CONTENTS SHEET NO. 686 S Ò REFERENCE

7845

4-5

6-7

8-13

14-18

DESCRIPTION

LEGEND (SOIL & ROCK)

BENT CROSS SECTIONS

TITLE SHEET

SITE PLAN

BORELOGS

CORE PHOTOS

PROFILES

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

MADISON COUNTY _ BRIDGE NO. 71 ON SR 1395 PROJECT DESCRIPTION OVER BIG LAUREL CREEK

STATE	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAI SHEET
N.C.	B-5989 47845	1	18

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1919) 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

CENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IMP-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS NIDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISTY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:

 1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

	LINSONNEL
	CD JOHNSON
	DO CHEEK
	CJ COFFEY
_	
_	
INVESTIGATED BY	J KUHNE
DRAWN BY	J KUHNE
SUBMITTED BY	J KUHNE
DATE	

DEDCUMNE

UNLESS ALL SIGNATURES COMPLETED

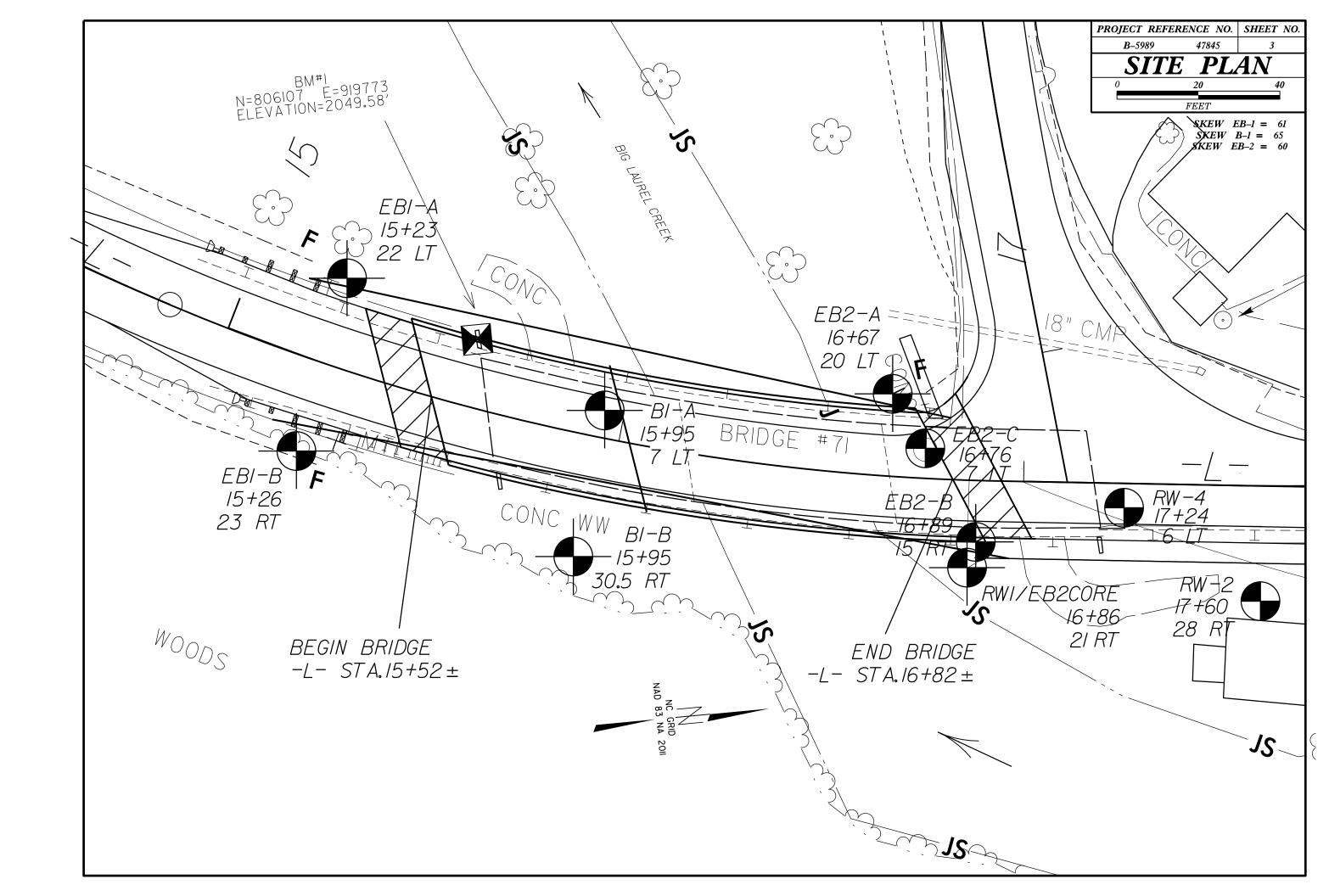
B-5989 47845 2

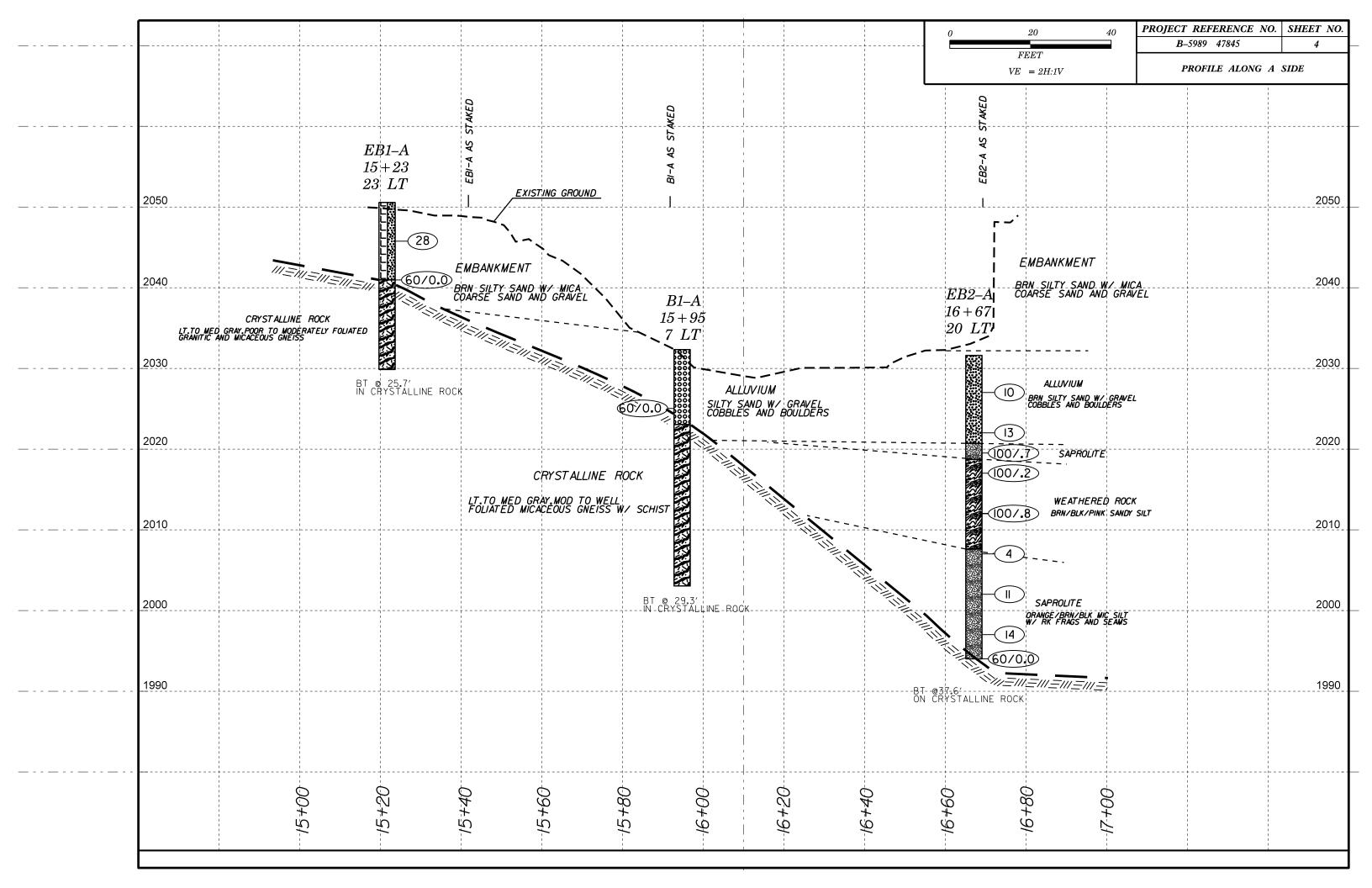
NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

