


- ANY METHOD DEVISED BY THE CON WILL ASSURE THE LONGITUDINAL AS DIMENSIONED WILL BE SATISF

WELDED WIRE FABRIC MAY BE USE CAST-IN-PLACE BARRIER. WELDE ASTM A497. CONDUIT TO BE PRO POSITION OF THE CONDUITOR CON CONSTRUCTION, SUBJECT TO APPF

FILLER AND OTHER SPECIFICATION

_ REBAR.	CHAMFE	ER TO	OP AND E	ENDS	OF BAI	RRIER 1/	ź IN	CH.			
IMUM OF 2 ONTRACTO ROADWA SFACTORY	R AND AF Y STEEL	PRO\	/ED BY 1	THE E	ENGINE	ER THAT		•			
SED AS A DED WIRE ROVIDED (DNDUIT P PROVAL B	FABRIC ONLY WHE ASSAGEWA	SHAL En Ca Ay Ma	L BE MA Alled FC Ay be Ac	ADE I DR EI	IN ACCO _SEWHEI	ORDANCE RE IN T	WIT HE P	Н			
AWING NO IONS.	.854.01	FOR	EXPANS]	ION A	AND COI	NTRACTI	ON J	OINT	3		
C V											
			DIME		ONS]
▶ ■	D	E	DIME	INSI G	ONS K	L	M	N	0	Ρ	
B 24	D 13 ¹ ⁄2	E 21				L 91⁄4	M 36	N 72	0 28	P 4	
24	_		F	G	К	L 9 ¹ ⁄4 10 ³ ⁄4			-	-	
24 6 9/32	13 ¹ ⁄2	21 24	F 28 ¹ ⁄2 33	G 36 42	K 15 17 ¹ ⁄2	103⁄4	36 42	72 84	28 31 ¹ ⁄2	4 5	
24	13 ¹ ⁄2	21	F 281⁄2	G 36	K 15		36	72	28	4	
24 6 9/32	13 ¹ ⁄2	21 24	F 28 ¹ ⁄2 33	G 36 42	K 15 17 ¹ ⁄2	103⁄4	36 42	72 84	28 31 ¹ ⁄2	4 5	
24 6 9/32 28 ⁹ /16	13 ¹ ⁄2	21 24	F 28 ¹ ⁄2 33	G 36 42	K 15 17 ¹ ⁄2	103⁄4	36 42 48	72 84 96	28 31 ¹ ⁄2 34 ³ ⁄4	4 5 6	
24 6 9/32 28 ⁹ /16	13 ¹ /2 15 16 ¹ /2	21 24	F 28 ¹ ⁄2 33	G 36 42 48	K 15 17 ¹ ⁄2 19 ¹ ⁄2	103⁄4	36 42 48 5 &	72 84 96	28 31 ¹ ⁄2 34 ³ ⁄4	4 5 6	
24 6 9/32 28 ⁹ /16	13 ¹ /2 15 16 ¹ /2 SEAL	21 24 27	F 28 ¹ ⁄2 33	G 36 42 48	K 15 17 ¹ ⁄2 19 ¹ ⁄2 TRACT	10 ³ ⁄4 12 ¹ ⁄4 SERVICI DARDS AI 19-707-69	36 42 48 48 ES & 50	72 84 96 SS ALL DEV PECI FA	28 31 ¹ ⁄2 34 ³ ⁄4 ELOPME AL DES X 919-2	4 5 6 SIGN	NIT
24 6 9/32 28 ⁹ 16	13 ¹ /2 15 16 ¹ /2 SEAL 33144	21 24 27	F 28 ¹ ⁄2 33	G 36 42 48	K 15 17 ¹ /2 19 ¹ /2 TRACT STAND fice 9	10 ³ ⁄4 12 ¹ ⁄4 SERVICI DARDS AI 19-707-69	36 42 48 48 50 LE	72 84 96 96 DEV PECI FA	28 31 ¹ ⁄2 34 ³ ⁄4 ELOPME AL DES X 919-2 OPE	4 5 6 ERED FIN COMPLET	NIT
24 6 9/32 28 ⁹ 16	13 ¹ /2 15 16 ¹ /2 SEAL 33144	21 24 27	F 28 ¹ ⁄2 33	G 36 42 48 48	K 15 17 ¹ ⁄2 19 ¹ ⁄2 TRACT STAND ffice 91	10 ³ ⁄4 12 ¹ ⁄4 SERVICI DARDS AI 19-707-69	36 42 48 48 50 LE TE	72 84 96 96 DEV PECI FA SL BA	28 31 ¹ ⁄2 34 ³ ⁄4 ELOPME AL DES X 919-2 OPE	4 5 6 ERED FIN COMPLET	тер NIT 19

PROJECT REFERENCE NO.

HI-0010

SHEET NO.

2C-1