-0094Ż REFERENCE

67094 PROIEC

SEE SHEET 3 FOR PLAN SHEET LAYOUT AT TIME OF INVESTIGATION

CONTENTS

LINE	<u>STATION</u>	<u>PLAN</u>	PROFILE
-L-	15+50-26+00	4	N/A
-RPA-	15+25-16+29	4	N/A
-RPB-	10+00-11+25	4	N/A
-RPC-	10+00-12+00	4	N/A
-RPD-	12+08-14+07	4	N/A
CROSS SEC	CTIONS		
<u>LINE</u>	<u>STATION</u>	<u>SHEETS</u>	
-L-	18+00-25+00	5-9	
-RPA-	15+50	10	
-RPB-	10+50	11	
-RPC-	11+00	12	
-RPD-	13+00	13	
APPENDICE	CS .		
APPENDIX	<u>TITLE</u>	<u>SHEETS</u>	
A	LAB RESULTS	14-17	
B	BORE LOG	18-19	

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

ROADWAY SUBSURFACE INVESTIGATION

COUNTY ROCKINGHAM

PROJECT DESCRIPTION BRIDGE 780069 ON NC 770 **OVER** US 220

INVENTORY

STATE PROJECT REFERENCE NO. STATE SHEETS NO. 21 N.C BR-0094 1

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOLT TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT (1991) 707-8050. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORNICS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU UN-FLACED TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE ONSERVED WATER LEVELS OR SOL MOISTURE CONDITIONS MOLATED IN THE SUBSURFACE RELIVESTIGATIONS AND REAS RECORDED AT THE TIME OF THE INVESTIGATION. THES WATER LEVELS OR SOL MOISTURE CONDITIONS MAY LARY CONSIDERABLY WITH THE ACCORDING TO CLIMATIC CONDITIONS NICLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIODER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPHION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY INVESTIGATIONS TO CONTINNS TO BE ENCOUNTERED. THE GIDDER OR CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES: I. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT. 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE. 2.

