8 REFERENC

CONTENTS

DESCRIPTION

LEGEND (SOIL & ROCK)

ROCK TEST RESULTS

SUPPLEMENTAL LEGEND (GSI)

BORE LOGS, CORE LOGS, CORE PHOTOS

TITLE SHEET

SITE PLAN CROSS SECTION(S)

SHEET NO.

2A

4-7 8-17

502

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY _SURRY PROJECT DESCRIPTION BRIDGE NO. 126 OVER TOMS CREEK ON US 52 SB

STATE PROJECT REFERENCE NO. SHEET NO. B-5527

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FILLD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT (199) 707-850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN STU IN-PLACE TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE SILVESTIGATION ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MICH. INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPHION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO PERFORM INDEPENDENT SUBSURFACE INVESTIGATIONS AND MAKE INTERPRETATIONS AS NECESSARY TO CONFIRM CONDITIONS ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

NOTES:

1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

PERSONNEL

H. FISCHER, GIT

A. GROSS, PG

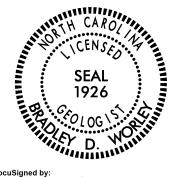
M. SHIPMAN, PE

M. B. MOSELEY

C. BOWEN

INVESTIGATED BY H. FISCHER, GIT & A. GROSS, PG

DRAWN BY H. FISCHER, GIT


CHECKED BY _

SUBMITTED BY ____B. WORLEY, PG

DATE _*MARCH*, 2023

Prepared in the Office of:

