March 23, 2021

North Carolina Department of Transportation Attention: Mr. John Pilipchuk, LG, PE GeoEnvironmental Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Re: Phase II Preliminary Site Assessment Report NC 55 from South of SR 1532 to North of NC 210 Parcel 29 - Carrie Bullard Property 4798 NC 55, Angier, Harnett County, North Carolina TIP No. R-5705A WBS Element: 46377.1.2

Dear Mr. Pilipchuk:

Terracon Consultants, Inc. (Terracon) is pleased to submit this Phase II Preliminary Site Assessment (PSA) Report for the above referenced site. This assessment was performed in accordance with our *Revised Proposal for GeoEnvironmental Phase II Site Investigations* (Terracon Proposal No. P70207241) dated December 8, 2020. This report includes the findings of the investigation and provides our conclusions and recommendations. Terracon appreciates the opportunity to provide these services to the North Carolina Department of Transportation. If you have any questions concerning this report or need additional information, please contact us at 919-873-2211.

Sincerely,

Terracon Consultants, Inc.

DocuSigned by: Martin ter -5ABC0739D7334DC...

James M. Perry **Field Scientist**

DocuSigned by: onaldendal -67EB838805B1477.

Donald R. Malone, PE, RSM Senior Engineer

DocuSigned by: Eller C. Dunhlo

Ethan C. Dinwiddie, GIT Field Geologist

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

Terracon Consultants, Inc. 2401 Brentwood Road, Suite 107 Raleigh, NC 27604 P [919] 873 2211 F [919] 873 9555 terracon.com

NC 55 from South of SR 1532 to North of NC 210 Parcel 29 - Carrie Bullard Property 4798 NC 55, Angier, Harnett County, North Carolina TIP No. R-5705A WBS Element: 46377.1.2 March 23, 2021

Prepared for:

North Carolina Department of Transportation Raleigh, North Carolina

Prepared by:

Terracon Consultants, Inc. Raleigh, North Carolina

Terracon Project No. 70207241

NC 55 from South of SR 1532 to North of NC 210

Parcel 29 - Carrie Bullard Property

4798 NC 55, Angier, Harnett County, North Carolina

TIP No. R-5705A WBS Element: 46377.1.2 March 23, 2021 Terracon Project No. 70207241

DocuSigned by - Peru

James M. Perry Field Scientist

DocuSigned by: H. Dinihlo 076CA5FA770E478

Ethan C. Dinwiddie, Gu

Donald R. Malone, PE Senior Engineer

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

Terracon Consultants, Inc. 2401 Brentwood Road, Suite 107 Raleigh, NC 27604 P [919] 873 2211 F [919] 873 9555 terracon.com

TABLE OF CONTENTS

Page No.

1.0	INTRODUCTION	1
1.1	Site Description	1
1.2	Site History	
1.3	Scope of Work	1
1.4	Standard of Care	2
1.5	Additional Scope Limitations	2
1.6	Reliance	2
2.0	FIELD ACTIVITIES	2
2.1	Geophysical Survey	3
2.2	Soil Sampling	
2.3	Groundwater Sampling	
3.0	LABORATORY ANALYSES	
4.0	DATA EVALUATION	6
4.1	Soil Analytical Results	6
4.2	Groundwater Analytical Results	6
5.0	CONCLUSIONS AND RECOMMENDATIONS	
6.0	REFERENCES	8

EXHIBITS

- Exhibit 1 Topographic Vicinity Map
- Exhibit 2 State of North Carolina, Division of Highways Conventional Plan Sheet Symbols
- Exhibit 3 Boring Locations and Summarized Soil and Groundwater Sample Results

TABLES

- Table 1 Summary of PID Field Screening Values
- Table 2 Summary of Soil Analytical Results
- Table 3 Summary of Groundwater Analytical Results

APPENDICES

- Appendix A Geophysical Survey Report
- Appendix B Photographs
- Appendix C Soil Boring Logs
- Appendix D Groundwater Sampling Log
- Appendix E Laboratory Analytical Reports and Chain-of-Custody Records

PHASE II PRELIMINARY SITE ASSESSMENT REPORT

NC 55 FROM SOUTH OF SR 1532 TO NORTH OF NC 210 TIP NO. R-5705A WBS ELEMENT: 46377.1.2 PARCEL 29 - CARRIE BULLARD PROPERTY 4798 NC 55, ANGIER, HARNETT COUNTY, NORTH CAROLINA

1.0 INTRODUCTION

1.1 Site Description

Site Name	Carrie Bullard Property (4798 NC 55, Angier)
Site Location/Address	4798 NC 55, Angier, Harnett County, North Carolina
General Site Description	The site consists of an approximate 0.58-acre portion of a 0.75-acre parcel and is developed with an approximate 4,800 square foot building. The remainder of the site consisted of paved parking areas and grassed areas.

1.2 Site History

At the time of the Phase II Preliminary Site Assessment (PSA), the site was observed to contain an approximate 4,800 square foot building that operated as a thrift store. The remainder of the site consisted of paved parking areas and grassed areas. According to a GeoEnvironmental Planning Report dated September 26, 2018, the design of the building suggests it may have been a convenience store/gas station at one time (Terracon, 2020). The address is not listed in the North Carolina Department of Environmental Quality (NCDEQ), Division of Waste Management, Underground Storage Tank (UST) section registry. Additional historical records were not available for review.

1.3 Scope of Work

Terracon conducted the following PSA scope of work in accordance with Terracon's Proposal No. P70207241 dated December 8, 2020. This PSA is being completed prior to a planned upgrade to NC 55 from South of SR 1532 (Oak Grove Church Road) to North of NC 210. The scope of work included a geophysical investigation, the collection of soil and groundwater samples, and preparation of a report documenting our investigation activities. The PSA is not intended to delineate potential impacts. The PSA was performed within the proposed rights-of-way (ROW) as indicated by North Carolina Department of Transportation (NCDOT) provided plan sheets.

Phase II Preliminary Site Assessment Report Parcel 29 – Carrie Bullard Property 4798 NC 55, Angier, Harnett County, NC March 23, 2021
Terracon Project No. 70207241

Terracon

1.4 Standard of Care

Terracon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. Terracon makes no warranties, either expressed or implied, regarding the findings, conclusions or recommendations. Please note that Terracon does not warrant the work of laboratories, regulatory agencies or other third parties supplying information used in the preparation of the report. These services were performed in accordance with our *Revised Proposal for GeoEnvironmental Phase II Site Investigations* (Terracon Proposal No. P70207241) dated December 8, 2020 and were not necessarily conducted in strict accordance with ASTM E1903-11.

1.5 Additional Scope Limitations

Findings, conclusions, and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, undetectable or not present during these services; thus, we cannot represent that the site is free of hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this PSA. Subsurface conditions may vary from those encountered at specific borings or wells or during other surveys, tests, assessments, investigations or exploratory services; the data, interpretations, findings, and our recommendations are based solely upon data obtained at the time and within the scope of these services.

1.6 Reliance

This report has been prepared for the exclusive use of the NCDOT. Authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the site) is prohibited without the expressed written authorization of the client and Terracon.

2.0 FIELD ACTIVITIES

The following PSA activities are presented in the order that they were conducted in the field. **Exhibit 1** presents the topography of the site on a portion of the USGS topographic quadrangle map of Coats, North Carolina, 1997. **Exhibit 2** depicts conventional plan sheet symbols used by the NCDOT, Division of Highways. **Exhibit 3** depicts the site layout and indicate the approximate locations of the site features, soil boring and temporary well locations, and analytical results.

Phase II Preliminary Site Assessment Report Parcel 29 – Carrie Bullard Property 4798 NC 55, Angier, Harnett County, NC March 23, 2021
Terracon Project No. 70207241

2.1 Geophysical Survey

On January 21 and 22, 2021, Terracon conducted a geophysical investigation at the site in an effort to determine if unknown, metallic USTs or other geophysical anomalies were present beneath the proposed ROW area. The geophysical investigation included an electromagnetic (EM) induction survey using a Geonics EM31-SH metal detection instrument and a ground penetrating radar (GPR) survey using a Geophysical Survey Systems SIR-4000 unit. In addition to metal detection and GPR scans, NC One Call public utility locator was used to identify several underground utility lines and to clear boring locations. A copy of the geophysical report is in **Appendix A**.

The geophysical investigation identified two probable metallic USTs located north of the on-site building and within the proposed ROW area. The probable USTs measured approximately 14 and 17 feet long and were located approximately 2.5 feet below land surface (bls). This area of the site was covered by grass and fill ports were observed in association with the probable USTs, although other surface features such as vent pipes were not observed. Terracon was unable to remove the fill port of the probable USTs to evaluate the presence of petroleum products within the USTs. Additionally, several possible fuel lines were identified in the geophysical investigation extending from the USTs to the southeast and southwest.

Terracon also identified three locations (two west of the on-site building and one north of the building) within the proposed ROW where former fuel dispensers were possibly located. The two locations west of the on-site building were identified by rectangular asphalt patches and the location north of the on-site building was identified by GPR. Photographs of the site and relevant site features are in **Appendix B**.

2.2 Soil Sampling

Based on the findings of the geophysical investigation and Terracon's site observations, Terracon oversaw the advancement of eight soil borings (29-SB-01 through 29-SB-08) throughout the parcel and within the proposed NCDOT ROW. The borings were completed by a North Carolina Certified Well Contractor (Regional Probing Services, Inc. [Regional Probing]) using a truck-mount Geoprobe[®] 5410 direct-push drill rig.

Terracon collected soil samples in 5-foot long, disposable, Macro-Core[®] sampler tubes to document soil lithology, color, moisture content, and sensory evidence of impacts. Each soil sample was screened for organic vapors using an 11.7 electron volt photoionization detector (PID). The PID data was collected to select the most appropriate sample intervals for laboratory analyses and to corroborate with the laboratory data. PID readings from the borings ranged from

Phase II Preliminary Site Assessment Report Parcel 29 – Carrie Bullard Property 4798 NC 55, Angier, Harnett County, NC March 23, 2021
Terracon Project No. 70207241

less than the instrument detection limit of 0.1 parts per million (ppm) to 1,697 ppm. The highest PID readings were in 29-SB-04. The PID screening values are summarized in **Table 1**.

Terracon directed Regional Probing to advance each soil borings to a depth of approximately 10 feet below land surface (bls). Based on the results of the field screening, seven soil samples, one from each boring, were collected from depths between approximately 2 feet and 10 feet bls. Soil samples were collected generally from the depth interval with the greatest PID reading. Samples were placed in laboratory provided sample containers, packed in an iced cooler, and shipped to REDLAB/QROS, LLC – Environmental Testing (REDLAB) for analysis by Ultraviolet Fluorescence (UVF).

While on-site for the soil sampling event, Terracon directed the driller to advance two borings, down-gradient of the probable USTs, in order to further assess the probable USTs, and three borings (one near each location) adjacent to the possible former fuel dispenser locations. Borings 29-SB-05 and 29-SB-06 were advanced on the eastern side of the probable USTs and borings 29-SB-03, 29-SB-04, and 29-SB-07 were advanced near the possible former fuel dispenser locations. Field screening of the soils and soil samples collected beside the probable USTs did not indicate a release has occurred. Field screening of the soils and soil samples collected beside the former fuel dispenser locations indicated a release had occurred near the former fuel dispenser evaluated by 29-SB-04; however, there was not an indication a release had occurred at the other two fuel dispenser locations. An additional boring, 29-SB-08, was advanced to evaluate the potential extent of contamination identified at 29-SB-04 along the possible fuel line to the USTs. Field screening of soil from 29-SB-08 did not indicate contamination extended along the possible fuel line to the USTs.

The drilling equipment used at the site was decontaminated prior to use and between the advancement of each boring. Non-dedicated sampling equipment was decontaminated using a Liquinox[®]-water wash followed by a distilled water rinse. Each of the boreholes was backfilled with soil cuttings and bentonite pellets. Surface completion was achieved with either dirt or asphalt cold patch. Remaining investigation derived waste was spread on the site.

Soil generally consisted of silty fine- to coarse-grained sand with some clay. Wet to saturated soils were observed at a depth of approximately 8 feet bls in the majority of the soil borings. The soil boring logs are included in **Appendix C**. Sample locations were measured using a sub-foot Trimble Geo7X GPS unit and are depicted on **Exhibit 3**.

2.3 Groundwater Sampling

Based on the results of the field screening, boring 29-SB-04 was advanced to 13 feet bls on February 2, 2021 and converted to temporary monitoring well 29-TW-01, which was constructed

as follows:

- Installation of a 10-foot section of 1-inch diameter, 0.010-inch machine slotted polyvinyl chloride (PVC) well screen;
- Installation of a 5-foot section of 1-inch diameter, threaded, flush-joint PVC riser pipe to the approximately 2 feet above ground surface; and
- Placement of sand in the borehole annulus to approximately 2 feet above the screened interval, followed by a layer of hydrated bentonite.

After installation, the depth to groundwater in the temporary well was measured at 5.30 feet bls. A groundwater sample was collected from 29-TW-01 using low-flow sampling techniques (i.e., <200 milliliters per minute). Groundwater parameters (pH, specific conductivity, dissolved oxygen, oxidation-reduction potential, and temperature.) were monitored and the well was purged until the parameters stabilized (i.e., three consecutive readings were within approximately 5 percent of one another). After the purging was completed, Terracon collected the sample directly into laboratory supplied-containers and packed the sample in an iced cooler.

The groundwater sample collected from the temporary well was shipped to Pace Analytical, Inc. (Pace) in Columbia, North Carolina for analysis of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) by United States Environmental Protection Agency (USEPA) Method 8260D and USEPA Method 8270E, respectively.

The groundwater sampling log is included in **Appendix D**. The temporary monitory well location is depicted on **Exhibit 3**.

3.0 LABORATORY ANALYSES

Soil samples were submitted to REDLAB for analysis of the following:

- TPH-gasoline range organics (C₅-C₁₀) (TPH-GRO);
- TPH-diesel range organics (C₁₀-C₃₅) (TPH-DRO);
- Total petroleum hydrocarbons (C₅-C₃₅) (TPH);
- Benzene, toluene, ethylbenzene, and xylenes (BTEX);
- Total aromatics (C₁₀-C₃₅);
- 16 EPA Polycyclic Aromatic Hydrocarbons (16 EPA PAHs); and
- Benzo(a)pyrene (BaP).

Groundwater samples were submitted to Pace for analysis of the following:

- EPA Method 8260D for VOCs; and
- EPA Method 8270E for SVOCs.

Please refer to **Appendix E** for the laboratory analytical reports.

4.0 DATA EVALUATION

4.1 Soil Analytical Results

Table 2 summarizes the results of the analyses of the soil samples. **Exhibit 3** depicts the boring locations and detected compounds. Laboratory analysis identified the following detections above the laboratory reporting limits in soil samples 29-SB-03, 29-SB-04, and 29-SB-06:

- BTEX was reported within 29-SB-04 at a concentration of 17.6 milligrams per kilogram (mg/kg);
- TPH-GRO was reported within 29-SB-04 and 29-SB-06 at concentrations of 55.3 and 1.3 mg/kg, respectively;
- TPH-DRO was reported within 29-SB-03 and 29-SB-04 at concentrations of 0.90 and 3.6 mg/kg, respectively;
- TPH was reported within the three samples at concentrations ranging from 0.90 to 58.9 mg/kg; and
- Total aromatics (C₁₀-C₃₅) was reported within 29-SB-03 and 29-SB-04 at concentrations of 0.38 and 2.7 mg/kg, respectively.

BTEX, TPH-GRO, TPH-DRO, TPH, and Total aromatics (C_{10} - C_{35}) were not reported above laboratory reporting limits in soil samples 29-SB-01, 29-SB-02, 29-SB-05, and 29-SB-07. Additionally, 16 EPA PAHs and BaP were not reported above laboratory reporting limits in any of the soil samples.

Laboratory analysis identified concentrations of TPH-GRO in excess of the NCDEQ Action Level of 50 mg/kg within 29-SB-04; however, the detected concentration of TPH-DRO did not exceed the NCDEQ Action Level of 100 mg/kg. The concentrations of TPH-GRO and TPH-DRO detected within 29-SB-03 and 29-SB-06 did not exceed NCDEQ Action Levels.

4.2 Groundwater Analytical Results

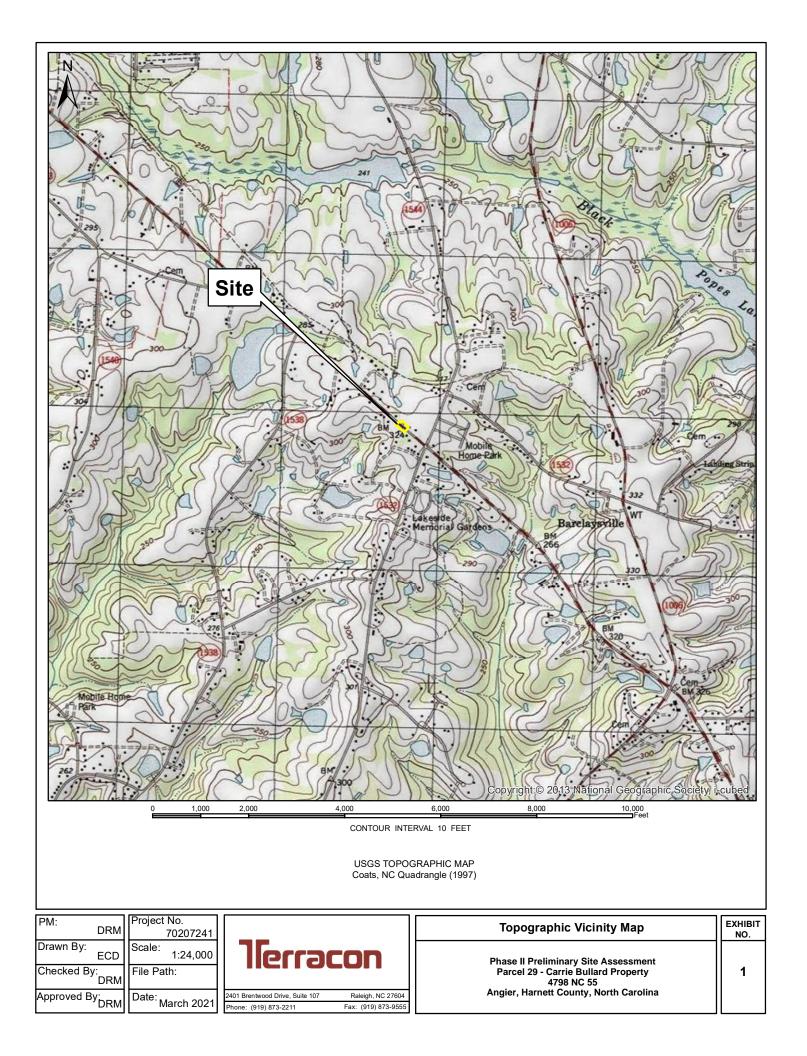
Table 3 summarizes the results of the analyses of groundwater sample 29-TW-01. **Exhibit 3** depicts the groundwater sample location and detected compounds. Laboratory analysis identified the following detections above the laboratory reporting limits in the groundwater sample collected from 29-TW-01:

- The following VOCs were detected within 29-TW-01: benzene, cyclohexane, ethylbenzene, isopropylbenzene, methylcyclohexane, toluene, and total xylenes. The detected concentrations of benzene, ethylbenzene, isopropylbenzene, toluene, and total xylenes exceeded the Title 15A North Carolina Administrative Code 2L Groundwater Quality Standards (2L Standards).
- The following SVOCs were detected within 29-TW-01: 2-methylnaphthalene and naphthalene. Both constituents exceeded the 2L Standards.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The findings of this investigation are discussed below.