PERSONNEL

BRECCIA

R. WESSINGER

D. HARRIS

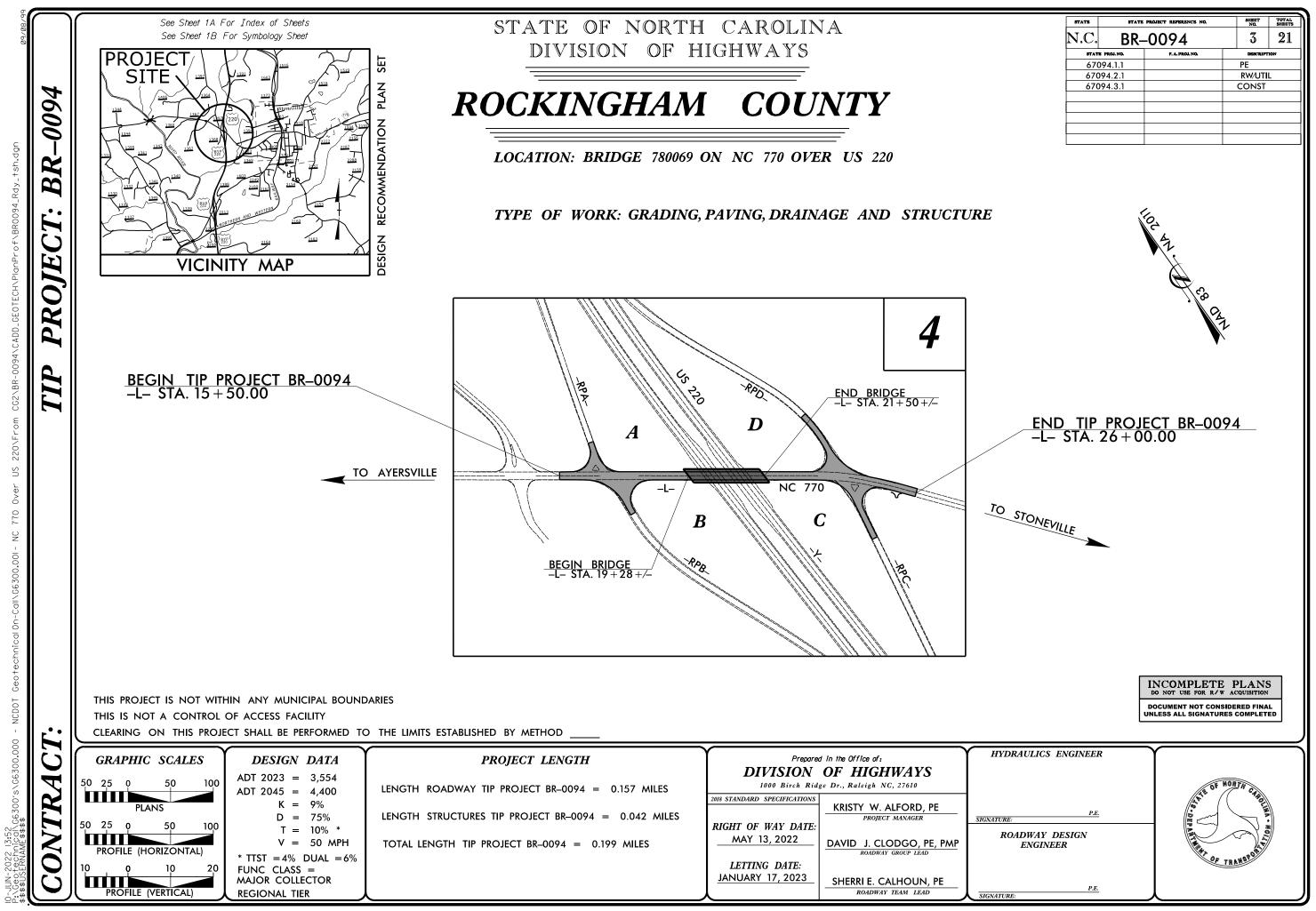
INVESTIGATED BY F&ME CONSULTANTS

DRAWN BY <u>R. LAWRENCE, P.E.</u>

CHECKED BY <u>A. SHANNON, P.E.</u>

SUBMITTED BY <u>A. SHANNON, P.E.</u>

DATE <u>MAY</u> 2022


NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLICHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM DISB6). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO LCLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES. ANGULARITY OF GRAINS	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL. SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL. THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. AQUIFER - A WATER BEARING FORMATION OR STRATA. ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERAL DGICAL COMPOSITION, ANOULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF,GRAY,SILTY CLAY,MOST WITH INTERBEDDED FINE SAND LARES, HIGHLY PLASTIC,A-T-6 SOIL LEGEND AND AASHTO CLASSIFICATION GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS ORGANIC MATERIALS	THE ANGULARITY OR ROUNDRESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS: <u>ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.</u> MINERAL OGICAL COMPOSITION MINERAL NOVES GUIDI AS GUIDIZ SEL DEAD MISA TAK S KOULIN ETS	WEATHERED ROCK (WR) ID0 BLOWS PER FOOT IF TESTED. CRVSTALLINE CRVSTALLINE CRVSTALLINE ID1 FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC. <u>ARTESIAN</u> - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.
CLASS. (≤ 352 PASSING *200) (> 352 PASSING *200) </td <td>MINERAL NAMES SUCH AS OUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE. COMPRESSIBILITY SLIGHTLY COMPRESSIBLE MOREDATELY COMPRESSIBLE</td> <td>CONSTRUCTIVE 1 1 WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, GREISS, GABBRO, SCHIST, ETC. NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YELD SPT REFUSAL IF TESTED. ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YELD SPT REFUSAL IF TESTED. COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD</td> <td><u>CALCAREOUS (CALC.)</u> - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE. <u>COLLUVIUM</u> - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.</td>	MINERAL NAMES SUCH AS OUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE. COMPRESSIBILITY SLIGHTLY COMPRESSIBLE MOREDATELY COMPRESSIBLE	CONSTRUCTIVE 1 1 WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, GREISS, GABBRO, SCHIST, ETC. NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YELD SPT REFUSAL IF TESTED. ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YELD SPT REFUSAL IF TESTED. COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD	<u>CALCAREOUS (CALC.)</u> - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE. <u>COLLUVIUM</u> - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
C D	MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50 PERCENTAGE OF MATERIAL GRANULAR SILT - CLAY ORGANIC MATERIAL SOLLS OTHER MATERIAL	CORSTAL PLAIN SEDIMENTARY ROCK (CP) CP) CORSTAL PLAIN SEDIMENTS ELEMENTED INTO ROCK, BOT MAT NOT TIELD SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED WEATHERING FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINCS UNDER	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. DIKE - A TABULAR BODY OF IONEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
MATERIAL PASSING *40 LL 48 MX 41 MN 48 MX 41 MN 48 MX 41 MN 48 MX 41 MN 50LS WITH PI 6 MX NP 18 MX 18 MX 11 MN 11 MN 18 MX 18 MX 11 MN 11 MN MODERATE	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	HAMMER IF CRYSTALLINE. VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, (V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY, ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	<u>DIP</u> - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL. <u>DIP DIRECTION (DIP AZIMUTH)</u> - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
GROUP INDEX Ø Ø Ø 4 MX 8 MX 12 MX IG MX MOUNTS ORGANIC USUAL TYPES STONE FRAGS. GF MAJOR FINE SAND SILTY OR CLAYEY SILTY CLAYEY ORGANIC ORGANIC ORGANIC ORGANIC SOILS ORGANIC MATERIALS SAND CRAYEL AND SAND SOILS SOILS SOILS SOILS SOILS	GROUND WATER V WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING STATIC WATER LEVEL AFTER 24 HOURS	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO ISLIJ I INCH, DPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELOSPAR CRYSTALS ARE DULL AND DISCOLORED, CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS. MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	<u>FAULT</u> - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE. <u>FISSILE</u> - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES. <u>FLOAT</u> - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
GEN. RATING AS SUBGRADE EXCELLENT TO GOOD FAIR TO POOR FAIR TO POOR POOR UNSUITABL PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30 CONSISTENCY OR DENSENESS SUBCROUP IS > LL - 30 SUBCROUP IS	E	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK. MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH	PARENT MATERIAL. <u>FLOOD PLAIN (FP)</u> - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM. <u>FORMATION (FM.)</u> - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
PRIMARY SOIL TYPE COMPACTNESS OR CONSISTENCY RANGE OF STANDARD PENETRATION RESISTENCE (N-VALUE) RANGE OF UNCONFINED COMPRESSIVE STRENCTH (TONS/FT ²) CENERALLY VERY LOOSE < 4	ROADWAY EMBANKMENT (RE) WITH SOLL DESCRIPTION SOLL SYMPOL SOLL SYMPOL SOLL SYMPOL SOLL SYMPOL SOLL SYMPOL STATUT TEST POPING SLOPE INDICATOR	(MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES 'CLUNK' SOUND WHEN STRUCK. IF TESTED, WOULD YIELD SPT REFUSAL Severe ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAQLINIZED	<u>JOINT</u> - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED. <u>LEDGE</u> - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT. <u>LENS</u> - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
UENCRALL' LOOSE 4 TO 10 GRANULAR MEDIUM DENSE 10 TO 30 N/A MATERIAL DENSE 30 TO 50 VERY DENSE > 50 VERY DENSE > 50 VERY SOFT < 2	ARTIFICIAL FILL (AF) OTHER AUGER BORING CONE PENETROMETER THAN ROADWAY EMBANKMENT AUGER BORING CONE PENETROMETER THAN ROADWAY EMBANKMENT	TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK (V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR VERDING OF ORDIVING. SOURCE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE. <u>PERCHED WATER</u> - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM.
GENERALLY SOFT 2 TO 4 0.25 TO 0.5 SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0 MATERIAL STIFF 8 TO 15 1 TO 2 (COHESIVE) VERY STIFF 15 TO 300 2 TO 4 HARD > 30 > 4	TTET BORING TTEST BORING WITH CORE TTEST BORING WITH CORE TEST BORING WITH CORE TEST BORING WITH CORE TEST BORING WITH CORE SPT N-VALUE	VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u> COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS ALSO AN EXAMPLE.	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK. ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SECOMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 DPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053 BOULDER COBBLE GRAVEL COARSE FINE SILT CLAY (MDD) SAND SILT (D)	UNDERCUT UNCLASSIFIED EXCAVATION - UNSUITABLE WASTE UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE UNCLASSIFIED EXCAVATION - ACCEPTABLE DECRADABLE ROCK UNDERCUT UNDERCUT OF BACKFILL	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK. HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT
(BLDR.) (COB.) (GR.) SHAD (CSE. SD.) SHAD (F SD.) (SL.) (CL.) GRAIN MM 305 75 2.0 0.25 0.05 0.005 SIZE IN. 12 3 0 3 0 3	ABBRE VIATIONS AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. COUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	OR SLIP PLANE. <u>STANDARD PENETRATION TEST (PENETRATION RESISTANCE)(SPT)</u> - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL
SOIL MOISTURE CORRELATION OF TERMS SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION GUIDE FOR FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION GUIDE FOR FIELD MOISTURE GUIDE FOR FIELD MOISTURE GUIDE FOR FIELD MOISTURE GUIDE FOR FIELD<	$ \begin{array}{cccc} \text{CLCLAY} & \text{MODMODEATELY} & \mathcal{V}-\text{UNIT WEIGHT} \\ \text{CPT-CONE PENETRATION TEST} & \text{NP-NON PLASTIC} & \mathcal{V}_{\text{d}}-\text{DRY UNIT WEIGHT} \\ \text{CSECOARSE} & \text{ORGORGANIC} \\ \text{DMT-DILATOMETER TEST} & \text{PMT-PRESSUREMETER TEST} & \underline{\text{SAMPLE ABBREVIATIONS}} \\ \end{array} $	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. <u>STRATA CORE RECOVERY (SREC.)</u> TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY <u>TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE</u> .
LL LIQUID LIMIT	OPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON F - FINE SL SLIT, SILTY ST - SHELBY TUBE - FOSS FOSSLIFEROUS SL SLIDENTLY RS - ROCK - FOSS FOSSLIFEROUS SLI SLICHTLY RS - ROCK	PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL.	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. <u>TOPSOIL (TS.)</u> - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
RANCE - WET - (W) SEMISOLIDE REQUIRES DRYING TO (P) PL PLASTIC LIMIT	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL R1 - RECOMPACTED TRIAXIAL FRAGS FRAGMENTS /// - MOISTURE CONTENT CBR - CALIFORNIA BEARING HI HIGHLY V - VERY RATIO	FRACTURE SPACING BEDDING	BENCH MARK:
OMOPTIMUM MOISTURE MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE SL SHRINKAGE LIMIT	EQUIPMENT USED ON SUBJECT PROJECT DRILL UNITS: ADVANCING TOOLS: CME-45C CLAY BITS	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.23 - 0.16 FEET	ELEVATION: FEET
- DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE PLASTICITY	CME-55 G* CONTINUOUS FLIGHT AUGER CORE SIZE: X 8* HOLLOW AUGERS G-BB	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED < 0.008 FEET INDURATION	br0094_ls_tin_2l0106.tin April II,2022
PLASTICITY DRY_STRENGTH NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC 6-15 SLIGHT MODERATELY PLASTIC 16-25 MEDIUM HIGHLY PLASTIC 26 OR MORE HIGH	X CME-550X HARD FACED FINGER BITS -N VANE SHEAR TEST TUNG-CARBIDE INSERTS HAND TOOLS: PORTABLE HOIST TRICONE STEEL TEETH	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. RUBBING WITH FINGER FREES NUMEROUS GRAINS; GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE. MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	Image: Tricone	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE; DIFFICULT TO BREAK WITH HAMMER. EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE; SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-14

PROJECT REFERENCE NO. BR-0094

STATE	STAT	SHBET NO.	TOTAL SHEETS			
N.C.	N.C. BR-0094			3	21	
STAT	B PROJ. NO.	P. A. PROJ. NO.		DESCRIPT	ION	
670	094.1.1			PE		
670	094.2.1	RW/UTIL		L		
670	57094.3.1			CONST		

June 10, 2022

Mr. John L. Pilipchuk, L.G., P.E. Geotechnical Engineering Unit (GEU) 1589 Mail Service Center Raleigh, NC. 27699 -1589

Re.:WBS ELEMENT:67094.1.1T.I.P. NO.:BR-0094PROJECT ID:39074COUNTY:RockinghamDESCRIPTION:Replace Bridge 78069 on NC 770 over US 220FME Project No.:G6300.001

SUBJECT: Roadway Inventory Report

Dear Mr. Pilipchuk:

F&ME Consultants, Inc (FME) has completed the roadway investigation and submit the following recommendations for the above referenced project.

Project Description

The project is located in Rockingham County just west of the city of Stoneville, North Carolina. The project is identified by the NCDOT as TIP Project No. BR-0094 and will consist of replacing the existing four-span steel girder bridge with a new two-span precast/prestressed (PC/PC) concrete AASHTO girder bridge and raise profile approximately six (6) to eight (8) feet along centerline. The project will also realign the two existing at-grade intersections on either end of the bridge.

The preliminary project plans show that fills will all be associated with a raising of the mainline (-L-) profile and maximum fill heights will be on the order of ten (10) to fifteen (15) feet. Cuts are associated with creating new roadside drainage ditches and will have a maximum cut height of ten (10) feet approximately fifty (50) feet long near Station 10+25.00 on the -RPB- line.

A geotechnical investigation consisting of soil test borings was performed by F&ME Consultants, Inc. (FME) between April 13 and April 19, 2022. During this time, a total of fourteen (14) soil borings were advanced with an ATV-mounted CME-550 drill rig equipped with an automatic hammer. Six of the borings were drilled for the proposed bridge replacement and ten (10) borings were drilled for the associated roadway work (-L-). The remaining four borings were drilled at the intersections on each side of the bridge. Disturbed representative soil samples were recovered from the borings as they were advanced, visually classified in the field, and brought to FME's soil laboratory for laboratory testing.

As part of this study, the following alignments were investigated as part of this study:

<u>LINE</u>	STATIONS (±)	OFFSETS
-L-	15+50.00 to 26+00.00	LT to RT
-RPA-	15+25.00 to 16+79.78	LT to RT
-RPB-	10+00.00 to 11+25.00	LT to RT
-RPC-	10+00.11 to 12+00.00	LT to RT
-RPD-	12+00.00 to 14+07.24	LT to RT

Physiography and Geography

The project site lies within the region known as the Piedmont Physiographic Providence. Based upon the Geologic Map of North Carolina, 1985, the project site is mapped as at/near the contact of Late Proterzoic Metamorphosed Granitic Rock and Meta-Graywacke and Muscovite-Biotite Schist. The virgin site soils are residual soil (saprolite) derived from weathering in place of the parent bedrock.

The project corridor is a rural portion of the county with thick vegetation and few commercial businesses outside the project limits. The existing topography is gently rolling hills with the majority of the site relief being the bridge approach embankments. The preliminary project plans show that fills will all be associated with a raising of the mainline (-L-) profile and maximum fill heights will be on the order of ten (10) to fifteen (15) feet. Cuts are associated with creating new roadside drainage ditches and will have a maximum cut height of ten (10) feet approximately fifty (50) feet long near Station 10+25.00 on the -RPB- line.

Soil Properties

The subsurface conditions discussed below are based upon the soils identified in the borings, observations made of the surficial soils, where exposed, and using normally excepted geotechnical engineering judgements. The transitions between soil strata are generally less defined than those presented on the Bore Logs. As soil sampling only obtains a small representation of the actual soil conditions, at times it may not be sufficient to accurately determine the origins of the soil strata. Even though individual soil test borings are representative of the overall subsurface conditions at the location of the test boring, it should be noted that there may be differences in the soils at other locations.

Soils within the overall area of this project have been divided into three categories: roadway embankment, residual soil, and weathered bedrock.

