

114 Edinburgh South Drive Suite 200 Cary, North Carolina 27511 919.827.0864 www.daa.com

June 18, 2020

Mr. Craig Haden North Carolina Department of Transportation Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Reference: Preliminary Site Assessment for the Judith L. Moss Property (Parcel 53)

1710 W Wilson Street

Tarboro, Edgecombe County, North Carolina

State Project: U-4424 WBS Element 39062.1.2

DAA Project No. 20080204-010103

Dear Mr. Haden:

Draper Aden Associates (DAA) completed a Preliminary Site Assessment at the above-referenced property. DAA performed the work in accordance with the Technical and Cost proposal dated April 22, 2020, and the North Carolina Department of Transportation's (NCDOT's) Notice to Proceed dated April 23, 2019. Activities associated with the assessment consisted of conducting a geophysical investigation to identify whether an underground storage tank (UST) exists within or near the proposed right-of-way/easement (ROW/easement) and collecting soil and groundwater samples for laboratory analysis. The purpose of this report is to document the field activities, present the laboratory analyses, and provide recommendations regarding the property.

Location and Description

The Judith L. Moss Property (Parcel #53) is located at 1710 W. Wilson Street in Tarboro, Edgecombe County, North Carolina. The property is situated on the west side of W. Wilson Street approximately 500 feet north of the intersection with Simpson Drive (**Figure 1**). The property was a former automotive fueling station, but as of the date of the fieldwork, it was vacant and unused (**Figure 2**).

The structure on site is a single-story brick building with a concrete apron in front of the building. The concrete apron may have been part of a dispenser island, but no visual evidence at ground surface of a UST was noted.

The NCDOT requested a Preliminary Site Assessment for the proposed ROW/easement because the property is a former automotive fueling station. The scope of work as defined in the Request for Technical and Cost Proposal was to evaluate the proposed ROW/easement with respect to the presence of known and unknown USTs and assess whether contamination existed in the subsurface within the proposed ROW/easement. An estimate of the quantity of impacted soil was to be provided if impacted soils were encountered.

DAA reviewed the on-line North Carolina Department of Environmental Quality (NCDEQ) Incident Management database and no incident has been assigned to the site. DAA also examined the UST registration database to obtain UST ownership information; however, these files were not accessible online during the preparation of this report and a facility identification could not be obtained or verified.

Geophysical Survey

Prior to DAA's mobilization to the site for drilling, we conducted a geophysical survey within and near the proposed ROW/easement (i.e., study area) to identify potential unknown USTs. Areas near the ROW/easement were not within the scope of work, but the equipment traverses necessitated crossing the ROW/easement lines. The geophysical survey consisted of an electromagnetic survey using a Geonics EM61 time-domain electromagnetic (EM) induction meter to locate buried metallic objects, and ground penetrating radar (GPR) using a Noggin 250 with 250 MHz antennae specifically to locate USTs.

The geophysical team laid out a survey grid along the proposed right-of-way with the X-axis oriented approximately parallel to W Wilson Street and the Y-axis oriented approximately perpendicular to W. Wilson Street. **Figure 1** of the geophysical survey report in **Attachment A** shows the EM survey area.

The EM survey lines were spaced five feet apart and the instruments collected magnetic data continuously along each survey line with a data logger. After collection, DAA reviewed the data in the field with graphical user interface computer software. Following the electromagnetic survey, a GPR survey was conducted to further evaluate any notable metallic anomalies. GPR transects are shown on **Figures 5 through 7** of **Attachment A**.

DAA detected several anomalies in the study area. The survey attributed the all but one of the anomalies to visible cultural features or underground utilities. The geophysical data indicated two anomalies that required further investigation with GPR. A magnetic anomaly (Anomaly 1) was located at the northeast corner of the right-of-way/easement, and one anomaly (Anomaly 2) was located about 60 feet to the southwest of Anomaly 1. GPR signatures suggest USTs. Based on the lack of additional information or visual evidence of a tank, DAA classified the anomaly as a possible UST. **Attachment A** presents DAA's detailed report of findings and interpretations.

Site Assessment Activities

On May 18, 2020, DAA mobilized to the site to conduct a Geoprobe® direct-push investigation to evaluate subsurface soil and groundwater conditions within the proposed ROW/easement to a depth of 10 to 12 feet below ground surface (ft bgs). DAA advanced three direct-push probes (SB-1 through SB-3) at select locations (**Figure 2**). The soil boring logs are included as **Attachment B**. The borings were located to evaluate the subsurface conditions in the study area (**Attachment C**).

The lithology encountered by the direct-push samples was generally consistent throughout the site. The ground surface was covered by approximately 6 inches of gravel or topsoil. Below this surface cover was a brown to light brown medium- to fine-grained sand, which appeared to be fill to a depth of about 2 to 3 ft bgs. Below this sand was a sandy clay grading into a clay. Neither bedrock nor groundwater was encountered in any of the borings. Each boring was backfilled with a mix of bentonite (swelling clay to seal the boring) and drill cuttings to the surface after completion.

According to the 1985 Geologic Map of North Carolina, the site is within the Coastal Plain Physiographic Province in North Carolina. The strata indicated for this area is the Yorktown Formation, comprising fossiliferous clay and sand.

Continuous sampling using a Geoprobe® resulted in good recovery of soil samples from the direct-push holes. DAA collected, documented, and contained soil samples in four-foot long acetate sleeves inside the direct-push Macro-Core® sampler. The soils observed at the site are consistent with Yorktown Formation strata (see **Attachment B**)

Each of the sleeves was divided into two-foot long sections for soil sample screening. Soil from each two-foot interval was placed in a resealable plastic bag and the bag was set aside to allow time for volatilization of potential organic compounds to the bag headspace. A photoionization detector (PID) probe was inserted into the bag and the reading was recorded (**Table 1**).

Following completion of the soil sampling, the boring with the highest recorded PID field screen results or indications of potential contamination (odors, staining, etc.) was converted to a temporary groundwater monitoring well using the direct push screen point. No groundwater was noted in the boring during drilling; however, the Geoprobe® screen was advanced to 16 feet and a groundwater sample was collected using low-flow techniques.

DAA submitted for laboratory analysis one soil sample from each of the three borings at the depth interval with the highest PID reading measured at the time of collection (**Table 1**). The soil samples were submitted to REDLab in Wilmington, North Carolina, for analysis of total petroleum hydrocarbons (TPH) diesel range organics (DRO) and gasoline range organics (GRO) using ultraviolet fluorescence (UVF) methodology.

The groundwater sample was analyzed for volatile organic compounds (VOCs) using EPA Method 8260 and for semivolatile organic compounds (SVOCs) using EPA Method 8270. Contest Laboratories in East Longmeadow, Massachusetts conducted the VOC and SVOC analyses.

Analytical Results

Table 1 summarizes the soil laboratory results for the three soil samples for TPH DRO/GRO, and **Table 2** summarizes the groundwater laboratory results. **Attachment D** presents the complete laboratory reports.

One soil sample, SB-1, contained a detectable DRO concentration of 3.6 milligrams per kilogram (mg/kg). No other sample contained detectable DRO or GRO concentrations. The action levels are 50 mg/kg for GRO and 100 mg/kg for DRO¹. None of the soil samples analyzed for this site contained DRO or GRO concentrations above their respective action levels.

The groundwater analytical results (**Table 2**) indicate the detection of several petroleum compounds. DAA compared these concentrations to the Groundwater Quality Standards established in 15A NCAC 2L (2L Standards). None of the VOC or SVOC compounds detected were present in concentrations above the applicable 2L Standards.

Contaminated Soil Volume Estimate

The UVF analytical results (**Table 1, Figure 3**) of the soil samples collected on May 18, 2020, indicate that none of the soil samples contained DRO or GRO concentrations above applicable action level. Therefore, no estimate of the volume of soil necessitating possible remediation was required for this report.

Conclusions and Recommendations

DAA conducted a Preliminary Site Assessment to evaluate the NCDOT proposed ROW/easement on the Judith L, Moss Property (Parcel #53) located at 1710 W. Wilson Street in Tarboro, Edgecombe County, North Carolina. A geophysical survey conducted at the site indicated the presence of two possible USTs within or near the proposed ROW/easement; however, no visual signs of a UST were noted at ground surface.

Three soil borings and one temporary well screen point were advanced to evaluate the subsurface soil and groundwater conditions within the proposed ROW/easement. None of the soil samples analyzed contained a GRO or DRO concentration above the action level. Groundwater contained several compounds, but none above the 2L Standards.

¹ NCDEQ, Guidelines for North Carolina Action Limits for Total Petroleum Hydrocarbons (TPH), July 26, 2016,

Because compounds were detected above the action level in the soil and groundwater samples, DAA recommends that a copy of this report be submitted to the Division of Waste Management, UST Section, in the Raleigh Regional Office.

DAA appreciates the opportunity to work with the NCDOT on this project. If you have any questions, please contact us at (919) 827-0864.

Sincerely,

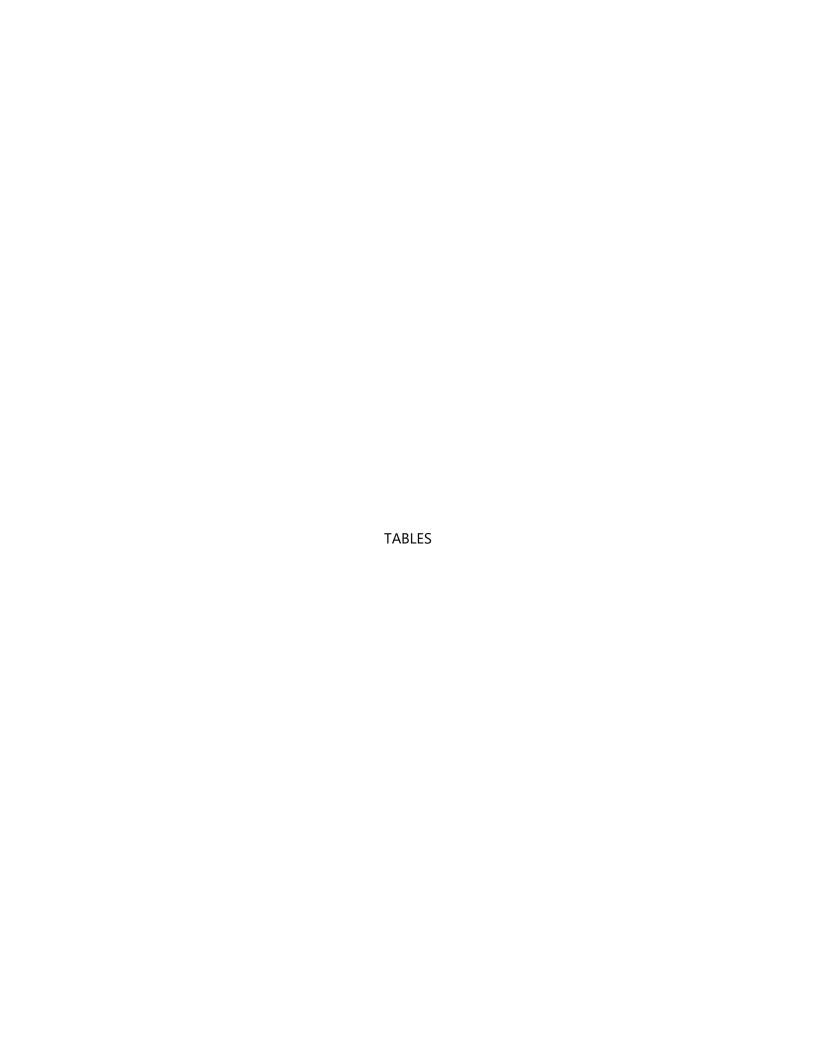
Draper Aden Associates

DocuSigned by:

Mike Branson

1 Branches

6/25/2020


Michael W. Branson, P.G.

Project Manager

Attachments

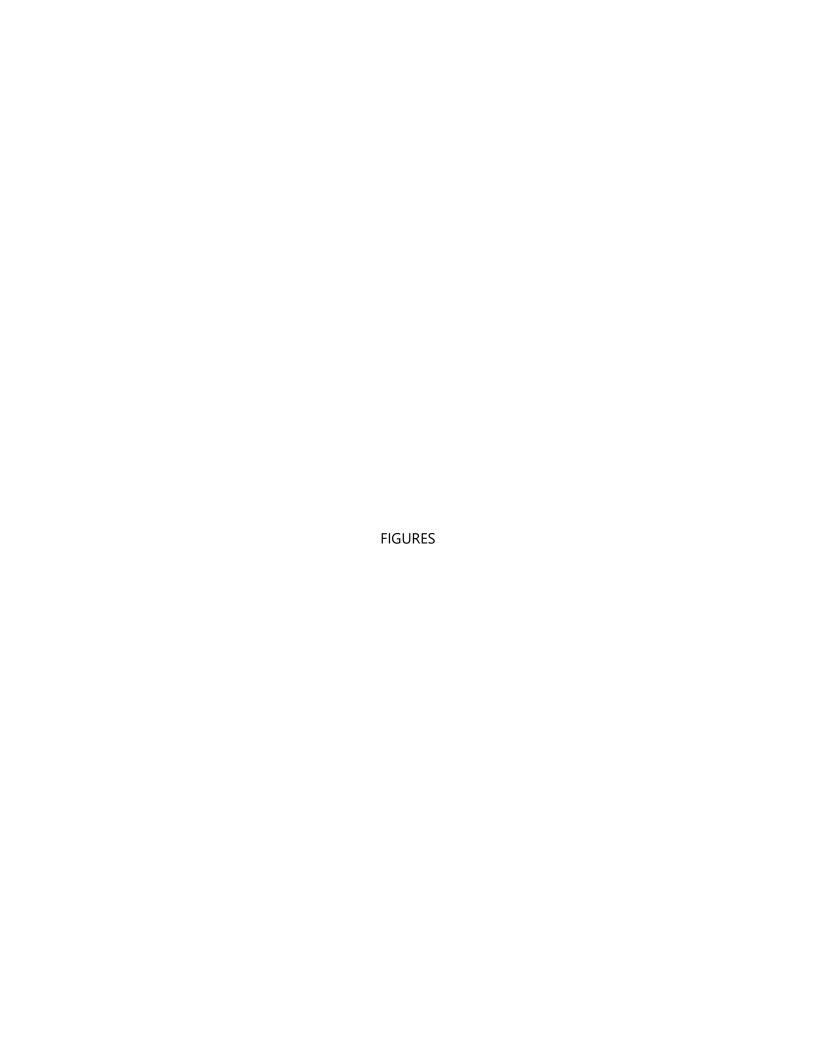
William D. Newcomb, P.G. Senior Hydrogeologist

Willen D. Newsen

TABLE 1

SOIL FIELD SCREENING AND ANALYTICAL RESULTS JUDITH L MOSS PROPERTY (PARCEL 46) TARBORO, EDGECOMBE COUNTY, NORTH CAROLINA

STATE PROJECT: U-4424
WBS ELEMENT 39062.1.2
DAA PROJECT NO. 20080204-010103


SAMPLE ID	DEPTH (ft) PID READING (ppm)	SAMPLE ID	ANALYTICAL RESULTS (mg/kg)		
				UVF GRO	UVF DRO
	Action Level (mg/kg)			50	100
	0 - 2	2.5	SB-1	<0.74	3.6
SB-1	2 - 4	2.2			
30-1	4 - 6	1.3			
	6 - 8	1			
	8 - 10	1.4			
	0 - 2	4			
	2 - 4	4.2			
SB-2	4 - 6	3.9			
3D-2	6 - 8	4.9	SB-2	<0.76	<0.76
	8 - 10	2.1			
	10 - 12	1.8			
	0 - 2	3.9			
	2 - 4	4.1			
SB-3	4 - 6	4.8	SB-3	<0.68	<0.68
	6 - 8	4.2			
	8 - 10	4.2			

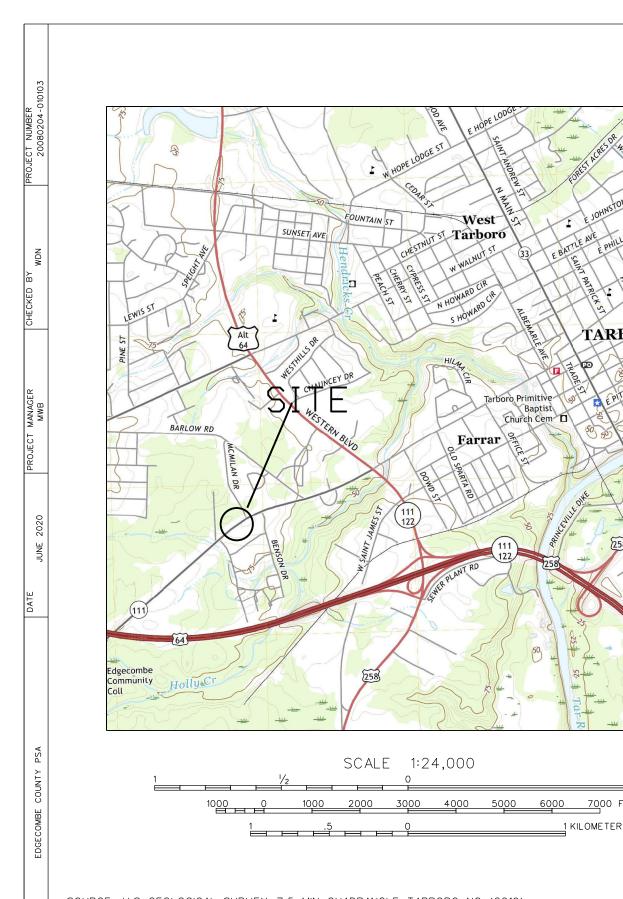

- 1) ft feet
- 2) ppm parts per million
- 3) PID photoionization detector
- 4) mg/kg milligrams per kilogram
- 5) UVF DRO Diesel range organics by ultraviolet fluorescence (UVF)
- 6) UVF GRO Gasoline range organics by UVF
- 7) Action level for TPH based upon NCDEQ memo *Guidelines for North Carolina Action Limits for Total Petroleum Hydrocarbons* July 29, 2016. VOC action levels based on Maximum Soil Contaminant Concentrations.
- 8) Soil samples were collected on May 18, 2020.

TABLE 2 GROUNDWATER ANALYTICAL RESULTS JUDITH L MOSS PROPERTY (PARCEL 46) TARBORO, EDGECOMBE COUNTY, NORTH CAROLINA STATE PROJECT: U-4424 WBS ELEMENT 39062.1.2 DAA PROJECT NO. 20080204-010103

SAMPLE ID	MPLE ID SB-2			
Analyte	15A NCAC 2L Standard (µg/L)	Concentration (μg/L)		
Vola	atile Organic Compou	ınds		
Ethylbenzene	600	1.2		
n-Propylbenzene	70	1.0		
Toluene	600	1.6		
1,2,4-Trimethylbenzene	400	1.2		
Xylenes (Total)	500	5.5		
Semivolatile Organic Compounds				
2-Methylnaphthalene	30	0.12 J		
Naphthalene	6	0.36 J		

- 1) µg/L micrograms per liter
- 2) Groundwater sample was collected on May 18, 2020.
- 3) J Estimated value between the method detection limit and the reporting lim
- 4) IMAC Interim Maximum Allowable Concentration

SOURCE: U.S. GEOLOGICAL SURVEY 7.5 MIN QUADRANGLE: TARBORO, NC (2019)

114 EDINBURGH SOUTH DRIVE CARY, NORTH CAROLINA 27511 TEL: (919) 873-1060 FAX: (919) 873-1074

FILE

VICINITY MAP JUDITH L MOSS PROPERTY 1710 W WILSON STREET

TARBORO, NORTH CAROLINA

FIGURE

MARTIN LUTHER KING

EDMONDSON AVE

Calvary Episcopal

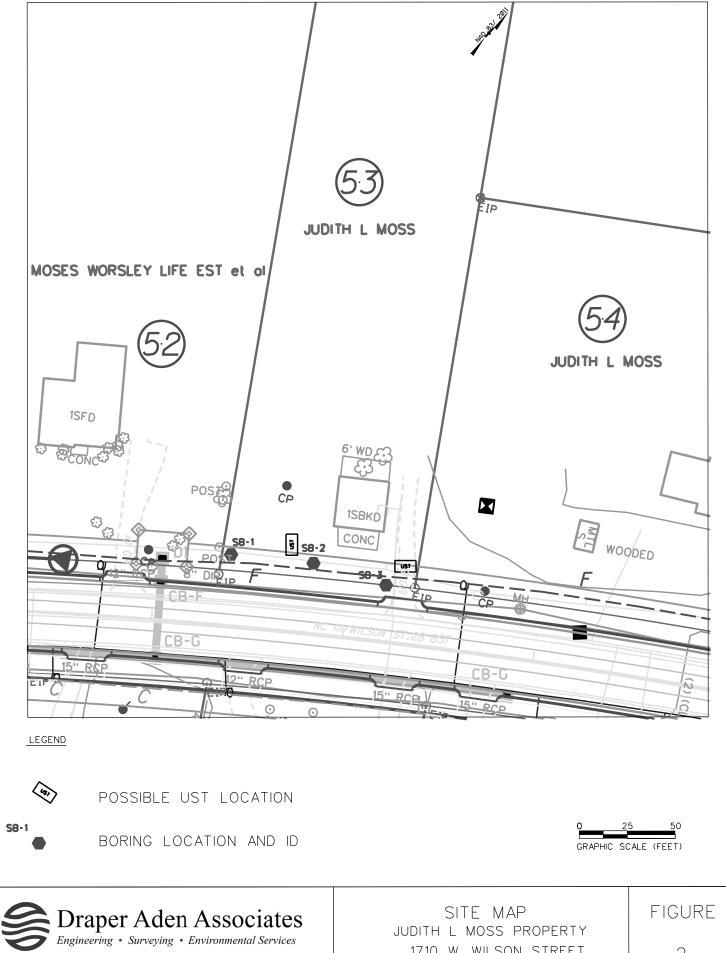
111 122

WALSTON ST

N RIDGEWOOD RD

1 MILE

BEASLE


Old Town

Cem

TARBORO

258

<u>70</u>00 FEET

114 EDINBURGH SOUTH DRIVE CARY, NORTH CAROLINA 27511 TEL: (919) 873-1060 FAX: (919) 873-1074

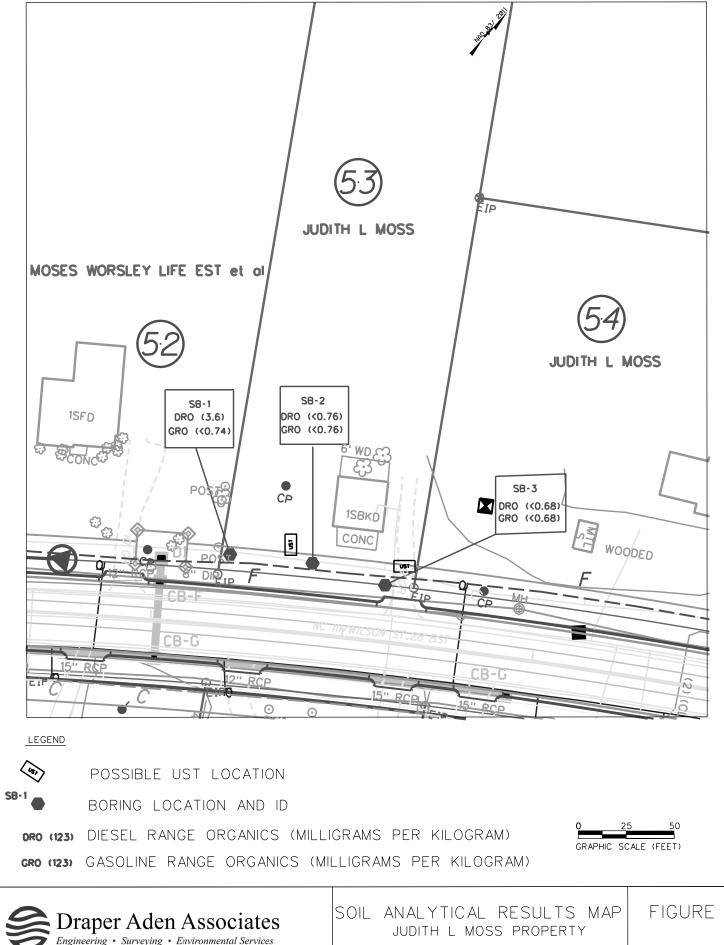
PROJECT NUMBER 19080269-010103

DRAFTER

CHECKED BY WDN

PROJECT MANAGER

2020


MAY

EDGECOMBE COUNTY PSAS

FILE

DATE

1710 W WILSON STREET TARBORO, NORTH CAROLINA

114 EDINBURGH SOUTH DRIVE CARY, NORTH CAROLINA 27511 TEL: (919) 873-1060 FAX: (919) 873-1074

PROJECT NUMBER 19080269-010103

CHECKED BY WDN

PROJECT MANAGER

2020

MAY

PSAS

EDGECOMBE COUNTY

FILE

DATE

1710 W WILSON STREET TARBORO, NORTH CAROLINA

Geophysical Study For Possible USTs1710 West Wilson Street

Tarboro, North Carolina

North Carolina Department of Transportation 1589 Mail Service Center Raleigh, NC 27699-1589 37918

May 28, 2020

DAA Project Number: 20080204-010203

2206 South Main Street Blacksburg, Virginia 24060 540.552.0444 www.daa.com

May 28, 2020

Mr. John Pilipchuck, P.E Geotechnical Engineering Unit N.C. Department of Transportation 1589 Mail Service Center Raleigh, NC 27699-1589 37918

RE: Geophysical Study for Possible USTs 1710 West Wilson Street, Tarboro, North Carolina Draper Aden Associates Project No. 20080204-010203

Dear Mr. Pilipchuck:

Draper Aden Associates has completed the geophysical study at 1710 West Wilson Street near Tarboro, North Carolina. The objective of this study was to assist in determining if any underground storage tanks (USTs) may be present beneath the study area. To meet this objective, a combination of ground penetrating radar (GPR) and electromagnetic induction (EM) techniques were utilized. The following report documents our methodologies and findings.

We value our professional relationship with N.C. Department of Transportation and hope that you will contact us with any similar needs in the future. If you have any questions regarding this report, or if we can be of any further service to you please do not hesitate to contact us.

Sincerely,

Draper Aden Associates

Johanna Vaughan, P.G.

Geologist

Francis Douglas Pinckney, P.E.

