This electronic collection of documents is provided for the convenience of the user and is Not a Certified Document –

The documents contained herein were originally issued and sealed by the individuals whose names and license numbers appear on each page, on the dates appearing with their signature on that page.

This file or an individual page shall not be considered a certified document.

-0044 B REFERENCE **CONTENTS**

TITLE SHEET

SITE PLAN PROFILE

CROSS SECTIONS

SITE PHOTOS SITE PHOTOS

SUPPLEMENTAL LEGEND (GSI)

BORE LOGS, CORE LOGS, & CORE PHOTOS

SHEET NO.

2Α

5-10

II-24

25-32

Ó

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

DESCRIPTION STRUCTURE LEGEND (SOIL & ROCK)

COUNTY ROCKINGHAM

PROJECT DESCRIPTION BRIDGE NO. 780168 OVER SMITH RIVER ON NC14 /NC87

SUBSURFACE INVESTIGATION

STATE PROJECT REFERENCE NO. 34 BR-0044

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT (1919) 707-6850, THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BORCHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IM-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS NIDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE SAME CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISTY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONJOITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:

 1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

A. GROSS, PG

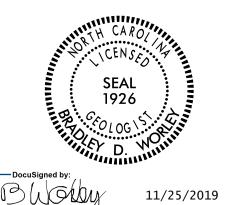
A. RULEY, GIT M. SHIPMAN, EI

H. FISHER

L. GONZALEZ

O. STANLEY

INVESTIGATED BY B. WORLEY, PG


DRAWN BY <u>B. WORLEY</u>, PG

SUBMITTED BY <u>B. WORLEY</u>, PG

DATE _NOVEMBER, 2019

Hillsborough, NC 27278-855 Voice: (919) 732-3883 Fax: (919) 732-6776

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

NOTE:

DUE TO ACCESS ISSUES, AND PER NCDOT GEU GUIDANCE, BORINGS B2-A AND B3-A WILL BE DRILLED DURING THE TIME OF CONSTRUCTION.

PROJECT REFERENCE NO. SHEET NO. 2

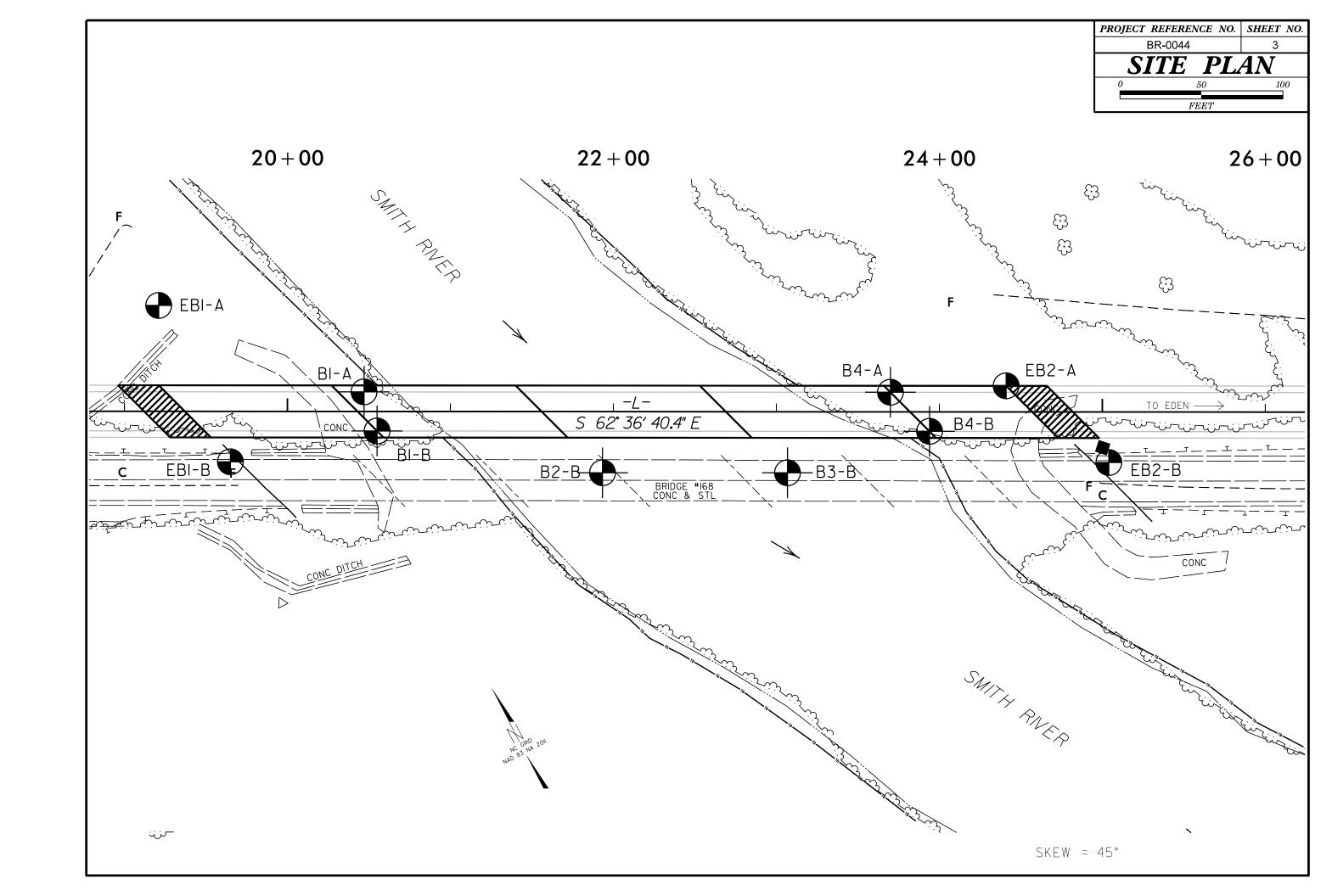
NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