Roadway Embankment:

Roadway Embankment (RE) soils embankment soils were encountered along the following alignments at the approximate stationing:

 LINE
 STATION

 -L 17+50.00 to 1

The RE materials identified in the test borings generally consisted of loose to very dense,

Sheet 3A

$(S(\pm))$	OFFSETS
8+75.00	LT to RT

FORE

brownish- yellow/brown/red/yellowish-red, moist silty fine sand (A-2-4), stiff, yellowish-red, moist fine sandy clay (A-7-5/A-7-6), and firm to stiff, red to brown, moist fine sandy silt (A-4).). Laboratory testing of the indicates the PI's range from 18 to 38 for the A-7-5/A-7-6 soils and 9 for the A-4 materials.

Residual Soils:

Residual Soils (RS) throughout the project limits were derived from the in-place weathering of the parent bedrock. The majority of the of the RS materials identified in the test borings consisted of loose to very dense, brownish- yellow/brown/red/yellowish-red, moist silty fine sand (A-2-4), stiff, yellowish-red, moist fine sandy clay (A-7-5/A-7-6), and firm to stiff, red to brown, moist fine sandy silt (A-4). Laboratory testing of the indicates the PI's range from 18 to 38 for the A-7-5/A-7-6 soils and 9 for the A-4 materials.

LINE	<u>STATIONS (±)</u>	OFFSETS
-L-	15+50.00 to 26+00.00	LT to RT
-RPA-	15+25.00 to 16+79.78	LT to RT
-RPB-	10+00.00 to 11+25.00	LT to RT
-RPC-	10+00.11 to 12+00.00	LT to RT
-RPD-	12+00.00 to 14+07.24	LT to RT

Weathered Rock:

Weathered Rock (WR) was identified in the bridge test borings along the -L- alignments indicated below. WR is defined as residual geomaterials with a Standard Penetration Test (SPT) blow count (N-value) of greater than 100 blows per foot of drive. WR was identified within the project limits between Elevations 763 feet and 782 feet (msl) between the following stations.

LINE	STATIONS (\pm)	OFFSETS
-L-	24+60.00 to 25+60.00	LT to RT

Groundwater:

Groundwater levels were measured in the test boring immediately after completion of the test boring and, where the bore hole remained open, 24 hours after completion. At the time of drilling, groundwater was not observed in any of the borings performed for this study. It should be noted that perched or transient groundwater can be encountered after recent precipitation at or upgradient of the project site and in the wetter months of the year.

Areas of Special Geotechnical Interest

High Plastic Soils:

The following areas were identified to have potentially high plastic soils with Plastic Indices (PI) of greater than 25 but less than 35, and high plastic soils with a PI greater than 35 within the project limits. High plasticity soils have the potential to cause subgrade issues during construction and can lead to embankment stabilities especially if exposed to free water and can require undercutting to provide a stable subgrade:

LINE	STATIONS (±)
-L-	18+50.00 to 25+

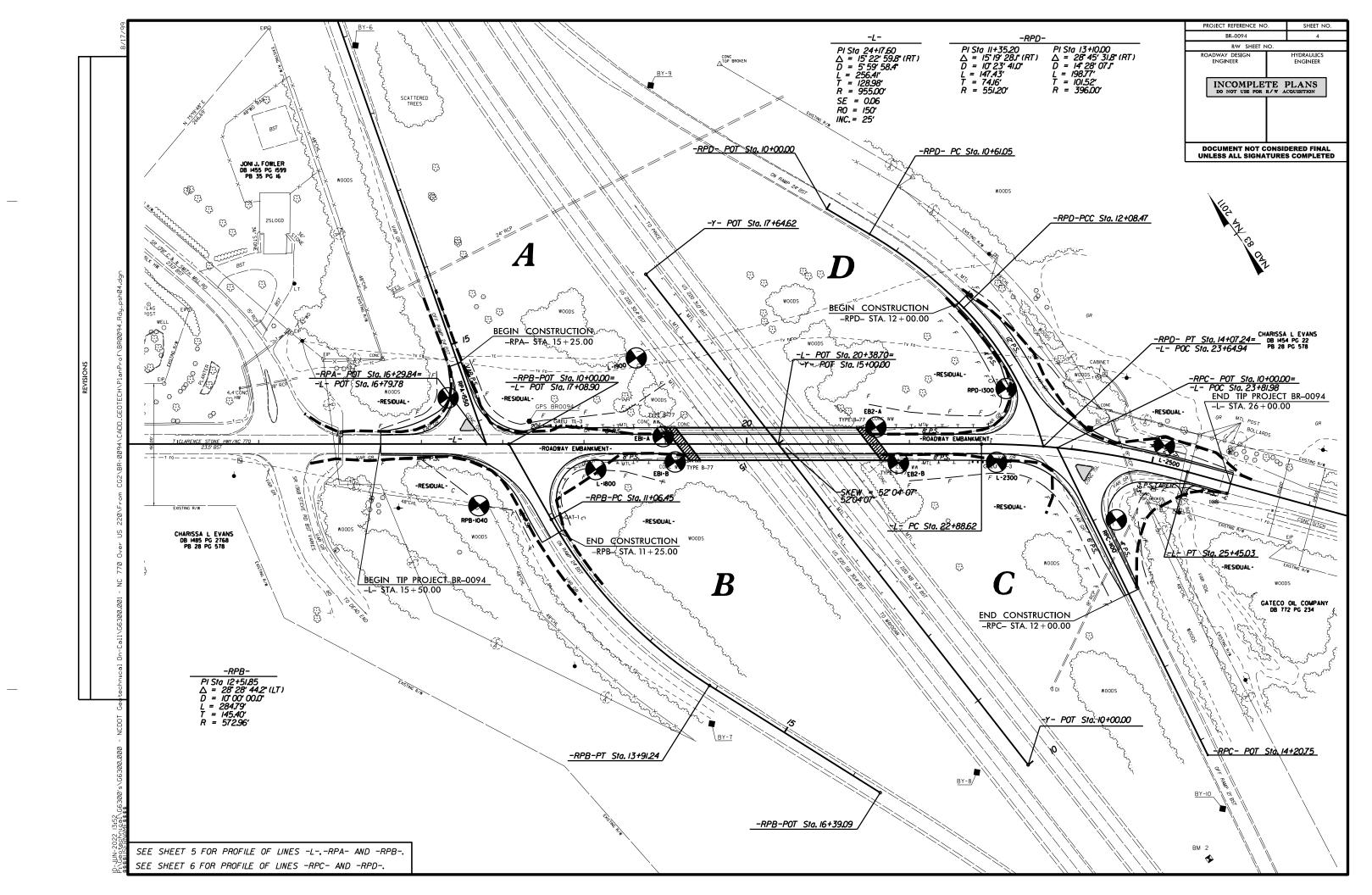
Soil/Very Loose Soils:

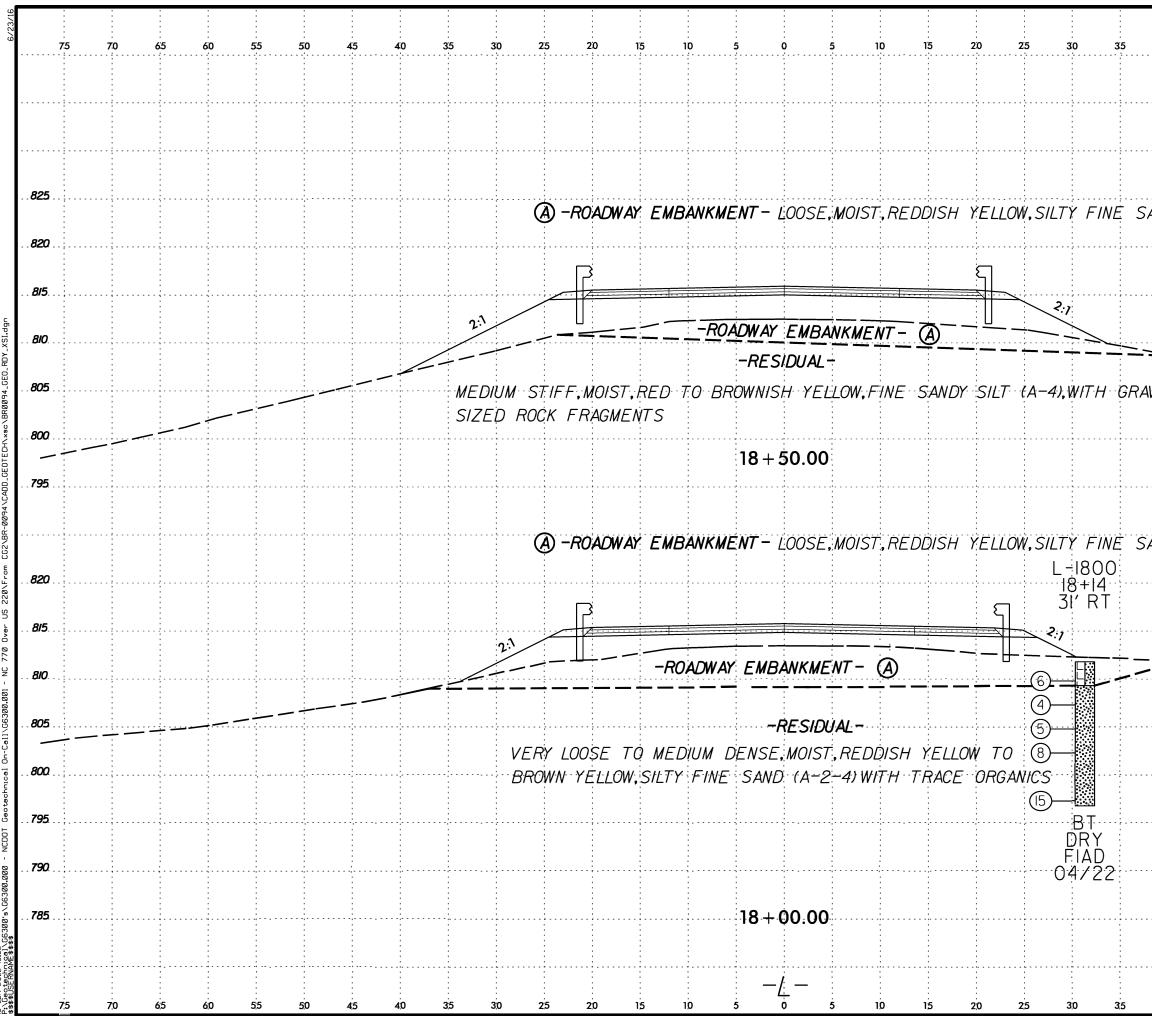
The following areas were identified to have soils which are in a soft or very loose state. Soft/very loose soils have the potential to cause subgrade stability problems, embankment stability issues, and long-term settlement problems. The borings for the new bridge will not impact the roadway construction but are still identified as an area of special geotechnical interest for this study.

