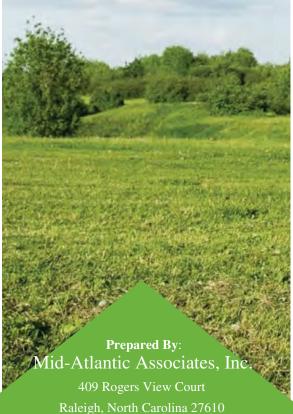


EXPERIENCED
CUSTOMER FOCUSED
INNOVATIVE

Preliminary Site Assessment Report Alex Economy Property Parcel No. 17

Location:


Alex Economy Property 3114 Central Heights Road Goldsboro, North Carolina 27534 Wayne County PIN 3529040190.00

Description:

US 13 (Berkeley Blvd) – Realignment of SR 1709 (Central Heights Road) at Berkeley Blvd.

TIP No.: U-5724 WBS Element: 54016.1.2

Report Date: October 30, 2018 MAA Job #: 000R3203.00

MAAONLINE.COM

919-250-9918

PRELIMINARY SITE ASSESSMENT REPORT ALEX ECONOMY PROPERTY PARCEL NO. 17 TIP NO: U-5724 WBS ELEMENT: 54016.1.2 WAYNE COUNTY WAYNE COUNTY WAYNE COUNTY PIN 3529040190.00

DESCRIPTION:

US 13 (Berkeley Blvd) – Realignment of SR 1709 (Central Heights Road) at Berkeley Blvd.

SITE:

Alex Economy Property 3114 Central Heights Road Goldsboro, North Carolina 27534

Prepared For:

North Carolina Department of Transportation Geotechnical Engineering Unit GeoEnvironmental Section 1589 Mail Service Center Raleigh, NC 27699-1589

Prepared By:

Mid-Atlantic Associates, Inc. 409 Rogers View Court Raleigh, North Carolina 27610 Mid-Atlantic Job No. 000R3203.00

October 30, 2018

409 Rogers View Court Raleigh, NC 27610 office 919.250.9918 facsimile 919.250.9950

MAAONLINE.COM

PRELIMINARY SITE ASSESSMENT REPORT ALEX ECONOMY PROPERTY PARCEL NO. 17 **TIP NO: U-5724 WBS ELEMENT: 54016.1.2** WAYNE COUNTY **WAYNE COUNTY PIN 3529040190.00**

DESCRIPTION:

US 13 (Berkeley Blvd) – Realignment of SR 1709 (Central Heights Road) at Berkeley Blvd.

Mid-Atlantic Associates Job No. 000R3203.00

October 30, 2018

Prepared For:

North Carolina Department of Transportation Geotechnical Engineering Unit GeoEnvironmental Section 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Prepared By:

MID-ATLANTIC ASSOCIA

Raymond S. Marchant, III

Principal Geologist

DocuSigned by:

ĎAC98CAB8CA24E8...

Daniel H. Nielsen, P.E. **Principal Engineer**

TABLE OF CONTENTS

LIST	OF A	CRON	YMS	I
1.0	INTE	RODUC	TION	1
2.0	SITE	HISTO	DRY	2
	2.1		l Usage	
	2.2		y ID Numbers	
	2.3		dwater Incident Numbers	
3.0	SITE	OBSE	RVATIONS	2
	3.1	Groun	dwater Monitoring Wells	2
	3.2		USTs	
	3.3	Featur	res Apparent Beyond ROW/Easement	3
4.0	MET	HODS.		3
	4.1		nysics	
	4.2		s and Temporary Well Installation	
			Soil Sampling Activities	
5.0	RES	ULTS		5
	5.1	Object	ts	5
		5.1.1	Underground Storage Tanks	5
		5.1.2	Hydraulic Lifts	
		5.1.3	Monitoring Wells	5
		5.1.4	Oil-Water Separators	5
	5.2	Impac	ted Media	6
		5.2.1	Impacted Soil &/or Water & Groundwater	6
		5.2.2	Depth	
		5.2.3	Quantities Calculation	6
6.0	CON	ICLUSI	ONS	7
	6.1		retation of Results	
	6.2	Geoph	nysics	7
	6.3	Sampl	ling	7
	6.4		dwaterdwater	
	6.5	Quant	ities	8
7.0	REC	OMMFI	NDATIONS	8

TABLE OF CONTENTS (CONTINUED)

TABLE

Table 5.1 Soil Sampling Results

DRAWINGS

Drawing 1.1 Topographic Site Map Drawing 4.1 Soil Sample Map

APPENDICES

Appendix A Historical Aerials & Site Photo Log

Appendix B Geophysical Report

Appendix C Boring Logs

Appendix D Mid-Atlantic Field Procedures

Appendix E Soil Laboratory Analytical Reports and Lab Graphs

Appendix F Groundwater Laboratory Analytical Report and Chain of Custody

Record

LIST OF ACRONYMS

2000 Guidelines	Groundwater Section Guidelines for Investigation	MTBE	Methyl tertiary butyl ether
	and Remediation of Soil and Groundwater, DENR,	μg/Kg	Micrograms per Kilogram
	Division of Water Quality Groundwater Section, July 2000.	μ g/L	Micrograms per Liter
2008 Guidelines	Underground Storage Tank Section Guidelines for	NA	Not Analyzed
	Assessment and Corrective Action, DENR, Division	N/A	Not Applicable
	of Waste Management UST Section, July 15, 2008.	NC	North Carolina
		NCAC	North Carolina Administrative Code
AFVR	Aggressive Fluid-Vapor Recovery	NCDENR	North Carolina Department of Environment
AS	Air Sparge		and Natural Resources
AST	Aboveground Storage Tank	NCDOT	North Carolina Department of
DOI.	Relay (Laboratory Prostical) Quantitation Limit	110000	Transportation
BQL BLS	Below (Laboratory Practical) Quantitation Limit Below Land Surface	NCGQS	North Carolina Groundwater Quality
BTEX	Benzene, Toluene, Ethylbenzene, Xylenes	NCCMOC	Standards North Carolina Surface Water Quality
DILX	Benzene, Toldene, Ethylbenzene, Aylenes	NCSWQS	North Carolina Surface Water Quality Standards
CAP	Corrective Action Plan	ND	Not Detected
cm	Centimeter	NM	Not Measured
COC	Constituents of Concern	NORR	Notice of Regulatory Requirements
CSA	Comprehensive Site Assessment	NOV	Notice of Violation
	'	NRP	Notice of Residual Petroleum
DIPE	Diisopropyl Ether (also IPE: Isopropyl Ether)	NS	Not Sampled
DNAPL	Dense Non-Aqueous Phase Liquids		. Tot Gampiou
DO	Dissolved Oxygen	OVA	Organic Vapor Analyzer
DPT	Direct Push Technology	-	3
DRO	Diesel Range Organics	PA	Prioritization Assessment
DSCA	North Carolina Dry-Cleaning Solvent Act	PAA	Prioritization Assessment Agreement
DTW	Depth to Water	PAH	Polynuclear Aromatic Hydrocarbons
DWM	Division of Waste Management	Pb	Lead
DWQ	Division of Water Quality	PCBs	Polychlorinated Biphenyls
		PCE	Perchloroethylene (also tetrachloroethene)
EDB	Ethylene di-bromide	PPB	Parts Per Billion
EPA	Environmental Protection Agency	PPM	Parts Per Million
EPH	Extractable Petroleum Hydrocarbons	PID	Photo Ionization Detector
		POTW	Publicly Owned Treatment Works
FID	Flame Ionization Detector	PQL	Practical Quantitation Limit
FT	Feet	PRF	Prioritization Ranking Form
001	Cross Contonination I and	PVC	Polyvinyl chloride
GCL	Gross Contamination Level		
GIS GPM	Geographic Information System	RBCA	Risk-Based Corrective Action
GPS	Gallons Per Minute Global Positioning System	RCRA	Resource Conservation and Recovery Act
GRO	Gasoline Range Organics	ROI	Radius of Influence
0110	Gassimo Mango Giganios	S	Seconds
ID	Identification	SAR	Soil Assessment Report
IDW	Investigation Derived Waste	SOW	Scope of Work
IGQS	Interim Groundwater Quality Standards	STG	Soil-to-Groundwater
	·	SVE	Soil Vapor Extraction
LSA	Limited Site Assessment	SVOC	Semi-Volatile Organic Compound
LUST	Leaking Underground Storage Tank		- '
	•••	TDHF	Toxicologically Defined Hydrocarbon
M	Meter Secretary of Engineering		Fractions
MADEP	Massachusetts Department of Environmental	TCLP	Toxicity Characteristic Leaching Procedure
Mid Maratia	Protection	TIC	Tentatively Identified Compound
Mid-Atlantic	Mid-Atlantic Associates, Inc.	TOC	Top of Casing
MDL ma/Ka	Method Detection Limit Milligrams per Kilogram	TPH	Total Petroleum Hydrocarbons
mg/Kg	Milligrams per Liter	110	United Ctates
mg/L MMP	Minimum Management Practices	US	United States
MMPE	Mobile Multi-Phase Extraction	USCS	Unified Soil Classification System
MNA	Monitored Natural Attenuation	USGS UST	United States Geological Survey Underground Storage Tank
MSCC	Maximum Soil Contaminant Concentration	UT	Unnamed Tributary
MSL	Mean Sea Level	VOC	Volatile Organic Compounds
02		VPH	Volatile Organic Compounds Volatile Petroleum Hydrocarbons
		yr	Year
		уч	i oui

1.0 INTRODUCTION

Mid-Atlantic Associates, Inc. (Mid-Atlantic) has prepared this Preliminary Site Assessment (PSA) Report in response to the North Carolina Department of Transportation's (NCDOT) Request for Technical and Cost Proposal (RFP) dated July 30, 2018 and in accordance with Mid-Atlantic's "Revision No. 1 Technical and Cost Proposal for Preliminary Site Assessment" dated August 15, 2018. Mid-Atlantic has performed the PSA for the Alex Economy property (Subject Site), located at 3114 Central Heights Road in Goldsboro, North Carolina (**Drawing 1.1**). The Subject Site is one of four parcels being assessed in association with this project. Acquisition of the right-of-way/easement is necessary for roadway improvements along this project. The Subject Site is currently occupied by a mobile home park. A concrete block building is located on the northern end of the site and appears as though it could have historically operated as a gasoline retail station. The concrete block building was reported by the former owner to have been used for retail purposes (a convenience store and a thrift store).

The NCDOT contracted with Mid-Atlantic to perform the PSA due to the possible historical use of the site for petroleum retail. The PSA was performed to determine if relict UST systems may exist and/or if the soils and/or groundwater have been impacted as a result of the historical use of the Subject Site.

This report documents the results of the geophysical survey, the locations and volume of any USTs identified in the investigation area, and the subsurface investigation of identified areas of concern conducted at the site. The opinions included herein are based on our experience and information obtained during the study. This report is based on limited observations made on the dates noted using procedures described herein. If additional information becomes available, we request the opportunity to review the information, reassess the potential environmental concerns, and modify our conclusions, if appropriate.

1.1 <u>Site Description</u>

The Subject Site is located in a mostly residential area of Goldsboro, although commercial properties are located nearby to the south and west of the site. It is currently developed with a mobile home park. A concrete block building, which was reportedly used for retail purposes in the past, is located on the northern portion of the property. The site is bounded to the north (across Central Heights Road) and east by agricultural fields, to the south (across Central Heights Road; note: the road forks) by commercial/industrial enterprises, and to the west by residential properties and additional agricultural land. Please refer to **Drawing 1.1** for the site location and site topography.

1.2 Scope of Work

Per the NCDOT RFP, the scope of work for this PSA is as follows:

- Notify property owner/tenant of proposed work scope.
- Locate all USTs and determine approximate size and contents (if any).
- Determine if contaminated soils are present.
- Test soil for contaminants relevant to the site's past use and/or possible release(s) using UVF methodology.
- Include the RedLab graphs in reports in the report and send the GeoEnvironmental Section a copy of the RedLab Excel file(s).
- If contamination is evident and groundwater is encountered, convert one boring into a temporary well and collect a groundwater sample.
- If contamination is evident, estimate the quantity of impacted soils and indicate the approximate area of soil contamination on a site map.
- Provide a MicroStation file with the location of soil borings, USTs, soil contamination and monitoring wells.
- Prepare a report including field activities, findings, and recommendations for the site.

2.0 SITE HISTORY

2.1 Parcel Usage

Based on historical aerial photography, the Subject Site was operated as a mobile home park as far back as 1967. A concrete block building is located on the northern end of the site and appears as though it could have historically operated as a gasoline retail station. The concrete block building was reported by the former owner to have been used for retail purposes (a convenience store and a thrift store). Historical aerial photographs from NCDOT and Google Earth are included as **Appendix A**.

2.2 Facility ID Numbers

No registered USTs are associated with the property address.

2.3 Groundwater Incident Numbers

No groundwater incidents are associated with the property address.

3.0 SITE OBSERVATIONS

3.1 Groundwater Monitoring Wells

No groundwater monitoring wells were observed at the property address during site reconnaissance.

3.2 Active USTs

No "Active" USTs were identified on site during our reconnaissance. However, evidence of two USTs were discovered during the geophysical survey, as discussed below.

3.3 Features Apparent Beyond ROW/Easement

No suspect features (i.e. monitoring wells, remediation systems, hydraulic lifts) were observed by Mid-Atlantic during the completion of this PSA.

4.0 METHODS

The PSA field activities included a geophysical survey of the proposed right-of-way and temporary construction easement areas to help identify potential underground storage tanks or other subsurface anomalies that may require further investigation. Based on the results of the survey and historical information, soil and groundwater samples were collected to help identify contaminated soils and/or groundwater that may affect future roadbuilding or utility construction activities. These activities are outlined below. Field work was conducted under a Health and Safety Plan prepared by Mid-Atlantic Associates.

4.1 Geophysics

A geophysical survey of the area of concern on the Subject Site was conducted by Pyramid Geophysical Services (Pyramid) from August 22 and 23, 2018. The Geophysical survey was completed to locate subsurface utilities and buried objects such as USTs, private utilities, etc. Sub-surface utilities and buried objects were scanned using a combination of electromagnetic (EM) and ground penetrating radar (GPR) methods. A description of the geophysical survey methods used at the Subject Site are included in Pyramid's "Geophysical Survey, Metallic UST Investigation: Parcel 17, NCDOT Project U-5724" dated September 5, 2018 and included in **Appendix B.** In addition, the area of the geophysical survey is shown in the drawings provided in Pyramid's report.

