RESIDUAL (RES.) SULL - SULL FORMED IN PLACE BY THE WEATHERING OF ROCK.
. SAPROLITE IS	HOLK UDALITY DESIGNATION (HUD) - A MEASUME OF HOLK UDALITY DESURIBED BY TOTAL LENGTH OF ROCK SEGMENTS EDUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
BEOUIDES	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.
5 REQUIRES	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
OWS REQUIRED	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
EP CAN BE	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
R PICK POINT. BLOWS OF THE	STANDARD PENETRATION TEST (PENETRATION RESISTANCE)(SPT) - NUMBER OF BLOWS (N OR BPF)OF A 140 LB.HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
FRAGMENTS	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
PIECES 1 INCH	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO DR GREATER THAN 4 INCHES DIVIDED BY
ED READILY BY	TOPSOLL (IS.) - SURFACE SOLLS USUALLY CONTAINING ORGANIC MATTER.
	BENCH MARK:
THICKNESS	
4 FEET 5 - 4 FFFT	ELEVATION: FEET
6 - 1.5 FEET	
3 - 0.16 FEET	NUTES:
0.008 FEET	TIN FILE LEVATIONS DETERMINED FROM PROVIDED .TIN FILE
	ADDDENUATIONS
AT, PRESSURE. ETC.	
	FIAD - FILLED IMMEDIATELY AFTER DRILLING ND - NOT DETERMINED
FEL PROBE.	SR - SOUNDING ROD
LLL I NUDE:	* - SOWERS DCP PERFORMED TO DETERMINE RELATIVE DENSITY
PROBE;	**- SOUNDING ROD PERFORMED TO DETERMINE RELATIVE DENSITY
	+ HAND AUGER WITH SOUNDING ROD
:	HAND ALICER WITH SOWERS DCP
	DATE: 10-10-19

50	100	PROJECT REFI	ERENCE NO.	SHEET NO.
FEET	n	U-401	15A	4
VE =	5	PROF	FILE ALONG -	-L-
	i		1 1	1
0/0				850
ORGAN	VIC		· · · · · · · · · · · · · · · · · · ·	
ND	1			0.15
ND				845
				840
				1
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	835
		· · · · ·		830
1 1 1		I I I I I I		825
JND				
WALL)				000
				820
·			· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
OINT	-L-	PROPOSED	BOTTON	۸
NO.	STATION	GRADE (TOP)	OF WAL	L 805
1	27+25.00	804.85'	804.85'	
2	27+50.00	811.84′	807.57	800
3	28+00.00	813.41′	809.76	
4	28+50.00	815.04'	808.37′	795
5	29+00.00	816.98′	811.24′	
6	29+50.00	818.24′	817.75′	700
				/ /90
1				
				785
ic CLA	Y and silty	/ · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	780
, i ,				
ck :				775
e rock				1
		RKK	•	
		P: (919) 878-9560 8601 Six Forke Dood	m 1 Suito 700	
		Raleigh, North Carolina 276	615-3960	
		Engineers Construction N	lanagers Planners	Scientists
		www.rkk.com		
1		Responsive People Creat	ive Solutions	
21 . 00		57 + 111		

WBS 35013.1.1	TIP U-4015A COUNT	Y GUILFORD	GEOLOGIST Goode, B.		WBS 35013.1.1		TIP U-4015A COUNTY		
SITE DESCRIPTION Gallimore D	airy Rd. Widening: Retaining Wall	No. 1		GROUND WTR (ft)	SITE DESCRIPTION	Gallimore Da	iry Rd. Widening: Retaining Wal	l No	
BORING NO. RW1_1	STATION 27+50	OFFSET 20 ft LT	ALIGNMENT -L-	0 HR. Dry	BORING NO. RW	_2	STATION 28+00	C	
COLLAR ELEV. 808.7 ft	TOTAL DEPTH 13.6 ft	NORTHING 844,306	EASTING 1,717,795	24 HR. 12.0	COLLAR ELEV. 8	10.4 ft	TOTAL DEPTH 15.0 ft	N	
DRILL RIG/HAMMER EFF./DATE F&R	2245 CME-55 92% 04/30/2021	DRILL METHOD H.	.S. Augers HAMM	MER TYPE Automatic	DRILL RIG/HAMMER E	FF./DATE F&R22	245 CME-55 92% 04/30/2021		
DRILLER Tignor, D.	START DATE 01/06/21	COMP. DATE 01/06/21	SURFACE WATER DEPTH	I/A	DRILLER Tignor, I	D.	START DATE 01/06/21	0	
ELEV DRIVE DEPTH BLOW COUN	BLOWS PER FOOT		SOIL AND ROCK DES	SCRIPTION	ELEV DRIVE DEPTH	BLOW COUNT	BLOWS PER FOO	T 7	
(ft) (ft) 0.5ft 0.5ft	<u>5.5π 0 25 50</u>	75 100 NO. / MOI G	ELEV. (ft)	DEPTH (ft)	(ft) (ft)	0.511 0.511 0.5	5π 0 25 50		
810			_ 808.7 GROUND SURF	ACE 0.0	815				
	4 . 8	м <u>м</u>	- RESIDUAL - Brown, medium stiff to st	- tiff. siltv sandv					
805 805.2 3.5 1 2	3		- moderately plastic CLAY (A-6), trace rock	810 810.4 0.0		3 + + +	=	
	$\begin{bmatrix}\bullet 5. & . & . & . & . & . & . & . & . & . $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	802.7	6.0			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$:	
			- Brown, very stiff, clayey Sl - mica	ILT (A-5), trace	806.9 3.5	4 5 6	$\frac{1}{3} \left \begin{array}{c} \cdot & \cdot \\ \cdot & $	·	
	12	M	-						
			-		801.9 - 8.5		$- \left \begin{array}{c} I \\ I $	·	
795.2 13.5			795.2 795.1 / CRYSTALLINE F	13.5 ROCK /13.6/	800			·	
			METAGRANI Bering Terminated with	TE				:	
			Penetration Test Refusal at	Elevation 795.1	790.9 _ 13.5	5 24 4	7	• • 71	
			- It in Crystalline Rock is	vietagranite					
			-						
			-						
			-						
			-						
			-		III				
					I I I				
					$ $ $ $ $\frac{1}{4}$				
					I I I				
					I I I				
			-		I I Ŧ				
			-		I I I				
			-						
			-						
			-						
			-						
			-						
			-						
			-						
			-						
			-						
			-						
			-						
			-						
			-						
			-						
			-		<u>I</u>				
			-						
			-						
P			-						

SHEET 5 OF 18

11	GUI	LFO	R	D				GEOL	OGIST Goode,	В.			
11 1	No. 1		_								GROUN	D WTR (ft)
	OFFS	ET	1	5 ft LT				ALIGN	MENT -L-		0 HR.	Dry	/
	NORT	HINC	3	844,3	15			EASTI	NG 1,717,845		24 HR.	Dry	/
				DRILL N	IETHO	DH	I.S.	Augers		НАММ	ER TYPE	Automatic	
	COMP	. DA	T	E 01/0	06/21			SURFA	ACE WATER DE	PTH N/	A		
T				SAMP.		L O			SOIL AND R	OCK DESC	RIPTION		
	75	100		NO.	моі	G							_
				SS-10	18%			810.4	GROUI Ri	ND SURFA	CE	0	1.0
•		 					E		slightly plastic	CLAY (A-6)	, trace roc	k	
•					М		E	904 4	fr	agments		6	
•	· · · · · · · · · · · · · · · · · · ·	 			М			8 <u>04.4</u>	Brown-orange, s	oft, silty C aprolitic	LAY (A-7-6	<u>;</u> ,, <u>6</u>	.0
						7.7	F	/98.4	Brown and gray-g	reen, hard	, sandy cla	yey <u>12</u> .	.0
•	· · 71 <u>· ·</u>	· · · ·	Ц		М	7 V V	E	795.4	SILT (/	4-5), sapro		15.	.0
									Boring Terminate Residual san	d at Elevat	ion 795.4 f	t In	

	WBS	35013	3.1.1			TI	P U-401	5A	COUNT	Y GUILFO	RD			GEOLO	GIST Goode,	В.		WBS	3 3501	3.1.1			ТІ	P U-401	5A	COUNT
	SITE	DESCR		I Gall	imore	Dairy	Rd. Wide	ning: Retai	ning Wall	No. 1				•			GROUND WTR (ft)	SITE	DESCR	RIPTION	I Gall	limore	Dairy	Rd. Wide	ning: Reta	ining Wall
	BOR	NG NO	. RW1	l_3		SI	TATION	28+50		OFFSET	30 ft LT			ALIGN	MENT -L-		0 HR. Dry	BOF	RING NO	. RW1	l_4		SI	ATION	29+00	
	COLL	AR EL	EV. 81	13.8 ft		т	OTAL DEF	PTH 19.0	ft	NORTHING	G 844,:	344		EASTI	IG 1,717,887		24 HR. Dry	COL	LAR EL	EV. 81	14.1 ft		т	DTAL DEI	PTH 15.0	ft
	DRILL	RIG/HA	MMER E	FF./DA	TE F&	R2245	CME-55 92°	% 04/30/202		•	DRILL	METHO	DD H	I.S. Augers		HAMM	ER TYPE Automatic	DRIL	L RIG/HA	MMER E	FF./DA	TE F&	R2245	CME-55 92	% 04/30/202	!1
	DRIL	LER T	ïgnor, [D.		ST		E 01/06/	21	COMP. DA	TE 01	/06/21		SURFA	CE WATER DEF	PTH N/	Ά	DRI	LER T	Tignor, E	D.		ST	ART DA	FE 01/07	/21
I	ELEV	DRIVE	DEPTH	BLC	W COL	INT		BLOWS	PER FOO	Г	SAMP				SOIL AND BO	CK DESC	CRIPTION	ELEV	, DRIVE	DEPTH	BLC	ow cor	JNT		BLOW	S PER FOOT
	(ft)	(ft)	(ft)	0.5ft	0.5ft	0.5ft	0	25	50	75 100	NO.	Имо	I G	ELEV. (ft)		0110201	DEPTH (ft) (ft)	(ft)	(ft)	0.5ft	0.5ft	0.5ft	0	25	50
	815																	815	914.1							
	810	813.8	+ 0.0 + - - 3.5	1	3	2	•5 •1	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · ·		м		-	RE Brown, medium s trace ro	SIDUAL tiff, sandy ck fragme	/ CLAY (A-6), ents	810	810.6	- 0.0 - - - 3.5	4	5	7	· • 12		· · · · ·
	010		+	4	3	4	•7 . .1			· · · · · · · · · · · · · · · · · · ·		м		807 <u>.8</u>	Brown, medium	stiff, sand	ly silty CLAY6.0			+ + + +	12	12	9			· · · · · · · · · · · · · · · · · · ·
-	805	805.3	8.5	1	3	2	6 5, 1		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		м		- - - - 801 8	(A-7-5), trac	e rock tra	agments	805	805.6	+ 8.5 + + +	16	29	31		· · · · ·	60 60
-	800	800.3	13.5	47	27	30			 1057.			м	1	 	ark gray, hard, sar fra	idy SILT (gments	(A-4), trace rock	800	800.6	+ + 13.5 +	18	22	15		• • • • • • • • • • • • • • • • • • •	
	795	795.3 794.8 -	18.5 19.0	60/0.1			· · · ·	· · · · · ·		60/0.1			N	- 795.3 - 794.8	CRYSTA		18.5 OCK /19.0		-							
				60/0.0						00/0.0					META Boring Termin Penetration Test Re ft In Crystalling	AGRANIT ated with efusal at f e Rock M	E/ Standard Elevation 794.8 etagranite			Ĭ						
		•	+											- - -			C .									
		-	+																-	+ + +						
			+ + +											- -					-	+						
		- -	+											- - 					-							
		_	+ + +											- - -					-							
			+											-												
0		•	+											- - -												
DT 3/25/2		-	+																-	+ + +						
NC_DOT.G		-	+ + +											- -					-	+ + +						
RKK.GPJ		- -	+											- - -					-	+						
U-4015A		_	‡ +											- - -					-	‡ +						
E DOUBLE			-											- - -												
ICDOT BOR		-												- - - -						+ + +						

SHEET 6 OF 18

ty guilf	=OR	D			GEOL	.OGIS	Goode,	В.		
ll No. 1									GROUN	ID WTR (ft)
OFFSET	Γ 14	4 ft LT			ALIGN	MEN	IT -L-		0 HR.	Dry
NORTH	ING	844,3	46		EAST	ING	1,717,938		24 HR.	Dry
1		DRILL N	IETHO	DН	.S. Augers			HAMM	ER TYPE	Automatic
COMP.	DAT	E 01/0)7/21		SURF	ACE	WATER DE	PTH N/	A	
T T		SAMP.	/	L	1					
75 1	00	NO.	моі	G			SOIL AND RU	JCK DESU	RIPTION	
							0001			
	•		М		814.1			ND SURFA	ICE	0.0
				\square	-	Bro	wn, stiff to ver (A-7-5). trad	y stiff, san ce rock fra	dy silty CL aments	AY
	-		М		_		(5	
	:				808.1	Brown		lack to bro	wn-gray c	
· · · ·	•				-	to	very dense, sil	ty fine to c	coarse SAN	ND
			М		-		(A-2-4), ilai		ginenis	
· · · · ·	:				-					
	•		м		-					45.0
			141		/99.1	Bor	ng Terminated	d at Elevat	ion 799.1 1	t In
					-		Residual si	Ity SAND	(A-2-4)	
					_					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					_					
					-					
					-					
					-					
					-					
					_					
					-					
					-					
					_					
					-					
					-					
					-					
					-					
					_					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					

WBS	35013	5.1.1			Т	P U-	4015A	4	COUNT	Y GL	JILFOF	RD			GEOLOGIST Goode, B.		
SITE	DESCR	IPTION	Gal	limore	Dairy	ry Rd. Widening: Retaining Wall No. 1							GROUNE	OWTR (ft)			
BOR	ING NO.	RW1	_5		S	TATIC	N 29	9+50		OFF	SET 5	55 ft LT			ALIGNMENT -L-	0 HR.	Dry
COL	LAR ELE	EV. 81	7.1 ft		Т	OTAL	DEPT	H 14.3	ft	NOR	THING	i 844,4	02		EASTING 1,717,968	24 HR.	Dry
DRIL	L RIG/HAI	MMER E	FF./DA	TE F8	R2245	5 CME-55 92% 04/30/2021 DRILL METHOD H.S.							S. Augers HAMM	ER TYPE	Automatic		
DRIL	LER T	gnor, D).		S	TART	DATE	01/06/2	21	CON	IP. DA	TE 01/0	06/21		SURFACE WATER DEPTH N/	A	
ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)	BLC 0.5ft	OW COU 0.5ft	JNT 0.5ft	0	2	BLOWS	PER FOOT 50	75	100	SAMP. NO.	моі	L O G	SOIL AND ROCK DESC	RIPTION	DEPTH (ft)
820		-														25	
815	817.1	0.0	2	2	6		8						М		817.1 GROUND SURFA RESIDUAL Orange-brown to tan-brown, s	stiff to very s	0.0 stiff,
810	813.6 -	- 3.5 - -	7	10	15			25 [·] · · ·	· · · · ·	· · · ·	· · ·		м		silty CLAY (A-7-6), trace ro	ck fragment	is <u>7.0</u>
805	808.6 -	- <u>8.5</u> - -	9	17	17		· · · · · ·	•34	· · · · · · · · · · · · · · · · · · ·		· · · ·		м		Arabian (A-2-4), trace rock fra	coarse SANI gments	D 40.0
	803.6 -	- 13.5	25	75/0.3			 				100/0.8	-			804.1 802.8 WEATHERED RC METAGRANITI	р ск — — —	<u> </u>
CDOI BORE DOUBLE U-4015A_RKK.GFU NC_DOI.GDI 3/25/22															Boring Terminated at Elevat Weathered Rock Meta	ion 802.8 ft	in

SHEET 7 OF 18

						R	се т ,	4INI	NG	WΑ	LL	NC	. 2		0
895														·	
890	A	ROADW	AY EME	BANKMENT	Brown to	o brou	n-oran	ge, medi	um stif	f to ha	rd,sand	y and	silty hig	hly	
885	B) Tan-w	hite.den	se.siltv fin	plastic (e to coar	SLAY (se SA	A-6, A- ND: (A-	7 –6), tra 2 – 4), tra	ice of c tle arav	organic el.mois	matter, i	moist		, , , , ,	
880	Ć	RESIDU	JAL Bro	wn-orange	to dark	gray	and rea	l-browr	, mediun	n stiff	to very	stiff,	silty	, , , ,	
875	\bigcirc) Tan-wi	CLA hite-ara	ar (A+7-6) av to tan-b	rown to t	orgar black c	nic matt and whi	er,trace te.stiff	to verv	ragmen stiff.	ts, moist				_
		sandy d	and clay	ey SILT (A	4 <i>-4,</i> A-5),	some	rock fr	agments	s, moi st	·					
870								PRC FIT	OPOSED NISHED					· · · · · · · · · · · · · · · · · · ·	- /
865								GRA	DE (TOP)			FK	wz_3_ 31;RT	на /	
. 860			· · · · · · · · ·						RW2.	_ _HA*	RW.	2_2	S-2	/	
855			BE	GIN RETA	INING WA	LL 2			5' 	rt <i>MENT</i> –	3	R I	4		
950				<u> </u>	STA 44+(0.00				2				<u>4)</u>	
			لد	k 1 I I 1 I I 1 I I 1 I I	· · · · · · · · · · · · · · · · · · ·	··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$(^{\dagger}A)$		42			Ì	
845													FIAD		
840										BT					POIN NO
835											8,		Υ		1
830									E		_ FIA	λD			3
						1			(DRA)	VN ALC WALL)	NG	1 1 1 1			5
825						· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·					
820		1		1 I	I I	1	S	OIL TEST	RESULTS		· · ·	1	I		
815	SAMPLE NO	STATION	OFFSET	DEPTH INTERVAL	AASHTO CLASS	L.L.	<i>P.I</i> .	C SAND	% BY W	EIGHT SILT	CL AY	% F	ASSING SI	EVE 200	% MOISTURE
. 013	S-2	45+00	38' LT	1.5-3.0'	A-7-6	55	28	1	6	34	60	100	99	96	28
810									1 1 1 1 1	, , , ,		, , , , ,	, , ,		
805				, , , , , , , , , , , , , , , , , , ,						, , , , ,					
		, , , , , , , , , , , , , , , , , , ,							, , , , , , , , , , , , , , , , , , ,	L-	- · · · · · · · · · · · · · · · · · · ·	 	, , , ,		
_						1	1						I I I		
	41 + C	00		42+00			43+00			44+00			45+00		

	50		100	PROJEC	T REFE	RENCE NO.	SHE	EET NO.
	FEET				U-4015	δA		9
VI	E = 5				PROFI	LE ALONG -	- <i>L</i> -	
				1				
	1	1 1	н н н		1			800
					I			070
	1	1 1 1	1 1 1	1		1 1 1 1 1 1		
	, J	/	: !		: 	· · ·	י ב	. 885
	1	1	i I		1		1	
	; 	' ' '	, , != = = = = .	, , ,'		· · · · · · · · · · · · · · · · · · ·		880
Γ		DET			11 2			
				IG WA		· · ·		875
		<u>-</u>	-57-A	45-7-6	.0.00			
		1 1 1	1 1 1	1	1	1 I 1 I 1 I		
								870 -
	1	1	i I	1	1	· · · · · · · · · · · · · · · · · · ·	1	
		, ,	, ,		, ,	, , , , , , , , , , , , , , , , , , ,		865
	1	1 1	н н		1	· · ·		
	1		i 1	1	1 1	· ·	1	860
	SF WAI	L	н н н		1			
	1	1 1	н н н		1 1			055
		·	i					. 855
	1	1 1 1	1 1 1		1	· · ·		
	, 	, ,))	········	1 1	· · ·		. 850
	1	1	i.	1	1	і і і і	1	
	, , 		, , !	, , ,		· · · · · · · · · · · · · · · · · · ·	, , ,	845
Γ	-L- 	-	FINIS	SHED				840
	STAT	ON	GRADE	(TOP)	OF V			
	44+00	0.00	850	.83′	850	.83′		005
	44+02	2.43	850	.95′	849	.61′		835
	44 + 50	0.00	853	.20′	850	.52′	1	
	44+9	4.71	855	.52′	853	.16′		830
	45+00	0.00	855	.80′	855	.80′		
			, , ,		1 1 4			825
			н н	1	1		1	
	1 1	r F	н П. П.	- - -	1		1	820
			1 1 1	с	1	1		020
	%		1 1	1	1		1	
	RGANIC			1 1 1		· · · · · · · · · · · · · · · · · · ·		. 815
			r F		- -			
	, 	, !	F - 1			1	1	
	1 1 1	1		KK	SX			
	1 1 1	r F	P:	(919) 878-95 01 Six Forks	60 Road, Forum	1, Suite. 700		
		,	R	aleigh, North C License No	Carolina 2761 F-0112	5-3960		
	1	i I	E	ngineers Co	nstruction Ma	nagers Planners	Scientis	ts
			w	ww.rkk.com				
	1	1	R	esponsive Pe	ople Creative	e Solutions		
46	+00			47	+00			

SITE DESCRIPTION Gallimore Dairy Rd. Widening: Retaining Wall No. 2 GROUND WTR (ft) SITE DESCRIPTION GROUND WTR (ft) BORING NO. RW2_1 HA STATION 44+00 OFFSET 36 ft LT ALIGNMENT -L- 0 HR. Dry COLLAR ELEV. 849.7 ft TOTAL DEPTH 7.5 ft NORTHING 845,328 EASTING 1,719,059 24 HR. FIAD DRILL RIG/HAMMER EFF.JDATE N/A DRILL METHOD Hand Auger HAMMER TYPE Manual DRILL RIG/HAMMER EFF./D DRILLER Kabra, S. START DATE 01/19/21 COMP. DATE 01/19/21 SURFACE WATER DEPTH N/A DRILLER Tignor, D. ELEV (ft) ELEV (ft) BLOW COUNT BLOWS PER FOOT SAMP. NO SOIL AND ROCK DESCRIPTION DEPTH (ft) 850	Gallimore Dairy 2 \$.4 ft 1 F./DATE F&R224 BLOW COUNT 0.5ft 0.5ft 0.5ft 0.5ft 24 26 4 4 5 3 5 3 5	ry Rd. Widening: Retaining Wa STATION 44+50 TOTAL DEPTH 15.0 ft 45 CME-55 92% 04/30/2021 START DATE 01/12/21 BLOWS PER FOC ft 0 25 50 42 0	
BORING NO. RW2_1_HA STATION 44+00 OFFSET 36 ft LT ALIGNMENT -L- 0 HR. Dry COLLAR ELEV. 849.7 ft TOTAL DEPTH 7.5 ft NORTHING 845,328 EASTING 1,719,059 24 HR. FIAD DRILL RIG/HAMMER EFF./DATE N/A DRILL METHOD Hand Auger HAMMER TYPE Manual DRILL RIG/HAMMER EFF./DATE N/A DRILL RIG/HAMMER EFF./DATE N/A DRILL RIG/HAMMER EFF./DATE N/A DRILL RIG/HAMMER EFF./DATE N/A DRILL NETHOD Hand Auger HAMMER TYPE Manual DRILL RIG/HAMMER EFF./D DRILL RIG/HAMMER EFF./DATE N/A DRILL RIG/HAMMER EFF./D SUBFACE WATER DEPTH N/A DRILL RIG/HAMMER EFF./D ELEV DRIVE DEPTH BLOW COUNT BLOW SPER FOOT SAMP (ft) 0.5ft<0.5ft<0.5ft<0.5ft<0.2ft<0.25 50 75 100 NO 840 GROUND SURFACE 0.0 Bada2 Brown, very stiff, sandy CLAY (A-6, 6)	2. S I.4 ft 1 F./DATE F&R224 BLOW COUNT 0.5ft 0.5ft 0.5ft 24 26 16 4 4 5 3 5 5 3 5 13	STATION 44+50 TOTAL DEPTH 15.0 ft 45 CME-55 92% 04/30/2021 START DATE 01/12/21 BLOWS PER FOC ft 0 25 50	
COLLAR ELEV. 849.7 ft TOTAL DEPTH 7.5 ft NORTHING 845.328 EASTING 1,719,059 24 HR. FIAD DRILL RIGHAMMER EFF./DATE N/A DRILL METHOD Hand Auger HAMMER TYPE Manual DRILL RIGHAMMER EFF./DATE N/A DRILL METHOD Hand Auger HAMMER TYPE Manual DRILL RIGHAMMER EFF./DATE N/A DRILL RIGHAMMER EFF./DATE N/A DRILL RIGHAMMER EFF./DATE DRILL RIGHAMMER EFF./D DRILL RY DRIVE DEPTH BLOW COUNT BLOWS PER FOOT SAMP. SOIL AND ROCK DESCRIPTION DEPTH (I) 850 0.5ft 0.5ft 25 50 75 100 NO. SOIL AND ROCK DESCRIPTION ELEV. (II) DEPTH (II) ELEV. (III) DEPTH (III) BAS BAS DOP DIVE S- 0.9 and 11 2.5 3.5 845	Image: Additional system Image: Additional system F./DATE F&R224: F./DATE F&R224: BLOW COUNT 0.5ft 0.5ft 0.5ft 0.5ft 0.5ft 0.5ft 0.5ft 0.5ft 24 26 4 4 5 3 5 3 5 13	TOTAL DEPTH 15.0 ft 45 CME-55 92% 04/30/2021 START DATE 01/12/21 BLOWS PER FOC ft 0 25 50 0 25 50 0 25 10 0 25 10 0 25 10 0 25 10 0 25 10 0	
DRILL RIG/HAMMER EFF./DATE N/A DRILL RIG/HAMMER EFF./DATE N/A DRILL RIG/HAMMER EFF./DATE N/A DRILL RIG/HAMMER EFF./DATE 0/119/21 BIOWS COUNT BLOW COUNT BLOW COUNT BLOWS PER FOOT NO. NO. MOI GROUND SURFACE BS0 0.5ft 0.5ft 0.5ft	F./DATE F&R224 E S BLOW COUNT 0.5ft 0.5ft 0.5ft 0.5ft 10.5ft 24 26 16 4 4 5 3 5 5 3 5 13	45 CME-55 92% 04/30/2021 START DATE 01/12/21 BLOWS PER FOC ft 0 25 50 42 42 42 42 42 42 42 42 42 42	
DRILLER Kabra, S. START DATE 01/19/21 COMP. DATE 01/19/21 SURFACE WATER DEPTH N/A ELEV DRIVE DEPTH BLOW COUNT BLOWS PER FOOT SAMP. SOIL AND ROCK DESCRIPTION ELEV. (ft) Cft (ft) 0.5ft 0.5ft 0.5ft 0.5ft 0.25 50 75 100 SAMP. NO. SOIL AND ROCK DESCRIPTION ELEV. (ft) ELEV. (ft) DEPTH (ft) ELEV. (ft) DEPTH (ft) ELEV. (ft) CROUND SURFACE 0.0 850 SOIL AND ROCK DESCRIPTION ELEV. (ft) ELEV. (ft) </th <th>ELOW COUNT 0.5ft 0.5ft 0.5ft 24 26 16 4 4 5 3 5 5 3 5 13</th> <th>START DATE 01/12/21 BLOWS PER FOC 0 25 50 0 25 50 0 25 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>()T 7 </th>	ELOW COUNT 0.5ft 0.5ft 0.5ft 24 26 16 4 4 5 3 5 5 3 5 13	START DATE 01/12/21 BLOWS PER FOC 0 25 50 0 25 50 0 25 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	()T 7
ELEV DEPTH BLOW COUNT BLOWS PER FOOT SAMP NO. SOIL AND ROCK DESCRIPTION ELEV DEPTH (B) 850 0 25 50 75 100 NO. MOI G ELEV.(ff) SOIL AND ROCK DESCRIPTION ELEV.(ff)	BLOW COUNT 0.5ft 0.5ft 0.5ft 24 26 16 4 4 5 3 5 5	BLOWS PER FOC ft 0 25 50 42 42 9 1	DT 7
(ft) L(ft) 0.5ft 0.5ft 0 25 50 75 100 NO. MOI G ELEV. (ft) DEPTH (ft) (ft) L(ft) (ft) L(ft) (ft) 0.5ft	0.5ft 0.5ft 0.5ft 24 26 16 4 4 5 3 5 5 3 5 13	ft 0 25 50	7
850 849.7 GROUND SURFACE 0.0 855 845	24 26 16 4 4 5 3 5 5 3 5 13	42 	-

_												
	No.	2									GROUN	ID WTR (ft)
	OF	FSE	т	10	ft LT			ALIGN	IENT -L-		0 HR.	Dry
	NO	RT	HINC	3	845,3	30		EASTIN	G 1,719,116		24 HR.	FIAD
						IETHO	DН	.S. Augers		HAMM	ER TYPE	Automatic
	со	MP	. DA	TE	01/	12/21		SURFA	CE WATER DEP	TH N/	A	
Т					SAMP.	/	L					
_	75		100		NO.	<u>/мо</u> і	U G				RIPTION	
					NO.	MOI M M		- 851.4 - 850.4 - 845.4 - 845.4 	GROUNI ROADWAY 0.6' Asph an-white, dense, si (A-2-4), CA-7-6), trace Black and white to iff, clayey SILT (A-4) Boring Terminated Residual cla	D SURFA EMBANI valt, 0.4' / Jity fine to prove, fra a rock fra a rock fra ayey SILT	CE (MENT ABC orel iff, silty CL gments n, stiff to rock fragn ion 836.4 1 (A-5)	0.0 1.0 AND - 3.0 AY - 6.0 rery nents 15.0 t In
								- - - - - - - -				

WBS	35013.	1.1			ТІ	P U-	4015A		COUNT	YG	JILFO				GEOL	-OGIST Goode, B.		
SITE	DESCRI	PTION	Gall	imore	Dairy	Rd. W	/idening	: Retair	ning Wall	No. 2							GROUN	ID WTR (ft)
BOR	ING NO.	RW2	3 HA	4	S	ΓΑΤΙΟ	N 45+	00		OFF	SET :	38 ft LT			ALIG	NMENT -L-	0 HR.	Dry
COL		V. 85	 3.9 ft		т	DTAL	DEPTH	6.0 ft		NOF	THING	845.3	379		EAST	ING 1.719.147	24 HR.	FIAD
DRILL	RIG/HAM	MER E	FF./DA	TE N/	 A					1			NETHO	DH	land Auger	НАММ		Manual
DRIL	LER Ka	bra S			S	TART	DATE	01/19/2	21	CON	IP. DA	TE 01/	19/21		SURF		Δ	
			BLC	W COL	JNT			BLOWS	PER FOOT	<u>г</u>		SAMP.		1 L			/	
(ft)	ELEV	(ft)	0.5ft	0.5ft	0.5ft	0	25		50	75	100	NO.		0 G	FLEV (ft	SOIL AND ROCK DES	CRIPTION	DEPTH (ft)
										1			<u> </u>			-/		<u> </u>
955																		
000															853.9	GROUND SURF	ACE	0.0
	‡							>: : :	· · · · · ·	· ·	· · ·	62	M		- <u>852.4</u>	Brown-orange, very stiff, sar	MENI Idy CLAY (A-6) <u>(1.5</u>
850	4					· ·	<u> </u>	 					M		<u>850.9</u>	<u> </u>	nd 8 Iv plastic C	<u> </u>
	1					· ·	<u> </u>						м		847.9	(A-7-6)	nd 11	6.0
															-	RESIDUAL		
	+														-	SR blows - 3, 4, a	/ CLAY (A- nd 5	7-6)
	l 1														-	SR blows - 10, 7, a Boring Terminated at Eleva	nd 10 tion 847.91	ft In
	+														-	Residual silty CLAY	(A-7-6)	
	7														-	Sounding Rod blows/ft value	es converte	d to
	ļŦ														-	equivalent SPT bio	ws/it	
	-														-			
	Ŧ														-			
	‡														-			
	‡	•													-			
	‡														-			
	‡														-			
	‡														-			
	‡														-			
	+														-			
	1														-			
															-			
	1														-			
	1														-			
	+														-			
	<u>+</u>														_			
	+														-			
	Ŧ														-			
	‡														-			
3122	‡														-			
3/2	1														-			
3	1														_			
3	+														_			
z	1														-			
19. 1															-			
Ž V	7														L			
VCID	7														_			
5	‡														-			
	‡														-			
	‡														-			
NON CHAR															-			
															-			
	+												1	1	F			