STATIONS (±)	OFFSETS
16+40.00 to 22+30.00	LT to RT
15+25.00 to 16+79.78	LT to RT
10+00.00 to 11+25.00	LT to RT
10+00.11 to 12+00.00	LT to RT
12+00.00 to 14+07.24	LT to RT
	16+40.00 to 22+30.00 15+25.00 to 16+79.78 10+00.00 to 11+25.00 10+00.11 to 12+00.00

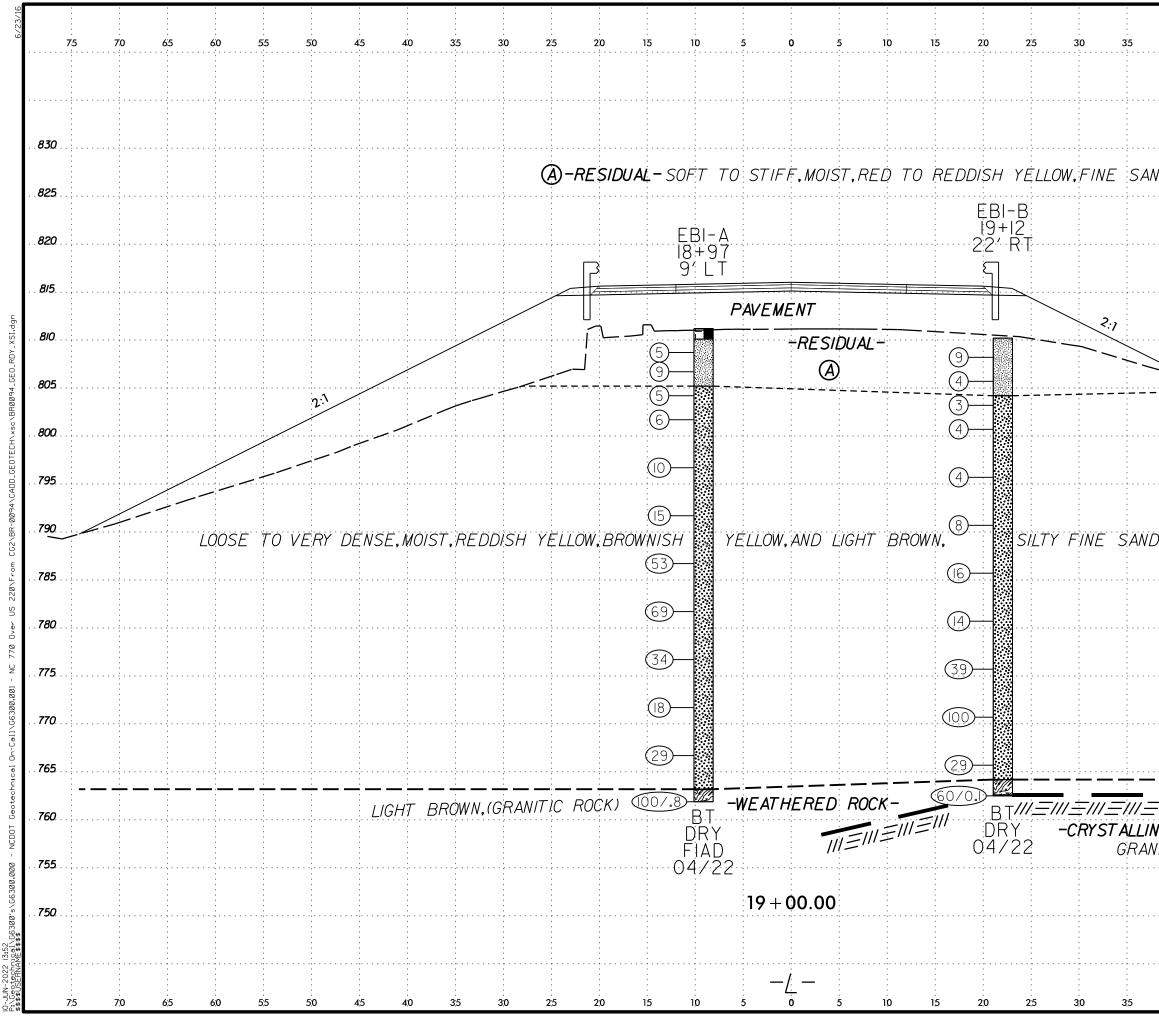
We thank you for the opportunity to prepare this study for this project and look forward to providing continued support of this and future projects.

Sincerely,

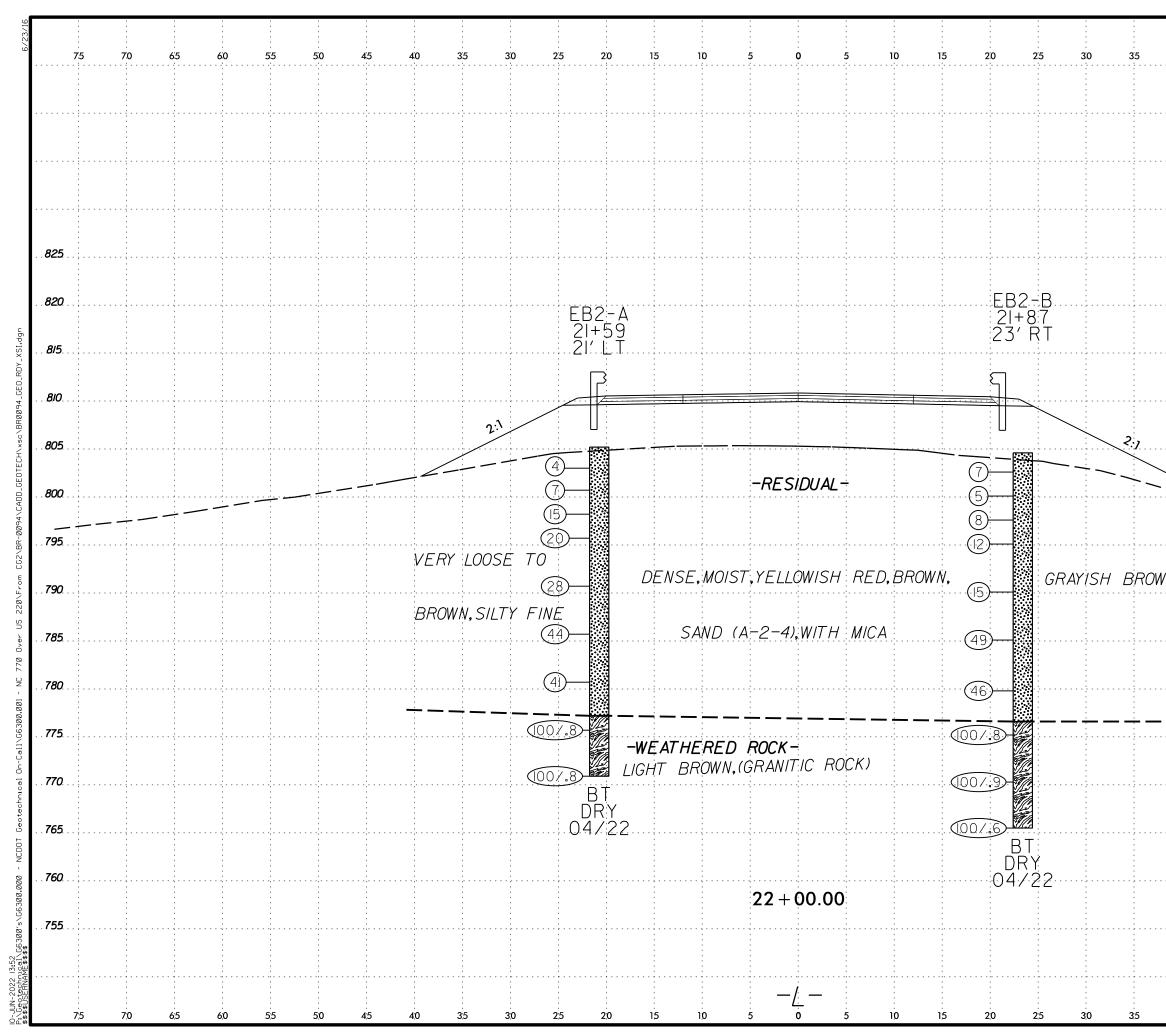

F&ME Consultants, Inc.