4.2 Borings and Temporary Well Installation

Before fieldwork was initiated, North Carolina 811 was contacted to mark public utility service lines. Following utility location, Mid-Atlantic completed assessment activities on September 24 and 25, 2018 [Note: Mid-Atlantic's field work was delayed approximately one week due to Hurricane Florence]. The activities included collection of soil samples from the borings and installation of one temporary monitoring well in the event that evidence of contamination was encountered in the soil. The drilling and temporary well construction services were performed by Quantex, Inc. of Raleigh, North Carolina and Mid-Atlantic's technician provided oversight. Boring locations were placed on the Subject

Site in areas of the right of way and construction easement, focusing on areas where probable USTs were located by the GPR survey.

4.2.1 Soil Sampling Activities

On September 25, 2018, Mid-Atlantic mobilized to the site to oversee the advancement of eight soil borings on the parcel. The work was completed during the same mobilization as sampling conducted for Parcels 5, 22, and 24. Sampling locations are shown on **Drawing 4.1**. Borings SB-17-2 through SB-17-6 were placed to focus on two probable USTs and a possible pump island discovered during the geophysical survey.

Using a GeoProbe "macrocore" sampling device and direct push technology (DPT), continuous soil samples were collected at each soil boring and scanned for the presence of volatile organic compounds (VOCs) using a RKI GX6000 Photo-Ionization Detector (PID). The borings were advanced to a depth of approximately 5 feet BLS (note: the water table was typically found in the 2 to 3 ft BLS range). The soils were classified for soil type and screened at approximate two-foot intervals using the PID. Boring Logs (Appendix C) note the PID readings and soil type descriptions recorded by Mid-Atlantic personnel as drilling progressed. In general, the soils at the site consisted of light to dark brown to tan clayey to silty fine to medium sands.

Upon completion of the borings (and completion of the borings at the other three parcels), Mid-Atlantic collected GPS coordinates on September 26, 2018 for the sampling locations using a Trimble Geo 7X unit. The coordinates were used to place the final locations of the sample points on the provided drawings.

4.2.2 Groundwater Sampling Activities

One temporary monitoring well (TMW-17-4) was installed in boring the SB-17-4 location, which was adjacent to the northernmost probable UST and exhibited slightly elevated PID readings and a mild petroleum odor. The temporary well was constructed as follows:

- The boring was advanced using the Geoprobe's macrocore sampler through the saturated zone to a depth of 10 feet BLS (water table at 2.2 feet BLS);
- A one-inch diameter, Schedule 40 PVC well was installed with 10 feet of 0.010-inch slotted screen (screened 0 to 10) and was fitted with a threaded bottom cap and threaded riser to approximately six inches above land surface;
- A sand pack was installed from bottom of well to just above the top of the screened interval; and
- The well was developed by purging with a bailer to remove fine particles.

Upon completion of the well construction and sample collection, the well was abandoned by pulling the casing from the ground and filling the hole with soil cuttings.

4.2.3 Sample Protocol

A total of eight soil samples were collected for laboratory analysis in accordance with the Mid-Atlantic procedures located in **Appendix D.** Samples were collected into sampling containers provided by the laboratory, packed into an ice-filled cooler and shipped to Rapid Environmental Diagnostics Laboratories, LLC (RED Lab) in Wilmington, North Carolina. The soil samples were analyzed for total petroleum hydrocarbons (TPH GRO and DRO) and other constituents using the ultraviolet fluorescence (UVF) detector method.

Additionally, a groundwater sample was collected from well TMW-17-4 using the methods described in **Appendix D**. The sample was shipped to Pace Analytical Laboratories in Mt. Juliet, Tennessee, where they were analyzed for VOCs using Standard Method 6200B and SVOCs using EPA Method 625.

5.0 RESULTS

5.1 Objects

5.1.1 Underground Storage Tanks

The geophysical survey conducted by Pyramid found two probable USTs directly off the northwest corner of the concrete block building, as shown in their report provided in **Appendix B.** Based on the GPR results, the USTs appear to be laying side-by-side in an east-west trending direction and are approximately 10 feet in length by 5 feet in diameter. These dimensions appear to be consistent with USTs that are approximately 1,500 or 2,000 gallons in capacity.

5.1.2 Hydraulic Lifts

No Hydraulic lifts were identified during Mid-Atlantic's completion of this PSA.

5.1.3 Monitoring Wells

No monitoring wells were identified during Mid-Atlantic's completion of the PSA.

5.1.4 Oil-Water Separators

No Oil-Water Separators (OWS) were identified during Mid-Atlantic's completion of this PSA.

5.2 <u>Impacted Media</u>

Impacts to soil and groundwater, including the depths and volume calculations (if applicable), are discussed below.

5.2.1 Impacted Soil &/or Water & Groundwater

As documented in RED Lab's report located in **Appendix E** and summarized (along with PID readings) in **Table 5.1**, TPH GRO were detected in five of the eight samples at concentrations exceeding the UVF analyzer's detection limit. However, none of the samples exhibited concentrations exceeding the NCDEQ Action Level of 50 mg/kg. TPH DRO were detected in all eight samples at concentrations exceeding the UVF analyzer's detection limit. However, none of the samples exhibited concentrations exceeding the NCDEQ Action Level of 100 mg/kg. The laboratory analytical report and graphs for the soil samples collected at the site are provided in **Appendix E**. Detected chemical constituents in soil samples are shown on **Drawing 4.1**.

An assessment of water (surface water) was not included in this scope of work. Surface water was not observed on site.

A laboratory report for the groundwater sample collected from temporary monitoring well TMW-17-4 is provided in **Appendix F**. As noted in the report, several petroleum fuel-related constituents were detected in the sample, but not at concentrations exceeding the NCGQS.

5.2.2 Depth

As documented in the soil boring logs and laboratory analytical reports, impacted soil above regulatory action limits was not encountered in the unsaturated zone in borings placed on the site. The depth to water in the borings ranged from approximately 1.8 feet to approximately 3.1 feet BLS.

Although groundwater is very shallow at the site, it does not appear that it has been impacted, based on sampling results for the temporary well installed adjacent to the probable USTs discovered on site.

5.2.3 Quantities Calculation

During the advancement of the soil borings completed for this PSA, petroleum-impacted soil was not encountered at concentrations exceeding NCDEQ's Action Levels for TPH. However, given the historical use of probable USTs at the site, it is possible that petroleum contamination could exist in vadose zone soils in the area near the USTs, underground piping, and former pump island. Based on the size of the former UST

system and the shallow water table, it appears that only minor quantities of petroleum contaminated soil (if any) would be present.

6.0 CONCLUSIONS

6.1 Interpretation of Results

Based on the results of this assessment, Mid-Atlantic concludes the following:

- Geophysical survey data indicates that the site contains two approximate 1,500 gallon USTs that likely were used historically for gasoline retail. Although petroleum-impacted vadose zone soil was not found in this area during this assessment, it is possible that minor quantities could be present; and
- A groundwater sample collected from a temporary monitoring well installed adjacent to the USTs did not reveal evidence of a significant release of petroleum (trace concentrations of petroleum fuel-related constituents were found). However, it is possible that higher concentrations (exceeding the NCGQS) could be present beneath the site (for example, in the former pump island area). Based on the depth to groundwater (approximately 1.8 to 3.1 feet BLS) and the proposed construction plans for grading and drainage and the sampling results, it does not appear likely that the impacted groundwater will be encountered during road improvement activities.

6.2 Geophysics

Based on the results of the Geophysical assessment, Mid-Atlantic concludes the following:

• The geophysical survey indicated the presence of two probable metallic USTs located on the northern portion of the site near the concrete block building. The USTs appear to be in the 1,500 to 2,000 gallon capacity range.

6.3 Sampling

Based on the results of the sampling, Mid-Atlantic concludes the following:

- Based on the eight soil borings advanced at the site, vadose zone contamination
 was not encountered but small quantities could possibly exist in shallow soils in the
 vicinity of the USTs, piping, and/or former dispenser island;
- Petroleum-impacted groundwater exceeding the NCGQS was not encountered in a temporary well installed at location SB-17-4, which is immediately adjacent to the northern-most UST.

6.4 Groundwater

 The depth to groundwater at the site ranges from 1.8 to 3.1 feet BLS. Based on the depth to groundwater and the proposed construction plans for grading and drainage and the sampling results, it does not appear likely that the impacted groundwater will be encountered during road improvement activities.

6.5 Quantities

During the advancement of the soil borings completed for this PSA, petroleum-impacted soil was not encountered at concentrations exceeding NCDEQ's Action Levels for TPH. However, given the apparent historical use of the site, small quantities could possibly exist in shallow soils in the vicinity of the USTs, piping, and/or former dispenser island.

7.0 RECOMMENDATIONS

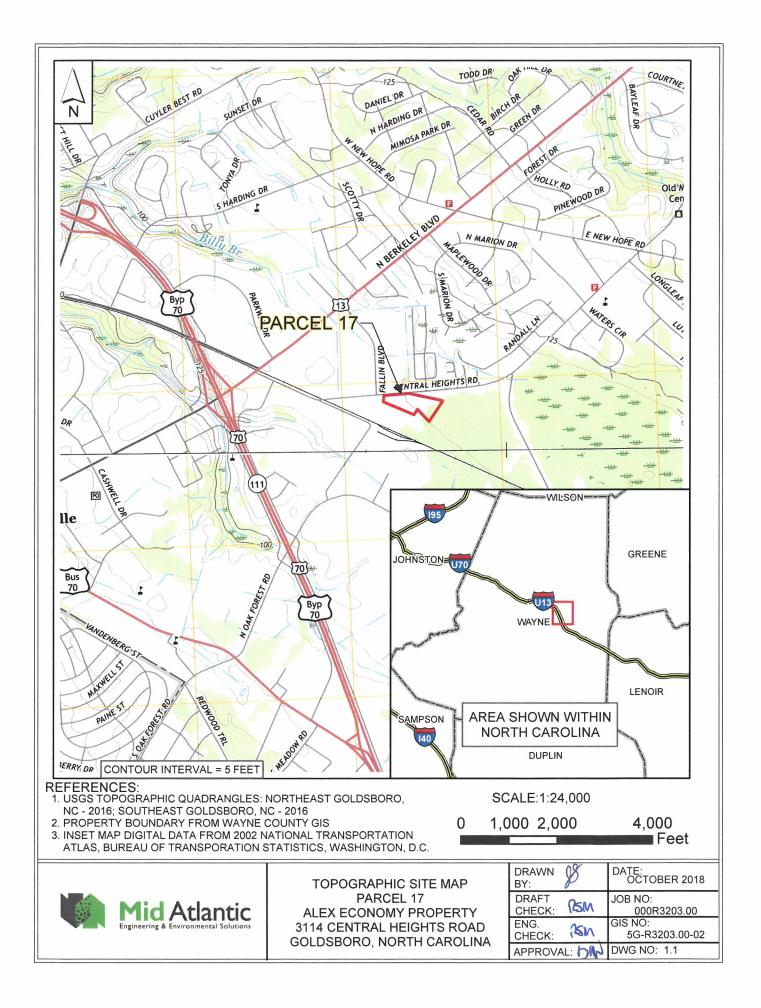
Based on these results, Mid-Atlantic recommends the following:

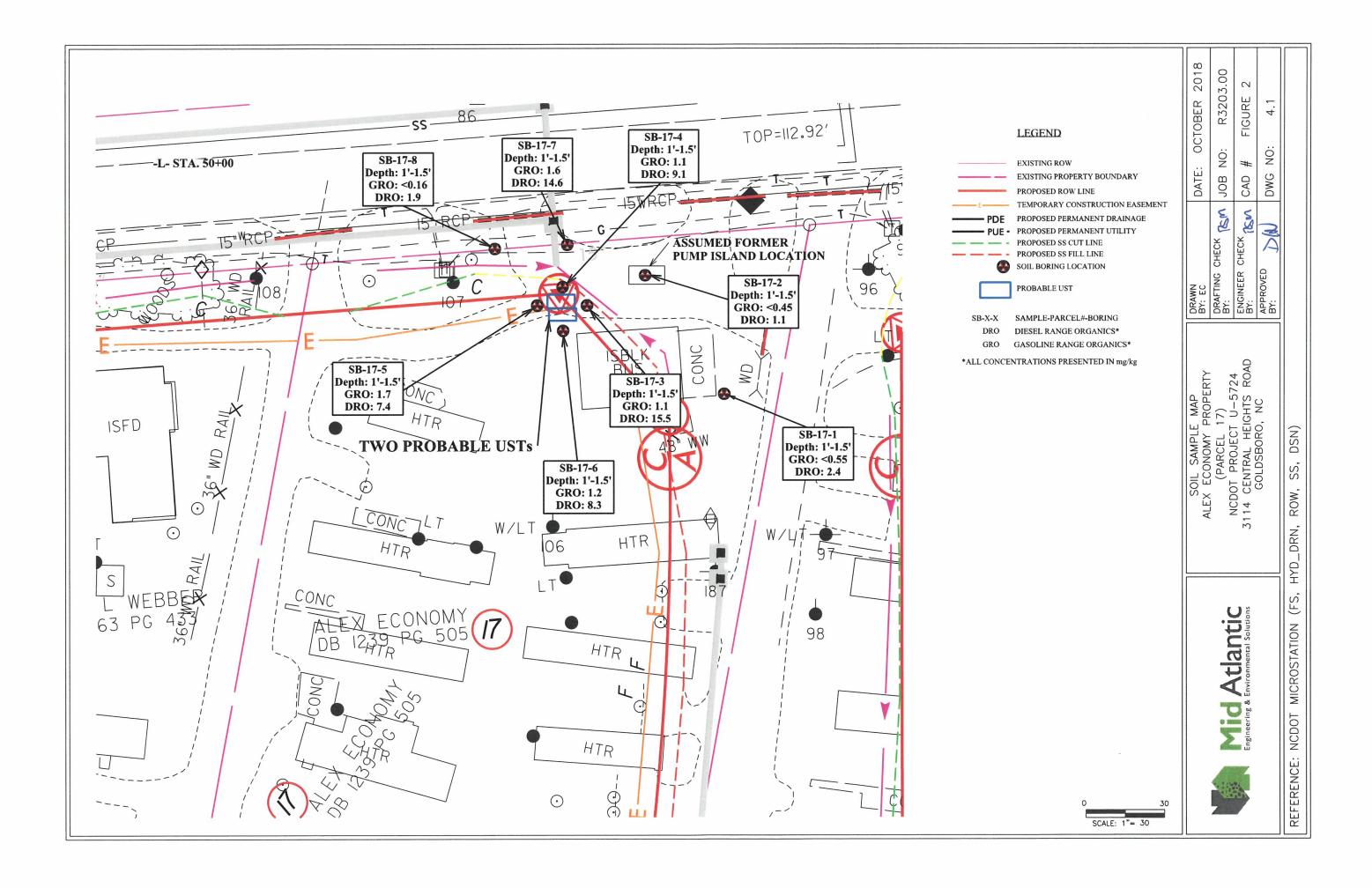
- Removal of the USTs, piping, and former dispenser island, as applicable; and
- If impacted soils or groundwater are encountered during removal of the USTs and generated as waste, they should be properly managed and disposed at a permitted facility.