03/27/2023

DOCUMENT NOT CONSIDERED FINAL

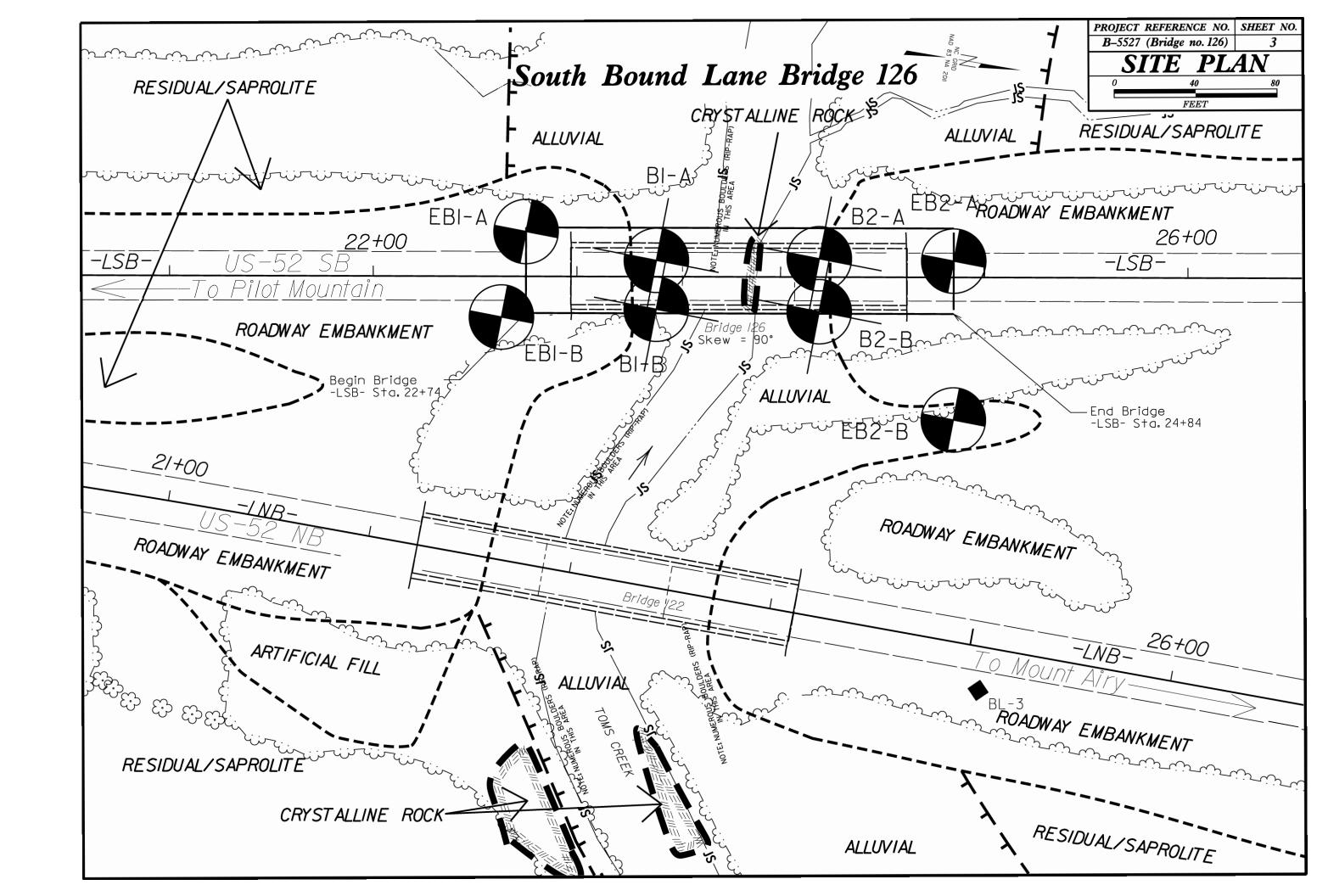
UNLESS ALL SIGNATURES COMPLETED

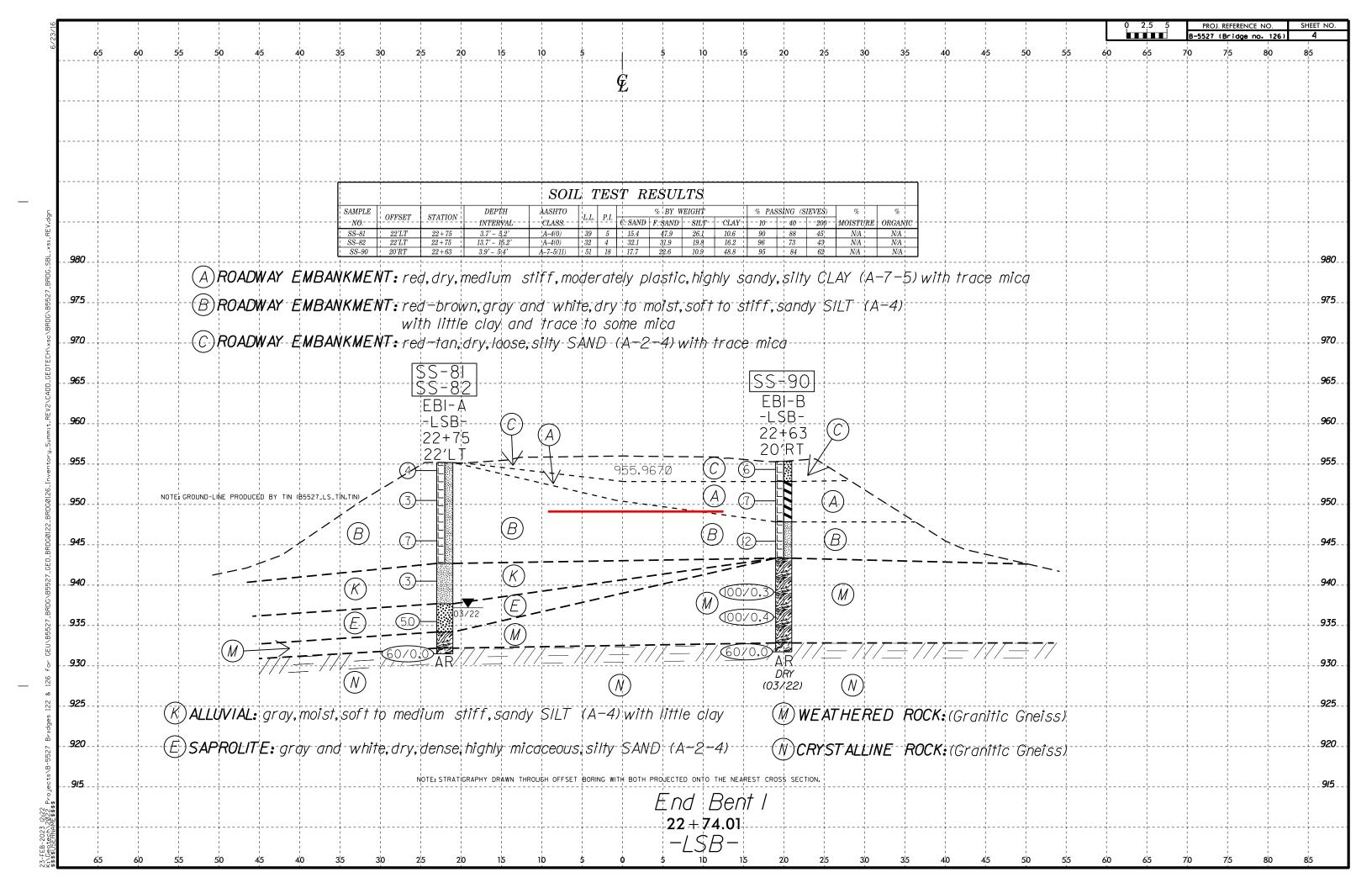
PROJECT REFERENCE NO. SHEET NO. 2

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

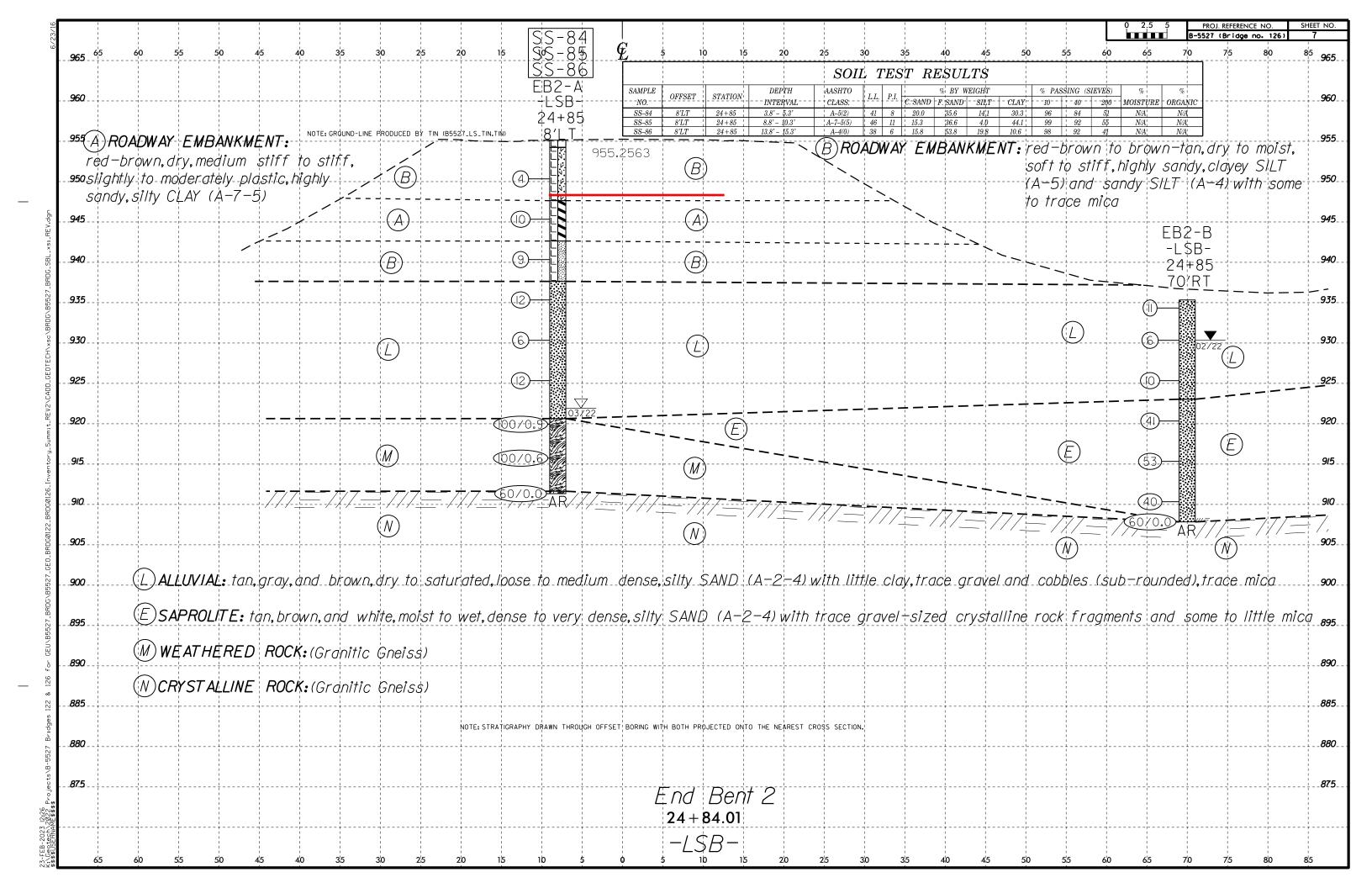
SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS


SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAM BE BLOWS PER FOOT ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO 1 206, ASTM DISB6). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND THER PERTITIONT FACTORS SUCH AS MINERALOGICAL COMPOSITION, ANDULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY SITE, FORM, SITY CLAY, MOIST WITH INTERBEDOE FINE SAMD LAMERS, HIGHLY ALTER, A-6	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. <u>UNIFORMLY GRADED</u> - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. <u>GAP-GRADED</u> - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES. ANGULARITY OF GRAINS THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED, AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULY JELD SPT REFUSAL. SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN Ø.1 FOOT PER 6Ø BLOWS IN NON-COASTAL PLAIN MATERIAL. THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ALLUYIUM (ALLUY.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. AQUIFER - A WATER BEARING FORMATION OR STRATA, ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND. ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED. MINERALOGICAL COMPOSITION MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	WEATHERED ROCK (WR) NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > 100 BLOWS PER FOOT IF TESTED. CRYSTALLINE ROCK (CR) FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, GOKEISS, GABRO, SCHIST, ETC.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.
CROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 CA-6 A-7 A-1, A-2 A-4, A-5 CA-6 A-7 A-1, A-2 A-4, A-5 CA-6 A-7 A-1, A-2 A-4, A-5 A-6, A-7 CA-6 A-7 A-7, A-7, A-7, A-7, A-7, A-7, A-7,	COMPRESSIBLITY SLIGHTLY COMPRESSIBLE MODERATELY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50	NON-CRYSTALLINE ROCK (NCR) ROCK (NCR) ROCK THAT WOULD YELLD SPT REFUSAL IF TESTED. ROCK STAL PLAIN COASTAL PLAIN COASTAL PLAIN COASTAL PLAIN SEDIMENTARY ROCK S	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE. COLLUYIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE. CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED
7. PASSING *10 58 MX *40 38 MX 58 MX 51 MN *200 15 MX 25 MX 18 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN 36 MN	PERCENTAGE OF MATERIAL ORGANIC MATERIAL ORGANIC MATERIAL ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	(CP) SHELL BEDS, ETC. WEATHERING FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER	BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
MATERIAL PASSING *40 LL	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC > 10% > 20% HIGHLY 0RGANIC > 10% > 20% HIGHLY 0RGANIC	HAMMER IF CRYSTALLINE. VERY SLIGHT (V SLI,) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY, ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL. DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX ORGANIC SOILS USUAL TYPES STONE FRAGS. FINE SILTY OR CLAYEY SILTY CLAYEY MATTER MUDERATE AMOUNTS OF ORGANIC ORGANIC MATTER	GROUND WATER WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO (SLI.) 1 INCH. DPEN JOINTS MAY CONTAIN CLAY, IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED, CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE. FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
MATERIALS SAND SAND CRAVEL AND SAND SOILS SOILS GEN. RATING AS SUBGRADE EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE	STATIC WATER LEVEL AFTER 24 HOURS \(\sum_{PW}\) PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA \(\sum_{NP}\) SPRING OR SEEP	MODERATE (MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL. FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBGROUP IS \$ LL - 30 :PI OF A-7-6 SUBGROUP IS > LL - 30 CONSISTENCY OR DENSENESS PRIMARY SOIL TYPE COMPACTNESS OR RANGE OF STANDARD RANGE OF UNCONFINED PENETRATION RESISTENCE COMPRESSIVE STRENGTH PENETRATION RESISTENCE COMPRESSIVE STRENGTH	MISCELLANEOUS SYMBOLS The roadway embankment (re) 25/825 dip & dip direction	MODERATELY SEVERE (MOD. SEV.) AND CRANATORIO WHEN STRUCK. MOD. SEV.) MOD. SEV.)	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD. JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED. LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
CONSISTENCY	with soil description of rock structures Soil Symbol spring test Boring Slope Indicator installation Artificial fill (AF) OTHER CONF. CONF. PENETROMETER	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAQLINIZED TO SOME EXTENT, SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	ITS LATERAL EXTENT. LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS
OENSE 30 TO 50	THAN ROADWAY EMBANKMENT TEST	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK (V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE. <u>PERCHED WATER</u> - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM. <u>RESIDUAL (RES.) SOIL</u> - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
SILT-CLAY MEDIUM STIFF 4 TO 8	MONITORING WELL TEST BORING WITH CORE	COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS ALSO AN EXAMPLE.	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 DPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053 BOULDER COBBLE GRAVEL COARSE FINE SILT CLAY SAND SAND SAND	UNDERCUT UNCLASSIFIED EXCAVATION - UNSUITABLE WASTE UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK UNCLASSIFIED EXCAVATION - EMBANKMENT OR BACKFILL	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK. HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
(BLDR.) (COB.) (GR.) (CSE. SD.) (F SD.) (SL.) (CL.)	ABBREVIATIONS AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS.	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF
GRAIN MM 305 75 2.0 0.25 0.05 0.005 SIZE IN. 12 3 SOIL MOISTURE - CORRELATION OF TERMS	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED CL CLAY MOD MODERATELY 7 - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC 7 - DRY UNIT WEIGHT	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK.	A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION OF THE PROPERTY OF TH	CSE COARSE ORG ORGANIC DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAYATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE.	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY (SAT.) FROM BELOW THE GROUND WATER TABLE PLASTIC PLASTIC PROVINCE ADMINISTRATED PROVINCE ADM	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE, CAN BE SCRATCHED READILY BY FINGERNAIL.	LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
RANGE - WET - (W) SEMISOLIDE REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE	FRAGS FRAGMENTS	FRACTURE SPACING BEDDING TERM SPACING TERM THICKNESS	BENCH MARK: B-5527-2 N 966405 E 1560952
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE SL SHRINKAGE LIMIT	EQUIPMENT USED ON SUBJECT PROJECT DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE: CME-45C CLAY BITS X AUTOMATIC MANUAL	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET	ELEVATION: 958.96 FEET NOTES:
- DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE PLASTICITY	G* CONTINUOUS FLIGHT AUGER CORE SIZE:	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED < 0.008 FEET THINLY LAMINATED < 0.008 FEET THINLY LAMINATED < 0.008 FEET THINLY LAMINATED = 0.008 FEET	FIAD = Filled Immediately After Drilling MnO = Manganese Oxide
PLASTICITY INDEX (PI) DRY STRENGTH NON PLASTIC Ø-5 VERY LOW SLIGHTLY PLASTIC 6-15 SLIGHT MODERATELY PLASTIC 16-25 MEDIUM	X CME-550X	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. RUBBING WITH FINGER FREES NUMEROUS GRAINS; GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE. GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE;	Elevations for North Bound Interior Bent Borings optained using the TIN file (B5527_Ls_tin.tin)
HIGHLY PLASTIC 26 OR MORE HIGH COLOR	PORTABLE HOIST TRICONE STEEL TEETH HAND AUGER TRICONE TUNG, -CARB. SOUNDING ROD	BREAKS EASILY WHEN HIT WITH HAMMER. INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE;	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	X CORE BIT VANE SHEAR TEST	DIFFICULT TO BREAK WITH HAMMER. EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE; SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-14


ROJECT REFERENCE NO.	SHEET NO.
B-5527	2A

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT


SUBSURFACE INVESTIGATION

SUPPLEMENTAL LEGEND, GEOLOGICAL STRENGTH INDEX (GSI) TABLES FROM AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS										
AASHTO LRFD Figure 10.4.6.4-1 — Determination of GSI for Jointed	Rock Mass (Marın	nos and Hoek, 2000)			AASHTO LRFD Figure 10.4.6.4-2 — Determination of GSI for Tectonically Def	formed Hetero	geneous Rock	Masses (Marı	nos and Hoek	, 2000)
GEOLOGICAL STRENGTH INDEX (GSI) FOR JOINTED ROCKS (Hoek and Marinos, 2000) From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Quoting a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavorable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced if water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis.		lightly weath	ed surfaces en surfaces ensided, highly weathered compact coatings or filli	VERY POOR Slickensided, highly weathered surfaces with soft clay coatings or fillings	GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos. P and Hoek E., 2000) From a description of the lithology, structure and surface conditions (particularly of the bedding planes), choose a box in the chart. Locate the position in the box that corresponds to the condition of the discontinuities and estimate the average value of GSI from the contours. Do not attempt to be too precise. Quoting a range from 33 to 37 is more realistic than giving GSI = 35. Note that the Hoek-Brown criterion does not apply to structurally controlled failures. Where unfavourably oriented continuous weak planar discontinuities are present, these will dominate the behaviour of the rock mass. The strength of some rock masses is reduced by the presence of groundwater and this can be allowed for by a slight shift to the right in the columns for fair, poor and very poor conditions. Water pressure does not change the value of GSI and it is dealt with by using effective stress analysis.	VERY GOOD - Very Rough, fresh unweathered surfaces	GOOD - Rough, slightly weathered surfaces	FAIR - Smooth, moderately weathered and altered surfaces	POOR - Very smooth, occasionally slickensided surfaces with compact coatings or fillings with angular fragments	VERY POOR - Very smooth, slicken- sided or highly weathered surfaces
STRUCTURE		REASING SURFACE		⇒	COMPOSITION AND STRUCTURE					
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities BLOCKY - well interlocked undusturbed rock mass consisting		70	N/A	N/A	A. Thick bedded, very blocky sandstone The effect of pelitic coatings on the bedding planes is minimized by the confinement of the rock mass. In shallow tunnels or slopes these bedding planes may cause structurally controlled instability.	70 60	A			
disturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets VERY BLOCKY - interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets		60			B. Sand- stone with stone and siltstone thin inter- layers of siltstone amounts D. Siltstone or silty shale with sand- stone layers stone layers layers		50 B 40	c / ı	D//E	
BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting		40	30		C.D.E. and G - may be more or less folded than illustrated but this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H.			30	F/ 20	
discontinuity sets. Persistence of bedding planes or schistosity DISINTEGRATED - poorly interlocked, heavily broken rock mass with mixture of angular and rounded rock pieces			20	10	G. Undisturbed silty or clayey shale with or without a few very thin sandstone layers H. Tectonically deformed silty or clayey shale forming a chaotic structure with pockets of clay. Thin layers of sandstone are transformed into small rock pieces.		/			, 10 H
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes	N/A	N/A			─────────────────────────────────────			y /		DATE: 8-19

