

October 8, 2019 Kleinfelder File No. RAL19R102248

Mr. John L. Pilipchuk, LG., PE North Carolina Department of Transportation State Geotechnical Engineer Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699-1589

SUBJECT: Preliminary Site Assessment Report

Parcel 13, DSF of NC, Inc.

WBS Element No. 54035.1.1, TIP No. U-5757

NC 8 (Winston Road) from 9th Street to SR 1408 (Biesecker Rd) in

Lexington. Widen to multi lanes Kleinfelder Project No. 20201105.001A

Dear Mr. Pilipchuk,

Kleinfelder is pleased to provide its report detailing the activities conducted as part of the preliminary site assessment for the subject project.

Kleinfelder appreciates the opportunity to be of service to you. Should you have questions or require additional information, please do not hesitate to contact the undersigned.

Sincerely,

KLEINFELDER, INC.

Abigail R. Shurtleff

Environmental Staff Professional

Michael J Burns, PG

Environmental Program Manager

ARS/MJB:asp

PRELIMINARY SITE ASSESSMENT REPORT PARCEL 13 DSF OF NC, INC. PARCEL 1101200000036 1009 OLD US HIGHWAY 52 LEXINGTON, DAVIDSON COUNTY, NORTH CAROLINA

NCDOT WBS ELEMENT 54035.1.1 STATE PROJECT U-5757 NC 8 (WINSTON RD) FROM 9^{TH} STREET TO SR 1408 (BIESECKER RD) IN LEXINGTON. WIDEN TO MULTI LANES

KLEINFELDER PROJECT NO. 20201105.001A

OCTOBER 8, 2019

Copyright 2019 Kleinfelder All Rights Reserved

ONLY THE CLIENT OR ITS DESIGNATED REPRESENTATIVES MAY USE THIS DOCUMENT AND ONLY FOR THE SPECIFIC PROJECT FOR WHICH THIS REPORT WAS PREPARED.

A Report Prepared for:

Mr. John L. Pilipchuk, LG., PE North Carolina Department of Transportation State Geotechnical Engineer Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699-1589

PRELIMINARY SITE ASSESSMENT REPORT PARCEL 13 DSF OF NC, INC. PARCEL 1101200000036 1009 OLD US HIGHWAY 52 LEXINGTON, DAVIDSON COUNTY, NORTH CAROLINA

NCDOT WBS ELEMENT 54035.1.1 STATE PROJECT U-5757 NC 8 (WINSTON RD) FROM 9^{TH} STREET TO SR 1408 (BIESECKER RD) IN LEXINGTON. WIDEN TO MULTI LANES

Prepared by:

Abigail R. Shurtleff

Environmental Staff Professional

Reviewed by:

Michael J. Burns, PG

Environmental Program Manager

KLEINFELDER

3200 Gateway Centre Blvd. | Suite 100 Raleigh, North Carolina 27560 P | 919.755.5011

October 8, 2019

Kleinfelder Project No. 20201105.001A

PRELIMINARY SITE ASSESSMENT REPORT

Site Name and Location:

Parcel 13

1009 Old US Highway 52

Lexington, Davidson County, North Carolina

Latitude and Longitude:

35.839510°N, --80.253365°W

County Parcel Number

1101200000036

Facility ID Number:

00-0-0000024863

Leaking UST Incident:

44108/WS-8861

State Project No.:

U-5757

NCDOT Project No.:

NCDOT WBS Element 54035.1.1

Description:

NC 8 (Winston Rd) from 9th Street to SR 1408

(Biesecker Rd) in Lexington. Widen to multi

lanes

Date of Report:

October 8, 2019

Consultant:

Kleinfelder, Inc.

3200 Gateway Center Boulevard | Suite 100

Morrisville, North Carolina 27560 Corporate Geology License No. C-521

Corporate Licensure for Engineering F-1312

SEAL AND SIGNATURE OF CERTIFYING LICENSED GEOLOGIST

I, Michael J Burns, a Licensed Geologist for Kleinfelder, Inc., do certify that the information contained in this report is correct and accurate to the best of my knowledge.

DocuSigned by: hal J. Burn

-7E53DC44AC794CA..

10/28/2019

Michael J Burns, LG NC License No. 1645

TABLE OF CONTENTS

1	INTR	ODUCTION	1
	1.1 1.2	SITE DESCRIPTIONSCOPE OF WORK	
2	HIST	ORY	3
	2.1 2.2 2.3	PARCEL USAGEFACILITY ID NUMBERSGROUNDWATER INCIDENT NUMBERS	3
3	OBS	ERVATIONS	5
	3.1 3.2 3.3	GROUNDWATER MONITORING WELLS	5
4	MET	HODS	6
	4.1 4.2 4.3 4.4 4.5	PROPERTY OWNER CONTACTS HEALTH AND SAFETY GEOPHYSICAL INVESTIGATION SOIL ASSESSMENT SOIL ANALYSIS	6 6 6
5	RES	JLTS	9
	5.1 5.2 5.3 5.4	GEOPHYSICAL INVESTIGATIONSOIL SAMPLING DATASAMPLE OBSERVATIONSQUANTITY CALCULATIONS	9
6	CON	CLUSIONS1	10
7	REC	OMMENDATIONS1	11
8	LIMI	rations1	12

TABLES

- 1 Soil Sample Screening Results
- 2 Soil Sample Analytical Results

FIGURES

- 1 Site Location Map
- 2 Site Map
- 3 Soil Sample Analytical Results

APPENDICES

- A Site Photographs
- B Geophysical Survey Report
- C Boring Logs
- D Analytical Reports and Graphs
- E Pages from Previous Reports

PRELIMINARY SITE ASSESSMENT PARCEL 13 DSF OF NC, INC. PARCEL 1101200000036 1009 OLD US HIGHWAY 52 LEXINGTON, DAVIDSON COUNTY, NORTH CAROLINA

NCDOT WBS ELEMENT 54035.1.1 STATE PROJECT U-5757 NC 8 (WINSTON RD) FROM 9TH STREET TO SR 1408 (BIESECKER RD) IN LEXINGTON. WIDEN TO MULTI LANES

1 INTRODUCTION

Kleinfelder, Inc. (Kleinfelder) has prepared this Preliminary Site Assessment (PSA) report to document assessment activities performed on Parcel 13 (the assessment area is hereafter referred to as the "Project Study Area"). The Project Study Area consists of the western and northern portions of a parcel known as Parcel Number 1101200000036 by the Davidson County, NC Tax Assessor's Office. Parcel 13 is currently occupied by a Citgo retail gasoline station and SN Food Mart convenience store located southeast of the intersection of Winston Road and Spring Drive in the Town of Lexington, Davidson County, North Carolina (Figure 1).

Based on information provided in the Hazardous Materials Survey Report, dated February 28, 2019, prepared by Kleinfelder for SEPI Engineering & Construction, the parcel is currently a gasoline service station with leaking underground storage tank (LUST) groundwater incident 44108/WS-8861. There are five (5) active underground storage tanks (USTs) located on the site. As such, the purpose of the PSA was to evaluate whether unknown USTs or contaminated soil are present in the Project Study Area that may result in increased project costs and future liability if acquired by the NCDOT.

1.1 SITE DESCRIPTION

Parcel 13 has a listed owner of DSF of NC, Inc. The parcel has a street address of 1009 Old US Highway 52 (Winston Road). The parcel consists of an active retail gasoline station/convenience store, associated paved parking areas, and a maintained grass lawn. The parcel is bounded by Spring Drive to the north, beyond which is a vacant commercial property formerly occupied by Family Dollar; by Winston Road to the west, beyond which are residential properties; by a vacant grass lot to the south; and by a residential property and a maintained vacant grass lot to the east. Photographs of the Project Study Area are provided in Appendix A.

1.2 SCOPE OF WORK

Kleinfelder conducted this PSA in accordance with the NCDOT's May 24, 2019, Request for Technical and Cost Proposal (RFP) and Kleinfelder's June 18, 2019 Technical and Cost Proposal. The NCDOT granted a formal Notice to Proceed on June 27, 2019.

2 HISTORY

2.1 PARCEL USAGE

The parcel consists of a retail gasoline station/convenience store, associated paved parking areas, and a maintained grass lawn. Winston Road bounds the parcel to the west and Spring Drive bounds the parcel to the north.

The February 2018 Hazardous Materials Survey Report included information about a LUST incident for Parcel 13, which suggests the presence of contaminated soil and/or groundwater.

Kleinfelder conducted historical research to determine whether additional environmental listings were identified for Parcel 13 and to review report documents associated with groundwater incident 44108/WS-8861. The following are the results of the additional research:

- Based on a review of aerial photographs and historical documents, the property was formerly developed in the 1940s as a restaurant, then as a funeral home from approximately 1964 to 1986. Prior to the 1940s, the property was undeveloped land.
- Kleinfelder searched the registered UST database, maintained by the North Carolina Department of Environmental Quality (NCDEQ). The site was listed as Grab & Go 12 with three (3) active 6,000-gallon gasoline USTs, one (1) active 2,000-gallon kerosene UST, and one (1) active 2,000-gallon diesel UST. All of the USTs were reportedly installed in 1986.
- The current LUST database lists the facility as Grab & Go Winston Road with groundwater incident #44108/WS-8861. The database information indicates that a release was reported for the site in early 2013 and that groundwater was impacted. A Notice of Residual Petroleum (NRP) was filed in 2016 for the property. No additional documentation was available from NCDEQ's online public database (Laserfiche WebLink).
- No other listings for Parcel 13 were identified on any of the available NCDEQ pollution incident databases.

2.2 FACILITY ID NUMBERS

Kleinfelder reviewed the NCDEQ UST database for Parcel 13. The parcel was identified as having five (5) active USTs and the Facility ID is listed as 00-0-0000024863. Kleinfelder also reviewed a February 2018 routine compliance inspection report (UST-10B) which indicated that the facility

had failed inspection for not conducting tightness testing for 3 or more months and/or not having records available. However, the report did not find a suspected release. A copy of the report can be found in Appendix E.

2.3 GROUNDWATER INCIDENT NUMBERS

As mentioned in Section 2.1, the site is listed with LUST groundwater incident 44108/WS-8861 Kleinfelder visited the NCDEQ Winston-Salem Regional Office to review reports related to the LUST incident. Information from select reports is discussed below:

- Kleinfelder reviewed a 24-Hour Release and UST Leak Reporting Form (UST-61), dated February 19, 2013, which found soil and groundwater contamination stemming from a Phase II Environmental Site Assessment conducted in January 2013. One soil boring returned Gasoline Range Organics (GRO) at 430 milligrams per kilogram (mg/kg), above the state action limit of 50 mg/kg. Groundwater samples returned VOC's indicative of petroleum contamination, including Methyl-tert-Butyl Ether (MTBE) at 4,300 micrograms per liter (μg/L), above the NC 2L Groundwater Standard of 20 μg/L.
- A Limited Site Assessment (LSA) was conducted in February 2016 by Paragon Environmental Consultants, Inc. A composite soil sample was collected from 1 to 15 feet below ground surface (bgs) during the installation of a monitoring well north of the UST basin, which did not reveal petroleum contamination. Groundwater was also analyzed from the monitoring well installed for the LSA, which revealed petroleum compounds at concentrations which exceeded the NC 2L Groundwater Standards; however, none of the compounds exceeded the Gross Contaminant Levels (GCLs).
- A March 22, 2016 Notice of No Further Action (NFA) letter was issued by NCDEQ for the site, Grab & Go (Incident Number 44108).

Select pages from the reports described above are provided in Appendix E.

3 OBSERVATIONS

3.1 GROUNDWATER MONITORING WELLS

Based on previous reports reviewed for the site and site visits conducted as part of the PSA, there is one (1) monitoring well located on the property that is most probably associated with LUST groundwater incident 44108.

3.2 ACTIVE USTS

Based on review of the NCDEQ UST database, site visits and previous reports, there are five (5) active USTs located on Parcel 13, three (3) of which are located within the Project Study Area. There are reportedly three (3) 6,000-gallon gasoline USTs, one (1) 2,000-gallon kerosene UST, and one (1) 2,000-gallon diesel UST, all of which were reportedly installed in 1986.

3.3 OTHER FEATURES APPARENT BEYOND PROJECT STUDY AREA

The Project Study Area consisted of the western and northern portions of the parcel. The gasoline filling pumps and fuel islands are located entirely within the Project Study Area. There were no features of concern observed in the eastern portion of the parcel, in the vicinity of the convenience store on the parcel, or beyond the Project Study Area.

4 METHODS

4.1 PROPERTY OWNER CONTACTS

As part of Kleinfelder's scope of work, the listed property owner was contacted about the work schedule for the field work and the type of work being performed. The owner did not express any concern or special conditions associated with the work being performed.

4.2 HEALTH AND SAFETY

Prior to commencing the field work, Kleinfelder personnel developed a Site-Specific Health and Safety Plan (HASP) covering activities to be performed. The site specific HASP was discussed with all Kleinfelder personnel involved with the project and at a daily onsite "tail gate" safety meetings with subcontractors and sub consultants. In addition to the HASP, Kleinfelder utilized its comprehensive Corporate Health and Safety Program, targeted to address those specific and critical tasks that involve Kleinfelder personnel and subcontractors. The Loss Prevention System (LPS™), a behavior-based program, is Kleinfelder's company-wide safety system implemented and embraced by all levels of the company.

4.3 GEOPHYSICAL INVESTIGATION

Pyramid Environmental & Engineering, P.C (Pyramid) conducted a geophysical investigation in the Project Study Area between July 15 and 16, 2019. Pyramid utilized electromagnetic (EM) induction technology and ground penetrating radar (GPR) to locate potential geophysical anomalies and potential USTs within the Project Study Area.

EM responses were recorded over the five (5) known USTs on the parcel, partially located within the Project Study Area. There were no other EM responses that were not associated with known USTs, ASTs, utilities, vehicles, or other previously known conditions.

A copy of the Pyramid Geophysical Investigation Report, detailing the field methodology, is included in Appendix B.

4.4 SOIL ASSESSMENT

The scope of work for the soil assessment was to evaluate the presence of soil contamination along the existing right of way and/or easement to evaluate whether known impact is present in this area and maybe migrating offsite. The soil borings were planned to be advanced to maximum depths of 15 feet bgs unless groundwater was encountered. Field screening using a photo ionization detector (PID) was to be conducted at 1-foot intervals beginning at 0 foot to 1 foot. The

soil sample with the highest PID reading above background or the sample from the maximum drilled depth would be selected for on-site laboratory analyses.

Prior to the drilling activities, public utilities were marked by NC One Call and private utilities were marked by Pyramid. However, a ¾" PVC private water line for the convenience store on the parcel was struck in an area of unmarked pavement north of the fuel island, and was subsequently repaired on August 5, 2019.

Kleinfelder subcontracted Quantex, Inc. (Quantex) to perform the drilling onsite on August 5, 2019 and South Atlantic Environmental Drilling and Construction Company (SAEDACCO) on September 3, 2019. Quantex advanced four (4) soil borings (P13-B1 through P13-B4) by directpush technology from the ground surface to boring termination (15 feet bgs) at locations specified by Kleinfelder. SAEDACCO advanced three (3) soil borings (P13-B5 through P13-B7) at locations specified by Kleinfelder. The soil boring locations were identified in the field using a GPS. The soil boring locations are shown on Figure 2. The borings were located within the public utility easement and existing right-of-way along Winston Road and Spring Drive and the western and northern property boundaries, respectively. Soil borings P13-B1, P13-B2, and P13-B5 were located south and east of the fuel island, around the portion of the UST basin partially located within the Project Study Area. Soil boring P13-B3 was located west of the fuel island along Winston Road and the western parcel boundary. Soil boring P13-B4 was located along Spring Drive and the northern parcel boundary. Soil boring P13-B7 was located north of the fuel island, and soil boring P13-B6 was located east of the fuel island. Soil samples were collected by driving Macro Core™ samplers in 5-foot intervals. Each soil core was cut open, the soil samples were classified, and the soil divided into 1-foot sections. Each 1-foot section was screened in the field using a PID. The PID readings are summarized in Table 1.

Soils were determined to be primarily a silty clay within the top seven feet, underlain primarily by silt. Groundwater was not encountered in any of the borings at the termination depth of 15 feet bgs. Copies of the boring logs are included in Appendix C.

4.5 SOIL ANALYSIS

The PID readings from soil borings advanced were noted to be low. Based on the PID data and visual observations, two (2) of the samples from each boring were selected for on-site laboratory analysis during the August 5, 2019 event, and one (1) sample from P13-B5 was selected for off-site laboratory analysis from the September 3, 2019 event.

The on-site samples were analyzed by RED Lab, LLC utilizing ultraviolet fluorescence (UVF) methodology to provide real-time analytical results of TPH, GRO, Diesel Range Organics (DRO), and benzene, toluene, ethylbenzene, and total xylenes (BTEX). The UVF method was selected because of the known use of petroleum products on Parcel 13. The UVF analysis also provided data regarding Environmental Protection Agency 16 total Polycyclic Aromatic Hydrocarbons (PAHs), and Benzo(a)pyrene (BaP).

The off-site sample (P13-B5-6) was analyzed by Prism Laboratories of Charlotte, NC for TPH GRO and DRO. Samples were collected directly from the soil core utilizing disposable nitrile gloves and a disposable plastic corer. Samples were iced upon collection. The Chain of Custody can be found in Appendix D.

5 RESULTS

5.1 GEOPHYSICAL INVESTIGATION

The EM and GPR surveys did not identified unknown geophysical anomalies within the Project Study Area.

5.2 SOIL SAMPLING DATA

The on-site UVF analysis of soil samples did not indicate the presence of petroleum impact in any of the samples analyzed. The off-site analysis also did not indicate the presence of petroleum impact in soil boring P13-B5, advanced in the vicinity of the UST basin and monitoring well observed on Parcel 13, above laboratory detection limits. As such, shallow soil impact does not appear to be present within the existing right of way or along the northern parcel boundary above NCDEQ Action Limits. A summary of on-site and off-site soil sample analytical results is presented in Table 2. The laboratory results associated with each boring are presented on Figure 3. The onsite and offsite laboratory report and graphs are included in Appendix D.

5.3 SAMPLE OBSERVATIONS

Soils were observed for any obvious evidence of contamination. No visual or olfactory evidence of contamination was noted in any of the soil samples from the borings.

5.4 QUANTITY CALCULATIONS

Kleinfelder did not identify soil impact in the current Project Study Area of Parcel 13. The 2016 LSA conducted for the groundwater incident associated with the site did not quantify soil contamination as petroleum compounds were found only in groundwater.

6 CONCLUSIONS

Based on results of the EM/GPR survey, soil assessment and field observations, Kleinfelder has reached the following conclusions:

- The GPR and EM investigation did not identify unknown features.
- The site has a listing for Grab & Go Winston Road for a LUST groundwater incident #44108/WS-8861. Database information along with records available from NCDEQ indicate that petroleum impacted soil and groundwater was noted during a Phase II ESA conducted in January 2013. After an LSA was conducted in 2016, a Notice of Residual Petroleum (NRP) was filed in 2016 for the property which indicated that soil impacts were below the residential MSCC's and groundwater impacts were below the NC 2L Standards. An NFA letter was issued on March 22, 2016.
- No soil impact above the NCDEQ Action Limits for TPH GRO and DRO was detected in borings advanced along Winston Road and Spring Drive and the western and northern parcel boundaries, or around the fuel island and UST basin.
- Groundwater was not encountered in the soil borings at a depth of 15 feet bgs.

7 RECOMMENDATIONS

Based on results of this Preliminary Site Assessment, Kleinfelder recommends no additional sampling or special handling of soils be performed within the Project Study Area on Parcel 13 in Lexington, Davidson County, North Carolina.

8 LIMITATIONS

Kleinfelder's work will be performed in a manner consistent with that level of care and skill ordinarily exercised by other members of its profession practicing in the same locality, under similar conditions and at the date the services are provided. Kleinfelder's conclusions, opinions and recommendations will be based on a limited number of observations and data. It is possible that conditions could vary between or beyond the data evaluated. Kleinfelder makes no guarantee or warranty, express or implied, regarding the services, communication (oral or written), report, opinion, or instrument of service provided.

Kleinfelder offers various levels of investigative and engineering services to suit the varying needs of different clients. It should be recognized that definition and evaluation of geologic and environmental conditions are a difficult and inexact science. Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present due to the limitations of data from field studies. Although risk can never be eliminated, more-detailed and extensive studies yield more information, which may help understand and manage the level of risk. Since detailed study and analysis involves greater expense, Kleinfelder's clients participate in determining levels of service that provide adequate information for their purposes at acceptable levels of risk. More extensive studies, including subsurface studies or field tests, should be performed to reduce uncertainties. Acceptance of this report will indicate that NCDOT has reviewed the document and determined that it does not need or want a greater level of service than provided.

During the course of the performance of Kleinfelder's services, hazardous materials may have been discovered. Kleinfelder assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury that results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials. Nothing contained in this report should be construed or interpreted as requiring Kleinfelder to assume the status of an owner, operator, or generator, or person who arranges for disposal, transport, storage or treatment of hazardous materials within the meaning of any governmental statute, regulation or order. NCDOT is solely responsible for directing notification of all governmental agencies, and the public at large, of the existence, release, treatment or disposal of any hazardous materials observed at the project site, either before or during performance of

Kleinfelder's services. NCDOT is responsible for directing all arrangements to lawfully store, treat, recycle, dispose, or otherwise handle hazardous materials, including cuttings and samples resulting from Kleinfelder's services.

TABLES

Table 1: Soil Sample Screening Results

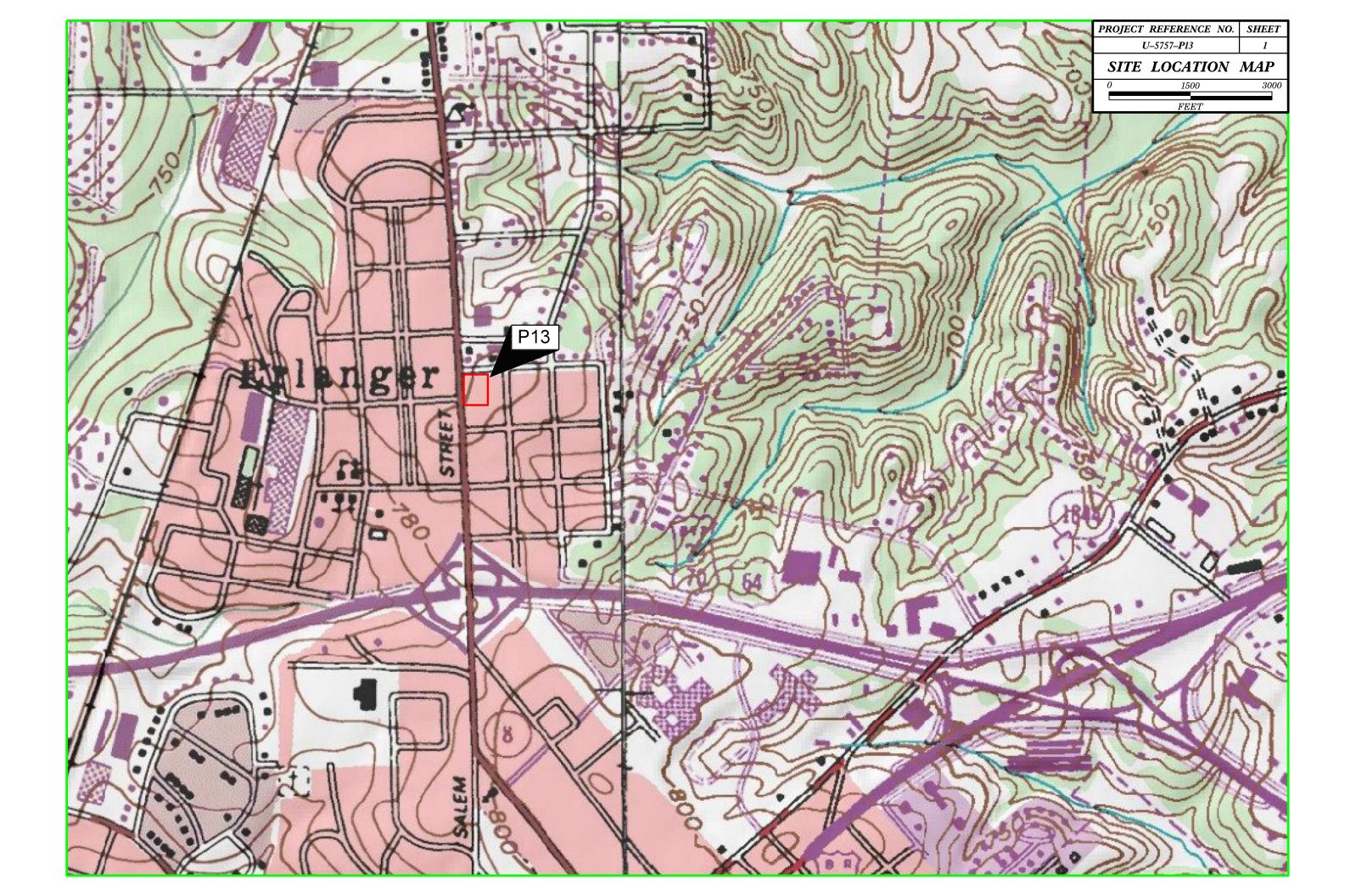
Date	Sample ID	Depth (ft)	PID Reading	Notes
	,	1	1.0	
		2	1.6	
		3	2.8	
		4	1.8	
		5	1.4	
		6	3.3	
		7	4.7	UVF Analysis
8/5/2019	U5757-P13-B1	8	3.6	
		9	2.0	
		10	4.5	
		11	NR	
		12	NR	
		13	15.2	
		14	9.4	UVF Analysis
		15	5.2	
		1	1.1	
		2	0.9	
		3	1.4	
		4	1.8	UVF Analysis
	U5757-P13-B2	5	1.6	
		6	1.4	
		7	1.5	
8/5/2019		8	1.1	
		9	1.2	
		10	0.6	
		11	2.4	
		12	2.5	UVF Analysis
		13	2.5	
		14	2.4	
		15	1.7	
		1	1.9	
		2	2.0	
		3	2.3	UVF Analysis
		4	2.4	·
		5	2.5	
		6	2.5	
		7	2.5	
8/5/2019	U5757-P13-B3	8	3.1	UVF Analysis
		9	0.0	•
		10	0.4	
		11	0.3	
		12	0.6	
		13	0.7	
		14	0.5	
		15	0.2	

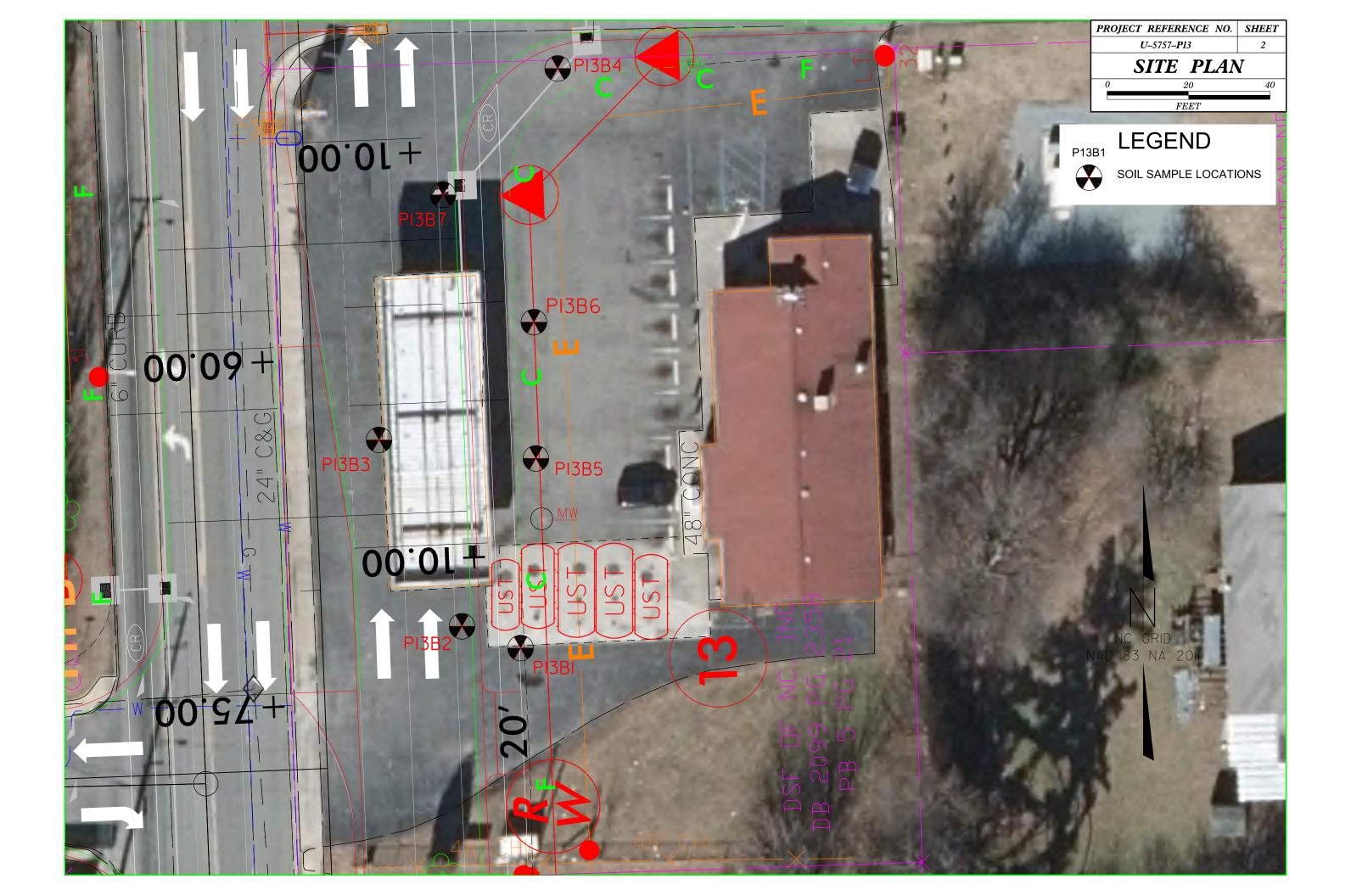
		1	1.3	
		2	1.4	
		3	1.6	
		4	1.6	
		5	1.8	
		6	2.1	UVF Analysis
		7	2.0	
8/5/2019	U5757-P13-B4	8	2.3	
		9	1.7	
		10	2.2	UVF Analysis
		11	NR	
		12	1.9	
		13	2.1	
		14	1.4	
		15	1.0	
		1	0.8	
		2	0.4	
		3	1.3	
		4	1.8	
		5	2.1	
	U5757-P13-B5	6	3.4	Offsite Analysis
		7	2.4	•
9/3/2019		8	2.2	
		9	1.9	
		10	0.9	
		11	0.8	
		12	0.8	
		13	0.5	
		14	1.1	
		15	0.8	
		1	0.7	
		2	2.0	
		3	2.1	
		4	2.4	
		5	2.2	
		6	2.4	
		7	1.1	
9/3/2019	U5757-P13-B6	8	2.0	
5, 5, 20 10		9	1.5	
		10	1.1	
		11	0.3	
		12	0.6	
		13	1.1	
		14	1.7	
		15	0.6	
ı		1 10	0.0	

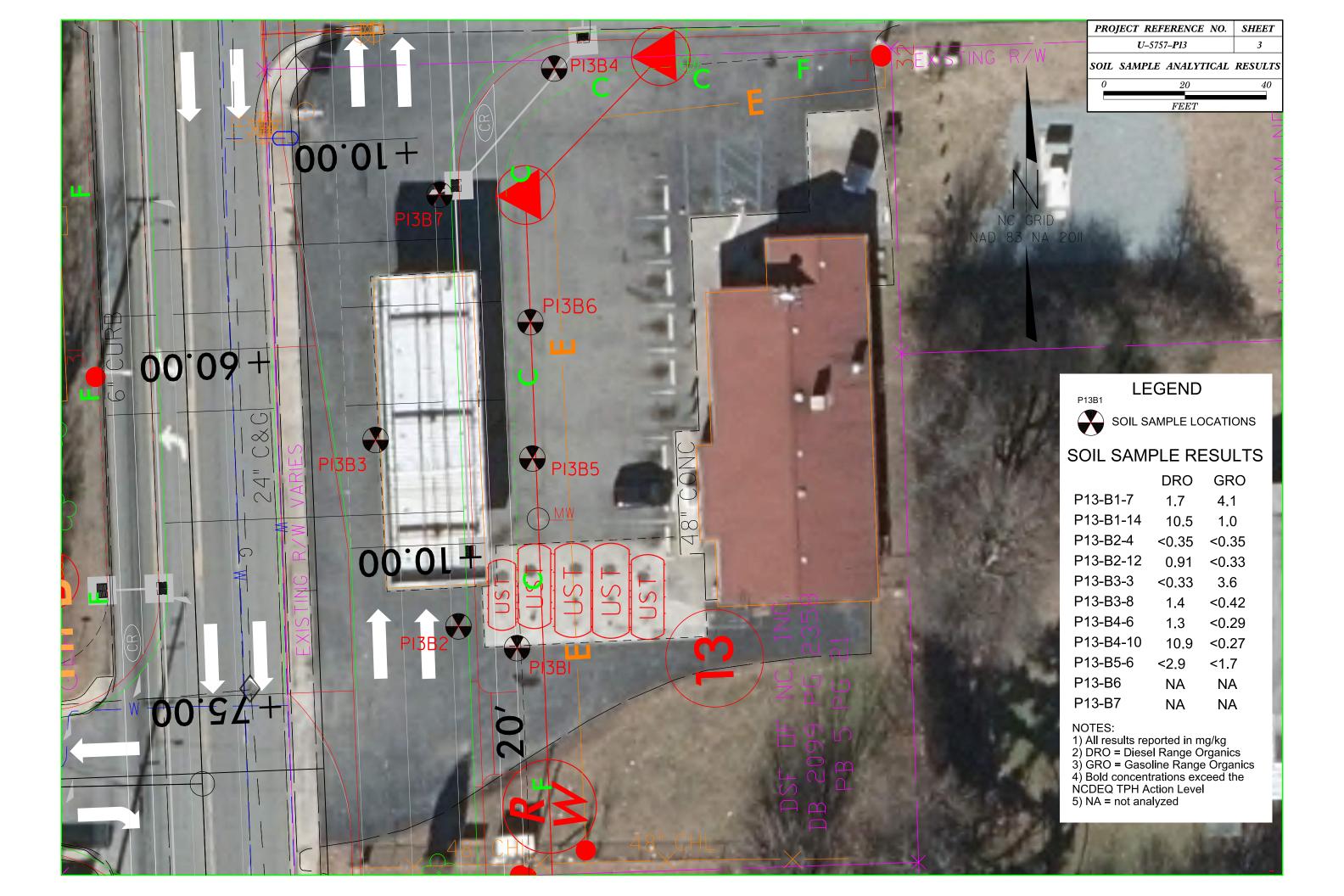
		1	0.0	
		2	0.6	
			3	1.6
		4	1.6	
		5	1.1	
		6	0.8	
	U5757-P13-B7	7	0.8	
9/3/2019		8	2.7	
		9	1.1	
		10	0.3	
		11	0.2	
		12	0.2	
		13	0.8	
		14	0.2	
		15	0.4	

Notes:

- 1) PID = Photoionization Detector
- 2) PID readings in parts per million (ppm)
- 3) NR = no recovery


TABLE 2:	Soil Sample Analytical Summary
----------	--------------------------------


Parameter		Analytical Results										
		Soil Sample Results							Comp	arison Criteria		
Sample ID	P13-B1-7	P13-B1-14	P13-B2-4	P13-B2-12	P13-B3-3	P13-B3-8	P13-B4-6	P13-B4-10	P13-B5-6			
PID Reading (ppm)	4.7	9.4	1.8	2.5	2.3	3.1	2.1	2.2	3.4	State Action Limit	Protection of Groundwater	Residential Health
Collection Depth (ft bgs)	7	14	4	12	3	8	6	10	6	State Action Limit		
Collection Date	8/5/19	8/5/19	8/5/19	8/5/19	8/5/19	8/5/19	8/5/19	8/5/19	9/3/19			
UVF Method	-								_		-	
Diesel Range Organics	1.7	10.5	< 0.35	0.91	< 0.33	1.4	1.3	10.9		100		
Gasoline Range Organics	4.1	1.0	<0.35	<0.33	3.6	<0.42	<0.29	<0.27		50		
EPA Method 8015c												
Diesel Range Organics									<2.9	100		
Gasoline Range Organics				-		-			<1.7	50		


Notes:
Results displayed in milligram per kilogram (mg/kg)
ft bgs = Feet below ground surface
Bold = Above Laboratory Detection Limit
UVF = Ultraviolet Flouresence

FIGURES

APPENDIX A SITE PHOTOGRAPHS

View facing northwest from the central portion of Parcel 13 featuring the one monitoring well observed at the time of site exploration (foreground).

Original in Color

View facing westerly toward NC Highway 8 (Winston Road) from the southern portion of Parcel 13.

PROJECT NO:20201105.001A		
DRAWN:	Septe	mber 2019
DRAWN BY	/ :	ARS
CHECKED	BY:	MB
FILE NAME:		
Photo Pages		

SITE PHOTOGRAPHS

FIGURE

Preliminary Site Assessment Report U-5757-P13 Lexington, Davidson County, North Carolina **A-1**

View facing northeasterly toward the convenience store located on the eastern portion of Parcel 13, featuring the UST vent pipes (center-right).

Original in Color

View facing northerly of Parcel 13.

PROJECT N	O:20201105.001A
DRAWN:	September 2019
DRAWN BY:	ARS
CHECKED B	BY: MB
FILE NAME:	
Photo	Pages

SITE PHOTOGRAPHS

Preliminary Site Assessment Report U-5757-P13 Lexington, Davidson County, North Carolina

FIGURE

A-2

View facing north-northwesterly of the fuel canopy on Parcel 13.

Original in Color

PROJECT N	O:20201105.001A
DRAWN:	September 2019
DRAWN BY:	ARS
CHECKED B	Y: MB
FILE NAME:	
Photo	Pages

SITE PHOTOGRAPHS

Preliminary Site Assessment Report U-5757-P13 Lexington, Davidson County, North Carolina

FIGURE

A-3

APPENDIX B GEOPHYSICAL SURVEY REPORT

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2019-211)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 13 NCDOT PROJECT U-5757 (54035.1.1)

1009 WINSTON ROAD, LEXINGTON, NC

August 15, 2019

Report prepared for: Michael Burns, P.G.

Kleinfelder, Inc.

3500 Gateway Center Boulevard, Suite 200

Morrisville, NC 27560

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by: _

Douglas A. Canavello, P.G.

NC License #1066

GEOPHYSICAL INVESTIGATION REPORT

Parcel 13 - 1009 Winston Road Lexington, Davidson County, North Carolina

Table of Contents

Executive Summary	1
Introduction	2
Field Methodology	2
Discussion of Results	
Discussion of EM Results	3
Discussion of GPR Results	4
Summary & Conclusions	
Limitations	

Figures

- Figure 1 Parcel 13 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 13 EM61 Results Contour Map
- Figure 3 Parcel 13 GPR Transect Locations and Select Images
- Figure 4 Parcel 13 Locations and Sizes of Five Known USTs
- Figure 5 Overlay of Metal Detection Results and Five Known USTs onto the NCDOT Engineering Plans

Appendices

Appendix A – GPR Transect Images

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	Dual Frequency
EM	Electromagnetic
GPR	Ground Penetrating Radar
GPS	_
NCDOT	North Carolina Department of Transportation
ROW	
UST	Underground Storage Tank

Project Description: Pyramid Environmental conducted a geophysical investigation for Kleinfelder, Inc. at Parcel 13 located at 1009 Winston Road in Lexington, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project U-5757). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from July 15-16, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of eleven EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. Several EM anomalies were associated with a suspected utility and interference from vehicles and the pump island; these anomalies were investigated further with GPR and showed no indications of unknown metallic USTs. Five known USTs were present at the property; these known tanks were also investigated by GPR.