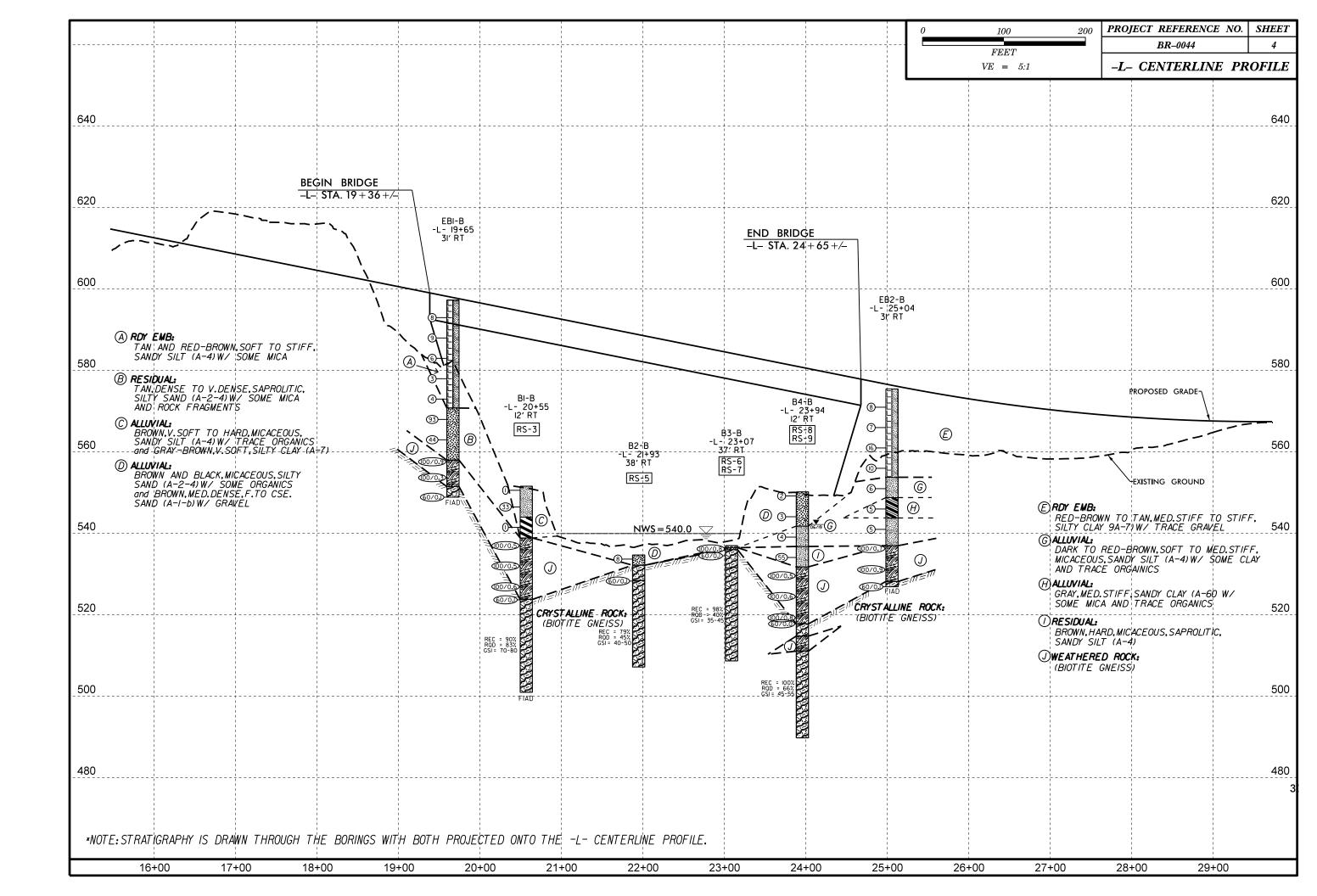
SUBSURFACE INVESTIGATION

