CONTENTS

NO.

SHEET 1
I
2
3
4
5-7
8-38

R

REFERENCE

DESCRIPTION TITLE SHEET LEGEND (SOIL & ROCK) SITE PLAN PROFILE BORE LOGS SOIL LABORATORY RESULTS

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT**

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY COLUMBUS

PROJECT DESCRIPTION NEW INTERCHANGE AT THE INTERSECTION OF NC 87 AND NC 11

SITE DESCRIPTION BRIDGE NO. 372 ON NC 87 (-L-) EASTBOUND LANE OVER WEYMAN CREEK

STATE	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
N.C.	R–2561CA	1	38

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOLT TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEICH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT (1991) 707-680. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU UN-PLACED TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOL MOISTURE CONDITIONS. MOICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOL MOISTURE CONDITIONS MAY YARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

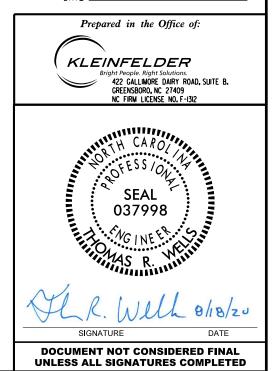
THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPHION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OF FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDENSATIONS FOR ANY THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES: I. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR CUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

PERSONNEL

S. PAPKE

MID-ATLANTIC DRILLING


INVESTIGATED BY S. PAPKE

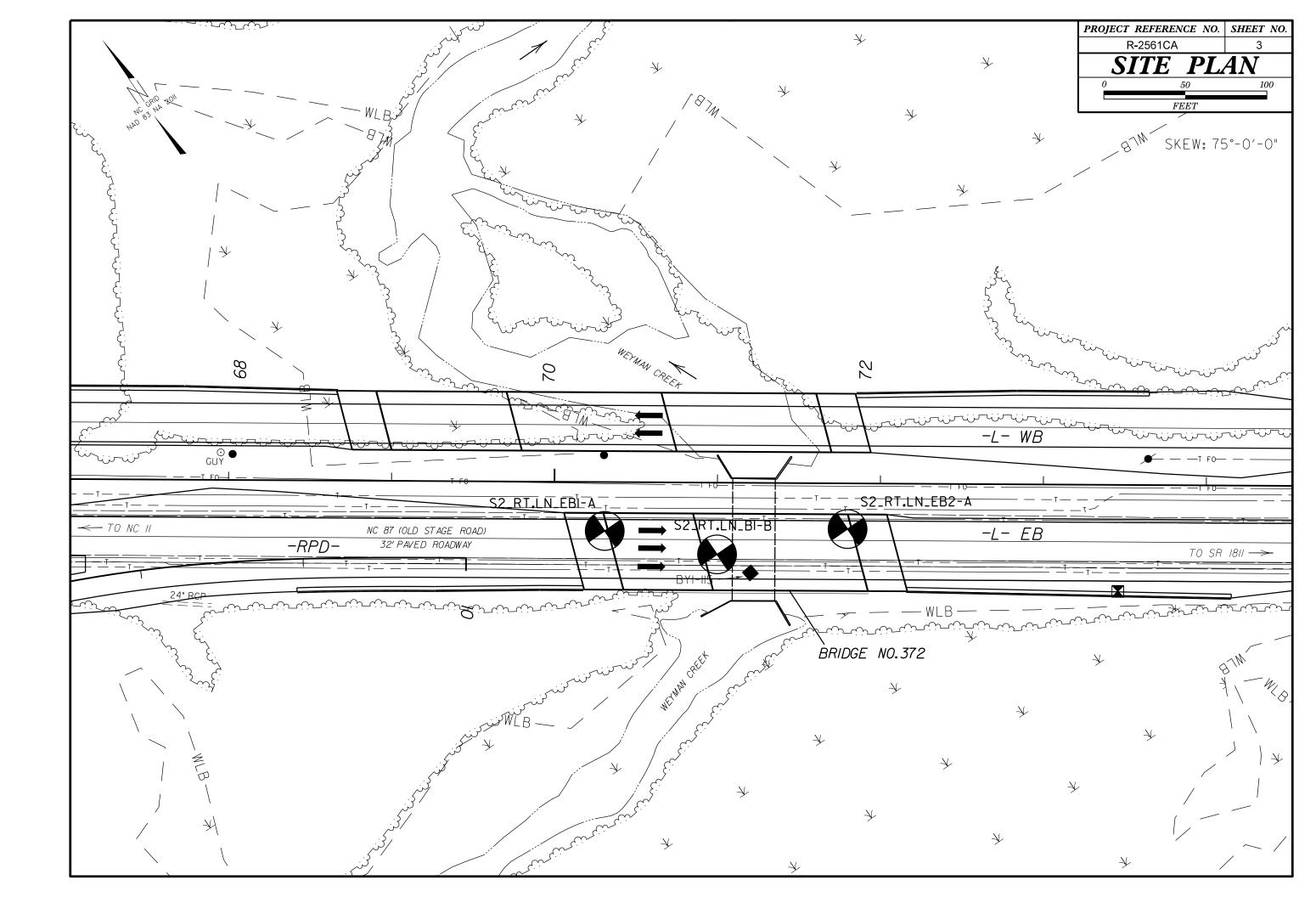
DRAWN BY C. DRISCOLL

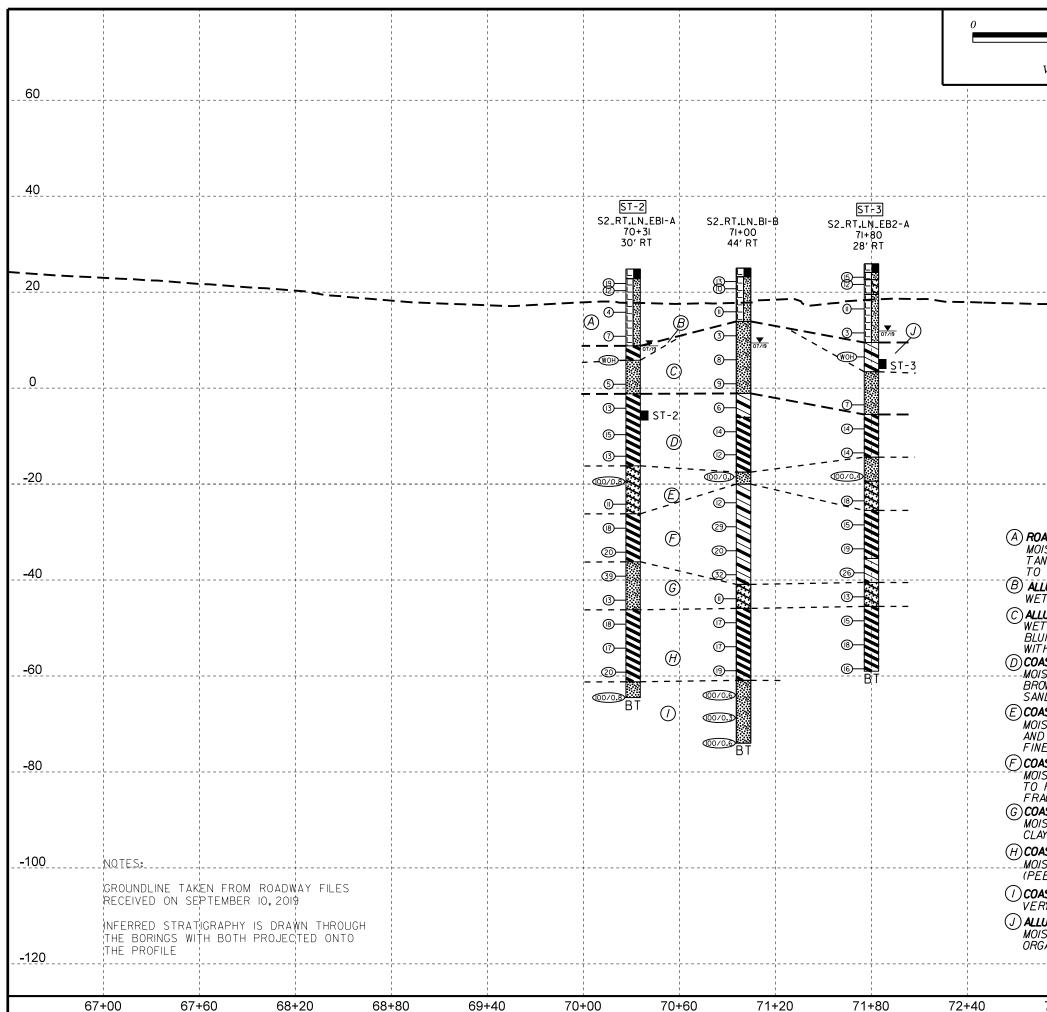
CHECKED BY <u>T. WELLS</u>

SUBMITTED BY _KLEINFELDER, INC.

DATE AUGUST 2020

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT SUBSURFACE INVESTIGATION

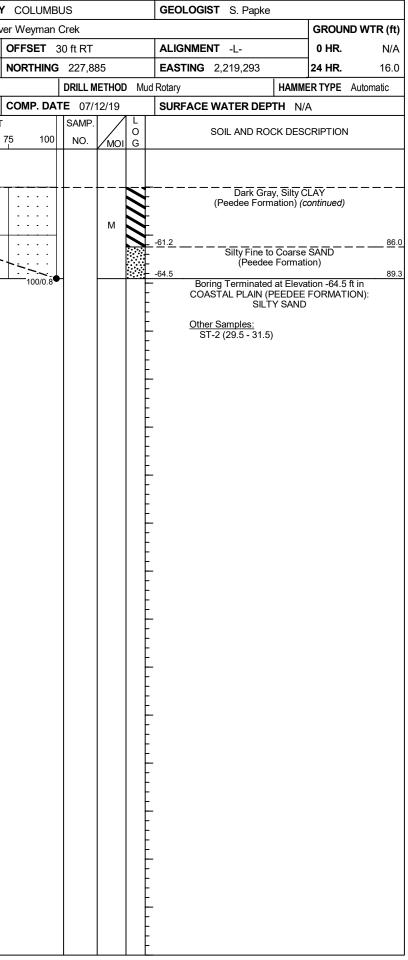

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS


			SOIL (DESCRIP	TION				T		GRA	DATION			l			ROCK D	SCRIPTION
BE PENETH ACCORDIN IS BA CONSISTEN	RATED WITH NG TO THE ASED ON TH NCY,COLOR,	A CONTINUOU STANDARD PE E AASHTO SY TEXTURE, MOI	TED, SEMI-CON JS FLIGHT PO NETRATION TE STEM, BASIC I STURE, AASHTC	ISOLIDATED, WER AUGER ST (AASHTO DESCRIPTION) CLASSIFIC	OR WEATHEF AND YIELD T 206, AST IS GENERALL ATION, AND	LESS THAN 1 M D1586).SC LY INCLUDE 1 OTHER PERTIN	00 BLOWS P DIL CLASSIFI THE FOLLOWI NENT FACTOR	ER FOOT CATION ING: RS SUCH	WELL GRADED - INDICAT UNIFORMLY GRADED - IN GAP-GRADED - INDICATES	DICATES	GOOD REPRESENT S THAT SOIL PA XTURE OF UNIFC	ATION OF PARTIC	_ APPROXIMA ES OF TWO	TELY THE SAME SIZE.	ROCK LINE IND SPT REFUSAL BLOWS IN NON REPRESENTED	DICATES IS PENE N-COAST BY A Z	S THE LEVEL ETRATION B TAL PLAIN ZONE OF WEA	NIN MATERIAL THAT L AT WHICH NON-CO Y A SPLIT SPOON MATERIAL, THE TR ATHERED ROCK.	WOULD YIELD SPT REFUSAL IF TEST NASTAL PLAIN MATERIAL WOULD YIELD SAMPLER EQUAL TO OR LESS THAN Ø. NANSITION BETWEEN SOIL AND ROCK
AS V	S MINERALO	GICAL COMPOS RAY,SILTY CLAY,	ITION, ANGULAI WOIST WITH INT	REPEDDED F	WRE, PLAST	ICITY,ETC. F YERS.HIGHLY F	OR EXAMPLE LASTIC.A-7-6	•				OIL GRAINS IS DE	SIGNATED B	Y THE TERMS:	WEATHERED	_5 ARE	SUPERION	NON-COASTAL PL	JWS: AIN MATERIAL THAT WOULD YIELD SP1
			ND AND				N		ANGULAR, SUBAN			AL COMPOSI	TION		ROCK (WR)	6		100 BLOWS PER	FOOT IF TESTED.
GENERAL CLASS.		GRANULAR MATEF ≤ 35% PASSING			AY MATERIALS PASSING #200		ORGANIC MATER	IALS	MINERAL NAM			FELDSPAR, MICA, TA		ETC.	CRYSTALLINE ROCK (CR)			🖞 WOULD YIELD SP	GRAIN IGNEOUS AND METAMORPHIC RC T REFUSAL IF TESTED. ROCK TYPE IN
GROUP	A-1	A-3	A-2	_		-7 A-1, A-2	A-4, A-5		ARE USED IN	I DESCR		THEY ARE CONSIDE	ERED OF SIG	NIFICANCE.			<u>20.20.</u>	GNEISS, GABBRO, FINE TO COARSE	GRAIN METAMORPHIC AND NON-COASTA
	A-1-a A-1-b	A-2-4 A	2-5 A-2-6 A-2			7-5. A-3 -7-6	A-6, A-7		SLIG+	ATLY CC		ESSIBILITY	LL < 31		NON-CRYSTALL ROCK (NCR)	INE			CK THAT WOULD YEILD SPT REFUSAL JDES PHYLLITE, SLATE, SANDSTONE, ET(
00				2					MODEF	RATELY	COMPRESSIBLE PRESSIBLE		LL = 31 - LL > 50	50	COASTAL PLAIN SEDIMENTARY				SEDIMENTS CEMENTED INTO ROCK, BUT OCK TYPE INCLUDES LIMESTONE, SANDS
-	ю мх					GRANULAR	SILT-	MUCK,				E OF MATER			(CP)			SHELL BEDS, ETC	THERING
*40 3 *200 15	ØMX 50MX 5MX 25MX	51 MN 10 MX 35 MX 35	5 MX 35 MX 35 M	4X 36 MN 36	MN 36 MN 36	SOILS	SOILS	PEAT	ORGANIC MATERIAL		GRANULAR SOILS	SILT - CLAY SOILS	OTHER	MATERIAL	FRESH F	ROCK FF	RESH. CRYST		NTS MAY SHOW SLIGHT STAINING. ROCK
MATERIAL PASSING =40 LL PI	6 MX		I MN 40 MX 41 M I MX 11 MN 11 M			MN LIT	LS WITH ITLE OR IDERATE	HIGHLY	TRACE OF ORGANIC MA LITTLE ORGANIC MATT MODERATELY ORGANIC HIGHLY ORGANIC	TER	2 - 3% 3 - 5% 5 - 10% > 10%	3 - 5% 5 - 12% 12 - 20% > 20%	TRACE LITTLE SOME HIGHLY	1 - 10% 10 - 20% 20 - 35% 35% AND ABOVE	VERY SLIGHT F (V SLI.) (HAMMER ROCK GE CRYSTAL	IF CRYSTAL ENERALLY FR	LLINE. RESH, JOINTS STAINE DKEN SPECIMEN FACE	D, SOME JOINTS MAY SHOW THIN CLAY C SHINE BRIGHTLY. ROCK RINGS UNDER H
	Ø TONE FRAGS. GRAVEL, AND	Ø Ø	4 MX	8 MX 12 SILTY	MX 16 MX NO	I MX AMO	iunts of Rganic Iatter	ORGANIC SOILS		WATE		ND WATER	TELY AFTER	DRILLING	(SLI.) 1	I INCH. I	OPEN JOINTS	5 MAY CONTAIN CLAY	D AND DISCOLORATION EXTENDS INTO RC . IN GRANITOID ROCKS SOME OCCASIONA CRYSTALLINE ROCKS RING UNDER HAMMEF
MATERIALS	SAND	SAND GRAY	(El and sand	SOILS	SOILS		1					L AFTER <u>24</u> H							ISCOLORATION AND WEATHERING EFFECT
GEN. RATING AS SUBGRADE		EXCELLENT TO G	000	FAI	r to poor	FAIR TO	POOR	UNSUITABLE		PERC	HED WATER, SAT	URATED ZONE, OR	WATER BEAR	RING STRATA	1	DULL SC	OUND UNDER		DULL AND DISCOLORED, SOME SHOW CLA SHOWS SIGNIFICANT LOSS OF STRENGTH
		PIOF A-7-5 SUB	GROUP IS ≤ LL	- 30; PI OF 6	-7-6 SUBGROU	P IS > LL - 30	 		- O-M-	SPRIM	NG OR SEEP						RESH ROCK. ГК ЕХСЕРТ О		OR STAINED. IN GRANITOID ROCKS.ALL F
		00	NSISTENC							1	MISCELLAN	EOUS SYMBO	LS		SEVERE 4	AND DIS	COLORED AN	D A MAJORITY SHOW	KAOLINIZATION. ROCK SHOWS SEVERE L IST'S PICK. ROCK GIVES "CLUNK" SOUND
PRIMARY SU	OIL TYPE	COMPACT CONSIS	NESS OR	PENETRAT	OF STANDAR ION RESISTE		NGE OF UNC	STRENGTH				DIP & DIP DIRE						<u>(IELD SPT REFUSAL</u>	IST S FICK, NOCK DIVES CLONK SOUND
GENERAL GRANULA		VERY	LOOSE DSE	4	< 4 TO 10		(TONS/F	1-)	UTH SOIL DE	SCRIPTI	_	▶ OF ROCK STRUC SPT DPT DMT TEST BOR VST PMT	~	SLOPE INDICATOR INSTALLATION	(SEV.) F	REDUCED TO SOME	D IN STRENG E EXTENT. S	TH TO STRONG SOIL	OR STAINED. ROCK FABRIC CLEAR AND E IN GRANITOID ROCKS ALL FELDSPARS A STRONG ROCK USUALLY REMAIN.
MATERIAL (NON-COH	L	DE	DENSE NSE	30	1 TO 30 1 TO 50		N/A		ARTIFICIAL FI	LL (AF)		AUGER BORING	۵	CONE PENETROMETER TEST	-			<u>VIELD SPT N VALUES</u> DUARTZ DISCOLORED	<u>> 100 BPF</u> OR STAINED. ROCK FABRIC ELEMENTS AF
GENERAL		VERY VERY SC			> 50 < 2 ? TO 4		< 0.25 0.25 TO				\leftarrow	- CORE BORING	•	SOUNDING ROD	(V SEV.) F	REMAINI	NG. SAPROLI	TE IS AN EXAMPLE	SOIL STATUS, WITH ONLY FRAGMENTS OU OF ROCK WEATHERED TO A DEGREE THAT MAIN. <u>IF TESTED, WOULD YIELD SPT N V</u>
SILT-CLA MATERIAL (COHESIV	L	ST VERY		8 15	TO 8 TO 15 TO 30		0.5 TO 1 TO 2 2 TO 4	2	INFERRED ROC			MONITORING WE PIEZOMETER INSTALLATION	ш 🕂 —	TEST BORING WITH CORE - SPT N-VALUE	9	SCATTER			OT DISCERNIBLE.OR DISCERNIBLE ONLY AY BE PRESENT AS DIKES OR STRINGERS
					> 30 IN SIZE		> 4			R		ATION SYMB						ROCK	HARDNESS
U.S. STD. SIE	VE SIZE		4 10	40		200 270					CLASSIFIED EXC			SIFIED EXCAVATION -				HED BY KNIFE OR SH WS OF THE GEOLOGIS	ARP PICK. BREAKING OF HAND SPECIMEN T'S PICK.
OPENING (MM			4.76 2.00	0.42	0.25 0	.075 0.053					SUITABLE WASTE CLASSIFIED EXC		USED IN	ABLE,BUT NOT TO BE N THE TOP 3 FEET OF	HARD (CAN BE	SCRATCHED	BY KNIFE OR PICK	ONLY WITH DIFFICULTY. HARD HAMMER B
BOULDER			RAVEL	COARSE SAND		FINE SAND	SILT	CLAY			CEPTABLE DEGRA		EMBANK	MENT OR BACKFILL			ACH HAND SP SCRATCHED		GOUGES OR GROOVES TO 0.25 INCHES DE
(BLDR.) GRAIN MM SIZE IN.	305	08.) 75 3	(GR.) 2.0	(CSE. SD.)	(F 0.25	SD.) 0.05	(SL.) 0.005	(CL.)	AR - AUGER REFUSAL BT - BORING TERMINATED		MED ME	EVIATIONS EDIUM MICACEOUS		VANE SHEAR TEST	HARD E	EXCAVAT BY MODE	TED BY HARD ERATE BLOWS) BLOW OF A GEOLO S.	DIST'S PICK. HAND SPECIMENS CAN BE D
SIZE IN.		-	STURE -				<u>م</u>		CL CLAY		MOD MO	ODERATELY	γ-1	JNIT WEIGHT	HARD (can be	EXCAVATED	IN SMALL CHIPS TO	S DEEP BY FIRM PRESSURE OF KNIFE C PEICES 1 INCH MAXIMUM SIZE BY HARD
	MOISTURE C	SCALE	FIELD MO DESCRI	DISTURE		OR FIELD MO		SCRIPTION	CPT - CONE PENETRATION CSE COARSE DMT - DILATOMETER TES	т	ORG OF PMT - PF	RESSUREMETER TE	ST <u>SAM</u>	DRY UNIT WEIGHT	SOFT C	CAN BE FROM CH	HIPS TO SEV	GOUGED READILY BY REAL INCHES IN SIZ	KNIFE OR PICK. CAN BE EXCAVATED IN E BY MODERATE BLOWS OF A PICK POIN
LL			- SATURA (SAT.			T LIQUID; VEF			DPT - DYNAMIC PENETRAT e - VOID RATIO F - FINE	TION TE	SD SA SD SA SL SIL SLI SL	T, SILTY	ST -	SPLIT SPOON SHELBY TUBE	VERY (CAN BE	CARVED WIT		SSURE. CAVATED READILY WITH POINT OF PICK. BY FINGER PRESSURE. CAN BE SCRATCH
PLASTIC		21.11	- WET -	(w)		ID: REQUIRES)	 FOSS FOSSILIFEROUS FRAC FRACTURED, FRAC FRAGS FRAGMENTS 	TURES	TCR - TF W - MOIS	RICONE REFUSAL STURE CONTENT		RECOMPACTED TRIAXIAL CALIFORNIA BEARING		FINGERN	IAIL. URE SPA	ACING	BEDDING
(PI) PL	PLASTI	C LIMIT							HI HIGHLY			0N SUBJECT		RATIO	TERM VERY WIDE		MORE	SPACING THAN 10 FEET	TERM VERY THICKLY BEDDED
		M MOISTURE	- MOIST	- (M)	SOLID; A	T OR NEAR	OPTIMUM MO	DISTURE	DRILL UNITS:		NCING TOOLS:	ON SOBSECT	HAMMER 1		WIDE MODERATEL		3	TO 10 FEET TO 3 FEET	THICKLY BEDDED 1 THINLY BEDDED 0.
SL _	SHRINK	AGE LIMIT			BEQUIRE	S ADDITIONA		n	X CME-45C		CLAY BITS		X AUT	OMATIC MANUAL	CLOSE VERY CLOSE		0.1	16 TO 1 FOOT THAN 0.16 FEET	VERY THINLY BEDDED 0.0 THICKLY LAMINATED 0.00
			- DRY -	(D)		OPTIMUM MO		-	CME-55		6" CONTINUOUS F		CORE SIZ	E:		·	LE 35		THINLY LAMINATED <
			PL	ASTICIT	(8" HOLLOW AUGE		□-в _	П-н					RATION
	PLASTIC	TIC	PLAST	ICITY INDE) Ø-5 6-15	<u>((PI)</u>		DRY STRENO VERY LOW SLIGHT		CME-550		HARD FACED FIN	INSERTS			FOR SEDIMENT		LKS, INDURA	RUBBING WIT	NING OF MATERIAL BY CEMENTING.HE I FINGER FREES NUMEROUS GRAINS; BY HAMMER DISINTEGRATES SAMPLE.
	MODERATELY PLASTIC 16-25 MEDIUM HIGHLY PLASTIC 26 OR MORE HIGH					PORTABLE HOIST		CASING V	ADVANCER		T HOLE DIGGER D AUGER	MODERA	TELY IN	NDURATED		BE SEPARATED FROM SAMPLE WITH ST Y WHEN HIT WITH HAMMER.			
			I	COLOR							TRICONE	5/16. TUNGCARB.		NDING ROD	INDURAT	ED			DIFFICULT TO SEPARATE WITH STEEL BREAK WITH HAMMER.
			DR OR COLOR ,DARK,STREA								CORE BIT			E SHEAR TEST	EXTREM	ELY IN(DURATED	SHARP HAMME	R BLOWS REQUIRED TO BREAK SAMPLE KS ACROSS GRAINS.

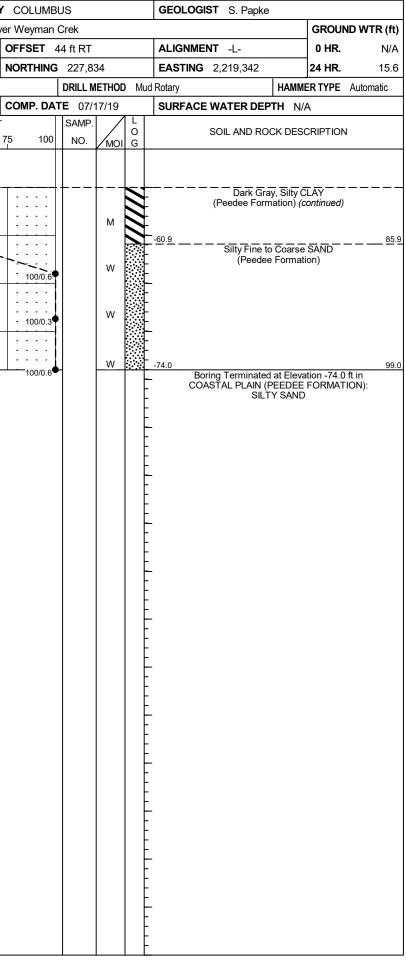
PROJECT REFERENCE NO.