SHEET 11 OF 18

50		100	PROJ	EC1	REFE	REN	CE NO.	SHI	EET NO.
FEET		┛╽			U-4015	δA			13
VE = 5					PROFI	LE .	ALONG	-L-	
≤-hi-ghlyp	plastic	CLAY-	- (- A	-6,	A7	5,			915
Y (A-6,7	4-7-6)	,trac	ė 					י ו- י- י	. 910
4 <i>−4, A−5</i>),trace	0f							. 905
rock fra	igments	, SAPI	roliti	C, 1	moist				. 900
RW3_9 41′ RT-	RW3	_10 							. 895
 	12	<u>)</u>)/3				· · · ·			. 890
PAVE 6) <u>MEN</u> G					- - - -			- 885
		B),	1 1 1 1 1					
))	Ē	ND F	7E	TAINI	NG	. 875
	DR) 01/2	/ 21			STA	5.	WALL 3+00.	3 00	870
									. 865
)	POINT NO.	L- STATI	_ ON	P F GR	ROPOSEI FINISHED RADE (TC))) (P)	BOTTO OF W	DM ALL	. 860
· · V	1	48+00	0.00		873.11′		873.1	1′	
	2	48+04	4.34		873.35'		870.9	24	855
BT	3	40 + 50	0.00 0.00		0/0.02'	-	8/2.4 972.9	0,	
FIAD	5	47 + 0	0.00		880 50'		072.0 873 0	0′	
	6	50+00	0.00		882.39'		872.5	0′	850
	7	50+50	0.00		883.98'	\neg	872.0	0′	
	8	51+00	0.00		885.07′		873.7	0′	845
	9	51+50	0.00		885.96′		877.2	0′	<u>.</u>
	10	52+00	0.00		886.83'		882.4	0′	
	11	52+50	0.00		887.68′		885.3	8′	840
	12	52 + 94	4.27		888.16′		885.3	5′	
— (13	53+00	0.00	L,	888.22′		888.2	2′	
		P: 86 Ra NO	(919) 878 01 Six Fo leigh, Nor C License	9-9560 rks R rth Ca No. F	o oad, Forum arolina 2761 -0112	1, Sui 5-396	ite. 700 0		
		Er wv	ngineers ww.rkk.com	Cons m	truction Ma	nagers	s Planners	Scientis	its
		Re	sponsive	Реор	ne Creative	e Solu	tions		
52 + 50			5	53+	- 50				

W	BS	35013	.1.1			ТІ	P U-4	015A		CO	UNTY	GUILFO	RD			GEO	OGIST Good	le, B.			WBS	3 5013	3.1.1			TI	P U-401	5A	COUNT	Υ
SI	TE D	ESCR	IPTION	Gall	imore	Dairy	Rd. Wi	dening	g: Reta	ining V	Nall N	lo. 3							GROUND	WTR (ft)	SITE	DESCR		Gal	llimore	Dairy	Rd. Wide	ning: Retai	ning Wall	Ν
В	ORIN	g no.	RW3	_1_H	4	ST	TATION	48+	-00			OFFSET	37 ft LT			ALIG	NMENT -L-		0 HR.	Dry	BOR	ING NO.	RW3	3_2		S	TATION	48+50		ļ
C	OLLA	RELE	V . 87	'2.5 ft		т	DTAL D	EPTH	l 5.5 f	ft		NORTHING	845,5	522		EAS	ING 1,719,41	10	24 HR.	FIAD	COL	LAR ELE	EV. 87	74.3 ft		T (OTAL DEI	TH 30.0 f	ft	
DF	RILL R	IG/HAI	IMER E	FF./DA	TE N/	Α							DRILL	METH	OD H	land Auge		HAM	IMER TYPE Ma	anual	DRIL	L RIG/HAI	MMER E	FF./DA	TE F	&R2245	CME-55 92	% 04/30/2021		—
DI	RILLE	R K	abra, S			S		ATE	01/19	/21		COMP. DA	TE 01/	19/21	۱ ۸۰	SURI	ACE WATER	DEPTH	N/A		DRIL	LER Ti	ignor, E). T		S		E 01/12/2	21	0
EL (f	EV [DEPTH	BLC		JNT		2 E	BLOWS	50 S PER F	700T	75 100	SAMP.	♥∕			SOIL AND	ROCK DE	SCRIPTION		ELEV (ft)	ELEV	DEPTH	BLC				BLOWS	PER FOO	آ ح
	,	(π)		0.511	0.011	U.SIT		25			1		INU.	<u>и мс</u>) G	ELEV. (1	t)			DEPTH (ft)	,	(ft)	,	0.51	0.511	0.511			1	
-	,_																				075				1					
87	<u>'</u> 5		-													F					8/5	070.0	-					· · · · · ·	· · · ·	-
		-	-				· 1	• •					S-28	30%		- 872.5 872.0 871.5	GRO ROADV	OUND SUR	RFACE	0.0 0.5		8/3.2	+ 1.1 +	3	3	4	 			•
87	70	-	-					<u>;</u>			· · ·			(M M		871.0	Brown-red, sti CLAY	iff, sandy sil (A-7-5), trac	ilty highly plastic ce gravel	1.5	870	870.8 -	- 3.5	2	3	5		· · · ·		•
		-	-				· · · ·	- \ - - -	· · · · · ·	- -	· · ·	· · · · ·		M		+ 870.0 + 869.5	DCP DCP	blows - 4, 5 blows - 6, 5	5, and 6 5. and 5	2.5 1_ <u>3.0</u>		-	+							:
		-	-									l				869.0 868.0	Brown-red, sti	ff, silty CLA	AY (A-7-6), trace	3.5 4.5	865	- 865.8 -	8.5	1		2				•
		-	-													867.0		plows - 10, 8	8, and 8	5.5		-	ŧ	'	3	3	• 6			
		-	-													F	Brown-red, ve	trace grave	el			-	105							•
		_	-													-	L = DCP	RESIDUA	9, and 9 L	-4	860	860.8 -	- 13.5	2	2	2				
		-	-													F	Brown, very st	iff, sandy si (A-7-6)	ilty to silty CLAY			-	ŧ							•
		-	-													F	DCP t	olows - 8, 8,	, and 12 ev SILT (A-5)	-	855	855.8 -	18.5	2	2	3				•
		-	-													E	Boring Termina Residu	ated at Elev	vation 867.0 ft In				E				φ ⁵			
		-	-													E	DCP values o	onverted to	equivalent SPT			850.8 -	23.5							•
		_	-													-		blows/ft.	equivalent of 1		850		-	2	2	3	5	+	+	-
		-	-													F						-	ł				!::			•
		-	-													-					845	845.8 -	28.5	2	2	4	! ⊨ ≜ 6——	<u> </u>		•
		-	-													F						-	-				_ , 			
		-	-													F						-	ł							
		-	-													-							ł							
		-	-													F						-	ł							
		-	-													-						-	+							
		-	-													F						-	ŧ							
		-	-													F						-	ŧ							
		-	-													F							ŧ							
		-	-													-						-	ŧ							
		-	-													-						-	ŧ							
		-	-													F						-	ŧ							
22		-	-													F						-	ŧ							
3/29/		-	-													F						-	F							
GDT		-	-													F						-	Ŧ							
DOT		_	_													E							E							
o' z		-	_													E						-	E							
CGP.		-														E						-	E							
Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Υ		-	-													E						-	ł							
1015A		-	-													L						-	ł							
U-4		_	-													F						-	F							
OUBLE		-	-													F						-	ŧ		1					
ZE DC		-	-													F						_	ŧ		1					
T BOF		-	-													Ę						-	ŧ							
CD0		-	-													F						-	ŧ		1					
z	1			1									1	1							1	1	1	1	1	1				

IT	GUILFO	RD			GEOLOGIST Goo	de, B.		
	No. 3						GROUN	DWTR (ft)
	OFFSET	CL			ALIGNMENT -L-		0 HR.	25.0
	NORTHING	3 845,5	14		EASTING 1,719,4	72	24 HR.	FIAD
			IETHO	DН	S. Augers	НАММ		Automatic
		TF 01/	12/21				Δ	
<u>דר</u>	JONIF. DA	SAMD	· <i>∠</i> / ∠	LI	JUNFAUE WATER		~	
וי	75 100			0	SOIL AND	D ROCK DESC	CRIPTION	
	- 100	110.		G				
					-874.3 GR	OUND SURFA	ACE	0.0
:			м		873.2 ROAD	Asphalt 0.4'	AMENT ABC	1.1
•					Brown-red-bla	ack, medium s	tiff, sandy s	silty , <u>3.0</u>
	<u> </u>		м	N N V		RESIDUAL		
•				<u>р</u>	- Red-orang	e-brown to ora	ange-tan to	andv
•	· · · ·		N.4	Γ, ν Λ ν	- clayey	SILT (A-5), tra	ce mica	
•								
•				r V				
	· · · ·		м	, ' v	—			
:				N N				
•				N N				
-	+		м	N	_			
				1 V	•			
				7 7				
	<u> </u>		\mid V		_			
•				Ъ.				
•			۱۸/		-			00.0
		-		···\.	Boring Termir	nated at Eleval	ion 844.3 f	30.0 t In
					Residual	sandy clayey \$	SILT (A-5)	
					_			
					_			
					•			
					-			
					—			
					-			
					•			
					-			
					•			
					-			
					•			
					_			
					•			
					_			
					•			
		1			_			

	WBS	350	13.1.	1			Т	IP U	-401	5A		COL	JNTY	GUI	FOF	RD				GEO	LOGI	ST I	Kabra,	S.				WBS	3 350 ²	13.1.1				TIP	U-40	15A		COL	JNTY
	SITE	DES	CRIPT	ION	Gall	imore	Dairy	Rd. V	Nider	ning: I	Retair	ning V	Vall N	o. 3												GROUN	D WTR (ft)	SITE	DESC	RIPTIC	N Ga	allimor	e Da	airy F	kd. Wid	ening	: Retair	ning V	Vall N
	BOR	ING N	I O . F	RW3_	_3_HA	4	S	ΤΑΤΙΟ	ON 4	49+17	7			OFFSI	ET S	37 ft LT				ALIG	INME	NT -	·L-			0 HR.	Dry	BOR	RING NO) . RW	/3_4			ST	ATION	49+5	50		
	COLI	LAR I	ELEV.	870	6.9 ft		Т	OTAL	DEP	тн	5.0 ft			NORT	HING	8 45,5	578			EAS	TING	1,71	19,513		2	24 HR.	FIAD	COL	LAR E	LEV. 8	378.4 f	t		то	TAL DE	PTH	35.0 f	it	1
	DRILL	RIG/	IAMME	ER EF	F./DA	TE N/	A									DRILL	METH	OD	Har	and Auge	r			HA	MME	R TYPE	Manual	DRIL	L RIG/H	AMMER	EFF./D	ATE I	F&R2	245 C	ME-55 9	2% 04/	30/2021		
	DRIL	LER	Good	de, B			S	TART	DAT	E 0 ⁻	1/19/2	21	(COMP	. DA	TE 01/	'19/2 [·]	1		SURF	FACE	WAT	FER DE	EPTH	N/A	١		DRIL	LER	Tignor,	D.			ST	ART DA	TE (01/14/2	21	
	ELEV	DRI\ ELE		PTH	BLC	w col	JNT			BL	OWS	PER F	OOT			SAMP.		<u> </u>	,			SOIL	. AND R	OCK D	ESCF	RIPTION		ELEV			н ві		тилс	г		E	3LOWS	PER FO	ООТ
_	(π)	(ft)	(π)	0.5ft	0.5ft	0.5ft	0		25		50 I	7	5	100	NO.	/м	DI G	;	ELEV. (f	ft)						DEPTH (ft)	(π)	(ft)	(π)	0.5f	t 0.5f	t 0.	.5ft	0	25		50	7
[54_RKK.GPU NC_DOT.GDT 3/29/22	DRIL ELEV (ft) 8880 875	LER DRIV ELE (ft)		de, B PTH ft)	BLC 0.5ft	0.5ft	S JJNT 0.5ft					1 PER F 50		5 5	DA	TE 01/ SAMP. NO.	19/2 ⁻			SURF	face	RC own, s plast D D Tring Tr R CP value	GROU DADWA Stiff to veric ic CLAY DCP blov DCP b	ND SU Y EMB ry stiff, (A-7-5) vs - 8, ESIDU, clayey mica vs - 9, ed at Eli- clayey verted t blows/f	N/A ESCF RFAC ANKI), 6, an 11, an AL SILT 13, an evatio SILT to equut.	CE MENT y silty higl we gravel ad 8 and 11 ad 26 ad 11 (A-5), trau ad 11 on 871.9 ff (A-5) uivalent SI	000 000 000 000 000 000 000 000	DRII ELEV (ft) 880 875 870 865 860 865 860 855 850 845	LER DRIVE ELEV (ft) 874.9 869.9 864.9 864.9 864.9 859.9 8859.9 8859.9 8859.9	Tignor, DEPT (ft) - 1.5 - 3.5 - 3.5 - 13.5 - 13.5 	D. H BI 0.5f 3 2 2 2 2 2 2 1 1	.OW CC t 0.5ft 4 4 2 3 2 2 1 1 2		ST 5 4 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	ART DA	.TE () E 25 </td <td>11/14/2 3LOWS </td> <td>1 PER FC 50 - <td>7 TOC 7 7 7 7 7 7 7 7 7 7 7 7 7</td></td>	11/14/2 3LOWS	1 PER FC 50 - <td>7 TOC 7 7 7 7 7 7 7 7 7 7 7 7 7</td>	7 TOC 7 7 7 7 7 7 7 7 7 7 7 7 7
NCDOT BORE DOUBLE U-4015A																				- 																			

T١	GUI	LFO	RL)			GE	OLOG	ST Goode,	В.		
	No. 3										GROUN	ID WTR (ft)
	OFFS	ET (CL	-			ALI	GNME	NT -L-		0 HR.	Dry
┫	NORT	HING	}	845.5	62		EA	STING	1,719.560		24 HR.	FIAD
					IETHO	р н	.S. Aua	ers		НАММ	ER TYPE	Automatic
Τ	COMF	P. D4	TF	01/	14/21		SI	RFACE			Δ	
)T	0000	. 24				L	130			111 IN/.	r	
	75	100	ľ	NO		0			SOIL AND RO	OCK DESC	RIPTION	
			+			U						
									GROUN		CE	0.0
•		•••	+				876.9		ROADWAY	EMBAN	KMENT	1.5
•					М		875.2	Re	0.6' Asp d-orange. stiff. s	halt, 0.9' A siltv CLAY	ABC (A-7-6), ti	ace3.2
					М				— — — — — —	mica		
:		· ·					-	F	Red-orange-blac	k to orang	je-tan-blac	:k,
•	· ·	•••					-	me	dium stiff to stiff mica	, sandy SI saprolitio	LT (A-4), 1 :	race
•	· ·	•••			М		_			, oupronue		
•							-					
	· ·						-					
:					М		-					
•		· · ·					-					
-		• • •			м		_					
					IVI		-					
•		· · · ·				7	- <u>856.4</u> -	Orar	nge-tan-black, s	oft to med	ium stiff, c	<u>22.0</u>
	1				w	~ ~ ~ ~ ~ ~ ~	-		SILT (A-5), tr	ace mica,	saprolitic	, ,
•		· · ·				トレ	-					
•		• •				N N V	-					
	· ·				W	× 7 V	-					
•		· ·				х х	- - 846.4					32.0
•	· ·	• •						Tar	n-brown, mediur	n stiff, sar	ndy SILT (7	Ā-4), <u></u>
•					W		- 843.4			Let Flevet	inc	35.0
							-	BC	Residual s	andy SILT	(A-4)	it in
							_					
							-					
							-					
							_					
							-					
							-					
							-					
							-					
							L					
							-					
							-					
							-					
							_					
							<u> </u>					
							-					
							-					
							-					
							-					
							_					
							-					
							-					

International products International products <thinternateref< th=""> International products</thinternateref<>	Γ	WBS	35013	11			т	P 11-4	10154		0.0		GUIIF	ORD				GEOI	OGIST Ka	abra S			WRS	35013	311			Т	P []_4015	Α	COUN.	тγ
Description Stration	╞	SITE	DESCR		Gall	limore	Dairv	Rd W	idenin	a: Reta	ining \	Wall N	0.3								GROUN	D WTR (ff)	SITE	DESCR		Gall	limore	Dairv	Rd. Widen	na: Retair		 N
OBJALERUL 077.01 TOTAL DEFNI 12.0 /I NORTHING 365.01 DESTING 177.0.50 Jame TODA DBLEER COMD, A STAPT DATE DUTIED STAPL DATE DUTIED COMPARENCE IT, NAME TOTAL DEFNI 13.0.5.01 STAPL DATE DUTIED STAPL DATE DUTIED <td< td=""><td>┢</td><td>BORI</td><td></td><td>RW3</td><td>5 HA</td><td>4</td><td>S.</td><td>TATIO</td><td>N 50-</td><td>+00</td><td>9</td><td></td><td>OFFSET</td><td>37 ft I</td><td>т</td><td></td><td></td><td>ALIG</td><td>MENT -!-</td><td></td><td></td><td>Drv</td><td>BOR</td><td></td><td>. RW3</td><td>6</td><td></td><td> </td><td>TATION 5</td><td></td><td></td><td>Т</td></td<>	┢	BORI		RW3	5 HA	4	S.	TATIO	N 50-	+00	9		OFFSET	37 ft I	т			ALIG	MENT -!-			Drv	BOR		. RW3	6		 	TATION 5			Т
DRL DEFINITION DRL DEFINITION MARENTRE Java MARENTRE Java DRLL DE Goade .B. START DATE 01/16/21 COMP DATE 01/16/21 SUMPACE WATER DEPTH AN DELL DE FACE Mont Territory DEUX DE MARENTRE Java DEUX DE MARENTRE Java DEUX DE MARENTRE Java DEUX DE MARENTRE Java Mont Territory DEUX DE MARENTRE JAVA SUMPACE WATER DEPTH AN DEUX DE MARENTRE JAVA DEUX DE MARENTRE JAVA Mont Territory DEUX DE MARENTRE JAVA SUMPACE WATER DEPTH AN DEUX DE MARENTRE JAVA DEUX DE MARENTRE JAVA Mont Territory DEUX DE MARENTRE JAVA Mont Territory DE MARENTRE JAVA DE MARENTRE JAVA <t< td=""><td>┢</td><td>COLL</td><td>AR ELI</td><td>EV. 87</td><td> 7.0 ft</td><td></td><td></td><td></td><td>DEPTH</td><td>1 12.0</td><td>ft</td><td></td><td>NORTHI</td><td>NG 84</td><td>5,618</td><td></td><td></td><td>EAST</td><td>ING 1.719</td><td>.586</td><td>24 HR.</td><td>FIAD</td><td>COL</td><td>LAR EL</td><td>EV. 88</td><td><u></u> 31.5 ft</td><td></td><td></td><td>TAL DEP</td><td>H 35.0 f</td><td></td><td>+</td></t<>	┢	COLL	AR ELI	EV. 87	 7.0 ft				DEPTH	1 12.0	ft		NORTHI	NG 84	5,618			EAST	ING 1.719	.586	24 HR.	FIAD	COL	LAR EL	EV. 88	<u></u> 31.5 ft			TAL DEP	H 35.0 f		+
DRULER START DATE OUNDATE	┢		RIG/HA	MMER E	FF./DA	TE N/	A					[HOD	Ha	and Auger		HA	MMER TYPE	Manual	DRIL	L RIG/HA	MMER E	.FF./DA	TE F	 &R2245	CME-55 92%	04/30/2021		
Product Product BLOODS HISK COT	-	DRILI	ER G	oode. E	3.		S	TART	DATE	01/19	/21		COMP. D	DATE (1/19/:	21	-	SURF			N/A		DRIL	LER T	ïanor. D).		ST		01/14/2	 21	T
Image Image <th< td=""><td>ŀ</td><td>I FV</td><td>DRIVE</td><td>DEPTH</td><td>BLC</td><td>ow col</td><td>JNT</td><td></td><td></td><td>BLOWS</td><td>PER I</td><td>FOOT</td><td></td><td>SAN</td><td>P.</td><td></td><td>L</td><td>1</td><td></td><td></td><td></td><td></td><td>FI FV</td><td>DRIVE</td><td></td><td>BLC</td><td>JW COI</td><td>UNT</td><td></td><td>BLOWS</td><td>PER FOC</td><td>ட ர</td></th<>	ŀ	I FV	DRIVE	DEPTH	BLC	ow col	JNT			BLOWS	PER I	FOOT		SAN	P.		L	1					FI FV	DRIVE		BLC	JW COI	UNT		BLOWS	PER FOC	ட ர
		(ft)	ELEV (ft)	(ft)	0.5ft	0.5ft	0.5ft	0	25	5	50	7	'5 1()0 NC	. //	NOI	G	ELEV. (ft) SOIL AN	ND ROCK DI	ESCRIPTION	DEPTH (ft)	(ft)	ELEV (ft)	(ft)	0.5ft	0.5ft	0.5ft	o :	25 !	50	7
	DOT BORE DOUBLE U-4015A_RKK.GPJ NC_DDT.GDT 3/29/22	(ft) 880 875 870 865	(ft)	(ft)	0.5ft	0.5ft	0.5ft											ELEV. (ft	G ROAI Red-brown CLA DC DC DC Brown, stiff, DC Brown, stiff, DC Boring Term Resid DCP values	iROUND SUI DWAY EMB, 1, stiff to very, Y (A-7-6), tri P blows - 9, P blows - 5, P blows - 5, INDERSIDU, silty CLAY (fragmen, P blows - 6, INDERSIDU, silty CLAY (fragmen, P blows - 4, ninated at Ele idual clayey S s converted t blows/ff	RFACE ANKMENT y stiff, sandy si ace gravel 9, and 9 8, and 8 5, and 5 5, and 5 4AI (A-7-6), trace r 7, and 7 (A-5), trace r 5, and 7 evation 865.01 SILT (A-5) to equivalent S t.	<u>DEPTH (ft)</u>	(ft) 885 875 870 865 860 855 850	ELEV (ft) 880.4 878.0 878.0 878.0 878.0 868.0 808.0	(ft) 1.1 3.5 8.5 13.5 28.5 28.5 33.5 33.5 	0.5ft 3 3 2 2 1 1 2	0.5ft 3 5 4 2 2 3 3	0.5ft 3 7 4 3 7 4 4 4 4	0			

io. 3 GROUND WTR (ft) OFFSET CL ALIGNMENT -L- 0 HR. 32.8 NORTHING 845,611 EASTING 1,719,652 24 HR. FIAD DRILL METHOD H.S. Augers HAMMETYPE Automatic COMP. DATE 01/14/21 SURFACE WATER DEPTH N/A SSIMP 0 0 75 100 NO NO 0 G SSIMP 0.7 Asphat, 0.4 ASC 0.7 Asphat, 0.4 ASC 0.7 Asphat, 0.4 ASC 0.8 Ast 0.8 Ast 0.7 Asphat, 0.4 ASC 0.7 Asphat, 0.4 ASC 0.7 Asphat, 0.4 ASC 0.7 Asphat, 0.4 ASC 0.8 Ast 0.8 Ast 0.7 Asphat, 0.4 ASC 0.8 Ast 0.8 Ast 0.7 Asphat, 0.4	GUIL	FOF	RD			GEOLOGIST Goode, B.			
OFFSET_CL ALIGNMENT_L_ 0 HR. 32.8 NORTHING_845,611 EASTING 1,719,652 24 HR. FIAD DRILL_METHOD_HS_Augers HAMMER TYPE Automatic COMP. DATE_01/14/21 SURFACE WATER DEPTH_N/A SOIL AND ROCK DESCRIPTION 75 100 NO 0 SS116 255 GROUND SURFACE 0 0	lo. 3	_					GROUN	D WTR (ft)	
NORTHING 845,611 EASTING 1,719,652 24 HR. FIAD DRILL METHOD H.S. Augers HAMMER TYPE Automatic COMP. DATE 0.114/21 SURFACE WATER DEPTH N/A 75 100 NO. NO. SOIL AND ROCK DESCRIPTION 75 100 NO. NO. SOIL AND ROCK DESCRIPTION 881.5 GROUND SURFACE 0.0 881.5 GROUND SURFACE 0.0 881.5 GROUND SURFACE 0.0 881.6 Red-brown, stiff.stly highly plastic CLAV	OFFSE	τ	CL			ALIGNMENT -L-	0 HR.	32.8	
DRILL METHOD H.S. Augers HAMMER TYPE Automatic COMP. DATE 01/14/21 SURFACE WATER DEPTH N/A 75 100 NO. MO SOIL AND ROCK DESCRIPTION 75 100 NO. MO SOIL AND ROCK DESCRIPTION 881.5 GROUND SURFACE 0.0 881.5 GROUND SURFACE 0.0 881.5 GROUND SURFACE 0.0 881.6 Rod-brown, readingsff. sithy highly plastic 3.0 881.5 GROUND SURFACE 0.0 M Grown-crange-tan, toff to medium stiff. 2.0 M Satt 0.0 0.0 M Satt 0.0 0.0 M Satt 0.0 0.0 Satt 0.0 0.0 0.0 <td< td=""><td>NORTH</td><td>ING</td><td>845,6</td><td>11</td><td></td><td>EASTING 1,719,652</td><td>24 HR.</td><td>FIAD</td></td<>	NORTH	ING	845,6	11		EASTING 1,719,652	24 HR.	FIAD	
COMP. DATE 01/14/21 SURFACE WATER DEPTH N/A SOIL AND ROCK DESCRIPTION NO. MOD G SSURFACE CONTROLLING SUPPACE OUT OF THE STRUCTURE OF THE SUPPACE OUT			DRILL N	IETHO	DН	S. Augers HAMN		Automatic	
SAMP NO SOIL AND ROCK DESCRIPTION 55 100 MO 6 SOIL AND ROCK DESCRIPTION 881.5 GROUND SURFACE 0.0 SS-110 285 Red-brown, medium stiff, sittly highly plastic M 673.5 Red-brown, stiff, sittly highly plastic M 673.5 Red-brown, stiff, sittly highly plastic M M M </td <td>COMP.</td> <td>DA</td> <td>FE 01/⁻</td> <td>14/21</td> <td></td> <td></td> <td>/A</td> <td></td>	COMP.	DA	FE 01/ ⁻	14/21			/A		
75 100 NO. MO. 0 SOL AND ROCK DESCRIPTION SolL AND ROCK DESCRIPTION MO M SolL AND ROCK DESCRIPTION M M M M M M Brown-orange tan, soft to medium stift, sandy clayey SILT (A-5), trace to ittue mica M Satt Brown-orange tan, soft to medium stift, sandy clayey SILT (A-5) Satt Satt Brown-orange tan, soft to medium stift, sandy clayey SILT (A-5) <td colsp<="" td=""><td></td><td></td><td>SAMP.</td><td></td><td>L</td><td></td><td></td><td></td></td>	<td></td> <td></td> <td>SAMP.</td> <td></td> <td>L</td> <td></td> <td></td> <td></td>			SAMP.		L			
81.5 GROUND SURFACE 0.0 881.5 GROUND SURFACE 0.0 880.4 ROADWAY EMBANKMENT 1.1 978.5 Red-brown, reling stift, silly highly plastic	75 ⁻	100	NO.	мо	O G	SOIL AND ROCK DES	CRIPTION		
881.5 GROUND SURFACE 0.0 881.6 CADWAY EMBANKMENT 1.1 0.77 Asphalt, 0.47 ABC 30 0.77 Asphalt, 0.47 ABC 30 <td></td> <td></td> <td></td> <td>/</td> <td></td> <td></td> <td></td> <td></td>				/					
SS-116 26% 881.5 GROUND SURFACE 0.0 SS-116 26% 0.7 Aphil. 0.4 ABC .3.0 W 878.5 Red-brown, stellum stiff, silty highly plastic .3.0 Red-brown, stellum stiff, silty highly plastic 0.0 .4.27 (A-7.6) N Red-brown, stellum stiff, silty highly plastic 0.0 N Red-brown stellum stellum stiff, silty highly plastic 0.0 N Red-brown stellum stellum stellum stellum stellum stellum stellum stellum stellum ste									
881.5 GROUND SURFACE 0.0 880.4 ROADWAY EMBANKMENT 1.1 0.7 Aphilt, 0.4 ABC 3.0 0.7 Red-brown, medium stiff, silv highly plastic 3.0 0.7 Red-brown, exit, silv highly plastic 3.0 0.7 Red-brown, exit, silv highly plastic 0.7 0.7 Red-brown, exit, silv highly plastic 0.7 0.7 Red-brown, silf, silv highly plastic 0.47 0.7 Red-brown charge-ten, soft to medium stiff, silv highly plastic 0.47 0.7 Red-brown charge-ten, soft to medium stiff, silv highly plastic 0.47 0.7 Sat Sat Sat Sat 0.7 Red-brown charge-ten, soft to medium stiff, silv highly plastic Sat Sat 0.7 Sat Sat Sat Sat Sat 0.7 Red-brown chighly charge-ten store store structure						-			
SS-116 28% RodovAr EmbankMent 11 0.7 Aphalt, 0.4 ABC						881.5 GROUND SURE	ACE	0.0	
SS-116 26% 878.5 Red-brown, medium stiff, sith highly plastic CLAY		·				880.4 ROADWAY EMBAN	IKMENT	1.1	
M B755 Red-brown, stiff, silly highly plastic CLAY M M B755 Red-brown, stiff, silly highly plastic CLAY Red-brown to brown-orange, medium stiff, sandy SILT (A-4), saprolitic, trace mica M M Brown-orange-tan, soft to medium stiff, sandy diayey SILT (A-5), trace to little mica Satt 35 Satt 35			SS-116	26%		- 878.5 - Red-brown, medium stiff, si	ABC Ity highly pla		
Image: Second State Sta		:		М)		
Image: Sector of the provided and the provi		·				Red-brown, stiff, silty highl	y plastic CLA	ΑΥ <u>[^{-6.0}</u>	
Image: Stiff, sandy SILT (A-4), saprolitic, trace mica Image: Stiff, sandy SILT (A-5), trace to little mica Image: Stiff, sandy clayey SILT (A-5), trace to little mica Image: Stiff, sandy clayey SILT (A-5), trace to little mica Image: Stiff, sandy clayey SILT (A-5)		:				- <u>(A-7-6)</u> Red-brown to brown-orange	. medium sti	J	
M M M M M M M M M M		:		М		stiff, sandy SILT (A-4), sapr	olitic, trace n	nica	
M Brown-orange-tan, soft to medium stiff, sandy clayey SILT (A-5), trace to little mica Sat. Set. Set. Set. Set. Set. Set. Set. Se	<u></u>	-				_			
Image: State of the state				м					
M Biown-orange-tan, soft to medium stiff, 220 Brown-orange-tan, soft to medium stiff, 220 Sandy clayey SiLT (A-5), trace to little mica W Sat. Sat. Sat. Sat. Sat. Sat. Sat. Sat.				IVI		•			
M Biown-orange-tan, soft to medium stift, sandy clayey SiLT (A-5), trace to little mica M Sat. Sat. Boring Terminated at Elevation 846.5 ft in Residual sandy clayey SiLT (A-5)						-			
Image: Second state of the second s		:		М					
M Brown-orange-tan, soft to medium stiff, sandy clayey SiLT (A-5), trace to little mica W W Satt 846.5 Satt Boring Terminated at Elevation 846.5 ft In Residual sandy clayey SiLT (A-5)		·				- 		22.0	
M A A A A A A A A A A A A A A A A A A A		:			л Л Л	Brown-orange-tan, soft to	medium stif	f,	
Image: Second state of the second s		•		М	7 V V	sandy clayey SILT (A-5), tra		lica	
W Sat. Solution S46.5 35.0 Sat. Solution S46.5 ft In Residual sandy clayey SILT (A-5)	· · ·				7 V V	_			
W Sat. Boring Terminated at Elevation 846.5 ft In Residual sandy clayey SILT (A-5) Boring Terminated at Elevation 846.5 ft In		:			7 V 7 7				
Sat 25 Sat 25 Sat 25 Boring Terminated at Elevation 846.5 ft In Residual sandy clayey SiLT (A-5)		:		VV	л V Л Л				
Sat. 35.0 Boring Terminated at Elevation 846.5 ft In Residual sandy clayey SILT (A-5)				\bigtriangledown	л 7 Л 7	-			
Boring Terminated at Elevation 846.5 ft In Residual sandy clayey SILT (A-5)		:		Sat.	N V V	- 846.5		35.0	
Residual sandy clayey SiL1 (A-S)	1					Boring Terminated at Eleva	ation 846.5 ft	In	
							SILT (A-5)		
						•			
						_			
						-			
						-			
						_			
						-			
						•			
						-			
						_			
						•			
						-			