- The geophysical investigation identified two probable metallic USTs located north of the on-site building and within the proposed ROW area. The probable USTs measured approximately 14 and 17 feet long and were located approximately 2.5 feet bls. Fill ports were observed in association with the probable USTs. Additionally, several possible fuel lines were identified extending from the USTs to the southeast and southwest towards possible former fuel dispenser locations located west and north of the on-site building.
- Laboratory analyses reported concentrations of BTEX, TPH-GRO, TPH-DRO, TPH, and Total Aromatics in three soil borings at the site. The detected concentration of TPH-GRO exceeded the NCDEQ Action Level in 29-SB-04 in at least the 6 to 8 feet bls range. The detected concentrations of these compounds did not exceed the NCDEQ Action Levels in 29-SB-03 and 29-SB-06.
- The area of contamination appears to within the vicinity of 29-SB-04 and could be associated with releases from a former on-site fuel line or dispenser. An estimated volume of petroleum impacted soil located within the ROW is 100 cubic yards. This calculation assumes an approximate area of 920 square feet and depths ranging from land surface to 3 feet bls. The actual amount of impacted soil can only be determined after excavation or by advancing additional borings at the site to further delineate the extents of contamination. This area would best be managed as a fill area, to avoid potentially impacted soil and groundwater.
- Laboratory analysis reported concentrations of multiple VOCs and SVOCs within groundwater at the site. The detected concentrations of benzene, ethylbenzene, isopropylbenzene, toluene, total xylenes, 2-methylnaphthalene, and naphthalene exceeded the 2L Standard in the groundwater sample collected from 29-TW-01.
- Terracon recommends NCDOT provide a copy of the results to the owner and/or operator of the site and to NCDEQ.



Terracon does not recommend further assessment of the ROW at this site. However, based on the identified USTs and the detections of petroleum compounds, USTs and impacted soil and groundwater encountered during NCDOT's project should be managed and/or disposed in accordance with applicable local and State requirements. In addition, construction workers should be alert for potential soil and/or groundwater impacts at the site.

6.0 **REFERENCES**

- North Carolina Department of Environmental Quality, 2021. Guidelines for Site Checks, Tank Closure, and Initial Response and Abatement, January 19. Terracon Consultants, Inc., 2020.
- North Carolina Department of Transportation, 2018. GeoEnvironmental Planning Report. September 26.
- Revised Proposal for GeoEnvironmental Phase II Site Investigations, NC 55 from South of SR 1532 to North of NC 210. December 8.

EXHIBITS

STATE OF NORTH CAROLINA, DIVISION OF HIGHWAYS CONVENTIONAL PLAN SHEET SYMBOLS

BOUNDARIES AND PROPERTY:

State Line	
County Line	
Township Line	
City Line	
Reservation Line	· ·
Property Line	
Existing Iron Pin	– O
Computed Property Corner	
Property Monument	
Parcel/Sequence Number	
Existing Fence Line	
Proposed Woven Wire Fence	
Proposed Chain Link Fence	
Proposed Barbed Wire Fence	
Existing Wetland Boundary	
Proposed Wetland Boundary	
Existing Endangered Animal Boundary	
Existing Endangered Plant Boundary	
	нрв ———
Known Contamination Area: Soil	🔆 – s – 🔆 -
Potential Contamination Area: Soil	
Known Contamination Area: Water	
Potential Contamination Area: Water	
Contaminated Site: Known or Potential ——	
BUILDINGS AND OTHER CULT	
Gas Pump Vent or U/G Tank Cap	- 0
Sign	- <u>o</u>
Well	- 🖓
Small Mine	- 🛠
Foundation	
Area Outline	
Cemetery	+ _]
Building	
School	
Church	- +
Dam	
HYDROLOGY:	
Stream or Body of Water	
Sirediff of body of water	
Hydro, Pool or Reservoir	
Hydro, Pool or Reservoir Jurisdictional Stream	JSBZ 1
Hydro, Pool or Reservoir Jurisdictional Stream Buffer Zone 1	BZ 1 BZ 2
Hydro, Pool or Reservoir Jurisdictional Stream Buffer Zone 1 Buffer Zone 2 Flow Arrow Disappearing Stream	BZ 1
Hydro, Pool or Reservoir Jurisdictional Stream Buffer Zone 1 Buffer Zone 2 Flow Arrow Disappearing Stream	BZ 1
Hydro, Pool or Reservoir Jurisdictional Stream Buffer Zone 1 Buffer Zone 2 Flow Arrow Disappearing Stream	BZ 1 BZ 2

False Sump -

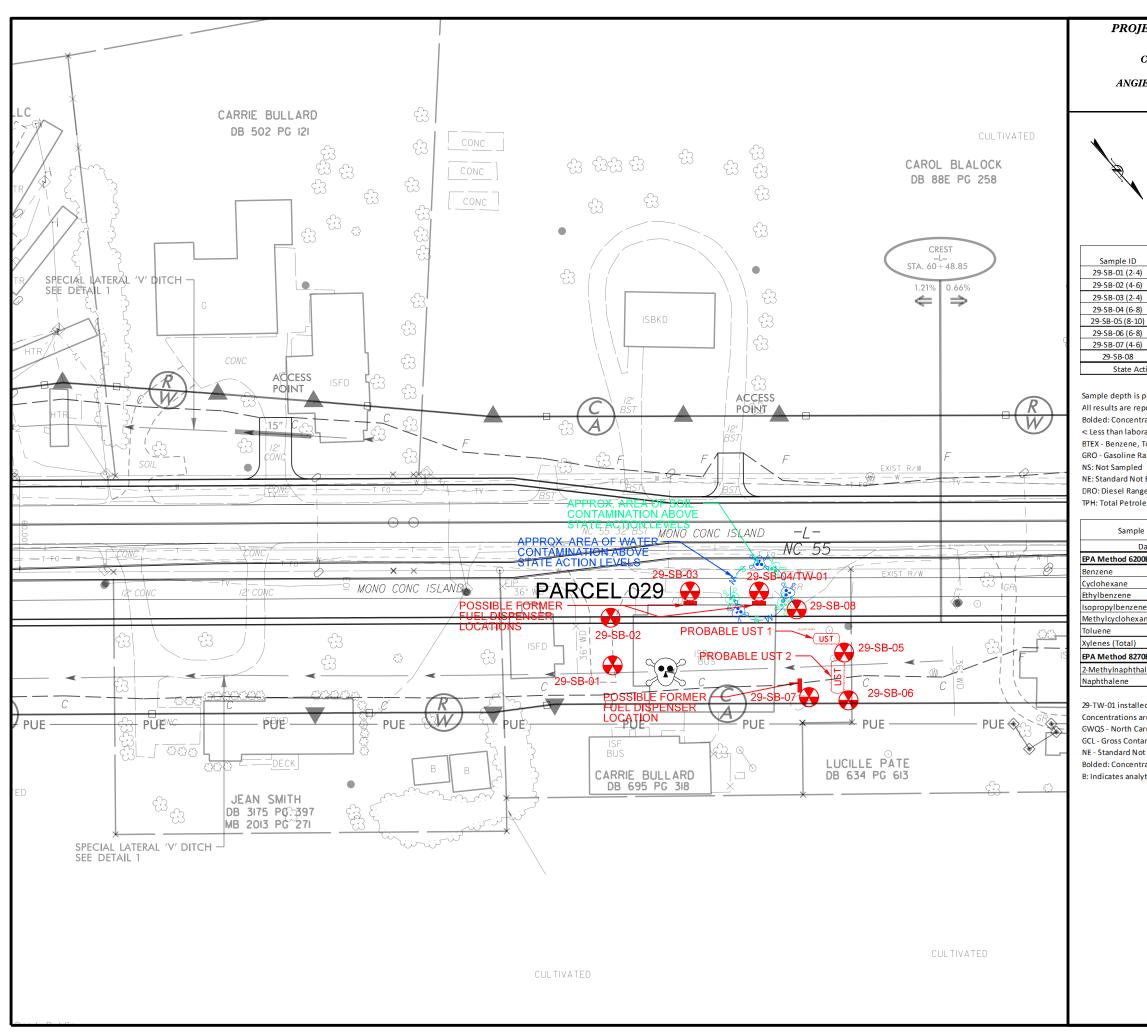
RIGHT OF WAY & PROJECT CONTROL:

Secondary Horiz and Vert Control Point	•
Primary Horiz Control Point	
Primary Horiz and Vert Control Point	۲
Exist Permanent Easment Pin and Cap	\diamond
New Permanent Easement Pin and Cap —	\diamond
Vertical Benchmark	
Existing Right of Way Marker	\bigtriangleup
Existing Right of Way Line	
New Right of Way Line	
New Right of Way Line with Pin and Cap —	
New Right of Way Line with Concrete or Granite RW Marker	
New Control of Access Line with Concrete C/A Marker	- (2)
Existing Control of Access	(<u>Ĉ</u>)
New Control of Access	
Existing Easement Line	——————————————————————————————————————
New Temporary Construction Easement –	E
New Temporary Drainage Easement	TDE
New Permanent Drainage Easement	PDE
New Permanent Drainage / Utility Easement	DUE
New Permanent Utility Easement	
New Temporary Utility Easement	TUE
New Aerial Utility Easement	AUE

ROADS AND RELATED FEATURES:

Existing Edge of Pavement	
Existing Curb	
Proposed Slope Stakes Cut	<u>c</u>
Proposed Slope Stakes Fill	<u>F</u>
Proposed Curb Ramp	
Existing Metal Guardrail ————	<u> </u>
Proposed Guardrail	<u> </u>
Existing Cable Guiderail	
Proposed Cable Guiderail	
Equality Symbol	€
Pavement Removal	\boxtimes
VEGETATION:	
Single Tree	÷

Single Shrub


 \triangleleft

Hedge _____ Woods Line — Orchard — - 666 Vineyard — **EXISTING STRUCTURES:** MAJOR: Bridge, Tunnel or Box Culvert ——— — C Bridge Wing Wall, Head Wall and End Wall -MINOR: Head and End Wall ------CONC HW Pipe Culvert — Footbridge — СВ Drainage Box: Catch Basin, DI or JB ——— Paved Ditch Gutter-Storm Sewer Manhole —— S Storm Sewer — **UTILITIES:** POWER: Existing Power Pole 6 Proposed Power Pole -Existing Joint Use Pole --Ծ-Proposed Joint Use Pole -Power Manhole -P Power Line Tower \boxtimes \mathbb{M} Power Transformer U/G Power Cable Hand Hole — H–Frame Pole — • • U/G Power Line LOS B (S.U.E.*) ----— — — P— -U/G Power Line LOS C (S.U.E.*) ----_____ P___ U/G Power Line LOS D (S.U.E.*) -TELEPHONE: . O

Existing Telephone Pole				
Proposed Telephone Pole				
Telephone Manhole 0				
Telephone Pedestal				
Telephone Cell Tower ————————————————————————————————————				
U/G Telephone Cable Hand Hole				
U/G Telephone Cable LOS B (S.U.E.*)				
U/G Telephone Cable LOS C (S.U.E.*)				
U/G Telephone Cable LOS D (S.U.E.*)				
U/G Telephone Conduit LOS B (S.U.E.*)				
U/G Telephone Conduit LOS C (S.U.E.*)				
U/G Telephone Conduit LOS D (S.U.E.*)				
U/G Fiber Optics Cable LOS B (S.U.E.*)				
U/G Fiber Optics Cable LOS C (S.U.E.*)				
U/G Fiber Optics Cable LOS D (S.U.E.*)				

E0 -----

	R-5705A
WATER:	
Water Manhole	
Water Meter	
Water Valve	
Water Hydrant	
U/G Water Line LOS B (S.U.E*)	
U/G Water Line LOS C (S.U.E*)	
U/G Water Line LOS D (S.U.E*)	
Above Ground Water Line	A/G Water
TV: TV Pedestal ————————————————————————————————————	
TV Tower	
U/G TV Cable Hand Hole ———	<u> </u>
U/G TV Cable LOS B (S.U.E.*)	
U/G TV Cable LOS C (S.U.E.*)	
U/G TV Cable LOS D (S.U.E.*)	
U/G Fiber Optic Cable LOS B (S.U.E	
U/G Fiber Optic Cable LOS C (S.U.I	
U/G Fiber Optic Cable LOS D (S.U.	
GAS:	,
Gas Valve	V
U/G Gas Line LOS B (S.U.E.*)	
U/G Gas Line LOS C (S.U.E.*)	
U/G Gas Line LOS D (S.U.E.*)	
Above Ground Gas Line	
SANITARY SEWER:	
Sanitary Sewer Manhole	®
Sanitary Sewer Cleanout U/G Sanitary Sewer Line	
Above Ground Sanitary Sewer	
SS Forced Main Line LOS B (S.U.E.*	
SS Forced Main Line LOS C (S.U.E.	
SS Forced Main Line LOS D (S.U.E.	FSS
MISCELLANEOUS:	
Utility Pole	
Utility Pole with Base	
Utility Located Object	
Utility Traffic Signal Box	
Utility Unknown U/G Line LOS B (S.	
U/G Tank; Water, Gas, Oil	
Underground Storage Tank, Approx. I	
A/G Tank; Water, Gas, Oil	
A/G Tank; Water, Gas, Oil Geoenvironmental Boring	
A/G Tank; Water, Gas, Oil	
A/G Tank; Water, Gas, Oil Geoenvironmental Boring	ords — AATUR

PROJECT DESCRIPTION: PARCEL 029 CARRIE BULLARD 4798 NC 55 ANGIER, HARNETT COUNTY	PROJECT REFERENCE NO. 46377.1.2 (R-5705A) BORING LOCATIONS SUMMARIZED SOIL GROUNDWATER SAMPLE RESULT	3 AND AND
R.	0 30 60 FEET	120

ole ID	Date Collected	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)
01 (2-4)	2/2/2021	<0.54	<0.54	<0.54	<0.54	<0.11
02 (4-6)	2/2/2021	<0.55	<0.55	<0.55	<0.55	<0.11
)3 (2-4)	2/2/2021	<0.55	<0.55	0.90	0.90	0.38
04 (6-8)	2/2/2021	17.6	55.3	3.6	58.9	2.7
5 (8-10)	2/2/2021	<0.58	<0.58	<0.58	<0.58	<0.12
06 (6-8)	2/2/2021	<0.28	1.3	<0.28	1.3	<0.06
)7 (4-6)	2/2/2021	<1.2	<0.59	<0.59	<0.59	<0.12
B-08	NS					
tate Action Levels		NE	50	100	NE	NE

Sample depth is provided in parentheses as part of the sample ID.

All results are reported in milligrams per kilogram (mg/kg).

Bolded: Concentration exceeds applicable NCDEQ State Action Level.

< Less than laboratory reporting limit.

BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes.

GRO - Gasoline Range Organics.

NE: Standard Not Established

DRO: Diesel Range Organics.

TPH: Total Petroleum Hydrocarbons.

Sample ID	29-TW-01	GWQS (µg/L)	GCL (µg/L)	
Date Collected	2/2/2021			
od 6200B				
	91	1	5,000	
ne	390	NE	NE	
ene	2,900	600	84,500	
enzene (Cumene)	110	70	25,000	
ohexane	220	NE	NE	
	14,000	600	260,000	
otal)	15,000	500	85,500	
od 8270E				
aphthalene	240	30	12,500	
ne	860 B	6	6,000	

29-TW-01 installed in 29-SB-04 at approximately 13 feet below land surface with 10 feet of screen Concentrations are reported in micrograms per liter (µg/L).

GWQS - North Carolina Groundwater Quality Standard (2L Standard, May, 2013).

GCL - Gross Contamination Levels for Groundwater (September, 2014).

NE - Standard Not Established .

Bolded: Concentration exceeds applicable GWQS.

B: Indicates analyte detected in the method blank.

TABLES

Table 1 Summary of PID Field Screening Values Phase II Preliminary Site Assessment Parcel 29 - Carrie Bullard Property 4798 NC 55, Angier, Harnett County, North Carolina Terracon Project No. 70207241

Boring Depth (feet bls)	29-SB-01	29-SB-02	29-SB-03	29-SB-04	29-SB-05	29-SB-06	29-SB-07	29-SB-08*
(0 - 2)	<0.1	<0.1	<0.1	<0.1	0.5	0.4	<0.1	0.3
(2 - 4)	<0.1	<0.1	<0.1	0.5	0.5	0.5	0.2	0.1
(4 - 6)	<0.1	0.1	<0.1	15.8	0.6	0.7	0.3	0.1
(6 - 8)	<0.1	0.1	<0.1	1,052	0.6	0.7	0.5	0.3
(8 - 10)	<0.1	0.2	<0.1	1,697	1.4	0.6	0.7	<0.1

Notes:

Field screening was conducted on February 2, 2021

Values shown are given in parts per million (ppm)

PID - Photo-ionization detector

PID was calibrated using 100 ppm isobutylene gas

ft bls - feet below land surface.

*29-SB-08 was not submitted for laboratory analysis.

Table 2 Summary of Soil Analytical Results Phase II Preliminary Site Assessment Parcel 29 - Carrie Bullard Property 4798 NC 55, Angier, Harnett County, North Carolina Terracon Project No. 70207241

Sample ID:	29-SB-01	29-SB-02	29-SB-03	29-SB-04	29-SB-05	29-SB-06	29-SB-07	NCDEQ Action Level	MSCC
Sample Depth (ft bls):	(2-4)	(4-6)	(2-4)	(6-8)	(8-10)	(6-8)	(4-6)	NODEQ ACTION Level	Industrial / Commercial
BTEX (C6 - C9)	<0.54	<0.55	<0.55	17.6	<0.58	<0.28	<1.2	NE	NE
GRO (C5 - C10)	<0.54	<0.55	<0.55	55.3	<0.58	1.3	<0.59	50	NE
DRO (C10 - C35)	<0.54	<0.55	0.90	3.6	<0.58	<0.28	<0.59	100	NE
TPH (C5 - C35)	<0.54	<0.55	0.90	58.9	<0.58	1.3	<0.59	NE	NE
Total Aromatics (C10-C35)	<0.11	<0.11	0.38	2.7	<0.12	<0.060	<0.12	NE	NE
16 EPA PAHs	<0.17	<0.17	<0.17	<0.18	<0.18	<0.090	<0.19	NE	NE
BaP	<0.022	<0.022	<0.022	<0.022	<0.023	<0.011	<0.024	NE	0.78

Notes:

Soil samples were collected on February 2, 2021.

Detected compounds are shown in the table.

Concentrations are reported in milligrams per kilogram (mg/kg).

ft bls - feet below land surface.

GRO - Gasoline Range Organics.

DRO - Diesel Range Organics.

TPH - Total Petroleum Hydrocarbons.

BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes.

16 EPA PAHs - Environmental Protection Agency Polycyclic Aromatic Hydrocarbons (acenaphthene, acenaphthylene, anthracene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[g,h,i]perylene, benzo[a]pyrene,

chrysene, dibenzo[a,h]anthracene, fluoranthene, fluorene, indeno[1,2,3-c,d]pyrene, naphthalene, phenanthrene, pyrene). NE - Standard not established.

Detections shaded in gray exceed the North Carolina Department of Environmental Quality (NCDEQ) Action Level.

MSCC Industrial/Commercial - Maximum Soil Contaminant Concentration Levels Industrial/Commercial soil cleanup levels.

Bold: Constituent concentration reported above the method detection limit.

Table 3 Summary of Groundwater Analytical Results Phase II Preliminary Site Assessment Parcel 29 - Carrie Bullard Property 4798 NC 55, Angier, Harnett County, North Carolina Terracon Project No. 70207241

Sample ID:	29-TW-01				
Dated Collected	2/2/2021	GWQS	GCL		
(mm/dd/yy)	27 27 202 1				
Volatile Organic Compounds (Method 8260D)					
Benzene	91	1	5,000		
Cyclohexane	390	NE	NE		
Ethylbenzene	2,900	600	84,500		
Isopropylbenzene (Cumene)	110	70	25,000		
Methylcyclohexane	220	NE	NE		
Toluene	14,000	600	260,000		
Xylenes (Total)	15,000	500	85,500		
Semi-volatile Organic Compounds (Method 8270E)					
2-Methylnaphthalene	240	30	12,500		
Naphthalene	860 B	6	6,000		

Notes:

Detected compounds are shown in the table

Concentrations are reported in micrograms per liter (µg/L)

GWQS - North Carolina Groundwater Quality Standard (2L Standard, May, 2013)

GCL - Gross Contamination Levels for Groundwater (September, 2014)

NE - standard not established

Shading indicates concentration exceeds an applicable standard

Bold: Constituent concentration reported above the method detection limit

B: Indicates analyte detected in the method blank.