		B-5527 (Bridge no. 126)
65 60 55	50 45 40 35 30 25 20 15 10 5 G 5 10 15 20 25 30 35 40 45 50 55 60	65 70 75 80 85
945	(/) ARTIFICIAL FILL: brown, and gray, dry, medium dense, silty SAND (A-2-4) with trace organics (wood chunks), and trace boulders	
40	B2-A B2-B	
	-LSB-	
35	NOTE: CROUND-LINE-PRODUCED-BY TIN (B5527-LS-TIN.TIN)	
0		
0		
5		
	(E) (E)	
0	$\frac{-7}{7} = \frac{7}{7} - \frac{1}{7} = \frac{1}{7} = \frac{1}{7} - \frac{1}{7} = 1$	
5	REC: 84%	
	ROD: 78% GSI: 75-80 W REC: 93% ROD: 84% GSI: 80-85	
2		
5	FIAD	
	(K) ALLUVIAL: orange-brown, wet, very soft, sandy SILT (A-4) with trace organics (grass and rootlets)	
0	and trace gravel-sized rock fragments	
5	(L) ALLUVIAL: red—brown to red—tan, and brown, wet to moist, loose to medium dense, silty SAND (A—2—4) with trace mica and fine to coarse SAND (A—1—b) with trace gravel—sized rock fragments	
	ESAPROLITE: gray, moist, medium dense to dense, micaceous, silty SAND (A-2-4)	
0		
5	M WEATHERED ROCK: (Granitic Gneiss)	
_	NCRYSTALLINE ROCK:(Granitic Gneiss)	
0		
5		
0		
5		
0	Bent 2	
i5	24+19.00	
	-L\$B-	

Dry

GROUND WTR (ft)

0 HR.

24 HR.

SOIL AND ROCK DESCRIPTION

GROUND SURFACE

ROADWAY EMBANKMENT

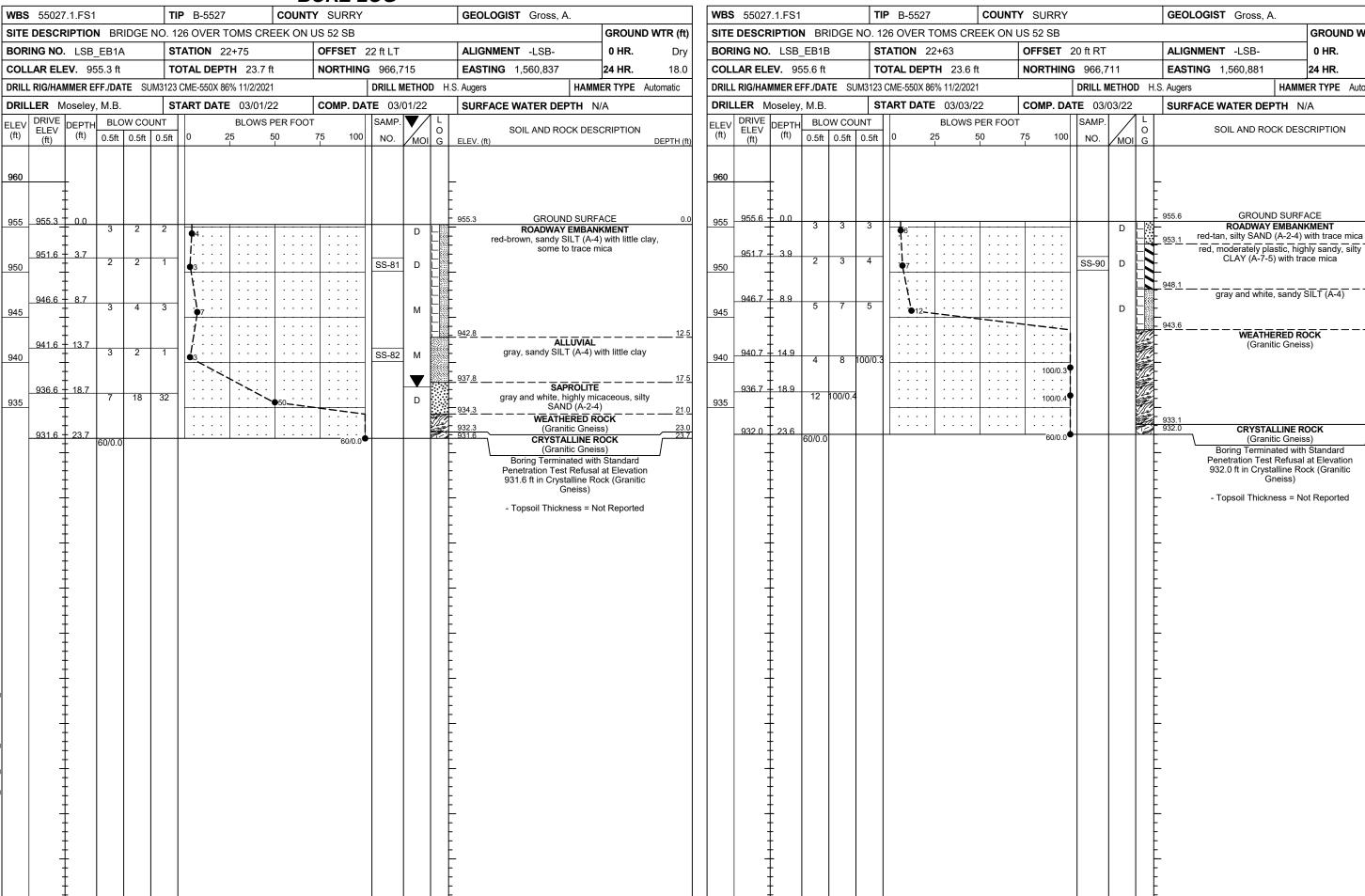
CLAY (A-7-5) with trace mica

gray and white, sandy SILT (A-4)

WEATHERED ROCK

(Granitic Gneiss)

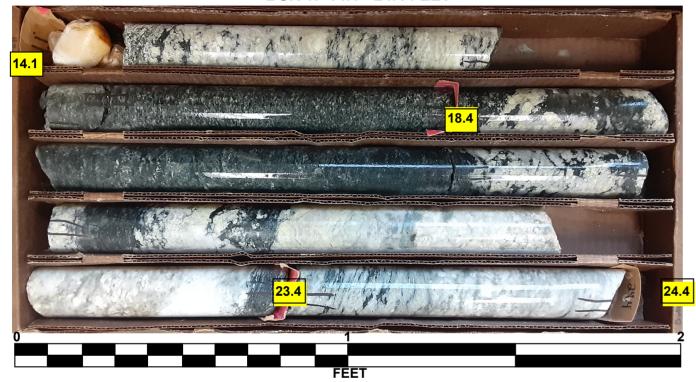
CRYSTALLINE ROCK


(Granitic Gneiss)