WBS	35013	.1.1			TIF	P U-40	15A		COUNT	Y GUILFO	RD			G	EOLOGIST Goode, B.			WBS	3501	3.1.1			ТІ	P U-401	5A	COUNT	Υ
SITE	DESCR	IPTION	Galli	more l	Dairy I	Rd. Wid	lening:	Retaini	ng Wall	No. 3						GF	ROUND WTR (ft)	SITE	DESCR	RIPTION	N Gall	imore	Dairy	Rd. Wide	ning: Retai	ning Wall	No
BOR	NG NO.	RW3	_7_HA	١	ST	TATION	51+2	25		OFFSET	37 ft LT			A	LIGNMENT -L-	0	HR. Dry	BOR	ING NO	. RW:	3_8		S	TATION	52+00		C
COLL	AR ELE	IV. 88	0.7 ft		тс	DTAL DE	EPTH	8.5 ft		NORTHIN	G 845,0	674		E	ASTING 1,719,703	24	HR. FIAD	COL	LAR EL	EV. 8	83.9 ft		т	DTAL DE	• TH 30.0	ft	
DRILL	RIG/HAM	MMER EI	F./DAT	E N/A	۱						DRILL	METHO	DD I	Hand A	uger H	IAMMER T	YPE Manual	DRIL	L RIG/HA	MMER E	EFF./DA	TE F&	R2245	CME-55 92	% 04/30/2021		
DRIL	L ER Ka	abra, S	•		ST	ART DA	ATE (01/19/21		COMP. D	ATE 01	/19/21		S	URFACE WATER DEPTH	I N/A		DRIL	LER T	Tignor, l	D.		S		r e 01/18/2	21	C
ELEV	DRIVE ELEV	DEPTH	BLO	w cou	NT		E	BLOWS P	ER FOOT	Г	SAMP		1		SOIL AND ROCK	DESCRIP	TION	ELEV	DRIVE	DEPTH	H BLO	W COL	JNT		BLOWS	PER FOOT	Г
(π)	(ft)	(π)	0.5ft	0.5ft	0.5ft	0	25	50	0	75 100	NO.	Ис	DI G	ELI	EV. (ft)		DEPTH (ft)	(π)	(ft)	(π)	0.5ft	0.5ft	0.5ft	0	25	50	75
885		-																885		ļ							
880	-	- - -													.7 GROUND S	SURFACE	<u>8.9</u>	880	883.0 880.4	<u> </u>	4	5	5	 . • 10 . • •	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	
000	-	-				<u> </u>					11	M		- 879 - 878	2 ROADWAY EM 2 Red-brown to brown, s	IBANKME stiff to very	NT 1.5 stiff, silty 2.5	000		+ 0.0	3	5	6	• 11			-
	-	-) . .		· · · · · ·	· · · · · ·		M	510	877 876	.2 CLAY (A-7-6), .7 DCP blows	trace grav 4, 5, and 8	el 3.5			ŧ					· · · · · ·		•
875	-	-					\. -					IVI			DCP blows - DCP blows -	4, 4, and 7 4, 6, and 7	/ 4.5 /	875	875.4	<u>+ 8.5</u> +	3	5	6	• • • •			
	-	-										М		873 872	2 DCP blows - 9	9, 8, and 10 <u>5, 7, and 8</u>	0 7.5 3 8.5			Ŧ							•
	-	-												E	RESID Brown-black to brown	UAL n-red, very	stiff, silty	870	870.4	T 13.5	1						
														E	CLAY (A DCP blows - 8	A-7-6) 3, 11, and 1	10			Ŧ		2	3	• 5			
	-	-												Ł	Boring Terminated at B Residual silty C	Elevation 8	372.2 ft In -6)		00E 4	- 10 5							·
	_	-												F	DCP values converted	d to equiva	elent SPT	865	000.4	- 10.5 -	1	2	3	∮ 5	<u> </u>	+	-
	-	-												Ę	blows	s/ft.				‡					· · · · · ·	· · · ·	:
	-	-												F				860	860.4	+ 23.5 +	1	1	3	<u>i</u> · · ·		+ • • •	·
	-	-												ŧ						ŧ				₩ ⁴	· · · · · ·		:
	-	-												F				855	855.4	+ + 28.5							:
	-	-												E						Ŧ	1	2	3	●5			
														E						Ŧ							
														F					-	Ŧ							
	-	-												E						Ŧ							
	- 1	-												E						Ŧ							
	-	-												Ł						ŧ							
	-	-												Ł						ŧ							
	_	-												F					-	ŧ							
	-	-												Ę						‡							
	-	-												F					-	‡							
	-	-												ŧ						ŧ							
52	-	-												F						ŧ							
3/29/	-	-												F					-	ŧ							
GDT	-	-												F						ŧ							
DOT.	_	-												F					-	Ŧ							
2 V	-	-												E						Ŧ							
(.GPJ	-													E					_	Ŧ							
ХХ ХХ	-	-												Ł						ŧ							
4015A	-	-												Ł						ŧ							
Ъ ш	-													F					-	‡							
OUBL	-													þ						‡							
RE D	-	-												F					.	‡							
T BOI	-													ŧ						‡							
NCDO	-	-												F						‡							

T١	r GU	ILFO	۲I	ט			GEOL	LOGIST Goode, E	3.		
	No. 3									GROUN	ID WTR (ft)
	OFFS	ET (С	L			ALIG	NMENT -L-		0 HR.	Dry
	NORT	HING	<u>}</u>	845.6	64		FAST	ING 1 719 787		24 HR	FIAD
			Γ			- H			НАММ		Automatia
	0014		Ľ								Automatic
	COM	UA	1		10/21			AGE WATER DEP	IH N/	A	
Γ	75	100		SAMP. NO.	моі	0 G		SOIL AND ROO	CK DESC	RIPTION	
							883.9	GROUNI) SURFA	CE	0.0
							883.0	ROADWAY	EMBAN	MENT	0.9
•		· ·			M		8 <u>80.9</u>	Red-orange, stiff, si	lty CLAY	(A-7-6), tr	ace
	<u> </u>				м	\square	-		ravel		i
•		•••					877.9	Red-orange, stiff, sa	andy silty	CLAY (A-	7-6), <u>(</u> <u>6.0</u>
•								Orange-red medium	k fragme	nts tiff_sandv	
	1				м		F	(A-4),	saprolitic	an, sanuy C	0121
:		· ·					ŀ				
•							-				
•					м		867.9				16.0
:		•••						Tan-brown, loose, si	Ity fine to	coarse S	
•		•••			м		-	(A-2-5), trace	e mica, sa	aprolitic	
:		· ·					È				
•		•••				7 V	<u>861.9</u>	Tan-orange to tan-or		v. medium	<u>22.0</u>
					м	N V V	<u> </u>	sandy clay	ey SILT	(A-5)	oun,
:						ト 7 イ レ	F				
•		· ·				х х 7	È				
	<u> </u>	<u> </u>			м	× 7 V	<u> </u>				30.0
		•••					-	Boring Terminated	at Elevat	ion 853.9 1	ît In
							È	Residual salidy	clayey c	SILT (A-3)	
							-				
							L				
							-				
							F				
							F				
							<u>L</u>				
							F				
							F				
							F				
							F				
							Ł				
							F				
							ļ.				
							t				
							F				
							F				
							F				
							-				
							F				
							F				
							F				
							ļ.				
							F				
							F				
							F				
							<u> </u>				

WBS 35013.1.1 TIP U-4015A COUN				NTY	GUILFO	RD				GEOLOGIST Goode, B.				WBS 35013.1.1 TIP U-4015A COUNTY																		
S	SITE DESCRIPTION Gallimore Dairy Rd. Widening: Retaining Wa					/all No	o. 3 GROUND WTR (ft)				SITE	DESCR		G al	limore	Dairy	iry Rd. Widening: Retaining Wall N															
В	ORIN	IG NO.	RW3	_9		S	TATION	52	+50			0	OFFSET	CL				ALIG	NMENT -L-		0 HR.	Dry	BOR	ING NO.	. RW3	3_10		S	STATION 52+98			
С	OLLA	AR ELE	EV. 88	4.7 ft		т	OTAL D	EPTł	- 30).0 ft		1	ORTHIN	G 845,0	678			EAS	ING 1,719,835		24 HR.	FIAD	COL	LAR ELI	EV. 88	34.4 ft		т	OTAL DE	PTH 1	0.0 ft	
D	RILL F	RIG/HAN	MMER E	FF./DA	TE F8	&R2245	CME-55 9	92% ()4/30/2	2021				DRILL	METHO	OD	H.S.	. Augers	3	HAMM	ER TYPE	Automatic	DRILI	RIG/HA	MMER E	FF./DA	TE F8	&R2245	CME-55 9	2% 04/30	/2021	
D	RILLI	ER Ti	gnor, D).		S	TART D	ATE	01/1	18/21	1	0	COMP. DA	TE 01	/18/21	1		SURF	ACE WATER DEP	N/	/A		DRIL	LER T	ignor, [D.		ST		TE 01	/11/21	
EL	EV	DRIVE ELEV	DEPTH	BLC	ow cou				BLO\	WS P	ER FC	DOT		SAMP	· 🔨	1 L 0			SOIL AND RO	CK DESC	CRIPTION		ELEV	DRIVE ELEV	DEPTH	BLC				BLO	OWS PE	ER FOOT
(IL)	(ft)	(11)	0.5ft	0.5ft	0.5ft	0	25	ō	50	0	7:	5 100	NO.	/мс) G		ELEV. (f	t)			DEPTH (ft)	(11)	(ft)	(11)	0.5ft	0.5ft	0.5ft	0	25	50 I	1 7
8	85	993.9																884.7	GROUN			0.0	885	884.4	0.0							
			- 0.3	4	3	3	●6							SS-13	1 31%			881 7	0.6' Aspt	nalt, 0.3' /	ABC	30		-	Ŧ	WOH	3	3	•6			
8	80	881.2	3.5	3	4	7		 1	•••	•••	•••	•••			м		Ē	<u></u> _	$\frac{1}{2}$ Red-orange, mediur	n stiff, sil Y <u>(</u> A-7-6)	ty highly pl	astic ,	880	880.9	3.5	4	10	12				
									• •	· ·		• •					Ł	878.7	RES Red-orange, stiff, s	SIDUAL silty highly	y plastic CL	AY6.0		-	E							
		876.2	8.5														E		Orange-red medium	4-7-6)	ndv SILT (875.9						/: : :		
88	75	-		2	3	3	6		<u> </u>						M		E		sa	prolitic		(),	875			3	6	8	4	14		
									• •								E							-	Ŧ							
8	70	871.2	13.5	1	2	3	5								м		E								E							
									• •	· ·		• •					Ē	868.7	Orange-white me	dium stiff	f clavev SI	<u>16.0</u>		-	E							
		866.2	18.5						• •	•••	•••	•••				N N	Ϋ́́Ε		(A-5),	saproliti	C			-	Ī							
8	65	_	_	1	2	3	-\$ 5								M	N N	Ϋ́⊢							-	Ł							
		-	_						•••	•••	•••	•••				~	<u>i</u>	862.7	Tan-brown-orange r	medium s	stiff sandy	<u>22.0</u>		-	ł							
8	60	861.2	23.5	1	2	2			•••						м		Ľ		(A-4),	saproliti	C	0.2.		-	Ł							
		-	-						· ·	· ·	· ·	· · ·	· · · ·					858.7	Tan-orange, medium	n stiff, cla	vev SILT (A-5). <u>26.0</u>		-	ŧ							
		856.2	28.5					· ·	•••	· ·	· ·	· · ·	· · · ·			N N	ř		sa	prolitic	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-	ŧ							
8	55			1	2	2	4				<u> </u>				W	· N .		854.7	Boring Terminated	at Elevat	tion 854.71	30.0 ft In		-	F							
		-	-														F		Residual cla	ayey SIL	T (A-5)			-	ŧ							
		- 1	-														Ł							-	ŧ							
		-	-														F							-	ŧ							
		-	_														Ę							-	ŧ							
		-	-														F							-	ŧ							
		-	-														Ę							-	ŧ							
		-	-														F							-	ŧ							
		-	-														F							-	ŧ							
		-	-														Ę							-	ŧ							
			-														F							-	ŧ							
		-	-														Ę							-	ŧ							
9/22			-														Ł							-	ŧ							
F 3/2		-	-														Ę							-	ŧ							
.GD		-	-														Ę							-	ŧ							
		-	_														F							-	ŧ							
NC		-	-														F							-	ŧ							
K.GP,		-	-														Ł							-	ŧ							
RK		-	-														Ę							-	ŧ							
4015/		-	-														F							-	ŧ							
- О		-	-														F							-	ŧ							
DUBL		-	F														F							-	ŧ							
če do		-	L														F							-	ŧ							
BOF		-	-														F							-	ŧ							
CDO1		-	_														F							-	ŧ							
ž																1								-			1					

T١	Y GUILFORD							GEOLOGIST Goode, B.							
	No. 3									GROUN	ID WTR (ft)				
1	OFFS	ET	5(0 ft LT			ALIC	GNME	NT -L-		0 HR.	Dry			
	NORT	HING	3	845,7	37		EAS	TING	1,719,873		24 HR.	Dry			
			Τ	DRILL N	IETHO	DH	.S. Auge	rs		HAMM	ER TYPE	Automatic			
	COMP	. DA	T	E 01/	11/21		SUR	FACE	WATER DE	PTH N/	A				
)T				SAMP.	7	L	1			00/ 075					
	75	100		NO.	мо	0 G			SOIL AND R	UCK DESC	RIPTION				
	1					-									
	1			QQ F4	100/		<u> 884</u> .4		GROU	ND SURFA		0.0			
•		 		00-01	1∠70	Ň	882.4	⊣∟⋿	Brown, medium	stiff, sand	y SILT (A-4	4)			
•	· ·	•••			м		-	ίΕ	RI Brown, medium	stiff, sand	y <u>SILT (A-</u>	4)			
•		•••					<u> 878.4 </u>	- Re	d-orange, very	stiff, sand	y CLAY (A	-6),6.0			
•		•••					_	Red	-orange, mediu	um dense,	clayey silty	, fine			
	<u> ··</u>	· ·			М		- 	_	to coarse SAN fr	vD (A-2-5), agments	trace rock	10.0			
							-	Bo	ring Terminate	d at Elevat	ion 874.4 f	t In			
							-		Residual Cidy	sy siily SAI	··· (r·-2-3)				
							_								
							_								
							-								
							-								
							-								
							-								
							-								
							_								
							-								
							-								
							-								
							-								
							_								
							-								
							-								
							-								
							-								
							-								
							-								
							-								
							-								
							_								
							-								
							-								
							-								
							-								
							_								
							-								
							-								
							-								
							-								
							_								
							-								
							-								
							-								

April 6, 2022

Memorandum to:	Mr. Brian Ketner, PE
	Project Manager
	NCDOT – Division 7
	1584 Yanceyville Street
	Greensboro, NC 27415
From:	Atefeh Asoudeh, P.E.
	Project Manager, Geotechnical
WBS Number:	35013.1.1
TIP Number:	U-4015A
County:	Guilford
Description:	SR 1556 (Gallimore Dairy Road) Widening from NC 68 (Lynwood
-	Smith Expressway) to Airport Road in Greensboro
Subject:	Retaining Wall Recommendations, Wall No. 1 through Wall No. 3 - Revision 2

RK&K is pleased to submit the following revised recommendations for the proposed retaining walls. The revision to this letter includes removing the recommendation for previously named Retaining Wall No. 2 located at -L- Sta. 36+50.00 to -L- Sta. 39+50.00. The wall was removed due to the right of way conflicts. The previously named Retaining Wall No.3 and Retaining Wall No.4 were revised to Retaining Wall No. 2 and Retaining Wall No.3, respectively.

The recommendations are based on soil test borings performed by RK&K and roadway plans. This report includes recommendations for the following retaining walls:

Retaining Wall No. 1: -L- Sta. 27+25.00 to -L- Sta. 29+50.00 Retaining Wall No. 2: -L- Sta. 44+00.00 to -L- Sta. 45+00.00 Retaining Wall No. 3: -L- Sta. 48+00.00 to -L- Sta. 53+00.00

It is recommended that Retaining Wall No. 1 through No. 3 be designed and constructed as a Mechanically Stabilized Earth (MSE) Wall with a level backslope and traffic surcharge. Wall No. 2 designed as MSE Wall not as Standard Segmental Gravity Wall due to the presence of handrail and traffic surcharge.

The attached MSE Retaining Wall (W-1 through W-5) plan sheets should be included in the Roadway Plans.

Prepared by,

Atefeh Asoudeh, P.E. Project Manager, Geotechnical Registered, North Carolina 043747 Saket N. Kabra, P.E Project Engineer, Geotechnical Registered, North Carolina 053059

Attachments:

- MSE Retaining Wall Plan Sheets (W-1 through W-5)
- MSE Wall Standard Provision
- Architectural Concrete Surface Treatment Special Provision
- Provided Information

MSE RETAINING WALL PLAN SHEETS

SHEET W1: RETAINING WALL NO. 1 - PLAN AND PROFILE SHEET W2: RETAINING WALL NO. 2 - PLAN AND PROFILE SHEET W3: RETAINING WALL NO. 3 - PLAN AND PROFILE SHEET W4: MSE RETAINING WALL NO. 1 THROUGH NO.3 -DETAILS SHEET W5: MSE RETAINING WALL NO. 1 THROUGH NO.3 -

SHEET W5: MSE RETAINING WALL NO. 1 THROUGH NO.3 – NOTES & LEVELING PAD DETAILS

POINT NO.	-L- STATION	PROPOSED FINISHED GRADE (TOP)	BOTTOM OF WALL
1	27+25.00	804.85′	804.85'
2	27+50.00	811.84′	807.57′
3	28+00.00	813.41′	809.76′
4	28+50.00	815.04′	808.37′
5	29+00.00	816.98′	811.24′
6	29+50.00	818.24′	817.75′

P: (919) 878-9560 8601 Six Forks Road For Raleigh, North Carolina NC License No. F-0112
Engineers Construct www.rkk.com
Responsive People 0

 ESTIMA	TED QUANTITIES
RETAINING WALL NO.	MSE RETAINING WALL (SQUARE FOOT)
1	1540

	STA	STATION: <u>RW-1: -L- 27+25.00 TO -L- 29+50.00</u>								
	SHEE	T 1 OF 5								
um 1, Suite 700 7615-3960		RET/ PL	AININ AN A	IG ND	WALL N(PROFIL	D. 1 E				
n Managers Planners Scientists			RE	EVIS	IONS		SHFFT			
	NO.	BY	DATE	NO.	BY	DATE	NO.			
antina Calutiana	1	S. KABRA	12/20/21	3			W-1			
eative Solutions	1 2	S KARDA	03/25/22				1			

0	ESTIMA	FED QUANTITIES
	RETAINING WALL NO.	MSE RETAINING WALL (SQUARE FOOT)
	2	470

POINT NO.	-L- STATION	PROPOSED FINISHED GRADE (TOP)	BOTTOM OF WALL
1	48+00.00	873.11′	873.11′
2	48+04.34	873.35′	870.94
3	48+50.00	875.82′	872.40′
4	49+00.00	878.30′	872.80′
5	49+50.00	880.50′	873.00′
6	50+00.00	882.39′	872.50′
7	50+50.00	883.98′	872.00′
8	51+00.00	885.07′	873.70′
9	51 + 50.00	885.96′	877.20′
10	52+00.00	886.83′	882.40′
11	52 + 50.00	887.68′	885.38′
12	52+94.27	888.16′	885.35′
13	53+00.00	888.22′	888.22′

	STA	STATION: <u>RW-3: -L- 48+00.00 TO -L- 53+00.0</u>						
	SHE	ET 3 OF 5						
P: (919) 878-9560 8601 Six Forks Road Forum 1, Suite 700 Raleigh, North Carolina 27615-3960 NC License No. F-0112	RETAINING WALL NO. 3 PLAN AND PROFILE							
Engineers Construction Managers Planners Scientists			RE	VIS	SIONS		SHEET	
www.rkk.com	NO.	BY	DATE	NO.	BY	DATE	NO.	
	1	S. KABRA	12/20/21	3			W_3	
Responsive People Creative Solutions	2	S. KABRA	03/25/22	4				

NOTES:

FOR MECHANICALLY STABILIZED EARTH (MSE) RETAINING WALLS, SEE MECHANICALLY STABILIZED EARTH RETAINING WALLS PROVISION. FOR STEEL BEAM GUARDRAIL, SEE ROADWAY PLANS AND SECTION 862 OF THE STANDARD SPECIFICATIONS. USE AN MSE WALL SYSTEM WITH PRECAST CONCRETE PANELS THAT MEET SECTION 1077 OF THE STANDARD SPECIFICATIONS FOR RETAINING WALL NO.1 THROUGH NO.3. AN ASHLAR STONE ARCHITECTURAL FINISH IS REQUIRED FOR CONCRETE FOR RETAINING WALLS NO.1 THROUGH NO.3. SEE ARCHITECTURAL CONCRETE SURFACE TREATMENT SPECIAL PROVISION.

CIP REINFORCED CONCRETE COPING IS REQUIRED FOR RETAINING WALL NO.1 THROUGH NO.3. AT THE CONTRACTOR'S OPTION, USE FINE AGGREGATE IN THE REINFORCED ZONE OF RETAINING WALL NO.1 THROUGH NO.3. A SEPARATION GEOTEXTILE IS NOT REQUIRED AT THE BACK OF THE REINFORCED ZONE FOR RETAINING WALL NO.1 THROUGH NO.3, PROVIDED FINE AGGREGATE IS USED IN THE REINFORCED ZONE.

A DRAIN IS REQUIRED FOR RETAINING WALL NO.1 THROUGH NO.3.

BEFORE BEGINNING MSE WALL DESIGN FOR RETAINING WALL NO.1 THROUGH NO.3, SURVEY WALL LOCATION AND SUBMIT A REVISED WALL PROFILE VIEW (WALL ENVELOPE) FOR REVIEW. DO NOT START WALL DESIGN OR CONSTRUCTION UNTIL THE REVISED WALL ENVELOPE IS ACCEPTED.

DESIGN RETAINING WALL NO.1 THROUGH NO.3 FOR THE FOLLOWING: 1) DESIGN HEIGHT (H) = WALL HEIGHT + WALL EMBEDMENT

2) DESIGN LIFE = 75 YEARS

3) MINIMUM EMBEDMENT DEPTH = 2 FT 4) MAXIMUM FACTORED VERTICAL PRESSURE ON FOUNDATION MATERIAL SHALL BE AS SHOWN BELOW. 5) MINIMUM REINFORCEMENT LENGTH (L) SHALL BE AS SHOWN BELOW OR 6 FT, WHICHEVER IS LONGER

WALL NO.	-L- STATION	REINFORCEMENT LENGTH RATIO	MAXIMUM FACTORED VERTICAL PRESSURE ON FOUNDATION MATERIAL (KSF)	
1	27+25.00 TO 29+50.00	0 . 8H	2.5	
2	44+00.00 TO 45+00.00	1.2H	1.4	
3	48+00.00 TO 49+00.00	0 . 8H	2.2	
3	49+00.00 TO 52+00.00	0.7Н	3.9	
3	52+00.00 TO 53+00.00	0 . 8H	2.2	

<u>6) REINFORCED ZONE AGGREGATE PARAMETERS:</u>

AGGREGATE TYPE *	UNIT WEIGHT (y) PCF	FRICTION ANGLE (φ) DEGREES	COHESION (c) PSF
COARSE	110	38	0
FTNF	115	34	0

*SEE MSE RETAINING WALLS PROVISION FOR COARSE AND FINE AGGREGATE MATERIAL REQUIREMENTS.

7) IN-SITU ASSUMED MATERIAL PARAMETERS:

MATERIAL TYPE	UNIT WEIGHT (y) PCF	FRICTION ANGLE (φ) DEGREES	COHESION (c) PSF
RETAINED	120	30	0
FOUNDATION AT RW NO.1	120	28	0
FOUNDATION AT RW NO.2	120	28	0
FOUNDATION AT RW NO.3	120	28	0

DESIGN RETAINING WALL NO.1 THROUGH NO.3 FOR A LIVE LOAD (TRAFFIC) SURCHARGE.

FOUNDATIONS FOR SIGNS,LIGHTING OF SIGNALS MAY BE LOCATED BEHIND RETAINING WALL NO.1 THROUGH NO.3,AND MAY INTERFERE WITH REINFORCEMENT. BEFORE BEGINNING MSE WALL CONSTRUCTION, SUBMIT PROPOSED CONSTRUCTION METHODS FOR THESE FOUNDATIONS FOR APPROVAL.

EXISTING OR FUTURE OBSTRUCTIONS SUCH AS FOUNDATIONS, GUARDRAIL, FENCE OR HANDRAIL POSTS, PAVEMENTS, PIPES, INLETS OR UTILITIES MAY INTERFERE WITH REINFORCEMENT FOR RETAINING WALL NO.1 THROUGH NO.3. DO NOT PLACE LEVELING PAD CONCRETE, AGGREGATE OR REINFORCEMENT FOR RETAINING WALL NO.1 AND NO.3, UNTIL EXCAVATION DIMENSIONS AND FOUNDATION MATERIAL ARE APPROVED.

"TEMPORARY SHORING" MAY BE REQUIRED FOR RETAINING WALL NO.1 THROUGH NO.3, IN ACCORDANCE WITH THE TEMPORARY SHORING PROVISION. SEE ROADWAY OF TRAFFIC CONTROL PLANS.

PREPARED BY: S. KABRA	DATE: 03/25/22
REVIEWED BY: M. METRY	DATE: 03/28/22

PRECAST PANELS LEVELING PAD STEP DETAIL

	PROJECT NO.: U-4015A					
	GUILFORD COUNTY			NTY		
	STATION: RW1: -L- 27+25.00 TO -L- 29+			29+50	0.00	
		RW2: -L- 4	14+(00.00 TO -L- 4	45+00	0.00
		RW3: -L- 4	18+(0.00 TO -L- 5	53+00	0.00
	SHEET 5 OF 5			WALL I	D RW-1	TO 3
NORTH CAROLINA ENT OF TRANSPORTATION ISION OF HIGHWAYS	MSE RETAINING WALL NO. 1 THROUGH NO. 3					
ΕΟΤΕΓΗΝΙΓΔΙ	L	NO EVELING	B P	S AND AD DETAIL	S	
LUILUIMIUAL Nieeding unit		RI	EVIS	IONS		SHEET
INEEKING UNII	NO. BY	DATE	NO.	BY	DATE	NO.
	2 S. KAB	RA 03/25/22	2 4			W-5

STANDARD PROVISIONS FOR MSE WALLS

GT-1.1

MECHANICALLY STABILIZED EARTH RETAINING WALLS

(10-19-21)

1.0 GENERAL

Construct mechanically stabilized earth (MSE) retaining walls consisting of steel or geosynthetic reinforcement in the reinforced zone connected to vertical facing elements. Use precast concrete panels for vertical facing elements and coarse aggregate in the reinforced zone unless noted otherwise in the plans. Provide reinforced concrete coping and pile sleeves as required. Design and construct MSE retaining walls based on actual elevations and wall dimensions in accordance with the contract and accepted submittals. Use a prequalified MSE Wall Installer to construct MSE retaining walls.

Define MSE wall terms as follows:

Geosynthetic Reinforcement – Polyester Type (PET), HDPE or Polypropylene (PP) geosynthetic grids, i.e., geogrid reinforcement or polymer straps, i.e., geostrip reinforcement, *Geogrid* – PET, HDPE or PP geogrid,

Reinforcement - Steel or geosynthetic reinforcement,

Aggregate – Coarse or fine aggregate,

Panel - Precast concrete panel,

Coping – Precast or CIP concrete coping,

Design Height (H) – Wall height + wall embedment as shown in the plans,

MSE Wall – Mechanically stabilized earth retaining wall,

MSE Wall Vendor – Vendor supplying the chosen MSE wall system,

MSE Panel Wall – MSE wall with panels,

MSE Segmental Wall – MSE wall with segmental retaining wall (SRW) units and

Abutment Wall – MSE wall with bridge foundations in any portion of the reinforced zone or an MSE wall connected to an abutment wall (even if bridge foundations only penetrate a small part of the reinforced zone, the entire MSE wall is considered an abutment wall).

For bridge approach fills behind end bents with MSE abutment walls, design reinforcement connected to end bent caps in accordance with the plans and this provision. Construct Type III Reinforced Bridge Approach Fills in accordance with the *Bridge Approach Fills* provision and Roadway Detail Drawing No. 422D10.

Use an approved MSE wall system in accordance with the plans and any NCDOT restrictions or exceptions for the chosen system. Value engineering proposals for other MSE wall systems will not be considered. Do not use MSE wall systems with an "approved for provisional use" status for MSE walls with design heights greater than 35 ft or walls supporting or adjacent to railroads or interstate highways. The list of approved MSE wall systems with approval status is available from:

connect.ncdot.gov/resources/Geological/Pages/Products.aspx

2.0 MATERIALS

Refer to the Standard Specifications.

Item Aggregate **Section** 1014

20
032-3
081
056
003
028
000
077
070
077
040-4
016
16-2
036-4(A)

Use galvanized corrugated steel pipe with a zinc coating weight of 2 oz/sf (G200) for pile sleeves. Provide Type 2 geotextile for filtration and separation geotextiles. Use Class A concrete for CIP coping, leveling concrete and pads. Use galvanized steel pipe, threaded rods and nuts for the PET geogrid reinforcement vertical obstruction detail. Provide galvanized Grade 36 anchor rods and Grade A hex nuts that meet AASHTO M 314 for threaded rods and nuts.

Use panels and SRW units from producers approved by the Department and licensed by the MSE Wall Vendor. Provide steel strip connectors embedded in panels fabricated from structural steel that meets the requirements for steel strip reinforcement. Unless required otherwise in the contract, produce panels with a smooth flat final finish that meets Article 1077-11 of the *Standard Specifications*. Accurately locate and secure reinforcement connectors in panels and maintain required concrete cover. Produce panels within 1/4" of the panel dimensions shown in the accepted submittals.

Damaged panels or SRW units with excessive discoloration, chips or cracks as determined by the Engineer will be rejected. Do not damage reinforcement connection devices or mechanisms in handling or storing panels and SRW units.

Store steel materials on blocking at least 12" above the ground and protect it at all times from damage; and when placing in the work make sure it is free from dirt, dust, loose mill scale, loose rust, paint, oil or other foreign materials. Handle and store geosynthetics in accordance with Article 1056-2 of the *Standard Specifications*. Load, transport, unload and store MSE wall materials so materials are kept clean and free of damage. Bent, damaged or defective materials will be rejected.

A. Aggregate

Use standard size No. 57, 57M, 67 or 78M that meets Table 1005-1 of the *Standard Specifications* for coarse aggregate and the following for fine aggregate:

1. Standard size No. 1S, 2S, 2MS or 4S that meets Table 1005-2 of the *Standard Specifications* or

2. Gradation that meets Class III, Type 3 select material in accordance with Article 1016-3 of the *Standard Specifications*.

Fine aggregate is exempt from mortar strength in Subarticle 1014-1(E) of the *Standard Specifications*. Use fine aggregate with a maximum organic content of 1.0%. Provide aggregate with chemical properties that meet the following requirements:

AGGREGATE pH REQUIREMENTS				
Aggregate Type (in reinforced zone)Reinforcement or Connector MaterialpH				
Coarse or Fine	Steel	5-10		
Coarse or Fine	Geosynthetic	4.5-9		

AGGREGATE ELECTROCHEMICAL REQUIREMENTS (Steel Reinforcement/Connector Materials Only)				
Aggregate Type (in reinforced zone)	Resistivity	Chlorides	Sulfates	
Coarse	\geq 5,000 $\Omega \cdot cm$	< 100	< 200 mmm	
Fine	\geq 3,000 $\Omega \cdot cm$	$\leq 100 \text{ ppm}$	\leq 200 ppm	

Use aggregate from sources participating in the Department's Aggregate QC/QA Program as described in Section 1006 of the *Standard Specifications*. Sample and test aggregate in accordance with the *Mechanically Stabilized Earth Wall Aggregate Sampling and Testing Procedures*.

B. Reinforcement

Provide steel or geosynthetic reinforcement supplied by the MSE Wall Vendor or a manufacturer approved or licensed by the vendor. Use reinforcement approved for the chosen MSE wall system. The list of approved reinforcement for each MSE wall system is available from the website shown elsewhere in this provision.

1. Steel Reinforcement

Provide Type 1 material certifications in accordance with Article 106-3 of the *Standard Specifications* for steel reinforcement. Use welded wire grid reinforcement ("mesh", "mats" and "ladders") that meet Article 1070-3 of the *Standard Specifications* and steel strip reinforcement ("straps") that meet ASTM A572, A1011 or A463. Use 10 gauge or heavier structural steel Grade 50 or higher for steel strip reinforcement. Galvanize steel reinforcement in accordance with Section 1076 of the *Standard Specifications* or provide aluminized steel strip reinforcement that meet ASTM A463, Type 2-100.

2. Geosynthetic Reinforcement

Provide Type 1 material certifications and identify geosynthetic reinforcement in

accordance with Article 1056-3 of the *Standard Specifications*. Define machine direction (MD) and cross-machine direction (CD) for geogrids per Article 1056-3 of the *Standard Specifications*.

Use HDPE or PP geogrid for geogrid reinforcement cast into backwalls of end bent caps. Use PET or HDPE geogrid for geogrid reinforcement connected directly to SRW units and only HDPE geogrid for geogrid reinforcement cast into panels.