Temporary well constructed at total depth of 13 feet below land surface (bls) with 0.010-inch slotted 1-inch PVC from 3 to 13 feet bls.

Depth to groundwater in temporary well was measured at 5.3 feet bls after installation.

APPENDIX A GEOPHYSICAL SURVEY REPORT March 9, 2021

John Pilipchuk, L.G., P.E. North Carolina Department of Transportation GeoEnvironmental Engineering Unit 1589 Mail Service Center Raleigh, NC 27699-1589

Re: Report for GeoEnvironmental Phase II Site Investigations Locate USTs and Utilities using Geophysical Methods Parcel #29 – Carrie Bullard Property 4798 NC-55, Angier, Harnett County, North Carolina TIP: R-5705A; WBS Element No. 46377.1.2 Terracon Project No.: 70207241

Dear Mr. Pilipchuk:

On January 21 and 22, 2021, a representative of Terracon Consultants, Inc. (Terracon) performed geophysical exploration services at the above referenced site in general accordance with Terracon Proposal No. P70207241 dated December 8, 2020. This report is presented as a summary of those geophysical services.

1.0 PROJECT DESCRIPTION

Based on the Request for Proposal (RFP) from the North Carolina Department of Transportation (NCDOT), a Phase II Preliminary Site Assessment (PSA) was requested for Parcel #29— Carrie Bullard Property, 4798 NC-55, Angier, North Carolina. The project consisted of the exploration of an approximate 220-foot by 120-foot area along Highway 55 (entire area, not just along the roadways). The purpose of the geophysical exploration was to aid in identifying anomalies consistent with Underground Storage Tanks (USTs) utilizing non-intrusive geophysical methods.

Terracon Consultants, Inc. 2401 Brentwood Road, Suite 107 Raleigh, NC 27604 P [919] 873 221 F [919] 873 9555 terracon.com March 9, 2021 Terracon Project No. 70207241

Terracon attempted to define the findings from this survey according to the following NCDOT standard terms:

Geophysical Surveys for Underground Storage Tanks on NCDOT Projects

High Confidence	Intermediate Confidence	Low Confidence	No Confidence
Known UST	Probable UST	Possible UST	Anomaly noted but not
Active tank - spatial	Sufficient geophysical data from both	Sufficient geophysical data from	characteristic of a UST. Should be
location, orientation,	magnetic and radar surveys that is	either magnetic or radar surveys	noted in the text and may be called
and approximate	characteristic of a tank. Interpretation may	that is characteristic of a tank.	out in the figures at the
depth determined by	be supported by physical evidence such as	Additional data is not sufficient	geophysicist's discretion.
geophysics.	fill/vent pipe, metal cover plate,	enough to confirm or deny the	
	asphalt/concrete patch, etc.	presence of a UST.	

2.0 EXPLORATION METHODS

Terracon used a frequency domain electromagnetic profiler (EM) consisting of a Geonics EM-31-SH system with data logger to collect EM data. In general, field data collection followed the procedures referenced in ASTM D6639-18. More information on both the general method and collection procedures can be found in the referenced standard. EM collects soil conductivity in millisiemens per meter (mS/m) and magnetic susceptibility in parts per trillion (ppt).

Data was collected on a bi-directional grid at approximately 5-foot spacings in both directions. However, the EM-31 uses a sub-meter GPS system to accurately plot data points of collection, therefore the grid was approximate. Data was post-processed utilizing Trackmaker 31 software engineered by Geomar and Surfer software developed by Golden Software.

Additionally, a Ground Penetrating System (GPR) consisting of a 350 MHz antenna and SIR-4000 system made by Geophysical Survey Systems Inc. (GSSI), was utilized to collect GPR data. Data was collected on a bi-directional grid with spacings of approximately 5 feet in both directions. Following the completion of field data collection, data was post-processed utilizing RADAN software engineered by GSSI.

3.0 FINDINGS

Terracon reviewed the EM and GPR data collected. Based on the EM data, an anomaly consistent with a probable UST was identified on the northwest portion of the site. Additionally, we encountered interference from an above ground propane tank and underground utilities that likely caused "no confidence" anomalies. In general, soil conductivity measurements between 0 to 20 mS/m and magnetic susceptibly measurements between -6 to 2 ppt were considered "background". Measurements outside of these ranges were interpreted to be caused by above or

below ground anomalies. The depth of EM signal penetration is approximately 9 feet below the existing grade; however, the actual depth is not produced from the data collected.

Upon review of the GPR data, two anomalies consistent with probable USTs were identified at the following locations:

UST I.D.	Coordinates ¹	Approximate Depth to Top of UST (ft)	Approximate UST Length (ft) ²		
1	35.473328°, -78.710126°	2.5	17		
2	35.473285°, -78.710155°	2.7	14		
1. Coordinates are accurate to withing ±1.5 feet to the center of the UST.					

2. The length is approximate, and a width cannot be determined utilizing geophysical methods.

The depth of GPR signal penetration across the site was approximately 8 feet below the existing grade. Complete results of our findings can be found in the attached Exhibits.

4.0 LIMITATIONS

It should be noted that, as with any geophysical testing method, the processes rely on instrument signals to indicate physical conditions in the field. Signal information can be affected by on-site conditions beyond the control of the operator, such as, but not limited to, ground surface cover, concrete/soil types, concrete/soil moisture, groundwater table depth, and/or reinforcing steel spacing. The depth of penetration and quality of the GPR data cannot be determined until our arrival on site. Interpretation of those signals is based on a combination of known factors combined with the experience of the operator and geophysicist evaluating the results. Additionally, GPR may not be able to identify the diameter of an object such as a pipe or UST. Utilizing conventional observation, sampling, and testing ("truthing") of select areas is recommended to confirm the results from the geophysical surveys. As with all geophysical methods, the geophysical results provide a level of confidence, but should not be considered absolute. We cannot be responsible for the interpretation of geophysical results by others.

5.0 CLOSURE

We appreciate the opportunity to work with you on this project. Please do not hesitate to contact the undersigned if you have any questions regarding this information or if we can be of further service to you.

Report for GeoEnvironmental Phase II Site Investigations

Parcel #29 – Carrie Bullard Property Angier, NC March 9, 2021 Terracon Project No. 70207241

Terracon

Sincerely, Terracon Consultants, Inc.

a.Z

Joshua A. Lopez Geophysicist

10/2021

James D. Hoskins, III, P.E. Principal / Greensboro Office Manager

Attachments: Exhibits – Geophysical Exploration Results (6 pages)

EXPLORATION RESULTS Parcel #29 – Carrie Bullard Property Angier, NC March 9, 2021 Terracon Project No. 70207241

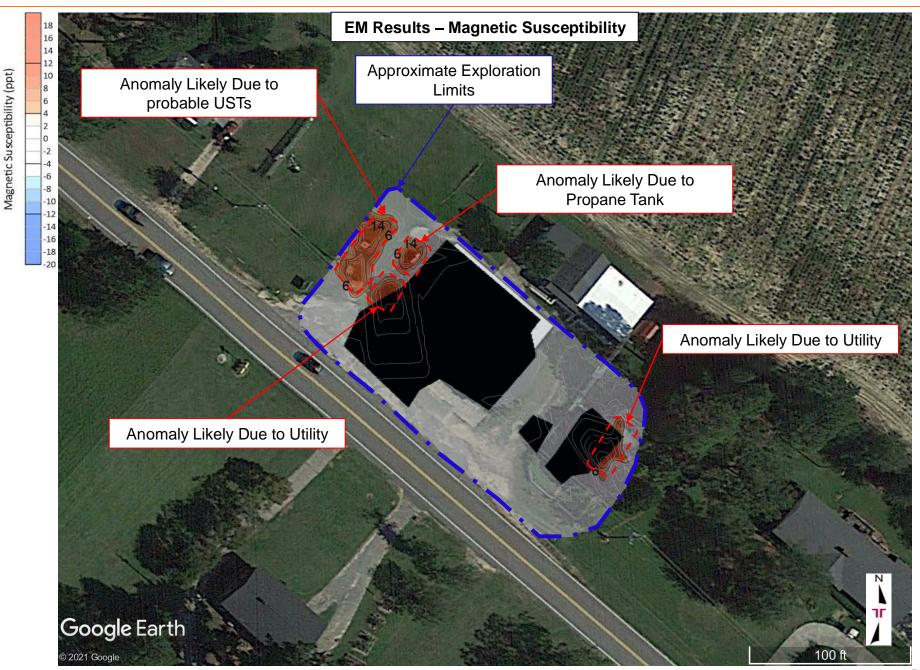


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

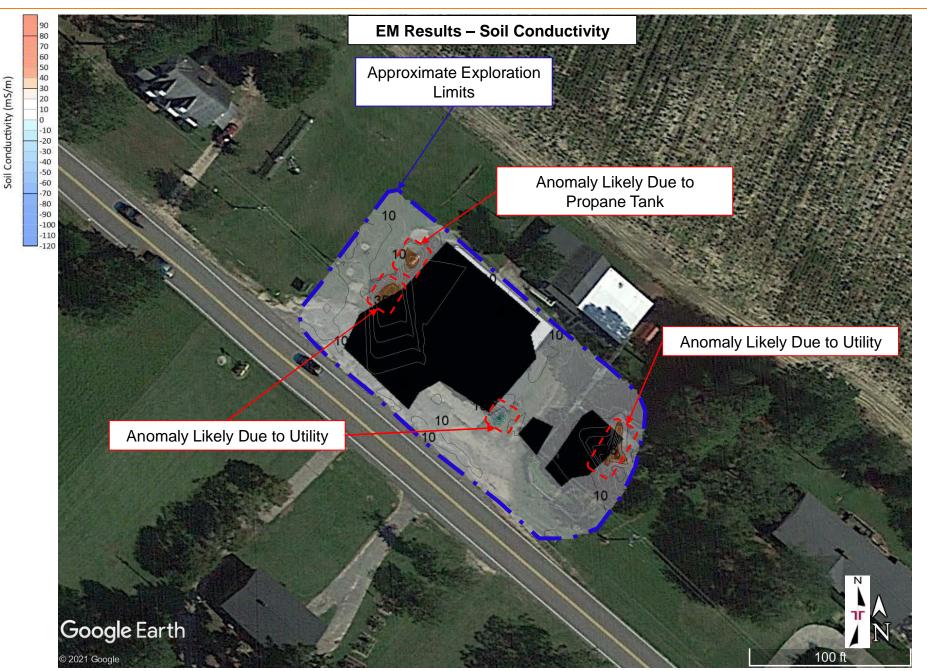
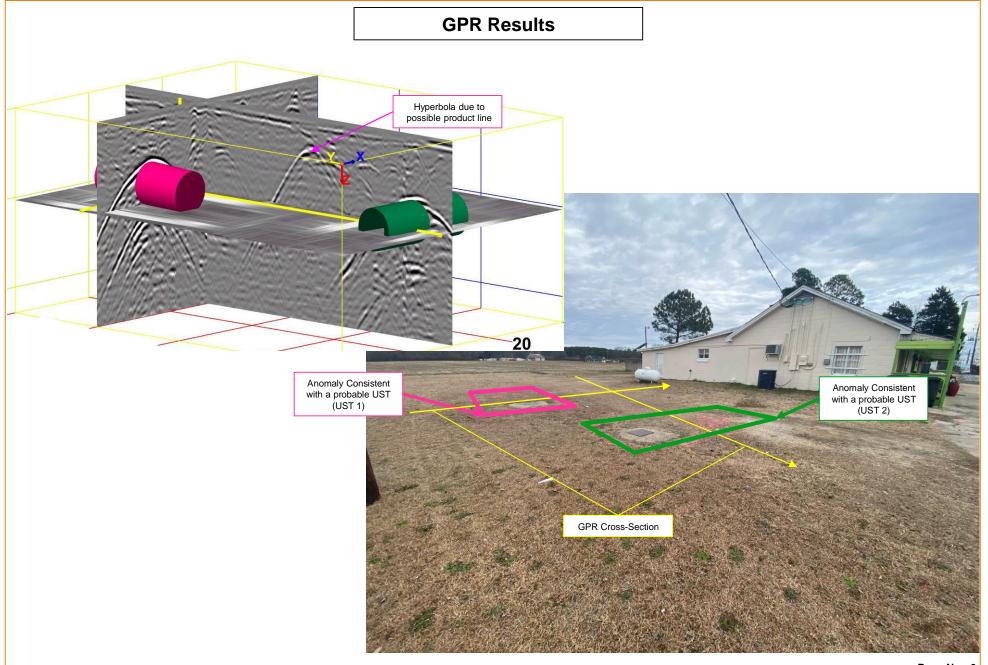


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

EXPLORATION RESULTS Parcel #29 – Carrie Bullard Property Angier, NC March 9, 2021 Terracon Project No. 70207241



EXPLORATION RESULTS

Parcel #29 – Carrie Bullard Property Angier, NC March 9, 2021 Terracon Project No. 70207241

APPENDIX B PHOTOGRAPHS

Parcel 29 – Carrie Bullard Property
Angier, North Carolina
Photos Taken: February 2, 2021
Terracon Project No. 70207241

Photo #1 View of the site; facing northwest.

Photo #2 View of the on-site building (4798 NC-55); facing north.

Parcel 29 – Carrie Bullard Property Angier, North Carolina Photos Taken: February 2, 2021 Terracon Project No. 70207241

Photo #3 View of the two on-site probable USTs identified north of the on-site building in the geophysical investigation; facing northwest.

Photo #4 View of a typical exposed fill port for the on-site probable USTs; facing southeast.

Parcel 29 – Carrie Bullard Property
Angier, North Carolina
Photos Taken: February 2, 2021
Terracon Project No. 70207241

Photo #5 View of the possible fuel line extending from the probable USTs to western side of the on-site building; facing southeast.

Photo #6 View of a typical possible former on-site fuel dispenser location west of the on-site building; facing east.

Parcel 29 – Carrie Bullard Property
Angier, North Carolina
Photos Taken: February 2, 2021
Terracon Project No. 70207241

Photo #7 View of the possible former on-site fuel dispenser located north of the on-site building; facing east.

APPENDIX C SOIL BORING LOGS

		BORING LOC	G NO. 29-SB-01					Pag	ge 1 of 1
	PR	OJECT: Phase II Preliminary Site Assessment - Parcel 29	CLIENT: NCDOT Raleigh, North C	arolir	าล				
	SIT	E: Carrie Bullard Property - 4798 NC 55 Angier, North Carolina							
	GRAPHIC LOG	LOCATION See Exhibit 3		DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	OVA/PID (ppm)	SAMPLE SENT TOLAB (ID NUMBER)
		DEPTH MATERIAL DESCRIPTION SILTY SAND (SM), trace clay, trace organics, fine to coarse grained, da staining not observed, moist	ark brown and light brown, odor and						
				_	-			<0.1	
MART LOG 70207241_BORING LOGS.GPJ TERRACON_DATATEMPLATE.GDT 3/2/21				_	-	Grab	60	<0.1	29-SB-01 TPH via QED UVF
EMPLA		4.0 SILTY SAND (SM), trace clay, fine to coarse grained, orangish brown a	nd reddich brown, odor and staining	_	-				
ON_DATATE		not observed, moist	na readisir brown, odor and starning	5 —	-			<0.1	
PJ TERRAC				_	-				
NG LOGS.G				_	-		60	<0.1	
7241_BORI				_	-				
TLOG 7020		10.0		_	-			<0.1	
SMAR.		Boring Terminated at 10 Feet		10-					
ENTAL									
IRONN									
RT. ENV									
REPOR									
GINAL									
M OR									
ED FRC									
PARAT		The stratification lines represent the approximate transition between differing soil types a in-situ these transitions may be gradual or may occur at different depths than shown.	ind/or rock types;						
D IF SE		ement Method: -inch DPT	Notes: ft bls: feet below	land surf	ace				
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. ENVIRONMENTAL S		onment Method: ng backfilled with bentonite chips upon completion.	PID: Photoioniza TPH: Total petrol UVF: Ultraviolet f	tion deteo eum hydi	ctor rocarbo	ns			
1 DOJ 5		WATER LEVEL OBSERVATIONS	Boring Started: 02-	-02-2021		Ror	ring Co	mnleter	d: 02-02-2021
30RINC		llerr	Boring Started: 02-			-			Probing Services
THIS E			vood Rd Ste 107 eigh, NC Project No.: 70207	241		Ар	pendix	в	

		BORING LOC	G NO. 29-SB-02					Paç	ge 1 of 1
	PF	OJECT: Phase II Preliminary Site Assessment - Parcel 29	CLIENT: NCDOT Raleigh, North Ca	arolir	na				
	SI	E: Carrie Bullard Property - 4798 NC 55 Angier, North Carolina							
	GRAPHIC LOG	LOCATION See Exhibit 3 DEPTH MATERIAL DESCRIPTION		DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	OVA/PID (ppm)	SAMPLE SENT TOLAB (ID NUMBER)
		SILTY SAND (SM), trace clay, trace organics, fine to coarse grained, da staining not observed, moist	rk brown and light brown, odor and						
				_				<0.1	
				_	-		40		
3/2/21									
E.GDT				_				<0.1	
MPLAT				_	-				
DATATE		SILTY SAND (SM), trace clay, fine to coarse grained, light brown and re observed, moist to wet at 8 feet bls	adish brown, odor and staining not			G			
ACON_[5 —		Grab	36	0.1	29-SB-02 TPH via QED UVF
TERR/				_	-		50		011
S.GPJ									
NG LOG				_				0.1	
BORIN				_	-				
207241							36		
MART LOG 70207241_BORING LOGS.GPJ TERRACON_DATATEMPLATE.GDT 3/2/21								0.2	
MART L		10.0 Boring Terminated at 10 Feet		10—					
NTAL S									
RONME									
ENVIE									
EPORT									
INAL R									
M ORIG									
D FRO									
PARATE		The stratification lines represent the approximate transition between differing soil types ar in-situ these transitions may be gradual or may occur at different depths than shown.	nd/or rock types;		1				
) IF SEF		cement Method: i-inch DPT	Notes:						
T VALID			ft bls: feet below i PID: Photoionizati TPH: Total petrole	on deteo um hydr	ctor rocarbo	ons			
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. ENVIRONMENTAL S		onment Method: ng backfilled with bentonite chips upon completion.	UVF: Ultraviolet flu	lorescer	nce				
NG LOG		WATER LEVEL OBSERVATIONS	Boring Started: 02-0)2-2021		Во	ring Co	mplete	d: 02-02-2021
BORI			borng Started: 02-0 Drill Rig: Geoprobe	5410		Dri	ller: Re	gional	Probing Services
THIS			rood Rd Ste 107 eigh, NC Project No.: 702072	241		Ap	pendix	άВ	

		BORING LOG	S NO. 29-SB-03					Pa	ge 1 of 1
	PR	OJECT: Phase II Preliminary Site Assessment - Parcel 29	CLIENT: NCDOT Raleigh, North C	arolir	na			,	-
	SI	E: Carrie Bullard Property - 4798 NC 55 Angier, North Carolina							
	GRAPHIC LOG	LOCATION See Exhibit 3		DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	OVA/PID (ppm)	SAMPLE SENT TOLAB (ID NUMBER)
		DEPTH MATERIAL DESCRIPTION 0.3 ASPHALT			-0	S	Ľ		
		SILTY SAND (SM), trace clay, trace organics, fine to coarse grained, ligh observed, moist	nt brown, odor and staining not	_			36	<0.1	
-ATE.GDT 3/2/21				_		Grab	30	<0.1	29-SB-03 TPH via QED UVF
MART LOG 70207241_BORING LOGS.GPJ TERRACON_DATATEMPLATE.GDT 3/2/21		4.0 <u>SILTY SAND (SM)</u> , trace clay, fine to coarse grained, orangish brown ar not observed, moist to wet at 8 feet bls	nd reddish brown, odor and staining	- 5-			36	<0.1	
LOGS.GPJ TERR				_		-		<0.1	
70207241_BORING				-			36	<0.1	
T LOG		10.0		10					
		Boring Terminated at 10 Feet		10-					
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. ENVIRONMENTAL S									
ED FROM ORIGINAL RE									
PARATI		The stratification lines represent the approximate transition between differing soil types ar in-situ these transitions may be gradual or may occur at different depths than shown.	nd/or rock types;						
IS NOT VALID IF SE	2.25 Aband	ement Method: -inch DPT onment Method: ng backfilled with bentonite chips upon completion.	Notes: ft bls: feet below PID: Photoioniza TPH: Total petrol UVF: Ultraviolet f	tion deteo eum hydi	ctor rocarbo	ons			
3 LOG		WATER LEVEL OBSERVATIONS	Boring Started: 02	-02-2021		Ror	ring Co	mnlete	d: 02-02-2021
ORINC		llerr	Boring Started: 02 Drill Rig: Geoprobe			_	-	-	Probing Services
THIS E		2401 Brentw	ood Rd Ste 107 igh, NC Project No.: 70207				pendix	-	-