Team Leader/Senior Project Engineer Geotechnical and Construction Services

> Blacksburg • Charlottesville • Manassas • Newport News • Richmond • Virginia Beach Fayetteville • Raleigh

TABLE OF CONTENTS

1.0	EXE	CUTIVE SUMMARY	1
2.0	INT	RODUCTION	2
3.0		CTROMAGNETIC INDUCTION (EM) STUDY	
	3.1	EM Field Methods	2
	3.2	EM61 Results	2
4.0	GPF	R STUDY	3
	4.1	GPR Field Methods	3
	4.2	GPR Results	3
5.0	COI	NCLUSIONS	3
6.0	LIM	IITATIONS	4
7.0	FIG	URES	5

FIGURES

igure 1.	Site Location
igure 2.	EM61 Traverse Map
igure 3.	Contoured EM61 Results
igure 4.	GPR Traverse Map
igure 5.	Sample GPR Cross-sections from the Collected Data
igure 6.	GPR Depth Slices from 1.0 Foot to 4.0 Feet Depth
igure 7.	GPR Depth Slices from 4.0 Feet to 6.0 Feet Depth
igure 8.	Summary of GPR and EM61 Results

1.0 EXECUTIVE SUMMARY

Draper Aden Associates (DAA) was retained by N.C. Department of Transportation to conduct a geophysical study at 1710 West Wilson Street in Tarboro, North Carolina. The objective of this study was to assist in determining if any underground storage tanks (USTs) may be present beneath the study area. To meet this objective, a combination of ground penetrating radar (GPR) and EM61 electromagnetic induction techniques were utilized.

The EM61 data were collected on April 29 and May 4, 2020 in grid fashion with sub-parallel traverses spaced approximately four feet apart, tracked by a GPS unit capable of sub-foot accuracy. The contoured results from the EM61 data reveal the locations of two anomalies which may represent possible USTs, identified as Anomaly 1 and Anomaly 2. Anomaly 1 is located approximately 22 feet southwest of the southwest corner of the former store building. Anomaly 2 is located approximately 23 feet east of the southeast corner of the former store building.

GPR data were collected at the site on April 29, 2020 utilizing the same grid as the EM data collection, with sub-parallel traverses spaced approximately two feet apart, a GPS unit capable of sub-foot accuracy. Analysis of the GPR data in cross-section revealed a limited number of hyperbolic reflectors consistent with possible USTs, located approximately 1.5 feet below the ground surface. These features correlate to Anomalies 1 and 2 identified in the EM61 data. Planview analysis of the GPR data reveals an anomaly in the depth slices between 2.5 and 3.5 feet depth which correlate well with EM61 Anomaly 1. The depth slices from 4.5 to 5.5 feet depth reveal an anomaly that is coincident with EM61 Anomaly 2.

The combined analysis of the EM61 and GPR data reveals generally good correlation between the two methods, with two coincident anomalies observed in the data from each method (Anomalies 1 and 2). It is uncertain if Anomalies 1 and 2 represent USTs, but of the collected geophysical data, these features are the most likely to represent potential USTs.

2.0 INTRODUCTION

Draper Aden Associates (DAA) was retained by N.C. Department of Transportation to conduct a geophysical study at 1710 West Wilson Street in Tarboro, North Carolina (Figure 1). The objective of this study was to assist in determining if any underground storage tanks (USTs) may be present beneath the study area. To meet this objective, a combination of ground penetrating radar (GPR) and electromagnetic induction (EM) techniques were utilized. The following report documents our methodologies and findings.

The tasks involved in this study included:

- 1. Collection, processing, and interpretation of EM61 data;
- 2. Collection, processing, and interpretation of GPR data;
- 3. Preparation of this document to detail our methods and findings.

3.0 ELECTROMAGNETIC INDUCTION (EM) STUDY

3.1 EM Field Methods

The instrument used for this investigation was the EM61 manufactured by Geonics, LTD. The EM61 data were collected on April 29 and May 4, 2020 in grid fashion with sub-parallel traverses spaced approximately four feet apart (Figure 2). The distribution of the EM61 data was tracked by a global positioning system (GPS) unit capable of sub-foot accuracy. The collected data were subsequently contoured laterally and analyzed for evidence of any possible USTs.

3.2 EM61 Results

The contoured results from the EM61 data are presented in Figure 3, overlain onto Google Earth aerial imagery. The data reveals a pair of anomalies which may represent possible USTs, identified as Anomaly 1 and Anomaly 2. Anomaly 1 is located approximately 22 feet southwest of the southwest corner of the former store building. Anomaly 2 is located approximately 23 feet east of the southeast corner of the former store building. It is uncertain if these two anomalies represent USTs, but of the collected data, these features are the most likely to possibly represent USTs. Since the EM61 instrument is particularly sensitive to buried metallic materials or objects, we consider it likely that these anomalies are metallic in composition.

4.0 GPR STUDY

4.1 GPR Field Methods

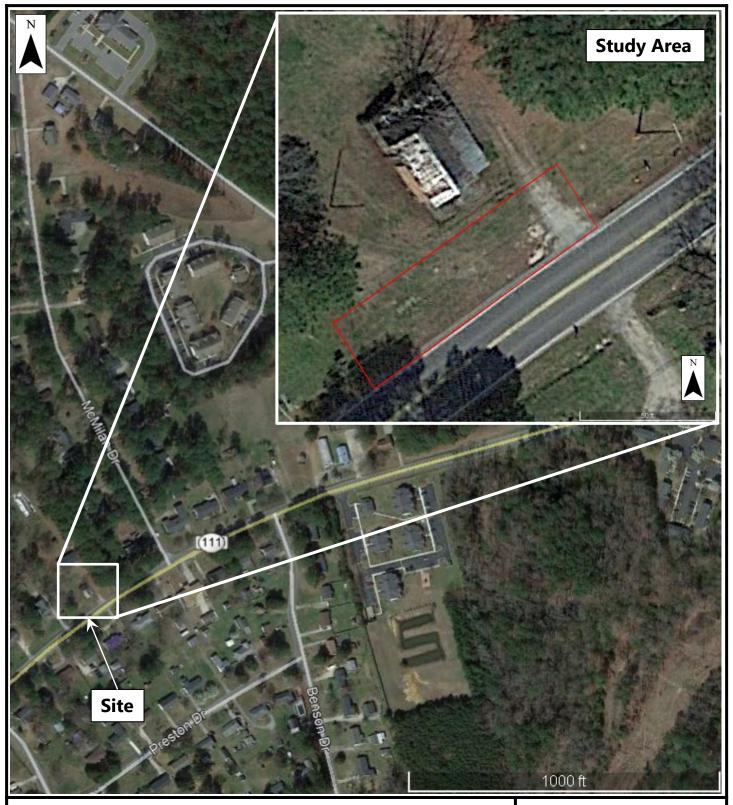
The instrument used for this investigation was the Noggin 250 manufactured by Sensors and Software, Inc. in Ontario, Canada, which utilizes a 250 MHz antenna mounted on a moveable cart. GPR data were collected on April 29, 2020 utilizing the same grid as the EM61 data collection, with sub-parallel traverses spaced approximately two feet apart, tracked by a GPS unit capable of sub-foot accuracy (Figure 4).

4.2 GPR Results

The GPR data were analyzed as vertical cross-sections and as depth slices, or plan-view maps of the GPR response from various depth intervals for evidence of possible USTs. Figure 5 depicts three sample GPR cross-sections from the collected data which contain broad hyperbolic reflectors consistent with possible USTs, located approximately 1.5 feet below the ground surface. These features correlate to Anomalies 1 and 2 identified in the EM61 data.

Figures 6 and 7 illustrate GPR depth slices in 6-inch-thick depth intervals spanning from 1.0 to 6.0 feet depth. An anomaly seen in the depth slices from 2.5 to 3.0 feet depth and 3.0 to 3.5 feet depth correlates well with EM Anomaly 1. The depth slices from 4.5 to 5.0 feet depth and 5.5 to 5.5 feet depth reveal an anomaly that is coincident with EM Anomaly 2. Numerous other areas of elevated GPR response observed throughout the depth slices may represent miscellaneous buried objects, materials, or conditions, such as intermittent clay layers or zones of wet soil. However, due to a general lack of elevated EM response in other areas (beyond the vicinities of Anomalies 1 and 2), these other areas of anomalous GPR response are considered likely to not be metallic in composition.

5.0 CONCLUSIONS


The combined analysis of the EM61 and GPR data reveals generally good correlation between the two methods, with two coincident anomalies observed in the data from each method (Anomalies 1 and 2).

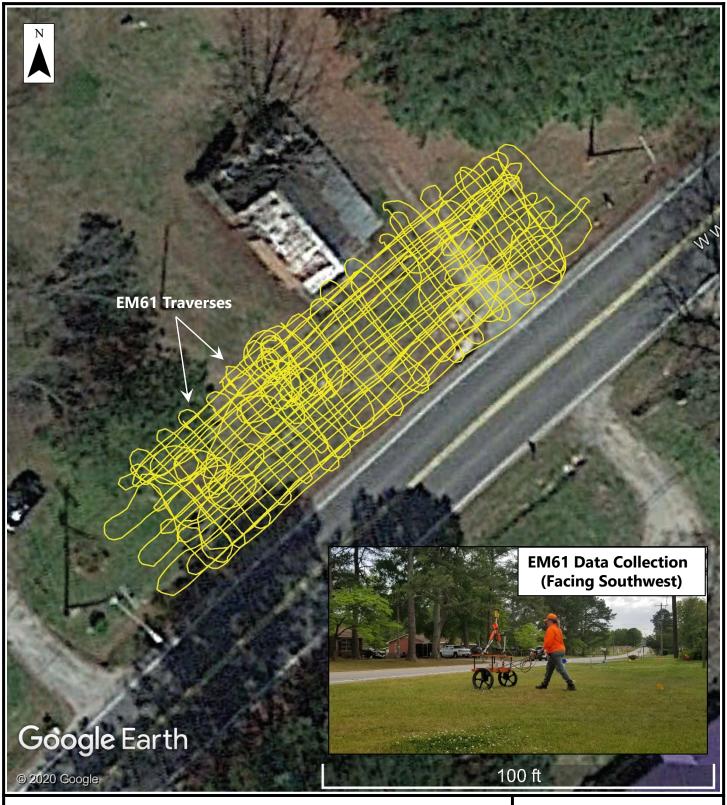
It is uncertain if Anomalies 1 and 2 represent USTs, but of the collected geophysical data, these features are the most likely to represent potential USTs. Since the EM61 instrument is particularly sensitive to buried metallic materials or objects, we consider it likely that Anomalies 1 and 2 are metallic in composition. Furthermore, the locations of Anomalies 1 and 2 were characterized in profile view of the GPR data as broad hyperbolic reflectors, which is consistent with possible USTs. The results of the study are summarized in Figure 8, depicting the locations of Anomalies 1 and 2.

6.0 LIMITATIONS

This study was conducted by registered professional geologists with extensive experience in the collection, processing, and interpretation of geophysical data. It should be noted, however, that all geophysical methods are interpretive, and additional invasive exploration would be required to verify or refute the interpretations within this report.

7.0 FIGURES

Site Location


Geophysical Study for Possible USTs 1710 West Wilson Street, Tarboro, NC

PROJECT: 20080204-010203

Draper Aden Associates

Engineering • Surveying • Environmental Services

2206 South Main Street Blacksburg, VA 24060 540-552-0444 Fax: 540-552-0291 Richmond, VA Charlottesville, VA Hampton Roads, VA Raleigh, NC Fayetteville, NC Northern Virginia Virginia Beach, VA DESIGNED: JMV DRAWN: JMV CHECKED: CMP DATE: 05/15/2020 FIGURE

EM61 Traverse Map

Geophysical Study for Possible USTs 1710 West Wilson Street, Tarboro, NC

PROJECT: 20080204-010203

Draper Aden Associates

Engineering • Surveying • Environmental Services

2206 South Main Street Blacksburg, VA 24060 540-552-0444 Fax: 540-552-0291 Richmond, VA Charlottesville, VA Hampton Roads, VA Raleigh, NC Fayetteville, NC Northern Virginia Virginia Beach, VA DESIGNED: JMV DRAWN: JMV CHECKED: CMP DATE: 05/15/2020 **FIGURE**

Contoured EM61 Results

Geophysical Study for Possible USTs 1710 West Wilson Street, Tarboro, NC

PROJECT: 20080204-010203

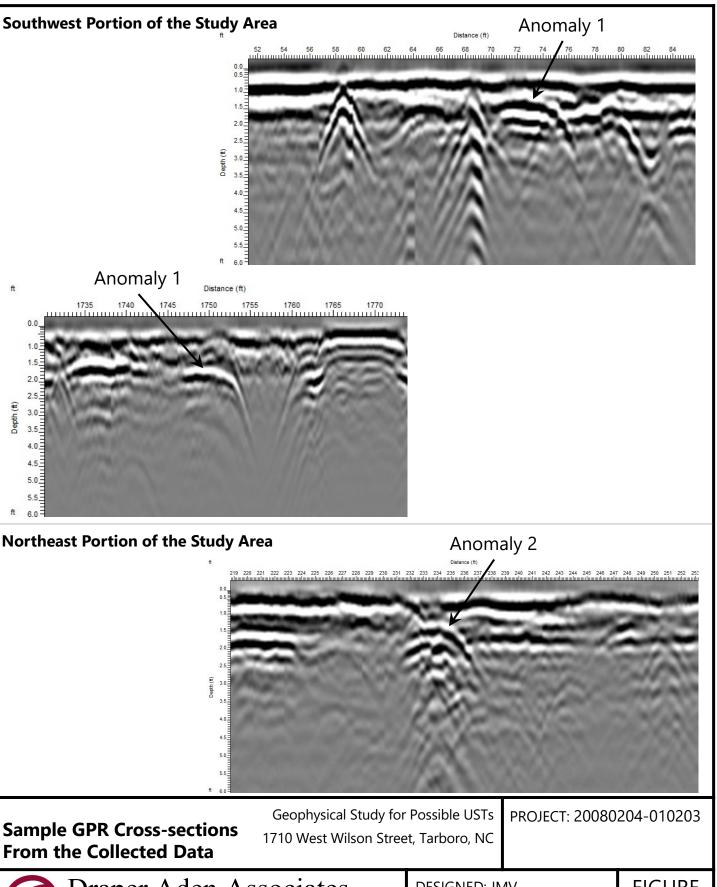
Draper Aden Associates

Engineering • Surveying • Environmental Services

2206 South Main Street Blacksburg, VA 24060 540-552-0444 Fax: 540-552-0291 Richmond, VA Charlottesville, VA Hampton Roads, VA Raleigh, NC Fayetteville, NC Northern Virginia Virginia Beach, VA DESIGNED: JMV DRAWN: JMV CHECKED: CMP DATE: 05/15/2020 **FIGURE**

GPR Traverse Map

Geophysical Study for Possible USTs 1710 West Wilson Street, Tarboro, NC PROJECT: 20080204-010203

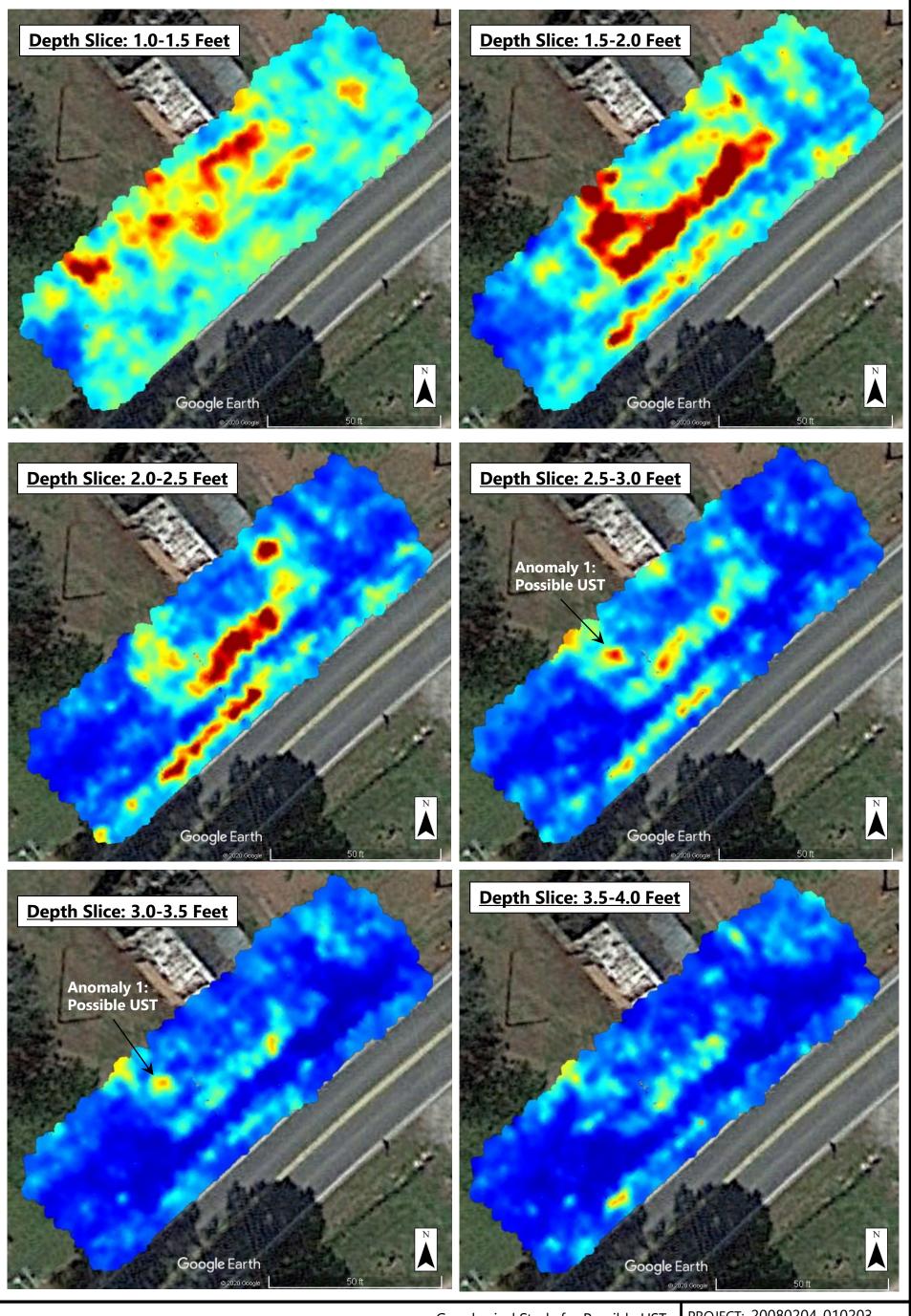

Draper Aden Associates

Engineering • Surveying • Environmental Services

2206 South Main Street Blacksburg, VA 24060 540-552-0444 Fax: 540-552-0291 Richmond, VA Charlottesville, VA Hampton Roads, VA Raleigh, NC Fayetteville, NC Northern Virginia Virginia Beach, VA DESIGNED: JMV DRAWN: JMV CHECKED: CMP

DATE: 05/15/2020

FIGURE



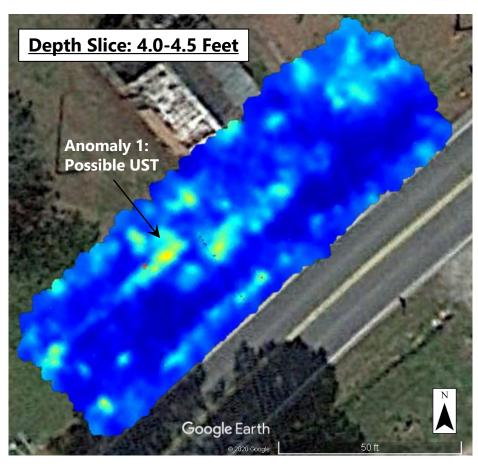
Draper Aden Associates

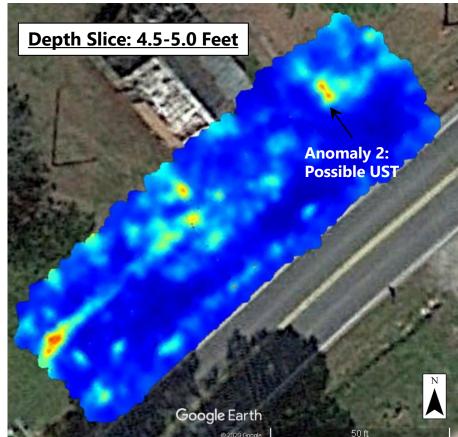
Engineering * Surveying * Environmental Services

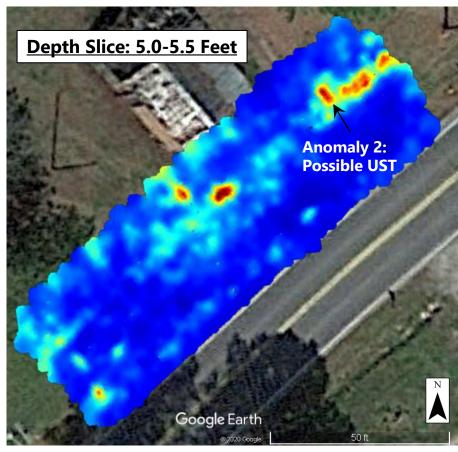
2206 South Main Street Blacksburg, VA 24060 540-552-0444 Fax: 540-552-0291 Richmond, VA Charlottesville, VA Hampton Roads, VA Raleigh, NC Fayetteville, NC Northern Virginia Virginia Beach, VA DESIGNED: JMV DRAWN: JMV CHECKED: CMP DATE: 05/15/2020 **FIGURE**

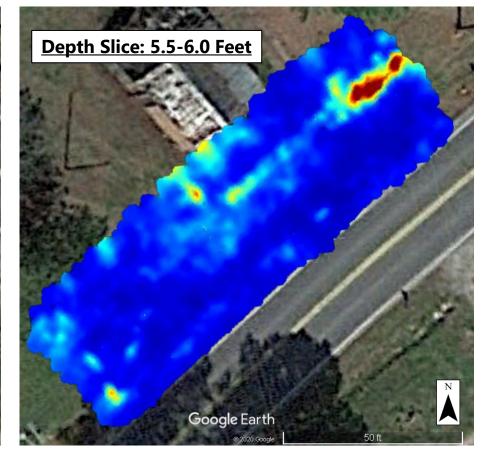
GPR Depth Slices from 1.0 Foot to 4.0 Feet Depth

Geophysical Study for Possible USTs 1710 West Wilson Street, Tarboro, NC PROJECT: 20080204-010203


Blacksburg, VA 24060 540-552-0444 Fax: 540-552-0291


Engineering • Surveying • Environmental Services

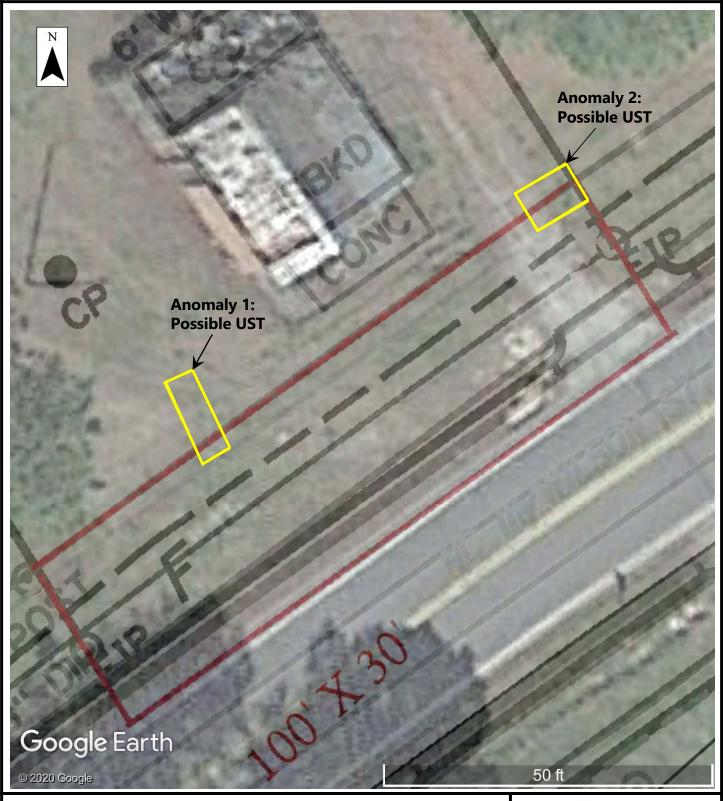

2206 South Main Street Richmond, VA Rale


Richmond, VA
Charlottesville, VA
Hampton Roads, VA
Charlottesville, VA
Virginia Beach, VA

DESIGNED: JMV DRAWN: JMV CHECKED: CMP DATE: 05/15/2020 FIGURE

Geophysical Study for Possible USTs 1710 West Wilson Street, Tarboro, NC PROJECT: 20080204-010203