Provide extruded geogrids produced in the United States and manufactured from punched and drawn polypropylene sheets for PP geogrids that meet the following:

PP GEOGRID REQUIREMENTS				
Property	Requirement ¹	Test Method		
Aperture Dimensions ²	1" x 1.2"	N/A		
Minimum Rib Thickness ²	0.07" x 0.07"	N/A		
Tensile Strength @ 2% Strain ²	580 lb/ft x 690 lb/ft			
Tensile Strength @ 5% Strain ²	1,200 lb/ft x 1,370 lb/ft	ASTNI D0037, Mathad D		
Ultimate Tensile Strength ²	1,850 lb/ft x 2,050 lb/ft	Method D		
Junction Efficiency ³	02%			
(MD)	93%	ASTM D7757		
Flexural Rigidity ⁴	2,000,000 mg–cm	ASTM D7748		
Aperture Stability Modulus ⁵	0.55 lb-ft/degrees	ASTM D7864		
UV Stability	100%	ASTM D4255		
(Retained Strength)	(after 500 hr of exposure)	ASTNI D4555		

- **1.** MARV per Article 1056-3 of the *Standard Specifications* except dimensions and thickness are nominal.
- 2. Requirement for MD x CD.
- **3.** Junction Efficiency (%) = (Average Junction Strength (Xj_{ave}) / Ultimate Tensile Strength in the MD from ASTM D6637, Method A) × 100.
- **4.** Test specimens two ribs wide, with transverse ribs cut flush with exterior edges of longitudinal ribs, and sufficiently long to enable measurement of the overhang dimension.
- 5. Applied moment of 17.7 lb–inch (torque increment).
- C. Bearing Pads

For MSE panel walls, use preformed ethylene propylene diene monomer rubber bearing pads that meet ASTM D2000 Grade 2, Type A, Class A with a durometer hardness of 60 or 80 ± 5 . Provide bearing pads with thicknesses that meet the following:

BEARING PAD THICKNESS			
Facing Area per Panel (A)Minimum Pad Thickness After Compressi (based on 2 times panel weight above pad			
$A \le 30 \text{ sf}$	1/2"		
$30 \text{ sf} < A \le 75 \text{ sf}$	3/4"		

D. Miscellaneous Components

Miscellaneous components may include connectors (e.g., anchors, bars, clamps, pins, plates, ties, etc.), fasteners (e.g., bolts, nuts, washers, etc.) and any other MSE wall components not included above. Use 10 gauge or heavier structural steel Grade 50 or higher for steel strip panel anchors and connectors. Galvanize steel components in accordance with Section 1076 of the *Standard Specifications*. Provide miscellaneous components approved for the chosen MSE wall system. The list of approved miscellaneous components for each MSE wall system is available from the website shown elsewhere in this provision.

3.0 **PRECONSTRUCTION REQUIREMENTS**

A. MSE Wall Surveys

The Retaining Wall Plans show a plan view, typical sections, details, notes and an elevation or profile view (wall envelope) for each MSE wall. Before beginning MSE wall design, survey existing ground elevations shown in the plans and other elevations in the vicinity of MSE wall locations as needed. For proposed slopes above or below MSE walls, survey existing ground elevations to at least 10 ft beyond slope stake points. Based on these elevations, finished grades and actual MSE wall dimensions and details, submit revised wall envelopes for acceptance. Use accepted wall envelopes for design.

B. MSE Wall Designs

For MSE wall designs, submit PDF files of working drawings and design calculations at least 30 days before the preconstruction meeting. Note name and NCDOT ID number of the panel or SRW unit production facility on working drawings. Do not begin MSE wall construction until a design submittal is accepted.

Use a prequalified MSE Segmental Wall Design Consultant to design MSE segmental walls. Provide MSE segmental wall designs sealed by a Design Engineer approved as a Geotechnical Engineer (key person) for the MSE Segmental Wall Design Consultant. Provide MSE panel wall designs sealed by a Design Engineer licensed in the state of North Carolina and employed or contracted by the MSE Wall Vendor.

Design MSE walls in accordance with the plans, *AASHTO LRFD Bridge Design Specifications* and any NCDOT restrictions for the chosen MSE wall system unless otherwise required. For abutment walls only, design MSE walls for seismic if wall sites meet either or both of the following:

- Wall site is in seismic zone 2 based on Figure 2-1 of the Structure Design Manual,
- Wall site is classified as AASHTO Site Class E, as noted in the plans, and is in or west of Pender, Duplin, Wayne, Johnston, Wake, Durham or Person County.

Connect reinforcement to panels or SRW units with methods or devices approved for the chosen system. Use a uniform reinforcement length throughout the height of the wall of at least 0.7H or 6 ft, whichever is longer, unless noted otherwise in the plans. Extend the reinforced zone at least 6" beyond end of reinforcement. Do not locate drains, the reinforced zone or leveling pads outside right-of-way or easement limits.

Use the simplified method for determining maximum reinforcement loads and design parameters approved for the chosen MSE wall system or default values in accordance with the AASHTO LRFD specifications. Design steel components including reinforcement and connectors for the design life noted in the plans and aggregate type in the reinforced zone. If an MSE wall system with geosynthetic reinforcement includes any steel parts for obstructions, bin walls, connections or other components, design steel exposed to aggregate for the design life noted in the plans and aggregate type in the reinforced zone. Use "loss of galvanizing" metal loss rates for nonaggressive backfill in accordance with the AASHTO LRFD specifications for galvanized and aluminized steel and metal loss rates for carbon steel in accordance with the following:

CARBON STEEL CORROSION RATES			
Aggregate TypeCarbon Steel Loss Rate(in reinforced zone)(after coating depletion)			
Coarse	0.47 mil/year		
Fine (except abutment walls)	0.58 mil/year		
Fine (abutment walls)	0.70 mil/year		

For PET or HDPE geogrid and geostrip reinforcement and geosynthetic connectors, use approved geosynthetic properties for the design life noted in the plans and aggregate type in the reinforced zone. For geogrid reinforcement connected to end bent caps, embed reinforcement or connectors in caps as shown in the plans. For PP geogrid reinforcement connected to end bent caps, use the following design parameters for the aggregate type in the reinforced approach fill.

PP GEOGRID REINFORCEMENT DESIGN PARAMETERS					
Aggregate Type (in reinforced zone)	T _{al} (MD)	F*	α	ρ	
Coarse	400 lb/ft	0.70	0.8	32.0°	
Fine	428 lb/ft	0.54	0.8	28.35°	

Where,

T_{al}	=	long-term design strength (LTDS),
F*	=	pullout resistance factor,
α	=	scale effect correction factor and
ρ	=	soil-geogrid friction angle.

When noted in the plans, design MSE walls for a live load (traffic) surcharge of 250 psf in accordance with Figure C11.5.6-3(b) of the AASHTO LRFD specifications. For steel beam guardrail with 8 ft posts or concrete barrier rail above MSE walls, analyze top 2 reinforcement layers for traffic impact loads in accordance with Section 7.2 of *FHWA Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes – Volume I* (Publication No. FHWA-NHI-10-024) except use the following for geosynthetic reinforcement rupture:

$$\phi \; T_{al} \; R_c \geq T_{max} + (T_I \, / \; RF_{CR})$$

Where,

φ	=	resistance factor for tensile resistance in accordance with Section 7.2.1 of the FHWA MSE wall manual,
T _{al}	=	long-term geosynthetic design strength approved for chosen MSE wall system,
R _c	=	reinforcement coverage ratio = 1 for continuous geosynthetic reinforcement,
T _{max}	=	factored static load in accordance with Section 7.2 of the FHWA MSE wall manual,
TI	=	factored impact load in accordance with Section 7.2 of the FHWA MSE wall manual and

 RF_{CR} = creep reduction factor approved for chosen MSE wall system.

When shown in the plans for abutment walls, use pile sleeves to segregate piles from aggregate in the reinforced zone. If existing or future obstructions such as foundations, guardrail, fence or handrail posts, moment slabs, pavements, pipes, inlets or utilities will interfere with reinforcement, maintain a clearance of at least 3" between obstructions and reinforcement unless otherwise approved. Design reinforcement for obstructions and locate reinforcement layers so all of reinforcement length is within 3" of corresponding connection elevations. Modify PET geogrid reinforcement for obstructions as shown in the plans.

Use 6" thick CIP unreinforced concrete leveling pads beneath panels and SRW units that are continuous at steps and extend at least 6" in front of and behind bottom row of panels or SRW units. Unless required otherwise in the plans, embed top of leveling pads in accordance with the following requirements:

WALL EMBEDMENT REQUIREMENTS					
Front Slope ¹ (H:V)	Minimum Embedment Depth ² (whichever is greater)				
6:1 or flatter (except abutment walls)	H/20	$1 \text{ ft for } H \leq 10 \text{ ft}$ $2 \text{ ft for } H > 10 \text{ ft}$			
6:1 or flatter (abutment walls)	H/10	2 ft			
> 6:1 to < 3:1	H/10	2 ft			
3:1 to 2:1	H/7	2 ft			

1. Front slope is as shown in the plans.

2. H is the maximum design height per wall.

When noted in the plans, locate a continuous aggregate shoulder drain along the base of the reinforced zone behind the aggregate. Provide wall drainage systems consisting of drains and outlet components in accordance with Roadway Standard Drawing No. 816.02.

For MSE panel walls, cover joints at back of panels with filtration geotextiles at least 12" wide. If the approval of the chosen MSE wall system does not require a minimum number of bearing pads, provide the number of pads in accordance with the following:

NUMBER OF BEARING PADS

Facing Area per Panel (A)	Maximum Height of Wall Above Horizontal Panel Joint	Minimum Number of Pads per Horizontal Panel Joint
$\Lambda < 20$ of	25 ft	2
$A \leq 30$ SI	35 ft ¹	3
$20 \text{ of } < \Lambda < 75 \text{ of}$	25 ft	3
$50 \text{ si} < \text{A} \le 75 \text{ si}$	35 ft ¹	4

1. Additional bearing pads per horizontal panel joint may be required for wall heights above joints greater than 35 ft.

For MSE segmental walls, coarse aggregate is required in any SRW unit core spaces and between and behind SRW units for a horizontal distance of at least 18".

Separation geotextiles are required between the aggregate and overlying fill sections. When noted in the plans, separation geotextiles are also required at the back of the reinforced zone between the aggregate and backfill or natural ground. When placing pavement sections directly on the reinforced zone, cap aggregate with 4" of asphalt concrete base course. Unless required otherwise in the plans, use reinforced concrete coping at top of walls that meets the following requirements:

- 1. Coping dimensions as shown in the plans,
- 2. At the Contractor's option, coping that is precast or CIP concrete for MSE panel walls unless CIP coping is required as shown in the plans,
- 3. CIP concrete coping for MSE segmental walls and
- 4. At the Contractor's option and when shown in the plans, CIP concrete coping that extends down back of panels or SRW units or connects to panels or SRW units with dowels.

For MSE segmental walls with dowels, attach dowels to top courses of SRW units in accordance with the following:

- 1. Set dowels in core spaces of SRW units filled with grout instead of coarse aggregate or
- 2. Embed adhesively anchored dowels in holes of solid SRW units with epoxy.

For MSE panel walls with coping, connect CIP concrete coping or leveling concrete for precast concrete coping to top row of panels with dowels cast into panels. When concrete barrier rail is required above MSE walls, use concrete barrier rail with moment slab as shown in the plans.

Submit working drawings and design calculations for acceptance in accordance with Article 105-2 of the *Standard Specifications*. Submit working drawings showing plan views, wall profiles with foundation pressures, typical sections with reinforcement and connection details, aggregate locations and types, geotextile locations and details of leveling pads, panels or SRW units, coping, bin walls, slip joints, pile sleeves, etc. If

necessary, include details on working drawings for concrete barrier rail with moment slab, reinforcement splices if allowed for the chosen MSE wall system, reinforcement connected to end bent caps, curved MSE walls with tight (short) radii and obstructions extending through walls or interfering with reinforcement, leveling pads, barriers or moment slabs. Submit design calculations for each wall section with different surcharge loads, geometry or material parameters. At least one analysis is required for each wall section with different reinforcement lengths. When designing MSE walls with computer software other than MSEW, use MSEW manufactured by ADAMA Engineering, Inc. to verify the design. At least one MSEW analysis is required per 100 ft of wall length with at least one analysis for the wall section with the longest reinforcement. Submit electronic MSEW input files and PDF output files with design calculations.

C. Preconstruction Meeting

Before starting MSE wall construction, hold a preconstruction meeting to discuss the construction and inspection of the MSE walls. If this meeting occurs before all MSE wall submittals have been accepted, additional preconstruction meetings may be required before beginning construction of MSE walls without accepted submittals. The Resident or Bridge Maintenance Engineer, Area Construction Engineer, Geotechnical Operations Engineer, Contractor and MSE Wall Installer Superintendent will attend preconstruction meetings.

4.0 CORROSION MONITORING

Corrosion monitoring is required for MSE walls with steel reinforcement. The Engineer will determine the number of monitoring locations and where to install the instrumentation. Contact M&T before beginning wall construction. M&T will provide the corrosion monitoring instrumentation kits and if necessary, assistance with installation.

5.0 SITE ASSISTANCE

Unless otherwise approved, an MSE Wall Vendor representative is required to assist and guide the MSE Wall Installer on-site for at least 8 hours when the first panels or SRW units and reinforcement layer are placed. If problems are encountered during construction, the Engineer may require the vendor representative to return to the site for a time period determined by the Engineer.

6.0 CONSTRUCTION METHODS

Control drainage during construction in the vicinity of MSE walls. Direct run off away from MSE walls, aggregate and backfill. Contain and maintain aggregate and backfill and protect material from erosion.

Excavate as necessary for MSE walls in accordance with the accepted submittals. If applicable and at the Contractor's option, use temporary shoring for wall construction instead of temporary slopes to construct MSE walls. Define "temporary shoring for wall construction" as temporary shoring not shown in the plans or required by the Engineer including shoring for OSHA reasons or the Contractor's convenience.
GT-1.10

Unless required otherwise in the plans, install foundations and if required, pile sleeves located in the reinforced zone before placing aggregate or reinforcement. Brace piles in the reinforced zone to maintain alignment when placing and compacting aggregate. Secure piles together with steel members near top of piles. Clamp members to piles instead of welding if bracing is at or below pile cut-off elevations.

Notify the Engineer when foundation excavation is complete. Do not place leveling pad concrete, aggregate or reinforcement until excavation dimensions and foundation material are approved.

Construct CIP concrete leveling pads at elevations and with dimensions shown in the accepted submittals and in accordance with Section 420 of the *Standard Specifications*. Cure leveling pads at least 24 hours before placing panels or SRW units.

Erect and support panels and stack SRW units so the final wall position is as shown in the accepted submittals. Stagger SRW units to create a running bond by centering SRW units over joints in the row below as shown in the accepted submittals. Space bearing pads in horizontal panel joints as shown in the accepted submittals and cover all panel joints with filtration geotextiles as shown in the accepted submittals. Attach filtration geotextiles to back of panels with adhesives, tapes or other approved methods.

Construct MSE walls with the following tolerances:

- A. SRW units are level from front to back and between units when checked with a 4 ft long level,
- B. Vertical joint widths are 1/4" maximum for SRW units and 3/4", $\pm 1/4$ " for panels,
- C. Final wall face is within 3/4" of horizontal and vertical alignment shown in the accepted submittals when measured along a 10 ft straightedge and
- D. Final wall plumbness (batter) is not negative (wall face leaning forward) and within 0.5° of vertical unless otherwise approved.

Place reinforcement at locations and elevations shown in the accepted submittals and within 3" of corresponding connection elevations. Install reinforcement with the direction shown in the accepted submittals. Before placing aggregate, pull geosynthetic reinforcement taut so it is in tension and free of kinks, folds, wrinkles or creases. Reinforcement may be spliced once per reinforcement length if shown in the accepted submittals. Use reinforcement pieces at least 6 ft long. Contact the Engineer when unanticipated existing or future obstructions such as foundations, guardrail, fence or handrail posts, pavements, pipes, inlets or utilities will interfere with reinforcement. To avoid obstructions, deflect, skew or modify reinforcement as shown in the accepted submittals.

Place aggregate in the reinforced zone in 8" to 10" thick lifts. Compact fine aggregate in accordance with Subarticle 235-3(C) of the *Standard Specifications*. Use only hand operated compaction equipment to compact aggregate within 3 ft of panels or SRW units. At a distance greater than 3 ft, compact aggregate with at least 4 passes of an 8 ton to 10 ton vibratory roller in a direction parallel to the wall face. Smooth wheeled or rubber tired rollers are also acceptable for compacting aggregate. Do not use sheepsfoot, grid rollers or other

GT-1.11

types of compaction equipment with feet. Do not displace or damage reinforcement when placing and compacting aggregate. End dumping directly on geosynthetics is not permitted. Do not operate heavy equipment on reinforcement until it is covered with at least 8" of aggregate. Replace any damaged reinforcement to the satisfaction of the Engineer.

Backfill for MSE walls outside the reinforced zone in accordance with Article 410-8 of the *Standard Specifications*. If a drain is required, install wall drainage systems as shown in the accepted submittals and in accordance with Section 816 of the *Standard Specifications*. If pile sleeves are required, fill sleeves with loose uncompacted sand before constructing end bent caps.

Install dowels as necessary for SRW units and place and construct coping and leveling concrete as shown in the accepted submittals. Construct leveling concrete in accordance with Section 420 of the *Standard Specifications*. Construct CIP concrete coping in accordance with Subarticle 452-4(B) of the *Standard Specifications*. When single faced precast concrete barrier is required in front of and against MSE walls, stop coping just above barrier so coping does not interfere with placing barrier up against wall faces. If the gap between a single faced barrier and wall face is wider than 2", fill gap with Class V select material (standard size No. 78M stone). Otherwise, fill gap with backer rod and seal joint between barrier and MSE wall with silicone sealant.

When separation geotextiles are required, overlap adjacent geotextiles at least 18" and hold geotextiles in place with wire staples or anchor pins as needed. Seal joints above and behind MSE walls between coping and concrete slope protection with silicone sealant.

7.0 MEASUREMENT AND PAYMENT

MSE Retaining Wall No. 1 through No. 3 will be measured and paid in square feet. MSE walls will be measured as the square feet of wall face area with the pay height equal to the difference between top of wall and top of leveling pad elevations. Define "top of wall" as top of coping or top of panels or SRW units for MSE walls without coping.

The contract unit price for *MSE Retaining Wall No. 1 through No. 3* will be full compensation for providing designs, submittals, labor, tools, equipment and MSE wall materials, excavating, hauling and removing excavated materials, placing and compacting aggregate and backfill material and supplying site assistance, leveling pads, panels, SRW units, reinforcement, aggregate, wall drainage systems, geotextiles, aggregate concrete base course, bearing pads, coping, miscellaneous components and any incidentals necessary to construct MSE walls. The contract unit price for *MSE Retaining Wall No. 1 through No. 3* will also be full compensation for reinforcement and connector design for reinforcement connected to end bent caps, wall modifications for obstructions, pile sleeves filled with sand, joints sealed with silicone sealant and gaps between barriers and MSE walls filled with backer rod or No. 78M stone, if required.

No separate payment will be made for temporary shoring for wall construction. Temporary shoring for wall construction will be incidental to the contract unit price for *MSE Retaining Wall No. 1 through No. 3*.

GT-1.12

The contract unit price for *MSE Retaining Wall No. 1 through No. 3* does not include the cost for ditches, fences, handrails, barrier, or guardrail associated with MSE walls as these items will be paid for elsewhere in the contract. The contract unit price for *MSE Retaining Wall No. 1 through No. 3* also does not include the cost for constructing bridge approach fills behind end bents with MSE abutment walls. See *Bridge Approach Fills* provision for measurement and payment of Type III Reinforced Bridge Approach Fills.

Where it is necessary to provide backfill material behind the reinforced zone from sources other than excavated areas or borrow sources used in connection with other work in the contract, payment for furnishing and hauling such backfill material will be paid as extra work in accordance with Article 104-7 of the *Standard Specifications*. Placing and compacting such backfill material is not considered extra work but is incidental to the work being performed.

Payment will be made under:

Pay Item MSE Retaining Wall No. 1 MSE Retaining Wall No. 2 MSE Retaining Wall No. 3

Pay Unit Square Foot Square Foot Square Foot

ARCHITECTURAL CONCRETE SURFACE TREATMENT SPECIAL PROVISIONS

GT-2.1

ARCHITECTURAL CONCRETE SURFACE TREATMENT

1.0 GENERAL

The work covered by this special provision consists of constructing textured surfaces on formed reinforced concrete surfaces as indicated on the Plans and in this Special Provision. The Contractor shall furnish all materials, labor, equipment, and incidentals necessary for the construction of architectural concrete surface treatment using simulated stone masonry form liners (molds) and a compatible concrete coloring system.

The architectural concrete surface treatment should match the appearance (stone size and shape, stone color, and stone texture, pattern, and relief) of natural stone and rock as directed by the Engineer. Grout pattern joints (mortar joints) and bed thickness should recreate the appearance and color of precast concrete surfaces as indicated in the Plans, this Special Provision, or as directed by the Engineer.

2.0 SUBMITTALS

Shop Drawings - Submit for review and acceptance, a PDF file for plan and elevation views and details showing overall simulated stone pattern, joint locations and end, edge or other special conditions. The drawings should include typical cross sections of applicable surfaces, joints, corners, stone relief, stone size, pitch/working line, mortar joint and bed depths. If necessary, revise the shop drawings until the proposed form liner patterns and arrangement have been accepted by the Engineer. The PDF file of shop drawings should be 22-inch x 34-inch in size and have enough resolution to show the details of all stone and joints patterns as well as overall appearance.

The form liner shall be patterned such that long continuous horizontal or vertical lines do not occur on the finished exposed surface. The line pattern shall be random in nature and shall minimize construction joint lines. The top of wall must have untreated, non-textured, and uncolored areas within the distance from the top of wall to the bottom of the coping.

Shop drawings shall be reviewed and accepted prior to fabrication of form liners.

Sample Panels – After the shop drawings have been reviewed and accepted by the Engineer, submit a precast sample panel to the project site. The sample panel shall be transportable and minimum 4 foot x 4 foot in size. The materials used in construction of the sample panel shall comply with section 420 of the Standard Specifications. The sample panel shall be constructed using approved form liners and color system/stains. The sample panel can be colored on the project site in accordance with this provision. Any sample panel that is not accepted by the Engineer is to be removed from the project site and a new sample panel produced at no additional expense to the Department.

After the color, texture, and uniformity of the furnished samples are approved, produce a full scale unit meeting the design requirements. This mock-up and the furnished samples establish the standard quality for determining the acceptance of the panels.

Architectural surface treatments and patterns of the finished work shall achieve the same final effect as demonstrated on the accepted sample panels. Upon acceptance by the Engineer, the sample panels shall be used as the quality standard for the project. After the acceptance of the completed structure, dispose of the sample panels as directed by the Engineer.

3.0 MATERIALS REQUIREMENTS

Form Liner – The form liner shall be a high quality, re-useable product manufactured of high strength urethane rubber or other approved material which attaches easily to the form work system, and shall not compress more than ¹/₄ inch when concrete is poured at a rate of 10 vertical feet per hour. The form liners shall be removable without causing deterioration of the surface or underlying concrete.

The architectural concrete surface treatment shall match the appearance (stone size and shape, stone texture, pattern, relief and joint) of natural stone to resemble an ashlar stone pattern or approved equal. All texture shall be in addition to the nominal thickness of the wall panels of four inches $\pm \frac{1}{4}$ inch. The maximum relief of the textured surface shall be 1.5 inch or less. The top 1'-0" of the top panel within each sound barrier wall segment shall have a smooth, non-textured and non-stained finish to resemble faux coping. For information purposes only, sources of form liners in the ashlar stone pattern include, but are not limited to:

Custom Rock Formliner 2020 West 7th Street St. Paul, MN 55116 http://www.customrock.com Pattern: Ashlar Stone # 12021

Architectural Polymers, Inc. 1220 Little Gap Road Palmerton, PA 18071 http://www.apformliner.com/ Pattern: Ashlar Stone #904

Fitzgerald Form Liners 1500 East Chestnut Avenue Santa Ana, CA 92701 http://formliners.com/ Pattern: Georgia Ashlar # 16999

The contractor has the option of supplying an alternative pattern of simulated stone form liner, as long as the pattern selected is approved, in writing, as an equal or approved alternative by the Engineer.

Form Release Agent – Form release agent shall be a non-staining petroleum distillate free from water, asphaltic, and other insoluble residue, or an equivalent product. Form release agents shall be compatible with the color system applied and any special surface finish.

Concrete color system/stain – The final coloration of the wall is to match the Grey Palette Color # FS 36270 found in the *Federal Standard 595B* - *Colors Used in Government Procurement*. Stain the sample panel using the proposed colors and the approved sample panel shall be the basis for determining the appropriate color/stain application.

The concrete color stains shall create a surface finish that is breathable (allowing water vapor transmission), and that resists deterioration from water, acid, alkali, fungi, sunlight, or weathering. Stain mix shall meet the requirements for mildew resistance of Federal Test Method Standard 144, Method 6271, and requirements for weathering resistance of 1,000 hours accelerated exposure measures by Weatherometer in accordance with ASTM G 26. Color samples must be submitted for approval.

Anti-Graffiti Coating Application – Apply the anti-graffiti coating that is compatible with the concrete color system/stain. After application, the anti-graffiti coating shall be dry to touch within one hour and shall achieve a final cure within three hours. The color of the anti-graffiti shall be clear after full cure. The contractor shall provide one gallon of graffiti remover, thinners, dryers and all necessary components recommended by the manufacturer to the North Carolina Department of Transportation Materials and Test Unit, Chemical Testing Engineer.

Quality Standards - Manufacturer of simulated stone masonry form liners and custom coloring system shall have at least five years of experience making stone masonry molds and color stains to create formed concrete surfaces to match natural stone shapes, surface textures and colors.

After the Engineer has reviewed and approved the shop drawings, schedule a preconstruction conference with manufacturer representative and the Engineer to assure understanding of simulated stone masonry form liner use, color application, requirements for construction of sample panels, and to coordinate the work. Disclose the source of simulated stone masonry manufacturer and final coloration contractor at the Preconstruction Conference.

4.0 CONSTRUCTION METHODS

Form Liner Preparation – Before each concrete pour, the form liners shall be clean and free of build-up. Each liner shall be visually inspected for blemishes and tears. Repairs shall be made in accordance with the manufacturer's recommendations. Repairs shall be accepted by the Engineer before being used. Form liner panels that do not perform as intended or are no longer repairable shall be replaced. Use a technical representative from the form liner manufacturer for technical supervision during the installation and removal of form liners.

Form Release Agent – Form release agent shall be applied in accordance with the manufacturer's recommendations. The material shall be compatible with the form liner material and the concrete coloring system and in accordance with this Special Provision. Form release agent should be worked into all areas, especially pattern recesses.

Patching – All form tie holes and other defects in finished uncolored surface shall be filled or repaired within 48 hours of form removal. Use patching materials and procedures in accordance with the manufacturer's recommendations.

Surface Finish – All surfaces that are to receive coloring agent application shall be free of all laitance, dirt, dust, grease, efflorescence, paint or any other foreign material prior to the application of coloring agent. Pressure washing with water is the preferred method of removing laitances. Sandblasting will not be permitted.

Final surface shall be free of blemishes, discolorations, surface voids, and other irregularities. All patterns should be continuous without visual disruption.

Reinforced concrete shall be finished in accordance with the Standard Specifications, except that curing of concrete should be done to accommodate the application of coloring and surface finish treatment.

Grout Pattern Joints – Grout pattern joints shall be constructed to simulate the appearance of mortared joints produced in laid up masonry work. Grout pattern joints shall be produced in accordance with the form liner / concrete color system manufacturer.

Color/Stain Application – Maintain the concrete temperature between $40^{\circ}F$ and $85^{\circ}F$ during color/stain application and for 48 hours after color/stain application. Consult the manufacturer's recommendations for preparation, application, curing, and storage of coloring agents/stains. Treated surfaces located adjacent to exposed soil or pavement shall be temporarily covered to prevent dirt or soil splatter from rain.

Anti-Graffiti Coating Application – The anti-graffiti coating shall be applied by brush, roller or airless spray when the ambient temperature is between 40°F and 90°F, and the surface temperature is between 50° F and 100° F. Ensure the surface is clean and dry before applying the anti-graffiti coating. The minimum dry film thickness of the anti-graffiti coating shall be 2.0 mils.

Following the completion of all work, repairs of any damage made by other construction operations shall be made to the form lined and colored surfaces as directed by the Engineer.

Experience and Qualifications - The Contractor shall have a minimum of three consecutive years of experience in architectural concrete surface treatment construction on similar types of projects. A minimum of 10 days prior to the submission of shop drawings, furnish to the Engineer 5 references who were responsible for supervision of similar projects and will testify to the successful completion of these projects. Include name, address, telephone number, and specific type of application.

5.0 MEASUREMENT AND PAYMENT

The quantity of architectural concrete surface treatment to be paid for will be the actual number of square feet of architectural concrete surface treatment that has been incorporated into the completed and accepted work.

The area of architectural concrete surface treatment will be measured by the area of front facing in-place treated concrete. Do not include the top surfaces and the end wall surfaces in the measurement. Area of sample panels shall not be included in the measurement of architectural concrete surface treatment.

6.0 **BASIS OF PAYMENT**

Architectural concrete surface treatment as described on the plans and in this Special Provision will be paid for at the contract unit price bid for "Architectural Concrete Surface Treatment". The above price and payment will be full compensation for all work covered by this Special Provision, the plans and applicable parts of the Standard Specifications and shall include, but not be limited to, furnishing all labor, materials, equipment, and other incidentals, including sample panels, necessary to complete this work.

Payment will be made under:

Pay Item Architectural Concrete Surface Treatment **Pay Unit** Square Foot

PROVIDED INFORMATION

RETAINING WALL ENVELOPES SITE PLAN

MSE WALL CALCULATIONS FOR RETAINING WALL NO. 1

CALCULATIONS SUMMARY CROSS SECTION INVENTORY MSE WALL EXTERNAL STABILITY SPREADSHEETS GLOBAL SLOPE STABILITY – SLOPE/W RESULTS SETTLEMENT ANALYSIS SPREADSHEET

U-4015 A: RW 1 - MSE WALL

	Input Data from Wall Envelope								Assum	ptions Use	ed for Calcu	lations								
		Proposed	Proposed	Wall	Min.	Top of the	Design	Design		Design	Backslope	Backslope	Traffic	MSE Wall	Fo	oundati Materia	on al	Back	fill Ma	terial
STATION	Point	Finished Grade (Bottom)	Finished Grade (Top)	Height (ft)	Embedment (ft)	Leveling Pad EL	Height (H) (ft)	Section	LOCATION	Height (H) (ft)	Ratio	Length (ft)	Load (psf)	Туре	ф (deg.)	C (psf)	γ (pcf)	ф (deg.)	C (psf)	γ (pcf)
-L- 27+25	1	804.9	804.9	0.0	2.0	802.9	2.0													
-L- 27+50	2	807.6	811.8	4.3	2.0	805.6	6.3													
-L- 28+00	3	809.8	813.4	3.6	2.0	807.8	5.6	1	POINT 1	0.0			240.0		20		120	20		120
-L- 28+50	4	808.4	815.0	6.7	2.0	806.4	8.7		то	TO 6	то 6	-	-	240.0 A		28		120	50	
-L- 29+00	5	811.2	817.0	5.7	2.0	809.2	7.7													
-L- 29+50	6	817.8	818.2	0.5	2.0	815.8	2.5													

Wall Height (h) (ft) = Top of the Wall EL - Bottom of the Wall EL Min. Embedment (ft) = h/7 or , 2-ft, whichever is greater

wint. Embedment (it) = h/ or , 2-h, whichever is greater

Top of the Leveling Pad EL = Bottom of the Wall EL - Min. Embedment (ft) Design Height (H) (ft) = Top of the Wall EL - Top of the Leveling Pad EL **MSE Wall Type in External Stability Analysis (See NCDOT Spreadsheet):

A) MSE Wall with Level Backslope

B) MSE Wall with Broken Backslope

C) MSE Wall with Infinite Backslope

D) MSE Wall with Bridge Abutment with Pile Foundation

Calculations Results								
			External stability ⁽¹⁾	Global Sta				
Design	Design		Stran Length = H x		Factor of	Global		
Section	Height	ght Reinforcement	Reinforcement Ratio	Bearing	Undrained,	Drained,	Stability Controls	
	(11) (10)	Length Katio	(ft)	Plessure (KSI)	Short Term	Long Term		
					Condition	Condition		
1	9.0	0.8H	7.2	2.5	1.81	1.43	No	

Notes:

1- See external stability calculations based on NCDOT MSE Wall External Stability Spreadsheet

2-See Global Stability calculations based on SLOPE/W analyses. Global Stability was checked for both short-term condition (using undrained strength properties of CLAY) and long-term condition (using drained strength properties of CLAY).

3-The total settlement of the RW No. 1 is anticipated to be 0.5 - inches.