	WELL	LOG NO.	29-SB	-04/29-T	W-0	1				Pac	ge 1 of 1
PRC	DJECT: Phase II Preliminary Site Asse	essment - Parcel 29	CLIENT:	NCDOT Raleigh, No	orth C	arolir	าล				<u> </u>
SITE	E: Carrie Bullard Property - 4798 Angier, North Carolina	NC 55									
GRAPHIC LOG	LOCATION See Exhibit 3			INSTALLATION D	ETAILS	DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	OVA/PID (ppm)	SAMPLE SENT TO LAB (ID NUMBER)
	DEPTH MATERIAL DESCRIPTI	ION		Temporary Well			WA OBS	SAN	REC	-	SA (II
	L3_ASPHALT			-							
	<u>SILTY SAND (SM)</u> , some clay from 3 to 5 feet bls, fi brown, odor and staining not observed, moist	ine to coarse grained,	light			-	-			<0.1	
						_			36		
						_	-			0.5	
5	.0 SILTY SAND (SM), fine to coarse grained, reddish I	brown and light browr	n, strong			- 5		-		15.8	
	petroleum odor observed and staining observed fro 8 feet bls	m 6 to 6.5 feet bls, mo	oist to wet at			_			36		
						_		Grab		1,052	29-SB-04 TPH via QEI UVF 29-TW-01
						-	-		36	1,697	VOCs via 8260, SVOCs via 8270
	0.0 <u>SAND (SW)</u> , trace silt and fines, fine to coarse grain petroleum odor and staining observed, saturated	ned, light brown, stron	g			10-	-	_		869.9	
	3.0					_	-				
	Boring Terminated at 13 Feet			•							
	The stratification lines represent the approximate transition betwee in-situ these transitions may be gradual or may occur at different		d/or rock types;			I	1	<u> </u>			
	ment Method: nch DPT			PID: Ph	otoioniza	land surf tion dete	ctor	ons			
	nment Method: g backfilled with bentonite chips upon completion.					luoresce					
	WATER LEVEL OBSERVATIONS			Well Star	ted: 02-0	2-2021		We	ell Com	pleted:	02-02-2021
	Depth to groundwater measured in ft bls after temporary well installation.	IICL	900		Geoprobe	e 5410		Dri	ller: Re	egional l	Probing Services
			od Rd Ste 107 gh, NC	Project N	o.: 70207	241		Ар	pendix	β	

		BORIN	IG LOG	NO. 29-SB-05					Pag	ge 1 of 1
	PR	OJECT: Phase II Preliminary Site Assessm Parc	nent - sel 29	CLIENT: NCDOT Raleigh, North C	arolir	na				
	SIT	E: Carrie Bullard Property - 4798 NC د Angier, North Carolina	55							
	GRAPHIC LOG	LOCATION See Exhibit 3			DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	OVA/PID (ppm)	SAMPLE SENT TOLAB (ID NUMBER)
		DEPTH MATERIAL DES SILTY SAND (SM), trace organics, fine to coarse grained,		lor and staining not observed,		-				
		moist			_	-		40	0.5	
LATE.GDT 3/2/21					_	-			0.5	
MART LOG 70207241_BORING LOGS.GPJ TERRACON_DATATEMPLATE.GDT 3/2/21		5.0 SILTY SAND (SM), trace clay, fine to coarse grained, redo not observed, moist to wet at 8 feet bls	lish brown and	orangish brown, odor and staining	5-	-		36	0.6	
DRING LOGS.GPJ TE					_	-			0.6	
TLOG 70207241_BC		10.0			_	-	Grab	36	1.4	29-SB-05 TPH via QED UVF
MAR'		Boring Terminated at 10 Feet			10-					
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. ENVIRONMENTAL S										
RATED FF		The stratification lines represent the approximate transition between diffe in-situ these transitions may be gradual or may occur at different depths.		d/or rock types;						
SEP4	Advand	cement Method:		Notes:						
G IS NOT VALID IF	2.25 Abande	5-inch DPT onment Method: ing backfilled with bentonite chips upon completion.		ft bls: feet below PID: Photoioniza TPH: Total petro UVF: Ultraviolet	tion deteo eum hydi	ctor rocarbo	INS			
IG LOC				Boring Started: 02	-02-2021		Bori	ing Co	mplete	d: 02-02-2021
BORIN			ierr	Boring Started: 02 Drill Rig: Geoprob			_			Probing Services
THISE				od Rd Ste 107 gh, NC Project No.: 7020	241		App	pendix	в	

		BORI	NG LOG	NO. 29-SB-06				Pa	ge 1 of 1
	PR	OJECT: Phase II Preliminary Site Assess Par	ment - cel 29	CLIENT: NCDOT Raleigh, North C	arolir	na			•
	SIT	E: Carrie Bullard Property - 4798 NC Angier, North Carolina	55						
	GRAPHIC LOG	LOCATION See Exhibit 3		•	DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	OVA/PID (ppm)	SAMPLE SENT TOLAB (ID NUMBER)
		DEPTH MATERIAL DE SILTY SAND (SM), some clay from 3 to 5 feet bls, fine to		light brown, odor and staining not		-			
		observed, moist			-	-		0.4	
LATE.GDT 3/2/21					_			0.5	
MART LOG 70207241_BORING LOGS.GPJ TERRACON_DATATEMPLATE.GDT 3/2/21		5.0 <u>SILTY SAND (SM)</u> , trace clay, fine to coarse grained, re- not observed, moist to wet at 8 feet bls	ddish brown and	orangish brown, odor and staining	- 5-	-		0.7	
RING LOGS.GPJ TE					-	-	Grab	0.7	29-SB-06 TPH via QED UVF
r LOG 70207241_BO		10.0			-	-		0.6	-
MAR ⁻		Boring Terminated at 10 Feet			10-				
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. ENVIRONMENTAL S									
ARATED		The stratification lines represent the approximate transition between di in-situ these transitions may be gradual or may occur at different depth		d/or rock types;					
S IS NOT VALID IF SE	2.25 Abande	cement Method: inch DPT onment Method: ng backfilled with bentonite chips upon completion.		Notes: ft bls: feet below PID: Photoionizz TPH: Total petro UVF: Ultraviolet	ation dete leum hyd	ctor rocarbo	ns		
0 LOG		WATER LEVEL OBSERVATIONS		Boring Started: 02	2-02-2021		Borin	n Complete	ed: 02-02-2021
ORINC			llerr	Drill Rig: Geoprob					Probing Services
THIS B			2401 Brentwo	ood Rd Ste 107 gh, NC Project No.: 7020				ndix B	

		BORING LC	G NO. 29-SB-07				F	Page 1 of 1
	PR	ROJECT: Phase II Preliminary Site Assessment - Parcel 29	CLIENT: NCDOT Raleigh, North C	arolir	าล			
	SIT	TE: Carrie Bullard Property - 4798 NC 55 Angier, North Carolina						
	GRAPHIC LOG	LOCATION See Exhibit 3		DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.) OVA/PID	(ppm) SAMPLE SENT TOLAB (ID NUMBER)
		DEPTH MATERIAL DESCRIPTION SILTY SAND (SM), some clay from 3 to 5 feet bis, fine to coarse grain and staining not about on mint to work from 2 to 4 feet bis	ned, light brown and dark brown, odor					
		and staining not observed, moist to wet from 3 to 4 feet bls		_			36).1
F 3/2/21							50	
-ATE.GD				_			0	.2
TATEMPI				_	-			
CON_DA		5.0 SILTY SAND (SM), trace clay, fine to coarse grained, reddish brown observed, moist to wet at 8 feet bls	and light brown, odor and staining not	5-	-	Grab		.3 29-SB-07 TPH via QED UVF
J TERRA				_	-		36	
.0GS.GP.				_	_	_	0	.5
BORING L				_				
MART LOG 70207241_BORING LOGS.GPJ TERRACON_DATATEMPLATE.GDT 3/2/21				_			36	.7
TLOG 70		10.0						
SMAR		Boring Terminated at 10 Feet		10-				
1ENTAL								
IVIRONN								
PORT. EN								
SINAL REI								
OM ORIG								
TED FR		The stratification lines represent the approximate transition between $dt^{t} = t - t^{-1} + t^{-1}$	o opd/or rock tupor:					
EPARA		The stratification lines represent the approximate transition between differing soil type in-situ these transitions may be gradual or may occur at different depths than shown.	s anu/or rock types;					
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. ENVIRONMENTAL S	2.25	cement Method: 5-inch DPT	Notes: ft bls: feet below PID: Photoionize TPH: Total petro UVF: Ultraviolet	tion deteo eum hydr	ctor rocarbo	ons	_	
OG IS NC		ionment Method: ing backfilled with bentonite chips upon completion.						
RING L		WATER LEVEL OBSERVATIONS	Boring Started: 02 Drill Rig: Geoprob	-02-2021		Borii	ng Comp	leted: 02-02-2021
IS BOF		2401 Bre	ntwood Rd Ste 107				-	nal Probing Services
王			Raleigh, NC Project No.: 70207	241		App	endix B	

		BORING LOO	G NO. 29-SB-08					Pag	ge 1 of 1
	PR	OJECT: Phase II Preliminary Site Assessment - Parcel 29	CLIENT: NCDOT Raleigh, North C	arolir	าล				
	SIT	E: Carrie Bullard Property - 4798 NC 55 Angier, North Carolina		-					
	GRAPHIC LOG	LOCATION See Exhibit 3		DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	OVA/PID (ppm)	SAMPLE SENT TOLAB (ID NUMBER)
		DEPTH MATERIAL DESCRIPTION 0.3 <u>ASPHALT</u> SILTY SAND (SM), some clay from 3 to 4 feet bls, fine to coarse graine	d light brown odor and staining not	1					
		observed, moist	-,	-				0.3	
				_			30		
F 3/2/21									
ATE.GD				-				0.1	
TEMPL/		4.0 SILTY SAND (SM), trace clay, fine to coarse grained, reddish brown an	d orangish brown, odor and staining		-				
N_DATA		not observed, moist to wet at 8 feet bls		5-				0.1	NS
RRACO							36		
GPJ TE				-					
SLOGS.				-		-		0.3	
BORING				_					
207241							36		
MART LOG 70207241_BORING LOGS.GPJ TERRACON_DATATEMPLATE.GDT 3/2/21				_				<0.1	
SMARTI		10.0 Boring Terminated at 10 Feet		10-					
ENTAL (
/IRONM									
RT. EN									
NL REPC									
DRIGIN									
FROM 0									
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. ENVIRONMENTAL S		The stratification lines represent the approximate transition between differing soil types a in-situ these transitions may be gradual or may occur at different depths than shown.	and/or rock types;						
IF SEP/		cement Method:	Notes:						
T VALID	2.20		ft bls: feet below PID: Photoioniza NS: Not sample	ation deteo					
LON SI 5		onment Method: ng backfilled with bentonite chips upon completion.							
NG LOC		WATER LEVEL OBSERVATIONS	Boring Started: 02	-02-2021		Во	ring Co	mplete	d: 02-02-2021
S BORI			Boring Started: 02 Drill Rig: Geoprob	e 5410		Dri	iller: Re	egional	Probing Services
Ξ			eigh, NC Project No.: 7020	7241		Ap	pendix	κВ	

APPENDIX D GROUNDWATER SAMPLING LOG

Groundwater Samplin	n g Log	lle	LL SC	DN
Site Name: Parel #2	9	Well ID: 2	9-TW-	0)
Project Number: 70207	241	Sample Date:	2/2/21	
Site Location: Anjier N	C	Sampler Initials:	ED	
Weather: Party do-	Ly YOSIZ	Sample Time:	1345	
GAUGING DATA				
Gauging Date: 2/2/	21	Well Diamet	er Gal/ft	L/ft
Screen Interval (ft bls): 3-13	5	6"	1.47	5.56
Total Depth (ft bTQC): /3		4"	0.653	2.47
Depth to water (ft bree): 5.3	ft.	Ø	0.163	0.618
Stick-up length (ft ags):		Ð	0.041	0.154
Water column length (ft): 7,7	AL	3/4"	0.023	0.087
Well Volume: 0,31	- gal			
Sample Method	Purge Device	QA/QC Samples	QA/QC Samj	ote ID
Peristaltic Grundfos	Dedicated	Duplicate		
Bladder Monsoon	Disposable			
Bailer DB	Decontaminated	Equipment Blank		

FIELD PARAMETERS

Time	Purge Vol. (gal)	Temp (°C)	pH (SU)	DO (mg/L)	Cond. (µmhos/cm)	Turbidity (NTU)	ORP (mV)	Flow (ml/min)	Water Depth (ft bTOC)
1325			-		-			400	
1330	0.5	16.58	6.22	2.25	145		38.6	200	TC COMPRESS
1335	0.75	15.50	5.99	0.72	143		13.3	200	
1340	1.0	15.92	5.96	0.74	144	-	16.8	200	-
1345	1.25	16.17	5.93	0.85	140		26.4		

LABORATORY ANALYSIS

Analytical Parameter	Method	Bottle Size/Type	No. Bottles	Preservative	Hold Time
VOCs	. <u>6200</u> 8760	40ml / VOA	3	HCL	14 days
≥v0c3	8270	JOUML Anber	2		
Notes: 755	T #18462. T	otal of N3	gellons per	rgad during wel	1 Development Supti

ч.

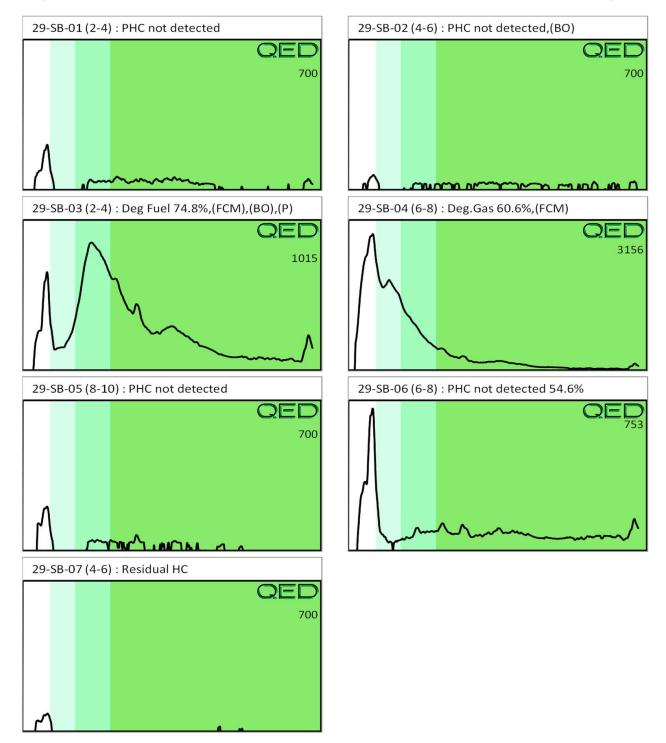
Date: 2/2/2/

Signature:

APPENDIX E LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY RECORDS

Hydrocarbon Analysis Results

Client: Terracon Consultants Address: 2401 Brentwood Rd. Suite 107 Raleigh, NC 27604 Samples taken Samples extracted Samples analysed Tuesday, February 2, 2021 Tuesday, February 2, 2021 Wednesday, February 3, 2021


Operator

Tori Kelly

Contact: Ethan Dinwiddie

Project: #70207241

													U04049
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP		Ratios		HC Fingerprint Match
										% light	% mid	% heavy	
S	29-SB-01 (2-4)	21.7	<0.54	<0.54	<0.54	<0.54	<0.11	<0.17	<0.022	0	100	0	PHC not detected
S	29-SB-02 (4-6)	21.8	<0.55	<0.55	<0.55	<0.55	<0.11	<0.17	<0.022	0	0	0	PHC not detected,(BO)
S	29-SB-03 (2-4)	21.8	<0.55	<0.55	0.9	0.9	0.38	<0.17	<0.022	90.5	7.4	2.1	Deg Fuel 74.8%,(FCM),(BO),(P)
S	29-SB-04 (6-8)	22.2	17.6	55.3	3.6	58.9	2.7	<0.18	<0.022	99.6	0.3	0.1	Deg.Gas 60.6%,(FCM)
S	29-SB-05 (8-10)	23.0	<0.58	<0.58	<0.58	<0.58	<0.12	<0.18	<0.023	0	100	0	PHC not detected
S	29-SB-06 (6-8)	11.2	<0.28	1.3	<0.28	1.3	<0.06	<0.09	<0.011	99.7	0.3	0	PHC not detected 54.6%
S	29-SB-07 (4-6)	23.6	<1.2	<0.59	<0.59	<0.59	<0.12	<0.19	<0.024	100	0	0	Residual HC
		olibrator							Final F		Check		
		alibrator		OK					Final F		CHECK	UK	93 %
	esults generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content												
Fingerprints	provide a tentative hydrocarbon identification	on. The abbi	eviations ar	e:- FCM = R	esults calcula	ted using Fur	damental Cali	bration Mod	e : % = con	fidence f	or samp	le finger	print match to library
(SBS) or (L	BS) = Site Specific or Library Background S	ubtraction a	oplied to res	ult : (PFM) =	Poor Fingerp	rint Match : (T) = Turbid : (P)) = Particula	te present				

Client Name:	24m R.	Consulta	RIS.to	107			RE	D Lab, I	LLC	
Address:	Solet	of Rales	Rd, Sute 1, NC 2	7604			1		vin K Mos	
Contact:		Thusdale		and the second se					IC Bldg, Su	
Project Ref.:	7020		Ť		7 =	DLAB			on, NC 284	
Email:	Ethin	Tano Alm	Terno	ncon			Eac	ch UVF sa	mple will be	analyzed f
Phone #:	the second design of the secon	50-550		Anti-Colored photo in an annual	a de la maiorite de la companya de -	NMENTAL DIAGNOSTICS	aro	ai BTEX, (matics a	GRO, DRO, T nd BaP. Stan	PH, PAH to dard GC
				M/AF		INFIENTAL DIAGNOSTICS	Ana	alyses are	e for BTEX an	d Chlorina
Collected by:	Filmen Dimid	Joe			1686514			vents: VC ns DCE. T	C, 1,1 DCE, 1, CE, and PCE.	2 cis DCE, Specify ta
					JSTODY A	ND ANALYTICAL REQUEST FO	DRM ana	alytes in t	the space pro	ovided belo
Sample Collection	TAT Ree	1	Analysi		Initials	Sample ID	Tot	tal \//t	Tare Wt.	Comple
Date/Time	24 Hour	48 Hour	UVF	GC	10	20 0 10			Tale VVL.	Sample
2/2/21 / 945		1×	X		600	29 - 5B - 01(2 - 4)	5.	2.5	L10.5	12
2/2/21/1015		$\overline{\mathbf{C}}$	\sim		20	29-53-02 (4-6)	5		40.6	11.0
h /h = 1/100-		$\overline{\mathbf{S}}$	0		and	29-58-03 (2-4)		2.3	40.4	11.0
2/2/2(/ 1030		0	X		EN	29-58-04 (6-8)		2.2	405	11.
2/2/2/11/5		- Ž	X		42	29-SB-05 (8-16) 29-SB-06 (6-8)	5		40.5	11.3
2/2/2/1200		X	X		200			2.9	40.4	12.
2/2/21/1500		×	$\overline{\times}$		ED		5		40.2	
2/2/2/18/5		×	×		290			3.4	40.3	13.
7/2/21/1545		X	X		ED	23 - 5B - 02(4 - 6) 23 - 5B - 03(2-4)		3.6	405	13.
2/2/21	ONH	01D	X		20	$\frac{23-515-03(2-4)}{73-01}$	5	4.2	40.3	13.
			23			10-01				
-										
									··	
- 1										
7 										
					+					
COMMENTS/REQU	ESTS:				⊥ _∓	RGET GC/UVF ANALYTES:				
Samde (TB-		Hainas	1 nos	6.1		THE SOUTH ANALYTES:				
	ished by	1 multi			Accepted	by Date/Time				
GALA ,	ter	2 A	2/2/1830	vich			5	REC) Lab USE	ONLY
Relingu	ished by	0	1-11050	VICI	Accepter	23/21 12:37 by Date/Time		0 .		
	- 1			ter - Andres and so an all so		· Date/Time				
						×	Ref	. No		

Report of Analysis

Terracon Consultants, Inc.