TABLE

TABLE 5.1 SOIL SAMPLING RESULTS ALEX ECONOMY PROPERTY GOLDSBORO, NORTH CAROLINA MID-ATLANTIC JOB NO. R3203.00

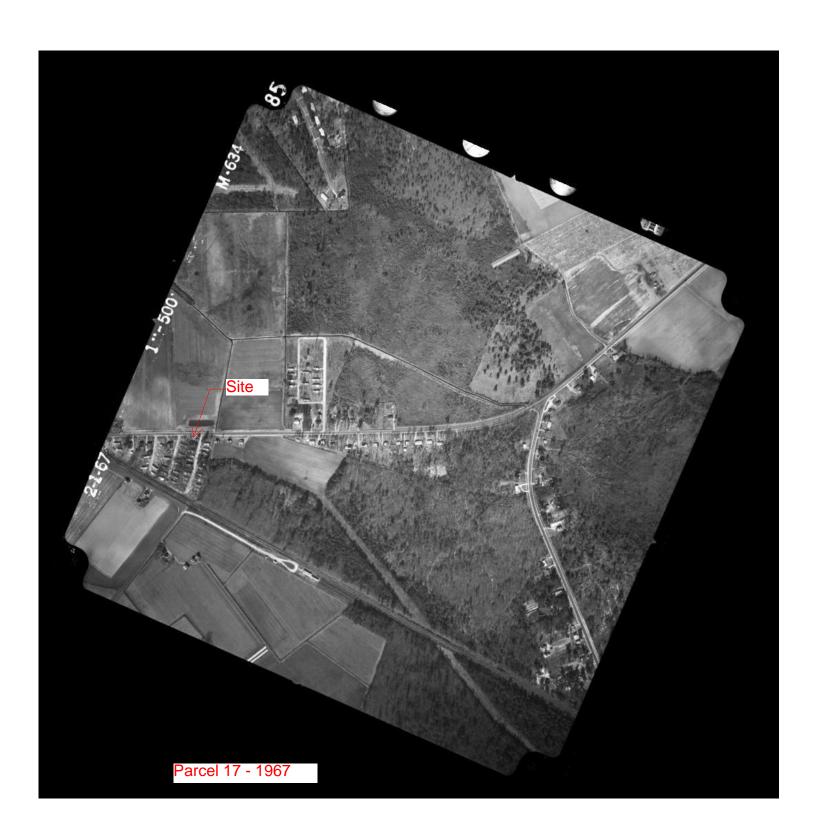
MID-ATLANTIC JOB NO. 113203.00					
SAMPLE ID	SAMPLE DATE	SAMPLE DEPTH (FEET BLS)	PID FIELD SCREENING (PPM)	TPH GRO (C5 - C10) MG/KG	TPH DRO (C5 - C35) MG/KG
SB-17-1	9/24/2018	1 - 1.5	0.40	<0.55	2.4
SB-17-2	9/25/2018	1 - 1.5	0.30	<0.45	1.1
SB-17-3	9/25/2018	1 - 1.5	0.20	1.1	15.5
SB-17-4	9/25/2018	1 - 1.5	0.40	1.1	9.1
SB-17-5	9/25/2018	1 - 1.5	0.30	1.7	7.4
SB-17-6	9/25/2018	1 - 1.5	0.70	1.2	8.3
SB-17-7	9/25/2018	1 - 1.5	0.00	1.6	14.6
SB-17-8	9/25/2018	1 - 1.5	0.60	<0.16	1.9

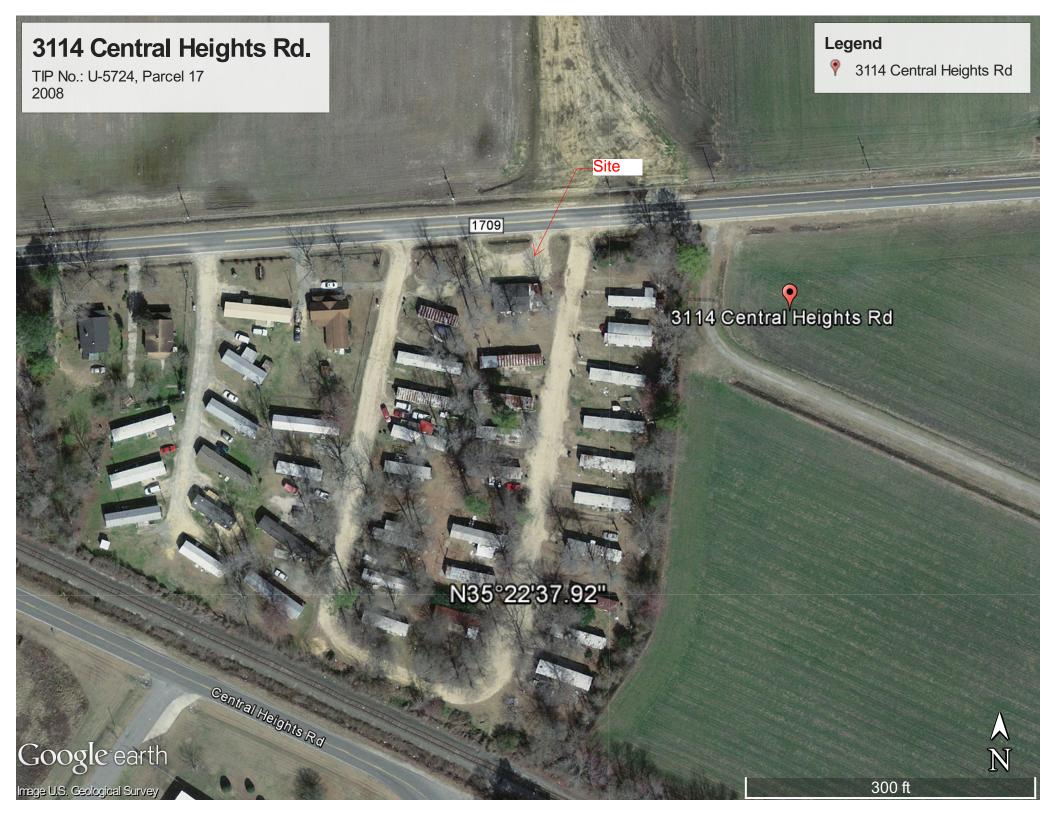

Notes:


BLS - Below Land Surface

PPM - Parts per million MG/KG - milligrams per kilogram (ppm)

DRAWINGS




APPENDIX A HISTORICAL AERIALS AND SITE PHOTO LOG

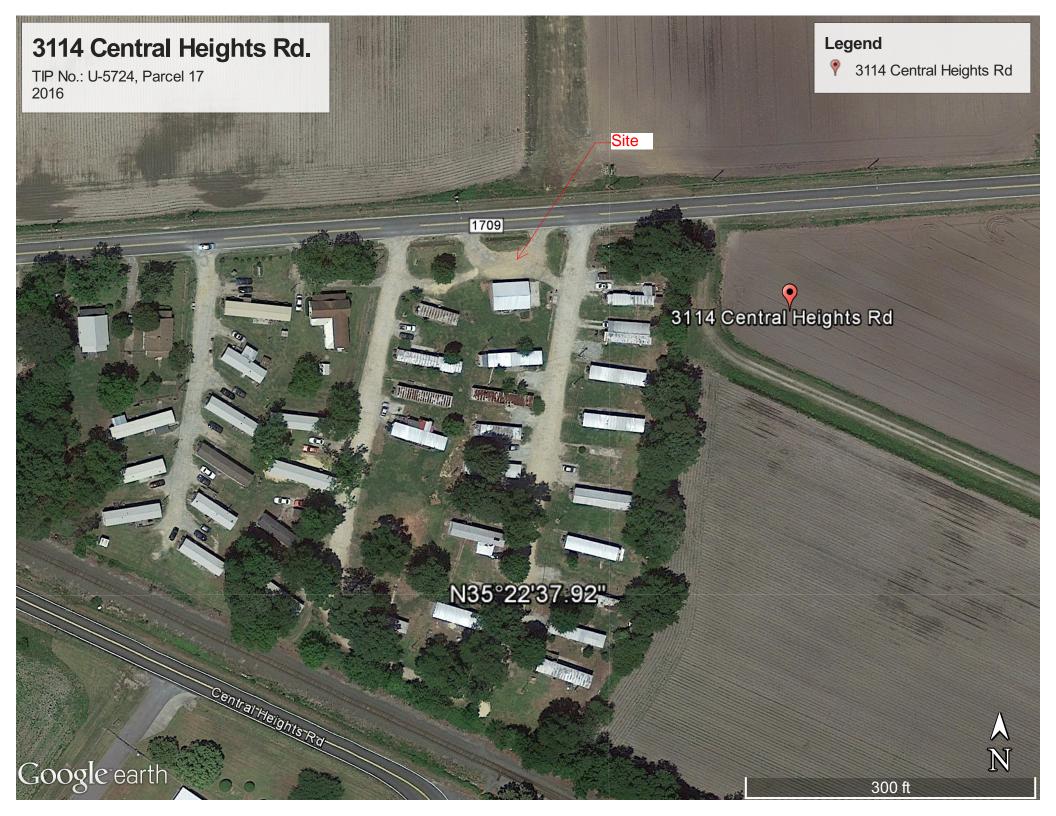


Photo 1 – A general view of site. Concrete block building at center. (photo courtesy of Google Earth)

Photo 2 – A view of the probable UST locations (in white paint), looking south.

Photo 3 – A view of the probable UST locations (in white paint), looking east.

APPENDIX B GEOPHYSICAL REPORT

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2018-230)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 17 NCDOT PROJECT U-5724 (54016.1.2)

3114 CENTRAL HEIGHTS ROAD, GOLDSBORO, NC **SEPTEMBER 5, 2018**

Report prepared for: Trey Marchant, P.G.

> Mid-Atlantic Associates, Inc. **409 Rogers View Court** Raleigh, NC 27610

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by:

Douglas A. Canavello, P.G.

NC License #1066

GEOPHYSICAL INVESTIGATION REPORT

Parcel 17 – 3114 Central Heights Road Goldsboro, Wayne County, North Carolina

Table of Contents

Executive Summary	1
Introduction	2
Field Methodology	
Discussion of Results	
Discussion of EM Results	
Discussion of GPR Results	
Summary & Conclusions	
Limitations	

Figures

- Figure 1 Parcel 17 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 17 EM61 Results Contour Map
- Figure 3 Parcel 17 GPR Transect Locations and Images
- Figure 4 Parcel 17 Locations and Sizes of Two Probable USTs
- Figure 5 Overlay of Geophysical Survey Boundaries with Two Probable USTs on NCDOT Engineering Plans

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	Dual Frequency
EM	Electromagnetic
GPR	Ground Penetrating Radar
GPS	_
NCDOT	North Carolina Department of Transportation
ROW	
UST	Underground Storage Tank

Project Description: Pyramid Environmental conducted a geophysical investigation for Mid-Atlantic Associates, Inc. at Parcel 17, located at 3114 Central Heights Road, in Goldsboro, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project U-5724). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from August 22-23, 2018, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of ten EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features. One large high-amplitude EM anomaly was observed on the north side of the parcel that was suggestive a UST(s) and was investigated further by GPR. A second EM feature was suspected to be associated with buried debris and was investigated by GPR. GPR performed across the high-amplitude EM feature on the north side of the property recorded two isolated hyperbolic reflectors and two discreet lateral reflectors that were consistent with two metallic USTs.

The combined EM and GPR evidence result in these features being classified as two probable metallic USTs. UST #1 (north) was approximately 10' long by 5' wide. UST #2 (south) was approximately 10' long by 4.5' wide. GPR performed across the second unknown EM feature recorded intermittent and isolated high-amplitude reflectors that are consistent with suspected debris. Collectively, the geophysical data recorded evidence of two probable metallic USTs at Parcel 17.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Mid-Atlantic Associates, Inc. at Parcel 17, located at 3114 Central Heights Road, in Goldsboro, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project U-5724). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from August 22-23, 2018, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included a cinderblock building and three mobile homes surrounded by grass and gravel surfaces. An aerial photograph showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8-foot intervals along north-south trending or east-west trending,

generally parallel survey lines, spaced five feet apart. The data were downloaded to a computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on August 23, 2018, using a Geophysical Survey Systems, Inc. (GSSI) UtilityScan DF unit equipped with a dual frequency 300/800 MHz antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the DF unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the DF unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tanks on NCDOT Projects			
High Confidence	Intermediate Confidence	Low Confidence	No Confidence
Known UST Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Probable UST Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphalt/concrete patch, etc.	Possible UST Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	Anomaly noted but not characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The

following table presents the list of EM anomalies and the cause of the metallic response, if known:

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Suspected Utilities	
2	Two Probable Metallic USTs	Ø
3	Suspected Debris	Ø
4	Clothesline	
5	Mailboxes	
6	Utility	
7	Building/Fence	
8 Trailer		
9	Water Meters	
10	Trailer	

The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface, including utilities, a clothesline, mailboxes, a building, a fence, trailers, and water meters. EM Anomaly 2 was associated with unknown buried metal exhibiting a high-amplitude EM response that was characteristic of a UST(s) and was further investigated with GPR. Anomaly 3 was associated with suspected debris and further investigated with GPR.

Discussion of GPR Results

Figure 3 presents the locations of the representative GPR transects performed at the property, as well as the transect images. A total of four GPR transects were recorded. Transects 1-3 were collected across EM Anomaly 2. These transects recorded two isolated hyperbolic reflectors and two discreet lateral reflectors that were consistent with two metallic USTs. The combined EM and GPR evidence result in these features being classified as two probable metallic USTs. UST #1 (north) was approximately 10' long by 5' wide. UST #2 (south) was approximately 10' long by 4.5' wide. **Figure 4** presents the locations and sizes of the probable USTs on an aerial photograph along with ground-level photographs.

Transect 4 was collected across EM Anomaly 3. This transect recorded isolated and intermittent high-amplitude reflections that are consistent with suspected debris.

Collectively, the geophysical data <u>recorded evidence of two probable metallic USTs at Parcel 17</u>. **Figure 5** provides an overlay of the geophysical survey onto the NCDOT MicroStation engineering plans for reference.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 17 in Goldsboro, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- The majority of the EM anomalies were directly attributed to visible cultural features.
- One large high-amplitude EM anomaly was observed on the north side of the parcel
 that was suggestive a UST(s) and was investigated further by GPR. A second EM
 feature was suspected to be associated with buried debris and was investigated by
 GPR.
- GPR performed across the high-amplitude EM feature on the north side of the property recorded two isolated hyperbolic reflectors and two discreet lateral reflectors that were consistent with two metallic USTs.
- The combined EM and GPR evidence result in these features being classified as two probable metallic USTs. UST #1 (north) was approximately 10' long by 5' wide. UST #2 (south) was approximately 10' long by 4.5' wide.
- GPR performed across the second unknown EM feature recorded intermittent and isolated high-amplitude reflectors that are consistent with suspected debris.
- Collectively, the geophysical data <u>recorded evidence of two probable metallic</u> USTs at Parcel 17.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Mid-Atlantic Associates, Inc. in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

View of Survey Area (Facing Approximately South)

View of Survey Area (Facing Approximately West)

CLIENT

503 INDUSTRIAL AVENUE GREENSBORO, NC 27460 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology DATE

EM61 METAL DETECTION RESULTS

EVIDENCE OF TWO PROBABLE METALLIC USTs OBSERVED.