The sizes and orientations of the five known USTs at the site were verified using GPR and are, from west to east, as follows: the westernmost UST (UST #1) was approximately 17.5 feet long by 7 feet wide, UST #2 was approximately 19.5 feet long by 8.5 feet wide, UST #3 was approximately 23 feet long by 10.5 feet wide, UST #4 was approximately 23 feet long by 9 feet wide, and the easternmost UST (UST #5) was approximately 19 feet long by 9 feet wide. Collectively, the geophysical data recorded evidence of five known USTs within the survey area at Parcel 13. No evidence of unknown USTs was recorded.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Kleinfelder, Inc. at Parcel 13 located at 1009 Winston Road in Lexington, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project U-5757). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from July 15-16, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included an active gas station surrounded by asphalt, concrete, and grass surfaces. Five known USTs were observed to be within the geophysical survey area. An aerial photograph showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8-foot intervals along north-south trending or east-west trending,

generally parallel survey lines, spaced five feet apart. The data were downloaded to a computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on July 16, 2019, using a Geophysical Survey Systems, Inc. (GSSI) UtilityScan DF unit equipped with a dual frequency 300/800 MHz antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the DF unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the DF unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tanks on NCDOT Projects										
High Confidence	Intermediate Confidence	Low Confidence	No Confidence							
Known UST Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Probable UST Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphalt/concrete patch, etc.	Possible UST Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	Anomaly noted but not characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.							

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The

following table presents the list of EM anomalies and the cause of the metallic response, if known:

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Fence	
2	Sign	
3	Utility	✓
4	Pump Island/Vehicles	✓
5	Sign/Drop Inlet	
6	Drop Inlet	
7	Utility	
8	Dumpster	
9	Vehicles	✓
10	Five Known USTs	✓
11	Donation Box/Fence	

The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface including fences, signs, a pump island, vehicles, drop inlets, utilities, a dumpster, and a donation box. EM Anomaly 3 was suspected to be the result of a buried utility and was investigated further with GPR. GPR scans were also performed around the areas of interference caused by the pump island and vehicles (Anomalies 4 and 9) to verify that no buried structures were obscured by the interference.

One large high-amplitude EM anomaly (Anomaly 10), was associated with the five known USTs within the survey area. GPR was performed across the known USTs to verify their sizes and orientations.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as select transect images. All of the transect images are included in **Appendix A**. A total of fourteen formal GPR transects were performed at the site.

GPR Transect 1 was performed across the widths of the known USTs at the location of EM Anomaly 10. This transect recorded five large, hyperbolic reflectors consistent with the widths of five USTs. The sizes and orientations of the USTs were confirmed with GPR and are, from west to east, as follows: The westernmost UST (UST #1) was approximately 17.5 feet long by 7 feet wide, UST #2 was approximately 19.5 feet long by 8.5 feet wide, UST #3 was approximately 23 feet long by 10.5 feet wide, UST #4 was approximately 23 feet long by 9 feet wide, and the easternmost UST (UST #5) was approximately 19 feet long by 9 feet wide. **Figure 4** provides the locations and sizes of the five known USTs overlain on an aerial, along with ground-level photographs.

GPR Transects 2-5, 6-11, and 14 were performed across areas of interference caused by the pump island and vehicles (EM Anomalies 4 and 9). No evidence of buried structures such as USTs was observed.

GPR Transects 12 and 13 were performed across an area associated with a suspected utility (EM Anomaly 3). These transects recorded evidence of discrete hyperbolic reflectors that were characteristic of a buried utility. No evidence of any buried structures such as USTs was observed.

Collectively, the geophysical data <u>recorded evidence of five known USTs within the survey area at Parcel 13</u>. No evidence of unknown USTs was recorded. **Figure 5** provides an overlay of the metal detection results and the locations of the five known USTs on the NCDOT MicroStation engineering plans for reference.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 13 in Lexington, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- The majority of the EM anomalies were directly attributed to visible cultural

features at the ground surface.

- Several EM anomalies were associated with a suspected utility and interference from vehicles and the pump island; these anomalies were investigated further with GPR and showed no indications of unknown metallic USTs.
- Five known USTs were present at the property; these known tanks were also investigated by GPR.
- The sizes and orientations of five known USTs at the site were verified using GPR and are, from west to east, as follows: the westernmost UST (UST #1) was approximately 17.5 feet long by 7 feet wide, UST #2 was approximately 19.5 feet long by 8.5 feet wide, UST #3 was approximately 23 feet long by 10.5 feet wide, UST #4 was approximately 23 feet long by 9 feet wide, and the easternmost UST (UST #5) was approximately 19 feet long by 9 feet wide.
- Collectively, the geophysical data <u>recorded evidence of five known USTs within</u> the survey area at Parcel 13. No evidence of unknown USTs was recorded.

LIMITATIONS

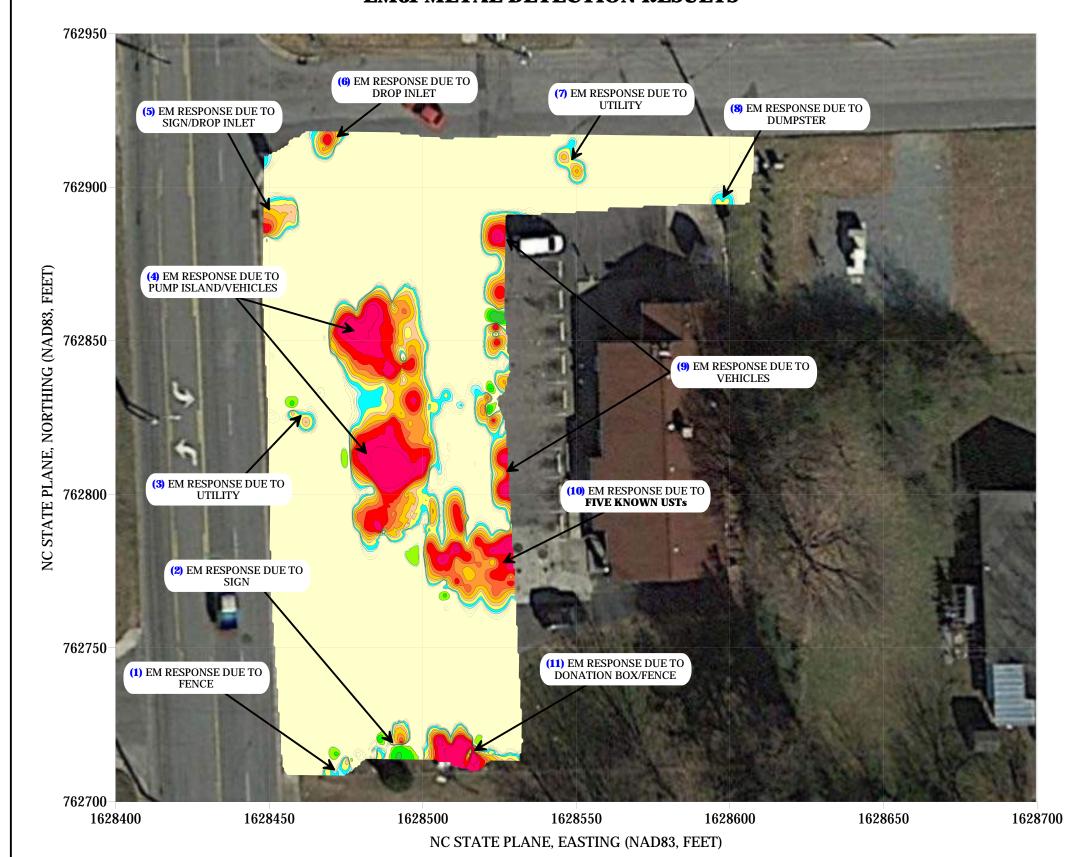
Geophysical surveys have been performed and this report was prepared for Kleinfelder in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

View of Survey Area (Facing Approximately North)

View of Survey Area (Facing Approximately East)

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology


PARCEL 13
LEXINGTON, NORTH CAROLINA
NCDOT PROJECT U-5757

TITLE

PARCEL 13 - GEOPHYSICAL SURVEY BOUNDARIES AND SITE PHOTOGRAPHS

DATE	7/19/2019	CLIENT	KLEINFELDEI
PYRAMID PROJECT #:	2019-211		FIGURE 1

EM61 METAL DETECTION RESULTS

EVIDENCE OF FIVE KNOWN USTS WAS OBSERVED. NO EVIDENCE OF UNKNOWN METALLIC USTS WAS OBSERVED.

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on July 15, 2019, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI UtilityScan DF instrument with a dual frequency 300/800 MHz antenna on July 16, 2019.

EM61 Metal Detection Response (millivolts)

N

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

PARCEL 13 LEXINGTON, NORTH CAROLINA NCDOT PROJECT U-5757 TITLE

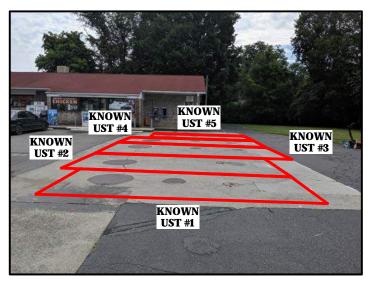
PARCEL 13 - EM61 METAL DETECTION CONTOUR MAP

DATE	7/19/2019	CLIENT	KLEINFELDER
PYRAMID PROJECT #:	2019-211		FIGURE 2

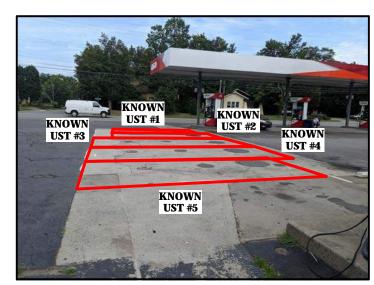
LOCATIONS OF GPR TRANSECTS WIDTHS OF FIVE KNOWN USTS 762950 762900 GPR TRANSECT 1 (T1) NC STATE PLANE, NORTHING (NAD83, FEET) 762850 POSSIBLE UTILITIES **GPR TRANSECT 5 (T5)** 762800 762750 SUSPECTED SUPPLY SUSPECTED SUPPLY **LINES** LINES GPR TRANSECT 7 (T7) GPR TRANSECT 9 (T9) 762700 1628450 1628650 1628600 1628400 1628500 1628550 1628700 NC STATE PLANE, EASTING (NAD83, FEET) DATE PROJECT TITLE 503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology KLEINFELDER PARCEL 13 7/19/2019 PARCEL 13 - GPR TRANSECT LOCATIONS LEXINGTON, NORTH CAROLINA

NCDOT PROJECT U-5757

AND SELECT IMAGES


PYRAMID PROJECT #:

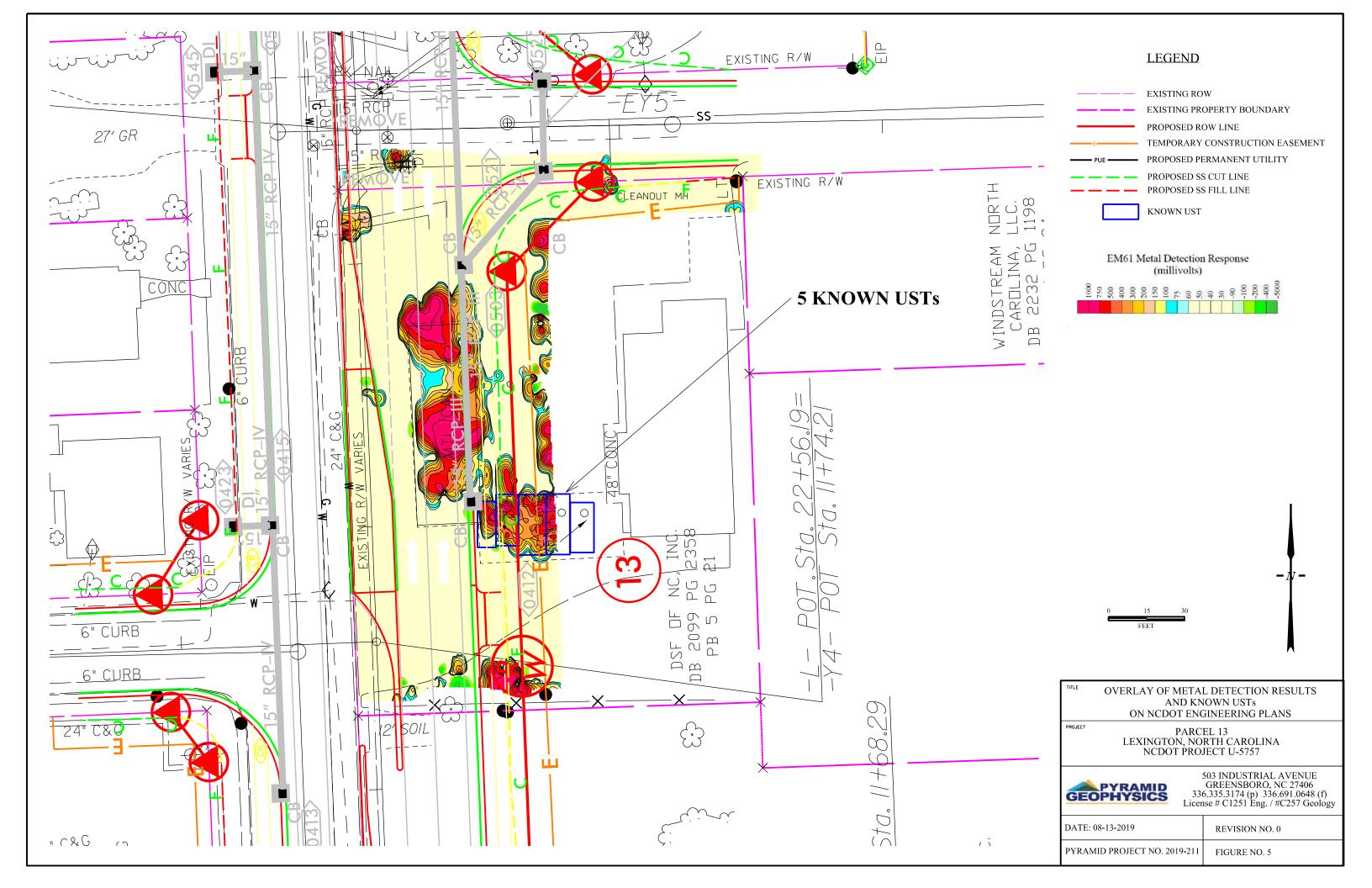
2019-211


FIGURE 3

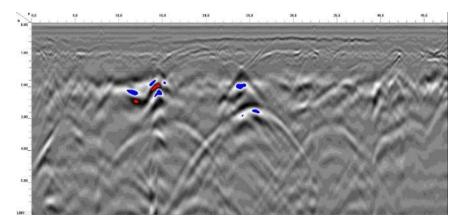
LOCATIONS OF FIVE KNOWN USTs

View of Five Known USTs Facing Approximately East

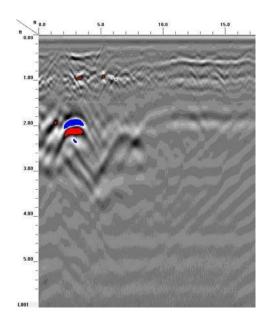
View of Five Known USTs Facing Approximately West

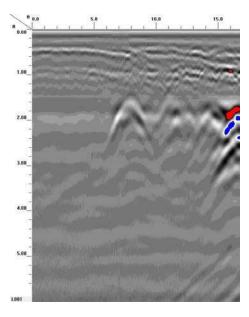

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology

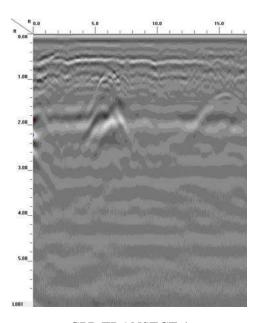
PROJECT

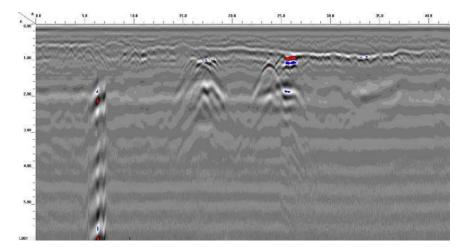

PARCEL 13 LEXINGTON, NORTH CAROLINA NCDOT PROJECT U-5757 TITLE

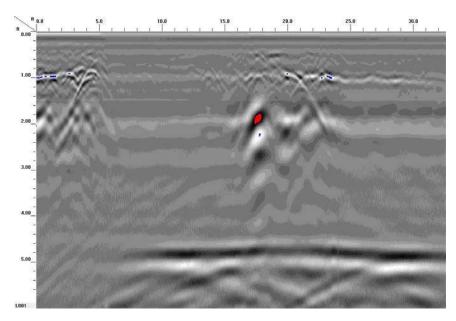
PARCEL 13 - LOCATIONS AND SIZES OF FIVE KNOWN USTs

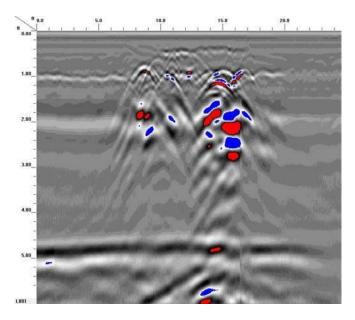

DATE	7/19/2019	CLIENT	KLEINFELDER
PYRAMID PROJECT #:	2019-211		FIGURE 4

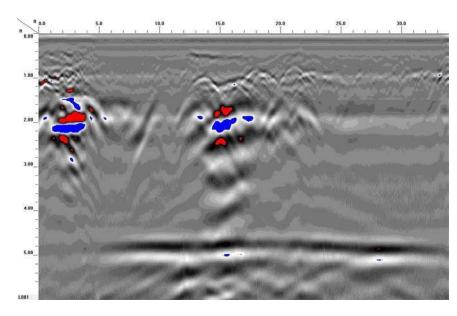


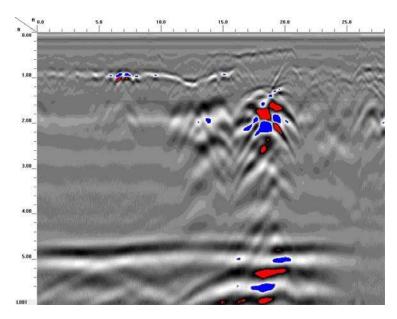

GPR TRANSECT 1

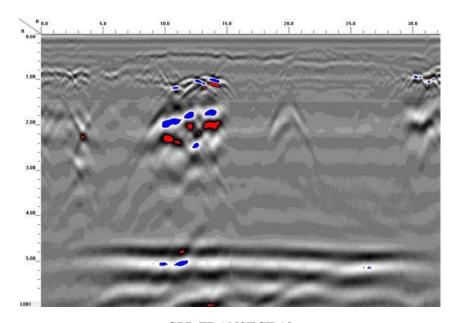

GPR TRANSECT 2


GPR TRANSECT 3

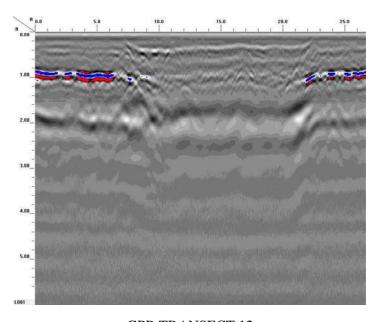

GPR TRANSECT 4

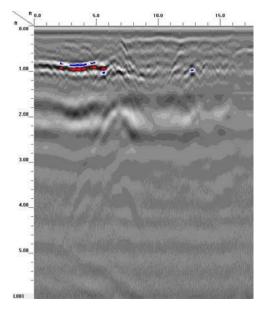

GPR TRANSECT 5

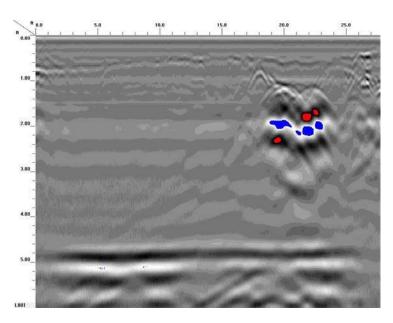

GPR TRANSECT 6


GPR TRANSECT 7

GPR TRANSECT 8


GPR TRANSECT 9


GPR TRANSECT 10


GPR TRANSECT 11

GPR TRANSECT 12

GPR TRANSECT 13

GPR TRANSECT 14

APPENDIX C BORING LOGS

9/18/2019

20201105.001A PROJECT NUMBER: gINT TEMPLATE:

OFFICE FILTER: RALEIGH

gINT FILE: KIf_gint_master_2020

PAGE:

1 of 1

9/18/2019

Lexington, NC

PAGE:

1 of 1

OFFICE FILTER: RALEIGH

9/18/2019

Lexington, NC

PAGE:

1 of 1

OFFICE FILTER: RALEIGH

OFFICE FILTER: RALEIGH

Bright People. Right Solutions.

CHECKED BY: M BURNS

9/18/2019

DATE:

NCDOT: U-5757 Biesecker Road Lexington, NC

PAGE:

1 of 1

OFFICE FILTER: RALEIGH

gINT FILE: KIf_gint_master_2020

CHECKED BY: M BURNS

DATE:

9/18/2019

Biesecker Road Lexington, NC

PAGE: 1 of 1

9/18/2019

PAGE:

1 of 1

PROJECT NUMBER: 20201105.001A gINT FILE: KIf_gint_master_2020 gINT TEMPLATE:

OFFICE FILTER: RALEIGH

OFFICE FILTER: RALEIGH

CHECKED BY: M BURNS

9/18/2019

DATE:

Biesecker Road Lexington, NC

PAGE:

1 of 1

APPENDIX D ANALYTICAL REPORT AND GRAPHS

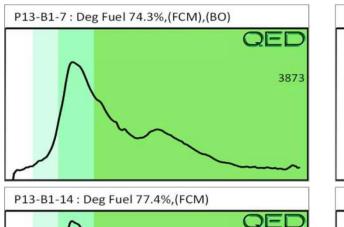
Hydrocarbon Analysis Results

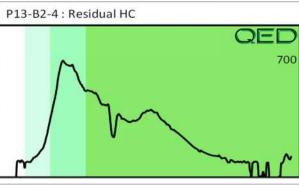
Client: Samples taken Monday, August 5, 2019 **KLEINFELDER** Address: Samples extracted Monday, August 5, 2019

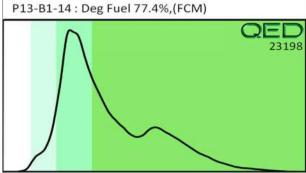
Samples analysed Monday, August 5, 2019

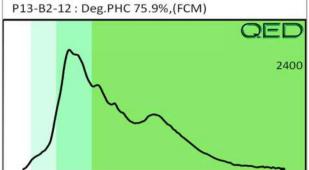
Contact: ABIGAIL SHURTLEFF Operator **CAROLINE STEVENS**

Project: NCDOT U-5757


													U00904
Matrix	S	ample ID Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	Ċ	% Ratios	3	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
S	P13-B1-7	14.9	< 0.37	4.1	1.7	5.8	1.1	<0.12	<0.015	90.9	6.1	3	Deg Fuel 74.3%,(FCM),(BO)
S	P13-B2-4	13.9	< 0.35	< 0.35	< 0.35	0.2	0.2	<0.11	<0.014	0	55.4	44.6	Residual HC
S	P13-B1-14	16.3	< 0.41	1	10.5	11.5	8.3	0.31	<0.016	26.2	54.7	19.1	Deg Fuel 77.4%,(FCM)
S	P13-B2-12	13.2	< 0.33	<0.33	0.91	0.91	0.47	<0.11	<0.013	0	68.4	31.6	Deg.PHC 75.9%,(FCM)
		Initial Calibrator	OC check	OK					Final FO	CM OC	Check	OK	96 %


Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected


B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only. Data generated by HC-1 Analyser Project: NCDOT U-5757

Hydrocarbon Analysis Results

 Client:
 KLEINFELDER
 Samples taken
 Monday, August 5, 2019

 Address:
 Samples extracted
 Monday, August 5, 2019

 Complex analysed
 Monday, August 5, 2019

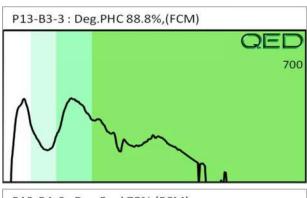
Samples analysed Monday, August 5, 2019

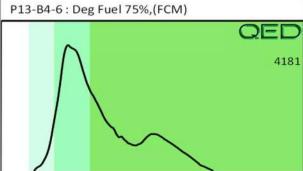
Contact: ABIGAIL SHURTLEFF CAROLINE STEVENS

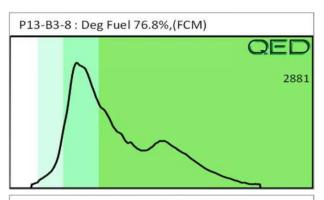
Project: NCDOT U-5757

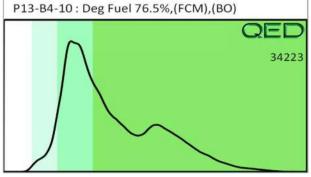
													U00904
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	ď	% Ratios	3	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
s	P13-B3-3	13.2	<0.33	3.6	<0.33	3.6	0.17	<0.11	<0.013	99	0.6	0.4	Deg.PHC 88.8%,(FCM)
s	P13-B3-8	16.9	<0.42	<0.42	1.4	1.4	0.77	<0.13	<0.017	0	71.4	28.6	Deg Fuel 76.8%,(FCM)
s	P13-B4-6	11.7	<0.29	<0.29	1.3	1.3	0.65	<0.09	<0.012	0	75.8	24.2	Deg Fuel 75%,(FCM)
s	P13-B4-10	10.8	<0.27	<0.27	10.9	10.9	8.8	0.31	<0.011	0	76	24	Deg Fuel 76.5%,(FCM),(BO)
		Initial Calibrator	QC check	OK					Final F	CM QC	Check	OK	104.3 %

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected


B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.


% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only.


Data generated by HC-1 Analyser

Monday, August 5, 2019 Project: NCDOT U-5757

NC Certification No. 402 NC Drinking Water Cert No. 37735 SC Certification No. 99012 **Case Narrative**

9/11/19 13:49

Kleinfelder SE, Inc. (Morrisville) Mike Burns 3200 Gateway Centre Blvd. Suite 100 Morrisville, NC 27560 Project: U5757

Lab Submittal Date: 09/05/2019 Prism Work Order: 9090051

This data package contains the analytical results for the project identified above and includes a Case Narrative, Sample Results and Chain of Custody. Unless otherwise noted, all samples were received in acceptable condition and processed according to the referenced methods.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative.

Please call if you have any questions relating to this analytical report.

Respectfully,

PRISM LABORATORIES, INC.

Angela D. Overcash

VP Laboratory Services

Reviewed By Terri W. Cole For Angela D. Overcash

Derrico acc

Project Manager

Data Qualifiers Key Reference:

RLM Sample container suspected to have low methanol content. Results possibly biased high.

SR Surrogate recovery outside the QC limits.

BRL Below Reporting Limit
MDL Method Detection Limit
RPD Relative Percent Difference

* Results reported to the reporting limit. All other results are reported to the MDL with values between MDL and

reporting limit indicated with a J.

Sample Receipt Summary

09/11/2019

Prism Work Order: 9090051

Client Sample ID	Lab Sample ID	Matrix	Date/Time Sampled	Date/Time Received
P62-B8-1	9090051-01	Solid	09/03/19 17:15	09/05/19 17:00
P13-B5-6	9090051-02	Solid	09/03/19 11:25	09/05/19 17:00
P50-B4-5	9090051-03	Solid	09/03/19 16:00	09/05/19 17:00

Samples were received in good condition at 2.4 degrees C unless otherwise noted.

Summary of Detections

09/11/2019

Prism Work Order: 9090051

Prism ID	Client ID	Parameter	Method	Result	Units
9090051-01	P62-B8-1	Diesel Range Organics	*8015C	32	mg/kg dry

09/11/2019

Kleinfelder SE, Inc. (Morrisville)

Attn: Mike Burns

3200 Gateway Centre Blvd. Suite 100

Morrisville, NC 27560

Project: U5757

Sample Matrix: Solid

Client Sample ID: P62-B8-1 Prism Sample ID: 9090051-01 Prism Work Order: 9090051

Time Collected: 09/03/19 17:15 Time Submitted: 09/05/19 17:00

General Chemistry Parameters % Solids	85.0	% by	0.100	0.100	1	*SM2540 G	9/9/19 7:50	EDV	P910085
Compared Chambiotine Boursesstone			a,a,a-Trifluorotoluene			14	50-137	SR	
			Surrogate			Recov	very	Control L	imits
Gasoline Range Organics	BRL	mg/kg dry	6.0	1.6	50	*8015C	9/9/19 13:46	TBL	P910087
Gasoline Range Organics by GC/FID									RLM
			o-Terphenyl			78	31-123		
			Surrogate			Recov	very	Control L	imits
Diesel Range Organics	32	mg/kg dry	8.2	2.8	1	*8015C	9/9/19 13:01	ZRC	P910080
Diesel Range Organics by GC/FID									
Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID

Attn: Mike Burns

3200 Gateway Centre Blvd. Suite 100

Morrisville, NC 27560

Project: U5757

Client Sample ID: P13-B5-6 Prism Sample ID: 9090051-02 Prism Work Order: 9090051 Time Collected: 09/03/19 11:25

Sample Matrix: Solid Time Collected: 09/03/19 11:25 Time Submitted: 09/05/19 17:00

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Diesel Range Organics by GC/FID									
Diesel Range Organics	BRL	mg/kg dry	8.6	2.9	1	*8015C	9/6/19 19:50	ZRC	P910080
			Surrogate			Recov	very	Control Limits	
			o-Terphenyl			83	3 %	31-123	
Gasoline Range Organics by GC/FID									RLM
Gasoline Range Organics	BRL	mg/kg dry	6.2	1.7	50	*8015C	9/9/19 14:14	TBL	P910087
			Surrogate			Recov	very	Control L	imits
			a,a,a-Trifluo	a,a,a-Trifluorotoluene		16	3 %	50-137	SR
General Chemistry Parameters									
% Solids	81.5	% by Weight	0.100	0.100	1	*SM2540 G	9/9/19 7:50	EDV	P910085

Attn: Mike Burns

3200 Gateway Centre Blvd. Suite 100

Morrisville, NC 27560

Project: U5757

Client Sample ID: P50-B4-5 Prism Sample ID: 9090051-03

Prism Work Order: 9090051 Sample Matrix: Solid Time Collected: 09/03/19 16:00 Time Submitted: 09/05/19 17:00

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID	
Diesel Range Organics by GC/FID										
Diesel Range Organics	BRL	mg/kg dry	8.5	2.8	1	*8015C	9/6/19 20:28	ZRC	P910080	
			Surrogate			Recov	/ery	Control Limits		
			o-Terphenyl	nyl		75	5 %	31-123		
Gasoline Range Organics by GC/FID									RLM	
Gasoline Range Organics	BRL	mg/kg dry	6.8	1.9	50	*8015C	9/9/19 14:42	TBL	P910087	
			Surrogate			Recov	very	Control L	imits	
			a,a,a-Trifluo	rotoluene		15	3 %	50-137	SR	
General Chemistry Parameters										
% Solids	82.6	% by Weight	0.100	0.100	1	*SM2540 G	9/9/19 7:50	EDV	P910085	

Attn: Mike Burns

3200 Gateway Centre Blvd. Suite 100

Morrisville, NC 27560

Project: U5757

Prism Work Order: 9090051

Time Submitted: 9/5/2019 5:00:00PM

Gasoline Range Organics by GC/FID - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9I0087 - 5030B										
Blank (P9l0087-BLK1)			1	Prepared	& Analyze	d: 09/09/1	9			
Gasoline Range Organics	BRL	5.0	mg/kg wet							
Surrogate: a,a,a-Trifluorotoluene	5.75		mg/kg wet	5.000		115	50-137			
LCS (P9I0087-BS1)	Prepared & Analyzed: 09/09/19									
Gasoline Range Organics	49.2	5.0	mg/kg wet	50.00		98	41-138			
Surrogate: a,a,a-Trifluorotoluene	5.55		mg/kg wet	5.000		111	50-137			
LCS Dup (P9I0087-BSD1)	Prepared & Analyzed: 09/09/19									
Gasoline Range Organics	49.5	5.0	mg/kg wet	50.00		99	41-138	0.6	20	
Surrogate: a,a,a-Trifluorotoluene	5.35		mg/kg wet	5.000		107	50-137			

Project: U5757

Prism Work Order: 9090051

Time Submitted: 9/5/2019 5:00:00PM

Attn: Mike Burns 3200 Gateway Centre Blvd. Suite 100 Morrisville, NC 27560

Diesel Range Organics by GC/FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9I0080 - 3546										
Blank (P9I0080-BLK1)	Prepared & Analyzed: 09/06/19									
Diesel Range Organics	BRL	7.0	mg/kg wet							
Surrogate: o-Terphenyl	1.09		mg/kg wet	1.333		82	31-123			
LCS (P9I0080-BS1)				Prepared	& Analyze	d: 09/06/1	9			
Diesel Range Organics	67.9	7.0	mg/kg wet	66.67		102	46-126			
Surrogate: o-Terphenyl	1.16		mg/kg wet	1.333		87	31-123			
LCS Dup (P9I0080-BSD1)				Prepared	& Analyze	d: 09/06/1	9			
Diesel Range Organics	68.6	7.0	mg/kg wet	66.67		103	46-126	1	20	
Surrogate: o-Terphenyl	1.17		mg/kg wet	1.333		88	31-123			
Matrix Spike (P9I0080-MS1)	Sou	ırce: 909005	1-03	Prepared	& Analyze	d: 09/06/1	9			
Diesel Range Organics	69.1	8.4	mg/kg dry	80.46	BRL	86	50-117			
Surrogate: o-Terphenyl	1.18		mg/kg dry	1.609		74	31-123			
Matrix Spike Dup (P9I0080-MSD1)	Sou	ırce: 909005	1-03	Prepared	& Analyze	d: 09/06/1	9			
Diesel Range Organics	65.9	8.5	mg/kg dry	80.73	BRL	82	50-117	5	24	
Surrogate: o-Terphenyl	1.17		mg/kg dry	1.615		73	31-123			

Sample Extraction Data

Prep	Method:	3546
------	---------	------

Lab Number	Batch	Initial	Final	Date/Time
9090051-01	P910080	30.1 g	1 mL	09/06/19 9:35
9090051-02	P910080	30.11 g	1 mL	09/06/19 9:35
9090051-03	P910080	30.03 g	1 mL	09/06/19 9:35

Prep Method: 5030B

Lab Number	Batch	Initial	Final	Date/Time
9090051-01	P910087	4.92 mL	5 mL	09/09/19 7:39
9090051-02	P9I0087	4.94 mL	5 mL	09/09/19 7:39
9090051-03	P9I0087	4.44 mL	5 mL	09/09/19 7:39

Prep Method: Solids, Dry Weight

Lab Number	Batch	Initial	Final	Date/Time
9090051-01	P9I0085	30 g	30 g	09/06/19 13:40
9090051-02	P9I0085	30 g	30 g	09/06/19 13:40
9090051-03	P910085	30 g	30 g	09/06/19 13:40

Full-Service Analytical & **Environmental Solutions**

□NC □SC

*CONTAINER TYPE CODES: A = Amber C = Clear G= Glass P = Plastic; TL = Teflon-Lined Cap VOA = Volatile Organics Analysis (Zero Head Space)

Phone 704 Client Company Nam Report To/Contact Na Reporting Address:	me: Mik 3200 Gate MSVIII , I II Fax (Yes Nourns C xcel Other US75	relder felder Le Burns Lway Cent VC (No):	re Bivd der com	provisions ar Invoice To: Address: Purchase Orc Requested Due "Working Days Samples receive	nalysis: CH any id/or QC SAI	Yes) (I project special specia	rence 202(ays 3 Days 4 tandard 10 days 3	Project: QC LEV	ON A	V)	PF Re CU VC PF TE	ROPER F eceived V JSTODY DLATILES ROPER C MP: The FILLE Cation	SEALS IS rec'd WCONTAIN PRINT ID:	VATIVES indicated? IOLDING TIMES? INTACT? I/OUT HEADSPACI IERS used? Obser IY CLIENT/SAI ACDoD OTHER_	E? rved: 2.3 °C / MPLING PER FL N/A	
Site Location Physica		linston R	oad_	Turnaround time (SEE REVE	is based RSE FOR 1	on business ERMS & CONI	days, excluding wee	kends ar	nd holidays. : s					YES NO_ Collection: YE	/	
		TIME	MATRIX		E CONT		RIES, INC. TO CLIENT)				_	QUESTE		Conection, 12	3 <u>/\</u> NO	
CLIENT SAMPLE DESCRIPTION	DATE COLLECTED	MILITARY HOURS	(SOIL, WATER OR SLUDGE)	*TYPE SEE BELOW	NO.	SIZE	PRESERVA- TIVES	/	20/20	9/	/	/		REMA	ARKS	PRISM LAB ID NO.
P62-B8-1	9/3/19	1715	SOIL	CG	1	402	None	X				8 H F		E EX	1 5.	01
3 1 4 7		1715		VOA	2	/	Methanol		X		H	E	3	B (8)	- 54	1 1
P13-B5-6		1125		CG	T	402	None.	X			į E	la la	E			02
7 3 2 % 1		1125		VOA	2	/	Methanol		X							1
P50-B4-5		1600		CG	1	402	None	×				I II	2.1	96673		03
	4	1600	1	VOX	2	/	Methanol		X			5 1	3 1			1
		3.55					1 7				Ę		35			
		313					Y IT	Į.			56 E			EFFE		
		8 1 1						L E					V.			
	0 4	1-0					B 3 E					13				
Sampler's Signature	America					-10	hurtleff	Affilia		KL	_		55	PRESS DOW	N FIRMLY	- 3 COPIES
Upon relinquishing, this submitted in writing to t	Chain of Custo he Prism Projec	dy is your putlet Manager. Th	norization for ere will be ch	Prism to proce arges for any o	ed with hanges	the analyses after analys	s as requested ab es have been initi	ove. Aı alized.	ny Changes	s must	be	7			PRISM	USE ONLY
Relinquished By: (Signature)	Colean K	Minger	Rece	wed By: (Signature)	X	2			Date 09/04/	4 60	Military/H	200.0	Addition	nal Comments:	Site Arrival Tir	me:
Relinquished By (Signature)	× .		Rece	ived By: (Signature)	n-1 \	Oi	^ -		Date	۲		1			Site Departure	e Time:
Relinquished By: (Signature)	7	- 1 A	Rece	ived For Prism Labo	ratories By	7			9-05 Date	- 53	027				Field Tech Fe	e:
Method of Shipment: NOTE: A	LL SAMPLE COOLE	ERS SHOULD BE T	APED SHUT WIT	H CUSTODY SEAL	S FOR TRA	ANSPORTATIO	N TO THE LABORATO	RY.	COC Group	No.	0-0	O			Mileage:	
SAMPLE	delivered Prism	TED AND VERIFIE	D AGAINST COC	UNTIL RECEIVED	AT THE L	ABORATORY.			90		105					
NPDES: UST:	GROUND	WATER: Di	RINKING WAT		WASTI □ SC		SC DNC		ANDFILL	0	THER:					VERSE FOR CONDITIONS

□NC□SC □NC □SC □NC □SC

CHAIN OF CUSTODY RECORD

PAGE____OF___QUOTE # TO ENSURE PROPER BILLING:

ORIGINAL

LAB USE ONLY

Samples INTACT upon arrival?