GPR Depth Slices from 4.0 Feet to 6.0 Feet Depth



2206 South Main Street
Blacksburg, VA 24060
540-552-0444 Fax: 540-552-0291

Richmond, VA
Charlottesville, VA
Hampton Roads, VA

Raleigh, NC
Fayetteville, NC
Northern Virginia
Virginia Beach, VA

DESIGNED: JMV DRAWN: JMV CHECKED: CMP DATE: 05/15/2020 FIGURE

Geophysical Study for Possible USTs

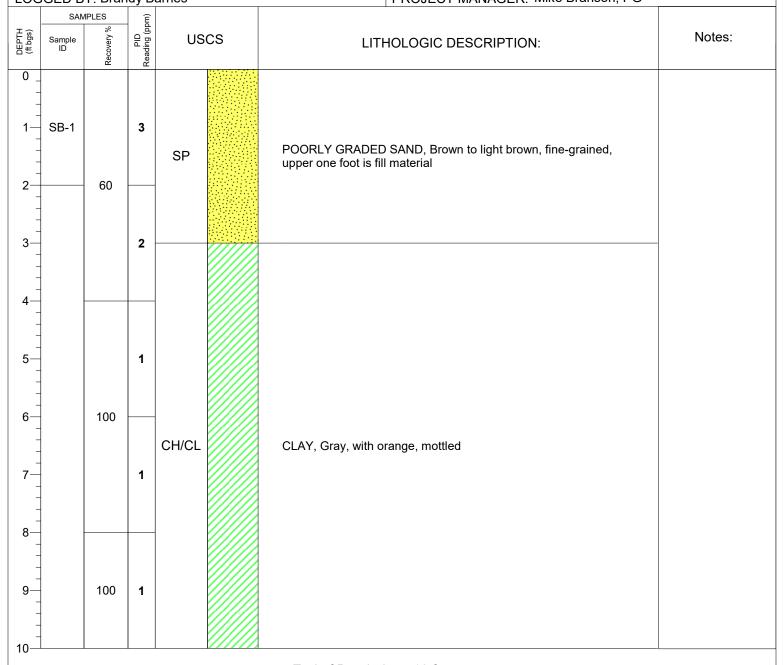
1710 West Wilson Street, Tarboro, NC

Summary of GPR and EM61 Results

Draper Aden Associates

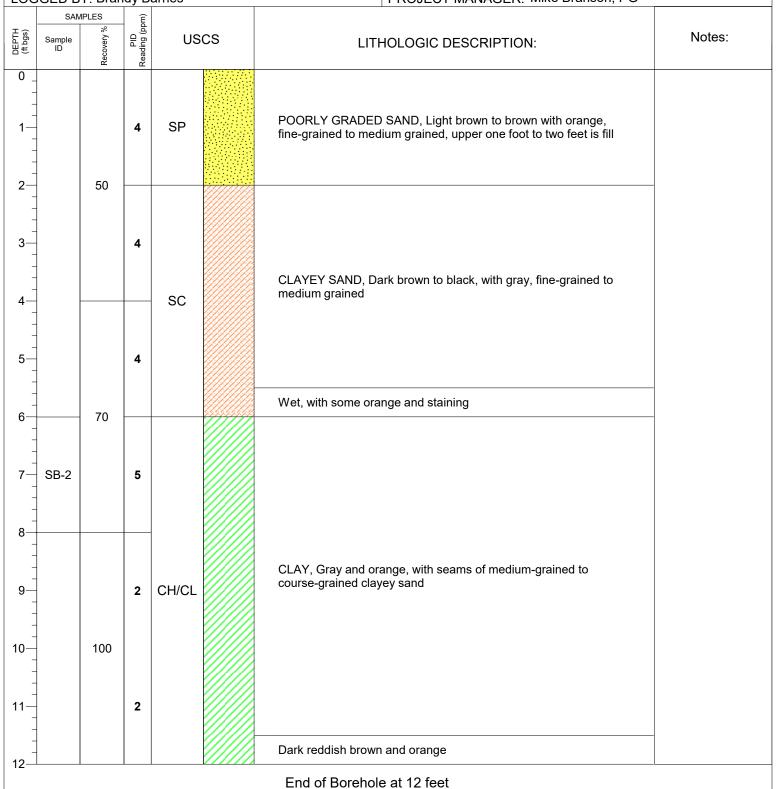
Engineering • Surveying • Environmental Services

2206 South Main Street Blacksburg, VA 24060 540-552-0444 Fax: 540-552-0291 Richmond, VA Charlottesville, VA Hampton Roads, VA Raleigh, NC Fayetteville, NC Northern Virginia Virginia Beach, VA DESIGNED: JMV DRAWN: JMV CHECKED: CMP DATE: 05/15/2020 **FIGURE**


PROJECT: 20080204-010203

BORING ID: SB-1

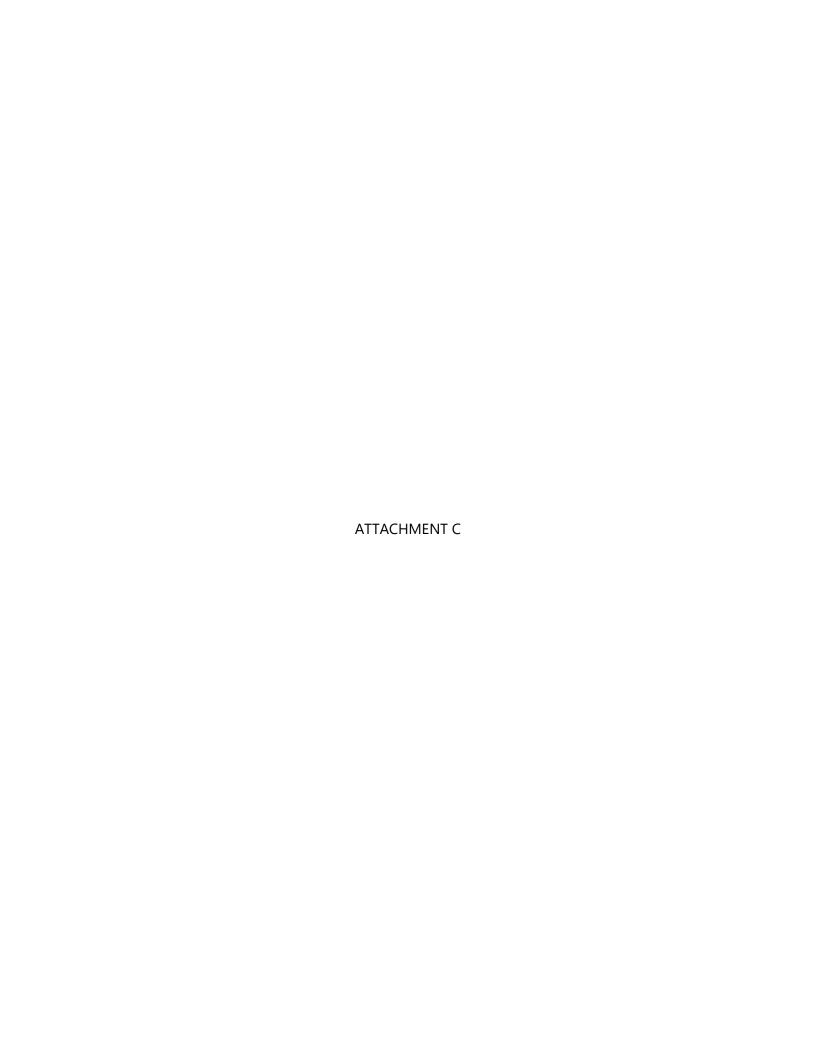
PROJECT NAME: Tarboro PSA	PROJECT NUMBER: 20080204-010103
CLIENT: NCDOT- John Pilipchuk, PE	DATE: 5/18/2020
SITE LOCATION: 1710 W. Wilson St., Tarboro, NC	TOTAL DEPTH (ft bgs): 8
DRILLING CONTRACTOR: DAA- Sean Jarvah	BORING COORDINATES:
DRILLING METHOD: Direct Push	BOREHOLE DIAMETER (inches): 2
DRILLING EQUIPEMENT: Geoprobe	DEPTH TO WATER (ft bgs): NE
LOGGED BY: Brandy Barnes	PROJECT MANAGER: Mike Branson, PG


End of Borehole at 10 feet

BORING ID: SB-2

Page 1 of 1

PROJECT NAME: Tarboro PSA	PROJECT NUMBER: 20080204-010103
CLIENT: NCDOT- John Pilipchuk, PE	DATE: 5/18/2020
SITE LOCATION: 1710 W. Wilson St., Tarboro, NC	TOTAL DEPTH (ft bgs): 8
DRILLING CONTRACTOR: DAA- Sean Jarvah	BORING COORDINATES:
DRILLING METHOD: Direct Push	BOREHOLE DIAMETER (inches): 2
DRILLING EQUIPEMENT: Geoprobe	DEPTH TO WATER (ft bgs): NE
LOGGED BY: Brandy Barnes	PROJECT MANAGER: Mike Branson, PG

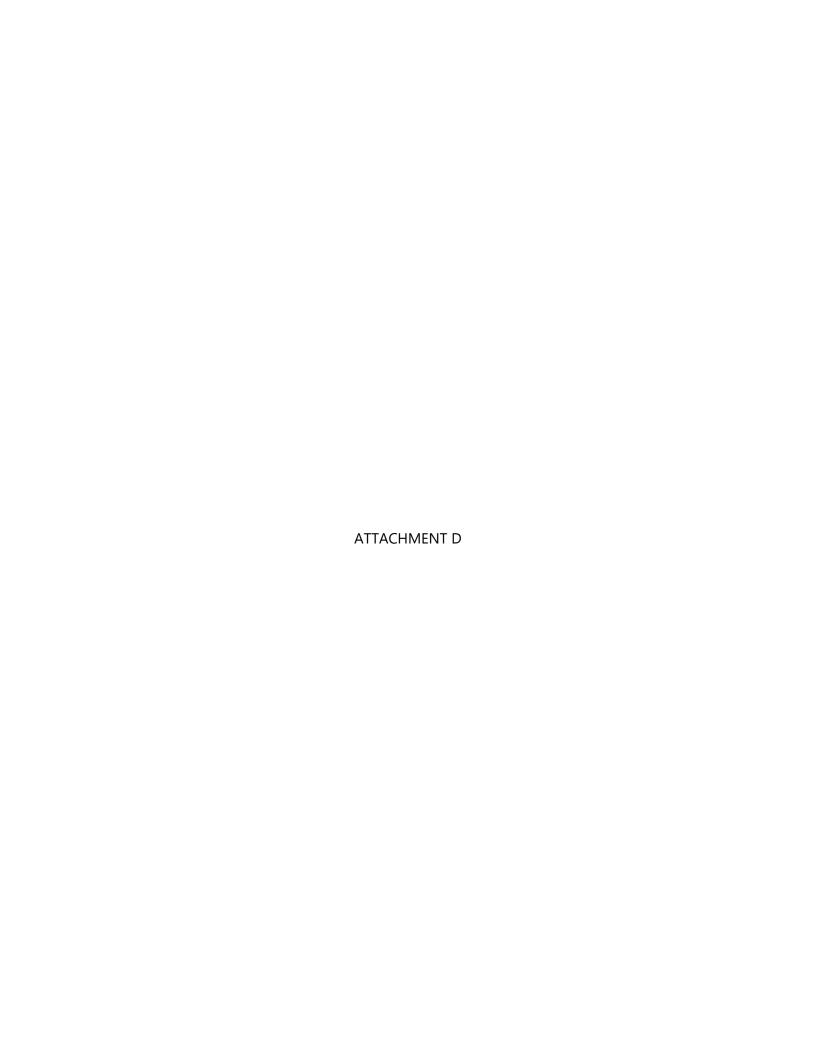


BORING ID: SB-3

PROJECT NUMBER: 20080204-010103
DATE: 5/18/2020
TOTAL DEPTH (ft bgs): 8
BORING COORDINATES:
BOREHOLE DIAMETER (inches): 2
DEPTH TO WATER (ft bgs): NE
PROJECT MANAGER: Mike Branson, PG

		i. Dian				THOOLOT WINTO CERT. WINTE Element, I'm			
DEРТН (ft bgs)	SAM Sample ID	Recovery %	PID Reading (ppm)	USCS		LITHOLOGIC DESCRIPTION:	Notes:		
0 _ - - 1—				4				GRAVEL FILL	
- - - 2		40	7	SP		POORLY GRADED SAND, Light brown, fine-grained to medium-grained			
3-		40	4	SC		CLAYEY SAND, Light brown to brown with light gray gravel and burned debris			
5— - - 5— - - -	SB-3	70	5						
7— 			4	CH/CL		CLAY, Light gray, tan, and orange, with dark brown, fine-grained to medium-grained, mottled			
9—		100	4						

End of Borehole at 10 feet



PHOTOGRAPH 1. Location of SB-1.

PHOTOGRAPH 2. Location of SB-2, no photograph of SB-3..

Hydrocarbon Analysis Results

Client: DAA Address: 114 Edinburgh S. Dr.

Cary, NC 27511

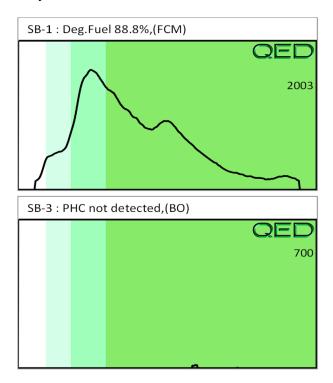
Samples taken Samples extracted Samples analysed

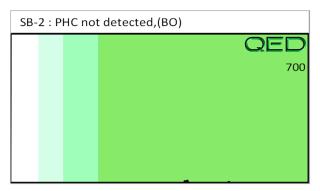
Monday, May 18, 2020 Monday, May 18, 2020 Wednesday, May 20, 2020

Harry Wooten Contact: Michael Branson Operator

Project: Tarboro PSA 20080204-010103

													F03640
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	Ratios			HC Fingerprint Match
										% light	% mid	% heavy	
S	SB-1	29.7	<0.74	<0.74	3.6	3.6	1.6	<0.24	<0.03	0	84.6	15.4	Deg.Fuel 88.8%,(FCM)
S	SB-2	30.6	<0.76	<0.76	<0.76	<0.76	<0.15	<0.24	<0.031	0	0	0	PHC not detected,(BO)
S	SB-3	27.2	<0.68	<0.68	<0.68	<0.68	<0.14	<0.22	<0.027	0	0	0	PHC not detected,(BO)


Initial Calibrator QC check OK


Final FCM QC Check OK

100.9 %

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate present

Project: Tarboro PSA 20080204

_		5	1									3	ie.																
	Relinqui	of south	Relinqu	COMMENTS/REQUESTS:							, and					9	2 1207	-	5/8/2 135	Date/Time	Sample Collection	concern by.	Collected by:	#		ef.:	Contact:	Address:	ime:
	Relinquished by	5	Relinquished by	ESTS:															0	24 Hour	TAT Requested	Ty.	moreora		sussalm	Tarboro PSA zoobalot	M. Bro	COVUNC TAIL	
																×		X	×	48 Hour	ested	Borns	7		Sopport Sopport	P8.4	232	公人	a a
		8/18/15	2021													→	<	×	×	UVF	Analysis Type	CHAIN			0100	COROSCOL			50
		2600																		GC	Туре	OF CU		RAPIC		1			
	Accepted by	Chamber St.	Accepted by													D ₂	31	24	BR	CIPILIII	ni+iala	STODY		ENVIR	ĺ				\$
***	ed by		ed by	TARGET GC/UVF ANALYTES:	4						191	•		151	8	200	200	6.25	52-			CHAIN OF CUSTODY AND ANALYTICAL R		RAPID ENVIRONMENTAL DIAGNOSTICS					Harul 53
3	Date/Time	20 Man 2 20 12:00	Date/Time	NALYTES:															1	Sample ID		ICAL REQUEST FORM	5	AGNOSTICS				MI	
Ret. No TO	(6	(K	RED Lab USE ONLY	ar.			·			3						1	, C.	6 2 2 1	4 to 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	lotal Wt. lare Wt. Sample Wt.		analytes in the space provided below.	Solvents: VC, 1,1 DCE, 1,2 cis DCE, 1,2	aromatics and BaP. Standard GC Analyses are for BTEX and Chlorinated	total BTEX, GRO, DRO, TPH, PAH total	Each UVF sample will be analyzed for	Wilmington, NC 28409	MARBIONC Bldg, Suite 2003	RED Lab, LLC 5598 Marvin K Moss Lane

1

. -

6.

May 28, 2020

Mike Branson Draper Aden Associates 114 Edinburgh Drive South, Suite 200 Cary, NC 27519

Project Location: Tarboro, NC - Parcel 53

Client Job Number:

Project Number: 20080204-010103

Keny K. Mille

Laboratory Work Order Number: 20E0838

Enclosed are results of analyses for samples received by the laboratory on May 19, 2020. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	7
20E0838-01	7
Sample Preparation Information	11
QC Data	12
Volatile Organic Compounds by GC/MS	12
B258487	12
Semivolatile Organic Compounds by GC/MS	17
B258532	17
B258763	20
Flag/Qualifier Summary	22
Certifications	23
Chain of Cuctody/Sample Receipt	28

Draper Aden Associates 114 Edinburgh Drive South, Suite 200 Cary, NC 27519 ATTN: Mike Branson

REPORT DATE: 5/28/2020

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 20080204-010103

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 20E0838

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Tarboro, NC - Parcel 53

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB

SB-2 20E0838-01 Ground Water SW-846 8260D
SW-846 8270E

Page 3 of 30

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 8260D

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

Trichlorofluoromethane (Freon 11)

20E0838-01[SB-2], B258487-BLK1, B258487-BS1, B258487-BSD1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

1.1.1.2-Tetrachloroethane

20E0838-01[SB-2], B258487-BLK1, B258487-BS1, B258487-BSD1, S048715-CCV1

Bromoform

20E0838-01[SB-2], B258487-BLK1, B258487-BS1, B258487-BSD1, S048715-CCV1

Dichlorodifluoromethane (Freon 12

20E0838-01[SB-2], B258487-BLK1, B258487-BS1, B258487-BSD1, S048715-CCV1

tert-Butyl Alcohol (TBA)

20E0838-01[SB-2], B258487-BLK1, B258487-BS1, B258487-BSD1, S048715-CCV1

Trichlorofluoromethane (Freon 11)

20E0838-01[SB-2], B258487-BLK1, B258487-BS1, B258487-BSD1, S048715-CCV1

SW-846 8270E

Qualifications:

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated. Analyte & Samples(s) Qualified:

Benzidine

20E0838-01[SB-2], B258532-BLK1, B258532-BS1, B258532-BSD1, S048748-CCV1, S048793-CCV1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Aniline

20E0838-01[SB-2], B258532-BLK1, B258532-BS1, B258532-BSD1, S048748-CCV1, S048793-CCV1

Benzidine

20E0838-01[SB-2], B258532-BLK1, B258532-BS1, B258532-BSD1, S048748-CCV1, S048793-CCV1

V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

Analyte & Samples(s) Qualified:

Benzoic Acid

20E0838-01[SB-2], S048793-CCV1

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is

estimated. Analyte & Samples(s) Qualified:

4-Chloroaniline

20E0838-01[SB-2], B258532-BLK1, B258532-BS1, B258532-BSD1, S048748-CCV1, S048793-CCV1

20E0838-01[SB-2], S048793-CCV1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director

Project Location: Tarboro, NC - Parcel 53 Sample Description: Work Order: 20E0838

Date Received: 5/19/2020
Field Sample #: SB-2

Sampled: 5/18/2020 14:40

Sample ID: 20E0838-01
Sample Matrix: Ground Water

Volatile	Organic	Compounds	by CC/MS
voiatne	Organic	Compounds	DV GC/IVIS

			Volatile	Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	3.8	μg/L	1	1 mg/ 2 mm	SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Acrylonitrile	ND	5.0	0.52	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.50	0.14	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Benzene	ND	1.0	0.18	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Bromobenzene	ND	1.0	0.15	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Bromochloromethane	ND	1.0	0.32	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Bromodichloromethane	ND	0.50	0.16	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Bromoform	ND	1.0	0.46	μg/L	1	V-05	SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Bromomethane	ND	2.0	1.4	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
2-Butanone (MEK)	ND	20	1.9	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
tert-Butyl Alcohol (TBA)	ND	20	4.2	μg/L	1	V-05	SW-846 8260D	5/21/20	5/21/20 12:19	MFF
n-Butylbenzene	ND	1.0	0.21	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
sec-Butylbenzene	ND	1.0	0.16	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
tert-Butylbenzene	ND	1.0	0.17	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	0.16	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Carbon Disulfide	ND	5.0	4.4	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Carbon Tetrachloride	ND	1.0	0.11	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Chlorobenzene	ND	1.0	0.15	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Chlorodibromomethane	ND	0.50	0.21	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Chloroethane	ND	2.0	0.36	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Chloroform	ND	2.0	0.17	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Chloromethane	ND	2.0	0.45	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
2-Chlorotoluene	ND	1.0	0.12	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
4-Chlorotoluene	ND	1.0	0.14	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	0.53	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,2-Dibromoethane (EDB)	ND	0.50	0.19	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Dibromomethane	ND	1.0	0.37	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,2-Dichlorobenzene	ND	1.0	0.16	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,3-Dichlorobenzene	ND	1.0	0.12	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,4-Dichlorobenzene	ND	1.0	0.13	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
trans-1,4-Dichloro-2-butene	ND	2.0	0.31	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	0.26	$\mu g/L$	1	V-05	SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,1-Dichloroethane	ND	1.0	0.16	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,2-Dichloroethane	ND	1.0	0.41	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,1-Dichloroethylene	ND	1.0	0.32	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
cis-1,2-Dichloroethylene	ND	1.0	0.13	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
trans-1,2-Dichloroethylene	ND	1.0	0.31	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,2-Dichloropropane	ND	1.0	0.20	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,3-Dichloropropane	ND	0.50	0.11	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
2,2-Dichloropropane	ND	1.0	0.20	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,1-Dichloropropene	ND	2.0	0.16	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
cis-1,3-Dichloropropene	ND	0.50	0.13	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
trans-1,3-Dichloropropene	ND	0.50	0.23	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Diethyl Ether	ND	2.0	0.34	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF

Page 7 of 30

Project Location: Tarboro, NC - Parcel 53 Work Order: 20E0838 Sample Description:

Date Received: 5/19/2020 Field Sample #: SB-2

Sampled: 5/18/2020 14:40

Sample ID: 20E0838-01 Sample Matrix: Ground Water

Volatila	Organic	Compounds	by GC/MS
voiatiie	Organic	Compounds	DV GC/IVIS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	0.17	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,4-Dioxane	ND	50	22	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Ethylbenzene	1.2	1.0	0.13	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Hexachlorobutadiene	ND	0.60	0.47	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
2-Hexanone (MBK)	ND	10	1.5	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Isopropylbenzene (Cumene)	ND	2.0	0.17	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
p-Isopropyltoluene (p-Cymene)	ND	2.0	0.20	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	0.25	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Methylene Chloride	ND	5.0	0.34	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	1.7	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Naphthalene	ND	5.0	0.31	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
n-Propylbenzene	1.0	1.0	0.13	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Styrene	ND	2.0	0.11	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	0.27	μg/L	1	V-05	SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	0.22	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Tetrachloroethylene	ND	1.0	0.18	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Tetrahydrofuran	ND	10	0.51	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Toluene	1.6	1.0	0.14	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,2,3-Trichlorobenzene	ND	5.0	0.57	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,2,4-Trichlorobenzene	ND	1.0	0.40	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,3,5-Trichlorobenzene	ND	1.0	0.30	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,1,1-Trichloroethane	ND	1.0	0.20	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,1,2-Trichloroethane	ND	1.0	0.16	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Trichloroethylene	ND	1.0	0.24	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	0.33	μg/L	1	V-05, L-04	SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,2,3-Trichloropropane	ND	2.0	0.25	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	0.32	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,2,4-Trimethylbenzene	1.2	1.0	0.18	μg/L	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
1,3,5-Trimethylbenzene	ND	1.0	0.14	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Vinyl Chloride	ND	2.0	0.45	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
m+p Xylene	4.0	2.0	0.30	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
o-Xylene	1.5	1.0	0.17	$\mu g/L$	1		SW-846 8260D	5/21/20	5/21/20 12:19	MFF
Surrogates		% Reco	very	Recovery Limits	1	Flag/Qual				
1,2-Dichloroethane-d4		115		70-130					5/21/20 12:19	
Toluene-d8		97.0		70-130					5/21/20 12:19	
4-Bromofluorobenzene		98.6		70-130					5/21/20 12:19	

Project Location: Tarboro, NC - Parcel 53 Sample Description: Work Order: 20E0838

Date Received: 5/19/2020 Field Sample #: SB-2

Sampled: 5/18/2020 14:40

Sample ID: 20E0838-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

			Semivolat	ile Organic (Compounds by	GC/MS				
Anakata	Danilla	DI	DI	TT24-	D:l+:	El/OI	Made d	Date	Date/Time	4 14
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene (SIM) Acenaphthylene (SIM)	ND	0.31	0.034	μg/L	1		SW-846 8270E	5/21/20	5/28/20 2:00	IMR
1 , , ,	ND	0.21	0.036	μg/L	1		SW-846 8270E	5/21/20	5/28/20 2:00	IMR
Acetophenone	ND	10	0.41	μg/L	1	1105 1124	SW-846 8270E	5/21/20	5/27/20 13:38	BGL
Aniline	ND	5.2	0.77	μg/L	1	V-05, V-34	SW-846 8270E	5/21/20	5/27/20 13:38	BGL
Anthracene (SIM)	ND	0.21	0.033	μg/L	1		SW-846 8270E	5/21/20	5/28/20 2:00	IMR
Benzidine Record (CD 6)	ND	21	17	μg/L	1	V-04, V-05	SW-846 8270E	5/21/20	5/27/20 13:38	BGL
Benzo(a)anthracene (SIM)	ND	0.052	0.016	μg/L	1		SW-846 8270E	5/21/20	5/28/20 2:00	IMR
Benzo(a)pyrene (SIM)	ND	0.10	0.012	μg/L	1		SW-846 8270E	5/21/20	5/28/20 2:00	IMR
Benzo(b)fluoranthene (SIM)	ND	0.052	0.015	μg/L	1		SW-846 8270E	5/21/20	5/28/20 2:00	IMR
Benzo(g,h,i)perylene (SIM)	ND	0.52	0.019	μg/L	1		SW-846 8270E	5/21/20	5/28/20 2:00	IMR
Benzo(k)fluoranthene (SIM)	ND	0.21	0.012	μg/L	1		SW-846 8270E	5/21/20	5/28/20 2:00	IMR
Benzoic Acid	ND	10	5.5	μg/L	1	V-06	SW-846 8270E	5/21/20	5/27/20 13:38	BGL
Bis(2-chloroethoxy)methane	ND	10	0.49	μg/L	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
Bis(2-chloroethyl)ether	ND	10	0.53	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
Bis(2-chloroisopropyl)ether	ND	10	0.75	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
Bis(2-Ethylhexyl)phthalate	ND	10	0.54	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
4-Bromophenylphenylether	ND	10	0.31	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
Butylbenzylphthalate	ND	10	0.30	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
Carbazole	ND	10	0.29	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
4-Chloroaniline	ND	10	0.35	$\mu g/L$	1	V-34	SW-846 8270E	5/21/20	5/27/20 13:38	BGL
4-Chloro-3-methylphenol	ND	10	0.50	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
2-Chloronaphthalene	ND	10	0.47	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
2-Chlorophenol	ND	10	0.39	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
4-Chlorophenylphenylether	ND	10	0.32	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
Chrysene (SIM)	ND	0.21	0.015	$\mu g/L$	1		SW-846 8270E	5/21/20	5/28/20 2:00	IMR
Dibenz(a,h)anthracene (SIM)	ND	0.10	0.018	$\mu g/L$	1		SW-846 8270E	5/21/20	5/28/20 2:00	IMR
Dibenzofuran	ND	5.2	0.27	μg/L	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
Di-n-butylphthalate	ND	10	0.47	μg/L	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
1,2-Dichlorobenzene	ND	5.2	0.47	μg/L	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
1,3-Dichlorobenzene	ND	5.2	0.48	μg/L	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
1,4-Dichlorobenzene	ND	5.2	0.39	μg/L	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
3,3-Dichlorobenzidine	ND	10	0.37	μg/L	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
2,4-Dichlorophenol	ND	10	0.31	μg/L	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
Diethylphthalate	ND	10	0.23	μg/L	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
2,4-Dimethylphenol	ND	10	0.82	μg/L	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
Dimethylphthalate	ND	10	0.32	μg/L	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
4,6-Dinitro-2-methylphenol	ND	10	2.0	μg/L	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
2,4-Dinitrophenol	ND	10	1.7	μg/L	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
2,4-Dinitrotoluene	ND	10	0.34	μg/L	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
2,6-Dinitrotoluene	ND	10	0.36	μg/L μg/L	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
Di-n-octylphthalate	ND	10	0.54	μg/L μg/L	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
1,2-Diphenylhydrazine/Azobenzene	ND	10	0.39	μg/L μg/L	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
Fluoranthene (SIM)	ND	0.52	0.026	μg/L μg/L	1		SW-846 8270E	5/21/20	5/28/20 2:00	IMR
Fluorene (SIM)	ND	1.0								
i idorene (SIM)	ND	1.0	0.035	μg/L	1		SW-846 8270E	5/21/20	5/28/20 2:00	IMR