R-2561CA

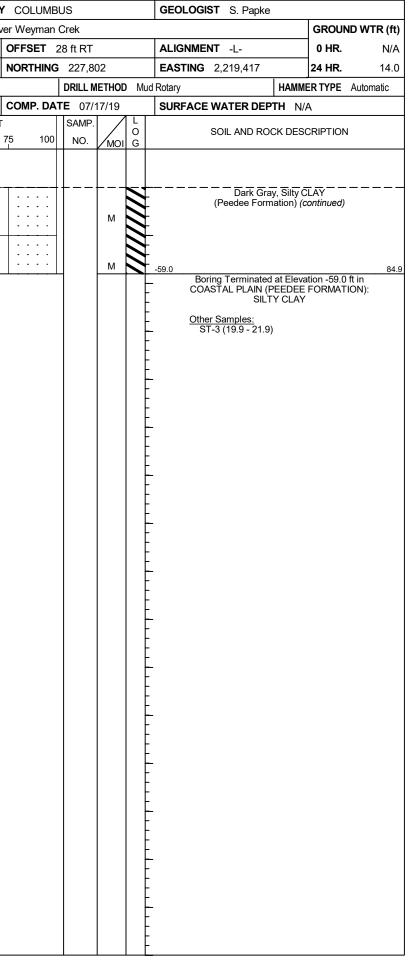
	TERMS AND DEFINITIONS
ED. AN INFERRED SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
FOOT PER 60	AUUIFER - A WATER BEARING FORMATION OR STRATA.
IS OFTEN	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING
N VALUES >	A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
IN THEORY	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
СК ТНАТ	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND
CLUDES GRANITE,	SURFACE.
AL PLAIN	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
IF TESTED.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM
C. MAY NOT YIELD	OF SLOPE.
STONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
RINGS UNDER	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
	HORIZONTAL.
OATINGS IF OPEN, AMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE
AMMER BLUWS IF	LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
ICK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE
L FELDSPAR	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
R BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
S. IN	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIG1NAL POSITION AND DISLODGED FROM
Y. ROCK HAS AS COMPARED	PARENT MATERIAL.
HI CUMPARED	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
OSS OF STRENGTH	FIELD.
WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
VIDENT BUT ARE KAOLINIZED	ITS LATERAL EXTENT.
HAE KHULINIZED	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS
RE DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
F STRONG ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
ONLY MINOR ALUES < 100 BPF	OF AN INTERVENING IMPERVIOUS STRATUM.
IN SMALL AND	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
S. SAPROLITE IS	ROCK QUALITY DESIGNATION (RQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE
	RUN AND EXPRESSED AS A PERCENTAGE.
	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
S REQUIRES	ROCK.
	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
LOWS REQUIRED	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO
	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
EEP CAN BE	<u>SLICKENSIDE</u> - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
ETACHED	
	STANDARD PENETRATION TEST (PENETRATION RESISTANCE)(SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL
OR PICK POINT. BLOWS OF THE	WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL
	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
FRAGMENTS	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY
IT. SMALL, THIN	TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
	<u>STRATA ROCK QUALITY DESIGNATION (SRQD)</u> - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
PIECES 1 INCH IED READILY BY	THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
LO NEHOIET DI	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
THICKNESS	BENCH MARK:BY-II5 AT STA. 7I+20.I6 -L- 55' RT (227,8I3 FT.N.,
4 FEET	_2.219.352 FT.E) ELEVATION: 24.22 FEET
.5 - 4 FEET	
16 - 1.5 FEET 13 - 0.16 FEET	NOTES:
08 - 0.03 FEET	
0.008 FEET	
AT, PRESSURE, ETC.	
EEL PROBE:	
PROBE:	
;	
	DATE: 8-15-14

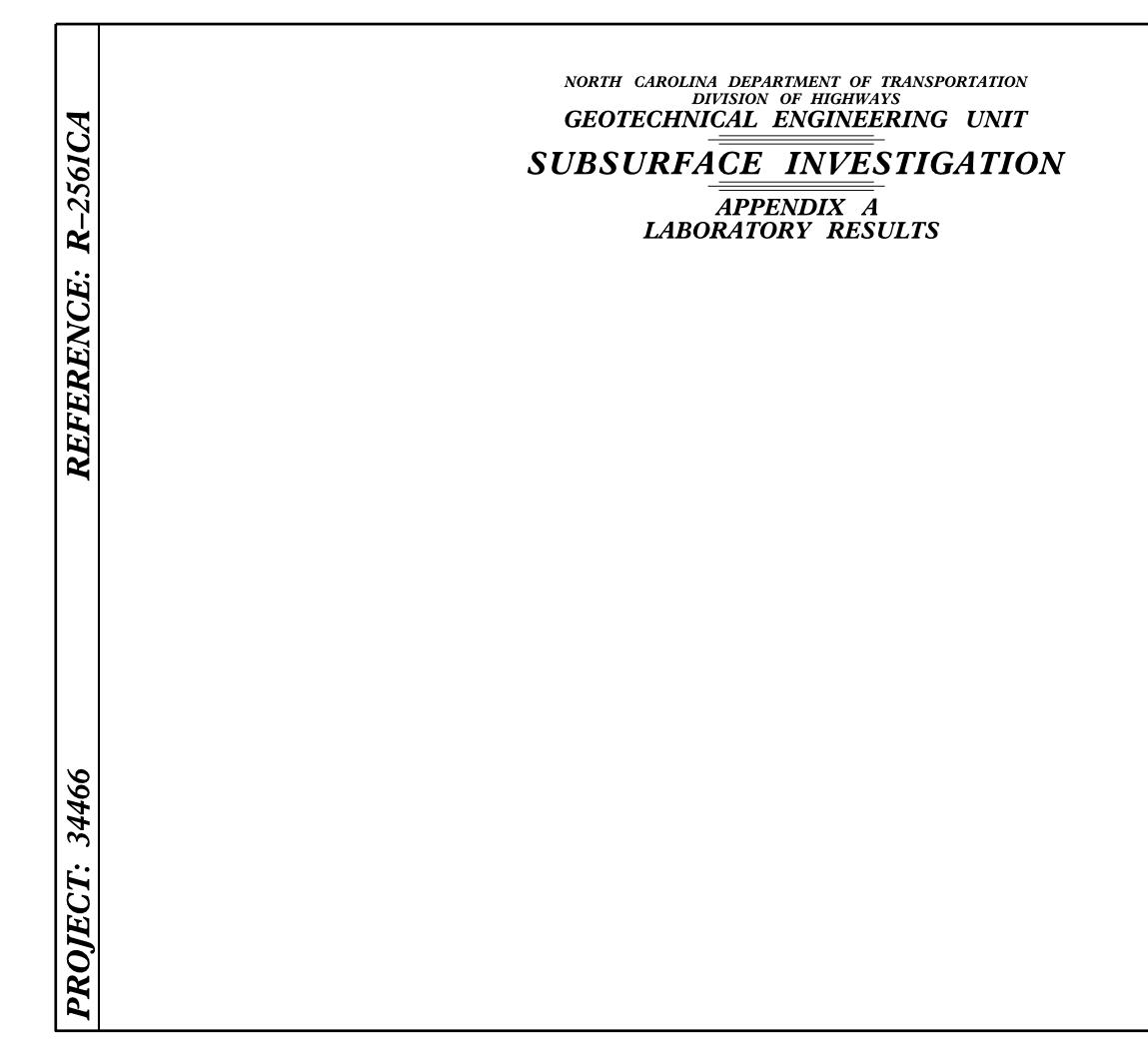


00	100	PROJECT	REFERENCE	NO.	SHEET NO.
60	120		R-2561CA		4
FEET $VE = 3$			FOR BRIDGE EB OVER WE		
i 	1		 		
·			r	, 	
			1 1	Ì	
			1 1 1		
			1		
·	<u>+</u>		' ' '		40
			1		
			1 1	Ì	
			1 		
	-//	<u> </u>	, 		20
	 		ı ı ı		0
			i i i		
			1 1	į	
			1 		
	· +				-20
			1 1 1		
			1 1 1		
D ADWAY EMBANKME DIST , VERY LOOSE 1	OMEDIUI	M DENSE.	, 		
W.GRAY.AND ORANO FINE SAND TO C	GE,SILTY (COARSE	AVEMENT		-40
LUVIAL:	· +		 		-+0
T,VERY SOFT,BRO	WN¦AND (GRAY, SILTY	¦CLAY		
T TO MOIST, VERY	LOOSE T	0 LOOSE,G	RAY.		
UISH GRAY,AND BE TH WOOD FRAGMEI	VTS	I FINE SA			
ASTÀL PLAIN: IST . M EDIUMDENSE	DARK-G	RAY_T0	 		- 60
OWN AND GRAY, SIL	TYCLAY	TO FINE			
ASTAL PLAN:		10147	 		
IST.VERY DENSE 1 D GRAY,CLAYEY FIN	TO MEDIUI	N DENSE, D ARSF SAN	ARK GRAY TO	BROW	/N
IE T¦O COARSE SA	ND¦(PEEL	DEE FORM	ATION)		
ASTAL PLAIN: IST.\$TIFF TO-HAR		GRAY, SILTY	CLAY		-80
FINE SANDY CLAY AGMENTS (PEEDEL	WITH TF	RACE SHEL			
ASTAL PLAIN:					
IST,DENSE TO ME AYEY¦FINE TO COA				πar,	
ASTAL PLAIN:					-100
IST, \$TIFF_TO_VER EDEE FORMATION		UARK_ GRAY	SILLY_CLAY		
ASTAL PLAIN:					
RY DENSE,SILTY F L UVIAL:	INE IO C	UARSE SA	ND (PEEDEE F ¦	·URM/	ai IUN)
IST, VERY SOFT, GR.	AY, FINE	SANDY CLAY	WITH TRACE	OF	
GANIC MATTER AND		TAGMENIS	2		-120
73+00	73+60	71	+20 7	4+80)
10700	טסינ ו	/4-	r∠∪ /	4+ŏl	J


GEOTECHNICAL BORING REPORT BORE LOG

											1									
WBS	34466	6.4.1			Т	IP R-2561CA COUN	TY COLUM	BUS			GEOLOGIST S. Papke	1	WB	S 34466	.4.1			TI	P R-2561CA	COUNTY
SITE	DESCR	IPTION	Brid	ge No.	372 o	n NC 87 (-L-) Eastbound Lane	over Weymar	n Crek				GROUND WTR (ft)	SIT	E DESCR	IPTION	Bridg	e No.	372 on	NC 87 (-L-) Eastboun	nd Lane over
BORI	NG NO.	S2_F	RT.LN_	EB1-A	\ s	TATION 70+31	OFFSET	30 ft RT			ALIGNMENT -L-	0 HR. N/A	BOF	ring no.	S2_F	T.LN_E	EB1-A	. S1	TATION 70+31	C
COLL	AR EL	EV. 24	1.8 ft		Т	OTAL DEPTH 89.3 ft	NORTHIN	G 227,8	85		EASTING 2,219,293	24 HR. 16.0	COI	LAR ELI	EV. 24	.8 ft		т	OTAL DEPTH 89.3 ft	N
DRILL	RIG/HAM	IMER EF	F./DAT	E MIC)5464 C	CME-45C 90% 02/21/2019	•	DRILL	NETHO	D Mu	d Rotary HAM	MER TYPE Automatic	DRIL	L RIG/HAN	IMER EF	F./DATE	MID	5464 CN	ME-45C 90% 02/21/2019	•
DRIL	LER B	. Fowle	r		s	TART DATE 07/12/19	COMP. DA	ATE 07/	/12/19		SURFACE WATER DEPTH	I/A	DRI	LLER B	Fowle	r		ST	ART DATE 07/12/19	9 C
FLEV	DRIVE	DEPTH	BLC	ow co	UNT	BLOWS PER FO	DT	SAMP.	. 💙/				ELE\				w co		BLOWS F	PER FOOT
ELEV (ft)	ELEV (ft)	(ft)		0.5ft	0.5ft	0 25 50	75 100	NO.	мо	0 G	SOIL AND ROCK DES	SCRIPTION DEPTH (fi	(ft)	ELEV (ft)	(ft)	0.5ft	0.5ft	0.5ft	0 25 5	50 75
							- 1					, , , , , , , , , , , , , , , , , , ,								
25											_24.8 GROUND SURI	FACE 0.0	-55						Matc	h Line
		ŧ	1			<mark>.</mark>					ROADWAY EMBAN	NKMENT		+		+				
	22.8 21.3	<u>2.0</u> 3.5	8	9	10	_ · · · · · · · · · · · · · · ↓ 19 · · · · · · ·	· · · · · ·		м		<u>. 22.8</u> Asphalt (0.0 - 2.0 Tan, Gray and Orange, Silt	v Coarse to Fine		-58.2	- 83.0					
_20		1	6	6	6				м		SAND with Trace Cl	ay Seams	-60		L	6	9	11	<u>↓</u> 20	
		ŧ				:/: : : : : : : : :	· · · · ·													
	16.8	8.0	3	1	3	$\left \begin{array}{c} J \\ J \\ L \end{array} \right $			м					-63.2 -	- 88.0	5	37	63/0.3		
15	-	Ŧ		.	ľ						_			-	-	Ŭ	01	00/0.0		
		‡					· · · · · ·							-	F					
10	11.8	<u> </u>	2	3	4	$\frac{1}{1} \begin{bmatrix} \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \frac{1}{2}, \frac{1}{$	· · · · · ·		м					-	-					
10	-	ŧ				$\left \begin{array}{c c c c c c c c c c c c c c c c c c c$						16.0		-	-					
	68	 18.0				$ \hat{f} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	· · · · ·				ALLUVIAL Brown and Gray, Si			-	Ł					
5		+	WOH	WOH	WOH	$\downarrow \phi_0$			w		_ 5.8 Gray, Silty, Fine SANE	19.0		-	-					
		Ŧ									Fragments	S Will Wood		-	F					
	1.8	23.0				,	· · · · · ·							-	ļ.					
0		‡	1	3	2	b 5		41	W		_			-	È.					
		t					· · · · ·				<u></u>	AIN		-						
	-3.2	28.0	4	6	7				м		Dark Gray, Silty (Peedee Forma	CLAY		-	-					
-5	-	Ŧ	·			• • • • • • • • • • • • • • • • • • •			27%					-	F					
		‡					· · · · · ·		21%						-					
10	-8.7	33.5	4	7	8	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·								-	È					
-10	-	ŧ	"	'					M	N	<u>-</u>				F					
	-13.2	- 38.0					· · · · ·			N				-						
-15	-10.2	T 30.0	4	5	8				м					-	F					
	-	Ŧ						11				<u></u>			F					
-	-18.2	43.0			0.5/0.0	· · · · · · · · · · ·	÷				Dark Gray, Clayey Fine to Peedee Forma	ation)			-					
-20	-	ŧ	17	65	35/0.3	3	100/0.8	∳			_			-	L					
		ŧ				· · · · · · · · · · · ·								-	L					
	-23.2	48.0	4	5	6	· · · · · · · · · · · · · · · · ·			м					-	-					
-25	-	Ŧ	·							\sim		51.0		-	F					
		‡					· · · · · ·			Ň	Dark Gray, Silty CLAY w	ith Trace Shell		-	F					
-30	-28.2	- <u>53.0</u>	6	8	10		· · · · · ·		м		- Fragments - (Peedee Forma	ation)		-	-					
<u>-30</u> <u>-35</u> <u>-40</u>	-	ŧ									_ ·			-						
J	-33.2	58.0				· · · · · · · · · · ·	· · · · ·			N				-	Ł					
-35		+	8	9	11				м	N				-	-					
		Ŧ									- <u></u>			-	F					
	-38.2	63.0	10	01	10	_ · · · · · · · · · · · · · ·	· · · · · ·			///	Orange and Gray, Clayey SAND	Fine to Coarse		-	ļ.					
-40	_	‡	12	21	18	39			M	///	- (Peedee Forma	ation)		-	ļ.					
		‡		1			- -			//					t					
-45	-43.2	68.0	5	5	8				м	\sim					Ł					
	-	Ŧ								\langle / \rangle	-46.2	71.0		-	F					
		‡				· · ! · · · · · · · ·	· · · · · · · ·			Ň					ļ.					
= 0	-48.2	- 73.0 -	6	8	10	$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	· · · · · ·		м	\mathbb{N}	(Peedee Forma	ation)			È					
-50	-	t								N	-			-	F					
	-53 2	- 78.0								N				-	Ł					
-55	-00.2	+ 10.0	6	7	10	$ \cdot \cdot \cdot \downarrow_{17} \cdot \cdot \cdot \cdot \cdot \cdot \cdot$			м	N	-				F					
-55		L			-	<u> </u>							L		L					


GEOTECHNICAL BORING REPORT BORE LOG


BORING NO. S2_RT.LN_B1-B STATION 71+00 OFFSET 44 ft RT ALIGNMENT 0 NA COLLAR ELEV. 25.0 ft TOTAL DEPTH 90.0 ft NORTHING 227,834 EASTING 2,219,342 24 HR 15.6 DRILL RIGHAMMER EFF.DATE MD8464 CME-45C 30% 0221/2019 DRILL METHOD Mud Rolary HAMMER TYPE Automatic DRILL RIGHAMMER EFF.DATE DRILD R B. Fowler START DATE 0/17/1/19 COMP. DATE 0/17/1/19 SURFACE WATER DEPTH NA ELEV DRIVE DEPTH (N) SOIL AND ROCK DESCRIPTION DEPTH (N)	TIP R-2561CA COUNTY je No. 372 on NC 87 (-L-) Eastbound Lane over B1-B STATION 71+00 O B1-B STATION 71+00 O TOTAL DEPTH 99.0 ft N MID5464 CME-45C 90% 02/21/2019 START DATE 07/17/19 C W COUNT BLOWS PER FOOT 0.5ft 0.5ft 0 25 50 75 Match Line Match Line
BORING NO. S2_RT_LN_B1-B STATION T1+00 OFFSET 44 ft RT ALIGNMENT 0 NA COLLAR ELEV. 25.0 ft TOTAL DEPTH 99.0 ft NORTHING 227,834 EASTING 2.219,342 24 HR 15.6 DRILL RGHAMMER EFF.DATE MD3640 40K-45C 90% 0221/2019 DRILL METHOD Mud Rotary HAMMER TYPE Automatic DRILL RGHAMMER EFF.DATE MD3640 40K-45C 90% 0221/2019 DRILL METHOD Mud Rotary HAMMER TYPE Automatic DRILL RGHAMMER EFF.DATE DRILD R B. Fowler START DATE 07/17/19 COMP. DATE 07/17/19 SURFACE WATER DEPTH N/A DEPTH DELLER B. Fowler ELEV DRIV BLOW COUNT BLOW SPER FOOT SAMP. Sold AND ROCK DESCRIPTION DEPTH (B) O((1) (1) -55 -57.9	B1-B STATION 71+00 C TOTAL DEPTH 99.0 ft N MID5464 CME-45C 90% 02/21/2019 START DATE 07/17/19 C W COUNT BLOWS PER FOOT 0.5ft 0.25 50 75
COLLAR ELEV. 25.0 ft TOTAL DEPTH 99.0 ft NORTHING 227,834 EASTING 2,219,342 24 HR. 1.6 DRILL RIGHAMMER EFF.JDATE MID5464 CME-45C 90% 0221/2019 DRILL METHOD Mud Rotary HAMMER TYPE Automatic DRILLER B. Fowler START DATE 07/17/19 COMP. DATE 07/17/19 SURFACE WATER DEPTH NAMP. V b BULK CEVERT DRILL RE B. Fowler ELEV SOL AND ROCK DESCRIPTION DEPTH (B) DRILL RE B. Fowler ELEV. (ft) SOL AND ROCK DESCRIPTION DEPTH (B) DRILL RE B. Fowler ELEV. (ft) DRILL RE B. Fowler ELEV. (ft) DEPTH (B) DEP	TOTAL DEPTH 99.0 ft N MID5464 CME-45C 90% 02/21/2019 START DATE 07/17/19 C W COUNT BLOWS PER FOOT 0 25 50 75 0.5ft 0.5ft 0 25 50 75
DRILL ROHAMMER EFF.DATE MD6464 CME-45C 90% 02/21/2019 DRILL METHOD Mud Rotary HAMMER TYPE Automatic DRILL ROHAMMER EFF.DATE START DATE 07/17/19 COMP. DATE 07/17/19 SURFACE WATER DEPTH N/A DRILL ROHAMMER EFF.DATE 07/17/19 COMP. DATE 07/17/19 SURFACE WATER DEPTH N/A DRILL ROHAMMER EFF.DATE 0.5ft 0.25 50 75 100 SOIL AND ROCK DESCRIPTION DEPTH (ft) CMP. DATE 0/1 <t< th=""><th>MID5464 CME-45C 90% 02/21/2019 START DATE 07/17/19 C W COUNT BLOWS PER FOOT 0.5ft 0.5ft 0 25 50 75</th></t<>	MID5464 CME-45C 90% 02/21/2019 START DATE 07/17/19 C W COUNT BLOWS PER FOOT 0.5ft 0.5ft 0 25 50 75
DRILLER B. Fowler START DATE 07/17/19 COMP. DATE 07/17/19 SURFACE WATER DEPTH N/A ELEV DENVE DEPTH BLOWS OUNT BLOWS PER FOOT SAMP. SOIL AND ROCK DESCRIPTION ELEV. (8) SOIL AND ROCK DESCRIPTION ELEV. (8) DepTH ELEV. (8) SOIL AND ROCK DESCRIPTION ELEV. (8) DepTH (10) ELEV. (10) ELEV. (10) ELEV. (10) <t< th=""><th>START DATE 07/17/19 C W COUNT BLOWS PER FOOT 0.5ft 0.5ft 25 50 75</th></t<>	START DATE 07/17/19 C W COUNT BLOWS PER FOOT 0.5ft 0.5ft 25 50 75
ELEV DEPTH (ft) BLOW COUNT (ft) BLOWS PER FOOT (ft) SAMP. NO. SOIL AND ROCK DESCRIPTION (ft) ELEV (ft) DePTH (ft) ELEV (ft) DePTH (ft) ELEV (ft) DePTH (ft) BLOW COUNT BLOW SPER FOOT (ft) SOIL AND ROCK DESCRIPTION (ft) ELEV (ft) DePTH (ft) BLOW (ft) DePTH (ft) DeFTH (ft) DeFTH (ft) DeFTH (ft	W COUNT BLOWS PER FOOT 0.5ft 0.5ft 0 25 50 75
(ft) (ft) 0.5ft 0.5ft 0.5ft 0 25 50 75 100 NO G ELEV. (ft) DEPTH (ft) (ft) Left) (ft) 0.5ft	0.5ft 0.5ft 0 25 50 75
(10) (10) 0.5ft 0.5ft 0.5ft 0 25 50 75 100 NO. MOI G ELEV. (ft) DEPTH (ft) (10) (10) (11)	
232 1.8 - <td>Match Line</td>	Match Line
23.2 1.8	Match Line
232 1.8 - <td></td>	
20 10 <t< td=""><td></td></t<>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 11 I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
11.9 13.1 2 2 1 -7.0 -67.9 92.9 10 -7.0 -67.9 92.9 -67.9 92.9 6.9 18.1 -7.0 -7.0 -7.0 -67.9 92.9 5 -1 3 5 -7.0 -7.29 97.9 -41 1.9 23.1 -7.0 -7.29 97.9 -41 -3.1 28.1 8 4 2 -7.0 -7.29 97.9 M M -1.1 -7.0 -7.2.9 97.9 -7.0 -7.2.9 97.9 0 -3.1 -28.1 8 4 2 -7.0 -7.2.9 97.9	51 49/0.1
11.9 13.1 -7.9 92.9 10 -7.0 -7.0 -6.7.9 92.9 6.9 18.1 -7.0 -7.0 -7.0 -7.0 5 -1 3 -5 -6 3 -7.0 -7.0 -7.0 1.9 23.1 -1.1 -1.1 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.2.9 97.9 41 0 -3.1 28.1 8 4 2 -1.1 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.2.9 97.9 -7.2.9 97.9 -7.2.9 97.9 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.2.9 97.9 -7.0	
10 -70 -70 6.9 18.1 -70 6.9 18.1 -70 -5 -72.9 97.9 -6 -72.9 97.9 -1.1 -72.9 97.9 -1.1 -70 -72.9 -70 -72.9 97.9 41 -70 -72.9 -70 -72.9 97.9 -1.1 -70 -72.9 -72.9 97.9 -1.1 -70 -72.9 -72.9 97.9 -1.1 -70 -72.9 -72.9 97.9 -1.1 -72.9 97.9 -1.1 -72.9 97.9 -1.1 -70 -72.9 -72.9 97.9 -1.1 -70 -72.9 -72.9 -72.9 -72.9 -1.1 -72.9 -72.9 -1.1 -72.9 -72.9 -1.1 -72.9 -72.9 -1.1 -72.9 -72.9 -1.1 -72.9	100/0.3
6.9 18.1 1 3 5 1 3 5 1 1 3 5 1 <td></td>	
5 1 3 5 - - - - - - - 41 1 3 5 6 - - - - - - 41 1 - - - - - - - - - 41 1 - - - - - - - - - - 41 1 - - - - - - - - - - - - - - - - - - 41 - 41 - - 41 -	
0 1.9 23.1 5 6 3 -3.1 28.1 -3.1 28.1 -3.1 28.1 -3.1 -3.1 -3.1	88 12/0.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0 -3.1 28.1 8 4 2 -3.1 28.1 8 4 4 2 -3.1 28.1 8 4 2 -3.1 28.1 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
-3.1 - 28.1 8 4 2	
-3.1 28.1 6 4 2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
-12.9 37.9 12.9 37.9 12.9	
-15 $+$ 4 5 7 $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	
-17.9 42.9 Silty, Fine to Coarse SAND	
-20 Dark Gray, Fine Sandy CLAY	
-22.9 47.9 (Peedee Formation)	
-27.9 52.9 11 13 16	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$-40 \qquad \qquad$	
Image: Second	
-42.9 67.9 (Peedee Formation)	
-47.9 72.9 Dark Gray, Silty CLAY (Peedee Formation)	
-47.9 72.9 6 7 10 · · · · · · · · · · · · · · · · · ·	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

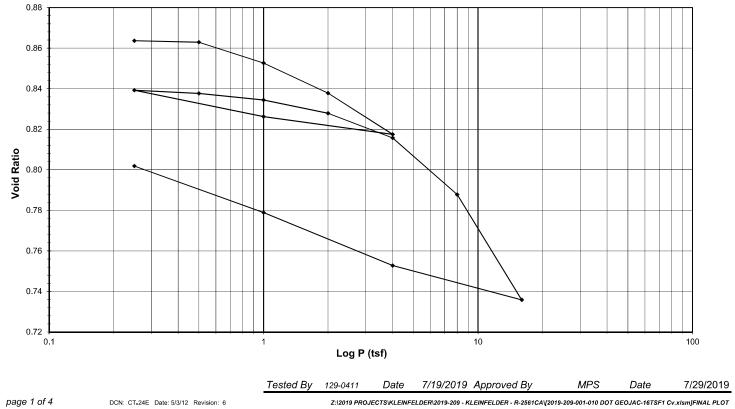
GEOTECHNICAL BORING REPORT BORE LOG

MIDC	0.1.10					- 0	0501									0==]						D D D D D		0.01	
	34466		Duid			IP R-										GEC	LOGIST S. Papke	GROUND WTR (ft)	-	3 3446					P R-256		COU	
	DESCR			-				-	ouna	Lane ov	-		28 ft RT	,									-			-L-) Eastb	ound Lane	
	NG NO.			EB2-A	_				<u> </u>							_		0 HR. N/A					EB2-A				<u> </u>	0
	LAR EL							H 84.			NORT	HING	227,8				TING 2,219,417	24 HR. 14.0	-	LAR EL						PTH 84.		N
	RIG/HAN			E MID												/lud Rotary		ER TYPE Automatic					E MID			1% 02/21/20 ⁻		
	LER B						DATE	07/1				. DA	TE 07/		9		FACE WATER DEPTH N/	Ά		LER E		1				TE 07/1		C
ELEV (ft)	DRIVE ELEV	DEPTH (ft)		0.5ft						R FOOT		100	SAMP	17	/ o		SOIL AND ROCK DES		ELEV (ft)	LEV	DEPTH (ft)		0W CO		0		VS PER FC	
(11)	(ft)	(14)	0.5π	0.5π	0.51		2	25	50		75	100	NO.	/м	OI G	ELEV.	(ft)	DEPTH (ft)	(11)	(ft)	(14)	0.5π	0.5π	0.5π		25	50	75
30		ł														-			-50	+	+		+		⊢──	M	latch Line	
1		ŧ														F				-52.5	78.4				: : i			
25		<u>†</u>				11		1								25.9	GROUND SURF		-55		ŧ	6	8	10		18		
	24.1	1.8	6	7	8				-							24.1	Asphalt (0.0 - 1.8	Feet)		1 .	ŧ							
1	22.6	- 3.3	4	7	5		• () 15		•	· · · ·				M		22.6	Tan and Gray, Silty Coarse Tan Clayey SAI			-57.5	83.4	5	7	9	:::	· · · ·		
20		ŧ					• 12		•						 	19.5	Tan Glayey SA	6.4		<u> </u>	±	-		-	┍┶╌╌╴᠊᠊	16		
	47.5	±				-	¦ : :		•		· ·				L		Tan, Silty Fine to Coarse S	AND with Clay			Ŧ							
	17.5	<u>† 8.4</u> 1	5	5	6	1 -	11		-					м			Seams				Ŧ	1						
15	_	Ŧ				/										-				.	Ŧ							
	12.5	13.4				/															Ŧ							
10		ŧ	2	1	2	4 3			-					-M-		-					ŧ							
10	-	ŧ														<u>9.5</u>	ALLUVIAL	<u>16.4</u>		-	ŧ							
	7.5	18.4	 Iwoн	woн	WOF	<u> </u>			•	· · · ·				М		1	Gray, Fine Sandy CLAY Organic Matter and Woo	with Trace of			ŧ							
5		ŧ							-							-		d i raginents			ŧ							
		ł				$ _{1}$			•		 					3.4		22.5			ł							
		Ŧ														Ē	Brown, Silty Fine S	SAND			Ŧ							
0	-	Ŧ				14			-		<u> </u>					-				-	Ŧ							
	-2.5	+ + 28.4					· · ·		•	· · · ·						-					ŧ							
-5		ŧ	2	3	4		2		-					M							‡							
-5	-	ŧ					<u>.</u>									<u></u>	COASTAL PLA	<u>31.4</u>		.	ŧ							
	-7.5	33.4	3	6	8		·\··							М			Dark Gray, Silty C (Peedee Format	CLAY			ŧ							
-10		ŧ					6 14		-							Ł	(Feedee Format	lion)			ŧ							
	10 5	1					. .		•			•••									Ŧ							
	-12.5	<u>T 38.4</u> T	4	5	9	1 -	6 14		-			•••		м							Ŧ							
-15	_	Ŧ						<u> </u>			+					- <u>15.5</u>		41.4		.	Ŧ							
	-17.5	43.4									· +						Silty Fine to Coarse (Peedee Format	e SAND tion)			Ŧ							
-20		ŧ	10	100/0.4					-		10	0/0.4	·			-					ŧ							
-20	-	ŧ								<u></u>	1				\sim	-20.5	Brown and Grav. Clavev Co	46.4		-	ŧ							
	-22.5	+ 48.4 +	21	9	9		· · ·	<u></u>		· · · ·	· ·			М	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, ,	Brown and Gray, Clayey Co SAND (Peedee Format	tion)			‡							
-25 -30 -35	-	ŧ					∀ 18 		•						<i>\</i>	-25.5		51.4		.	ŧ							
	-27.5	+ 53.4					: į:	 	•	· · · ·		· ·			Ň		Dark Gray, Silty C (Peedee Format	CLAY			ŧ							
	-27.5	1 55.4 1	5	6	9	1 . :	•15		•		· ·	•••		м			(reedee roimat	lion)			ŧ							
-30	-	Ŧ					<u> </u>									-				.	Ŧ							
	-32.5	58.4					• • • • •		•							-					Ŧ							
-35		ŧ	6	8	11		•19		-					M		1					ŧ							
-40	-	ŧ													R	- <u>35.5</u>	Dark Gray, Fine San	dv CLAY61.4		-	ŧ							
	-37.5	<u>+ 63.4</u>	6	10	16	::	· · · \ · · ·		-	· · · ·	· ·	::		М		1	(Peedee Format	tion)			‡	1						
-40	_	‡					· · · /	26	•							-40 5		66.4		.	‡	1						
	40 5	±					::/		:			::			<u> /::</u> ;	∎` ∮	Dark Gray, Clayey Coarse	to Fine SAND	11		ŧ	1						
-45	-42.5	<u>+ 68.4</u> T	4	6	7	1 :	/		-					м	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>الم</u>	(Peedee Format	uon)			f	1						
-45	-	Ŧ					4	• • •							/://	-45.5				.	Ŧ	1						
	-47.5	+ - 73.4					· ŀ ·		:	· · · ·						F	Dark Gray, Silty C (Peedee Format	CLAY tion)			Ŧ	1						
-50		‡ _	5	6	9		• 15	: : :	:			::		M		1	`				‡	1						
-50		L	I	I				L						1		•			J L		<u> </u>	1	I	I				

