2707 REFERENCE 3449

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

CONTENTS

PLAN SHEETS	3–4
PAVEMENT DATA SHEETS	5
DCP LOGS	6–7
CORE PHOTOS	8
LAB RESULTS	9–14

ROADWAY SUBSURFACE INVESTIGATION

COUNTY _CLEVELAND

PROJECT DESCRIPTION US 74 (SHELBY BYPASS) FROM EAST OF NC 180 TO WEST OF SR 2238

(LONG BRANCH ROAD)

PAVEMENT AND SUBGRADE INVESTIGATION

STATE PROJECT REFERENCE NO. 14 R-2707D

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT (1991) 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BORCHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS INCLORDED TO CLIMATIC CONDITIONS INCLORDED TO CLIMATIC CONDITIONS INCLORDING TO CLIMATIC CONDITIONS INCLORDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT, THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OR FIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:

 1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES BY ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

B. SMITH, PG A. RULEY M.G. MOSELEY

J. MOSELEY

INVESTIGATED BY <u>B. SMITH, PG</u>

DRAWN BY _B. SMITH, PG

CHECKED BY B. WORLEY, PG

SUBMITTED BY B. SMITH, PG

DATE __MARCH, 2019

Prepared in the

NC FIRM LICENSE No: P-0339 and C-487 504 Meadowlands Drive Hillsborough, NC 27278 (919) 732-3883 (919) 732-6676 (FAX)