50	100	PROJECT REFE	ERENCE NO.	SHEET NO.
FEET	r	U-401	5A	4
VE =	5	PROF	TILE ALONG -	-L-
				1
%				850
ORGAN	VIC			1
ND				845
ND			· · · · · · · · · · · · · · · · · · ·	
1 1 1				940
 , ,				
1 1 1				
		·		835
				830
			·	825
				1
VVALL)	· · · · · · · · · · · · · · · · · · ·	י יין יין יין יין יין יין יין יין יין י	· · · · · · · · · · · · · · · · · · ·	820
f Leveli	ng	, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	815
1				
1				810
	1	PROPOSED	BOTTON	A
NO.	STATION		OF WAL	L 805
1	27 25 00	GRADE (TOP)	904.95/	
ו ר	27 + 25.00	811 9 <i>4</i> /	004.05 207.57	800
2	27 + 30.00 28 ± 00.00	813 /1/	809.76	
4	28 + 50.00	815.04'	808.37	705
5	29+00.00	816.98'	811.24'	
6	29 + 50.00	818.24′	817.75'	
				790
1				
				785
ic Cla	Y and silty	/		780
				1
CK :		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	775
				1
e rock	· · · · · · · · · · · · · · · · · · ·			
		RKX		
, , , , , , , , , , , , , , , , , , ,		P: (919) 878-9560 8601 Six Forks Road, Foru	m 1, Su i te. 700	
1		Raleigh, North Carolina 276 NC License No. F-0112	315-3960	
		Engineers Construction M	anagers Planners	Scientists
		www.rkk.com Responsive People I Creati	ve Solutions	
31 + 00		32 + 00		

RETAINING WALL NO. 1 MSE WALL EXTERNAL STABILITY SPREADSHEETS

NORTH CAROLINA DEPARTMENT PROJECT:	U-4015A	COUNTY Guilford
OF TRANSPORTATION DESCRIPTION:	RW 1 - De:	sign Section 2- Drained Analysis
GEOTECHNICAL ENGINEERING UNIIDESIGNED BY: SK	DATE: 07/1	4/21 STATION: 27+25 -L-
MSE Wall External Stability Spreadsheet CHECKED BY: MM	DATE: 07/2	21/21 STR. NO.: <u>1</u> PAGE: <u>1</u> OF <u>8</u>
MSE Wall External Stability Spreadsheet CHECKED BY: MMMSE Wall External Stability Spreadsheet CHECKED BY: MMMSE Wall Type (See Figures on right)MSE Wall with Level Backslope and Traffic SurchargTraffic Surcharge and Wall Geometry $q = 240$ psflive load traffic surcharge (AASHTO Tables 3.11.6.4-1 & 2) $H = 9.00$ ftwall design height $L/H = 0.800$ ftvall design height $L = 7.2$ ftratio of reinforcement length to wall height $L = 7.2$ ftreinforcement length (L = H x L/H) $(L/H \ge 0.7 \text{ and } L \ge 6 \text{ ft per NCDOT MSE Wall Provision})$ $s = 1.00$ ftdistance from bottom of wall to lowest reinforcement layerSlope = N/A: 1 (H _{slope} : V _{Slope}) $d = N/A$ ftdistance from back of wall face to top of backslope $z = N/A$ ftheight of soil behind cap for MSE abutment wall		$\begin{array}{c c} \mathbf{q} \\ \hline \\ \mathbf{Reinforced Soil Mass} \\ \mathbf{\phi}_{1}, \gamma_{1}, \mu_{1} \\ \hline \\ \mathbf{s} \\ \hline \\ \mathbf{Foundation Material} \\ \hline \\ \mathbf{\phi}_{1}, \gamma_{1}, \mathbf{c}_{1}, \mu_{1} \\ \hline \\ \mathbf{with Level Backslope and Traffic Surcharge} \\ \hline \\ \hline \\ \mathbf{Reinforced Soil Mass} \\ \hline \\ \mathbf{\phi}_{1}, \gamma_{1}, \mu_{1} \\ \hline \\ \mathbf{w} \\ \hline \\ \mathbf{Reinforced Soil Mass} \\ \hline \\ \mathbf{\phi}_{1}, \gamma_{1}, \mu_{1} \\ \hline \\ \hline \\ \mathbf{Reinforced Soil Mass} \\ \hline \\ \mathbf{\phi}_{1}, \gamma_{1}, \mu_{1} \\ \hline \\ \hline \\ \mathbf{Reinforced Soil Mass} \\ \hline \\ \hline \\ \mathbf{\phi}_{1}, \gamma_{1}, \mu_{1} \\ \hline \\ \hline \\ \hline \\ \mathbf{Reinforced Soil Mass} \\ \hline \\ \hline \\ \mathbf{\phi}_{1}, \gamma_{1}, \mu_{1} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \mathbf{Reinforced Soil Mass} \\ \hline \\ \hline \\ \hline \\ \hline \\ \mathbf{H}_{slope} \\ \hline \\ $
$w = \frac{N/A}{h} ft$ distance from back of wall face to back of cap h = N/A ft height of wall & slope at the back of reinforced zone	^h н	L Retained Backfill φ _b , γ _b , K _{a_b}
Soli Parameters for Reinforced Zone		Foundation Material
Type of aggregate used: Coarse Sine		$\mathbf{\nabla} \qquad \qquad$
$ \phi_r = \begin{array}{c} 34 \\ \gamma_r = \end{array} \begin{array}{c} 115 \\ pcf \end{array} \qquad \begin{array}{c} \textit{friction angle (38 deg for coarse, 34 deg for fine)} \\ \textit{unit weight (110 psf for coarse, 115 psf for fine)} \end{array} $	4	MSE Wall with Infinite Backslope d V _{Slope}
Soil Parameters for Retained Backfill		
$\phi_{b} = \begin{array}{c} 30 \\ \gamma_{b} = \end{array} \begin{array}{c} 30 \\ pcf \end{array} \qquad $	ћ Н	keinnorceo soli wass φ ₁ , γ ₁ , μ L Retained Backfill φ _b , γ _b , K _{a_b}
$\phi_{\rm f} = 28$ deg friction angle	<u> </u>	
$\gamma_{\rm f} = 120 {\rm pcf}$ unit weight	₽w	Foundation Material Φ _f , γ _f , C _f , μ _f
$c_f = 0$ psf undrained shear strength of the foundation material	!	MSE Wall with Broken Backslope
$D_w = 7.50$ ft distance of water table below bottom of the wall		<u> </u>
Load Factors (AASHTO Table 3.4.1-1 and 2)	↓ _ ↓	
$\Psi_{LS} = \boxed{1.75}$ $\Psi_{EH(A)} = \boxed{1.50}$ $\Psi_{EV} = \boxed{1.00}$ min $wertical \ dead \ load \ generated \ from \ earth \ fill$ Resistance Factors (AASHTO Table 11.5.7-1)	H h	Reinforced Soil Mass ψ ₁ , γ ₁ , μ ₂ L Retained Backfill φ _b , γ _b , K _{a_b}
(n 0.65) hearing resistance for MSE walls	Þ _w Í	Foundation Material
$\psi_b = 0.00$ bearing resistance for MSE walls		Φf, γf, Cf, μf
φ_{t} = 1.00 sliding resistance for MSE walls	MSE W (MS	all Bridge Abutment with Pile Foundation

DISCLAIMER: The application of this spreadsheet is the responsibility of the user. It is imperative that the user understands the potential accuracy limitations and examines the reasonableness of the results with engineering knowledge and experience. Thereare no expressed or implied warrantie

NORTH CAROLINA DEPARTMEN	T PROJECT:		U-4015	A	COUNTY		Guilford	
OF TRANSPORTATION	DESCRIPTION:		RW 1	- Design Se	ection 2- Dra	ined	Analysis	
GEOTECHNICAL ENGINEERING UNIT	DESIGNED BY:	SK	DATE:	07/14/21	STATION:		27+25 -L-	
MSE Wall External Stability Spreadsheet	CHECKED BY:	MM	DATE:	07/21/21	STR. NO.:	1	PAGE: 2 0	OF 8
	-		-					

Summary of External Stability Analysis - MSE Wall with Level Backslope and Traffic Surcharge

(Geometry of Reinforced Soil Mass	
	H = wall height	9.00 ft
	L/H = ratio of reinforcement length to wall height (must be greater than or equal to 0.700)	0.800
	L = reinforcement length (must be greater than or equal to 6 ft)	7.20 ft

Forces Acting on Wall - Vertical Direction

V _{1(LLR)} = vertical force from reinforced soil mass acting at the lowest level of reinforcement	6,624 lbs
V _{1(BW)} = vertical force from reinforced soil mass acting at the base of the wall	7,452 lbs
V ₂ = vertical force from the retained fill above the reinforced soil mass	0 lbs
F _{V(LLR)} = vertical force generated from lateral earth pressure at the lowest level of reinforcement	0 lbs
$F_{V(BW)}$ = vertical force generated from lateral earth pressure at the base of the wall	0 lbs

Forces Acting on Wall - Horizontal Direction

F _{H(LLR)} = horizontal force generated from lateral earth pressure at the lowest level of reinforcement	1,279 lbs
F _{H(BW)} = horizontal force generated from lateral earth pressure at the base of the wall	1,618 lbs
F _{2(LLR)} = horizontal force generated from traffic surcharge, acting at the lowest level of reinforcement	639 lbs
$F_{2(BW)}$ = horizontal force generated from traffic surcharge, acting at the base of the wall	719 lbs
F _P = total horizontal force acting on the back of the MSE wall (wall contact pressure under service loads)	2,337 lbs

Sliding Stability - at the interface between the soil and reinforcement for the lowest reinforcement layer

R _{R(LLR)} = sliding resistance at the interface between the soil and reinforcement for the lowest reinforcement layer	3,577 lbs		
$P_{d(LLR)}$ = horizontal driving force at the interface between the soil and reinforcement for the lowest reinforcement layer			
R _{R(LLR)} must be greater than or equal to P _{d(LLR)}	OK		

Sliding Stability - at the base of the bottom of the wall facing

R _{R(BW)} = sliding resistance at the base of the bottom of the wall facing	3,964 lbs
$P_{d(BW)}$ = horizontal driving force at the base of the bottom of the wall facing	3,686 lbs
R _{R(BW)} must be greater than or equal to P _{d(BW)}	OK

Overturning / Limiting Eccentricity

e = eccentricity	1.74 ft
L/3	2.40 ft
e must be less than or equal to L / 3	ОК

Bearing Resistance - General Shear

q _r = factored bearing resistance	2,720 lbs
q _{uniform} = factored bearing pressure at the base of the wall	2,507 lbs
q _R must be greater than or equal to q _{uniform}	OK

Bearing Resistance - Local / Punching Shear (only applicable to soils with cohesion)

q _r = reduced factored bearing resistance	N/A
q _{uniform} = factored bearing pressure at the base of the wall	N/A
q _R must be greater than or equal to q _{uniform}	N/A

$$\frac{1}{\Gamma\left[\sin^2\theta\sin(\theta-\delta)\right]} \quad \text{where} \quad \left[1 + \sqrt{\sin(\theta-\delta)}\right]$$

 $\phi_f = \phi_b$

 δ = friction angle between fill and wall = β per AASHTO Article 11.10.5.2

 β = inclination angle of backslope = 0 for level backslope

 θ = angle of back face of wall to the horizontal = 0 degrees for vertical wall face

φ _b	δ	β	K _{a_b}
(deg)	(deg)	(deg)	(lbs)
120	0	0	0.333

	NORTH CAROLINA	DEPARTM	ENT I	PROJECT	:	U-4015	БА	COUNTY	Guilford		
	OF TRANSPORTATIO	NC	DESC	CRIPTION	l:	RW 2	RW 1 - Design Section 2- Drained Analysis				
	GEOTECHNICAL ENGIN	NEERING U	NITDESI	GNED BY	': SK	DATE:	07/14/21	STATION:	27+25 -L-		
	MSE Wall External Stability	/ Spreadshe	et CHE	CKED BY	': MM	DATE:	07/21/21	STR. NO.: 1	_ PAGE: <u>4</u> OF <u>8</u>		
Forces	Acting on Wall - contin	ued									
Forces G	enerated from Lateral (Activ	ve) Earth Pr	essure -	continued	<u>I</u>						
$F_{1(LLR)} = t_0$	otal force generated from la or the lowest reinforcement $(5/2^{1})(H-s)^{2}(K-1)$	iteral earth r layer	pressure,	, acting at	the interf	ace betwo	een the soil	and reinforceme	nt Fan 4-5 (modified)		
_ 0	, o(1 _b)(11 o) (1(a_b)						,				
$F_{1(BW)} = t$	otal force generated from la	ateral earth p	pressure,	, acting at	the base	of the bo	ttom of the	wall facing			
= 0).5(γ _b)(H ²)(K _{a_b})							FHWA	GEC 011 Eqn. 4-5		
		γ' _b (psf)	H (ft)	s (ft)	K _{a_b}	F _{1(LLR)} (Ibs)	F _{1(BW)} (lbs)				
		120	9.00	1.00	0.333	1,279	1,618				
<u>Horizonta</u>	I Forces Generated from T	raffic Surcha	arge								
$F_{2(LLR)} = te$	otal horizontal force genera	ted from tra	ffic surch	narge, acti	ng at the	interface	between the	e soil and reinfor	cement		
f	or the lowest reinforcement	layer									
= (q)(H -s)(K _{a_b})						F	HWA GEC 011	Eqn. 4-6 (modified)		
$F_{2(BW)} = t_0$	otal horizontal force genera	ted from tra	ffic surch	narge, acti	ng at the	base of th	ne bottom o	f the wall facing			
= (q)(H)(K _{a_b})			large, act				FHWA	GEC 011 Eqn. 4-6		
		q (psf)	H (ft)	s (ft)	K _{a_b}	F _{2(LLR)} (lbs)) F _{2(BW)} (lbs)				
		240	9.00	1.00	0.333	639	719				
Wall Con	tact Pressure Under Servic	e Loads									
The wall o	contact pressure under serv	/ice loads is	equal to	the total	horizontal	force act	ina on the b	ack of the wall			
Wall Con	tact Prossure E - E	E					0				
wall CON	$ a_{\text{CL}} - a_{\text{CL}} = a_{\text{CL}} + a_{\text{CL}} = $	2(BW)									
			F _{1(BW)} (lbs)	F _{2(BW)} (lbs)	F _P (lbs)						

1,618

719

2,337

Sliding Stability at the Interface between the Soil and Reinforcement for the Lowest Reinforcement Layer

R_{R(LLR)} = sliding resistance at the interface between the soil and reinforcement for the lowest reinforcement layer

 $= \phi R_N = \phi_\tau R_{\tau(LLR)}$

R_{t(LLR)} = nominal sliding resistance at the interface between the soil and reinforcement for the lowest reinforcement layer

 $= \Psi_{\rm EV}(V_{1(\rm LLR)})\mu_{\rm (LLR)}$

 $\mu_{(LLR)}$ = coefficient of friction at interface between the soil and reinforcement for the lowest AASHTO 11.10.5.3 reinforcement layer

Because the type of reinforcement, continous (e.g., grids) or discontinous (e.g, strips), is not determined at the time of the analysis, the coefficent of friction is taken as the lesser of ϕ_r and ρ , where ρ is the soil-reinforcement interface friction angle. The value of ρ is taken as the lowest value for all NCDOT approved MSE wall geogrids based on the use of either fine or coarse aggregate in the reinforced zone.

All other variables have previously been defined

φ _t	$\Psi_{\text{EV}}{}^{\star}$	V _{1(LLR)} (lbs)	φ _r (deg)	ρ (deg)	$\mu_{(LLR)}$	R _{τ(LLR)} (Ibs)	R _{R(LLR)} (Ibs)
1.00	1.00	6,624	34.00	28.35	0.540	3,577	3,577

*Note - Use minimum value of Ψ_{EV} for sliding resistance per FHWA GEC 011 4.4.6.a, AASHTO C3.4.1, and AASHTO C11.5.5

P_{d(LLR)} = horizontal driving force at the interface between the soil and reinforcement for the lowest reinforcement layer

 $= (\Psi_{\text{EHA}})(\mathsf{F}_{1(\text{LLR})}) + (\Psi_{\text{LS}})(\mathsf{F}_{2(\text{LLR})})$

Ψ_{EHA}	F _{1(LLR)} (Ibs)	Ψ_{LS}	F _{2(LLR)} (lbs)	P _{d(LLR)} (lbs)
1.50	639	1.75	1,279	3,037

FHWA GEC 011 Eqn. 4-9

AASHTO Eqn. 10.6.3.4-1

FHWA GEC 011 Eqn. 4-12

NORTH CAROLINA DEPARTMEN	IT PROJECT:		U-4015	A	COUNTY	Guilford	
OF TRANSPORTATION	DESCRIPTION:		RW 1	- Design S	ection 2- Draii	ned Analysis	
GEOTECHNICAL ENGINEERING UNIT	DESIGNED BY:	SK	DATE:	07/14/21	STATION:	27+25 -L-	
MSE Wall External Stability Spreadsheet	CHECKED BY:	MM	DATE:	07/21/21	STR. NO.:	1 PAGE: 6 C)F 8

Sliding Stability and Eccentricity (Overturning) - continued

Sliding Stability at the Interface between the Soil and Reinforcement for the Lowest Reinforcement Layer - continued

 $R_{R(LLR)}$ must be greater than or equal to $P_{d(LLR)}$

R _{R(LLR)} (lbs)	P _{d(LLR)} (lbs)	$R_{R(LLR)} \ge P_{d(LLR)}$
3,577	3,037	ок

Sliding Resistance at the Base of the Bottom of the Wall Facing

 $R_{R(BW)}$ = sliding resistance at the base of the bottom of the wall facing

$$= \phi R_N = \phi_\tau R_{\tau(BW)}$$

 $R_{t(BW)}$ = nominal sliding resistance at the base of the bottom of the wall facing

 $= \Psi_{EV}(V_{1(BW)})\mu_{(BW)} + (c_f)(L)$

FHWA GEC 011 Eqn. 4-12 and AASHTO 10.6.3.4

 $\mu_{(BW)}$ = coefficient of friction at the base of the bottom of the wall facing

If the lowest reinforcement layer is above the bottom of the wall facing, to check sliding at the base of the wall, the friction angle of the foundation soil, ϕ_f , or reinforced fill soil, ϕ_f , whichever is less, shall be used to assess sliding resistance.

All other variables have previously been defined

φ _t	$\Psi_{\text{EV}}^{} \star$	V _{1(BW)} (Ibs)	φ _r (deg)	$\mu_{(BW)}$	c _f (psf)	L (ft)	R _{τ(BW)} (lbs)	R _{R(BW)} (lbs)
1.00	1.00	7,452	34.00	0.532	0	7.20	3,964	3,964

*Note - Use minimum value of Ψ_{EV} for sliding resistance per FHWA GEC 011 4.4.6.a, AASHTO C3.4.1, and AASHTO C11.5.5

 $P_{d(BW)}$ = horizontal driving force at the base of the bottom of the wall facing

 $= (\Psi_{EHA})(F_{1(BW)}) + (\Psi_{LS})(F_{2(BW)})$

FHWA GEC 011 Eqn. 4-9

AASHTO Eqn. 10.6.3.4-1

AASHTO 11.10.5.3

Ψ_{EHA}	F _{1(BW)} (Ibs)	Ψ_{LS}	F _{2(BW)} (lbs)	P _{d(BW)} (Ibs)
1.50	719	1.75	1,618	3,686

 $R_{R(BW)}$ must be greater than or equal to $P_{d(BW)}$

R _{R(BW)} (Ibs)	P _{d(BW)} (lbs)	$R_{R(BW)} \geq P_{d(BW)}$
3,964	3,686	ОК

Eccentricity (Overturning)

 $e = \frac{\Psi_{EHA}F_{1(BW)}(H/3) + \Psi_{LS}F_{2(BW)}(H/2)}{\Psi_{EV}V_{1(BW)}} \text{ must be } \leq L / 3$

FHWA GEC 011 Eqn. 4-15 and AASHTO 10.6.3.3

Ψ_{EHA}	F _{1(BW)} (Ibs)	H/3 (ft)	Ψ_{LS}	F _{2(BW)} (Ibs)	H/2 (ft)	$\Psi_{\text{EV}}{}^{*}$	V _{1(BW)} (lbs)	e (ft)	L/3 (ft)	e ≤ L/3
1.50	1,618	3.00	1.75	719	4.50	1.00	7,452	1.74	2.40	ок

*Note - Use minimum value of Ψ_{EV} for eccentricity per FHWA GEC 011 4.4.6.b, AASHTO C3.4.1, and AASHTO C11.5.5

NORTH CARC	LINA DEP	ARTMEN	IT PRO	DJECT:	ι	J-4015A		COUNTY		Guilfe	ord	
OF TRANSPO	RTATION		DESCRI	PTION:		RW 1 - D	esign Se	ction 2- Dra	ained An	alysis		
GEOTECHNICA		RING UNI	DESIGN	ED BY:	SK D	DATE: 07	/14/21	STATION:		27+25	5 -L-	
MSE Wall Externa	Stability Spr	eadsheet	CHECK	ED BY:	MM C	DATE: 07	/21/21	STR. NO.:	1 P.	AGE:	8 OF	- 8
Bearing Resistance - co	ntinued		. ()									_
Bearing Resistance for Gene	rai Snear Fa	allure - cor	itinuea									
$q_{uniform} = \sigma_{V-F} = factored bea$	ring pressur	e at the ba	ase of the	wall								
$=\frac{\Psi_{\rm EV}V_{1(\rm BW)}+\Psi_{\rm L}}{\rm L-2e_{\rm B}}$	_s qL							FHN	/A GEC	011 E	qn. 4-2	20
	NT(*	V _{1(BW)})II/	q	L	e _B	q _{uniform}					
	TEV	(lbs)	TLS	(psf)	(ft)	(ft)	(psf)					
	1.35	7,452	1.75	240	7.20	0.99	2,507					
*Note - Use the n	aximum va	lue of $\Psi_{E^{\backslash}}$, per FHV	VA GEC 0)11 4.4.6.	c, AASHT	O C3.4.1	, and AASH	ITO C1	1.5.5		
q _R must be greater than or e	qual to q _{unifor}	m						FHW	/A GEC	011 E	qn. 4-1	17
		c (n	Ar q _{ur}	niform (sf)	q _r ≥ q _{uni}	form						

Bearing Resistance for Local Shear Failure

Local and Punching shear failure occurs in loose or compressible soils and in weak soils under slow (drained) loading. This mode of failure will only be considered for foundation material that is cohesive.

To prevent Local/Punching Shear on weak cohesive soils, $(\gamma_r)(H) \leq 3c_f$

FHWA GEC 011 Eqn. 4-24

The foundation material for this project is not cohesive

RETAINING WALL NO. 1 GLOBAL SLOPE STABILITY – SLOPE/W RESULTS

RETAINING WALL NO. 1 SETTLEMENT ANALYSIS SPREADSHEET

	NORTH CAROLINA DEPARTME	U-4015A			COUNTY	Guilford	
	OF TRANSPORTATION	DESCRIPTION:	SR	1556 (Ga	ning in Greensboro		
TTZ	GEOTECHNICAL ENGINEERING U	DESIGNED BY:	SK	DATE:	07/14/21	STATION:	-L-28+50
	Settlement Calcs for Spread Footings	CHECKED BY:	MM	DATE:	<u>07/21/21</u>	STR. NO.:	W-1 PAGE: 1 OF 3

Settlement Calculations for Spread Footings (Schmertmann Method)

Loading Information

Gross bearing pressure, $p = q = \frac{2.5 \text{ ksf}}{2.5 \text{ ksf}}$ Time passed since loading applied, t = 0.1 years

Unit Weight Information

Unit Weight of Concrete, $\gamma_c = 0.150 \text{ kcf}$ Unit Weight of Water, $\gamma_w = 0.0624 \text{ kcf}$ Unit Weight of Overburden Soil, $\gamma_s = 0.120 \text{ kcf}$

Elevations and Footing Dimensions

Finished Grade Elevation = $\frac{808.2 \text{ ft}}{808.2 \text{ ft}}$ Natural Ground Elevation = $\frac{808.2 \text{ ft}}{808.2 \text{ ft}}$ Top of Footing Elevation = $\frac{808.2 \text{ ft}}{806.2 \text{ ft}}$ Bottom of Footing Elevation = $\frac{806.2 \text{ ft}}{796.7 \text{ ft}}$

> Footing Thickness, $t_f = 2.0 \text{ ft}$ Width of Footing, $B_f = 7.0 \text{ ft}$ Length of Footing, $L_f = 20.0 \text{ ft}$ $L_f / B_f = 2.86$

Taken as the longer dimension of the footing Footing Shape = Rectangle

Footing Embedment Depth,
$$D_f = 2.0 \text{ ft}$$

Maximum depth of influence below footing base (D_I) = $\underline{4.2 \text{ ft}}$ Depth from footing base to peak strain influence factor (D_{IP}) = $\underline{16.9 \text{ ft}}$ $D_1 = 2.41 \ B_f$ (See FHWA Figure 8-21a) $D_{IP} = 0.60 \ B_f$ (See FHWA Figure 8-21a)

Soil Information

Layer No.	Soil Type (pick the type that best describes the soil layer)	Top of Layer Elev	Bottom of Layer Elev	Total Unit Weight	SPT N1 ₆₀	CPT q _c	Fs	*E _s		
		(ft)	(ft)	(kcf)		(ksf)		(ksf)		
1	Medium Stiff to Stiff Clay	806.2	798.4	0.120			0	650		
2	Silt	798.4	789.3	0.120			0	220		
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
*Modulus values are based on Average Es value based on soil type (AASHTO Table C10.4.6.3.1)										

Guilford NORTH CAROLINA DEPARTMENT PROJECT: U-4015A COUNTY SR 1556 (Gallimore Dairy Rd.) Widening in Greensboro TRANSPORTATION DESCRIPTION: GEOTECHNICAL ENGINEERING UNI DESIGNED BY: -L-28+50 SK DATE: 07/14/21 STATION: MM DATE: 07/21/21 STR. NO.: RW-1 PAGE: 2 OF 3 Settlement Calcs for Spread Footings CHECKED BY:

Strain Influence Diagram using FHWA Figure 8-21

Strain Influence Factor at the Footing Base, $(I_{ZB}) = 0.121$

Peak Influence Factor (I_{ZP})

$$I_{zp} = 0.5 + 0.1 \sqrt{\frac{\Delta p}{p_{op}}}$$

FHWA-NHI-06-089 Page 8-46

 $\Delta p =$ net bearing pressure at the foundation depth = p - p_o

- p = q = gross bearing pressure at the foundation depth $2_{o}5$ = effective in-situ overburden stress at the foundation depth
- = 2.6 ksf 0.24 ksf = 2.36 ksf
- $p_{op} =$ vertical eff 0.504 ksf 0 ksf = 0.504 ksf
 - influence factor (Elevation = 802.00)
 - $= \sigma_v \mu = 0.81 \text{ ksf} 0 \text{ ksf} = 0.81 \text{ ksf}$

$$I_{zp} = 0.712$$

Average Influence Factors (I asi) for each soil layer

Soil layers are divided according to FHWA NHI-06-089, Step 5 (page 8-50)

z_i = depth to center of layer i from the base of the footing												
Average Influence Factors for each soil layer												
1	Eleva	ations	De	epth								
Layer No.	Тор	Bottom	Тор	Bottom	z _i	l _{azi}						
	(ft)	(ft)	(ft)	(ft)	(ft)							
1	806.2 801.5 0.0 4.7		2.3	0.449								
2	801.5	798.4	4.7	7.8	6.2	0.598						
3	798.4	789.3	7.8	16.9	12.3	0.255						

Adapted from FHWA NHI-06-089 Figure 8-21(a)

20.0

for $L_f/B_f = 2.86$ (See FHWA Figure 8-21a)

B_f (width of footing)

Bottom of Footing

B_f/2 (for axisymmetric case) B_f (for plane strain case) $\Delta p = p - p_0$

NORTH CAROLINA DEPARTMENT COUNTY Guilford PROJECT: U-4015A **OF TRANSPORTATION** SR 1556 (Gallimore Dairy Rd.) Widening in Greensboro DESCRIPTION: GEOTECHNICAL ENGINEERING UNI DESIGNED BY: -L-28+50 SK DATE: 07/14/21 STATION: Settlement Calcs for Spread Footings CHECKED BY: MM DATE: 07/21/21 STR. NO.: RW-1 PAGE: 3 OF 3

Calculate Settlement using Schmertmann Method

$$\begin{split} S_t &= Total \, Settlement = C_1 C_2 \Delta p \sum_{i=1}^n \left(H_c \frac{I_z}{XE_{si}} \right) & FHWA-NHI-06-089 \, Equation \, 8-16 \\ C_1 &= \text{Depth Correction Factor} \\ &= 1 - 0.5 \left(\frac{p_o}{\Delta p} \right) \geq 0.5 = \underline{0.947} & FHWA-NHI-06-089 \, Equation \, 8-17 \\ &\text{where, } p_0 &= \underline{0.240 \, \text{ksf}} & \text{effective in-situ overburden stress at the foundation depth} \\ &\Delta p &= \underline{2.260 \, \text{ksf}} & \text{net foundation pressure as shown in FHWA Figure 8-21b} \\ C_2 &= \text{Creep Correction Factor} \\ &= 1 + 0.2 \log_{10} \left(\frac{t}{0.1} \right) = \underline{1.000} & FHWA-NHI-06-089 \, Equation \, 8-18 \\ &\text{where, } t &= \underline{0.1 \, \text{years}} & t &= time \text{ in years (for immediate settlement, } t &= 0.1 \, \text{years}) \\ &H_c &= \text{Layer Thickness} \end{split}$$

X = factor to convert cone tip penetration resistance to elastic modulus when using AASHTO Table C10.4.6.3.1

= 1.25 for square footing, $(L_f/B_f = 1)$ and 1.75 for strip footing, $(L_f/B_f \ge 10)$ Use linear interpolation for rectangle footings (1 < $L_f/B_f < 10$) FHWA-NHI-06-089 Page 8-45

1.00 =

X = 1.00 when modulus values are not based on AASHTO Table C10.4.6.3.1

1		Eleva	ations				
Layer	Soil Type		Bottom	H _c	Es	Ιz	Si
110.		(ft)	(ft)	(in)	(ksf)		(inches)
1	Medium Stiff to Stiff Clay	806.2	801.5	56.0	650	0.449	0.083
2	Medium Stiff to Stiff Clay	801.5	798.4	37.6	650	0.598	0.074
3	Silt	798.4	789.3	108.8	220	0.255	0.270
		nent. S₊ =	0	.427 inch	es		

MSE WALL CALCULATIONS FOR RETAINING WALL NO. 2

CALCULATIONS SUMMARY CROSS SECTION INVENTORY MSE WALL EXTERNAL STABILITY SPREADSHEETS GLOBAL SLOPE STABILITY – SLOPE/W RESULTS SETTLEMENT ANALYSIS SPREADSHEET

U-4015 A: RW 2 - MSE WALL

Input Data from Wall Envelope							Assumptions Used for Calculations																							
STATION		Proposed	ed Proposed irade Finished n) Grade (Top)	Proposed	Proposed	Proposed	Proposed	Proposed	Proposed	Proposed	Proposed	Proposed	Proposed	Proposed	Wall	Min.	Top of the	Design	Design	Design	Design	Backslone	Backslone	Traffic	MSE Wall	Foundation Material		Backfill Material		terial
	Point	Finished Grade (Bottom)		Height (ft)	Embedment (ft)	Leveling Pad EL	Height (H) (ft)	Section	LOCATION	Height (H) (ft)	Ratio	Length (ft)	Load (psf)	Туре	ф (deg.)	C (psf)	γ (pcf)	ф (deg.)	C (psf)	γ (pcf)										
-L- 44+00.00	1	850.8	850.8	0.0	2.0	848.8	2.0		POINT 1 TO 5	5.0	-			A	28															
-L- 44+02.43	2	849.6	850.9	1.3	2.0	847.6	3.3	1																						
-L- 44+50.00	3	850.5	853.2	2.7	2.0	848.5	4.7					-	240.0			0	120	30	0	120										
-L- 44+94.71	4	853.2	855.5	2.3	2.0	851.2	4.3																							
-L- 45+00.00	5	855.8	855.8	0.0	2.0	853.8	2.0																							

 Wall Height (h) (ft) = Top of the Wall EL - Bottom of the Wall EL

 Min. Embedment (ft) = h/7 or , 2-ft, whichever is greater

 Top of the Leveling Pad EL = Bottom of the Wall EL - Min. Embedment (ft)

 Design Height (H) (ft) = Top of the Wall EL - Top of the Leveling Pad EL

Calculations Results Global Stabiltiy⁽²⁾ External stability⁽¹⁾ Design Global Factor of Safety Design Strap Length = H x Height Reinforcement Stability Bearing Section Undrained, Drained, **Reinforcement Ratio** Controls (H) (ft) Length Ratio Pressure (ksf) Short Term Long Term (ft) Condition Condition 5.0 1.2H 1.4 No 1 6 3.40 1.97

Notes:

1- See external stability calculations based on NCDOT MSE Wall External Stability Spreadsheet

2-See Global Stability calculations based on SLOPE/W analyses.