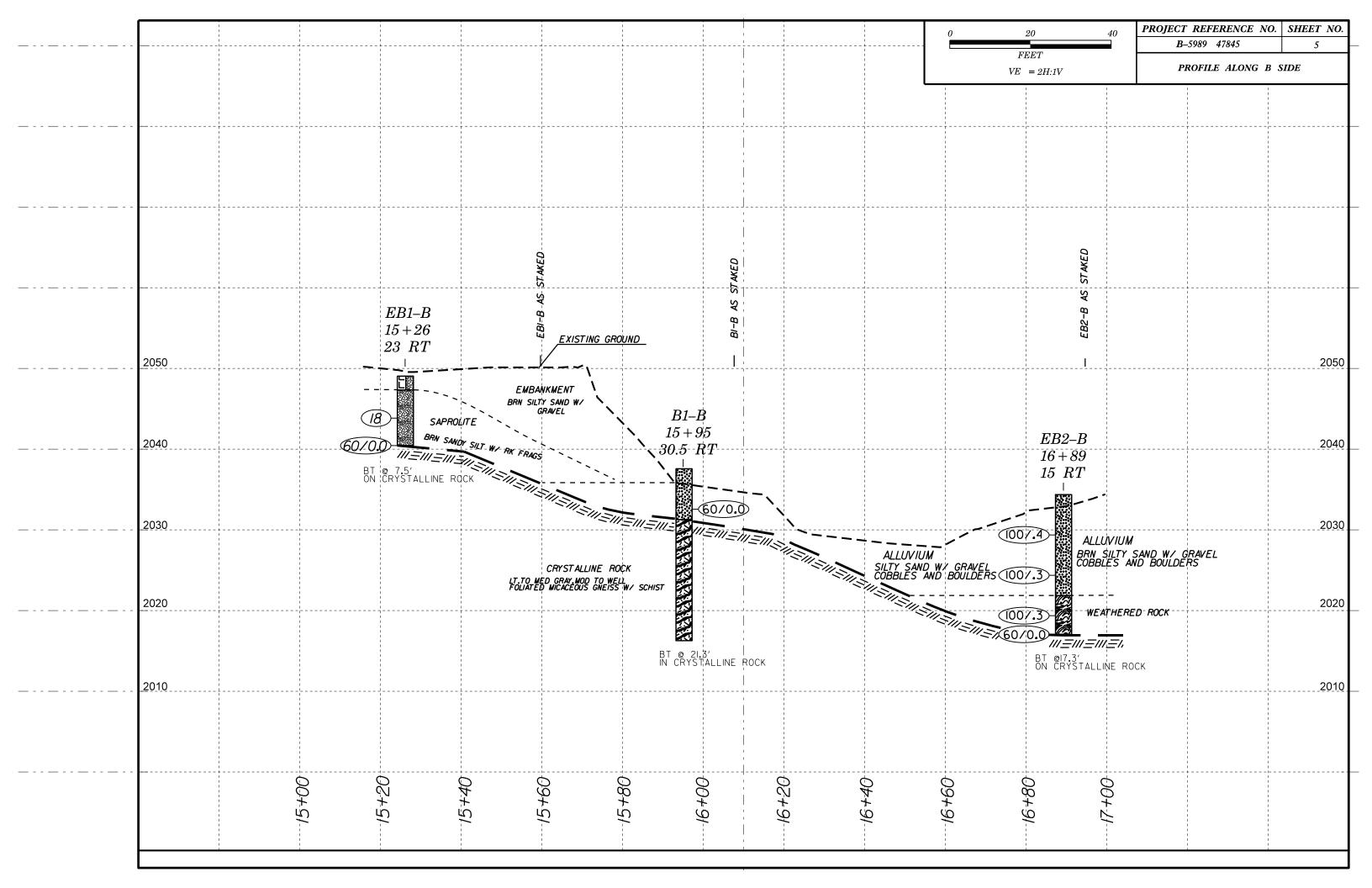
SUBSURFACE INVESTIGATION

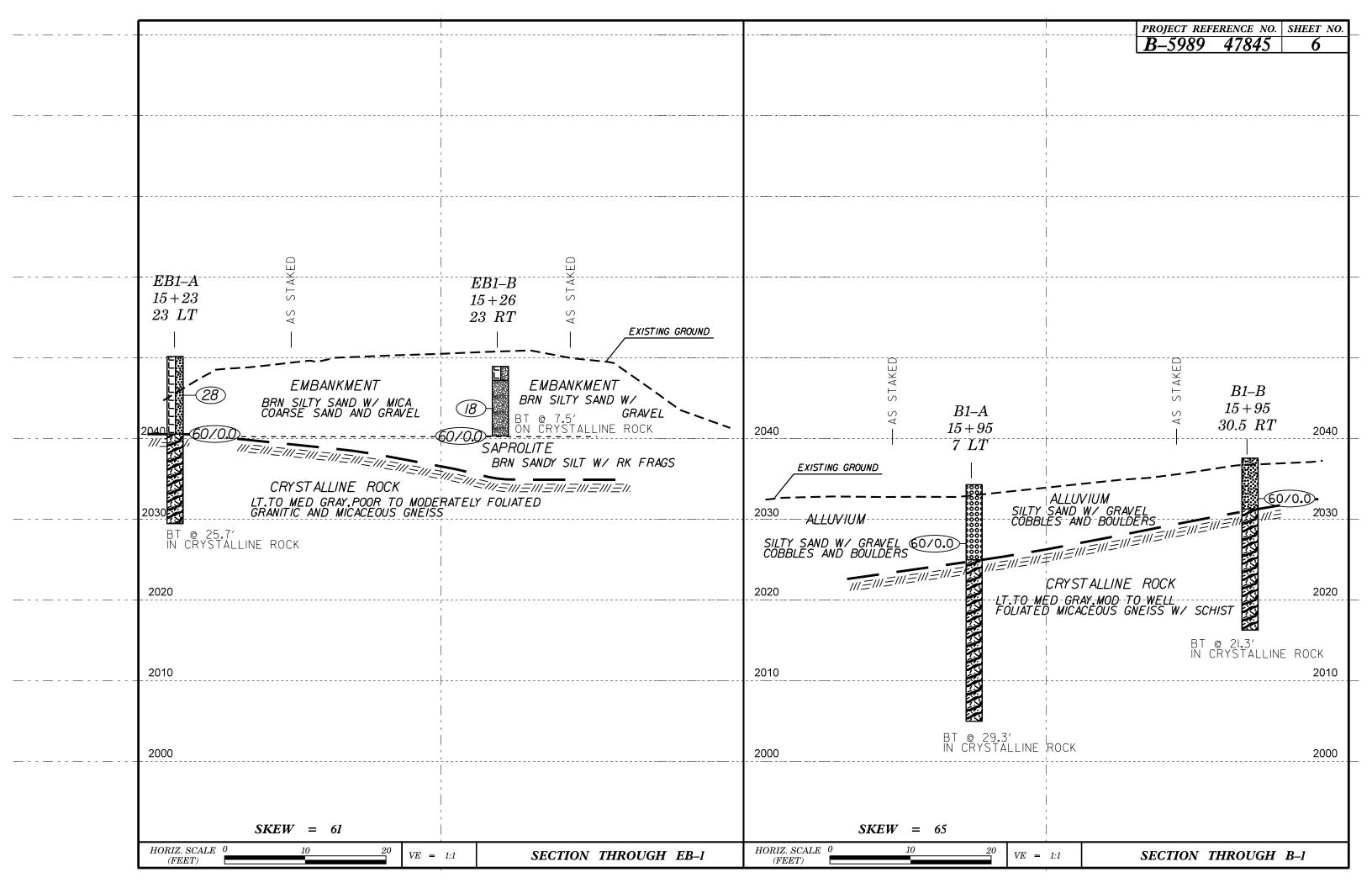
SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

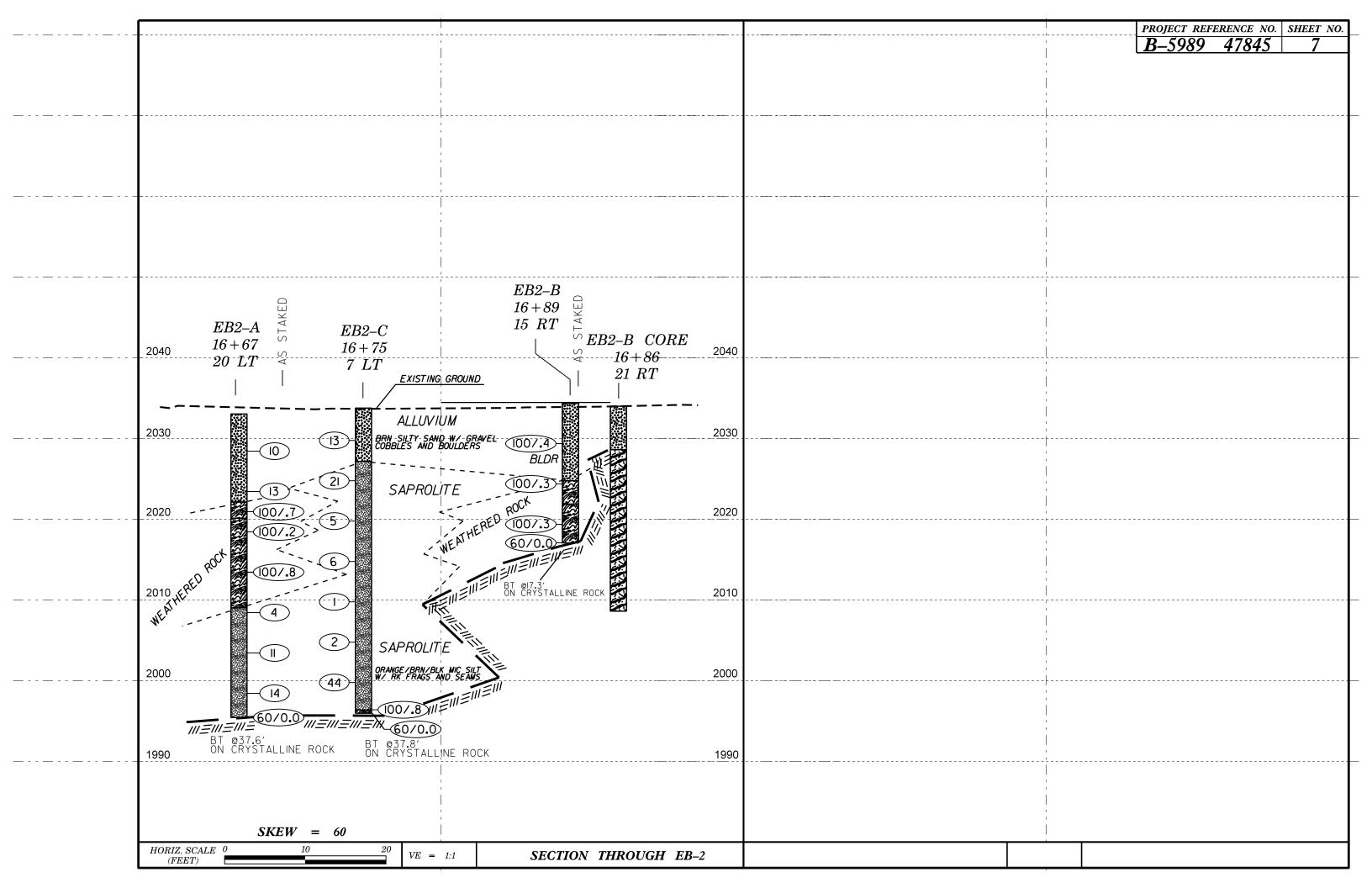
SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	<u>WELL GRADED</u> - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM D1586). SOIL CLASSIFICATION	<u>UNIFORMLY GRADED</u> - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60	AQUIFER - A WATER BEARING FORMATION OR STRATA.
IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK.	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE,	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING
VERY STIFF,GRAY,SILTY CLAY,MOIST WITH INTERBEDDED FINE SAND LAYERS,HIGHLY PLASTIC,A-7-6	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES >	A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	MINERALOGICAL COMPOSITION	ROCK (WR) 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS CLASS. (≤35% PASSING *200) (>35% PASSING *200) ORGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	CRYSTALLINE CRYSTALLINE WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE,	SURFACE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	GNEISS, GABBRO, SCHIST, ETC.	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
CLASS. A-1-6 A-1-6 A-2-4 A-2-5 A-2-6 A-2-7 A-7-6 A-7-6 A-7	COMPRESSIBILITY	NON-CRYSTALLINE SEDIMENTARY ROCK (NCR) FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YELLD SPT REFUSAL IF TESTED.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM
SYMBOL 000000000000000000000000000000000000	SLIGHTLY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50	ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC. COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD	OF SLOPE.
7. PASSING	HIGHLY COMPRESSIBLE LL > 50	SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
*10 50 MX GRANULAR CLAY MUCK,	PERCENTAGE OF MATERIAL	(CP) SHELL BEDS, ETC. WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
*40 30 MX 50 MX 51 MN SOILS SOILS PEAT *200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 36 MN	GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL		ROCKS OR CUTS MASSIVE ROCK.
MATERIAL	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING. ROCK RINGS UNDER HAMMER IF CRYSTALLINE.	<u>DIP</u> - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
PASSING *40 SOILS WITH	LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	HORIZONTAL.
LL	MODERATELY ORGANIC	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY, ROCK RINGS UNDER HAMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH,
MUUERATE OPCANIC	GROUND WATER	OF A CRYSTALLINE NATURE.	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE
ORGANIC SOILS		SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO (SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
USUAL TYPES STONE FRAGS. OF MAJOR GRAVEL, AND STONE SILTY OR CLAYEY MATTER SOLUTION SOLUT	▼ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
MATERIALS SAND SAND GRAVEL AND SAND SOILS SOILS	STATIC WATER LEVEL AFTER 24 HOURS	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
GEN. RATING EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABL	PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED	PARENT MATERIAL.
AS SUBURALE POUR	SPRING OR SEEP	WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30		MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, IN GRANITOID ROCKS, ALL FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
CONSISTENCY OR DENSENESS RANGE OF STANDARD RANGE OF UNCONFINED	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH (MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES "CLUNK" SOUND WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE COMPACINESS OF PENETRATION RESISTENCE COMPRESSIVE STRENGTH	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION	IF TESTED, WOULD YIELD SPT REFUSAL	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
(N-VALUE) (TUNS/FT-)	WITH SOIL DESCRIPTION OF ROCK STRUCTURES	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT	ITS LATERAL EXTENT.
GENERALLY VERY LOOSE	SOIL SYMBOL OPT DMT TEST BORING SLOPE INDICATOR INSTALLATION	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
MATERIAL MEDIUM DENSE 10 TO 30 N/A	M	IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTILED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTILING IN SOILS
(NON-COHESIVE) DENSE 30 TO 50 VERY DENSE > 50	THAN ROADWAY EMBANKMENT AUGER BORING CONE PENETROMETER	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC ELEMENTS ARE DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE. PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
VERY SOFT < 2 < 0.25		SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK (V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	OF AN INTERVENING IMPERVIOUS STRATUM.
GENERALLY SOFT 2 TO 4 0.25 TO 0.5	NW - TECT DODING	VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u>	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0 MATERIAL STIFF 8 TO 15 1 TO 2	INFERRED ROCK LINE MONITORING WELL WITH CORE	COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
(COHESIVE) VERY STIFF 15 TO 30 2 TO 4		SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
HARD > 30 > 4	INSTREERTION	ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES	ROCK.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270	UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	LISED IN THE TOP 3 EEET OF	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
BOULDER COBBLE GRAVEL COARSE FINE SILT CLAY	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK EMBANKMENT OR BACKFILL	TO DETACH HAND SPECIMEN.	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT
(BLDR.) (COB.) (GR.) (CSE. SD.) (F SD.) (SL.) (CL.)	ABBREVIATIONS	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED	OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.05 0.005	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	BY MODERATE BLOWS.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE)(SPT) - NUMBER OF BLOWS (N OR BPF) OF
SIZE IN. 12 3	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED CL CLAY MOD MODERATELY 7 - UNIT WEIGHT	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL
SOIL MOISTURE - CORRELATION OF TERMS	CL CLAY MOD MODERATELY 7 - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC 7- DRY UNIT WEIGHT	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK.	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION	CSE COARSE ORG ORGANIC	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY
(ATTERBERG LIMITS) DESCRIPTION COME TON THEED MOISTONE BESCRIPTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT, SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE.	TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH	STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
(SAT.) FROM BELOW THE GROUND WATER TABLE	F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
PLASTIC CEMICOLIDE PROUIDES DRYING TO	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL	FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
(P) ATTAIN OPTIMUM MOISTURE	FRAGS FRAGMENTS W - MOISTURE CONTENT CBR - CALIFORNIA BEARING	FRACTURE SPACING BEDDING	BENCH MARK: #1 N 806107 E 919773
" ' PL L + PLASTIC LIMIT	HI HIGHLY V - VERY RATIO	TERM SPACING TERM THICKNESS VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET	
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	EQUIPMENT USED ON SUBJECT PROJECT DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET	ELEVATION: 2049.58 FEET
SL SHRINKAGE LIMIT	DRILL UNITS: AUVANCING TOULS: HAMMER TYPE:	MODERATELY CLOSE	NOTES:
- DRY - (D) REQUIRES ADDITIONAL WATER TO		VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET	
ATTAIN OPTIMUM MOISTURE	CME-55 G* CONTINUOUS FLIGHT AUGER CORE SIZE:	THINLY LAMINATED < 0.008 FEET	
PLASTICITY	B*HOLLOW AUGERS	INDURATION	
PLASTICITY INDEX (PI) DRY STRENGTH	CME-550 HARD FACED FINGER BITS -N	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	
NON PLASTIC 0-5 VERY LOW	TUNGCARBIDE INSERTS	FRIABLE RUBBING WITH FINGER FREES NUMEROUS GRAINS; GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
SLIGHTLY PLASTIC 6-15 SLIGHT MODERATELY PLASTIC 16-25 MEDIUM	VANE SHEAR TEST X CASING X W/ ADVANCER HAND TOOLS: POST HOLE DIGGER	CRAINS CAN BE CERABATED FROM CAMBLE WITH CTEEL BRODE.	
HIGHLY PLASTIC 26 OR MORE HIGH	POST HOLE DIGGER POST HOLE DIGGER STEEL TEETH HAND AUGER	MODERATELY INDURATED WANTED MODERATELY INDURATED MODERATELY INDURATED BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR	TRICONE TUNGCARB. SOUNDING ROD	GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE;	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMPLIATIONS (TAN DEC VELLOU DROWN SINE COAM	CORE BIT SUUNDING ROU VANE SHEAR TEST	INDURATED DIFFICULT TO BREAK WITH HAMMER.	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.		EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE;	
		SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-1