PROJECT REPERENCE NO. SHEET NO. 2

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM D1586). SOIL CLASSIFICATION	<u>UNIFORMLY GRADED</u> - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. <u>GAP-GRADED</u> - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60	AQUIFER - A WATER BEARING FORMATION OR STRATA.
IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	BLOWS IN NON-COASTAL PLAIN MATERIAL. THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK.	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS OPCOMIC MATERIALS	MINERALOGICAL COMPOSITION	CRYSTALLINE FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.
ULASS. (\$\frac{1}{2}\text{35/k PASSING "2000)} (>\frac{35/k PASSING "2000)}	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	ROCK (CR) WOULD FIELD SPI REPOSAL IF TESTED, ROCK TIPE INCLUDES GRANTE,	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 CLASS. A-1-0 A-1-0 A-1-0 A-2-4 A-2-5 A-2-6 A-2-7 A-1-4-2 A-4-5 A-6, A-7	COMPRESSIBILITY	NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM
SYMBOL 000000000000000000000000000000000000	SLIGHTLY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50	ROCK (NCR) ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC. COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD	OF SLOPE.
7 PACSING	HIGHLY COMPRESSIBLE LL > 50	SEDIMENTARY ROCK SPT REFUSAL ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED ((P) SHELL BEDS, ETC.	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
*10 50 MX GRANULAR SILT- MUCK, *40 30 MX [50 MX 51 MN SOILS PEAT	PERCENTAGE OF MATERIAL	WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
*200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN 36 MN	GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER	ROCKS OR CUTS MASSIVE ROCK. DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
MATERIAL PASSING *40	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20%	HAMMER IF CRYSTALLINE.	HORIZONTAL.
LL - 40 MX 41 MN 40 MX 41 MN 40 MX 41 MN 40 MX 41 MN 501L5 WITH	MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, (V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
PI 6 MX NP 10 MX 10 MX 11 MN 11 MN 10 MX 10 MX 11 MN 11 MN MODERATE HIGHLY CODID INDEX A A A A A A A A A A A A A A A A A A A	GROUND WATER	OF A CRYSTALLINE NATURE.	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE
DIGINI TYPES CTONE EPAGS ORGANIC	✓ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO I INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
OF MAJOR GRAVEL, AND SAND GAND SAND SAND SAND SAND SAND SAND SAND S	STATIC WATER LEVEL AFTER 24 HOURS	CRYSTALS ARE DULL AND DISCOLORED, CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
MHIERIALS SANU	─────────────────────────────────────	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY, ROCK HAS	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.
AS SUBGRADE EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE	E SPRING OR SEEP	DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 :PI OF A-7-6 SUBGROUP IS > LL - 30	-	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
CONSISTENCY OR DENSENESS RANGE OF STANDARD RANGE OF UNCONFINED	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH (MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES 'CLUNK' SOUND WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE CONSISTENCE PENETRATION RESISTENCE COMPRESSIVE STRENGTH	ROADWAY EMBANKMENT (RE) 25/825 DIP & DIP DIRECTION	<u>IF TESTED, WOULD YIELD SPT REFUSAL</u>	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
(N-VALUE) (TONS/FT ²) VERY LOOSE < 4	■ WITH SOIL DESCRIPTION → OF ROCK STRUCTURES SET TO TRANSPORT OF SILDPE INDICATOR	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT (SEV.) REDUCED IN STRENGTH TO STRONG SOIL, IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED	ITS LATERAL EXTENT.
GRANIII AP LOOSE 4 TO 10	SOIL SYMBOL OPT DMT TEST BORING INSTALLATION SCOPE INDICATOR INSTALLATION	TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS
MATERIAL MEDIUM DENSE 10 10 30 N/A	ARTIFICIAL FILL (AF) OTHER AUGER BORING CONE PENETROMETER THAN ROADWAY EMBANKMENT AUGER BORING TEST	IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
(NUN-CUHESIVE) VERY DENSE > 50		SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM.
VERY SOFT < 2 < 0.25 GENERALLY SOFT 2 TO 4 0.25 TO 0.5	— INFERRED SOIL BOUNDARY — CORE BORING SOUNDING ROD	(V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR VESTICES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u>	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0 MATERIAL STIFF 8 TO 15 1 TO 2	INFERRED ROCK LINE MONITORING WELL TEST BORING WITH CORE	COMPLETE ROCK REDUCED TO SOIL, ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
(COHESIVE) VERY STIFF 15 TO 30 2 TO 4	→ → → → → → → ALLUVIAL SOIL BOUNDARY A PIEZOMETER INSTALLATION - SPT N-VALUE	SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
HARD > 30 > 4 TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
	THE WAS ASSISTED EVENUATION.	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES	ROCK.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	UNDERCUT WISUITABLE WASTE	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK. HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO
BOULDER COBBLE GRAVEL COARSE FINE SILT CLAY	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 FEET OF ACCEPTABLE DEGRADABLE ROCK EMBANKMENT OR BACKFILL	TO DETACH HAND SPECIMEN.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
(BLDR.) (COB.) (GR.) (SAND SAND (SL.) (CL.)	ABBREVIATIONS	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.05 0.005	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	BY MODERATE BLOWS.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF
SIZE IN. 12 3	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED CL CLAY MOD MODERATELY 7 - UNIT WEIGHT	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE	A 140 LB.HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL
SOIL MOISTURE - CORRELATION OF TERMS SOIL MOISTURE SCALE FIELD MOISTURE CAUSE FOR SUSA MOIS	CPT - CONE PENETRATION TEST NP - NON PLASTIC $\hat{\gamma}_{ m d}$ - DRY UNIT WEIGHT CSE COARSE ORG ORGANIC	POINT OF A GEOLOGIST'S PICK.	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
(ATTERBERG LIMITS) (ATTERBERG LIMITS) DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST <u>SAMPLE ABBREVIATIONS</u>	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY	DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	PIECES CAN BE BROKEN BY FINGER PRESSURE.	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
(SAT.) FROM BELOW THE GROUND WATER TABLE	F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
PLASTIC SEMISOLIDA DECLUIDES DEVING TO	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL	FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
RANGE < - WET - (W) ATTAIN OPTIMUM MOISTURE (P) PL PLASTIC LIMIT - WET	FRAGS FRAGMENTS	FRACTURE SPACING BEDDING TERM SPACING TERM THICKNESS	BENCH MARK:
	EQUIPMENT USED ON SUBJECT PROJECT	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET	ELEVATION: FEET
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE SL SHRINKAGE LIMIT	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET	
REQUIRES ADDITIONAL WATER TO	CME-45C CLAY BITS AUTOMATIC MANUAL	CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET	NOTES: EB = EASTBOUND
- DRY - (D) ATTAIN OPTIMUM MOISTURE	6 CONTINUOUS FLIGHT AUGER CORE SIZE:	THINLY LAMINATED < 0.008 FEET	
PLASTICITY	8* HOLLOW AUGERS B H	INDURATION	WB = WESTBOUND
PLASTICITY INDEX (PI) DRY STRENGTH	☐ CME-550 ☐ HARD FACED FINGER BITS ☐ N	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. RUBBING WITH FINGER FREES NUMEROUS GRAINS;	ISS = INSIDE SHOULDER
NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC 6-15 SLIGHT	VANE SHEAR TEST UNGCARBIDE INSERTS	FRIABLE GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	OSS = OUTSIDE SHOULDER
MODERATELY PLASTIC 16-25 MEDIUM HIGHLY PLASTIC 26 OR MORE HIGH	CASING W/ ADVANCER POST HOLE DIGGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE;	
COLOR	PORTABLE HOIST TRICONE STEEL TEETH HAND AUGER	BREAKS EASILY WHEN HIT WITH HAMMER.	OSL = OUTSIDE LANE
	X CME-450 TRICONE TRUNGCARB. SOUNDING ROD X 4-INCH THIN WALL CORE BIT VANE SHEAR TEST	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE; DIFFICULT TO BREAK WITH HAMMER.	ISL = INSIDE LANE
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.		EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE;	
	X 2.25* SOLID-STEM AUGERS X KESSLER DCP	SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-14