Page 9 of 30

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Semivolatile Organic Compounds by GC/MS

Project Location: Tarboro, NC - Parcel 53 Sample Description: Work Order: 20E0838

Date Received: 5/19/2020 Field Sample #: SB-2

Sampled: 5/18/2020 14:40

Results

ND

ND

ND

ND

ND

ND

ND

0.12

ND

ND

ND

ND

ND

ND

ND

ND

10

10

10

5.2

10

10

0.53

1.5

0.34

0.58

0.49

0.34

Sample ID: 20E0838-01 Sample Matrix: Ground Water

Hexachlorobenzene

Hexachlorobutadiene

Hexachloroethane

1-Methylnaphthalene

2-Methylphenol

3/4-Methylphenol

Isophorone

Hexachlorocyclopentadiene

Indeno(1,2,3-cd)pyrene (SIM)

2-Methylnaphthalene (SIM)

N-Nitrosodi-n-propylamine

Pentachloronitrobenzene

1,2,4-Trichlorobenzene

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

Pentachlorophenol

RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
10	0.45	μg/L	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
10	0.61	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
10	4.9	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
10	0.55	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
0.10	0.019	$\mu g/L$	1		SW-846 8270E	5/21/20	5/28/20 2:00	IMR
10	0.31	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
5.2	0.29	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
1.0	0.064	$\mu g/L$	1	J	SW-846 8270E	5/21/20	5/28/20 2:00	IMR
10	0.47	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
10	0.21	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
1.0	0.26	μσ/L	1	ī	SW-846 8270F	5/21/20	5/28/20 2:00	IMR

SW-846 8270E

SW-846 8270E

SW-846 8270E

SW-846 8270E

SW-846 8270E

SW-846 8270E

Naphthalene (SIM)	0.36	1.0	0.26	$\mu g/L$	1	J	SW-846 8270E	5/21/20	5/28/20 2:00	IMR
2-Nitroaniline	ND	10	0.41	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
3-Nitroaniline	ND	10	0.43	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
4-Nitroaniline	ND	10	0.51	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
Nitrobenzene	ND	10	0.42	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
2-Nitrophenol	ND	10	0.43	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
4-Nitrophenol	ND	10	0.65	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
N-Nitrosodimethylamine	ND	10	1.9	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL
N-Nitrosodiphenylamine/Diphenylamine	ND	10	0.30	$\mu g/L$	1		SW-846 8270E	5/21/20	5/27/20 13:38	BGL

Phenanthrene (SIM)	ND	0.052	0.031	$\mu g/L$	1	SW-846 8270E	5/21/20	5/28/20 2:00	IMR
Phenol	ND	10	0.20	$\mu g/L$	1	SW-846 8270E	5/21/20	5/27/20 13:38	BGL
Pyrene (SIM)	ND	1.0	0.024	$\mu g/L$	1	SW-846 8270E	5/21/20	5/28/20 2:00	IMR
Pyridine	ND	5.2	2.9	$\mu g/L$	1	SW-846 8270E	5/21/20	5/27/20 13:38	BGL
1,2,4,5-Tetrachlorobenzene	ND	10	0.35	μg/L	1	SW-846 8270E	5/21/20	5/27/20 13:38	BGL

 $\mu g/L$

 $\mu g/L$

μg/L

 $\mu g/L$

 $\mu g/L$

 $\mu g/L$

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
2-Fluorophenol	38.2	15-110		5/27/20 13:38
Phenol-d6	28.1	15-110		5/27/20 13:38
Nitrobenzene-d5	70.2	30-130		5/28/20 2:00
Nitrobenzene-d5	62.3	30-130		5/27/20 13:38
2-Fluorobiphenyl	62.7	30-130		5/27/20 13:38
2-Fluorobiphenyl	66.1	30-130		5/28/20 2:00
2,4,6-Tribromophenol	68.5	15-110		5/27/20 13:38
p-Terphenyl-d14	62.9	30-130		5/28/20 2:00
p-Terphenyl-d14	71.0	30-130		5/27/20 13:38

1

5/27/20 13:38

5/27/20 13:38

5/27/20 13:38

5/27/20 13:38

5/27/20 13:38

5/27/20 13:38

BGL

BGL

BGL

BGL

BGL

BGL

5/21/20

5/21/20

5/21/20

5/21/20

5/21/20

5/21/20

Sample Extraction Data

Prep Method: SW-846 5030B Analytical Method: SW-846 8260D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
20E0838-01 [SB-2]	B258487	5	5.00	05/21/20	
Prep Method: SW-846 3510C Analytical Method: SW-8	46 8270E				

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20E0838-01 [SB-2]	B258532	970	1.00	05/21/20

Prep Method: SW-846 3510C Analytical Method: SW-846 8270E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20E0838-01 [SB-2]	B258763	970	1.00	05/21/20

RPD

%REC

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch B258487 - SW-846 5030B										
Blank (B258487-BLK1)				Prepared &	Analyzed: 05	/21/20				
Acetone	ND	50	$\mu g/L$							
Acrylonitrile	ND	5.0	μg/L							
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L							
Benzene	ND	1.0	μg/L							
Bromobenzene	ND	1.0	μg/L							
Bromochloromethane	ND	1.0	μg/L							
Bromodichloromethane	ND	0.50	μg/L							
Bromoform	ND	1.0	μg/L							V-05
Bromomethane	ND	2.0	μg/L							
2-Butanone (MEK)	ND	20	μg/L							
tert-Butyl Alcohol (TBA)	ND	20	μg/L							V-05
n-Butylbenzene	ND	1.0	μg/L							
sec-Butylbenzene	ND	1.0	μg/L							
tert-Butylbenzene	ND	1.0	μg/L							
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L							
Carbon Disulfide	ND	5.0	μg/L							
Carbon Tetrachloride	ND	1.0	μg/L							
Chlorobenzene	ND	1.0	μg/L							
Chlorodibromomethane	ND	0.50	μg/L							
Chloroethane	ND	2.0	μg/L							
Chloroform	ND	2.0	μg/L							
Chloromethane	ND ND	2.0	μg/L							
2-Chlorotoluene	ND ND	1.0	μg/L							
4-Chlorotoluene	ND ND	1.0	μg/L							
1,2-Dibromo-3-chloropropane (DBCP)	ND ND	5.0	μg/L							
1,2-Dibromoethane (EDB)		0.50	μg/L μg/L							
Dibromomethane (BBB)	ND	1.0	μg/L							
1,2-Dichlorobenzene	ND	1.0	μg/L μg/L							
1,3-Dichlorobenzene	ND	1.0	μg/L μg/L							
1,4-Dichlorobenzene	ND	1.0	μg/L μg/L							
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0								V 05
1,1-Dichloroethane	ND	1.0	μg/L							V-05
1,2-Dichloroethane	ND		μg/L							
	ND	1.0	μg/L							
1,1-Dichloroethylene cis-1,2-Dichloroethylene	ND	1.0	μg/L							
	ND	1.0 1.0	μg/L							
trans-1,2-Dichloroethylene 1,2-Dichloropropane	ND	1.0	μg/L							
	ND		μg/L							
1,3-Dichloropropane	ND	0.50	μg/L							
2,2-Dichloropropane	ND	1.0	μg/L							
1,1-Dichloropropene	ND	2.0	μg/L							
cis-1,3-Dichloropropene	ND	0.50	μg/L							
trans-1,3-Dichloropropene	ND	0.50	μg/L							
Diethyl Ether	ND	2.0	μg/L							
Diisopropyl Ether (DIPE)	ND	0.50	μg/L							
1,4-Dioxane	ND	50	μg/L							
Ethylbenzene	ND	1.0	μg/L							
Hexachlorobutadiene	ND	0.60	μg/L							
2-Hexanone (MBK)	ND	10	μg/L							
Isopropylbenzene (Cumene)	ND	1.0	$\mu g \! / \! L$							
p-Isopropyltoluene (p-Cymene)	ND	1.0	$\mu g \! / \! L$							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L							

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
atch B258487 - SW-846 5030B										
lank (B258487-BLK1)				Prepared & A	Analyzed: 05	/21/20				
lethylene Chloride	ND	5.0	μg/L							
Methyl-2-pentanone (MIBK)	ND	10	$\mu g/L$							
aphthalene	ND	2.0	$\mu \text{g/L}$							
Propylbenzene	ND	1.0	μg/L							
yrene	ND	1.0	μg/L							
1,1,2-Tetrachloroethane	ND	1.0	μg/L							V-05
1,2,2-Tetrachloroethane	ND	0.50	μg/L							
etrachloroethylene	ND	1.0	μg/L							
trahydrofuran	ND	10	μg/L							
luene	ND	1.0	μg/L							
2,3-Trichlorobenzene	ND	5.0	μg/L							
2,4-Trichlorobenzene	ND	1.0	μg/L							
3,5-Trichlorobenzene	ND	1.0	μg/L							
1,1-Trichloroethane	ND	1.0	μg/L							
1,2-Trichloroethane	ND	1.0	μg/L							
richloroethylene	ND ND	1.0	μg/L							
richlorofluoromethane (Freon 11)	ND ND	2.0	μg/L μg/L							L-04, V-05
2,3-Trichloropropane	ND ND	2.0	μg/L μg/L							L-04, ¥-03
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND ND	1.0	μg/L μg/L							
3) 2,4-Trimethylbenzene	N.D.	1.0	ua/I							
3,5-Trimethylbenzene	ND	1.0	μg/L							
· ·	ND		μg/L							
nyl Chloride	ND	2.0	μg/L							
+p Xylene	ND	2.0	μg/L							
Xylene	ND	1.0	μg/L							
rrogate: 1,2-Dichloroethane-d4	27.5		$\mu g/L$	25.0		110	70-130			
rrogate: Toluene-d8	23.6		$\mu g/L$	25.0		94.5	70-130			
rrogate: 4-Bromofluorobenzene	25.2		μg/L	25.0		101	70-130			
CS (B258487-BS1)				Prepared & A	Analyzed: 05	/21/20				
cetone	89.2	50	μg/L	100		89.2	70-160			
crylonitrile	11.2	5.0	μg/L	10.0		112	70-130			
			/T	400		83.6	70-130			
	8.36	0.50	μg/L	10.0			70-150			
	8.36 10.5	0.50 1.0	μg/L μg/L	10.0		105	70-130			
enzene										
enzene	10.5	1.0	$\mu g/L$	10.0		105	70-130			
enzene romobenzene romochloromethane	10.5 10.3	1.0 1.0	μg/L μg/L	10.0 10.0		105 103	70-130 70-130			
enzene romobenzene romochloromethane romodichloromethane	10.5 10.3 10.8	1.0 1.0 1.0	μg/L μg/L μg/L	10.0 10.0 10.0		105 103 108	70-130 70-130 70-130			V-05
enzene romobenzene romochloromethane romodichloromethane romoform	10.5 10.3 10.8 8.78	1.0 1.0 1.0 0.50	μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0		105 103 108 87.8	70-130 70-130 70-130 70-130			V-05
enzene romobenzene romochloromethane romodichloromethane romoform romomethane	10.5 10.3 10.8 8.78 8.87	1.0 1.0 1.0 0.50 1.0	μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0		105 103 108 87.8 88.7	70-130 70-130 70-130 70-130 70-130			V-05
enzene romobenzene romochloromethane romoform romomethane romomethane Butanone (MEK)	10.5 10.3 10.8 8.78 8.87 5.25	1.0 1.0 1.0 0.50 1.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0		105 103 108 87.8 88.7 52.5	70-130 70-130 70-130 70-130 70-130 40-160			V-05
enzene comobenzene comochloromethane comodichloromethane comoform comomethane Butanone (MEK) rt-Butyl Alcohol (TBA)	10.5 10.3 10.8 8.78 8.87 5.25	1.0 1.0 1.0 0.50 1.0 2.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0		105 103 108 87.8 88.7 52.5 110	70-130 70-130 70-130 70-130 70-130 40-160 40-160			
enzene comobenzene comochloromethane comodichloromethane comoform comomethane Butanone (MEK) ct-Butyl Alcohol (TBA) Butylbenzene	10.5 10.3 10.8 8.78 8.87 5.25 110 68.8 11.7	1.0 1.0 1.0 0.50 1.0 2.0 20	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0		105 103 108 87.8 88.7 52.5 110 68.8	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160			
enzene comobenzene comochloromethane comodichloromethane comoform comomethane Butanone (MEK) ct-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene	10.5 10.3 10.8 8.78 8.87 5.25 110 68.8 11.7	1.0 1.0 1.0 0.50 1.0 2.0 20 20	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 100 100		105 103 108 87.8 88.7 52.5 110 68.8 117	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130			
enzene comobenzene comochloromethane comodichloromethane comomethane comomethane Butanone (MEK) ct-Butyl Alcohol (TBA) Butylbenzene cc-Butylbenzene ct-Butylbenzene	10.5 10.3 10.8 8.78 8.87 5.25 110 68.8 11.7 12.0	1.0 1.0 0.50 1.0 2.0 20 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 100 100 10		105 103 108 87.8 88.7 52.5 110 68.8 117	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130			
enzene comobenzene comodichloromethane comodichloromethane comodichloromethane comomethane Butanone (MEK) ct-Butyl Alcohol (TBA) Butylbenzene ct-Butylbenzene ct-Butylbenzene ct-Butyl Ether (TBEE)	10.5 10.3 10.8 8.78 8.87 5.25 110 68.8 11.7 12.0 11.5 9.32	1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 0.50	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 100 100 10		105 103 108 87.8 88.7 52.5 110 68.8 117 120 115	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130			
enzene comobenzene comodichloromethane comodichloromethane comoform comomethane Butanone (MEK) ct-Butyl Alcohol (TBA) Butylbenzene ct-Butylbenzene ct-Butyl Ethyl Ether (TBEE) urbon Disulfide	10.5 10.3 10.8 8.78 8.87 5.25 110 68.8 11.7 12.0 11.5 9.32 8.24	1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 0.50 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 100 10.0 10.0 10.0 10.0 10.0		105 103 108 87.8 88.7 52.5 110 68.8 117 120 115 93.2 82.4	70-130 70-130 70-130 70-130 70-130 40-160 40-160 70-130 70-130 70-130 70-130			
enzene comobenzene comodichloromethane comodichloromethane comoform comomethane Butanone (MEK) ct-Butyl Alcohol (TBA) Butylbenzene ct-Butylbenzene ct-Butylbenzene ct-Butyl Ethyl Ether (TBEE) curbon Disulfide curbon Tetrachloride	10.5 10.3 10.8 8.78 8.87 5.25 110 68.8 11.7 12.0 11.5 9.32 8.24 8.42	1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 0.50 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 100 100 10		105 103 108 87.8 88.7 52.5 110 68.8 117 120 115 93.2 82.4 84.2	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130			
enzene comobenzene comochloromethane comochloromethane comoform comomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride allorobenzene	10.5 10.3 10.8 8.78 8.87 5.25 110 68.8 11.7 12.0 11.5 9.32 8.24 8.42 9.77	1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 0.50 5.0 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		105 103 108 87.8 88.7 52.5 110 68.8 117 120 115 93.2 82.4 84.2 97.7	70-130 70-130 70-130 70-130 70-130 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130			
enzene comobenzene comobenzene comochloromethane comodichloromethane comoform comomethane Butanone (MEK) tt-Butyl Alcohol (TBA) Butylbenzene ct-Butylbenzene tt-Butyl Ether (TBEE) urbon Disulfide urbon Tetrachloride allorobenzene tolorodibromomethane	10.5 10.3 10.8 8.78 8.87 5.25 110 68.8 11.7 12.0 11.5 9.32 8.24 8.42 9.77 8.21	1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 1.0 1.0 0.50 5.0 1.0 0.50	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		105 103 108 87.8 88.7 52.5 110 68.8 117 120 115 93.2 82.4 84.2 97.7 82.1	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
enzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorodibromomethane	10.5 10.3 10.8 8.78 8.87 5.25 110 68.8 11.7 12.0 11.5 9.32 8.24 8.42 9.77 8.21 7.43	1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 0.50 5.0 1.0 0.50 2.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		105 103 108 87.8 88.7 52.5 110 68.8 117 120 115 93.2 82.4 84.2 97.7 82.1 74.3	70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene ec-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorodibromomethane hlorodirm hloroform	10.5 10.3 10.8 8.78 8.87 5.25 110 68.8 11.7 12.0 11.5 9.32 8.24 8.42 9.77 8.21	1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 1.0 1.0 0.50 5.0 1.0 0.50	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		105 103 108 87.8 88.7 52.5 110 68.8 117 120 115 93.2 82.4 84.2 97.7 82.1	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130			

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B258487 - SW-846 5030B											
LCS (B258487-BS1)				Prepared & A	Analyzed: 05	/21/20					
4-Chlorotoluene	10.9	1.0	$\mu g\!/\!L$	10.0		109	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	9.15	5.0	μg/L	10.0		91.5	70-130				
1,2-Dibromoethane (EDB)	9.22	0.50	$\mu g \! / \! L$	10.0		92.2	70-130				
Dibromomethane	8.99	1.0	$\mu g/L$	10.0		89.9	70-130				
1,2-Dichlorobenzene	10.2	1.0	$\mu g/L$	10.0		102	70-130				
1,3-Dichlorobenzene	10.8	1.0	μg/L	10.0		108	70-130				
1,4-Dichlorobenzene	10.1	1.0	$\mu g/L$	10.0		101	70-130				
trans-1,4-Dichloro-2-butene	10.5	2.0	$\mu g/L$	10.0		105	70-130				
Dichlorodifluoromethane (Freon 12)	6.26	2.0	μg/L	10.0		62.6	40-160			V-05	†
1,1-Dichloroethane	10.8	1.0	$\mu g/L$	10.0		108	70-130				
1,2-Dichloroethane	8.15	1.0	$\mu g \! / \! L$	10.0		81.5	70-130				
1,1-Dichloroethylene	8.71	1.0	$\mu g/L$	10.0		87.1	70-130				
cis-1,2-Dichloroethylene	11.3	1.0	$\mu \text{g/L}$	10.0		113	70-130				
trans-1,2-Dichloroethylene	9.51	1.0	$\mu \text{g/L}$	10.0		95.1	70-130				
1,2-Dichloropropane	10.1	1.0	$\mu g/L$	10.0		101	70-130				
1,3-Dichloropropane	9.46	0.50	μg/L	10.0		94.6	70-130				
2,2-Dichloropropane	9.00	1.0	$\mu g/L$	10.0		90.0	40-130				†
1,1-Dichloropropene	9.29	2.0	μg/L	10.0		92.9	70-130				
cis-1,3-Dichloropropene	8.99	0.50	μg/L	10.0		89.9	70-130				
trans-1,3-Dichloropropene	8.97	0.50	μg/L	10.0		89.7	70-130				
Diethyl Ether	9.14	2.0	μg/L	10.0		91.4	70-130				
Diisopropyl Ether (DIPE)	10.5	0.50	μg/L	10.0		105	70-130				
1,4-Dioxane	125	50	μg/L	100		125	40-130				†
Ethylbenzene	10.6	1.0	μg/L	10.0		106	70-130				'
Hexachlorobutadiene	9.47	0.60	μg/L	10.0		94.7	70-130				
2-Hexanone (MBK)	96.2	10	μg/L	100		96.2	70-150				†
Isopropylbenzene (Cumene)		1.0	μg/L μg/L	10.0		103	70-100				'
p-Isopropyltoluene (p-Cymene)	10.3	1.0	μg/L μg/L	10.0		103	70-130				
Methyl tert-Butyl Ether (MTBE)	10.8	1.0	μg/L μg/L	10.0		80.7	70-130				
Methylene Chloride	8.07	5.0	μg/L μg/L	10.0		100	70-130				
4-Methyl-2-pentanone (MIBK)	10.0	10	μg/L μg/L	10.0		99.2	70-130				+
Naphthalene	99.2	2.0	μg/L μg/L								† †
•	10.8			10.0		108	40-130				1
n-Propylbenzene	10.4	1.0	μg/L	10.0		104	70-130				
Styrene	10.4	1.0	μg/L	10.0		104	70-130			****	
1,1,2-Tetrachloroethane	8.45	1.0	μg/L	10.0		84.5	70-130			V-05	
1,1,2,2-Tetrachloroethane	9.22	0.50	μg/L	10.0		92.2	70-130				
Tetrachloroethylene	9.18	1.0	μg/L	10.0		91.8	70-130				
Tetrahydrofuran	11.2	10	μg/L	10.0		112	70-130				
Toluene	9.73	1.0	μg/L	10.0		97.3	70-130				
1,2,3-Trichlorobenzene	9.65	5.0	μg/L	10.0		96.5	70-130				
1,2,4-Trichlorobenzene	10.4	1.0	μg/L	10.0		104	70-130				
1,3,5-Trichlorobenzene	9.75	1.0	μg/L	10.0		97.5	70-130				
1,1,1-Trichloroethane	9.20	1.0	μg/L	10.0		92.0	70-130				
1,1,2-Trichloroethane	9.18	1.0	μg/L	10.0		91.8	70-130				
Trichloroethylene	8.72	1.0	μg/L	10.0		87.2	70-130				
Trichlorofluoromethane (Freon 11)	6.45	2.0	μg/L	10.0		64.5 *	70-130			V-05, L-04	
1,2,3-Trichloropropane	9.56	2.0	$\mu g/L$	10.0		95.6	70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.13	1.0	μg/L	10.0		91.3	70-130				
1,2,4-Trimethylbenzene	10.6	1.0	μg/L	10.0		106	70-130				
1,3,5-Trimethylbenzene	10.0	1.0	$\mu g/L$	10.0		100	70-130				
Vinyl Chloride	6.50	2.0	$\mu g/L$	10.0		65.0	40-160				†

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B258487 - SW-846 5030B						. ,					_
LCS (B258487-BS1)				Prepared &	Analyzed: 05/	/21/20					_
n+p Xylene	21.4	2.0	μg/L	20.0	maryzea. 03/	107	70-130				_
o-Xylene	10.7	1.0	μg/L μg/L	10.0		107	70-130				
		1.0									
Surrogate: 1,2-Dichloroethane-d4	24.7		μg/L	25.0		98.8	70-130				
Surrogate: Toluene-d8	24.6		μg/L	25.0		98.5	70-130				
Surrogate: 4-Bromofluorobenzene	26.9		μg/L	25.0		107	70-130				
LCS Dup (B258487-BSD1)				Prepared &	Analyzed: 05	/21/20					
Acetone	91.1	50	$\mu g/L$	100		91.1	70-160	2.08	25		
crylonitrile	10.4	5.0	$\mu g/L$	10.0		104	70-130	7.52	25		
ert-Amyl Methyl Ether (TAME)	8.33	0.50	$\mu g/L$	10.0		83.3	70-130	0.359	25		
Benzene	10.4	1.0	μg/L	10.0		104	70-130	0.960	25		
Bromobenzene	10.2	1.0	μg/L	10.0		102	70-130	0.195	25		
Bromochloromethane	10.5	1.0	$\mu g/L$	10.0		105	70-130	2.92	25		
Bromodichloromethane	8.94	0.50	$\mu g/L$	10.0		89.4	70-130	1.81	25		
romoform	8.36	1.0	μg/L	10.0		83.6	70-130	5.92	25	V-05	
romomethane	5.82	2.0	μg/L	10.0		58.2	40-160	10.3	25		
-Butanone (MEK)	111	20	μg/L	100		111	40-160	0.987	25		
ert-Butyl Alcohol (TBA)	64.0	20	μg/L	100		64.0	40-160	7.29	25	V-05	
Butylbenzene	11.7	1.0	μg/L	10.0		117	70-130	0.171	25		
ec-Butylbenzene	12.1	1.0	μg/L	10.0		121	70-130	1.16	25		
rt-Butylbenzene	11.6	1.0	μg/L	10.0		116	70-130	0.782	25		
rt-Butyl Ethyl Ether (TBEE)	9.64	0.50	μg/L μg/L	10.0		96.4	70-130	3.38	25		
arbon Disulfide	7.55	5.0	μg/L μg/L	10.0		75.5	70-130	8.74	25		
arbon Tetrachloride	7.33 8.48	1.0	μg/L μg/L	10.0		84.8	70-130	0.710	25		
hlorobenzene	8.48 9.61	1.0	μg/L μg/L	10.0		96.1	70-130	1.65	25		
hlorodibromomethane	9.61 8.24	0.50	μg/L μg/L	10.0		82.4	70-130	0.365	25		
hloroethane	8.24 7.52	2.0	μg/L μg/L	10.0		75.2	70-130	1.20	25		
hloroform		2.0	μg/L μg/L	10.0		108	70-130	1.20	25		
hloromethane	10.8	2.0	μg/L μg/L								
-Chlorotoluene	6.08	1.0		10.0		60.8	40-160	1.79	25 25		
-Chlorotoluene	10.8	1.0	μg/L μg/I	10.0		108	70-130	0.739	25 25		
	10.9		μg/L	10.0		109	70-130	0.276	25		
,2-Dibromo-3-chloropropane (DBCP)	9.06	5.0	μg/L	10.0		90.6	70-130	0.988	25		
,2-Dibromoethane (EDB)	9.22	0.50	μg/L ug/I	10.0		92.2	70-130	0.00	25		
Dishlorahanana	8.93	1.0	μg/L	10.0		89.3	70-130	0.670	25		
,2-Dichlorobenzene	10.3	1.0	μg/L	10.0		103	70-130	1.46	25 25		
,3-Dichlorobenzene	10.7	1.0	μg/L	10.0		107	70-130	1.21	25		
,4-Dichlorobenzene	10.3	1.0	μg/L	10.0		103	70-130	1.67	25		
ans-1,4-Dichloro-2-butene	9.18	2.0	μg/L	10.0		91.8	70-130	13.1	25		
Dichlorodifluoromethane (Freon 12)	6.23	2.0	μg/L	10.0		62.3	40-160	0.480	25	V-05	
1-Dichloroethane	11.1	1.0	μg/L	10.0		111	70-130	2.65	25		
2-Dichloroethane	8.22	1.0	μg/L	10.0		82.2	70-130	0.855	25		
1-Dichloroethylene	8.87	1.0	μg/L	10.0		88.7	70-130	1.82	25		
s-1,2-Dichloroethylene	11.2	1.0	μg/L	10.0		112	70-130	1.42	25		
ans-1,2-Dichloroethylene	9.45	1.0	μg/L	10.0		94.5	70-130	0.633	25		
2-Dichloropropane	9.71	1.0	μg/L	10.0		97.1	70-130	4.04	25		
3-Dichloropropane	9.45	0.50	μg/L	10.0		94.5	70-130	0.106	25		
,2-Dichloropropane	9.06	1.0	$\mu g/L$	10.0		90.6	40-130	0.664	25		
1-Dichloropropene	9.00	2.0	$\mu g/L$	10.0		90.0	70-130	3.17	25		
is-1,3-Dichloropropene	9.34	0.50	$\mu g/L$	10.0		93.4	70-130	3.82	25		
rans-1,3-Dichloropropene	8.87	0.50	$\mu g/L$	10.0		88.7	70-130	1.12	25		
Diethyl Ether	9.63	2.0	$\mu g/L$	10.0		96.3	70-130	5.22	25		
Diisopropyl Ether (DIPE)	10.7	0.50	μg/L	10.0		107	70-130	1.60	25		