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM61 data were collected on August 22, 2018, using a Geonics EM61 instrument. Verification GPR data were collected using a GSSI UtilityScan DF instrument with a dual frequency 300/800 MHz antenna on August 23, 2018.

EM61 Metal Detection Response (millivolts)

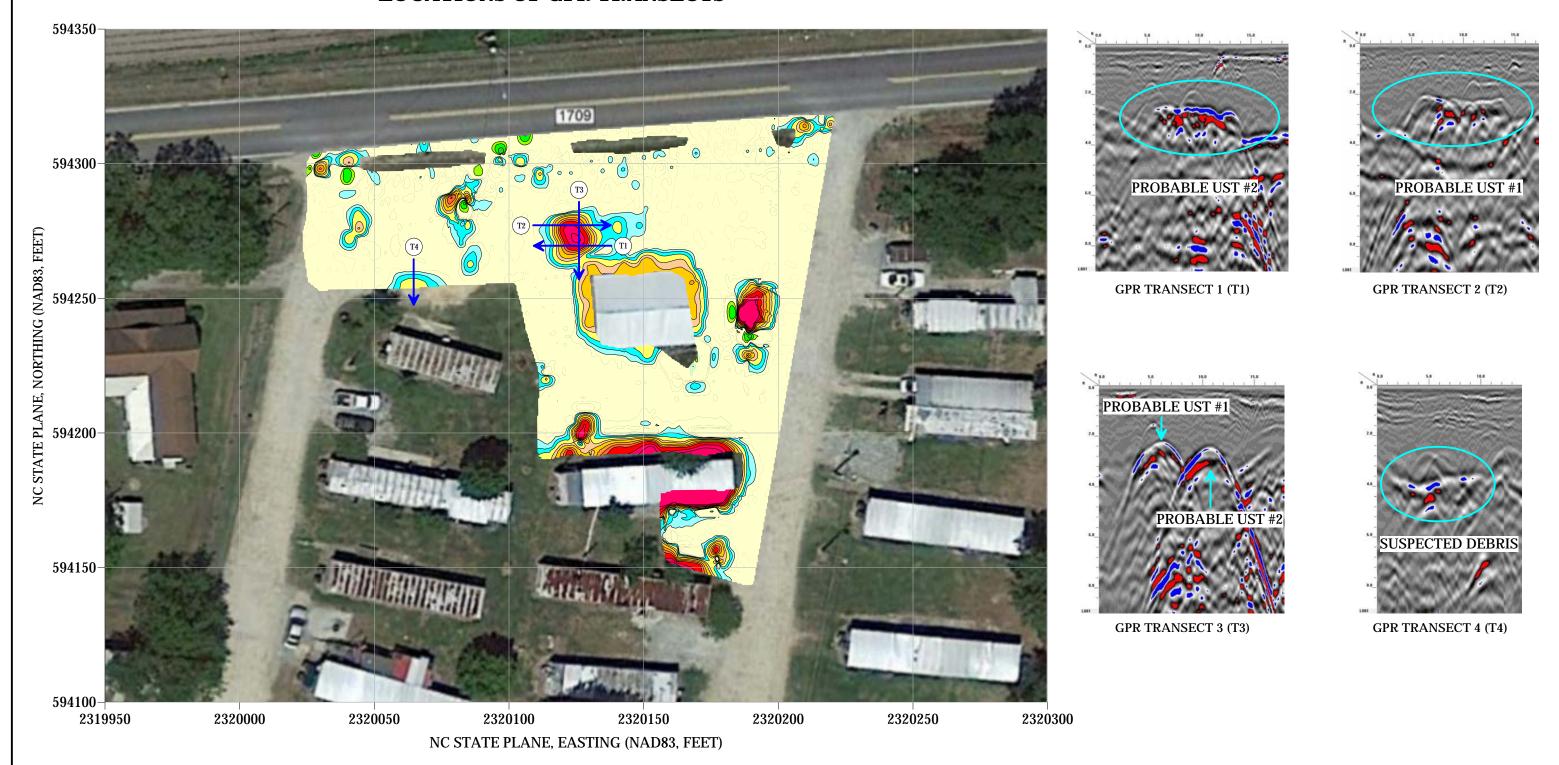
PROJECT

503 INDUSTRIAL AVENUE

GREENSBORO, NC 27460

(336) 335-3174 (p) (336) 691-0648 (f)

License # C1251 Eng. / License # C257 Geology


PARCEL 17 GOLDSBORO, NORTH CAROLINA NCDOT PROJECT U-5724

TITLE

PARCEL 17 - EM61 METAL DETECTION **CONTOUR MAP**

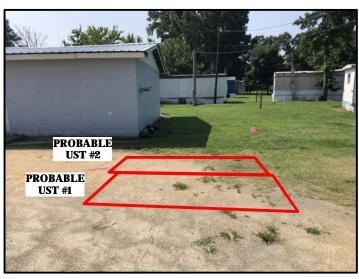
CLIENT MID-ATLANTIC DATE 8/22/2018 ASSOCIATES, INC. PYRAMID PROJECT #: FIGURE 2 2018-230

LOCATIONS OF GPR TRANSECTS

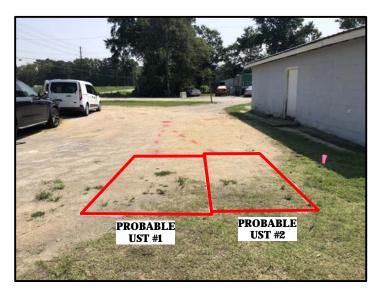
*EXTENSIVE GPR SCANS WERE CONDUCTED OVER THE ENTIRE SITE. TRANSECT LINES ON THE MAP ABOVE INDICATE LOCATIONS WHERE DATA WERE SAVED. THESE LOCATIONS WERE CHOSEN TO HIGHLIGHT STRUCTURES IDENTIFIED IN THE SUBSURFACE OR TRANSECTS THAT ARE REPRESENTATIVE OF GENERAL SUBSURFACE CONDITIONS.

503 INDUSTRIAL AVENUE GREENSBORO, NC 27460 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology **PROJECT**

PARCEL 17 GOLDSBORO, NORTH CAROLINA NCDOT PROJECT U-5724 TITLE


PARCEL 17 - GPR TRANSECT LOCATIONS AND IMAGES

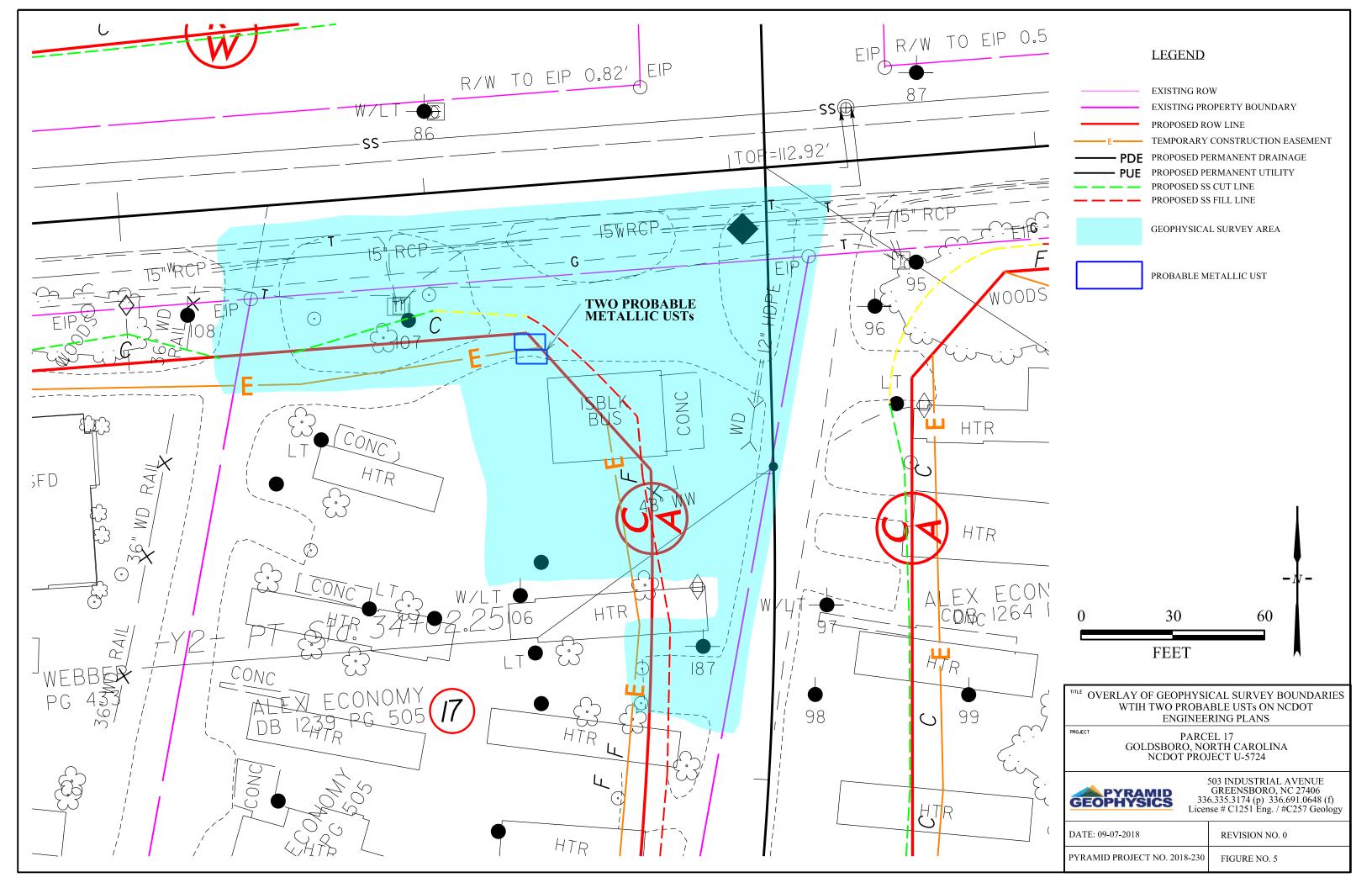
DATE	8/23/2018	CLIENT MID-ATLANTIC ASSOCIATES, INC.	•
PYRAMID PROJECT #:	2018-230	FIGURE 3	


N1

LOCATIONS OF TWO PROBABLE METALLIC USTS

View of Two Probable USTs Facing Approximately South

View of Two Probable USTs Facing Approximately West


503 INDUSTRIAL AVENUE GREENSBORO, NC 27460 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology

PARCEL 17
GOLDSBORO, NORTH CAROLINA
NCDOT PROJECT U-5724

TITLE

PARCEL 17 - LOCATIONS AND SIZES OF TWO PROBABLE METALLIC USTs DATE 8/23/2018 CLIENT MID-ATLANTIC ASSOCIATES, INC.

PYRAMID PROJECT #: 2018-230 FIGURE 4

APPENDIX C BORING LOGS

LOG OF BORING:

SB-17-1

					,			rage. I of I	
	Site Name:		NCD0 U-5724		Drilling/Boring Method:	Geoprobe	Total Boring Dep	oth (ft):5	
	Project Number:		000R32	03.00	Sampling Method:	Macrocore	Well Dep	oth (ft): N/A	
	Location:	G	Soldsbor	o, NC	Subcontractor/Drillers:	Quantex, Inc.	Screen Dep	oth (ft): N/A	
	Date Started:		9/24/2	018	Driller :	James Barker	DT	W (ft): N/A	
	Date Completed:		9/24/2	018	Monitoring Equipment:	RKI GX6000 PID	MAA Field		ner
ft -bgs	Sampling Interval, Odors	PID (ppm)	Sample to Laboratory		SOIL DESCRIP	ΓION (color, texture, moisture, etc.)		Construction Details	ff-bgs
					Gr	ass/topsoil			
	None	0.40	*7	-					-
_			Yes						-
2 —									_ 2
_				_	Dark brown	silty very fine SAND			
4 —	None	0.60		-					- 4
_									
_					erminated at 5 ft-bgs vel in borehole at 1.8 ft-bgs				
6 —				water ie	er in borenoie at 1.6 it-bgs				- 6
_									
8 —									- 8
_									
_									
10 —									— 10
12 —									— — 12
_									
_									
14 —									- 14
_									
_									
16-									— 16
_									
_									-
18—									— 18
_	-								-
20	-								20
	IENTS: TW - Depth to Water \(\frac{1}{2} \)	▼			in - indicates inches ft - indicates depth in feet ft-bgs - indicates feet below	ground surface	N/A - indicates not app ppm - indicates parts p TD - Total Depth of Bo	er million	

LOG OF BORING:

SB-17-2

	Site Name:		NCD0 U-5724		Drilling/Boring Method:	Geoprobe	Total Boring Dept	h (ft):	5
	Project Number:		000R32	03.00	Sampling Method:	Macrocore	Well Dept	h (ft):	N/A
	Location:	G	Soldsbor	o, NC	Subcontractor/Drillers:	Quantex, Inc.	Screen Dept	h (ft):	N/A
	Date Started:		9/25/2	018	Driller :	James Barker	DTV	V (ft):	N/A
	Date Completed:		9/25/2	018	Monitoring Equipment:	RKI GX6000 PID	MAA Field	Staff: Ga	ary Fischer
ft -bgs	Sampling Interval, Odors	PID (ppm)	Sample to Laboratory		SOIL DESCRIP	$ extbf{TION}$ (color, texture, moisture, etc.)		Construction	Details sgd -11
					Tan SAN	ND and GRAVEL			
2 —	None	0.30	Yes			to medium SAND with GRAV	ÆL		2
4 —	None	0.30		-	Medium brown s	ilty fine to medium SAND			_ _ _ 4
6 —					erminated at 5 ft-bgs el in borehole at 2.3 ft-bgs				_ _ 6
8 -									- 8
10 —									- 10
12 —									
14 —									_ _ 14 _
16-									_ _ 16
18-									_ _ 18
	IENTS:				in - indicates inches		N/A - indicates not appli		20
D	TW - Depth to Water \(\frac{1}{2} \)	<u>*</u>			ft - indicates depth in feet ft-bgs - indicates feet belo	w ground surface	ppm - indicates parts per TD - Total Depth of Bor	r million ring for Sampling	