8

LABORATORY SUMMARY SHEET FOR SOIL SAMPLES

PROJECT NO.: 34466.4.1 (R-2561CA) COUNTY: COLUMBUS NEW INTERCHANGE AT INTERSECTION OF NC 87 AND NC 11


									/	Atterberg Limit	s				Gradatio	n Results			
Sample No.	Boring Number	Alignment	Station	Offset	Sample Depth (ft.)	Natural Moisture Content (%)	Organic Content (%)	AASHTO Class.	L.L.	P.L.	P.I.	Retained #4 Sieve	Pass #10 Sieve	Pass #40 Sieve	Pass #200 Sieve	Coarse Sand (%)	Fine Sand (%)	Silt (%)	Clay (%)
ST-2	S2_RT.LN_EB1-A	-L-	70+31	30' RT	29.5 - 31.5	26.5		A-7-6	45	17	28	0.0	100.0	99.8	75.9	0.4	35.3	24.7	39.6
ST-3	S2_RT.LN_EB2-A	-L-	71+80	28' RT	19.9 - 21.9			A-6	37	17	20	0.0	100.0	99.9	74.9	0.1	36.6	25.1	38.2

AASHTO T-216

Client	Kleinfelder	Boring No.	S2_RT_LN_EB1-A
Client Reference	R-2561CA	Depth (ft)	29.5-31.5
Project No.	R-2019-209-001 R-2019-209-001-010	Sample No.	ST-2 GRAY LEAN CLAY
Lab ID	K-2019-209-001-010	Visual Description	GRAT LEAN CLAT

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-001-010 DOT GEOJAC-16TSF1 Cv.xlsm]FINAL PLOT DCN: CT-24E Date: 5/3/12 Revision: 6 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

ONE DIMENSIONAL CONSOLIDATION AASHTO T-216

Client Kleinfelder Client Reference R-2561CA R-2019-209-001 Project No. R-2019-209-001-010 Lab ID

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED Consolidometer No. R470

1 Division = 0.0001 (in.)

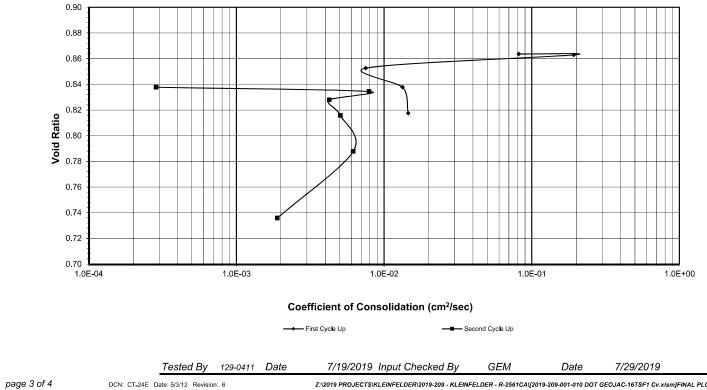
Sample Properties	Initial	Final					Test Data	Summary			
<i>Water Content</i> Tare Number	TB-04	X-15		Applied Pressure		Machine Deflection		•		Dry	Void Ratio
Wt. Tare & WS (g)	330.14	293.80			•			Sample	(cc)	Density	Ratio
(0)	289.26	293.80	-	(tsf)	(div)	(div)	(div)	(mm)		(g/cc)	
Wt. Tare & DS (g) Wt. Water (g)	40.88	201.05		Section	0	0	0	25.400	80.440	1.48443	0.8660;
(0)				Seating		-	-				
Wt. Tare (g)	135.09	142.28		0.25	35.5	22.8	12.7	25.368	80.338	1.48632	0.8636
Wt. DS (g)	154.17	119.57		0.5	60.9	44.2	16.7	25.358	80.305	1.48692	0.8629
Water Content (%)	26.52	26.72		1	132.4	60.5	71.9	25.217	79.861	1.49519	0.8526
				2	244.9	93.6	151.3	25.016	79.223	1.50723	0.8378
Sample Parameters				4	390.8	130.5	260.3	24.739	78.346	1.52411	0.8174
Sample Diameter (in)	2.5	2.5		1	296.4	83.0	213.4	24.858	78.724	1.51680	0.8262
Sample Height (in)	1.0000	0.9656		0.25	196.3	52.7	143.6	25.035	79.285	1.50606	0.8392
Sample Volume (cc)	80.44	77.67		0.5	210.1	58.3	151.8	25.014	79.219	1.50732	0.8377
Wt. Wet Sample + Ring (g)	365.80	366.04		1	244.4	74.9	169.5	24.969	79.076	1.51003	0.8344
Wt. of Ring (g)	214.73	214.73		2	304.6	100.0	204.6	24.880	78.794	1.51544	0.8278
Wt. of Wet Sample (g)	151.07	151.31		4	402.9	133.4	269.5	24.715	78.272	1.52555	0.8157
Wet Density (pcf)	117.19	121.56		8	589.3	169.9	419.4	24.335	77.066	1.54942	0.7877
Wet Density (g/cc)	1.88	1.95		16	923.9	226.1	697.8	23.628	74.827	1.59579	0.7358
Water Content (%)	26.52	26.72		4	768.7	161.7	607.1	23.858	75.557	1.58037	0.7527
Wt. of Dry Sample (g)	119.41	119.41		1	578.7	111.7	466.9	24.214	76.684	1.55715	0.7789
Dry Density (pcf)	92.63	95.93		0.25	417.0	73.0	344.0	24.526	77.673	1.53732	0.8018
Dry Density (g/cc)	1.48	1.54									
Void Ratio	0.8660	0.8018									
Saturation (%)	84.81	92.31									
Specific Gravity	2.77	Measured									
			Tested By	129-0411	Date	7/19/2019	Input Chec	ked By	GEM	Date	7/29/201

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

Boring No.	S2_RT_LN_EB1-A
Depth (ft)	29.5-31.5
Sample No.	ST-2
Visual Description	GRAY LEAN CLAY

AASHTO T-216

Client Kleinfelder Client Reference R-2561CA Project No. R-2019-209-001 Lab ID R-2019-209-001-010


Boring No.

Depth (ft)

Sample No.

S2_RT_LN_EB1-A 29.5-31.5 ST-2 GRAY LEAN CLAY Visual Description

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-001-010 DOT GEOJAC-16TSF1 Cv.xism]FINAL PLOT DCN: CT-24E Date: 5/3/12 Revision: 6 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

ONE DIMENSIONAL CONSOLIDATION AASHTO T-216

Client	Kleinfelder
Client Reference	R-2561CA
Project No.	R-2019-209-001
Lab ID	R-2019-209-001-010

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED Consolidometer No. R470 0 0001 (in)

Sample Properties		Initial	Fina
1 Division =	0.0001	(in.)	

Sample Properties	Initial	Final					C _v Test Data Sı	ummary		
				Load	Dial	Machine	Corrected	Sample	Time	Cv
Water Content				Increment	Reading	Deflection	Dial Reading	Height	t 50	
Tare Number	TB-04	X-15			@ t ₅₀		@ t ₅₀	@ t ₅₀		
Wt. Tare & WS (g)	330.14	293.80		(tsf)	(div)	(div)	(div)	(cm)	(min.)	(cm²/sec)
Wt. Tare & DS (g)	289.26	261.85				· · ·	<u> </u>	<u> </u>		* * *
Wt. Water (g)	40.88	31.95		0 - 0.25	16.5	22.8	-6.3	2.542	0.07	0.08158
Wt. Tare (g)	135.09	142.28		0.25 - 0.5	45.8	44.2	1.6	2.540	0.03	0.19251
Wt. DS (g)	154.17	119.57		0.5 - 1.0	100.7	60.5	40.2	2.530	0.70	0.00750
Water Content (%)	26.52	26.72		1.0 - 2.0	192.7	93.6	99.1	2.515	0.39	0.01331
				2.0 - 4.0	317.3	130.5	186.8	2.493	0.35	0.01457
Sample Parameters				4.0 - 1.0	NA	83.0	NA	NA	NA	NA
Sample Diameter (in)	2.5	2.5		1.0 - 0.25	NA	52.7	NA	NA	NA	NA
Sample Height (in)	1.000	0.966		0.25 - 0.5	205.1	58.3	146.8	2.503	18.00	0.00029
Sample Volume (cc)	80.44	77.67		0.5 - 1.0	226.1	74.9	151.2	2.502	0.65	0.00790
Wt. Wet Sample + Ring (g)	365.80	366.04		1.0 - 2.0	279.3	100.0	179.2	2.494	1.20	0.00426
Wt. of Ring (g)	214.73	214.73		2.0 - 4.0	359.1	133.4	225.7	2.483	1.00	0.00506
Wt. of Wet Sample (g)	151.07	151.31		4.0 - 8.0	506.3	169.9	336.4	2.455	0.80	0.00618
Wet Density (pcf)	117.19	121.56		8.0 - 16.0	776.7	226.1	550.6	2.400	2.50	0.00189
Wet Density (g/cc)	1.88	1.95		16.0 - 4.0	NA	161.7	NA	NA	NA	NA
Water Content (%)	26.52	26.72		4.0 - 1.0	NA	111.7	NA	NA	NA	NA
Wt. of Dry Sample (g)	119.41	119.41		1.0 - 0.25	NA	73.0	NA	NA	NA	NA
Dry Density (pcf)	92.63	95.93								
Dry Density (g/cc)	1.48	1.54								
Void Ratio	0.8660	0.8018								
Saturation (%)	84.81	92.31								
Specific Gravity	2.77	Measured								
		Tested By	129-0411	Date	7/19/2019	Input Check	ed By	GEM	Date	7/29/2019

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

Boring No.	S2_RT_L	N_EB1-A
Depth (ft)	29.5-31.5	
Sample No.	ST-2	
Visual Descrip	otion GRAY LE	AN CLAY

AASHTO T-216

(tsf)

(in)

0.0-0.25

35.5

R470

0.0001

7/19/2019

Dial

Reading

(div)

0.0

9.6 25.0

27.4

28.2

28.9

28.8

28.7

28.6

30.6

30.3

31.1

29.0

32.0

32.8 32.7

33.8

33.7

34.7

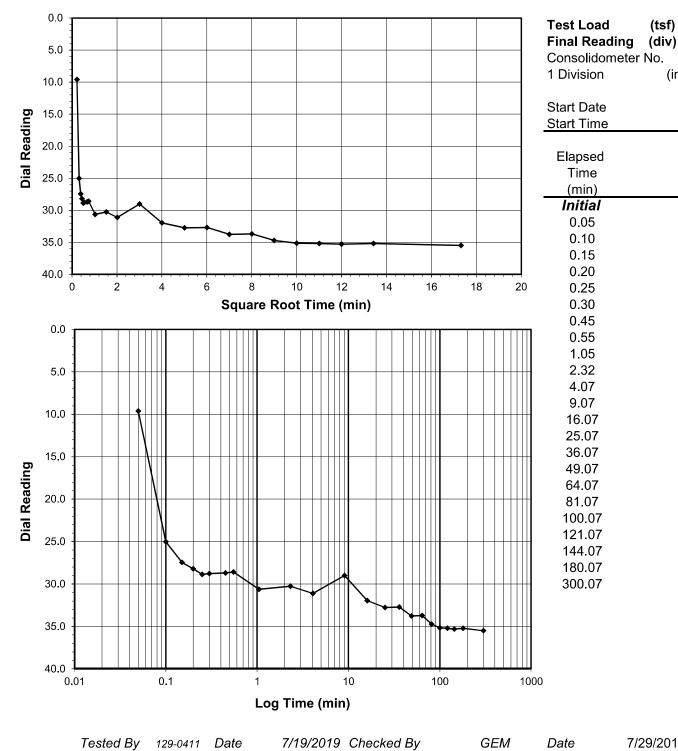
35.1

35.2

35.3

35.2 35.5

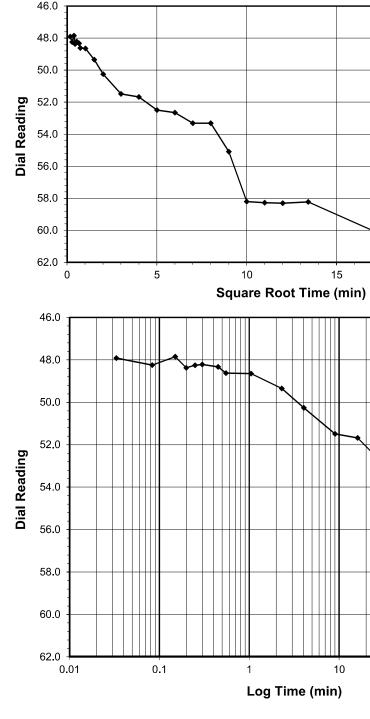
7/29/2019


10:46:49

ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

Client	Kleinfelder	Boring No.	S2_RT_LN_EB1-A	Client	Kleinfelder	
Client Project	R-2561CA	Depth (ft)	29.5-31.5	Client Project	R-2561CA	
Project No.	R-2019-209-001	Sample No.	ST-2	Project No.	R-2019-209-001	
Lab ID	R-2019-209-001-010	Visual Description	GRAY LEAN CLAY	Lab ID	R-2019-209-001-010	


Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

DCN: CT-24E Date: 5/3/12 Revision: 3

page 1 of 1

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

7/29/2019 GEM Date Tested By 129-0411 Date 7/19/2019 Checked By page 1 of 1 DCN: CT-24E Date: 5/3/12 Revision: 3 Z:\2019 PROJECTS\KLEIN .xlsm]STEP 2 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

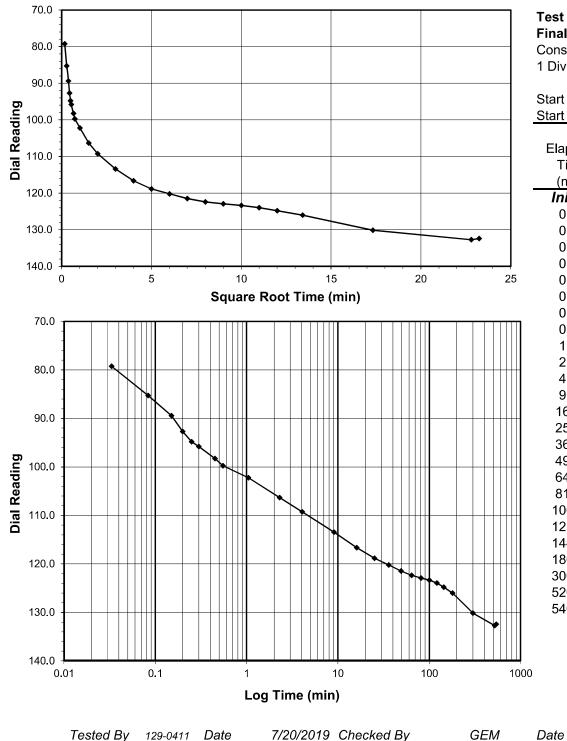
Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-001-010 DOT GEOJAC-16TSF1 Cv.xlsm]STEP 1

S2_RT_LN_EB1-A Boring No. Depth (ft) 29.5-31.5 ST-2 Sample No. GRAY LEAN CLAY Visual Description

Test Load(tsf)Final Reading(div)Consolidometer No.1 Division(in)	0.25-0.5 60.9 R470 0.0001
Start Date Start Time	7/19/2019 19:47:08
Elapsed Time (min) Initial 0.03 0.08 0.15 0.20 0.25 0.30 0.45 0.55 1.05 2.30 4.05 9.05 16.05 25.05 36.05 49.05 64.05 81.05 100.05 121.05 144.05 180.05 300.05 520.05 540.28	Dial Reading (div) 35.5 47.9 48.3 47.9 48.4 48.3 48.2 48.3 48.6 48.7 49.3 50.3 51.5 51.7 52.5 52.7 53.3 53.3 55.1 58.2 58.3 58.2 60.2 60.8 60.9

NFELDER\2019-209 - KLEINF	EI DER - R-2561	CA\[2019-209-001-01	0 DOT GEOJAC-16TSE1 CV
	LEBER R LOOP	0/142010 200 001 01	

AASHTO T-216

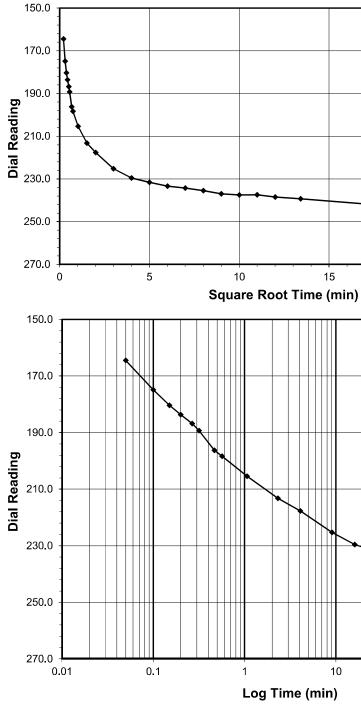


ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

Client	Kleinfelder	Boring No.	S2_RT_LN_EB1-A	Client	Kleinfelder
Client Project	R-2561CA	Depth (ft)	29.5-31.5	Client Project	R-2561CA
Project No.	R-2019-209-001	Sample No.	ST-2	Project No.	R-2019-209-001
Lab ID	R-2019-209-001-010	Visual Description	GRAY LEAN CLAY	Lab ID	R-2019-209-001-010

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED



DCN: CT-24E Date: 5/3/12 Revision: 3

page 1 of 1

T (]]	(1 - D)	0540
Test Load Final Readi	(tsf) ng (div)	0.5-1.0 132.4
Consolidom	• • •	R470
1 Division	(in)	0.0001
	()	
Start Date		7/20/2019
Start Time		4:47:26
Elapad		Dial
Elapsed Time		Reading
(min)		(div)
Initial		60.9
0.03		79.3
0.08		85.3
0.15		89.4
0.20		92.7
0.25		94.8
0.30		95.8
0.45		98.3
0.55		99.7
1.05		102.2
2.30		106.3
4.05		109.3 113.4
9.07 16.07		115.4
25.07		118.8
36.07		120.2
49.07		121.5
64.07		122.4
81.07		122.9
100.07		123.4
121.07		123.9
144.07		124.8
180.07		126.0
300.07		130.1
520.07		132.7
540.38		132.4
00		
5		
Date	7/29/2019	

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Tested By 129-0411 Date

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-001-010 DOT GEOJAC-16TSF1 Cv.xlsm]STEP 4 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

7/20/2019 Checked By

GEM

Date

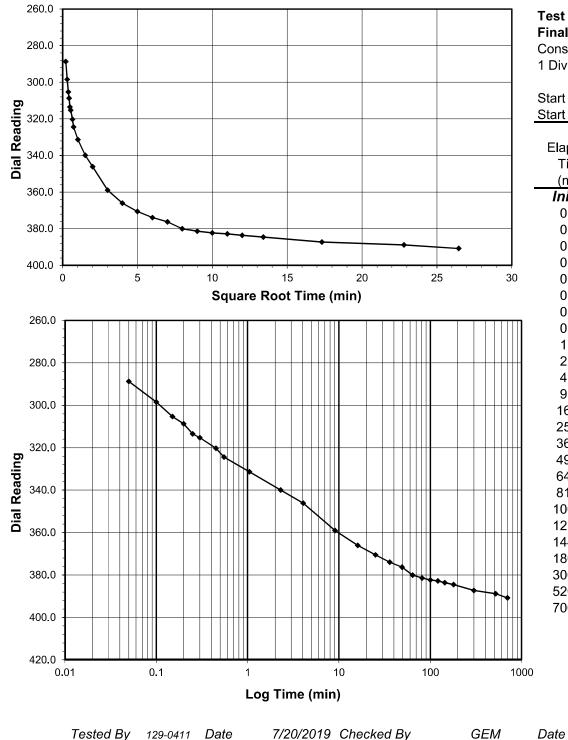
Boring No. Depth (ft) Sample No. Visual Description

S2_RT_LN_EB1-A 29.5-31.5 ST-2 GRAY LEAN CLAY

			Test Load Final Reading Consolidometer 1 Division	(tsf) (div) No. (in)	1.0-2.0 244.9 R470 0.0001
			Start Date Start Time		7/20/2019 13:47:50
			Elapsed Time (min)		Dial Reading (div)
+		++	<i>Initial</i> 0.05 0.10 0.15		132.4 164.5 174.9 180.3
ו)	20	25	0.20 0.27 0.32 0.47		183.6 186.8 189.3 196.3
			0.57 1.07 2.32		198.4 205.4 213.2
			4.07 9.07 16.07 25.07		217.7 225.3 229.6 231.6
			36.07 49.07 64.07 81.07		233.3 234.3 235.5 237.0
*			100.07 121.07 144.08		237.5 237.4 238.5
		••••	180.08 300.08 520.08 540.33		239.3 241.9 245.3 244.9
	100	100	00		

7/29/2019

AASHTO T-216

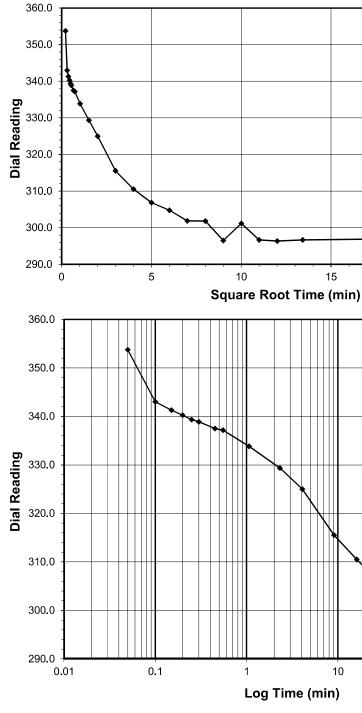


ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

Client	Kleinfelder	Boring No.	S2_RT_LN_EB1-A	Client	Kleinfelder	
Client Project	R-2561CA	Depth (ft)	29.5-31.5	Client Project	R-2561CA	
Project No.	R-2019-209-001	Sample No.	ST-2	Project No.	R-2019-209-001	
Lab ID	R-2019-209-001-010	Visual Description	GRAY LEAN CLAY	Lab ID	R-2019-209-001-010	
•		•		2		

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED



page 1 of 1

Test Load (tsf Final Reading (div Consolidometer No. 1 Division (i	
Start Date Start Time	7/20/2019 22:48:10
Elapsed Time (min) Initial 0.05 0.10 0.15 0.20 0.25 0.30 0.45 0.55 1.05 2.30 4.05 9.05 16.07 25.07 36.07 49.07 64.07 81.07 100.07 121.07 144.07 180.07 300.07 520.07	Dial Reading (div) 244.9 288.7 298.5 305.3 305.3 308.8 313.5 315.3 320.3 324.4 331.3 340.0 346.1 359.0 346.1 359.0 346.1 359.0 346.1 359.0 366.0 370.5 374.0 376.3 374.0 376.3 380.1 381.4 382.3 382.8 383.6 384.5 387.3 388.8
700.07 D	390.8

7/29/2019

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

DCN: CT-24E Date: 5/3/12 Revision: 3

7/21/2019 Checked By

Tested By 129-0411 Date

page 1 of 1

Boring No. Depth (ft) Sample No. Visual Description

S2_RT_LN_EB1-A 29.5-31.5 ST-2 GRAY LEAN CLAY

	Test Load(tsf)Final Reading(div)Consolidometer No.1 Division(in)	4.0-1.0 296.4 R470 0.0001
	Start Date Start Time	7/21/2019 10:48:27
	Elapsed Time (min) Initial	Dial Reading (div) 390.8
	0.05 0.10 0.15	353.7 343.0 341.3
20 25	0.20 0.25	340.3 339.3
) 	0.30 0.45 0.55	338.9 337.5 337.2
	1.07 2.32 4.07	333.8 329.3 325.0
	9.07 16.07	315.6 310.5
	25.07 36.07 49.07	306.9 304.8 301.9
	64.08 81.08 100.08	301.8 296.5 301.2
•	121.08 144.08 180.08 300.08	296.7 296.4 296.7 296.9
	420.12	296.9 296.4
100 100	0	

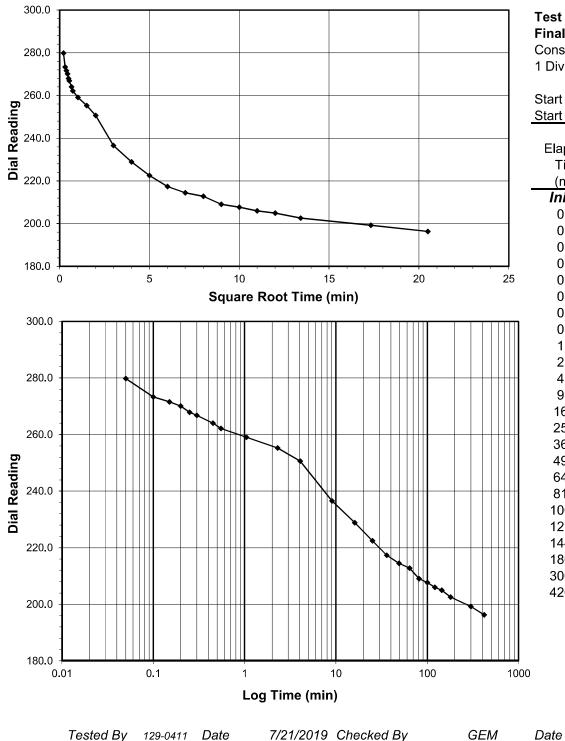
Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-001-010 DOT GEOJAC-16TSF1 Cv.xlsm]STEP 6 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