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B258487 - SW-846 5030B											
LCS Dup (B258487-BSD1)				Prepared &	Analyzed: 05/	/21/20					
1,4-Dioxane	127	50	μg/L	100		127	40-130	1.84	50		 † ‡
Ethylbenzene	10.4	1.0	$\mu \text{g/L}$	10.0		104	70-130	1.05	25		
Hexachlorobutadiene	9.30	0.60	$\mu g \! / \! L$	10.0		93.0	70-130	1.81	25		
2-Hexanone (MBK)	97.7	10	$\mu \text{g/L}$	100		97.7	70-160	1.60	25		†
Isopropylbenzene (Cumene)	10.2	1.0	$\mu \text{g/L}$	10.0		102	70-130	1.37	25		
p-Isopropyltoluene (p-Cymene)	10.7	1.0	$\mu \text{g/L}$	10.0		107	70-130	0.928	25		
Methyl tert-Butyl Ether (MTBE)	8.13	1.0	$\mu g\!/\!L$	10.0		81.3	70-130	0.741	25		
Methylene Chloride	9.70	5.0	$\mu g\!/\!L$	10.0		97.0	70-130	3.15	25		
4-Methyl-2-pentanone (MIBK)	102	10	$\mu g\!/\!L$	100		102	70-160	2.60	25		†
Naphthalene	11.1	2.0	$\mu g/L$	10.0		111	40-130	2.92	25		†
n-Propylbenzene	10.4	1.0	$\mu \text{g/L}$	10.0		104	70-130	0.673	25		
Styrene	10.4	1.0	$\mu g/L$	10.0		104	70-130	0.481	25		
1,1,1,2-Tetrachloroethane	8.44	1.0	$\mu \text{g/L}$	10.0		84.4	70-130	0.118	25	V-05	
1,1,2,2-Tetrachloroethane	9.22	0.50	$\mu g/L$	10.0		92.2	70-130	0.00	25		
Tetrachloroethylene	8.98	1.0	$\mu \text{g/L}$	10.0		89.8	70-130	2.20	25		
Tetrahydrofuran	10.6	10	$\mu \text{g/L}$	10.0		106	70-130	5.32	25		
Toluene	9.56	1.0	$\mu \text{g/L}$	10.0		95.6	70-130	1.76	25		
1,2,3-Trichlorobenzene	9.77	5.0	$\mu \text{g/L}$	10.0		97.7	70-130	1.24	25		
1,2,4-Trichlorobenzene	10.6	1.0	$\mu \text{g/L}$	10.0		106	70-130	1.62	25		
1,3,5-Trichlorobenzene	9.98	1.0	$\mu g/L$	10.0		99.8	70-130	2.33	25		
1,1,1-Trichloroethane	8.89	1.0	$\mu g/L$	10.0		88.9	70-130	3.43	25		
1,1,2-Trichloroethane	9.44	1.0	$\mu \text{g/L}$	10.0		94.4	70-130	2.79	25		
Trichloroethylene	9.17	1.0	$\mu g/L$	10.0		91.7	70-130	5.03	25		
Trichlorofluoromethane (Freon 11)	6.68	2.0	$\mu g/L$	10.0		66.8	* 70-130	3.50	25	L-04, V-05	
1,2,3-Trichloropropane	9.81	2.0	$\mu g/L$	10.0		98.1	70-130	2.58	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	8.91	1.0	μg/L	10.0		89.1	70-130	2.44	25		
1,2,4-Trimethylbenzene	10.7	1.0	$\mu g/L$	10.0		107	70-130	0.282	25		
1,3,5-Trimethylbenzene	9.97	1.0	$\mu g \! / \! L$	10.0		99.7	70-130	0.500	25		
Vinyl Chloride	6.51	2.0	$\mu g\!/\!L$	10.0		65.1	40-160	0.154	25		†
m+p Xylene	21.3	2.0	$\mu g/L$	20.0		106	70-130	0.749	25		
o-Xylene	10.6	1.0	$\mu g/L$	10.0		106	70-130	1.41	25		
Surrogate: 1,2-Dichloroethane-d4	25.2		μg/L	25.0		101	70-130				_
Surrogate: Toluene-d8	24.6		$\mu g/L$	25.0		98.4	70-130				
Surrogate: 4-Bromofluorobenzene	26.3		$\mu g/L$	25.0		105	70-130				

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B258532 - SW-846 3510C										
Blank (B258532-BLK1)				Prepared: 05	5/21/20 Anal	yzed: 05/26/2	20			
Acetophenone	ND	10	μg/L					_		
Aniline	ND	5.0	$\mu \text{g/L}$							V-05
Benzidine	ND	20	$\mu \text{g/L}$							V-04, V-05
Benzoic Acid	ND	10	$\mu \text{g/L}$							
Bis(2-chloroethoxy)methane	ND	10	μg/L							
Bis(2-chloroethyl)ether	ND	10	μg/L							
Bis(2-chloroisopropyl)ether	ND	10	μg/L							
Bis(2-Ethylhexyl)phthalate	ND	10	μg/L							
-Bromophenylphenylether	ND	10	μg/L							
Butylbenzylphthalate	ND	10	μg/L							
Carbazole	ND	10	μg/L							_
-Chloroaniline	ND	10	μg/L							V-34
-Chloro-3-methylphenol	ND	10	μg/L							
-Chlorophonol	ND	10	μg/L							
-Chlorophenol -Chlorophenylphenylether	ND	10	μg/L							
-Chlorophenylphenylether Dibenzofuran	ND	10	μg/L							
Dienzoturan Di-n-butylphthalate	ND	5.0 10	μg/L μg/L							
,2-Dichlorobenzene	ND	5.0								
,3-Dichlorobenzene	ND	5.0	μg/L μg/L							
,4-Dichlorobenzene	ND ND	5.0	μg/L μg/L							
,3-Dichlorobenzidine	ND ND	10	μg/L μg/L							
,3-Dichlorophenol	ND ND	10	μg/L μg/L							
Diethylphthalate	ND ND	10	μg/L							
,4-Dimethylphenol	ND ND	10	μg/L μg/L							
Dimethylphthalate	ND ND	10	μg/L μg/L							
,6-Dinitro-2-methylphenol	ND	10	μg/L							
,4-Dinitrophenol	ND	10	μg/L							
,4-Dinitrotoluene	ND	10	μg/L							
,,6-Dinitrotoluene	ND	10	μg/L							
Di-n-octylphthalate	ND	10	μg/L							
,2-Diphenylhydrazine/Azobenzene	ND	10	μg/L							
Hexachlorobenzene	ND	10	μg/L							
Hexachlorobutadiene	ND	10	$\mu g/L$							
Hexachlorocyclopentadiene	ND	10	$\mu g/L$							
Hexachloroethane	ND	10	$\mu g \! / \! L$							
sophorone	ND	10	$\mu g/L$							
-Methylnaphthalene	ND	5.0	$\mu \text{g/L}$							
-Methylphenol	ND	10	$\mu g \! / \! L$							
/4-Methylphenol	ND	10	$\mu g \! / \! L$							
-Nitroaniline	ND	10	μg/L							
-Nitroaniline	ND	10	μg/L							
-Nitroaniline	ND	10	μg/L							
Vitrobenzene	ND	10	μg/L							
-Nitrophenol	ND	10	μg/L							
-Nitrophenol	ND	10	μg/L							
N-Nitrosodimethylamine	ND	10	μg/L							
N-Nitrosodiphenylamine/Diphenylamine	ND	10	μg/L							
N-Nitrosodi-n-propylamine	ND	10	μg/L							
Pentachloronitrobenzene	ND	10	μg/L							
Pentachlorophenol	ND	10 10	μg/L μg/L							

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
eatch B258532 - SW-846 3510C										
Blank (B258532-BLK1)				Prepared: 05	5/21/20 Anal	yzed: 05/26/2	20			
yridine	ND	5.0	μg/L							
,2,4,5-Tetrachlorobenzene	ND	10	$\mu g/L$							
,2,4-Trichlorobenzene	ND	5.0	$\mu g/L$							
,4,5-Trichlorophenol	ND	10	μg/L							
,4,6-Trichlorophenol	ND	10	$\mu g/L$							
urrogate: 2-Fluorophenol	101		μg/L	200		50.3	15-110			
urrogate: Phenol-d6	70.3		$\mu g/L$	200		35.2	15-110			
urrogate: Nitrobenzene-d5	80.6		$\mu g/L$	100		80.6	30-130			
urrogate: 2-Fluorobiphenyl	80.5		$\mu g/L$	100		80.5	30-130			
urrogate: 2,4,6-Tribromophenol	169		$\mu g/L$	200		84.5	15-110			
urrogate: p-Terphenyl-d14	93.6		$\mu g/L$	100		93.6	30-130			
CS (B258532-BS1)				Prepared: 05	5/21/20 Anal	yzed: 05/26/2	20			
cetophenone	39.4	10	μg/L	50.0		78.7	40-140			
niline	31.7	5.0	μg/L	50.0		63.4	40-140			V-05
enzidine	30.5	20	μg/L	50.0		60.9	40-140			V-04, V-05
enzoic Acid	17.6	10	μg/L	50.0		35.2	10-130			,
is(2-chloroethoxy)methane	40.9	10	μg/L	50.0		81.8	40-140			
is(2-chloroethyl)ether	38.8	10	μg/L	50.0		77.5	40-140			
is(2-chloroisopropyl)ether	43.4	10	μg/L	50.0		86.9	40-140			
is(2-Ethylhexyl)phthalate	44.4	10	μg/L	50.0		88.7	40-140			
Bromophenylphenylether	40.1	10	μg/L	50.0		80.2	40-140			
utylbenzylphthalate	40.6	10	μg/L	50.0		81.2	40-140			
arbazole	40.7	10	μg/L	50.0		81.4	40-140			
Chloroaniline	35.8	10	μg/L	50.0		71.7	40-140			V-34
Chloro-3-methylphenol	38.5	10	μg/L	50.0		77.1	30-130			, , ,
Chloronaphthalene	34.0	10	μg/L	50.0		68.0	40-140			
Chlorophenol	35.1	10	μg/L	50.0		70.2	30-130			
Chlorophenylphenylether	39.1	10	μg/L	50.0		78.2	40-140			
bibenzofuran	40.6	5.0	μg/L μg/L	50.0		81.1	40-140			
i-n-butylphthalate	43.6	10	μg/L μg/L	50.0		87.3	40-140			
2-Dichlorobenzene	28.9	5.0	μg/L μg/L	50.0		57.9	40-140			
3-Dichlorobenzene	28.9	5.0	μg/L μg/L	50.0		54.3	40-140			
4-Dichlorobenzene	27.5	5.0	μg/L μg/L	50.0		55.0	40-140			
3-Dichlorobenzidine		10	μg/L μg/L	50.0		88.9	40-140			
4-Dichlorophenol	44.5 38.3	10	μg/L μg/L	50.0		76.6	30-130			
iethylphthalate		10	μg/L μg/L	50.0		80.7	40-140			
4-Dimethylphenol	40.4	10	μg/L μg/L	50.0		65.4	30-130			
imethylphthalate	32.7	10	μg/L μg/L	50.0		80.1	40-140			
6-Dinitro-2-methylphenol	40.0	10	μg/L μg/L	50.0		79.1	30-130			
4-Dinitrophenol	39.5	10	μg/L μg/L	50.0		79.1	30-130			
4-Dinitrophenol 4-Dinitrotoluene	36.2	10	μg/L μg/L	50.0		72.3	40-140			
6-Dinitrotoluene	38.5	10	μg/L μg/L	50.0		81.2	40-140			
i-n-octylphthalate	40.6	10	μg/L μg/L	50.0			40-140			
2-Diphenylhydrazine/Azobenzene	43.3	10	μg/L μg/L			86.6 90.2	40-140			
exachlorobenzene	45.1	10		50.0						
exachlorobenzene exachlorobutadiene	39.5		μg/L	50.0		79.0	40-140			
	28.0	10	μg/L	50.0		56.1	40-140			
exachlorocyclopentadiene	24.6	10	μg/L	50.0		49.3	30-140			
exachloroethane	26.3	10	μg/L	50.0		52.6	40-140			
ophorone	39.2	10	μg/L	50.0		78.3	40-140			
-Methylnaphthalene	34.4	5.0	μg/L	50.0		68.8	40-140			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B258532 - SW-846 3510C											_
LCS (B258532-BS1)				Prepared: 05	/21/20 Anal	yzed: 05/26/2	20				
3/4-Methylphenol	34.2	10	μg/L	50.0		68.3	30-130				
2-Nitroaniline	50.6	10	$\mu g/L$	50.0		101	40-140				
3-Nitroaniline	39.8	10	μg/L	50.0		79.7	40-140				
4-Nitroaniline	40.4	10	μg/L	50.0		80.9	40-140				
Nitrobenzene	36.2	10	μg/L	50.0		72.3	40-140				
2-Nitrophenol	38.0	10	μg/L	50.0		76.0	30-130				
4-Nitrophenol	20.4	10	μg/L	50.0		40.9	10-130				†
N-Nitrosodimethylamine	24.6	10	μg/L	50.0		49.2	40-140				
N-Nitrosodiphenylamine/Diphenylamine	44.6	10	μg/L	50.0		89.3	40-140				
N-Nitrosodi-n-propylamine	42.4	10	μg/L	50.0		84.8	40-140				
Pentachloronitrobenzene	40.3	10	μg/L	50.0		80.7	40-140				
Pentachlorophenol	35.0	10	μg/L μg/L	50.0		70.0	30-130				
Phenol		10	μg/L μg/L	50.0		36.6	20-130				†
Pyridine	18.3	5.0	μg/L μg/L	50.0		40.1	10-140				†
1,2,4,5-Tetrachlorobenzene	20.1	10									1
1,2,4-Trichlorobenzene	36.3		μg/L μg/I	50.0		72.6	40-140				
	30.8	5.0	μg/L ug/I	50.0		61.7	40-140				
2,4,5-Trichlorophenol	37.6	10	μg/L	50.0		75.3	30-130				
2,4,6-Trichlorophenol	38.6	10	μg/L	50.0		77.2	30-130				_
Surrogate: 2-Fluorophenol	101		$\mu g/L$	200		50.6	15-110				
Surrogate: Phenol-d6	75.4		$\mu g/L$	200		37.7	15-110				
Surrogate: Nitrobenzene-d5	78.2		$\mu g/L$	100		78.2	30-130				
Surrogate: 2-Fluorobiphenyl	82.5		$\mu g/L$	100		82.5	30-130				
Surrogate: 2,4,6-Tribromophenol	163		μg/L	200		81.3	15-110				
Surrogate: p-Terphenyl-d14	86.1		$\mu g/L$	100		86.1	30-130				
LCS Dup (B258532-BSD1)				Prepared: 05	/21/20 Anal	yzed: 05/26/2	20				
Acetophenone	36.3	10	μg/L	50.0		72.7	40-140	8.03	20		
Aniline	28.4	5.0	$\mu g/L$	50.0		56.7	40-140	11.1	50	V-05	
Benzidine	27.8	20	$\mu g/L$	50.0		55.6	40-140	9.16	20	V-04, V-05	
Benzoic Acid	17.1	10	$\mu g/L$	50.0		34.2	10-130	2.77	50		†
Bis(2-chloroethoxy)methane	36.7	10	μg/L	50.0		73.5	40-140	10.8	20		
Bis(2-chloroethyl)ether	34.6	10	μg/L	50.0		69.2	40-140	11.3	20		
Bis(2-chloroisopropyl)ether	37.6	10	μg/L	50.0		75.2	40-140	14.4	20		
Bis(2-Ethylhexyl)phthalate	41.2	10	μg/L μg/L	50.0		82.5	40-140	7.29	20		
4-Bromophenylphenylether	38.2	10	μg/L μg/L	50.0		76.4	40-140	4.83	20		
Butylbenzylphthalate	38.7	10	μg/L μg/L	50.0		77.3	40-140	4.92	20		
Carbazole	39.2	10	μg/L μg/L	50.0		78.4	40-140	3.75	20		
4-Chloroaniline	39.2 34.0	10	μg/L μg/L	50.0		68.1	40-140	5.73	20	V-34	
4-Chloro-3-methylphenol		10								v-34	
2-Chloronaphthalene	37.0		μg/L	50.0		74.0	30-130	4.11	20		
		10		50.0		63.3	40-140	7.15	20		
-	31.7	10	μg/L ug/I	50.0		660	20 120				
2-Chlorophenol	33.4	10	$\mu g/L$	50.0		66.9	30-130	4.84	20		
2-Chlorophenol 4-Chlorophenylphenylether	33.4 38.4	10 10	μg/L μg/L	50.0		76.8	40-140	1.76	20		
2-Chlorophenol 4-Chlorophenylphenylether Dibenzofuran	33.4 38.4 38.9	10 10 5.0	μg/L μg/L μg/L	50.0 50.0		76.8 77.7	40-140 40-140	1.76 4.28	20 20		
2-Chlorophenol 4-Chlorophenylphenylether Dibenzofuran Di-n-butylphthalate	33.4 38.4 38.9 40.0	10 10 5.0 10	μg/L μg/L μg/L μg/L	50.0 50.0 50.0		76.8 77.7 80.0	40-140 40-140 40-140	1.76 4.28 8.65	20 20 20		
2-Chlorophenol 4-Chlorophenylphenylether Dibenzofuran Di-n-butylphthalate 1,2-Dichlorobenzene	33.4 38.4 38.9 40.0 29.4	10 10 5.0 10 5.0	μg/L μg/L μg/L μg/L μg/L	50.0 50.0 50.0 50.0		76.8 77.7 80.0 58.8	40-140 40-140 40-140 40-140	1.76 4.28 8.65 1.61	20 20 20 20		
2-Chlorophenol 4-Chlorophenylphenylether Dibenzofuran Di-n-butylphthalate 1,2-Dichlorobenzene 1,3-Dichlorobenzene	33.4 38.4 38.9 40.0	10 10 5.0 10 5.0 5.0	μg/L μg/L μg/L μg/L μg/L μg/L	50.0 50.0 50.0 50.0 50.0		76.8 77.7 80.0 58.8 56.1	40-140 40-140 40-140 40-140 40-140	1.76 4.28 8.65 1.61 3.26	20 20 20 20 20 20		
2-Chlorophenol 4-Chlorophenylphenylether Dibenzofuran Di-n-butylphthalate 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	33.4 38.4 38.9 40.0 29.4	10 10 5.0 10 5.0 5.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L	50.0 50.0 50.0 50.0 50.0 50.0		76.8 77.7 80.0 58.8 56.1 56.9	40-140 40-140 40-140 40-140 40-140 40-140	1.76 4.28 8.65 1.61 3.26 3.32	20 20 20 20 20 20 20		
2-Chlorophenol 4-Chlorophenylphenylether Dibenzofuran Di-n-butylphthalate 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine	33.4 38.4 38.9 40.0 29.4 28.1	10 10 5.0 10 5.0 5.0	μg/L μg/L μg/L μg/L μg/L μg/L	50.0 50.0 50.0 50.0 50.0		76.8 77.7 80.0 58.8 56.1	40-140 40-140 40-140 40-140 40-140	1.76 4.28 8.65 1.61 3.26	20 20 20 20 20 20		
2-Chlorophenol 4-Chlorophenylphenylether Dibenzofuran Di-n-butylphthalate 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine	33.4 38.4 38.9 40.0 29.4 28.1 28.4	10 10 5.0 10 5.0 5.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L	50.0 50.0 50.0 50.0 50.0 50.0		76.8 77.7 80.0 58.8 56.1 56.9	40-140 40-140 40-140 40-140 40-140 40-140	1.76 4.28 8.65 1.61 3.26 3.32	20 20 20 20 20 20 20		
2-Chlorophenol 4-Chlorophenylphenylether Dibenzofuran Di-n-butylphthalate 1,2-Dichlorobenzene	33.4 38.4 38.9 40.0 29.4 28.1 28.4 41.1	10 10 5.0 10 5.0 5.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	50.0 50.0 50.0 50.0 50.0 50.0 50.0		76.8 77.7 80.0 58.8 56.1 56.9 82.2	40-140 40-140 40-140 40-140 40-140 40-140	1.76 4.28 8.65 1.61 3.26 3.32 7.83	20 20 20 20 20 20 20 20		
2-Chlorophenol 4-Chlorophenylphenylether Dibenzofuran Di-n-butylphthalate 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine 2,4-Dichlorophenol	33.4 38.4 38.9 40.0 29.4 28.1 28.4 41.1 36.3	10 10 5.0 10 5.0 5.0 5.0 10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		76.8 77.7 80.0 58.8 56.1 56.9 82.2 72.5	40-140 40-140 40-140 40-140 40-140 40-140 30-130	1.76 4.28 8.65 1.61 3.26 3.32 7.83 5.50	20 20 20 20 20 20 20 20 20		

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B258532 - SW-846 3510C											
LCS Dup (B258532-BSD1)				Prepared: 05	/21/20 Anal	yzed: 05/26/2	20				
4,6-Dinitro-2-methylphenol	37.7	10	μg/L	50.0		75.4	30-130	4.77	50		_ ‡
2,4-Dinitrophenol	35.7	10	$\mu g \! / \! L$	50.0		71.4	30-130	1.31	50		‡
2,4-Dinitrotoluene	38.0	10	$\mu g \! / \! L$	50.0		76.1	40-140	1.20	20		
2,6-Dinitrotoluene	39.2	10	$\mu g \! / \! L$	50.0		78.4	40-140	3.56	20		
Di-n-octylphthalate	40.2	10	$\mu g/L$	50.0		80.3	40-140	7.55	20		
,2-Diphenylhydrazine/Azobenzene	37.8	10	$\mu g \! / \! L$	50.0		75.6	40-140	17.7	20		
Hexachlorobenzene	37.6	10	$\mu g\!/\!L$	50.0		75.1	40-140	5.03	20		
Hexachlorobutadiene	28.1	10	$\mu g/L$	50.0		56.3	40-140	0.356	20		
Hexachlorocyclopentadiene	22.6	10	$\mu g \! / \! L$	50.0		45.3	30-140	8.42	50		† ‡
Hexachloroethane	27.0	10	$\mu g \! / \! L$	50.0		54.0	40-140	2.70	50		‡
sophorone	34.9	10	μg/L	50.0		69.7	40-140	11.6	20		
I-Methylnaphthalene	32.9	5.0	$\mu g \! / \! L$	50.0		65.7	40-140	4.61	20		
2-Methylphenol	34.0	10	μg/L	50.0		67.9	30-130	2.76	20		
3/4-Methylphenol	31.3	10	$\mu g/L$	50.0		62.5	30-130	8.87	20		
2-Nitroaniline	44.4	10	$\mu g/L$	50.0		88.7	40-140	13.2	20		
3-Nitroaniline	39.1	10	$\mu g/L$	50.0		78.2	40-140	1.93	20		
4-Nitroaniline	41.1	10	μg/L	50.0		82.1	40-140	1.55	20		
Nitrobenzene	32.7	10	μg/L	50.0		65.4	40-140	10.0	20		
2-Nitrophenol	35.6	10	μg/L	50.0		71.1	30-130	6.63	20		
4-Nitrophenol	20.0	10	μg/L	50.0		39.9	10-130	2.38	50		† ‡
N-Nitrosodimethylamine	23.9	10	μg/L	50.0		47.8	40-140	3.01	20		
N-Nitrosodiphenylamine/Diphenylamine	40.9	10	μg/L	50.0		81.8	40-140	8.74	20		
N-Nitrosodi-n-propylamine	37.1	10	μg/L	50.0		74.2	40-140	13.3	20		
Pentachloronitrobenzene	40.0	10	μg/L	50.0		79.9	40-140	0.971	20		
Pentachlorophenol	34.6	10	μg/L	50.0		69.2	30-130	1.15	50		‡
Phenol	16.7	10	μg/L	50.0		33.4	20-130	9.26	20		†
Pyridine	19.5	5.0	μg/L	50.0		39.0	10-140	2.73	50		† ‡
1,2,4,5-Tetrachlorobenzene	33.6	10	μg/L	50.0		67.2	40-140	7.73	20		
1,2,4-Trichlorobenzene	29.9	5.0	μg/L	50.0		59.9	40-140	2.93	20		
2,4,5-Trichlorophenol	36.4	10	μg/L	50.0		72.9	30-130	3.29	20		
2,4,6-Trichlorophenol	36.8	10	μg/L	50.0		73.7	30-130	4.61	50		‡
Surrogate: 2-Fluorophenol	101		μg/L	200		50.3	15-110				_
Surrogate: Phenol-d6	69.5		μg/L μg/L	200		34.8	15-110				
Surrogate: Nitrobenzene-d5	71.6		μg/L μg/L	100		71.6	30-130				
Surrogate: 2-Fluorobiphenyl	76.8		μg/L	100		76.8	30-130				
Surrogate: 2,4,6-Tribromophenol	170		μg/L μg/L	200		84.8	15-110				
Surrogate: p-Terphenyl-d14	82.9		μg/L	100		82.9	30-130				
Batch B258763 - SW-846 3510C											_
Blank (B258763-BLK1)				Prepared: 05	/21/20 Anal	yzed: 05/27/2	20				
Acenaphthene (SIM)	ND	0.30	μg/L								
Acenaphthylene (SIM)	ND	0.20	μg/L								
Anthracene (SIM)	ND	0.20	μg/L								
Benzo(a)anthracene (SIM)	ND	0.050	μg/L								
Benzo(a)pyrene (SIM)	ND	0.10	μg/L								
Benzo(b)fluoranthene (SIM)	ND	0.050	μg/L								
Benzo(g,h,i)perylene (SIM)	ND	0.50	μg/L								
Benzo(k)fluoranthene (SIM)	ND	0.20	μg/L								
Chrysene (SIM)	ND	0.20	μg/L								
Dibenz(a,h)anthracene (SIM)	ND	0.10	μg/L								
Dibenz(a,h)anthracene (SIM) Fluoranthene (SIM)	ND ND	0.10 0.50	μg/L μg/L								