2401 Brentwood Road Suite 107 I Raleigh, NC 27604 Attention: Don Malone

Project Name: NC 55 PSAs

Project Number: 70207241

Lot Number:WB03036

Date Completed:03/06/2021 Revision Date: 03/06/2021

03/08/2021 9:34 PM Approved and released by: Project Manager II: **Cathy S. Dover**

The electronic signature above is the equivalent of a handwritten signature. This report shall not be reproduced, except in its entirety, without the written approval of Pace Analytical Services, LLC.

Pace Analytical Services, LLC (*formerly Shealy Environmental Services, Inc.*) 106 Vantage Point Drive West Columbia, SC 29172 Tel: 803-791-9700 Fax: 803-791-9111 www.pacelabs.com

Case Narrative Terracon Consultants, Inc. Lot Number: WB03036

This Report of Analysis contains the analytical results for the samples listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved The NELAC Institute (TNI) standards, the Pace Analytical Services, LLC ("Pace") Laboratory Quality Manual, standard operating procedures (SOPs), and Pace policies. Any exceptions to the TNI standards, the Laboratory Quality Manual, SOPs or policies are qualified on the results page or discussed below.

Per client, this PDF report has been revised to move sample 244-TW01 from this lot/report to a new lot/report. All other sample results are as reported in the original PDF report. This report supersedes and replaces any prior reports issued under this lot number.

SVOA 8270E

Sample WB03036-001 (29TW01) required a 100x dilution due to matrix and naphthalene concentration. Due to the dilution, surrogate 2,4,6-Tribromophenol did not recover and was diluted out. The MS/MSD for batch 81859 associated with this sample, recovered outside control limits due to the dilution. Also, the same surrogate was diluted and failed in the MS/MSD.

If you have any questions regarding this report please contact the Pace Project Manager listed on the cover page.

Sample Summary Terracon Consultants, Inc. Lot Number: WB03036 Project Name: NC 55 PSAs Project Number: 70207241

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	29-TW-01	Aqueous	02/02/2021 1345	02/03/2021
002	TB-01	Aqueous	02/02/2021	02/03/2021

(2 samples)

Detection Summary

Terracon Consultants, Inc.

Lot Number: WB03036

Project Name: NC 55 PSAs

Project Number: 70207241

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	29-TW-01	Aqueous	Benzene	8260D	91		ug/L	5
001	29-TW-01	Aqueous	Cyclohexane	8260D	390		ug/L	5
001	29-TW-01	Aqueous	Ethylbenzene	8260D	2900		ug/L	5
001	29-TW-01	Aqueous	Isopropylbenzene	8260D	110		ug/L	5
001	29-TW-01	Aqueous	Methylcyclohexane	8260D	220		ug/L	5
001	29-TW-01	Aqueous	Toluene	8260D	14000		ug/L	5
001	29-TW-01	Aqueous	Xylenes (total)	8260D	15000		ug/L	6
001	29-TW-01	Aqueous	2-Methylnaphthalene	8270E	240		ug/L	8
001	29-TW-01	Aqueous	Naphthalene	8270E	860	В	ug/L	8

(9 detections)

Volatile	Organic	Compounds	by	GC/MS
----------	---------	-----------	----	-------

Client: Terracon Consultar	nts, Inc.					Laboratory I	D: WB03036	-001		
Description: 29-TW-01	-					Matrix: Aqueous				
Date Sampled:02/02/2021 1345		Project N	lame: N	C 55 PSAs		math				
Date Received: 02/03/2021	Project Number:			J207241						
Run Prep Method 1 5030B 2 5030B	Analytical Method 8260D 8260D	Dilution 100 10	02/08/	rsis Date Analyst 2021 1704 BWS 2021 1754 BWS	Prep Date	Batch 82167 82167				
Parameter			CAS nber	Analytical Method	Result Q	LOQ	DL	Units	Run	
Acetone		67-	64-1	8260D	ND	100	40	ug/L	2	
Benzene		71-	43-2	8260D	91	5.0	4.0	ug/L	2	
Bromodichloromethane		75-	27-4	8260D	ND	5.0	4.0	ug/L	2	
Bromoform		75-	25-2	8260D	ND	5.0	4.0	ug/L	2	
Bromomethane (Methyl bromide)		74-	83-9	8260D	ND	5.0	4.0	ug/L	2	
2-Butanone (MEK)		78-	93-3	8260D	ND	100	20	ug/L	2	
Carbon disulfide		75-	15-0	8260D	ND	5.0	4.0	ug/L	2	
Carbon tetrachloride		56-	23-5	8260D	ND	5.0	4.0	ug/L	2	
Chlorobenzene		108-	90-7	8260D	ND	5.0	4.0	ug/L	2	
Chloroethane		75-	00-3	8260D	ND	5.0	4.0	ug/L	2	
Chloroform		67-	66-3	8260D	ND	5.0	4.0	ug/L	2	
Chloromethane (Methyl chloride)		74-	87-3	8260D	ND	5.0	4.0	ug/L	2	
Cyclohexane		110-	82-7	8260D	390	5.0	4.0	ug/L	2	
1,2-Dibromo-3-chloropropane (DBC	P)	96-	12-8	8260D	ND	5.0	4.0	ug/L	2	
Dibromochloromethane		124-	48-1	8260D	ND	5.0	4.0	ug/L	2	
1,2-Dibromoethane (EDB)		106-	93-4	8260D	ND	5.0	4.0	ug/L	2	
1,2-Dichlorobenzene		95-	50-1	8260D	ND	5.0	4.0	ug/L	2	
1,3-Dichlorobenzene		541-	73-1	8260D	ND	5.0	4.0	ug/L	2	
1,4-Dichlorobenzene		106-	46-7	8260D	ND	5.0	4.0	ug/L	2	
Dichlorodifluoromethane		75-	71-8	8260D	ND	5.0	4.0	ug/L	2	
1,1-Dichloroethane			34-3	8260D	ND	5.0	4.0	ug/L	2	
1,2-Dichloroethane		107-		8260D	ND	5.0	4.0	ug/L	2	
1.1-Dichloroethene			35-4	8260D	ND	5.0	4.0	ug/L	2	
cis-1,2-Dichloroethene		156-		8260D	ND	5.0	4.0	ug/L	2	
trans-1,2-Dichloroethene		156-		8260D	ND	5.0	4.0	ug/L	2	
1,2-Dichloropropane			87-5	8260D	ND	5.0	4.0	ug/L	2	
cis-1,3-Dichloropropene		10061-		8260D	ND	5.0	4.0	ug/L	2	
trans-1,3-Dichloropropene		10061-		8260D	ND	5.0	4.0	ug/L	2	
Ethylbenzene		100-		8260D	2900	50	4.0 40	ug/L	1	
2-Hexanone		591-		8260D	ND	100	20	ug/L	2	
Isopropylbenzene			82-8	8260D	110	5.0	4.0	ug/L	2	
Methyl acetate			20-9	8260D	ND	10	4.0	ug/L	2	
Methyl tertiary butyl ether (MTBE)		1634-		8260D	ND	5.0	4.0	ug/L	2	
4-Methyl-2-pentanone		108-		8260D	ND	100	4.0 20	ug/L	2	
Methylcyclohexane		108-		8260D	220	50	4.0	ug/L	2	
Methylene chloride			09-2	8260D	ND	5.0	4.0 4.0	ug/L	2	
Styrene		100-		8260D	ND	5.0		ug/L	2	
1,1,2,2-Tetrachloroethane			42-5 34-5	8260D 8260D	ND	5.0	4.1 4.0	ug/L ug/L	2	
Tetrachloroethene		127-		8260D	ND			-		
Toluene		127- 108-		8260D 8260D	14000	5.0 50	4.0 40	ug/L	2	
								ug/L	1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	=		13-1 ••• •	8260D		10	4.2	ug/L	2	
1,2,4-Trichlorobenzene		120-		8260D	ND	5.0	4.0	ug/L	2	
1,1,1-Trichloroethane		/1-	55-6	8260D	ND	5.0	4.0	ug/L	2	

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeDL = Detection LimitND = Not detected at or above the DLN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%J = Estimated result < LOQ and > DLH = Out of holding timeW = Reported on wet weight basisW = Reported on wet weight basisH = Out of holding timeH = Out of holding time

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Volatile Organic Compounds by GC/MS

Client: Terracen Concult	onto Ino						oborotory II		01	
Client: Terracon Consult	ants, inc.					L		D: WB03036-0	101	
Description: 29-TW-01							Matrix	k: Aqueous		
Date Sampled:02/02/2021 1345		Project N	Name: NC 55	PSAs						
Date Received: 02/03/2021		Project Nu	mber: 702072	241						
Run Prep Method	Analytical Method	Dilution	Analysis D	Date Analyst	Prep I	Date	Batch			
1 5030B	8260D	100	02/08/2021	1704 BWS			82167			
2 5030B	8260D	10	02/08/2021	1754 BWS			82167			
Parameter				nalytical Method	Result	Q	LOQ	DL	Units	Run
1,1,2-Trichloroethane		79-	-00-5	8260D	ND		5.0	4.0	ug/L	2
Trichloroethene		79-	-01-6	8260D	ND		5.0	4.0	ug/L	2
Trichlorofluoromethane		75-	-69-4	8260D	ND		5.0	4.0	ug/L	2
Vinyl chloride		75-	-01-4	8260D	ND		10	2.5	ug/L	2
Xylenes (total)		1330-	-20-7	8260D	15000		100	40	ug/L	1
Surrogate	Q %	Run 1 Recovery	Acceptance Limits	Run Q % Rec		eptan Limits				
Bromofluorobenzene		101	70-130	10	1	70-130)			
1,2-Dichloroethane-d4		96	70-130	9	6	70-130)			
Toluene-d8		101	70-130	10	4	70-130				

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL
H = Out of holding time	W = Reported on wet weight basis		

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

	Client: Terracon Consulta	ants. Inc.						Laboratory II	D: WB03036	-001	
Do	escription: 29-TW-01	into, inc.									
	•		Draigat N	omo, N	C 55 PSAs			Iviatio	x: Aqueous		
	Sampled:02/02/2021 1345		,								
Date F	Received: 02/03/2021		Project Nu	mber: 7(0207241						
Run 1	Prep Method 3520C	Analytical Method 8270E	Dilution 100		sis Date Analyst 2021 1953 SCD	Prep 02/04/2		Batch 407 81859			
Para	meter			CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
Acen	aphthene		83-	32-9	8270E	ND		16	4.0	ug/L	1
Acen	aphthylene		208-	96-8	8270E	ND		16	4.0	ug/L	1
Aceto	ophenone		98-	86-2	8270E	ND		80	23	ug/L	1
Anthr	racene		120-	12-7	8270E	ND		16	4.0	ug/L	1
Atraz	zine		1912-	24-9	8270E	ND		80	20	ug/L	1
Benz	aldehyde		100-	52-7	8270E	ND		400	27	ug/L	1
	co(a)anthracene		56-	55-3	8270E	ND		16	4.0	ug/L	1
	co(a)pyrene		50-	32-8	8270E	ND		16	4.0	ug/L	1
	co(b)fluoranthene		205-	99-2	8270E	ND		16	4.0	ug/L	1
	co(g,h,i)perylene		191-3	24-2	8270E	ND		16	4.0	ug/L	1
	co(k)fluoranthene		207-	08-9	8270E	ND		16	4.0	ug/L	1
	Biphenyl		92-	52-4	8270E	ND		80	21	ug/L	1
	pmophenyl phenyl ether		101-		8270E	ND		80	15	ug/L	1
	benzyl phthalate			68-7	8270E	ND		400	21	ug/L	1
	olactam		105-0		8270E	ND		400	71	ug/L	1
	azole			74-8	8270E	ND		80	4.0	ug/L	1
	2-Chloro-1-methylethyl) ether		108-0	-	8270E	ND		80	4.0 17	ug/L	1
	loro-3-methyl phenol			50-7	8270E	ND		80	26	ug/L	1
	loroaniline		106-		8270E	ND		80	13	ug/L	1
	-Chloroethoxy)methane		111-		8270E	ND		80	6.0	ug/L	1
	-Chloroethyl)ether		111-		8270E	ND		80	0.0 16	ug/L	1
	loronaphthalene			58-7	8270E	ND		80		ug/L	1
	lorophenol			57-8	8270E	ND		80	15 15	ug/L	1
	lorophenyl phenyl ether		7005-		8270E	ND		80	16	ug/L	1
Chrys			218-	-	8270E	ND		16	4.0	ug/L	1
-			-	70-3	8270E 8270E	ND		16		•	1
	nzo(a,h)anthracene nzofuran		132-					-	4.0	ug/L	-
				94-9 94-1	8270E 8270E	ND		80	16	ug/L	1
,	Dichlorobenzidine		91- 120-			ND		400	81	ug/L	1
	Dichlorophenol		-		8270E	ND		80	19	ug/L	1
	ylphthalate			66-2	8270E	ND		400	19	ug/L	1
	ethyl phthalate		131-		8270E	ND		400	18	ug/L	1
	Dimethylphenol		105-0		8270E	ND		80	15	ug/L	1
	butyl phthalate			74-2	8270E	ND		400	42	ug/L	1
	Dinitro-2-methylphenol		534-		8270E	ND		400	89	ug/L	1
	Dinitrophenol			28-5	8270E	ND		400	130	ug/L	1
-	Dinitrotoluene		121-		8270E	ND		160	36	ug/L	1
-	Dinitrotoluene		606-2		8270E	ND		160	34	ug/L	1
	octylphthalate		117-		8270E	ND		400	48	ug/L	1
	-Ethylhexyl)phthalate		117-		8270E	ND		400	38	ug/L	1
	anthene		206-		8270E	ND		16	4.0	ug/L	1
Fluor				73-7	8270E	ND		16	4.0	ug/L	1
	ichlorobenzene		118-		8270E	ND		80	15	ug/L	1
	chlorobutadiene		87-	68-3	8270E	ND		80	17	ug/L	1
Hexa	chlorocyclopentadiene		77-	47-4	8270E	ND		400	110	ug/L	1

 LOQ = Limit of Quantitation
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range
 DL = Detection Limit

 ND = Not detected at or above the DL
 N = Recovery is out of criteria
 P = The RPD between two GC columns exceeds 40%
 J = Estimated result < LOQ and ≥ DL</td>

 H = Out of holding time
 W = Reported on wet weight basis
 W = Reported on wet weight basis
 H = Out of holding time
 H = Out of holding time

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Client: Terracon Consultant	ts, Inc.					L	aboratory I	D: WB03036-	001	
Description: 29-TW-01							Matri	x: Aqueous		
Date Sampled: 02/02/2021 1345		Project N	lame: NC :	55 PSAs				•		
Date Received: 02/03/2021		Project Nu								
		,								
RunPrep Method13520C	Analytical Method 8270E		-	s Date Analyst 21 1953 SCD	Prep 02/04/2		Batch 7 81859			
Parameter			CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Rur
Hexachloroethane		67-	72-1	8270E	ND		80	17	ug/L	1
Indeno(1,2,3-c,d)pyrene		193-	39-5	8270E	ND		16	4.0	ug/L	1
Isophorone		78-	59-1	8270E	ND		80	22	ug/L	1
2-Methylnaphthalene		91-	57-6	8270E	240		16	4.0	ug/L	1
2-Methylphenol		95-	48-7	8270E	ND		80	21	ug/L	1
3+4-Methylphenol		106-	44-5	8270E	ND		160	46	ug/L	1
Naphthalene		91-	20-3	8270E	860	в	16	4.0	ug/L	1
2-Nitroaniline		88-	74-4	8270E	ND		160	66	ug/L	1
3-Nitroaniline		99-	09-2	8270E	ND		160	15	ug/L	1
4-Nitroaniline		100-	01-6	8270E	ND		160	130	ug/L	1
Nitrobenzene		98-	95-3	8270E	ND		80	17	ug/L	1
2-Nitrophenol		88-	75-5	8270E	ND		160	44	ug/L	1
4-Nitrophenol		100-	02-7	8270E	ND		400	210	ug/L	1
N-Nitrosodi-n-propylamine		621-	64-7	8270E	ND		80	28	ug/L	1
N-Nitrosodiphenylamine (Diphenylan	nine)	86-	30-6	8270E	ND		80	50	ug/L	1
Pentachlorophenol		87-	86-5	8270E	ND		400	130	ug/L	1
Phenanthrene		85-	01-8	8270E	ND		16	4.0	ug/L	1
Phenol		108-	95-2	8270E	ND		80	19	ug/L	1
Pyrene		129-	00-0	8270E	ND		16	4.0	ug/L	1
2,4,5-Trichlorophenol		95-	95-4	8270E	ND		80	19	ug/L	1
2,4,6-Trichlorophenol		88-	06-2	8270E	ND		80	22	ug/L	1
Surrogate	Q %	Run 1 Recovery	Acceptan Limits	ce						
2-Fluorobiphenyl		87	37-129							
2-Fluorophenol		112	24-127							
Nitrobenzene-d5		85	38-127							
Phenol-d5		78	28-128							
Terphenyl-d14		96	10-148							
2,4,6-Tribromophenol	Ν	0.00	35-144							

LOQ = Limit of Quantitation	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Detection Limit
ND = Not detected at or above the DL	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	J = Estimated result < LOQ and \ge DL
H = Out of holding time	W = Reported on wet weight basis		