APPENDIX E PAGES FROM PREVIOUS REPORTS

North Carolina Department of Environmental Quality Underground Storage Tank UST-10B

Printed: 2/23/2018 7:18 AM Inspection Result: Failed Partial Inspection: No

Inspection Date: 2/20/2018

Arrive and Depart Times: 11:15 AM-11:45 AM

Facility ID:	00-0-0000024863	Inspector	Jason Chapple
Facility Name	GRAB & GO 12	Insp. Type	Compliance
Facility Address	1009 WINSTON ROAD	Reason(s)	Routine Compliance
	LEXINGTON, NC 27292	Location	35.839352, -80.253364
	Davidson County	Permit Exp.	3/31/2018
	Located facility, USTs onsite		
Facility Phone	(336) 841-4165		

CONTACTS

Contact Type	Contact Information
Regulatory Operator since 2/28/2013	DSF OF NC, INC., 4401 UNITED STREET GREENSBORO, NC 27407-1313, Phone: (336) 285-7474
Regulatory Owner since 2/28/2013	DSF OF NC, INC., 4401 UNITED STREET GREENSBORO, NC 27407-1313, Phone: (336) 285-7474
Owner since 2/28/2013	DSF OF NC, INC., 4401 UNITED STREET GREENSBORO, NC 27407-1313, Phone: (336) 285-7474
Manager since 9/13/2014	LOVLEEN KAUR, 1009 WINSTON RD. LEXINGTON, NC 27295, Phone: (336) 558-7828
Regulatory Operator since 9/13/2014	S N FOOD MART 2, INC., 1009 WINSTON RD. LEXINGTON, NC 27295, Phone: (336) 558-7828
Owner Auth Rep since 2/28/2013	SHEHZAD QUAMAR, 2105 NEEDLE LEAF LANE GREENSBORO, NC 27410, Phone: (336) 215-6655
Manager since 2/28/2013	SHEHZAD QUAMAR, 2105 NEEDLE LEAF LANE GREENSBORO, NC 27410, Phone: (336) 215-6655

OWNERSHIP CHANGE

New Owner Change	Date Basis	Transfer of Ownership Form (UST-15) Submitted
------------------	------------	---

EMERGENCY RESPONSE

Emergency response placard with emergency response operator contact information is posted in the dispensing areas if the	N/A
dispensers are left on without an attendant present?	

OTHER PARTICIPANTS

Name	Organization
Ed Lyles	

INSPECTOR COMMENTS

Tv	pe	Date	Comment

ADDITIONAL INSPECTOR COMMENTS

10-29-2010, Letter from Tim Stanley verifies tanks. He excavated to visually verify. Siphon bars are FRP.

TANKS AND PIPING INFORMATION

Tanks	Tank #1(1-Reg)	Tank #2(2-Reg)	Tank #3(3-Pre)	Tank #4(4-Dsl)	Tank #5(5-Dsl)
Tank ID	1-Reg	2-Reg	3-Pre	4-Dsl	5-Dsl
TIMS Tank ID	1	2	3	4	5
Is tank registered?	Yes	Yes	Yes	Yes	Yes
Date tank installed	11/11/1986	11/11/1986	11/11/1986	11/11/1986	11/11/1986
Capacity of Tank in Gallons	6000	6000	6000	2000	2000
Tank / Product use	Motor Fuel				
Product stored in Tank	Gasoline, Gas Mix	Gasoline, Gas Mix	Gasoline, Gas Mix	Diesel	Diesel
Product Detail	Regular	Regular	Premium		
If hazardous substance, CAS# or description					
If other, description					
Tank Status	Current	Current	Current	Current	Current
Tank closure report submitted					
Date tank last operated					
Inches of product in Tank					
Manifolded Tank	Yes	Yes	No	Yes	Yes
Manifolded with tanks	#2(2-Reg)	#1(1-Reg)		#5(5-Dsl)	#4(4-Dsl)
New Tank System installed in accordance with NC or MI					
Tank Construction Material (DW required after 11/1/07)	Single Wall Steel/FRP				
If other, description			1		
Tank Manufacturer/Model	Unknown	Unknown	Unknown	Unknown	Unknown

Tanks	Tank #1(1-Reg)	Tank #2(2-Reg)	Tank #3(3-Pre)	Tank #4(4-Dsl)	Tank #5(5-Dsl)
If other, describe					
Tank material verified by	Petroleum Equip	Petroleum Equip	Petroleum Equip	Petroleum Equip	Petroleum Equip
	Contractor	Contractor	Contractor	Contractor	Contractor
Date Pipe Installed	3/31/1993	3/31/1993	3/31/1993	3/31/1993	3/31/1993
Was UST Piping Installed on or after	No	No	No	No	No
11/1/2007?					
Piping Construction	Double Wall Flex	None	Double Wall Flex	Double Wall Flex	None
Material (DW required					
after 11/1/07)					
If other, description					
Pipe	Unknown	Unknown	Unknown	Unknown	Unknown
Manufacturer/Model					
If other, describe					
Pipe material verified by	Visual	Visual	Visual	Visual	Visual
If E-blend > 10% or	N/A	N/A	N/A	N/A	N/A
Biodiesel Blend > 20%;					
Was UST-20 completed					
and approved?					

CORROSION PROTECTION

CORROSIONTROTECTI					
Tank Corrosion Protection	Tank #1(1-Reg)	Tank #2(2-Reg)	Tank #3(3-Pre)	Tank #4(4-Dsl)	Tank #5(5-Dsl)
DWM notified of current CP method	Yes	Yes	Yes	Yes	Yes
Integrity assessment performed after 3/1/06	No	No	No	No	No
CP Method 1	Steel/FRP Composite	Steel/FRP Composite	Steel/FRP Composite	Steel/FRP Composite	Steel/FRP Composite
if other, Description					
CP Installation Date	3/31/1993	3/31/1993	3/31/1993	3/31/1993	3/31/1993
CP Method 2					
if other, Description					
CP Installation Date					
Flex Connector, Piping Extensions, and/or other metal fittings Present	Other Metal, Flex Connector, Elbow, Ball Valve	N/A (for Manifold <11/1/07 Only)	Other Metal, Flex Connector, Elbow, Ball Valve	Other Metal, Flex Connector, Elbow, Ball Valve	N/A (for Manifold <11/1/07 Only)
Flex connector isolated from ground	Yes	N/A	Yes	Yes	N/A
Source of verification of CP for Flex Connectors, piping extensions and/or other metal fittings	Visual	Visual	Visual	Visual	Visual

Tank Corrosion Protection	Tank #1(1-Reg)	Tank #2(2-Reg)	Tank #3(3-Pre)	Tank #4(4-Dsl)	Tank #5(5-Dsl)
if other, Description					
Submersible pump (STP) is isolated from ground	Yes	N/A	Yes	Yes	N/A
Piping extensions and/or other metal fittings are isolated from ground	Yes	N/A	Yes	Yes	N/A
Flex connector, STP and/or other metal fittings protected from corrosion	N/A	N/A	N/A	N/A	N/A
Corrosion protection method	Isolated	Isolated	Isolated	Isolated	Isolated
Flex connector, Piping extensions, and/or other metal fittings CP Installation Date					
Dielectric Coating Installed (If tank installed after 12/22/88	N/A	N/A	N/A	N/A	N/A

Pipe Corrosion Protection	Tank #1(1-Reg)	Tank #2(2-Reg)	Tank #3(3-Pre)	Tank #4(4-Dsl)	Tank #5(5-Dsl)
DWM notified of current CP method	Yes	Yes	Yes	Yes	Yes
CP method	Flexible	Flexible	Flexible	Flexible	Flexible
if other, Description					
CP Installation Date	3/31/1993	3/31/1993	3/31/1993	3/31/1993	3/31/1993
Dielectric Coating Installed (If piping installed after 12/22/88	N/A	N/A	N/A	N/A	N/A

Dispenser Corrosion Protection	Dispenser #1(1/2)	Dispenser #2(3/4)	Dispenser #3(5/6)
Flex Connector, Piping Extensions, and/or other metal fittings Present	Flex Connector	Flex Connector	Flex Connector
Flex connector isolated from ground	Yes	Yes	Yes
Source of verification of CP for Flex Connectors, piping extensions and/or other metal fittings	Visual	Visual	Visual
if other, Description			
Piping extensions and/or other metal fittings are isolated from ground	Yes	Yes	Yes
Flex Connectors, Piping extensions and/or other metal fittings protected from corrosion	N/A	N/A	N/A
Corrosion protection method	Isolated	Isolated	Isolated
Flex connector, Piping extensions, and/or other metal fittings CP Installation Date			
Source of Information for verification of corrosion protection for Riser pipe and other metal piping	Visual	Visual	Visual
if other, Description			

CP Conclusions	
CP Requirements Met?	Yes
Issues	

SPILL PREVENTION

Has DWM been notified of spill methods?	Yes

Spill/Overfill Details	Tank #1(1-Reg)	Tank #2(2-Reg)	Tank #3(3-Pre)	Tank #4(4-Dsl)	Tank #5(5-Dsl)
Is a drop tube present?	Yes	Yes	Yes	Yes	Yes
Type of Stage I vapor recovery?	Dual Point	Dual Point	Dual Point	Not Required	Not Required

Local Fill	Tank #1(1-Reg)	Tank #2(2-Reg)	Tank #3(3-Pre)	Tank #4(4-Dsl)	Tank #5(5-Dsl)
Does Tank have a	No	No	No	No	No
Remote Fill?					
Spill Protection	Catchment Basin				
Is spill prevention	Yes	Yes	Yes	Yes	Yes
equipment provided and					
verified?					
Manufacturer/Model	Pemco: 112XXX Series				
If other, describe					
Spill bucket is double-	N/A	N/A	N/A	N/A	N/A
walled? (If installed after					
11/1/07)					
Spill bucket is isolated or	N/A	N/A	N/A	N/A	N/A
made of non-corroding					
materials? (If installed					
after 11/1/07)	0/04/4000	0/04/4000	0/04/4000	0/04/4000	0/04/4000
Date spill prevention	3/31/1993	3/31/1993	3/31/1993	3/31/1993	3/31/1993
provided					
Is spill prevention	Yes	Yes	Yes	Yes	Yes
operating properly?					
If No, select all that apply					
If other, describe					

OVERFILL PREVENTION

Has DWM been notified of overfill methods?	Yes

Overfill Control	Tank #1(1-Reg)	Tank #2(2-Reg)	Tank #3(3-Pre)	Tank #4(4-Dsl)	Tank #5(5-Dsl)
Is overfill prevention equipment provided	Yes	Yes	Yes	Yes	Yes
and verified?					
Date overfill control provided	3/31/1993	3/31/1993	3/31/1993	3/31/1993	3/31/1993

Overfill Control	Tank #1(1-Reg)	Tank #2(2-Reg)	Tank #3(3-Pre)	Tank #4(4-Dsl)	Tank #5(5-Dsl)
Type of overfill equipment	Auto Shutoff Device				
Source of information for overfill control	Visual observation				
verification					
If other, describe					
Is overfill control operating properly?	Yes	Yes	Yes	Yes	Yes
If No, select all that apply					
If other, describe					
Annual overfill check date(If installed after					
11/1/07) (UST-22A)					
Annual overfill check results(UST-22A)					

Dispenser Sumps	Dispenser #1(1/2)	Dispenser #2(3/4)	Dispenser #3(5/6)
Are containment sumps present?	Yes	Yes	Yes
Installation Date	3/31/1993	3/31/1993	3/31/1993
Sump Manufacturer	Frank Fuel: APT Disp Sump	Frank Fuel: APT Disp Sump	Frank Fuel: APT Disp Sump
If Other (Specify)			
Sump Construction Type	Single Walled	Single Walled	Single Walled
Sump Construction Material	Plastic	Plastic	Plastic
If Other (Specify)			
Are containment sumps monitored?	No	No	No
Is monitoring required per 2N .0900?	No	No	No
Piping components and/or STP were installed/replaced on or after 11/1/07?	No	No	No
Are spills or small weeps evident in sumps?	No	No	No
Are single wall piping components located in containment sump? (If installed after 11/1/07)			

Other Sumps	Sump#1(Reg STP)	Sump#2(Reg TT)	Sump#3(Pre STP)	Sump#4(Dsl STP)	Sump#5(Dsl TT)
Are containment sumps	Yes	Yes	Yes	Yes	Yes
present?					
Installation Date	3/31/1993	3/31/1993	3/31/1993	3/31/1993	3/31/1993
Sump Manufacturer	Frank Fuel: APT Tank				
	Sump	Sump	Sump	Sump	Sump
If Other (Specify)					
Sump Construction Type	Single Walled				
Sump Construction	Plastic	Plastic	Plastic	Plastic	Plastic
Material					
If Other (Specify)					
Are containment sumps	No	No	No	No	No
monitored?					
Is monitoring required	No	No	No	No	No

Other Sumps	Sump#1(Reg STP)	Sump#2(Reg TT)	Sump#3(Pre STP)	Sump#4(Dsl STP)	Sump#5(Dsl TT)
per 2N .0900?					
Piping components	No	No	No	No	No
and/or STP were					
installed/replaced on or					
after 11/1/07?					
Are spills or small weeps	No	No	No	No	No
evident in sumps?					
Are single wall piping					
components located in					
containment sump? (If					
installed after 11/1/07)					

SITING AND SECONDARY CONTAINMENT

Siting And Sec.Containment-General	Tank #1(1-Reg)	Tank #2(2-Reg)	Tank #3(3-Pre)	Tank #4(4-Dsl)	Tank #5(5-Dsl)
UST system upgraded with corrosion protection, spill and overfill	No	No	No	No	No
before 1/1/91?					
UST system and/or piping are located within siting and secondary	No	No	No	No	No
containment areas?					

LEAK DETECTION

General	Tank #1(1-Reg)	Tank #2(2-Reg)	Tank #3(3-Pre)	Tank #4(4-Dsl)	Tank #5(5-Dsl)
DWM notified of leak	Yes	Yes	Yes	Yes	Yes
detection method?					
Piping type	Pressurized System	Manifold Bar	Pressurized System	Pressurized System	Manifold Bar
Suction Check Type					
Type LLD present.	ELLD		MLLD	ELLD	
Tank – Primary leak	Automatic Tank Gauging				
detection method					
Tank - if other, specify					
Tank - Primary LD install	3/31/1993	3/31/1993	3/31/1993	3/31/1993	3/31/1993
date					
Tank – Secondary leak					
detection method					
Tank - if other, specify					
Piping - Primary leak	Line Tightness Testing	Not Required	Line Tightness Testing	Line Tightness Testing	Not Required
detection method	(LTT)		(LTT)	(LTT)	
Piping - if other, specify					
Piping - Primary LD	3/31/1993	3/31/1993	3/31/1993	3/31/1993	3/31/1993
install date					

General	Tank #1(1-Reg)	Tank #2(2-Reg)	Tank #3(3-Pre)	Tank #4(4-Dsl)	Tank #5(5-Dsl)
Piping - Secondary leak					
detection method					
Piping - if other, specify					

PIPING LEAK DETECTION

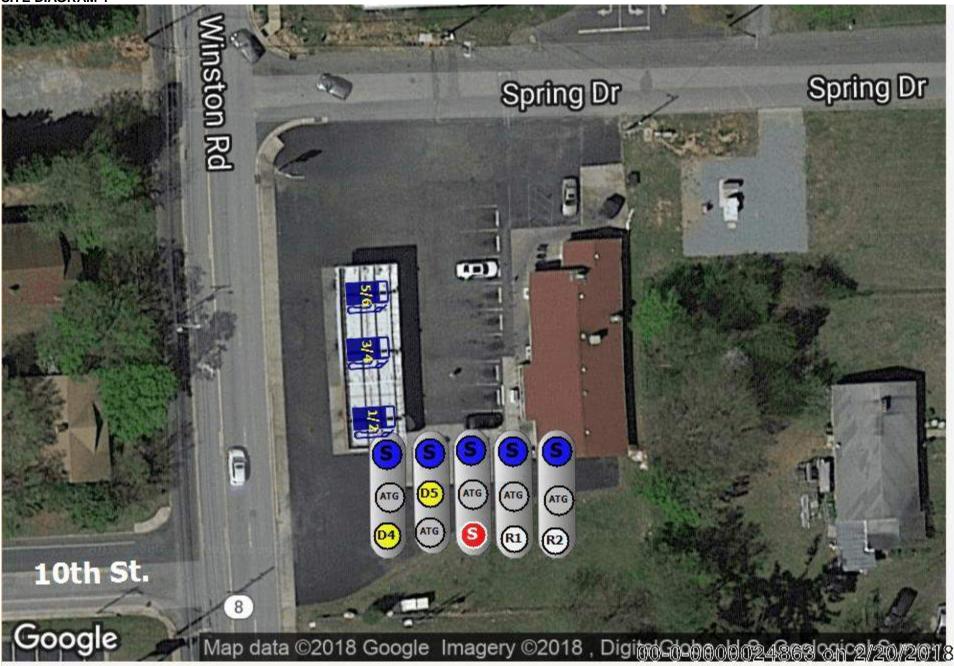
Pressurized Piping	Tank #1(1-Reg)	Tank #3(3-Pre)	Tank #4(4-Dsl)
Last MLLD/ELLD Test Date			
MLLD/ELLD Test Result			
Last LTT Test Date			
LTT Test Result			
Does test result indicatesuspected release?			
Number of MLLD/ELLD Types	1	1	1

MLLD/ELLD Equipment	Tank #1(1-Reg) LLD #1	Tank #3(3-Pre) LLD #1	Tank #4(4-Dsl) LLD #1
MLLD/ELLD Manufacturer/Model	V-R: PLLD Series 8484	V-R: FX1V	V-R: PLLD Series 8484
If other, describe			
MLLD/ELLD Third Party Certified?	Yes	Yes	Yes

AUTOMATIC TANK GAUGE

ATG Systems	ATG #1
ATG Manufacturer/Model	V-R: TLS-350 CSLD
If other, describe	
ATG Third Party Certified?	Yes
Is ATG console operational?	Yes
Tanks	#1(1-Reg), #2(2-Reg), #3(3-Pre), #4(4-Dsl), #5(5-Dsl)

ATG Monthly LD	Tank #1(1-Reg)	Tank #2(2-Reg)	Tank #3(3-Pre)	Tank #4(4-Dsl)	Tank #5(5-Dsl)
2018 Feb	None	None	None	None	None
2018 Jan	None	None	None	None	None
2017 Dec	None	None	None	None	None
2017 Nov	None	None	None	None	None
2017 Oct	None	None	None	None	None
2017 Sep	None	None	None	None	None
2017 Aug	None	None	None	None	None
2017 Jul	None	None	None	None	None


ATG Monthly LD	Tank #1(1-Reg)	Tank #2(2-Reg)	Tank #3(3-Pre)	Tank #4(4-Dsl)	Tank #5(5-Dsl)
2017 Jun	None	None	None	None	None
2017 May	None	None	None	None	None
2017 Apr	None	None	None	None	None
2017 Mar	None	None	None	None	None

ATG Conclusions	
Leak Detection Requirements Met?	No
Do the results indicate a suspected release?	No
Issues	0.2 Test not conducted for 3 or more months (LD1*), Records not available (RCD5)

TRANSPORTER/FUEL DELIVERY INFORMATION

Delivery Information	Tank #1(1-Reg)	Tank #2(2-Reg)	Tank #3(3-Pre)	Tank #4(4-Dsl)	Tank #5(5-Dsl)
All deliveries made to permitted tanks	Yes	Yes	Yes	Yes	Yes

WS-8861

#44108

UST-61	24-Hour R	telease	and U	ST Le	ak Re	porti	ng For	m.
For Releases This form an unde	should be completed a rground storage tank (I	and submitted t UST) system.	This form is re-	ction's region quired to be cted release	nal office follo submitted wit	wing a kri hin 24 ho	own or suspec urs of discove	cted release from ry of a known or
(DWM USE ON Incident # Risk (H,I,I Received On Received Reported by (circle one): Phone, F Region	L(U): By	Confirmed G Confirmed S Free Produc	Contamination? SW Contamina foil Contamina 1? (Y/N)	tion? (②N) tion ?(②N)	+ Windowskie w.v.	Date L	Non-Commer	0:0024 %3 od <u> -30- 3</u> cial?
Incident Name: Grab &	Go-Win	NCIDENT Ston Re	DESCRI	PTION		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Address: 1009 Wins;	ton Koad		4 247		Ço	unty: 🐰	lavidso.	$\mathcal{O}_{1,0}$
City/Town: Lexington		Zip Code: Z	7292	Regional Raleigh, \	Office <i>(circle :</i> WashIngton, V	one): 'Asl Vilmingto	nevi <u>lle, Moore</u> n, Winston-Sa	sville, Fayetteville,
Latitude (decimal degrees): N 35, 8 Briefly describe suspected or conflict of release, amount of free product Soil & groundwe	rmed release: (including present and recovery o	g but not limite efforts, initial re	d to: nature of sponses cond	release, dat ucted, impa	e of release, a cts to receptor	emount s)	Obtained by GPS Topogra GIS Add	
Soil & groundwa	site Assess	ment c	onduct	ed in		***************************************	Other	
January o					-		Unknow	n
		to the same of the		**************************************			Describe lo	ocation:
	HOW RELE		3 DISCOV	/ERED (ReleaseCode	;)	 	
Release Detection Equipment of During UST Closure/Removal Property Transfer	or Methods	Visual/Od Water In Water St		tamination			oundwater Cor face Water Cor eer (specify)	ntamination ontamination hose TLFSA
	SOL	JRCE OF	CONTAN	IINATIO	N			
Source of Release [Source of Release] (Check one to indicate primary source) Tank Piping Dispenser Submersible Turbine Pump Delivery Problem Other Unknown Definitions presented on reverse	Cause of Ro	cate primary use)	Type of ITY (Check	oe) (one)	(Check on product) Gasoli Heatin Other Metals	(Ptype) e to indicate type reine/Diese g Oil Petroleur	/Kerosene n Products s	Location (Check one) Facility Residence Other
Municipal 2. Military 3. Unkr Operation Type	nown 4. Private 5. F		•		***************************************			
Public Service 2. Agricultural	3. Residential 4. Ed	ucation/Relig.	5. Industrial	6. Comme	rcial) 7. Minir	ng		
UST Form 61 (10/07)								Page 1 of 2

RECEIVED N.C. Dept. of ENR

11	MPACT ON DR	INKING WATER SUPPLIES	
Water Supply Wells Affected? 1. Yes	2. No 3.	Unknown	•
Number of Water Supply Wells Affected		:	
Water Supply Wells Contaminated: (Include Use	ers Nemes, Addresse	es and Phone Numbers. Attach additiona	l sheet if necessary)
1, 2.			
3.			
UST Owner/Company / /		YSTEM OWNER	·
L C54 7	-nvestmer	its, Inc.	
	ls	Address 869 5. Algin	57.
City Burlington	State NC	Zip Code 277215	Telephone Number
	UST SYS	STEM OPERATOR	
UST Operator/Company 5GMC 95 V3	57 Owner	Address	
City	State	Zip Code	Telephone Number
LAN	DOWNER AT L	OCATION OF UST INCIDEN	it in the second se
Landowner Grab & Go		Address /309 5	. Main St.
City Lexington	State VC	Zip Code 27292	Telephone Number 336-215-66-55
		o major road intersection	ns) or Attach Map
	Loo At	tached Map	
	JCC 1/1	/acras	
	<u> </u>	C PARACON	
	ompany	Environmental Consultants, Inc.	Telephone Number 336-669-6037
UST Form 61 (10/07)	ddress	P.O. Box 157 Thomasville, NC 27361	Date Z-/9-/3 Page 2 of 2
The state of the s			ಕ ಆಭ್ರಥ ಹೆ. ಈ ಹ

Definitions of Sources

Tank: means the tank that stores the product and is part of the underground storage tank system

Píping: means the piping and connectors running from the tank or submorsible turbine pump to the dispenser or other end-use equipment (Vent, vapor recovery, or fill lines are excluded.)

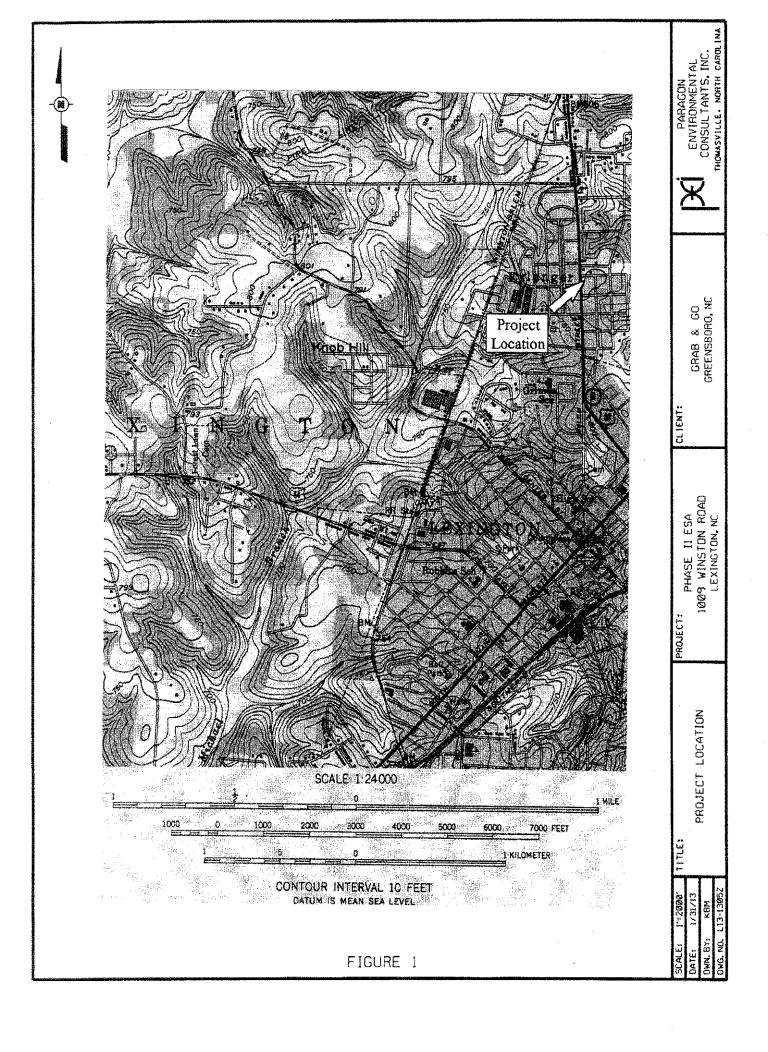
Dispenser: includes the dispenser and the equipment used to connect the dispenser to the piping (e.g., a release from a suction pump or from components located above the shear valve)

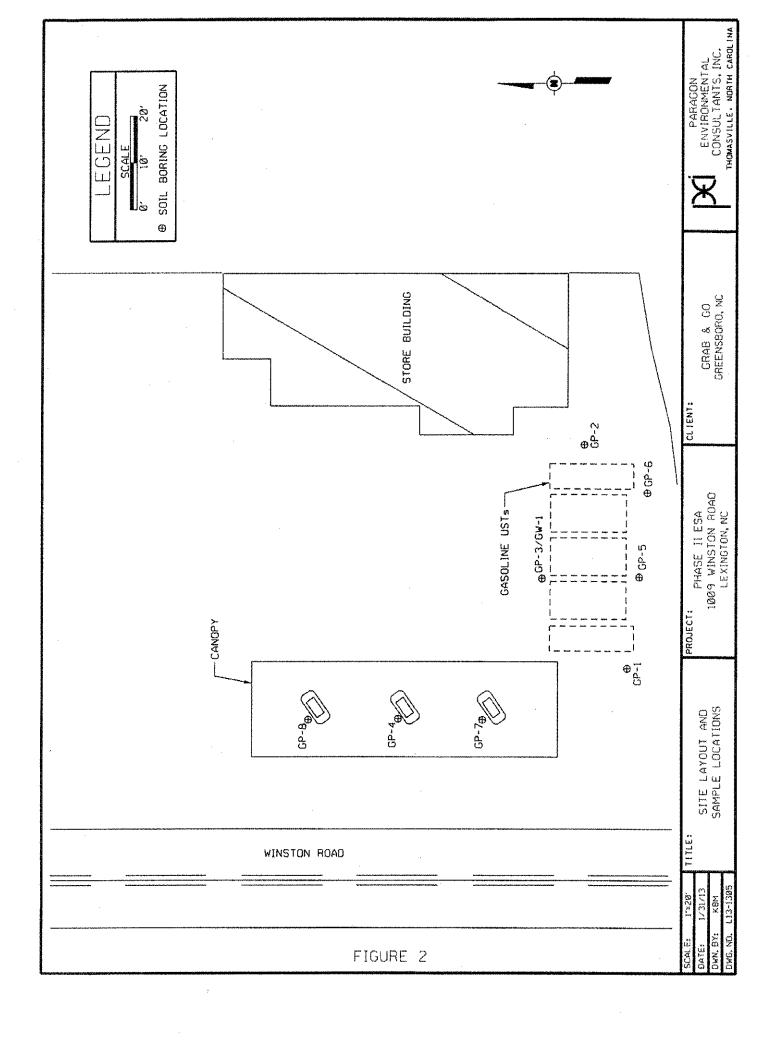
Submersible Turbine Pump (STP) Area includes the submersible turbine pump head (typically located in the tank sump), the line leak detector, and the piping that connects the submersible turbine pump to the tank

Delivery Problem: identifies releases that occurred during product delivery to the tank. (Typical causes associated with this source are spills and overfills.)

Other: serves as the option to use when the release source is known but does not fit into one of the preceding categories (e.g., for releases from vent lines, vapor recovery lines, and fill lines)

Unknown: identifies releases for which the source has not been determined


Definitions of Causes


Spill: use this cause when a spill occurs (e.g., when the delivery hose is disconnected from the tank fill pipe or when the nozzle is removed from the dispenser) use when an overfill occurs (e.g., overfills may occur from the fill pipe at the tank or when the nozzle fails to shut off at the dispenser)

Physical or Mechanical Damage: use for all types of physical or mechanical damage, except corrosion (e.g., puncture of tank or piping, loose fittings, broken components, and components that have changed dimension)

Corrosion: use when a metal tank, piping, or other component has a release due to corrosion (e.g., for steel, corrosion takes the form of rust) Installation Problem: use when the problem is determined to have occurred specifically because the UST system was not installed properly

Other: use this option when the cause is known but does not fit into one of the preceding categories (e.g., putting regulated substances into monitoring wells) Unknown: use when the cause has not been determined

NC Certification No. 402 SC Certification No. 99012 NC Drinking Water Cert No. 37735 VA Certification No. 1287 DoD ELAP Certification No. L2307

Case Narrative

01/22/2013

Paragon Environmental Consultants, Inc. Brandon Moore PO Box 157 Thomasville, NC 27361 Project: 1009 Winston Rd.

Lab Submittal Date: 01/14/2013 Prism Work Order: 3010313

This data package contains the analytical results for the project identified above and includes a Case Narrative, Sample Results and Chain of Custody. Unless otherwise noted, all samples were received in acceptable condition and processed according to the referenced methods.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative.

Please call if you have any questions relating to this analytical report.

Respectfully,

PRISM LABORATORIES, INC.

VP Laboratory Services

Reviewed By

Steva H. Sytill

Data Qualifiers Key Reference:

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

BRL Below Reporting Limit
MDL Method Detection Limit
RPD Relative Percent Difference

* Results reported to the reporting limit. All other results are reported to the MDL with values between MDL and reporting limit indicated with a J.

Sample Receipt Summary

01/22/2013

Prism Work Order: 3010313

Client Sample ID	Lab Sample ID	Matrix	Date Sampled	Date Received
GP-1	3010313-01	Solid	01/14/13	01/14/13
GP-2	3010313-02	Solid	01/14/13	01/14/13
GP-3	3010313-03	Solid	01/14/13	01/14/13
GP-4	3010313-04	Solid	01/14/13	01/14/13
GW-1	3010313-05	Water	01/14/13	01/14/13

Samples received in good condition at 3.7 degrees C unless otherwise noted.

Summary of Detections

01/22/2013

Prism Work Order: 3010313

Prism ID	Client ID	Parameter	Method	Result		Units
3010313-03	GP-3	Gasoline Range Organics	*8015C	430		mg/kg dry
		v v	SM6200 B			
3010313-05	GW-1	Benzene		62		ug/L
3010313-05	GW-1	Ethylbenzene	SM6200 B	64		ug/L
3010313-05	GW-1	Isopropyl Ether	SM6200 B	38	j	ug/L
3010313-05	GW-1	m,p-Xylenes	SM6200 B	190		ug/L
3010313-05	GW-1	Methyl-tert-Butyl Ether	SM6200 B	4300		ug/L
3010313-05	GW-1	Naphthalene	SM6200 B	17	J	. ug/L
3010313-05	GW-1	o-Xylene	SM6200 B	110		ug/L
3010313-05	GW-1	Toluene	SM6200 B	- 55		ug/L
3010313-05	GW-1	Xylenes, total	SM6200 B	300		ug/L

Paragon Environmental Consultants, Inc.

Attn: Brandon Moore

PO Box 157

Thomasville, NC 27361

Project: 1009 Winston Rd.

Client Sample ID: GP-1

Prism Sample ID: 3010313-01

Prism Work Order: 3010313

Time Collected: 01/14/13 14:55

Sample Matrix: Solid Time Submitted: 01/14/13 17:30

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Gasoline Range Organics by GC/FI	D								
Gasoline Range Organics	BRL	mg/kg dry	5.1	1.1	50	*8015C	1/17/13 23:28	ANG	P3A0317
			Surrogate			Recov	/ery	Control I	_imits
			a,a,a-Trifluo	rotoluene		11:	9 %	50-137	
General Chemistry Parameters									
% Solids	80.4	% by Weight	0.100	0.100	1	*SM2540 G	1/15/13 15:45	JAB	P3A0270

Paragon Environmental Consultants, Inc.

Attn: Brandon Moore

PO Box 157 Thomasville, NC 27361 Project: 1009 Winston Rd.

Sample Matrix: Solid


Client Sample ID: GP-2

Prism Sample ID: 3010313-02

Prism Work Order: 3010313

Time Collected: 01/14/13 15:20 Time Submitted: 01/14/13 17:30

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Gasoline Range Organics by GC/FID									
Gasoline Range Organics	8RL	mg/kg dry	6.0	1.3	50	*8015C	1/17/13 23:55	ANG	P3A0317
		· · · · · · ·	Surrogate			Recov	ery	Control L	imits
		•	a,a,a-Trifluo	rotoluene		132	? %	50-137	
General Chemistry Parameters									
% Solids	71.4	% by Weight	0.100	0.100	1	*SM2540 G	1/15/13 15:45	JAB	P3A0270

Paragon Environmental Consultants, Inc.

Attn: Brandon Moore

PO Box 157

Thomasville, NC 27361

Project: 1009 Winston Rd.

Sample Matrix: Solid

Client Sample ID: GP-3

Prism Sample ID: 3010313-03

Prism Work Order: 3010313

Time Collected: 01/14/13 15:45 Time Submitted: 01/14/13 17:30

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Gasoline Range Organics by GC/FI	D								
Gasoline Range Organics	430	mg/kg dry	62	14	500	*8015C	1/18/13 2:10	ANG	P3A0317
			Surrogate			Recov	ery/	Control I	_imits
			a,a,a-Trifluo	rotoluene		130	0 %	50-137	
General Chemistry Parameters									
% Solids	74.2	% by Weight	0.100	0,100	1	*SM2540 G	1/15/13 15:45	JAB	P3A0270

Paragon Environmental Consultants, Inc.

Attn: Brandon Moore

PO Box 157

Thomasville, NC 27361

Project: 1009 Winston Rd.

Sample Matrix: Solid

Client Sample ID: GP-4

Prism Sample ID: 3010313-04

Prism Work Order: 3010313

Time Collected: 01/14/13 14:30 Time Submitted: 01/14/13 17:30

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Gasoline Range Organics by GC/FI	D								,
Gasoline Range Organics	BRL	mg/kg dry	4.8	1,1	50	*8015C	1/18/13 1:16	ANG	P3A0317
			Surrogate			Recov	ery	Control t	_imits
			a,a,a-Trifluo	rotoluene		109	%	50-137	
General Chemistry Parameters									
% Solids	74.0	% by Weight	0.100	0.100	1	*SM2540 G	1/15/13 15:45	JAB	P3A0270

70-130

01/22/2013

Paragon Environmental Consultants, Inc.

Attn: Brandon Moore

PO Box 157

Thomasville, NC 27361

Project: 1009 Winston Rd.

Sample Matrix: Water

Client Sample ID: GW-1

Prism Sample ID: 3010313-05 Prism Work Order: 3010313

Time Collected: 01/14/13 16:10 Time Submitted: 01/14/13 17:30

101 %

Parameter ·	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysi Date/Tin		Analyst	Batch ID
Volatile Organic 602 Compo	ınds by GC/MS	•								
Benzene	62	ug/L	5.0	0.54	10	SM6200 B	1/22/13	1:48	VHL	P3A0388
Ethylbenzene	64	ug/L	10	0.54	10	SM6200 B	1/22/13	1:48	VHL	P3A0385
Isopropyl Ether	38 J	ug/L	50	0.42	10	SM6200 B	1/22/13	1:48	VHL	P3A0385
m,p-Xylenes	190	ug/L	20	1.1	10	SM6200 B	1/22/13	:48	VHL	P3A0385
Methyl-tert-Butyl Ether	4300	ug/L	250	2.8	50	SM6200 B	1/22/13 1	2:27	VHL	P3A0385
Naphthalene	17 J	ug/L	50	0.94	10	SM6200 B	1/22/13	1:48	VHL	P3A0388
o-Xylene	110	ug/L	10	0.64	10	SM6200 B	1/22/13	1:48	VHL	P3A0388
Toluene	55	ug/L	10	0.57	10	SM6200 B	1/22/13	:48	VHL	P3A0385
Xylenes, total	300	ug/L	30	1.7	10	SM6200 B	1/22/13	:48	VHL	P3A0385
			Surrogate			Recov	ery		Control I	_imits
			4-Bromofluc	probenzene	•	102	2 %		70-130	
			Dibromofluc	romethane	•	102	2 %		70-130	

Toluene-dB

Paragon Environmental Consultants, Inc.

Project: 1009 Winston Rd.

Prism Work Order: 3010313

Time Submitted: 1/14/2013 5:30:00PM

Attn: Brandon Moore

PO Box 157 Thomasville, NC 27361

Volatile Organic 602 Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3A0385 - SM6200 B										
Blank (P3A0385-BLK1)				Prepared	& Analyze	d: 01/21/1	3			
Benzene	BRL	0.50	ug/L							
Ethylbenzene	BRL	1.0	ug/L							
Isopropyl Ether	BRL	5.0	ug/L							
m,p-Xylenes	BRL	2.0	ug/L							
Methyl-tert-Butyl Ether	BRL	5.0	ug/L							
Naphthalene	BRL	5.0	ug/L							
o-Xylene	BRL	1.0	ug/L							
Toluene	BRL	1.0	ug/L							
Kylenes, total	BRL	3,0	ug/L							
Surrogate: 4-Bromofluorobenzene	51.6	٠	ug/L	50.00		103	70-130			
Surrogate: Dibromofluoromethane	51.8		ug/L	50.00		104	70-130			
Surrogate: Toluene-d8	50.8		ug/L	50,00		102	70-130			
CS (P3A0385-BS1)				Prepared	& Analyze	d: 01/21/ 1	3			
Benzene	19,4	0.50	ug/L	20.00	•	.97	70-130			
Ethylbenzene	20.2	1.0	ug/L	20.00		101	70-130			
sopropyl Ether	19,2	5.0	ug/L	20.00		96	70-130			
n,p-Xylenes	, 41.1	2.0	ug/L	40.00		103	70-130			
Methyl-tert-Butyl Ether	19.6	5.0	ug/L	20.00		98	70-130			
Vaphthalene	20.7	5.0	ug/L	20.00		104	70-130			
o-Xylene	20,2	1.0	ug/L	20.00		101	70-130			
Toluene	19.4	1.0	ug/L	20.00		97	70-130			
(ylenes, total	61.3	3.0	ug/L	60.00		102	70-130			
Surrogate: 4-Bromofluorobenzene	49.8		ug/L	50,00		100	70-130			
Surrogate: Dibromofluoromethane	51.6		ug/L	50.00		103	70-130			
Surrogatë: Toluene-d8	51.3		ug/L	50.00		103	70-130			
_CS Dup (P3A0385-BSD1)				Prepared	& Analyze	d: 01/21/1	3			
Benzene	20,3	0.50	ug/L	20.00		101	70-130	4	200	
thylpenzene	21.1	1.0	ug/L	20.00		106	70-130	5	200	
sopropyl Ether	19.9	5.0	ug/L	20.00		100	70-130	4	200	
n,p-Xylenes	43.2	2.0	ug/L	40.00		108	70-130	5	200	
Methyl-tert-Butyl Ether	20.0	5.0	ug/L	20.00		100	70-130	2	200	
√aphthalene	20.5	5.0	ug/L	20,00		102	70-130	1	200	
-Xylene	21.2	1.0	ug/L	20,00		106	70-130	5	200	
oluene	20.5	1.0	ug/L	20.00		102	70-130	5	200	
(ylenes, total	64.4	3.0	ug/L	60.00		107	70-130	5	200	
Surrogate: 4-Bromofluorobenzene	50.8		ug/L	50.00		102	70-130			
Surrogate: 4-bromonuorobenzene Surrogate: Dibromofluoromethane	50.3		ug/L	50,00		101	70-130			
Surrogate: Toluene-d8	50.7		ug/L	50.00		101	70-130			

Paragon Environmental Consultants, Inc.