QUALITY CONTROL

2-Methylnaphthalene (SIM) ND Naphthalene (SIM) ND Phenanthrene (SIM) ND Pyrene (SIM) ND Surrogate: Nitrobenzene-d5 86.0 Surrogate: 2-Fluorobiphenyl 76.3 Surrogate: p-Terphenyl-d14 74.9 LCS (B258763-BSI) Acenaphthene (SIM) 45.4 Acenaphthylene (SIM) 49.1 Benzo(a)anthracene (SIM) 48.5 Benzo(a)pyrene (SIM) 51.6 Benzo(b)fluoranthene (SIM) 53.7 Benzo(g,h,i)perylene (SIM) 54.6 Benzo(k)fluoranthene (SIM) 57.9 Fluoranthene (SIM) 57.9 Fluoranthene (SIM) 48.4 Indeno(1,2,3-ed)pyrene (SIM) 43.4 Naphthalene (SIM) 43.4 Naphthalene (SIM) 43.4 Naphthalene (SIM) 45.4 Surrogate: Nitrobenzene-d5 87.1 Surrogate: Nitrobenzene-d5 87.1 Surrogate: Nitrobenzene-d5 87.1 Surrogate: Nitrobenzene-d5 87.1 Surrogate: P-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) Acenaphthylene (SIM) 43.9 Acenaphthylene (SIM) 43.9 Acenaphthylene (SIM) 47.5 Benzo(a)anthracene (SIM) 47.5 Benzo(a)pyrene (SIM) 47.5 Benzo(a)pyrene (SIM) 47.5 Benzo(a)pyrene (SIM) 47.2 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 50.2	1.0 µş 1.0 µş 1.0 µş 1.0 µş 1.0 µş 1.0 µg µg µg µg µg 1.0 µş 4.0 µş 4.0 µş 1.0 µş	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	d: 05/21/20 Analyzed) (d: 05/21/20 Analyz	86.0 3 76.3 3 74.9 3 d: 05/27/20 90.8 4 88.4 4 98.3 4 97.1 4 103 4 107 4 105 4 94.6 4 116 4 102 4 96.9 4 121 4 86.8 4	30-130 30-130 30-130 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
Indeno(1,2,3-cd)pyrene (SIM) 2-Methylnaphthalene (SIM) ND Naphthalene (SIM) ND Phenanthrene (SIM) ND Pyrene (SIM) ND Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl Surrogate: p-Terphenyl-d14 LCS (B258763-BS1) Acenaphthene (SIM) Acenaphthylene (SIM) Acenaphthylene (SIM) Acenaphthylene (SIM) Benzo(a)anthracene (SIM) Benzo(b)fluoranthene	1.0 µş 1.0 µş 1.0 µş 1.0 µş 1.0 µş 1.0 µg µg µg µg µg 1.0 µş 4.0 µş 4.0 µş 1.0 µş	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	d: 05/21/20 Analyzed)))))))))))))))	86.0 3 76.3 3 74.9 3 d: 05/27/20 90.8 4 88.4 4 98.3 4 97.1 4 103 4 107 4 105 4 94.6 4 116 4 102 4 96.9 4 121 4 86.8 4	30-130 30-130 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
C-Methylnaphthalene (SIM) ND	1.0 µş 1.0 µş 1.0 µş 1.0 µş 1.0 µş 1.0 µg µg µg µg µg 1.0 µş 4.0 µş 4.0 µş 1.0 µş	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	d: 05/21/20 Analyzed) (d: 05/21/20 Analyz	76.3 3 74.9 3 d: 05/27/20 90.8 4 88.4 4 98.3 4 97.1 4 103 4 107 4 109 4 105 4 94.6 4 116 4 102 4 96.9 4 121 4 86.8	30-130 30-130 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
Naphthalene (SIM) ND Phenanthrene (SIM) ND Pyrene (SIM) ND Surrogate: Nitrobenzene-d5 86.0 Surrogate: 2-Fluorobiphenyl 76.3 Surrogate: p-Terphenyl-d14 74.9 LCS (B258763-BS1) 45.4 Acenaphthene (SIM) 44.2 Anthracene (SIM) 49.1 Benzo(a)anthracene (SIM) 51.6 Benzo(a)pyrene (SIM) 51.6 Benzo(b)fluoranthene (SIM) 53.7 Benzo(b)fluoranthene (SIM) 54.6 Benzo(k)fluoranthene (SIM) 52.5 Chrysene (SIM) 47.3 Dibenz(a,h)anthracene (SIM) 57.9 Fluoranthene (SIM) 57.9 Fluoranthene (SIM) 48.4 Indeno(1,2,3-cd)pyrene (SIM) 40.7 2-Methylnaphthalene (SIM) 43.4 Naphthalene (SIM) 43.4 Naphthalene (SIM) 45.4 Surrogate: Nitrobenzene-d5 87.1 Surrogate: P-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) 42.5 Acenaphthene (SIM	1.0	μg/L μg/L μg/L μg/L μg/L μg/L 100 μg/L 100 Prepare μg/L 50.	d: 05/21/20 Analyzed) (d: 05/21/20 Analyzed)	76.3 3 74.9 3 d: 05/27/20 90.8 4 88.4 4 98.3 4 97.1 4 103 4 107 4 109 4 105 4 94.6 4 116 4 102 4 96.9 4 121 4 86.8	30-130 30-130 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
Phenanthrene (SIM) Pyrene (SIM) ND Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl Surrogate: p-Terphenyl-d14 **CS (B258763-BS1) **Cenaphthene (SIM) Acenaphthylene (SIM) Benzo(a)anthracene (SIM) Benzo(a)pyrene (SIM) Benzo(a)pyrene (SIM) Benzo(b)fluoranthene (SIM) S1.6 Benzo(b)fluoranthene (SIM) S2.5 Chrysene (SIM) Dibenz(a,h)anthracene (SIM) Fluoranthene (SIM) S1.2 Fluorene (SIM) Indeno(1,2,3-cd)pyrene (SIM) As Alladeno(1,2,3-cd)pyrene (SIM) Anphthalene (SIM) As Alladeno(1,2,3-cd) Phenanthrene (SIM) As Alladeno(1,2,3-cd) Pyrene (SIM) As Alladeno(1,2,3-cd) Pyrene (SIM) As Alladeno(1,2,3-cd) As Alladeno(1,2,3	1.0 µş µg µg µg µg µ4.0 µş 4.0 µş 1.0 µş 4.0 µş 1.0 µş	µg/L µg/L 100 µg/L 100 µg/L 100 µg/L 100 µg/L 100 Prepare µg/L 50.0 µg/L 50.0 µg/L 50.0 µg/L 50.0 µg/L 50.0 µg/L 50.0 µg/L 50.0 µg/L 50.0	d: 05/21/20 Analyzed) (d: 05/21/20 Analyzed)	76.3 3 74.9 3 d: 05/27/20 90.8 4 88.4 4 98.3 4 97.1 4 103 4 107 4 109 4 105 4 94.6 4 116 4 102 4 96.9 4 121 4 86.8	30-130 30-130 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
Pyrene (SIM) Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl Surrogate: p-Terphenyl-d14 74.9 LCS (B258763-BS1) Acenaphthene (SIM) Acenaphthylene (SIM) Acenaphthylene (SIM) Anthracene (SIM) Benzo(a)anthracene (SIM) Benzo(a)pyrene (SIM) Benzo(a)pyrene (SIM) Benzo(a,h,i)perylene (SIM) Benzo(b,fluoranthene (SIM) Surrogate: SiM) Benzo(a,h)anthracene (SIM) S1.6 Benzo(k)fluoranthene (SIM) S2.5 Chrysene (SIM) Dibenz(a,h)anthracene (SIM) Fluoranthene (SIM) Fluorene (SIM) Fluoranthene (SIM) Ada, A Naphthalene (SIM) Aga, A Naphthalene (SIM) Prene (SIM) Pyrene (SIM) Asa, A Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl Surrogate: 2-Fluorobiphenyl Surrogate: 2-Fluorobiphenyl Acenaphthylene (SIM) Acen	1.0 µş µg µg µg µg µg µg 4.0 µş 2.0 µ	рву/L р	d: 05/21/20 Analyzed) (d: 05/21/20 Analyzed)	76.3 3 74.9 3 d: 05/27/20 90.8 4 88.4 4 98.3 4 97.1 4 103 4 107 4 109 4 105 4 94.6 4 116 4 102 4 96.9 4 121 4 86.8	30-130 30-130 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl 76.3 Surrogate: 2-Fluorobiphenyl 76.3 Surrogate: p-Terphenyl-d14 74.9 LCS (B258763-BS1) Acenaphthene (SIM) Acenaphthylene (SIM) Acenaphthylene (SIM) Benzo(a)anthracene (SIM) Benzo(a)pyrene (SIM) Benzo(a)pyrene (SIM) Benzo(b)fluoranthene (SIM) Surrogate: CSIM) Benzo(g,h,i)perylene (SIM) Benzo(k)fluoranthene (SIM) Surrogate: CSIM) Surrogate: CSIM) Surrogate: CSIM) Surrogate: CSIM) Surrogate: CSIM) Surrogate: Nitrobenzene-d5 Surrogate: Nitrobenzene-d5 Surrogate: P-Terphenyl-d14 LCS Dup (B258763-BSD1) Acenaphthylene (SIM) Andhracene (SIM) Andhracene (SIM) Acenaphthylene (SIM) Acenaphthylene (SIM) Acenaphthylene (SIM) Acenaphthylene (SIM) Art. Benzo(a)anthracene (SIM) Art. Benzo(a)pyrene (SIM) Art. Benzo(a)pyrene (SIM) Art. Benzo(a)pyrene (SIM) Benzo(a)pyrene (SIM) Benzo(a)pyrene (SIM) Benzo(a)pyrene (SIM) Benzo(a)pyrene (SIM) Benzo(a)pyrene (SIM) Benzo(b)fluoranthene (SIM)	6.0 µқ 4.0 µқ 4.0 µқ 1.0 µқ 2.0 µқ 2.0 µқ 2.0 µқ 2.0 µқ 2.0 µқ 2.0 µқ	μg/L 100 μg/L 100 μg/L 100 Prepare μg/L 50.0 μg/L 50.0 μg/L 50.0 μg/L 50.0 μg/L	d: 05/21/20 Analyzed) (d: 05/21/20 Analyzed)	76.3 3 74.9 3 d: 05/27/20 90.8 4 88.4 4 98.3 4 97.1 4 103 4 107 4 109 4 105 4 94.6 4 116 4 102 4 96.9 4 121 4 86.8	30-130 30-130 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
Surrogate: 2-Fluorobiphenyl 76.3 Surrogate: p-Terphenyl-d14 74.9 LCS (B258763-BS1) 45.4 Acenaphthene (SIM) 44.2 Anthracene (SIM) 49.1 Benzo(a)anthracene (SIM) 48.5 Benzo(a)pyrene (SIM) 51.6 Benzo(b)fluoranthene (SIM) 53.7 Benzo(g,h,i)perylene (SIM) 54.6 Benzo(k)fluoranthene (SIM) 52.5 Chrysene (SIM) 47.3 Dibenz(a,h)anthracene (SIM) 57.9 Fluoranthene (SIM) 51.2 Fluorene (SIM) 48.4 Indeno(1,2,3-cd)pyrene (SIM) 60.7 2-Methylnaphthalene (SIM) 43.4 Naphthalene (SIM) 43.4 Naphthalene (SIM) 46.6 Pyrene (SIM) 46.6 Pyrene (SIM) 45.4 Surrogate: Nitrobenzene-d5 87.1 Surrogate: P-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) 42.5 Acenaphthylene (SIM) 42.5 Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 50.2 Benzo(a)pyrene (SIM) 50.2<	6.0 µş 4.0 µş 4.0 µş 1.0 µş 1.0 µş 1.0 µş 1.0 µş 1.0 µş 1.0 µş 2.0 µş 1.0 µş 2.0 µş 2.0 µş 2.0 µş 2.0 µş 2.0 µş	μg/L 100 Prepare μg/L 50.0	d: 05/21/20 Analyzed) (d: 05/21/20 Analyzed)	76.3 3 74.9 3 d: 05/27/20 90.8 4 88.4 4 98.3 4 97.1 4 103 4 107 4 109 4 105 4 94.6 4 116 4 102 4 96.9 4 121 4 86.8	30-130 30-130 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
Surrogate: p-Terphenyl-d14 74.9 LCS (B258763-BS1) 45.4 Acenaphthene (SIM) 44.2 Anthracene (SIM) 49.1 Benzo(a)anthracene (SIM) 48.5 Benzo(a)pyrene (SIM) 51.6 Benzo(b)fluoranthene (SIM) 53.7 Benzo(g,h,i)perylene (SIM) 54.6 Benzo(k)fluoranthene (SIM) 52.5 Chrysene (SIM) 47.3 Dibenz(a,h)anthracene (SIM) 57.9 Fluoranthene (SIM) 51.2 Fluorene (SIM) 48.4 Indeno(1,2,3-cd)pyrene (SIM) 60.7 2-Methylnaphthalene (SIM) 43.4 Naphthalene (SIM) 39.6 Phenanthrene (SIM) 46.6 Pyrene (SIM) 45.4 Surrogate: Nitrobenzene-d5 87.1 Surrogate: P-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) 43.9 Acenaphthene (SIM) 42.5 Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 50.2 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7	6.0 µş 4.0 µş 4.0 µş 1.0 µş 1.0 µş 1.0 µş 1.0 µş 1.0 µş 1.0 µş 2.0 µş 1.0 µş 2.0 µş 2.0 µş 2.0 µş 2.0 µş 2.0 µş	μg/L 100 Prepare μg/L 50.0	d: 05/21/20 Analyzed))))))))))))))))))	74.9 3 d: 05/27/20 90.8 4 88.4 4 98.3 4 97.1 4 103 4 107 4 109 4 105 4 94.6 4 116 4 102 4 96.9 4 121 4 86.8	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
LCS (B258763-BS1) Acenaphthene (SIM) 45.4 Acenaphthylene (SIM) 44.2 Anthracene (SIM) 49.1 Benzo(a)anthracene (SIM) 48.5 Benzo(a)pyrene (SIM) 51.6 Benzo(b)fluoranthene (SIM) 53.7 Benzo(g,h,i)perylene (SIM) 54.6 Benzo(k)fluoranthene (SIM) 52.5 Chrysene (SIM) 47.3 Dibenz(a,h)anthracene (SIM) 57.9 Fluoranthene (SIM) 51.2 Fluorene (SIM) 48.4 Indeno(1,2,3-cd)pyrene (SIM) 60.7 2-Methylnaphthalene (SIM) 43.4 Naphthalene (SIM) 39.6 Phenanthrene (SIM) 46.6 Pyrene (SIM) 45.4 Surrogate: Nitrobenzene-d5 87.1 Surrogate: P-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) 43.9 Acenaphthylene (SIM) 42.5 Anthracene (SIM) 47.5 Benzo(a)apyrene (SIM) 50.2 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7	6.0 µş 4.0 µş 4.0 µş 1.0 µş 1.0 µş 1.0 µş 1.0 µş 10 µş 4.0 µş 10 µş 2.0 µş 20 µş 20 µş 20 µş	μg/L 50.0	d: 05/21/20 Analyzed	d: 05/27/20 90.8 4 88.4 4 98.3 4 97.1 4 103 4 107 4 109 4 105 4 94.6 4 116 4 102 4 96.9 4 121 4 86.8	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
Acenaphthene (SIM) 45.4 Acenaphthylene (SIM) 44.2 Anthracene (SIM) 49.1 Benzo(a)anthracene (SIM) 48.5 Benzo(a)pyrene (SIM) 51.6 Benzo(b)fluoranthene (SIM) 53.7 Benzo(g,h,i)perylene (SIM) 54.6 Benzo(k)fluoranthene (SIM) 52.5 Chrysene (SIM) 47.3 Dibenz(a,h)anthracene (SIM) 57.9 Fluoranthene (SIM) 51.2 Fluorene (SIM) 48.4 Indeno(1,2,3-cd)pyrene (SIM) 48.4 Indeno(1,2,3-cd)pyrene (SIM) 43.4 Naphthalene (SIM) 43.4 Naphthalene (SIM) 45.4 Surrogate: Nitrobenzene-d5 87.1 Surrogate: Nitrobenzene-d5 87.1 Surrogate: P-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) Acenaphthylene (SIM) 42.5 Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 47.2 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 50.2	4.0 µş 4.0 µş 4.0 µş 1.0 µş 1.0 µş 1.0 µs 1.0 µs 10 µs 4.0 µs 2.0 µs 10 µs 20 µs 20 µs 20 µs	μg/L 50.		90.8 4 98.3 4 97.1 4 103 4 107 4 105 4 94.6 4 116 4 102 4 96.9 4 121 4 86.8	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
Acenaphthene (SIM) 45.4 Acenaphthylene (SIM) 44.2 Anthracene (SIM) 49.1 Benzo(a)anthracene (SIM) 48.5 Benzo(a)pyrene (SIM) 51.6 Benzo(b)fluoranthene (SIM) 53.7 Benzo(g,h,i)perylene (SIM) 54.6 Benzo(k)fluoranthene (SIM) 52.5 Chrysene (SIM) 47.3 Dibenz(a,h)anthracene (SIM) 57.9 Fluoranthene (SIM) 51.2 Fluorene (SIM) 48.4 Indeno(1,2,3-cd)pyrene (SIM) 48.4 Indeno(1,2,3-cd)pyrene (SIM) 43.4 Naphthalene (SIM) 43.4 Naphthalene (SIM) 45.4 Surrogate: Nitrobenzene-d5 87.1 Surrogate: Nitrobenzene-d5 87.1 Surrogate: P-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) Acenaphthylene (SIM) 42.5 Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 47.2 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 50.2	4.0 µş 4.0 µş 4.0 µş 1.0 µş 1.0 µş 1.0 µs 1.0 µs 10 µs 4.0 µs 2.0 µs 10 µs 20 µs 20 µs 20 µs	μg/L 50.		90.8 4 98.3 4 97.1 4 103 4 107 4 105 4 94.6 4 116 4 102 4 96.9 4 121 4 86.8	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
Acenaphthylene (SIM) Anthracene (SIM) Benzo(a)anthracene (SIM) Benzo(a)pyrene (SIM) Benzo(b)fluoranthene (SIM) Benzo(g,h,i)perylene (SIM) Benzo(g,hi)perylene (SIM) Benzo(k)fluoranthene (SIM) Chrysene (SIM) Dibenz(a,h)anthracene (SIM) Fluoranthene (SIM) Fluoranthene (SIM) Fluoranthene (SIM) Fluoranthene (SIM) Indeno(1,2,3-cd)pyrene (SIM) 2-Methylnaphthalene (SIM) Naphthalene (SIM) Phenanthrene (SIM) Pyrene (SIM) Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl Surrogate: 2-Fluorobiphenyl Surrogate: p-Terphenyl-d14 CCS Dup (B258763-BSD1) Acenaphthylene (SIM) Acenaphthylene (SIM) Acenaphthylene (SIM) Acenaphthylene (SIM) Benzo(a)anthracene (SIM) Benzo(a)pyrene (SIM) Benzo(a)pyrene (SIM) Benzo(a)pyrene (SIM) Benzo(b)fluoranthene (SIM) Benzo(b)fluoranthene (SIM) Benzo(b)fluoranthene (SIM) Benzo(b)fluoranthene (SIM) Surrogate: Simolate (Simolate) Surrogate: Simolate (Simolate) Acenaphthylene (SIM) Acenaphthylene (SIM) Acenaphthylene (SIM) Benzo(a)pyrene (SIM) Benzo(b)fluoranthene (SIM) Benzo(b)fluoranthene (SIM) Benzo(b)fluoranthene (SIM)	4.0 µş 4.0 µş 4.0 µş 1.0 µş 1.0 µş 1.0 µs 1.0 µs 10 µs 4.0 µs 2.0 µs 10 µs 20 µs 20 µs 20 µs	μg/L 50.1 μg/L 50.2		88.4 4 98.3 4 97.1 4 103 4 107 4 109 4 105 4 94.6 4 116 4 102 4 96.9 4 121 4 86.8	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
Anthracene (SIM) Benzo(a)anthracene (SIM) Benzo(a)pyrene (SIM) Benzo(b)fluoranthene (SIM) Benzo(g,h,i)perylene (SIM) Benzo(k)fluoranthene (SIM) Benzo(k)fluoranthene (SIM) Chrysene (SIM) Dibenz(a,h)anthracene (SIM) Fluoranthene (SIM) Fluoranthene (SIM) Fluoranthene (SIM) Fluoranthene (SIM) Fluoranthene (SIM) Asylta de	4.0	μg/L 50.		98.3 4 97.1 4 103 4 107 4 109 4 105 4 94.6 4 116 4 102 4 96.9 4 121 4 86.8 4	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
Benzo(a)anthracene (SIM) 48.5 Benzo(a)pyrene (SIM) 51.6 Benzo(b)fluoranthene (SIM) 53.7 Benzo(g,h,i)perylene (SIM) 54.6 Benzo(k)fluoranthene (SIM) 52.5 Chrysene (SIM) 47.3 Dibenz(a,h)anthracene (SIM) 57.9 Fluoranthene (SIM) 51.2 Fluorene (SIM) 48.4 Indeno(1,2,3-cd)pyrene (SIM) 60.7 2-Methylnaphthalene (SIM) 43.4 Naphthalene (SIM) 39.6 Phenanthrene (SIM) 46.6 Pyrene (SIM) 45.4 Surrogate: Nitrobenzene-d5 87.1 Surrogate: 2-Fluorobiphenyl 90.5 Surrogate: p-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) 43.9 Acenaphthene (SIM) 42.5 Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 47.5 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7	1.0 µş 2.0 µş 1.0 µş 1.0 µş 4.0 µş 4.0 µş 2.0 µş 10 µş 20 µş 20 µş 20 µş	μg/L 50.		97.1 4 103 4 107 4 109 4 105 4 94.6 4 116 4 102 4 96.9 4 121 4 86.8 4	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
Benzo(a)pyrene (SIM) 51.6 Benzo(b)fluoranthene (SIM) 53.7 Benzo(g,h,i)perylene (SIM) 54.6 Benzo(k)fluoranthene (SIM) 52.5 Chrysene (SIM) 47.3 Dibenz(a,h)anthracene (SIM) 57.9 Fluoranthene (SIM) 51.2 Fluorene (SIM) 48.4 Indeno(1,2,3-cd)pyrene (SIM) 60.7 2-Methylnaphthalene (SIM) 43.4 Naphthalene (SIM) 39.6 Phenanthrene (SIM) 46.6 Pyrene (SIM) 45.4 Surrogate: Nitrobenzene-d5 87.1 Surrogate: 2-Fluorobiphenyl 90.5 Surrogate: p-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) 43.9 Acenaphthene (SIM) 42.5 Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 47.2 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7	2.0	μg/L 50.		103 4 107 4 109 4 105 4 94.6 4 116 4 102 4 96.9 4 121 4 86.8	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
Benzo(b)fluoranthene (SIM) 53.7 Benzo(g,h,i)perylene (SIM) 54.6 Benzo(k)fluoranthene (SIM) 52.5 Chrysene (SIM) 47.3 Dibenz(a,h)anthracene (SIM) 57.9 Fluoranthene (SIM) 51.2 Fluorene (SIM) 48.4 Indeno(1,2,3-cd)pyrene (SIM) 60.7 2-Methylnaphthalene (SIM) 43.4 Naphthalene (SIM) 39.6 Phenanthrene (SIM) 46.6 Pyrene (SIM) 45.4 Surrogate: Nitrobenzene-d5 87.1 Surrogate: 2-Fluorobiphenyl 90.5 Surrogate: p-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) 43.9 Acenaphthylene (SIM) 47.5 Acenaphthylene (SIM) 47.5 Benzo(a)anthracene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7	1.0	μg/L 50.		109 4 105 4 94.6 4 116 4 102 4 96.9 4 121 4 86.8	40-140 40-140 40-140 40-140 40-140 40-140 40-140			
Benzo(g,h,i)perylene (SIM) 54.6 Benzo(k)fluoranthene (SIM) 52.5 Chrysene (SIM) 47.3 Dibenz(a,h)anthracene (SIM) 57.9 Fluoranthene (SIM) 51.2 Fluorene (SIM) 48.4 Indeno(1,2,3-cd)pyrene (SIM) 60.7 2-Methylnaphthalene (SIM) 43.4 Naphthalene (SIM) 39.6 Phenanthrene (SIM) 46.6 Pyrene (SIM) 45.4 Surrogate: Nitrobenzene-d5 87.1 Surrogate: 2-Fluorobiphenyl 90.5 Surrogate: p-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) 43.9 Acenaphthylene (SIM) 47.5 Acenaphthylene (SIM) 47.5 Benzo(a)anthracene (SIM) 47.2 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7	4.0 µ ₁ 4.0 µ ₂ 4.0 µ ₃ 10 µ ₄ 20 µ ₄ 20 µ ₅ 20 µ ₅ 20 µ ₅	$\begin{array}{ccc} \mu g/L & 50.0 \\ \end{array}$		105 4 94.6 4 116 4 102 4 96.9 4 121 4 86.8 4	40-140 40-140 40-140 40-140 40-140 40-140			
Benzo(k)fluoranthene (SIM) 52.5 Chrysene (SIM) 47.3 Dibenz(a,h)anthracene (SIM) 57.9 Fluoranthene (SIM) 51.2 Fluorene (SIM) 48.4 Indeno(1,2,3-cd)pyrene (SIM) 60.7 2-Methylnaphthalene (SIM) 43.4 Naphthalene (SIM) 39.6 Phenanthrene (SIM) 46.6 Pyrene (SIM) 45.4 Surrogate: Nitrobenzene-d5 87.1 Surrogate: 2-Fluorobiphenyl 90.5 Surrogate: p-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) Acenaphthene (SIM) 43.9 Acenaphthylene (SIM) 47.5 Benzo(a)anthracene (SIM) 47.5 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7	 4.0 με 2.0 με 10 με 20 με 2.0 με 2.0 με 2.0 με 	μg/L 50.		94.6 4 116 4 102 4 96.9 4 121 4 86.8 4	40-140 40-140 40-140 40-140 40-140			
Dibenz(a,h)anthracene (SIM) 57.9 Fluoranthene (SIM) 51.2 Fluorene (SIM) 48.4 Indeno(1,2,3-cd)pyrene (SIM) 60.7 2-Methylnaphthalene (SIM) 43.4 Naphthalene (SIM) 39.6 Phenanthrene (SIM) 46.6 Pyrene (SIM) 45.4 Surrogate: Nitrobenzene-d5 87.1 Surrogate: 2-Fluorobiphenyl 90.5 Surrogate: p-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) Acenaphthene (SIM) 43.9 Acenaphthylene (SIM) 47.5 Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7	2.0 µg 10 µg 20 µg 2.0 µg 2.0 µg 2.0 µg	μg/L 50.0		116 4 102 4 96.9 4 121 4 86.8 4	40-140 40-140 40-140 40-140			
Fluoranthene (SIM) 51.2 Fluorene (SIM) 48.4 Indeno(1,2,3-cd)pyrene (SIM) 60.7 2-Methylnaphthalene (SIM) 43.4 Naphthalene (SIM) 39.6 Phenanthrene (SIM) 46.6 Pyrene (SIM) 45.4 Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl 90.5 Surrogate: p-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) Acenaphthene (SIM) 43.9 Acenaphthylene (SIM) 42.5 Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7	10 μ _ξ 20 μ _ξ 2.0 μ _ξ 20 μ _ξ	μg/L 50.4 μg/L 50.4 μg/L 50.4 μg/L 50.4 μg/L 50.4 μg/L 50.4)))	102 4 96.9 4 121 4 86.8 4	40-140 40-140 40-140			
Fluorene (SIM) 48.4 Indeno(1,2,3-cd)pyrene (SIM) 60.7 2-Methylnaphthalene (SIM) 43.4 Naphthalene (SIM) 39.6 Phenanthrene (SIM) 46.6 Pyrene (SIM) 45.4 Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl 90.5 Surrogate: p-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) Acenaphthene (SIM) 43.9 Acenaphthylene (SIM) 42.5 Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7	 20 με 2.0 με 20 με 	μg/L 50. μg/L 50. μg/L 50. μg/L 50.)	96.9 4 121 4 86.8 4	40-140 40-140			
Indeno(1,2,3-cd)pyrene (SIM) 2-Methylnaphthalene (SIM) Naphthalene (SIM) Phenanthrene (SIM) Pyrene (SIM) Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl Surrogate: p-Terphenyl-d14 LCS Dup (B258763-BSD1) Acenaphthene (SIM) Acenaphthylene (SIM)	2.0 μ _ξ 20 μ _ξ	μg/L 50. μg/L 50. μg/L 50.)	121 4 86.8 4	40-140			
2-Methylnaphthalene (SIM) Naphthalene (SIM) Phenanthrene (SIM) Pyrene (SIM) Surrogate: Nitrobenzene-d5 Surrogate: 2-Fluorobiphenyl Surrogate: p-Terphenyl-d14 CCS Dup (B258763-BSD1) Acenaphthene (SIM) Acenaphthylene (SIM) Acenaphthylene (SIM) Acenaphthylene (SIM) Acenaphthylene (SIM) Acenaphthylene (SIM) Benzo(a)anthracene (SIM) Benzo(a)pyrene (SIM) Benzo(b)fluoranthene (SIM) Benzo(b)fluoranthene (SIM) Surrogate: p-Terphenyl-d14 73.7 Acenaphthylene (SIM) 43.9 47.5 Benzo(a)pyrene (SIM) Benzo(b)fluoranthene (SIM) 50.2 Benzo(b)fluoranthene (SIM)	20 με	μg/L 50. μg/L 50.)	86.8 4				
Naphthalene (SIM) 39.6 Phenanthrene (SIM) 46.6 Pyrene (SIM) 45.4 Surrogate: Nitrobenzene-d5 87.1 Surrogate: 2-Fluorobiphenyl 90.5 Surrogate: p-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) 43.9 Acenaphthene (SIM) 42.5 Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 47.2 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7		μg/L 50.			40-140			
Phenanthrene (SIM) 46.6 Pyrene (SIM) 45.4 Surrogate: Nitrobenzene-d5 87.1 Surrogate: 2-Fluorobiphenyl 90.5 Surrogate: p-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) 43.9 Acenaphthene (SIM) 42.5 Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 47.2 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7	• 0							
Pyrene (SIM) 45.4 Surrogate: Nitrobenzene-d5 87.1 Surrogate: 2-Fluorobiphenyl 90.5 Surrogate: p-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) Acenaphthene (SIM) 43.9 Acenaphthylene (SIM) 42.5 Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 47.2 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7	20 με		J	79.2 4	40-140			
Surrogate: Nitrobenzene-d5 87.1 Surrogate: 2-Fluorobiphenyl 90.5 Surrogate: p-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) Acenaphthene (SIM) 43.9 Acenaphthylene (SIM) 42.5 Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 47.2 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7	1.0 με	μg/L 50.)	93.2 4	40-140			
Surrogate: 2-Fluorobiphenyl 90.5 Surrogate: p-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) 43.9 Acenaphthene (SIM) 42.5 Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 47.2 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7	20 με	μg/L 50.)	90.9 4	40-140			
Surrogate: p-Terphenyl-d14 73.7 LCS Dup (B258763-BSD1) Acenaphthene (SIM) 43.9 Acenaphthylene (SIM) 42.5 Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 47.2 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7	μд	μg/L 100)	87.1 3	30-130			
Acenaphthene (SIM) 43.9 Acenaphthylene (SIM) 42.5 Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 47.2 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7	μд	μg/L 100)	90.5	30-130			
Acenaphthene (SIM) 43.9 Acenaphthylene (SIM) 42.5 Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 47.2 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7	μg	μg/L 100)	73.7 3	30-130			
Acenaphthylene (SIM) 42.5 Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 47.2 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7		Prepare	d: 05/21/20 Analyzed	d: 05/27/20				
Anthracene (SIM) 47.5 Benzo(a)anthracene (SIM) 47.2 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7	6.0 με	μg/L 50.)	87.7 4	40-140	3.49	20	
Benzo(a)anthracene (SIM) 47.2 Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7		μg/L 50.)	85.1 4	40-140	3.83	20	
Benzo(a)pyrene (SIM) 50.2 Benzo(b)fluoranthene (SIM) 52.7		μg/L 50.)	95.0 4	40-140	3.39	20	
Benzo(b)fluoranthene (SIM) 52.7		μg/L 50.)	94.5 4	40-140	2.71	20	
· · · · · · · · · · · · · · · · · · ·		μg/L 50.				2.75	20	
		μg/L 50.				1.92	20	
Benzo(g,h,i)perylene (SIM) 53.0		μg/L 50.				2.90	20	
Benzo(k)fluoranthene (SIM) 51.4		μg/L 50.				2.12	20	
Chrysene (SIM) 46.0		μg/L 50.				2.79	20	
Dibenz(a,h)anthracene (SIM) 56.8		μg/L 50.				1.99	20	
Fluoranthene (SIM) 49.4		μg/L 50.				3.58	20	
Fluorene (SIM) 47.3		μg/L 50.				2.34	20	
Indeno(1,2,3-cd)pyrene (SIM) 59.0		μg/L 50.0				2.94	20	
2-Methylnaphthalene (SIM) 42.2		μg/L 50.0				2.66	20	
Naphthalene (SIM) 39.2		μg/L 50.0				1.07	20	
Phenanthrene (SIM) 44.9		μg/L 50.0				3.67	20	
Pyrene (SIM) 44.5		μg/L 50.				2.14	20	
Surrogate: Nitrobenzene-d5 83.6	20 με	μ g/L 100)		30-130			
Surrogate: 2-Fluorobiphenyl 88.7 Surrogate: p-Terphenyl-d14 72.7	20 μg	μg/L 100		88.7 3	30-130			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
V-04	Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-06	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.
V-34	Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