3-The total settlement of the RW No. 2 is anticipated to be 0.2 - inches.

**MSE Wall Type in External Stability Analysis (See NCDOT Spreadsheet):

A) MSE Wall with Level Backslope

B) MSE Wall with Broken Backslope

C) MSE Wall with Infinite Backslope

D) MSE Wall with Bridge Abutment with Pile Foundation
885 880	A B) ROADWA	Y EMB,					- i	1		1 I I I I I I I I I I I I I I I I I I I	1	1		
885 880	$B_{\rm e}$			ANKMENI	Brown	to brow	n-oran	ge, medi	um stifi	f to ha	rd, sand	y and	silty hig	hly	
880		Tabuwhi	to dopo		plastic	CLAY (A	4-6, A-1	7:-6), tr: :::::::::::::::::::::::::::::::::::		rganic	matter,ir	moist	, , , , , , , , , , , , , , , , , , , ,		
880	\cdot			e, siny ini		I SE SAN	ID (A-	<u> </u>		;1,110151	+		o î l t		
		TESIDUA	CLA	Y (A+7-6)	,:trace:c	n gruy c of organ	ic matte	er,trace	e rock fr	aġmen	ts, moist	<u>SIII</u> ,	SIII <u>y</u>		
875	\bigcirc) Tan-whi	te-gray	v to tan−bi	rown to	black a	nd whi	te,stiff	to very	stiff,	· · · · · ·				/
		sandy ar	nd claye	ey SILT (A	Ŋ <i>−4,</i> A <i>−</i> E	5), some	rock fr	agment	s, moi st						
870	· 		$\frac{1}{1}$		· · · · · · · · · · · · · · · · · · ·			PR(,					
865					1 1 1 1 1 1 1			GRA	DE (TOP)			R	W2_3_	HA**/	
					-,								31 RT		
860			· · ·	· · · · · · · · · · · ·	· · · ·			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- RW2_	<u> </u> _HA*	<u> </u>	2_2	S-2	/	
			REC	IN RETA		//// 2			5' H	$\langle \rangle$		R	3) 4		- BOLLC
855	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		-L-S	TA 44-	+00.00			<i>P_AV_E_M</i>	2 ENT		\rightarrow		A) -	· · · · · · · · · · · · · · · · · · ·
850	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · ·		'			à					· · ·
					1 1 1 1 1 1 1 1				A		42)-1-1-			2	Bottom of Pad
845				· · · · · · · · · · · · · · · · · · ·									FIAD		
840					1 1 1 1 1 1				("D)	BT (PO
										FIAD				1	
835	· · · · · · · · · ·				$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$						• ; - B;	``` ',-``	Υ		
930									E		FIA	D			
030					· · · · · · · · · · · · · · · · · · ·				(DRAW		NG				
825	· · · · · · · · · ·		· · · ·				·,			WALL)	· · ·			<u>.</u>	
820		·		'	· · ·	·	S	OIL TEST	RESULTS				1		
815	SAMPLE NO.	STATION 0	OFFSET	DEPTH INTERVAL	AASHTO CLASS.	L.L.	<i>P.I</i> .	C. SAND	% BY WE	SILT	CLAY	% F 10	ASSING SII 40	200	% MOISTUI
	S-2	45+00	38' LT	1.5-3.0'	A-7-6	55	28	1	6	34	60	100	99	96	28
810														<u>_</u>	·
005															
205										-			¹ 1 1		
805															
805										-L-					

	50		100	PROJEC	T REFE	RENCE NO.	SHEET NO.		
	FFF		100		U-4015	5A		9	
v	гввт Е = 5				PROFI	LE ALONG	-L-		
•		·							
					1				
		 	 		1 	· · · · · · · · · · · · · · · · · · ·		890	
	1	1 I		l. I	1	і і і і			
	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , ,			, , ,	, , , , , , , , , , , , , , , , , , ,		885	
	1	· · ·				1 1 1 1			
	1	 			1	і і і і	1	880	
		·			<u></u>	· · · · · · · · · · · · · · · · · · ·		000	
	END	RE/	AININ	IG WA	LL 2				
			-ST-A	45+6	0.00			. 875	
l	I I		1	1	1				
		· · · · · · · ·	·					- 870	
					1 1		1		
	1				1			865	
		, , 				· · · · · ·			
	1	1 I		1	1	і і і і	1	a (a	
								. 860	
		- L			1 1 1				
					I I			855	
	1				1	1 1 1 1 1 1			
	1 1	· · · ·				· · ·		850	
ev	eling				1	і і і і	1		
		, , , , , , , , , , , , , , , , , , ,			1	1 I 1 I 1 I		845	
		·			L	L		045	
-	-L-	_	PROP	OSED	вот	ГОМ			
	STATI	ON	GRADE	HED (TOP)	OF V	VALL		840	
	44+00	00	850	83'	850	83'			
	44+02	2.43	850	.00 95'	849	<u>61'</u>		. 835	
	44+50	0.00	853	20'	850	52'			
	44+94	4.71	855	.20	853	.52		830	
	45+00	0.00	855	.92 80'	855	.10		000	
							1		
				1 	1 +	· · · · · · · · · · · · · · · · · · ·		825	
		1 I 1 I		1	1 1		1		
	1	 			1 1	· · · · · · · · · · · · ·		820	
	%				- - -		1		
0.	RGANIC			1	1 1 1		1	815	
	ND								
		1 1 1			- 		1		
		//		D)K	K				
			P	(919) 878-95	60				
		· 	- 80 R	601 Six Forks	Road, Forum Carolina 2761	1, Suite. 700 5-3960			
	1 1	1	N	C License No	. F-0112				
		· · · · · · · · ·	E	ngineers Co ww.rkk.com	nstruction Ma	nagers Planners	Scientis	ts	
			R	esponsive Pe	ople Creative	e Solutions			
46	5 + 00			47	+00				

RETAINING WALL NO. 2 MSE WALL EXTERNAL STABILITY SPREADSHEETS

NORTH CAROLINA DEPARTMENT PROJECT:	U-4015A COUNTY Guilford
OF TRANSPORTATION DESCRIPTION:	RW 2 - Design Section 1
GEOTECHNICAL ENGINEERING UNITDESIGNED BY: SK	DATE: 07/14/21 STATION: 44+00 -L-
MSE Wall External Stability Spreadsheet CHECKED BY: MM	DATE: 07/21/21 STR. NO.: 1 PAGE: 1 OF 2
MSE Wall Type (See Figures on right)	q
NOL Wai with Level Backslope and Tranc Surchar	Reinforced Soil Mass
Traffic Surcharge and Wall Geometry	With It is H
q = 240 psf live load traffic surcharge (AASHTO Tables 3.11.6.4-1 & 2)	$H \begin{bmatrix} \mathbf{L} & \mathbf{L} \\ \mathbf{\phi}_{b}, \gamma_{b}, \mathbf{K}_{a,b} \end{bmatrix}$
H = 5.00 ft wall design height	Eoundation Material
L/H = 1.200 ratio of reinforcement length to wall height	D_w $\phi_f, \gamma_f, C_f, \mu_f$
$L = 6.00 \text{ ft} \qquad reinforcement length (L = H x L/H)$	MSE Wall with Level Backslope and Traffic Surcharge
$(L/H \ge 0.7 \text{ and } L \ge 6 \text{ ft per NCDOT MSE Wall Provision})$	
S = 1.00 ft distance from bottom of wall to lowest reinforcement layer	V _{Slope}
Stope = N/A : 1 (Π_{slope} : V_{Slope}) Stope benind wall	H _{Slope}
d = N/A It distance from back of wail face to top of backslope	Reinforced Soil Mass
$v = \frac{N/A}{ft}$ ft distance from back of wall face to back of can	h Beteined Bookfill
h = N/A It distance from back of wall face to back of cap	H \mathbf{H}
Soil Parameters for Reinforced Zone	
Type of aggregate used: O Coarse Fine	D _w Foundation Material φ _f , γ _f , c _f , μ _f
$\phi_{r} = \boxed{34} \operatorname{deg} $ friction angle (38 deg for coarse, 34 deg for fine)	MSE Wall with Infinite Backslope
$v_r = 115$ pcf unit weight (110 psf for coarse, 115 psf for fine)	
	Vsione
Soil Parameters for Retained Backfill	H _{Stope}
	Reinforced Soll Mass
$\psi_{\rm b} = \frac{30}{30}$ deg include angle	Ф: , 77: з Ре
$\gamma_b = 120$ pcf unit weight	H Retained Backfill
Soil Parameters for Foundation Material	φ _b , γ _b , ν _{a_b}
	↓↓ s[
$\phi_{\rm f} = 28$ deg friction angle	Foundation Material
$\gamma_f = 120$ pcf unit weight	D_{w} $\psi_{f}, \gamma_{f}, c_{f}, \mu_{f}$
$c_f = 0$ psf undrained shear strength of the foundation material	MSE Wall with Broken Backslope
$D_w = 15.00$ ft distance of water table below bottom of the wall	⊲ ^W ⊳ q
Load Factors (AASHTO Table 3.4.1-1 and 2)	
$\Psi_{LS} = 1.75$ live load surcharge	Soil Mass
$\Psi_{\text{EH(A)}} = 1.50$ horizontal (active) earth pressure	
$\Psi_{\rm EV} = 1.00$ min vertical dead load generated from earth fill	H Retained Backfill
1.35 max	φ _b , γ _b , K _{a_b}
Kesistance Factors (AASHTO Table 11.5.7-1)	I Foundation Material
$\phi_{\rm b} = 0.65$ bearing resistance for MSE walls	D _w φ _f , γ _f , C _f , μ _f
$ \varphi_t = 1.00 $ sliding resistance for MSE walls	MSE Wall Bridge Abutment with Pile Foundation
	(MSE WALL FIGURES ARE NOT TO SCALE)
DISCLAIMER: The application of this spreadsheet is the responsibility of the user. It	is imperative that the user understands the potential accuracy
limitations and examines the reasonableness of the results with engineering knowled	ge and experience. Thereare no expressed or implied warranti

	NORTH CAROLINA DEPARTMENT	PROJECT:		U-4015	A	COUNTY	Guilford	
	OF TRANSPORTATION	DESCRIPTION:			RW 2 -	Design Section 1		
	GEOTECHNICAL ENGINEERING UNIT	DESIGNED BY:	SK	DATE:	07/14/21	STATION:	44+00 -L-	
	MSE Wall External Stability Spreadsheet	CHECKED BY:	MM	DATE:	07/21/21	STR. NO.: 1	PAGE: 2 (JF .
0								
Summary	of External Stability Analysis - MSE W	all with Level Ba	acksiop	e and Tr	affic Surch	arge		—
Geometry	of Reinforced Soil Mass							
H = wall h	neight				700)		5.00 ft	
L/H = rati	o of reinforcement length to wall height (n	nust be greater th	an or e	qual to 0.	700)		1.200	
L = reinfo	rcement length (must be greater than or e	equal to 6 ft)					6.00 ft	
Forces Ac	ing on Wall - Vertical Direction							
$V_{1(LLR)} = V$	vertical force from reinforced soil mass ac	ting at the lowest	level of	reinforce	ement		2,760 lbs	s
$V_{1(BW)} = v$	ertical force from reinforced soil mass act	ting at the base o	f the wa	ıll			3,450 lbs	S
V ₂ = verti	cal force from the retained fill above the re	einforced soil ma	SS				0 lbs	
$F_{V(LLR)} = V$	vertical force generated from lateral earth	pressure at the lo	owest le	vel of rei	nforcement		0 lbs	
$F_{V(BW)} = V$	ertical force generated from lateral earth	pressure at the b	ase of t	he wall			0 lbs	
Forces Ac	ing on Wall - Horizontal Direction							
$F_{H(LLR)} = I$	norizontal force generated from lateral ear	rth pressure at the	e lowes	t level of	reinforceme	ent	320 lbs	Π
$F_{H(BW)} = h$	norizontal force generated from lateral ear	th pressure at the	e base o	of the wal	l		500 lbs	
$F_{2(LLR)} = I$	norizontal force generated from traffic sur	charge, acting at	the lowe	est level o	of reinforcer	nent	320 lbs	
$F_{2(BW)} = h$	orizontal force generated from traffic surc	harge, acting at t	he base	e of the w	all		400 lbs	
F _P = total	horizontal force acting on the back of the	MSE wall (wall c	ontact p	oressure	under servi	ce loads)	900 lbs	
Sliding Sta	bility - at the interface between the soil ar	nd reinforcement	for the l	owest rei	nforcement	laver		
	sliding resistance at the interface betweer	n the soil and rein	forcem	ent for the	e lowest rei	nforcement laver	1.490 lbs	s
$P_{d(IIR)} = h$	orizontal driving force at the interface betw	veen the soil and r	einforce	ement for	the lowest r	einforcement lave	r 1.039 lbs	s
R _{R(LLR)} m	ust be greater than or equal to $P_{d(LLR)}$						ОК	
Sliding Sta	bility - at the base of the bottom of the wa	all facing						
R	sliding resistance at the base of the bottor	n of the wall facir	na				1 835 lbs	
$\mathbf{R}_{R(BW)} = \mathbf{k}$	porizontal driving force at the base of the b	notion of the wall	facing				1 449 lbs	
$R_{R(BW)} = 1$	ust be greater than or equal to $P_{d(BW)}$		laoing				OK	,
							0.07.4	
e = eccer	itricity						0.87 ft	_
L/3	b loss than an equal to $b/2$						2.00 ft	
e must be	e less than of equal to L / 3						UK	
Bearing Re	esistance - General Shear							
q _r = facto	red bearing resistance						3,361 lbs	3
$q_{uniform} = 1$	actored bearing pressure at the base of the	ne wall					1,391 lbs	3
q _R must b	be greater than or equal to q _{uniform}						OK	
Bearing Re	esistance - Local / Punching Shear (only a	applicable to soils	s with co	hesion)				
q _r = redu	ced factored bearing resistance						N/A	
q _{uniform} = 1	actored bearing pressure at the base of the	he wall					N/A	

N/A

 q_{R} must be greater than or equal to q_{uniform}

- δ = friction angle between fill and wall = β per AASHTO Article 11.10.5.2
- β = inclination angle of backslope = 0 for level backslope
- θ = angle of back face of wall to the horizontal = 0 degrees for vertical wall face

φ _b	δ	β	K _{a_b}
(deg)	(deg)	(deg)	(lbs)
120	0	0	0.333

	NORTH CAROLINA DE		IENT	PROJECT	<u>.</u>	U-4015	iΑ	COUNTY		Guilf	ord	
	OF TRANSPORTATIO	N	DESC	CRIPTION	l:		RW 2 -	Design Secti	on 1			
JZ	GEOTECHNICAL ENGINE	ERING L	JNITDESI	GNED BY	': <u>SK</u>	DATE:	07/14/21	STATION:		44+0	0 -L-	-
	MSE Wall External Stability S	Spreadshe	et CHE	CKED BY	': MM	DATE:	07/21/21	STR. NO.:	1	PAGE:	4	OF 8
Forces A	Acting on Wall - continu	ed										
Forces Ge	enerated from Lateral (Active	e) Earth P	ressure -	continued								
<u> </u>	atal force generated from lat		proscuro		the inter	aco hotw	oon the coil	and rainforce	mor	\ +		
$\Gamma_{1(LLR)} = 0$	or the lowest reinforcement la	aver	pressure	, acting at					iner	it.		
= 0	.5(γ _b)(H-s) ² (K _{a_b})	ayor					F	HWA GEC 0	11 E	qn. 4-5 (mod	ified)
$F_{1(BW)} = tc$	otal force generated from late	eral earth	pressure	, acting at	the base	of the bo	ttom of the	wall facing				
= 0	$.5(\gamma_b)(H^2)(K_{a_b})$							FH	NA (GEC 011	Eqn	. 4-5
	Г	γ' _b	н	s	V	F _{1(LLR)}	F _{1(BW)}					
		(psf)	(ft)	(ft)	∧ a_b	(lbs)	(lbs)					
		120	5.00	1.00	0.333	320	500					
Llevizente	L Farrana Caraaratad firana Tua	ffia Currah										
	Forces Generated from Tra		large						_			
$F_{2(LLR)} = tc$	otal horizontal force generate	ed from tra	affic surch	harge, acti	ng at the	interface	between the	e soil and reir	nforc	ement		
10 _ (0	r the lowest reinforcement is	ayer					F		11 🗖	an 1-6 (mod	ified)
- (4/(··· • /(··a_0/						,	IIWA GLC U		чп. 4 -0 (1	noui	illeu)
$F_{2(BW)} = tc$	otal horizontal force generate	ed from tra	affic surch	narge, acti	ng at the	base of th	ne bottom o	f the wall faci	ng			
= (0	q)(H)(K _{a_b})							FH\	NA	GEC 011	Eqn	. 4-6
		q	Н	S	K _{a b}	F _{2(LLR)}	F _{2(BW)}					
		(psf)	(ft)	(ft)	a_5	(lbs)	(lbs)	_				
		240	5.00	1.00	0.333	320	400					
Wall Cont	act Pressure Under Service	Loads										
The wall c	contact pressure under service	ce loads i	s equal to	the total	horizonta	l force act	ing on the b	back of the wa	all			
Wall Cont	eact Pressure, $F_P = F_{1(BW)} + F_{1(BW)}$	2(BW)										
			<u> </u>	<u> </u>		-						
			(lbe)	F _{2(BW)}	(lbe)							
			500	(103)	(105)	-						
			500	400	300							

Sliding Stability at the Interface between the Soil and Reinforcement for the Lowest Reinforcement Layer

R_{R(LLR)} = sliding resistance at the interface between the soil and reinforcement for the lowest reinforcement layer

 $= \phi R_N = \phi_\tau R_{\tau(LLR)}$

R_{t(LLR)} = nominal sliding resistance at the interface between the soil and reinforcement for the lowest reinforcement layer

= $\Psi_{\text{EV}}(V_{1(\text{LLR})})\mu_{(\text{LLR})}$

 $\mu_{(LLR)}$ = coefficient of friction at interface between the soil and reinforcement for the lowest AASHTO 11.10.5.3 reinforcement layer

Because the type of reinforcement, continous (e.g., grids) or discontinous (e.g, strips), is not determined at the time of the analysis, the coefficent of friction is taken as the lesser of ϕ_r and ρ , where ρ is the soil-reinforcement interface friction angle. The value of ρ is taken as the lowest value for all NCDOT approved MSE wall geogrids based on the use of either fine or coarse aggregate in the reinforced zone.

All other variables have previously been defined

φ _t	$\Psi_{\text{EV}}{}^{\star}$	V _{1(LLR)} (lbs)	φ _r (deg)	ρ (deg)	$\mu_{(LLR)}$	R _{τ(LLR)} (Ibs)	R _{R(LLR)} (Ibs)
1.00	1.00	2,760	34.00	28.35	0.540	1,490	1,490

*Note - Use minimum value of Ψ_{EV} for sliding resistance per FHWA GEC 011 4.4.6.a, AASHTO C3.4.1, and AASHTO C11.5.5

P_{d(LLR)} = horizontal driving force at the interface between the soil and reinforcement for the lowest reinforcement layer

 $= (\Psi_{\text{EHA}})(\mathsf{F}_{1(\text{LLR})}) + (\Psi_{\text{LS}})(\mathsf{F}_{2(\text{LLR})})$

Ψ_{EHA}	F _{1(LLR)} (Ibs)	Ψ_{LS}	F _{2(LLR)} (lbs)	P _{d(LLR)} (lbs)
1.50	320	1.75	320	1,039

FHWA GEC 011 Eqn. 4-9

AASHTO Eqn. 10.6.3.4-1

FHWA GEC 011 Eqn. 4-12

	NORTH CAROLINA DEPARTMEN	T PROJECT:		U-4015	A	COUNTY		Guilford	
	OF TRANSPORTATION	DESCRIPTION:			RW 2 -	Design Section	on 1		
TTZ	GEOTECHNICAL ENGINEERING UNIT	DESIGNED BY:	SK	DATE:	07/14/21	STATION:		44+00 -L-	
	MSE Wall External Stability Spreadsheet	CHECKED BY:	MM	DATE:	07/21/21	STR. NO.:	1	PAGE: 6 OF	8

Sliding Stability and Eccentricity (Overturning) - continued

Sliding Stability at the Interface between the Soil and Reinforcement for the Lowest Reinforcement Layer - continued

 $R_{R(LLR)}$ must be greater than or equal to $P_{d(LLR)}$

R _{R(LLR)} (lbs)	P _{d(LLR)} (lbs)	$R_{R(LLR)} \geq P_{d(LLR)}$
1,490	1,039	ок

Sliding Resistance at the Base of the Bottom of the Wall Facing

 $R_{R(BW)}$ = sliding resistance at the base of the bottom of the wall facing

$$= \phi R_N = \phi_\tau R_{\tau(BW)}$$

 $R_{t(BW)}$ = nominal sliding resistance at the base of the bottom of the wall facing

 $= \Psi_{EV}(V_{1(BW)})\mu_{(BW)} + (c_f)(L)$

FHWA GEC 011 Eqn. 4-12 and AASHTO 10.6.3.4

 $\mu_{(BW)}$ = coefficient of friction at the base of the bottom of the wall facing

If the lowest reinforcement layer is above the bottom of the wall facing, to check sliding at the base of the wall, the friction angle of the foundation soil, ϕ_f , or reinforced fill soil, ϕ_f , whichever is less, shall be used to assess sliding resistance.

All other variables have previously been defined

φ _t	$\Psi_{\text{EV}}{}^{\star}$	V _{1(BW)} (Ibs)	φ _r (deg)	$\mu_{(BW)}$	c _f (psf)	L (ft)	R _{τ(BW)} (lbs)	R _{R(BW)} (lbs)
1.00	1.00	3,450	34.00	0.532	0	6.00	1,835	1,835

*Note - Use minimum value of Ψ_{EV} for sliding resistance per FHWA GEC 011 4.4.6.a, AASHTO C3.4.1, and AASHTO C11.5.5

 $P_{d(BW)}$ = horizontal driving force at the base of the bottom of the wall facing

 $= (\Psi_{EHA})(F_{1(BW)}) + (\Psi_{LS})(F_{2(BW)})$

FHWA GEC 011 Eqn. 4-9

AASHTO Eqn. 10.6.3.4-1

AASHTO 11.10.5.3

Ψ_{EHA}	F _{1(BW)} (lbs)	Ψ_{LS}	F _{2(BW)} (lbs)	P _{d(BW)} (Ibs)
1.50	400	1.75	500	1,449

 $R_{R(BW)}$ must be greater than or equal to $P_{d(BW)}$

$R_{R(BW)}$	$P_{d(BW)}$	$R_{R(BW)} \geq P_{d(BW)}$
(lbs)	(lbs)	
1,835	1,449	ОК

Eccentricity (Overturning)

 $e = \frac{\Psi_{EHA}F_{1(BW)}(H/3) + \Psi_{LS}F_{2(BW)}(H/2)}{\Psi_{EV}V_{1(BW)}} \text{ must be } \leq L / 3$

FHWA GEC 011 Eqn. 4-15 and AASHTO 10.6.3.3

Ψ_{EHA}	F _{1(BW)} (Ibs)	H/3 (ft)	Ψ_{LS}	F _{2(BW)} (lbs)	H/2 (ft)	$\Psi_{\text{EV}}{}^{*}$	V _{1(BW)} (lbs)	e (ft)	L/3 (ft)	e ≤ L/3
1.50	500	1.67	1.75	400	2.50	1.00	3,450	0.87	2.00	ок

*Note - Use minimum value of Ψ_{EV} for eccentricity per FHWA GEC 011 4.4.6.b, AASHTO C3.4.1, and AASHTO C11.5.5

	NORTH CAROL	ROJECT:			COUNTY		Guil	ford						
	OF TRANSPOR	FATION		DESC	RIPTION:			RV	V 2 - D	esign Secti	on 1			
	GEOTECHNICAL E	ENGINEER	ING UNI	DESIG	ONED BY:	SK	DATE:	07/14	4/21	STATION:		44+0	0 -L-	
	MSE Wall External S	tability Spre	adsheet	CHEC	CKED BY:	MM	DATE:	07/21	1/21	STR. NO.:	1	PAGE:	8 C)F 8
Bearing	Resistance - cont	tinued												
Bearing F	Resistance for Genera	l Shear Fai	lure - cor	ntinued										
0	our - factored bearing	n nressure	at the ha	se of t	he wall									
Yuniform -	$\Psi_{\rm EV}V_{\rm ACDMD} + \Psi_{\rm Loc}$	ig pressure I												
=	L - 2e _⊳	<u> </u>								FHW	'A G	EC 011 I	Eqn. 4	-20
	B													
		$\Psi_{\text{EV}}{}^{\star}$	V _{1(BW)}	Ψ_{LS}	q (nof)	L (ft)	e /f	B	q _{uniform}					
		1.25	(IDS)	4 75	(psr)	(IT)	()	t) 40	(psr)	_				
		1.55	3,450	1.75	240	0.00	0.4	42	1,391					
	*Note - Use the max	kimum valu	ue of Ψ_{EV}	, per Fl	HWA GEC	011 4.4.0	6.c, AAS	SHTO	C3.4.1,	, and AASF	то	C11.5.5		
q _R must b	be greater than or equ	al to q _{uniform}								FHW	A G	EC 011 I	Eqn. 4	-17
					a								-	
			(0)	hr ۲ ef)	Yuniform	$q_r \ge q_u$	iniform							
			(p.	861	(psi) 1.391	OK								
			0,0		1,001	UN								
Bearing F	Resistance for Local S	hear Failur	<u>e</u>											
Local and failure wi	d Punching shear failu Il only be considered f	re occurs ir or foundatio	n loose or on materi	[.] compr al that i	essible so is cohesive	ils and in e.	weak so	oils und	der slov	w (drained)	load	ing. This	mode	e of
To preve	nt Local/Punching She	ear on weal	< cohesiv	e soils,	(γ _r)(H) ≤ 3	BC _f				FHW	A G	EC 011 I	Eqn. 4	-24
	The foundation material for this project is not cohosive													
	111			alei			Jeor	5 1101	COIR	53180				

RETAINING WALL NO. 2 GLOBAL SLOPE STABILITY – SLOPE/W RESULTS

RETAINING WALL NO. 2 SETTLEMENT ANALYSIS SPREADSHEET

	NORTH CAROLINA DEPARTMEN1 PROJECT	Г:		U-4015	A	COUNTY	Guilford	
	OF TRANSPORTATION DESCRIPTION	1:	SR	1556 (Ga	Ilimore Dai	ry Rd.) Wide	ening in Greensboro	
TZ	GEOTECHNICAL ENGINEERING UNDESIGNED BY	/:	SK	DATE:	07/14/21	STATION:	-L-44+50	
Y	Settlement Calcs for Spread Footings CHECKED BY	/: N	MM	DATE:	07/21/21	STR. NO.:	RW-2 PAGE: 1 OF	3

Settlement Calculations for Spread Footings (Schmertmann Method) Loading Information Gross bearing pressure, p = q = 1.4 ksft = 0.1 years for immediate settlement. Time passed since loading applied, t = 0.1 years 850.5 ft -Spread **Unit Weight Information** q = 1.40 ksfFooting 850.5 ft... $D_f = 2 ft$ Unit Weight of Concrete, $\gamma_c = 0.150 \text{ kcf}$ 848.5 ft Unit Weight of Water, $\gamma_w = 0.0624$ kcf $B_f =$ 6 ft $D_w = 53.8 \text{ ft}$ Unit Weight of Overburden Soil, $\gamma_s = 0.120 \text{ kcf}$ $D_{IP} = 3.8 \text{ ft}$ **Elevations and Footing Dimensions** Depth of Peak Strain Influence Factor 844.72 ft Finished Grade Elevation = 850.5 ft Natural Ground Elevation = 850.5 ft Top of Footing Elevation = 850.5 ft $D_{l} = 15.1 \text{ ft}$ Bottom of Footing Elevation = 848.5 ft Groundwater Table Elevation = 796.7 ft Maximum Depth of Influence 833.4 ft (Typical Footing Profile - Not To Scale) Footing Thickness, $t_f = 2.0 \text{ ft}$ Width of Footing, $B_f = 6.0 \text{ ft}$ Taken as the shorter dimension of the footing Length of Footing, $L_f = 20.0 \text{ ft}$ Taken as the longer dimension of the footing $L_f / B_f = 3.33$ Footing Shape = Rectangle

Footing Embedment Depth, $D_f = 2.0 \text{ ft}$

Maximum depth of influence below footing base (D_I) = 3.8 ftDepth from footing base to peak strain influence factor (D_{IP}) = 15.1 ft $D_1 = 2.52 B_f$ (See FHWA Figure 8-21a) $D_{IP} = 0.63 B_f$ (See FHWA Figure 8-21a)

Soil Information

Layer No.	Soil Type (pick the type that best describes the soil layer)	Top of Layer Elev	Bottom of Layer Elev	Total Unit Weight	SPT N1 ₆₀	CPT q _c	Fs	*E _s
		(ft)	(ft)	(kcf)		(ksf)		(ksf)
1	Medium Stiff to Stiff Clay	848.5	845.0	0.120			0	650
2	Silt	845.0	833.0	0.120			0	220
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
	*Modulus values are base	d on Avera	ge Es value	based on s	oil type (AASHTO 1	Table C10	.4.6.3.1)

Guilford NORTH CAROLINA DEPARTMENT PROJECT: U-4015A COUNTY SR 1556 (Gallimore Dairy Rd.) Widening in Greensboro TRANSPORTATION DESCRIPTION: GEOTECHNICAL ENGINEERING UNI DESIGNED BY: -L-44+50 SK DATE: 07/14/21 STATION: MM DATE: <u>07/21/21</u> STR. NO.: RW-2 PAGE: 2 OF 3 Settlement Calcs for Spread Footings CHECKED BY:

Strain Influence Diagram using FHWA Figure 8-21

Strain Influence Factor at the Footing Base, $(I_{ZB}) = 0.126$

Peak Influence Factor (I_{ZP})

$$I_{zp} = 0.5 + 0.1 \sqrt{\frac{\Delta p}{p_{op}}}$$

FHWA-NHI-06-089 Page 8-46

 Δp = net bearing pressure at the foundation depth = p - p_o

- p = q = gross bearing pressure at the foundation depth $1_0 \neq$ effective in-situ overburden stress at the foundation depth
- = 2.6 ksf 0.24 ksf = 2.36 ksf
- $p_{op} = vertical eff 0.694 ksf 0 ksf = 0.694 ksf$
 - influence factor (Elevation = 844.72)
 - $= \sigma_v \mu = 0.81 \text{ ksf} 0 \text{ ksf} = 0.81 \text{ ksf}$

$$I_{zp} = 0.629$$

Average Influence Factors (I asi) for each soil layer

Soil layers are divided according to FHWA NHI-06-089, Step 5 (page 8-50)

z _i = dep	z_i = depth to center of layer i from the base of the footing												
	Average Influence Factors for each soil layer												
1	Eleva	ations	De	epth									
Layer	Тор	Bottom	Top Botton		z _i	l _{azi}							
140.	(ft)	(ft)	(ft)	(ft)	(ft)								
1	848.5	845.0	0.0	3.5	1.8	0.359							
2	845.0	844.7	3.5	3.8	3.6	0.610							
3	844.7	840.7	3.8	7.8	5.8	0.518							
4	840.7	833.4	7.8	15.1	11.5	0.204							

for $L_f/B_f = 3.33$ (See FHWA Figure 8-21a)

Depth to Peak Strain Influence Factor, Izp

Adapted from FHWA NHI-06-089 Figure 8-21(b) (Explanation of pressure terms in equation for I_{ZP})

Adapted from FHWA NHI-06-089 Figure 8-21(a)

NORTH CAROLINA DEPARTMENT COUNTY Guilford PROJECT: U-4015A **OF TRANSPORTATION** SR 1556 (Gallimore Dairy Rd.) Widening in Greensboro DESCRIPTION: GEOTECHNICAL ENGINEERING UNI DESIGNED BY: -L-44+50 SK DATE: 07/14/21 STATION: Settlement Calcs for Spread Footings CHECKED BY: MM DATE: 07/21/21 STR. NO.: RW-2 PAGE: 3 OF 3