PAVEMENT INVESTIGATION DATA SHEET

Project: TIP: 34497.1.2 R-2707D

US-74 Route: County: Cleveland

Date: 1/8/19 - 1/9/19 Notes By: Brett Smith, PG

Position (Sts., Lane, Shidr.) Position (Sts., Lane, Shidr.)			Width (ft.)	1			TI	hickness (in.)		Subgrade					GPS Cod	ordinates
(-Y5_EBL-) 35+50 - ISS	Position (Sta.,Lane,Shldr.)	Cut/Fill (Est. of Amount in feet)			(∩ ⊱	آي ٿ <u>ي</u>	to Top			Soil	Concrete		AASHTO Classification	Soil Moisture	Probe Depth (ft.)	Asphalt Notes		Easting
(-Y5_EBL-) 35+50 - ISS																		
(-Y5_EBL-) 35+50 - ISL	(-Y5_EBL-) 35+50 - ISS				26	C - 4	18	12	6	N/A	N/A	mica	A-6	16%	5	Asphalt in good condition, no signs of distress observed.	559,565	1,263,652
(-Y5_EBL-) 35+50 - OSS	(-Y5_EBL-) 35+50 - ISL	ı			22	C - 4	22	12	10	N/A	N/A	(1.8'-5.0') RES: brown, slightly plastic, sandy CLAY with some	A-6	М	5	Asphalt in good condition, no signs of distress observed.	559,562	1,263,651
Fill ISL = 12 ISS = 3 OSS = 2 3 C - 4 14 10 4 N/A N/A N/A (3.0°-5.0°) RE: brown, slightly plastic, highly sandy, silty CLAY A-7-5 23% 5 Low severity fatigue cracking observed near the inside edge of right turn lane. 559,761 1, Sample No. 8-78 (2.0 - 5.0°) RE: brown, slightly plastic, highly sandy, silty CLAY A-7-5 23% 5 Low severity fatigue cracking observed near the inside edge of right turn lane. 559,761 1, Sample No. 8-78 (2.0 - 5.0°) RE: brown, slightly plastic, highly sandy, silty CLAY A-7-5 23% 5 Low severity fatigue cracking observed near the inside edge of right turn lane. 559,761 1, Sample No. 8-78 (2.0 - 5.0°) RE: brown, slightly plastic, sandy CLAY with some A-6 21% 5 Low severity edge cracking observed on ISS. 59,387 1, Sample No. 8-79 (2.3 - 5.0°) RE: brown, slightly plastic, sandy CLAY with some A-6 21% 5 Low severity edge cracking observed on ISS. 559,387 1, Sample No. 8-79 (2.3 - 5.0°) RE: brown, slightly plastic, sandy CLAY with some A-6 21% 5 Low severity fatigue cracking observed near the inside edge of right turn lane. 559,761 1, Sample No. 8-78 (2.0 - 5.0°) RE: brown, slightly plastic, sandy CLAY with some A-6 21% 5 Low severity fatigue cracking observed near the inside edge of right turn lane. 559,761 1, Sample No. 8-78 (2.0 - 5.0°) RE: brown, slightly plastic, sandy CLAY with some A-6 21% 5 Low severity fatigue cracking observed near the inside edge of right turn lane. 559,761 1, Sample No. 8-78 (2.0 - 5.0°) RE: brown, slightly plastic, sandy CLAY with some A-6 21% 5 Low severity fatigue cracking observed near the inside edge of right turn lane. 559,761 1, Sample No. 8-78 (2.0 - 5.0°) RE: brown, slightly plastic, sandy CLAY with some A-6 21% 5 Low severity fatigue cracking observed near the inside edge of right turn lane. 559,761 1, Sample No. 8-78 (2.0 - 5.0°) RE: brown, slightly plastic, sandy CLAY with some A-6 21% 5 Low severity fati	(-Y5_EBL-) 35+50 - OSS	ı			2	C - 4	18.5	8.5	10	N/A	N/A	mica	A-2-7	22%	5	Low severity transverse cracking observed.	559,539	1,263,642
(-RAMP_A-) 46+00 - WB ISS 5 OSL = 12 OSS = 3 26 S-LT 21.5 11.5 10 N/A N/A mica Sample No. S-79 (2.3-5.0 feet) (-RAMP_A-) 46+00 - WB OSL 5 OSL = 12 OSS = 3 2 S-LT 21 13 8 N/A N/A mica Sample No. S-79 (2.3-5.0 feet) (-RAMP_A-) 46+00 - WB OSL 5 OSL = 12 OSS = 3 1 S-LT 22.5 10.5 12 N/A N/A mica (-RAMP_A-) 46+00 - WB OSS 5 OSL = 12 OSS = 3 1 S-LT 22.5 10.5 12 N/A N/A mica (-RAMP_A-) 46+00 - WB OSS 5 OSL = 12 OSS = 3 1 S-LT 22.5 10.5 12 N/A N/A mica A-6 21% 5 Asphalt in good condition, no signs of distress observed. A-2-7 I9% 5 Asphalt in good condition, no signs of distress observed. 559,410 1, 559,413 1,	(-Y5_WBL-) 39+50 - RTL		OSL = 12	ı	3	C - 4	14	10	4	N/A	N/A	(1.2'-3.0') RE: brown, slightly plastic, highly sandy, silty CLAY (3.0'-5.0') RES: brown, slightly plastic, highly sandy, silty CLAY	A-7-5	23%	5		559,761	1,263,298
Fill ISL = 12 ISS = 2 OSL = 12 ISS = 2 O	(-RAMP_A-) 46+00 - WB ISS	1		1	26	S-LT	21.5	11.5	10	N/A	N/A	mica Sample No. S-79 (2.3- 5.0 feet)	A-6	21%	5	Low severity edge cracking observed on ISS.	559,387	1,264,198
(-RAMP_A-) 46+00 - WB OSS 5 OSL = 12 OSS = 3 1 S-LT 22.5 10.5 12 N/A N/A mica A-2-7 19% 5 559,413 1,	(-RAMP_A-) 46+00 - WB OSL			1	2	S-LT	21	13	8	N/A	N/A	(1.7'-5.0') RE: brown, slightly plastic, clayey SAND with some	A-2-7	М	5	Asphalt in good condition, no signs of distress observed.	559,410	1,264,205
	(-RAMP_A-) 46+00 - WB OSS				1	S-LT	22.5	10.5	12	N/A	N/A	mica	A-2-7	19%	5	Asphalt in good condition, no signs of distress observed.	559,413	1,264,206