CERTIFICATIONS

Analyte	Certifications	
SW-846 8260D in Water		
Acetone	NC	
Acrylonitrile	NC	
tert-Amyl Methyl Ether (TAME)	NC	
Benzene	NC	
Bromobenzene	NC	
Bromochloromethane	NC	
Bromodichloromethane	NC	
Bromoform	NC	
Bromomethane	NC	
2-Butanone (MEK)	NC	
tert-Butyl Alcohol (TBA)	NC	
n-Butylbenzene	NC	
sec-Butylbenzene	NC	
tert-Butylbenzene	NC	
tert-Butyl Ethyl Ether (TBEE)	NC	
Carbon Disulfide	NC	
Carbon Tetrachloride	NC	
Chlorobenzene	NC	
Chlorodibromomethane	NC	
Chloroethane	NC	
Chloroform	NC	
Chloromethane	NC	
2-Chlorotoluene	NC	
4-Chlorotoluene	NC	
1,2-Dibromo-3-chloropropane (DBCP)	NC	
1,2-Dibromoethane (EDB)	NC	
Dibromomethane	NC	
1,2-Dichlorobenzene	NC	
1,3-Dichlorobenzene	NC	
1,4-Dichlorobenzene	NC	
trans-1,4-Dichloro-2-butene	NC	
Dichlorodifluoromethane (Freon 12)	NC	
1,1-Dichloroethane	NC	
1,2-Dichloroethane	NC	
1,1-Dichloroethylene cis-1,2-Dichloroethylene	NC NC	
trans-1,2-Dichloroethylene	NC NC	
1,2-Dichloropropane	NC NC	
1,3-Dichloropropane	NC NC	
2,2-Dichloropropane	NC	
1,1-Dichloropropene	NC	
cis-1,3-Dichloropropene	NC	
trans-1,3-Dichloropropene	NC	
Diethyl Ether	NC	
Diisopropyl Ether (DIPE)	NC	
1,4-Dioxane	NC	
Ethylbenzene	NC	
		1

CERTIFICATIONS

Analyte	Certifications
SW-846 8260D in Water	
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC
SW-846 8270E in Soil	
Acetophenone	NY,NH,ME,NC,VA
Aniline	NY,NH,ME,NC,VA
Benzidine	CT,NY,NH,ME,NC,VA
Benzoic Acid	NY,NH,ME,NC,VA
Bis(2-chloroethoxy)methane	CT,NY,NH,ME,NC,VA
Bis(2-chloroethyl)ether	CT,NY,NH,ME,NC,VA
Bis(2-chloroisopropyl)ether	CT,NY,NH,ME,NC,VA
Bis(2-Ethylhexyl)phthalate	CT,NY,NH,ME,NC,VA
4-Bromophenylphenylether	CT,NY,NH,ME,NC,VA
Butylbenzylphthalate	CT,NY,NH,ME,NC,VA
Carbazole	NC
4-Chloroaniline	CT,NY,NH,ME,NC,VA
4-Chloro-3-methylphenol	CT,NY,NH,ME,NC,VA
2-Chloronaphthalene	CT,NY,NH,NC,VA
2-Chlorophenol	CT,NY,NH,ME,NC,VA
4-Chlorophenylphenylether	CT,NY,NH,ME,NC,VA

CERTIFICATIONS

Analyte	Certifications
SW-846 8270E in Soil	
Dibenzofuran	CT,NY,NH,ME,NC,VA
Di-n-butylphthalate	CT,NY,NH,ME,NC,VA
1,2-Dichlorobenzene	NY,NH,ME,NC,VA
1,3-Dichlorobenzene	NY,NH,ME,NC,VA
1,4-Dichlorobenzene	NY,NH,ME,NC,VA
3,3-Dichlorobenzidine	CT,NY,NH,ME,NC,VA
2,4-Dichlorophenol	CT,NY,NH,ME,NC,VA
Diethylphthalate	CT,NY,NH,ME,NC,VA
2,4-Dimethylphenol	CT,NY,NH,ME,NC,VA
Dimethylphthalate	CT,NY,NH,ME,NC,VA
4,6-Dinitro-2-methylphenol	CT,NY,NH,ME,NC,VA
2,4-Dinitrophenol	CT,NY,NH,ME,NC,VA
2,4-Dinitrotoluene	CT,NY,NH,ME,NC,VA
2,6-Dinitrotoluene	CT,NY,NH,ME,NC,VA
Di-n-octylphthalate	CT,NY,NH,ME,NC,VA
1,2-Diphenylhydrazine/Azobenzene	NY,NH,ME,NC,VA
Hexachlorobenzene	CT,NY,NH,ME,NC,VA
Hexachlorobutadiene	CT,NY,NH,ME,NC,VA
Hexachlorocyclopentadiene	CT,NY,NH,ME,NC,VA
Hexachloroethane	CT,NY,NH,ME,NC,VA
Isophorone	CT,NY,NH,ME,NC,VA
1-Methylnaphthalene	NC
2-Methylphenol	CT,NY,NH,ME,NC,VA
3/4-Methylphenol	CT,NY,NH,ME,NC,VA
Naphthalene	CT,NY,NH,ME,NC,VA
2-Nitroaniline	CT,NY,NH,ME,NC,VA
3-Nitroaniline	CT,NY,NH,ME,NC,VA
4-Nitroaniline	CT,NY,NH,ME,NC,VA
Nitrobenzene	CT,NY,NH,ME,NC,VA
2-Nitrophenol	CT,NY,NH,ME,NC,VA
4-Nitrophenol	CT,NY,NH,ME,NC,VA
N-Nitrosodimethylamine	CT,NY,NH,ME,NC,VA
N-Nitrosodi-n-propylamine	CT,NY,NH,ME,NC,VA
Pentachloronitrobenzene	NY,NC
Pentachlorophenol	CT,NY,NH,ME,NC,VA
Phenol	CT,NY,NH,ME,NC,VA
Pyridine	CT,NY,NH,ME,NC,VA
1,2,4,5-Tetrachlorobenzene	NY,NC
1,2,4-Trichlorobenzene	CT,NY,NH,ME,NC,VA
2,4,5-Trichlorophenol	CT,NY,NH,ME,NC,VA
2,4,6-Trichlorophenol	CT,NY,NH,ME,NC,VA
2-Fluorophenol	NC
SW-846 8270E in Water	
Acetophenone	NY,NC
Aniline	CT,NY,NC,ME,VA
Benzidine	CT,NY,NC,ME,NH,VA

CERTIFICATIONS

Analyte	Certifications	
SW-846 8270E in Water		
Benzoic Acid	NY,NC,ME,NH,VA	
Bis(2-chloroethoxy)methane	CT,NY,NC,ME,NH,VA	
Bis(2-chloroethyl)ether	CT,NY,NC,ME,NH,VA	
Bis(2-chloroisopropyl)ether	CT,NY,NC,ME,NH,VA	
Bis(2-Ethylhexyl)phthalate	CT,NY,NC,ME,NH,VA	
4-Bromophenylphenylether	CT,NY,NC,ME,NH,VA	
Butylbenzylphthalate	CT,NY,NC,ME,NH,VA	
Carbazole	NC	
4-Chloroaniline	CT,NY,NC,ME,NH,VA	
4-Chloro-3-methylphenol	CT,NY,NC,ME,NH,VA	
2-Chloronaphthalene	CT,NY,NC,ME,NH,VA	
2-Chlorophenol	CT,NY,NC,ME,NH,VA	
4-Chlorophenylphenylether	CT,NY,NC,ME,NH,VA	
Dibenzofuran	CT,NY,NC,ME,NH,VA	
Di-n-butylphthalate	CT,NY,NC,ME,NH,VA	
1,2-Dichlorobenzene	CT,NY,NC,ME,NH,VA	
1,3-Dichlorobenzene	CT,NY,NC,ME,NH,VA	
1,4-Dichlorobenzene	CT,NY,NC,ME,NH,VA	
3,3-Dichlorobenzidine	CT,NY,NC,ME,NH,VA	
2,4-Dichlorophenol	CT,NY,NC,ME,NH,VA	
Diethylphthalate	CT,NY,NC,ME,NH,VA	
2,4-Dimethylphenol	CT,NY,NC,ME,NH,VA	
Dimethylphthalate	CT,NY,NC,ME,NH,VA	
4,6-Dinitro-2-methylphenol	CT,NY,NC,ME,NH,VA	
2,4-Dinitrophenol	CT,NY,NC,ME,NH,VA	
2,4-Dinitrotoluene	CT,NY,NC,ME,NH,VA	
2,6-Dinitrotoluene	CT,NY,NC,ME,NH,VA	
Di-n-octylphthalate	CT,NY,NC,ME,NH,VA	
1,2-Diphenylhydrazine/Azobenzene	NY,NC	
Hexachlorobenzene	CT,NY,NC,ME,NH,VA	
Hexachlorobutadiene	CT,NY,NC,ME,NH,VA	
Hexachlorocyclopentadiene	CT,NY,NC,ME,NH,VA	
Hexachloroethane	CT,NY,NC,ME,NH,VA	
Isophorone	CT,NY,NC,ME,NH,VA	
1-Methylnaphthalene	NC	
2-Methylphenol	CT,NY,NC,NH,VA	
3/4-Methylphenol	CT,NY,NC,NH,VA	
Naphthalene	CT,NY,NC,ME,NH,VA	
2-Nitroaniline	CT,NY,NC,ME,NH,VA	
3-Nitroaniline	CT,NY,NC,ME,NH,VA	
4-Nitroaniline	CT,NY,NC,ME,NH,VA	
Nitrobenzene	CT,NY,NC,ME,NH,VA	
2-Nitrophenol	CT,NY,NC,ME,NH,VA	
4-Nitrophenol	CT,NY,NC,ME,NH,VA	
N-Nitrosodimethylamine	CT,NY,NC,ME,NH,VA	
N-Nitrosodi-n-propylamine	CT,NY,NC,ME,NH,VA	
Pentachloronitrobenzene	NC	D 00

CERTIFICATIONS

Certified Analyses included in this Report

2-Fluorophenol

Analyte Certifications

SW-846 8270E in Water

,,, o.	
Pentachlorophenol	CT,NY,NC,ME,NH,VA
Phenol	CT,NY,NC,ME,NH,VA
Pyridine	CT,NY,NC,ME,NH,VA
1,2,4,5-Tetrachlorobenzene	NY,NC
1,2,4-Trichlorobenzene	CT,NY,NC,ME,NH,VA
2,4,5-Trichlorophenol	CT,NY,NC,ME,NH,VA
2,4,6-Trichlorophenol	CT,NY,NC,ME,NH,VA

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2021
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2021
RI	Rhode Island Department of Health	LAO00112	12/30/2020
NC	North Carolina Div. of Water Quality	652	12/31/2020
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2021
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2020
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

Non Soxhlet

Chromatogram

AIHA-LAP, LLC

Municipality Brownfield School

Government Federal City

Date/Time:

ed by: (signature)

266838

CON-LEST

DAYCE S3

Doc # 379 Rev 1_03242017

39 Spruce Street East Longmeadow, MA 01028 CHAIN OF CUSTODY RECORD (North Carolina) Phone: 413-525-2332 Fax: 413-525-6405

				20112-																													Tal	ole	of (Cont	ent
	# of Containers	² Preservation Code	³ Container Code		Field Filtered	Lab to Filter			Field Filtered	Lab to Filter		Matrix Codes:	GW = Ground Water WW = Waste Water	DW = Drinking Water A = Air	S = Soil	SL = Studge	0 = Other (please	deline)	² Preservation Codes:	= ced	H = HCL M = Methanol	N = Nitric Acid	s = sununc Acid B = Sodium Bisulfate	X = Sodium Hydroxide	I = Sodium Thiosulfate	0 = Other (please	derine)	³ Container Codes:	A = Amber Glass	P = Plastic	V = Vial	S = Summa Canister	I = Fedrar bag 0 = Other (please	define)	markator may be a second and a second and a second a seco	PCB ONLY	Soxhlet Non Soxhlet
				ANALYSIS REQUESTED																							riease use the following codes to indicate possible sample concentration within the Conc Code column above:	H - High; M - Medium; L - Low; C - Clean; U - Unknown	Drogram Information	DSCA UST/Trust Fund	SWS Landfill TEC	HSB Orphaned Landfill	State Lead Other:		NELAC and AlHA-LAP, LLC Accredited	Other	Chromatogram AIHA-LAP.11C
	37	ノエ	マト	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5/ 5/	700	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	5	С О	ル の)	2	8 8		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	× < <												s the following codes within the C	- High; M - Medium;			*. % T/3		S tanloar)				
	7-Day 🔲 10-Day 🔀	Due Date:	The extra first section of the second section of the second section of the second section sect	1-Day 3-Day	2-Day	60 kg s 1	Format: PDF 🔲 EXCEL	Other:	CLP Like Data Pkg Required:	Email To:	Fax To #:	Ending Composite Grab Matrix Conc		7	222												ac acceptance and acceptance acce	Ť		21.	GWPC	SWSL	HSB KKK				Government Municipality Federal Rownfield
	nfo@contestlabs.com	HSSOCIOHOS	2451		t 63	2210123	10103					Client Sample ID / Description Beginning			2/18/20	-														o (AT	mme:	165	S//4/7/ (630	Time:	20 3	Date/Time: Project Entity	Date/Time:
רמא.	2	West for the Manager Holen	Address: 114 Edinburah S. C	Phone: U	Designed Transform PSA	Ţ	7/	Project Manager: W. RronCon	lame/Numbe	Invoice Recipient:	Sampled By: BYONOM BOND	Con-Test Client Sa Work Order#			- QC											Comments:			Retition(shed by: (signature)		Received by: (signature)		Ke mshee by: (signature)	B bd by: (signature)		Re o inshed by: (signature)	Re od by: (Signature)

IMPORTANT!

We are continuing to respond to the impact of COVID-19 around the world. See our latest updates. For COVID-19-related recipient closures, you can redirect packages, Ask FedEx, or contact the shipper.

Delivered Wednesday 5/20/2020 at 10:14 am

DELIVERED

Signed for by: R.PIETRIAS

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM								
Raleigh,	NC US							

Multiple-piece Shipment

3 Piece shipment

TRACKING NUMBER	SHIPPER CITY, STATE	SHIP DATE	STATUS	DELIVERY DATE	DESTINATION/RECIPIENT CITY, STATE
149454201809 (master)	RALEIGH, NC	5/19/2020	Commence Com	5/20/2020	East Longmeadow, MA
149454201810	RALEIGH, NC	5/19/2020	Construction and Constr	5/20/2020	East Longmeadow, MA
149454201820	RALEIGH, NC	5/19/2020	Continued Contin	5/20/2020	East Longmeadow, MA

Shipment Facts

Stilpitient i acts		
TRACKING NUMBER 149454201820	SERVICE FedEx Priority Overnight	MASTER TRACKING NUMBER 149454201809
WEIGHT 10 lbs / 4.54 kgs	DIMENSIONS 25x14x14 in.	DELIVERED TO Receptionist/Front Desk
TOTAL PIECES	TOTAL SHIPMENT WEIGHT 10 lbs / 4.54 kgs	TERMS Third Party
PACKAGING Your Packaging	SPECIAL HANDLING SECTION Deliver Weekday, Non Standard Packaging	STANDARD TRANSIT (7) 5/20/2020 by 10:30 am

5/20/2020 by 10:30 am

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client	Donper	Aden						Time	10/14	
Receive	d By [∜]	DAK_		Date	5	\mathcal{U}		Time	1014	
How were the	samples	In Cooler	T	No Cooler	,		On Ice	<u></u>	_ No Ice	
receive	10	Direct from Samp					Ambient		Melted Ice	
	•	Jil Cot Holli Camp	By Gun#	<u>2</u>		A	Actual Tem	p- 28		_
Were sampl			-				Actual Tem			
Temperature			By Blank #	10/0	ro Cam		Tampered		<u> </u>	-
	Custody Se		<u>M</u>							-
Was COC Relinquished? Are there broken/leaking/loose caps on any samples? Does Chain Agree With Samples?										
		aking/loose caps	on any sam	pies /	nolos re	oceiv	ad within h	olding time?	7	
ls COC in ink			«		iihies i	506141	Samn	er Name		AND THE STREET
Did COC in		Client		Analysis ID's				Dates/Time	es .	-
pertinent Info		Project		. 103			0000			-
Are Sample labels filled out and legible? Who was notified?										
Are there Lab			· · · · · ·	-			notified?			-
Are there Rus		I	WA DE	•			notified?			-
Are there Sho		_		-	VVIIC	was	nounea:			
Is there enough Volume? MS/MSD? MS/MSD?										
is there-Headspace wilere applicable:										
Proper Media/Containers Cocc.										
Were trip bla	nks receive	d?		- Anid	Once	JO: _		Base	Management and the control of the co	The second secon
Do all sample	es have the	proper pH?	NA	Acid		Same No. 1972 A				
Viale i			T.					4.0	-= Amb	
Unp-		1 Liter Amb.	2		Plastic				oz Amb. Amb/Clear	-
HCL-	3	500 mL Amb.			_ Plasti				Amb/Clear	
Meoh-		250 mL Amb.			_ Plasti				Amb/Clear	
Bisulfate-		Flashpoint			Bacteria				Encore	
DI-		Other Glass			Plastic			Frozen:		
Thiosulfate-		SOC Kit			ic Bag			٦٠٠٠٠		
Sulfuric-		Perchlorate			lock					
				Unused	Media				Carolina de la carolina del carolina de la carolina del carolina de la carolina d	
Visite	- 6	ger verse eine verse verse verse betreit der	8					46	oz Amb.	
Unp-	×	1 Liter Amb.			Plastic				Amb/Clear	
HCL-		500 mL Amb.			L Plasti				Amb/Clear	
Meoh-		250 mL Amb.			L Plasti	IC			Amb/Clear	
Bisulfate-	****	Col./Bacteria			hpoint				Encore	
DI-		Other Plastic			r Glass			Frozen:		
Thiosulfate-		SOC Kit			tic Bag			-		
Sulfuric-		Perchlorate	1	<u> </u>	olock					
Comments										

114 Edinburgh South Drive Suite 200 Cary, North Carolina 27511 919.827.0864 www.daa.com

June 15, 2020

Mr. Craig Haden North Carolina Department of Transportation Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Reference: Geophysical Survey for The Bryanna Company, Limited Partnership

Property (Parcel 79) 700 Western Boulevard

Tarboro, Edgecombe County, North Carolina

State Project: U-4424 WBS Element 39062.1.2

DAA Project No. 20080204-010103

Dear Mr. Haden:

Draper Aden Associates (DAA) was assigned a Preliminary Site Assessment at the above-referenced property; however, during the site walkover it was determined that soil and groundwater sampling would be difficult because of the steep slopes in the proposed right-of-way/easement (ROW/easement). Based on these observations, the NCDOT was contacted and DAA was advised to conduct the geophysical survey. DAA performed the work in accordance with the Technical and Cost proposal dated April 22, 2020, and the North Carolina Department of Transportation's (NCDOT's) Notice to Proceed dated April 23, 2019.