DocuSigned by: Johnson Sha

Adam Shannon, PE Senior Vice President


)	OFFSETS
+50.00	LT to RT

DocuSigned by Robert Lawrence, PEGE -6FC3554635DF436.. **Robert Lawrence, PE GE** Senior Geotechnical Engineer



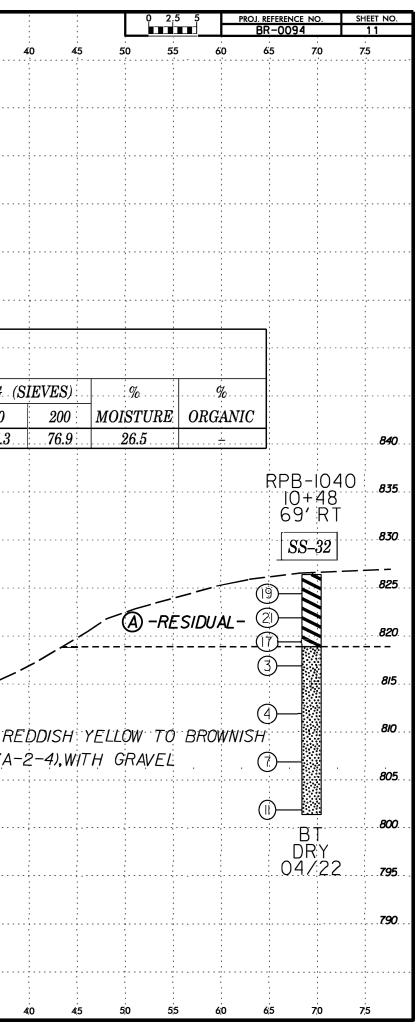
		0 2.5 5 PROJ. REFERENCE		FERENCE NO	ENCE NO. SHEET NO. 094 5		
04	55	0 5	5 6				
1 1 1 1							
D (A-	2-4)						825
· · ·							820
							<i>8</i> 15
1 1 1							
	, , , , , , , , , , , , , , , , , , ,						. 810
<i>L</i>	· · · · · · · · · · · · · · · · · · ·						805
							800
						· · · · · · · · · · · · · · · · · · ·	<u>7</u> 95
1 1 1 1							
D (A-	2-4)						
							. 820
							815
	· <u> </u>						810
1 1 1							
							.805
	; 						800
							795
1 1 1 1							
	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	.785
	D (A-	D (A-2-4)	0 45 50 59 D (A-2-4)	0 45 50 55 6 D (A-2-4)	0 45 50 55 60 6 D (A-2-4)	0 45 50 55 60 65 7 D (A-2-4)	0 45 50 55 60 65 70 75

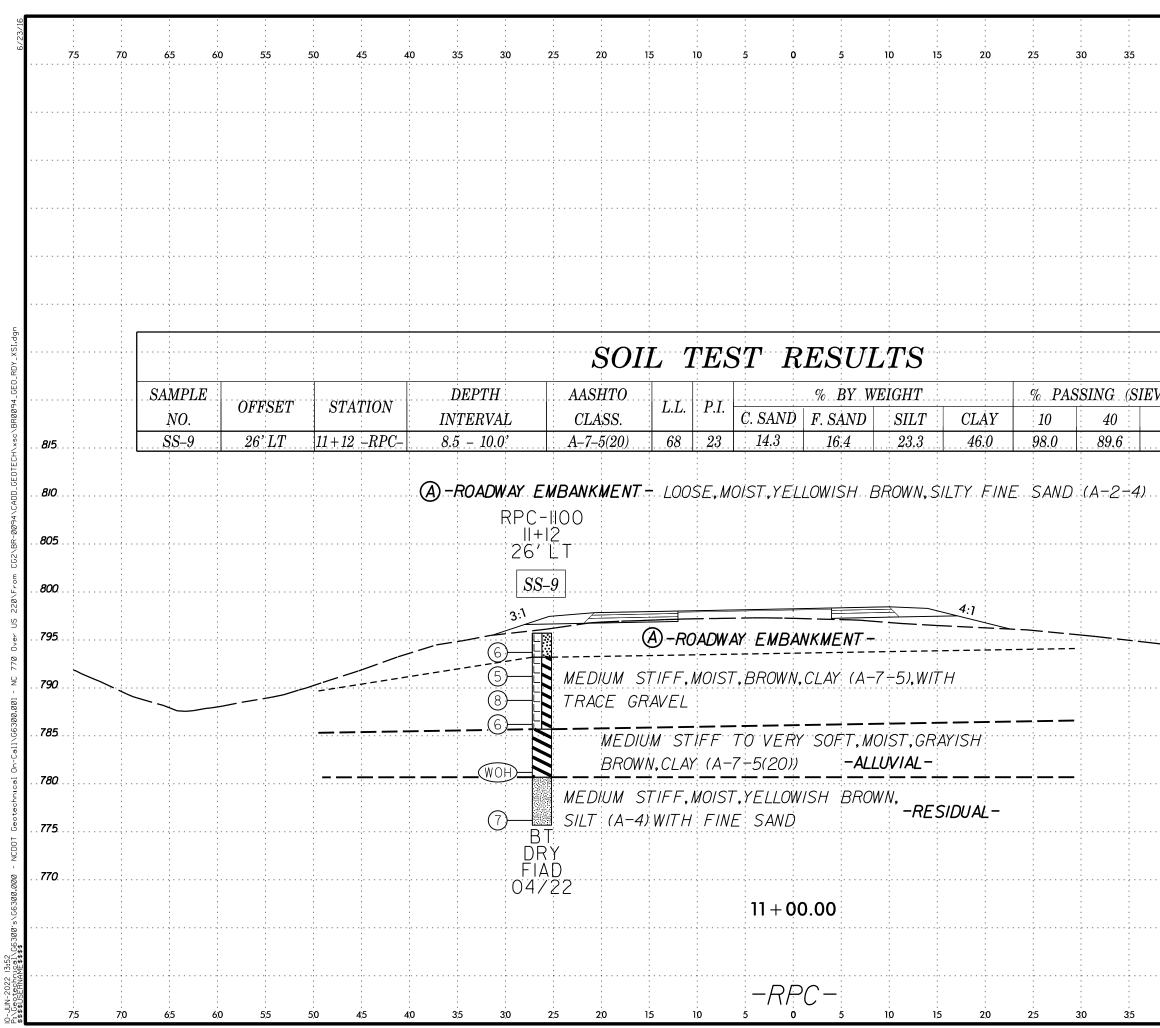
			0 2	.5 5	PROJ. REFERENCE NO. BR-0094		O. SH	SHEET NO.	
4	0 4	555	05	55 <i>6</i>	50 6	57	07	5	
	•							•	
			; ; ;					, , ,	
								830	
٧D	SILT	AND	SILT	(A–4)					
	1 1 1				•				
								820	
	•								
	,	,				,			
	- - - -								
	<u> </u>								
			——						
	•							, , ,	
	•					: :			
	, , ,							, , ,	
D (A-2-4	; 4)			• • • •			790	
					•			705	
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	 - - -	• • • • • • • • • • • • • • • • • • •	785	
	•								
	- - - -								
	- - -								
								765	
_//	: / /// _	_///	: :///					, , ,	
	/// ROCK							760	
VIT.	IC ROO	СK							
		, ,							
	• • •								
		• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·						
								, , , ,	
4	0 4	: 555	0 5	5 é	: 50 6	57	: °0 7	5	

			02	.5 5	proj. ri BF	EFERENCE NO	D. SHE	et no.
4	0 4	55	05	5 6	50 6	57	0 75	
			, , ,			, , ,		
			- - -			- - -		
			•		•	•		
				· · ·				825
			- - - - 			- - - - 		
								820
								815
			· · ·			· · ·		810
				· · · · · · · · · · · · · · · · · · ·				
								805
			•	•	•	•		
								800
			<u> </u>		• • •	• • •		
			/		<u> </u>			795
VN	AND	LIGHT	• • •				<u> </u>	
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
								7.85
					- - - -			
								7.80
			• • • •					
				; ;				775
								770
								765
				, , , ,				760
			•			•		766
								755
					· ·			
			• • •			• • •		
4	0 4	5 5	0 5	5 (50 6	57	0 75	

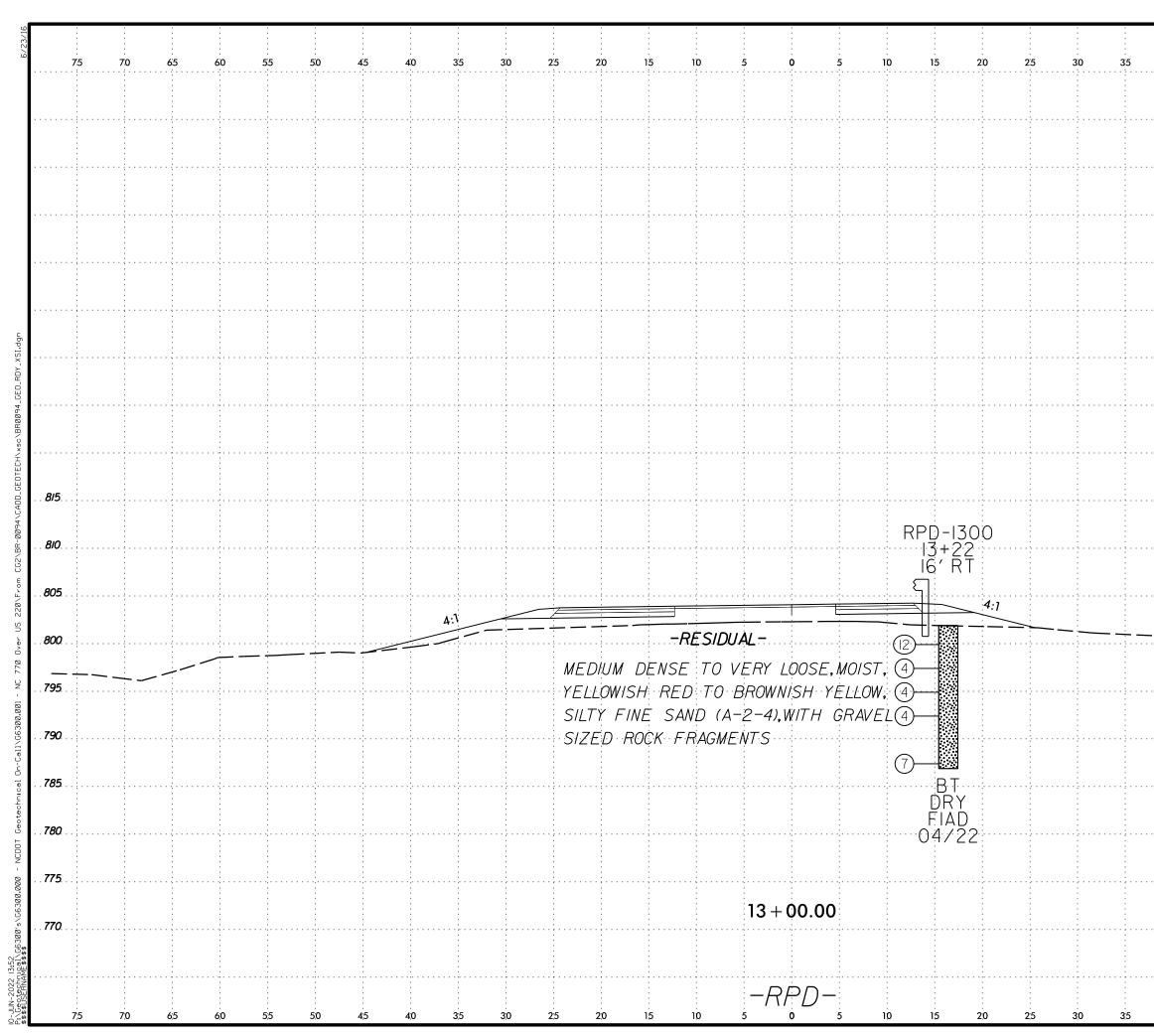
												0
75 70	65 60	55 50	45 40	35 30 25	20 15	10	5 0	5 10	15 20	25 30	35 40 4	5 50
								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
								·····				
	· · · · · · · · · · · · · · · · · · ·							<u>.</u>				
					SO		EST R	ESII	TS			
	CAMDI E							· · ·	· · ·		RING (RIEVER)	01
	SAMPLE NO.	OFFSET	STATION	DEPTH INTERVAL	AASHTO CLASS.		P.I. C. SAND	% BY WE		$\frac{\%}{AY} \frac{\gamma}{10}$	SING (SIEVES) 40 200	
. 820	SS-12	22' RT	23+08 -L-	1.0 - 2.5'	A-7-5(20)	62	26 10.3	18.8		1.3 96.6	91.5 71.5	
									L-23	00		
8/5					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	L-23 23+ 22'	0 <u>8</u> RT		
<i>BIO</i>									SS-	— i :		
									5			
. 805				2:1						2.1		
						-F	RESIDUAL-					
						TO MED	NUM STIFF,N				<u> </u>	<u> </u>
795			· · · · · · · · · · · · · · · · · · ·		YELLOW	ISH REL	D. SILTY CLAY	(A-7-5(20	0)) (6 		••••	
700					VERY LOO	SE TO	LOOSE, MOIST	,REDDISH				
	· · · · · · · · · · · · · · · · · · ·					ILTY FIN	IE SAND (A-	-2-4),WITH	I TRĂCE			
785	· · · · · · · · · · · · · · · · · · ·				MICA		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	(10)— [2] B1			
									B1 DR FIA 04/	Ϋ́		
780									04/	22		
						, , , ,	23+00.00					
							/					
75 70	65 60	55 50	45 40	35 30 25	20 15	10	5 0	5 10	15 20	25 30	35 40 4	5 50