Notes:
OSL = Outside Lane
ISL = Inside Lane RTL = Right Turn Lane

CTL = Center Turn Lane LTL = Left Turn Lane PS = Paved Shoulder

OSS = Outside Shoulder ISS = Inside Shoulder ACC = Acceleration Lane DL = Deceleration Lane HA = Hand Auger N/M = not measured

WB = Westbound EB = Eastbound

	CONE PENETROMETER	PROJECT NUMBER 34497.1.2		PROJECT I.D. R-2707D		ROUTE US-74			
									10
	DATACO	DE SHEET	COUNTY Cleveland		GEOLOGIST Brett Smith, PG		Miles	TECHNICIAN	
Ctation	(leastion) informs	ation	Date run	Ctation /			IVIIKE	& Johnathon	e run
	(location) informa BL-) 35+50 - ISS	ation	1/8/19 - 1/9/19		location) information BL-) 35+50 - ISL				e run 9 - 1/9/19
Datum	cut or fill	Northing	Easting	Datum	cut or fill	Northing		Easting	9 - 1/9/19
ABC	Fill - 2'	559,565	1,263,652	ABC	Fill - 2'		59,562	1,263,651	
7120		nulative Penetration in Cer		7120			tration in Cen		200,001
0.9	87.9	Indian of choudation in Col		0.8	41.8				
1.6	89.5			1.5	42.9				
2.2	91.1			1.8	44.1				
2.7	92.0			2.2	45.2				
3.3	92.6			2.6	46.1				
3.9				3.0	47.2				
4.6				3.4	48.1				
5.4				3.8	49.1				
6.3				4.3	49.8				
7.1				4.7	50.6				
8.1				5.0	51.4				
9.1				5.3	52.2				
10.3				5.8	53.0				
11.8				6.0	54.2				
14.5 19.4				6.6	55.6 56.8				
22.3				7.0	58.1				
23.6				7.2	59.5				
25.0				7.6	60.9				
26.3				8.0	62.4				
27.7				8.1	63.8				
29.3				8.5	65.4				
30.9				9.0	66.8				
32.6				9.2	68.3				
34.3				9.6	69.6				
35.9				9.8	70.8				
37.9				10.1	72.2				
40.1				10.4	73.5				
42.4				10.8	74.8 76.1				
45.9				11.6	77.5				
47.1				12.0	79.0				
48.4				12.5	80.3				
49.8				13.0	81.8				
51.4				13.5	83.1				
53.1				14.0	84.5				
54.7				14.5	85.8				
56.8				15.0	87.0				
59.4				15.5	88.4				
61.6				16.2	89.6				
63.7				17.3	90.8				
65.8				18.4	91.9				
67.3 68.8				19.7	92.4				
70.6				24.5					
72.5				28.1					
74.6				30.7					
76.6				33.0					
78.5				35.1					
80.6				36.8					
82.6				38.1					
84.5				39.4					
86.2				40.6					

SHEET 6

	CONE PENE	TROMETER	34497.1.2	R-2707D			US-74			
	DATA COL		COUNTY		GEOLOGIST			TECHNICIA	NS	
		·	Cleveland		Brett Smith, PG		Mil	ke & Johnathon		
Station (location) informat	tion	Date run	Station (location) informatio			Da	te run	
	L-) 35+50 - OSS		1/8/19 - 1/9/19	(-Y5_WI	(-Y5_WBL-) 39+50 - RTL			1/8/1	9 - 1/9/19	
Datum	cut or fill	Northing	Easting	Datum	cut or fill	Northing		Easting		
ABC	Fill - 2'	559,539	1,263,642	ABC	Fill - 3'		559,761		,263,298	
		ulative Penetration in C	Centimeters			nulative Pene	etration in Ce	entimeters	eters	
0.9	12.7	71.0		0.6	66.5					
1.4	13.0	72.3		1.2	67.9					
1.7	13.2	73.6		1.6	69.4					
1.9	13.4	75.0		1.9	70.8		_			
2.0	13.7	76.1		2.4	72.1					
2.3	14.0 14.4	77.3 78.5		3.2	73.4 75.0					
2.5	14.6	79.7		3.5	76.1					
3.1	14.9	80.9		3.9	77.4					
3.2	15.3	82.0		4.3	78.6					
3.4	15.7	83.2		4.5	79.9					
3.6	16.0	84.2		5.1	81.0					
3.7	16.4	85.4		5.7	82.1					
4.0	16.7	86.7		6.1	83.3					
4.2	17.3	87.9		6.5	84.5					
4.4	17.6	89.2		6.9	85.8					
4.6	18.0	90.0		7.5	87.0					
4.9	18.4	91.1		8.4	87.9					
5.2	18.8	91.7		9.8	88.6					
5.4	19.3	92.0		11.5						
5.6	19.9	92.4		14.5						
5.7	20.4			17.3						
5.9	21.0			19.5						
6.3	21.6			21.5						
6.4	22.2			23.1						
6.6	23.0			24.7						
6.7	24.0			26.3			_	_		
7.0	25.2			28.0						
7.1 7.2	26.9 29.9			29.7 31.2						
7.5	32.0			32.8			_			
7.6	33.9			34.3			_	_		
7.8	35.5			35.8						
8.1	37.3			37.3						
8.2	38.9			38.8						
8.3	40.7			40.2						
8.4	42.6			41.7						
8.7	44.7			43.3						
8.9	47.1			44.8						
9.2	49.5			46.3						
9.4	51.8			47.7						
9.6	53.7			49.2						
9.8	55.1			50.6						
9.9	56.4			52.1						
10.1	57.9			53.4						
10.4	59.4			54.9						
10.9	60.8			56.4						
11.1	62.3			57.7						
11.5	63.6			59.1						
11.7	65.0			60.6						
11.9 12.2	66.6 68.0			62.0 63.5						
12.4	69.4			65.0						
12.4	09.4			05.0						