Boring Terminated with Standard Penetration Test Refusal at Elevation

932.0 ft in Crystalline Rock (Granitic

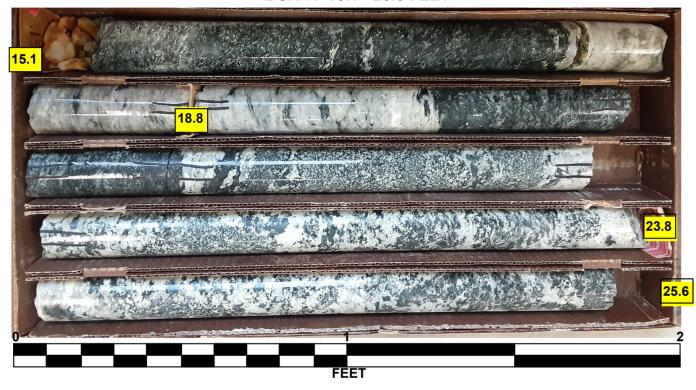
- Topsoil Thickness = Not Reported


HAMMER TYPE Automatic

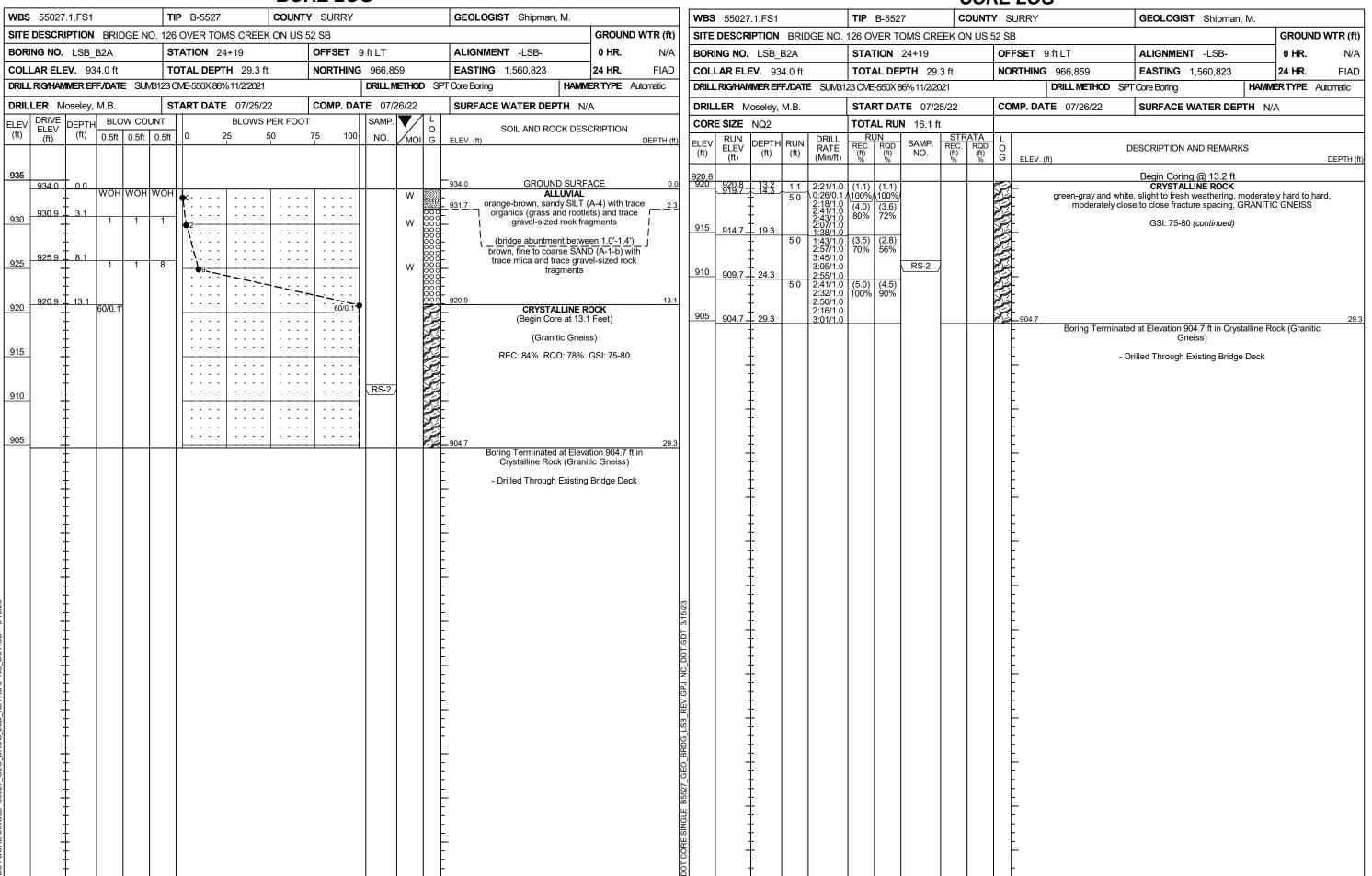
COUNTY SURRY GEOLOGIST Shipman, M. WBS 55027.1.FS1 **TIP** B-5527 SITE DESCRIPTION BRIDGE NO. 126 OVER TOMS CREEK ON US 52 SB **GROUND WTR (ft)** ALIGNMENT -LSB-BORING NO. LSB_B1A **STATION** 23+39 OFFSET 8 ft LT 0 HR. N/A COLLAR ELEV. 933.7 ft TOTAL DEPTH 28.4 ft **NORTHING** 966,780 **EASTING** 1,560,839 24 HR. FIAD **DRILL RIG/HAMMER EFF/DATE** SUN3123 CME-550X 86% 11/2/2021 DRILL METHOD SPT Core Boring HAMMER TYPE Automatic DRILLER Moseley, M.B. **START DATE** 07/27/22 **COMP. DATE** 07/27/22 SURFACE WATER DEPTH N/A ELEV DRIVE DEPTH BLOW COUNT **BLOWS PER FOOT** SAMP. ELEV (ft) MOI G SOIL AND ROCK DESCRIPTION (ft) 0.5ft 0.5ft 0.5ft 50 75 100 NO. DEPTH (ft) 935 GROUND SURFACE 933.7 933.2 ALLUVIAL W brown, silty SAND (A-2-4) with some gravel-sized rock fragments 930 930.0 (boulders from 0.1'-2.4') 928.2 brown, fine to coarse SAND (A-1-b) with W trace mica and organics 925 gray, silty SAND (A-2-4) with trace mica 923.2 1 10.5 and high organics 16 18 W 919.6 916.7 915.3 (0.8 ft section of wood in spoon) 920 CRYSTALLINE ROCK 918.2 15.5 (Begin Core at 14.1 Feet) 60/0.1 * *60/0.1'¶ . . . (Quartz) 18.4 915 REC: 10% RQD: 0% GSI: 30-35 (Granitic Gneiss) - - - -910 REC: 100% RQD: 77% GSI: 80-85 (Granitic Gneiss) REC: 97% RQD: 94% GSI: 85-90 Boring Terminated at Elevation 905.3 ft in Crystalline Rock (Granitic Gneiss) - Drilled Through Existing Bridge Deck