PROJECT REFE	RENCE NO.	SHEET NO.
B-5989	47845	2A


DATE: 8-19-16


NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT


SUBSURFACE INVESTIGATION


AASHTO LRFD Figure 10.4.6.4-1 — Determination of GSI for Joi	nted Ro	ock Mass (Marinos and Hoek, 2	2000)			AASHTO LRFD Figure 10.4.6.4-2 — Determination of GSI for Tectonically Def	ormed Heterogeneous Roc	k Masses (Marı	nos and Hoek	., 2000)
GEOLOGICAL STRENGTH INDEX (GSI) FOR JOINTED ROCKS (Hoek and Marinos, 2000)		s o o o o		ν () () () () () () () () () () () () ()	ces	GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos.P and Hoek E., 2000)				
From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Quoting a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavorable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced if water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis.	SURFACE CONDITIONS	VERY GOOD Very rough, fresh unweathered surface: GOOD Rough, slightly weathered, iron stained surfaces	FAIR Smooth, moderately weathered and altered surfaces	POOR Slickensided, highly weathered surface with compact coatings or fillings or angular fragments VERY POOR	o I	From a description of the lithology, structure and surface conditions (particularly of the bedding planes), choose a box in the chart. Locate the position in the box that corresponds to the condition of the discontinuities and estimate the average value of GSI from the contours. Do not attempt to be too precise. Quoting a range from 33 to 37 is more realistic than giving GSI = 35. Note that the Hoek-Brown criterion does not apply to structurally controlled failures. Where unfavourably oriented continuous weak planar discontinuities are present, these will dominate the behaviour of the rock mass. The strength of some rock masses is reduced by the presence of groundwater and this can be allowed for by a slight shift to the right in the columns for fair, poor and very poor conditions. Water pressure does not change the value of GSI and it is dealt with by using effective stress analysis.	VERY GOOD - Very Rough, fresh unweathered surfaces GOOD - Rough, slightly weathered surfaces	FAIR - Smooth, moderately weathered and altered surfaces	POOR - Very smooth, occasionally slickensided surfaces with compact coatings or fillings with angular fragments	VERY POOR - Very smooth, slicken- sided or highly weathered surfaces with soft clam coathors or fillings
STRUCTURE		DECREASING SU				COMPOSITION AND STRUCTURE				
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities BLOCKY - well interlocked un-	 PIECES 	90 80		, N/A N/.	Α.	A. Thick bedded, very blocky sandstone The effect of pelitic coatings on the bedding planes is minimized by the confinement of the rock mass. In shallow tunnels or slopes these bedding planes may cause structurally controlled instability.	70 A			
disturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets	OF ROCK	70 60				B. Sand- stone with stone with siltstone thin inter- siltstone siltstone with sand- with sand-	50 B	C / I) E	
VERY BLOCKY - interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets	OCKING		50			layers of sultstone with sand-stone layers or clayey stale with sand-stone layers amounts with sand-stone layers	40			
BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity	 		40	30		C.D.E. and G - may be more or less folded than illustrated but this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H.		30	F 20	
DISINTEGRATED - poorly inter- locked, heavily broken rock mass with mixture of angular and rounded rock pieces	DECRE			20		G. Undisturbed silty or clayey shale with or without a few very thin sandstone layers H. Tectonically deformed silty or clayey shale forming a chaotic structure with pockets of clay. Thin layers of sandstone are transformed		#	1	10 /
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes	A	N/A N/A		10		### Sandstone are transformed into small rock pieces. → Means deformation after tectonic disturbance				

WBS 47845.1.1 COUNTY MADISON **TIP** B-5989 GEOLOGIST Johnson, C. D. SITE DESCRIPTION BRIDGE NO. 71 ON SR 1395 OVER BIG LAUREL CREEK, RET. WALL GROUND WTR (ft) **STATION** 15+23 OFFSET 22 ft LT ALIGNMENT -L-**BORING NO.** EB1-A N/A 0 HR. COLLAR ELEV. 2,050.1 ft TOTAL DEPTH 25.7 ft **NORTHING** 806,076 **EASTING** 919,755 24 HR. FIAD DRILL METHOD NW Casing W/SPT & Core DRILL RIG/HAMMER EFF./DATE AFO6744 CNE - 45C 92% 07/31/2017 HAMMER TYPE Automatic DRILLER Cheek, D. O. **START DATE** 08/19/19 **COMP. DATE** 08/19/19 SURFACE WATER DEPTH N/A ELEV CHI DEPTH BLOW COUNT (ft) (ft) 0.5ft 0.5ft 0.5ft **BLOWS PER FOOT** SAMP. SOIL AND ROCK DESCRIPTION (ft) 0.5ft 0.5ft 0.5ft MOI G 75 100 NO. ELEV. (ft) DEPTH (ft) 2055 GROUND SURFACE 2050 ROADWAY EMBANKMENT BRN SANDY SILTY W/ MICA, COARSE SAND AND GRAVEL 2045 2,045.3 4.8 8 М 2040 2,040.5 9.6 CRYSTALLINE ROCK LT TO MED GRAY, POORLY TO MODERATELY FOLIATED GRANITIC **GNEISS AND MICACEOUS GNEISS** 2035 2030 2025 Boring Terminated WITH STANDARD PENETRATION TEST REFUSAL at Elevation 2,024.4 ft IN CRYSTALLINE ROCK, SCHIST