LOG OF BORING:

SB-17-3

	Site Name:		NCD0 U-5724		Drilling/Boring Method:	Geoprobe	Total Boring Dept	th (ft):	5	
	Project Number:	(000R32	03.00	Sampling Method:	Macrocore	Well Dept	th (ft):	N/A	
	Location:	G	oldsbor	o, NC	Subcontractor/Drillers:	Quantex, Inc.	Screen Dept	th (ft):	N/A	
	Date Started:		9/25/2	018	Driller :	James Barker	DTV	W (ft):	N/A	
	Date Completed:		9/25/2	018	Monitoring Equipment:	RKI GX6000 PID	MAA Field	Staff: G	ary Fische	r
ft -bgs	Sampling Interval, Odors	PID (ppm)	Sample to Laboratory		SOIL DESCRIP	TION (color, texture, moisture, etc.)		Construction	ı Details	ft-bgs
					(GRAVEL				
	None	0.20								_
-			Yes							-
2 —					Light and dark brown	silty fine SAND with GRAVEI				_ 2
	-									_
_	None	0.90								-
4 —					Dark brown silt	y very fine to fine SAND				- 4
_					erminated at 5 ft-bgs					_
6 -				Water lev	el in borehole 3 ft-bgs					- - 6
_										_
_										_
8 —										- 8
_										_
										_
10 —										- 10
_										_
										_
12 —										- 12 -
_										_
14 —										- - 14
_										-
_										-
16-										- 16
-										_
_										-
18-										- 18
_										_
20										
COMM	IENTS:	_	1	<u> </u>	in - indicates inches		N/A - indicates not appl		ring	
D	TW - Depth to Water \(\frac{1}{2} \)	<u>v</u>			ft - indicates depth in feet ft-bgs - indicates feet below	w ground surface	ppm - indicates parts pe TD - Total Depth of Bo	r million ring for Samplin	g	

	Mid Atlantic	
--	--------------	--

LOG OF BORING: SB-17-4/TMW-17-4

	Eng	ineering	& Enviro	nmental Solutio	Ph: (919) 250-9918			Page: 1 of	1	
	Site Name:		NCD(U-5724		Drilling/Boring Method:	Geoprobe	Total Boring Do	epth (ft):	5	
	Project Number:		000R320	03.00	Sampling Method:	Macrocore	Well De	epth (ft):	N/A	
	Location:	G	Soldsbor	ro, NC	Subcontractor/Drillers:	Quantex, Inc.	Screen Do	epth (ft): N/A		
	Date Started:		9/25/20	018	Driller :	James Barker	D	OTW (ft): N/A		
	Date Completed:		9/25/20	018	Monitoring Equipment:	RKI GX6000 PID	MAA Fie	ld Staff: G	ary Fische	r
ft -bgs	Sampling Interval, Odors	PID (ppm)	Sample to Laboratory		SOIL DESCRIPT	TION (color, texture, moisture, etc.)		Construction Do	etails	ft-bgs
					G	RAVEL				
_ _ 2 _	None	0.40	Yes		Light brown silty f	ine SAND with GRAVEL		1-in PVC temp installed	well	2
- -	Faint	4.90							_	
4 —						silty very fine SAND			-	4
_		ı		Water level i	ninated at 5 ft-bgs n borehole 3.1 ft-bgs	W				_
6 —		l			orings were completed the d lo', set 1" PVC temporary w	rillers came back to SB-17-4 a vell.	and extended the	Screen 0-10	ft	6
8 -		ĺ							-	8
_		l							-	
10 —		ſ								10
_		ſ							_	
12 —		ı								12
_		ı								
14 —		İ							_	14
_		Ī								
16—		ſ								16
_		ĺ								
18—		Í								18
20		L								20
COMM D	ENTS: TW - Depth to Water '	▼			in - indicates inches ft - indicates depth in feet ft-bgs - indicates feet below	ground surface	N/A - indicates not a ppm - indicates parts TD - Total Depth of			

LOG OF BORING:

SB-17-5

	NCDO Site Name: U-5724 P			OT PSA	Drilling/Boring Method:	Geoprobe	Total Boring Depth	(ft): 5
	Project Number:				Sampling Method:		_	(ft): N/A
	Location:		oldsbor		Subcontractor/Drillers:		Screen Depth	
	Date Started:		9/25/2			James Barker	_	(ft): N/A
	Date Completed:		9/25/2	018	Monitoring Equipment:	RKI GX6000 PID	— MAA Field S	taff: Gary Fischer
ft -bgs	Sampling Interval, Odors	PID (ppm)	Sample to Laboratory		SOIL DESCRIP	ΓION (color, texture, moisture, etc.)	C	onstruction Details
_					(GRAVEL		
2 —	None	0.30	Yes		Medium brown silty fine	to coarse SAND with GRA	AVEL	_ _ _ 2
4 —	None	0.90			Dark brown silt	y fine to medium SAND		_ _ _ _ 4
6 —					rminated at 5 ft-bgs el in borehole 2.2 ft-bgs			
8 —								8
10 -								10
12 —								 12
14 — — —								_ _ 14 _ _
16—								- 10 - 1
18—								_ _ 18 _ _
	IENTS: TW - Depth to Water Y	<u> </u>			in - indicates inches ft - indicates depth in feet ft-bgs - indicates feet below		N/A - indicates not application ppm - indicates parts per report TD - Total Depth of Borir	nillion

LOG OF BORING:

SB-17-6

	Site Name:		NCD0 U-5724		Drilling/Boring Method:	Cooprobo	Total Boring Dep	th (ft):		=
	Project Number:				Sampling Method:			th (ft):		_
	-				_			· · · · · · · · · · · · · · · · · · ·		_
	Location:		Goldsbor		Subcontractor/Drillers:		Screen Dept	· · · · · · · · · · · · · · · · · · ·		_
	Date Started:		9/25/2		Driller :			W (ft):		_
	Date Completed:		9/25/2	018	Monitoring Equipment:	RKI GX6000 PID	MAA Field	Staff:	Gary Fischer	-
ft -bgs	Sampling Interval, Odors	PID (ppm)	Sample to Laboratory		SOIL DESCRIP	TION (color, texture, moisture, etc.)		Construct	ion Details (f. pg sq.)
					(GRAVEL				-
_	None	0.70	Yes		Medium br	own silty fine SAND				
2 —									- 2	
_										
_	None	0.60			Dark brown silt	y very fine to fine SAND				
4 —									_ 4	
_					erminated at 5 ft-bgs				_	
6 —				Water lev	el in borehole 1.9 ft-bgs				_ 6	
_									_	
_										
8 —									- 8	
_										
10 —									_ _ 10	
_										
_										
12 —									- 12	ļ
_										
_										
14 —									<u> </u>	
_										
16-									- - 10	6
_									-	,
_										
18-									- 18	8
_										
20	-									e
	IENTS:	_			in - indicates inches		N/A - indicates not app		boring 20	J
D	TW - Depth to Water _	<u> </u>			ft - indicates depth in feet ft-bgs - indicates feet below	w ground surface	ppm - indicates parts pe TD - Total Depth of Bo		oling	

LOG OF BORING:

SB-17-7

	Site Name:	NCDO	T 5724 P		J Drilling/Boring Method:	Geoprobe	Total Boring Depth (ft):	5	
	Project Number:		000R320	3.00	Sampling Method:	Macrocore	Well Depth (ft):	N/A	
	Location:	(Goldsbor	o, NC	Subcontractor/Drillers:	Quantex, Inc.	Screen Depth (ft):	N/A	
	Date Started:		9/25/20)18	Driller :	James Barker	DTW (ft):	N/A	
	Date Completed:		9/25/20)18	Monitoring Equipment:	RKI GX6000 PID	MAA Field Staff:	Gary Fische	er
ft -bgs	Sample to PID (ppm) Sample to Capture Transport of the Capture Transpo				SOIL DESCRIP	TION (color, texture, moisture, etc.)	Const	ruction Details	ft-bgs
					(GRAVEL			
					Light brown silty	fine SAND with GRAVEL			
_			Yes	1					_
2 —				1	5 11 W				– 2
	None				Dark brown silty (clay fine to medium SAND			
_									_
4 —				<u> </u>		N. M. CAND			- 4
						silty fine to medium SAND			
_					erminated at 5 ft-bgs rel in borehole 2ft-bgs			•	
6 —									– 6
_									_
8 —									- 8
_									_
10 —									— 10
_									_
12 —									— 12
_									
_									_
14 —									— 14
_								•	
16-									- 16
_									
18-									- 18
_									
20								-	_
	IENTS:		1		in - indicates inches		N/A - indicates not applicable t	o this boring	_ 20
	TW - Depth to Water				ft - indicates depth in feet ft-bgs - indicates feet below	v ground surface	ppm - indicates parts per millio TD - Total Depth of Boring for	n	

LOG OF BORING:

SB-17-8

	Eng	gineering	& Enviro	nmental Solu	Ph: (919) 250-9918			Page: 1 of	1
	Site Name:		NCD0 U-5724		Drilling/Boring Method:	Geoprobe	Total Boring Dep	oth (ft):	5
	Project Number:	er: 000R3203.00		03.00	Sampling Method:	Macrocore	Well Depth (ft):		N/A
	Location:	C	Goldsbor	o, NC	Subcontractor/Drillers:	Quantex, Inc.	Screen Dep	oth (ft):	N/A
	Date Started:		9/25/2	018	Driller :	: James Barker	DT	W (ft):	N/A
	Date Completed:		9/25/2	018	Monitoring Equipment:	RKI GX6000 PID	MAA Field	l Staff: Gai	ry Fischer
ft -bgs	Sampling Interval, Odors	PID (ppm)	Sample to Laboratory		SOIL DESCRIP	ΓION (color, texture, moisture, etc.)		Construction I	Details grant
					Gr	ass/Topsoil			
2 -	None	0.60	Yes		Dark brown	fine SAND and SILT			_ _ _ 2
4 -	None	0.90			Dark brown silt	y very fine to fine SAND			_ _ _ _ 4
_	_			Roring To	rminated at 5 ft-bgs				_
6 -	-				el in borehole 1.9 ft-bgs				_ _ 6 _
8 -									_ _ _ 8
=	-								
10 -									— 10
12 -	-								_ _ 12 _
14 -	-								_ _ _ 14
- - -	-								
16- - -									- 16 - -
18-									— 18 —
20	MENTS:				in - indicates inches		N/A - indicates not app	alicable to this besi-	20
	OTW - Depth to Water	<u> </u>			ft - indicates depth in feet ft-bgs - indicates feet belov	g ground surface	ppm - indicates parts p	er million	0

APPENDIX D MID-ATLANTIC FIELD PROCEDURES

Soil Sampling Procedures

I. Sample Collection

Direct Push Technology (DPT, or "Geoprobe")

DPT uses a truck-mounted hydraulic rig to push a steel sampling probe into the subsurface to collect soil and/or groundwater samples. The sampling device used to collect the soil samples during this investigation was the "macrocore" sampler. This sampler consists of a four-foot long, two-inch diameter stainless steel spoon containing a clear, acetate liner. When the macrocore sampler is driven into the subsurface, the soil is collected into the acetate liner and then retrieved to the land surface. The liner is then cut open and the soil lithology is characterized and soil samples are collected.

Split Spoon Sampling

This method of soil sampling is typically used during advancement of hollowstem augers for the construction of monitoring wells. Soil samples are obtained from the borings by driving a prewashed, 1-3/8-inch inner-diameter split-spoon sampler at five foot intervals to termination in general accordance with ASTM D-1586 (Standard Penetration Test) specifications. Blow counts for each six inches of split-spoon penetration are recorded during advancement of the spoon. Samples are then retrieved to the land surface, the split-spoon is opened, and the soil lithology is characterized and soil samples are collected.

Hand Augering

This method is typically used for shallow sampling in areas where access is limited or underground obstacles such as utilities may be present. A pre-washed, three-inch diameter steel auger bucket is attached to extension rods and manually turned to penetrate the subsurface to the desired sampling depth. Samples are then retrieved to the land surface and the soil lithology is characterized and soil samples are collected directly from the hand auger bucket.

Excavator Bucket Sampling

This method is typically used during UST excavation and soil excavation projects. The soil samples are collected from the excavator bucket when it is not safe to collect the samples by other means. Care is taken when collecting samples from the bucket to avoid soil that has come in contact with the bucket itself to avoid cross contamination.

II. Headspace Field Screening

A portion of each sample is removed from the sampling device and placed in a prelabeled, plastic "ziploc" bag. After several minutes, the gas contained in the "headspace" or void area within the bag is tested with a photoionization detection (PID) and/or Flame lonization Detector (FID). These are useful as scanning devices to detect the presence of volatile organic compounds (VOCs) but are not relied upon to determine specific levels of contamination. Typically, the samples exhibiting the highest headspace readings will be submitted to the laboratory for analysis.

III. Preparation for Laboratory Analysis

The sample collector dons new nitrile sampling gloves prior to handling each sample. The samples are placed into laboratory-prepared, pre-labeled, sampling containers, packed in ice, and shipped to a certified laboratory under chain-of-custody control. The sampler places an executed custody seal on the cooler prior to leaving the sampler's custody. Laboratory analyses to be performed on the samples, along with other sampling information, are specified on the chain-of-custody, which is placed in the cooler with the samples.

Groundwater Sampling Procedures

I. Sample Collection

A. Monitoring Wells

Prior to sample collection, each well is purged of three to five standing well volumes or to dryness to remove stagnant water from the well and well bore in an effort to collect samples that are representative of the water quality in the formation surrounding each well. Purging is performed either with a new, polyethylene bailer dedicated to each well, or with a decontaminated pump. Samples are retrieved from the monitoring well using the dedicated bailer. New nylon string is used on each dedicated bailer, and new nitrile sampling gloves are donned prior to purging and sampling of each well.

B. Geoprobe "Screen Point Sampler"

The screen point sampler is a "grab" sampling device that is driven into the saturated zone and a surrounding metal sheath is retracted, exposing a screen. Groundwater entering the screen is then drawn to land surface through disposable tubing that is placed through the hollow push rods. The sample is collected from the tubing into the appropriate sampling glassware.

C. Water-Supply Wells

Water samples are typically collected from the available spigot that is nearest to the well. The water is allowed to run at a high flow from the spigot for approximately 10 to 15 minutes to allow the water in the delivery lines to be purged. The sample flow is then reduced and the samples are collected directly into pre-labeled containers as described below. New nitrile sampling gloves are donned prior to sampling of each well.

D. Treatment System Influent/Effluent

Samples are typically collected from the influent or effluent of pump-and-treat groundwater remediation systems using designated sampling ports in the influent and effluent water transport lines. The water is typically allowed to run for several seconds to clear potential debris in the sampling port. The sample is then collected directly into sampling containers as described below. New nitrile sampling gloves are donned prior to sample collection.