	CORE LOG															
WBS	55027	'.1.FS1			TIP	IP B-5527 COUNTY SURRY GEOLOGIST Shipman, M.										
			BRID	GE NO.	l										GROUND	WTR (ft)
BORI	NG NO.	LSB_I	B1A		STAT	TION	23+39			OF	OFFSET 8 ft LT ALIGNMENT -LSB-				0 HR.	N/A
COLI	AR ELE	EV . 93	3.7 ft		TOT	AL DEI	PTH 28.	4 ft		NC	RTHING	966,780	EASTING 1,560,839		24 HR.	FIAD
DRILL	RIG/HAN	/IMER EF	F./DATE	SUM312	23 CME	-550X8	6%11/2/20)21		•		DRILL METHOD SPT	Γ Core Boring	HAMM	ERTYPE A	utomatic
DRIL	LER M	loseley,	M.B.		STAF	RT DA	TE 07/2	7/22		СС	MP. DA	TE 07/27/22	SURFACE WATER DE	PTH N/	A	
COR	SIZE	NQ2		•	TOTA	AL RUI	1 14.3 ft									
ELEV (ft)	RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft) %	JN RQD (ft) %	SAMP. NO.	STR REC. (ft) %	ATA RQD (ft) %	L O G	ELEV. (DESCRIPTION AND REMAR	RKS		DEPTH (ft)
919.6											,		Begin Coring @ 14.1 ft			
	919.6 -	14.1	4.3	2:06/1.0 3:37/1.0	(2.7) 63%	(2.3) 53%					919.6	white moderately s	CRYSTALLINE ROCK severe weathering, hard, ver		close fracture	14.1
045	915.3	18.4		N=60/0.1' 5:01/1.0 3:14/1.0 0:41/0.3/	0070	0070					916.7 915.3	7	spacing, QUARTZ	y 0,000 to	ologo magan	17.0
915	910.0	10.4	5.0	3.14/1.0 \ <u>0:41/0.3</u> / 4:34/1.0	(4.8)	(4.8)					910.5	<u> </u>	GSI: 30-35			_/[
	-	‡		4:34/1.0 4:42/1.0 2:55/1.0 2:49/1.0 4:04/1.0	96%	96%					<u> </u>	hard, moderately o	e, very slight to fresh weathe close to close fracture spaci	ng, GRAN	eratery nard to ITIC GNEISS	
910	910.3	23.4	5.0	2:49/1.0 4:04/1.0 5:14/1.0	(4.9)	(4.6)					<u></u>		GSI: 80-85			
		‡	5.0	5:14/1.0 6:18/1.0 4:13/1.0	98%	92%					_	dark gray to gray moderately hard to	y-green and white, very sligh to hard, moderately close to	t to fresh v	weathering, ture spacing,	_
	905.3	28.4		2:07/1.0 2:43/1.0							905.3	,	GRANITIC GNEISS		1 3,	28.4
	-	20.4		∠. + J/1.U						7.3	- 303.3	Boring Terminate	GSI: 85-90 d at Elevation 905.3 ft in Cry	stalling D	nck (Granitic	
	-	‡									_	bonng rerminate	d at Elevation 905.3 ft in Cry Gneiss)	staillile K	OIIIIIIC (GIANIIIC	
	-	‡									_	- D	rilled Through Existing Brido	ge Deck		
		‡									_					
	-	‡									_					
	-	<u> </u>														
	-	ł									_					
	-	E														
	-	Ŧ									F					
	-	Ŧ									Ē					
	-	-									-					
	-	‡									-					
	-	‡									-					
	-	‡									-					
	-	‡									-					
	_	‡									_					
		‡									_					
	-	<u> </u>									-					
	-	‡									_					
	-	<u> </u>									_					
	_	ŧ									Ŀ					
		<u> </u>														
	-	Ŧ									F					
	-	Ŧ									<u> </u>					
		Ŧ									-					
	-	Ŧ									-					
	-	ļ									-					
	-	‡									Ė					
	-	‡									<u> </u>					
	-	‡									<u> </u>					
	-	‡									-					
	-	‡									_					
	-	<u> </u>									E					
		<u> </u>									<u>-</u>					

LSB_B1ABOX 1: 14.1 - 24.4 FEET


LSB_B1A BOX 2: 24.4 - 28.4 FEET

COUNTY SURRY **WBS** 55027.1.FS1 **TIP** B-5527 GEOLOGIST Shipman, M. & Gross, A. **GROUND WTR (ft)** SITE DESCRIPTION BRIDGE NO. 126 OVER TOMS CREEK ON US 52 SB **STATION** 23+39 ALIGNMENT -LSB-BORING NO. LSB_B1B OFFSET 16 ft RT 0 HR. 9.6 COLLAR ELEV. 934.0 ft TOTAL DEPTH 28.8 ft **NORTHING** 966,785 **EASTING** 1,560,862 24 HR. 10.1 **DRILL RIG/HAMMER EFF./DATE** SUN3123 CME-550X 86%11/2/2021 **DRILL METHOD** SPT Core Boring HAMMER TYPE Automatic DRILLER Moseley, M.B. **START DATE** 08/03/22 **COMP. DATE** 08/03/22 SURFACE WATER DEPTH N/A ELEV DRIVE DEPTH BLOW COUNT **BLOWS PER FOOT** SAMP. ELEV (ft) SOIL AND ROCK DESCRIPTION (ft) 0.5ft 0.5ft 0.5ft 75 100 NO. 935 **GROUND SURFACE** ALLUVIAL 932.5 + 1.5 brown to gray, fine to coarse SAND (A-1-b) W with trace organics (wood) and trace 930 gravel- sized rock fragments (no sample recovered at 6.5 ft run) 927.5 925 922.5 + 11.5 W 920 919.0 1 15.0 60/0.1 CRYSTALLINE ROCK (Begin Core at 15.1 Feet) 915 (Granitic Gneiss) REC: 89% RQD: 88% GSI: 80-85 910 Boring Terminated at Elevation 905.2 ft in Crystalline Rock (Granitic Gneiss) - Drilled Through Existing Bridge Deck


										' I X I								
WBS	55027	.1.FS1			TIP	B-552	7	C	OUNT	Y S	URRY			GEOLOGIST S	Shipman,	M. & Gr	oss, A.	
SITE	DESCR	IPTION	BRID	OGE NO.	126 O\	/ER T	R TOMS CREEK ON US 52 SB GRO					GROUN	ND WTR (ft)					
BOR	ING NO.	LSB_	B1B		STAT	TION 23+39 OFFSET 16 ft RT A					ALIGNMENT -L	LSB-		0 HR.	9.6			
COL	LAR ELI	EV . 93	4.0 ft		TOTA	AL DEI	PTH 28.	8 ft		NO	RTHING	966,785		EASTING 1,560	0,862		24 HR.	10.1
DRIL	L RIG/HAN	IMER EF	F./DATI	E SUM312	23 CME	-550X 8	6%11/2/20)21				DRILL METHOD	SPT	Core Boring		HAMME	RTYPE	Automatic
DRIL	LER M	oseley,	M.B.		STAF	RT DA	TE 08/0	3/22		СО	MP. DA	TE 08/03/22		SURFACE WAT	ER DEPT	TH N/A	١	
COR	E SIZE	NQ2			TOTA	AL RUI	1 13.7 ft	t										
ELEV (ft)	RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft) %	JN RQD (ft) %	SAMP. NO.	STR REC. (ft) %	RQD (ft) %	L O G	ELEV. (ft)	DI	ESCRIPTION AND F	REMARKS	3		DEPTH (ft)
918.9											,	,		Begin Coring @	15.1 ft			
915	918.9	15.1 18.8	3.7	2:31/1.0 4:42/1.0 3:48/1.0	(2.4) 65%	(2.0) 54%					- - -			CRYSTALLINE d black, slight to fres e to wide fracture sp	ROCK sh weather			
913	-		5.0	2:20/0.7 3:27/1.0 3:28/1.0 3:38/1.0	(5.0) 100%	(5.0) 100%					- - -			GSI: 80-85 (con	ntinued)			
910	910.2	23.8	5.0	3:01/1.0 2:23/1.0 8:06/1.0 3:05/1.0	(4.8) 96%	(4.8) 96%					- - -							
	905.2	28.8		3:55/1.0 4:17/1.0 2:20/1.0	0070	0070					905.2	Davis Tarre	:	-4 Flouris - 005 0.6	# : O	-III D-	-l. (C:	28.8
												boning reim	mated	at Elevation 905.2 f Gneiss)		alline Ro	ck (Grani	uc
	:	<u> </u>									- - -		- Dr	illed Through Existir	ng Bridge	Deck		
											- - -							
	-	<u> </u>									- - -							
	_										- - -							
		<u> </u>									- - -							
	-	<u> </u>									- - -							
	-										- - -							
	-	 									- - -							
	-	<u> </u>									- - -							
											- - -							
	-	<u> </u>									- - -							
	-	<u> </u>									- - -							
	- -	<u>-</u>									- - -							
	-	<u> </u>									- - -							
	-										- - - -							
	-	 									- - -							
		<u> </u>									- - -							
	-	<u> </u>									<u>-</u> -							
	-	<u> </u>									- - -							