Date

7/29/2019

GEM

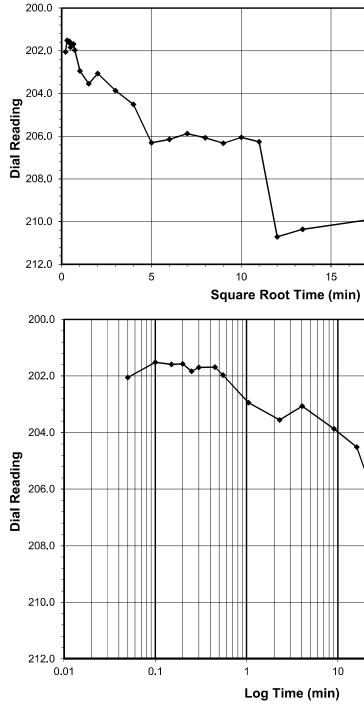
AASHTO T-216



ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

Client	Kleinfelder	Boring No.	S2_RT_LN_EB1-A	Client	Kleinfelder	
Client Project	R-2561CA	Depth (ft)	29.5-31.5	Client Project	R-2561CA	
Project No.	R-2019-209-001	Sample No.	ST-2	Project No.	R-2019-209-001	
Lab ID	R-2019-209-001-010	Visual Description	GRAY LEAN CLAY	Lab ID	R-2019-209-001-010	


Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

page 1 of 1

Test Load Final Readi Consolidom 1 Division	• • •	1.0-0.25 196.3 R470 0.0001
Start Date Start Time		7/21/2019 17:48:34
Elapsed Time (min) <i>Initial</i> 0.05 0.10 0.15 0.20 0.25 0.30 0.45 0.55 1.05 2.30 4.05 9.07 16.07 25.07 36.07 49.07 64.07 81.07 100.07 121.07 144.07 180.07 300.07		Dial Reading (div) 296.4 279.8 273.3 271.6 270.1 267.9 266.8 264.0 262.1 259.0 255.3 250.6 236.5 228.9 222.5 217.4 214.5 212.8 209.1 207.7 206.0 205.0 205.0 202.6 199.2
420.10 00		196.3
Date	7/29/2019	

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

DCN: CT-24E Date: 5/3/12 Revision: 3 Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-001-010 DOT GEOJAC-16TSF1 Cv.xlsm]STEP 7

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

DCN: CT-24E Date: 5/3/12 Revision: 3

7/22/2019 Checked By

Tested By 129-0411 Date

page 1 of 1

S2_RT_LN_EB1-A

GRAY LEAN CLAY

29.5-31.5

ST-2

Boring No. Depth (ft) Sample No. Visual Description

	Test Load(tsf)Final Reading(div)Consolidometer No.1 Division(in	0.25-0.5 210.1 R470) 0.0001
	Start Date Start Time	7/22/2019 0:48:40
	Elapsed Time (min) Initial 0.05 0.10 0.15 0.20 0.25 0.25 0.30 0.45 0.55 1.05 2.30 4.05 9.05 16.05 25.05 36.05 49.05 64.05 81.05 100.07 121.07 144.07 180.07 300.07	Dial Reading (div) 196.3 202.1 201.5 201.6 201.6 201.8 201.7 201.7 202.0 202.9 203.6 203.1 203.9 204.5 206.3 206.1 205.9 206.1 205.9 206.1 205.9 206.1 205.9 206.1 205.3 206.1 205.3 206.1 205.3 206.1 206.3 210.7 210.4 209.9
	420.08	210.1
100 1	000	

NFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-001-010 DOT GEOJAC-16TSF1 Cv.xlsm]STEP 8
Phone (919) 876-0405 • Eax (919) 876-0460 • www.geotechnics.net

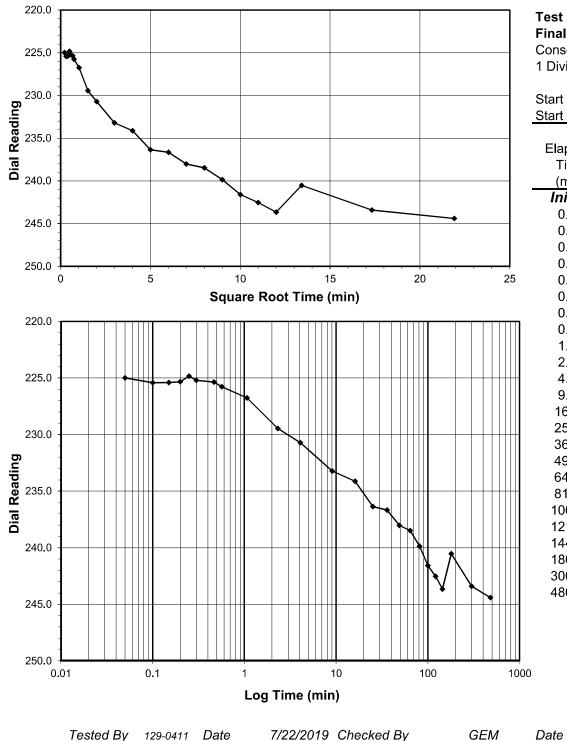
Date

GEM

7/29/2019

Z:\2019 PROJECTS\KLEIN 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

AASHTO T-216

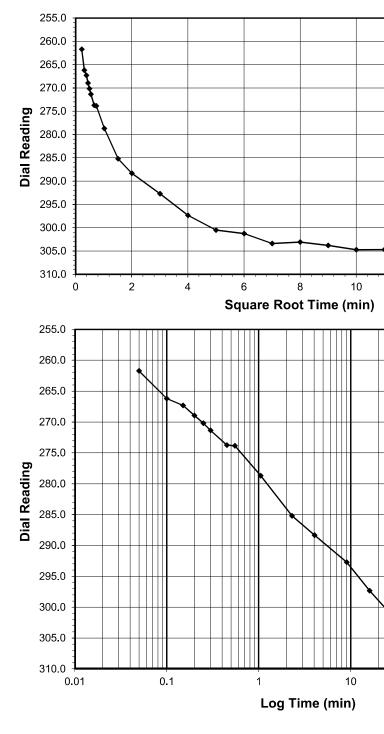


ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

Client	Kleinfelder	Boring No.	S2_RT_LN_EB1-A	Client	Kleinfelder	
Client Project	R-2561CA	Depth (ft)	29.5-31.5	Client Project	R-2561CA	
Project No.	R-2019-209-001	Sample No.	ST-2	Project No.	R-2019-209-001	
Lab ID	R-2019-209-001-010	Visual Description	GRAY LEAN CLAY	Lab ID	R-2019-209-001-010	

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED



page 1 of 1

Test Load Final Reading Consolidometer 1 Division Start Date Start Time	• •	0.5-1.0 244.4 R470 0.0001 7/22/2019 7:48:45
Elapsed Time (min) Initial 0.05 0.10 0.15 0.20 0.25 0.30 0.47 0.57 1.07 2.32 4.07 9.07 16.07 25.07 36.07 49.07 64.07 81.07 100.07 121.07 144.07 180.07 300.07 480.23		Dial Reading (div) 210.1 225.0 225.4 225.4 225.3 224.8 225.2 225.4 225.8 226.8 229.5 230.7 233.2 234.1 236.4 236.7 233.2 234.1 236.4 236.7 238.0 238.5 239.9 241.6 242.5 243.6 240.5 243.4 244.4
0		

7/29/2019

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

DCN: CT-24E Date: 5/3/12 Revision: 3 Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-001-010 DOT GEOJAC-16TSF1 Cv.xlsm]STEP 9

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

DCN: CT-24E Date: 5/3/12 Revision: 3

7/22/2019 Checked By

Tested By 129-0411 Date

page 1 of 1

S2_RT_LN_EB1-A

GRAY LEAN CLAY

29.5-31.5 ST-2

Boring No. Depth (ft) Sample No. Visual Description

	Test Load(tsf)Final Reading(div)Consolidometer No.1 Division(in)	1.0-2.0 304.6 R470 0.0001
	Start Date Start Time	7/22/2019 15:48:59
	Elapsed Time (min)	Dial Reading (div)
12 14 16	<i>Initial</i> 0.05 0.10 0.15 0.20 0.25	244.4 261.7 266.2 267.3 268.9 270.2
	0.30 0.45 0.55 1.05 2.30 4.05	271.4 273.7 273.9 278.7 285.2 288.3
	9.05 16.05 25.05 36.05 49.07	292.7 297.3 300.5 301.3 303.4
	64.07 81.07 100.07 121.07 144.07	303.1 303.8 304.7 304.7 305.2
****	180.07	304.6
100 100	0	

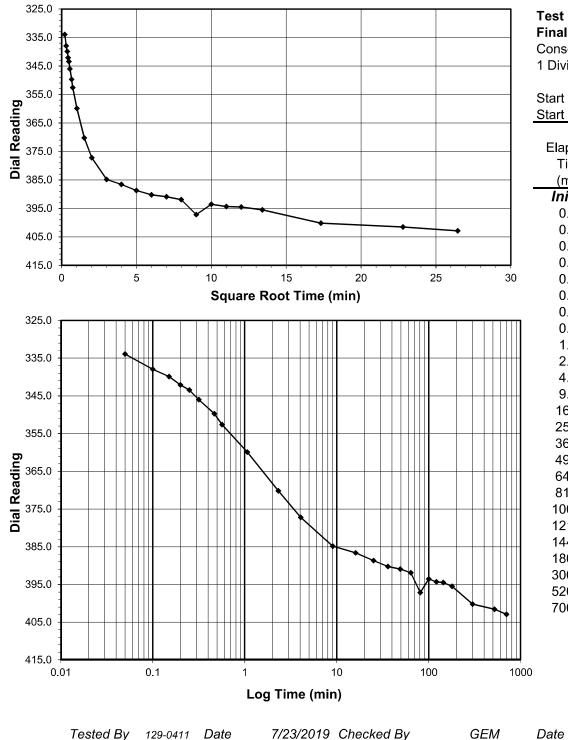
Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-001-010 DOT GEOJAC-16TSF1 Cv.xism]STEP 10 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

Date

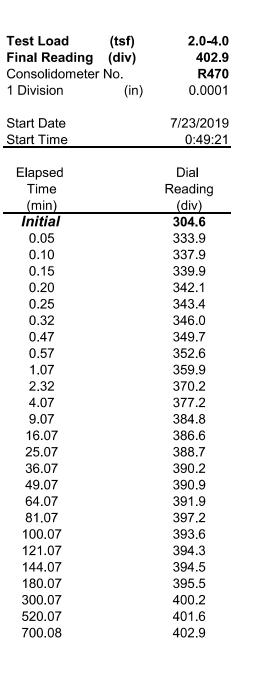
7/29/2019

GEM

AASHTO T-216

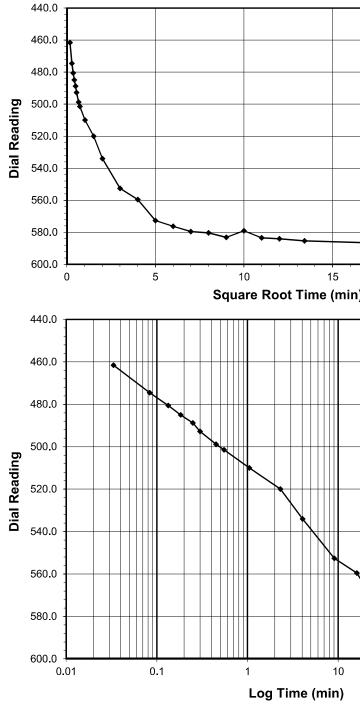


ONE DIMENSIONAL CONSOLIDATION


AASHTO T-216

Client	Kleinfelder	Boring No.	S2_RT_LN_EB1-A	Client	Kleinfelder
Client Project	R-2561CA	Depth (ft)	29.5-31.5	Client Project	R-2561CA
Project No.	R-2019-209-001	Sample No.	ST-2	Project No.	R-2019-209-001
Lab ID	R-2019-209-001-010	Visual Description	GRAY LEAN CLAY	Lab ID	R-2019-209-001-010
Lab ID	R-2019-209-001-010	Visual Description	GRAY LEAN CLAY	Lab ID	R-2019-209-001-010

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED



page 1 of 1

7/29/2019

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

DCN: CT-24E Date: 5/3/12 Revision: 3 Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-001-010 DOT GEOJAC-16TSF1 Cv.xlsm]STEP 11

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

DCN: CT-24E Date: 5/3/12 Revision: 3

Tested By 129-0411 Date

page 1 of 1

Boring No. Depth (ft) Sample No. **Visual Description** S2_RT_LN_EB1-A 29.5-31.5 ST-2 GRAY LEAN CLAY

	Test Load(tsf)Final Reading(div)Consolidometer No.1 Division(in)	4.0-8.0 589.3 R470 0.0001
	Start Date Start Time	7/23/2019 12:49:41
	Elapsed Time (min)	Dial Reading (div)
20 25 n)	Initial 0.03 0.08 0.13 0.13 0.18 0.25 0.30 0.45 0.55 1.05 2.30 4.05 9.05 16.05 25.05 36.05 49.05 64.05 81.05 100.07 121.07 144.07 180.07 300.07 520.07	402.9 461.6 474.6 480.6 485.0 488.9 492.8 498.8 501.4 509.9 520.0 534.0 552.6 559.5 572.7 576.3 579.5 580.4 583.1 579.1 583.5 584.1 585.4 585.4 585.4 589.3
100 100	00	

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-001-010 DOT GEOJAC-16TSF1 Cv.xism]STEP 12 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

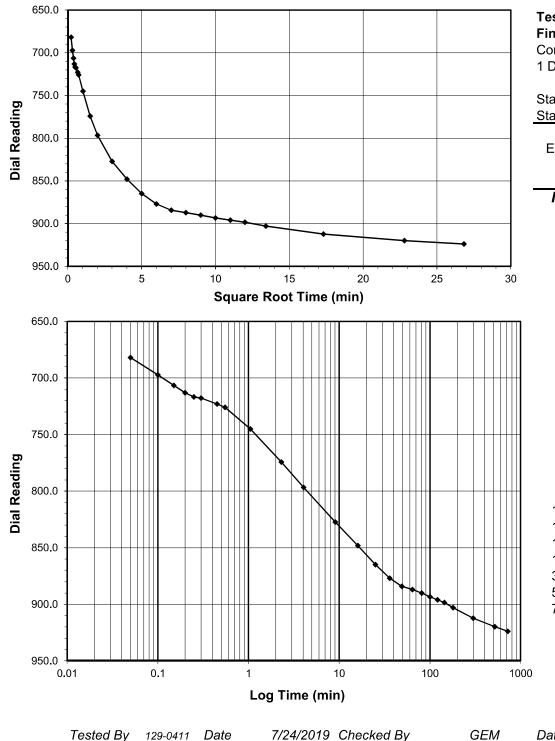
Date

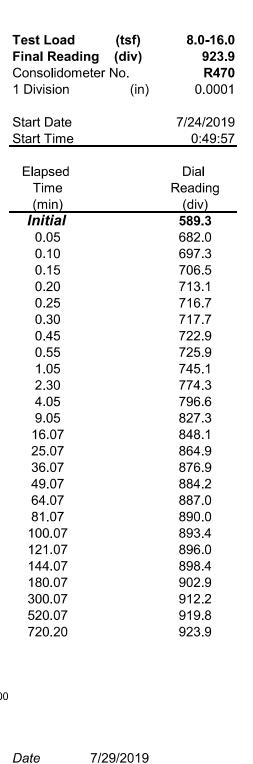
7/29/2019

GEM

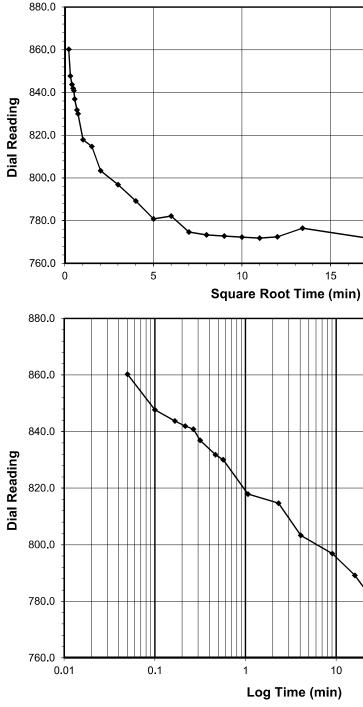
7/23/2019 Checked By

AASHTO T-216




ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216


Client	Kleinfelder	Boring No.	S2_RT_LN_EB1-A	Client	Kleinfelder
Client Project	R-2561CA	Depth (ft)	29.5-31.5	Client Project	R-2561CA
Project No.	R-2019-209-001	Sample No.	ST-2	Project No.	R-2019-209-001
Lab ID	R-2019-209-001-010	Visual Description	GRAY LEAN CLAY	Lab ID	R-2019-209-001-010
		I			

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Tested By 129-0411 Date

DCN: CT-24E Date: 5/3/12 Revision: 3

page 1 of 1

129-0411 Date

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-001-010 DOT GEOJAC-16TSF1 Cv.xism]STEP 13

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-001-010 DOT GEOJAC-16TSF1 Cv.xlsm]STEP 14 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

7/24/2019 Checked By

GEM

Date

S2_RT_LN_EB1-A

GRAY LEAN CLAY

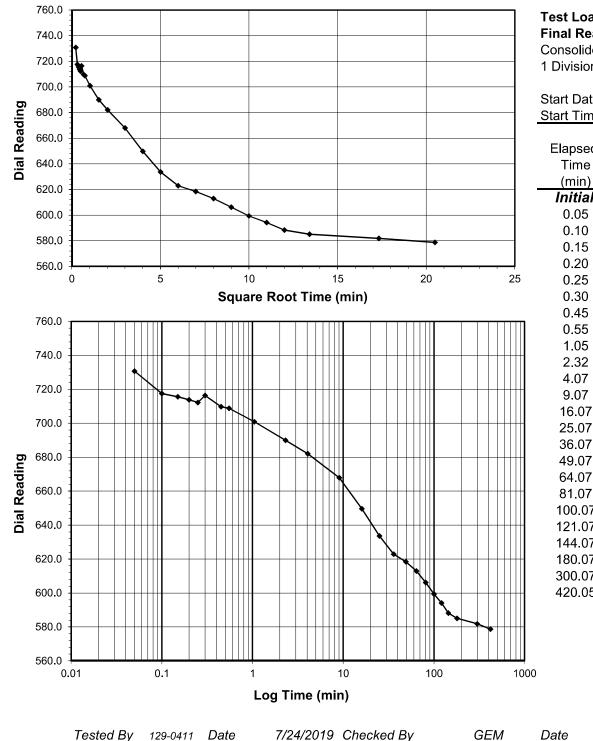
29.5-31.5 ST-2

Boring No. Depth (ft) Sample No. Visual Description

	Test Load(tsf)Final Reading(div)Consolidometer No.1 Division(in)	16.0-4.0 768.7 R470 0.0001
	Start Date Start Time	7/24/2019 12:50:09
	0.32 0.47 0.57 1.07 2.32 4.07 9.07 16.07 25.07 36.07 49.08 64.08 81.08 100.08 121.08 144.08 180.08 300.08 420.03	Dial Reading (div) 923.9 860.2 847.7 843.7 841.9 840.8 836.9 831.8 830.0 817.9 814.7 803.3 796.8 789.2 780.8 789.2 780.8 789.2 780.8 782.1 774.6 773.3 772.8 772.8 772.8 772.2 771.8 772.4 776.5 771.5 768.7
100 1	000	

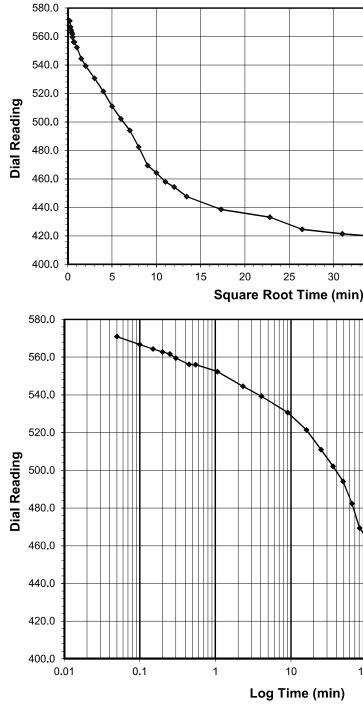
7/29/2019

AASHTO T-216



ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216


Client	Kleinfelder	Boring No.	S2_RT_LN_EB1-A	Client	Kleinfelder
Client Project	R-2561CA	Depth (ft)	29.5-31.5	Client Project	R-2561CA
Project No.	R-2019-209-001	Sample No.	ST-2	Project No.	R-2019-209-001
Lab ID	R-2019-209-001-010	Visual Description	GRAY LEAN CLAY	Lab ID	R-2019-209-001-010

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Test Load Final Readi Consolidom 1 Division	• • •	4.0-1.0 578.7 R470 0.0001
Start Date Start Time		7/24/2019 19:50:11
Elapsed Time (min) Initial 0.05 0.10 0.15 0.20 0.25 0.30 0.45 0.55 1.05 2.32 4.07 9.07 16.07 25.07 36.07 49.07 64.07 81.07 100.07 121.07 144.07 180.07 300.07 420.05		Dial Reading (div) 768.7 730.7 717.5 715.6 713.8 712.3 716.4 709.7 700.9 689.9 682.0 667.9 649.6 633.6 622.9 618.4 612.9 606.2 599.4 594.1 588.2 585.1 581.8 578.7
00		
Date	7/29/2019	

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Tested By 129-0411 Date

DCN: CT-24E Date: 5/3/12 Revision: 3

page 1 of 1

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-001-010 DOT GEOJAC-16TSF1 Cv.xism]STEP 15

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-001-010 DOT GEOJAC-16TSF1 Cv.xism]STEP 16 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

Boring No. Depth (ft) Sample No. Visual Description

S2_RT_LN_EB1-A 29.5-31.5 ST-2 GRAY LEAN CLAY

		Test Load Final Readin Consolidome 1 Division		1.0-0.25 417.0 R470 0.0001
		Start Date Start Time		7/25/2019 2:50:14
		Elapsed Time (min)		Dial Reading (div)
25 30 35 4 Root Time (min)		<i>Initial</i> 0.05 0.10 0.15 0.20 0.25 0.30 0.45 0.55 1.07		578.7 570.9 566.7 564.4 562.8 561.6 559.4 556.1 556.0 552.3
		2.32 4.07 9.07 16.07 25.07 36.07 49.07 64.07 81.07 100.07 121.07 144.07 180.07 300.07 520.08 700.08 960.08 1440.08		544.5 539.3 530.7 521.3 510.9 502.2 494.1 482.3 469.4 464.3 457.9 454.3 447.7 438.6 433.1 424.5 421.4 418.0
10 100 og Time (min)	1000 10000	2117.92		416.6 414.4 417.1
7/25/2019 Checked By	GEM	2134.02 <i>Date</i>	7/29/2019	417.0

Client: Client Referer Project No.: Lab ID:	nce:	Kleinfelder R-2561CA R-2019-209-001 R-2019-209-001-0)10	D	oring No. epth (ft): ample No		S2_RT_LN 29.5-31.5 ST-2	I_EB1-A
Visual Descrip		Gray Clay (UNDIS						
Stage No.		2		INITIAL SAM		ENSIONS (in)		
Test No.		2 1		Length 1:	6.379	Diameter 1:	2.859	
1001110.				Length 2:	6.458	Diameter 2:	2.875	
PRESSURES	(psi)			Length 3:	6.444	Diameter 3:	2.862	
	(100)			Length 4:	6.395	Diameter 4:	2.858	
Cell Pressure	(psi)	55.0		Avg. Length:	6.419	Avg. Diam.:	2.864	
Back Pressure		50.0		5 5		5		
Eff. Conf. Pre		5.0		VOLUME CH	ANGE			
Pore Pressure	·· /	0.0		Initial Burette		(ml)	24.0	
Response (%)		100		Final Burette	-	• •	13.5	
)	100		Final Change	-	(1111)	10.5	
		ONTO		i indi ondrige	(1111)		10.0	
	BLIQUITY P				a alia ci (ci '	N	000	
<u>P</u> =		7.00		Initial Dial Re			388	
		7.09		Dial Reading		• •	501	
Q =		6.06		Dial Reading A			531	
	LOAD		DEFORMAT	ION		PORE PRESSU	IRE	
	(LB)		(IN)			(PSI)		
	9.5		0.000			50.0		
	10.5		0.001			50.4		
	11.1 24.2		0.003 0.009			50.4 51.7		
	24.2 30.9		0.009			52.4		
	35.5		0.013			52.4		
	40.6		0.031			53.3		
	44.9		0.040			53.5		
	49.9		0.053			53.8		
	58.2		0.076			54.0		
	70.2		0.108			54.1		
	85.7		0.146			54.0		
	100.8 115.6		0.185 0.229			53.7 53.1		
	123.9		0.225			52.6		
	130.6		0.306			51.9		
	134.6		0.367			51.2		
	140.2		0.431			50.7		
	145.2		0.479			50.4		
	151.6		0.543			50.0		
	155.3		0.591			49.8		
	160.1 164.7		0.639 0.687			49.5 49.2		
	165.9		0.007			49.2 49.2		
	168.0		0.751			49.0		
	166.9		0.783			49.0		
	169.3		0.815			48.9		
	172.1		0.863			48.7		
	174.6		0.911			48.5		
	177.2		0.959			48.4		
	179.1	Date: 8/2/	1.008			48.2		
Tested By: 1	29-07-0411	Date: 8/2/	4.0	Input Checke		GEM	Date:	8/12/19

AASHTO T-297 Client: Kleinfelder R-2561CA Client Reference: Project No.: R-2019-209-001 Lab ID: R-2019-209-001-010 Gray Clay (UNDISTURBED) Visual Description: Effective Confining Pressure (psi) 5.0 INITIAL DIMENSIONS Initial Sample Length (in) 6.42 Initial Sample Diameter (in) 2.86 Initial Sample Area (in²) 6.44 Initial Sample Volume (in³) 41.34 _____ Deviation ΔU Strain σ_1 σ_3 (%) Stress 0.02 0.17 0.40 4.77 4.6 0.04 0.26 0.44 4.82 4.6 2.39 1.66 5.73 3.3 0.14 2.6 2.2 1.7 0.23 3.48 2.39 6.09 6.38 0.34 4.22 2.84 0.49 5.05 3.26 6.79 1.5 0.64 5.74 3.53 7.21 1.2 0.85 6.53 3.77 7.77 7.84 3.98 1.0 1.21 8.86 1.71 9.72 4.08 10.64 0.9 2.33 3.97 1.0 12.12 13.15 2.94 3.67 1.3 14.43 15.76 1.9 3.65 16.66 3.07 18.59 4.16 17.86 2.60 20.27 2.4 4.88 18.78 1.93 21.85 3.1 5.85 22.98 3.8 19.19 1.21 4.3 6.86 19.84 0.73 24.11 20.43 4.6 7.64 0.42 25.01 5.0 8.65 21.15 0.03 26.12 9.42 21.53 -0.23 26.75 5.2 22.04 -0.52 5.5 10.18 27.56 22.53 5.8 10.94 -0.76 28.28 22.57 5.8 11.46 -0.83 28.40