II. Preparation for Laboratory Analysis

Groundwater samples are decanted directly into laboratory-prepared, pre-labeled, sampling containers, packed in ice, and shipped to a certified laboratory under chain-of-custody control. Laboratory analyses performed on the samples are specified on the chain-of-custody.

APPENDIX E SOIL LABORATORY ANALYTICAL REPORTS AND GRAPHS

Hydrocarbon Analysis Results

Client: MID ATLANTIC ASSOCIATES

Address: 409 ROGERS VIEW CT

RALEIGH NC 27610

Samples taken Samples extracted Samples analysed

Operator

Monday, September 24, 2018 Monday, September 24, 2018

Thursday, September 27, 2018

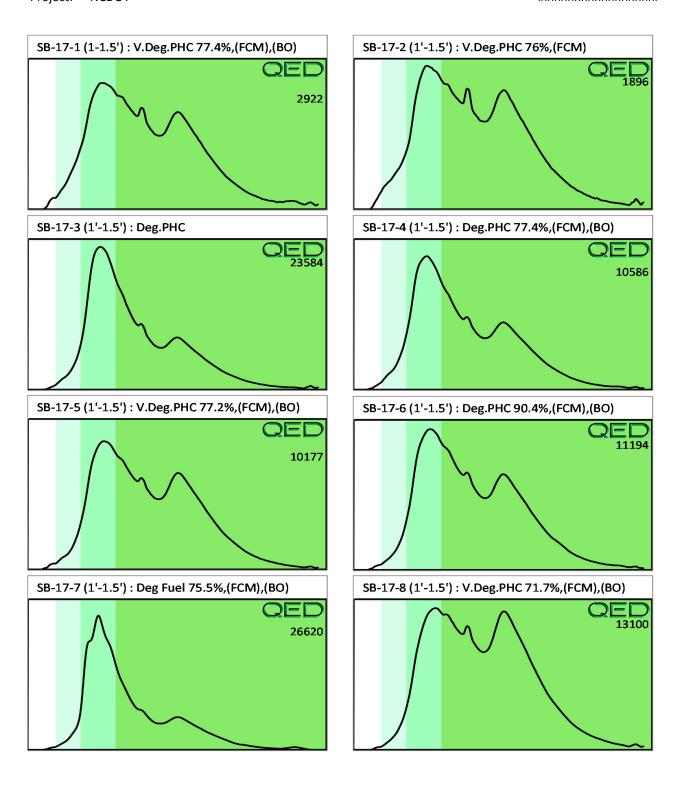
NICK HENDRIX

Contact: TREY MARCHANT

COLLECTED BY GARY FISCHER

Project: NCDOT

H09382 Total Dilution **BTEX** GRO DRO **TPH 16 EPA** Matrix Sample ID **Aromatics** BaP % Ratios **HC Fingerprint Match** (C10 - C35) used (C6 - C9) (C5 - C10) (C5 - C35)**PAHs** (C10-C35) C5 -C10 -C18 C10 C18 SB-17-1 (1-1.5') < 0.55 < 0.55 2.4 2.4 < 0.17 < 0.022 66.1 33.9 V.Deg.PHC 77.4%,(FCM),(BO) 21.8 1.4 SB-17-2 (1'-1.5') 18.1 < 0.45 < 0.45 1.1 1.1 0.75 < 0.14 < 0.018 63.3 36.7 V.Deg.PHC 76%,(FCM) < 0.52 SB-17-3 (1'-1.5') 20.6 1.1 15.5 16.6 0.45 < 0.021 10.9 70.9 18.2 Deg.PHC 75.1%,(FCM),(PFM),(BO) S 4.7 SB-17-4 (1'-1.5') 23.0 < 0.58 1.1 9.1 10.2 0.24 < 0.023 19.5 60.4 20.1 Deg.PHC 77.4%,(FCM),(BO) S < 0.53 1.7 7.4 4.8 < 0.021 47.1 SB-17-5 (1'-1.5') 21.1 9.1 0.24 28.9 24 V.Deg.PHC 77.2%,(FCM),(BO) s SB-17-6 (1'-1.5') 20.0 < 0.5 1.2 8.3 9.5 4.9 0.25 < 0.02 22.2 53 24.8 Deg.PHC 90.4%,(FCM),(BO) s 17.9 1.6 14.6 16.2 10.2 0.59 < 0.018 15.5 74.2 10.2 Deg Fuel 75.5%,(FCM),(BO) SB-17-7 (1'-1.5') < 0.45 S 59.9 SB-17-8 (1'-1.5') 6.2 < 0.16 < 0.16 1.9 1.9 1.8 0.09 < 0.006 40.1 V.Deg.PHC 71.7%,(FCM),(BO) S S S Initial Calibrator QC check Final FCM QC Check OK 98 %


Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Abbreviations: FCM = Results calculated using Fundamental Calibration Mode: % = confidence of hydrocarbon identification: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate detected

B = Blank Drift: (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result: (BO) = Background Organics detected: (OCR) = Outside cal range: (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only. Data generated by HC-1 Analyser

OK

APPENDIX F

GROUNDWATER LABORATORY ANALYTICAL REPORT AND CHAIN OF CUSTODY RECORD

ANALYTICAL REPORT

October 05, 2018

Mid-Atlantic Associates, Inc.

Sample Delivery Group:

L1029586

Samples Received:

09/27/2018

Project Number:

R3203.00

Description:

NCDOT U5724 PSA

Report To:

Mr. Trey Marchant

409 Rogers View Court

Raleigh, NC 27610

Entire Report Reviewed By:

T. Alan Harvill Project Manager

Harrill

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
TMW-17-4 L1029586-01	5
Qc: Quality Control Summary	8
Volatile Organic Compounds (GC/MS) by Method 6200B-1997	8
Semi Volatile Organic Compounds (GC/MS) by Method 625.1	12
GI: Glossary of Terms	16
Al: Accreditations & Locations	17
Sc: Sample Chain of Custody	18

			Collected by	Collected date/time	Received date/time
TMW-17-4 L1029586-01 GW			Cory A. Fisher	09/25/18 13:50	09/27/18 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC/MS) by Method 6200B-1997	WG1173054	1	09/28/18 21:10	09/28/18 21:10	ACG
Semi Volatile Organic Compounds (GC/MS) by Method 625.1	WG1173780	1	10/01/18 16:58	10/02/18 10:44	AO

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Mid-Atlantic Associates, Inc.

Project Manager

PAGE:

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

³Ss

Cn

СQс

Gl

Αl

³Sc

Collected date/time: 09/25/18 13:50

L1029586

Volatile Organic Compounds (GC/MS) by Method 6200B-1997

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acetone	U		10.0	50.0	1	09/28/2018 21:10	WG1173054
Acrolein	U		8.87	50.0	1	09/28/2018 21:10	WG1173054
Acrylonitrile	U		1.87	10.0	1	09/28/2018 21:10	WG1173054
Benzene	U		0.331	1.00	1	09/28/2018 21:10	WG1173054
Bromobenzene	U		0.352	1.00	1	09/28/2018 21:10	WG1173054
Bromodichloromethane	U		0.380	1.00	1	09/28/2018 21:10	WG1173054
Bromoform	U		0.469	1.00	1	09/28/2018 21:10	WG1173054
Bromomethane	U		0.866	5.00	1	09/28/2018 21:10	WG1173054
n-Butylbenzene	U		0.361	1.00	1	09/28/2018 21:10	WG1173054
sec-Butylbenzene	0.425	<u>J</u>	0.365	1.00	1	09/28/2018 21:10	WG1173054
tert-Butylbenzene	U		0.399	1.00	1	09/28/2018 21:10	WG1173054
Carbon tetrachloride	U		0.379	1.00	1	09/28/2018 21:10	WG1173054
Chlorobenzene	U		0.348	1.00	1	09/28/2018 21:10	WG1173054
Chlorodibromomethane	U		0.327	1.00	1	09/28/2018 21:10	WG1173054
Chloroethane	U		0.453	5.00	1	09/28/2018 21:10	WG1173054
Chloroform	U		0.324	5.00	1	09/28/2018 21:10	WG1173054
Chloromethane	U		0.276	2.50	1	09/28/2018 21:10	WG1173054
2-Chlorotoluene	U		0.375	1.00	1	09/28/2018 21:10	WG1173054
4-Chlorotoluene	U		0.351	1.00	1	09/28/2018 21:10	WG1173054
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	09/28/2018 21:10	WG1173054
1,2-Dibromoethane	U		0.381	1.00	1	09/28/2018 21:10	WG1173054
Dibromomethane	U		0.346	1.00	1	09/28/2018 21:10	WG1173054
1,2-Dichlorobenzene	U		0.349	1.00	1	09/28/2018 21:10	WG1173054
1,3-Dichlorobenzene	U		0.220	1.00	1	09/28/2018 21:10	WG1173054
1,4-Dichlorobenzene	U		0.274	1.00	1	09/28/2018 21:10	WG1173054
Dichlorodifluoromethane	U		0.551	5.00	1	09/28/2018 21:10	WG1173054
1,1-Dichloroethane	U		0.259	1.00	1	09/28/2018 21:10	WG1173054
1,2-Dichloroethane	U		0.361	1.00	1	09/28/2018 21:10	WG1173054
1,1-Dichloroethene	U		0.398	1.00	1	09/28/2018 21:10	WG1173054
cis-1,2-Dichloroethene	U		0.260	1.00	1	09/28/2018 21:10	WG1173054
trans-1,2-Dichloroethene	U		0.396	1.00	1	09/28/2018 21:10	WG1173054
1,2-Dichloropropane	U		0.306	1.00	1	09/28/2018 21:10	WG1173054
1,1-Dichloropropene	U		0.352	1.00	1	09/28/2018 21:10	WG1173054
1,3-Dichloropropane	U		0.366	1.00	1	09/28/2018 21:10	WG1173054
2,2-Dichloropropane	U		0.321	1.00	1	09/28/2018 21:10	WG1173054
Di-isopropyl ether	U		0.320	1.00	1	09/28/2018 21:10	WG1173054
Ethylbenzene	U		0.384	1.00	1	09/28/2018 21:10	WG1173054
Hexachloro-1,3-butadiene	U		0.256	1.00	1	09/28/2018 21:10	WG1173054
Isopropylbenzene	U		0.326	1.00	1	09/28/2018 21:10	WG1173054
p-lsopropyltoluene	U		0.350	1.00	1	09/28/2018 21:10	WG1173054
2-Butanone (MEK)	U		3.93	10.0	1	09/28/2018 21:10	WG1173054
Methylene Chloride	U		1.00	5.00	1	09/28/2018 21:10	WG1173054
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	09/28/2018 21:10	WG1173054
Methyl tert-butyl ether	U		0.367	1.00	1	09/28/2018 21:10	WG1173054
Naphthalene	1.76	<u>J</u>	1.00	5.00	1	09/28/2018 21:10	WG1173054
n-Propylbenzene	U	_	0.349	1.00	1	09/28/2018 21:10	WG1173054
Styrene	U		0.307	1.00	1	09/28/2018 21:10	WG1173054
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	09/28/2018 21:10	WG1173054
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	09/28/2018 21:10	WG1173054
Tetrachloroethene	U		0.372	1.00	1	09/28/2018 21:10	WG1173054
Toluene	0.879	<u>J</u>	0.412	1.00	1	09/28/2018 21:10	WG1173054
1,2,3-Trichlorobenzene	U	<u>-</u>	0.230	1.00	1	09/28/2018 21:10	WG1173054
1,2,4-Trichlorobenzene	U		0.355	1.00	1	09/28/2018 21:10	WG1173054
1,1,1-Trichloroethane	U		0.319	1.00	1	09/28/2018 21:10	WG1173054
1,1,2-Trichloroethane	U		0.383	1.00	1	09/28/2018 21:10	WG1173054
Trichloroethene	U		0.398	1.00	1	09/28/2018 21:10	WG1173054
	-		1.230				

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 09/25/18 13:50

L1029586

Volatile Organic Compounds (GC/MS) by Method 62008-1997

Semi Volatile Organic Compounds (GC/MS) by Method 625.1

Volatile Organic Co	ompound	ds (GC/MS)	by Meth	iod 6200B-19	9/		
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Trichlorofluoromethane	U		1.20	5.00	1	09/28/2018 21:10	WG1173054
1,2,3-Trichloropropane	U		0.807	2.50	1	09/28/2018 21:10	WG1173054
1,2,4-Trimethylbenzene	3.27		0.373	1.00	1	09/28/2018 21:10	WG1173054
1,3,5-Trimethylbenzene	1.01		0.387	1.00	1	09/28/2018 21:10	WG1173054
Vinyl chloride	U		0.259	1.00	1	09/28/2018 21:10	WG1173054
o-Xylene	U		0.341	1.00	1	09/28/2018 21:10	WG1173054
m&p-Xylenes	1.32	<u>J</u>	0.719	2.00	1	09/28/2018 21:10	WG1173054
(S) Toluene-d8	101			80.0-120		09/28/2018 21:10	WG1173054
(S) Dibromofluoromethane	109			75.0-120		09/28/2018 21:10	WG1173054
(S) a,a,a-Trifluorotoluene	98.1			80.0-120		09/28/2018 21:10	WG1173054
(S) 4-Bromofluorobenzene	105			77.0-126		09/28/2018 21:10	WG1173054