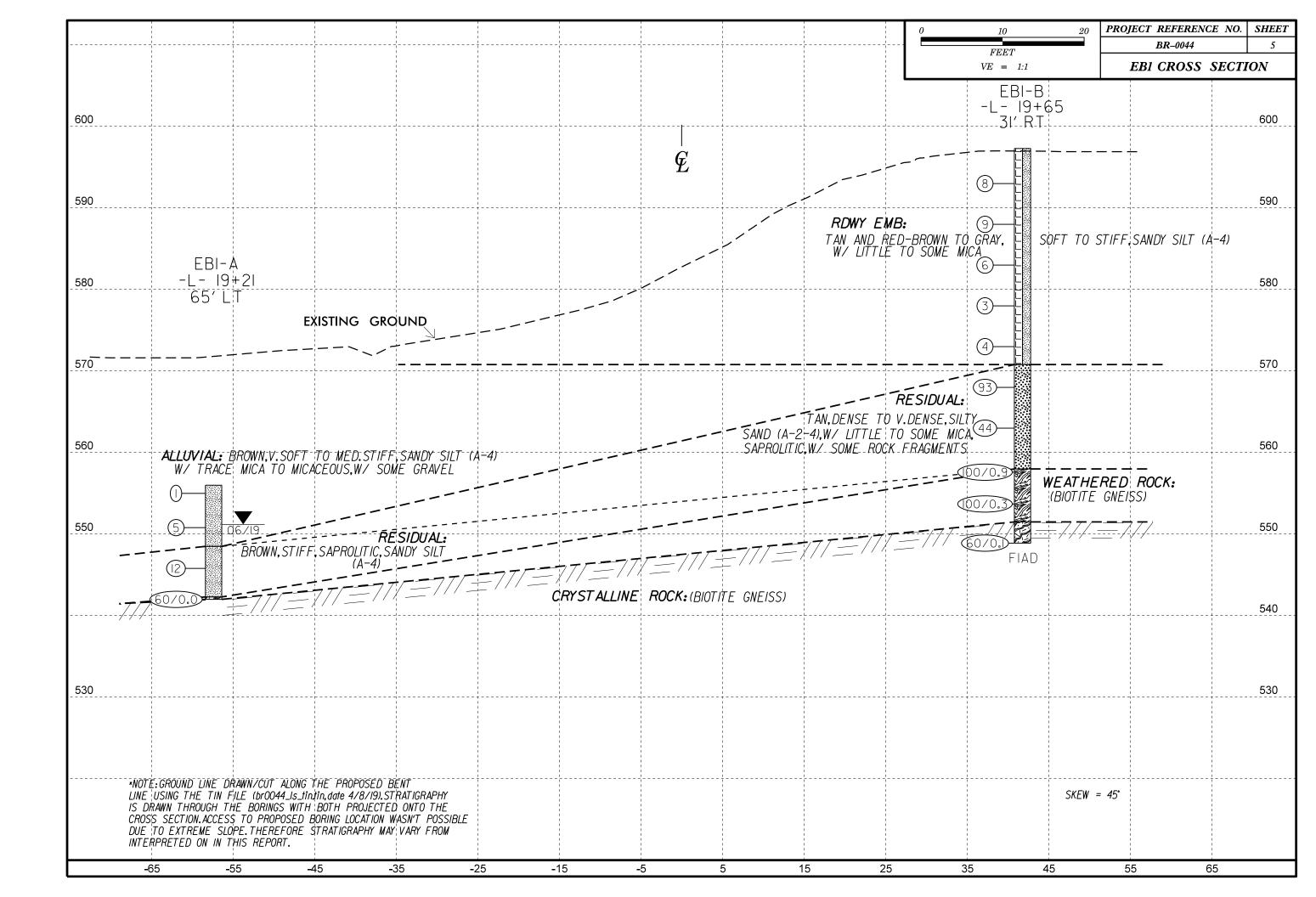
SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