Calculate Settlement using Schmertmann Method

$$\begin{split} S_t &= Total \, Settlement = C_1 C_2 \Delta p \sum_{i=1}^n \left(H_c \frac{I_z}{XE_{si}} \right) & FHWA-NHI-06-089 \, Equation \, 8-16 \\ C_1 &= \text{Depth Correction Factor} \\ &= 1 - 0.5 \left(\frac{p_o}{\Delta p} \right) \geq 0.5 = \underline{0.897} & FHWA-NHI-06-089 \, Equation \, 8-17 \\ &\text{where, } p_0 = \underline{0.240 \, \text{ksf}} & \text{effective in-situ overburden stress at the foundation depth} \\ &\Delta p = \underline{1.160 \, \text{ksf}} & \text{net foundation pressure as shown in FHWA Figure 8-21b} \\ C_2 &= \text{Creep Correction Factor} \\ &= 1 + 0.2log_{10} \left(\frac{t}{0.1} \right) = \underline{1.000} & \text{FHWA-NHI-06-089 \, Equation 8-18} \\ &\text{where, } t = \underline{0.1 \, \text{years}} & t = time in \, \text{years} \, (for immediate settlement, t = 0.1 \, \text{years}) \\ &H_c = \text{Layer Thickness} \end{split}$$

X = factor to convert cone tip penetration resistance to elastic modulus when using AASHTO Table C10.4.6.3.1

= 1.25 for square footing, $(L_f/B_f = 1)$ and 1.75 for strip footing, $(L_f/B_f \ge 10)$ Use linear interpolation for rectangle footings (1 < $L_f/B_f < 10$) FHWA-NHI-06-089 Page 8-45

1.00 =

X = 1.00 when modulus values are not based on AASHTO Table C10.4.6.3.1

Layer	Soil Type	Тор	Bottom	H _c	Es	Ι _Z	Si		
110.		(ft)	(ft)	(in)	(ksf)		(inches)		
1	Medium Stiff to Stiff Clay	848.5	845.0	42.0	650	0.359	0.024		
2	Silt	845.0	844.7	3.4	220	0.610	0.010		
3	Silt	844.7	840.7	48.0	220	0.518	0.118		
4	Silt	840.7	833.4	88.1	220	0.204	0.085		
		То	tal Settlen	nent, S _t =	0	0.236 inches			

MSE WALL CALCULATIONS FOR RETAINING WALL NO. 3

CALCULATIONS SUMMARY CROSS SECTION INVENTORY MSE WALL EXTERNAL STABILITY SPREADSHEETS GLOBAL SLOPE STABILITY – SLOPE/W RESULTS SETTLEMENT ANALYSIS SPREADSHEET

U-4015 A: RW 3 - MSE WALL

		Inp	ut Data from	Wall Env	elope						Assum	ptions Use	ed for Calcu	ulations						
		Proposed	Proposed	Wall	Min.	Top of the	Design	Design	Design			Backslope	Traffic	MSE Wall	Fo	Foundation Material		Backfill Materia		terial
STATION	Point	Finished Grade (Bottom)	Finished Grade (Top)	Height (ft)	Embedment (ft)	Leveling Pad EL	Height (H) (ft)	Section	LOCATION	Height (H) (ft)	Ratio	Length (ft)	Load (psf)	Туре	φ (deg.)	C (psf)	γ (pcf)	ф (deg.)	C (psf)	γ (pcf)
-L- 48+00.00	1	873.1	873.1	0.0	2.0	871.1	2.0		DOINT 4											
-L- 48+04.34	2	870.9	873.4	2.5	2.0	868.9	4.5	1		7.5	-	-	240.0	A						
-L- 48+50.00	3	872.4	875.8	3.4	2.0	870.4	5.4		104											
-L- 49+00.00	4	872.8	878.3	5.5	2.0	870.8	7.5	2	POINT 4 TO		240.0	A	28	0	120	30	0	120		
-L- 49+50.00	5	873.0	880.5	7.5	2.0	871.0	9.5	2	2 10 14.0						-	240.0				
-L- 50+00.00	6	872.5	882.4	9.9	2.0	870.5	11.9	1	POINT 10	65			240.0							
-L- 50+50.00	7	872.0	884.0	12.0	2.0	870.0	14.0	1	TO 13	0.5	-	-	240.0							
-L- 51+00.00	8	873.7	885.1	11.4	2.0	871.7	13.4													
-L- 51+50.00	9	877.2	886.0	8.8	2.0	875.2	10.8	**MSE	Wall Type in Ex	ternal Stabilit	y Analysis (See NCDO	Spreadsh	eet):						
-L- 52+00.00	10	882.4	886.8	4.4	2.0	880.4	6.4	4 A) MSE Wall with Level Backslope 3 B) MSE Wall with Broken Backslope 8 C) MSE Wall with Infinite Backslope												
-L- 52+50.00	11	885.4	887.7	2.3	2.0	883.4	4.3													
-L- 52+94.27	12	885.4	888.2	2.8	2.0	883.4	4.8													

D) MSE Wall with Bridge Abutment with Pile Foundation

 Wall Height (ft) = Top of the Wall EL - Bottom of the Wall EL

 Min. Embedment (ft) = h/7 or , 2-ft, whichever is greater

 Top of the Leveling Pad EL
 = Bottom of the Wall EL - Min. Embedment (ft)

 Design Height (H) (ft)
 = Top of the Wall EL - Top of the Leveling Pad EL

0.0

2.0

886.2

2.0

888.2

Calculations Results											
			External stability ⁽¹⁾⁽³⁾		Global Sta	abiltiy ⁽²⁾					
Design	Design		Stran Length = H x		Factor of	Safety	Global				
Section	Height	Reinforcement	Reinforcement Ratio	Bearing Pressure (ksf)	Undrained,	Drained,	Stability Controls				
	(1) (10)	(ft) (ft)		Tressure (KSI)	Short Term Condition	Long Term Condition					
1	7.5	0.8H	6	2.2	2.96	1.46	No				
2	14.0	0.7H	10	3.9	1.65	1.36	No				

Notes:

-L- 53+00.00

13

888.2

1- See external stability calculations based on NCDOT MSE Wall External Stability Spreadsheet

2-See Global Stability calculations based on SLOPE/W analyses. Global Stability was checked for both short-term condition (using undrained strength propoeties of CLAY) and long-term condition (using drained strength properties of CLAY).

3-The total settlement of the RW No. 3 is anticipated to be 1.8 - inches.

50	10	00	PROJI	SHE	<i>ET NO</i> . 13			
FEET				PROF			1_	10
VE = 5				FROM		LONG -	· <i>L</i> -	
: - hi-ghlyp	olastic (ÇLAY-	- (- A	-6, A-77	-5, -			915
Y (A-6, A	4-7-6),	trac	e e 		- - - -			910
<i>1−4, А−5.</i>),trace () 	1 1 1					905
rock fra	igments,	sapt	oliti	c, moist	1 1 1 1 1			900
RW3_9 414 RT-	RW3_	_10 						895
S-I3I //	12)] [3			- - - - - - - -			890
					1 1 7		·	885
- 22		B)				,	880
) BT) 	Bottom of END	of Le		Pac VG	875
	DRY 01/2			- STA	53	W ALL 3 +00.(<u> </u>	870
			- - - -					865
)	POINT NO.	_L STATI	ON	PROPOSE FINISHEE GRADE (TO	D D DP)	BOTTO OF WA	M LL	860
••'\ ••'\	1	48+00	0.00	873.11′		873.11	,	
	2	$\frac{48+04}{48+54}$	4.34	873.35'		870.94	4	855
BT	3	40 + 50	0.00	8/5.82		872.40	<u>'</u>	
FIAD	5	$\frac{1}{47} \pm 00$ 49 ± 50	0.00	880 50		872.00	$\frac{\gamma}{\gamma}$	
	6	$\frac{1}{50+00}$	0.00	882.39'		872.50	,	850
	7	50 + 50	0.00	883.98		872.00)'	
	8	51+00	0.00	885.07′		873.70)'	845
	9	51 + 50	0.00	885.96′		877.20)'	
	10	52+00	0.00	886.83′		882.40)'	
	11	52 + 50	0.00	887.68′		885.38	3′	840
	12	52 + 94	4.27	888.16′		885.35	5′	
—	13	53+00	0.00	888.22′	,	888.22	!'	
		P: 860 Ra NC	(919) 878 01 Six For leigh, Nor C License	-9560 rks Road, Forum th Carolina 276° No. F-0112	n 1, Suit 15-3960	e. 700		
,,,,		- wv	igineers vw.rkk.cor	Construction Ma	nagers	Planners S	Scientist	S
	- -	Re	sponsive	People Creativ	e Soluti	uns		
52 + 50			5	3 + 50				

RETAINING WALL NO. 3 MSE WALL EXTERNAL STABILITY SPREADSHEETS

DESIGN SECTION 1

OF TRANSPORTATIONEX 0 - Design Section 1 - Drained AnalysisGEOTECHNICAL ENGINEERING UNIDESIGNED BY:SKDATE:OT/14/21SATTION:48+00-L-MSE Wall External Stability SpreadsheetCHECKED BY:MMDATE:OT/14/21SATTION:48+00-L-MSE Wall Type (See Figures on right)QAttraction of the stability SpreadsheetCHECKED BY:MMDATE:OT/14/21SATTION:48+00-L-MSE Wall Type (See Figures on right)QMSE Wall with Level Backslope and Traffic SurchargeTraffic Surcharge (AASHTO Tables 3.11.6.4-1 & 2)H = 7.50Retained BackfillQ = 240psf twe load traffic surcharge (AASHTO Tables 3.11.6.4-1 & 2)MA diagone from bottom of wall to back of wall height train forcement length (L = H × L/H)Retained BackfillL = 7.50Retained BackfillMA distance from back of wall face to back of cap h = N/AFoundation MaterialMA distance from back of wall face to back of cap h = N/AMA distance from back of wall face to back of cap h = N/ANA distance from back of wall face to back of cap h = N/AMA distance from back of wall face to back of cap h = N/A <th col<="" th=""><th>NORTH CAROLINA DEPARTMENT PROJ</th><th>ECT:</th><th>U-401</th><th>5A</th><th>COUNTY</th><th>Guilford</th></th>	<th>NORTH CAROLINA DEPARTMENT PROJ</th> <th>ECT:</th> <th>U-401</th> <th>5A</th> <th>COUNTY</th> <th>Guilford</th>	NORTH CAROLINA DEPARTMENT PROJ	ECT:	U-401	5A	COUNTY	Guilford
GEOTECHNICAL ENGINEERING UNITDESIGNED BY: K MSE Wall External Stability SpreadsheetCHECKED BY: M MDATE: 07/14/21STATION: 48+00-L- MSE Wall External Stability SpreadsheetCHECKED BY: M MDATE: 07/14/21STATION: 1PAGE: 1OFMSE Wall with Level Backslope and Traffic Surcharge Traffic Surcharge and Wall GeometryGeometrial Stability Spreadsheet CHECKED BY: M MDATE: 07/14/21STATION: 1PAGE: 1OFTraffic Surcharge and Wall GeometryGeometrial Geometryq = 240psfIve load traffic Surcharge (AASHTO Tables 3.11.6.4-1.8.2)HRetained BackfillULH ≥ 0.7 and L ≥ 6 ft per NCDOT MSE Wall Provisions = 1.00 th distance from back of wall face to pol backslope h = N/ARetained BackfillSolpe beinind cap for MSE abutment wall m = N/AMKE Wall with Level Backslope and Traffic Surcharge MSE Wall with Level Backslope and Traffic Surcharge MSE Wall with Level Backslope and Traffic SurchargeValueMA th distance from back of wall face to pol back of cap h = N/AMKE Wall with Level Backfill M = N/AMKE Wall with Infinite Backslope MSE Wall with Infinite Backslope<	OF TRANSPORTATION DESCRIPT	ION:	RW 3	- Design Se	ection 1 - Draine	d Analysis	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GEOTECHNICAL ENGINEERING UNITDESIGNED	BY: SK	DATE:	07/14/21	STATION:	48+00 -L-	
MSE Wall Type (See Figures on right)MSE Wall with Level Backslope and Traffic SurchargeTraffic Surcharge and Wall Geometry $q = 240$ psflive load traffic surcharge (AASHTO Tables $3.11.6.4.1$ & 2) $H = \frac{7.50}{1.00}$ twall design height ratio of reinforcement length to wall height to reinforcement length to wall height to $LH = 0.800$ $L = 6.0$ tratio of reinforcement length to wall height to reinforcement length to wall height to $LH \geq 0.7$ and $L \geq 6$ ft per NCDOT MSE Wall Provision) $Sole = \frac{10.00}{N/A}$ tdistance from back of wall to lowest reinforcement length slope behind wall to distance from back of wall face to top of backslope the length of wall & slope at the back of reinforced zoneType of aggregate used:CoarseFine $\psi_1 = \frac{34}{115}$ degfriction angle unit weight (110 psf for coarse, 34 deg for fine) $\gamma_1 = \frac{115}{115}$ $\phi_2 = \frac{30}{20}$ degfriction angle unit weight $\psi_1 = \frac{22}{120}$ pcfunit weightSoil Parameters for Retained Backfillfriction angle unit weight $\psi_1 = \frac{22}{120}$ pcfunit weight $\phi_1 = \frac{22}{120}$ degfriction angle unit weight $\psi_1 = \frac{22}{120}$ degfriction angle unit weight $\psi_1 = \frac{22}{120}$ friction angle unit weight	MSE Wall External Stability Spreadsheet CHECKED	BY: MM	DATE:	07/21/21	STR. NO.: 1	PAGE: 1 OF	
$\begin{aligned} z &= \frac{N/A}{N} & \text{it} & \text{distance from back of wall face to back of cap} \\ h &= \frac{N/A}{N/A} & \text{ft} & \text{distance from back of wall face to back of cap} \\ h &= \frac{N/A}{N/A} & \text{ft} & \text{height of wall & slope at the back of reinforced zone} \\ \hline \\ Soil Parameters for Reinforced Zone & \hline \\ Type of aggregate used: & \bigcirc Coarse & \widehat{\bullet} Fine & \hline \\ \phi_{1} &= \frac{34}{115} & \text{deg} & \text{friction angle (38 deg for coarse, 34 deg for fine)} \\ \gamma_r &= \frac{34}{115} & \text{pcf} & \text{unit weight (110 psf for coarse, 115 psf for fine)} \\ \hline \\ \hline \\ Soil Parameters for Retained Backfill & \hline \\ \phi_{b} &= \frac{30}{120} & \text{pcf} & \text{friction angle} \\ \gamma_{1} &= \frac{28}{120} & \text{pcf} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{28}{120} & \text{pcf} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{28}{120} & \text{pcf} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{28}{120} & \text{pcf} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{28}{120} & \text{pcf} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{28}{120} & \text{pcf} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{28}{120} & \text{pcf} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{28}{120} & \text{pcf} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{28}{120} & \text{pcf} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{28}{120} & \text{pcf} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{7}{10} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{7}{10} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{7}{10} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{7}{10} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{7}{10} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{7}{10} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{7}{10} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{7}{10} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{7}{10} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{7}{10} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{7}{10} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{7}{10} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{7}{10} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{7}{10} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{7}{10} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{7}{10} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{7}{10} & \text{friction Material} \\ \hline \\ \phi_{r} &= \frac{7}{10} & \text{friction Material} \\ \hline \\$	MSE Wall Type (See Figures on right)MSE Wall with Level Backslope and Traffic SurchargTraffic Surcharge and Wall Geometry $q = 240$ psflive load traffic surcharge (AASHTO Tables 3) $H = 7.50$ ftwall of ratio of reinforcement length at the figure of the colspan="2">Colspan="2">Wall of the colspan="2">Wall of the colspan="2">Traffic Surcharge and Wall Geometry $q = 240$ psflive load traffic surcharge (AASHTO Tables 3) $H = 7.50$ ftwall of the colspan="2">wall of the colspan="2">Wall of the colspan="2">Wall of the colspan="2">Wall of the colspan="2">Traffic Surcharge and Wall Geometry $q = 240$ psflive load traffic surcharge (AASHTO Tables 3) $H = 7.50$ ftwall of the colspan="2">wall of the colspan="2">Wall of the colspan="2">Wall of the colspan="2">Wall of the colspan="2">Traffic Surcharge and Wall Geometry $q = 240$ psflive load traffic surcharge (AASHTO Tables 3) $H = 7.50$ ftwall of the colspan="2">wall of the colspan="2">Wall of the colspan="2">Traffic Surcharge (AASHTO Tables 3) $H = 7.50$ ftwall of the colspan="2">wall of the colspan="2">Wall of the colspan="2">Traffic Surcharge (AASHTO Tables 3) $L = 6.0$ ftratio of reinforcement length to colspan="2">(L/H ≥ 0.7 and $L \ge 6$ ft per NCDOT MSE W $S = 1.00$ ftdistance from bottom of wall to lowest reinforcement length to colspan="2">Slope $S = N/A$ ftdistance from back of wall face to top $T = N/A$ ftdistance from back of wall face to top	3.11.6.4-1 & 2) design height to wall height $(L = H \times L/H)$ 'all Provision) rcement layer e behind wall of backslope	H D _w MS	E Wall with Le	q forced Soil Mass ه : ۲۲ : ۲۲ S Foundatio y of : ۲۲ : evel Backslope and	Retained Backfill $\phi_{\rm b}, \gamma_{\rm b}, K_{\rm a_b}$ n Material $c_{\rm f}, \mu_{\rm f}$ I Traffic Surcharge $H_{\rm Stope}$	
Foundation MaterialType of aggregate used:Foundation Material $\phi_r = 34$ degfriction angle (38 deg for coarse, 34 deg for fine)Multicle Solution Material $\phi_r = 34$ degfriction angle (38 deg for coarse, 34 deg for fine)MSE Wall with Infinite Backslope $\gamma_r = 115$ pcfunit weight (110 psf for coarse, 115 psf for fine)MSE Wall with Infinite BackslopeSoil Parameters for Retained Backfillfriction angleg $\phi_b = 30$ degfriction anglefriction angle $\gamma_b = 120$ pcfunit weighthSoil Parameters for Foundation Material $\phi_r = 28$ degfriction angle $\gamma_r = 120$ pcffriction angle $\gamma_r = 120$ pcffriction angle $\gamma_r = 120$ friction Material $\phi_r = 28$ degfriction angle $\gamma_r = 120$ friction angle $\gamma_r = 120$ $\gamma_r = 120$ <	$z = \frac{N/A}{M}$ if the ight of solid behind cap for MSE and the indication of the i	butment wall back of cap nforced zone	^h н		Φτ; Υτ. ; μ- L	Retained Backfill ϕ_b , γ_b , K_{a_b}	
Type of aggregate used: Coarse Fine $\phi_r = 34$ deg friction angle (38 deg for coarse, 34 deg for fine) $\gamma_r = 115$ pcf unit weight (110 psf for coarse, 115 psf for fine) Soil Parameters for Retained Backfill $\phi_b = 30$ deg friction angle unit weight unit weight unit weight friction angle unit weight friction angle unit weight friction angle unit weight $\phi_r \gamma_r : \mu$ Retained Backfill $\phi_r = 28$ deg for Foundation Material $\phi_r \gamma_r : \mu$ Foundation Material $\phi_r \gamma_r : \mu$				0+	Foundatio	n Material	
	Type of aggregate used: O Coarse Sine		v		γ φ _f ,γ _f ,	C _f , μ _f	
$\gamma_{r} = \underbrace{115} \text{ pcf} \qquad unit weight (110 \text{ psf for coarse, 115 psf for fine})$ Soil Parameters for Retained Backfill $\phi_{b} = \underbrace{30}_{\gamma_{b}} \text{ deg}_{pcf} \qquad friction angle}_{unit weight}$ $\frac{\text{Reinforced Soil Mass}}{h + \gamma_{r} + \mu}$ Retained Backfill $\phi_{r} = \underbrace{28}_{\gamma_{f}} \text{ deg}_{pcf} \qquad friction angle}_{unit weight}$ $\phi_{r} = \underbrace{28}_{\gamma_{f}} \text{ deg}_{pcf} \qquad friction angle}_{unit weight}$	$\phi_r = 34$ deg friction angle (38 deg for coarse, 34	deg for fine)		MSE Wa	all with Infinite Bac	kslope q	
Soil Parameters for Retained Backfill $\phi_b = 30$ deg friction angle $\gamma_b = 120$ pcf unit weight Soil Parameters for Foundation Material $\phi_f = 28$ deg friction angle $\gamma_f = 120$ pcf friction angle p Unit weight Foundation Material $\phi_r = 28$ deg friction angle p Pw Foundation Material $\phi_r, \gamma_t, c_t, \mu_t$ $\phi_r, \gamma_t, c_t, \mu_t$	$\gamma_r = 115$ pcf unit weight (110 psf for coarse, 115	5 psf for fine)		-	d		
	Soil Parameters for Poteined Packfill		ł				
				Rein	forced Soil Mass	• slope	
$\phi_{f} = \begin{array}{c} 28 \\ \gamma_{f} = \end{array} \begin{array}{c} 120 \\ pcf \end{array} \begin{array}{c} friction \ angle \\ unit \ weight \end{array} \begin{array}{c} \bullet \\ \bullet $	$\phi_{b} = \begin{array}{c} 30 \\ \gamma_{b} = \end{array} \begin{array}{c} 30 \\ pcf \end{array}$ Soil Parameters for Foundation Material	friction angle unit weight	h Н		ф., у, . µ. 	Retained Backfill $\phi_b, \gamma_b, K_{a_b}$	
$\gamma_{\rm f} = \frac{120}{\rm pcf} \qquad \qquad$		friction angle	• •	_	s		
$\nabla \phi_{f}, \gamma_{f}, c_{f}, \mu_{f}$	$\gamma_{t} = \frac{120}{120} \text{ pcf}$	unit weight	Dw]		Foundatio	n Material	
$c_{f} = 0$ psf undrained shear strength of the foundation material	$c_{f} = 0$ psf undrained shear strength of the foundation	ation material			γ φf,γf,	c _f , μ _f	
$D_w = 23.00$ ft distance of water table below bottom of the wall	$D_w = 23.00$ ft distance of water table below botto	m of the wall				a	
				<			
Load Factors (AASHTO Table 3.4.1-1 and 2)	Load Factors (AASHTO Table 3.4.1-1 and 2)		1 z1				
$\Psi_{LS} = 1.75$ $\Psi_{LS} = 1.50$ <i>live load surcharge Soit Mass A s s s s s s s s s s</i>	$\Psi_{LS} = 1.75$ $\Psi_{EH(A)} = 1.50$ <i>live los horizontal (active) ea</i>	ad surcharge arth pressure			Soil Mass		
$\Psi_{EV} = \frac{1.00}{1.35} \text{ min} \text{ vertical dead load generated from earth fill} } \mathbf{H} \text{ h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} $	$\Psi_{\text{EV}} = \underbrace{\begin{array}{c} 1.00 \\ 1.35 \end{array}}_{\text{max}} \text{ wertical dead load generated is}$ Resistance Factors (AASHTO Table 11.5.7-1)	from earth fill	H h		S L	Retained Backfill $\phi_{b}, \gamma_{b}, K_{a_{-}b}$	
Foundation Material			Þ,		Foundatio	n Material	
φ _b = 0.05 bearing resistance for MSE walls Image: the standard stand		or MSE walls		MSE Wall Bridg	, φr, γr, ge Abutment with I L FIGURES ARE NC	cr, µr Pile Foundation OT TO SCALE)	

DISCLAIMER: The application of this spreadsheet is the responsibility of the user. It is imperative that the user understands the potential accuracy limitations and examines the reasonableness of the results with engineering knowledge and experience. Thereare no expressed or implied warrantie

NORTH CAROLINA DEPARTMEN	T PROJECT:		U-4015	A	COUNTY		Guilford		
OF TRANSPORTATION	DESCRIPTION:		RW 3	- Design Se	ection 1 - Dra	ainec	l Analysis		
GEOTECHNICAL ENGINEERING UNIT	DESIGNED BY:	SK	DATE:	07/14/21	STATION:		48+00 -L-		
MSE Wall External Stability Spreadsheet	CHECKED BY:	MM	DATE:	07/21/21	STR. NO.:	1	PAGE: 2	OF	8
	-		_		-				

Summary of External Stability Analysis - MSE Wall with Level Backslope and Traffic Surcharge

(ieometry of Reinforced Soil Mass				
	H = wall height	7.50 ft			
	L/H = ratio of reinforcement length to wall height (must be greater than or equal to 0.700)	0.800			
	L = reinforcement length (must be greater than or equal to 6 ft)	6.00 ft			

Forces Acting on Wall - Vertical Direction

V _{1(LLR)} = vertical force from reinforced soil mass acting at the lowest level of reinforcement	4,485 lbs			
$V_{1(BW)}$ = vertical force from reinforced soil mass acting at the base of the wall				
V_2 = vertical force from the retained fill above the reinforced soil mass				
F _{V(LLR)} = vertical force generated from lateral earth pressure at the lowest level of reinforcement	0 lbs			
$F_{V(BW)}$ = vertical force generated from lateral earth pressure at the base of the wall	0 lbs			

Forces Acting on Wall - Horizontal Direction

$F_{H(LLR)}$ = horizontal force generated from lateral earth pressure at the lowest level of reinforcement	844 lbs
$F_{H(BW)}$ = horizontal force generated from lateral earth pressure at the base of the wall	1,124 lbs
$F_{2(LLR)}$ = horizontal force generated from traffic surcharge, acting at the lowest level of reinforcement	519 lbs
$F_{2(BW)}$ = horizontal force generated from traffic surcharge, acting at the base of the wall	599 lbs
$ \mathbf{F}_{P} $ = total horizontal force acting on the back of the MSE wall (wall contact pressure under service loads)	1,723 lbs

Sliding Stability - at the interface between the soil and reinforcement for the lowest reinforcement layer

R _{R(LLR)} = sliding resistance at the interface between the soil and reinforcement for the lowest reinforcement layer				
P _{d(LLR)} = horizontal driving force at the interface between the soil and reinforcement for the lowest reinforcement layer	2,175 lbs			
$R_{R(LLR)}$ must be greater than or equal to $P_{d(LLR)}$	OK			

Sliding Stability - at the base of the bottom of the wall facing

$R_{R(BW)}$ = sliding resistance at the base of the bottom of the wall facing				
$P_{d(BW)}$ = horizontal driving force at the base of the bottom of the wall facing	2,735 lbs			
R _{R(BW)} must be greater than or equal to P _{d(BW)}	OK			

Overturning / Limiting Eccentricity

e = eccentricity	1.57 ft
L/3	2.00 ft
e must be less than or equal to L / 3	OK

Bearing Resistance - General Shear

q _r = factored bearing resistance	2,788 lbs
q _{uniform} = factored bearing pressure at the base of the wall	2,221 lbs
q _R must be greater than or equal to q _{uniform}	OK

Bearing Resistance - Local / Punching Shear (only applicable to soils with cohesion)

q _r = reduced factored bearing resistance	N/A
q _{uniform} = factored bearing pressure at the base of the wall	N/A
q _R must be greater than or equal to q _{uniform}	N/A

 $\varphi_{f}=\;\varphi_{b}$

- δ = friction angle between fill and wall = β per AASHTO Article 11.10.5.2
- β = inclination angle of backslope = 0 for level backslope
- θ = angle of back face of wall to the horizontal = 0 degrees for vertical wall face

φ _b	ο δ β		K _{a_b}	
(deg)	g) (deg) (deg)		(lbs)	
120	0	0	0.333	

	NORTH CAROLINA D	EPARTM	ENT	PROJEC	Г:	U-4018	5A	COUNTY	Guilford	
	OF TRANSPORTATIO	Ν	DESC	CRIPTION	۷:	RW 3	3 - Design S	ection 1 - Draine	d Analysis	
	GEOTECHNICAL ENGINI	EERING U	NITDESI	GNED B	/: SK	DATE:	07/14/21	STATION:	48+00 -L-	-
	MSE Wall External Stability	Spreadshe	et CHE	CKED BY	: MM	DATE:	07/21/21	STR. NO.: 1	PAGE: 4	OF 8
	Acting on Wolf continu	a d								
Forces	Acting on wall - continu	lea								
Forces G	enerated from Lateral (Active	<u>e) Earth Pr</u>	essure -	continue	<u>t</u>					
$F_{1(LLR)} = t$	otal force generated from lat	eral earth	pressure	, acting at	t the interf	ace betw	een the soil	and reinforceme	ent	
f	or the lowest reinforcement I	ayer								
= 0	$0.5(\gamma_{\rm b})({\rm H-s})^2({\rm K}_{{\rm a}_{\rm b}})$						F	HWA GEC 011	Eqn. 4-5 (mod	ified)
$F_{1(BW)} = t$	otal force generated from lat	eral earth i	pressure	, acting at	t the base	of the bo	ottom of the	wall facing		
= 0	$0.5(\gamma_{\rm b})({\rm H}^2)({\rm K}_{{\rm a}_{-}{\rm b}})$							FHWA	GEC 011 Eqn	. 4-5
	Г	γ' _b	Н	S	K	F _{1(LLR)}	F _{1(BW)}			
		(psf)	(ft)	(ft)	⊾a_b	(lbs)	(lbs)			
		120	7.50	1.00	0.333	844	1,124			
Horizonta	I Forces Generated from Tra	affic Surcha	arde							
E _{2(1 B)} = t	otal horizontal force generate	ed from tra	ffic surch	narge, act	ina at the	interface	between the	e soil and reinfor	cement	
f	or the lowest reinforcement I	aver		U /	0					
= (q)(H -s)(K _{a_b})	.,					F	HWA GEC 011	Eqn. 4-6 (mod	ified)
$F_{\alpha \beta \mu \alpha} = t$	otal horizontal force generate	ed from tra	ffic surch	narge act	ing at the	base of t	he bottom o	f the wall facing		
= (q)(H)(K _{a_b})			large, aet	ing at the			FHWA	GEC 011 Eqn	o. 4- 6
		q	н	s		F _{2(11 B}	$F_{2(BW)}$]		
		(psf)	(ft)	(ft)	κ _{a_b}	(lbs)	(lbs)			
		240	7.50	1.00	0.333	519	599]		
Wall Con	tact Pressure Under Service	Loads								
The wall	contact pressure under servi	ce loads is	equal to	the total	horizontal	force act	tina on the b	ack of the wall		
M-" 0		_								
Wall Con	tact Pressure, $F_P = F_{1(BW)} + I$	2(BW)								
			F _{1(BW)}	F _{2(BW)}	F _P	7				
			(lbs)	(lbs)	(lbs)					

1,723

1,124

599

Sliding Stability at the Interface between the Soil and Reinforcement for the Lowest Reinforcement Layer

R_{R(LLR)} = sliding resistance at the interface between the soil and reinforcement for the lowest reinforcement layer

 $= \phi R_N = \phi_\tau R_{\tau(LLR)}$

R_{t(LLR)} = nominal sliding resistance at the interface between the soil and reinforcement for the lowest reinforcement layer

= $\Psi_{EV}(V_{1(LLR)})\mu_{(LLR)}$

 $\mu_{(LLR)}$ = coefficient of friction at interface between the soil and reinforcement for the lowest AASHTO 11.10.5.3 reinforcement layer

Because the type of reinforcement, continous (e.g., grids) or discontinous (e.g, strips), is not determined at the time of the analysis, the coefficent of friction is taken as the lesser of ϕ_r and ρ , where ρ is the soil-reinforcement interface friction angle. The value of ρ is taken as the lowest value for all NCDOT approved MSE wall geogrids based on the use of either fine or coarse aggregate in the reinforced zone.

All other variables have previously been defined

φ _t	$\Psi_{\text{EV}}{}^{\star}$	V _{1(LLR)} (lbs)	φ _r (deg)	ρ (deg)	$\mu_{(LLR)}$	R _{τ(LLR)} (Ibs)	R _{R(LLR)} (Ibs)
1.00	1.00	4,485	34.00	28.35	0.540	2,422	2,422

*Note - Use minimum value of Ψ_{EV} for sliding resistance per FHWA GEC 011 4.4.6.a, AASHTO C3.4.1, and AASHTO C11.5.5

P_{d(LLR)} = horizontal driving force at the interface between the soil and reinforcement for the lowest reinforcement layer

 $= (\Psi_{\text{EHA}})(\mathsf{F}_{1(\text{LLR})}) + (\Psi_{\text{LS}})(\mathsf{F}_{2(\text{LLR})})$

Ψ_{EHA}	F _{1(LLR)} (Ibs)	Ψ_{LS}	F _{2(LLR)} (lbs)	P _{d(LLR)} (lbs)
1.50	519	1.75	844	2,175

FHWA GEC 011 Eqn. 4-9

AASHTO Eqn. 10.6.3.4-1

FHWA GEC 011 Eqn. 4-12

NORTH CAROLINA DEPARTMENT	PROJECT:		U-4015	A	COUNTY		Guilford	
OF TRANSPORTATION DESCRIPTION:		RW 3 - Design Section 1 - Drained Analy					Analysis	
GEOTECHNICAL ENGINEERING UNITE	DESIGNED BY:	SK	DATE:	07/14/21	STATION:		48+00 -L-	
MSE Wall External Stability Spreadsheet	CHECKED BY:	MM	DATE:	07/21/21	STR. NO.:	1	PAGE: 6 OF	8

Sliding Stability and Eccentricity (Overturning) - continued

Sliding Stability at the Interface between the Soil and Reinforcement for the Lowest Reinforcement Layer - continued

 $R_{R(LLR)}$ must be greater than or equal to $P_{d(LLR)}$

R _{R(LLR)} (lbs)	P _{d(LLR)} (lbs)	$R_{R(LLR)} \ge P_{d(LLR)}$
2,422	2,175	OK

Sliding Resistance at the Base of the Bottom of the Wall Facing

 $R_{R(BW)}$ = sliding resistance at the base of the bottom of the wall facing

$$= \phi R_N = \phi_\tau R_{\tau(BW)}$$

 $R_{t(BW)}$ = nominal sliding resistance at the base of the bottom of the wall facing

 $= \Psi_{EV}(V_{1(BW)})\mu_{(BW)} + (c_f)(L)$

FHWA GEC 011 Eqn. 4-12 and AASHTO 10.6.3.4

AASHTO Eqn. 10.6.3.4-1

AASHTO 11.10.5.3

FHWA GEC 011 Eqn. 4-9

 $\mu_{(BW)}$ = coefficient of friction at the base of the bottom of the wall facing

If the lowest reinforcement layer is above the bottom of the wall facing, to check sliding at the base of the wall, the friction angle of the foundation soil, ϕ_f , or reinforced fill soil, ϕ_f , whichever is less, shall be used to assess sliding resistance.