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com **QC Summary**

Volatile Organic Compounds by GC/MS - MB

Sample ID: WQ82167-001 Batch: 82167 Analytical Method: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	10	4.0	ug/L	02/08/2021 0928
Benzene	ND		1	0.50	0.40	ug/L	02/08/2021 0928
Bromodichloromethane	ND		1	0.50	0.40	ug/L	02/08/2021 0928
Bromoform	ND		1	0.50	0.40	ug/L	02/08/2021 0928
Bromomethane (Methyl bromide)	ND		1	0.50	0.40	ug/L	02/08/2021 0928
2-Butanone (MEK)	ND		1	10	2.0	ug/L	02/08/2021 0928
Carbon disulfide	ND		1	0.50	0.40	ug/L	02/08/2021 0928
Carbon tetrachloride	ND		1	0.50	0.40	ug/L	02/08/2021 0928
Chlorobenzene	ND		1	0.50	0.40	ug/L	02/08/2021 0928
Chloroethane	ND		1	0.50	0.40	ug/L	02/08/2021 0928
Chloroform	ND		1	0.50	0.40	ug/L	02/08/2021 0928
Chloromethane (Methyl chloride)	ND		1	0.50	0.40	ug/L	02/08/2021 0928
Cyclohexane	ND		1	0.50	0.40	ug/L	02/08/2021 0928
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	0.50	0.40	ug/L	02/08/2021 0928
Dibromochloromethane	ND		1	0.50	0.40	ug/L	02/08/2021 0928
1,2-Dibromoethane (EDB)	ND		1	0.50	0.40	ug/L	02/08/2021 0928
1,2-Dichlorobenzene	ND		1	0.50	0.40	ug/L	02/08/2021 0928
1,3-Dichlorobenzene	ND		1	0.50	0.40	ug/L	02/08/2021 0928
1,4-Dichlorobenzene	ND		1	0.50	0.40	ug/L	02/08/2021 0928
Dichlorodifluoromethane	ND		1	0.50	0.40	ug/L	02/08/2021 0928
1,1-Dichloroethane	ND		1	0.50	0.40	ug/L	02/08/2021 0928
1,2-Dichloroethane	ND		1	0.50	0.40	ug/L	02/08/2021 0928
1,1-Dichloroethene	ND		1	0.50	0.40	ug/L	02/08/2021 0928
cis-1,2-Dichloroethene	ND		1	0.50	0.40	ug/L	02/08/2021 0928
trans-1,2-Dichloroethene	ND		1	0.50	0.40	ug/L	02/08/2021 0928
1,2-Dichloropropane	ND		1	0.50	0.40	ug/L	02/08/2021 0928
cis-1,3-Dichloropropene	ND		1	0.50	0.40	ug/L	02/08/2021 0928
trans-1,3-Dichloropropene	ND		1	0.50	0.40	ug/L	02/08/2021 0928
Ethylbenzene	ND		1	0.50	0.40	ug/L	02/08/2021 0928
2-Hexanone	ND		1	10	2.0	ug/L	02/08/2021 0928
Isopropylbenzene	ND		1	0.50	0.40	ug/L	02/08/2021 0928
Methyl acetate	ND		1	1.0	0.40	ug/L	02/08/2021 0928
Methyl tertiary butyl ether (MTBE)	ND		1	0.50	0.40	ug/L	02/08/2021 0928
4-Methyl-2-pentanone	ND		1	10	2.0	ug/L	02/08/2021 0928
Methylcyclohexane	ND		1	5.0	0.40	ug/L	02/08/2021 0928
Methylene chloride	ND		1	0.50	0.40	ug/L	02/08/2021 0928
Styrene	ND		1	0.50	0.41	ug/L	02/08/2021 0928
1,1,2,2-Tetrachloroethane	ND		1	0.50	0.40	ug/L	02/08/2021 0928
Tetrachloroethene	ND		1	0.50	0.40	ug/L	02/08/2021 0928
Toluene	ND		1	0.50	0.40	ug/L	02/08/2021 0928
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	1.0	0.42	ug/L	02/08/2021 0928
1,2,4-Trichlorobenzene	ND		1	0.50	0.40	ug/L	02/08/2021 0928
1,1,1-Trichloroethane	ND		1	0.50	0.40	ug/L	02/08/2021 0928
1,1,2-Trichloroethane	ND		1	0.50	0.40	ug/L	02/08/2021 0928

LOQ = Limit of Quantitation ND = Not detected at or above the DL N = Recovery is out of criteria DL = Detection Limit J = Estimated result < LOQ and \ge DL P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

- + = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: WQ82167-001 Batch: 82167 Analytical Method: 8260D				Pre	Matrix: Aque p Method: 5030			
Parameter	Res	ult	Q	Dil	LOQ	DL	Units	Analysis Date
Trichloroethene	ND			1	0.50	0.40	ug/L	02/08/2021 0928
Trichlorofluoromethane	ND			1	0.50	0.40	ug/L	02/08/2021 0928
Vinyl chloride	ND			1	1.0	0.25	ug/L	02/08/2021 0928
Xylenes (total)	ND			1	1.0	0.40	ug/L	02/08/2021 0928
Surrogate	Q	% Rec	Ac	ceptance Limit				
Bromofluorobenzene		102		70-130				
1,2-Dichloroethane-d4		97		70-130				
Toluene-d8		103		70-130				

 LOQ = Limit of Quantitation
 ND = Not detected at or above the DL
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 P = The RPD between two GC columns exceeds 40%

 * = RSD is out of criteria
 + = RPD is out of criteria

Volatile Organic Compounds by GC/MS - LCS

Sample ID: WQ82167-002 Batch: 82167 Analytical Method: 8260D Matrix: Aqueous

Prep Method: 5030B

	Spike						
Parameter	Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Acetone	100	98		1	98	60-140	02/08/2021 0825
Benzene	50	48		1	97	70-130	02/08/2021 0825
Bromodichloromethane	50	51		1	103	70-130	02/08/2021 0825
Bromoform	50	57		1	114	70-130	02/08/2021 0825
Bromomethane (Methyl bromide)	50	42		1	83	70-130	02/08/2021 0825
2-Butanone (MEK)	100	100		1	100	70-130	02/08/2021 0825
Carbon disulfide	50	50		1	100	70-130	02/08/2021 0825
Carbon tetrachloride	50	50		1	100	70-130	02/08/2021 0825
Chlorobenzene	50	49		1	97	70-130	02/08/2021 0825
Chloroethane	50	42		1	84	70-130	02/08/2021 0825
Chloroform	50	46		1	92	70-130	02/08/2021 0825
Chloromethane (Methyl chloride)	50	35		1	70	60-140	02/08/2021 0825
Cyclohexane	50	46		1	91	70-130	02/08/2021 0825
1,2-Dibromo-3-chloropropane (DBCP)	50	54		1	107	70-130	02/08/2021 0825
Dibromochloromethane	50	52		1	105	70-130	02/08/2021 0825
1,2-Dibromoethane (EDB)	50	50		1	100	70-130	02/08/2021 0825
1,2-Dichlorobenzene	50	48		1	96	70-130	02/08/2021 0825
1,3-Dichlorobenzene	50	49		1	98	70-130	02/08/2021 0825
1,4-Dichlorobenzene	50	48		1	96	70-130	02/08/2021 0825
Dichlorodifluoromethane	50	40		1	79	60-140	02/08/2021 0825
1.1-Dichloroethane	50	47		1	93	70-130	02/08/2021 0825
1,2-Dichloroethane	50	46		1	92	70-130	02/08/2021 0825
1,1-Dichloroethene	50	48		1	96	70-130	02/08/2021 0825
cis-1,2-Dichloroethene	50	47		1	94	70-130	02/08/2021 0825
trans-1,2-Dichloroethene	50	47		1	94	70-130	02/08/2021 0825
1,2-Dichloropropane	50	48		1	97	70-130	02/08/2021 0825
cis-1,3-Dichloropropene	50	53		1	107	70-130	02/08/2021 0825
trans-1,3-Dichloropropene	50	53		1	106	70-130	02/08/2021 0825
Ethylbenzene	50	50		1	99	70-130	02/08/2021 0825
2-Hexanone	100	110		1	109	70-130	02/08/2021 0825
Isopropylbenzene	50	51		1	102	70-130	02/08/2021 0825
Methyl acetate	50	51		1	102	70-130	02/08/2021 0825
Methyl tertiary butyl ether (MTBE)	50	46		1	92	70-130	02/08/2021 0825
4-Methyl-2-pentanone	100	110		1	109	70-130	02/08/2021 0825
Methylcyclohexane	50	48		1	96	70-130	02/08/2021 0825
Methylene chloride	50	47		1	95	70-130	02/08/2021 0825
Styrene	50	53		1	106	70-130	02/08/2021 0825
1,1,2,2-Tetrachloroethane	50	50		1	100	70-130	02/08/2021 0825
Tetrachloroethene	50	48		1	97	70-130	02/08/2021 0825
Toluene	50 50	48		1	97	70-130	02/08/2021 0825
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	46		1	92	70-130	02/08/2021 0825
1,2,4-Trichlorobenzene	50	50		1	101	70-130	02/08/2021 0825
1,1,1-Trichloroethane	50	48		1	95	70-130	02/08/2021 0825
1,1,2-Trichloroethane	50 50	48		1	97	70-130	02/08/2021 0825
	50	-10		·	57	10-100	02/00/2021 0023

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit J = Estimated	esult < LOQ and \geq DL	P = The RPD between two GC columns exceeds 40%
------------------------------------	---------------------------	--

* = RSD is out of criteria

+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Volatile Organic Compounds by GC/MS - LCS

Sample ID: WQ82167-0 Batch: 82167 Analytical Method: 8260D	02	Matrix: Aqueous Prep Method: 5030B								
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date			
Trichloroethene	50	49		1	98	70-130	02/08/2021 0825			
Trichlorofluoromethane	50	46		1	93	70-130	02/08/2021 0825			
Vinyl chloride	50	40		1	80	70-130	02/08/2021 0825			
Xylenes (total)	100	100		1	100	70-130	02/08/2021 0825			
Surrogate	Q% Rec	Accepta Limit								
Bromofluorobenzene	98	70-13	0							
1,2-Dichloroethane-d4	92	70-13	0							
Toluene-d8	98	70-13	0							

 LOQ = Limit of Quantitation
 ND = Not detected at or above the DL
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 P = The RPD between two GC columns exceeds 40%

 * = RSD is out of criteria
 + = RPD is out of criteria

 Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Volatile Organic Compounds by GC/MS - MS

Sample ID: WB03036-001MS Batch: 82167 Analytical Method: 8260D

Matrix: Aqueous

Prep Method: 5030B

Spike						
t Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
10000	8700		100	87	60-140	02/08/2021 1819
5000	5100		100	100	70-130	02/08/2021 1819
5000	5100		100	101	70-130	02/08/2021 1819
5000	5100		100	103	70-130	02/08/2021 1819
5000	4300		100	86	70-130	02/08/2021 1819
10000	9700		100	97	70-130	02/08/2021 1819
5000	4800		100	96	70-130	02/08/2021 1819
5000	5200		100	105	70-130	02/08/2021 1819
5000	5100		100	101	70-130	02/08/2021 1819
5000	4600		100	91	70-130	02/08/2021 1819
5000	4700		100	94	70-130	02/08/2021 1819
5000	3800		100	75	60-140	02/08/2021 1819
5000	5600		100	102	70-130	02/08/2021 1819
5000	5200		100	105	70-130	02/08/2021 1819
5000	5100		100	103	70-130	02/08/2021 1819
5000	5100		100	102	70-130	02/08/2021 1819
5000	5000		100	100	70-130	02/08/2021 1819
5000	5100		100	102	70-130	02/08/2021 1819
5000	5100		100	101	70-130	02/08/2021 1819
5000	4000		100	79	60-140	02/08/2021 1819
5000	4800		100	96	70-130	02/08/2021 1819
5000	4600		100	93	70-130	02/08/2021 1819
5000	4900		100	99	70-130	02/08/2021 1819
5000	4800		100	95	70-130	02/08/2021 1819
5000	4900		100	97	70-130	02/08/2021 1819
5000	5100		100	101	70-130	02/08/2021 1819
5000	5200		100	105	70-130	02/08/2021 1819
5000	5100		100	103	70-130	02/08/2021 1819
5000	8400		100	110	70-130	02/08/2021 1819
10000	11000		100	112	70-130	02/08/2021 1819
5000	5500		100	108	70-130	02/08/2021 1819
5000	4900		100	98	70-130	02/08/2021 1819
5000	4700		100	93	70-130	02/08/2021 1819
10000	11000		100	111	70-130	02/08/2021 1819
5000	5700		100	108	70-130	02/08/2021 1819
5000	4600		100	92	70-130	02/08/2021 1819
5000	5700		100	114	70-130	02/08/2021 1819
						02/08/2021 1819
						02/08/2021 1819
						02/08/2021 1819
						02/08/2021 1819
						02/08/2021 1819
						02/08/2021 1819
						02/08/2021 1819
	5000 5000 5000 5000 5000 5000 5000	50005200500019000500051005000520050005100	50005200500019000500051005000520050005100	50005200100500019000100500051001005000520010050005100100	50005200100104500019000100104500051001001025000520010010450005100100102	5000520010010470-13050001900010010470-1305000510010010270-1305000520010010470-1305000510010010270-130

LOQ = Limit of Quantitation

DL = Detection Limit

ND = Not detected at or above the DL

N = Recovery is out of criteria

J = Estimated result < LOQ and \ge DL

* = RSD is out of criteria

P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Volatile Organic Compounds by GC/MS - MS

Sample ID: WB03036-00 Batch: 82167 Analytical Method: 8260D	1MS Matrix: Aqueous Prep Method: 5030B							
Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Trichloroethene	ND	5000	5100		100	101	70-130	02/08/2021 1819
Trichlorofluoromethane	ND	5000	5000		100	100	70-130	02/08/2021 1819
Vinyl chloride	ND	5000	4300		100	86	70-130	02/08/2021 1819
Xylenes (total)	15000	10000	26000		100	111	70-130	02/08/2021 1819
Surrogate	Q % Re		eptance .imit					
Bromofluorobenzene	102	7	0-130					
1,2-Dichloroethane-d4	94	7	0-130					
Toluene-d8	105	7	0-130					

 LOQ = Limit of Quantitation
 ND = Not detected at or above the DL
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 P = The RPD between two GC columns exceeds 40%

 * = RSD is out of criteria
 + = RPD is out of criteria

 Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

 106 Vantage Point Drive
 West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Volatile Organic Compounds by GC/MS - MSD

Sample ID: WB03036-001MD Batch: 82167 Analytical Method: 8260D

Matrix: Aqueous

Prep Method: 5030B

	Sample Amount	Spike Amount	Result					% Rec	% RPD	
Parameter	(ug/L)	(ug/L)	(ug/L)	Q	Dil	% Rec	% RPD	Limit	Limit	Analysis Date
Acetone	ND	10000	8700		100	87	0.068	60-140	20	02/08/2021 1844
Benzene	110	5000	5100		100	99	0.36	70-130	20	02/08/2021 1844
Bromodichloromethane	ND	5000	5200		100	103	2.0	70-130	20	02/08/2021 1844
Bromoform	ND	5000	5100		100	102	0.64	70-130	20	02/08/2021 1844
Bromomethane (Methyl bromide)	ND	5000	4200		100	83	3.7	70-130	20	02/08/2021 1844
2-Butanone (MEK)	ND	10000	9700		100	97	0.66	70-130	20	02/08/2021 1844
Carbon disulfide	ND	5000	4800		100	96	0.72	70-130	20	02/08/2021 1844
Carbon tetrachloride	ND	5000	5200		100	104	0.52	70-130	20	02/08/2021 1844
Chlorobenzene	ND	5000	5000		100	100	1.5	70-130	20	02/08/2021 1844
Chloroethane	ND	5000	4300		100	87	5.2	70-130	20	02/08/2021 1844
Chloroform	ND	5000	4700		100	95	0.97	70-130	20	02/08/2021 1844
Chloromethane (Methyl chloride)	ND	5000	3600		100	72	4.9	60-140	20	02/08/2021 1844
Cyclohexane	440	5000	5500		100	102	0.83	70-130	20	02/08/2021 1844
1,2-Dibromo-3-chloropropane (DBCP)	ND	5000	5000		100	100	4.9	70-130	20	02/08/2021 1844
Dibromochloromethane	ND	5000	5100		100	103	0.11	70-130	20	02/08/2021 1844
1,2-Dibromoethane (EDB)	ND	5000	5100		100	101	0.39	70-130	20	02/08/2021 1844
1,2-Dichlorobenzene	ND	5000	4800		100	96	4.5	70-130	20	02/08/2021 1844
1,3-Dichlorobenzene	ND	5000	4900		100	98	4.1	70-130	20	02/08/2021 1844
1,4-Dichlorobenzene	ND	5000	4800		100	97	4.3	70-130	20	02/08/2021 1844
Dichlorodifluoromethane	ND	5000	3900		100	78	1.6	60-140	20	02/08/2021 1844
1,1-Dichloroethane	ND	5000	4800		100	96	0.34	70-130	20	02/08/2021 1844
1,2-Dichloroethane	ND	5000	4600		100	93	0.31	70-130	20	02/08/2021 1844
1,1-Dichloroethene	ND	5000	4900		100	99	0.054	70-130	20	02/08/2021 1844
cis-1,2-Dichloroethene	ND	5000	4800		100	95	0.23	70-130	20	02/08/2021 1844
trans-1,2-Dichloroethene	ND	5000	4900		100	98	0.37	70-130	20	02/08/2021 1844
1,2-Dichloropropane	ND	5000	5100		100	102	1.0	70-130	20	02/08/2021 1844
cis-1,3-Dichloropropene	ND	5000	5300		100	106	1.4	70-130	20	02/08/2021 1844
trans-1,3-Dichloropropene	ND	5000	5100		100	103	0.044	70-130	20	02/08/2021 1844
Ethylbenzene	2900	5000	8200		100	107	1.9	70-130	20	02/08/2021 1844
2-Hexanone	ND	10000	11000		100	111	1.0	70-130	20	02/08/2021 1844
Isopropylbenzene	130	5000	5400		100	105	2.2	70-130	20	02/08/2021 1844
Methyl acetate	ND	5000	4900		100	98	0.25	70-130	20	02/08/2021 1844
Methyl tertiary butyl ether (MTBE)	ND	5000	4600		100	91	2.0	70-130	20	02/08/2021 1844
4-Methyl-2-pentanone	ND	10000	11000		100	111	0.28	70-130	20	02/08/2021 1844
Methylcyclohexane	250	5000	5700		100	109	0.35	70-130	20	02/08/2021 1844
Methylene chloride	ND	5000	4600		100	91	1.1	70-130	20	02/08/2021 1844
Styrene	ND	5000	5600		100	112	1.4	70-130	20	02/08/2021 1844
1,1,2,2-Tetrachloroethane	ND	5000	5000		100	100	4.0	70-130	20	02/08/2021 1844
Tetrachloroethene	ND	5000	5100		100	102	1.6	70-130	20	02/08/2021 1844
Toluene	14000	5000	19000		100	98	1.6	70-130	20	02/08/2021 1844
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	5000	5000		100	100	2.1	70-130	20	02/08/2021 1844
1,2,4-Trichlorobenzene	ND	5000	5000		100	99	4.9	70-130	20	02/08/2021 1844
1,1,1-Trichloroethane	ND	5000	5100		100	102	0.53	70-130	20	02/08/2021 1844
1,1,2-Trichloroethane	ND	5000	5000		100	101	0.58	70-130	20	02/08/2021 1844
		-							-	-

LOQ = Limit of Quantitation ND = Not detected at or above the DL N = Recovery is out of criteria DL = Detection Limit J = Estimated result < LOQ and \ge DL P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Volatile Organic Compounds by GC/MS - MSD

Sample ID: WB03036-001MD Batch: 82167 Analytical Method: 8260D Matrix: Aqueous

Prep Method: 5030B

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Trichloroethene	ND	5000	5100		100	103	1.4	70-130	20	02/08/2021 1844
Trichlorofluoromethane	ND	5000	4800		100	97	3.4	70-130	20	02/08/2021 1844
Vinyl chloride	ND	5000	4200		100	84	3.2	70-130	20	02/08/2021 1844
Xylenes (total)	15000	10000	25000		100	105	2.2	70-130	20	02/08/2021 1844
Surrogate	Q % Rec	Accep Lin								
Bromofluorobenzene	99	70-	130							
1,2-Dichloroethane-d4	94	70-	130							
Toluene-d8	104	70-	130							

 LOQ = Limit of Quantitation
 ND = Not detected at or above the DL
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 P = The RPD between two GC columns exceeds 40%

 * = RSD is out of criteria
 + = RPD is out of criteria

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: WQ81859-001 Batch: 81859 Analytical Method: 8270E