COLL DECCRIPTION	CDADATION	DOCK DECEDIBIION	TERMS AND DEFINITIONS
SOIL DESCRIPTION SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN	GRADATION <u>WELL GRADED</u> - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE.	ROCK DESCRIPTION HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED	TERMS AND DEFINITIONS ALLUYIUM (ALLUY.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE.	ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL. SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60	ALLUYIUM (ALLUY,) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER, AQUIFER - A WATER BEARING FORMATION OR STRATA.
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM DI586). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING:	GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	BLOWS IN NON-COASTAL PLAIN MATERIAL. THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE,	ANGULARITY OF GRAINS	REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING
VERY STIFF,GRAY,SILTY CLAY,MOIST WITH INTERBEDDED FINE SAND LAYERS,HIGHLY PLASTIC,A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS: ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES >	A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	MINERALOGICAL COMPOSITION	ROCK (WR) 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS ORGANIC MATERIALS CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) ORGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	CRYSTALLINE FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE,	SURFACE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	GNEISS, GABBRO, SCHIST, ETC.	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
CLASS. A-1-6 A-1-6 A-2-4 A-2-5 A-2-6 A-2-7 A-7-5 A-7-6 A-3 A-6, A-7	COMPRESSIBILITY	NON-CRYSTALLINE ROCK (NCR) FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YELLD SPT REFUSAL IF TESTED.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM
SYMBOL 000000000000000000000000000000000000	SLIGHTLY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50	ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC. COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD	OF SLOPE.
7. PASSING	HIGHLY COMPRESSIBLE LL > 50	SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
■10 50 MX GRANULAR SILI- MUCK,	PERCENTAGE OF MATERIAL	(CP) SHELL BEDS, ETC. WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
*40 30 MX 50 MX 51 MN PEAT *200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN 36 MN 50 MN	GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING. ROCK RINGS UNDER	ROCKS OR CUTS MASSIVE ROCK.
MATERIAL	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%	HAMMER IF CRYSTALLINE.	<u>DIP</u> - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.
PASSING *40 SOILS WITH	LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE
LL 48 MX 41 MN LITTLE OR HIGHLY PI 6 MX NP 18 MX 18 MX 11 MN 11 MN 10 MX 10 MX 11 MN 11 MN MODERATE HIGHLY	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF UNDANIL	GROUND WATER	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE
USUAL TYPES STONE FRAGS. FINE SILTY OR CLAYEY SILTY CLAYEY MATTER	▼ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	(SLI.) I INCH, OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
OF MAJOR GRAYEL AND SAND GRAVEL AND SAND SOILS SOILS	▼ STATIC WATER LEVEL AFTER 24 HOURS	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES. FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
CEN BATING.	→ → → → → → → → → → → → → → → → → → →	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS	PARENT MATERIAL.
AS SUBGRADE EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABL		DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30	SPRING OR SEEP	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH	FIELD.
PRIMARY SOIL TYPE COMPACTNESS OR RANGE OF STANDARD RANGE OF UNCONFINED PENETRATION RESISTENCE COMPRESSIVE STRENGTH	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION	(MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES "CLUNK" SOUND WHEN STRUCK, IF TESTED, WOULD YIELD SPT REFUSAL	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED. LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
CONSISTENCY (N-VALUE) (TONS/FT ²)	WITH SOIL DESCRIPTION FROCK STRUCTURES	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT	ITS LATERAL EXTENT.
GENERALLY VERY LOOSE < 4	SOIL SYMBOL SOIL SYMBOL SPT ONT TEST BORING SLOPE INDICATOR INSTALLATION	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
GRANULAR LOOSE 4 TO 10 GRANULAR MEDIUM DENSE 10 TO 30 N/A	A COURT DEVICES	IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS
MATERIAL DENSE 30 TO 50 (NON-COHESIVE) VERY DENSE > 50	THAN ROADWAY EMBANKMENT AUGER BORING CONE PENETROMETER	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE. PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
VERY SOFT < 2 < 0.25	INFERRED SOIL BOUNDARY CORE BORING SOUNDING ROD	SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK (V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	OF AN INTERVENING IMPERVIOUS STRATUM.
GENERALLY SOFT 2 TO 4 0.25 TO 0.5	MW - TECT BOBING	VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u>	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
SILT-CLAY	INFERRED ROCK LINE MONITORING WELL WITH CORE	COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS	ROCK QUALITY DESIGNATION (RQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
(COHESIVE) VERY STIFF 15 TO 30 2 TO 4	TTTT ALLUVIAL SOIL BOUNDARY A PIEZOMETER ON SPT N-VALUE	ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
HARD > 30 > 4 TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
		VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES	ROCK.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	LXXI STEED IZ UNSUITABLE WASTE LXXI ACCEPTABLE, BUT NOT TO BE	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK. HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO
BOULDER COBBLE GRAVEL COARSE FINE SILT CLAY	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL	TO DETACH HAND SPECIMEN.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
(BLDR.) (COB.) (GR.) (CSE. SD.) (F SD.) (SL.) (CL.)	ABBREVIATIONS	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	<u>SLICKENSIDE</u> - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.05 0.005	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE)(SPT) - NUMBER OF BLOWS (N OR BPF) OF
SIZE IN. 12 3	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL
SOIL MOISTURE - CORRELATION OF TERMS	CL CLAY MOD MODERATELY 7 - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC 7 - DRY UNIT WEIGHT	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK.	WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE FIELD MOISTURE CHIDE FOR FIELD MOISTURE DESCRIPTION	CSE COARSE ORG ORGANIC	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY
(ATTERBERG LIMITS) DESCRIPTION GOIDE FOR FIELD MOISTONE BESCRIPTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE.	TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
(SAT.) FROM BELOW THE GROUND WATER TABLE	F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
PLASTIC SEMISOLID: REQUIRES DRYING TO	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL	FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
RANGE - WET - (W) ATTAIN OPTIMUM MOISTURE (PI) PL PLASTIC LIMIT	FRAGS FRAGMENTS	FRACTURE SPACING BEDDING TERM SPACING TERM THICKNESS	BENCH MARK: •SEE NOTES - TWO BENCH MARKS USED DURING SURVEY
	EQUIPMENT USED ON SUBJECT PROJECT	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET	ELEVATION: FEET
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET	
SL _ SHRINKAGE LIMIT	CLAY BITS X AUTOMATIC MANUAL	CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET	NOTES:
- DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE	6 CONTINUOUS FLIGHT AUGER CORE SIZE:	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.008 FEET THINLY LAMINATED < 0.008 FEET	BM-I BI-IO
PLASTICITY	CME-55 X 8. HOLLOW AUGERS CORE. SIZE:	INDURATION	N 1012090 N 1011885
PLASTICITY INDEX (PI) DRY STRENGTH	X CME-550X HARD FACED FINGER BITS X-N Q	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	E 1773748 E 17734598 ELEV = 630.72' ELEV = 574.99'
NON PLASTIC 0-5 VERY LOW	TUNGCARBIDE INSERTS	FRIABLE RUBBING WITH FINGER FREES NUMEROUS GRAINS:	ELEV = 630.72' ELEV = 574.99'
SLIGHTLY PLASTIC 6-15 SLIGHT MODERATELY PLASTIC 16-25 MEDIUM	VANE SHEAR TEST X CASING X W/ ADVANCER HAND TOOLS:	GENILE BLOW BY HAMMER DISINIEGRATES SAMPLE.	
HIGHLY PLASTIC 26 OR MORE HIGH	POPTABLE HOLET TRICONE CETEL TEETH	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	FIAD = FILLED IN AFTER DRILLING
COLOR	TOUGHT TOUGHT	CDAING ARE DIFFICULT TO SERAPATE WITH STEEL PROBE.	TIMO - TILLED IN AFTER DRILLING
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMPRIATIONS (TAN DEC VELLO), DOCUMENTO	SOUNDING ROD X CORE BIT YANG SHEAR TEST	INDURATED DIFFICULT TO BREAK WITH HAMMER.	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	VANE SHEAR IEST	EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE;	
		SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-14