Project: 1009 Winston Rd.

Prism Work Order: 3010313

Time Submitted: 1/14/2013 5:30:00PM

Attn: Brandon Moore PO Box 157

Thomasville, NC 27361

Gasoline Range Organics by GC/FID - Quality Control

Lock to	D	Reporting	11-2-	Spike	Source	N DEC	%REC	מחט	RPD	Natas
Analyte	Result	Limit	Units	Level	Level Result	%REC	Limits	RPD	Limit	Notes
Batch P3A0317 - 5035										
Blank (P3A0317-BLK1)				Prepared	& Analyze	d: 01/17/1	3			
Gasoline Range Organics	BRL	5.0	mg/kg wet							
Surrogate: a,a,a-Trifluorotoluene	4.70		mg/kg wet	5.000		94	50-137			
LCS (P3A0317-BS1)			i	Prepared	& Analyze	d: 01/17/1	3			
Gasoline Range Organics	58.3	5.0	mg/kg wet	50.00		117	41-138			
Surrogate: a,a,a-Trifluorotoluene	5.15		mg/kg wet	5.000		103	50-137			
LCS Dup (P3A0317-BSD1)			1	Prepared	& Analyze	d: 01/17/1	3			
Gasoline Range Organics	52.8	5.0	mg/kg wet	50.00		106	41-138	10	200	
Surrogate: a,a,a-Trifluorotoluene	5.30		mg/kg wet	5.000		106	50-137			

Paragon Environmental Consultants, Inc.

Project: 1009 Winston Rd.

Prism Work Order: 3010313

Time Submitted: 1/14/2013 5:30:00PM

Attn: Brandon Moore

PO Box 157

Thomasville, NC 27361

General Chemistry Parameters - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3A0270 - NO PREP										· · · · · · · · · · · · · · · · · · ·
Blank (P3A0270-BLK1)				Prepared	& Analyze	d: 01/15/1	3			
% Solids	100	0.100	% by Weigh	t						
Duplicate (P3A0270-DUP1)	Soul	rce: 3010313	3-03	Prepared	& Analyze	d: 01/15/1	3			
% Solids	74,5	0.100	% by Weigh	t	74.2			0.4	20	

Sample Extraction Data

Prep Method: 5035

Lab Number	Batch	Initial	Final	Date/Time	
3010313-01	P3A0317	6.15 g	5 mL	01/17/13 15:33	
3010313-02	P3A0317	5.86 g	5 mL	01/17/13 15:33	
3010313-03	P3A0317	5,46 g	5 mŁ	01/17/13 15:33	
3010313-04	P3A0317	7.01 g	5 mL	01/17/13 15:33	•

Prep Method: SM6200 B

Lab Number	Batch	Initial	Final	Date/Time	
3010313-05	P3A0385	10 mL	10 mŁ	01/21/13 10:26	
3010313-05	P3A0385	10 mL	10 mL	01/21/13 10:26	•

Ž	
/PR	ISM
	LABORATORIES, INC.

Client Company Name: _

Full-Service Analytical & **Environmental Solutions**

CHAIN OF CUSTODY RECORD _ QUOTE # TO ENSURE PROPER BILLING:

		2052 C C N ST	VEC	NO. SKI
TACT	2	T		
	ii dii iya	7 -7	er visite er fransis i de	Sanceour Michigan
N WET IC	E? Temp			
143				NO N/

449 Springbrook Road • P.O. Box 240543 • Charlotte, NC 28224-0543 Phone: 704/529-6364 • Fax: 704/525-0409 Short Hold Analysis: (Yes)

P. 1305 Project Name: _

*CONTAINER TYPE CODES: A = Amber C = Clear G = Glass P = Plastic; TL = Teflon-Lined Cap VOA = Volatile Organics Analysis (Zero Head Space)

UST Project: (Yes) (No)

Samples IN Received:C

*Please ATTACH any project specific reporting (QC LEVEL I II III IV)

Report To/Contact Nat Reporting Address:	me:		P.O. Box 157 massyille, NC (336) 669-683	Mayorce To:	Sane		1112							OUT HEADSP/ FRS used?			· · · · · · · · · · · · · · · · · · ·
Phone: Email (Yes) (No) Email EDD Type: PDFEx Site Location Name: _ Site Location Physical	1009 Windo	(No):	nhalde.net	Purchase Orc Requested Due "Working Days Samples receive Turnaround time (SEE REVE	Date 11 " 016 ed after 15 is based RSE FOR T	Day 2 Da 3-9 Days 2 Si :00 will be pro on business d ERMS & COND	ys 3 Days 4 andard 10 days 4 cessed next busine ays, excluding wee trions Regarbing les, INC. TO CLIENT)	Rush Wo Pre-Appress day. kends an SERVICES	rk Must B oved	e 5.	Certifica Water C	ation: Chlorin	NELA SC_ ated: `	CLIENT/SACUSA OTHER YESNO ollection: Y	ACEF	/A	_
CLIENT	DATE	TIME	MATRIX (SOIL.	SAMPLE CONTAINER		PRESERVA-	The same		ALY	ALYSES REQUESTED			/		PRISM	1	
SAMPLE DESCRIPTION	COLLECTED	MILITARY HOURS	WATER OF SLUDGE)	*TYPE SEE BELOW	NO.	SIZE	TIVES	(3	TO STATE OF	A TH	or of			RI	EMARKS	ID NO.	
Geoprobe#1 (GP-)	1/14/13	14:55	Soi/		3			X							•	\$ \	
Couprobe #2 (GP.2)	ĺ	15:20	Soil		3			X								\$2	_
Googrape +3(GP.3)		15:45	Soil		3			X								\$3	
Goop-de #4(69-4		14:30	Soil		3			λ								924	
Goundwater (GW1)	V	16:10	Woter		3			1.	X	1					,	\$5	_
								-									
													<u> </u>				
Sampler's Signature	gin wat	hi	Sampled	By (Print Name	<u>Ber</u>	n Robin	son	Affilia	ition		· -			PRESS D	OWN FIR	MLY - 3 COPI	= \$
Upon relinquishing, this submitted in writing to	s Chain of Cust the Prism Proje	ody is your au ect Manager. 1	thorization fo There will be	or Prism to proc charges for any	eed with change:	the analyses s after analy	es as requested a ses have been in	above. A nitialized	ny chang	ges mu	ist be				PRI	ISM USE ONL	Y
Relinquished By: (Signature)		·	Re	ceived By: (Signatur	θ)				Date		Military/Ho	ours	Additio	nal Comment	:s: Site A	Arrival Time:	
Reciived By: (Signature)				ө)		_		Date						#66 P. C.	Departure Time:		
Rellnquished By: (Signature)				Received For Pris/n Laboratories By:					4/13	Field Tech Fee: Mileage							
Method of Shipment: NOTE: A SAMPLE	~ .		APED SHUT WIT D AGAINST CO	H CUSTODY SEALS UNTIL RECEIVED	FOR TRAN	SPORTATION SORATORY.	TO THE LABORATOR	γ.	COC Gre	•	313					William Control of the Control of th	1
NPDES: UST:			Other	ATER: SOL	ID WAST	E: RCR	A: CERCL	.A	」ファ LANDFI		OTHER:					SEE REVERSE FOR	i NG
DNC DSC XNC D					o sc	_ NC [SC	□NC □SC CRIGIN						•			

LIMITED SITE ASSESSMENT

GRAB & GO 1009 WINSTON ROAD LEXINGTON, NC GROUNDWATER INCIDENT: 44108 FACILITY ID: 00-0-0000024863

FEBRUARY 4, 2016

UST OWNER/OPERATOR:

DSF of NC, Inc. 4401 United Street Greensboro, NC 27407 Phone Number: (336) 285-7474

PROPERTY OWNER:

Same as UST owner

CONSULTANT:

Paragon Environmental Consultants, Inc. P. O. Box 157 Thomasville, NC 27361-0157 Phone Number: (336) 669-6037

RELEASE INFORMATION:

Date Discovered: 1/30/13 Estimated Quantity of Release: Unknown Cause of Release: Unknown Source of Release: Gasoline USTs Size and Contents: Three (3) 6,000 Gallon Gasoline USTs and Two (2) 2,000 Gallon Gasoline USTs Latitude: N 35.83946040 Longitude: W 80.25336830

The Limited Site Assessment for this site has been prepared by Paragon Environmental Consultants, Inc. under the direct supervision of a licensed geologist. All activities performed on this project were conducted under my direct supervision:

ANDON MOORE,

Brandon Moore, L.G. North Carolina License #1666

February 4, 2016

Shehzad Quamar DSF of NC, Inc. 4401 United Street Greensboro, NC 27407

Reference:

Limited Site Assessment Grab & Go-Winston Road 1009 Winston Road Lexington, North Carolina Groundwater Incident # 44108 Facility ID 00-0-0000024863

Dear Mr. Quamar:

In accordance with the requirements of a correspondence from the North Carolina Department of Environmental Quality (NCDEQ) dated December 16, 2015, contained herein is a Limited Site Assessment for the release which occurred at the above referenced facility. These activities have been conducted following the release of petroleum which occurred in the vicinity of the underground storage tank (UST) system formerly located at this site. All activities were conducted in accordance with NCDENR guidelines and the requirements of 15A NCAC 2L .0115.

Mr. Quamar, if you have questions regarding this report please contact our office.

Sincerely,

Brandon Moore, L.G.

Bly Moore

Paragon Environmental Consultants, Inc.

R16-1305A

TABLE OF CONTENTS

			Page			
1.0	SITE	HISTORY AND SOURCE CHARACTERIZATION	1			
2.0	RISK CHARACTERIZATION					
3.0	RECE	PTOR INFORMATION	4			
4.0	SITE	GEOLOGY AND HYDROGEOLOGY	5			
5.0	SAMP	LING RESULTS	6			
6.0	CONC	CLUSIONS AND RECOMMENDATIONS	7			
		LIST OF FIGURES				
Figure Figure Figure Figure Figure Figure	2: 23: 4: 5:	Project Location/U.S.G.S. Topographic Map Site Layout and UST Locations Subsurface Utilities Map Adjacent Properties Map Site Layout and Soil Sample Location Site Layout and Monitor Well Location				
		LIST OF TABLES				
Table 1: Table 2: Table 3: Table 4: Table 5:		Site History Adjacent Property Owners Summary of Soil Laboratory Analytical Results Monitoring Well Information and Groundwater Elevations Summary of Groundwater Laboratory Analytical Results				
		APPENDICES				
Appen Appen Appen	ndix A: ndix B: ndix C: ndix D: ndix E:	Soil Boring Log Soil Analytical Results Well Construction Record Standard Operating Procedures Groundwater Analytical Results				

LIMITED SITE ASSESSMENT REPORT

Grab & Go 1009 Winston Road Lexington, North Carolina

1.0. - SITE HISTORY AND SOURCE CHARACTERIZATION

DSF of NC, Inc. owns and operates a facility at 1009 Winston Road in Lexington, NC which is referred to as the Grab & Go. This property contains one permanent structure which is used as a convenience store. Figure 1 illustrates the location of this facility on the Lexington West Quadrangle U.S.G.S. Topographic Map. The site contains three (3) 6,000 gallon gasoline USTs and two (2) 2,000 gallon gasoline USTs which are used for the retail sale of petroleum. Figure 2 illustrates the site layout and the locations of the USTs. A release of petroleum was detected during a Phase II Environmental Site Assessment (ESA) which was conducted for property transfer. Information regarding the ownership of the regulated USTs which are located at this facility is contained in Table 1. The Phase II ESA Report dated January 30, 2013 for this facility was submitted to the NCDENR in February of 2013.

2.0 - RISK CHARACTERIZATION AND LAND USE FORM

Part I Groundwater/Surface water/Vapor impact High Risk

1. Has discharge or release contaminated any water supply wells including any used for non-drinking purposes?

NO

2. Is a water supply well used for drinking water located within 1,000 feet of the source area the discharge or release?

NO

3. Is a water supply well used for any purpose (e.g., irrigation, washing cars, industrial cooling water, filling swimming pools) located within 250 feet of the source area of the discharge or release?

NO

4. Does groundwater within 500 feet of the source area of the discharge or release have the potential for future use in that there is no other source of water supply other than the groundwater?

NO

5. Do vapors from the discharge or release pose a threat of explosion because of accumulation of the vapors in a confined space or pose any other serious threat to public health, public safety or the environment?

NO

6. Are there any factors that would cause the discharge or release to pose an imminent danger to public health, public safety or the environment?

NONE KNOWN

Intermediate Risk

7. Is a surface body located within 500 feet of the source area of the discharge or release?

NO

If yes, does the maximum groundwater contaminant concentration exceed the surface water quality standards and criteria found in 15A NCAC 2B .0200 by a factor of 10?

N/A

8. Is the source area of the discharge or release located within a designated wellhead protection area as defined in 42 USC 300h-7(e)?

NO

9. Is the discharge or release located in the Coastal Plain physiographic region as designated on a map entitled "Geology of North Carolina" published by the Department in 1985?

NO

If yes, is the source area of the discharge or release located in an area in which there is recharge to an unconfined or semi-confined deeper aquifer that is being used or may be used as a source of drinking water?

N/A

10. Do the levels of groundwater contamination for any contaminant exceed the gross contamination levels established (see Table 7 in guidelines) by the department?

NO

Part II-Land Use

Property containing Source Area of Discharge or Release

The questions below pertain to the property containing the source area of the release.

1. Does the property contain one or more primary or secondary residences (permanent or temporary)?

NO

2. Does the property contain a school, daycare center, hospital, playground, park, recreation area, church, nursing home, or other place of public assembly?

NO

3. Does the property contain a commercial (e.g., retail, warehouse, office/business space, etc.) or industrial (e.g., manufacturing, utilities, industrial research and development, chemical/petroleum bulk storage, etc.) enterprise, an inactive commercial or industrial enterprise, or is the land undeveloped?

YES, THE BUILDING CONTAINS A CONVENIENCE STORE

4. Do children visit the property?

YES

Explain.

CHILDREN VISIT THE STORE

5. Is access to the property reliably restricted consistent with its use?

YES

6. Do pavement, buildings, or other structures cap the contaminated soil?

YES

If yes, what mechanisms are in place or can be put into place to insure that the contaminated soil will remain capped in the foreseeable future?

THE PAVED PARKING SURFACE WILL REMAIN IN PLACE

7. What is the zoning status of the property?

COMMERCIAL

8. Is the use of the property likely to change in the next 20 years?

NO

Property Surrounding Source Area of Discharge or Release.

9. What is the distance from the source area of the release to the nearest primary or secondary residence (permanent or temporary)

APPROXIMATELY 165 FEET TO THE WEST OF THE SOURCE AREA

10. What is the distance from the source area of the release to the nearest school, daycare center, hospital, playground, park, recreation area, church, nursing home, or other place of public assembly?

ABIDING FAITH TABERNACLE CHURCH IS LOCATED APPROXIMATELY 570 FEET TO THE NORTHEAST OF THE SITE

11. What is the zoning status of properties in the surrounding areas?

COMMERCIAL / RESIDENTIAL

12. Briefly characterize the use and activities of the land in the surrounding area.

COMMERCIAL / RESIDENTIAL

3.0 - RECEPTOR INFORMATION

3.1 Water Supply Wells

A supply well survey has been conducted within a radius of 1,500 feet from the release area. During this reconnaissance no water supply wells in use for any purpose were found to be located within this radius.

3.2 Public Water Supplies

Public water supplies are available from City of Lexington to all of the surrounding properties within a radius of 1,500 feet from 1009 Winston Road.

3.3 <u>Surface Water</u>

The partial U.S.G.S. map included as Figure 1 indicates that surface waters in the vicinity of the release area generally drain towards an unnamed stream which is located approximately 1,250 feet to the east of the release area. This unnamed stream flows into Leonard Creek situated approximately 10,000 feet to the east. Leonard Creek is a tributary of Abbotts Creek which is within the Yadkin / Pee Dee River Drainage Basin.

3.4 Wellhead Protection Areas

No wellhead protection areas are known to exist within the area of this release.

3.5 Deep Aquifers in the Coastal Plain Physiographic Region

This release is not located in the coastal plain.

3.6 Subsurface Structures

Subsurface utility lines associated with the UST system are located in the vicinity of the petroleum affected area at this facility. The building located on the impacted property does not have a basement; however, other subsurface utilities are present in the form of water and sewer lines. Figure 3 illustrates the locations of all known subsurface utilities.

3.7 Land Use

The possibility of human exposure to soil contamination at the Grab & Go is minimal. The marginally impacted soil which remains in place is situated more than 12 feet below the land surface and is covered with the tank system and capped by asphalt and concrete pavement. The facility lies within a primarily commercial area.

3.8 Property Owners and Occupants

Figure 4 illustrates the surrounding properties, and Table 2 contains information regarding the adjacent property owners. This information was obtained from the Davidson County Tax Department's records.

4.0 - SITE GEOLOGY AND HYDROGEOLOGY

4.1 <u>Site Geology</u>

The site is situated in the Piedmont Region of the North Carolina Slate Belt. According to the Geological Map of North Carolina local bedrock geology of the region consists of Late Proterozoic to Cambrian aged metamorphosed granitic bedrock. Competent bedrock was not encountered to a depth of 30 feet below land surface which was the maximum depth explored during the subsurface investigation.

4.2 <u>Soils Investigation</u>

The soils at the project site consist of clay with varying amounts of silt. A soil boring log for the boring advanced for monitor well installation at the site is contained as Appendix A. No contaminated soils have been removed from this subject site since the USTs remain in place above the impacted soil.

One "Risk-Based" sample was collected at the Grab & Go for laboratory analyses from the monitor well boring at a depth of 15 feet below land surface. This sample was submitted to Meritech, Inc. for analyses by EPA Method 8260 and by MADEP methods for Volatile Petroleum Hydrocarbons (VPH). The soil sample, labeled as MW1-15, was below the Residential Standards for all Method 8260 compounds and all VPH carbon fractions. Table 3 summarizes the analytical results of the "Risk-Based" soil sample, and Figure 5 illustrates the location of the soil sample collected at 1009 Winston Road. Appendix B contains a copy of the laboratory analytical report and the chain-of-custody record for the soil sample.

5.0 - SAMPLING RESULTS

5.1 Monitor Well Installation

One North Carolina Type II groundwater monitoring well has been installed at the site. Figure 6 illustrates the site layout and the location of the monitor well which was labeled as MW-1. The monitoring well was constructed of 2-inch Schedule 40 PVC pipe with 20 feet of 0.010 inch slotted screen. Based on the assumption that the contaminants being addressed were primarily hydrocarbon constituents with specific gravities of less than 1.0, the groundwater monitoring well was installed so that the screened interval intersected the shallow groundwater table at the time of installation. Table 4 summarizes the monitoring well information and groundwater elevations as measured on January 20, 2016. A copy of the well construction record for the monitor well installed at this facility is included as Appendix C.

5.2 Groundwater Analyses

Following installation the monitoring well was developed and sampled in accordance with Paragon's Standard Operating Procedures which are contained as Appendix D. The groundwater samples were submitted to Meritech, Inc. for laboratory analysis according to EPA Method 6200B plus MTBE and IPE. The groundwater sample was also analyzed for Lead and by MADEP methods for VPH.

According to the analytical results for monitor well MW-1, three Method 6200B compounds were reported at concentrations which exceed the 2L Standards. Benzene was indicated at 90.3 micrograms per liter (ug/L) as compared to the 2L Standard of 1 ug/L. Naphthalene, which has a 2L Standard of 6 ug/L, was detected at 36.2 ug/L. MTBE was listed at 4,570 ug/L which is above the 2L Standard of 20 ug/L. Two carbon fraction classes were shown at levels above the 2L Standards in MW-1. C5-C8 Aliphatics was reported at 3,840 ug/L, and C9-C19 Aliphatics was detected at 2,680 ug/L. These two fraction classes have 2L Standards of 400 ug/L and 700 ug/L, respectively.

None of the Method 6200B compounds detected at the Grab & Go were at concentrations that exceeded the Gross Contaminant Levels (GCLs), and no GCLs have been established for the carbon fraction classes. Table 5 summarizes the groundwater analytical results, and Appendix E contains a copy of the laboratory analytical report and the chain-of-custody record for the groundwater sample.

6.0 - CONCLUSIONS AND RECOMMENDATIONS

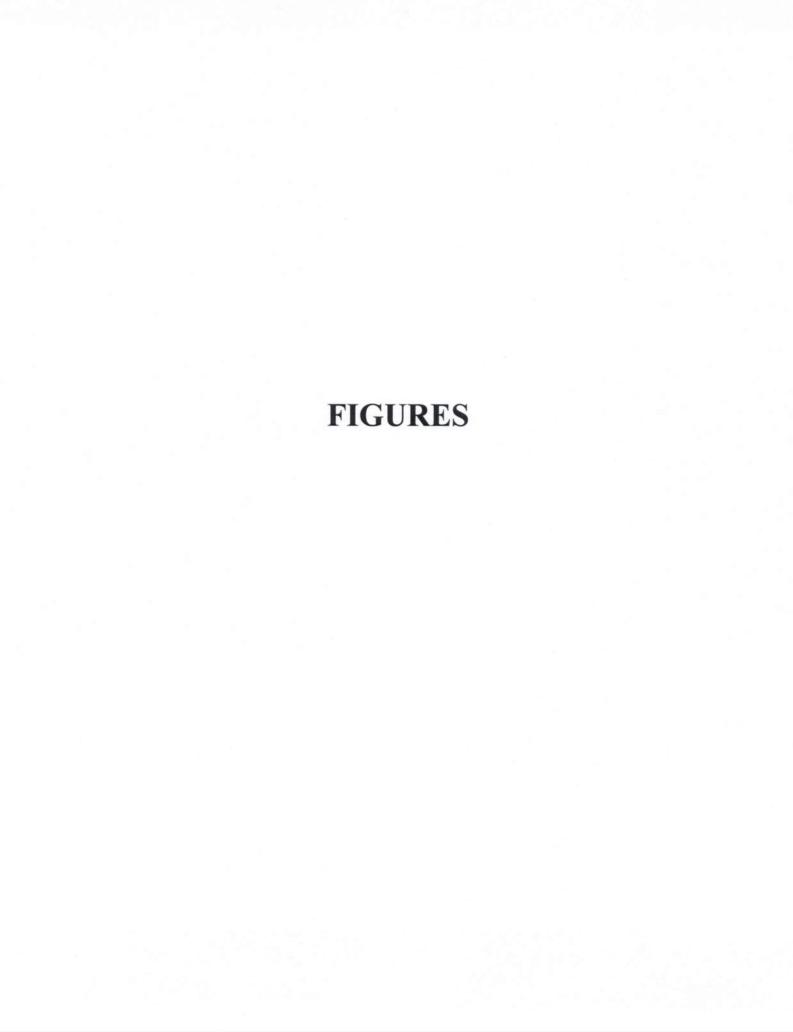
6.1 General Summary

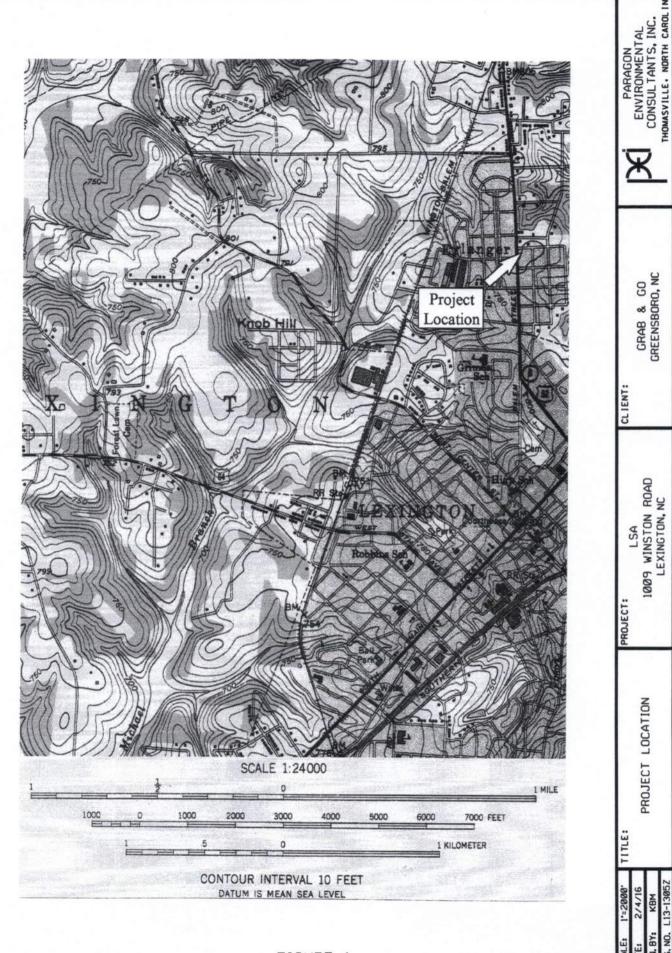
Limited Site Assessment activities at the Grab & Go have been completed. From a review of all information gathered during this project, Paragon Environmental Consultants, Inc. makes the following conclusions:

- A petroleum release of unknown quantity has occurred at this site. Soil concentrations in the source area are below the Residential Standards.
- One groundwater monitoring well was constructed at the site during this investigation. Free product was not observed in monitor well MW-1.
- The analytical results for the groundwater sample from the monitor well indicated Benzene, Naphthalene, MTBE, and two VPH carbon fraction classes above the 2L Standards. No Method 6200B compounds exceed the GCLs at this subject site.

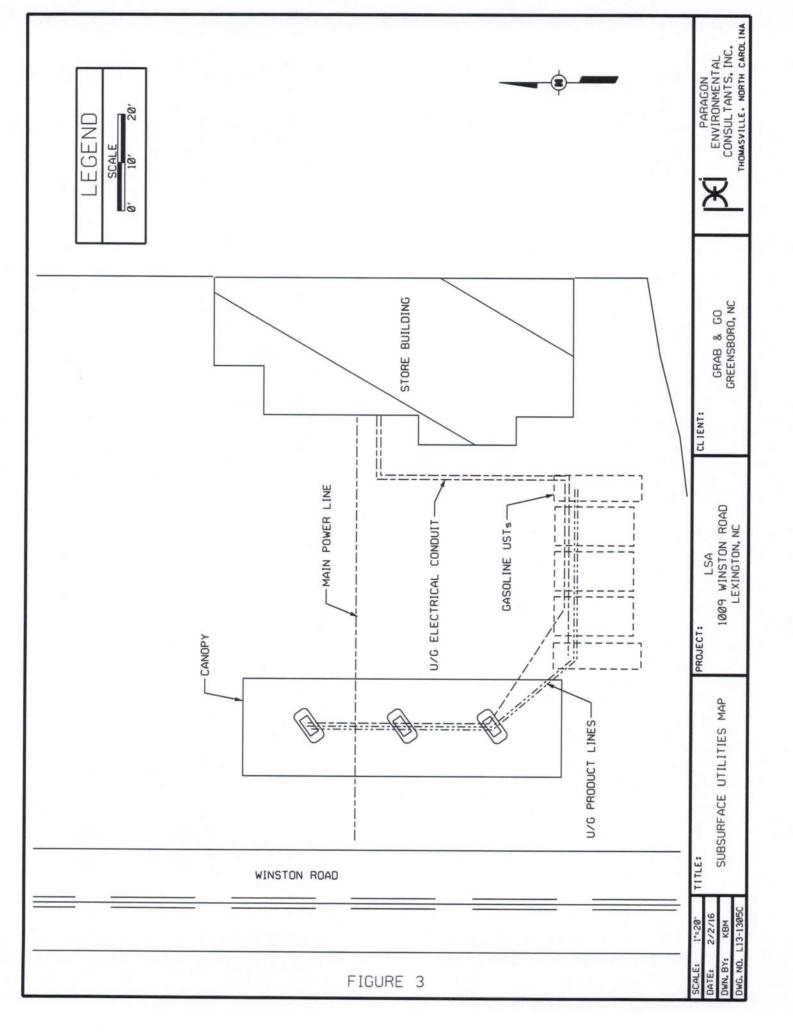
6.2 Recommendations

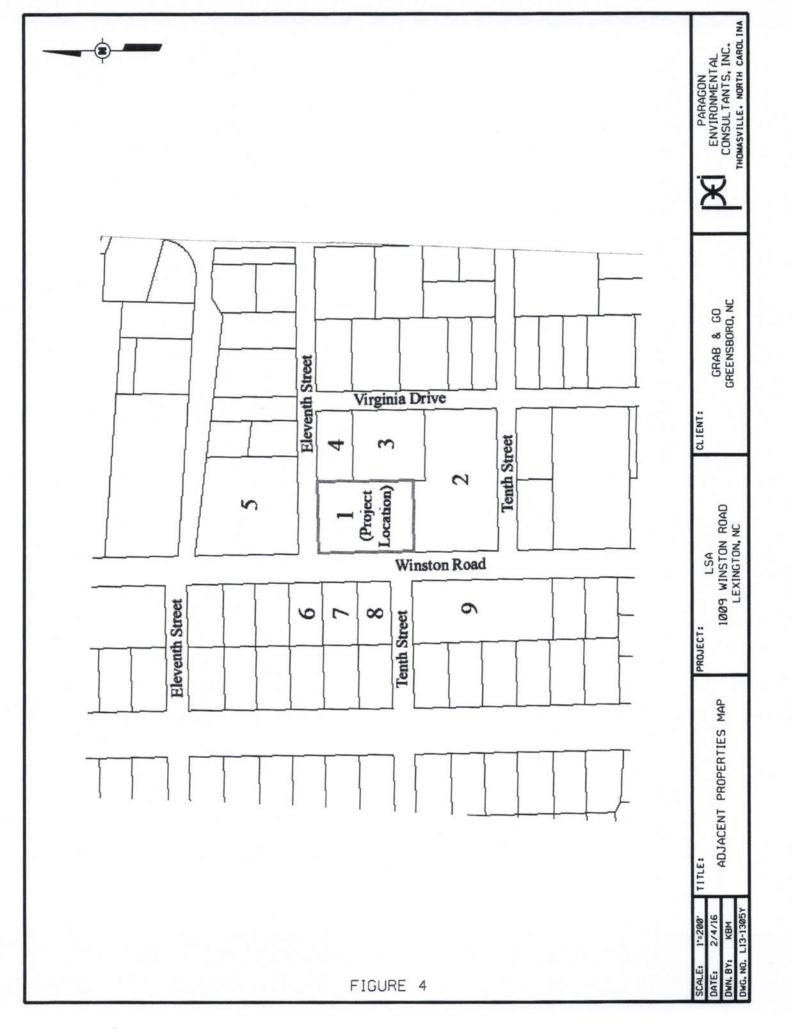
Based upon a review of all information gathered during this project, Paragon makes the following recommendations:

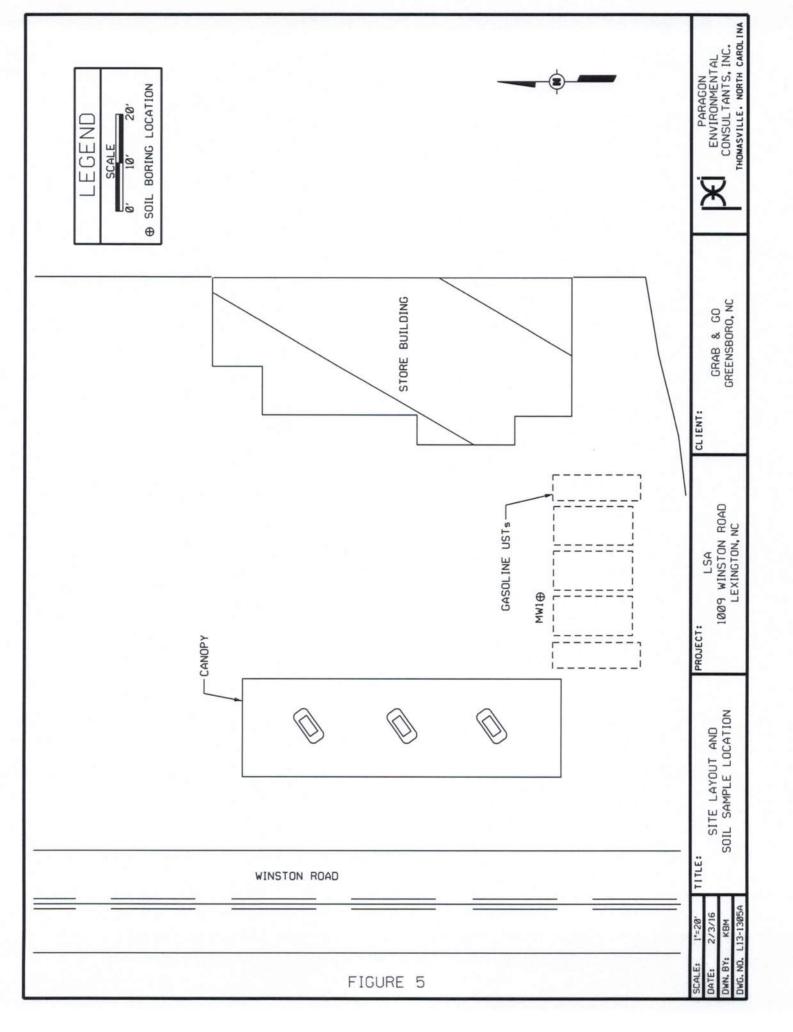

- Since all soil concentrations are below the applicable standards and the groundwater levels are below the GCLs, a notice of No Further Action should be issued for the subject site. Public notifications and deed recordation will be required due to groundwater contamination above the 2L Standards.
- A copy of this report should be forwarded to the following address:

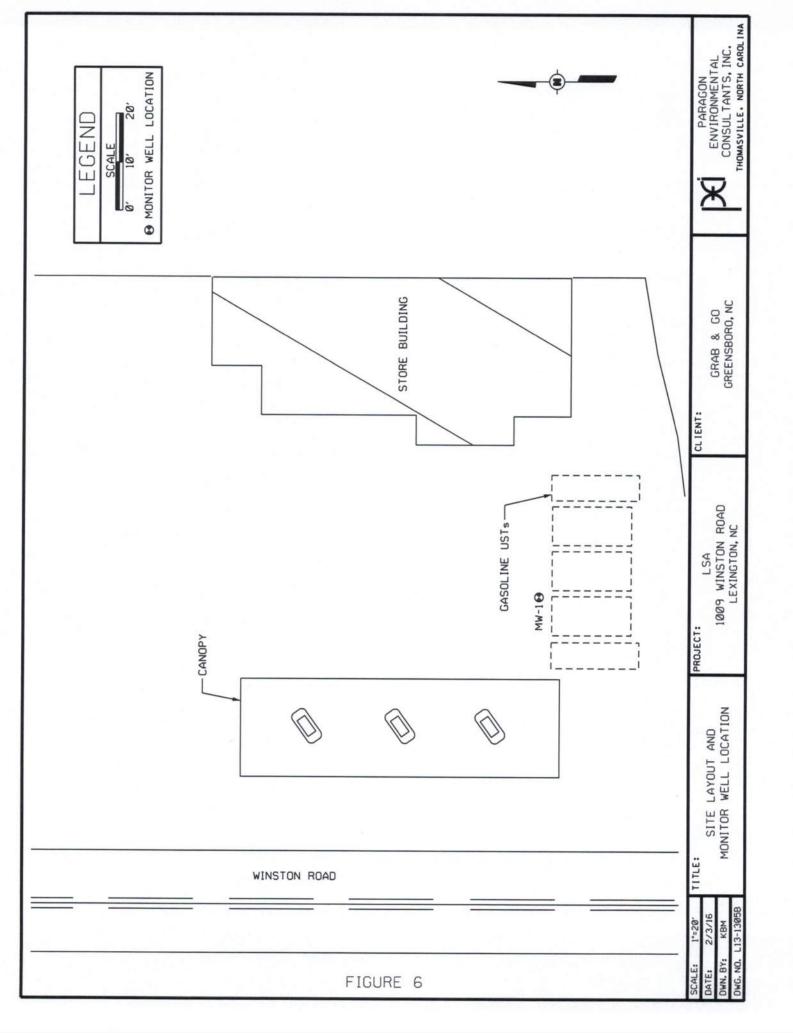

Winston-Salem Regional Office – UST Section 450 W. Hanes Mill Road – Suite 300 Winston-Salem, NC 27105

6.3 Limitations


This report has been prepared for the exclusive use of DSF of NC, Inc. for the specific application to the referenced site located in Davidson County, North Carolina. The evaluation was conducted based on the scope of work and level of effort desired by the client and with resources adequate only for the scope of work. Our findings have been developed in accordance with generally accepted standards for Limited Site Assessments in the State of North Carolina, available information and our professional judgment. No other warranty is expressed or implied.


The data presented in this report are indicative of conditions at the precise locations sampled and the time the sample was collected. Additionally, the data obtained from the samples would be interpreted as meaningful with respect to the parameters in the laboratory reports. No additional information can be logically inferred from this data.