GEOTECHNICAL BORING REPORT CORE LOG

WBS 47845.1.1 TIP B-5989 COUNTY MADISON GEOLOGIST Johnson, C. D.	
SITE DESCRIPTION BRIDGE NO. 71 ON SR 1395 OVER BIG LAUREL CREEK, RET. WALL GROUND	WTR (ft)
BORING NO. EB1-A STATION 15+23 OFFSET 22 ft LT ALIGNMENT -L- 0 HR.	N/A
COLLAR ELEV. 2,050.1 ft TOTAL DEPTH 25.7 ft NORTHING 806,076 EASTING 919,755 24 HR.	FIAD
DRILL RIG/HAMINIER EFF./DATE AFO6744 CME - 45C 92% 07/31/2017 DRILL METHOD NW Casing W/SPT & Core HAMINIER TYPE	Automatic
DRILLER Cheek, D. O. START DATE 08/19/19 COMP. DATE 08/19/19 SURFACE WATER DEPTH N/A	
CORE SIZE NXWL TOTAL RUN 15.5 ft	
ELEV (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	DEPTH (ft)
Begin Coring @ 10.2 ft	
2,039.9 10.7 0.5 (0.5) (0.4) (0.5) (0.4) (0.5) (0.4) (0.5) (0.4) (0.5) (0.4) (0.5) (0.5) (0.4) (0.5) (0.5) (0.4) (0.5) (
2035 2,034.4 15.7 48% (2.4) 5.0 (0.4) 48%	
2030 2,029.4 20.7 STEEP 2,029.4	20.7
5.0 (4.4) OINT 8	20.1
$\left \begin{array}{c cccccccccccccccccccccccccccccccccc$	
2025 2,024.4 25.7 Boring Terminated WITH STANDARD PENETRATION TEST REFUSAL	at
Elevation 2,024.4 ft IN CRYSTALLINE ROCK, SCHIST	

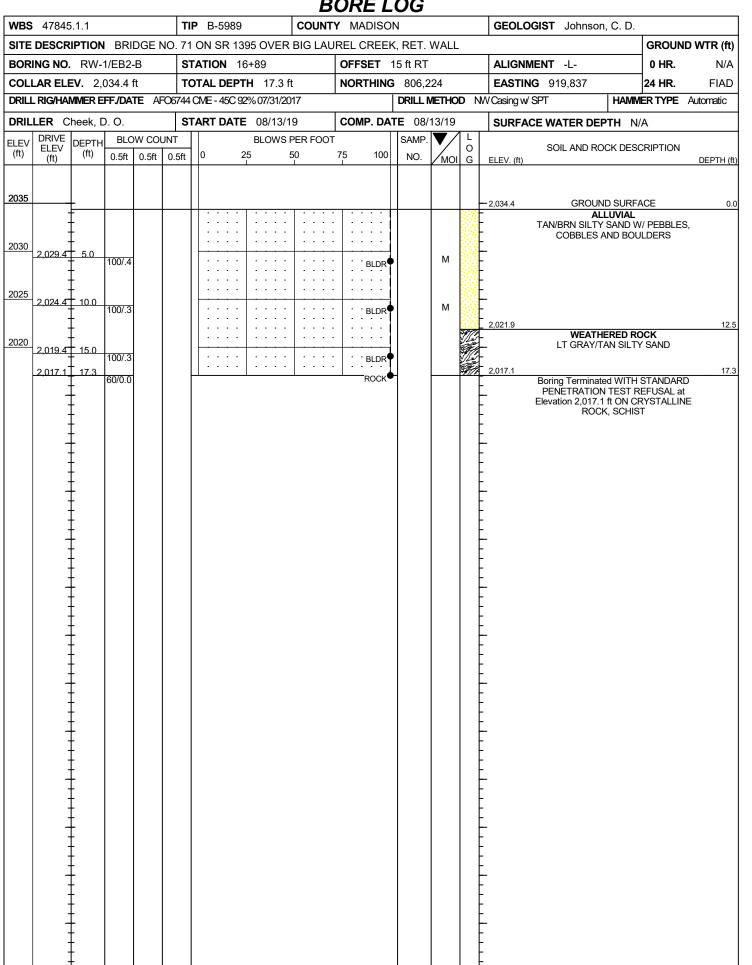
										E	SOF	RE L	.(JĠ						
WBS	3 478	45.1.1			TI	P B-5	5989			COUN	TY N	IADISO	N				GEOLOGIST Johnson	C. D.		
SITE	DESC	CRIPTIO	N BRI	DGE	NO. 71	ON S	R 139	95 OV	ER E	BIG LA	UREL	CREE	K,	RET. \	NALL				GROUN	ID WTR (ft)
BOF	RING N	O . EB1	-B		S.	ΓΑΤΙΟ	N 15	5+26			OF	FSET	23	ft RT			ALIGNMENT -L-		0 HR.	N/A
COL	LAR E	LEV. 2	,049.0	ft	T	OTAL I	DEPT	H 7.5	5 ft		NO	RTHING	3	806,0	61		EASTING 919,797		24 HR.	Dry
DRIL	L RIG/H	IAMMER I	EFF./DA	TE A	F06744	CME - 4	45C 92	2% 07/3	1/201	7	'		1	ORILL N	IETHO	D N	V Casing w/ SPT	HAMM	ER TYPE	Automatic
DRII	LLER	Cheek,	D. O.		S ⁻	TART I	DATE	08/1	15/19)	СО	MP. DA	TE	E 08/	15/19		SURFACE WATER DEP	TH N/	/A	
ELEV (ft)	DRIV ELEV (ft)	E DEPTH	0.5ft	0.5ft		0	2		WS P	ER FOC	75	100	ш	SAMP. NO.	MOI	L O G	SOIL AND ROO	CK DESC	CRIPTION	DEPTH (f
2050		_														-	- - 2,049.0 GROUNI) SURFA	ACE	0.
<u>2045</u>	2,043	‡	5	5	13									М		2,047.3 ROADWAY BRN MIC SAND SAP BRN SANDY SIL FF	Y SILT V ROLITE T. W/ MI RAGS	V/ GRAVE	KK
	2,040	## 8.6 ## 8.6	60/0.0									ROCK					2,040.4 Boring Terminate PENETRATION Elevation 2,041.5 R	TEST R	EFUSAL a	t [

SHEET 9

										D	UR	KE L	UG				
VBS	47845	5.1.1			TII	P B-	5989		•	COUNT	Y M	ADISO	N			GEOLOGIST Johnson, C. D.	
SITE	DESCR	RIPTION	I BRI	DGE N	0. 71	ON S	SR 13	95 OVI	ER B	IG LAU	JREL	CREEK	K, RET.	WALL			GROUND WTR (ft)
BOR	NG NO.	. B1-A			SI	ATIO	N 15	+95			OFF	SET 7	ft LT			ALIGNMENT -L-	0 HR. N/A
OLI	AR ELI	EV . 2,	034.3	ft	TC	OTAL	DEPT	H 29.	.3 ft		NOF	RTHING	806,1	36		EASTING 919,793	24 HR. FIAD
RILL	RIG/HA	MMER E	FF./DA	TE AFO	D6744	CME -	45C 92	% 07/3	1/2017	7	•		DRILL	METHO) N	V Casing W/SPT & Core HAMM	ER TYPE Automatic
RIL	LER C	heek, [D. O.		SI	ART	DATE	11/0	4/19		CON	/IP. DA	TE 11/	04/19		SURFACE WATER DEPTH N/	A
LEV	DRIVE ELEV	DEPTH	BLC	W COU	NT			BLOV	VS PE	R FOO	Γ		SAMP.	lacksquare	L	SOIL AND ROCK DESC	CRIPTION
(ft)	(ft)	(ft)	0.5ft	0.5ft	0.5ft	0	2	5 L	50)	75	100	NO.	МОІ	Ğ	ELEV. (ft)	DEPTH (ft
035		1													-	-2,034.3 GROUND SURFA	ACE 0.0
	-	ļ													000	ALLUVIAL SILTY SAND W/ GRAVEL C	OBBLES AND
030		‡									: :	: : :			000	BOULDERS	0552207.11.5
)30	-	‡													000 000 000	_	
	2,027.0	7.3	60/0.0	.							: :	· · · · _{BLDR} ¶	,		000 000 000		
25	_	‡	00/0.0			<u> </u>			• •		<u> </u>				000	2,025.0 CRYSTALLINE RO	9.:
	-	‡				: :					: :	: : :				LT TO MED GRAY, MOD/WI	ELL FOLIATED
20		‡				: :	• • •					: : :				MICA GNEISS W/ SCHIS	OI LATERO
_U	-	‡						<u> </u>			: :					_	
		‡										: : :					
15	_	‡				<u> </u>					<u> </u>					-	
	-	‡				: :						: : :					
10		‡									: :	: : :					
	-	‡														-	
	-	‡									. .						
	-	‡					• •		• •	• • •	. .					2,005.0 Boring Terminated WITH	29. STANDARD
		‡													þ	PENETRATION TEST R	EFUSAL at
		‡													F	Elevation 2,005.0 ft ON I	BOOLDEN
	-	‡													F	-	
		‡													F		
	_	‡													F	-	
	-	‡													F		
		‡													F		
	-	‡													F	-	
		‡													F		
	_	‡													F	-	
	-	‡													F		
		‡													þ		
	-	‡													F	_	
		‡													þ		
	_	‡													Ė	-	
	-	‡													F		
		Ŧ													þ		
	-	Ŧ													F	-	
		Ŧ													F		
	_	‡													þ	-	
		‡													þ		
		‡													ļ		
	-	‡													þ	_	
		‡													þ		
	-	†											1		H		

GEOTECHNICAL BORING REPORT CORE LOG

									C	Ol	RE L	.0	G																
WBS	47845	5.1.1			TIP	B-598	39	С	OUNT	ΥΙ	//ADISO	N						GE	OL	.OG	IST	Jo	hns	on, C	C. D.				
SITE	DESCR	IPTION	I BRI	DGE NO	. 71 O	N SR	1395 OV	ER BI	G LAL	JREL	CREE	K, F	RET.	. W	ALL											GR	OUN	D W	R (ft
BOR	ING NO	. B1-A	١		STA	TION	15+95			OF	FSET	7 ft	LT					AL	IGN	ME	NT	-L-	-			0 1	łR.		N/A
COL	LAR ELI	EV. 2,	034.3	ft	TOT	AL DE	PTH 29	.3 ft		NC	RTHING	3 8	806,	,136	3			EΑ	ST	ING	9	19,7	93			24 I	IR.		FIAD
DRIL	L RIG/HA	MMER E	FF./DA	TE AFO	744 CN	/IE - 45C	92% 07/3	1/2017				DF	RILL	ME	THOD	N	W	Casi	ng '	WSI	PT 8	Core)	H	HAM	MER T	YPE	Autor	matic
DRIL	LER C	heek, [D. O.		STA	RT DA	TE 11/0	4/19		CC	MP. DA	TE	11	/04	/19			SU	RF	ACE	E W	ATE	R D	EPTI	ΗΝ	N/A			
COR	E SIZE	NXWL	-				N 22.01	ft																					
ELEV (ft)	RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft) %	RQD (ft) %	SAMP. NO.	REC. (ft)	RATA RQD (ft) %	LOG	ELEV. ((ft)					DE	SCI	RIP	OIT	N AN	ID RE	EMAF	RKS				DE	PTH (
2027.04	4																						7.3 f						
2025	2,027.0 2,025.0	7.3 9.3	2.0	N=BLDR		BLDR				000	2,025.0												nued						9.
	:	l	5.0		(3.6) 72%	(0.8) 16%					_												JOIN						
											_																		
2020	2,020.0	14.3	5.0		(4.4)	(3.5)					_			\Box	SI														
	:	<u> </u>			88%	70%					-						_	_				_							
2015	2,015.0	19.3									-			1.	3'	- (9.	3	•	=	BL	ـU	K						
	:	<u> </u>	5.0		(5.0) 100%	(4.0) 80%					_			9.	3'	- ′	15	5.	3'	=	: 2	25-	.35	5					
											_			11	5.3	٠_		20) '	יצ	=	5	5-7	70					
2010	2,010.0	24.3	5.0		(4.8)	(3.4)					_			1	J.U	, -			٠.٠	,		J.	J- 1	U					
	:	<u> </u>			96%	68%					_																		
	2,005.0	29.3									2,005.0																		29.
	:	‡									_	E	Borin	g Ie	ermina									JLDE		ST RE	FUSA	L at	
	:	ţ									_																		
	-	ł									_																		
	-	F																											
	:	Ŧ									-																		
	-	-									-																		
		‡									-																		
	-	‡									_																		
	:	‡									-																		
	:	‡									- -																		
	-	‡									-																		
		‡									- -																		
	-	‡									_																		
	:	‡									-																		
	:	‡									-																		
	-	-									_																		
		<u> </u>																											
	_	<u> </u>																											
	-	F									-																		
		Ŧ									_																		
	-	-									-																		
	:	‡									-																		
	:	‡									-																		
	-	-									-																		
	:	‡									<u>-</u>																		
	_	‡									<u> </u>																		
	:	‡									<u>-</u>																		
	:	‡									_																		
	-	†									_																		
1	-	<u> </u>									L																		