			PROJECT NU	MBER		PROJECT I.D.			ROI	JTE	
	CONE PENE	TROMETER	34497.1.	2		R-2707D			US	-74	
	DATA COL	DE SHEET	COUNT	Y		GEOLOGIST			TECHN	ICIANS	
	2,		Clevelan			Brett Smith, PG		Mil		thon Mosel	ev
Station (Id	ocation) informat	ion	Date rur		Station (lo	cation) information		14111	Joinia	Date run	
	A-) 46+00 - WB		1/8/19 - 1/9			A-) 46+00 - WB OS				1/8/19 - 1/9	
Datum	cut or fill	Northing	Easting	113	Datum _/	cut or fill	Northing		Easti		,13
ABC	Fill - 5'	559,387	1,264,1	98	ABC	Fill - 5'		559,410	Lasti	1,264,2	05
ABC		ulative Penetration in Cer		50	ADC			etration in Co	entimeters	1,204,2	00
1.1	54.4	Idiative i enetration in oci	Idifficiolo	_	1.0	56.0	ilative i circ	ti diloit iii O	CHILITICICIS		_
1.8	56.5				1.5	57.6					_
2.5	58.5				1.9	59.2					_
3.0	60.5				2.4	60.9					_
3.5	62.4				2.8	62.4					
4.1	64.4				3.2	63.9					
4.7	66.4				3.5	65.5		_			_
5.1	68.4				3.9	66.9					
5.5	70.4				4.2	68.4					
5.8	72.6				4.6	69.8					
6.1	74.8				4.9	71.3					
6.4	77.1				5.3	72.7					
6.8	79.4				5.7	74.1					
7.1	81.7				6.0	75.2					
7.5	84.0				6.4	76.6					
7.9	86.2				6.9	78.0					
8.5	88.5				7.4	79.3					
8.8	90.4				7.8	80.6					
9.3	91.8				8.3	81.9					
9.7	92.5				8.8	83.1					
10.0	93.1				9.4	84.3					
10.4					10.0	85.6					
10.9					10.4	86.8					
11.3					10.9	88.1					
11.9					11.6	89.3					
12.4					12.2	90.5					
12.8					12.8	91.6					
13.3					13.7	92.5					
13.7					14.5	93.0					
14.2					15.9						
14.7					17.5						
15.2					19.7			_			_
15.8					21.6						
16.3					23.4						
17.0 17.6					24.9 26.7						
18.2					28.3						
19.2					29.7						
20.5					31.8						
22.0					33.6						
24.6					35.3						
27.1					36.8						
29.5					38.4						
32.0					40.1						
34.2					41.7						
36.6					43.3						
38.9					45.0						
41.4					46.4						
43.9					47.8						
46.1					49.4						
48.3					51.1						
50.3					52.8						
52.4					54.5						

SHEET 7

			PROJECT	NIIMDED		PROJEC	TID			ROL	ITE		
	CONE PENE	TDOMETED	34497			R-270							
										US-74 TECHNICIANS			
	DATA COL	DE SHEET	COUI			GEOLO			N A:I				
01 1:	(1 (:) : 6		Cleve		01.11.71	Brett Smi			IVIII	ke & Johna			
	(location) informat		1/8/19 -		Station (lo	cation) info	rmation			Date run			
Datum	cut or fill	Northing	Easting	1/9/19	Туре	cut or fi	II	Northing		Eastir	na		
ABC	Fill - 5'	559,413		4,206	Турс	Cut Of III		Northing		Lasui	ig		
/ LDO		ulative Penetration in Ce		1,200			Cumu	lative Penetr	ation in Ce	entimeters			
0.8	21.0												
1.4	21.5												
1.9	22.0												
2.2	22.7												
2.4	23.3												
2.7	24.0											_	
3.1	24.9												
3.4	25.5											_	
3.8 4.1	26.4 27.5											_	
4.4	28.5											_	
4.7	30.3												
5.1	32.3												
5.4	35.0												
5.9	36.8												
6.3	38.7												
6.8	40.7											_	
7.2	42.6											_	
7.5	44.8 46.8											_	
8.0	48.9											_	
8.9	51.2											_	
9.4	53.7												
9.8	56.2												
10.1	58.0												
10.7	59.7												
11.1	62.0												
11.5	64.4												
12.0	66.9											_	
12.4 12.7	69.3 71.6											_	
13.0	74.0											_	
13.4	76.1												
13.7	78.3												
14.0	80.6												
14.2	82.9												
14.4	85.0												
14.8	86.8												
15.0	88.8											_	
15.4 15.7	90.5 91.6											_	
16.0	92.3												
16.4	93.2												
16.7													
17.1													
17.5													
17.9													
18.3												_	
18.8												_	
19.1 19.6													
20.1												_	
20.1													
20.0													