						PROJ. I B	REFERENCE NO. R-0094	SHEET NO.
5	30	35	40 45	50	55	60	65 70	75
	:							
		;						
	÷	:						
								· · · · · · · · · · · · · · · · · · ·
							1	
	· · · · · · · · · · · · · · · · · · ·							
	0 PAS	SING (S	SIEVES)	%		%		
	10	40	200			GANIC		
-	96.6	91.5	71.5	71.5				
			11.0	11.0	 		l:	
)								
			• . • • • • • . • . • . • . • . • . • .					
<u> </u>	2:1		• [• • • • • • • • • • • •	·····			÷	
		<u>}</u>						
			-					
	:							
5	30	35	40 45	50	55	60	65 70	7,5

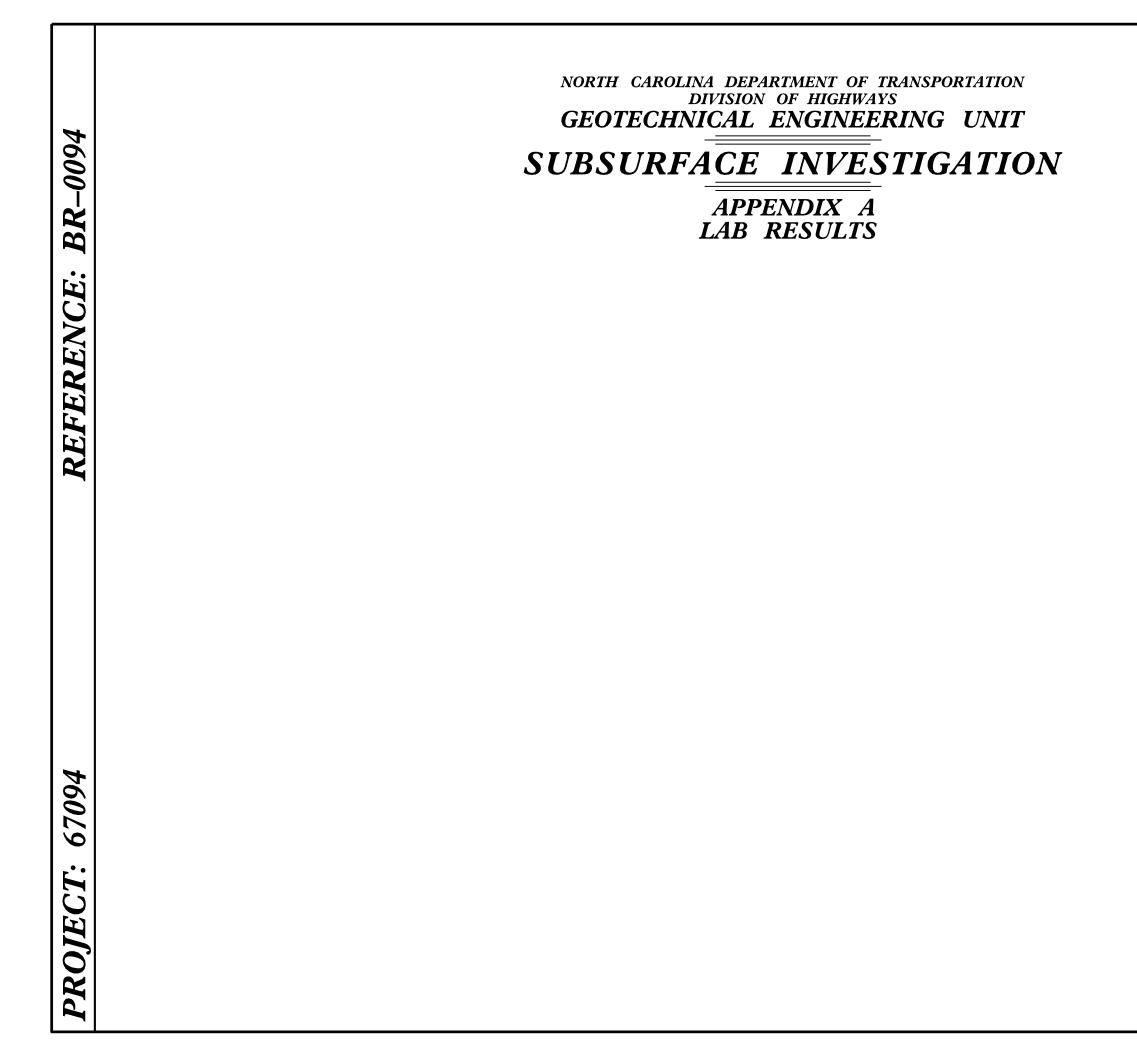

	, ,				1											
75 70	65 60	55 50	45 40	35 30 25	20 15	10	5	0	5 10	15	20 25	30	35	Δ'0 Δ'	5 50	
					· · · · · · · · · · · · · · · · · · ·											
						τ π	יתר	ת ה <i>ע</i> ר	παπ	πα						
					501			SI R	ESUI	712						
	SAMPLE	OFFSET	STATION	DEPTH	AASHTO	L.L.	<i>P.I.</i>		% BY W		· · · · · · · · · · · · · · · · · · ·	-	SSING (S			
815	NO. SS-1	24' LT	25+10 -L-	INTERVAL 1.0 - 2.5'	CLASS.	43	18	C. SAND 12.3	F. SAND 21.8	SILT 22.7	CLAY 43.2	<u>10</u> 	40	200	MOIS	$\frac{ST}{6.7}$
	<u>SS-1</u> SS-2	24 L1 24' LT	25 + 10 - L - 25 + 10 - L - 25 + 10 - L - 10 -	1.0 = 2.5 3.5 - 5.0'	A=7=0(11) A=7=5(20)	74	38	4.1	10.4	30.4	45.2 55.2	95.9	92.8	82.7		89.0
<i>BIO</i>																
				25+10)0 0 T (A) -ROADA											
805						NAY EN	IBAN	IKMENT-	STIFF,M	IOIST,YE	LLOWISH	-RED,FII	VE SAN	DY CLA	Y (A-7	·
				SS-1												
				SS-2	2.1											
						-ROAD	WAY	EMBANK	MENT- (A)		2:1	~	-		
				<u>á</u>	STIFF,MOIST			DUAL	INF SANI	— <u> </u>	 Δ-7-5(2					
785						,		, .		· · · · · · · · · · · · · · · · · · ·						
				BT												
				BT DRY FIAD 04/2	/											
				04/2	2		<u>م</u> د									
770	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				25	+00.00	ļ.							
								/	· · · · · · · · · · · · · · · · · · ·							
75 70	65 60	55 50	45 40	35 30 25	20 15	10	5	_ <u>/</u>	5 10	15	20 25	30	35	40 4	5 50	n

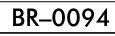

		0	2.5 5	PROJ. REFERENC	CE NO.	sheet no. 9
: 3'5 4	: : 40 45	50	55 60	65	70	75
; ;						
:						
; ;						
:						
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
				:		
					÷	
ING (S.	IEVES)	%	%			
40	200	MOISTU	RE ORGA	NIC		
89.9	67.0	26.7	· · · · · · · · · · · · · · · · · · ·			
92.8	82.7	39.0	· · · ·			
SANL	DY CLAY	(A-7-6()	7))			
	· · · · · · · · · · · · · · · · · · ·					
:						
	· · ·		· · ·			
						700
÷	\leq	· · · · · · · · · · · · · · · · · · ·				
		· · · · · ·				
; ;	· · · · · · · · · · · · · · · · · · ·					
-	· · ·					
-						775
	: :					
	i i i					
	· · · · · · · · · · · · · · · · · · ·					
					, , , , ,	
35 4	40 45	50	5,5 6,0	65	7.0	7.5