GEOTECHNICAL BORING REPORT CORE LOG

	BORE L	LOG				CORE LOG	
WBS 47845.1.1	TIP B-5989 COUNTY MADISO	SON GEOLOGIST Johnson, C.	D.	WBS 47845.1.1	TIP B-5989 COUN	ITY MADISON	GEOLOGIST Johnson, C. D.
SITE DESCRIPTION BRIDGE NO.	. 71 ON SR 1395 OVER BIG LAUREL CREE	EEK, RET. WALL	GROUND WTR (ft)	SITE DESCRIPTION BRIDGE NO	O. 71 ON SR 1395 OVER BIG LA	UREL CREEK, RET. WALL	GROUND WTR (ft)
BORING NO. B1-B	STATION 15+95 OFFSET	31 ft RT ALIGNMENT -L-	0 HR. N/A	BORING NO. B1-B	STATION 15+95	OFFSET 31 ft RT	ALIGNMENT -L- 0 HR. N/A
COLLAR ELEV. 2,037.6 ft	TOTAL DEPTH 21.3 ft NORTHIN	NG 806,126 EASTING 919,829	24 HR. FIAD	COLLAR ELEV. 2,037.6 ft	TOTAL DEPTH 21.3 ft	NORTHING 806,126	EASTING 919,829 24 HR. FIAD
DRILL RIG/HAMMER EFF./DATE AFO6	5744 CME - 45C 92% 07/31/2017	DRILL METHOD N/A	AMMER TYPE Automatic	DRILL RIG/HAMMER EFF/DATE AFC	06744 CME - 45C 92% 07/31/2017	DRILL METHOD	N/A HAMMER TYPE Automatic
DRILLER Cheek, D. O.	START DATE 08/15/19 COMP. DA	DATE 08/15/19 SURFACE WATER DEPTH	N/A	DRILLER Cheek, D. O.	START DATE 08/15/19	COMP. DATE 08/15/19	SURFACE WATER DEPTH N/A
ELEV DRIVE DEPTH BLOW COUNT		SAMP. L O SOIL AND ROCK I	DESCRIPTION	CORE SIZE NXWL	TOTAL RUN 19.8 ft		
(ft) (ft) (ft) 0.5ft 0.5ft 0.	.5ft 0 25 50 75 100	00 NO. MOI G ELEV. (ft)	DEPTH (ft)	ELEV RUN DEPTH RUN RATE (ft) (ft) (ft) (ft) (ft)	REC. RQD SAIVIF. REC. RQD	0	DESCRIPTION AND REMARKS
				(IV) (IVIIII/IV)		G ELEV. (ft)	DEPTH (fi
2040				2036.07 2035 2,036.1 1.5 4.8	(0.7) (0.0)		Begin Coring @ 1.5 ft ALLUVIAL (continued)
		- 2,037.6 GROUND SI			15% 0% ALLUVIAL	-	
2035			VEL, COBBLES,	2,031.3 6.3 N=BLDF		2,031.3	6.2 CRYSTALLINE ROCK
2.032.6 + 5.0		:]	_110	2030 5.0	(4.0) (2.2) 80% 44%		CRYSTALLINE ROCK
60/0.0	BLDR'	1 2,031.3	6.3	2,026.3 11.3			
2030		TI TO MED GRAY	MOD TO WELL	2025 5.0	(4.1) (2.9) 82% 58%	GS GS	l:
		·			0270 3070	6.3	' - 12.0' = 50-60
2025				2,021.3 + 16.3 5.0	(5.0) (5.0)		
				+ 0.0	100% 100%	12.	0' - 21.3' = 80-90
2020				2,016.3 + 21.3		2,016.3	21.3
+						Boring Termina	ated with Standard Penetration Test Refusal at Elevation 2,016.3 ft ON BOULDER
			21.3				_,
		Boring Terminated Penetration Test Ref				F	
		2,016.3 ft ON I	BOULDER			1 F	
						1 -	
‡				‡		1	
‡						F	
						1 F	
						1 -	
‡				‡		1	
						F	
						F	
						F	
_				‡		1 F	
1,74/19						F	
						F	
						1 F	
						E	
						 	
						I E	
SS 22983						E	
						-	
						E	
						I E	
						I E	
						<u> </u>	

TIP B-5989 COUNTY MADISON GEOLOGIST Johnson C D

					_									<u></u>				
WBS	47845	5.1.1				TIP	P B-	5989			CO	UNT	/ M/	ADISO	N			GEOLOGIST Johnson, C. D.
SITE	DESCR	IPTION	I BR	IDGE 1	١٥.	71	ON S	SR 13	95 O	VER	BIG	LAU	REL (CREE	K, RET.	WALL	-	GROUND WTF
BORI	NG NO.	EB2-	-A			ST	ATIO	N 16	6+67				OFF	SET :	20 ft LT			ALIGNMENT -L- 0 HR.
COLL	AR ELE	EV. 2,	033.1	ft		то	TAL	DEPT	H 3	7.6 ft	t		NOF	RTHING	806,2	208		EASTING 919,796 24 HR . Ca
ORILL	RIG/HAI	VIMER E	FF./DA	ATE AF	-067	44 (CME -	45C 92	2% 07/	/31/20	17				DRILL I	METHO	D N	W Casing w/ SPT HAMMER TYPE Autom
ORILI	LER C	heek, [D. O.			ST	ART	DATE	08/	/12/1	9		CON	MP. DA	TE 08/	12/19		SURFACE WATER DEPTH N/A
LEV	DRIVE	DEPTH		ow col								-00T			SAMP.	V /	1 - 1	
(ft)	ELEV (ft)	(ft)	0.5ft	0.5ft	0.5	ift	0	2	25	Ę	50		75	100	NO.	MOI	O G	SOIL AND ROCK DESCRIPTION ELEV. (ft) DEF
2035																		
.000		<u> </u>																C 2,033.1 GROUND SURFACE
	-					1	:						Τ:					ALLUVIAL
2030	-	Ĺ					.	• •	· ·	• •	<u> : </u>		:					BRN SILTY SAND W/ GRAVEL COBBLES AND BOULDERS
-	2,028.5	4.6	4	4	6	_	.		: :		:	 	:	 		١,,,		
	-	Ł	-	-			: 1	10								W		-
025	_	F						\					+-					_
	2,023.5	9.6	2	2	11	Н	: :		: :		:		:			l w		- - 2,022.2
020	2,021.0	12.1	47	53/0.2			: :	7		· ·	`_	· · · <u>·</u>	. L <u>.</u> _					SAPROLITE 2,020.2 BRN/BLK MIC SANDY SILT
020	2,018.5	14.6					.				T .		1:					WEATHERED ROCK
	-	<u> </u>	100/.2	2			: :		: :		:				'			L BRN/BLK/PINK SANDY SILT
015	-	Ĺ					<u> </u>	• •	· ·	• •	<u> </u> :		<u> :</u>					<u>-</u>
}	2,013.5	19.6	37	63/0.3							:	 		: : :]				_
	-	<u> </u>	"	00/0.0			: :				:			: : :]	'			
010	_	F											+-					2,009.1
ŀ	2,008.5	24.6	6	2	2	1	•4-	· ·			 		†÷.			w		SAPROLITE ORANGE/BRN/BLK MICACEOUS SILT W/
005	-	F],/.		: :									RK FRAGS AN SEAMS
	2,004.5	28.6	16	5	6	\dashv		11			-		1:			l w		<u> </u>
	-	‡						,			:	 						
2000	-	‡					<u>.</u>	1	. :	• •	<u> :</u>		<u> :</u>					- -
}	1,998.5	34.6	7	8	6	\dashv		<u> </u>			:	 	:			١.,		
	4 005 5-		'				: :	₽ 14			:					M		_ - 1,995.5
	1,995.5	37.6	60/0.0)		\dagger	1	<u> </u>		<u> </u>				ROCK	\		3000000	 Boring Terminated WITH STANDARD
	-	F																PENETRATION TEST REFUSAL at Elevation 1,995.5 ft ON ROCK
	-	ļ																
	-	 																- -
	-	_																-
	_	L																
	-	<u> </u>															-	-
	-	ļ.																
	_	Ļ																-
	-	<u> </u>																-
	-	Ł																-
	_	<u> </u>																
	-	F																
	-	ļ																
	-	‡																-
	-	‡																_
	<u>-</u>	Ł																<u>-</u>
	-	F																
	-	‡																-
	_	‡																<u>-</u>
	-	ŧ																
	-	-																
		İ																