North Carolina Department of Transportation Geotechnical Unit Asphalt Core Photo

Notes:

EB = Eastbound WB = Westbound

ISS/OSS = Inside Shoulder/Outside Shoulder

ISL/OSL = Inside Lane/Outside Lane

SHEET 8

North Carolina Department of Transportation Geotechnical Unit Asphalt Core Photo

Project No: 34497.1.2 *I.D. No.*: R-2707D County: Cleveland *Dates:* 1/8/19 - 1/9/19 Site Description: US-74 (Shelby Bypass) from East of NC 180 to West of SR 2238 (Long Branch Road) Core Size: 4-inch Drill Machine: CME - 450 Driller: Mike Moseley Geologist / Engineer: Brett Smith, PG Inches -Y5 WBL-← RTL 24" Inches -RAMP_A-46+00 **←** WB OSS -RAMP A-46+00 ← WB OSL

Notes:

EB = Eastbound WB = Westbound

ISS/OSS = Inside Shoulder/Outside Shoulder

ISL/OSL = Inside Lane/Outside Lane

M & T Form 503 M & T Form 503

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAY MATERIALS & TESTS UNIT SOILS LABORATORY

T. I. P. No.	R-2707D					
	REPORT ON SAME	PLES OF	PDI - US 74	Shelby l	Bypass	
Project	34497.1.1	County	Cleveland		Owner	Geotech
Date: Sampled	January 2019	Received	1/9/19		Reported	2/25/19
Sampled from	Pavement Design Inve	estigation		By	Geotech	

2/25/19

Submitted by B. Smith

TEST RESULTS

Proj. Sample No.	S-76	S-78	S-79	S-80	S-82	
Boring No.	WB_OSS	RTL	WB_ISS	ISS	OSS	
Retained #4 Sieve %	2	3	3	1	1	
Passing #10 Sieve %	95	94	93	94	90	
Passing #40 Sieve %	32	78	74	73	36	
Passing #200 Sieve %	21	57	57	51	29	

MINUS NO. 10 FRACTION

SOIL MORTAR - 100%						
Coarse Sand Ret - #60 %	75.2	24.3	27.7	31.1	63.5	
Fine Sand Ret - #270 %	3.9	20.9	16.4	20.6	7.7	
Silt 0.05 - 0.005 mm %	4.8	22.0	20.4	15.0	4.1	
Clay < 0.005 mm %	16.2	32.8	35.4	33.3	24.6	
Passing #40 Sieve %	34.2	83.3	79.6	77.4	39.7	
Passing #200 Sieve %	22.1	60.9	60.8	54.0	32.2	

L. L.	42	43	35	39	43	
P. I.	15	12	11	14	18	
AASHTO Classification	A-2-7	A-7-5	A-6	A-6	A-2-7	
Group Index	0	6	4	4	1	
pН	N/A	N/A	N/A	N/A	N/A	
Station	46+00	39+50	46+00	35+50	35+50	
OFFSET	N/A	N/A	N/A	N/A	N/A	
ALIGNMENT	-RAMP_A-	-Y5_WBL-	-RAMP_A-	-Y5_EBL-	-Y5_EBL-	
Depth (Ft)	2.3	2.0	2.3	2.4	2.2	
to	5.0	5.0	5.0	5.0	5.0	
Natural Moisture %	18.5	23.1	20.6	16.0	22.1	

2008 Standard Specifications

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

SHEET 9

DIVISION OF HIGHWAY MATERIALS & TESTS UNIT SOILS LABORATORY

T. I. P. No.	R-2707D	_				
	REPORT ON SAM	IPLES OF	PDI - US	74 Shelby l	Bypass	
Project	34497.1.1	County	Cleveland		Owner	Geotech
Date: Sampled	January 2019	Received	1/9/19		Reported	2/25/19
Sampled from	Pavement Design In	vestigation		By	Geotech	
Submitted by	B. Smith	<u> </u>		. ,	2008	Standard Specifications
3/6/19						
			ST RESUI			
Proj. Sample N	0.	S-5	S-6	S-7		
Boring No.		N/A	N/A	N/A		
Retained #4 S		19	1	2		
Passing #10 S		73	97	93		
Passing #40 S Passing #200 S		42	54 22	64 37		
SOIL MORTA	R - 100%	MINUS	NO. 10 FR.	ACTION	l	
Coarse Sand	Ret - #60 %	51.7	62.1	44.1		
Fine Sand R	et - #270 %	16.8	19.9	20.4		
Silt 0.05 - 0.	005 mm %	18.0	12.5	35.1		
Clay < 0.005	mm %	13.6	5.5	0.4		
Passing #40 S		58.1	55.7	68.6		
Passing #200 S	Sieve %	35.2	22.8	39.4		
L. L.		50	36	41		
P. I.		6	2	5		
AASHTO Clas	sification	A-2-5	A-2-4	A-5		
Group Index		0	0	0		
рН		N/A	N/A	N/A		
Station		845+00	20+00	43+00		
OFFSET		80' RT	16' LT	CL		
ALIGNMENT		-L-		-RAMP_A		
Depth (Ft)		0.5	0.5	0.5		
i	to	3.5	3.5	3.5	I	1