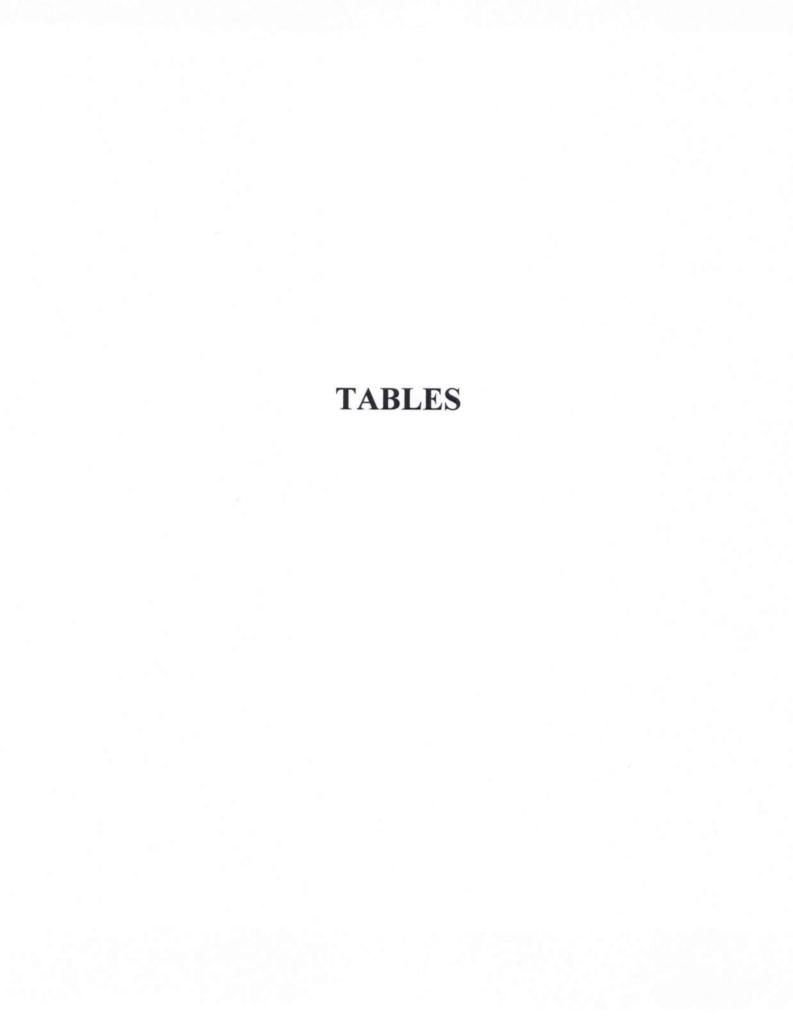


TABLE 1: SITE HISTORY

GRAB & GO – WINSTON ROAD 1009 WINSTON ROAD LEXINGTON, NORTH CAROLINA

Property Ownership:

DSF of NC, Inc. 4401 United Street Greensboro, NC 27407

UST Ownership:

Same as property owner

UST Information:

Tank No	Installation Date	Size (Gal)	Closure Date	UST Status	Tank Contents
T1	Unknown	6,000	N/A	Active	Gasoline
T2	Unknown	6,000	N/A	Active	Gasoline
T3	Unknown	6,000	N/A	Active	Gasoline
T4	Unknown	2,000	N/A	Active	Gasoline
T5	Unknown	2,000	N/A	Active	Gasoline

M16-1305H

TABLE 2: ADJACENT PROPERTY OWNERS

GRAB & GO (WINSTON ROAD) 1009 WINSTON ROAD LEXINGTON, NORTH CAROLINA

SITE ID	OWNER INFO
1	DSF of NC, Inc. 4401 United Street Greensboro, NC 27407 (Project Location)
2	Cook Out-Lexington, Inc. 150 Laura Lane, Suite 300 Thomasville, NC 27360 (1001 Old US Highway 52)
3	Kenneth and Nesha Bacchus 1004 Virginia Drive Lexington, NC 27292-1732
4	David Hunt 801 Winston Road Lexington, NC 27292
5	Red FDS, LLC 711 Central Avenue Charlotte, NC 28204 (1109 Winston Road)
6	David and Ronda Wilson 216 Stratford Road Lexington, 27292-9726
7	Bobby Callicutt 700 W. Fifth Avenue Lexington, NC 27292-4923 (292 Winston Road)
8	William Q. Haynes 293 Winston Road Lexington, NC 27292
9	BV 156, LLC 1414 Yanceyville St. Suite-300 Greensboro, NC 27405 (918 Winston Road)

TABLE 3

Summary of Soil Laboratory Analytical Results

Grab & Go - Winston Road Lexington, North Carolina

Constituent	MW1-15'	Residential Standards
Date	1/19/2016	
Method 8260 (mg/kg)		
n-Butylbenzene	BDL	626
sec-Butylbenzene	BDL	626
Bromodichloromethane	0.005	NSE
Chloroform	0.05	20
Ethylbenzene	BDL	1,560
Naphthalene	BDL	313
1,2,4-Trimethylbenzene	BDL	782
1,3,5-Trimethylbenzene	BDL	782
Toluene	BDL	1,200
Xylenes (total)	BDL	3,129
MTBE	0.02	350
IPE	BDL	156
Aliphatic Fraction Classes (mg/kg)		
C5-C8 Volatile Aliphatics	BDL	939
C9-C12 Volatile Aliphatics	BDL	NSE
C9-C18 Extractable Aliphatics	N/A	NSE
C9-C18 Aliphatics (total)	BDL	1,500
C19-C36 Extractable Aliphatics	N/A	31,000
Aromatic Fraction Classes (mg/kg)		
C9-C10 Volatile Aromatics	BDL	NSE
C11-C22 Extractable Aromatics	N/A	NSE
C9-C22 Aromatics (total)	BDL	469

BDL= Below Detection Limits

NSE = No Standard Established

X16-1305R

TABLE 4

Monitoring Well Information and Groundwater Elevations

Grab-N-Go Lexington, North Carolina

Well Number	Top of Casing Elevation	Top of Screen Elevation	Bottom of Screen Elevation	Depth to Water	Groundwater Elevation
MW-1	100.00	90.00	70.00	18.02	81.98

Note: All measurements taken in feet and based on an arbitrary benchmark of 100.00 feet; groundwater levels measured on January 20, 2016.

TABLE 5

Summary of Groundwater Analytical Results

Grab-N-Go (Winston Road) Lexington, North Carolina

Constituent	MW-1	2L Standard	GCL
Date	1/20/2016		
Methods 6200B / 602 (ug/L)	1/20/2010		
Benzene	90.3	1	5,000
Toluene	BDL	600	260,000
Ethylbenzene	14.3	600	84,500
Xylenes (total)	130.7	500	85,500
BTEX (total)	235.3	NSE	NSE
Acetone	BDL	6,000	6,000,000
1,2-Dichloroethane	BDL	0.40	400
n-Butylbenzene	5.75	70	6,900
sec-Butylbenzene	BDL	70	8,500
2-Hexanone	BDL	40	40,000
Isopropylbenzene	11.2	70	25,000
p-Isopropyltoluene	BDL	25	11,700
Methyl Isobutyl Ketone (MIBK)	BDL	100	100,000
Naphthalene	36.2	6	6,000
n-Propylbenzene	21	70	30,000
1,2,4-Trimethylbenzene	135	400	28,500
1,3,5 Trimethylbenzene	123	400	25,000
MTBE	4,570	20	20,000
IPE	25	70	70,000
Method 3030C (ug/L)			
Lead	BDL	15	15,000
Aliphatic Fraction Classes (ug/L)			
C5-C8 Volatile Aliphatics	3,840	400	NSE
C9-C12 Volatile Aliphatics	2,680	NSE	NSE
C9-C18 Extractable Aliphatics	N/A	NSE	NSE
C9-C18 Aliphatics (total)	2,680	700	NSE
C19-C36 Extractable Aliphatics	N/A	10,000	NSE
Aromatic Fraction Classes (ug/L)			
C9-C10 Volatile Aromatics	BDL	NSE	NSE
C11-C22 Extractable Aromatics	N/A	NSE	NSE
C9-C22 Aromatics (total)	BDL	200	NSE

N/A = Not Analyzed

BDL = Below Detection Limits

NSE = No Standard Established

APPENDIX A SOIL BORING LOG

SOIL BORING LOG

Paragon Environmental Consultants, Inc.

Sample Number	Depth (ft.)	Soil Decription (color, soil type, moisture)	Blow Counts	OVA (ppm)
				(1-1)
MW-1	5	Light tan, CLAY with silt, damp		N/A
	10	Tan, CLAY with silt, damp		N/A
	20	Light orange, CLAY with silt, damp		N/A
	25	same as 20'		N/A
	30	Orange, CLAY with silt ,damp		N/A
		Soil Boring Terminated at 30'		
P-1305				

APPENDIX B SOIL ANALYTICAL RESULTS

Environmental Laboratories

Laboratory Certification #165

Client: Project: Client Sample ID:

Sample Collection:

Paragon Environmental Consultants, Inc. Meritech ID#:
P-1305 Grab -N- Go (Winston Rd.) Analysis:

Monitor Well # 1 @ 15'

Analysis: Analyst: 01211606 01/28/16

VWV

01/19/16

Dilution Factor: 1

SW846-8260B/5035 VOLATILE ORGANICS - Soil

Acatoma		2 10-20-00	
Acetone	< 0.050 mg/kg	cis-1,3-Dichloropropene	< 0.005 mg/kg
Benzene	< 0.005 mg/kg	trans-1,3-Dichloropropene	< 0.005 mg/kg
Bromobenzene	< 0.005 mg/kg	Ethanol	< 0.250 mg/kg
Bromodichloromethane	0.005 mg/kg	Ethyl benzene	< 0.005 mg/kg
Bromochloromethane	< 0.005 mg/kg	2-Hexanone	< 0.010 mg/kg
Bromoform	< 0.005 mg/kg	Isopropylbenzene	< 0.005 mg/kg
Bromomethane	< 0.005 mg/kg	Isopropyl ether	< 0.005 mg/kg
2-Butanone (MEK)	< 0.050 mg/kg	p-Isopropyltoluene	< 0.005 mg/kg
n-Butylbenzene	< 0.005 mg/kg	Methylene chloride	< 0.005 mg/kg
sec-Butylbenzene	< 0.005 mg/kg	Methyl Isobutyl Ketone (MIBK)	< 0.050 mg/kg
tert-Butylbenzene	< 0.005 mg/kg	Naphthalene	< 0.005 mg/kg
Carbon Tetrachloride	< 0.005 mg/kg	n-Propylbenzene	< 0.005 mg/kg
Chlorobenzene	< 0.005 mg/kg	Styrene	< 0.005 mg/kg
Chloroethane	< 0.005 mg/kg	1,1,1,2-Tetrachloroethane	< 0.005 mg/kg
Chloroform	0.050 mg/kg	1,1,2,2-Tetrachloroethane	< 0.005 mg/kg
Chloromethane	< 0.005 mg/kg	Tetrachloroethene (PCE)	< 0.005 mg/kg
2-Chlorotoluene	< 0.005 mg/kg	Toluene	< 0.005 mg/kg
4-Chlorotoluene	< 0.005 mg/kg	1,1,1-Trichloroethane	
Dibromochloromethane	< 0.005 mg/kg	1,1,2-Trichloroethane	< 0.005 mg/kg
1,2-Dibromo-3-chloropropane	< 0.005 mg/kg	Trichloroethene (TCE)	< 0.005 mg/kg
1,2-Dibromoethane (EDB)	< 0.005 mg/kg	1,2,3-Trichlorobenzene	< 0.005 mg/kg
Dibromomethane	< 0.005 mg/kg	1,2,4-Trichlorobenzene	< 0.005 mg/kg
Dichlorodifluoromethane	< 0.005 mg/kg	1,2,3-Trichloropropane	< 0.005 mg/kg
1,1-Dichloroethane	< 0.005 mg/kg	Trichlorofluoromethane	< 0.005 mg/kg
1,2-Dichloroethane	< 0.005 mg/kg	1,2,4-Trimethylbenzene	< 0.005 mg/kg
1,4-Dichlorobenzene	< 0.005 mg/kg	1,3,5-Trimethylbenzene	< 0.005 mg/kg
1,2-Dichlorobenzene	< 0.005 mg/kg	Vinyl acetate	< 0.005 mg/kg
1,3-Dichlorobenzene	< 0.005 mg/kg	Vinyl chloride	< 0.010 mg/kg
1,1-Dichloroethene	< 0.005 mg/kg	The state of the s	< 0.005 mg/kg
cis-1,2-Dichloroethene	< 0.005 mg/kg	m/p-Xylenes	< 0.010 mg/kg
trans-1,2-Dichloroethene	< 0.005 mg/kg	o-Xylene	< 0.005 mg/kg
1,2-Dichloropropane	< 0.005 mg/kg	Additional Community	
1,3-Dichloropropane		Additional Compounds	
2,2-Dichloropropane	< 0.005 mg/kg < 0.005 mg/kg	Methyl-tert-butyl ether (MTBE)	0.020 mg/kg
1,1-Dichloropropene	< 0.005 mg/kg	Isopropyl ether (IPE)	< 0.005 mg/kg
1.2 Dichloropropene	< 0.005 mg/kg		

I hereby certify that I have reviewed and approve these data.

< 0.005 mg/kg

1,2-Dichloropropene

Environmental Laboratories

Laboratory Certification #165

Client:

Paragon Environmental Consultants, Inc.

Project:

P-1305 Grab -N- Go (Winston Rd.)

Client Sample ID:

Monitor Well # 1 @ 15'

Sample Collection: 01/19/16 Sample Weight:

4.30g

% solid:

81%

Preparation Date: 01/28/16

Meritech ID#:

01211606

Analysis:

01/28/16

Analyst:

VWV

Dilution Factor:

Limits

40-147% 44-128% 40-145%

Report Date:

01/29/16

Batch Blank = Below Reporting Limit

(Yes)/No

Internal Standards method criteria acceptable

(Yes)/No

Surrogate Recoveries	Spike Conc	Spike Recovery
Dibromofluoromethane	30 ug/L	116%
Toluene-d8	30 ug/L	102%
Bromofluorobenzene	30 ug/L	96%

Laboratory QC Check

Matrix / Spike Recoveries acceptable

(Yes)/No

Spike Compound	Spike Conc	Spike %Rec.	Duplicate % Rec.	RPD	RPD Limits	OC Limits
1,1-Dichloroethene	25 ug/L	54%	50%	8	20	49-138
Benzene	25 ug/L	101%	93%	9	20	58-124
Trichloroethene	25 ug/L	108%	98%	9	20	45-132
Toluene	25 ug/L	120%	101%	17	20	64-123
Chlorobenzene	25 ug/L	124%#	111%#	11	20	61-109

^{# -} Fails Limit Check

** - If "no" is selected, see third page for details.

I hereby certify that I have reviewed and approve these data.

Meritech Inc.

Environmental Laboratories

Laboratory Certification #165

Client Name Project Name Site Location

Paragon Environmental Consultants, Inc. P-1305

Grab-N-Go (Winston Rd.)

Laboratory Name NC Certification # (Lab) Sample Matrix MERITECH, INC. #165 Soil

VPH (Aliphatics/Aromatics) Sample Information and Analytical Results

Method for Ranges: N	IADEP VPH	Sam	ple Identif	ication	Trip Blank	MW1-15'	
		La	b Identific	ation	Trip Blank	01211606	
		Collection	n Option	(for soil)*	1	1	
			ate Collec		01/19/16 01/21/16	01/19/16 01/21/16	
VPH Surrogate Stand		D	ate Recei	ved			
Aliphatic: 2,5-Dibron	D	ate Extrac	ted	N/A	01/27/16		
Aromatic: 2,5-Dibron	ntoluene	Date Analyzed % Dry Solids		01/27/16	01/27/16		
				N/A	81%		
		D	ilution Fac	ctor	N/A	N/A	
Hydrocarbon Ranges	Units of Measure	Measure MDL		Blank		7,711	
C5 - C8 Aliphatics*	mg/kg	2.05	5.00	< 5.00	< 5.00	< 5.00	
C9 - C12 Aliphatics*	mg/kg	2.08	5.00	< 5.00	< 5.00	< 5.00	
C9- C10 Aromatics* mg/kg		1.52	5.00	< 5.00	< 5.00	< 5.00	
Sample Surrogate Acc	ceptance Range			70 - 130%	70 - 130%	70 - 130%	
Aromatic Surrogate % Recovery - PID				125%	105%	90%	
Aliphatic Surrogate			130%	110%	96%		

^{*} Option 1 = Establish fill line on vial Option 2 = Sampling Device (indicate brand, e.g.EnCore TM)
Option 3 = Field weigh of soil

MDL = Method Detection Limit RL = Reporting Limit Blank = Laboratory Method Blank

VPH rev. 03/25/10

Were all performance/acceptance standards for required QA/QC procedures achieved? (YES) NO - Details Attached

Was blank correction applied as a significant modification of the method? YES (NO)

Were any significant modifications to the VPH method made? (NO) YES - Details Attached

Reviewed By	4. Pack
	N T T T T T T T T T T T T T T T T T T T

^{*} Unadjusted value. Should exclude the concentration of any surrogate(s), internal standards, and/or concentrations of other ranges that elute within the specified range.

^{**} Surrogate recovery exceeds limits (70-130%).

1-20-2013	Chain of Cu	stody Rec	ord (COC)					*	NPDES#:			. 1
	ME	RITE	CH,	INC		Client		4	Phone:			
	IAIL	IXIIL	.CII,	HAC	•	Addre	D	PARAGON Environmental Consultants, Inc.	Fax:			
	ENVI	RONMENT	TAL LABO	RATORIES	6			P.O. Box 157 Thomasville, NC 27361 (336) 669-6037	Email:	, ,	, ,	
	642 Tamco P	ld.	Phone: 3	36-342-474	8			, , , , , , , , , , , , , , , , , , , ,	Project: Gr	ab-11-0	ro (Wins	ton Ro
	Reidsville NC 2	7320	Fax: 336	-342-1522				1 , ,	P.O.#:_ P.	1305		
	Em	ail: info@r	meritech-la	bs.com		Atten		Brandon Moore			Around Tim	
\^/\^/\	v.merit	ech-	lahe	com	2			w would you like your report ser	it?		k needs prior	
VV VV V	Varioni	CCIT	1003	COH	1	1		all that apply: Email (preferred), Fax,	, Mail	(10 days)	3 - 5 Days	24 - 48 1
Sample Location and/or ID #		Sampling Dates & Times			Person	Taking	Sample (Sign/Print): Bul 18	los		Lab Us	e Onl	
Sample Location	and/or ID #	St Date	art Time	Date	nd Time	Comp?	# of	Test(s) Red	quired	15	On Ice? Yes / No	pH Ok
monitorwell #1	(must)	1-20-16		Date	ume	Grab?	Cont.		• /	11 1	res// No	CLOK
MUNITOR WELL AL	(Mu-1)	1-20-10	10173			6	6	EPA Methods 6200Bplus MI	BEILTE, VF	II, Lead		-
						1						
1	-11/	11/								04		
monitor well-#10	15' (MW1-15')	1-19-16	10:30			G	5	EAA Methods 8260 plus MT	BELZPE, V	PH		
								,		-		
	Y de la constante de la consta						7.5 (5.5)					
	×					-	_					

Trip Blan Method of

6200 B, UPH, 8260, UPH *** Dechlorination (<0.5 ppm) of Ammonia, Cyanide, Phenol and TKN samples must be done in the field prior to preservation. ***

1050

Shipment:

Comments:

Relinquished by:

UPS

Fed Ex

Hand Delivery Other

Are these results for regulatory purposes? Relinquished by:

Date: 1/21/16

Date:

Date:

X No 🔲 Yes Time: 920 Time:

Time:

Report results in: Received by: Received by:

Received by Lal

mg/L 21/16

121

Jug# M mg/kg ug/L Date:

920 Time:

Date:

1805 C

Compositor #

Temperature Upon

Receipt: (

APPENDIX C

WELL CONSTRUCTION RECORD

WELL CONSTRUCTION R This form can be used for single or multiple wells		For Inte	rnal U	se ONL	Υ:						
1. Well Contractor Information:											
Bradley Dean Berrier				ZONE	S				0/0/250000	an see	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Well Contractor Name		FROM	ft.	то	ft.	DESCRIPT	ON				
4074-B		\vdash	ft.		ft.						
NC Well Contractor Certification Number					G (for r	nulti-cased w					
Innovative Environmental	Technologies, Inc.	FROM	ft.	то 10	ft.	DIAMETER 2	in.	THICK	NESS	MATE	RIAL
Company Name	. comologico, mo	16, IN		CASING	GORT	UBING (geo					Distriction of The Control
2. Well Construction Permit #:		FROM	ft.	то	ft.	DIAMETER	in.	THICK	NESS	MATE	RIAL
List all applicable well permits (i.e. County, State	e, Variance, Injection, etc.)	-	ft.		ft.		in.				
3. Well Use (check well use):			REE		ESPACE TO				3 (9 T/04/90)		约时间的 图象
Water Supply Well:		FROM 10	-	то 30	ft. 2	in.	SLOT	SIZE	THICKN	ESS	MATERIAL
☐ Agricultural ☐ Geothermal (Heating/Cooling Supply)	☐Municipal/Public	10	ft.		ft.	in.					
□Industrial/Commercial	☐Residential Water Supply (single) ☐Residential Water Supply (shared)		ROUT								
□Irrigation	Excesidential water Supply (snared)	FROM	ft.	TO	ft.	MATERIAL		_		г метн	OD & AMOUNT
Non-Water Supply Well:		6	ft.	8	ft.	Benonite		Pour			
☑Monitoring	□Recovery	0	ft.	О	ft.	Cement		Pour		-	
Injection Well: □ Aquifer Recharge	☐Groundwater Remediation	10 0		DAVE		(if applicab	la)	-		NISS II	
☐ Aquifer Storage and Recovery	□Salinity Barrier	FROM		TO		MATERIAL	ic)	UNIVERSIDADE.	EMPLAC	EMENT	METHOD
□ Aquifer Test	□Stormwater Drainage	8	ft.	30	ft.	Sa	and			Po	ur
□Experimental Technology	Subsidence Control		ft.		ft.						
□Geothermal (Closed Loop)	□Tracer	FROM		TO TO	G (attac	h additional DESCRIPT				ck type,	grain size, etc.)
☐Geothermal (Heating/Cooling Return)	□Other (explain under #21 Remarks)	0	ft.	10	ft.				n, CLA		
4. Date Well(s) Completed: 1/19/16	Well ID#_MW-1	10	ft.	18	ft.			_	e/tan, C		
5a. Well Location:		18	ft.	25	ft.				range, (
Grab & Go-Winston Road	00-0-000024863	25	ft.	30	ft.		(Orange	e/tan, C	LAY	
Facility/Owner Name	Facility ID# (if applicable)	-	ft.		ft.						
1009 Winston Road 27292	2								_		
Physical Address, City, and Zip		21 70	ft.	WC.	ft.		To the country	A THE SER	CONTRACTOR OF		
Davidson	6726-04-82-5831	21. R	DIVIAR	A.S		220,0000000	THE PERSON NAMED IN		SERVICE STATES	NUMBER OF STREET	
County	Parcel Identification No. (PIN)						_				
5b. Latitude and Longitude in degrees/m (if well field, one lat/long is sufficient)	sinutes/seconds or decimal degrees:	22.00	? tific:	ation	^						
35.8394604 × 80.	2533683 w	1	Noci	1/2/	Pen	The				7-	4-16
		Signatu	re of C	crified	Well Co	miractor			>	Date	70
6. Is (are) the well(s): ☐Permanent or		with 15	A NCA	C 02C	.0100 or	15A NCAC	02C .02	200 Well			ed in accordance ndards and that a
7. Is this a repair to an existing well: If this is a repair, fill out known well construction	☐Yes or ☑No in information and explain the nature of the				100000	rovided to the					
repair under #21 remarks section or on the back	of this form.					this page to			itional w	ell site	details or well
8. Number of wells constructed: 1						may also att					
For multiple injection or non-water supply wells submit one form.		SUBM	IITT/	L INS	STUCT	TONS					
9. Total well depth below land surface:	30 (ft.) mple- 3@200' and 2@100')				<u>ls</u> : Su followi		orm w	vithin 3	0 days o	of com	pletion of well
10. Static water level below top of casing If water level is above casing, use "+"	: 18.02 (ft.)		I			ater Resour					
11. Borehole diameter: 6	(in.)										n to the address in completion of well
12. Well construction method: Auger (i.e. auger, rotary, cable, direct push, etc.)					followi		1011	with	50 ua	y5 01 1	completion of well
FOR WATER SUPPLY WELLS ONLY	:	D	ivisio			esources, U Service Cen					rol Program, 6
	Method of test:	24c. F	or Wa	iter Su	pply &	Injection \	Wells:				
13a. Yield (gpm) N	vietnoù oi test:	Also s	ubmi	t one	copy of	f this form	within	n 30 da			
13b. Disinfection type:	Amount:	well c		iction t	to the	county heal	in dep	artmen	of the	county	wnere

APPENDIX D

STANDARD OPERATING PROCEDURES

STANDARD OPERATING PROCEDURES PARAGON ENVIRONMENTAL CONSULTANTS, INC.

I. SOIL SAMPLE PROCEDURES

- Collect all samples using disposable Latex gloves. Gloves are not to be reused.
- Place samples into laboratory supplied glassware following requirements for specific analysis.
- 3. Label samples with sample ID, date, time, and job number. Immediately place samples on ice or in refrigerator to be cooled to approximately 4 degrees Celsius.
- 4. Store all samples on ice or refrigerate until samples are delivered to the laboratory.
- 5. Complete a chain of custody record for samples to be submitted to laboratory. Sign and date the chain of custody when samples are relinquished in accordance with EPA chain of custody protocol.

II. GROUNDWATER SAMPLING

- 1. Use new disposable bailer and new nylon string to develop well and collect sample. Handle bailer and string with Latex gloves.
- 2. Develop well by removing 3 well volumes of water. Dispose of water in accordance with NCDENR guidelines.
- 3. Following well development obtain samples in laboratory supplied glassware following requirements for specific analysis.
- 4. Handle, store, and transport samples in same manner as for soil samples. See items I.3, I.4, and I.5 above.

III. EQUIPMENT CONTAMINATION

- 1. Decontaminate augers, split spoons, and other sampling equipment by the following procedure:
 - A. Soap and tap water wash
 - B. Tap water rinse
 - C. Distilled deionized water rinse
 - D. Isopropyl alcohol rinse
 - E. Distilled water rinse
- 2. Use new disposable sampling equipment whenever practical.

APPENDIX E GROUNDWATER ANALYTICAL RESULTS

Meritech, Inc.

Environmental Laboratory

Laboratory Certification No. 165

Contact: Mr. Brandon Moore

Client: Paragon Environmental Consultants

Report Date:

2/1/2016

PO#

P-1305

PO Box 157 Thomasville NC 27361				Date Sar	Project # mple Rcvd:	Grab-N-Go (Winston Rd.) 1/21/2016
Meritech Work Order # Parameters	01211605 <u>Resu</u>		e: MW-1 Grab Analysis Date	Reporti	ing Limit	1/20/16 <u>Method</u>
Lead, total EPA 6200B +MTBE+IPE VPH	<0.010 Attac Attac	hed	2/1/16 1/21/16 1/27/16	0.010	mg/L - -	EPA 200.7 6200
Meritech Work Order # Parameters	01211606 <u>Resu</u>	CHILD SALES	e: MW1-15 Grab Analysis Date	Reporti	ng Limit	1/19/16 <u>Method</u>
EPA 8260 +MTBE+IPE VPH	Attac Attac	2 mm - 2 mm	1/28/16 1/27/16	:	:	8260

I hereby certify that I have reviewed and approve these data.

Environmental Laboratories

Laboratory Certification #165

Client: Project: Client Sample ID: Sample Collection: Paragon Environmental Consultants, Inc. Meritech ID#: P-1305 Grab-N-Go (Winston Rd.)

Analysis: Analyst:

01211605 01/21/16

VWV

01/20/16

Monitor Well # 1

Dilution Factor: 1/100

SM-6200B VOLATILE ORGANICS - Water

Acetone	< 5.00 ug/L	de 1.2 Dist.	and the second
Benzene	90.3 ug/L	cis-1,3-Dichloropropene	< 0.500 ug/L
Bromobenzene	< 0.500 ug/L	trans-1,3-Dichloropropene	< 0.500 ug/L
Bromodichloromethane	< 0.500 ug/L	Ethanol	< 50.0 ug/L
Bromochloromethane	< 0.500 ug/L	Ethyl benzene	14.3 ug/L
Bromoform		2-Hexanone	< 1.00 ug/L
Bromomethane	< 0.500 ug/L	Hexachlorobutadiene	< 0.500 ug/L
2-Butanone (MEK)	< 0.500 ug/L	Isopropylbenzene	11.2 ug/L
n-Butylbenzene	< 5.00 ug/L	p-Isopropyltoluene	< 0.500 ug/L
sec-Butylbenzene	5.75 ug/L	Methylene chloride	< 0.500 ug/L
	< 0.500 ug/L	Methyl Isobutyl Ketone (MIBK)	< 0.500 ug/L
tert-Butylbenzene	< 0.500 ug/L	Naphthalene	36.2 ug/L
Carbon Tetrachloride	< 0.500 ug/L	n-Propylbenzene	21.0 ug/L
Chlorobenzene	< 0.500 ug/L	Styrene	< 0.500 ug/L
Chloroethane	< 0.500 ug/L	1,1,2-Tetrachloroethane	< 0.500 ug/L
Chloroform	< 0.500 ug/L	1,1,2,2-Tetrachloroethane	< 0.500 ug/L
Chloromethane	< 0.500 ug/L	Tetrachloroethene (PCE)	< 0.500 ug/L
2-Chlorotoluene	< 0.500 ug/L	Toluene	< 0.500 ug/L
4-Chlorotoluene	< 0.500 ug/L	1,1,1-Trichloroethane	< 0.500 ug/L
Dibromochloromethane	< 0.500 ug/L	1,1,2-Trichloroethane	< 0.500 ug/L
1,2-Dibromo-3-chloropropane	< 0.500 ug/L	Trichloroethene (TCE)	< 0.500 ug/L
1,2-Dibromoethane (EDB)	< 0.500 ug/L	1,2,3-Trichlorobenzene	< 0.500 ug/L
Dibromomethane	< 0.500 ug/L	1,2,4-Trichlorobenzene	< 0.500 ug/L
Dichlorodifluoromethane	< 0.500 ug/L	1,2,3-Trichloropropane	< 0.500 ug/L
1,1-Dichloroethane	< 0.500 ug/L	Trichlorofluoromethane	< 0.500 ug/L
1,2-Dichloroethane	< 0.500 ug/L	1,2,4-Trimethylbenzene	135 ug/L
1,4-Dichlorobenzene	< 0.500 ug/L	1,3,5-Trimethylbenzene	123 ug/L
1,2-Dichlorobenzene	< 0.500 ug/L	Vinyl acetate	< 1.00 ug/L
1,3-Dichlorobenzene	< 0.500 ug/L	Vinyl chloride	
1,1-Dichloroethene	< 0.500 ug/L	m/p-Xylenes	< 0.500 ug/L
cis-1,2-Dichloroethene	< 0.500 ug/L	o-Xylene	86.4 ug/L
trans-1,2-Dichloroethene	< 0.500 ug/L	Additional Compounds	44.3 ug/L
1,2-Dichloropropane	< 0.500 ug/L	Methyl-tert-butyl ether (MTBE)	4.570 0
1,3-Dichloropropane	< 0.500 ug/L	Isopropyl ether (IPE)	4,570 ug/L
2,2-Dichloropropane	< 0.500 ug/L	sopropji etner (11 E)	25.0 ug/L
1,1-Dichloropropene	< 0.500 ug/L		
1.2 Dichloropropos	-0.500		

I hereby certify that I have reviewed and approve these data.

< 0.500 ug/L

1,2-Dichloropropene

Environmental Laboratories

Laboratory Certification #165

Client:

Paragon Environmental Consultants, Inc.

Project:

P-1305 Grab-N-Go (Winston Rd.)

Client Sample ID: Sample Collection: 01/20/16

Monitor Well # 1

Sample Volume:

5ml purge

% solid

N/A

Meritech ID#:

01211605

Analysis:

01/21/16

Analyst:

VWV

Dilution Factor:

1/100

Report Date:

01/28/16

Batch Blank = Below Reporting Limit

(Yes)/No

Internal Standards method criteria acceptable

(Yes) / No

Surrogate Recoveries	Spike Conc	Spike Recovery	Limits
Dibromofluoromethane	30 ug/L	119%	51-141%
Toluene-d8	30 ug/L	108%	67-151%
Bromofluorobenzene	30 ug/L	91%	45-161%

Laboratory QC Check

Matrix /	Spike	Recoveries	Acceptable

(Yes)/No

Spike Compound	Spike Conc	Spike %Rec.	Duplicate % Rec.	RPD	RPD Limits	QC Limits
1,1-Dichloroethene	25 ug/L	61%	57%	7	20	49-117
Benzene	25 ug/L	107%	99%	7	20	58-145
Trichloroethene	25 ug/L	95%	90%	5	20	48-107
Toluene	25 ug/L	101%	93%	8	20	52-110
Chlorobenzene	25 ug/L	98%	92%	7	20	40-137

^{# -} Fails Limit Check

I hereby certify that I have reviewed and approve these data.

^{* -} If "no" is selected, see third page for details.

Environmental Laboratories

Laboratory Certification #165

Client:
Project:
Client Sample ID:
Sample Collection:

Paragon Environmental Consultants, Inc. Meritech ID#:
P-1305 Grab-N-Go (Winston Rd.) Analysis:

Trip Blank

01/20/16

Analysis: Analyst: 01211605tb 01/21/16 VWV

Dilution Factor: 1

SM-6200B VOLATILE ORGANICS - Water

Acetone	< 5.00 ug/L	cis-1,3-Dichloropropene	< 0.500 ug/L
Benzene	< 0.500 ug/L	trans-1,3-Dichloropropene	< 0.500 ug/L
Bromobenzene	< 0.500 ug/L	Ethanol	< 50.0 ug/L
Bromodichloromethane	< 0.500 ug/L	Ethyl benzene	< 0.500 ug/L
Bromochloromethane	< 0.500 ug/L	2-Hexanone	< 1.00 ug/L
Bromoform	< 0.500 ug/L	Hexachlorobutadiene	< 0.500 ug/L
Bromomethane	< 0.500 ug/L	Isopropylbenzene	< 0.500 ug/L
2-Butanone (MEK)	< 5.00 ug/L	p-Isopropyltoluene	< 0.500 ug/L
n-Butylbenzene	< 0.500 ug/L	Methylene chloride	< 0.500 ug/L
sec-Butylbenzene	< 0.500 ug/L	Methyl Isobutyl Ketone (MIBK)	< 0.500 ug/L
tert-Butylbenzene	< 0.500 ug/L	Naphthalene	< 0.500 ug/L
Carbon Tetrachloride	< 0.500 ug/L	n-Propylbenzene	< 0.500 ug/L
Chlorobenzene	< 0.500 ug/L	Styrene	< 0.500 ug/L
Chloroethane	< 0.500 ug/L	1,1,1,2-Tetrachloroethane	< 0.500 ug/L
Chloroform	< 0.500 ug/L	1,1,2,2-Tetrachloroethane	< 0.500 ug/L
Chloromethane	< 0.500 ug/L	Tetrachloroethene (PCE)	< 0.500 ug/L
2-Chlorotoluene	< 0.500 ug/L	Toluene	< 0.500 ug/L
4-Chlorotoluene	< 0.500 ug/L	1,1,1-Trichloroethane	< 0.500 ug/L
Dibromochloromethane	< 0.500 ug/L	1,1,2-Trichloroethane	< 0.500 ug/L
1,2-Dibromo-3-chloropropane	< 0.500 ug/L	Trichloroethene (TCE)	< 0.500 ug/L
1,2-Dibromoethane (EDB)	< 0.500 ug/L	1,2,3-Trichlorobenzene	< 0.500 ug/L
Dibromomethane	< 0.500 ug/L	1,2,4-Trichlorobenzene	< 0.500 ug/L
Dichlorodifluoromethane	< 0.500 ug/L	1,2,3-Trichloropropane	< 0.500 ug/L
1,1-Dichloroethane	< 0.500 ug/L	Trichlorofluoromethane	< 0.500 ug/L
1,2-Dichloroethane	< 0.500 ug/L	1,2,4-Trimethylbenzene	< 0.500 ug/L
1,4-Dichlorobenzene	< 0.500 ug/L	1,3,5-Trimethylbenzene	< 0.500 ug/L
1,2-Dichlorobenzene	< 0.500 ug/L	Vinyl acetate	< 1.00 ug/L
1,3-Dichlorobenzene	< 0.500 ug/L	Vinyl chloride	< 0.500 ug/L
1,1-Dichloroethene	< 0.500 ug/L	m/p-Xylenes	< 1.00 ug/L
cis-1,2-Dichloroethene	< 0.500 ug/L	o-Xylene	< 0.500 ug/L
trans-1,2-Dichloroethene	< 0.500 ug/L	Additional Compounds	10.500 ug/L
1,2-Dichloropropane	< 0.500 ug/L	Methyl-tert-butyl ether (MTBE)	< 0.500 ug/L
1,3-Dichloropropane	< 0.500 ug/L	Isopropyl ether (IPE)	< 0.500 ug/L
2,2-Dichloropropane	< 0.500 ug/L	, , , , , , , , , , , , , , , , , , , ,	0.500 ug/L
1,1-Dichloropropene	< 0.500 ug/L		
1,2-Dichloropropene	< 0.500 ug/L		

I hereby certify that I have reviewed and approve these data.

Environmental Laboratories

Laboratory Certification #165

Client:

Paragon Environmental Consultants, Inc.

Project:

P-1305 Grab-N-Go (Winston Rd.)

Client Sample ID: Sample Collection: 01/20/16

Trip Blank

Sample Volume:

5ml purge

% solid

N/A

Meritech ID#:

01211605tb

Analysis:

01/21/16

Analyst:

VWV

Dilution Factor:

1

Report Date:

01/28/16

Batch Blank = Below Reporting Limit

(Yes)/No

Internal Standards method criteria acceptable

(Yes) / No

Surrogate Recoveries	Spike Conc	Spike Recovery	Limits
Dibromofluoromethane Toluene-d8	30 ug/L 30 ug/L	112% 100%	51-141%
Bromofluorobenzene	30 ug/L	90%	67-151% 45-161%

Laboratory QC Check

Matrix	1	Spike	Recoveries	Acceptable
			The Part of the Pa	

(Yes)/No

Spike Conc	Spike %Rec.	Duplicate % Rec.	RPD	RPD Limits	OC Limits
25 ug/L	61%	57%	7	20	49-117
25 ug/L	107%	99%	7	20	58-145
25 ug/L	95%	90%	5	20	48-107
25 ug/L	101%	93%	8	20	52-110
25 ug/L	98%	92%	7	20	40-137
	25 ug/L 25 ug/L 25 ug/L 25 ug/L	25 ug/L 61% 25 ug/L 107% 25 ug/L 95% 25 ug/L 101%	25 ug/L 61% 57% 25 ug/L 107% 99% 25 ug/L 95% 90% 25 ug/L 101% 93%	25 ug/L 61% 57% 7 25 ug/L 107% 99% 7 25 ug/L 95% 90% 5 25 ug/L 101% 93% 8	25 ug/L 61% 57% 7 20 25 ug/L 107% 99% 7 20 25 ug/L 95% 90% 5 20 25 ug/L 101% 93% 8 20

^{# -} Fails Limit Check

I hereby certify that I have reviewed and approve these data.

^{* -} If "no" is selected, see third page for details.

Meritech Inc.

Environmental Laboratories

Laboratory Certification #165

Client Name Project Name Site Location Paragon Environmental Consultants, Inc. P-1305

Grab-N-Go (Winston Rd.)

Laboratory Name NC Certification # (Lab) Sample Matrix #165 Water

VPH (Aliphatics/Aromatics) Sample Information and Analytical Results

Method for Ranges: N	IADEP VPH	Sam	ple Identif	ication	Trip Blank	MW-1
		Lai	o Identific	ation	Trip Blank	01211605
		Collectio	n Option (for soil)*	N/A	N/A
		D	ate Collec	ted	01/20/16	01/20/16
VPH Surrogate Standards		D	ate Recei	ved	01/21/16	01/21/16
Aliphatic: 2,5-Dibron		Date Extracted			N/A	N/A
Aromatic: 2,5-Dibromtoluene		D	ate Analy	zed	01/27/16	01/27/16
		9	6 Dry Soli	ds	N/A	N/A
		D	ilution Fac	ctor	N/A	10
Hydrocarbon Ranges	Units of Measure	MDL	RL	Blank		
C5 - C8 Aliphatics*	ug/L	4.58	100	< 100	< 100	3,840
C9 - C12 Aliphatics*	ug/L	2.84	100	< 100	< 100	2,680
C9- C10 Aromatics*	ug/L	1.24	100	< 100	< 100	< 1,000
Sample Surrogate Acc				70 - 130%	70 - 130%	70 - 130%
	e % Recovery - PID		time III.	120%	113%	129%
Aliphatic Surrogate	% Recovery - FID			130%	124%	127%

^{*} Option 1 = Establish fill line on vial Option 2 = Sampling Device (indicate brand, e.g.EnCore TM)
Option 3 = Field weigh of soil

MDL = Method Detection Limit RL = Reporting Limit Blank = Laboratory Method Blank

VPH rev. 03/25/10

Were all performance/acceptance standards for required QA/QC procedures achieved? (YES) NO - Details Attached

Was blank correction applied as a significant modification of the method? YES (NO)

Were any significant modifications to the VPH method made? (NO) YES - Details Attached

	Doll	
Reviewed By	u. Kal	

^{*} Unadjusted value. Should exclude the concentration of any surrogate(s), internal standards, and/or concentrations of other ranges that elute within the specified range.

^{**} Surrogate recovery exceeds limits (70-130%).

-	-	_	1
			3
			- 1

Chain of Custody Record (COC)

MERITECH, INC.