Matrix: Aqueous Prep Method: 3520C Prep Date: 02/04/2021 1407

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acenaphthene	ND		1	0.16	0.040	ug/L	02/09/2021 1307
Acenaphthylene	ND		1	0.16	0.040	ug/L	02/09/2021 1307
Acetophenone	ND		1	0.80	0.23	ug/L	02/09/2021 1307
Anthracene	ND		1	0.16	0.040	ug/L	02/09/2021 1307
Atrazine	ND		1	0.80	0.20	ug/L	02/09/2021 1307
Benzaldehyde	ND		1	4.0	0.27	ug/L	02/09/2021 1307
Benzo(a)anthracene	ND		1	0.16	0.040	ug/L	02/09/2021 1307
Benzo(a)pyrene	ND		1	0.16	0.040	ug/L	02/09/2021 1307
Benzo(b)fluoranthene	ND		1	0.16	0.040	ug/L	02/09/2021 1307
Benzo(g,h,i)perylene	ND		1	0.16	0.040	ug/L	02/09/2021 1307
Benzo(k)fluoranthene	ND		1	0.16	0.040	ug/L	02/09/2021 1307
1,1'-Biphenyl	ND		1	0.80	0.21	ug/L	02/09/2021 1307
4-Bromophenyl phenyl ether	ND		1	0.80	0.15	ug/L	02/09/2021 1307
Butyl benzyl phthalate	ND		1	4.0	0.21	ug/L	02/09/2021 1307
Caprolactam	ND		1	4.0	0.71	ug/L	02/09/2021 1307
Carbazole	ND		1	0.80	0.040	ug/L	02/09/2021 1307
bis (2-Chloro-1-methylethyl) ether	ND		1	0.80	0.17	ug/L	02/09/2021 1307
4-Chloro-3-methyl phenol	ND		1	0.80	0.26	ug/L	02/09/2021 1307
4-Chloroaniline	ND		1	0.80	0.13	ug/L	02/09/2021 1307
bis(2-Chloroethoxy)methane	ND		1	0.80	0.060	ug/L	02/09/2021 1307
bis(2-Chloroethyl)ether	ND		1	0.80	0.16	ug/L	02/09/2021 1307
2-Chloronaphthalene	ND		1	0.80	0.15	ug/L	02/09/2021 1307
2-Chlorophenol	ND		1	0.80	0.15	ug/L	02/09/2021 1307
4-Chlorophenyl phenyl ether	ND		1	0.80	0.16	ug/L	02/09/2021 1307
Chrysene	ND		1	0.16	0.040	ug/L	02/09/2021 1307
Dibenzo(a,h)anthracene	ND		1	0.16	0.040	ug/L	02/09/2021 1307
Dibenzofuran	ND		1	0.80	0.16	ug/L	02/09/2021 1307
3,3'-Dichlorobenzidine	ND		1	4.0	0.81	ug/L	02/09/2021 1307
2,4-Dichlorophenol	ND		1	0.80	0.19	ug/L	02/09/2021 1307
Diethylphthalate	ND		1	4.0	0.19	ug/L	02/09/2021 1307
Dimethyl phthalate	ND		1	4.0	0.18	ug/L	02/09/2021 1307
2,4-Dimethylphenol	ND		1	0.80	0.15	ug/L	02/09/2021 1307
Di-n-butyl phthalate	ND		1	4.0	0.42	ug/L	02/09/2021 1307
4,6-Dinitro-2-methylphenol	ND		1	4.0	0.89	ug/L	02/09/2021 1307
2,4-Dinitrophenol	ND		1	4.0	1.3	ug/L	02/09/2021 1307
2,4-Dinitrotoluene	ND		1	1.6	0.36	ug/L	02/09/2021 1307
2,6-Dinitrotoluene	ND		1	1.6	0.34	ug/L	02/09/2021 1307
Di-n-octylphthalate	ND		1	4.0	0.48	ug/L	02/09/2021 1307
bis(2-Ethylhexyl)phthalate	0.49	J	1	4.0	0.38	ug/L	02/09/2021 1307
Fluoranthene	ND		1	0.16	0.040	ug/L	02/09/2021 1307
Fluorene	ND		1	0.16	0.040	ug/L	02/09/2021 1307
Hexachlorobenzene	ND		1	0.80	0.15	ug/L	02/09/2021 1307
Hexachlorobutadiene	ND		1	0.80	0.17	ug/L	02/09/2021 1307

LOQ = Limit of Quantitation ND = Not detected at or above the DL N = Recovery is out of criteria DL = Detection Limit J = Estimated result < LOQ and \ge DL P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

+ = RPD is out of criteria

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: WQ81859-001	Matrix: Aqueous
Batch: 81859	Prep Method: 3520C
Analytical Method: 8270E	Prep Date: 02/04/2021 1407

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Hexachloroethane	ND		1	0.80	0.17	ug/L	02/09/2021 1307
Indeno(1,2,3-c,d)pyrene	ND		1	0.16	0.040	ug/L	02/09/2021 1307
Isophorone	ND		1	0.80	0.22	ug/L	02/09/2021 1307
2-Methylnaphthalene	ND		1	0.16	0.040	ug/L	02/09/2021 1307
2-Methylphenol	ND		1	0.80	0.21	ug/L	02/09/2021 1307
3+4-Methylphenol	ND		1	1.6	0.46	ug/L	02/09/2021 1307
Naphthalene	0.15	J	1	0.16	0.040	ug/L	02/09/2021 1307
2-Nitroaniline	ND		1	1.6	0.66	ug/L	02/09/2021 1307
3-Nitroaniline	ND		1	1.6	0.15	ug/L	02/09/2021 1307
4-Nitroaniline	ND		1	1.6	1.3	ug/L	02/09/2021 1307
Nitrobenzene	ND		1	0.80	0.17	ug/L	02/09/2021 1307
2-Nitrophenol	ND		1	1.6	0.44	ug/L	02/09/2021 1307
4-Nitrophenol	ND		1	4.0	2.1	ug/L	02/09/2021 1307
N-Nitrosodi-n-propylamine	ND		1	0.80	0.28	ug/L	02/09/2021 1307
N-Nitrosodiphenylamine (Dipheny	lamine) ND		1	0.80	0.50	ug/L	02/09/2021 1307
Pentachlorophenol	ND		1	4.0	1.3	ug/L	02/09/2021 1307
Phenanthrene	ND		1	0.16	0.040	ug/L	02/09/2021 1307
Phenol	ND		1	0.80	0.19	ug/L	02/09/2021 1307
Pyrene	ND		1	0.16	0.040	ug/L	02/09/2021 1307
2,4,5-Trichlorophenol	ND		1	0.80	0.19	ug/L	02/09/2021 1307
2,4,6-Trichlorophenol	ND		1	0.80	0.22	ug/L	02/09/2021 1307
Surrogate	Q % F	Rec	Acceptance Limit				
2-Fluorobiphenyl	6	I	37-129				
2-Fluorophenol	43	3	24-127				
Nitrobenzene-d5	57	7	38-127				
Phenol-d5	50)	28-128				
Terphenyl-d14	72	2	10-148				
2,4,6-Tribromophenol	77	7	35-144				

LOQ = Limit of Quantitation	ND = Not detected at or above the DL	N = Recovery is out of criteria						
DL = Detection Limit	J = Estimated result < LOQ and \geq DL	P = The RPD between two GC columns exceeds 40%						
	* = RSD is out of criteria	+ = RPD is out of criteria						
Note: Calculations are performed before rounding to avoid round-off errors in calculated results								

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: WQ81859-002 Batch: 81859			P	Matrix: rep Method:	Aqueous 3520C		
Analytical Method: 8270E				Prep Date	: 02/04/2021 14	07	
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Acenaphthene	8.0	6.3		1	78	30-122	02/09/2021 1332
Acenaphthylene	8.0	6.3		1	79	30-130	02/09/2021 1332
Acetophenone	8.0	7.6		1	95	52-125	02/09/2021 1332
Anthracene	8.0	6.8		1	86	30-123	02/09/2021 1332
Atrazine	8.0	7.1		1	88	25-121	02/09/2021 1332
Benzaldehyde	8.0	4.1		1	52	20-115	02/09/2021 1332
Benzo(a)anthracene	8.0	6.9		1	86	40-125	02/09/2021 1332
Benzo(a)pyrene	8.0	8.2		1	102	40-128	02/09/2021 1332
Benzo(b)fluoranthene	8.0	7.8		1	98	30-130	02/09/2021 1332
Benzo(g,h,i)perylene	8.0	8.0		1	100	30-130	02/09/2021 1332
Benzo(k)fluoranthene	8.0	7.3		1	92	30-130	02/09/2021 1332
I,1'-Biphenyl	8.0	6.1		1	76	42-120	02/09/2021 1332
I-Bromophenyl phenyl ether	8.0	7.2		1	90	30-124	02/09/2021 1332
Butyl benzyl phthalate	8.0	7.3		1	91	54-135	02/09/2021 1332
Caprolactam	8.0	7.1		1	89	44-152	02/09/2021 1332
Carbazole	8.0	6.8		1	85	44-132	02/09/2021 1332
vis (2-Chloro-1-methylethyl) ether	8.0	5.7		1	71	42-124	02/09/2021 1332
I-Chloro-3-methyl phenol	8.0	5.7		1	71	30-123	02/09/2021 1332
I-Chloroaniline	8.0	3.3		1	42	12-157	02/09/2021 1332
bis(2-Chloroethoxy)methane	8.0	5.7		1	42 71	44-127	02/09/2021 1332
bis(2-Chloroethyl)ether	8.0	6.3		1	79	44-127	02/09/2021 1332
2-Chloronaphthalene	8.0	5.8		1	73	46-120	02/09/2021 1332
2-Chlorophenol	8.0	5.6 6.6		1	82	50-117	02/09/2021 1332
I-Chlorophenyl phenyl ether	8.0	6.4		1	82 80	30-121	02/09/2021 1332
Chrysene	8.0	0.4 7.0		1	87	30-130	02/09/2021 1332
Dibenzo(a,h)anthracene	8.0	7.9		1	99	30-130	02/09/2021 1332
Dibenzofuran	8.0	6.6		1	82	30-118	02/09/2021 1332
3,3'-Dichlorobenzidine	8.0	3.8		1	47	10-126	02/09/2021 1332
	8.0	5.6					
2,4-Dichlorophenol	8.0 8.0			1	69 82	30-121	02/09/2021 1332
Diethylphthalate		6.6		1	82	40-125	02/09/2021 1332
Dimethyl phthalate	8.0	6.6		1	82 59	40-127	02/09/2021 1332
2,4-Dimethylphenol	8.0	4.7		1	58	20-125	02/09/2021 1332
Di-n-butyl phthalate	8.0	7.1		1	88	40-127	02/09/2021 1332
I,6-Dinitro-2-methylphenol	8.0	6.3		1	79	56-128	02/09/2021 1332
2,4-Dinitrophenol	16	9.0		1	56	11-126	02/09/2021 1332
2,4-Dinitrotoluene	8.0	7.4		1	92	59-127	02/09/2021 1332
2,6-Dinitrotoluene	8.0	7.2		1	90	59-126	02/09/2021 1332
Di-n-octylphthalate	8.0	7.1		1	88	50-136	02/09/2021 1332
bis(2-Ethylhexyl)phthalate	8.0	6.8		1	85	56-128	02/09/2021 1332
Fluoranthene	8.0	7.0		1	88	40-128	02/09/2021 1332
Fluorene	8.0	6.1		1	76	30-124	02/09/2021 1332
Hexachlorobenzene	8.0	6.7		1	83	30-125	02/09/2021 1332
Hexachlorobutadiene	8.0	4.4		1	55	24-110	02/09/2021 1332
Hexachlorocyclopentadiene	40	16		1	40	16-96	02/09/2021 1332

LOQ = Limit of Quantitation ND = Not detected at or above the DL N = Recovery is out of criteria P = The RPD between two GC columns exceeds 40% DL = Detection Limit J = Estimated result < LOQ and \ge DL

* = RSD is out of criteria

+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: WQ81859-002 Batch: 81859 Analytical Method: 8270E			Prep Method	: Aqueous : 3520C :: 02/04/2021 14	07	
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q Dil	% Rec	% Rec Limit	Analysis Date
Hexachloroethane	8.0	6.0	1	75	31-110	02/09/2021 1332
Indeno(1,2,3-c,d)pyrene	8.0	7.5	1	94	30-130	02/09/2021 1332
Isophorone	8.0	6.5	1	81	57-123	02/09/2021 1332
2-Methylnaphthalene	8.0	5.5	1	69	40-132	02/09/2021 1332
2-Methylphenol	8.0	6.9	1	86	56-119	02/09/2021 1332
3+4-Methylphenol	8.0	6.2	1	78	53-119	02/09/2021 1332
Naphthalene	8.0	6.4	1	80	30-130	02/09/2021 1332
2-Nitroaniline	8.0	6.7	1	83	60-124	02/09/2021 1332
3-Nitroaniline	8.0	4.5	1	56	43-123	02/09/2021 1332
4-Nitroaniline	8.0	5.3	1	67	30-135	02/09/2021 1332
Nitrobenzene	8.0	5.6	1	70	51-122	02/09/2021 1332
2-Nitrophenol	8.0	5.9	1	73	51-118	02/09/2021 1332
4-Nitrophenol	16	11	1	71	53-130	02/09/2021 1332
N-Nitrosodi-n-propylamine	8.0	7.1	1	89	54-127	02/09/2021 1332
N-Nitrosodiphenylamine (Diphenylamine)		6.6	1	83	30-123	02/09/2021 1332
Pentachlorophenol	16	12	1	76	42-131	02/09/2021 1332
Phenanthrene	8.0	6.9	1	86	40-123	02/09/2021 1332
Phenol	8.0	6.4	1	79	49-117	02/09/2021 1332
Pyrene	8.0	7.1	1	89	40-126	02/09/2021 1332
2,4,5-Trichlorophenol	8.0	6.0	1	75	30-123	02/09/2021 1332
2,4,6-Trichlorophenol	8.0	6.0	1	75	30-125	02/09/2021 1332
Surrogate	Q% Rec	Acceptance Limit				
2-Fluorobiphenyl	71	37-129				
2-Fluorophenol	71	24-127				
Nitrobenzene-d5	61	38-127				
Phenol-d5	76	28-128				
Terphenyl-d14	82	10-148				
2,4,6-Tribromophenol	89	35-144				

 LOQ = Limit of Quantitation
 ND = Not detected at or above the DL
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 P = The RPD between two GC columns exceeds 40%

 * = RSD is out of criteria
 + = RPD is out of criteria

 Note: Calculations are performed before round-off errors in calculated results

Semivolatile Organic Compounds by GC/MS - MS

Sample ID: WB03036-001N	IS		-		ix: Aqueou	S		
Batch: 81859				-	d: 3520C			
Analytical Method: 8270E				Prep Da	te: 02/04/20	021 1407		
Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Acenaphthene	ND	16	17		100	103	30-122	02/10/2021 2018
Acenaphthylene	ND	16	15		100	92	30-130	02/10/2021 2018
Acetophenone	ND	16	ND	Ν	100	0.00	52-125	02/10/2021 2018
Anthracene	ND	16	15		100	96	30-123	02/10/2021 2018
Atrazine	ND	16	ND	Ν	100	0.00	25-121	02/10/2021 2018
Benzaldehyde	ND	16	ND	Ν	100	0.00	20-115	02/10/2021 2018
Benzo(a)anthracene	ND	16	9.1		100	57	40-125	02/10/2021 2018
Benzo(a)pyrene	ND	16	17		100	107	40-128	02/10/2021 2018
Benzo(b)fluoranthene	ND	16	ND	Ν	100	0.00	30-130	02/10/2021 2018
Benzo(g,h,i)perylene	ND	16	ND	N	100	0.00	30-130	02/10/2021 201
Benzo(k)fluoranthene	ND	16	22	N	100	137	30-130	02/10/2021 2018
1,1'-Biphenyl	ND	16	ND	N	100	0.00	42-120	02/10/2021 2018
4-Bromophenyl phenyl ether	ND	16	ND	N	100	0.00	30-124	02/10/2021 2018
Butyl benzyl phthalate	ND	16	ND	N	100	0.00	54-135	02/10/2021 2018
Caprolactam	ND	16	ND	N	100	0.00	44-152	02/10/2021 2018
Carbazole	ND	16	20	N	100	124	45-101	02/10/2021 201
bis (2-Chloro-1-methylethyl) ether	ND	16	ND	N	100	0.00	42-124	02/10/2021 2018
4-Chloro-3-methyl phenol	ND	16	ND	N	100	0.00	30-123	02/10/2021 201
4-Chloroaniline	ND	16	ND	N	100	0.00	30-130	02/10/2021 201
bis(2-Chloroethoxy)methane	ND	16	ND	N	100	0.00	44-127	02/10/2021 201
bis(2-Chloroethyl)ether	ND	16	62	N	100	385	46-120	02/10/2021 201
2-Chloronaphthalene	ND	16	ND	N	100	0.00	46-100	02/10/2021 201
2-Chlorophenol	ND	16	ND	N	100	0.00	40-100 50-117	02/10/2021 2018
4-Chlorophenyl phenyl ether	ND	16	ND	N	100	0.00	30-117	02/10/2021 2018
Chrysene	ND	16	16		100	100	30-121	02/10/2021 201
Dibenzo(a,h)anthracene	ND	16	ND	N	100	0.00	30-130	02/10/2021 201
Dibenzofuran	ND	16	ND	N	100	0.00	30-130 30-118	02/10/2021 2018
								02/10/2021 2018
3,3'-Dichlorobenzidine	ND	16	ND	N	100	0.00	10-126	
2,4-Dichlorophenol	ND	16	ND	N	100	0.00	30-121	02/10/2021 201
Diethylphthalate	ND	16	ND	N	100	0.00	40-125	02/10/2021 201
Dimethyl phthalate	ND	16	ND	N	100	0.00	40-127	02/10/2021 201
2,4-Dimethylphenol	ND	16	ND	N	100	0.00	20-125	02/10/2021 2018
Di-n-butyl phthalate	ND	16	ND	N	100	0.00	40-127	02/10/2021 2018
4,6-Dinitro-2-methylphenol	ND	16	ND	Ν	100	0.00	56-128	02/10/2021 2018
2,4-Dinitrophenol	ND	32	ND	Ν	100	0.00	30-130	02/10/2021 2018
2,4-Dinitrotoluene	ND	16	ND	Ν	100	0.00	59-127	02/10/2021 2018
2,6-Dinitrotoluene	ND	16	ND	Ν	100	0.00	59-126	02/10/2021 2018
Di-n-octylphthalate	ND	16	ND	Ν	100	0.00	50-136	02/10/2021 2018
bis(2-Ethylhexyl)phthalate	ND	16	93	Ν	100	581	56-128	02/10/2021 2018
Fluoranthene	ND	16	20		100	127	40-128	02/10/2021 2018
Fluorene	ND	16	15		100	94	30-124	02/10/2021 2018
Hexachlorobenzene	ND	16	ND	Ν	100	0.00	30-125	02/10/2021 2018
Hexachlorobutadiene	ND	16	ND	Ν	100	0.00	30-130	02/10/2021 2018
Hexachlorocyclopentadiene	ND	80	ND	Ν	100	0.00	16-96	02/10/2021 2018

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit P = The RPD between two GC columns exceeds 40% J = Estimated result < LOQ and \ge DL

* = RSD is out of criteria

+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Semivolatile Organic Compounds by GC/MS - MS