/16		-	· · ·		1 1 1 1														
6/23.	-	75 7	r0 65	60 4	55 50	15 <i>1</i>	0 35	30 2	5 20 1	5 10	5	0 5	10	15 20	25	. 3	0 35	10 /	15 50
			· · · · · · · · · · · · · · · · · · ·																· · · · · · · · · · · · · · · · · · ·
			<u>.</u>		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			<u>.</u>		· · · · · · · · · · · · · · · · · · ·					
			· · · · · · · · · · · · · · · · · · ·																· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·									
										· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·							
			· · · · · · · · · · · · · · · · · · ·																
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	-,			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		;		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·					1 1 1 1											
		·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	-,		· · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·
ugh			· · · · · · · · · · · · · · · · · · ·											· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·
Υ_XSI.c			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			• • •	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·					:
EO_RD			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·											-			· · ·
3094_G	8:40		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					
sc\BR6			· · · · · · · · · · · · · · · · · · ·																
ECH/×	835		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·							:
0_GEOT	830		· · · · · · · · · · · · · · · · · · ·		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1											· · · · · · · · · · · · · · · · · · ·
4\CAD[4 · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			· • · · · · · · · · · · · · · · · · · ·	L	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·
R-009	825		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			(A) -F	RESIDUAL- N	EDIUM ST	TIFF, MO	ST,YELLOW	ISH RE	D, FINE	SAN	DY SI	LT (A-4),W	ITH MI	CA
CG2\E			• • • • • • • • • • • • • • • • • • •		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1							א חר				· · · · · · · · · · · · · · · · · · ·
\From	820		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		: 	тга: 	-1550 -61 RT			
IS 220			· · · · · · · · · · · · · · · · · · ·		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1		· · · · · · · · · · · · · · · · · · ·				· · ·	25′	RT			
Dver U	<i>8</i> /5		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · ·		1	<u> </u>						4:1	· / · · · · ·	· · · · · · · · · · · · · · · · · · ·
770 ((A) -RESI	DUAL-)				
1 - NC	<i>810</i>							• • •				<u>.</u>		(4)				
300.00		<u></u>																	
all\G6	805				· · · · · · · · · · · · · · · · · · ·							MOIST,YELL ILTY FINE							
·1 0n-C	800										<i></i> _, <i></i>			(A Z 4)	、				
chnica																T	· • • • • • • • • • • • • • • • • • • •		
Geote.	795		· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·				· · ·	B DF 04	ζΥ Υ			
ICDOT															04/	22			
90 - V	790		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			, , , ,, , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·							
6300.0			· · · · · · · · · · · · · · · · · · ·								15 ⊥ /	50.00		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·
30's\G(· · · · · · · · · · · · · · · · · · ·	13+3	JU.UU		· · · · · · · · · · · · · · · · · · ·					
1\063£ :\$\$\$																			
Shrica NAME &					· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	:									
suse \$USEF	_	:									=RI	$^{\Box}A^{-}$							
ာ္မ				40 '		15 1			<u>, vo</u> ,	5 10	5						0 25	40	45 EO


					0 2	.5 5	PROJ. R	EFERENCE N	O. S⊦	ieet no. 10
30	3	54	0 4	5 5					07	
-					•		•	•		
					- - - - -			- - - - -		
÷							{			
	;						• • • •		, , , ,	
					•			•		
-										
					•					835
					- - - - 		- - - - -	- - - - 	- - - - -	
			· · · · · · · · · · · ·							830
: ILT	- (A	-4),W/1	ГН МІС	CA	•			•		
					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
)										820
-			/		•			•	•	
4	:1		<i>.</i>			; ;				815
÷ -		<u> </u>								810
						;	;		· · · · · · · · · · · · · · · · · · ·	810
						; ;			; ;	805
										800
; ;	;					; ;	;		;	795
					•		•	•	•	
30	3	5 4	0 4	5 5	0 5	5 6	х о 6	57	x0 7	5

75	7.0 6	5 60	55 50	45 40	35 30 25	20 15	10 5	0	5 10	15	20 25	30	35
						·····							
		· · · · · · · · · · · · · · · · · · ·											
						SOI	L TE	ST R	ESUI	LTS			
		SAMPLE	OFFSET	STATION	DEPTH	AASHTO	L.L. P.I.		% BY W			% PAS	
. 840		NO. SS-32	69' RT	10+48 -RPA-	INTERVAL 1.0 - 2.5'	CLASS. A-7-5(20)		C. SAND 7.5	F. SAND 18.1	SILT 19.2	CLAY 55.3	10 	40 97.
		J											
					(A) -RES	SI DUAL - VERY	STIFF,MC	IST, RED,	FINE SAN	DY CLA	(A-7-5	(20))	
	I												
												4.],
<i>BIO</i>							-RESIDUA	V – VI	ERY LOOSI	ЕТО М	edium d	ENSE,M	01\$T,1
805								YE	ELLOW,SIL	TY FINE	TO COA		
. 800													
795							10)+50.00)				
													:
								RPB-					
76	70 4	- (n		45 40					-			-	;





:			0 2.5 5	PF	OJ. REFEREN		SHEET NO. 12
40	45	50	55	60	65	70	75
÷		÷				÷	
			· · · · · · · · · · · · · · · · · · ·				
VES)	- ·	6	%		:		
200		TURE	ORGAN				
71.0	34	.4	<u></u>	<u></u>			
:		÷				:	
	· — — .	····					
				· — —			- 790
		····.					
:		:				:	
· · · · .		·····	·····				
40	45	50	55	60	65	70	75

			0 2	.5 5	PROJ. R	EFERENCE NO	D. SHE	et no. 3
4	0 4	5 5						
	- - - -	- - - -						
					; ;			
	•							
	- - - -	- - - -						
					· · · · · · · · · · · · · · · · · · ·			
								815
	- - - 	- - - 						
					; 			810
								805
					; 			795
	•	•						
								790
	•	•						
					; ; ;			785
					· · ·			7.80
								775
	- - 	- - 						
								770
	• • •	• • •						
	•							
4	0 4	55	0 5	5 έ	0 6	57	0 75	

PROJECT REFERENCE NO.

14

F&ME CONSULTANTS, INC. 1613 PARIS AVE, STE A PORT ROYAL, SC 29935

F&ME CONSULTANTS, INC. 3112 DEVINE STREET, COLUMBIA SC 29205 (CERT No.: 130-0212)

	Replace Bridge 78069 on NC 770				
Project_	over US 220	T.I.P. No	BR-0094	County_	Rockingham
Date Received	4/25/2022	Date Reported	5/2/2022	Tested By	J. Hiers
_				_	

	SOIL TEST RESULTS														
SAMPLE	OFFSET	STATION	DEPTH	AASHTO	T T	<i>P.I.</i>		% BY W	EIGHT		% PAS	SING (SIE	EVES)	%	%
NO.	OFFSET	SIATION	INTERVAL (ft.)	CLASS	L.L.	1.1.	C. SAND	F. SAND	SILT	CLAY	10	40	200	MOISTURE	ORGANIC
SS-1	24 ft LT	25+10	1.0 - 2.5	A-7-6(11)	43	18	12.3%	21.8%	22.7%	43.2%	95.9%	89.9%	67.0%	26.7%	ND
SS-2	24 ft LT	25+10	3.5 - 5.0	A-7-5(20)	74	38	4.1%	10.4%	30.4%	55.2%	94.5%	92.8%	82.7%	39.0%	ND
SS-9	26 ft LT	11+12	8.5 - 10.0	A-7-5(20)	68	23	14.3%	16.4%	23.3%	46.0%	98.0%	89.6%	71.0%	34.4%	ND
SS-12	22 ft RT	23+08	1.5 - 3.0	A-7-5(20)	62	26	10.3%	18.8%	29.5%	41.3%	96.6%	91.5%	71.5%	26.1%	ND
SS-32	69 ft RT	10+48	1.5 - 3.0	A-7-5(20)	71	31	7.5%	18.1%	19.2%	55.3%	99.7%	97.3%	76.9%	26.5%	ND
SS-40	106 ft LT	18+64	3.5 - 5.0	A-4(4)	36	9	20.2%	26.4%	31.0%	22.4%	98.8%	89.0%	57.3%	18.1%	ND

F&ME Job No.

G6300.01

CERT No.:

130-04-0212

REV 05/2022

F&ME CONSULTANTS, INC. 3112 DEVINE STREET, COLUMBIA SC 29205 (CERT No.: 130-0212)

	Replace Bridge 78069 on NC 770		
Project	over US 220	T.I.P. No.	BR-0094
County	Rockingham	F&ME Job No.	G6300.01
Date Received	4/25/2022	Date Reported	5/2/2022
Tested By	J. Hiers	CERT No.:	130-04-0212

	TEST RESULTS											
Proj. Sample No.		Bulk-1										
Lab. Sample No.		22-1286										
Retained #4 Sieve	%	0%										
Passing #10 Sieve	%	99%										
Passing #40 Sieve	%	93%										
Passing #200 Sieve	%	63.1%										

SOIL MORTAR - 100%					
Coarse Sand Ret - #60	%	14.5%			
Fine Sand Ret - #270	%	27.2%			
Silt 0.05 - 0.005 mm	%	34.0%			
Clay < 0.005 mm	%	24.3%			
Passing #40 Sieve	%	93.8%			
Passing #200 Sieve	%	63.7%			

L. L.		41			
P. I.		8			
AASHTO Classification		A-5(5)			
Natural Moisture Content	%	25.7%			
Organic Impurities	%	ND			
Boring No.		Bulk-1			
Depth (ft.)		1.0			
	to	3.0			

M & T Form 503

PROJECT REFERENCE NO. SHEET NO.