22.75

22.45

22.66

22.86

23.00

23.15

23.21

11.97

12.48

12.99

13.74

14.52

15.29

16.05

-0.95

-1.03

-1.14

-1.29

-1.46

-1.61

-1.75

28.70

28.48

28.80

29.15

29.45

29.76

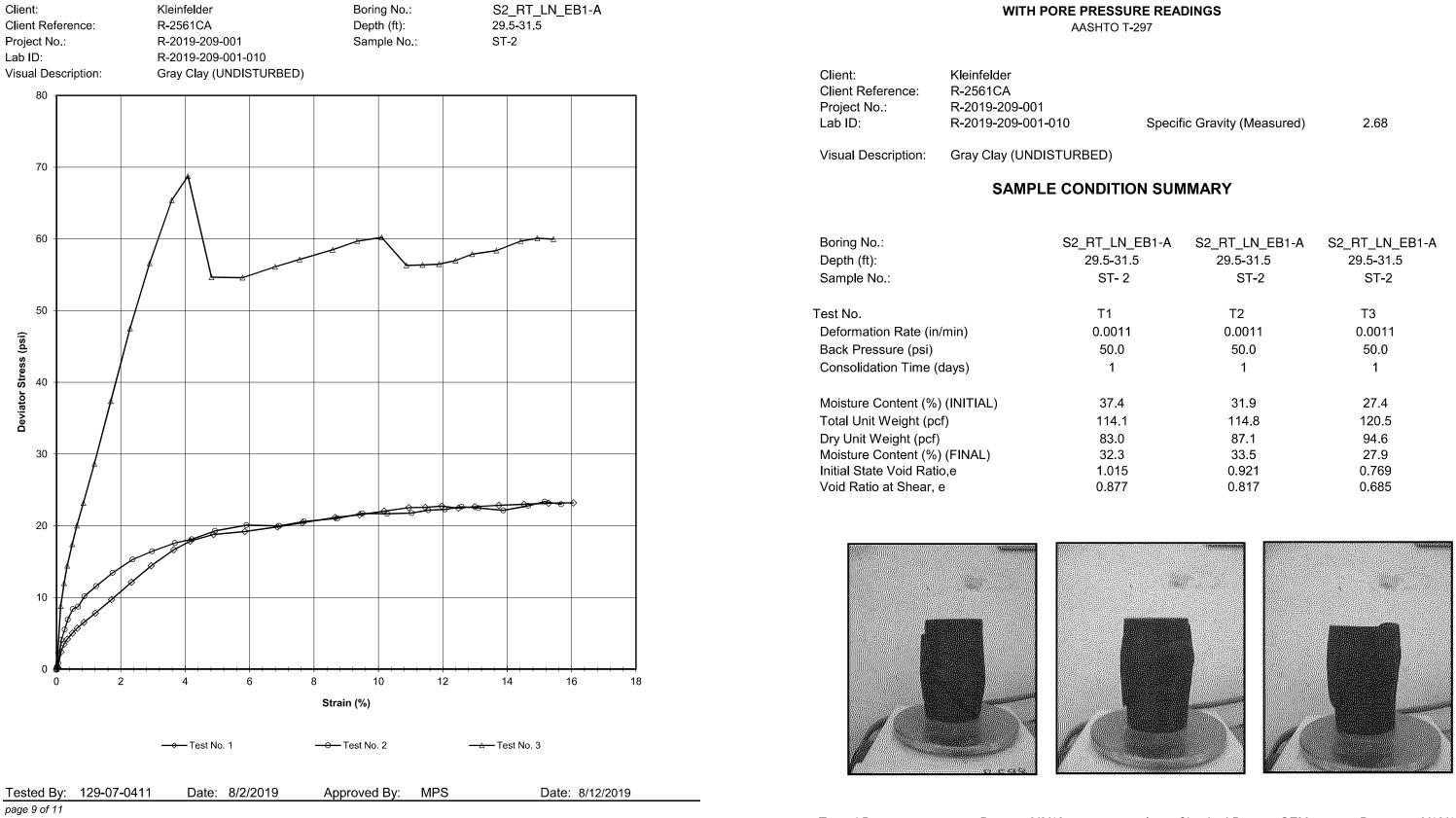
29.96

page 4 of 11

CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS

	57			
	Boring No.: Depth (ft): Sample No		S2_RT_LN 29.5-31.5 ST-2	I_EB1-A
ED)				
	Stage No. Test No		2 1	
	VOLUME CHANGE			
	Volume After Consolid Length After Consolida Area After Consolidatio	ation (in)		38.51 6.28 6.137
$\overline{\sigma}_3$	Effective Principle Stress Ratio	A	Р	Q
$\begin{array}{c} 4.6\\ 4.6\\ 3.3\\ 2.2\\ 1.7\\ 1.2\\ 1.0\\ 9\\ 1.3\\ 1.9\\ 2.4\\ 3.1\\ 3.8\\ 4.6\\ 5.2\\ 5.8\\ 5.0\\ 6.0\\ 6.1\\ 6.3\\ \end{array}$	1.036 1.056 1.716 2.335 2.956 3.906 4.909 6.299 8.702 11.561 12.771 11.859 9.639 8.429 7.114 6.061 5.649 5.460 5.258 5.120 4.993 4.914 4.870 4.822 4.721 4.688 4.636	2.39 1.72 0.69 0.67 0.65 0.62 0.58 0.51 0.42 0.33 0.25 0.18 0.15 0.10 0.06 0.04 0.02 0.00 -0.01 -0.02 -0.03 -0.04 -0.05 -0.05 -0.06	4.69 4.69 4.54 4.35 4.27 4.26 4.34 4.50 4.94 5.78 7.09 8.55 10.26 11.34 12.46 13.39 14.19 14.80 15.54 15.99 16.54 17.02 17.12 17.26 17.47 17.72	0.08 0.13 1.20 1.74 2.11 2.52 2.87 3.27 3.92 4.86 6.06 7.22 8.33 8.93 9.39 9.59 9.59 9.92 10.21 10.58 10.76 11.02 11.26 11.29 11.37 11.23 11.33 11.43

AASHTO T-297


Client: Client Reference: Project No.: Lab ID:	Kleinfelder R-2561CA R-2019-209-001 R-2019-209-001-010	Boring No.: Depth (ft): Sample No.:	S2_RT_LN_EB1-A 29.5-31.5 ST-2	Client: Client Refe Project No Lab ID:	erence: .:	Kleinfelder R-2561CA R-2019-209 R-2019-209	9-001		Boring No. Depth (ft): Sample No		S2_RT_LN 29.5-31.5 ST-2	I_EB1-A
Visual Description:	Gray Clay (UNDISTURBED)			Visual Des	scription:	Gray Clay (UNDISTUR	BED)				
Stage No. Test No.	3 2	INITIAL SAMPLE DIMENSIONS (in) Length 1: 6.253 Diameter 1:	2.867	Effective C	Confining Pre	ssure (psi)	10.1		Stage No. Test No		3 2	
PRESSURES (psi)		Length 2: 6.224 Diameter 2: Length 3: 6.243 Diameter 3: Length 4: 6.293 Diameter 4:	2.868 2.863 2.864	INITIAL D	IMENSIONS				VOLUME CHANGE			
Cell Pressure (psi) Back Pressure (psi) Eff. Conf. Pressure (psi)	60.0 50.0 10.1	Avg. Length: 6.253 Avg. Diam.: VOLUME CHANGE	2.866	Initial Sam Initial Sam	ple Length (i ple Diamete ple Area (in²	r (in))	6.25 2.87 6.45		Volume After Consolic Length After Consolida Area After Consolidati	ation (in)		38.15 6.12 6.233
Pore Pressure Response (%)	98	Initial Burette Reading (ml) Final Burette Reading (ml) Final Change (ml)	24.0 7.3 16.7	Initial Sam	ple Volume	(in³)	40.33					
		Initial Dial Reading (mil)	512	Strain (%)	Deviation Stress	ΔU	$\overline{\sigma}_1$	$\overline{\sigma_3}$	Effective Principle Stress Ratio	Ā	P	Q
P = Q =	13.03 8.80	Dial Reading After Saturation (mil) Dial Reading After Consolidation (mil)	572 645									
LOAD (LB)	DEFORM (IN		URE									
$\begin{array}{c} 14.0\\ 17.0\\ 37.2\\ 46.4\\ 55.0\\ 64.4\\ 66.4\\ 75.7\\ 84.7\\ 96.9\\ 109.3\\ 117.4\\ 125.6\\ 129.6\\ 138.2\\ 144.8\\ 145.5\\ 150.7\\ 155.4\\ 161.2\\ 162.2\\ 164.3\\ 167.9\\ 169.5\\ 173.2\\ 172.8\\ 171.9\\ 178.1\end{array}$	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 0.02\\ 0.06\\ 0.15\\ 0.25\\ 0.35\\ 0.51\\ 0.67\\ 0.87\\ 1.23\\ 1.75\\ 2.36\\ 2.97\\ 3.68\\ 4.20\\ 4.92\\ 5.91\\ 6.92\\ 7.69\\ 8.73\\ 9.50\\ 10.27\\ 11.03\\ 11.55\\ 12.07\\ 12.58\\ 13.11\\ 13.88\\ 14.65\end{array}$	0.36 0.85 4.09 5.55 6.92 8.41 8.72 10.18 11.57 13.43 15.29 16.46 17.60 18.11 19.29 20.09 19.99 20.59 21.05 21.70 21.66 21.78 22.16 22.46 22.13 22.78	$\begin{array}{c} -0.03\\ 0.03\\ 1.31\\ 2.39\\ 3.15\\ 3.84\\ 4.34\\ 4.80\\ 5.40\\ 5.83\\ 6.06\\ 5.93\\ 5.82\\ 5.66\\ 5.30\\ 4.76\\ 4.27\\ 3.85\\ 3.57\\ 3.39\\ 3.11\\ 2.77\\ 2.57\\ 2.36\\ 2.27\\ 2.36\\ 2.27\\ 2.10\\ 1.90\end{array}$	10.45 10.88 12.84 13.21 13.83 14.62 14.44 15.43 16.23 17.66 19.29 20.59 21.83 22.51 24.05 25.39 25.78 26.80 27.53 28.61 29.07 29.45 29.75 30.35 30.25 30.25 30.09 30.94	$\begin{array}{c} 10.1\\ 10.0\\ 8.7\\ 7.7\\ 6.9\\ 6.2\\ 5.7\\ 5.3\\ 4.7\\ 4.2\\ 4.0\\ 4.1\\ 4.2\\ 4.4\\ 4.8\\ 5.3\\ 5.8\\ 6.2\\ 6.5\\ 6.7\\ 7.3\\ 7.5\\ 7.7\\ 7.8\\ 8.0\\ 8.2\end{array}$	1.036 1.084 1.468 1.724 2.001 2.352 2.526 2.936 3.482 4.179 4.826 4.986 5.156 5.156 5.124 5.055 4.795 4.451 4.315 4.244 4.254 4.120 3.987 4.039 3.975 3.945 3.883 3.780 3.793	$\begin{array}{c} -0.08\\ 0.03\\ 0.33\\ 0.44\\ 0.46\\ 0.47\\ 0.51\\ 0.48\\ 0.48\\ 0.44\\ 0.40\\ 0.37\\ 0.34\\ 0.32\\ 0.28\\ 0.24\\ 0.22\\ 0.19\\ 0.17\\ 0.16\\ 0.15\\ 0.13\\ 0.12\\ 0.11\\ 0.10\\ 0.09\end{array}$	10.27 10.45 10.80 10.44 10.37 10.42 10.08 10.34 10.44 10.94 11.64 12.36 13.03 13.45 14.40 15.34 15.78 16.51 17.01 17.52 17.78 18.18 18.37 18.61 19.02 19.03 19.55	0.18 0.42 2.05 2.77 3.46 4.20 4.36 5.09 5.78 6.72 7.65 8.23 8.80 9.06 9.64 10.05 9.99 10.29 10.52 10.85 10.83 10.83 10.83 11.03 11.23 11.07 11.39
178.1 183.5 181.7	0.8 0.9 0.9	28 51.9 59 51.7	B (1)	14.65 15.17 15.68	22.78 23.38 23.00	1.90 1.92 1.80	30.94 31.52 31.26	8.2 8.1 8.3	3.793 3.875 3.783	0.09 0.08 0.08	19.55 19.83 19.76	11.39 11.69 11.50
Tested By: 129-07-041 ⁻ page 5 of 11	Date: 8/2/19 DCN: CT-S28 DATE: 4/12/13 REVISION: 3	Input Checked By: GEM	Date: 8/12/19	page 6 of 1	1							

CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS AASHTO T-297

	/	0.										
Client: Client Reference: Project No.: Lab ID:	Kleinfelder R-2561CA R-2019-209-001 R-2019-209-001-010	Boring No.: Depth (ft): Sample No.:	S2_RT_LN_EB1-A 29.5-31.5 ST-2	Client: Client Refe Project No Lab ID:	erence: .:	Kleinfelder R-2561CA R-2019-209 R-2019-209			Boring No. Depth (ft): Sample No		S2_RT_LN 29.5-31.5 ST-2	_EB1-A
Visual Description:	Gray Clay (UNDISTURBED)			Visual Des	cription:	Gray Clay (UNDISTURE	BED)				
Stage No. Test No.	1 3	INITIAL SAMPLE DIMENSIONS (in Length 1: 6.004 Diameter 1:	2.850	Effective C	Confining Pre	ssure (psi)	20.0		Stage No. Test No		1	
PRESSURES (psi)		Length 2: 5.980 Diameter 2: Length 3: 6.009 Diameter 3: Length 4: 6.017 Diameter 4:	2.871 2.887 2.862	INITIAL D	MENSIONS				VOLUME CHANGE			
Cell Pressure (psi) Back Pressure (psi) Eff. Conf. Pressure (psi) Pore Pressure Response (%)	70.0 50.0 20.0 98	Avg. Length: 6.003 Avg. Diam.: VOLUME CHANGE Initial Burette Reading (ml) Final Burette Reading (ml)	2.868 24.0 6.2	Initial Sam Initial Sam	ple Length (i ple Diameter ple Area (in ² ple Volume ((in))	6.00 2.87 6.46 38.76		Volume After Consolid Length After Consolida Area After Consolidatio	ation (in)		36.92 5.90 6.262
		Final Change (ml) Initial Dial Reading (mil)	17.8	Strain (%)	Deviation Stress	ΔU	$\overline{\sigma}_1$	$\overline{\sigma}_3$	Effective Principle Stress Ratio	A	P	Q
P = Q =	35.56 28.29	Dial Reading After Saturation (mil) Dial Reading After Consolidation (mil)	211 278									
LOAD (LB)	DEFORM. (IN)		URE									
$\begin{array}{c} 16.2\\ 27.9\\ 66.6\\ 86.7\\ 102.2\\ 121.1\\ 137.7\\ 157.8\\ 193.0\\ 249.5\\ 315.9\\ 376.4\\ 436.0\\ 460.4\\ 370.9\\ 374.3\\ 388.3\\ 398.4\\ 411.9\\ 423.8\\ 430.9\\ 407.0\\ 409.6\\ 412.8\\ 430.9\\ 407.0\\ 409.6\\ 412.8\\ 430.9\\ 407.0\\ 409.6\\ 412.8\\ 430.9\\ 407.0\\ 409.6\\ 412.8\\ 430.9\\ 407.0\\ 409.6\\ 412.8\\ 430.9\\ 407.0\\ 409.6\\ 412.8\\ 430.9\\ 407.0\\ 409.6\\ 412.8\\ 430.9\\ 407.0\\ 409.6\\ 412.8\\ 430.9\\ 407.0\\ 409.6\\ 412.8\\ 430.9\\ 407.0\\ 409.6\\ 412.8\\ 430.9\\ 407.0\\ 409.6\\ 412.8\\ 430.9\\ 407.0\\ 409.6\\ 412.8\\ 418.6\\ 427.4\\ 434.7\\ 448.2\\ 453.8\\ 455.6\\ 80.9\\ 4$	0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.07 0.09 0.13 0.17 0.21 0.24 0.28 0.34 0.28 0.34 0.40 0.44 0.50 0.55 0.59 0.64 0.67 0.70 0.73 0.76 0.80 0.85 0.88 0.85	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.02 0.04 0.13 0.24 0.33 0.49 0.63 0.83 1.18 1.69 2.29 2.89 3.59 4.09 4.81 5.78 6.79 7.55 8.58 9.34 10.10 10.87 11.37 11.88 12.39 12.91 13.66 14.42 14.94 15.44	0.76 2.62 8.80 11.98 14.44 17.42 20.03 23.17 28.65 37.38 47.51 56.59 65.38 68.77 54.64 54.69 57.13 58.46 59.69 60.22 56.30 56.36 56.48 56.96 57.85 58.36 59.69 60.09 59.98	0.13 0.22 3.21 5.17 6.64 8.22 9.42 10.60 11.97 13.01 13.31 12.78 11.02 8.42 3.71 3.15 2.88 2.73 2.21 2.06 1.91 1.67 1.60 1.49 1.24 0.95 0.70 0.39	$\begin{array}{c} 20.68\\ 22.45\\ 25.64\\ 26.86\\ 27.85\\ 29.24\\ 30.65\\ 32.62\\ 36.73\\ 44.42\\ 54.24\\ 63.86\\ 74.41\\ 80.39\\ 70.98\\ 71.49\\ 73.26\\ 74.45\\ 76.14\\ 77.53\\ 78.20\\ 74.45\\ 74.45\\ 74.45\\ 74.45\\ 74.45\\ 74.45\\ 74.45\\ 74.45\\ 74.45\\ 74.45\\ 74.45\\ 74.45\\ 74.45\\ 74.45\\ 74.45\\ 74.45\\ 74.45\\ 74.45\\ 75.40\\ 76.41\\ 77.16\\ 78.78\\ 79.43\\ 79.63\\ \end{array}$	$\begin{array}{c} 19.9\\ 19.8\\ 16.8\\ 14.9\\ 13.4\\ 11.8\\ 10.6\\ 9.4\\ 8.1\\ 7.0\\ 6.7\\ 7.3\\ 9.0\\ 11.6\\ 16.3\\ 16.9\\ 17.2\\ 17.3\\ 17.7\\ 17.8\\ 18.0\\ 18.1\\ 18.3\\ 18.4\\ 18.4\\ 18.6\\ 18.8\\ 19.1\\ 19.3\\ 19.7\\ \end{array}$	1.038 1.132 1.522 1.806 2.077 2.473 2.885 3.452 4.546 6.310 8.054 8.786 8.239 6.917 4.344 4.231 4.269 4.299 4.308 4.347 4.348 4.105 4.087 4.073 4.089 4.117 4.103 4.126 4.106 4.052	0.17 0.08 0.37 0.44 0.47 0.48 0.47 0.43 0.36 0.29 0.23 0.17 0.13 0.07 0.06 0.05 0.05 0.05 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.01 0.01	$\begin{array}{c} 20.30\\ 21.14\\ 20.86\\ 20.63\\ 20.53\\ 20.64\\ 21.04\\ 22.40\\ 25.73\\ 30.49\\ 35.56\\ 41.72\\ 46.01\\ 43.66\\ 44.19\\ 45.21\\ 45.88\\ 46.91\\ 47.69\\ 48.09\\ 46.28\\ 46.91\\ 47.69\\ 48.09\\ 46.28\\ 46.44\\ 46.62\\ 46.92\\ 47.49\\ 48.94\\ 49.39\\ 49.64\end{array}$	0.38 1.31 4.40 5.99 7.22 8.71 10.01 11.59 14.32 18.69 23.75 28.29 32.69 34.39 27.32 27.30 28.05 28.56 29.23 29.85 30.11 28.15 28.18 28.24 28.48 28.93 29.18 29.84 30.04 29.99
Tested By: 129-07-041		Input Checked By: GEM	Date: 8/12/2019		00.00	0.00	10.00	10.7	7.002	0.01	-0.04	

page 8 of 11

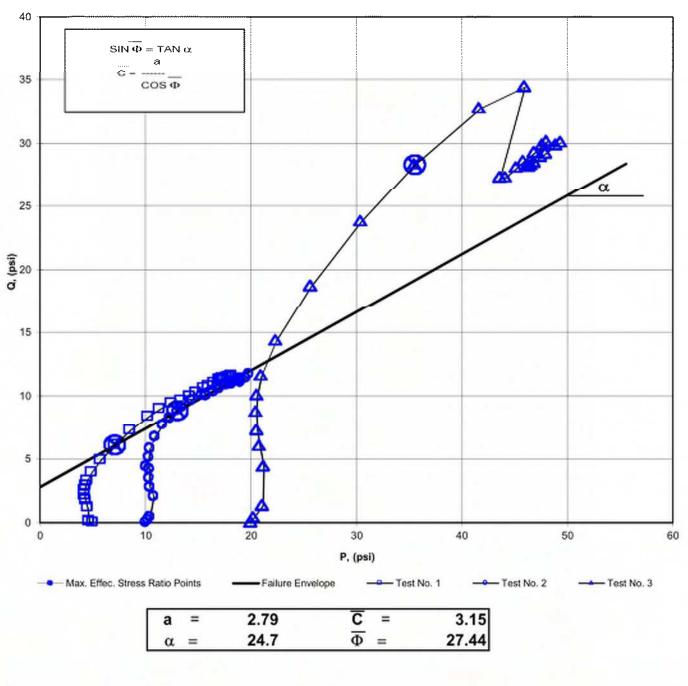
CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS AASHTO T-297

Tested By: 129-07-0411 Date: 8/2/19 page 10 of 11 DCN: CT-S28 DATE: 4/12/13 REVISION: 3

CONSOLIDATED UNDRAINED TRIAXIAL TEST

N_EB1-A 31.5 - 2	S2_RT_LN_EB1-A 29.5-31.5 ST-2	S2_RT_LN_EB1-A 29.5-31.5 ST-2
	T2	Т3
11	0.0011	0.0011
0	50.0	50.0
	1	1
4	31.9	27.4
.1	114.8	120.5
0	87.1	94.6
3	33.5	27.9
15	0.921	0.769
7	0.817	0.685

Input Checked By: GEM Date: 8/12/19

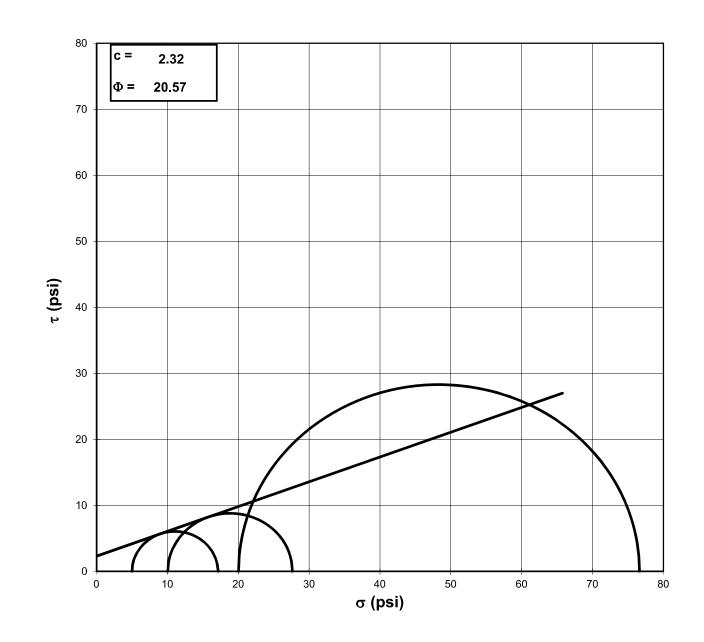

AASHTO T-297

Client: Client Reference: Project No .: Lab ID:

Kleinfelder R-2561CA R-2019-209-001 R-2019-209-001-010

Boring No.: Depth (ft): Sample No.: S2_RT_LN_EB1-A 29.5-31.5 ST-2

Consolidated Undrained Triaxial Test with Pore Pressure



	AASHTO
Kleinfelder	

Kleinfelder Client Reference: R-2561CA Project No.: R-2019-209-001 R-2019-209-001-010 Gray Clay (UNDISTURBED) Visual Description:

Client:

Lab ID:

Failure Based on Maximum Effective Principal Stress Ratio

MPS *Tested By:* 129-07-0411 Date: 8/2/19 Approved By: page 2 of 11 DCN: CT-S28 DATE: 4/12/13 REVISION: 3

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

Approved By: MPS

Date: 8/12/19

Sigmatriax.xls

Tested By: 129-07-0411 Date: 8/2/19

page 1 of 11 DCN: CT-S28 DATE: 4/12/13 REVISION: 3

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

MOHR TOTAL STRENGTH ENVELOPE) T-297

Boring No.: Depth (ft): Sample No.: S2_RT_LN_EB1-A 29.5-31.5 ST-2

NOTE: GRAPH NOT TO SCALE

Date: 8/12/19

			////0111012					
Client:		Kleinfelder		E	Boring No.	:	S2_RT_LN	_EB1-
Client Refere	ence:	R-2561CA		Depth (ft):			29.5-31.5	
Project No.:		R-2019-209-	001	Sample No.:			ST-2	
Lab ID:		R-2019-209-			·			
Visual Descr	rintion [.]		INDISTURBED)					
Stage No.		2				ENSIONS (in)		
Test No.		1		Length 1:	6.379	Diameter 1:	2.859	
PREGOURE	0 (Length 2:	6.458	Diameter 2:	2.875	
PRESSURE	s (psi)			Length 3:	6.444 6.395	Diameter 3:	2.862 2.858	
		FF 0		Length 4:	6.419	Diameter 4:	2.858	
Cell Pressur		55.0	/	Avg. Length:	0.419	Avg. Diam.:	2.004	
Back Pressu		50.0						
Eff. Conf. Pr		5.0		VOLUME CH		(I)		
Pore Pressu		100		Initial Burette			24.0	
Response (%	%)	100		Final Burette		(mi)	13.5	
				Final Change	3 (MI)		10.5	
MAXIMUM	DBLIQUITY I	POINTS						
		7.00		Initial Dial Re			388	
		7.09		Dial Reading			501	
Q =		6.06		Dial Reading A	Atter Consc	bildation (mill)	531	
	LOAD		DEFORMAT	ION	ļ	PORE PRESSU	RE	
	(LB)		<u>(IN)</u>			<u>(PSI)</u>		
	9.5 10.5		0.000 0.001			50.0 50.4		
	10.5		0.001			50.4		
	24.2		0.009			51.7		
	30.9		0.015			52.4		
	35.5		0.021			52.8		
	40.6		0.031			53.3		
	44.9		0.040			53.5		
	49.9		0.053			53.8		
	58.2 70.2		0.076 0.108			54.0 54.1		
	85.7					54.1		
	00.7					54.0		
			0.146 0.185			54.0 53.7		
	100.8		0.185			53.7		
	100.8 115.6 123.9 130.6		0.185 0.229 0.261 0.306			53.7 53.1 52.6 51.9		
	100.8 115.6 123.9 130.6 134.6		0.185 0.229 0.261 0.306 0.367			53.7 53.1 52.6 51.9 51.2		
	100.8 115.6 123.9 130.6 134.6 140.2		0.185 0.229 0.261 0.306 0.367 0.431			53.7 53.1 52.6 51.9 51.2 50.7		
	100.8 115.6 123.9 130.6 134.6 140.2 145.2		0.185 0.229 0.261 0.306 0.367 0.431 0.479			53.7 53.1 52.6 51.9 51.2 50.7 50.4		
	100.8 115.6 123.9 130.6 134.6 140.2 145.2 151.6		0.185 0.229 0.261 0.306 0.367 0.431 0.479 0.543			53.7 53.1 52.6 51.9 51.2 50.7 50.4 50.0		
	100.8 115.6 123.9 130.6 134.6 140.2 145.2 151.6 155.3		0.185 0.229 0.261 0.306 0.367 0.431 0.479 0.543 0.591			53.7 53.1 52.6 51.9 51.2 50.7 50.4 50.0 49.8		
	100.8 115.6 123.9 130.6 134.6 140.2 145.2 151.6		0.185 0.229 0.261 0.306 0.367 0.431 0.479 0.543			53.7 53.1 52.6 51.9 51.2 50.7 50.4 50.0		
	$100.8 \\ 115.6 \\ 123.9 \\ 130.6 \\ 134.6 \\ 140.2 \\ 145.2 \\ 151.6 \\ 155.3 \\ 160.1 \\ 164.7 \\ 165.9 \\ 165.9 \\ 100.1 \\ 100.$		0.185 0.229 0.261 0.306 0.367 0.431 0.479 0.543 0.591 0.639 0.687 0.719			53.7 53.1 52.6 51.9 51.2 50.7 50.4 50.0 49.8 49.5 49.2 49.2		
	$100.8 \\ 115.6 \\ 123.9 \\ 130.6 \\ 134.6 \\ 140.2 \\ 145.2 \\ 151.6 \\ 155.3 \\ 160.1 \\ 164.7 \\ 165.9 \\ 168.0 \\$		0.185 0.229 0.261 0.306 0.367 0.431 0.479 0.543 0.591 0.639 0.687 0.719 0.751			53.7 53.1 52.6 51.9 51.2 50.7 50.4 50.0 49.8 49.5 49.2 49.2 49.0		
	$100.8\\115.6\\123.9\\130.6\\134.6\\140.2\\145.2\\151.6\\155.3\\160.1\\164.7\\165.9\\168.0\\166.9$		0.185 0.229 0.261 0.306 0.367 0.431 0.479 0.543 0.591 0.639 0.687 0.719 0.751 0.783			53.7 53.1 52.6 51.9 51.2 50.7 50.4 50.0 49.8 49.5 49.2 49.2 49.0 49.0		
	$\begin{array}{c} 100.8\\ 115.6\\ 123.9\\ 130.6\\ 134.6\\ 140.2\\ 145.2\\ 151.6\\ 155.3\\ 160.1\\ 164.7\\ 165.9\\ 168.0\\ 166.9\\ 169.3 \end{array}$		0.185 0.229 0.261 0.306 0.367 0.431 0.479 0.543 0.591 0.639 0.687 0.719 0.751 0.783 0.815			53.7 53.1 52.6 51.9 51.2 50.7 50.4 50.0 49.8 49.5 49.2 49.2 49.2 49.0 49.0 48.9		
	$100.8\\115.6\\123.9\\130.6\\134.6\\140.2\\145.2\\151.6\\155.3\\160.1\\164.7\\165.9\\168.0\\166.9\\169.3\\172.1$		0.185 0.229 0.261 0.306 0.367 0.431 0.479 0.543 0.591 0.639 0.687 0.719 0.751 0.783 0.815 0.863			53.7 53.1 52.6 51.9 51.2 50.7 50.4 50.0 49.8 49.5 49.2 49.2 49.2 49.0 49.0 48.9 48.7		
	$100.8\\115.6\\123.9\\130.6\\134.6\\140.2\\145.2\\151.6\\155.3\\160.1\\164.7\\165.9\\168.0\\166.9\\169.3\\172.1\\174.6$		0.185 0.229 0.261 0.306 0.367 0.431 0.479 0.543 0.591 0.639 0.687 0.719 0.751 0.783 0.815 0.863 0.911			53.7 53.1 52.6 51.9 51.2 50.7 50.4 50.0 49.8 49.5 49.2 49.2 49.2 49.0 49.0 48.9 48.7 48.5		
	$100.8\\115.6\\123.9\\130.6\\134.6\\140.2\\145.2\\151.6\\155.3\\160.1\\164.7\\165.9\\168.0\\166.9\\169.3\\172.1$		0.185 0.229 0.261 0.306 0.367 0.431 0.479 0.543 0.591 0.639 0.687 0.719 0.751 0.783 0.815 0.863			53.7 53.1 52.6 51.9 51.2 50.7 50.4 50.0 49.8 49.5 49.2 49.2 49.2 49.0 49.0 48.9 48.7		