ENVIRONMENTAL LABORATORIES

642 Tamco Rd.

Phone: 336-342-4748

Reidsville NC 27320

Fax: 336-342-1522

Email: info@meritech-labs.com

www.meritech-labs.com

1		NPDES#:
Client:		Phone:
Addres :	PARAGON	Fax:
	P.O. Box 157 Thomasville, NC 27361 (336) 669-6037	Email:
	(330) 003-0037	Project: Grab - N-Go (Winston Rd. P.O.#: 1-1305
	1 , ,	P.O.#: P-1305
	KA d. M.	Turn Around Time

Attention: Dran don Moore

How would you like your report sent?

Circle all that apply: Email (preferred), Fax, Mail

Turn Around Time*

*RUSH work needs prior approval.

Std (10 days) 3 - 5 Days 24 - 48 Hrs.

Sample Location and/or ID #		Sampling Dates & Times			Person Taking Sample (Sign/Print): Brad Octrici Bud Bees			Lab Use Only			
		Start		End		Comp?	# of	Tost(s) Poquired	On Ice?	pH OK?	
1 11	11 / 1	Date	Time	Date	Time	Grab?	Cont.		Yes / No	CI OK?	
monitorwell:	#1 (mu-1)	1-20-16	10:45			6	6	EPA Methods 6200Bplus MTBE/IPE, VPH, Lend			
						-					
ļ								, 04			
monitor well #	le15' (MW1-15')	1-19-16	10:30	_		G	5	EDA Methods 8260 plus MTBE/IPE, VPH			
										•	
	-							*			
	/ 1										
Trip Blan	nK (TB)						4	6200 B, NPH, 8260, NPH	Temperat	ure Upon	
Method of	*** Dechlorination (<0.5 ppm) of Ammonia, Cyanide, Phenol and TKN samples must be done in the field prior to preservation. ***									0,7	
Shipment:	Comments:									r#	
☐ UPS	Jug										
Fed Ex	Are these results for regulatory purposes? Yes X No X									X	
Hand Delivery	Relinque hed by Ber Date: 121116 Time: 920 Received by: 12116 Date: 9								920		
Other	Relinquished by:			The second name of the second	Ally Time		0	Received by: Date:	Time:		
	Relinquished by:			Date: \	Time			Received by Labor 1 21 Page:	18 C	,	

DONALD R. VAN DER VAART

Secretary

MICHAEL SCOTT

Acting Director

March 22, 2016

DSF of NC, Inc. Shehzad Quamar, Reg. Agent 2105 Needle Leaf Lane Greensboro, NC 27410-2962

Re:

Notice of No Further Action 15A NCAC 2L .0407(d) Risk-based Assessment and Corrective Action for Petroleum Underground Storage Tanks

Grab & Go 1009 Winston Road, Lexington, NC Davidson County Incident Number: 44108 Risk Classification: Low Ranking: L40R

Dear Mr. Mr. Quamar:

The Limited Site Assessment Report received by the UST Section, Division of Waste Management, Winston-Salem Regional Office on February 5, 2016 has been reviewed. The review indicates that soil contamination does not exceed the residential maximum soil contaminant concentrations (MSCCs), established in Title 15A NCAC 2L .0411 and that groundwater contamination does not exceed the groundwater quality standards established in Title 15A NCAC 2L .0202.

The UST Section determines that no further action is warranted for this incident. All required actions have been completed. On March 22, 2016, the UST Section was provided with proof of receipt (Public Notice) of the conditional Notice of No further Action letter or of refusal by the addressee to accept delivery of the letter or with a description of the manner in which the letter was posted.

This determination shall apply unless the UST Section later finds that the discharge or release poses an unacceptable risk or a potentially unacceptable risk to human health or the environment. Pursuant to Title 15A NCAC 2L .0407(a) you have a continuing obligation to notify the Department of any changes that might affect the risk or land use classifications that have been assigned.

This No Further Action determination applies only to the subject incident; for any other incidents at the subject site, the responsible party must continue to address contamination as required.

If you'have any questions regarding this notice, please contact me at the address or telephone number listed below.

September 19, 2019 Kleinfelder File No. RAL19R101353

Mr. John L. Pilipchuk, LG., PE North Carolina Department of Transportation State Geotechnical Engineer Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699-1589

SUBJECT: **Preliminary Site Assessment Report**

Parcel 21, Sam & Soas Lem

WBS Element No. 54035.1.1, TIP No. U-5757

NC 8 (Winston Road) from 9th Street to SR 1408 (Biesecker Rd) in

Lexington. Widen to multi lanes Kleinfelder Project No. 20201105.001A

Dear Mr. Pilipchuk,

Kleinfelder is pleased to provide its report detailing the activities conducted as part of the preliminary site assessment for the subject project.

Kleinfelder appreciates the opportunity to be of service to you. Should you have questions or require additional information, please do not hesitate to contact the undersigned.

Sincerely,

KLEINFELDER. INC.

Environmental Staff Professional

Michael J Burns, PG

Environmental Program Manager

ARS/MJB:asp

PRELIMINARY SITE ASSESSMENT REPORT PARCEL 21, SAM & SOAS LEM PARCEL 110100000059 1215 OLD US HIGHWAY 52 LEXINGTON, DAVIDSON COUNTY, NORTH CAROLINA

NCDOT WBS ELEMENT 54035.1.1 STATE PROJECT U-5757 NC 8 (WINSTON RD) FROM 9^{TH} STREET TO SR 1408 (BIESECKER RD) IN LEXINGTON. WIDEN TO MULTI LANES

KLEINFELDER PROJECT NO. 20201105.001A

SEPTEMBER 19, 2019

Copyright 2019 Kleinfelder All Rights Reserved

ONLY THE CLIENT OR ITS DESIGNATED REPRESENTATIVES MAY USE THIS DOCUMENT AND ONLY FOR THE SPECIFIC PROJECT FOR WHICH THIS REPORT WAS PREPARED.

A Report Prepared for:

Mr. John L. Pilipchuk, LG., PE North Carolina Department of Transportation State Geotechnical Engineer Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699-1589

PRELIMINARY SITE ASSESSMENT REPORT
PARCEL 21, SAM & SOAS LEM
PARCEL 110100000059
1215 OLD US HIGHWAY 52
LEXINGTON, DAVIDSON COUNTY, NORTH CAROLINA

NCDOT WBS ELEMENT 54035.1.1 STATE PROJECT U-5757 NC 8 (WINSTON RD) FROM 9^{TH} STREET TO SR 1408 (BIESECKER RD) IN LEXINGTON. WIDEN TO MULTI LANES

Prepared by:

Abigail R. Shurtleff

Environmental Staff Professional

Reviewed by:

Michael J. Burns, PG

Environmental Program Manager

KLEINFELDER

3200 Gateway Centre Blvd. | Suite 100 Raleigh, North Carolina 27560 P | 919.755.5011

September 19, 2019

Kleinfelder Project No. 20201105.001A

TABLE OF CONTENTS

1	INTRODUCTION	1
•	1.1 SITE DESCRIPTION	2
2	HISTORY	
	2.1 PARCEL USAGE	3
	2.2 FACILITY ID NUMBERS	
•	2.3 GROUNDWATER INCIDENT NUMBERS	
3	OBSERVATIONS	
	3.1 GROUNDWATER MONITORING WELLS	
	3.2 ACTIVE USTS	
4	3.3 OTHER FEATURES APPARENT BEYOND PROJECT STUDY AREA	
4	METHODS	
	4.1 PROPERTY OWNER CONTACTS	
	4.2 HEALTH AND SAFETY	
	4.3 GEOPHYSICAL INVESTIGATION	
	4.4 SOIL ASSESSMENT	
5	RESULTS	
	5.1 GEOPHYSICAL INVESTIGATION	
	5.3 SAMPLE OBSERVATIONS	
6	CONCLUSIONS	
7	RECOMMENDATIONS	
8	LIMITATIONS	
0	LIWITATIONS	U

TABLES

- 1 Soil Sample Screening Results
- 2 Soil Sample Analytical Results

FIGURES

- 1 Site Location Map
- 2 Site Map
- 3 Soil Sample Analytical Results

APPENDICES

- A Site Photographs
- B Geophysical Survey Report
- C Boring Logs
- D Analytical Reports and Graphs

PRELIMINARY SITE ASSESSMENT REPORT

Site Name and Location:

Parcel 21

1215 Old US Highway 52

Lexington, Davidson County, North Carolina

Latitude and Longitude:

35.841961°N, -80.253736°W

County Parcel Number

1101000000059

Facility ID Number:

N/A

Leaking UST Incident:

N/A

State Project No.:

U-5757

NCDOT Project No.:

NCDOT WBS Element 54035.1.1

Description:

NC 8 (Winston Rd) from 9th Street to SR 1408

(Biesecker Rd) in Lexington. Widen to multi

lanes

Date of Report:

September 19, 2019

Consultant:

Kleinfelder, Inc.

3200 Gateway Center Boulevard | Suite 100

Morrisville, North Carolina 27560 Corporate Geology License No. C-521

Corporate Licensure for Engineering F-1312

SEAL AND SIGNATURE OF CERTIFYING LICENSED GEOLOGIST

I, Michael J Burns, a Licensed Geologist for Kleinfelder, Inc., do certify that the information contained in this report is correct and accurate to the best of my knowledge.

-7E53DC44AC794CA...

Michael J. Bum

Michael J Burns, LG

NC License No. 1645

10/7/2019

PRELIMINARY SITE ASSESSMENT PARCEL 21, SAM & SOAS LEM PARCEL 110100000059 1215 OLD US HIGHWAY 52 LEXINGTON, DAVIDSON COUNTY, NORTH CAROLINA

NCDOT WBS ELEMENT 54035.1.1 STATE PROJECT U-5757 NC 8 (WINSTON RD) FROM 9TH STREET TO SR 1408 (BIESECKER RD) IN LEXINGTON. WIDEN TO MULTI LANES

1 INTRODUCTION

Kleinfelder, Inc. (Kleinfelder) has prepared this Preliminary Site Assessment (PSA) report to document assessment activities performed on a parcel known by the Davidson County, NC Tax Assessor's Office as Parcel Number 1101000000059, and by NCDOT as Parcel 21 (the assessment area is hereafter referred to as the "Project Study Area"). The Project Study Area consists of the central and western portions of the parcel. Parcel 21 is currently occupied by a vacant former retail/restaurant building, and is located northeast of the intersection of 12th Street and NC Highway 8 (Winston Road), in the Town of Lexington, Davidson County, North Carolina (Figure 1).

Parcel 21 is not mentioned in the Hazardous Materials Survey Report, dated February 28, 2018, prepared by Kleinfelder for SEPI Engineering & Construction. However, Parcel 21 shares a property boundary and paved asphalt parking areas with Parcel 22 (to the north), which appears to have operated as a gasoline service station in at least 1966. As such, the purpose of the PSA was to evaluate whether unknown USTs or contaminated soil are present in the Project Study Area that may result in increased project costs and future liability if acquired by the NCDOT.

1.1 SITE DESCRIPTION

Parcel 21 has a listed owner of Sam & Soas Lem. The parcel has a street address of 1215 Old US Highway 52. The parcel consists of a vacant former retail/restaurant building, paved asphalt parking areas, and an overgrown vegetated area. The parcel is bounded by an abandoned former retail store/gasoline filling station to the north (Parcel 22), beyond which is Conrad Street; by forested land to the east, beyond which is residential land; by a maintained grass lawn to the south; and by NC Highway 8 (Winston Road) to the west, beyond which is retail automotive sales facility. Photographs of the Project Study Area are provided in Appendix A.

1.2 SCOPE OF WORK

Kleinfelder conducted this PSA in accordance with the NCDOT's May 24, 2019, Request for Technical and Cost Proposal (RFP) and Kleinfelder's June 18, 2019 Technical and Cost Proposal. The NCDOT granted a formal Notice to Proceed on June 27, 2019.

2 HISTORY

2.1 PARCEL USAGE

The parcel consists of a vacant former retail/restaurant building, paved asphalt parking areas, and an overgrown vegetated area.

Parcel 21 is not mentioned in the Hazardous Materials Survey Report, dated February 28, 2018, prepared by Kleinfelder for SEPI Engineering & Construction. However, Parcel 21 shares a property boundary and paved asphalt parking areas with Parcel 22 (to the north), which appears to have operated as a gasoline service station in at least 1966.

Kleinfelder conducted historical research to determine whether additional environmental listings were identified for Parcel 21. The following are the results of the additional research:

- Based on a review of aerial photographs, the site appears to have been primarily occupied by undeveloped forested land from at least 1936 to 1977, and by the retail/restaurant building and associated paved asphalt parking areas from at least 1983 to present day.
- Based on a review of historical City Directories, the site appears to have been occupied by a tattoo parlor in 2010 and 2014, and by a restaurant in 1995 and 2000.
- Kleinfelder searched the registered UST database, maintained by the North Carolina
 Department of Environmental Quality (NCDEQ). The site was not listed.
- Kleinfelder utilized the NCDEQ's Division of Waste Management Site Locator Tool online. The site was not listed.

2.2 FACILITY ID NUMBERS

Kleinfelder reviewed the NCDEQ UST database for Parcel 21. The site was not listed.

2.3 GROUNDWATER INCIDENT NUMBERS

Parcel 21 is not associated with any known groundwater incident numbers at this time.

3 OBSERVATIONS

3.1 GROUNDWATER MONITORING WELLS

No current or former groundwater monitoring wells were observed on Parcel 21 at the time of site exploration, August 6, 2019.

3.2 ACTIVE USTS

Based on review of the NCDEQ UST database, site visits and previous reports, there are no (0) active or inactive USTs located within the Project Study Area.

3.3 OTHER FEATURES APPARENT BEYOND PROJECT STUDY AREA

The Project Study Area consisted of the central and western portions of Parcel 21. There were no features of concern observed in the overgrown vegetated area of Parcel 21 which was beyond the Project Study Area.

4 METHODS

4.1 PROPERTY OWNER CONTACTS

As part of Kleinfelder's scope of work, the listed property owner was contacted about the work schedule for the field work and the type of work being performed. The owner did not express any concern or special conditions associated with the work being performed.

4.2 HEALTH AND SAFETY

Prior to commencing the field work, Kleinfelder personnel developed a Site-Specific Health and Safety Plan (HASP) covering activities to be performed. The site-specific HASP was discussed with all Kleinfelder personnel involved with the project and at a daily on-site "tail gate" safety meetings with subcontractors and sub consultants. In addition to the HASP, Kleinfelder utilized its comprehensive Corporate Health and Safety Program, targeted to address those specific and critical tasks that involve Kleinfelder personnel and subcontractors. The Loss Prevention System (LPS™), a behavior-based program, is Kleinfelder's company-wide safety system implemented and embraced by all levels of the company.

4.3 GEOPHYSICAL INVESTIGATION

Pyramid Environmental & Engineering, P.C (Pyramid) conducted a geophysical investigation in the Project Study Area between July 15 and 16, 2019. The overgrown vegetated portion of the site was not included as part of the geophysical study because the historical review and site observations did not suggest that sources of soil impact may be present. Pyramid utilized electromagnetic (EM) induction technology and ground penetrating radar (GPR) to locate potential geophysical anomalies and potential USTs within the Project Study Area.

There were no EM responses that were not associated with known utilities, vehicles, or other previously known conditions.

A copy of the Pyramid Geophysical Investigation Report, detailing the field methodology, is included in Appendix B.

4.4 SOIL ASSESSMENT

The scope of work for the soil assessment was to evaluate the presence of soil contamination along the existing right of way and/or easement to evaluate whether known impact is present in this area and maybe migrating off-site. The soil boring was planned to be advanced to a maximum depth of 10 feet below the ground surface (bgs) unless groundwater was encountered. Field

screening using a photo ionization detector (PID) was to be conducted at 1-foot intervals beginning at 0 foot to 1 foot. The soil sample with the highest PID reading above background or the sample from the maximum drilled depth would be selected for on-site laboratory analyses.

Prior to the drilling activities, public utilities were marked by NC One Call and private utilities were marked by Pyramid.

Kleinfelder subcontracted Quantex, Inc. (Quantex) to perform the drilling on-site on August 6, 2019. Quantex advanced one (1) soil boring (P21-B1) by direct-push technology from the ground surface to boring termination (10 feet bgs) at a location specified by Kleinfelder. The soil boring location was identified in the field using a GPS. The soil boring location is shown on Figure 2. The boring was located north of the vacant former retail/restaurant building on Parcel 21. Soil samples were collected by driving Macro Core™ samplers in 5-foot intervals. Each soil core was cut open, the soil samples were classified, and the soil divided into 1-foot sections. Each 1-foot section was screened in the field using a PID. The PID readings are summarized in Table 1.

Soils were determined to be primarily silt within the top 2 feet underlain primarily by a silty clay or clayey silt, then clay. Groundwater was not encountered in the boring at the termination depth of 10 feet bgs. A copy of the boring log is included in Appendix C.

4.5 SOIL ANALYSIS

The PID readings from soil boring advanced were noted to be low. Based on the PID data and visual observations, one sample from the boring was selected for on-site laboratory analysis.

The sample was analyzed by RED Lab, LLC utilizing ultraviolet fluorescence (UVF) methodology to provide real-time analytical results of Total Petroleum Hydrocarbons (TPH), Gasoline Range Organics (GRO), Diesel Range Organics (DRO), and benzene, toluene, ethylbenzene, and total xylenes (BTEX). The UVF method was selected because of the known use of petroleum products on the northern adjoining property, Parcel 22. The UVF analysis also provided data regarding Environmental Protection Agency 16 total Polycyclic Aromatic Hydrocarbons (PAHs), and Benzo(a)pyrene (BaP).

5 RESULTS

5.1 GEOPHYSICAL INVESTIGATION

The EM and GPR surveys did not identified unknown geophysical anomalies within the Project Study Area.

5.2 SOIL SAMPLING DATA

The UVF analysis of the soil sample did not indicate the presence of petroleum impact in soil boring P21-B1. As such, shallow soil impact does not appear to be present within the existing right-of-way and the northern parcel boundary above NCDEQ Action Limits. A summary of soil sample analytical results is presented in Table 2. The laboratory results associated with the boring are presented on Figure 3. The laboratory report and graphs are included in Appendix D.

5.3 SAMPLE OBSERVATIONS

Soils were observed for any obvious evidence of contamination. No visual or olfactory evidence of contamination was noted in the soil sample from boring P21-B1.

6 CONCLUSIONS

Based on results of the EM/GPR survey, soil assessment and field observations, Kleinfelder has reached the following conclusions:

- The GPR and EM investigation did not identify unknown features.
- The site does not appear to be listed in any current or former regulatory databases.
- No soil impact was detected in the boring advanced along the northern property boundary above the NCDEQ Action Limits for TPH GRO and DRO.
- Groundwater was not encountered in the soil boring at a depth of 10 feet bgs.

7 RECOMMENDATIONS

Based on results of this Preliminary Site Assessment, Kleinfelder recommends no additional sampling or special handling of soils be performed within the Project Study Area on Parcel 21 in Lexington, Davidson County, North Carolina.

8 LIMITATIONS

Kleinfelder's work will be performed in a manner consistent with that level of care and skill ordinarily exercised by other members of its profession practicing in the same locality, under similar conditions and at the date the services are provided. Kleinfelder's conclusions, opinions and recommendations will be based on a limited number of observations and data. It is possible that conditions could vary between or beyond the data evaluated. Kleinfelder makes no guarantee or warranty, express or implied, regarding the services, communication (oral or written), report, opinion, or instrument of service provided.

Kleinfelder offers various levels of investigative and engineering services to suit the varying needs of different clients. It should be recognized that definition and evaluation of geologic and environmental conditions are a difficult and inexact science. Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present due to the limitations of data from field studies. Although risk can never be eliminated, more detailed and extensive studies yield more information, which may help understand and manage the level of risk. Since detailed study and analysis involves greater expense, Kleinfelder's clients participate in determining levels of service that provide adequate information for their purposes at acceptable levels of risk. More extensive studies, including subsurface studies or field tests, should be performed to reduce uncertainties. Acceptance of this report will indicate that NCDOT has reviewed the document and determined that it does not need or want a greater level of service than provided.

During the course of the performance of Kleinfelder's services, hazardous materials may have been discovered. Kleinfelder assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury that results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials. Nothing contained in this report should be construed or interpreted as requiring Kleinfelder to assume the status of an owner, operator, or generator, or person who arranges for disposal, transport, storage or treatment of hazardous materials within the meaning of any governmental statute, regulation or order. NCDOT is solely responsible for directing notification of all governmental agencies, and the public at large, of the existence, release, treatment or disposal of any hazardous materials observed at the project site, either before or during performance of

Kleinfelder's services. NCDOT is responsible for directing all arrangements to lawfully store, treat, recycle, dispose, or otherwise handle hazardous materials, including cuttings and samples resulting from Kleinfelder's services.

TABLES

Table 1: Soil Sample Screening Results

Date	Sample ID	Depth (ft)	PID Reading	Notes
	U5757-P21-B1	1	0.3	
		2	0.6	
		3	0.6	
		4	0.6	
8/6/2019		5	0.8	
0/0/2019		6	1.1	
		7	1.3	UVF Analysis
		8	1.1	
		9	0.8	
		10	0.4	_

Notes:

¹⁾ PID = Photoionization Detector

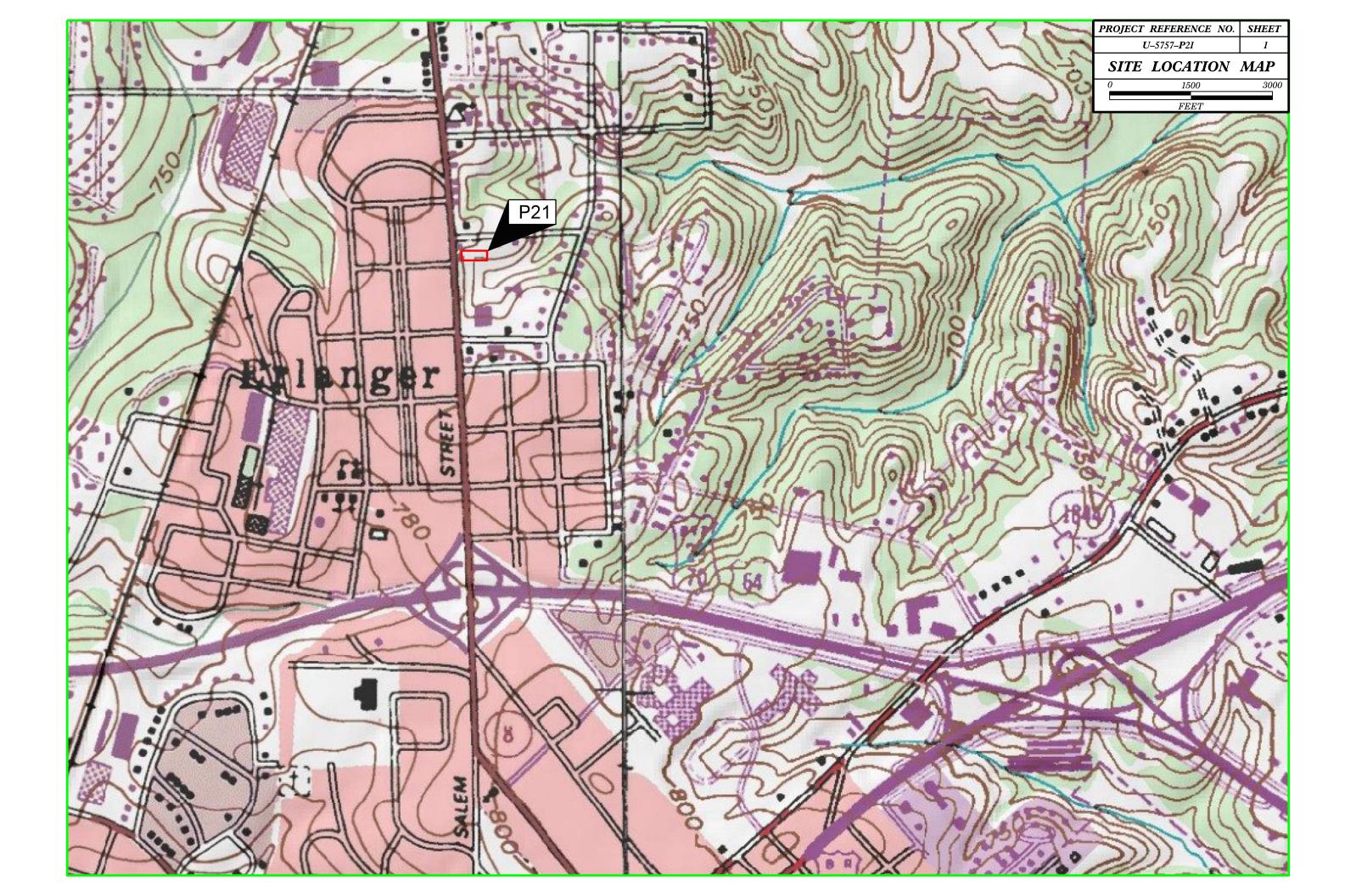
²⁾ PID readings in parts per million (ppm)

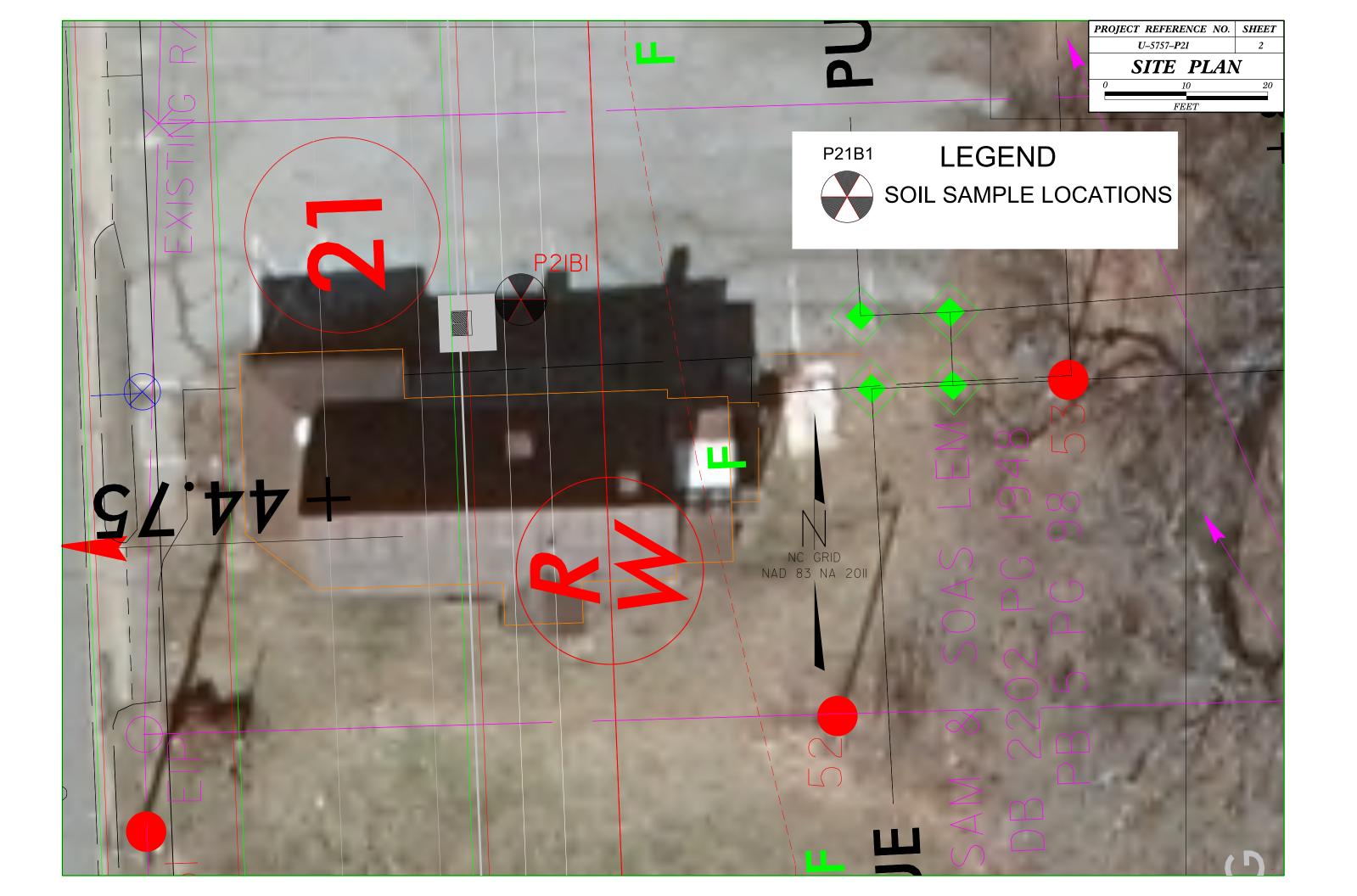
TABLE 2: Soil Sample Analytical Summary

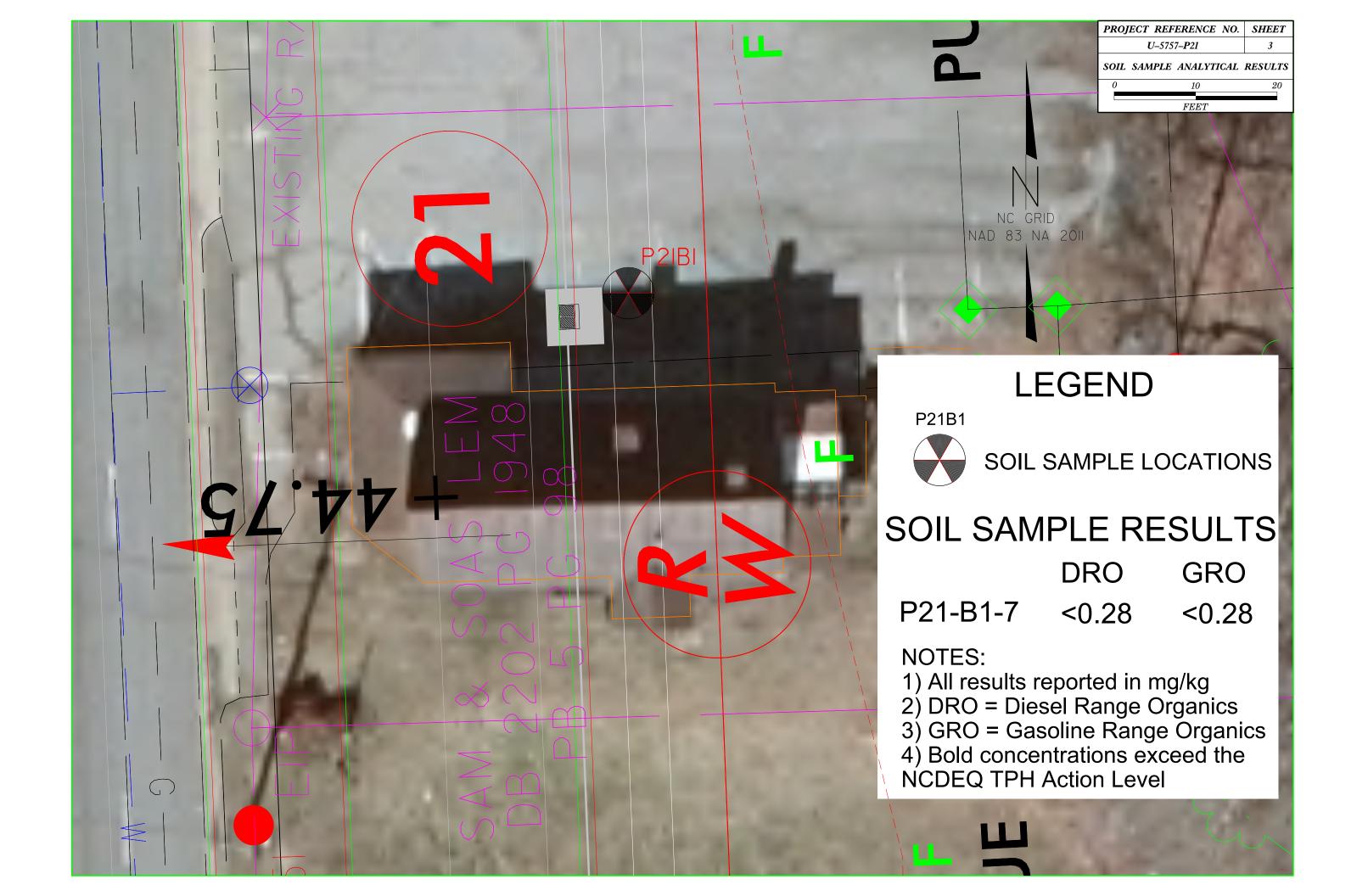
Parameter	Analytical Results	Comparison Criteria		
	Soil Sample Results			
Sample ID	P21-B1-7			
PID Reading (ppm)	1.3	State Action Limit	Protection of Groundwater	Residential Health
Collection Depth (ft bgs)	7			
Collection Date	8/6/19			
UVF Method				
Diesel Range Organics	<0.28	100		
Gasoline Range Organics	<0.28	50		

Notes:

Results displayed in milligram per kilogram (mg/kg)


ft bgs = Feet below ground surface


Bold = Above Laboratory Detection Limit


UVF = Ultraviolet Flouresence

FIGURES

APPENDIX A SITE PHOTOGRAPHS

View facing south from Parcel 21 along NC Highway 8 (Winston Road).

View facing southeasterly toward the vacant building on Parcel 21.

Original in Color

PROJECT NO:20201105			
	mber 2019		
Y:	ARS		
CHECKED BY:			
E:			
to Pages			
	Septe Y: BY: E:		

SITE PHOTOGRAPHS

Preliminary Site Assessment Report U-5757-P21 Lexington, Davidson County, North Carolina

FIGURE

A-1

View facing southwesterly toward the vacant building on Parcel 21.

View facing westerly toward NC Highway 8 (Winston Road).

Original in Color

PROJECT NO:20201105.001A
DRAWN: September 2019
DRAWN BY: ARS
CHECKED BY: MB
FILE NAME:
Photo Pages

SITE PHOTOGRAPHS

Preliminary Site Assessment Report U-5757-P21 Lexington, Davidson County, North Carolina

FIGURE

A-2

APPENDIX B GEOPHYSICAL SURVEY REPORT

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2019-211)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 21 NCDOT PROJECT U-5757 (54035.1.1)

1215 WINSTON ROAD, LEXINGTON, NC

August 15, 2019

Report prepared for: Michael Burns, P.G.

Kleinfelder, Inc.

3500 Gateway Center Boulevard, Suite 200

Morrisville, NC 27560

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by: _

Douglas A. Canavello, P.G.

NC License #1066

GEOPHYSICAL INVESTIGATION REPORT

Parcel 21 - 1215 Winston Road Lexington, Davidson County, North Carolina

Table of Contents

Executive Summary	1
Introduction	
Field Methodology	
Discussion of Results	
Discussion of EM Results	
Discussion of GPR Results	
Summary & Conclusions	
Limitations	

Figures

- Figure 1 Parcel 21 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 21 EM61 Results Contour Map
- Figure 3 Parcel 21 GPR Transect Locations and Images
- Figure 4 Overlay of Metal Detection Results onto the NCDOT Engineering Plans

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	Dual Frequency
EM	Electromagnetic
GPR	Ground Penetrating Radar
GPS	_
NCDOT	North Carolina Department of Transportation
ROW	
UST	Underground Storage Tank

EXECUTIVE SUMMARY

Project Description: Pyramid Environmental conducted a geophysical investigation for Kleinfelder, Inc. at Parcel 21 located at 1215 Winston Road in Lexington, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project U-5757). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from July 15-16, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of five EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. EM and GPR data showed evidence of a buried utility at the site. Collectively, the geophysical data <u>did not record any evidence of</u> unknown metallic USTs at Parcel 21.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Kleinfelder, Inc. at Parcel 21 located at 1215 Winston Road in Lexington, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project U-5757). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from July 15-16, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included a vacant commercial building surrounded by asphalt and grass surfaces. An aerial photograph showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8-foot intervals along north-south trending or east-west trending, generally parallel survey lines, spaced five feet apart. The data were downloaded to a

computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on July 16, 2019, using a Geophysical Survey Systems, Inc. (GSSI) UtilityScan DF unit equipped with a dual frequency 300/800 MHz antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the DF unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the DF unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tanks on NCDOT Projects			
High Confidence	Intermediate Confidence	Low Confidence	No Confidence
Known UST	Probable UST	Possible UST	Anomaly noted but not
Active tank - spatial	Sufficient geophysical data from both	Sufficient geophysical data from	characteristic of a UST. Should be
location, orientation, and approximate	magnetic and radar surveys that is characteristic of a tank. Interpretation may	either magnetic or radar surveys that is characteristic of a tank.	noted in the text and may be called out in the figures at the
depth determined by	be supported by physical evidence such as	Additional data is not sufficient	geophysicist's discretion.
geophysics.	fill/vent pipe, metal cover plate,	enough to confirm or deny the	
50 HERE	asphalt/concrete patch, etc.	presence of a UST.	

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The following table presents the list of EM anomalies and the cause of the metallic response, if known:

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Water Meter	
2	Metal Door	
3	Utility	✓
4	Building/Debris	✓
5	Sign	

The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface including a water meter, a metal door, the building, and a sign. EM Anomaly 3 was suspected to be the result of a buried utility and was investigated further with GPR. EM Anomaly 4 was associated with interference from the building and debris and was investigated further with GPR to confirm that no larger structures were obscured by the interference.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as the transect images. A total of two formal GPR transects were performed at the site. GPR Transect 1 was performed across an area associated with a suspected utility (EM Anomaly 3). This transect recorded evidence of a discrete hyperbolic reflector consistent with a buried utility.

GPR Transect 2 was performed across an area associated with interference from the building and debris (EM Anomaly 4). No evidence of any significant structures was observed, verifying that the EM anomaly was the result of interference from the building.

Collectively, the geophysical data <u>did not record any evidence of unknown metallic USTs</u> <u>at Parcel 21</u>. **Figure 4** provides an overlay of the metal detection results on the NCDOT MicroStation engineering plans for reference.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 21 in Lexington, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface.
- EM and GPR data showed evidence of a buried utility at the site.
- Collectively, the geophysical data <u>did not record any evidence of unknown metallic</u> USTs at Parcel 21.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Kleinfelder in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

View of Survey Area (Facing Approximately South)

View of Survey Area (Facing Approximately East)

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology

PARCEL 21 LEXINGTON, NORTH CAROLINA NCDOT PROJECT U-5757 TITLE

PARCEL 21 - GEOPHYSICAL SURVEY BOUNDARIES AND SITE PHOTOGRAPHS

DATE	7/19/2019	CLIENT	KLEINFELDER
PYRAMID PROJECT #:	2019-211		FIGURE 1

EM61 METAL DETECTION RESULTS

NO EVIDENCE OF METALLIC USTs WAS OBSERVED.

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on July 15, 2019, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI UtilityScan DF instrument with a dual frequency 300/800 MHz antenna on July 16, 2019.