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l	Guainio	ug/l	ug/l	2	date / time	
Acenaphthene	U		0.316	1.00	1	10/02/2018 10:44	WG1173780
Acenaphthylene	U		0.309	1.00	1	10/02/2018 10:44	WG1173780
Anthracene	U		0.291	1.00	1	10/02/2018 10:44	WG1173780
Benzidine	U		4.32	10.0	1	10/02/2018 10:44	WG1173780
Benzo(a)anthracene	U		0.0975	1.00	1	10/02/2018 10:44	WG1173780
Benzo(b)fluoranthene	U		0.0896	1.00	1	10/02/2018 10:44	WG1173780
Benzo(k)fluoranthene	U		0.355	1.00	1	10/02/2018 10:44	WG1173780
Benzo(g,h,i)perylene	U		0.161	1.00	1	10/02/2018 10:44	WG1173780
Benzo(a)pyrene	U		0.340	1.00	1	10/02/2018 10:44	WG1173780
Bis(2-chlorethoxy)methane	U		0.329	10.0	1	10/02/2018 10:44	WG1173780
Bis(2-chloroethyl)ether	U		1.62	10.0	1	10/02/2018 10:44	WG1173780
Bis(2-chloroisopropyl)ether	U		0.445	10.0	1	10/02/2018 10:44	WG1173780
4-Bromophenyl-phenylether	U		0.335	10.0	1	10/02/2018 10:44	WG1173780
2-Chloronaphthalene	U	<u>J4</u>	0.330	1.00	1	10/02/2018 10:44	WG1173780
4-Chlorophenyl-phenylether	U	_	0.303	10.0	1	10/02/2018 10:44	WG1173780
Chrysene	U		0.332	1.00	1	10/02/2018 10:44	WG1173780
Dibenz(a,h)anthracene	U		0.279	1.00	1	10/02/2018 10:44	WG1173780
3,3-Dichlorobenzidine	U		2.02	10.0	1	10/02/2018 10:44	WG1173780
2,4-Dinitrotoluene	U		1.65	10.0	1	10/02/2018 10:44	WG1173780
2,6-Dinitrotoluene	U		0.279	10.0	1	10/02/2018 10:44	WG1173780
Fluoranthene	U		0.310	1.00	1	10/02/2018 10:44	WG1173780
Fluorene	U		0.323	1.00	1	10/02/2018 10:44	WG1173780
Hexachlorobenzene	U		0.341	1.00	1	10/02/2018 10:44	WG1173780
Hexachloro-1,3-butadiene	U		0.329	10.0	1	10/02/2018 10:44	WG1173780
Hexachlorocyclopentadiene	U		2.33	10.0	1	10/02/2018 10:44	WG1173780
Hexachloroethane	U	<u>J4</u>	0.365	10.0	1	10/02/2018 10:44	WG1173780
Indeno(1,2,3-cd)pyrene	U		0.279	1.00	1	10/02/2018 10:44	WG1173780
Isophorone	U		0.272	10.0	1	10/02/2018 10:44	WG1173780
Naphthalene	0.568	<u>J</u>	0.372	1.00	1	10/02/2018 10:44	WG1173780
Nitrobenzene	U		0.367	10.0	1	10/02/2018 10:44	WG1173780
n-Nitrosodimethylamine	U		1.26	10.0	1	10/02/2018 10:44	WG1173780
n-Nitrosodiphenylamine	U		1.19	10.0	1	10/02/2018 10:44	WG1173780
n-Nitrosodi-n-propylamine	U		0.403	10.0	1	10/02/2018 10:44	WG1173780
Phenanthrene	U		0.366	1.00	1	10/02/2018 10:44	WG1173780
Benzylbutyl phthalate	U		0.275	3.00	1	10/02/2018 10:44	WG1173780
Bis(2-ethylhexyl)phthalate	U		0.709	3.00	1	10/02/2018 10:44	WG1173780
Di-n-butyl phthalate	U		0.266	3.00	1	10/02/2018 10:44	WG1173780
Diethyl phthalate	U		0.282	3.00	1	10/02/2018 10:44	<u>WG1173780</u>
Dimethyl phthalate	U		0.283	3.00	1	10/02/2018 10:44	WG1173780
Di-n-octyl phthalate	U		0.278	3.00	1	10/02/2018 10:44	<u>WG1173780</u>
Pyrene	U		0.330	1.00	1	10/02/2018 10:44	WG1173780

Mid-Atlantic Associates, Inc.

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 09/25/18 13:50

L1029586

Semi Volatile Organic Compounds (GC/MS) by Method 625.1

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
1,2,4-Trichlorobenzene	U	<u>J4</u>	0.355	10.0	1	10/02/2018 10:44	WG1173780
4-Chloro-3-methylphenol	U		0.263	10.0	1	10/02/2018 10:44	WG1173780
2-Chlorophenol	U		0.283	10.0	1	10/02/2018 10:44	WG1173780
2,4-Dichlorophenol	U		0.284	10.0	1	10/02/2018 10:44	WG1173780
2,4-Dimethylphenol	U		0.624	10.0	1	10/02/2018 10:44	WG1173780
4,6-Dinitro-2-methylphenol	U		2.62	10.0	1	10/02/2018 10:44	WG1173780
2,4-Dinitrophenol	U		3.25	10.0	1	10/02/2018 10:44	WG1173780
2-Nitrophenol	U		0.320	10.0	1	10/02/2018 10:44	WG1173780
4-Nitrophenol	U		2.01	10.0	1	10/02/2018 10:44	WG1173780
Pentachlorophenol	U		0.313	10.0	1	10/02/2018 10:44	WG1173780
Phenol	0.418	<u>J</u>	0.334	10.0	1	10/02/2018 10:44	WG1173780
2,4,6-Trichlorophenol	U		0.297	10.0	1	10/02/2018 10:44	WG1173780
(S) Nitrobenzene-d5	27.9			15.0-314		10/02/2018 10:44	WG1173780
(S) 2-Fluorobiphenyl	24.2			22.0-127		10/02/2018 10:44	WG1173780
(S) p-Terphenyl-d14	40.8			29.0-141		10/02/2018 10:44	WG1173780
(S) Phenol-d5	6.99	<u>J2</u>		8.00-424		10/02/2018 10:44	WG1173780
(S) 2-Fluorophenol	9.85	<u>J2</u>		10.0-120		10/02/2018 10:44	WG1173780
(S) 2,4,6-Tribromophenol	4.01	<u>J2</u>		10.0-153		10/02/2018 10:44	WG1173780

Sample Narrative:

L1029586-01 WG1173780: Duplicate analysis was performed.

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 6200B-1997

L1029586-01

Method Blank (MB)

Method Blank (MB)					
(MB) R3346330-4 09/28/1	8 14:53				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Acetone	U		10.0	50.0	
Acrylonitrile	U		1.87	10.0	
Acrolein	U		8.87	50.0	
Benzene	U		0.331	1.00	
Bromobenzene	U		0.352	1.00	
Bromodichloromethane	U		0.380	1.00	
Bromoform	U		0.469	1.00	
Bromomethane	U		0.866	5.00	
n-Butylbenzene	U		0.361	1.00	
sec-Butylbenzene	U		0.365	1.00	
tert-Butylbenzene	U		0.399	1.00	
Carbon tetrachloride	U		0.379	1.00	
Chlorobenzene	U		0.348	1.00	
Chlorodibromomethane	U		0.327	1.00	
Chloroethane	U		0.453	5.00	
Chloroform	U		0.324	5.00	
Chloromethane	U		0.276	2.50	
2-Chlorotoluene	U		0.375	1.00	
4-Chlorotoluene	U		0.351	1.00	
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	
1,2-Dibromoethane	U		0.381	1.00	
Dibromomethane	U		0.346	1.00	
1,2-Dichlorobenzene	U		0.349	1.00	
1,3-Dichlorobenzene	U		0.220	1.00	
1,4-Dichlorobenzene	U		0.274	1.00	
Dichlorodifluoromethane	U		0.551	5.00	
1,1-Dichloroethane	U		0.259	1.00	
1,2-Dichloroethane	U		0.361	1.00	
1,1-Dichloroethene	U		0.398	1.00	
cis-1,2-Dichloroethene	U		0.260	1.00	
trans-1,2-Dichloroethene	U		0.396	1.00	
1,2-Dichloropropane	U		0.306	1.00	
1,1-Dichloropropene	U		0.352	1.00	
1,3-Dichloropropane	U		0.366	1.00	
2,2-Dichloropropane	U		0.321	1.00	
Di-isopropyl ether	U		0.320	1.00	
Ethylbenzene	U		0.384	1.00	
Hexachloro-1,3-butadiene	U		0.256	1.00	
Isopropylbenzene	U		0.326	1.00	
p-Isopropyltoluene	U		0.350	1.00	

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 6200B-1997

L1029586-01

Method Blank (MB)

(MB) R3346330-4 09/28/	18 14:53				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
2-Butanone (MEK)	U		3.93	10.0	
Methylene Chloride	U		1.00	5.00	
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	
Methyl tert-butyl ether	U		0.367	1.00	
Naphthalene	U		1.00	5.00	
n-Propylbenzene	U		0.349	1.00	
Styrene	U		0.307	1.00	
1,1,1,2-Tetrachloroethane	U		0.385	1.00	
1,1,2,2-Tetrachloroethane	U		0.130	1.00	
Tetrachloroethene	U		0.372	1.00	
Toluene	U		0.412	1.00	
1,2,3-Trichlorobenzene	U		0.230	1.00	
1,2,4-Trichlorobenzene	U		0.355	1.00	
1,1,1-Trichloroethane	U		0.319	1.00	
1,1,2-Trichloroethane	U		0.383	1.00	
Trichloroethene	U		0.398	1.00	
Trichlorofluoromethane	U		1.20	5.00	
1,2,3-Trichloropropane	U		0.807	2.50	
1,2,4-Trimethylbenzene	U		0.373	1.00	
1,3,5-Trimethylbenzene	U		0.387	1.00	
Vinyl chloride	U		0.259	1.00	
o-Xylene	U		0.341	1.00	
m&p-Xylenes	U		0.719	2.00	
(S) Toluene-d8	102			80.0-120	
(S) Dibromofluoromethane	105			75.0-120	
(S) 4-Bromofluorobenzene	102			77.0-126	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

80.0-120

103

(S) a,a,a-Trifluorotoluene

(LCS) R3346330-1 09/28	3/18 13:38 • (LCSI	D) R3346330-:	2 09/28/18 13:5	57							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Acetone	125	139	139	111	111	19.0-160			0.248	27	
Acrylonitrile	125	133	136	106	108	55.0-149			2.01	20	
Benzene	25.0	22.9	23.5	91.7	93.9	70.0-123			2.42	20	
Bromobenzene	25.0	25.4	25.5	101	102	73.0-121			0.416	20	
Bromodichloromethane	25.0	24.0	24.1	95.9	96.5	75.0-120			0.661	20	
Bromoform	25.0	26.6	26.6	107	106	68.0-132			0.271	20	

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 6200B-1997

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3346330-1 09/28/1	8 13:38 • (LCSI	D) R3346330-2	9 09/28/18 13:5	7						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Bromomethane	25.0	26.1	25.7	104	103	10.0-160			1.42	25
n-Butylbenzene	25.0	23.9	24.4	95.4	97.7	73.0-125			2.36	20
sec-Butylbenzene	25.0	24.2	24.8	96.8	99.1	75.0-125			2.31	20
tert-Butylbenzene	25.0	25.6	26.1	102	104	76.0-124			1.96	20
Carbon tetrachloride	25.0	24.7	25.3	98.8	101	68.0-126			2.59	20
Chlorobenzene	25.0	24.4	23.7	97.6	94.7	80.0-121			3.02	20
Chlorodibromomethane	25.0	24.8	24.0	99.2	95.9	77.0-125			3.38	20
Chloroethane	25.0	25.6	24.6	102	98.2	47.0-150			4.13	20
Chloroform	25.0	24.0	24.8	96.1	99.2	73.0-120			3.21	20
Chloromethane	25.0	30.7	31.1	123	124	41.0-142			1.16	20
2-Chlorotoluene	25.0	25.5	25.7	102	103	76.0-123			1.02	20
4-Chlorotoluene	25.0	25.3	25.6	101	102	75.0-122			1.23	20
1,2-Dibromo-3-Chloropropane	25.0	23.8	23.8	95.2	95.2	58.0-134			0.0506	20
1,2-Dibromoethane	25.0	25.0	23.8	100	95.3	80.0-122			4.91	20
Dibromomethane	25.0	24.5	24.4	97.8	97.7	80.0-120			0.141	20
1,2-Dichlorobenzene	25.0	23.6	24.3	94.3	97.0	79.0-121			2.80	20
1,3-Dichlorobenzene	25.0	24.0	24.4	96.2	97.7	79.0-120			1.58	20
1,4-Dichlorobenzene	25.0	23.8	24.2	95.1	96.8	79.0-120			1.71	20
Dichlorodifluoromethane	25.0	28.6	28.8	114	115	51.0-149			0.759	20
1,1-Dichloroethane	25.0	24.5	24.5	97.9	98.0	70.0-126			0.0873	20
1,2-Dichloroethane	25.0	26.0	26.3	104	105	70.0-128			1.15	20
1,1-Dichloroethene	25.0	23.6	23.9	94.2	95.8	71.0-124			1.62	20
cis-1,2-Dichloroethene	25.0	23.3	23.5	93.1	94.1	73.0-120			1.03	20
trans-1,2-Dichloroethene	25.0	23.8	24.2	95.3	97.0	73.0-120			1.72	20
1,2-Dichloropropane	25.0	23.8	23.9	95.0	95.5	77.0-125			0.515	20
1,1-Dichloropropene	25.0	24.4	24.7	97.8	98.7	74.0-126			1.01	20
1,3-Dichloropropane	25.0	24.3	23.9	97.2	95.8	80.0-120			1.47	20
2,2-Dichloropropane	25.0	23.1	24.5	92.4	97.8	58.0-130			5.65	20
Di-isopropyl ether	25.0	26.1	27.0	104	108	58.0-138			3.24	20
Ethylbenzene	25.0	24.9	24.1	99.7	96.4	79.0-123			3.34	20
Hexachloro-1,3-butadiene	25.0	24.6	25.8	98.5	103	54.0-138			4.69	20
Isopropylbenzene	25.0	25.7	26.2	103	105	76.0-127			1.96	20
p-Isopropyltoluene	25.0	25.4	25.8	102	103	76.0-125			1.61	20
2-Butanone (MEK)	125	139	138	111	111	44.0-160			0.174	20
Acrolein	125	131	154	105	123	10.0-160			16.2	26
Methylene Chloride	25.0	25.0	23.9	100	95.6	67.0-120			4.69	20
4-Methyl-2-pentanone (MIBK)	125	144	138	115	110	68.0-142			4.38	20
Methyl tert-butyl ether	25.0	23.8	25.1	95.1	101	68.0-125			5.48	20
Naphthalene	25.0	22.8	23.1	91.2	92.4	54.0-135			1.31	20
n-Propylbenzene	25.0	25.3	25.4	101	102	77.0-124			0.652	20
۸۵	COUNT:			pD∩	IFCT:		SDG.			DATE/TIME: PAGE:

(S) 4-Bromofluorobenzene

(S) a,a,a-Trifluorotoluene

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 6200B-1997

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3346330-1 09/28/18 13:38 • (LCSD) R3346330-2 09/28/18 13:57

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Styrene	25.0	27.9	27.5	111	110	73.0-130			1.24	20
1,1,1,2-Tetrachloroethane	25.0	24.7	23.7	99.0	95.0	75.0-125			4.14	20
1,1,2,2-Tetrachloroethane	25.0	25.3	25.0	101	100	65.0-130			1.20	20
Tetrachloroethene	25.0	24.4	23.7	97.7	94.8	72.0-132			3.03	20
Toluene	25.0	23.1	22.3	92.6	89.4	79.0-120			3.53	20
1,2,3-Trichlorobenzene	25.0	23.7	24.1	95.0	96.5	50.0-138			1.58	20
1,2,4-Trichlorobenzene	25.0	24.1	24.8	96.4	99.4	57.0-137			3.03	20
1,1,1-Trichloroethane	25.0	25.9	26.1	104	104	73.0-124			0.717	20
1,1,2-Trichloroethane	25.0	25.0	24.2	100	96.9	80.0-120			3.29	20
Trichloroethene	25.0	23.8	23.7	95.2	95.0	78.0-124			0.256	20
Trichlorofluoromethane	25.0	27.3	26.7	109	107	59.0-147			2.42	20
1,2,3-Trichloropropane	25.0	26.6	26.0	106	104	73.0-130			2.40	20
1,2,4-Trimethylbenzene	25.0	24.8	25.2	99.0	101	76.0-121			1.85	20
1,3,5-Trimethylbenzene	25.0	25.8	25.9	103	104	76.0-122			0.492	20
Vinyl chloride	25.0	26.1	27.1	104	109	67.0-131			4.11	20
o-Xylene	25.0	24.6	24.1	98.4	96.6	80.0-122			1.90	20
m&p-Xylenes	50.0	50.0	48.5	99.9	96.9	80.0-122			3.07	20
(S) Toluene-d8				104	99.4	80.0-120				
(S) Dibromofluoromethane				103	104	75.0-120				

77.0-126

80.0-120

105

101

105

101

ONE LAB. NATIONWIDE.