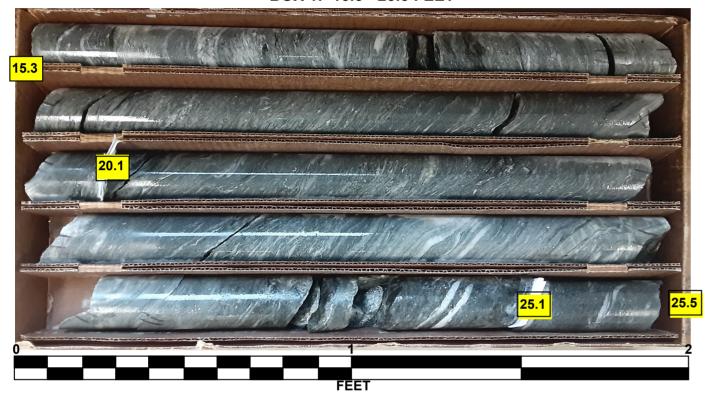
LSB_B1B BOX 1: 15.1 - 25.6 FEET

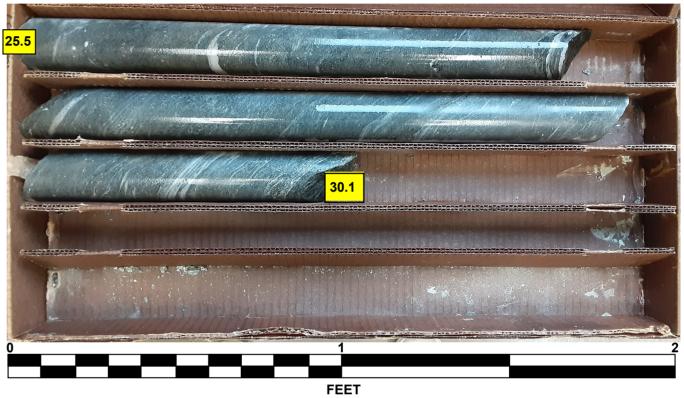
LSB_B1B BOX 2: 25.6 - 28.8 FEET

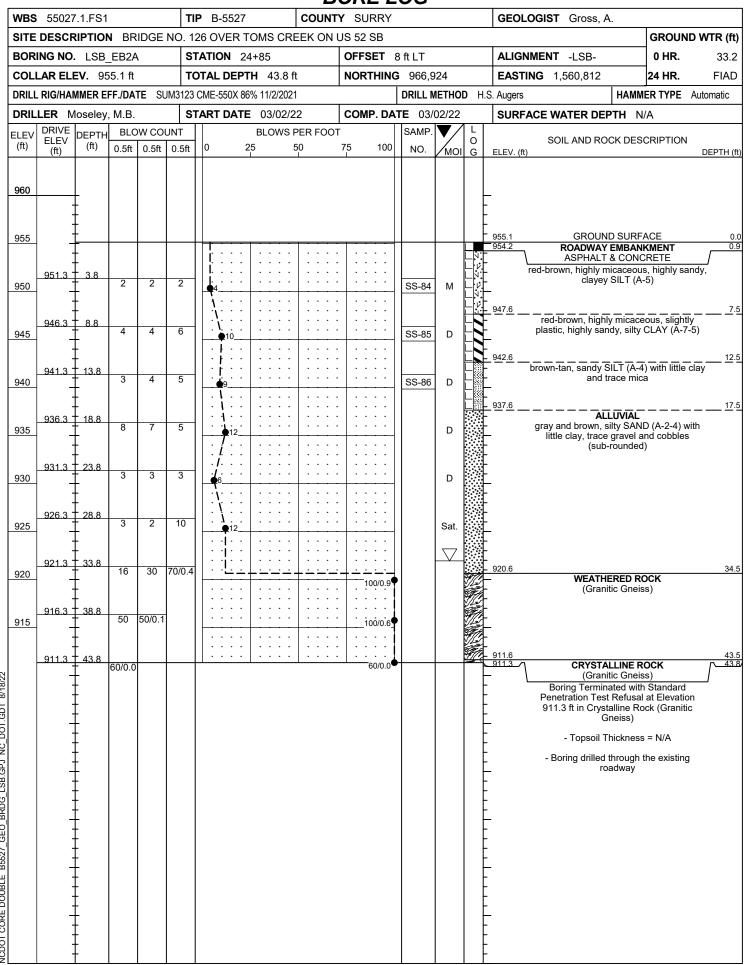
LSB-B2A

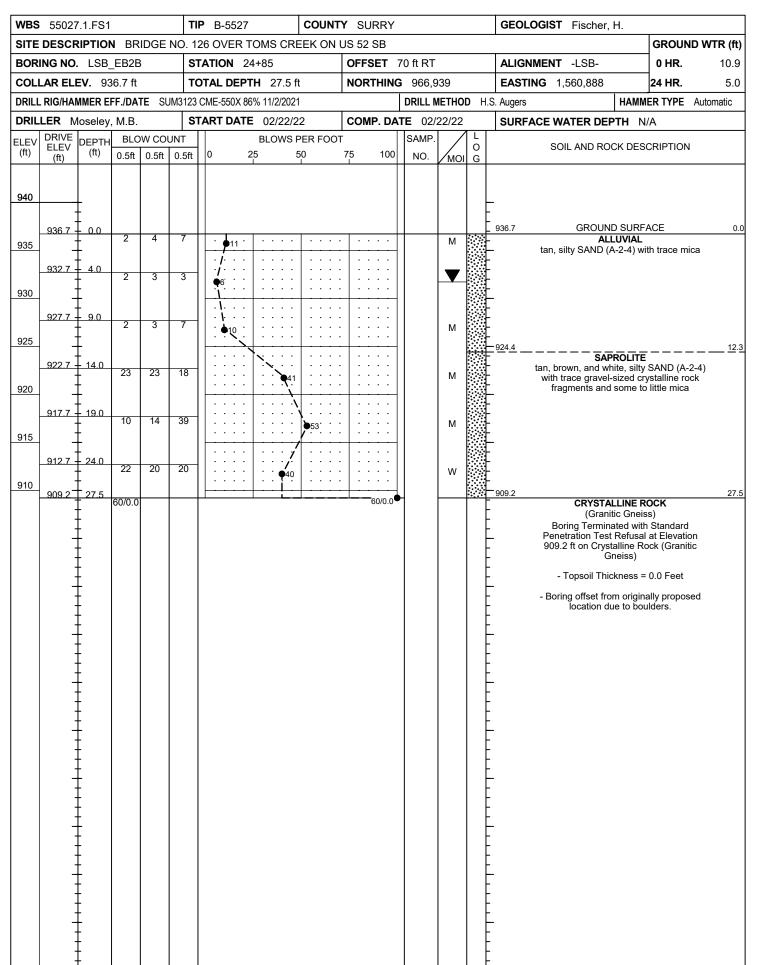
BOX 1: 13.1 - 23.0 FEET

LSB_B2ABOX 2: 23.0 - 29.2 FEET




	BURE LUG					CORE LOG		
WBS 55027.1.FS1	TIP B-5527 COUNTY SURRY	GEOLOGIST Gross, A.		WBS 55027.1.FS1	TIP B-5527 COUN	TY SURRY	GEOLOGIST Gross, A.	
SITE DESCRIPTION BRIDGE NO.	. 126 OVER TOMS CREEK ON US 52 SB	·	GROUND WTR (ft)	SITE DESCRIPTION BRIDGE NO. 1	126 OVER TOMS CREEK ON US	S 52 SB		GROUND WTR (ft)
BORING NO. LSB_B2B	STATION 24+19 OFFSET 17 ft RT	ALIGNMENT -LSB-	0 HR. 7.2	BORING NO. LSB_B2B	STATION 24+19	OFFSET 17 ft RT	ALIGNMENT -LSB-	0 HR. 7.2
COLLAR ELEV. 934.4 ft	TOTAL DEPTH 30.1 ft NORTHING 966,864	EASTING 1,560,848	24 HR. 12.6	COLLAR ELEV. 934.4 ft	TOTAL DEPTH 30.1 ft	NORTHING 966,864	EASTING 1,560,848	24 HR. 12.6
DRILL RIG/HAMMER EFF/DATE SUM3	123 CME-550X 86%11/2/2021 DRILL METH	OD SPT Core Boring HAN	IMERTYPE Automatic	DRILL RIG/HAMMER EFF/DATE SUMB12	23 CME-550X 86% 11/2/2021	DRILL METHOD S	PT Core Boring HAV	MERTYPE Automatic
DRILLER Moseley, M.B.	START DATE 08/03/22 COMP. DATE 08/04/2	SURFACE WATER DEPTH	N/A	DRILLER Moseley, M.B.	START DATE 08/03/22	COMP. DATE 08/04/22	SURFACE WATER DEPTH	√/A
ELEV DRIVE DEPTH BLOW COUN	BLOWS PER FOOT SAMP.	L SOIL AND ROCK DE	SCRIPTION		TOTAL RUN 14.8 ft			
(ft) CLEV (ft) 0.5ft 0.5ft 0		OI G ELEV. (ft)	DEPTH (ft)	ELEV RUN ELEV (ft) DEPTH RUN (ft) RATE (Min/ft)	RUN SAMP. REC. RQD R(ft) (ft) (ft)	C C C C C C C C C C C C C C C C C C C	DESCRIPTION AND REMARKS	DEPTH (ft)
935 934.4 0.0		— 934.4 GROUND SUF	RFACE 0.0	919.1	(4.0) (0.4)		Begin Coring @ 15.3 ft CRYSTALLINE ROCK	
	7	932.9 brown and gray, silty SA	FILL 1.5	919.1 15.3 4.8 2:52/1.0 2:58/1.0 2:35/1.0	88% 71%	gray to gray-greer	and white, very slight to fresh weather	red, hard to very
931.9 2.5	1 2 · · · · · · · · · · · · · · · N	brown and gray, silty SA trace organics (wood ch	unks) and trace	915 914.3 + 20.1 3:12/1.0		nard, moderater	y close to wide fracture spacing, GRA	VITIC GNEISS
T I I	<u> </u>	ALLUVIA red-brown to red-tan, sil	L	5.0 3:30/1.0 2:55/1.0	(4.8) (4.4) 96% 88%		(Biotite-rich lense at 24.1'-25.1')	
	2 N	with trace m	nica				GSI: 80-85 (continued)	
925		924.5	9.9	909.3 + 25.1 3:18/1.0 5.0 2:45/1.0	(4.8) (4.8) 96% 96%	gray to gray-greer hard, moderated		