EM61 Metal Detection Response (millivolts)

1000 750 500 400 300 200 150 100 75 60 50 40 30 -100 -200 -400

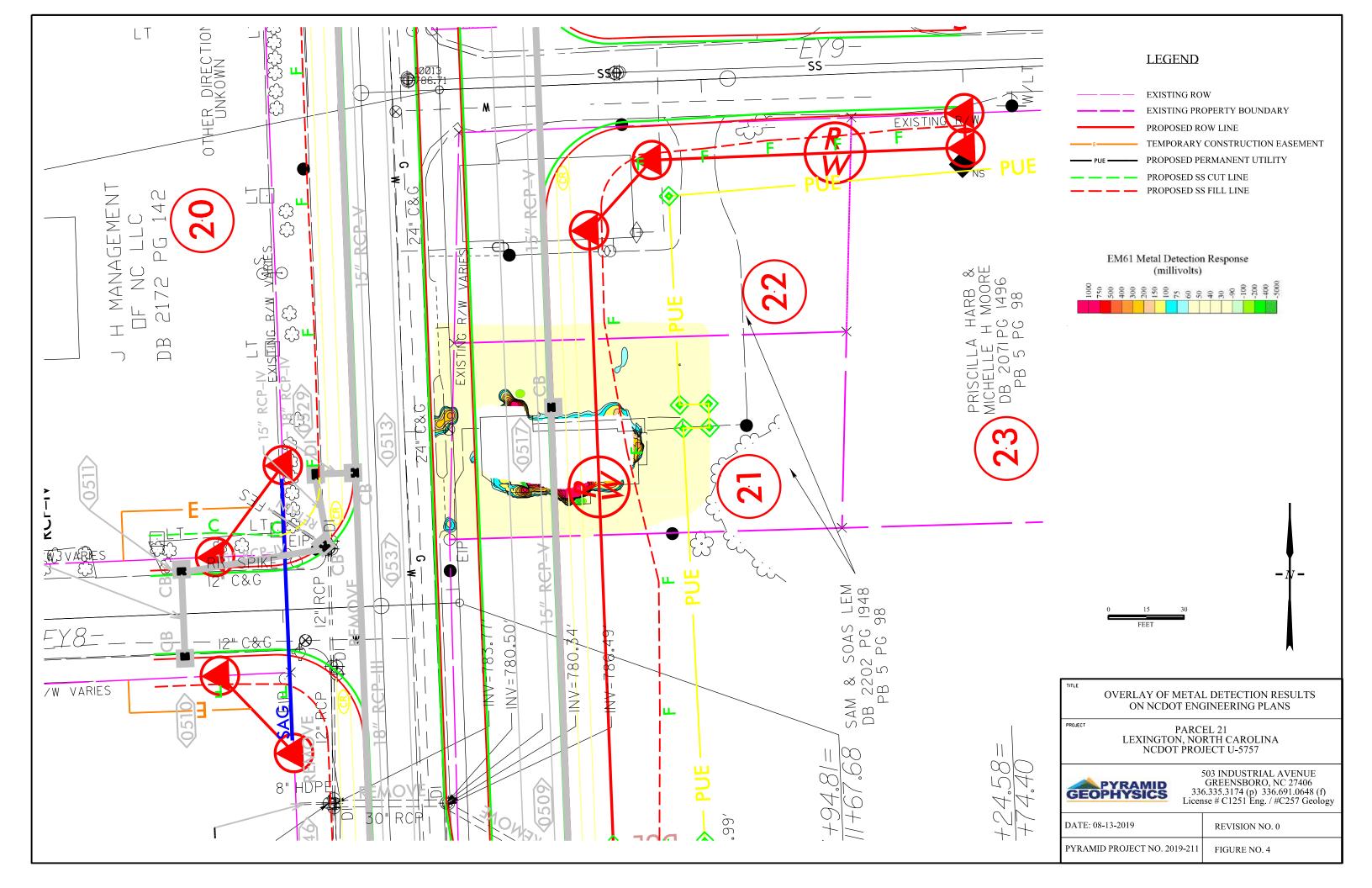
> N N

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

PARCEL 21 LEXINGTON, NORTH CAROLINA NCDOT PROJECT U-5757 TITLE

PARCEL 21 - EM61 METAL DETECTION CONTOUR MAP

DATE	7/19/2019	CLIENT	KLEINFELDER
YRAMID PROJECT #:	2019-211		FIGURE 2


LOCATIONS OF GPR TRANSECTS 763800 763775 SUSPECTED UTILITY NC STATE PLANE, NORTHING (NAD83, FEET) 763750 GPR TRANSECT 1 (T1) 763725 NO SIGNIFICANT STRUCTURES OBSERVED 763700 GPR TRANSECT 2 (T2) 763675 763650 1628375 1628400 1628425 1628450 1628475 1628500 1628525 1628550 1628575 NC STATE PLANE, EASTING (NAD83, FEET) PROJECT DAT TITLE

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology

PARCEL 21 LEXINGTON, NORTH CAROLINA NCDOT PROJECT U-5757

PARCEL 21 - GPR TRANSECT LOCATIONS AND IMAGES

Ι	DATE	7/19/2019	CLIENT	KLEINFELDER			
	PYRAMID PROJECT #:	2019-211		FIGURE 3			

APPENDIX C BORING LOGS

DATE:

9/18/2019

PAGE:

1 of 1

PROJECT NUMBER: 20201105.001A gINT FILE: KIf_gint_master_2020 gINT TEMPLATE:

OFFICE FILTER: RALEIGH

APPENDIX D ANALYTICAL REPORT AND GRAPHS

Hydrocarbon Analysis Results

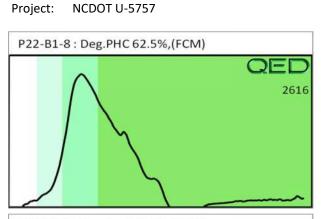
Client:KLEINFELDERSamples takenTuesday, August 6, 2019Address:Samples extractedTuesday, August 6, 2019

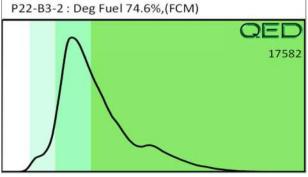
Samples analysed Tuesday, August 6, 2019

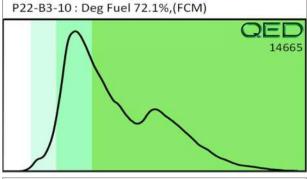
Contact: ABIGAIL SHURTLEFF CAROLINE STEVENS

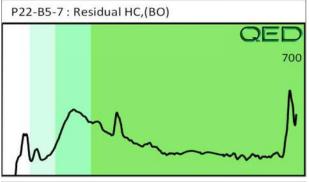
Project: NCDOT U-5757

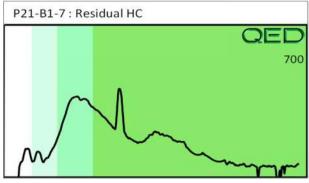
												U00904	
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	% Ratios		5	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
s	P22-B1-8	14.0	<0.35	<0.35	0.85	0.85	0.38	<0.11	<0.014	50	39.3	10.6	Deg.PHC 62.5%,(FCM)
s	P22-B2-4	11.0	<0.27	<0.27	<0.27	<0.27	<0.05	<0.09	<0.011	0	100	0	Residual HC
s	P22-B3-2	9.8	<0.24	<0.24	4.1	4.1	2.9	0.11	<0.01	0	79.3	20.7	Deg Fuel 74.6%,(FCM)
s	P22-B3-5	9.7	<0.24	<0.24	5	5	2.4	0.26	<0.01	0	71.2	28.8	Road Tar 76.9%,(FCM),(BO)
s	P22-B3-10	13.7	<0.34	<0.34	5.7	5.7	3.4	<0.11	<0.014	0	70.6	29.4	Deg Fuel 72.1%,(FCM)
s	P22-B4-6	10.3	<0.26	<0.26	<0.26	<0.26	<0.05	<0.08	<0.01	0	79.7	20.3	,(FCM)
s	P22-B5-7	14.4	<0.36	<0.36	<0.36	< 0.36	<0.07	<0.12	<0.014	0	85.3	14.7	Residual HC,(BO)
S	P22-B6-4	10.5	<0.26	<0.26	<0.26	<0.26	<0.05	<0.08	<0.011	0	100	0	,(FCM),(BO)
s	P21-B1-7	11.2	<0.28	<0.28	<0.28	<0.28	<0.06	<0.09	<0.011	0	56.2	43.8	Residual HC
	Initial (Calibrator	nC check	OK					Final FO		Check	OK	102.4 %
	illitial C	anbratur	ac check	OIC					i ii lai i (SIVI QC	CHECK	OIL	102.4 /0

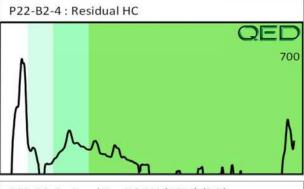

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

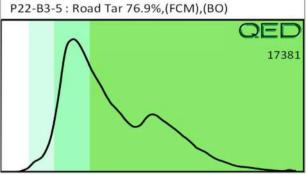

Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected

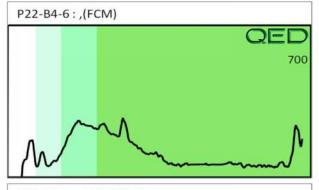

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

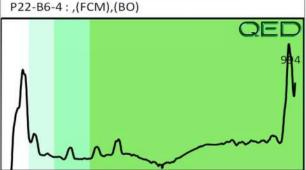

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only.


Data generated by HC-1 Analyser









September 22, 2023 Kleinfelder File No. RAL23R158568

Mr. Matthew J Alexander, P.E. North Carolina Department of Transportation State Geotechnical Engineer 1589 Mail Service Center Raleigh, North Carolina 27699-1589

SUBJECT: UST CLOSURE REPORT

WBS ELEMENT NO. 54035.1.1, TIP NO. U-5757

NC 8 (WINSTON RD) FROM 9TH STREET TO SR 1408 (BIESECKER RD) IN

LEXINGTON

PARCEL 22 PSH 5, SAM & SOAS LEM

1223 OLD US 52 (N 8), LEXINGTON, NC 27295 DAVIDSON COUNTY, NORTH CAROLINA KLEINFELDER PROJECT NO. 24001596.001A

Dear Mr. Alexander:

Please find enclosed Kleinfelder's report summarizing the underground storage tank (UST) removal activities and initial abatement actions performed at the referenced site. This report summarizes Kleinfelder's field activities, observations, and includes the laboratory reports.

Should questions arise or additional information be required, please contact the undersigned.

Sincerely,

KLEINFELDER, INC.

Adam Mahr Staff Professional

Michael J. Burns, LG

Environmental Program Manager

AM/MJB: das Enclosure

UST CLOSURE REPORT 1223 OLD US 53 (N 8) LEXINGTON, DAVIDSON COUNTY, NORTH CAROLINA 27295

TIP NUMBER U-5757 WBS ELEMENT NUMBER 54035.1.1

NC 8 (WINSTON RD) FROM 9TH STREET TO SR 1408 (BIESECKER RD) IN LEXINGTON PARCEL 22 PSH 5/PARCEL NUMBER 1101000000058

KLEINFELDER PROJECT NUMBER 24001596.001A

SEPTEMBER 22, 2023

Copyright 2023 Kleinfelder All Rights Reserved

ONLY THE CLIENT OR ITS DESIGNATED REPRESENTATIVES MAY USE THIS DOCUMENT AND ONLY FOR THE SPECIFIC PROJECT FOR WHICH THIS REPORT WAS PREPARED.

A Report Prepared for:

North Carolina Department of Transportation Geotechnical Unit GeoEnvironmental Section 1020 Birch Ridge Drive Raleigh, North Carolina 27610

UST CLOSURE REPORT
1223 OLD US 52 (N 8)
LEXINGTON, DAVIDSON COUNTY, NORTH CAROLINA 27295
TIP NUMBER U-5757
WBS ELEMENT NUMBER 54035.1.1
NC 8 (WINSTON RD) FROM 9TH STREET TO SR 1408 (BIESECKER RD) IN LEXINGTON PARCEL 22 PSH 5/PARCEL NUMBER 1101000000058

Prepared by:

Adam Mahr Staff Professional

Reviewed by:

Michael J. Burns, LG Program Manager

KLEINFELDER, INC.

3200 Gateway Centre Blvd. | Suite 100 Raleigh, North Carolina 27560

September 22, 2023

Kleinfelder Project No. 24001596.001A

UST CLOSURE AND INITIAL ABATEMENT ACTION REPORT

1. SITE IDENTIFICATION

Facility I.D.: Not Assigned

UST Incident Number (if known): Not Assigned

Site Risk: Not Determined

Site Name: Not Assigned

Site Street Address: 1223 Old US 52 (N 8)

City/Town:LexingtonZip Code:27295County:Davidson

Parcel ID 110100000058

Description of Geographical

Data Point (e.g., diesel fill port): Center of UST Basin

Location Method

(GPS, topographical map, other): GPS

Latitude (decimal degrees): 35.842183

Longitude (decimal degrees): -80.253675

Date of Report: September 22, 2023

2. Information about Contacts Associated with the UST System

UST Owner: Sam and Soas Lem

Address: 1306 Winston-Salem Road

Lexington, North Carolina 27295

Phone: Unknown

UST Operator: Sam and Soas Lem

Property Owner: Sam and Soas Lem

Address: 1306 Winston-Salem Road

Lexington, North Carolina 27295

Property Occupant: No current occupant

Consultant: Kleinfelder, Inc.

Address: 3200 Gateway Centre Blvd. | Suite 100

Morrisville, NC 27560

Phone: 919.755.5011

Contact: Michael J. Burns, LG

Analytical Laboratory: Waypoint Analytical **Address:** 449 Springbrook Road

Charlotte, NC 28217

Phone: 704.529.6364

State Certification No. 402

3. Information about Release

Date Discovered: August 22, 2023

Estimated Quantity of Release: Unknown

Cause of Release: Metal corrosion of UST

Source of Release

(Dispenser/Piping/UST): UST

Sizes and Contents of Tanks: One (1) 1,000-gallon steel UST

One (1) 500-gallon steel UST One (1) 200-gallon steel UST

Release Information: The UST system at the referenced site included one (1) 1,000-gallon commercial UST, one (1) 500-gallon commercial UST, and one (1) 200-gallon commercial UST. The USTs and associated piping were removed on August 22, 2023. Laboratory analysis of soil samples collected from the UST basin during closure indicated that a release of petroleum had occurred. Following limited over-excavation activities, no impacted soils above the TPH action levels, the Soil-to-Water MSCCs or Residential MSCCs.

4. CERTIFICATION

SEAL AND SIGNATURE OF CERTIFYING LICENSED GEOLOGIST

I, Michael J. Burns, a Licensed Geologist for Kleinfelder, Inc., do certify that the information contained in this report is correct and accurate to the best of my knowledge.

DocuSigned by:

Michael Burns

____7E53DC44AC794CA...

09/25/2023

Michael J Burns, LG NC License No. 1645

Kleinfelder, Inc. is permitted to practice geology | engineering in North Carolina. The certification number of the corporation is C521 | F-1312.

TABLE OF CONTENTS

1
2
3
4
6
7
9
•

TABLES

- 1 Site History UST System
- 2 Site History UST Owner/Operator and Other Responsible Party Information
- 3 Soil Sample Analytical Summary

FIGURES

- 1 Site Location Map
- 2 Site Plan
- 3 Soil Sample Locations

APPENDICES

- A UST-2B Site Investigation Report for Permanent Closure or Change-in-Service of Unregistered UST UST-3 Permanent Closure or Change-in-service
- **B** Liquid Disposal Manifest
- C UST Disposal Certificates
- D Soil Disposal Material Manifests and Weight Tickets
- **E** Photographs
- F Laboratory Reports and Chain-of-Custody Forms

A EXECUTIVE SUMMARY

The subject site is located at 1223 Old US 52 in Lexington, Davidson County, North Carolina (Figure 1). The site is identified as Davidson County Parcel Number 1101000000058. The site was vacant at the time of removal of the USTs. Prior assessments indicated that the site operated as a gasoline service station in the 1960s.

During a Preliminary Site Assessment (PSA) performed at the site in July 2019 by Kleinfelder, two (2) orphan USTs were identified on Parcel 22 adjacent to the southwest corner of a single-story structure. No petroleum-impacted soil was identified in soil borings advanced on Parcel 22 at the time.

On August 22, 2023, Kleinfelder provided oversight of the removal of one (1) 1,000-gallon commercial UST (UST #1), one (1) 500-gallon commercial UST (UST #2), and one (1) 200-gallon commercial UST (UST #3). The USTs contained a water/petroleum mixture that was removed prior to removal of the USTs. Upon removal of the USTs, the tanks were observed to be in relatively poor condition.

After the removal of the USTs, Kleinfelder provided oversight of the over-excavation of petroleum impacted soil around UST #3. A total of 11.6 tons of soil was removed from the site. Confirmation sampling indicated no contaminant concentrations in excess of the Soil-to-Water Maximum Contaminant Concentrations (MSCCs) or Residential Cleanup MSCCs.

B SITE HISTORY AND CHARACTERIZATION

The subject site is located at 1223 Old US 52 (N 8) in Lexington, Davidson County, North Carolina (Figure 1). The site is identified as Davidson County Parcel Identification Number 1101000000058. The site was vacant at the time of removal of the USTs. Prior assessments indicated that the site operated as a gasoline service station in the 1960s.

C SITE CHECK

There was no evidence of a release from the UST prior to closure, therefore site check assessment procedures were not performed.

D UST CLOSURE PROCEDURES

Kleinfelder was contacted to remove two (2) USTs at a commercial property located at 1223 Old US 52 (N 8) in Lexington, Davidson County, North Carolina. A third UST was identified at the time of the removal of the USTs. NCDOT provided authorization to remove the third UST.

The following is a chronological description of the closure activities that were performed on August 22, 2023. Initial abatement measures are described in Section D.

August 22, 2023

- Kleinfelder personnel met A&D Environmental, Inc. (A&D) of Archdale, North Carolina at the site to begin UST closure activities.
- The location of the USTs were marked prior to removal activities. A&D began breaking up the
 concrete pad covering the USTs. Following the removal of the concrete, A&D began excavating
 the soil around the location of UST #1 to better uncover the fill port.
- A&D utilized a vacuum truck to remove a small quantity of residual product and water from UST
 #1. The liquid was manifested and taken offsite for disposal at A&D's facility in Archdale, North
 Carolina. A copy of the liquid material manifest is included in Appendix B.
- A&D began excavating the soil around UST #1. The top of UST #1 was located approximately three
 (3) feet below the ground surface (bgs) and had visible signs of corrosion. A hole was intentionally punctured in the top of UST #1 for cleanout access.
- A&D excavated along the sides of UST #1 to expose the top of the tank. The tank was loosened and removed from the ground.
- No evidence of oil staining was observed beneath the location of the tank after removal.
- UST #1 was a single-wall steel tank that had a capacity of 1,000-gallons. The UST information is included on Table 1. A visual observation of the tank identified areas of corrosion and pitting. UST #1 was loaded onto a truck for proper off-site disposal by A&D. Copies of the tank manifests are included in Appendix C. Photographs of the UST removal are included in Appendix E.
- The same procedure as described for UST #1 was performed to remove UST#2.

- No evidence of oil staining was observed beneath the location of UST #2 after removal.
- UST #2 was a single-wall steel tank that had a capacity of approximately 500-gallons. The UST information is included on Table 1. A visual observation of the tank identified areas of corrosion and pitting. The UST was loaded onto a truck for proper off-site disposal by A&D.
- Following the removal of UST #1 and UST #2, Kleinfelder collected soil samples from the bottom of the tank basin underneath the former location of the USTs.
- The soil in the sampling areas were screened with a Photoionization Detector (PID) to minimize the amount of soil that needed to be hauled to a disposal facility.
- PID readings did not indicate the presence of impacted soils from underneath UST #1 and UST #2.
- Kleinfelder collected confirmatory total petroleum hydrocarbon (TPH) gasoline range organic
 (GRO) bottom samples to be analyzed by Waypoint Analytical.
- Following the removal of UST #1 and UST #2, a third UST was identified adjoining to the excavated tank basin.
- A&D excavated along the sides of UST #3 to expose the tank. UST #3 was visibly in poor condition and corroded into multiple pieces. The pieces of UST #3 were removed from the ground.
- UST #3 was a single-wall steel tank that had a capacity of approximately 200-gallons. The UST information is included in Table 1.
- Following the removal of UST #3, Kleinfelder collected a soil sample from underneath UST #3 to be screened with a PID. The PID reading indicated the likely presence of impacted soils from underneath UST #3.

E INITIAL RESPONSE AND ABATEMENT

- Soil screening with a PID was performed at the locations of UST #1, UST #2, and UST #3. Only soil around UST #3 appeared to be impacted based on PID readings. Therefore, initial abatement activities were only performed at UST #3.
- After screening with a PID and results indicated impacted soil, A&D excavated additional soil
 vertically and horizontally around the location of UST #3 until PID readings indicated the unlikely
 presence of impacted soils.
- Kleinfelder collected soil samples from the bottom of the tank basin and the north, east, and south sidewalls for risk-based lab testing. The soil was placed into laboratory provided containers, labeled, and maintained on ice until pickup by Waypoint Analytical.
- The samples were analyzed for volatile organic compounds (VOCs) by EPA method 8260, semi-volatile organic compounds (SVOCs) by EPA method 8270, extractable petroleum hydrocarbons (EPH), and volatile petroleum hydrocarbons (VPH) using the Massachusetts Department of Environmental Protection (MADEP) methods. The sample locations are shown on Figure 3. Analytical results are provided in Table 3.
- A total of 11.6 tons of soil was excavated, loaded, and transported offsite for disposal at Great
 Oak Landfill in Randleman, North Carolina. A copy of the transportation manifests is included in
 Appendix D.
- Following soil sample collection, the excavation was backfilled with clean soil, compacted, and covered with gravel.

F SAMPLE RESULTS

The laboratory analysis of the soil samples surrounding UST #3 had no concentrations that exceeded Soil-to-Water or Residential MSCCs. Petroleum-impacted soil was not identified at concentrations that exceeded the total petroleum hydrocarbon (TPH) gasoline range organic (GRO) actions level from underneath UST #1 and UST #2.

The sample locations are shown on Figure 3 and the laboratory results are summarized in Table 3. The laboratory report and associated chain-of-custody document are included in Appendix F.

G CONCLUSIONS

Based Kleinfelder's field observations, and the results of the laboratory analyses, Kleinfelder presents the following conclusions:

- Three (3) USTs were closed by removal on August 22, 2023. The USTs were observed to be in poor condition with obvious signs of corrosion and pitting.
- A total of 324 gallons of liquid was collectively removed from the USTs prior to excavation.
- A total of 11.6 tons of soil was excavated, manifested, and hauled offsite for disposal.
- The excavation was backfilled with clean soil, compacted, and covered with gravel.
- Confirmation laboratory analysis of soil samples indicated no residual soil contamination above the Soil-to-Water or Residential Cleanup MSCCs.

H LIMITATIONS

Kleinfelder's work will be performed in a manner consistent with that level of care and skill ordinarily exercised by other members of its profession practicing in the same locality, under similar conditions and at the date the services are provided. Kleinfelder's conclusions, opinions and recommendations will be based on a limited number of observations and data. It is possible that conditions could vary between or beyond the data evaluated. Kleinfelder makes no guarantee or warranty, express or implied, regarding the services, communication (oral or written), report, opinion, or instrument of service provided.

Kleinfelder offers various levels of investigative and engineering services to suit the varying needs of different clients. It should be recognized that definition and evaluation of geologic and environmental conditions are a difficult and inexact science. Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present due to the limitations of data from field studies. Although risk can never be eliminated, more-detailed and extensive studies yield more information, which may help understand and manage the level of risk. Since detailed study and analysis involves greater expense, Kleinfelder's clients participate in determining levels of service that provide adequate information for their purposes at acceptable levels of risk. More extensive studies, including subsurface studies or field tests, should be performed to reduce uncertainties. Acceptance of this report will indicate that NCDOT has reviewed the document and determined that it does not need or want a greater level of service than provided.

During the course of the performance of Kleinfelder's services, hazardous materials may have been discovered. Kleinfelder assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury that results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials. Nothing contained in this report should be construed or interpreted as requiring Kleinfelder to assume the status of an owner, operator, or generator, or person who arranges for disposal, transport, storage or treatment of hazardous materials within the meaning of any governmental statute, regulation or order. NCDOT is solely responsible for directing notification of all governmental agencies, and the public at large, of the existence, release,

treatment or disposal of any hazardous materials observed at the project site, either before or during performance of Kleinfelder's services. NCDOT is responsible for directing all arrangements to lawfully store, treat, recycle, dispose, or otherwise handle hazardous materials, including cuttings and samples resulting from Kleinfelder's services.

TABLES

FIGURES

APPENDIX A UST-2B SITE INVESTIGATION REPORT FOR PERMANENT CLOSURE OR CHANGE-IN-SERVICE OF UNREGISTERED UST

UST-3 PERMANENT CLOSURE OR CHANGE-IN-SERVICE

APPENDIX B LIQUID DISPOSAL MANIFEST

APPENDIX C UST DISPOSAL CERTIFICATES

APPENDIX D SOIL DISPOSAL MATERIAL MANIFESTS AND WEIGHT TICKETS

APPENDIX E PHOTOGRAPHS

APPENDIX F LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORMS

September 19, 2019 Kleinfelder File No. RAL19R101352

Mr. John L. Pilipchuk, LG., PE North Carolina Department of Transportation State Geotechnical Engineer Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699-1589

SUBJECT: Preliminary Site Assessment Report

Parcel 22, Sam & Soas Lem

WBS Element No. 54035.1.1, TIP No. U-5757

NC 8 (Winston Road) from 9th Street to SR 1408 (Biesecker Rd) in

Lexington. Widen to multi lanes Kleinfelder Project No. 20201105.001A

Dear Mr. Pilipchuk,

Kleinfelder is pleased to provide its report detailing the activities conducted as part of the preliminary site assessment for the subject project.

Kleinfelder appreciates the opportunity to be of service to you. Should you have questions or require additional information, please do not hesitate to contact the undersigned.

Sincerely,

KLEINFELDER, INC.

Environmental Staff Professional

Michael J Burns, PG

Environmental Program Manager

ARS/MJB:asp

PRELIMINARY SITE ASSESSMENT REPORT PARCEL 22 SAM & SOAS LEM PARCEL 110100000058 1223 OLD US HWY 52 LEXINGTON, DAVIDSON COUNTY, NORTH CAROLINA

NCDOT WBS ELEMENT 54035.1.1 STATE PROJECT U-5757 NC 8 (WINSTON RD) FROM 9^{TH} STREET TO SR 1408 (BIESECKER RD) IN LEXINGTON. WIDEN TO MULTI LANES

KLEINFELDER PROJECT NO. 20201105.001A

SEPTEMBER 19, 2019

Copyright 2019 Kleinfelder All Rights Reserved

ONLY THE CLIENT OR ITS DESIGNATED REPRESENTATIVES MAY USE THIS DOCUMENT AND ONLY FOR THE SPECIFIC PROJECT FOR WHICH THIS REPORT WAS PREPARED.

A Report Prepared for:

Mr. John L. Pilipchuk, LG., PE North Carolina Department of Transportation State Geotechnical Engineer Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699-1589

PRELIMINARY SITE ASSESSMENT REPORT
PARCEL 22 SAM & SOAS LEM
PARCEL 1101000000058
1223 OLD US HWY 52
LEXINGTON, DAVIDSON COUNTY, NORTH CAROLINA

NCDOT WBS ELEMENT 54035.1.1 STATE PROJECT U-5757 NC 8 (WINSTON RD) FROM 9^{TH} STREET TO SR 1408 (BIESECKER RD) IN LEXINGTON. WIDEN TO MULTI LANES

Prepared by:

Abigail R. Shurtleff

Environmental Staff Professional

Reviewed by:

Michael J. Burns, PG

Environmental Program Manager

KLEINFELDER

3200 Gateway Centre Blvd. | Suite 100 Raleigh, North Carolina 27560 P | 919.755.5011

September 19, 2019

Kleinfelder Project No. 20201105.001A

PRELIMINARY SITE ASSESSMENT REPORT

Site Name and Location:

Parcel 22

1223 Old US Hwy 52

Lexington, Davidson County, North Carolina

Latitude and Longitude:

35.842249°N, -80.253722°W

County Parcel Number

1101000000058

Facility ID Number:

N/A

Leaking UST Incident:

N/A

State Project No.:

U-5757

NCDOT Project No.:

NCDOT WBS Element 54035,1,1

Description:

NC 8 (Winston Rd) from 9th Street to SR 1408

(Biesecker Rd) in Lexington. Widen to multi

lanes

Date of Report:

September 19, 2019

Consultant:

Kleinfelder, Inc.

3200 Gateway Center Boulevard | Suite 100

Morrisville, North Carolina 27560 Corporate Geology License No. C-521

Corporate Licensure for Engineering F-1312

SEAL AND SIGNATURE OF CERTIFYING LICENSED GEOLOGIST

I, Michael J Burns, a Licensed Geologist for Kleinfelder, Inc., do certify that the information contained in this report is correct and accurate to the best of my knowledge.

—7E53DC44AC794CA...

Michael J Burns, LG NC License No. 1645

i

10/7/2019

TABLE OF CONTENTS

1	INTR	ODUCTION	1				
	1.1 1.2	SITE DESCRIPTIONSCOPE OF WORK					
2	HIST	ORY	3				
	2.1 2.2 2.3	PARCEL USAGEFACILITY ID NUMBERSGROUNDWATER INCIDENT NUMBERS	3				
3	OBS	ERVATIONS	4				
	3.1 3.2 3.3	GROUNDWATER MONITORING WELLS	4				
4	METHODS						
	4.1 4.2 4.3 4.4 4.5	PROPERTY OWNER CONTACTS HEALTH AND SAFETY GEOPHYSICAL INVESTIGATION SOIL ASSESSMENT SOIL ANALYSIS	5 5 6				
5	RES	JLTS	8				
	5.1 5.2 5.3 5.4	GEOPHYSICAL INVESTIGATIONSOIL SAMPLING DATASAMPLE OBSERVATIONSQUANTITY CALCULATIONS	8				
6	CON	CLUSIONS	9				
7	RECOMMENDATIONS1						
8	LIMITATIONS1						

TABLES

- 1 Soil Sample Screening Results
- 2 Soil Sample Analytical Results

FIGURES

- 1 Site Location Map
- 2 Site Map
- 3 Soil Sample Analytical Results

APPENDICES

- A Site Photographs
- B Geophysical Survey Report
- C Boring Logs
- D Analytical Reports and Graphs

PRELIMINARY SITE ASSESSMENT PARCEL 22 SAM & SOAS LEM PARCEL 110100000058 1223 OLD US HWY 52 LEXINGTON, DAVIDSON COUNTY, NORTH CAROLINA

NCDOT WBS ELEMENT 54035.1.1 STATE PROJECT U-5757 NC 8 (WINSTON RD) FROM 9TH STREET TO SR 1408 (BIESECKER RD) IN LEXINGTON. WIDEN TO MULTI LANES

1 INTRODUCTION

Kleinfelder, Inc. (Kleinfelder) has prepared this Preliminary Site Assessment (PSA) report to document assessment activities performed on a parcel of land identified by the Davidson County, NC Tax Assessor's Office as Parcel Number 1101000000058, and by NCDOT as Parcel 22 (the assessment area is hereafter referred to as the "Project Study Area"). The Project Study Area consists of the western portion of Parcel 22. Parcel 22 is currently occupied by a vacant building on the eastern side of Winston Road, southeast of the intersection of Winston Road and Conrad Street in Lexington, Davidson County, North Carolina (Figure 1).

Based on information provided in the Hazardous Materials Survey Report, dated February 28, 2018, prepared by Kleinfelder for SEPI Engineering & Construction, the parcel is currently an abandoned building and asphalt parking area with no registered underground storage tanks (USTs). However, the parcel appears to have operated as a gasoline service station in at least 1966. As such, the purpose of the PSA was to evaluate whether unknown USTs or contaminated soil are present in the Project Study Area that may result in increased project costs and future liability if acquired by the NCDOT.

1.1 SITE DESCRIPTION

Parcel 22 has a listed owner of Sam & Soas Lem. The parcel has a street address of 1223 Old US Hwy 52. The parcel consists of a vacant building with an asphalt parking area and an overgrown vegetated area on the eastern portion of the parcel. The parcel is bounded by Conrad Street to the north, residential property to the east, a vacant building followed by an open field to the south, and Old US Hwy 52 to the west. The parcel is currently the location of a vacant store. Photographs of the Project Study Area are provided in Appendix A.

1.2 SCOPE OF WORK

Kleinfelder conducted this PSA in accordance with the NCDOT's May 24, 2019, Request for Technical and Cost Proposal (RFP) and Kleinfelder's June 18, 2019 Technical and Cost Proposal. The NCDOT granted a formal Notice to Proceed on June 27, 2019.

2 HISTORY

2.1 PARCEL USAGE

The parcel consists of a vacant building, an asphalt parking area, and an overgrown vegetated area. An access road runs north and south between the undeveloped and developed portions of the parcel to Conrad Street.

The February 2018 Hazardous Materials Survey Report identifies the parcel as Parcel 33 located at 1223 Old US Hwy 52 (since changed to Parcel 22). This report indicates no records of USTs for the parcel; however, orphan USTs and the potential for petroleum contaminated soil/groundwater from former use of the parcel as a gasoline filling station are mentioned in the report.

Kleinfelder conducted historical research to determine whether additional environmental listings were identified for Parcel 22, and identified a gasoline filling station, Hartle Astrojet Service Station, which operated on site in 1966. The property appears to have changed operations into a retail carpeting and/or clothing business from the late 1960s to 2018. No records of USTs or UST closure activities were reported for the site.

2.2 FACILITY ID NUMBERS

Kleinfelder reviewed the NCDEQ UST database for Parcel 22. The parcel was not listed in the database at the time of this report.

2.3 GROUNDWATER INCIDENT NUMBERS

No known groundwater incident numbers are associated with Parcel 22 at this time.

3 OBSERVATIONS

3.1 GROUNDWATER MONITORING WELLS

No groundwater monitoring wells were observed on Parcel 22 at the time of site exploration, August 6, 2019.

3.2 ACTIVE USTS

No indication of the active use of USTs at Parcel 22 was observed at the time of site exploration, August 6, 2019. However, the location of two (2) probable USTs were located off the southwest corner of the vacant building on Parcel 22.

3.3 OTHER FEATURES APPARENT BEYOND PROJECT STUDY AREA

The Project Study Area consisted on the western portion of the parcel. There were no features of concern observed in the undeveloped portion of the parcel beyond the Project Study Area.

4 METHODS

4.1 PROPERTY OWNER CONTACTS

As part of Kleinfelder's scope of work, the listed property owner was contacted about the work schedule for the field work and the type of work being performed. The owner did not express any concern or special conditions associated with the work being performed.

4.2 HEALTH AND SAFETY

Prior to commencing the field work, Kleinfelder personnel developed a Site-Specific Health and Safety Plan (HASP) covering activities to be performed. The site-specific HASP was discussed with all Kleinfelder personnel involved with the project and at a daily on-site "tail gate" safety meetings with subcontractors and sub consultants. In addition to the HASP, Kleinfelder utilized its comprehensive Corporate Health and Safety Program, targeted to address those specific and critical tasks that involve Kleinfelder personnel and subcontractors. The Loss Prevention System (LPS™), a behavior-based program, is Kleinfelder's company-wide safety system implemented and embraced by all levels of the company.

4.3 GEOPHYSICAL INVESTIGATION

Pyramid Environmental & Engineering, P.C (Pyramid) conducted a geophysical investigation in the Project Study Area between July 15 and 16, 2019. The undeveloped portion of the site was not included as part of the geophysical study because the historical review and site observations did not suggest that sources of soil and/or groundwater impact may be present within this portion of the property. Pyramid utilized electromagnetic (EM) induction technology and ground penetrating radar (GPR) to locate potential geophysical anomalies and potential USTs within the Project Study Area.

EM and GPR responses indicated the probable presence of two (2) orphan USTs located off the southwestern corner of the vacant building on Parcel 22. The southern probable UST was approximately 12 feet long by 4 feet wide, thus approximately 1,130-gallons in estimated capacity. The northern probable UST was approximately 10 feet long by 4 feet wide, thus approximately 940-gallons in estimated capacity.

A copy of the Pyramid Geophysical Investigation Report, detailing the field methodology and including the locations of the two (2) probable USTs, is included in Appendix B.

4.4 SOIL ASSESSMENT

The scope of work for the soil assessment was to evaluate the presence of soil contamination along the existing right of way and/or easement to evaluate whether known impact is present in this area and maybe migrating off-site. The soil borings were planned to be advanced to maximum depths of 10 feet below the ground surface unless groundwater was encountered. Field screening using a photo ionization detector (PID) was to be conducted at 1-foot intervals beginning at 0 foot to 1 foot. The soil sample with the highest PID reading above background or the sample from the maximum drilled depth would be selected for on-site laboratory analyses.

Prior to the drilling activities, public utilities were marked by NC One Call and private utilities were marked by Pyramid.

Kleinfelder subcontracted Quantex, Inc. (Quantex) to perform the drilling on-site on August 6, 2019. Quantex advanced six (6) soil borings (P22-B1 to P22-B6) by direct-push technology from the ground surface to boring termination (10 feet bgs) at locations specified by Kleinfelder. The soil boring locations were identified in the field using a GPS. The soil boring locations are shown on Figure 2. Soil borings P22-B1 through P22-B3 were advanced in the vicinity of the two (2) probable USTs located via EM and GPR southwest of the vacant building on the western portion of the parcel. Soil borings P22-B4 through P22-B6 were located within the public utility easements of Winston Road and Conrad Street and the northern and western parcel boundaries. Soil samples were collected by driving Macro Core™ samplers in 5-foot intervals. Each soil core was cut open, the soil samples were classified, and the soil was divided into 1-foot sections. Each 1-foot section was screened in the field using a PID. The PID readings are summarized in Table 1.

Soils from Parcel 22 generally consisted of clay within the first 3 feet, underlain by a clayey silt and micaceous silt with sand. Groundwater was not encountered in any of the borings at the termination depth of 10 feet bgs. Copies of the boring logs are included in Appendix C.

4.5 SOIL ANALYSIS

The PID readings from soil borings advanced were noted to be low. Based on the PID data and visual observations, one sample from borings P22-B1, P22-B2, P22-B4, P22-B5, and P22-B6 were selected for on-site analysis. Three samples from boring P22-B3 were selected for on-site analysis, as these PID readings were slightly higher than other borings advanced on Parcel 22.

The samples were analyzed on-site by RED Lab, LLC utilizing ultraviolet fluorescence (UVF) methodology to provide real-time analytical results of Total Petroleum Hydrocarbons (TPH),

Gasoline Range Organics (GRO), Diesel Range Organics (DRO), and benzene, toluene, ethylbenzene, and total xylenes (BTEX). The UVF method was selected because of the possible use of petroleum products on Parcel 22. The UVF analysis also provided data regarding Environmental Protection Agency 16 total Polycyclic Aromatic Hydrocarbons (PAHs), and Benzo(a)pyrene (BaP).

5 RESULTS

5.1 GEOPHYSICAL INVESTIGATION

EM and GPR responses indicated the probable presence of two (2) orphan USTs located off the southwestern corner of the vacant building on Parcel 22. The southern probable UST was approximately 12 feet long by 4 feet wide, thus approximately 1,130-gallons in estimated capacity. The northern probable UST was approximately 10 feet long by 4 feet wide, thus approximately 940-gallons in estimated capacity.

5.2 SOIL SAMPLING DATA

The UVF analysis of soil samples did not indicate the presence of petroleum impact in any of the soil samples analyzed. As such, shallow soil impact does not appear to be present within the existing right of way, public utility easement, or along the western parcel boundary above NCDEQ Action Limits. A summary of soil sample analytical results is presented in Table 2. The laboratory results associated with each boring are presented on Figure 3. The laboratory report and graphs are included in Appendix D.

5.3 SAMPLE OBSERVATIONS

Soils were observed for any obvious evidence of contamination. No visual or olfactory evidence of contamination was noted in any of the soil samples from the borings.

5.4 QUANTITY CALCULATIONS

Kleinfelder did not identify soil impact in the current right of way, nor have previous assessments identified quantifiable soil impact on Parcel 22.

6 CONCLUSIONS

Based on results of the EM/GPR survey, soil assessment and field observations, Kleinfelder has reached the following conclusions:

- EM and GPR responses indicated the probable presence of two (2) orphan USTs located off the southwestern corner of the vacant building on Parcel 22. The southern probable UST was approximately 12 feet long by 4 feet wide, thus approximately 1,130-gallons in estimated capacity. The northern probable UST was approximately 10 feet long by 4 feet wide, thus approximately 940-gallons in estimated capacity.
- Parcel 22 is not listed on the NCDEQ UST database, nor are any groundwater incident numbers known to be associated with Parcel 22 at this time.
- No soil impact was detected in borings advanced along Old US Hwy 52, Conrad Street, or in the vicinity of the two (2) probable USTs located on Parcel 22 above the NCDEQ Action Limits for TPH GRO and DRO.
- Groundwater was not encountered in the soil borings at a depth of 10 feet bgs.