Natural Moisture %

919.732.3883 SUMMIT-ENGINEER.COM

504 Meadowland Drive, Hillsborough, NC 27278

Standard Moisture-Density Relationship Report

ASTM D698

Project Number 18-0173.146 Project Name R-2707D **NCDOT** Client

Date 2/26/2019

Sample Number S-5

Sample Description A-2-5 Sample Location -L- 845+00 80' RT Maximum Dry Density 89.2 Optimum Moisture 25.3%

Natural Moisture: N/A

Specific Gravity: 2.60 (Assumed)

Liquid Limit: 50

Plasticity Index: 6

% Fines: 26.0% % Sand: 55.0% % Gravel: 19.0%

Rammer Type: Manual Preparation Method: Dry

Method:

Oversize Correction: Not Required

Aaron Hackett, El

Jeff Elliott, PE Lab Manager CMT & SI Department Manager

SHEET 10

919.732.3883 SUMMIT-ENGINEER.COM 504 Meadowland Drive, Hillsborough, NC 27278

Standard Moisture-Density Relationship Report

ASTM D698

Project Number 18-0173.146 Date 3/6/2019 Project Name R-2707D S-6 Sample Number

NCDOT Client

Sample Description A-2-4 Maximum Dry Density 94.0 Sample Location -RAMP_D- 20+00 16' LT Optimum Moisture 18.5%

Natural Moisture:

N/A

Specific Gravity: 2.60 (Assumed)

Liquid Limit: 36

2 Plasticity Index:

% Fines: 22.0% % Sand: 77.0% % Gravel: 1.0%

Rammer Type: Manual Preparation Method: Dry Method:

Oversize Correction: Not Required

Aaron Hackett, El

Lab Manager

Jeff Elliott, PE

CMT & SI Department Manager

919.732.3883 SUMMIT-ENGINEER.COM

504 Meadowland Drive, Hillsborough, NC 27278

Standard Moisture-Density Relationship Report

ASTM D698

Project Number 18-0173.146 Project Name R-2707D **NCDOT** Client

Date 3/6/2019

Sample Number S-7

Sample Description A-5 Maximum Dry Density 109.1 Sample Location -RAMP_A- 43+00 CL Optimum Moisture 15.9%

Natural Moisture: N/A

Specific Gravity: 2.60 (Assumed)

Liquid Limit: 41

Plasticity Index:

% Fines: 37.0% % Sand: 61.0% % Gravel: 2.0%

Rammer Type: Manual Preparation Method: Dry Method:

Oversize Correction: Not Required

Jeff Elliott, PE Aaron Hackett, El CMT & SI Department Manager Lab Manager

SHEET 11

Report on California Bearing Ratio (ASTM D 1883/AASHTO T 193)

Date	3/6/2019	Project Nan
Sample No.	S-5, Run #1	Project No
Sample Location	-L- 845+00 80' RT	Client

Project Name	R-2707D
Project No.	18-0173.I46
Client	NCDOT

Proctor and Classification Data

Sample Description	N/A
Classification	A-2-5
Max. Dry Density	89.2
Optimum Moisture	25.3%

CBR Preparation Data

Rammer Used	5.5 lb, 12" drop
Compaction Method	3 Layers, 56 Blows
Surcharge Amount	10 lbs
Soaked/Unsoaked	Soaked

CBR Results

Compaction Moisture Content	27.4%
Moisture Content of Top 1"	
After Soaking	31.7%

Swell

0.6%

Dry unit weight (lbs/cu.ft) 89.7 Percent of Max. Dry Density 100.6%

CBR Va		
Penetration (in)	0.1	0.2
Stress (psi)	9.30	18.40
CBR	0.9	1 2

Remarks:

Zero-point correction applied. All material passed the 3/4" sieve.

Aaron Hackett	Jeff Elliott, P.E.
Lab Manager	CMT & SI Dept. Manager

Report on California Bearing Ratio (ASTM D 1883/AASHTO T 193)

Date	
Sample No.	
Sample Location	

3/6/2019	
S-5, Run #2	
- 845+00 80' RT	

Project Name	
Project No.	
Client	

R-2707D
18-0173.146
NCDOT

Proctor and Classification Data

Sample Description	N/A
Classification	A-2-5
Max. Dry Density	89.2
Optimum Moisture	25.3%

CBR Preparation Data

Rammer Used	5.5 lb, 12" drop
Compaction Method	3 Layers, 56 Blows
Surcharge Amount	10 lbs
Soaked/Unsoaked	Soaked

CBR Results

Compaction Moisture Content	29.1%
Moisture Content of Top 1"	
After Soaking	28.4%

Swell **0.2%**

Dry unit weight (lbs/cu.ft)	88.1
Percent of Max. Dry Density	98.8%

CBR values		
Penetration (in)	0.1	0.2
Stress (psi)	9.30	16.10
CBR	0.9	1.1

Remarks:

Zero-point correction applied. All material passed the 3/4" sieve.