LAB RESULTS

16

BR-0094

TEST PESHI TS

MINUS NO. 10 FRACTION

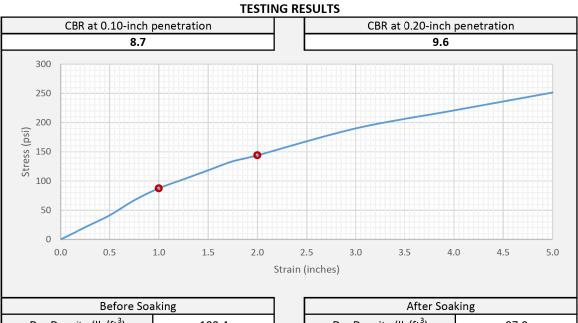
Jeng P. Durs

Laboratory Manager

This report shall not be reproduced, except in full, without the written approval of F&ME Consultants, Inc.

Page 1 of 1

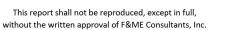
CALIFORNIA BEARING RATIO (CBR) AASHTO T193


REV 08/2021

SAMPLE INFORMATION

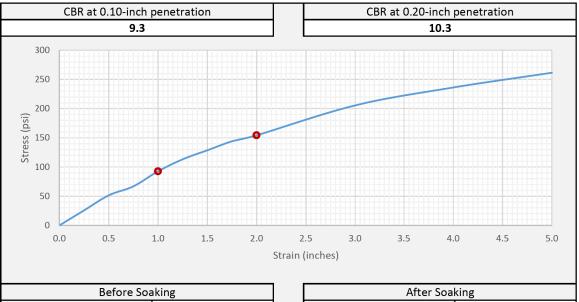
Project Name	Replace Bridge	78069 on NC 770 ov	er US 200	Project No.	BR-0094		
Sample Location	Bull	<-1 (Specimen B)		FME Lab ID	22-0430		
Soil Description		A-5(5)		Depth/Elev.	1.0 - 3.0 ft.		
Date Sampled		Sampled By:	FME	Date Received	4/25/22		
Date Test Began	4/28/22	Date Completed	5/2/22	Tested By	JWWL		

MOLDING CHARACTERISTICS


Method	AASHTO T99 - Method A	% Retained on 3/4" Sieve	0%
Max Dry Density (lb/ft ³)	100.2	Optimum Moisture Content (%)	21.4
Soak Time (hr)	96	Surcharge Weight (lb)	10.0

Before Soa	aking		After Soaking				
Dry Density (lb/ft ³)	Dry Density (lb/ft ³) 100.4		Dry Density (lb/ft ³)	97.0			
Moisture Content 21.1%			Moisture Content (Top 1")	26.5%			
Percent Compaction 100.2%			Percent Compaction	96.8%			
Percent Shrink/Swell			Percent Shrink/Swell	0.8%			

ADDITIONAL COMMENTS



REV 08/2021

Project Name	Replace Bridge	78069 on NC 770 ov	er US 200	Project No.	BR-0094
Sample Location	Bulk	(-1 (Specimen A)		FME Lab ID	22-1286
Soil Description		A-5(5)		Depth/Elev.	1.0 - 3.0 ft.
Date Sampled		Sampled By:	FME	Date Received	4/25/22
Date Test Began	4/28/22	Date Completed	5/2/22	Tested By	JWW

Method	AASHTO T99 - Method A	% Retained on 3/4" Sieve	0%
Max Dry Density (lb/ft ³)	100.2	Optimum Moisture Content (%)	21.4
Soak Time (hr)	96	Surcharge Weight (lb)	10.0

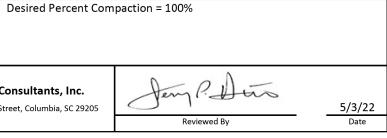
Before Soa	king	After Soa	king
Dry Density (lb/ft ³)	99.6	Dry Density (lb/ft ³)	95.3
Moisture Content 20.9%		Moisture Content (Top 1")	28.1%
Percent Compaction	99.4%	Percent Compaction	95.1%
Percent Shrink/Swell		Percent Shrink/Swell	0.8%

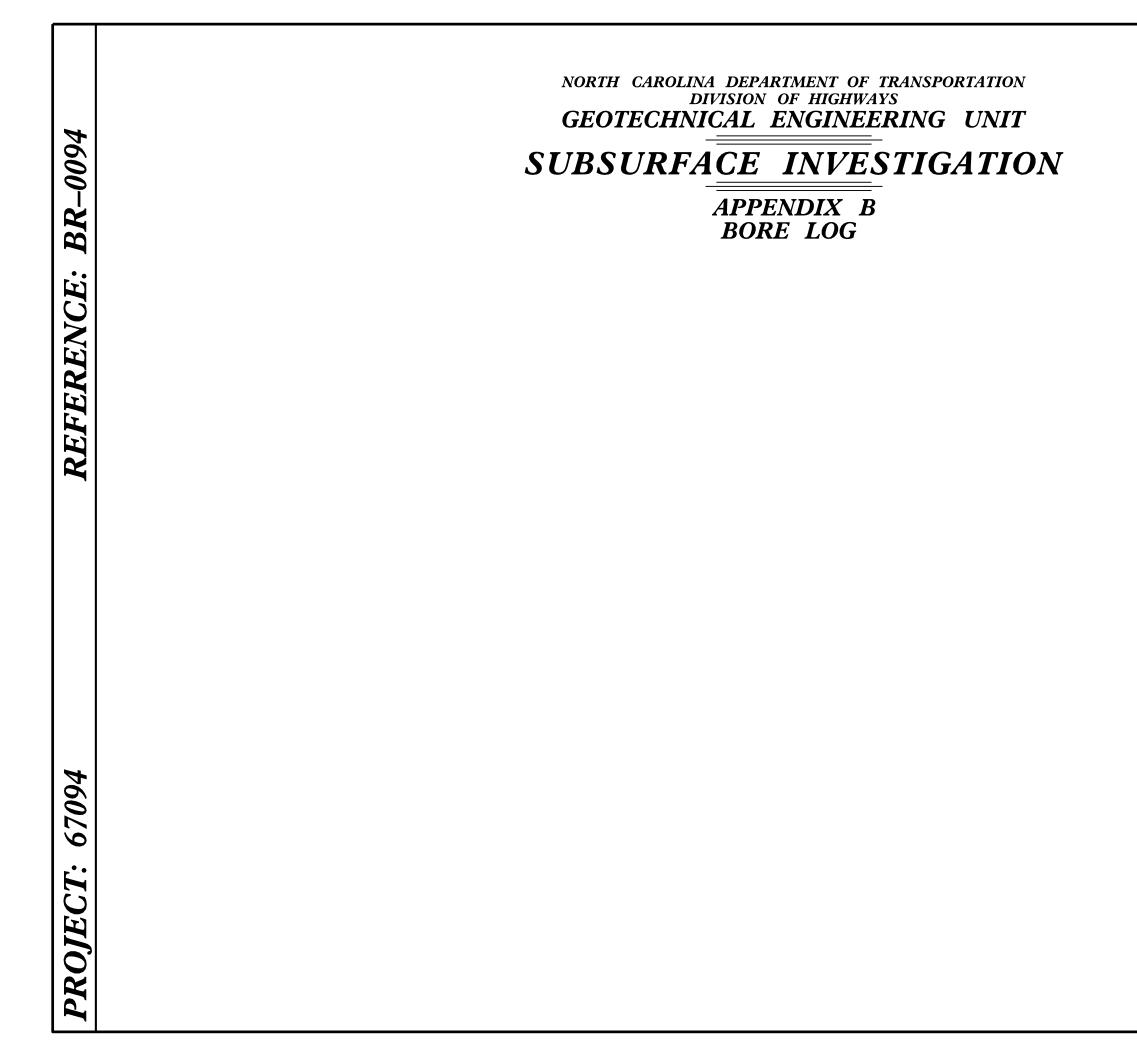
F&ME Consultants, Inc. 3112 Devine Street, Columbia, SC 29205

> This report shall not be reproduced, except in full, without the written approval of F&ME Consultants, Inc.

PROJECT REFERENCE NO. SHEET NO. BR-0094 LAB RESULTS

17

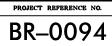

CALIFORNIA BEARING RATIO (CBR) AASHTO T193


SAMPLE INFORMATION

MOLDING CHARACTERISTICS

TESTING RESULTS

ADDITIONAL COMMENTS



F&ME CONSULTANTS,INC. 1613 PARIS AVE,STE A PORT ROYAL,SC 29935

SHEET NO.

18

GEOTECHNICAL BORING REPORT BORE LOG

											JINL		OG							
WBS	67094.	.1.1			ТІ	P B	R-0094	1	CO	UNTY	ROO	CKING	GHAM			GEOLOGI	ST R. Wes	singer		
SITE	DESCRI	PTION	Brid	ge 78	0069 c	on NC	; 770 o	ver US	220							•			GROUN	ID WTR (f
	NG NO.			-			DN 18				OFFS	ET 1	06 ft LT			ALIGNME	NT L		0 HR.	Dr
	AR ELE							H 10.0	ft				990,5				1,727,412		24 HR.	FIAD
	RIG/HAN			TE BE								1			пн	S. Augers	.,,	НАММ		Automatic
	LER D.							04/13			COMP		TE 04/ ²				WATER DE			7.010110110
							DATE				CONF	DA	SAMP.		L	SURFACE	WATER DE	PIN N	/A	
ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)	0.5ft	0.5ft		0	2	BLOWS	50 50		75	100	NO.	MOI	0	ELEV. (ft)	SOIL AND RO	DCK DES	CRIPTION	DEPTH
795 790 -	790.2	1.0	3	4	3							· · ·				791.2	RE	ND SURF.		(
-	787.7	- 3.5	2	2	3	†	7	· · · · · ·	. .			 	00.40	M		M	edium Stiff, Re	ed, Sandy ellowish R		<u>4))</u>
785	785.2	6.0	1	2	4	• •		· · · ·	· · · ·				SS-40	18% M		- - 		wnish Ye		
-	782.7	- 8.5 -	2	3	3) 	· · · · · ·	 	· · ·	· · · · · · · · · · · · · · · · · · ·			M		- - _{781.2} =	> with Gravel \$			ts 10
-		_					<u>,</u>								200000		ring Terminate Residual	d at Eleva	tion 781.2 f	

SHEET 19