page 3 of 11

DCN: CT-S28 DATE: 4/12/13 REVISION: 3

Sigmatriax.xls

Visual Des	scription: C	Gray Clay (l	JNDISTURI	BED)
Effective (Confining Pres	ssure (psi)	5.0	
INITIAL D	IMENSIONS			
Initial Sam Initial Sam	nple Length (ir nple Diameter nple Area (in²) nple Volume (i	(in)	6.42 2.86 6.44 41.34	
Strain (%)	Deviation Stress	ΔU	$\overline{\sigma}_1$	$\overline{\sigma}_3$
0.02 0.04 0.14 0.23 0.34 0.49 0.64 0.85 1.21 1.71 2.33 2.94 3.65 4.16 4.88 5.85 6.86 7.64 8.65 9.42 10.18 10.94 11.46 11.97 12.48 12.99 12.99 12.99 12.99 12.99 12.99 12.99 12.99 12.99 12.99 12.99 12.99 12.94 12.99 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.95 12.94 12.94 12.94 12.94 12.95 12.94 12.94 12.95 12.94 12.95 12.94 12.95 12.94 12.94 12.95 12.94 12.94 12.94 12.95 12.94 12.94 12.94 12.93 12.94 12.94 12.93 12.94 12.94 12.95 12.94 12.95 12.94 12.95 12.94 12.95 12.94 12.94 12.95 12.95 12.95 12.95 12.95 12.95 12.94 12.95 12.	0.17 0.26 2.39 3.48 4.22 5.05 5.74 6.53 7.84 9.72 12.12 14.43 16.66 17.86 18.78 19.19 19.84 20.43 21.15 21.53 22.04 22.53 22.57 22.75 22.45 22.66 22.66	0.40 0.44 1.66 2.39 2.84 3.26 3.53 3.77 3.98 4.08 3.97 3.67 3.07 2.60 1.93 1.21 0.73 0.42 0.03 -0.23 -0.52 -0.76 -0.83 -0.95 -1.03 -1.03 -1.14 -1.20	4.77 4.82 5.73 6.09 6.38 6.79 7.21 7.77 8.86 10.64 13.15 15.76 18.59 20.27 21.85 22.98 24.11 25.01 26.12 26.75 27.56 28.28 28.40 28.70 28.48 28.40 28.48 28.40	4.6 4.6 3.3 2.6 2.2 1.7 1.5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Client:

Lab ID:

13.74

14.52

15.29

16.05

page 4 of 11

22.86

23.00

23.15

23.21

-1.29

-1.46

-1.61

-1.75

29.15

29.45

29.76

29.96

Project No.:

Client Reference:

CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS

Kleinfelder

R-2561CA

R-2019-209-001

R-2019-209-001-010

AASHTO T-297

Boring No.: Depth (ft): Sample No.: S2_RT_LN_EB1-A 29.5-31.5 ST-2

D)				
	Stage No. Test No		2	
	Volume After Consolid Length After Consolida Area After Consolidatio	ition (in)		38.51 6.28 6.137
$\overline{\sigma}_3$	Effective Principle Stress Ratio	Ā	P	Q
$\begin{array}{c} 4.6\\ 4.6\\ 3.3\\ 2.6\\ 2.2\\ 1.7\\ 1.5\\ 1.0\\ 0.9\\ 1.3\\ 1.9\\ 4.3\\ 4.6\\ 5.0\\ 5.5\\ 5.8\\ 5.8\end{array}$	$\begin{array}{c} 1.036\\ 1.056\\ 1.716\\ 2.335\\ 2.956\\ 3.906\\ 4.909\\ 6.299\\ 8.702\\ 11.561\\ 12.771\\ 11.859\\ 9.639\\ 8.429\\ 7.114\\ 6.061\\ 5.649\\ 5.460\\ 5.258\\ 5.120\\ 4.993\\ 4.914\\ 4.870\end{array}$	2.39 1.72 0.69 0.67 0.65 0.62 0.58 0.51 0.42 0.33 0.25 0.18 0.15 0.10 0.06 0.04 0.02 0.00 -0.01 -0.02 -0.03 -0.04	4.69 4.69 4.54 4.35 4.27 4.26 4.34 4.50 4.94 5.78 7.09 8.55 10.26 11.34 12.46 13.39 14.19 14.80 15.54 15.99 16.54 17.02 17.12	0.08 0.13 1.20 1.74 2.11 2.52 2.87 3.27 3.92 4.86 6.06 7.22 8.33 8.93 9.39 9.59 9.92 10.21 10.58 10.76 11.02 11.26 11.29
6.0 6.1 6.3 6.5 6.6 6.8	4.822 4.721 4.688 4.636 4.560 4.502 4.436	-0.04 -0.05 -0.05 -0.06 -0.06 -0.07 -0.08	17.32 17.26 17.47 17.72 17.96 18.19 18.36	11.37 11.23 11.33 11.43 11.50 11.58 11.60

	AASHIC	5 1-297			
Client: Client Reference: Project No.: Lab ID:	Kleinfelder R-2561CA R-2019-209-001 R-2019-209-001-010	Boring No Depth (ft): Sample No		S2_RT_LN_EB1-A 29.5-31.5 ST-2	Client: Client Re Project N Lab ID:
Visual Description:	Gray Clay (UNDISTURBED)				Visual De
Store No.	2				Effective
Stage No. Test No.	3 2	INITIAL SAMPLE DIN Length 1: 6.253	Diameter 1:	2.867	Enective
1001110.	-	Length 2: 6.224	Diameter 2:	2.868	
PRESSURES (psi)		Length 3: 6.243	Diameter 3:	2.863	INITIAL
		Length 4: 6.293	Diameter 4:	2.864	
Cell Pressure (psi)	60.0	Avg. Length: 6.253	Avg. Diam.:	2.866	Initial Sa
Back Pressure (psi)	50.0				Initial Sa
Eff. Conf. Pressure (psi)	10.1	VOLUME CHANGE			Initial Sa
Pore Pressure		Initial Burette Reading	`	24.0	Initial Sa
Response (%)	98	Final Burette Reading	(ml)	7.3	
		Final Change (ml)		16.7	
MAXIMUM OBLIQUITY	POINTS				Strain
		Initial Dial Reading (m	il)	512	(%)
P =	13.03	Dial Reading After Sat		572	
Q =	8.80	Dial Reading After Cons	olidation (mil)	645	
LOAD	DEFOR	MATION	PORE PRESSI	JRE	
(LB)	11)		(PSI)		
11.7	0.0		50.0		
14.0	0.0		49.9		0.02
17.0	0.0		50.0		0.06
37.2 46.4	0.0 0.0		51.3 52.3		0.15 0.25
55.0	0.0		53.1		0.35
64.4	0.0		53.8		0.51
66.4	0.0		54.3		0.67
75.7	0.0		54.8		0.87
84.7 96.9	0.0 0.1		55.4 55.8		1.23 1.75
109.3	0.1		56.0		2.36
117.4	0.1		55.9		2.97
125.6	0.2		55.8		3.68
129.6	0.2		55.6		4.20
138.2 144.8	0.3 0.3		55.3 54.7		4.92 5.91
145.5	0.3		54.2		6.92
150.7	0.4		53.8		7.69
155.4	0.5		53.5		8.73
161.2	0.5		53.3		9.50
162.2 164.3	0.6		53.1		10.27
167.9	0.6 0.7		52.7 52.7		11.03 11.55
169.5	0.7		52.5		12.07
173.2	0.7	70	52.3		12.58
172.8	0.8		52.2		13.11
171.9	0.8		52.1		13.88
178.1 183.5	0.8 0.9		51.9 51.9		14.65 15.17
181.7	0.9		51.5		15.68
Tested By: 129-07-041		Input Checked By:	GEM	Date: 8/12/19	
nogo 5 of 11		inpat enconted by:		24101 0/12/10	nage 6 of

Kleinfelder ent: ent Reference: R-2561CA R-2019-209-001 ject No.: ID: R-2019-209-001-010 Gray Clay (UNDISTURBED) ual Description: ective Confining Pressure (psi) 10.1 TIAL DIMENSIONS 6.25 ial Sample Length (in) ial Sample Diameter (in) 2.87 ial Sample Area (in²) 6.45 ial Sample Volume (in³) 40.33 Deviation ΔU Strain σ_1 σ_3 (%) Stress -0.03 0.02 0.36 10.45 10. 0.06 0.85 0.03 10.88 10. 0.15 1.31 8.7 4.09 12.84

2.39

3.15

3.84

4.34

4.80

5.40

5.83

6.06

5.93

5.82

5.66

5.30

4.76

4.27

3.85

3.57

3.39

3.11

2.77

2.77

2.57

2.36

2.27

2.10

1.90

1.92

1.80

13.21

13.83

14.62

14.44

15.43

16.23

17.66

19.29

20.59

21.83

22.51

24.05

25.39

25.78

26.80

27.53

28.37

28.61

29.07

29.45

29.75

30.35

30.25

30.09

30.94

31.52

31.26

5.55

6.92

8.41

8.72

10.18

11.57

13.43

15.29

16.46

17.60

18.11

19.29

20.09

19.99

20.59

21.05

21.70

21.66

21.78

22.16

22.26

22.65

22.46

22.13

22.78

23.38

23.00

page 6 of 11	
2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 2760)4

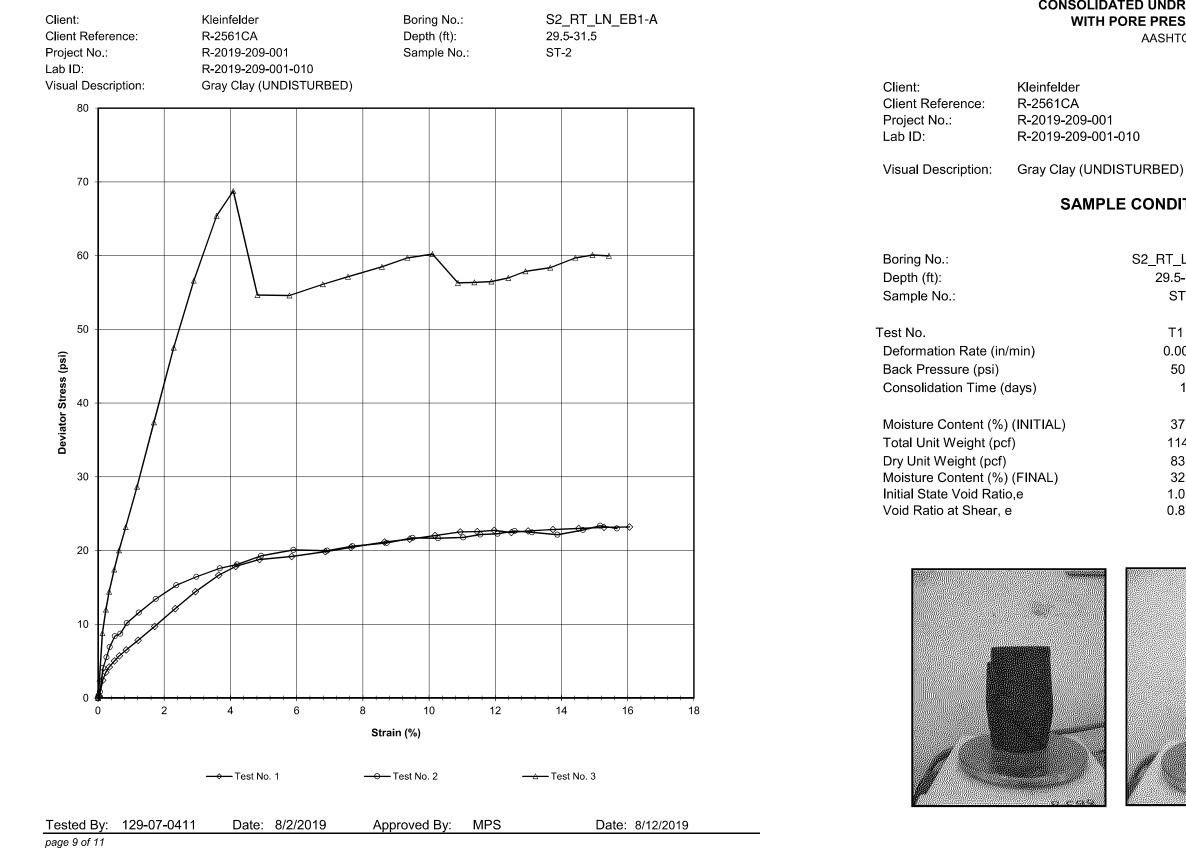
page 5 of 11 DCN: CT-S28 DATE: 4/12/13 REVISION: 3 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS AASHTO T-297

Boring No.: Depth (ft): Sample No.: S2_RT_LN_EB1-A 29.5-31.5 ST-2

	Stage No. Test No		3 2			
	VOLUME CHANGE					
	Volume After Consolid Length After Consolida Area After Consolidatio	ation (in)		38.15 6.12 6.233		
$\overline{\sigma}_3$	Effective Principle Stress Ratio	Ā	P	Q		
10.1 10.0 8.7 7.7 6.9 6.2 5.7 5.3 4.7 4.2 4.0 4.1 4.2	1.036 1.084 1.468 1.724 2.001 2.352 2.526 2.936 3.482 4.179 4.826 4.986 5.156 5.104	-0.08 0.03 0.33 0.44 0.46 0.47 0.51 0.48 0.48 0.48 0.48 0.44 0.40 0.37 0.34	10.27 10.45 10.80 10.44 10.37 10.42 10.08 10.34 10.44 10.94 11.64 12.36 13.03	0.18 0.42 2.05 2.77 3.46 4.20 4.36 5.09 5.78 6.72 7.65 8.23 8.80		
$\begin{array}{c} 4.4 \\ 4.8 \\ 5.3 \\ 5.8 \\ 6.2 \\ 6.5 \\ 6.7 \\ 6.9 \\ 7.3 \\ 7.5 \\ 7.7 \\ 7.8 \\ 8.0 \\ 8.2 \\ 8.1 \\ 8.3 \end{array}$	5.124 5.055 4.795 4.451 4.315 4.244 4.254 4.120 3.987 4.039 3.975 3.945 3.883 3.780 3.793 3.875 3.783	0.32 0.28 0.24 0.19 0.17 0.16 0.15 0.13 0.13 0.12 0.11 0.10 0.10 0.09 0.08 0.08	$\begin{array}{c} 13.45 \\ 14.40 \\ 15.34 \\ 15.78 \\ 16.51 \\ 17.01 \\ 17.52 \\ 17.78 \\ 18.18 \\ 18.37 \\ 18.61 \\ 19.02 \\ 19.02 \\ 19.03 \\ 19.55 \\ 19.83 \\ 19.76 \end{array}$	9.06 9.64 10.05 9.99 10.29 10.52 10.85 10.83 10.89 11.08 11.13 11.23 11.23 11.07 11.39 11.69 11.50		

Client Reference: Project No.: Lab ID:	Kleinfelder R-2561CA R-2019-209-001 R-2019-209-001-010		Boring No.: Depth (ft): Sample No.:			N_EB1-A
Visual Description:	Gray Clay (UNDISTUF	(BED)				
Stage No.	1	INITIAL S		IONS (in)		
Test No.	3	Length 1:	6.004 Dia	ameter 1:	2.850	
	·	Length 2:	5.980 Dia	ameter 2:	2.871	
PRESSURES (psi)		Length 3:		ameter 3:	2.887	
		Length 4:		ameter 4:	2.862	
Cell Pressure (psi)	70.0	Avg. Length		g. Diam.:	2.868	
Back Pressure (psi)	50.0	nug. Longu	. 0.000 /10	g. Diam.	2.000	
			CHANCE			
Eff. Conf. Pressure (psi)	20.0		CHANGE			
Pore Pressure			ette Reading (ml)		24.0	
Response (%)	98		ette Reading (ml)		6.2	
		Final Cha	nge (ml)		17.8	
MAXIMUM OBLIQUITY I	POINTS					
		Initial Dia	Reading (mil)		172	
<u>P</u> =	35.56		ing After Saturation	on (mil)	211	
, Q =	28.29		ng After Consolidat		278	
			-	· · ·		:
LOAD	DE	FORMATION	POR	E PRESSU	RE	
(LB)		(IN)		(PSI)		
11.5		0.000		50.0		
16.2		0.001		50.1		
27.9		0.003		50.2		
66.6		0.008		53.2		
86.7		0.014		55.1		
102.2		0.020		56.6		
121.1		0.029		58.2		
137.7		0.037		59.4		
		0.049 0.070		60.6 61.9		
157.8				019		
157.8 193.0						
157.8 193.0 249.5		0.099		63.0		
157.8 193.0 249.5 315.9		0.099 0.135		63.0 63.3		
157.8 193.0 249.5 315.9 376.4		0.099 0.135 0.171		63.0 63.3 62.8		
157.8 193.0 249.5 315.9 376.4 436.0		0.099 0.135 0.171 0.211		63.0 63.3 62.8 61.0		
157.8 193.0 249.5 315.9 376.4 436.0 460.4		0.099 0.135 0.171 0.211 0.241		63.0 63.3 62.8 61.0 58.4		
157.8 193.0 249.5 315.9 376.4 436.0		0.099 0.135 0.171 0.211		63.0 63.3 62.8 61.0		
157.8 193.0 249.5 315.9 376.4 436.0 460.4 370.9		0.099 0.135 0.171 0.211 0.241 0.284		63.0 63.3 62.8 61.0 58.4 53.7 53.1 52.9		
157.8 193.0 249.5 315.9 376.4 436.0 460.4 370.9 374.3 388.3 398.4		0.099 0.135 0.171 0.211 0.241 0.284 0.341 0.400 0.445		63.0 63.3 62.8 61.0 58.4 53.7 53.1 52.9 52.7		
157.8 193.0 249.5 315.9 376.4 436.0 460.4 370.9 374.3 388.3 398.4 411.9		0.099 0.135 0.171 0.211 0.241 0.284 0.341 0.400 0.445 0.506		63.0 63.3 62.8 61.0 58.4 53.7 53.1 52.9 52.7 52.3		
157.8 193.0 249.5 315.9 376.4 436.0 460.4 370.9 374.3 388.3 398.4 411.9 423.8		0.099 0.135 0.171 0.211 0.241 0.284 0.341 0.400 0.445 0.506 0.551		63.0 63.3 62.8 61.0 58.4 53.7 53.1 52.9 52.7 52.3 52.2		
$157.8 \\ 193.0 \\ 249.5 \\ 315.9 \\ 376.4 \\ 436.0 \\ 460.4 \\ 370.9 \\ 374.3 \\ 388.3 \\ 398.4 \\ 411.9 \\ 423.8 \\ 430.9$		0.099 0.135 0.171 0.211 0.241 0.284 0.341 0.400 0.445 0.506 0.551 0.596		63.0 63.3 62.8 61.0 58.4 53.7 53.1 52.9 52.7 52.3 52.2 52.0		
$157.8 \\ 193.0 \\ 249.5 \\ 315.9 \\ 376.4 \\ 436.0 \\ 460.4 \\ 370.9 \\ 374.3 \\ 388.3 \\ 398.4 \\ 411.9 \\ 423.8 \\ 430.9 \\ 407.0 \\ $		0.099 0.135 0.171 0.211 0.241 0.284 0.341 0.400 0.445 0.506 0.551 0.596 0.641		63.0 63.3 62.8 61.0 58.4 53.7 53.1 52.9 52.7 52.3 52.2 52.0 51.9		
$157.8 \\ 193.0 \\ 249.5 \\ 315.9 \\ 376.4 \\ 436.0 \\ 460.4 \\ 370.9 \\ 374.3 \\ 388.3 \\ 398.4 \\ 411.9 \\ 423.8 \\ 430.9 \\ 407.0 \\ 409.6 $		0.099 0.135 0.171 0.211 0.241 0.284 0.341 0.400 0.445 0.506 0.551 0.596 0.641 0.670		63.0 63.3 62.8 61.0 58.4 53.7 53.1 52.9 52.7 52.3 52.2 52.0 51.9 51.8		
$157.8 \\ 193.0 \\ 249.5 \\ 315.9 \\ 376.4 \\ 436.0 \\ 460.4 \\ 370.9 \\ 374.3 \\ 388.3 \\ 398.4 \\ 411.9 \\ 423.8 \\ 430.9 \\ 407.0 \\ 409.6 \\ 412.8 \\ $		0.099 0.135 0.171 0.211 0.241 0.284 0.341 0.400 0.445 0.506 0.551 0.596 0.641 0.670 0.701		63.0 63.3 62.8 61.0 58.4 53.7 53.1 52.9 52.7 52.3 52.2 52.0 51.9 51.8 51.6		
$157.8 \\ 193.0 \\ 249.5 \\ 315.9 \\ 376.4 \\ 436.0 \\ 460.4 \\ 370.9 \\ 374.3 \\ 388.3 \\ 398.4 \\ 411.9 \\ 423.8 \\ 430.9 \\ 407.0 \\ 409.6 \\ 412.8 \\ 418.6 $		0.099 0.135 0.171 0.211 0.241 0.284 0.341 0.400 0.445 0.506 0.551 0.596 0.641 0.670 0.701 0.731		63.0 63.3 62.8 61.0 58.4 53.7 53.1 52.9 52.7 52.3 52.2 52.0 51.9 51.8 51.6 51.6		
$157.8 \\ 193.0 \\ 249.5 \\ 315.9 \\ 376.4 \\ 436.0 \\ 460.4 \\ 370.9 \\ 374.3 \\ 388.3 \\ 398.4 \\ 411.9 \\ 423.8 \\ 430.9 \\ 407.0 \\ 409.6 \\ 412.8 \\ 418.6 \\ 427.4 $		0.099 0.135 0.171 0.211 0.241 0.284 0.341 0.400 0.445 0.506 0.551 0.596 0.641 0.670 0.701 0.731 0.761		$\begin{array}{c} 63.0\\ 63.3\\ 62.8\\ 61.0\\ 58.4\\ 53.7\\ 53.1\\ 52.9\\ 52.7\\ 52.3\\ 52.2\\ 52.0\\ 51.9\\ 51.8\\ 51.6\\ 51.6\\ 51.5\end{array}$		
$\begin{array}{c} 157.8\\ 193.0\\ 249.5\\ 315.9\\ 376.4\\ 436.0\\ 460.4\\ 370.9\\ 374.3\\ 388.3\\ 398.4\\ 411.9\\ 423.8\\ 430.9\\ 407.0\\ 409.6\\ 412.8\\ 418.6\\ 427.4\\ 434.7\end{array}$		0.099 0.135 0.171 0.211 0.241 0.284 0.341 0.400 0.445 0.506 0.551 0.596 0.641 0.670 0.701 0.701 0.731 0.761 0.806		$\begin{array}{c} 63.0\\ 63.3\\ 62.8\\ 61.0\\ 58.4\\ 53.7\\ 53.1\\ 52.9\\ 52.7\\ 52.3\\ 52.2\\ 52.0\\ 51.9\\ 51.8\\ 51.6\\ 51.6\\ 51.5\\ 51.2\end{array}$		
$\begin{array}{c} 157.8\\ 193.0\\ 249.5\\ 315.9\\ 376.4\\ 436.0\\ 460.4\\ 370.9\\ 374.3\\ 388.3\\ 398.4\\ 411.9\\ 423.8\\ 430.9\\ 407.0\\ 409.6\\ 412.8\\ 418.6\\ 427.4\\ 434.7\\ 448.2\end{array}$		0.099 0.135 0.171 0.211 0.241 0.284 0.341 0.400 0.445 0.506 0.551 0.596 0.641 0.670 0.701 0.701 0.731 0.761 0.806 0.850		$\begin{array}{c} 63.0\\ 63.3\\ 62.8\\ 61.0\\ 58.4\\ 53.7\\ 53.1\\ 52.9\\ 52.7\\ 52.3\\ 52.2\\ 52.0\\ 51.9\\ 51.8\\ 51.6\\ 51.6\\ 51.5\\ 51.2\\ 50.9\end{array}$		
$\begin{array}{c} 157.8\\ 193.0\\ 249.5\\ 315.9\\ 376.4\\ 436.0\\ 460.4\\ 370.9\\ 374.3\\ 388.3\\ 398.4\\ 411.9\\ 423.8\\ 430.9\\ 407.0\\ 409.6\\ 412.8\\ 418.6\\ 427.4\\ 434.7\end{array}$		0.099 0.135 0.171 0.211 0.241 0.284 0.341 0.400 0.445 0.506 0.551 0.596 0.641 0.670 0.701 0.701 0.731 0.761 0.806		$\begin{array}{c} 63.0\\ 63.3\\ 62.8\\ 61.0\\ 58.4\\ 53.7\\ 53.1\\ 52.9\\ 52.7\\ 52.3\\ 52.2\\ 52.0\\ 51.9\\ 51.8\\ 51.6\\ 51.6\\ 51.5\\ 51.2\end{array}$		