All other variables have previously been defined

φ _t	$\Psi_{\text{EV}}{}^{*}$	V _{1(BW)} (Ibs)	φ _r (deg)	$\mu_{(BW)}$	c _f (psf)	L (ft)	R _{τ(BW)} (lbs)	R _{R(BW)} (Ibs)
1.00	1.00	5,175	34.00	0.532	0	6.00	2,753	2,753

*Note - Use minimum value of Ψ_{EV} for sliding resistance per FHWA GEC 011 4.4.6.a, AASHTO C3.4.1, and AASHTO C11.5.5

 $P_{d(BW)}$ = horizontal driving force at the base of the bottom of the wall facing

 $= (\Psi_{EHA})(F_{1(BW)}) + (\Psi_{LS})(F_{2(BW)})$

Ψ_{EHA}	F _{1(BW)}	F _{1(BW)}		P _{d(BW)}	
	(lbs)	(lbs) Ψ _{LS}		(Ibs)	
1.50	599	1.75	1,124	2,735	

 $R_{R(BW)}$ must be greater than or equal to $P_{d(BW)}$

$R_{R(BW)}$	$P_{d(BW)}$	$R_{R(BW)} \geq P_{d(BW)}$
(lbs)	(lbs)	
2,753	2,735	ОК

Eccentricity (Overturning)

 $e = \frac{\Psi_{EHA}F_{1(BW)}(H/3) + \Psi_{LS}F_{2(BW)}(H/2)}{\Psi_{EV}V_{1(BW)}} \text{ must be } \leq L / 3$

FHWA GEC 011 Eqn. 4-15 and AASHTO 10.6.3.3

Ψ_{EHA}	F _{1(BW)}	H/3	Ψ_{LS}	F _{2(BW)}	H/2	$\Psi_{\text{EV}}{}^{*}$	V _{1(BW)}	e (#)	L/3	e ≤ L/3
	(IDS)	(π)		(adi)	(π)		(IDS)	(π)	(π)	
1.50	1,124	2.50	1.75	599	3.75	1.00	5,175	1.57	2.00	ок

*Note - Use minimum value of Ψ_{EV} for eccentricity per FHWA GEC 011 4.4.6.b, AASHTO C3.4.1, and AASHTO C11.5.5

NORTH CAR	OLINA DEP	ARTMEN	IT PR	OJECT:		U-4015	5A	COUNTY	Guilford
OF TRANSPO	ORTATION		DESCR	IPTION:		RW 3	3 - Design Se	- ection 1 - Dra	ined Analysis
GEOTECHNIC	L ENGINEEF		DESIG	NED BY:	SK	DATE:	07/14/21	STATION:	48+00 -L-
MSE Wall Extern	al Stability Spr	eadsheet	CHEC	KED BY:	MM	DATE:	07/21/21	STR. NO.:	1 PAGE: 8 OF 8
Bearing Resistance - c Bearing Resistance for Ger $q_{uniform} = \sigma_{V-F} = factored be$ $= \frac{\Psi_{EV}V_{1(BW)} + \Psi}{L - 2e_B}$	ontinued eral Shear Fa aring pressure LsqL Ψ _{EV} * 1.35	uilure - con e at the ba V _{1(BW)} (Ibs) 5,175	n <u>tinued</u> ase of the Ψ _{LS} 1.75	e wall q (psf) 240	L (ft) 6.00	e (f) 0.4	^e B q _{uniforr} t) (psf) 86 2,221	FHW	'A GEC 011 Eqn. 4-20
*Note - Use the	maximum va	lue of Ψ _{EV}	, per FH	WA GEC	011 4.4.	6.c, AA	SHTO C3.4. ⁷	1, and AASH	ITO C11.5.5
q _R must be greater than or o	equal to q _{uniforr}	n						FHW	'A GEC 011 Eqn. 4-17
		q (p:	a _r q _i sf) (uniform psf)	q _r ≥ q	uniform			
		2,7	788 2	,221	ОК				
Bearing Resistance for Loc	al Shear Failu	re							
Local and Punching shear f failure will only be considered	ailure occurs i ed for foundat	in loose or ion materia	^r compre al that is	ssible soil cohesive	ls and in	weak so	oils under slo	ow (drained)	loading. This mode of
To prevent Local/Punching	Shear on wea	ak cohesiv	e soils, (γ _r)(H) ≤ 3α	C _f			FHW	'A GEC 011 Eqn. 4-24
:	The found	lation n	nateria	al for th	nis pro	oject is	s not coh	nesive	

DESIGN SECTION 2

NORTH CAROLINA DEPARTMENT PROJECT:	U-4015A COUNTY Guilford
OF TRANSPORTATION DESCRIPTION:	RW 3 - Design Section 2 - Drained Analysis
GEOTECHNICAL ENGINEERING UNIIDESIGNED BY: SK	DATE: 07/14/21 STATION: 48+00 -L-
MSE Wall External Stability Spreadsheet CHECKED BY: MM	DATE: 07/21/21 STR. NO.: 1 PAGE: 1 OF 8
MSE Wall Type (See Figures on right) MSE Wall with Level Backslope and Traffic Surcharg	q
Troffic Surphares and Wall Coomstru	φ, , γ, , μ,
	Retained Backfill
q = 240 psf live load traffic surcharge (AASHTO Tables 3.11.6.4-1 & 2)	^{···} φ ₀ , _η , κ _{α_0}
I/H = 0.700 ratio of reinforcement length to wall beight	Foundation Material
$L = 9.8 \text{ ft}$ $reinforcement length (l = H \times 1/H)$	
$(L/H \ge 0.7 \text{ and } L \ge 6 \text{ ft per NCDOT MSE Wall Provision})$	MSE Wall with Level Backslope and Traffic Surcharge
s = 1.00 ft distance from bottom of wall to lowest reinforcement layer	Vstore
Slope = N/A : 1 (H _{slope} : V _{Slope}) slope behind wall	H _{Slope}
$d = \frac{N/A}{ft}$ $z = \frac{N/A}{ft}$ $distance from back of wall face to top of backslope$ $height of soil behind cap for MSE abutment wall$ $distance from back of wall face to back of applications of the back of applications of the back of the bac$	Reinforced Soil Mass
$h = \frac{N/A}{ft}$ the ight of wall & slope at the back of reinforced zone	$H = \frac{E}{s_{0}}$ Retained Backfill $\phi_{0}, \gamma_{0}, K_{a_{0}}$
Soil Parameters for Reinforced Zone	Foundation Material
Type of aggregate used: O Coarse Fine	D_{W} $\phi_{f}, \gamma_{f}, c_{f}, \mu_{f}$
$\phi_r = 34$ deg friction angle (38 deg for coarse, 34 deg for fine)	MSE Wall with Infinite Backslope
$\gamma_r = 115$ pcf unit weight (110 psf for coarse, 115 psf for fine)	
	V _{Stope}
Soil Parameters for Retained Backfill	
$\phi_{\rm b} = 30$ deg friction angle	φ.γ.μ
$\gamma_b = 120 \text{ pcf}$ unit weight	h H H H
Soil Parameters for Foundation Material	
$\phi_{\rm f} = 28$ deg friction angle	
$\gamma_f = 120$ pcf unit weight	D_w Foundation Material $\phi_f, \gamma_f, c_f, \mu_f$
$c_f = 0$ psf undrained shear strength of the foundation material	MSE Wall with Broken Backslope
$D_w = 23.00$ ft distance of water table below bottom of the wall	→ w → q
Load Factors (AASHTO Table 3.4.1-1 and 2)	
$\Psi_{LS} = 1.75$ live load surcharge	Reinforced Soil Mass
$\Psi_{EH(A)} = 1.50$ horizontal (active) earth pressure	Фг з Уг з 1 4с
$\Psi_{\rm EV} = \begin{array}{c} 1.00 \\ 1.35 \end{array} \text{min} \\ \text{max} \end{array} \text{ vertical dead load generated from earth fill}$	H h L Retained Backfill φ _b , γ _b , K _{a_b}
Resistance Factors (AASHTO Table 11.5.7-1)	Foundation Material
$ \phi_{\rm b} = 0.65 $ bearing resistance for MSE walls	D _w φ ₁ , γ ₁ , c ₁ , μ ₁
$ \varphi_t = 1.00 $ sliding resistance for MSE walls	MSE Wall Bridge Abutment with Pile Foundation (MSE WALL FIGURES ARE NOT TO SCALE)
DICCI ANNER. The employed an of this encodebact is the memory it if the same	is importative that the user understands the potential accuracy

DISCLAIMER: The application of this spreadsheet is the responsibility of the user. It is imperative that the user understands the potential accuracy limitations and examines the reasonableness of the results with engineering knowledge and experience. Thereare no expressed or implied warrantie

NORTH CAROLINA DEPARTMENT	PROJECT:		U-4015	A	COUNTY		Guilfo	rd	
OF TRANSPORTATION	DESCRIPTION:		RW 3	- Design Se	ection 2 - Dra	ined A	Analysis		
GEOTECHNICAL ENGINEERING UNIT	DESIGNED BY:	SK	DATE:	07/14/21	STATION:		48+00	-L-	
MSE Wall External Stability Spreadsheet	CHECKED BY:	MM	DATE:	07/21/21	STR. NO.:	1	PAGE:	2_ OF	8
	-		_						

Summary of External Stability Analysis - MSE Wall with Level Backslope and Traffic Surcharge

(Geometry of Reinforced Soil Mass	
	H = wall height	14.00 ft
	L/H = ratio of reinforcement length to wall height (must be greater than or equal to 0.700)	0.700
	L = reinforcement length (must be greater than or equal to 6 ft)	9.80 ft

Forces Acting on Wall - Vertical Direction

V _{1(LLR)} = vertical force from reinforced soil mass acting at the lowest level of reinforcement	14,651 lbs				
V _{1(BW)} = vertical force from reinforced soil mass acting at the base of the wall	15,778 lbs				
V ₂ = vertical force from the retained fill above the reinforced soil mass					
F _{V(LLR)} = vertical force generated from lateral earth pressure at the lowest level of reinforcement	0 lbs				
$F_{V(BW)}$ = vertical force generated from lateral earth pressure at the base of the wall	0 lbs				

Forces Acting on Wall - Horizontal Direction

$F_{H(LLR)}$ = horizontal force generated from lateral earth pressure at the lowest level of reinforcement	3,377 lbs
$F_{H(BW)}$ = horizontal force generated from lateral earth pressure at the base of the wall	3,916 lbs
F _{2(LLR)} = horizontal force generated from traffic surcharge, acting at the lowest level of reinforcement	1,039 lbs
$F_{2(BW)}$ = horizontal force generated from traffic surcharge, acting at the base of the wall	1,119 lbs
F _P = total horizontal force acting on the back of the MSE wall (wall contact pressure under service loads)	5,035 lbs

Sliding Stability - at the interface between the soil and reinforcement for the lowest reinforcement layer

R _{R(LLR)} = sliding resistance at the interface between the soil and reinforcement for the lowest reinforcement layer				
P _{d(LLR)} = horizontal driving force at the interface between the soil and reinforcement for the lowest reinforcement layer	6,884 lbs			
$R_{R(LLR)}$ must be greater than or equal to $P_{d(LLR)}$	OK			

Sliding Stability - at the base of the bottom of the wall facing

$R_{R(BW)}$ = sliding resistance at the base of the bottom of the wall facing				
$P_{d(BW)}$ = horizontal driving force at the base of the bottom of the wall facing	7,832 lbs			
R _{R(BW)} must be greater than or equal to P _{d(BW)}	OK			

Overturning / Limiting Eccentricity

e = eccentricity	2.61 ft
L/3	3.27 ft
e must be less than or equal to L / 3	ОК

Bearing Resistance - General Shear

q _r = factored bearing resistance	4,272 lbs
q _{uniform} = factored bearing pressure at the base of the wall	3,874 lbs
q _R must be greater than or equal to q _{uniform}	OK

Bearing Resistance - Local / Punching Shear (only applicable to soils with cohesion)

q _r = reduced factored bearing resistance	N/A
q _{uniform} = factored bearing pressure at the base of the wall	N/A
q _R must be greater than or equal to q _{uniform}	N/A

$$= \frac{\sin^2(\theta + \phi'_f)}{\Gamma[\sin^2\theta\sin(\theta - \delta)]} \quad \text{where} \quad \left[1 + \sqrt{\frac{\sin(\phi'_f + \delta)\sin(\phi'_f - \beta)}{\sin(\theta - \delta)\sin(\theta + \beta)}}\right]$$

 $\phi_{f} = \phi_{b}$

 δ = friction angle between fill and wall = β per AASHTO Article 11.10.5.2

 β = inclination angle of backslope = 0 for level backslope

 θ = angle of back face of wall to the horizontal = 0 degrees for vertical wall face

₀	δ	β	K _{a_b}
(deg)	(deg)	(deg)	(lbs)
120	0	0	0.333

AASHTO Equations 3.11.5.3-1 and 2

	NORTH CAROLINA D	EPARTME	NT P	ROJECT	:	U-4015	A	COUNTY	Guilford
	OF TRANSPORTATIO	Ν	DESC	RIPTION	l:	RW 3	- Design S	ection 2 - Draii	ned Analysis
	GEOTECHNICAL ENGINE	EERING UN	II DESIC	GNED BY	′: SK	DATE:	07/14/21	STATION:	48+00 -L-
	MSE Wall External Stability	Spreadshee	t CHE	CKED BY	': MM	DATE:	07/21/21	STR. NO.:	1 PAGE: 4 OF 8
Forces	Acting on Wall - continu	ed							
Forces G	enerated from Lateral (Active	e) Earth Pre	ssure - a	continued	1				
$F_{1(LLR)} = t$ f	otal force generated from lat or the lowest reinforcement I $0.5(\gamma_b)(H-s)^2(K_{a_b})$	eral earth p ayer	ressure,	acting at	the interf	ace betwe	en the soil F	and reinforcen	nent 1 Eqn. 4-5 (modified)
$F_{1(BW)} = t$	otal force generated from lat	eral earth p	ressure,	acting at	the base	of the bot	tom of the	wall facing	
= 0	$0.5(\gamma_b)(H^2)(K_{a_b})$							FHW	/A GEC 011 Eqn. 4-5
	Γ	γ' _b (psf)	H (ft)	s (ft)	K _{a_b}	F _{1(LLR)} (Ibs)	F _{1(BW)} (lbs)		
	E	120 1	4.00	1.00	0.333	3,377	3,916		
Horizonta	I Foreas Constant from Tra	offic Surcha							
$F_{2(LLR)} = t$ f = (otal horizontal force generate or the lowest reinforcement I q)(H -s)(K _{a_b})	ed from traff ayer	ic surch:	arge, acti	ng at the	interface	between the F	e soil and reinf	orcement 1 Eqn. 4-6 (modified)
$F_{2(BW)} = t$	otal horizontal force generate	ed from traff	ic surcha	arge, acti	ng at the	base of th	e bottom o	f the wall facing	g
= ((q)(H)(K _{a_b})							FHW	/A GEC 011 Eqn. 4-6
		q (psf)	H (ft)	s (ft)	K _{a_b}	F _{2(LLR)} (lbs)	F _{2(BW)} (lbs)		
		240	14.00	1.00	0.333	1,039	1,119]	
Wall Con	tact Pressure Under Service	Loads							
The wall	contact pressure under servi	ce loads is e	equal to	the total l	horizonta	l force acti	ng on the b	ack of the wal	I
Wall Con	tact Pressure, $F_P = F_{1(BW)} + F_{1(BW)}$	2(BW)							
		Ĺ	F _{1(BW)} (lbs)	F _{2(BW)} (lbs)	F _P (lbs)				
			3,916	1,119	5,035				

Sliding Stability at the Interface between the Soil and Reinforcement for the Lowest Reinforcement Layer

R_{R(LLR)} = sliding resistance at the interface between the soil and reinforcement for the lowest reinforcement layer

 $= \phi R_N = \phi_\tau R_{\tau(LLR)}$

R_{t(LLR)} = nominal sliding resistance at the interface between the soil and reinforcement for the lowest reinforcement layer

 $= \Psi_{\rm EV}(V_{1(\rm LLR)})\mu_{\rm (LLR)}$

 $\mu_{(LLR)}$ = coefficient of friction at interface between the soil and reinforcement for the lowest AASHTO 11.10.5.3 reinforcement layer

Because the type of reinforcement, continous (e.g., grids) or discontinous (e.g, strips), is not determined at the time of the analysis, the coefficent of friction is taken as the lesser of ϕ_r and ρ , where ρ is the soil-reinforcement interface friction angle. The value of ρ is taken as the lowest value for all NCDOT approved MSE wall geogrids based on the use of either fine or coarse aggregate in the reinforced zone.

All other variables have previously been defined

φ _t	$\Psi_{\text{EV}}{}^{*}$	V _{1(LLR)} (lbs)	φ _r (deg)	ρ (deg)	$\mu_{(LLR)}$	R _{τ(LLR)} (Ibs)	R _{R(LLR)} (lbs)
1.00	1.00	14,651	34.00	28.35	0.540	7,912	7,912

*Note - Use minimum value of Ψ_{EV} for sliding resistance per FHWA GEC 011 4.4.6.a, AASHTO C3.4.1, and AASHTO C11.5.5

P_{d(LLR)} = horizontal driving force at the interface between the soil and reinforcement for the lowest reinforcement layer

 $= (\Psi_{\text{EHA}})(\mathsf{F}_{1(\text{LLR})}) + (\Psi_{\text{LS}})(\mathsf{F}_{2(\text{LLR})})$

Ψ_{EHA}	F _{1(LLR)} (Ibs)	Ψ_{LS}	F _{2(LLR)} (lbs)	P _{d(LLR)} (lbs)
1.50	1,039	1.75	3,377	6,884

FHWA GEC 011 Eqn. 4-9

AASHTO Eqn. 10.6.3.4-1

FHWA GEC 011 Eqn. 4-12
NORTH CAROLINA DEPARTMENT	PROJECT:		U-4015	A	COUNTY		Guilford	
OF TRANSPORTATION	DESCRIPTION:		RW 3	- Design Se	ection 2 - Dra	ined	l Analysis	
GEOTECHNICAL ENGINEERING UNITE	ESIGNED BY:	SK	DATE:	07/14/21	STATION:		48+00 -L-	
MSE Wall External Stability Spreadsheet	CHECKED BY:	MM	DATE:	07/21/21	STR. NO.:	1	PAGE: 6 OF	8

Sliding Stability and Eccentricity (Overturning) - continued Sliding Stability at the Interface between the Soil and Reinforcement for the Lowest Reinforcement Layer - continued $R_{R(LLR)}$ must be greater than or equal to $P_{d(LLR)}$ R_{R(LLR)} P_{d(LLR)} $R_{R(LLR)} \geq P_{d(LLR)}$ (lbs) (lbs) 7,912 ок 6,884 Sliding Resistance at the Base of the Bottom of the Wall Facing R_{R(BW)} = sliding resistance at the base of the bottom of the wall facing $= \phi R_N = \phi_\tau R_{\tau(BW)}$ $R_{t(BW)}$ = nominal sliding resistance at the base of the bottom of the wall facing $= \Psi_{EV}(V_{1(BW)})\mu_{(BW)} + (c_f)(L)$ FHWA GEC 011 Eqn. 4-12 and AASHTO 10.6.3.4 $\mu_{(BW)}$ = coefficient of friction at the base of the bottom of the wall facing

If the lowest reinforcement layer is above the bottom of the wall facing, to check sliding at the base of the wall, the friction angle of the foundation soil, ϕ_f , or reinforced fill soil, ϕ_r , whichever is less, shall be used to assess sliding resistance.

All other variables have previously been defined

φ _t	$\Psi_{\text{EV}}^{} \star$	V _{1(BW)} (Ibs)	φ _r (deg)	$\mu_{(BW)}$	c _f (psf)	L (ft)	R _{τ(BW)} (lbs)	R _{R(BW)} (Ibs)
1.00	1.00	15,778	34.00	0.532	0	9.80	8,394	8,394

*Note - Use minimum value of Ψ_{EV} for sliding resistance per FHWA GEC 011 4.4.6.a, AASHTO C3.4.1, and AASHTO C11.5.5

 $P_{d(BW)}$ = horizontal driving force at the base of the bottom of the wall facing

 $= (\Psi_{EHA})(F_{1(BW)}) + (\Psi_{LS})(F_{2(BW)})$

Ψ_{EHA}	F _{1(BW)} (Ibs)	Ψ_{LS}	F _{2(BW)} (lbs)	P _{d(BW)} (Ibs)
1.50	1,119	1.75	3,916	7,832

 $R_{R(BW)}$ must be greater than or equal to $P_{d(BW)}$

R _{R(BW)} (lbs)	P _{d(BW)} (lbs)	$R_{R(BW)} \ge P_{d(BW)}$
8,394	7,832	ОК

Eccentricity (Overturning)

 $e = \frac{\Psi_{EHA}F_{1(BW)}(H/3) + \Psi_{LS}F_{2(BW)}(H/2)}{\Psi_{EV}V_{1(BW)}} \text{ must be} \le L / 3$

FHWA GEC 011 Eqn. 4-15 and AASHTO 10.6.3.3

Ψ_{EHA}	F _{1(BW)} (Ibs)	H/3 (ft)	Ψ_{LS}	F _{2(BW)} (lbs)	H/2 (ft)	$\Psi_{\text{EV}}^{} \star$	V _{1(BW)} (lbs)	e (ft)	L/3 (ft)	e ≤ L/3
1.50	3,916	4.67	1.75	1,119	7.00	1.00	15,778	2.61	3.27	ОК

*Note - Use minimum value of Ψ_{EV} for eccentricity per FHWA GEC 011 4.4.6.b, AASHTO C3.4.1, and AASHTO C11.5.5

AASHTO Eqn. 10.6.3.4-1

AASHTO 11.10.5.3

FHWA GEC 011 Eqn. 4-9

NORTH CAROL	INA DEPA	RTMEN	I T PR	OJECT:		U-4018	5A	COUNTY	Gui	ford		
OF TRANSPOR	TATION		DESCR	IPTION:	RW 3 - Design Section 2 - Drained Ana					S		
GEOTECHNICAL	GEOTECHNICAL ENGINEERING UNIT DESIGNED BY:						07/14/21	STATION:	48+0	48+00 -L-		
MSE Wall External S	Stability Spre	eadsheet	CHECK	ED BY:	MM	DATE:	07/21/21	STR. NO.:	1 PAGE:	8 OF	8	
Bearing Resistance - con Bearing Resistance for General $q_{uniform} = \sigma_{V-F} = factored bearing = \frac{\Psi_{EV}V_{1(BW)} + \Psi_{LS}G}{L - 2e_B}$	tinued al Shear Fai ng pressure L $\Psi_{\rm EV}^{*}$ 1.35	V _{1(BW)} (Ibs) 15,778	$\frac{\text{tinued}}{\text{use of the}}$ Ψ_{LS} 1.75	e wall q (psf) 240	L (ft) 9.8(e (1 0 1.	PB q _{unifor} (psf) 62 3,87 SHTO C3 4	FHW	/A GEC 011	 Eqn. 4-2(0	
a must be greater than or equ					••••		00110			Ean 11	7	
q _R must be greater than or equ	a to quniform	·							AGECUTT	Eqn. 4-1	/	
		p (p	lr qu sf) (I	niform OSf)	q _r ≥ q	uniform						
		4,2		874	ок							
Bearing Resistance for Local S Local and Punching shear failu failure will only be considered f	Shear Failur ire occurs ir or foundatio	<u>e</u> n loose or on materia	compreal that is	ssible soil cohesive	s and in	weak s	oils under sl	ow (drained)	loading. This	s mode o	f	
To prevent Local/Punching Sh	ear on weal	k cohesive	e soils, ([,]	_{/r})(H) ≤ 30	₽ _f			FHW	A GEC 011	Eqn. 4-24	4	
Th	e founda	ation n	nateria	l for th	is pro	oject i	s not col	hesive				

RETAINING WALL NO. 3 GLOBAL SLOPE STABILITY – SLOPE/W RESULTS

RETAINING WALL NO. 4 SETTLEMENT ANALYSIS SPREADSHEET

NORTH CAROLINA DEPARTMEN	PROJECT:		U-4015/	A	COUNTY	Guilford
OF TRANSPORTATION	DESCRIPTION:	SR	1556 (Ga	Illimore Dai	ry Rd.) Wide	ning in Greensboro
GEOTECHNICAL ENGINEERING UND	DESIGNED BY:	SK	DATE:	07/14/21	STATION:	-L-48+00
Settlement Calcs for Spread Footings	CHECKED BY:	MM	DATE:	07/21/21	STR. NO.: 3	W-3PAGE: 1 OF 3

Settlement Calculations for Spread Footings (Schmertmann Method)

Loading Information

Gross bearing pressure, p = q = 3.6 ksfTime passed since loading applied, t = 0.1 years

Unit Weight Information

Unit Weight of Concrete, $\gamma_c = 0.150 \text{ kcf}$ Unit Weight of Water, $\gamma_w = 0.0624 \text{ kcf}$ Unit Weight of Overburden Soil, $\gamma_s = 0.120 \text{ kcf}$

Elevations and Footing Dimensions

Finished Grade Elevation = <u>873.8 ft</u> Natural Ground Elevation = <u>873.8 ft</u> Top of Footing Elevation = <u>873.8 ft</u> Bottom of Footing Elevation = <u>871.8 ft</u> Groundwater Table Elevation = <u>849.3 ft</u>

> Footing Thickness, $t_f = 2.0 \text{ ft}$ Width of Footing, $B_f = 9.0 \text{ ft}$ Length of Footing, $L_f = 50.0 \text{ ft}$ $L_f / B_f = 5.56$

Taken as the longer dimension of the footing Footing Shape = Rectangle

Footing Embedment Depth,
$$D_f = 2.0 \text{ ft}$$

Maximum depth of influence below footing base (D_I) = $\underline{6.8 \text{ ft}}$ Depth from footing base to peak strain influence factor (D_{IP}) = $\underline{27.1 \text{ ft}}$ $D_1 = 3.01 B_f$ (See FHWA Figure 8-21a) $D_{IP} = 0.75 B_f$ (See FHWA Figure 8-21a)

Soil Information

Layer No.	Soil Type (pick the type that best describes the soil layer)	Top of Layer Elev	Bottom of Layer Elev	Total Unit Weight	SPT N1 ₆₀	CPT q _c	Fs	*E _s
		(ft)	(ft)	(kcf)		(ksf)		(ksf)
1	Silt	871.8	844.7	0.120			0	220
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
	*Modulus values are base	d on Avera	ge Es value	based on s	oil type (AASHTO 1	Table C10).4.6.3.1)

NORTH CAROLINA DEPARTMENT PROJECT: U-4015A COUNTY Guilford SR 1556 (Gallimore Dairy Rd.) Widening in Greensboro TRANSPORTATION DESCRIPTION: GEOTECHNICAL ENGINEERING UNI DESIGNED BY: -L-48+00 SK DATE: 07/14/21 STATION: DATE: <u>07/21/21</u> STR. NO.: RW-S PAGE: 2 OF 3 Settlement Calcs for Spread Footings CHECKED BY: MM

Strain Influence Diagram using FHWA Figure 8-21

Strain Influence Factor at the Footing Base, $(I_{ZB}) = 0.151$

Peak Influence Factor (I_{ZP})

$$I_{zp} = 0.5 + 0.1 \sqrt{\frac{\Delta p}{p_{op}}}$$

FHWA-NHI-06-089 Page 8-46

 $\Delta p =$ net bearing pressure at the foundation depth = p - p_o

- p = q = gross bearing pressure at the foundation depth
 3₀€ effective in-situ overburden stress at the foundation depth
- = 2.6 ksf 0.24 ksf = 2.36 ksf
- $p_{op} = vertical eff 0.81 ksf 0 ksf = 0.81 ksf$
 - influence factor (Elevation = 865.05)
 - = $\sigma_v \mu = 0.81 \text{ ksf} 0 \text{ ksf} = 0.81 \text{ ksf}$

$$I_{zp} = 0.704$$

Average Influence Factors (I asi) for each soil layer

Soil layers are divided according to FHWA NHI-06-089, Step 5 (page 8-50)

z_i = depth to center of layer i from the base of the footing												
	Average	Influence	Factors	for each	soil layer							
1	Eleva	ations	De	epth								
Layer	Тор	Bottom	Тор	Bottom	z _i	I _{azi}						
NO.	(ft)	(ft)	(ft)	(ft)	(ft)							
1	871.8	865.8	0.0	6.0	3.0	0.397						
2	865.8	859.8	6.0	12.0	9.0	0.626						
3	859.8	853.8	12.0	18.0	15.0	0.418						
4	853.8	847.8	18.0	24.0	21.0	0.211						
5	847.8	844.7	24.0	27.1	25.5	0.054						

for $L_f/B_f = 5.56$ (See FHWA Figure 8-21a)

Depth to Peak Strain Influence Factor, I_{zp}

Adapted from FHWA NHI-06-089 Figure 8-21(b) (Explanation of pressure terms in equation for I_{ZP})

Adapted from FHWA NHI-06-089 Figure 8-21(a)

NORTH CAROLINA DEPARTMENT U-4015A PROJECT: COUNTY Guilford **OF TRANSPORTATION** SR 1556 (Gallimore Dairy Rd.) Widening in Greensboro DESCRIPTION: -L-48+00 GEOTECHNICAL ENGINEERING UNI DESIGNED BY: SK DATE: 07/14/21 STATION: Settlement Calcs for Spread Footings CHECKED BY: MM DATE: 07/21/21 STR. NO.: RW-3PAGE: 3 OF 3

Calculate Settlement using Schmertmann Method

$$\begin{split} S_t &= Total \, Settlement = C_1 C_2 \Delta p \sum_{i=1}^n \left(H_c \frac{I_z}{XE_{si}} \right) & FHWA-NHI-06-089 \, Equation \, 8-16 \\ C_1 &= \text{Depth Correction Factor} \\ &= 1 - 0.5 \left(\frac{p_o}{\Delta p} \right) \geq 0.5 = \underline{0.964} & FHWA-NHI-06-089 \, Equation \, 8-17 \\ &\text{where, } p_0 &= \underline{0.240 \, \text{ksf}} & \text{effective in-situ overburden stress at the foundation depth} \\ &\Delta p &= \underline{3.360 \, \text{ksf}} & \text{net foundation pressure as shown in FHWA Figure 8-21b} \\ C_2 &= \text{Creep Correction Factor} \\ &= 1 + 0.2 \log_{10} \left(\frac{t}{0.1} \right) = \underline{1.000} & FHWA-NHI-06-089 \, Equation \, 8-18 \\ &\text{where, } t &= \underline{0.1 \, \text{years}} & t &= time \text{ in years (for immediate settlement, } t &= 0.1 \, \text{years}) \\ H_c &= \text{Layer Thickness} \end{split}$$

X = factor to convert cone tip penetration resistance to elastic modulus when using AASHTO Table C10.4.6.3.1

= 1.25 for square footing, $(L_f/B_f = 1)$ and 1.75 for strip footing, $(L_f/B_f \ge 10)$ Use linear interpolation for rectangle footings (1 < $L_f/B_f < 10$) FHWA-NHI-06-089 Page 8-45

1.00 X = 1.00 when modulus values are not based on AASHTO Table C10.4.6.3.1 = Elevations Layer Тор Soil Type Bottom I_Z H_{c} E_s Si No. (ft) (ft) (in) (ksf) (inches) 0.397 0.421 1 Silt 871.8 865.8 72.0 220 2 Silt 865.8 859.8 72.0 220 0.626 0.664 853.8 72.0 220 3 Silt 859.8 0.418 0.444 4 Silt 853.8 847.8 72.0 220 0.211 0.223 847.8 844.7 0.054 0.029 5 Silt 37.1 220 Total Settlement, St = 1.781 inches