On April 29 and May 4, 2020, DAA traveled to the property and conducted the geophysical survey. The survey consisted of an electromagnetic survey using a Geonics EM61 time-domain electromagnetic (EM) induction meter to locate buried metallic objects, and ground penetrating radar (GPR) using a Noggin 250 with 250 MHz antennae specifically to locate USTs.

The geophysical team laid out a survey grid along the proposed right-of-way with the X-axis oriented approximately parallel to W Wilson Street and the Y-axis oriented approximately parallel to Western Boulevard. **Figure 1** of the geophysical survey report in **Attachment A** shows the EM survey area.

The EM survey lines were spaced five feet apart and the instruments collected magnetic data continuously along each survey line with a data logger. After collection, DAA reviewed the data

in the field with graphical user interface computer software. Following the electromagnetic survey, a GPR survey was conducted to further evaluate any notable metallic anomalies. GPR transects are shown on **Figures 5 and 6** of **Attachment A**.

DAA detected several anomalies in those areas accessible to the study area. The survey attributed all the anomalies to visible cultural features or underground utilities. None of the anomalies exhibited electromagnetic or GPR responses indicative of USTs. **Attachment A** presents DAA's detailed report of findings and interpretations.

Conclusions and Recommendations

DAA conducted a geophysical survey to evaluate the NCDOT proposed ROW/easement on The Bryanna Company, Limited Partnership Property (Parcel #79) located at 700 Western Boulevard in Tarboro, Edgecombe County, North Carolina. The survey did not indicate the presence of a UST within the proposed ROW/easement.

DAA appreciates the opportunity to work with the NCDOT on this project. If you have any questions, please contact us at (919) 827-0864.

—DocuSigned by: Mke Branson

Sincerely,

Draper Aden Associates

6/25/2

Michael W. Branson, P.G.

Project Manager

Attachments

Geophysical Study For Possible USTs 700 Western Boulevard Tarboro, North Carolina

North Carolina Department of Transportation 1589 Mail Service Center Raleigh, NC 27699-1589 37918

May 28, 2020

DAA Project Number: 20080204-010203

2206 South Main Street Blacksburg, Virginia 24060 540.552.0444 www.daa.com

May 28, 2020

Mr. John Pilipchuck, P.E Geotechnical Engineering Unit N.C. Department of Transportation 1589 Mail Service Center Raleigh, NC 27699-1589 37918

RE: Geophysical Study for Possible USTs
700 Western Boulevard, Tarboro, North Carolina
Draper Aden Associates Project No. 20080204-010203

Dear Mr. Pilipchuck:

Draper Aden Associates has completed the geophysical study at 700 Western Boulevard in Tarboro, North Carolina. The objective of this study was to assist in determining if any underground storage tanks (USTs) may be present beneath the study area. To meet this objective, a combination of ground penetrating radar (GPR) and electromagnetic induction (EM) techniques were utilized. The following report documents our methodologies and findings.

We value our professional relationship with N.C. Department of Transportation and hope that you will contact us with any similar needs in the future. If you have any questions regarding this report, or if we can be of any further service to you please do not hesitate to contact us.

Sincerely,

Draper Aden Associates

Johanna Vaughan, P.G.

Geologist

Francis Douglas Pinckney, P.E.

Team Leader/Senior Project Engineer Geotechnical and Construction Services

Rlacksburg • Charlottesville • Manassas • Newpoi

TABLE OF CONTENTS

1.0	INTRODUCTION		
2.0			
3.0	ELECTROMAGNETIC INDUCTION (EM) STUDY		
	3.1	EM Field Methods	2
	3.2	EM Results	2
4.0	GPR STUDY		
	4.1	GPR Field Methods	2
	4.2	GPR Results	3
5.0	COI	NCLUSIONS	3
6.0	LIMITATIONS		
7.0	FIG	URES	4

FIGURES

Figure 1.	Site Location
Figure 2.	EM61 Traverse Map
Figure 3.	Contoured EM61 Results
Figure 4.	GPR Traverse Map
Figure 5.	GPR Depth Slices from 1.0 Foot to 4.0 Feet Depth
Figure 6.	GPR Depth Slices from 4.0 Feet to 6.0 Feet Depth

1.0 EXECUTIVE SUMMARY

Draper Aden Associates (DAA) was retained by N.C. Department of Transportation to conduct a geophysical study at 700 Western Boulevard near Tarboro, North Carolina. The objective of this study was to assist in determining if any underground storage tanks (USTs) may be present beneath the study area. To meet this objective, a combination of ground penetrating radar (GPR) and electromagnetic induction (EM) techniques were utilized.

The EM61 data were collected on April 29 and May 4, 2020 in grid fashion with sub-parallel traverses spaced approximately four feet apart.

The contoured results from the EM61 data do not clearly reveal the occurrence of any possible UST locations, but rather the occurrence of numerous "hotspots" interpreted as metallic surface features such as drain grates, or manhole covers. The GPR data were collected on April 29, 2020 utilizing the same grid as the EM61 data collection, but with sub-parallel traverses spaced approximately two feet apart.

The combined analysis of the EM61 and GPR data reveals numerous anomalies which are likely the geophysical response to manmade features such as manholes, drain grates, utility poles, fire hydrants, buried utilities, and other similar features. However, the geophysical data do not reveal any anomalies within the study area which can be confidently interpreted as possible USTs.

2.0 INTRODUCTION

Draper Aden Associates (DAA) was retained by N.C. Department of Transportation to conduct a geophysical study at 700 Western Boulevard near Tarboro, North Carolina (Figure 1). The objective of this study was to assist in determining if any underground storage tanks (USTs) may be present beneath the study area. To meet this objective, a combination of ground penetrating radar (GPR) and electromagnetic induction (EM) techniques were utilized. The following report documents our methodologies and findings.

The tasks involved in this study included:

- 1. Collection, processing, and interpretation of EM61 data;
- 2. Collection, processing, and interpretation of GPR data;
- 3. Preparation of this document to detail our methods and findings.

3.0 ELECTROMAGNETIC INDUCTION (EM) STUDY

3.1 EM Field Methods

The instrument used for this investigation was the EM61 manufactured by Geonics, LTD. The EM61 data were collected on April 29 and May 4, 2020 in grid fashion with sub-parallel traverses spaced approximately four feet apart (Figure 2). The distribution of the EM61 data was tracked by a global positioning system (GPS) unit capable of sub-foot accuracy. The collected data were subsequently contoured laterally and analyzed for evidence of any possible USTs.

3.2 EM61 Results

The contoured results from the EM61 data are presented in Figure 3, overlain onto Google Earth aerial imagery. The EM61 results reveal many anomalies that are coincident with manmade features at the ground surface such as drain grates, manholes, utility poles, etc. None of the EM61 anomalies can be conclusively interpreted as a possible UST

4.0 GPR STUDY

4.1 GPR Field Methods

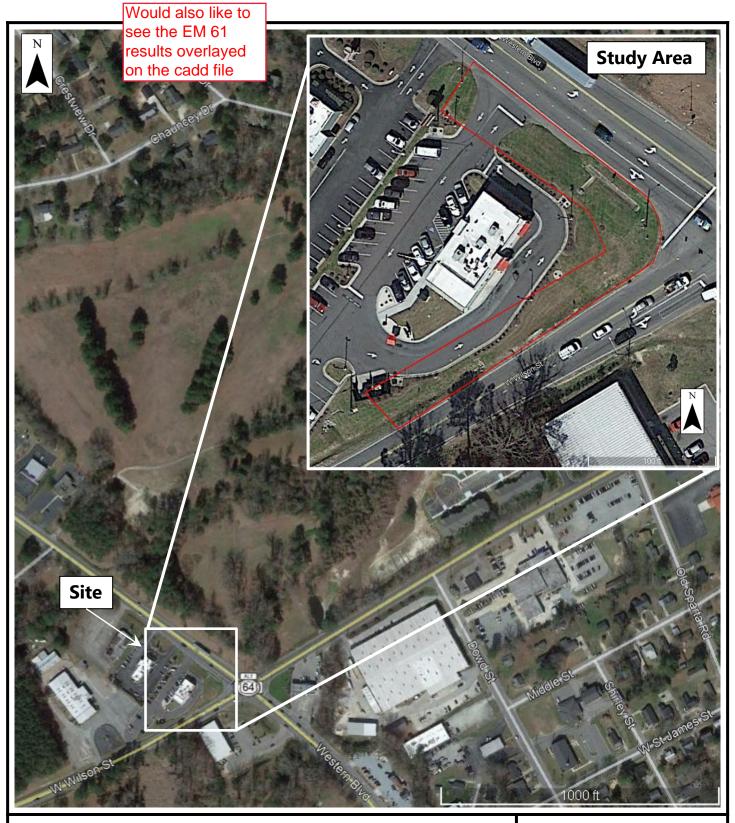
The instrument used for this investigation was the Noggin 250 manufactured by Sensors and Software, Inc. in Ontario, Canada, which utilizes a 250 MHz antenna mounted on a moveable

cart. GPR data were collected on April 29, 2020 utilizing the same grid as the EM61 data collection, with sub-parallel traverses spaced approximately two feet apart, tracked by a GPS unit capable of sub-foot accuracy (Figure 4).

4.2 GPR Results

The GPR data were analyzed as vertical cross-sections and as depth slices, or plan-view maps of the GPR response from various depth intervals for evidence of possible USTs. Analysis of the GPR data in cross-section revealed numerous hyperbolic reflectors which likely represented buried utilities, as their signature continued for substantial distances across numerous adjacent GPR traverses. However, no broad hyperbolic reflectors consistent with possible USTs were identified within the GPR cross-sections that would indicate a possible UST.

Figures 5 and 6 illustrate the plan-view GPR response in 6-inch-thick depth intervals spanning from 1.0 to 6.0 feet depth. Numerous areas of elevated GPR response are observed throughout the depth slices which are interpreted to represent miscellaneous buried objects or materials such as buried utilities, or varying soil conditions, such as intermittent clay layers or zones of wet soil.

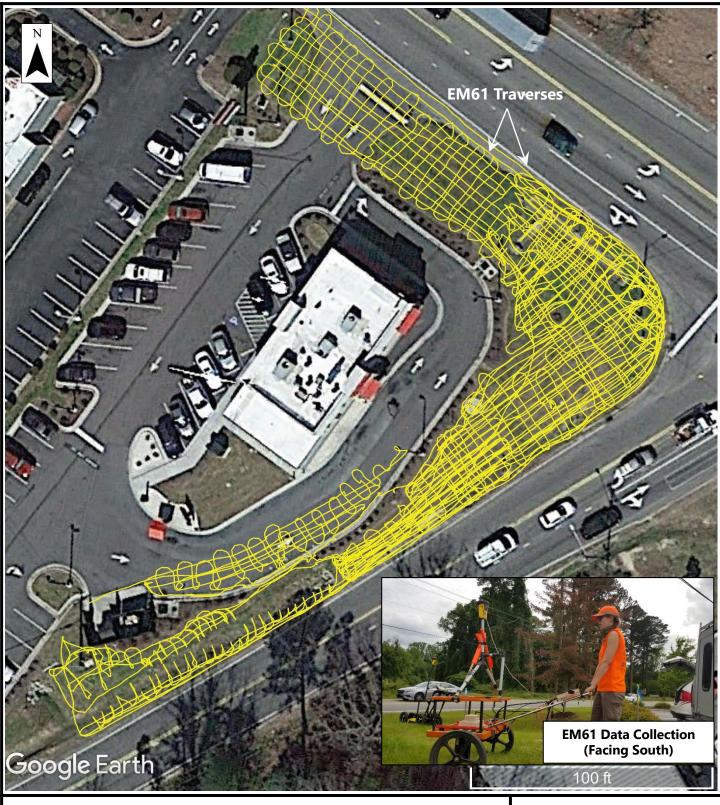

5.0 CONCLUSIONS

The combined analysis of the EM61 and GPR data reveals numerous anomalies which are likely the geophysical response to manmade features such as manholes, drain grates, utility poles, hydrants, buried utilities, and other similar features. However, the geophysical data do not reveal any anomalies within the study area which can be confidently interpreted as possible USTs.

6.0 LIMITATIONS

This study was conducted by registered professional geologists with extensive experience in the collection, processing, and interpretation of geophysical data. It should be noted, however, that all geophysical methods are interpretive, and additional invasive exploration would be required to verify or refute the interpretations within this report.

7.0 FIGURES


Site Location

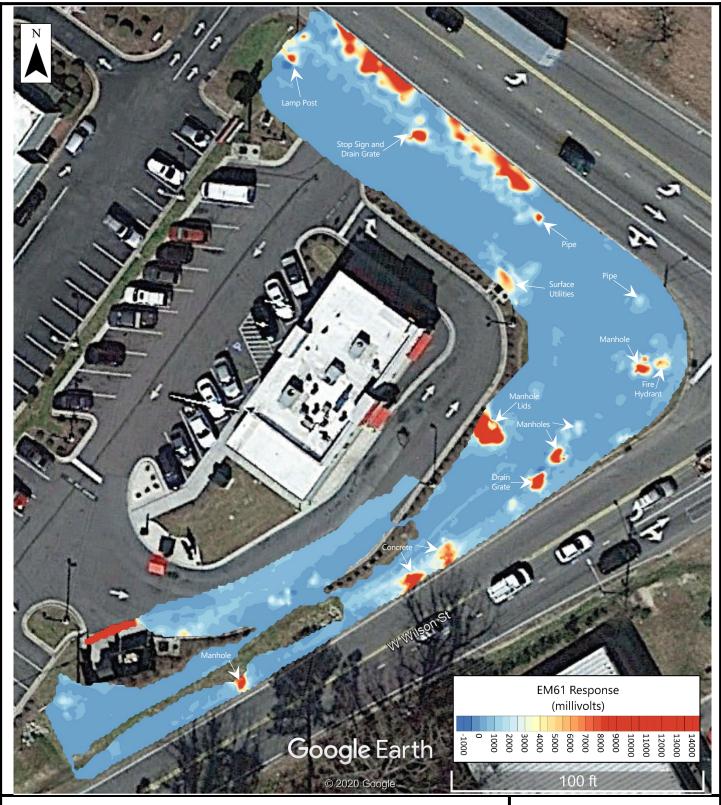
Geophysical Study for Possible USTs 700 Western Boulevard, Tarboro, NC PROJECT: 20080204-010203

Draper Aden Associates

Engineering • Surveying • Environmental Services

2206 South Main Street Blacksburg, VA 24060 540-552-0444 Fax: 540-552-0291 Richmond, VA Charlottesville, VA Hampton Roads, VA Raleigh, NC Fayetteville, NC Northern Virginia Virginia Beach, VA DESIGNED: JMV DRAWN: JMV CHECKED: CMP DATE: 05/18/2020 **FIGURE**

EM61 Traverse Map


Geophysical Study for Possible USTs 700 Western Boulevard, Tarboro, NC

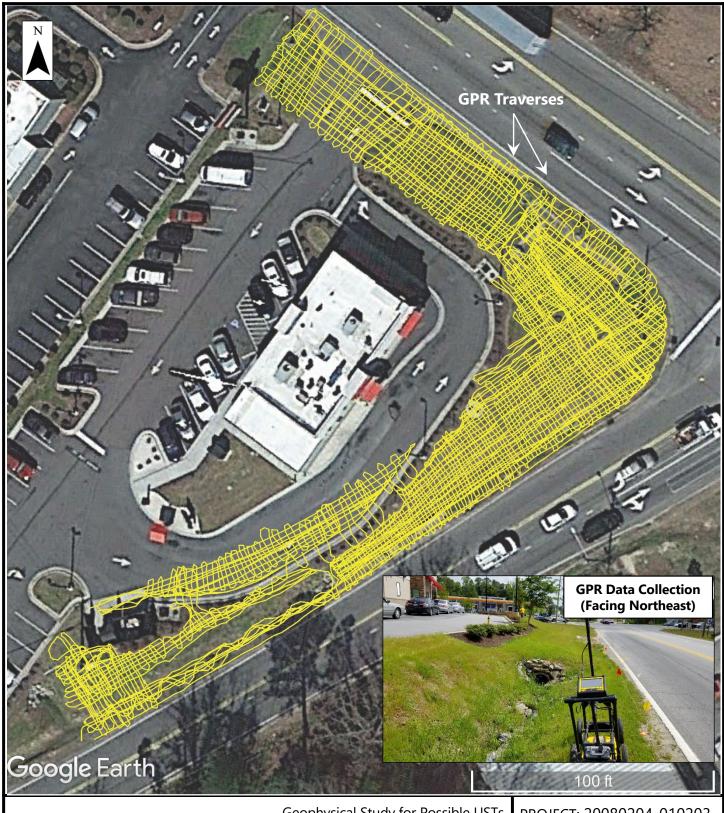
PROJECT: 20080204-010203

Draper Aden Associates

Engineering * Surveying * Environmental Services

2206 South Main Street Blacksburg, VA 24060 540-552-0444 Fax: 540-552-0291 Richmond, VA Charlottesville, VA Hampton Roads, VA Raleigh, NC Fayetteville, NC Northern Virginia Virginia Beach, VA DESIGNED: JMV DRAWN: JMV CHECKED: CMP DATE: 05/18/2020 **FIGURE**

Contoured EM61 Results


Geophysical Study for Possible USTs 700 Western Boulevard, Tarboro, NC

PROJECT: 20080204-010203

Draper Aden Associates

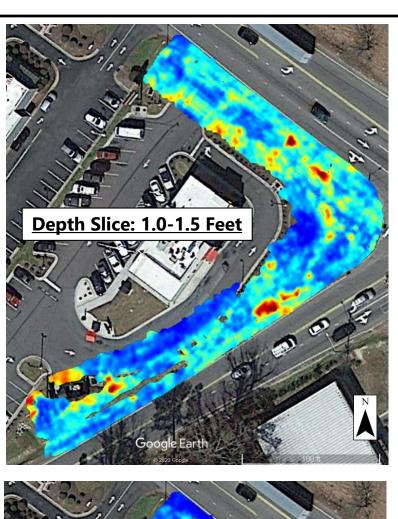
Engineering * Surveying * Environmental Services

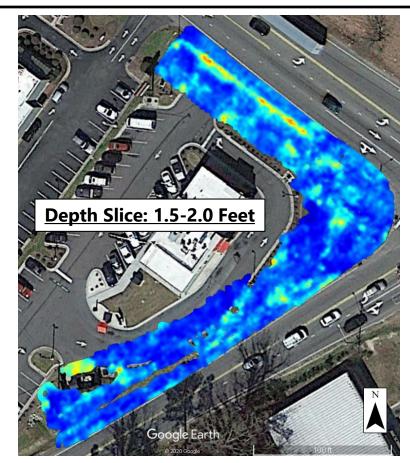
2206 South Main Street Blacksburg, VA 24060 540-552-0444 Fax: 540-552-0291 Richmond, VA Charlottesville, VA Hampton Roads, VA Raleigh, NC Fayetteville, NC Northern Virginia Virginia Beach, VA DESIGNED: JMV DRAWN: JMV CHECKED: CMP DATE: 05/18/2020 FIGURE

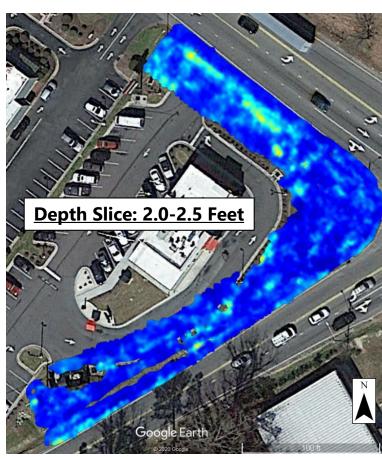
GPR Traverse Map

Geophysical Study for Possible USTs 700 Western Boulevard, Tarboro, NC

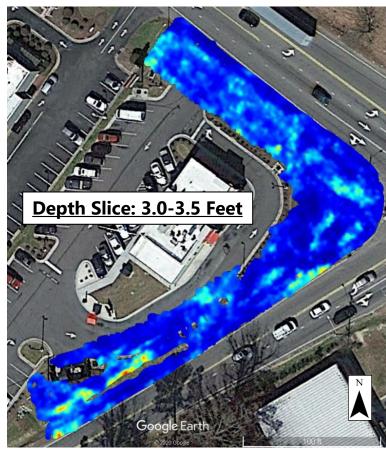
PROJECT: 20080204-010203

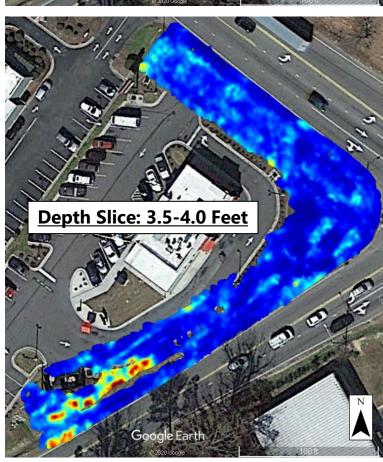

Draper Aden Associates

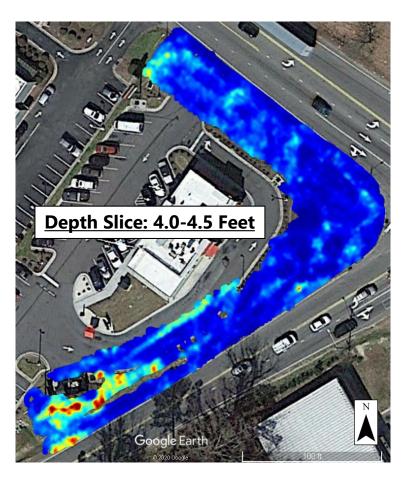

Engineering * Surveying * Environmental Services

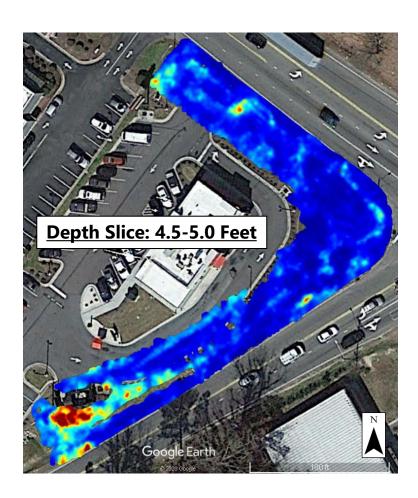

2206 South Main Street Blacksburg, VA 24060 540-552-0444 Fax: 540-552-0291

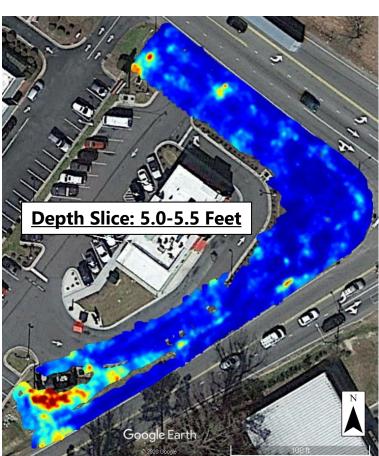
Richmond, VA Charlottesville, VA Hampton Roads, VA

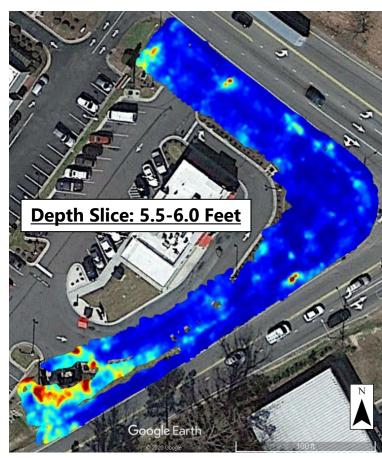

Raleigh, NC Fayetteville, NC Northern Virginia Virginia Beach, VA **DESIGNED: JMV** DRAWN: JMV CHECKED: CMP DATE: 05/18/2020 **FIGURE**




Geophysical Study for Possible USTs 700 Western Boulevard, Tarboro, NC PROJECT: 20080204-010203


GPR Depth Slices from 1.0 Feet to 4.0 Feet Depth




Raleigh, NC Fayetteville, NC Northern Virginia Virginia Beach, VA Charlottesville, VA Hampton Roads, VA

DESIGNED: JMV DRAWN: JMV CHECKED: CMP DATE: 05/18/2020 **FIGURE**

Geophysical Study for UST Investigation 700 Western Boulevard, Tarboro, NC PROJECT: 20080204-010203

GPR Depth Slices from 4.0 Feet to 6.0 Feet Depth