Client: Client Refe Project Nc Lab ID:	erence: .:	Kleinfelder R-2561CA R-2019-209 R-2019-209			Boring No.: Depth (ft): Sample No.:		S2_RT_LN 29.5-31.5 ST-2	I_EB1-A
Visual Des	scription:	Gray Clay (I	UNDISTURB	ED)				
Effective C	Confining Pre	ssure (psi)	20.0		Stage No. Test No		1 3	
INITIAL D	IMENSIONS				VOLUME CHANGE			
Initial Sam Initial Sam	iple Length (i iple Diamete iple Area (in ² iple Volume (r (in))	6.00 2.87 6.46 38.76		Volume After Consolid Length After Consolida Area After Consolidatio	tion (in)		36.92 5.90 6.262
Strain (%)	Deviation Stress	ΔU	$\overline{\sigma}_{l}$	$\overline{\sigma_3}$	Effective Principle Stress Ratio	Ā	 P	Q
0.02 0.04 0.13 0.24 0.33 0.49 0.63 0.83 1.18 1.69 2.29 2.89 3.59 4.09 4.81 5.78 6.79 7.55 8.58 9.34 10.10 10.87 11.37 11.88 12.39 12.91 13.66 14.42 14.94 15.44	0.76 2.62 8.80 11.98 14.44 17.42 20.03 23.17 28.65 37.38 47.51 56.59 65.38 68.77 54.64 54.59 56.10 57.13 58.46 59.69 60.22 56.30 56.36 56.48 56.96 56.36 56.48 56.96 57.85 58.36 59.69 60.09 59.98	0.13 0.22 3.21 5.17 6.64 8.22 9.42 10.60 11.97 13.01 13.31 12.78 11.02 8.42 3.71 3.15 2.88 2.73 2.37 2.21 2.06 1.91 1.79 1.67 1.60 1.49 1.24 0.95 0.70 0.39	20.68 22.45 25.64 26.86 27.85 29.24 30.65 32.62 36.73 44.42 54.24 63.86 74.41 80.39 70.98 71.49 73.26 74.45 76.14 77.53 78.20 74.43 74.62 74.86 75.40 76.41 77.16 78.78 79.43 79.63	$\begin{array}{c} 19.9\\ 19.8\\ 16.8\\ 14.9\\ 13.4\\ 11.8\\ 10.6\\ 9.4\\ 8.1\\ 7.0\\ 6.7\\ 7.3\\ 9.0\\ 11.6\\ 16.3\\ 16.9\\ 17.2\\ 17.3\\ 17.7\\ 17.8\\ 18.0\\ 18.1\\ 18.3\\ 18.4\\ 18.6\\ 18.8\\ 19.1\\ 19.3\\ 19.7\\ \end{array}$	1.038 1.132 1.522 1.806 2.077 2.473 2.885 3.452 4.546 6.310 8.054 8.786 8.239 6.917 4.344 4.231 4.269 4.299 4.308 4.347 4.348 4.105 4.087 4.073 4.089 4.117 4.103 4.126 4.106 4.052	0.17 0.08 0.37 0.44 0.47 0.48 0.47 0.43 0.36 0.29 0.23 0.17 0.13 0.07 0.06 0.05 0.05 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.01 0.01	$\begin{array}{c} 20.30\\ 21.14\\ 21.24\\ 20.86\\ 20.63\\ 20.53\\ 20.64\\ 21.04\\ 22.40\\ 25.73\\ 30.49\\ 35.56\\ 41.72\\ 46.01\\ 43.66\\ 44.19\\ 45.21\\ 45.88\\ 46.91\\ 47.69\\ 48.09\\ 46.28\\ 46.44\\ 46.62\\ 46.92\\ 47.49\\ 48.94\\ 49.39\\ 49.64\end{array}$	0.38 1.31 4.40 5.99 7.22 8.71 10.01 11.59 14.32 18.69 23.75 28.29 32.69 34.39 27.32 27.30 28.05 28.56 29.23 29.85 30.11 28.15 28.18 28.24 28.48 29.84 30.04 29.99


page 7 of 11 DCN: CT-S28 DATE: 4/12/13 REVISION: 3 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

page 8 of 11 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

CONSOLIDATED UNDRAINED TRIAXIAL TEST

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

AASHTO T-297

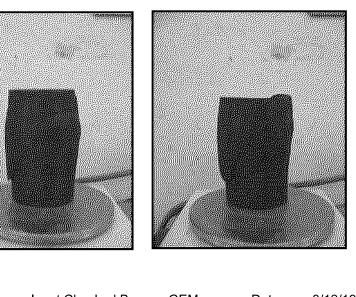
8/2/19

DCN: CT-S28 DATE: 4/12/13 REVISION: 3

Date:

Tested By: 129-07-0411

page 10 of 11



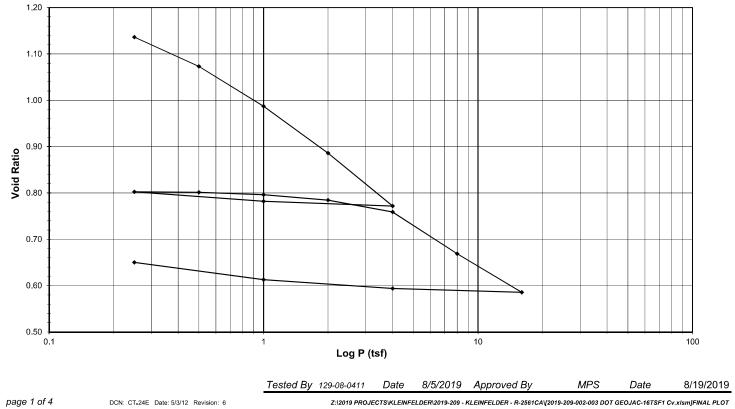
CONSOLIDATED UNDRAINED TRIAXIAL TEST WITH PORE PRESSURE READINGS

> 2.68 Specific Gravity (Measured)

SAMPLE CONDITION SUMMARY

S2_RT_LN_EB1-A 29.5-31.5 ST-2	S2_RT_LN_EB1-A 29.5-31.5 ST-2	S2_RT_LN_EB1-A 29.5-31.5 ST-2
T1	T2	Т3
0.0011	0.0011	0.0011
50.0	50.0	50.0
1	1	1
37.4	31.9	27.4
114.1	114.8	120.5
83.0	87.1	94.6
32.3	33.5	27.9
1.015	0.921	0.769
0.877	0.817	0.685

Input Checked By: GEM 8/12/19 Date:


2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

AASHTO T-216

Client	Kleinfelder	Boring No.	S2_RT.LN_EB2-A
Client Reference	R-2561CA	Depth (ft)	19.9-21.9
Project No.	R-2019-209-002	Sample No.	ST-3
Lab ID	R-2019-209-002-003	Visual Description	Gray Clay with Organics

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-002-003 DOT GEOJAC-16TSF1 Cv.xlsm]FINAL PLOT DCN: CT-24E Date: 5/3/12 Revision: 6 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

ONE DIMENSIONAL CONSOLIDATION AASHTO T-216

Client	Kleinfelder
Client Reference	R-2561CA
Project No.	R-2019-209-002
Lab ID	R-2019-209-002-003

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED Consolidometer No. R409

1 Division = 0.0001 (in.)

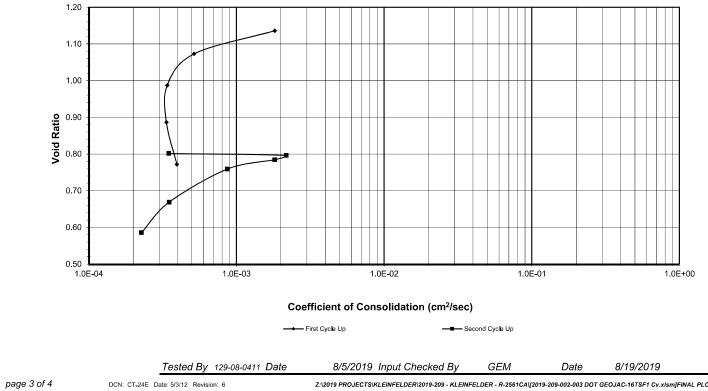
Sample Properties	Initial	Final				Test Data Summary		_		
<i>Water Content</i> Tare Number	TB-09	812	Applied Pressure		Machine Deflection		Height of Sample	Volume (cc)	Dry Density	Void Ratio
Wt. Tare & WS (g)	324.50	218.25	(tsf)	(div)	(div)	(div)	(mm)	(00)	(g/cc)	Ratio
Wt. Tare & DS (g)	273.74	196,15	(tot)	(u.r)	(0.1)	(0.17)	()		(9,00)	
Wt. Water (g)	50.76	22.10	Seating	0	0	0	25.400	80.440	1.20683	1.22070
Wt. Tare (g)	134.08	104.60	0.25	391.0	10.7	380.3	24.434	77,380	1.25454	1.13624
Wt. DS (g)	139.66	91.55	0.5	694.5	30.0	664.5	23.712	75.095	1.29273	1.07313
Water Content (%)	36.35	24.14	1	1099.3	47.1	1052.2	22.727	71.976	1.34875	0.98703
(,			2	1580,9	74.4	1506.5	21,573	68,321	1,42089	0.88614
Sample Parameters			4	2122.3	101.3	2021.0	20.267	64.183	1.51250	0.77190
Sample Diameter (in)	2.5	2.5	1	2045.5	69.8	1975.7	20,382	64,547	1,50397	0.7819
Sample Height (in)	1.0000	0.7431	0.25	1917.5	34.5	1883.0	20.617	65.293	1.48678	0.8025
Sample Volume (cc)	80.44	59.78	0.5	1928.6	40.8	1887.8	20.605	65.254	1.48767	0.8014
Wt. Wet Sample + Ring (g)	346.56	334.71	1	1967.2	55.4	1911.8	20.544	65.061	1.49209	0.79614
Wt. of Ring (g)	214.20	214.20	2	2041.4	77.3	1964.1	20.411	64.640	1.50180	0.78452
Wt. of Wet Sample (g)	132.36	120.51	4	2181.9	102.2	2079.7	20.118	63.711	1.52371	0.7588
Wet Density (pcf)	102.68	125.80	8	2632.0	146.5	2485.5	19.087	60.447	1.60600	0.66874
Wet Density (g/cc)	1.65	2.02	16	3060.2	199.9	2860.3	18.135	57.431	1.69031	0.5855
Water Content (%)	36.35	24.14	4	2961.2	138.4	2822.8	18.230	57.734	1.68146	0.5938
Wt. of Dry Sample (g)	97.08	97.08	1	2823.6	86.8	2736.8	18.449	58.425	1.66156	0.6129
Dry Density (pcf)	75.31	101.34	0.25	2614.4	45.6	2568.8	18.875	59.777	1.62400	0.6502
Dry Density (g/cc)	1.21	1.62								
Void Ratio	1.2207	0.6503								
Saturation (%)	79.80	99.49								
Specific Gravity	2.68	Measured								
			Tested By 129-08-0411	Date	8/5/2019	Input Chec	ked By	GEM	Date	8/19/20 ⁻

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

S2_RT.LN_EB2-A 19.9-21.9 Boring No. Depth (ft) ST-3 Sample No. Visual Description Gray Clay with Organics

AASHTO T-216

Client Kleinfelder Client Reference R-2561CA Project No. R-2019-209-002 Lab ID R-2019-209-002-003


Boring No.

Depth (ft)

Sample No.

S2_RT.LN_EB2-A 19.9-21.9 ST-3 Visual Description Gray Clay with Organics

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-002-003 DOT GEOJAC-16TSF1 Cv.xlsm]FINAL PLOT DCN: CT-24E Date: 5/3/12 Revision: 6 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

ONE DIMENSIONAL CONSOLIDATION AASHTO T-216

Client	Kleinfelder
Client Reference	R-2561CA
Project No.	R-2019-209-002
Lab ID	R-2019-209-002-003

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED Consolidometer No. R409 1 Divi

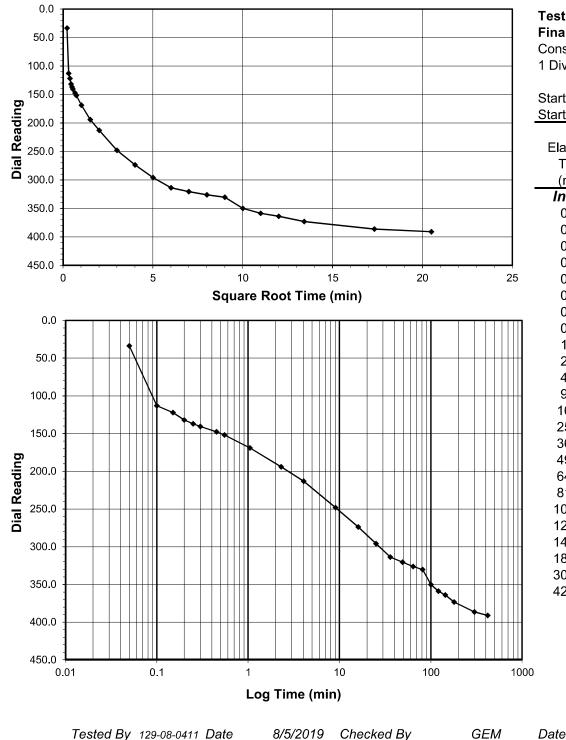
vision =	0.0001	(in.)		
ple Properties		Initial	Final	
er Content Number		TB-09	812	
Tare & WS (q)		324.50	218.25	
Tare & DS (g)		273.74	196.15	
A1-1 / .)			00 40	

Sample Properties	Initial	Final				C _v Test Data Su	ummary		
			Load	Dial	Machine	Corrected	Sample	Time	Cv
Water Content			Increment	Reading	Deflection	Dial Reading	Height	t 50	
Tare Number	TB-09	812		@ t ₅₀		@ t ₅₀	@ t ₅₀		
Wt. Tare & WS (g)	324.50	218.25	(tsf)	(div)	(div)	(div)	(cm)	(min.)	(cm²/sec
Wt. Tare & DS (g)	273.74	196.15	· · · ·						· · ·
Wt. Water (g)	50.76	22.10	0 - 0.25	202.4	10.7	191.7	2.491	2.80	0.00182
Wt. Tare (g)	134.08	104.60	0.25 - 0.5	546.6	30.0	516.6	2.409	9.20	0.00052
Wt. DS (g)	139.66	91.55	0.5 - 1.0	911.6	47.1	864.5	2.320	13.00	0.00034
Water Content (%)	36.35	24.14	1.0 - 2.0	1345.4	74.4	1271.0	2.217	12.00	0.00034
			2.0 - 4.0	1856.2	101.3	1754.9	2.094	9.10	0.00040
Sample Parameters			4.0 - 1.0	NA	69.8	NA	NA	NA	NA
Sample Diameter (in)	2.5	2.5	1.0 - 0.25	NA	34.5	NA	NA	NA	NA
Sample Height (in)	1.000	0.743	0.25 - 0.5	1923.6	40.8	1882.8	2.062	10.00	0.00035
Sample Volume (cc)	80.44	59.78	0.5 - 1.0	1949.2	55.4	1893.8	2.059	1.60	0.00217
Wt. Wet Sample + Ring (g)	346.56	334.71	1.0 - 2.0	2008.9	77.3	1931.6	2.049	1.90	0.00181
Wt. of Ring (g)	214.20	214.20	2.0 - 4.0	2114.5	102.2	2012.3	2.029	3.90	0.00087
Wt. of Wet Sample (g)	132.36	120.51	4.0 - 8.0	2426.9	146.5	2280.4	1.961	9.00	0.00035
Wet Density (pcf)	102.68	125.80	8.0 - 16.0	2869.1	199.9	2669.2	1.862	12.50	0.00023
Wet Density (g/cc)	1.65	2.02	16.0 - 4.0	NA	138.4	NA	NA	NA	NA
Water Content (%)	36.35	24.14	4.0 - 1.0	NA	86.8	NA	NA	NA	NA
Wt. of Dry Sample (g)	97.08	97.08	1.0 - 0.25	NA	45.6	NA	NA	NA	NA
Dry Density (pcf)	75.31	101.34							
Dry Density (g/cc)	1.21	1.62							
Void Ratio	1.2207	0.6503							
Saturation (%)	79.80	99.49							
Specific Gravity	2.68	Measured							
· ·		Tested By 129-08-041	1 Date	8/5/2019	Input Check	ed By	GEM	Date	8/19/2019

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

Boring No.	S2_RT.LN_EB2-A
Depth (ft)	19.9-21.9
Sample No.	ST-3
Visual Description	Gray Clay with Organics

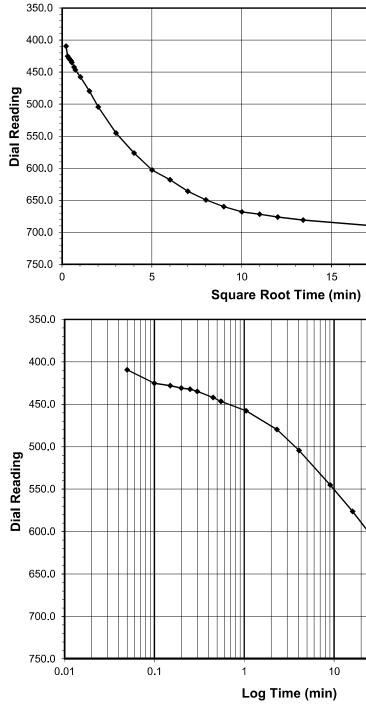
AASHTO T-216



ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

Kleinfelder
R-2561CA
R-2019-209-002
R-2019-209-002-003


Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

page 1 of 1

Test Load	(tsf)	0.0-0.25
Final Readin Consolidome	• • •	391.0 R409
1 Division	(in)	0.0001
	()	
Start Date		8/5/2019
Start Time		13:57:53
Elapsed		Dial
Time		Reading
(min)		(div)
Initial		0.0
0.05		33.7
0.10		113.0
0.15		122.0
0.20		132.1
0.25		137.1
0.30		140.8
0.45 0.55		147.8 152.0
1.05		169.0
2.30		194.1
4.05		213.1
9.05		248.2
16.07		273.9
25.07		295.8
36.07		313.9
49.07		320.6
64.07		326.2
81.07		330.4
100.07		350.1
121.07 144.07		358.8 363.8
180.07		373.3
300.07		386.4
420.12		391.0
00		
Dete	0/40/0040	
Date	8/19/2019	

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Tested By 129-08-0411 Date

page 1 of 1

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

DCN: CT-24E Date: 5/3/12 Revision: 3 Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-002-003 DOT GEOJAC-16TSF1 Cv.xlsm]STEP 2 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

8/5/2019 Checked By

GEM

Date

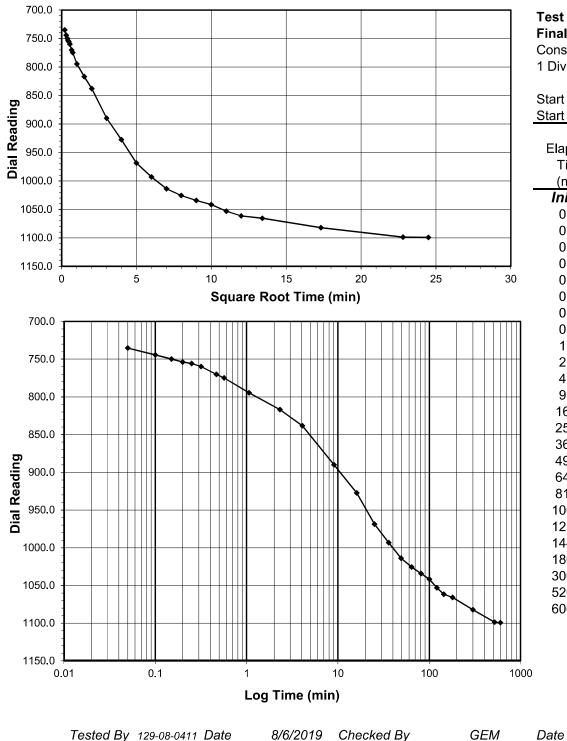
S2_RT.LN_EB2-A Boring No. Depth (ft) 19.9-21.9 ST-3 Sample No. Gray Clay with Organics Visual Description

	Test Load(tsf)Final Reading(div)Consolidometer No.1 Division(in)	0.25-0.5 694.5 R409 0.0001
	Start Date Start Time	8/5/2019 20:58:00
	Elapsed Time (min) Initial 0.05	Dial Reading (div) 391.0 409.5
	0.10	409.5
•	0.10 0.15 0.20	428.1 430.8
20 2 n)	5 0.25 0.30	432.2 434.8
	0.45 0.55 1.05 2.32 4.07 9.07 16.07 25.07 36.07 49.07 64.07 81.07 100.07 121.07 144.07 180.07 300.08 420.17	442.1 446.5 457.5 479.8 504.4 545.0 576.3 602.8 618.0 635.8 649.4 659.8 668.0 671.9 676.3 681.0 689.9 694.5
100 10	000	

8/19/2019

DCN: CT-24E Date: 5/3/12 Revision: 3 Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-002-003 DOT GEOJAC-16TSF1 Cv.xism]STEP 1

AASHTO T-216

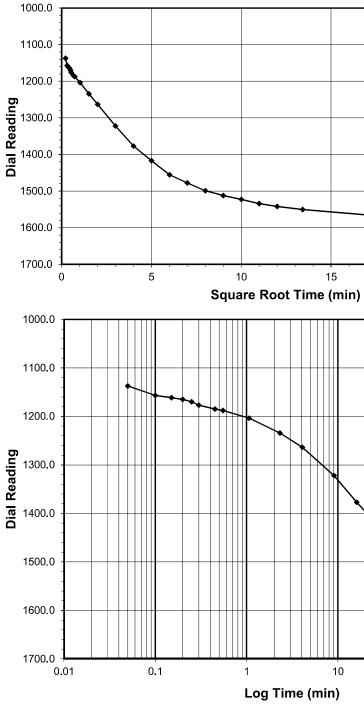


ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

Client	Kleinfelder	Boring No.	S2_RT.LN_EB2-A	Client	Kleinfelder
Client Project	R-2561CA	Depth (ft)	19.9-21.9	Client Project	R-2561CA
Project No.	R-2019-209-002	Sample No.	ST-3	Project No.	R-2019-209-002
Lab ID	R-2019-209-002-003	Visual Description	Gray Clay with Organics	Lab ID	R-2019-209-002-003

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED



DCN: CT-24E Date: 5/3/12 Revision: 3

page 1 of 1

Test Load (tsf)	0.5-1.0
Final Reading (div)	1099.3
Consolidometer No.	R409
1 Division (in)	0.0001
Start Date	8/6/2019
Start Time	3:58:10
Elapsed	Dial
Time	Reading
(min)	(div)
Initial	694.5
0.05	735.2
0.10	744.4
0.15	749.9
0.20	753.9
0.25	755.8
0.32	759.9
0.47	770.2
0.57	774.9
1.07	794.6
2.32	816.7
4.07	838.3
9.07	889.9
16.07	927.5
25.07	968.8
36.07	993.2
49.07	1013.9
64.07	1025.6
81.07	1034.4
100.07	1041.6
121.07	1053.1
144.07	1061.6
180.08	1065.8
300.08	1082.2
520.08	1098.7
600.08	1099.3
00	

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

page 1 of 1 DCN: CT-24E Date: 5/3/12 Revision: 3 Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-002-003 DOT GEOJAC-16TSF1 Cv.xlsm]STEP 3

8/19/2019

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

8/6/2019 Checked By

Tested By 129-08-0411 Date

Boring No. Depth (ft) Sample No. Visual Description

S2_RT.LN_EB2-A 19.9-21.9 ST-3 Gray Clay with Organics

	Test Load(tsf)Final Reading(div)Consolidometer No.1 Division(in)	1.0-2.0 1580.9 R409 0.0001
	Start Date Start Time	8/6/2019 12:58:33
	Elapsed Time (min)	Dial Reading (div)
• • •	<i>Initial</i> 0.05 0.10 0.15	1099.3 1137.1 1156.8 1161.2
20 25)	0.30 0.45	1164.9 1169.9 1176.6 1184.7
	0.55 1.07 2.32 4.07	1187.5 1203.8 1234.3 1263.5
	9.07 16.07 25.07	1322.0 1377.2 1417.0
	36.07 49.07 64.07	1455.5 1477.8 1499.1
	81.07 100.07 121.07 144.07	1512.2 1522.7 1534.1 1541.9
	180.07 300.07 520.07 540.43	1550.2 1566.7 1580.7 1580.9
100 1	000	

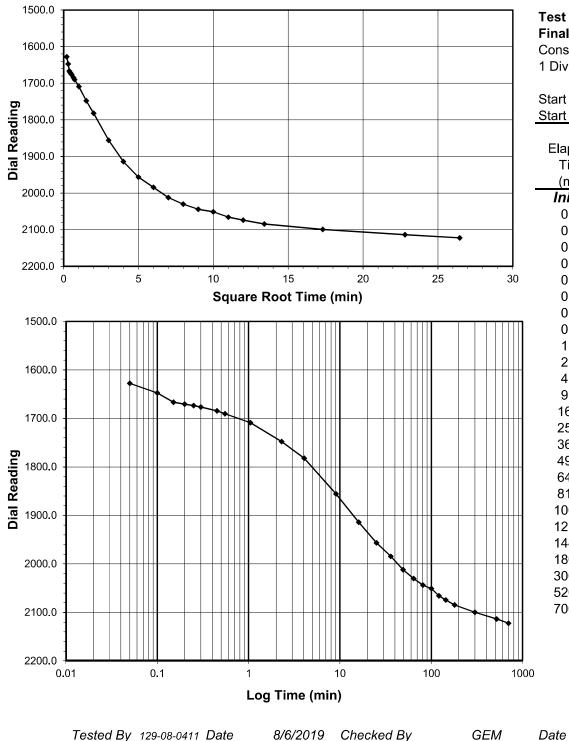
Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-002-003 DOT GEOJAC-16TSF1 Cv.xlsm]STEP 4 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

Date

8/19/2019

GEM

AASHTO T-216



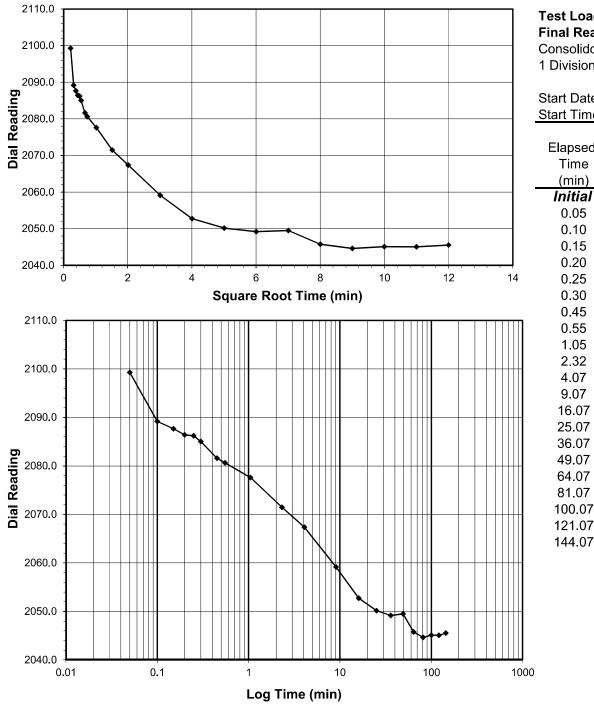
ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

Client	Kleinfelder	Boring No.	S2_RT.LN_EB2-A	Client	Kleinfelder
Client Project	R-2561CA	Depth (ft)	19.9-21.9	Client Project	R-2561CA
Project No.	R-2019-209-002	Sample No.	ST-3	Project No.	R-2019-209-002
Lab ID	R-2019-209-002-003	Visual Description	Gray Clay with Organics	Lab ID	R-2019-209-002-003

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

page 1 of 1


Test Load	(tsf)	2.0-4.0
Final Readi	• • •	2122.3
Consolidom		R409
1 Division	(in)	0.0001
Start Date		8/6/2019
Start Time		21:58:59
Elapsed		Dial
Time		Reading
(min)		(div)
Initial		1580.9
0.05		1627.7
0.10		1647.5
0.15		1666.4
0.20		1670.5
0.25		1673.4
0.30		1676.4
0.45		1684.3
0.55		1690.1
1.05 2.30		1709.1 1747.8
2.30 4.05		1782.0
4.05 9.05		1855.8
16.05		1914.0
25.05		1956.5
36.05		1984.4
49.05		2012.1
64.05		2030.1
81.05		2043.7
100.05		2051.1
121.05		2065.7
144.05		2074.2
180.05		2084.5
300.05		2099.5
520.05		2113.6
700.07		2122.3
00		
Date	8/19/2019	