L1029586-01

Semi Volatile Organic Compounds (GC/MS) by Method 625.1

Method Blank (MB)

Method Blank (MB)				
(MB) R3346721-3 10/02/18	8 00:38				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Acenaphthene	U		0.316	1.00	
Acenaphthylene	U		0.309	1.00	
Anthracene	U		0.291	1.00	
Benzidine	U		4.32	10.0	
Benzo(a)anthracene	U		0.0975	1.00	
Benzo(b)fluoranthene	U		0.0896	1.00	
Benzo(k)fluoranthene	U		0.355	1.00	
Benzo(g,h,i)perylene	U		0.161	1.00	
Benzo(a)pyrene	U		0.340	1.00	
Bis(2-chlorethoxy)methane	U		0.329	10.0	
Bis(2-chloroethyl)ether	U		1.62	10.0	
Bis(2-chloroisopropyl)ether	U		0.445	10.0	
4-Bromophenyl-phenylether	U		0.335	10.0	
2-Chloronaphthalene	U		0.330	1.00	
4-Chlorophenyl-phenylether	U		0.303	10.0	
Chrysene	U		0.332	1.00	
Dibenz(a,h)anthracene	U		0.279	1.00	
3,3-Dichlorobenzidine	U		2.02	10.0	
2,4-Dinitrotoluene	U		1.65	10.0	
2,6-Dinitrotoluene	U		0.279	10.0	
Fluoranthene	U		0.310	1.00	
Fluorene	U		0.323	1.00	
Hexachlorobenzene	U		0.341	1.00	
Hexachloro-1,3-butadiene	U		0.329	10.0	
Hexachlorocyclopentadiene	U		2.33	10.0	
Hexachloroethane	U		0.365	10.0	
Indeno(1,2,3-cd)pyrene	U		0.279	1.00	
Isophorone	U		0.272	10.0	
Naphthalene	U		0.372	1.00	
Nitrobenzene	U		0.367	10.0	
n-Nitrosodimethylamine	U		1.26	10.0	
n-Nitrosodiphenylamine	U		1.19	10.0	
n-Nitrosodi-n-propylamine	U		0.403	10.0	
Phenanthrene	U		0.366	1.00	
Benzylbutyl phthalate	U		0.275	3.00	
Bis(2-ethylhexyl)phthalate	U		0.709	3.00	
Di-n-butyl phthalate	U		0.266	3.00	
Diethyl phthalate	U		0.282	3.00	
Dimethyl phthalate	U		0.283	3.00	
Di-n-octyl phthalate	U		0.278	3.00	

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 625.1

L1029586-01

Method Blank (MB)

(MB) R3346721-3 10/02/	18 00:38				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Pyrene	U		0.330	1.00	
1,2,4-Trichlorobenzene	U		0.355	10.0	
4-Chloro-3-methylphenol	U		0.263	10.0	
2-Chlorophenol	U		0.283	10.0	
2-Nitrophenol	U		0.320	10.0	
4-Nitrophenol	U		2.01	10.0	
Pentachlorophenol	U		0.313	10.0	
Phenol	U		0.334	10.0	
2,4,6-Trichlorophenol	U		0.297	10.0	
2,4-Dichlorophenol	U		0.284	10.0	
2,4-Dimethylphenol	U		0.624	10.0	
4,6-Dinitro-2-methylphenol	U		2.62	10.0	
2,4-Dinitrophenol	U		3.25	10.0	
(S) Nitrobenzene-d5	62.3			15.0-314	
(S) 2-Fluorobiphenyl	59.3			22.0-127	
(S) p-Terphenyl-d14	73.7			29.0-141	
(S) Phenol-d5	27.1			8.00-424	
(S) 2-Fluorophenol	46.9			10.0-120	
(S) 2,4,6-Tribromophenol	45.3			10.0-153	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3346721-1 10/01/18	3 23:50 • (LCSD) R3346721-2	10/02/18 00:14							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Acenaphthene	50.0	32.6	34.4	65.2	68.8	47.0-145			5.37	48
Acenaphthylene	50.0	32.0	33.8	64.0	67.6	33.0-145			5.47	74
Anthracene	50.0	32.1	33.9	64.2	67.8	27.0-133			5.45	66
Benzidine	50.0	12.7	14.5	25.4	29.0	1.00-120			13.2	36
Benzo(a)anthracene	50.0	36.2	39.5	72.4	79.0	33.0-143			8.72	53
Benzo(b)fluoranthene	50.0	37.3	37.2	74.6	74.4	24.0-159			0.268	71
Benzo(k)fluoranthene	50.0	36.0	41.6	72.0	83.2	11.0-162			14.4	63
Benzo(g,h,i)perylene	50.0	37.4	40.5	74.8	81.0	1.00-219			7.96	97
Benzo(a)pyrene	50.0	36.3	38.5	72.6	77.0	17.0-163			5.88	72
Bis(2-chlorethoxy)methane	50.0	28.8	30.1	57.6	60.2	1.00-219			4.41	54
Bis(2-chloroethyl)ether	50.0	31.9	34.1	63.8	68.2	33.0-185			6.67	108
Bis(2-chloroisopropyl)ether	50.0	30.6	31.9	61.2	63.8	36.0-166			4.16	76
4-Bromophenyl-phenylether	50.0	34.0	35.8	68.0	71.6	53.0-127			5.16	43
2-Chloronaphthalene	50.0	29.6	30.9	59.2	61.8	60.0-120	<u>J4</u>		4.30	24

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 625.1

50.0

2,4,6-Trichlorophenol

(S) Nitrobenzene-d5

32.7

32.7

65.4

55.2

65.4

58.8

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3346721-1 10/01/18 23:50 • (LCSD) R3346721-2 10/02/18 00:14 **RPD Limits** Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD Analyte ua/l ug/l % % % % % ug/l 4-Chlorophenyl-phenylether 50.0 33.8 35.4 67.6 70.8 25.0-158 4.62 61 87 50.0 39.1 72.8 78.2 7.15 Chrysene 36.4 17.0-168 Dibenz(a,h)anthracene 50.0 35.8 38.4 71.6 76.8 1.00-227 7.01 126 35.5 64.8 71.0 1.00-262 9.13 108 3,3-Dichlorobenzidine 50.0 32.4 50.0 36.7 73.4 79.0 39.0-139 42 2,4-Dinitrotoluene 39.5 7.35 50.0 33.9 67.8 73.0 50.0-158 7.39 48 2,6-Dinitrotoluene 36.5 50.0 35.8 71.6 78.0 26.0-137 8.56 66 Fluoranthene 39.0 Fluorene 50.0 34.6 36.2 69.2 72.4 59.0-121 4.52 38 50.0 1.00-152 4.88 55 Hexachlorobenzene 36.0 37.8 72.0 75.6 62 Hexachloro-1,3-butadiene 50.0 12.5 13.1 25.0 26.2 24.0-120 4.69 17.7 31 Hexachlorocyclopentadiene 50.0 16.4 32.8 35.4 10.0-120 7.62 J4 27.8 J4 5.59 52 Hexachloroethane 50.0 13.9 14.7 29.4 40.0-120 Indeno(1,2,3-cd)pyrene 50.0 37.6 40.4 75.2 8.08 1.00-171 7.18 99 58.6 93 Isophorone 50.0 29.3 30.5 61.0 21.0-196 4.01 25.9 26.5 53.0 65 Naphthalene 50.0 51.8 21.0-133 2.29 50.0 29.6 30.8 59.2 61.6 35.0-180 3.97 62 Nitrobenzene 45.4 34 n-Nitrosodimethylamine 50.0 22.7 22.2 44.4 10.0-120 2.23 n-Nitrosodiphenylamine 50.0 35.6 37.8 71.2 75.6 44.0-120 5.99 21 n-Nitrosodi-n-propylamine 62.6 87 50.0 31.3 34.2 68.4 1.00-230 8.85 50.0 32.8 34.9 65.6 69.8 54.0-120 6.20 39 Phenanthrene 60 Benzylbutyl phthalate 50.0 26.4 29.8 52.8 59.6 1.00-152 12.1 50.0 34.6 37.7 69.2 75.4 8.00-158 8.58 82 Bis(2-ethylhexyl)phthalate Di-n-butyl phthalate 50.0 32.4 35.3 64.8 70.6 1.00-120 8.57 47 50.0 25.5 27.3 51.0 54.6 1.00-120 6.82 100 Diethyl phthalate Dimethyl phthalate 50.0 12.7 13.3 25.4 26.6 1.00-120 4.62 183 50.0 34.9 38.0 69.8 76.0 4.00-146 8.50 69 Di-n-octyl phthalate 49 Pyrene 50.0 35.8 38.1 71.6 76.2 52.0-120 6.22 1,2,4-Trichlorobenzene 50.0 20.7 21.7 41.4 43.4 44.0-142 J4 J4 4.72 50 73 4-Chloro-3-methylphenol 50.0 30.9 32.7 61.8 65.4 22.0-147 5.66 50.0 32.2 33.6 64.4 67.2 23.0-134 4.26 61 2-Chlorophenol 50 2,4-Dichlorophenol 50.0 31.1 33.4 62.2 66.8 39.0-135 7.13 58 50.0 30.8 32.0 61.6 64.0 32.0-120 3.82 2,4-Dimethylphenol 4,6-Dinitro-2-methylphenol 50.0 25.2 25.3 50.4 50.6 1.00-181 0.396 203 50.0 21.3 22.9 42.6 45.8 1.00-191 7.24 132 2,4-Dinitrophenol 2-Nitrophenol 50.0 32.2 34.8 64.4 69.6 29.0-182 7.76 55 50.0 13.1 7.35 131 4-Nitrophenol 14.1 26.2 28.2 1.00-132 50.0 17.9 19.5 35.8 39.0 14.0-176 8.56 86 Pentachlorophenol Phenol 50.0 15.3 16.6 30.6 33.2 5.00-120 8.15 64

'Sr

PAGE:

14 of 19

37.0-144

15.0-314

0.000

58

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 625.1

L1029586-01

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3346721-1 10/01/18	3 23:50 • (LCSD)) R3346721-2	10/02/18 00:14							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
(S) 2-Fluorobiphenyl				56.2	60.8	22.0-127				
(S) p-Terphenyl-d14				70.3	76.2	29.0-141				
(S) Phenol-d5				27.6	30.0	8.00-424				
(S) 2-Fluorophenol				45.2	49.4	10.0-120				
(S) 2,4,6-Tribromophenol				60.0	62.5	10.0-153				

15 of 19

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J4	The associated batch QC was outside the established quality control range for accuracy.

PAGE:

16 of 19

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA – ISO 17025 ⁵	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

DATE/TIME:

10/05/18 10:43

pany Name/Address:	1 2 72	5.00	Billing Infor	mation:				7	Analysis / Cor	ntainer / Pr	eservative			Chain of Custody	Page of 1	
Mid-Atlantic Asso	ciates, Ir	nc.				1		- 10					1	MAT	CO	
09 Rogers View Ct Raleigh, NC 27610			- AL				40ml amber HCL							YOUR LAB	13C	
report to:	1/4		Email To: tmarc	hant@maaor	nline.com	19	nl amt							12065 Lebanon Rd Mount Juliet, TN 371 Phone: 615-758-5858 Phone: 800-767-5858	X752 9	
Project Description: NCDOT U5724 PSA			1000	Collected: Golds boro, N.C.		, 10	1							L# L1629586		
phone: 919-250-9918 Fax(9/9)250-9980	R3203.00		TE MAN	Lab Project #		1	MTBE, IPE	Jer.						E169		
collected by (print): Fischer	Site/Facility ID	#		P.O.#				nl amber						Acctnum:MID	ATLRNC	
Collected by (signature): Liminediately Ipacked on Ice N Y	Rush? (L. Same C. Next D. Two Da	ab MUST Be	200%	Sto	No Yes	No.	6200B w/xylenes,	BNA - 100ml						Prelogin: TSR: Harv Cooler:	ill	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cotrs	6200	625						Shipped Via: Rem./Contaminant	Sample # (lab only)	
Tmw-17-4	Gros	6W	150	9/25/18	1350	5	X	X				_			-01	
2	57.745															
	4000	E BY	A	721												
	34	J.	Fase	486	8 4											
	el and	77-9	-													
• Matrix: SS - Soil GW - Groundwat						38 LCS34		.5 m.R√hr			mp	- [fold#			
Remarks: 4 C T T Relinquished by : (Signature)	4430 3	Date: /	+ +09		4430 31 eceived by: (Signa	All Comments in	770	19	Samples re		er : D UPS	- 1	Condition	n; (lab	use only)	
Relinquished by: (Signature)	ils	9/20 Date:	1/8	1436 Time: R	eceived by: (Signa	ture)			☐ FedE	°C	rier Sattles Receiv	ved:			(Or)	
Relinquished by : (Signature)		Date:	1	Time:	eceived for lab by	Signa		ia .	2.1-3 Date: 9/27/18		S fime: 9,00		OC Sea oH Check		NNA	

Client:	oler Receipt Form	SDG#	F 1000000	acal
C 1 2 1 10 10	MIDATLENC	31)(1#	F109.	9586
Cooler Received/Opened On: 09/27 /18	Tempe	rature:	1.8	-
Received By: Kevin Turner				
Signature:				
Receipt Check List		NP	Yes	No
COC Seal Present / Intact?	90,	- 8	/	
COC Signed / Accurate?		100 H	/	option to
Bottles arrive intact?			/	
Correct bottles used?	24. 内国的比如1967年,1967年	Navi See	1	els, He
Sufficient volume sent?			/	
If Applicable		de Baja		