GEOTECHNICAL BORING REPORT BORE LOG

GEOTECHNICAL BORING REPORT

WBS	47845	5.1.1			TIP	B-598	89	С	OUNT	YN	IADISON	GEOLOGIST Johnson, C	C. D.	
SITE	DESCR	IPTION	I BRI	DGE NO	. 71 0	N SR	1395 OV	ER BI	G LAU	JREL	CREEK, RET. WALL	•	GROUNE	WTR (ft)
BOR	NG NO.	RW1	/EB2C	ORE	STAT	ΓΙΟΝ	16+86			OF	SET 21 ft RT	ALIGNMENT -L-	0 HR.	N/A
COLI	AR ELE	EV. 2,	034.1	ft	тот	AL DE	PTH 25	.4 ft		NO	RTHING 806,221	EASTING 919,840	24 HR.	FIAD
DRILL	.RIG/HAI	MMER E	FF./DA	TE AFO	744 CIV	E - 45C	92% 07/3	1/2017			DRILL METHOD	NW Casing w/ Advancer I	HAMMER TYPE	Automatic
DRIL	LER C	heek, [D. O.		STAF	RT DA	TE 02/1	12/20		СО	MP. DATE 02/12/20	SURFACE WATER DEPTI	H N/A	
COR	SIZE	N/A			TOTA	AL RUI	N 20.01	ft						
ELEV (ft)	RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft)	JN RQD (ft) %	SAMP. NO.	STR REC. (ft) %	ATA RQD (ft) %	L O G	5151/(0)	DESCRIPTION AND REMARKS		DEDTI!
028.7		5.4		(IVIIII/IL)	,,			%	%		ELEV. (ft)	Begin Coring @ 5.4 ft		DEPTH (I
	2,028.7 2,027.8	6:3	0.9 4.1		(0.9) \100%/						- 2,028.7 - WHT/TAN, MOI	CRYSTALLINE ROCK D FOLIATED, MYLONITIC SHISTOS	SE FELSIC GNEIS	5. S
2025	2,023.7	10.4			(4.1) 100%	BLDR (1.9)					-			
	<u> </u>	10.4	5.0	1:53/1.0	(5.4)	46% (5.4)					. •			
2020	-	F		2:28/1.0 2:30/1.0	108%	108%					•			
	2,018.7	15.4	5.0	2:25/1.0 1:38/1.0	(F.O)	(2.4)					- ·			
	-	F	J 3.U	2:41/1.0 1:13/1.0	(5.0) 100%	(3.1) 62%					•			
2015	2,013.7	20.4		1:53/1.0 1:59/1.0 2:06/1.0							- -			
	<u> </u>	20.4	5.0	2:06/1.0 1:57/1.0		(3.8)					•			
2010	-	Ī.		1:22/1.0 1:28/1.0 1:35/1.0	98%	76%					•			
	2,008.7	25.4		1:52/1.0							- 2,008.7 Boring Termina	ted WITH CASING ADVANCER REI	FIISAL at Flougition	25.
	-											7 ft IN CRYSTALLINE ROCK, SCHIS		
	-	_									- -			
	-	<u> </u>									• •			
	_	_									-			
	-	‡									- -			
	-	‡												
	-	‡									- -			
	-	‡									• •			
	_	‡									- -			
	-	‡									• •			
	-	‡									•			
	-	‡									-			
	-	‡									- -			
	_	‡									<u>-</u>			
	-	‡									- -			
	-	‡									• •			
	-	<u> </u>									- -			
	-	‡									- -			
	_	‡									<u>-</u>			
	-	‡									- -			
	-	‡												
	_	‡									- -			
	-	‡									• •			
	_	<u> </u>									- -			
	-	<u> </u>									<u>.</u>			
	-										- -			
	_	F									- -			
	-	ļ.									. -			
	-	t	I					1	l	1	-			

GEOTECHNICAL BORING REPORT ROPE LOG

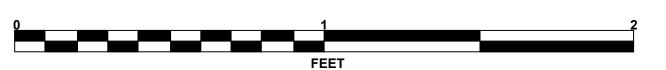
											<u> 30</u>	RE	<u>L</u>	<u>OG</u>						
WBS	47845	.1.1			TI	P B-5	989			COUN	ITY	MADI	SON	l			GEOLOGIST Johnson	, C. D.		
SITE	DESCRI	PTION	BRID	OGE N	O. 71 (ON SR	1395	OVER	BIG	LAU	REL (CREEK	≺, RE	ET. WAL	L.				GROUI	ND WTR (ft)
BOR	ing no.	EB2-	С		S	OITAT	N 16	3+75			0	FFSE	T 7	ft LT			ALIGNMENT -L-		0 HR.	N/A
COL	LAR ELE	V . 2,	033.8 1	ft	TO	DTAL [DEPT	H 37.	8 ft		N	ORTH	ING	806,2	14		EASTING 919,810		24 HR.	FIAD
DRILL	-RIG/HAW	IMER EF	F./DATI	E AFC	06744 C	ME - 450	C92%	607/31/2	017					DRILL IV	ETHOD) MM	/Casing w/ SPT	HAMIM	ER TYPE	Automatic
DRIL	LER C	neek, C). O.		S	TART [DATE	03/2	6/20		С	OMP.	DAT	TE 03/2	26/20		SURFACE WATER DE	TH N/	A	
ELEV (ft)	ELEV	DEPTH (ft)	BLC 0.5ft	0.5ft	UNT 0.5ft	0	2	BLOW	/S PE 50		OT 7 <u>5</u>		100	SAMP.		LO	SOIL AND RO	CK DES	CRIPTION	I
	(ft)		0.010	0.010	0.010			Ĭ					+	140.	/MOI	G	ELEV. (ft)			DEPTH (ft)
2025																				
2035	-	-																ID SURF	ACE	0.0
	-	_					 		:		-	: : :	-			-	AL BRN SANDY SI	LUVIAL LT W/ GI	RAVEL A	ND D
2030	- 2,029.8-	- - 4.0					· ·		-				_			-	- C0	BBLES		
	-	-	8	8	5	: : (13		:			: : :	:		W		2,027.2			6.6
2025	-	_				: :	./.		:		-	: : :	-			<u> </u>	SA	PROLITE		
2025	2,024.8	- 9.0 -	3	9	12	-	· b 2) ₁ · · ·							М		ORANGE/BRN SI VERY S	OFT, MO		virio.
	-	-					·/·	j' : : :	-				-							
2020	- 2,019.8-	- - 14.0				. /	, 		-		-		_				-			
	-	-	2	2	3	● 5			:				:		М					
2045	-	-				j :			:		.	: : :	-							
2015	2,014.8	- 19.0 -	1	3	3	6.							$\overline{}$		М		<u>-</u>			
	-	-				<i>[</i> ":			-				-							
2010	2,009.8 -	- - 24.0				<u> </u>	• •		:								-			
	, ,		WOH	WOH	1	1: :			:		-		-		М					
	-	-				į · ·			-		-		-							
2005	2,004.8-	- 29.0	2	1	1				\exists		\dashv		\exists		М		<u>-</u>			
	-	-				~	· · ·				.		:		141					
2000	_ _1,999.8 _	- - 34 0					`	\			-		-				_			
	1,997.7-	-	58	21	23	: :			6 44	· · · ·					М					
	1,996.0	_	8	25	75/0.3						<u> </u>				М	<i>4713</i>		ERED R		36.6 37.8
	-	_	60/0.0													<u> </u>	WEATHERED M Boring Terminat			
	_	_														l E	PENETRATION Elevation 1,996.0	I TEST F	REFUSAL	at
	-	_																ROCK		
	-																			
	-	-														F				
	_	-														F	-			
	-	-														lF				
	-	-																		
	-	-															-			
	-	-																		
	-	-															-			
	-	-																		
	-	-																		
	-	-															_			
	-	-																		
	-	_														<u> </u>	-			
]	_														E				
	-	_														F				
	-	_														l F	_			
	-															l F				
	-	_														lF				

B1-A

BOX 1: 7.3 - 19.3 FEET

B1-A

BOX 2: 19.3 - 29.3 FEET


GSI:

7.3-9.3' BLDR

9.3-15.3' 25-35

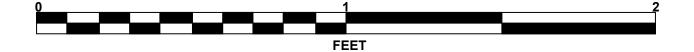
15.3-29.3' 55-70

B1-BBOX 1: 6.3 - 16.3 FEET

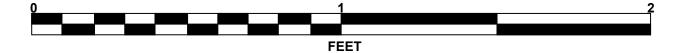
B1-B

BOX 2: 16.3 - 21.3 FEET

GSI:


6.3-12.0' 50-60

12.0-21.3' 80-90


EB1-A

BOX 1: 10.2 - 20.7 FEET

GSI:

10.7-15.7' 20-30 SEAMS OF WRK 15.7-20.7' <10 SEAMY RK/WRK 20.7-25.7 60-70

EB2-B CORE

BOX 1 OF 3: 5.4 - 13.8 FEET

GSI 6.4 - 15.8 = 60-70

GSI 15.8 - 22.8 = 50-60

BOX 2 OF 3: 13.8 - 22.4 FEET

GSI 6.4 - 15.8 = 60-70 GSI 15.8 - 22.8 = 50-60

EB2-B CORE

BOX 3 OF 3: 22.4 - 25.4 FEET

GSI 22.8 - 25.4 = 40-50

CONTENTS SHEET NO. 598 À REFERENCE

DESCRIPTION

TITLE SHEET LEGEND (SOIL & ROCK)

SITE PLAN

BORELOGS

PROFILE

5-7

7845

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUN.	ΓΥ _	MADISON	I							
		DESCRIP1		BRI	DGE N	10.	71 ON	SR	1395	ı
			BIG L	AURI	EL CF	REE	K			
SITE	DES	CRIPTION	RET	AINII	NG W	ALL	•			
		STA	16+88	TO	18+25	5	RT			

STATE	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
N.C.	B-5989 47845	1	7

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT (919) 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

CENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IMP-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS NIDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISTY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:

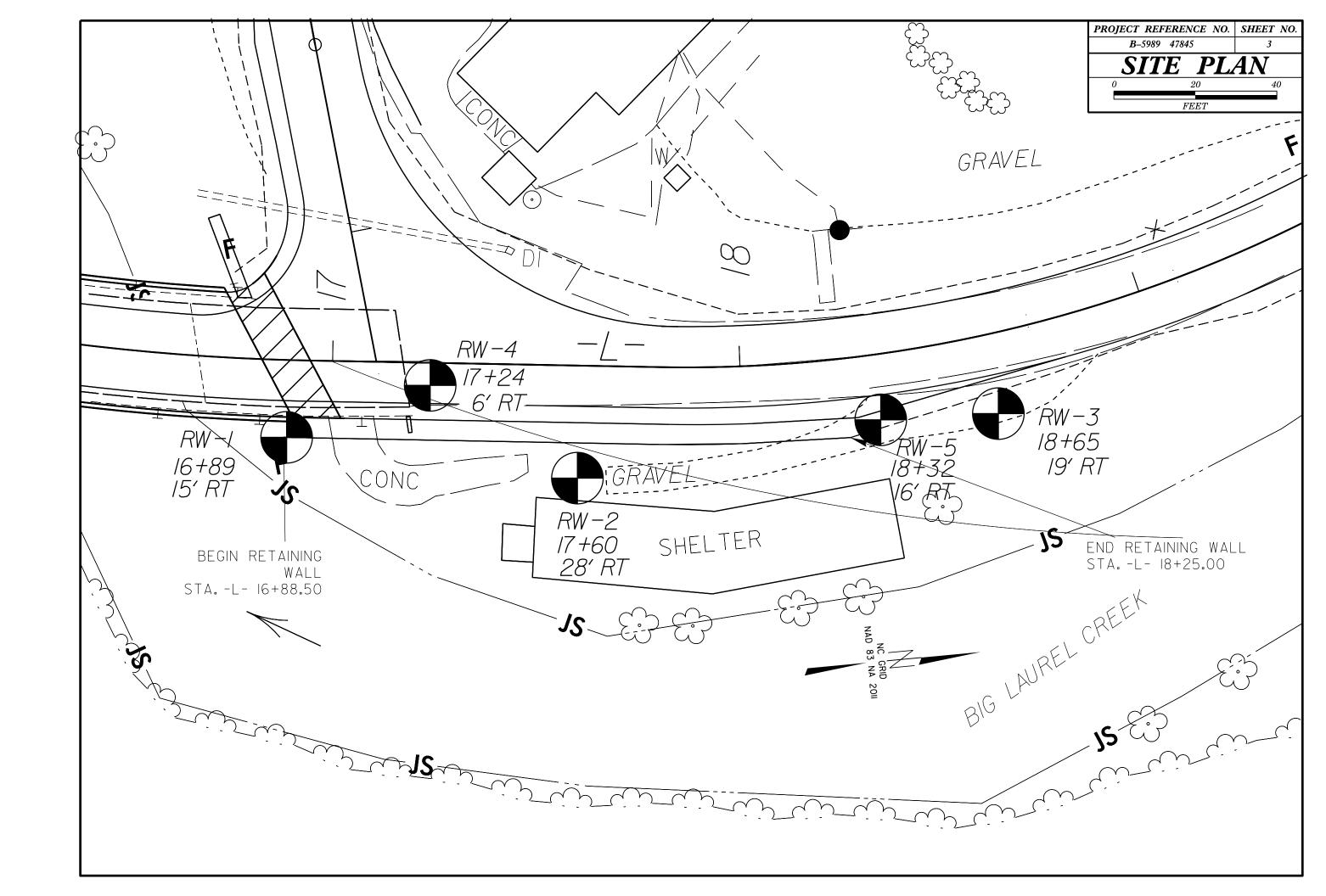
 1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