922.6 + 11.8 21 47 53		SAPROLIT gray, micaceous silty	SAND (A-2-4) _{12.5}		96% 96%			
920 919.6 14.8	100/0.8	WEATHERED 919.6 (Granitic Gno		905 904.3 30.1 2:37/1.0 2:14/1.0		904.3		30.1
919.6 - 14.8 60/0.0'		919.6 (Granitic Gne CRYSTALLINE (Begin Core at 15 (Granitic Gne REC: 93% RQD: 84%)	ROCK	1 [Boring Termina	ted at Elevation 904.3 ft in Crystalline Gneiss)	Rock (Granitic
		(Granitic Gne	<i>,</i>	$ \ \ \ \ \ \ \ \ \ \ $		<u> </u> -	Drilled Through Existing Bridge Deck	
915		REC: 93% RQD: 849						
		NEC. 95 / 1 NQD. 04/	0 001. 00-00					
910						-		
905								
+		Boring Terminated at Ele	30.1 vation 904.3 ft in					
		Crystalline Rock (Gra	initic Gneiss)					
		- Drilled Through Existin	ng Bridge Deck			-		
		-				-		
		F						
		F						
		F				F		
		I E				F		
4 15/2 +		1 <u>E</u>		1818		[
		<u> </u>						
9.100		_		9:		<u> </u>		
		-						
3								
						-		
		-						
<u> </u>				 				
# B8252		-		Here				
								l
80 + -		F		N				
yı †		ΙГ		1월 🕇		1 -		


LSB_B2B


BOX 1: 15.3 - 25.5 FEET

LSB_B2B BOX 2: 25.5 - 30.1 FEET

FALCON ENGINEERING, INC. 1210 TRINITY ROAD, SUITE 110 CARY, NC 27513

UNCONFINED COMPRESSIVE STRENGTH OF ROCK

PHONE: 919.871.0800 www.falconengineers.com

Tested By: C. Sullivan Test Date: 2022-15-09 Project No.: 55027

Project Name: B-5527

Sample ID: RS-02 Boring ID: LSB_B2A Sample Depth: 22.2-22.6 ft

Sample Description: Gray Schist

<u>Initial Specimen Measurements</u>

Diameter: 1.980 in L/D: 2.24

Area: 3.079 in² Length: 4.43 in Weight: 604.1 g Unit Weight: 168.7 pcf

LOAD TEST DATA

Deflection Reading (in)	Load Reading (lb)	Strain (%)	Stress (psi)
0.000	0	0.000	0
0.005	1510	0.113	490
0.010	2940	0.226	950
0.015	6070	0.339	1970
0.020	10800	0.451	3510
0.023	14810	0.519	4810

Strain Rate: %/min

Failure Mode:

Remarks:

Note: Uniaxial compressive strength was determined in general accordance with ASTM D7012-14 Method C. Deflection, Strain, and Young's modulus (E) data of the provided for reference only and is not intended to be in accordance with ASTM D7012-14 Method D as deflection and strain is not measured in Gis provided for reference only and is not intended to be in accordance with OASTM D7012-14 Method D as deflection and strain is not measured in Saccordance with that procedure. Young's Modulus is calculated using this data to determine the secant modulus at each data interval per Figure 2 (C) in ASTM ²D 7012-14.