7 RECOMMENDATIONS

Based on results of this Preliminary Site Assessment, Kleinfelder recommends no additional sampling or special handling of soils be performed within the Project Study Area on Parcel 22 in Lexington, Davidson County, North Carolina. However, the two (2) probable USTs located via EM and GPR study should be properly closed if encountered during construction activities.

8 LIMITATIONS

Kleinfelder's work will be performed in a manner consistent with that level of care and skill ordinarily exercised by other members of its profession practicing in the same locality, under similar conditions and at the date the services are provided. Kleinfelder's conclusions, opinions and recommendations will be based on a limited number of observations and data. It is possible that conditions could vary between or beyond the data evaluated. Kleinfelder makes no guarantee or warranty, express or implied, regarding the services, communication (oral or written), report, opinion, or instrument of service provided.

Kleinfelder offers various levels of investigative and engineering services to suit the varying needs of different clients. It should be recognized that definition and evaluation of geologic and environmental conditions are a difficult and inexact science. Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present due to the limitations of data from field studies. Although risk can never be eliminated, more detailed and extensive studies yield more information, which may help understand and manage the level of risk. Since detailed study and analysis involves greater expense, Kleinfelder's clients participate in determining levels of service that provide adequate information for their purposes at acceptable levels of risk. More extensive studies, including subsurface studies or field tests, should be performed to reduce uncertainties. Acceptance of this report will indicate that NCDOT has reviewed the document and determined that it does not need or want a greater level of service than provided.

During the course of the performance of Kleinfelder's services, hazardous materials may have been discovered. Kleinfelder assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury that results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials. Nothing contained in this report should be construed or interpreted as requiring Kleinfelder to assume the status of an owner, operator, or generator, or person who arranges for disposal, transport, storage or treatment of hazardous materials within the meaning of any governmental statute, regulation or order. NCDOT is solely responsible for directing notification of all governmental agencies, and the public at large, of the existence, release, treatment or disposal of any hazardous materials observed at the project site, either before or during performance of

Kleinfelder's services. NCDOT is responsible for directing all arrangements to lawfully store, treat, recycle, dispose, or otherwise handle hazardous materials, including cuttings and samples resulting from Kleinfelder's services.

TABLES

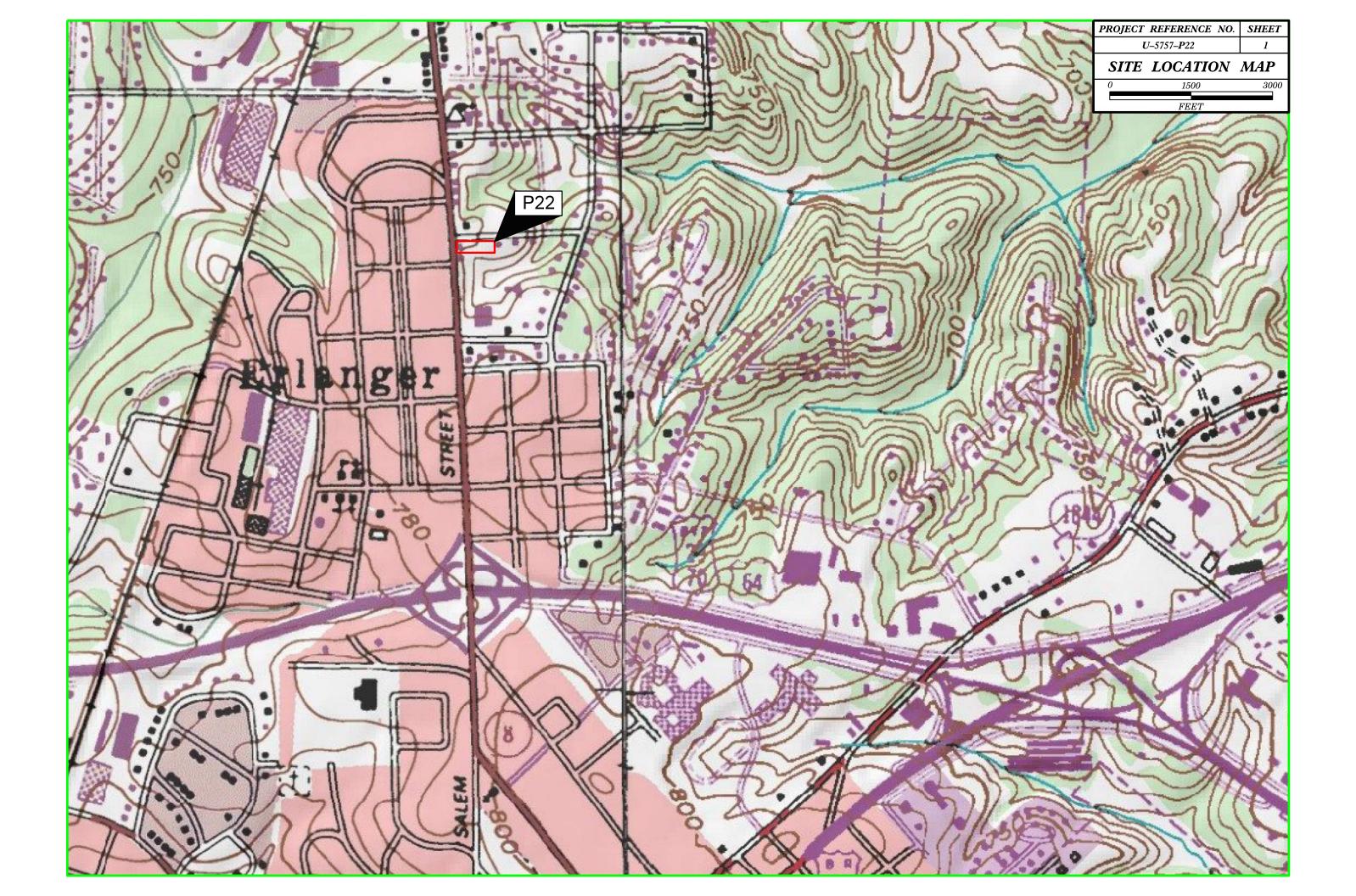
Table 1: Soil Sample Screening Results

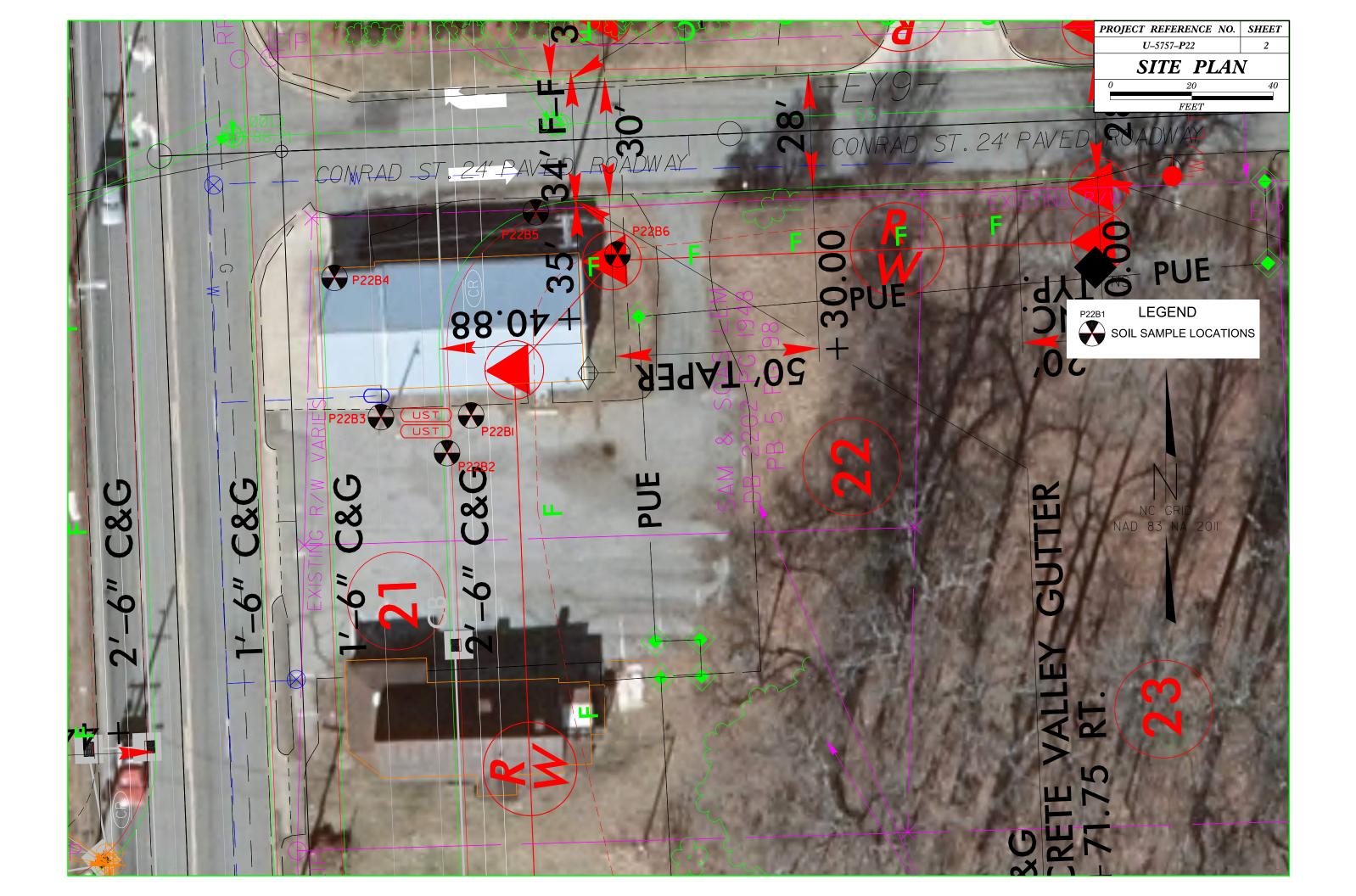
Date	Sample ID	Depth (ft)	PID Reading	Notes
	<u>'</u>	1	0.3	
		2	1.0	
		3	1.2	
		4	1.0	
8/6/2019	U5757-P22-B1	5	0.9	
0/0/2019	03/3/-F22-01	6	0.6	
		7	1.6	
		8	2.0	UVF Analysis
		9	8.0	
		10	0.2	
		1	0.2	
		2	2.4	
		3	1.5	
		4	2.8	UVF Analysis
8/6/2019	U5757-P22-B2	5	1.5	
0/0/2010	00/0/ / 22 52	6	1.9	
		7	0.6	
		8	1.6	
		9	1.1	
		10	1.0	
		1	2.2	
		2	17.1	UVF Analysis
		3	6.3	
		4	4.3	
8/6/2019	U5757-P22-B3	5	11.0	UVF Analysis
0/0/2010	00/0/ 122 80	6	2.2	
		7	1.8	
		8	2.0	
		9	2.4	
		10	4.0	UVF Analysis
		1	0.7	
		2	0.8	
		3	0.7	
		4	1.9	
8/6/2019	U5757-P22-B4	5	2.3	
		6	2.4	
		7	1.8	UVF Analysis
		8	2.2	
		9	2.0	
		10	1.6	
		1	1.4	
		2	1.8	
		3	1.5	
		4	1.7	
8/6/2019	U5757-P22-B5	5	1.7	
· · ·		6	1.7	11) /E A
		7	2.0	UVF Analysis
		8	2.0	
		9	1.6	
		10	1.4	
		1	0.9	
		2	0.4	
		3	1.2	
		4	1.3	UVF Analysis
8/6/2019	U5757-P22-B6	5	1.0	
		6	0.1	
		7	0.3	
		8	0.2	
		9	0.4 0.3	
			0.0	

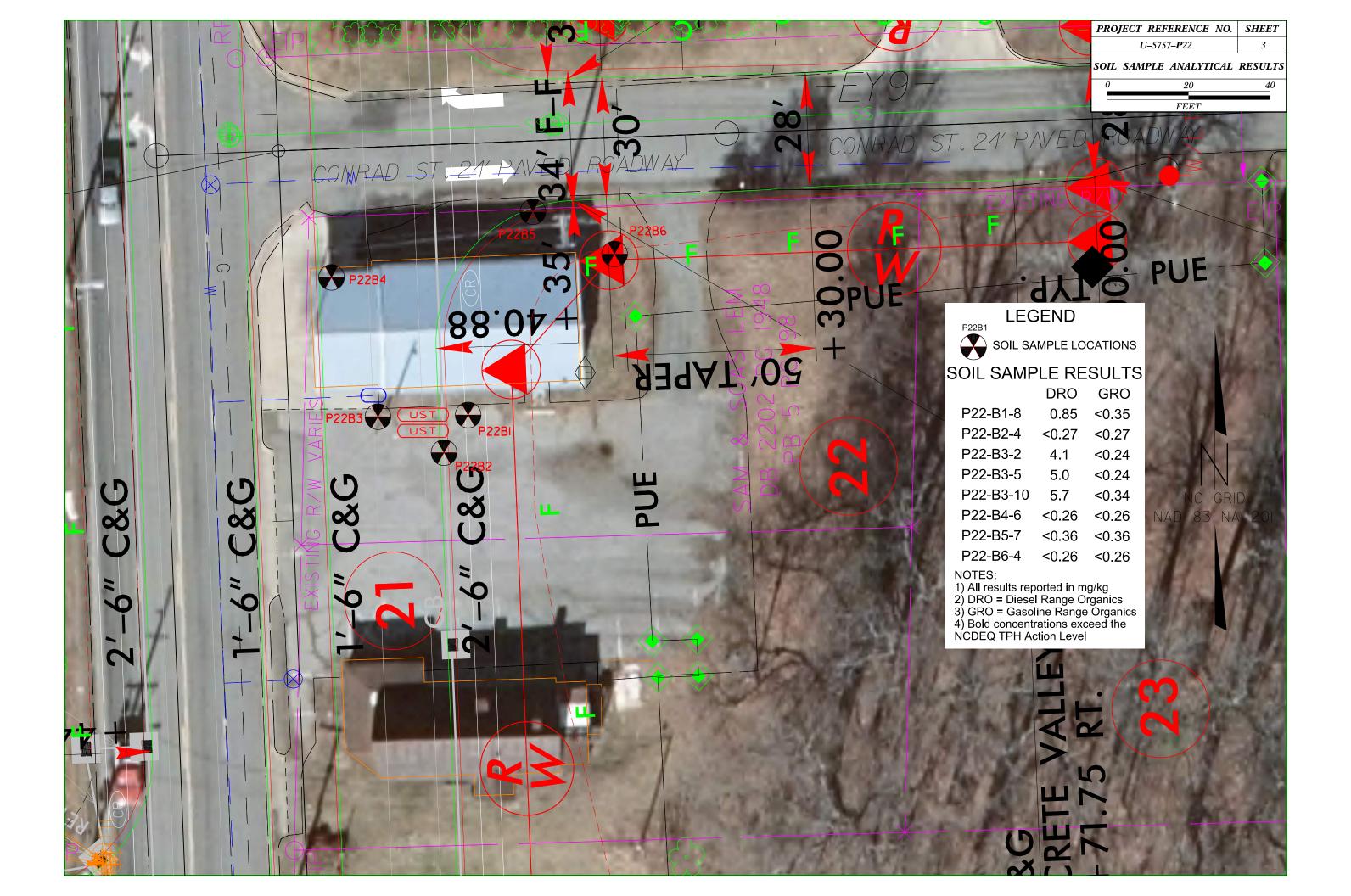
Notes:
1) PID = Photoionization Detector
2) PID readings in parts per million (ppm)

TABLE 2: Soil Sample Analytical Summary

Parameter				Analytic	al Results						
	Soil Sample Results				Comparison Criteria						
Sample ID	P22-B1-8	P22-B2-4	P22-B3-2	P22-B3-5	P22-B3-10	P22-B4-6	P22-B5-7	P22-B6-4			
PID Reading (ppm)	2.0	2.8	17.1	11.0	4.0	1.8	2.0	1.3	State Action Limit	Protection of Groundwater	Residential Health
Collection Depth (ft bgs)	8	4	2	5	10	6	7	4			
Collection Date	8/6/19	8/6/19	8/6/19	8/6/19	8/6/19	8/6/19	8/6/19	8/6/19			
UVF Method	UVF Method										
Diesel Range Organics	0.85	<0.27	4.1	5.0	5.7	<0.26	< 0.36	<0.26	100		-
Gasoline Range Organics	<0.35	<0.27	<0.24	<0.24	<0.34	<0.26	<0.36	<0.26	50		


Notes:


Results displayed in milligram per kilogram (mg/kg) ft bgs = Feet below ground surface
Bold = Above Laboratory Detection Limit


UVF = Ultraviolet Flouresence

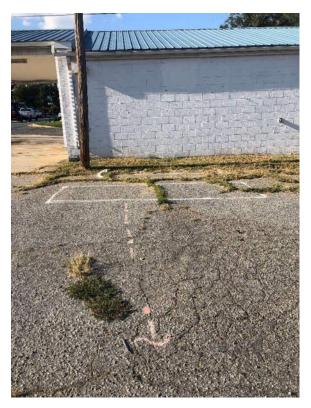
FIGURES

APPENDIX A SITE PHOTOGRAPHS

View facing northerly along the western border of Parcel 22, NC Highway 8 (Winston Road).

Original in Color

View facing northeasterly toward the vacant building on Parcel 22.


PROJECT NO:20201105.001A					
DRAWN:		mber 2019			
DRAWN BY	′ :	ARS			
CHECKED	BY:	MB			
FILE NAME:					
Photo Pages					

SITE PHOTOGRAPHS

Preliminary Site Assessment Report U-5757-P22 Lexington, Davidson County, North Carolina

FIGURE

A-1

View of the two (2) probable orphan USTs located southwest of the vacant building on Parcel 22.

Original in Color

View facing northerly along the eastern wall of the vacant building on Parcel 22 toward Conrad Street.

PROJECT NO:20201105.001A					
DRAWN:	Septe	ember 2019			
DRAWN BY	/:	ARS			
CHECKED	BY:	MB			
FILE NAME					
	o Pages	3			

SITE PHOTOGRAPHS

FIGURE

Preliminary Site Assessment Report U-5757-P22 Lexington, Davidson County, North Carolina **A-2**

View facing westerly along the northern boundary of Parcel 22, Conrad Street, toward NC Highway 8 (Winston Road).

Original in Color

View facing northwesterly toward the vacant building on Parcel 22.

PROJECT NO:20201105.001A				
DRAWN:		mber 2019		
DRAWN BY	′ :	ARS		
CHECKED	BY:	MB		
FILE NAME	:			
Photo Pages				

SITE PHOTOGRAPHS

Preliminary Site Assessment Report U-5757-P22 Lexington, Davidson County, North Carolina

FIGURE

A-3

APPENDIX B GEOPHYSICAL SURVEY REPORT

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2019-211)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 22 NCDOT PROJECT U-5757 (54035.1.1)

1223 WINSTON ROAD, LEXINGTON, NC

August 15, 2019

Report prepared for: Michael Burns, P.G.

Kleinfelder, Inc.

3500 Gateway Center Boulevard, Suite 200

Morrisville, NC 27560

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by: _

Douglas A. Canavello, P.G.

NC License #1066

GEOPHYSICAL INVESTIGATION REPORT

Parcel 22 - 1223 Winston Road Lexington, Davidson County, North Carolina

Table of Contents

Executive Summary	1
Introduction	
Field Methodology	2
Discussion of Results	
Discussion of EM Results	3
Discussion of GPR Results	
Summary & Conclusions	
Limitations	

Figures

- Figure 1 Parcel 22 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 22 EM61 Results Contour Map
- Figure 3 Parcel 22 GPR Transect Locations and Select Images
- Figure 4 Parcel 22 Locations and Sizes of Two Probable USTs
- Figure 5 Overlay of Metal Detection Results with Two Probable USTs onto the NCDOT Engineering Plans

Appendices

Appendix A – GPR Transect Images

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	Dual Frequency
EM	Electromagnetic
GPR	Ground Penetrating Radar
GPS	Global Positioning System
NCDOT	North Carolina Department of Transportation
ROW	
UST	Underground Storage Tank

Project Description: Pyramid Environmental conducted a geophysical investigation for Kleinfelder, Inc. at Parcel 22 located at 1223 Winston Road in Lexington, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project U-5757). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from July 15-16, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of six EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. EM and GPR recorded evidence of two probable USTs off the southwest corner of the building. The southern probable UST (UST #1) was approximately 12 feet long and 4 feet wide. The northern probable UST (UST #2) was approximately 10 feet long and 4 feet wide. Collectively, the geophysical data recorded evidence of two probable USTs within the survey area at Parcel 22.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Kleinfelder, Inc. at Parcel 22 located at 1223 Winston Road in Lexington, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project U-5757). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from July 15-16, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included a vacant commercial building surrounded by asphalt, concrete, and grass surfaces. An aerial photograph showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8-foot intervals along north-south trending or east-west trending, generally parallel survey lines, spaced five feet apart. The data were downloaded to a

computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on July 16, 2019, using a Geophysical Survey Systems, Inc. (GSSI) UtilityScan DF unit equipped with a dual frequency 300/800 MHz antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the DF unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the DF unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tanks on NCDOT Projects					
High Confidence	Intermediate Confidence	Low Confidence	No Confidence		
Known UST Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Probable UST Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphalt/concrete patch, etc.	Possible UST Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	Anomaly noted but not characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.		

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The following table presents the list of EM anomalies and the cause of the metallic response, if known:

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Metal Poles/Building	✓
2	Building/Air Conditioner	
3	Sign	
4	Utility	✓
5	Two Probable USTs	✓
6	Vehicle	√

The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface including metal poles, the building, an air conditioner, a sign, and a vehicle. EM Anomaly 4 was suspected to be the result of a buried utility and was investigated further with GPR. GPR scans were also performed around the areas of interference caused by the building, metal poles, and a vehicle (Anomalies 1 and 6) to verify that no buried structures were obscured by the interference.

Additionally, a large high-amplitude EM feature (Anomaly 5) was observed near the southwest corner of the building that was characteristic of a large buried structure such as a UST and was investigated further with GPR.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as select transect images. All of the transect images are included in **Appendix A**. A total of eleven formal GPR transects were performed at the site.

GPR Transects 1-6 were performed in a grid-like fashion across areas of interference caused by the building, metal poles and a vehicle (EM Anomalies 1 and 6). No evidence of buried structures such as USTs was observed.

GPR Transects 7-9 were performed across a large high-amplitude EM feature (Anomaly 5) that was observed near the southwest corner of the building. These transects recorded discreet hyperbolic reflectors and isolated high-amplitude lateral reflectors that are

characteristic of metallic USTs. The combined EM and GPR evidence result in this feature being classified as two probable metallic USTs. The southern probable UST (UST #1) was approximately 12 feet long and 4 feet wide. The northern probable UST (UST #2) was approximately 10 feet long and 4 feet wide. **Figure 4** provides the locations and sizes of the two probable USTs overlain on an aerial, along with ground-level photographs.

GPR Transects 10 and 11 were performed across areas associated with a suspected utility (EM Anomaly 4). These transects recorded evidence of discrete hyperbolic reflectors consistent with buried utilities.

Collectively, the geophysical data <u>recorded evidence of two probable USTs within the survey area at Parcel 22</u>. **Figure 5** provides an overlay of the metal detection results and the locations of the two probable USTs on the NCDOT MicroStation engineering plans for reference.

SUMMARY & CONCLUSIONS


Pyramid's evaluation of the EM61 and GPR data collected at Parcel 22 in Lexington, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface.
- EM and GPR recorded evidence of two probable USTs off the southwest corner of the building. The southern probable UST (UST #1) was approximately 12 feet long and 4 feet wide. The northern probable UST (UST #2) was approximately 10 feet long and 4 feet wide.
- Collectively, the geophysical data <u>recorded evidence of two probable USTs within</u> the survey area at Parcel 22.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Kleinfelder in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

View of Survey Area (Facing Approximately North)

View of Survey Area (Facing Approximately East)

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

PARCEL 22 LEXINGTON, NORTH CAROLINA NCDOT PROJECT U-5757 TITLE

PARCEL 22 - GEOPHYSICAL SURVEY BOUNDARIES AND SITE PHOTOGRAPHS

DATE	7/19/2019	CLIENT	KLEINFELDER
PYRAMID PROJECT #:	2019-211		FIGURE 1

EM61 METAL DETECTION RESULTS

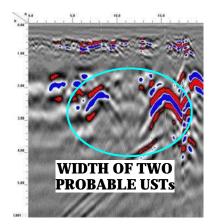
EVIDENCE OF TWO PROBABLE USTs WAS OBSERVED.

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on July 15, 2019, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI UtilityScan DF instrument with a dual frequency 300/800 MHz antenna on July 16, 2019.

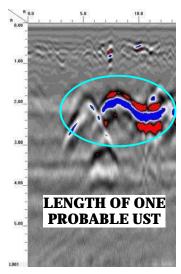
EM61 Metal Detection Response (millivolts)

1000 750 500 400 300 200 150 100 75 60 60 50 40 30 -200 -200

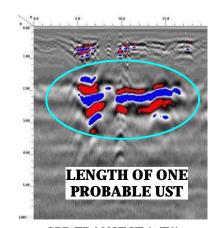
> N N


503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology **PROJECT**

PARCEL 22 LEXINGTON, NORTH CAROLINA NCDOT PROJECT U-5757 TITLE


PARCEL 22 - EM61 METAL DETECTION CONTOUR MAP

OATE	7/19/2019	CLIENT	KLEINFELDER
YRAMID ROJECT #:	2019-211		FIGURE 2


LOCATIONS OF GPR TRANSECTS 763875 763850 NC STATE PLANE, NORTHING (NAD83, FEET) 763825 763800 763775 763750

GPR TRANSECT 7 (T7)

GPR TRANSECT 8 (T8)

GPR TRANSECT 9 (T9)

1628375

763725

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology

1628400

PROJECT

1628450

1628425

PARCEL 22 LEXINGTON, NORTH CAROLINA NCDOT PROJECT U-5757

1628475

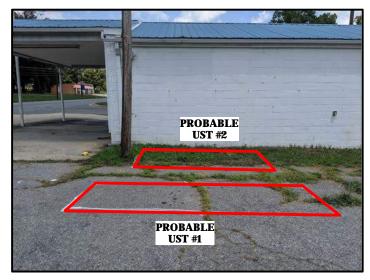
NC STATE PLANE, EASTING (NAD83, FEET)

TITLE

1628525

1628500

PARCEL 22 - GPR TRANSECT LOCATIONS AND SELECT IMAGES


1628575

1628550

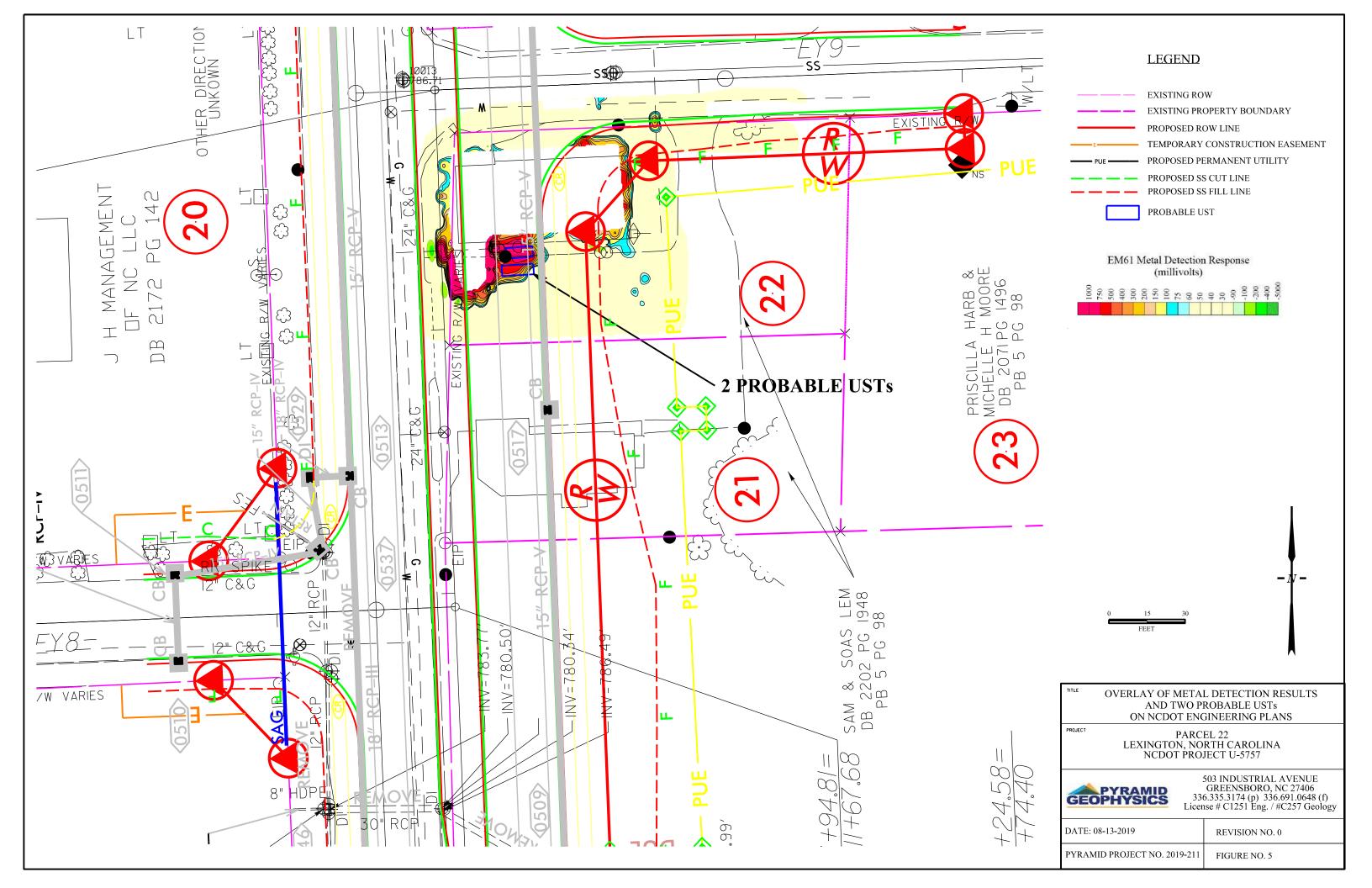
DATE	7/19/2019	CLIENT	KLEINFELDER
PYRAMID PROJECT #:	2019-211		FIGURE 3

LOCATIONS OF TWO PROBABLE USTs

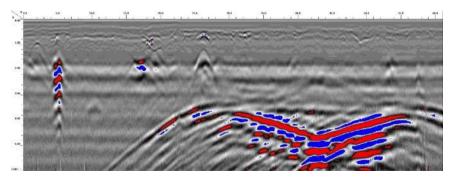
View of Two Possible USTs Facing Approximately North

View of Two Possible USTs Facing Approximately East

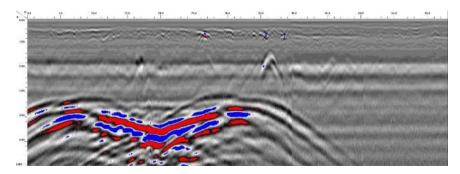
503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

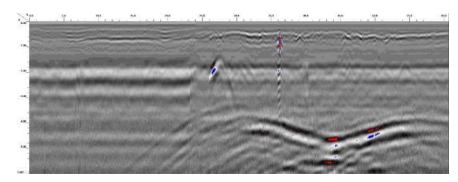

PARCEL 22 LEXINGTON, NORTH CAROLINA NCDOT PROJECT U-5757

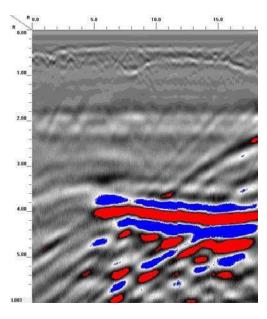
NC STATE PLANE, EASTING (NAD83, FEET)

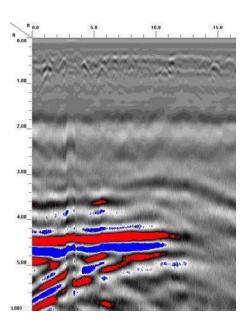

TITLE

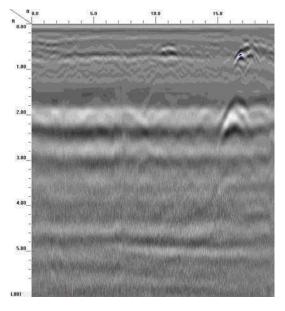
PARCEL 22 - LOCATIONS AND SIZES OF TWO PROBABLE USTs

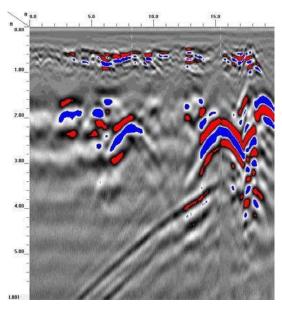

DATE	7/19/2019	CLIENT	KLEINFELDE
YRAMID ROJECT #:	2019-211		FIGURE 4

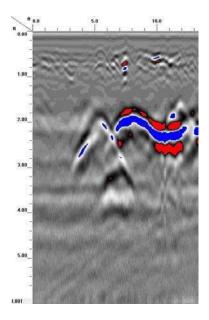


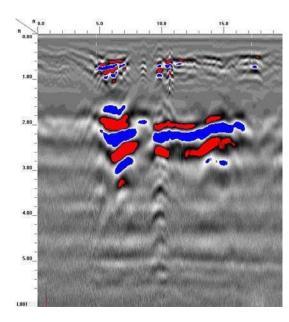

GPR TRANSECT 1

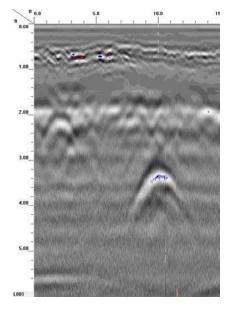

GPR TRANSECT 2

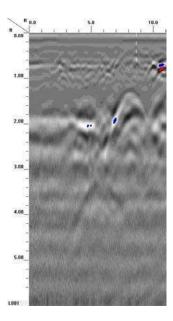

GPR TRANSECT 3


GPR TRANSECT 4


GPR TRANSECT 5


GPR TRANSECT 6


GPR TRANSECT 7


GPR TRANSECT 8

GPR TRANSECT 9

GPR TRANSECT 10

GPR TRANSECT 11

APPENDIX C BORING LOGS

PROJECT NUMBER: 20201105.001A gINT FILE: KIf_gint_master_2020 gINT TEMPLATE:

OFFICE FILTER: RALEIGH

DATE:

9/18/2019

Lexington, NC

PAGE: 1 of 1

DATE:

9/18/2019

gINT FILE: KIf_gint_master_2020

PROJECT NUMBER: 20201105.0014

gINT TEMPLATE: E:KLF_STANDARD_GINT_LIBRARY_2020.GLB [_KLF_ENVIRONMEN

OFFICE FILTER: RALEIGH

PAGE:

1 of 1

DATE:

9/18/2019

PAGE:

1 of 1

PROJECT NUMBER: 20201105.001A gINT FILE: KIf_gint_master_2020 gINT TEMPLATE:

OFFICE FILTER: RALEIGH

OFFICE FILTER: RALEIGH

CHECKED BY: M BURNS

9/18/2019

DATE:

NCDOT: U-5757 Biesecker Road Lexington, NC

> PAGE: 1 of 1

OFFICE FILTER: RALEIGH

CHECKED BY: M BURNS

DATE: 9/18/2019 NCDOT: U-5757 Biesecker Road Lexington, NC

5

PAGE: 1 of 1

PROJECT NUMBER: 20201105.001A gINT FILE: KIf_gint_master_2020 gINT TEMPLATE:

OFFICE FILTER: RALEIGH

KLEINFELDER Bright People. Right Solutions.

CHECKED BY: M BURNS

DATE: 9/18/2019 NCDOT: U-5757 Biesecker Road Lexington, NC

6

PAGE:

1 of 1

APPENDIX D ANALYTICAL REPORT AND GRAPHS

Hydrocarbon Analysis Results

Client:KLEINFELDERSamples takenTuesday, August 6, 2019Address:Samples extractedTuesday, August 6, 2019

Samples analysed Tuesday, August 6, 2019

Contact: ABIGAIL SHURTLEFF Operator CAROLINE STEVENS

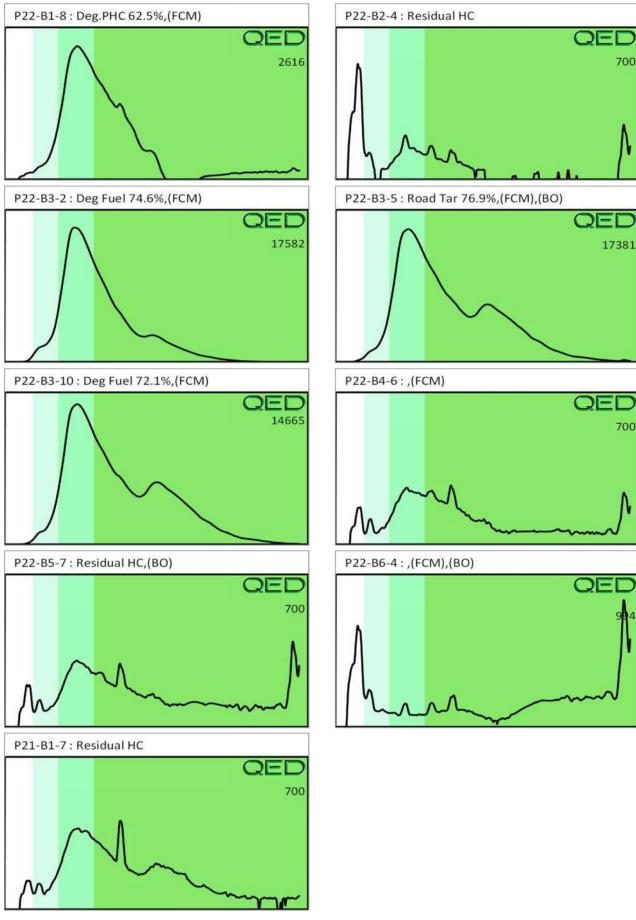
Project: NCDOT U-5757

													U00904
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	% Ratios		3	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
s	P22-B1-8	14.0	<0.35	< 0.35	0.85	0.85	0.38	<0.11	<0.014	50	39.3	10.6	Deg.PHC 62.5%,(FCM)
s	P22-B2-4	11.0	<0.27	<0.27	<0.27	<0.27	< 0.05	<0.09	<0.011	0	100	0	Residual HC
s	P22-B3-2	9.8	<0.24	<0.24	4.1	4.1	2.9	0.11	<0.01	0	79.3	20.7	Deg Fuel 74.6%,(FCM)
s	P22-B3-5	9.7	<0.24	<0.24	5	5	2.4	0.26	<0.01	0	71.2	28.8	Road Tar 76.9%,(FCM),(BO)
s	P22-B3-10	13.7	<0.34	<0.34	5.7	5.7	3.4	<0.11	<0.014	0	70.6	29.4	Deg Fuel 72.1%,(FCM)
s	P22-B4-6	10.3	<0.26	<0.26	<0.26	<0.26	<0.05	<0.08	<0.01	0	79.7	20.3	,(FCM)
s	P22-B5-7	14.4	<0.36	< 0.36	< 0.36	< 0.36	<0.07	<0.12	<0.014	0	85.3	14.7	Residual HC,(BO)
s	P22-B6-4	10.5	<0.26	<0.26	<0.26	<0.26	<0.05	<0.08	<0.011	0	100	0	,(FCM),(BO)
s	P21-B1-7	11.2	<0.28	<0.28	<0.28	<0.28	<0.06	<0.09	<0.011	0	56.2	43.8	Residual HC
	Initial C	alibrator (QC check	OK					Final F	CM QC	Check	OK	102.4 %

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.


% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only.

Data generated by HC-1 Analyser

700

700

NCDOT U-5757 Project: P22-B1-8: Deg.PHC 62.5%,(FCM)