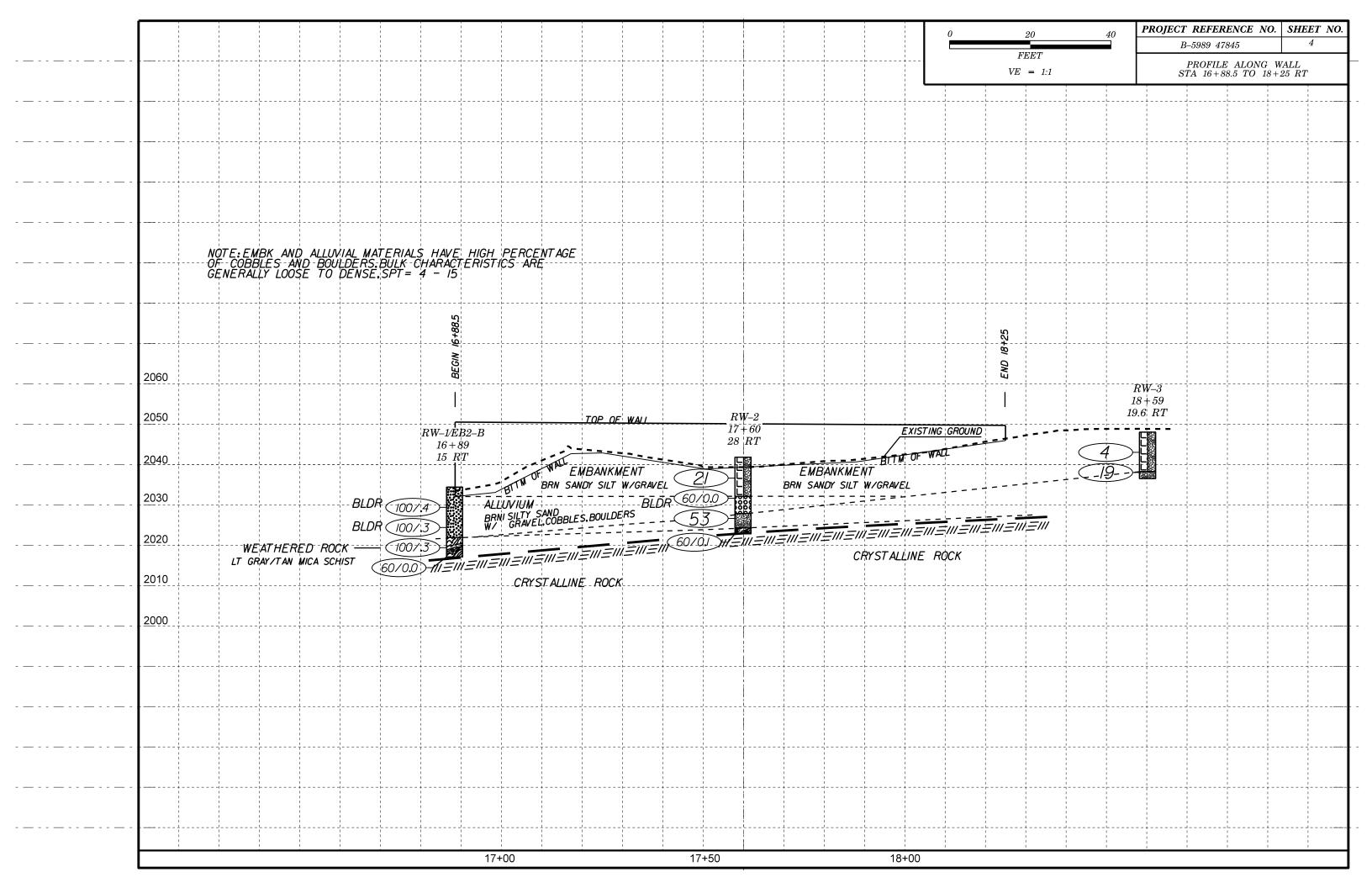
 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

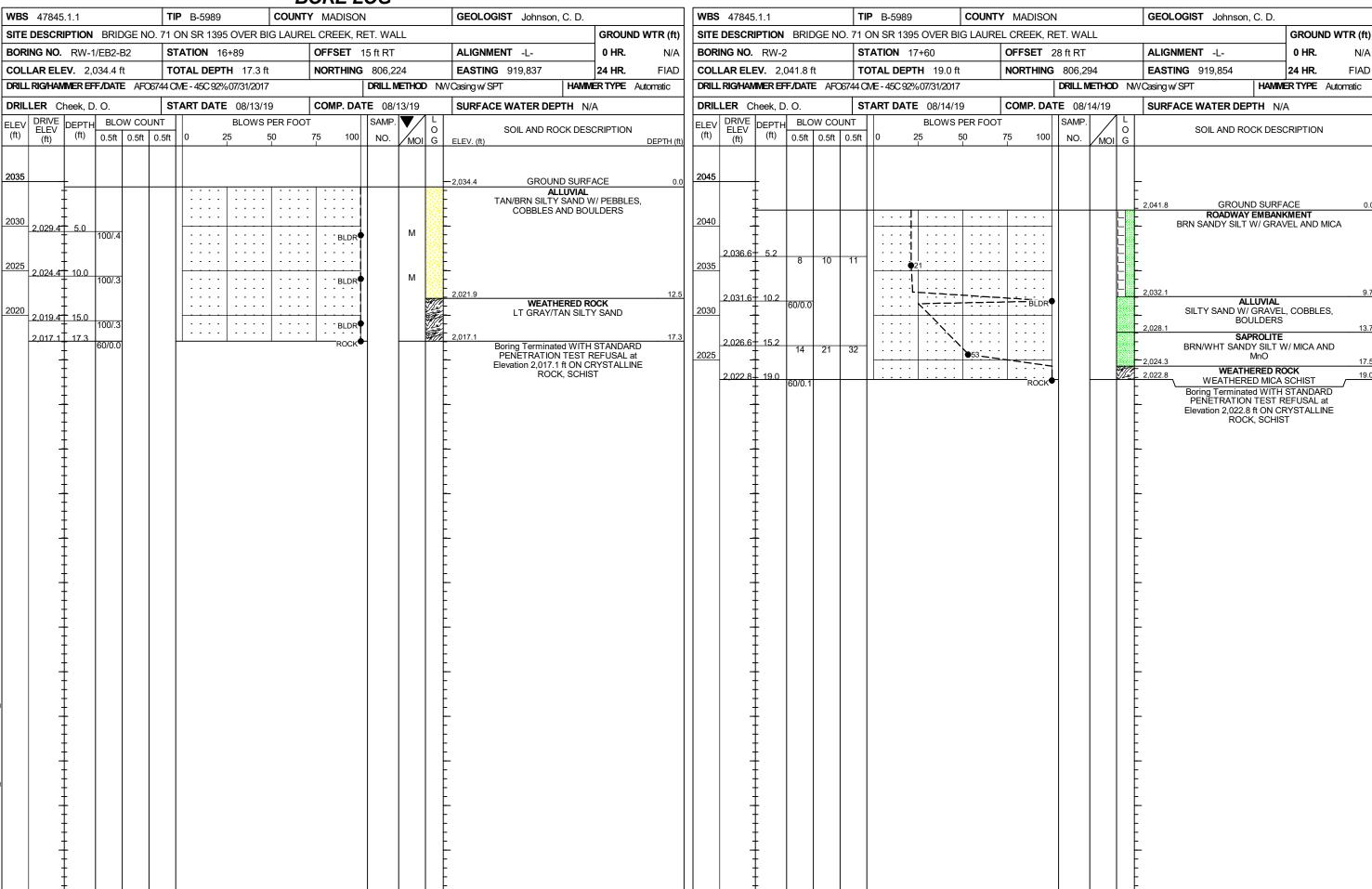
	LINSONNEL
	CD JOHNSON
	DO CHEEK
	CJ COFFEY
_	
_	
INVESTIGATED BY	J KUHNE
DRAWN BY	J KUHNE
SUBMITTED BY	J KUHNE
DATE	