Sample ID: WB03036-001MS Batch: 81859				Pre		ix: Aqueou od: 3520C	S		
Analytical Method: 8270E					Prep Da	nte: 02/04/20	021 1407		
Parameter	Samı Amo (ug/l	unt Am	ike ount g/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Hexachloroethane	ND	16		ND	Ν	100	0.00	31-110	02/10/2021 2018
Indeno(1,2,3-c,d)pyrene	ND	16		8.6		100	54	30-130	02/10/2021 2018
Isophorone	ND	16		ND	Ν	100	0.00	57-123	02/10/2021 2018
2-Methylnaphthalene	240	16		240	Ν	100	12	40-132	02/10/2021 2018
2-Methylphenol	ND	16		ND	Ν	100	0.00	56-119	02/10/2021 2018
3+4-Methylphenol	ND	16		ND	Ν	100	0.00	53-119	02/10/2021 2018
Naphthalene	860	16		830	Ν	100	-184	30-130	02/10/2021 2018
2-Nitroaniline	ND	16		ND	Ν	100	0.00	60-124	02/10/2021 2018
3-Nitroaniline	ND	16		ND	Ν	100	0.00	43-123	02/10/2021 2018
4-Nitroaniline	ND	16		ND	Ν	100	0.00	30-135	02/10/2021 2018
Nitrobenzene	ND	16		ND	Ν	100	0.00	51-122	02/10/2021 2018
2-Nitrophenol	ND	16		ND	Ν	100	0.00	51-118	02/10/2021 2018
4-Nitrophenol	ND	32		ND	Ν	100	0.00	53-130	02/10/2021 2018
N-Nitrosodi-n-propylamine	ND	16		ND	Ν	100	0.00	54-127	02/10/2021 2018
N-Nitrosodiphenylamine (Diphenylamine)	ND	16		ND	Ν	100	0.00	30-123	02/10/2021 2018
Pentachlorophenol	ND	32		ND	Ν	100	0.00	42-131	02/10/2021 2018
Phenanthrene	ND	16		18		100	115	40-123	02/10/2021 2018
Phenol	ND	16		ND	Ν	100	0.00	49-117	02/10/2021 2018
Pyrene	ND	16		14		100	90	40-126	02/10/2021 2018
2,4,5-Trichlorophenol	ND	16		ND	Ν	100	0.00	30-123	02/10/2021 2018
2,4,6-Trichlorophenol	ND	16		ND	Ν	100	0.00	30-125	02/10/2021 2018
Surrogate	Q	% Rec		ptance imit					
2-Fluorobiphenyl		92	37	7-129					
2-Fluorophenol		66	24	1-127					
Nitrobenzene-d5		77	38	3-127					
Phenol-d5		89	28	3-128					
Terphenyl-d14		81	10)-148					
2,4,6-Tribromophenol	Ν	0.00	35	5-144					

LOQ = Limit of Quantitation	ND = Not detected at or above the DL	N = Recovery is out of criteria
DL = Detection Limit	$J = Estimated result < LOQ and \ge DL$	P = The RPD between two GC columns exceeds 40%
	* = RSD is out of criteria	+ = RPD is out of criteria
Note: Calculations are performed before rou	nding to avoid round-off errors in calculate	d results

Semivolatile Organic Compounds by GC/MS - MSD

Sample ID: WB03036-001N	ЛD			Jren						
Batch : 81859			· ·			d: 3520C				
Analytical Method: 8270E				Pr	ep Dat	e: 02/04/	2021 1407			
Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Acenaphthene	ND	16	13		100	82	22	30-122	40	02/10/2021 2042
Acenaphthylene	ND	16	12		100	76	19	30-130	40	02/10/2021 2042
Acetophenone	ND	16	ND	Ν	100	0.00	0.00	52-125	40	02/10/2021 2042
Anthracene	ND	16	14		100	85	12	30-123	40	02/10/2021 2042
Atrazine	ND	16	ND	Ν	100	0.00	0.00	25-121	40	02/10/2021 2042
Benzaldehyde	ND	16	ND	Ν	100	0.00	0.00	20-115	40	02/10/2021 2042
Benzo(a)anthracene	ND	16	20	+	100	124	74	40-125	40	02/10/2021 2042
Benzo(a)pyrene	ND	16	19		100	117	8.8	40-128	40	02/10/2021 2042
Benzo(b)fluoranthene	ND	16	ND	Ν	100	0.00	0.00	30-130	40	02/10/2021 2042
Benzo(g,h,i)perylene	ND	16	ND	Ν	100	0.00	0.00	30-130	40	02/10/2021 2042
Benzo(k)fluoranthene	ND	16	19		100	120	13	30-130	40	02/10/2021 2042
1,1'-Biphenyl	ND	16	ND	Ν	100	0.00	0.00	42-120	40	02/10/2021 2042
4-Bromophenyl phenyl ether	ND	16	ND	Ν	100	0.00	0.00	30-124	40	02/10/2021 2042
Butyl benzyl phthalate	ND	16	ND	Ν	100	0.00	0.00	54-135	40	02/10/2021 2042
Caprolactam	ND	16	ND	Ν	100	0.00	0.00	44-152	40	02/10/2021 2042
Carbazole	ND	16	17	Ν	100	107	15	45-101	40	02/10/2021 2042
ois (2-Chloro-1-methylethyl) ether	ND	16	ND	Ν	100	0.00	0.00	42-124	40	02/10/2021 2042
1-Chloro-3-methyl phenol	ND	16	ND	Ν	100	0.00	0.00	30-123	40	02/10/2021 2042
1-Chloroaniline	ND	16	ND	Ν	100	0.00	0.00	30-130	40	02/10/2021 2042
bis(2-Chloroethoxy)methane	ND	16	ND	Ν	100	0.00	0.00	44-127	40	02/10/2021 2042
bis(2-Chloroethyl)ether	ND	16	55	Ν	100	346	11	46-120	40	02/10/2021 2042
2-Chloronaphthalene	ND	16	ND	Ν	100	0.00	0.00	46-100	40	02/10/2021 2042
2-Chlorophenol	ND	16	ND	Ν	100	0.00	0.00	50-117	40	02/10/2021 2042
4-Chlorophenyl phenyl ether	ND	16	ND	Ν	100	0.00	0.00	30-121	40	02/10/2021 2042
Chrysene	ND	16	14		100	91	9.8	30-130	40	02/10/2021 2042
Dibenzo(a,h)anthracene	ND	16	ND	Ν	100	0.00	0.00	30-130	40	02/10/2021 2042
Dibenzofuran	ND	16	ND	Ν	100	0.00	0.00	30-118	40	02/10/2021 2042
3,3'-Dichlorobenzidine	ND	16	ND	Ν	100	0.00	0.00	10-126	40	02/10/2021 2042
2,4-Dichlorophenol	ND	16	ND	Ν	100	0.00	0.00	30-121	40	02/10/2021 2042
Diethylphthalate	ND	16	ND	Ν	100	0.00	0.00	40-125	40	02/10/2021 2042
Dimethyl phthalate	ND	16	ND	Ν	100	0.00	0.00	40-127	40	02/10/2021 2042
2,4-Dimethylphenol	ND	16	ND	N	100	0.00	0.00	20-125	40	02/10/2021 2042
Di-n-butyl phthalate	ND	16	ND	Ν	100	0.00	0.00	40-127	40	02/10/2021 2042
4,6-Dinitro-2-methylphenol	ND	16	ND	N	100	0.00	0.00	56-128	40	02/10/2021 2042
2,4-Dinitrophenol	ND	32	ND	N	100	0.00	0.00	30-130	40	02/10/2021 2042
2,4-Dinitrotoluene	ND	16	ND	N	100	0.00	0.00	59-127	40	02/10/2021 2042
2,6-Dinitrotoluene	ND	16	ND	N	100	0.00	0.00	59-126	40	02/10/2021 2042
Di-n-octylphthalate	ND	16	ND	N	100	0.00	0.00	50-136	40	02/10/2021 2042
bis(2-Ethylhexyl)phthalate	ND	16	89	N	100	556	4.4	56-128	40	02/10/2021 2042
Fluoranthene	ND	16	17		100	104	21	40-128	40	02/10/2021 2042
Fluorene	ND	16	14		100	89	5.2	30-124	40	02/10/2021 2042
Hexachlorobenzene	ND	16	ND	Ν	100	0.00	0.00	30-125	40	02/10/2021 2042
Hexachlorobutadiene	ND	16	ND	N	100	0.00	0.00	30-130	40	02/10/2021 2042
Hexachlorocyclopentadiene	ND	80	ND	N	100	0.00	0.00	16-96	40	02/10/2021 2042

LOQ = Limit of Quantitation

DL = Detection Limit

ND = Not detected at or above the DL

P = The RPD between two GC columns exceeds 40% J = Estimated result < LOQ and \ge DL

* = RSD is out of criteria

N = Recovery is out of criteria

+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Semivolatile Organic Compounds by GC/MS - MSD

Sample ID: WB03036-001MD Batch: 81859 Analytical Method: 8270E				F	Prep N	lethoo	<pre>c: Aqueo d: 3520C e: 02/04/2</pre>				
Parameter	Samp Amou (ug/l	int	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Hexachloroethane	ND		16	210	N,+	100	1330	200	31-110	40	02/10/2021 2042
Indeno(1,2,3-c,d)pyrene	ND		16	ND	N,+	100	0.00	200	30-130	40	02/10/2021 2042
Isophorone	ND		16	ND	Ν	100	0.00	0.00	57-123	40	02/10/2021 2042
2-Methylnaphthalene	240		16	210	Ν	100	-148	11	40-132	40	02/10/2021 2042
2-Methylphenol	ND		16	ND	Ν	100	0.00	0.00	56-119	40	02/10/2021 2042
3+4-Methylphenol	ND		16	ND	Ν	100	0.00	0.00	53-119	40	02/10/2021 2042
Naphthalene	860		16	710	Ν	100	-951	16	30-130	40	02/10/2021 2042
2-Nitroaniline	ND		16	ND	Ν	100	0.00	0.00	60-124	40	02/10/2021 2042
3-Nitroaniline	ND		16	ND	Ν	100	0.00	0.00	43-123	40	02/10/2021 2042
4-Nitroaniline	ND		16	ND	Ν	100	0.00	0.00	30-135	40	02/10/2021 2042
Nitrobenzene	ND		16	ND	Ν	100	0.00	0.00	51-122	40	02/10/2021 2042
2-Nitrophenol	ND		16	ND	Ν	100	0.00	0.00	51-118	40	02/10/2021 2042
4-Nitrophenol	ND		32	ND	Ν	100	0.00	0.00	53-130	40	02/10/2021 2042
N-Nitrosodi-n-propylamine	ND		16	ND	Ν	100	0.00	0.00	54-127	40	02/10/2021 2042
N-Nitrosodiphenylamine (Diphenylamine)	ND		16	ND	Ν	100	0.00	0.00	30-123	40	02/10/2021 2042
Pentachlorophenol	ND		32	ND	Ν	100	0.00	0.00	42-131	40	02/10/2021 2042
Phenanthrene	ND		16	16		100	98	16	40-123	40	02/10/2021 2042
Phenol	ND		16	ND	Ν	100	0.00	0.00	49-117	40	02/10/2021 2042
Pyrene	ND		16	14		100	85	5.8	40-126	40	02/10/2021 2042
2,4,5-Trichlorophenol	ND		16	ND	Ν	100	0.00	0.00	30-123	40	02/10/2021 2042
2,4,6-Trichlorophenol	ND		16	ND	Ν	100	0.00	0.00	30-125	40	02/10/2021 2042
Surrogate	Q	% Rec	Ac	ceptance Limit							
2-Fluorobiphenyl		81		37-129							
2-Fluorophenol		58		24-127							
Nitrobenzene-d5		67		38-127							
Phenol-d5		56		28-128							
Terphenyl-d14		75		10-148							
2,4,6-Tribromophenol	Ν	0.00		35-144							

LOQ = Limit of Quantitation	ND = Not detected at or above the DL	N = Recovery is out of criteria
DL = Detection Limit	J = Estimated result < LOQ and \ge DL	P = The RPD between two GC columns exceeds 40%
	* = RSD is out of criteria	+ = RPD is out of criteria
Note: Calculations are performed before rou	nding to avoid round-off errors in calculate	d results

Chain of Custody and Miscellaneous Documents

Number 108461	Rr Taron , ron auore No. Arcon (Crim Page ar	WB03036	020	Remarks / Cookr / D.					ad Requirements (Specify)	Date Time	Date Thra	Date Time	Date 74me YVE 11111 COO	S. T a Temp Bleak BY D.N	Goournerk Number: MEDOSN2-01
	10 (828)550-5502 Date: Maluar O Forgeon (1990)	010 2012 0010	8 ₩0	ns	3 X X	2 X			Poosible Hazand kewulitahian Disembarang Disembarian Disembarang Disembarang Disembarang Disembarang Disembarang Disembarang Disembarang Disembarang Disembarang Dise		2. Aurainent try	3. Received by	A LADORAICON ROCCHARD BY AMARTAN AND A CAMARA	chue)
PACE ANALYTICAL SERVICES, LLC 106 Vantage Point Drive • West Columbia, SC 29172 Telephone No. 803-791-9700 Fax No. 803-791-9111 www.pacelabs.com	Report to Carinet Ethan Dinwidde, / Dan Malane Sempier's Senstrue	France Name Ethan Dinwiddie	Matrix	Annual Contraction That Contract Contra	1345 GX 2	- GX			1 i i I		Лапе	Date Time 3. Here	2.12.13.1 16X97 4. Labo		
Pace Analytical	Terracon Consultants, Inc.	1004		nption combined on one file.) Date(s)	212/21	TB-01 212121			Tune Required (Prior Inh apprever required for expedited IAL)	1	2. Halinquished by	3. Heinquished by	4. Reinquistics by String K.	Note: All samples are retained for four works from receipt unless other arrangements are made.	an a

PACE ANALYTICAL SERVICES, LLC

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Samples Receipt Checklist (SRC) (ME0018C-15) ssuing Authority: Pace ENV - WCOL

Revised:9/29/2020 Page 1 of 1

Sample Receipt Checklist (SRC)

Client: Terracon Consultants Inc
Means of receipt: Deve Cooler inspected by/date: Mart / 02/03/2021 Lot #: WD03036
Verails of receipt: Pace Client UPS FedEx Other; Verails of receipt: No I. Were custody seals present on the cooler?
V Yes No NA 2. If custody seals present, were they intact and unbroken?
Chioring Strig ID, M
Original temperature upon receipt (Devine Game and the Common temperature upon receipt)
Method: $[\car{L}]$ Temperature Blank Against Bottles IR Gun ID: $\frac{5}{100000000000000000000000000000000000$
Yes N_0 $\sqrt{N_A}$ 3. If temperature of any cooler exceeded 6.0°C, was Project Manager Maria 12
- W Was Houried by; prone / email / face-to-form (pinele and)
1 vo 1 NA 4. Is the commercial courier's packing slip attached to this form?
5. were proper custody procedures (relinouished/received) followed?
o. were sample IDs listed on the COC?
rece sample iDs listed on all sample containers?
8. Was collection date & time listed on the COC?
21 was concerton date & time listed on all sample containers?
10. Did all container label information (ID, date, time) agree with the COC2
Yes No 11. Were tests to be performed listed on the COC?
Yes No 12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, etc.)?
Yes No 13. Was adequate sample volume available?
Y Yes No 14. Were all samples received within 16 the helding since (0)
 A statistical production of the statistical productistical production of the statistical production of the statis
Test IV Not INTA Were and Rozer / 2 samples, were bubbles probably Stress simplify the
Yes No ZNA 17. Were all DRO/metals/nutrient samples received at a pH of < 2?
\sim 10 m more an evaluate samples received at a pH > 12 and \sim 10 fm
$1.031 \square D(0) I \vee INA $
resident enter inc.
Yes No 20. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc)
a comment section in LIMS2
21. was the quote tumber listed on the container labe?? If yes, Quote # 26558
mple Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.)
were received incorrectly preserved and there address
. If more than one preservative is needed, please note in the comments below.
nple(s) NA
in pice of the second
were received with TRC > 0.5 mg/L (If $#19$ is no) and were usted accordingly in sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID: NA
barcode labels applied by: MEII Date: 02/03/2021
uments:

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

 Number 108462	Erfacent Chan Quote No.	WEGADAG	Cen	Ramerks / Ocoler / D.						OC Requirements (Specify)	Date Time	Date Плпе	Date Trite	Date, 7 Juli21 1036	Æ	Γκκατινκική Μυπάρες Μ <u>ΕΟΟ</u> ΟΝΖ-Ο Γ
PACE ANALYTICAL SERVICES, LLC 106 Vartage Point Drive • West Columbia, SC 29172 Teleptione No. 803-791-9700 Fax No. 803-791-9111 www.pacatabs.com	Report to Caract Ethran Dinkicke/Dan Walane (328)559+5302 Dan Malane & Francish Control & Control of Ann Custe No. Samper's Symatrice		Matrie No of Constances 824 8		o G X X	5××				Possible Hazard identification X06poset by Leb X10n-Hazard (1 Planumbit [] Skin Infigur [] Polson [] Unterson	Date There I. Ascerved by	Tune 2. Provided by	Z 1 10 5 0 3. Penetived by	Time 4. Lationalory received by ATCPY Or A	LAB USE ONLY Reserved on ice (Cicke) / Pass, No kee Pack Receipt Temp	
Pace Analytical *		Level I	Project Nor7020724) P.G. No.	Sample ID / Desortation Routations for each simple may be combined on one free.) Data(s) (MuMur)	244-74-01 2/3/21 1600	TB-02 213/21 -				kired (Pitor lab apprenal required for expedited W.) (Specify)	SELAN MAR	2. Reingoished by	3. Reinguished by Feller Date	4. Railinguished by	Note: All samples are retained for four weeks from receipt unless other arrangements are made.	DISTRIBUTION: WHITE & YELLOW-Roturn to taboarlory with Sample(s); PINK-Fleidföllent Copy

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

100

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

PACE ANALYTICAL SERVICES, LLC

Samples Receipt Checklist (SRC) (ME0018C-15) Issuing Authority: Pace ENV - WCOL

Revised:9/29/2020 Page 1 of 1

Sample Receipt Checklist (SRC)

Client: Terracon Cooler Inspected by/date: MEH / 02/04/2021 Lot #: WB03036	
Means of receipt: Pace Client UPS V FedEx Other:	
Yes No: 1. Were custody seals present on the cooler?	
Yes No No NA 2. If custody seals were present, were they intact and unbroken?	
pH Strip ID: NA Chlorine Strip ID: NA Tested by: NA	
Original temperature upon receipt / Derived (Corrected) temperature upon receipt %Solid Snap-Cup ID: NA	_
<u>L8 / L8 °C NA / NA °C NA / NA °C NA / NA °C</u>	
Method: Temperature Blank Against Bottles IR Gun ID; 5 IR Gun Correction Factor: 0 °C	
Method of coolant: Wet Ice Icc Packs Dry Ice None	
Yes No VNA 3. If temperature of any cooler exceeded 6.0°C, was Project Manager Notified?	
PM was Notified by: phone / email / face-to-face (circle one).	
Yes No NA 4. Is the commercial courier's packing slip attached to this form?	
Yes No 5. Were proper custody procedures (relinquished/received) followed?	
V Yes No 6. Were sample IDs listed on the COC?	
✓ Yes No 7. Were sample IDs listed on all sample containers?	
✓ Ycs No. 8. Was collection date & time listed on the COC?	
✓ Yes No 9. Was collection date & time listed on all sample containers?	
V Yes No 10. Did all container label information (ID, date, time) agree with the COC?	
Ves No 11. Were tests to be performed listed on the COC?	
Yes No 12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, ctc.)?	
Ves No 13. Was adequate sample volume available?	
✓ Yes No I4. Were all samples received within ½ the holding time or 48 hours, whichever comes fi	
Yes Vo. 15. Were any samples containers missing/excess (circle one) samples Not listed on COC?	
Yes No NA 16. For VOA and RSK-175 samples, were bubbles present >"pea-size" (%"or 6mm in dia in any of the VOA vials?	meter)
Yes No VNA 17. Were all DRO/metals/nutrient samples received at a pH of < 2?	
Yes $N_0 \times N_1$ NA 18. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 12 a	0.0
10 Wars of applicable MIL (1) All annihild a 1000 14000 and a market and an a	> 9? of
Yes No VNA residual chlorine?	01
20 Ware client and frame to finance of the second state of the sec	
Yes No NA Nor electron remarks/requests (i.e. requested dilutions, MS/MSD designations, etc)	
Yes V No 21. Was the quote number listed on the container label? if yes, Quote #	
ample Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.)	
ample(s) NA were received incorrectly preserved and were adjusted acco	rdingly
a sample receiving with <u>NA</u> mL of circle one: H2SO4, HNO3, HCl, NaOH using SR # NA	
Time of preservation NA If more than one preservative is needed, please note in the comments below.	
ample(s) NA were received with bubbles >6 mm in diamet	ter.
amples(s) $\frac{NA}{}$ were received with TRC > 0.5 mg/L (If #19 is <i>no</i>) and we djusted accordingly in sample receiving with sedium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID: $\frac{NA}{}$	re
R barcode labels applied by: MEH Date: 02/04/2021	
Comments:	
Johnneuts.	

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com