Aaron Hackett
Lah Manager

Jeff Elliott, P.E.
CMT & SI Dept. Manager

SHEET 12

Report on California Bearing Ratio (ASTM D 1883/AASHTO T 193)

Date 3/6/2019
Sample No. S-6, Run #1
Sample Location RAMP_D- 20+00 16' L'

Project Name
Project No.
Client

R-2707D 18-0173.I46 NCDOT

Proctor and Classification Data

Sample Description	N/A
Classification	A-2-4
Max. Dry Density	94.0
Optimum Moisture	18.5%

CBR Preparation Data

Rammer Used	5.5 lb, 12" drop
Compaction Method	3 Layers, 56 Blows
Surcharge Amount	10 lbs
Soaked/Unsoaked	Soaked

CBR Results

Compaction Moisture Content
Moisture Content of Top 1"
After Soaking
30.0%

Dry unit weight (lbs/cu.ft) 89.7
Percent of Max. Dry Density 95.4%

Swell N/A

 CBR Values

 Penetration (in)
 0.1
 0.2

 Stress (psi)
 38.00
 72.50

 CBR
 3.8
 4.8

Remarks:

Zero-point correction applied. All material passed the 3/4" sieve.

Aaron Hackett
Lab Manager

Jeff Elliott, P.E.
CMT & SI Dept. Manager

Report on California Bearing Ratio (ASTM D 1883/AASHTO T 193)

Date	
Sample No.	
Sample Location	RAM

3/6/2019		
S-6, Run #2		
MP D- 20+00 16' L'		

Project Name	
Project No.	
Client	

R-2707D
18-0173.146
NCDOT

87.3

92.9%

Proctor and Classification Data

Sample Description	N/A
Classification	A-2-4
Max. Dry Density	94.0
Optimum Moisture	18.5%

CBR Preparation Data

Rammer Used	5.5 lb, 12" drop	
Compaction Method	3 Layers, 56 Blows	
Surcharge Amount	10 lbs	
Soaked/Unsoaked	Soaked	

Dry unit weight (lbs/cu.ft)

CBR Results

Compaction Moisture Content	9.8%
Moisture Content of Top 1"	
After Soaking	32.0%

Percent of Max. Dry Density

CBR Values		
etration (in)	0.1	0.2

Swell 1.1% Penet Stress (psi) 36.00 60.40 CBR 3.6 4.0 **Penetration vs Stress Curve**

Remarks:

Zero-point correction applied. All material passed the 3/4" sieve.

Aaron Hackett	Jeff Elliott, P.E.
Lab Manager	CMT & SI Dept. Manager

SHEET 13

Report on California Bearing Ratio (ASTM D 1883/AASHTO T 193)

3/6/2019 Date Sample No. S-7, Run #1 -RAMP_A- 43+00 CL Sample Location

Project Name Project No. Client

R-2707D 18-0173.146 NCDOT

Proctor and Classification Data

Sample Description	N/A
Classification	A-5
Max. Dry Density	109.1
Optimum Moisture	15.9%

CBR Preparation Data

Rammer Used	5.5 lb, 12" drop	
Compaction Method	3 Layers, 56 Blows	
Surcharge Amount	10 lbs	
Soaked/Unsoaked	Soaked	

CBR Results

Compaction Moisture Content	12.3%
Moisture Content of Top 1"	
After Soaking	23.0%

Dry unit weight (lbs/cu.ft) 109.9 Percent of Max. Dry Density 100.7%

Swell 1.3%

CBR Values		
Penetration (in)	0.1	0.2
Stress (psi)	43.00	77.00
CDD	12	E 1

Remarks:

Zero-point correction applied. All material passed the 3/4" sieve.

Aaron Hackett Lab Manager

Jeff Elliott, P.E.

CMT & SI Dept. Manager

Report on California Bearing Ratio (ASTM D 1883/AASHTO T 193)

Date Sample No. Sample Location

3/6/2019 S-7, Run #2 -RAMP_A- 43+00 CL Project Name Project No. Client

R-2707D 18-0173.146 NCDOT

Proctor and Classification Data

Sample Description N/A Classification A-5 Max. Dry Density 109.1 15.9% Optimum Moisture

CBR Preparation Data

Rammer Used 5.5 lb, 12" drop Compaction Method 3 Layers, 56 Blows Surcharge Amount 10 lbs Soaked/Unsoaked Soaked

CBR Results

Compaction Moisture Content 12.3% Moisture Content of Top 1" After Soaking

22.1%

Swell

1.3%

Dry unit weight (lbs/cu.ft) 108.9 Percent of Max. Dry Density 99.9%

CBR Values		
Penetration (in)	0.1	0.2
Stress (psi)	49.03	91.13
CRR	10	6.1

Remarks:

No zero-point correction. All material passed the 3/4" sieve.

Aaron Hackett

Lab Manager

Jeff Elliott, P.E. CMT & SI Dept. Manager SHEET 14