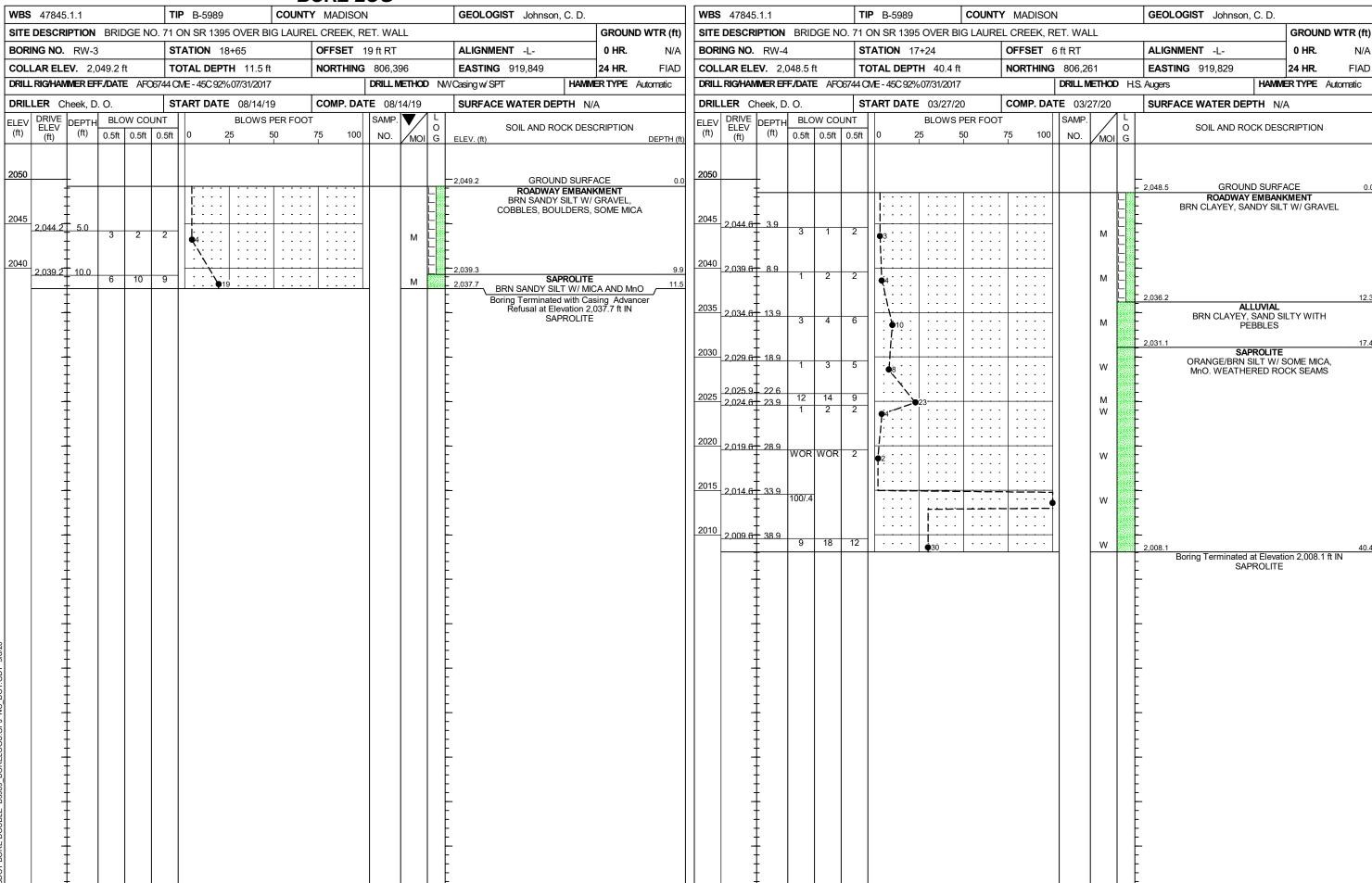
DEDCUMNE

DOCUMENT NOT CONSIDERED FINAL **UNLESS ALL SIGNATURES COMPLETED**


B-5989 47845 2


NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT


SUBSURFACE INVESTIGATION


SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM D1586). SOIL CLASSIFICATION	GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN	AQUIFER - A WATER BEARING FORMATION OR STRATA.
IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	REPRESENTED BY A ZONE OF WEATHERED ROCK.	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, <u>SUBANGULAR, SUBROUNDED</u> , OR <u>ROUNDED</u> .	WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS ORGANIC MATERIALS	MINERALOGICAL COMPOSITION	CRYSTALLINE FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND
LLASS. (≤ 35% PASSING "200) (> 35% PASSING "200)	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	ROCK (CR) WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, GNEISS, GABBRO, SCHIST, ETC.	SURFACE. <u>CALCAREOUS (CALC.)</u> - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 CLASS. A-1-0 A-1-1-0 A-1-1-0 A-2-4 A-2-5 A-2-6 A-2-7 A-2-7 A-3-3 A-6, A-7	COMPRESSIBILITY	NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM
SYMBOL 000000000000000000000000000000000000	SLIGHTLY COMPRESSIBLE LL < 31	ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.	OF SLOPE.
7. PASSING	MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
■10 50 MX GRANULAR SIL1- MUCK,	PERCENTAGE OF MATERIAL	CP) SHELL BEDS, ETC. WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
#40 30 MX 50 MX 51 MN PEAT SOILS SOILS SOILS SOILS SOILS SOILS	GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER	ROCKS OR CUTS MASSIVE ROCK.
MATERIAL	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%	HAMMER IF CRYSTALLINE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.
PASSING *40 SOILS WITH	LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE
LL 40 MX 41 MN LITTLE OR P1 6 MX NP 10 MX 10 MX 11 MN 11 MN 10 MX 10 MX 11 MN 11 MN MODERATE HIGHLY	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF SOULS	GROUND WATER	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
USUAL TYPES STONE FRAGS. FINE SILTY OR CLAYEY SILTY CLAYEY MATTER		(SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
OF MAJOR GRAVEL, AND SAND GRAVEL AND SAND SOILS SOILS	lacktriangle static water level after 24 hours	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
GEN. RATING EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE	∇ PW PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS	PARENT MATERIAL.
AS SUBGRADE POOR POOR ONSUTHBLE	SPRING OR SEEP	DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ;PI OF A-7-6 SUBGROUP IS > LL - 30		MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
CONSISTENCY OR DENSENESS RANGE OF STANDARD RANGE OF UNCONFINED	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH (MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES "CLUNK" SOUND WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE COMPACTNESS OR PENETRATION RESISTENCE COMPRESSIVE STRENGTH	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION WITH SOIL DESCRIPTION OF ROCK STRUCTURES	IF TESTED, WOULD YIELD SPT REFUSAL	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
VERY LODGE (4	SPT SINDICATOR	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT (SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED	ITS LATERAL EXTENT.
GENERALLT LOOSE 4 TO 10	SOIL SYMBOL OPT ONT TEST BORING INSTALLATION SECTION INSTALLATION	TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS
MATERIAL DENSE 10 10 30 N/A	ARTIFICIAL FILL (AF) OTHER THAN ROADWAY EMBANKMENT AUGER BORING CONE PENETROMETER	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC ELEMENTS ARE DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
(NON-COHESIVE) VERY DENSE > 50		SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
VERY SOFT < 2	— INFERRED SOIL BOUNDARY — CORE BORING SOUNDING ROD	(V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u>	OF AN INTERVENING IMPERVIOUS STRATUM. RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0	INFERRED ROCK LINE MONITORING WELL TEST BORING WITH CORE	COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	ROCK QUALITY DESIGNATION (RQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
MATERIAL STIFF 8 TO 15 1 TO 2 (COHESIVE) VERY STIFF 15 TO 30 2 TO 4	TTTTT ALLUVIAL SOIL BOUNDARY A PIEZOMETER SPT N-VALUE	SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
HARD > 30 > 4	INSTRUCTUTION	ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES	ROCK.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	UNDERCUT UNCLASSIFIED EXCAVATION - UNSUITABLE WASTE UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO
COARSE FINE	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 FEET OF ACCEPTABLE DEGRADABLE ROCK EMBANKMENT OR BACKFILL	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
BOULDER	ABBRE VIATIONS	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.05 0.005	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF
SIZE IN. 12 3	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL
SOIL MOISTURE - CORRELATION OF TERMS	CL CLAY MOD MODERATELY 7 - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC 7 - DRY UNIT WEIGHT	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK.	WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION	CSE COARSE ORG ORGANIC	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY
(ATTERBERG LIMITS) DESCRIPTION OUBLE FOR FILES POISTONE SESSMENTON	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE.	TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY (SAT.) FROM BELOW THE GROUND WATER TABLE	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON F - FINE SL SILT, SILTY ST - SHELBY TUBE	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH	LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
LL LIOUID LIMIT	FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
PLASTIC SEMISOLID; REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL FRAGS FRAGMENTS W - MOISTURE CONTENT CBR - CALIFORNIA BEARING	FRACTURE SPACING BEDDING	BENCH MARK: #1 N 806107 E 919773
(PI) PL PLASTIC LIMIT ATTAIN OPTIMUM MOISTURE	HI HIGHLY V - VERY RATIO	TERM SPACING TERM THICKNESS	BENCH MHRK: 1 N GOGIOT L 313773
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	EQUIPMENT USED ON SUBJECT PROJECT	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET	ELEVATION: 2049.58 FEET
SL SHRINKAGE LIMIT	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE: X CME-45C CLAY BITS HAMMER TYPE: X AUTOMATIC MANUAL	MODERATELY CLOSE	NOTES:
- DRY - (D) REQUIRES ADDITIONAL WATER TO	C. CONTINUOUS ELICHT AUSER	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET	
ATTAIN UPTIMUM MUISTURE	CME-55	THINLY LAMINATED < 0.008 FEET INDURATION	-
PLASTICITY		FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	1
PLASTICITY INDEX (PI) DRY STRENGTH NON PLASTIC 0-5 VERY LOW	CME-550 HARD FACED FINGER BITS TUNGCARBIDE INSERTS	RUBBING WITH FINGER FREES NUMEROUS GRAINS;	
SLIGHTLY PLASTIC 6-15 SLIGHT	VANE SHEAR TEST Y CASING Y WY ADVANCER HAND TOOLS:	GENILE BLOW BY HAMMER DISINIEGRATES SAMPLE.	
MODERATELY PLASTIC 16-25 MEDIUM HIGHLY PLASTIC 26 OR MORE HIGH	POST HOLE DIGGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR	TRICOUS TRICOUS AND HAND AUGER	CRAINS ARE DISCISSED TO SERVANTE WITH STEEL PROPE.	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	CORE BIT SOUNDING ROD VANE SHEAR TEST	INDURATED DIFFICULT TO BREAK WITH HAMMER.	
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	Trink Silent [23]	EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE; SAMPLE BREAKS ACROSS GRAINS.	DATE O IE IV
		SAMPLE BREAKS ALKUSS UKAINS.	DATE: 8-15-14

WBS 47845.1.1	
DRIVER Cheek D. O. START DATE 03/27/20 COMP. DATE 03/27/20 SURFACE WATER DEPTH N/A	
COLLAR ELEV. 2,047.0 TOTAL DEPTH 34.8 TOT	R (ft)
DRILL RIGHAMMER EFF/DATE AFC6744 CWE - 45C 92%07/31/2017 DRILL METHOD H.S. Augers HAMMER TYPE Autor DRILLER Cheek, D. O. START DATE 03/27/20 COMP. DATE 03/27/20 SURFACE WATER DEPTH N/A ELEV (ft) DEPTH (LEV (ft) DEPTH (ft) 0.5ft 0	N/A
DRILLER Cheek, D. O. START DATE 03/27/20 COMP. DATE 03/27/20 SURFACE WATER DEPTH N/A SURFACE WATER DEPTH N/A SOIL AND ROCK DESCRIPTION DI SOIL AND ROC	FIAD
DRIVE CHAPTER BLOW COUNT BLOWS PER FOOT SAMP NO. MOI G ELEV. (ft) SOIL AND ROCK DESCRIPTION DI CHAPTER	atic
2040 2040 2040 2040 2040 2040 2040 2040	
2045 2,043.7= 3.3 9 12 14 2040 2,038.7= 8.3 2 2 3 45 M 2,033.7= 13.3 9 11 10 2,047.0 GROUND SURFACE ROADWAY EMBANKMENT BRN CLAYEY, SANDY SILT W/ GRAVEL 2,041.2 ROADWAY EMBANKMENT BRN SANDY SILT W/ PEBBLES BRN/BLK CLAYEY SANDY SILT W/ MnO AND THIN WEATHERED ROCK SEAMS	PTH (fi
2045 2,043.7 3.3 9 12 14 2040 2040 2040 2040 2040 2040 2040 20	
2,043.7- 3.3 9 12 14 26	0.
2040 2,038.7 8.3 2 2 3 45 45 40 40 40 40 40 40 40 40 40 40 40 40 40	
2040	
2035 2 2 3 65	5.8
SAPROLITE BRN/BLK CLAYEY SANDY SILT W/ MnO AND THIN WEATHERED ROCK SEAMS	
2,033.7 13.3 9 11 10 AND THIN WEATHERED ROCK SEAMS	9.6
'	
† : : : / : : : : : : : :	
2030	
2,028.7 18.3	
WOH 1 5 •6 · · · · · · · · · · ·	
2025	
2,023.7+ 23.3	
2020	
2,010.7 = 20.3 2 5 4 · • • • · · · · · · · · · · · · · ·	
2015	
2,013.7+ 33.3	
14 3 2 65 W 5 - 2,012.2 T Boring Terminated at Elevation 2,012.2 ft IN	34.8
+	
 	

SHEET 7