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Tested By 129-08-0411 Date

DCN: CT-24E Date: 5/3/12 Revision: 3

page 1 of 1

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-002-003 DOT GEOJAC-16TSF1 Cv.xlsm]STEP 6 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

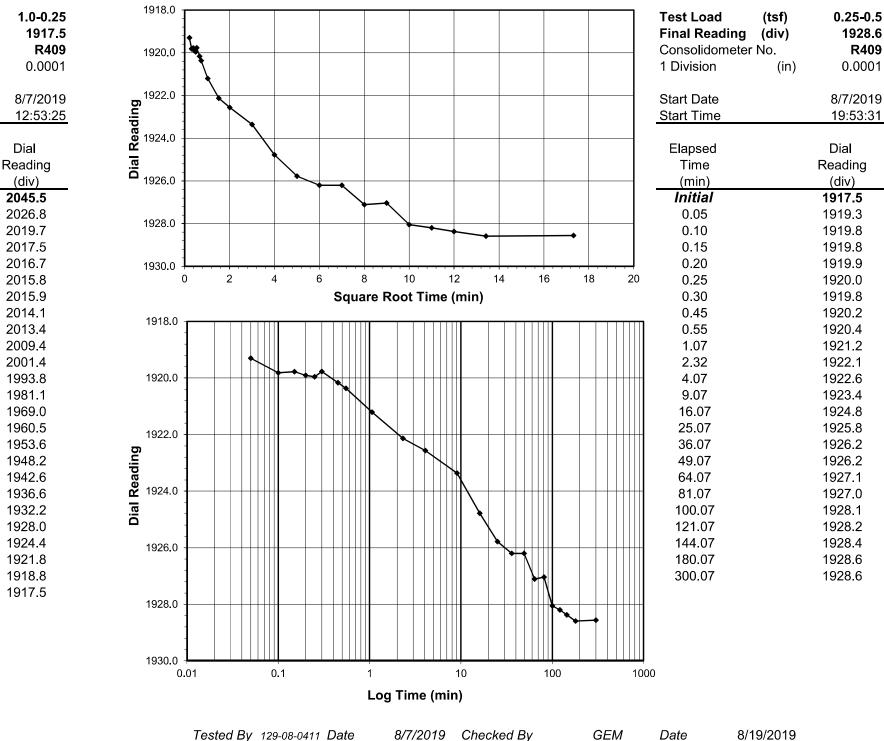
Boring No. Depth (ft) Sample No. Visual Description S2_RT.LN_EB2-A 19.9-21.9 ST-3 Gray Clay with Organics

•	sf) 4.0-1.0 iv) 2045.5 . R409 (in) 0.0001
Start Date Start Time	8/7/2019 9:59:21
Elapsed Time (min) <i>Initial</i> 0.05 0.10 0.15 0.20 0.25 0.30 0.45 0.55 1.05 2.32 4.07 9.07 16.07 25.07 36.07 49.07 64.07 81.07 100.07 121.07	Dial Reading (div) 2122.3 2099.3 2089.2 2087.6 2086.4 2086.2 2085.0 2081.6 2086.2 2085.0 2081.6 2077.6 2071.5 2067.4 2059.1 2052.7 2050.2 2049.2 2049.5 2045.8 2044.6 2045.1 2045.1
144.07	2045.5

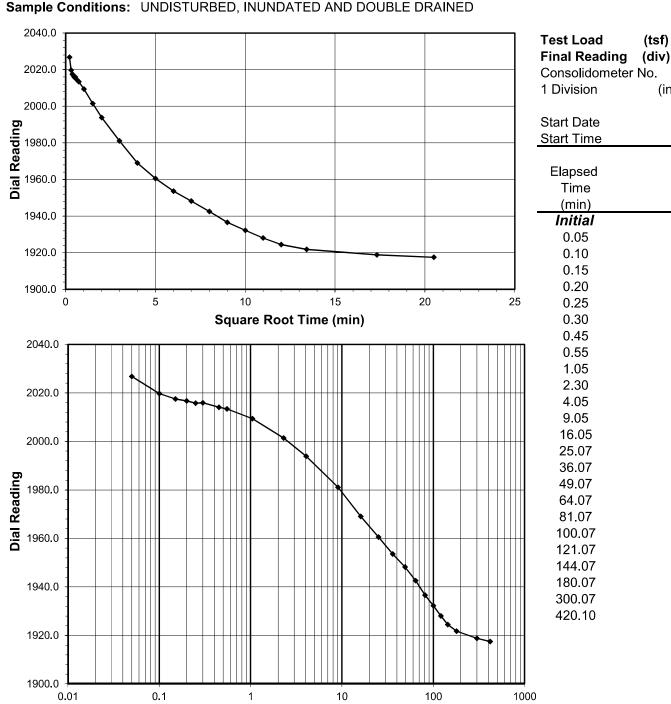
8/7/2019	Checked By	GEM	Date	8/19/2019	
ion: 3					

AASHTO T-216

(tsf)

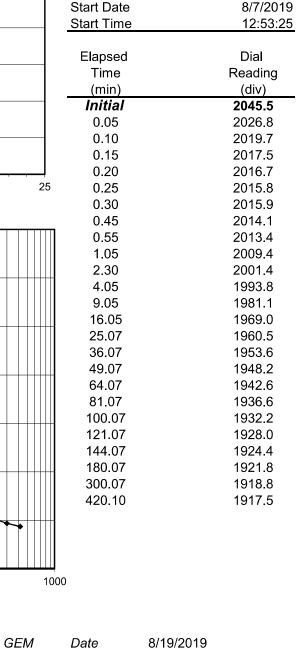

(in)

ONE DIMENSIONAL CONSOLIDATION


AASHTO T-216

Client K	Kleinfelder	Boring No.	S2_RT.LN_EB2-A	Client	Kleinfelder
Client Project R	R-2561CA	Depth (ft)	19.9-21.9	Client Project	R-2561CA
Project No. R	R-2019-209-002	Sample No.	ST-3	Project No.	R-2019-209-002
Lab ID R	R-2019-209-002-003	Visual Description	Gray Clay with Organics	Lab ID	R-2019-209-002-003

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED



DCN: CT-24E Date: 5/3/12 Revision: 3

Log Time (min)

8/7/2019 Checked By

page 1 of 1

page 1 of 1

Tested By 129-08-0411 Date

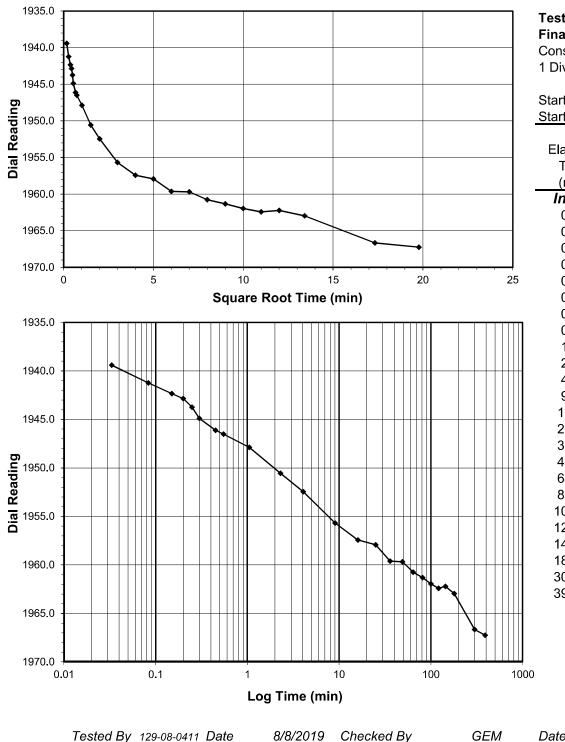
Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-002-003 DOT GEOJAC-16TSF1 Cv.xlsm]STEP 7

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-002-003 DOT GEOJAC-16TSF1 Cv.xlsm]STEP 8 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

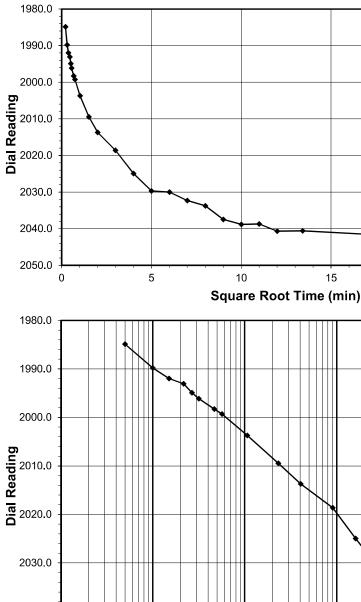
Boring No. Depth (ft) Sample No. Visual Description S2 RT LN EB2-A 19.9-21.9 ST-3 Gray Clay with Organics

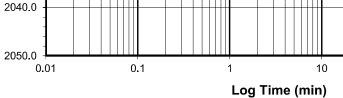
AASHTO T-216



ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216


Client	Kleinfelder	Boring No.	S2_RT.LN_EB2-A	Client	Kleinfelder
Client Project	R-2561CA	Depth (ft)	19.9-21.9	Client Project	R-2561CA
Project No.	R-2019-209-002	Sample No.	ST-3	Project No.	R-2019-209-002
Lab ID	R-2019-209-002-003	Visual Description	Gray Clay with Organics	Lab ID	R-2019-209-002-003


Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Test Load Final Readi Consolidom	eter No.	0.5-1.0 1967.2 R409
1 Division	(in)	0.0001
Start Date Start Time		8/8/2019 3:53:42
Elapsed Time (min) Initial		Dial Reading (div) 1928.6
0.03 0.08 0.15 0.20 0.25		1939.4 1941.2 1942.3 1942.9 1943.7
0.30 0.45 0.55 1.05		1944.9 1946.1 1946.5 1947.9
2.30 4.05 9.05 16.05		1950.6 1952.5 1955.7 1957.4
25.05 36.05 49.05 64.05		1957.9 1959.6 1959.7 1960.8
81.05 100.05 121.05 144.05 180.07		1961.3 1962.0 1962.4 1962.2 1963.0
300.07 391.07		1966.7 1967.2
0		
Date	8/19/2019	

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

DCN: CT-24E Date: 5/3/12 Revision: 3

Tested By 129-08-0411 Date

page 1 of 1

page 1 of 1

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-002-003 DOT GEOJAC-16TSF1 Cv.xism]STEP 10 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

8/8/2019 Checked By

GEM

Date

Boring No. Depth (ft) Sample No. Visual Description S2_RT.LN_EB2-A 19.9-21.9 ST-3 Gray Clay with Organics

		Test Load Final Reading Consolidometer 1 Division	(tsf) (div) No. (in)	1.0-2.0 2041.4 R409 0.0001
		Start Date Start Time		8/8/2019 10:24:47
		Elapsed Time (min)		Dial Reading (div)
20 n)		Initial 0.05 0.10 0.15 0.22 0.27 0.32 0.47 0.57 1.07 2.32 4.07 9.07 16.07 25.07 36.07 49.07 64.07 81.07 100.08 121.08 144.08 180.08 300.08 480.30		1967.2 1984.9 1989.8 1992.0 1993.1 1994.9 1996.1 1998.3 1999.3 2003.7 2009.4 2013.7 2018.6 2024.9 2029.7 2030.0 2032.3 2033.7 2037.5 2038.8 2038.7 2040.7 2040.6 2041.6 2041.4
100	100	0		

8/19/2019

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-002-003 DOT GEOJAC-16TSF1 Cv.xlsm]STEP 9

AASHTO T-216

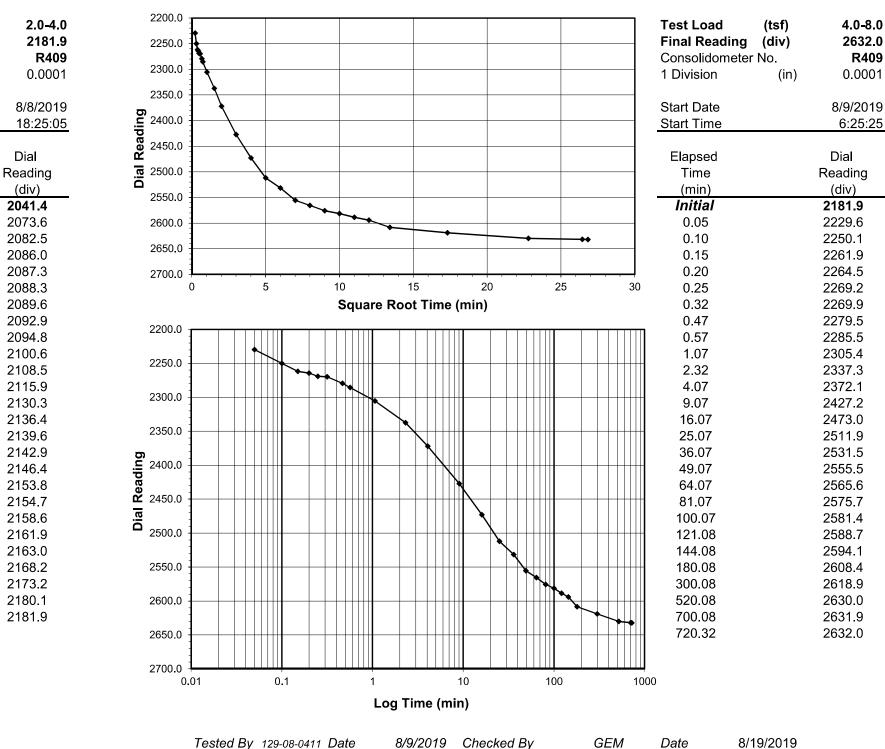
(tsf)

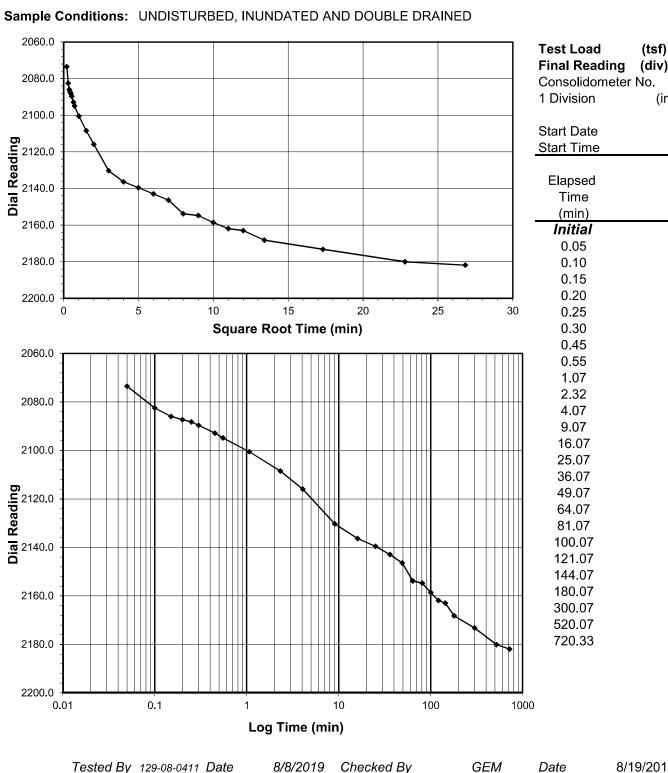
8/19/2019

page 1 of 1

(in)

Dial


(div)


ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

Client	Kleinfelder	Boring No.	S2_RT.LN_EB2-A	Client	Kleinfelder
Client Project	R-2561CA	Depth (ft)	19.9-21.9	Client Project	R-2561CA
Project No.	R-2019-209-002	Sample No.	ST-3	Project No.	R-2019-209-002
Lab ID	R-2019-209-002-003	Visual Description	Gray Clay with Organics	Lab ID	R-2019-209-002-003

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

DCN: CT-24E Date: 5/3/12 Revision: 3

page 1 of 1

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-002-003 DOT GEOJAC-16TSF1 Cv.xlsm]STEP 11

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

DCN: CT-24E Date: 5/3/12 Revision: 3 Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-002-003 DOT GEOJAC-16TSF1 Cv.xlsm]STEP 12 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

4.0-8.0

2632.0

R409

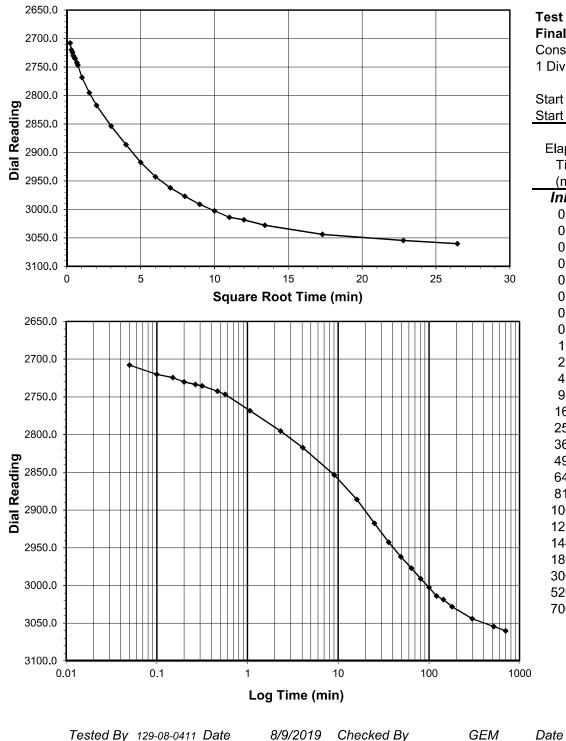
0.0001

6:25:25

Boring No. Depth (ft) Sample No. Visual Description

S2 RT LN EB2-A 19.9-21.9 ST-3 Gray Clay with Organics

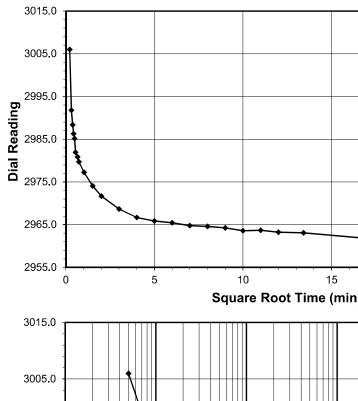
AASHTO T-216

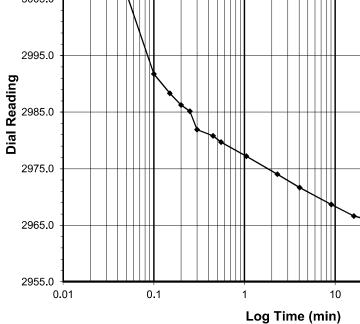


ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

Client	Kleinfelder	Boring No.	S2_RT.LN_EB2-A	Client	Kleinfelder
Client Project	R-2561CA	Depth (ft)	19.9-21.9	Client Project	R-2561CA
Project No.	R-2019-209-002	Sample No.	ST-3	Project No.	R-2019-209-002
Lab ID	R-2019-209-002-003	Visual Description	Gray Clay with Organics	Lab ID	R-2019-209-002-003


Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED



Test Load (tsf)	8.0-16.0
Final Reading (div)	3060.2
Consolidometer No.	R409
1 Division (in)	0.0001
Start Date	8/9/2019
Start Time	18:25:44
Florend	Dial
Elapsed Time	Dial
	Reading
(min)	(div) 2632.0
Initial	2708.0
0.05	
0.10	2720.2 2724.6
0.15	2724.6 2730.3
0.20	
0.27 0.32	2733.6 2735.6
0.32	2735.0
0.47	2742.5
1.07	
2.32	2768.3 2795.4
4.07	2817.4
9.07	2853.6
9.07 16.07	2886.2
25.07	2917.7
36.07	2942.7
49.07	2962.1
64.07	2977.0
81.07	2991.0
100.07	3002.5
121.07	3013.9
144.07	3018.5
180.08	3028.0
300.08	3044.0
520.08	3054.5
700.08	3060.2
100.00	0000.2
<u>^</u>	
0	

8/19/2019

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Tested By 129-08-0411 Date

DCN: CT-24E Date: 5/3/12 Revision: 3

page 1 of 1

DCN: CT-24E Date: 5/3/12 Revision: 3

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-002-003 DOT GEOJAC-16TSF1 Cv.xism]STEP 13

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-002-003 DOT GEOJAC-16TSF1 Cv.xism]STEP 14 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

GEM

Date

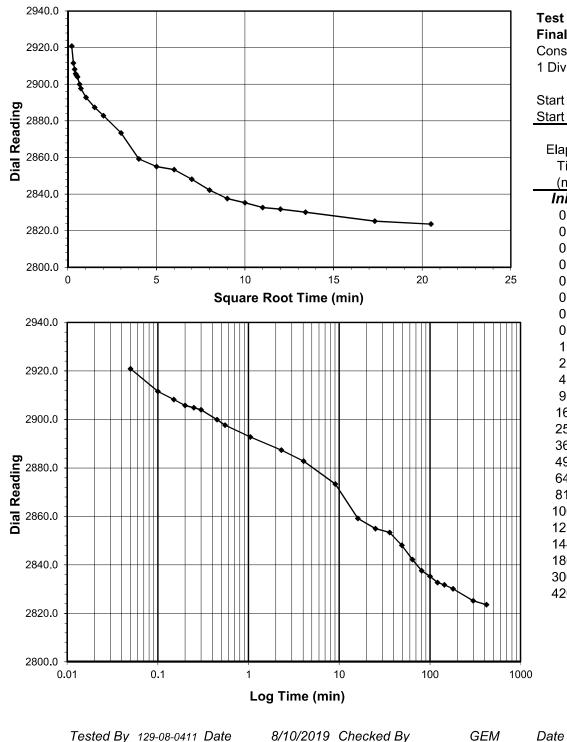
8/10/2019 Checked By

Boring No. Depth (ft) Sample No. Visual Description S2_RT.LN_EB2-A 19.9-21.9 ST-3 Gray Clay with Organics

		Test Load Final Reading Consolidometer 1 Division	(tsf) (div) No. (in)	16.0-4.0 2961.2 R409 0.0001
		Start Date Start Time		8/10/2019 6:26:10
		Elapsed Time (min)		Dial Reading (div)
• •		<i>Initial</i> 0.05 0.10 0.15 0.20		3060.2 3006.0 2991.7 2988.3 2986.3
20 n)	25	0.25 0.30 0.45		2985.1 2981.9 2980.8
		0.55 1.05 2.30 4.05		2979.7 2977.2 2974.0 2971.7
		9.05 16.05 25.05 36.05		2968.7 2966.6 2965.8 2965.4
		49.05 64.05 81.07 100.07		2964.8 2964.6 2964.2 2963.6
		121.07 144.07 180.07 300.07		2963.7 2963.2 2963.1 2961.7
* * * * * *	•••	420.18		2961.2
100) 100	0		

8/19/2019

AASHTO T-216



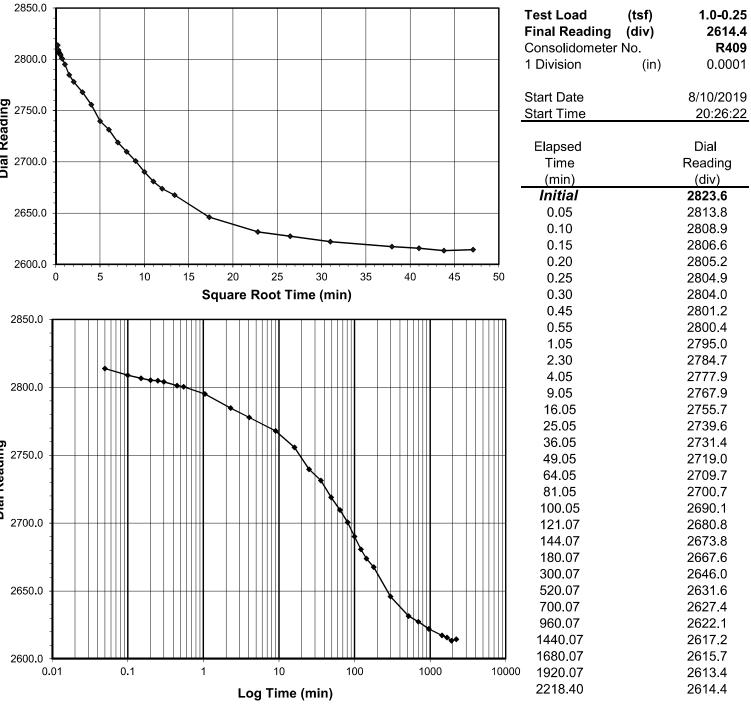
ONE DIMENSIONAL CONSOLIDATION

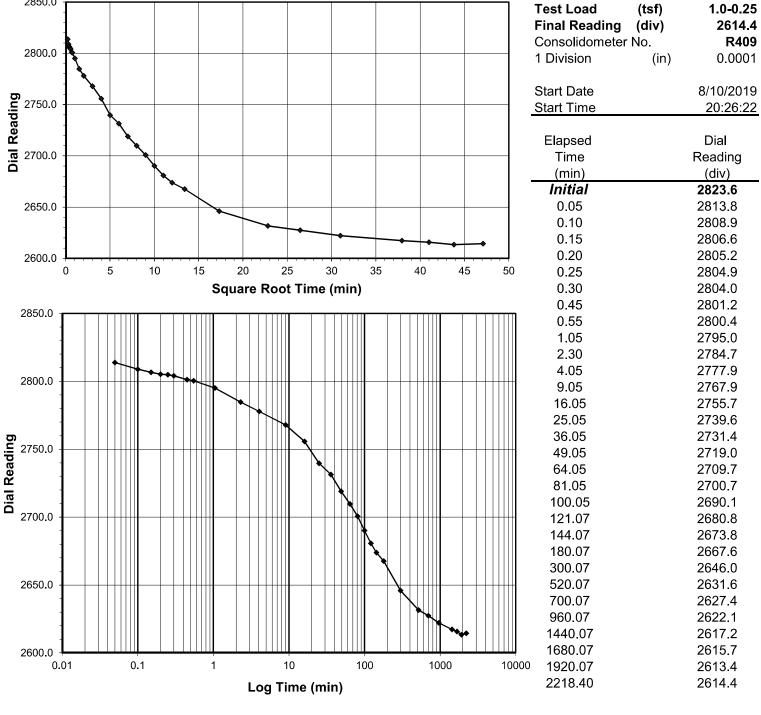
AASHTO T-216

Client	Kleinfelder	Boring No.	S2_RT.LN_EB2-A	Client	Kleinfelder
Client Project	R-2561CA	Depth (ft)	19.9-21.9	Client Project	R-2561CA
Project No.	R-2019-209-002	Sample No.	ST-3	Project No.	R-2019-209-002
Lab ID	R-2019-209-002-003	Visual Description	Gray Clay with Organics	Lab ID	R-2019-209-002-003

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Test Load Final Reading Consolidomete	er No.	4.0-1.0 2823.6 R409 0.0001
1 Division	(in)	0.0001
Start Date Start Time		8/10/2019 13:26:21
Elapsed Time (min) <i>Initial</i> 0.05 0.10 0.15 0.20 0.25 0.30 0.45 0.55 1.05 2.30 4.05 9.07 16.07 25.07 36.07 49.07 64.07 81.07 100.07 121.07 144.07 180.07 300.07 420.02		Dial Reading (div) 2961.2 2920.9 2911.6 2908.2 2905.7 2904.8 2904.0 2899.9 2897.6 2892.7 2887.3 2882.8 2873.4 2859.2 2855.0 2855.0 2853.4 2848.1 2842.2 2837.6 2835.3 2832.7 2831.8 2830.2 2825.2 2823.6
0		


8/19/2019


Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Tested By 129-08-0411 Date

DCN: CT-24E Date: 5/3/12 Revision: 3

page 1 of 1

page 1 of 1

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-002-003 DOT GEOJAC-16TSF1 Cv.xism]STEP 15

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

Z:\2019 PROJECTS\KLEINFELDER\2019-209 - KLEINFELDER - R-2561CA\[2019-209-002-003 DOT GEOJAC-16TSF1 Cv.xlsm]STEP 16 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

8/10/2019 Checked By

GEM

Date

8/19/2019

Boring No. Depth (ft) Sample No. Visual Description S2 RT.LN EB2-A 19.9-21.9 ST-3 Gray Clay with Organics