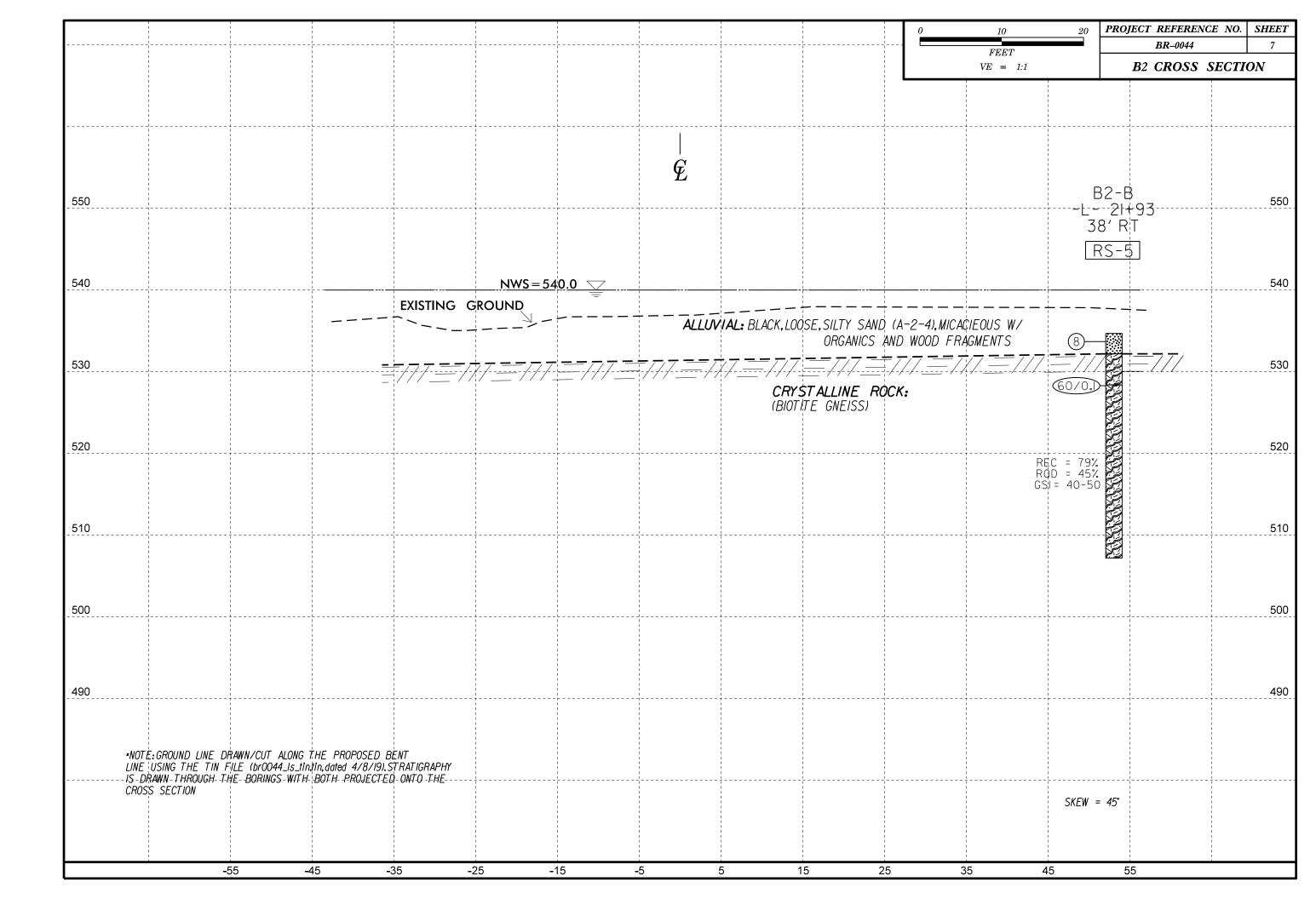
ROJECT REFERENCE NO.	SHEET NO.
R-0044	2A

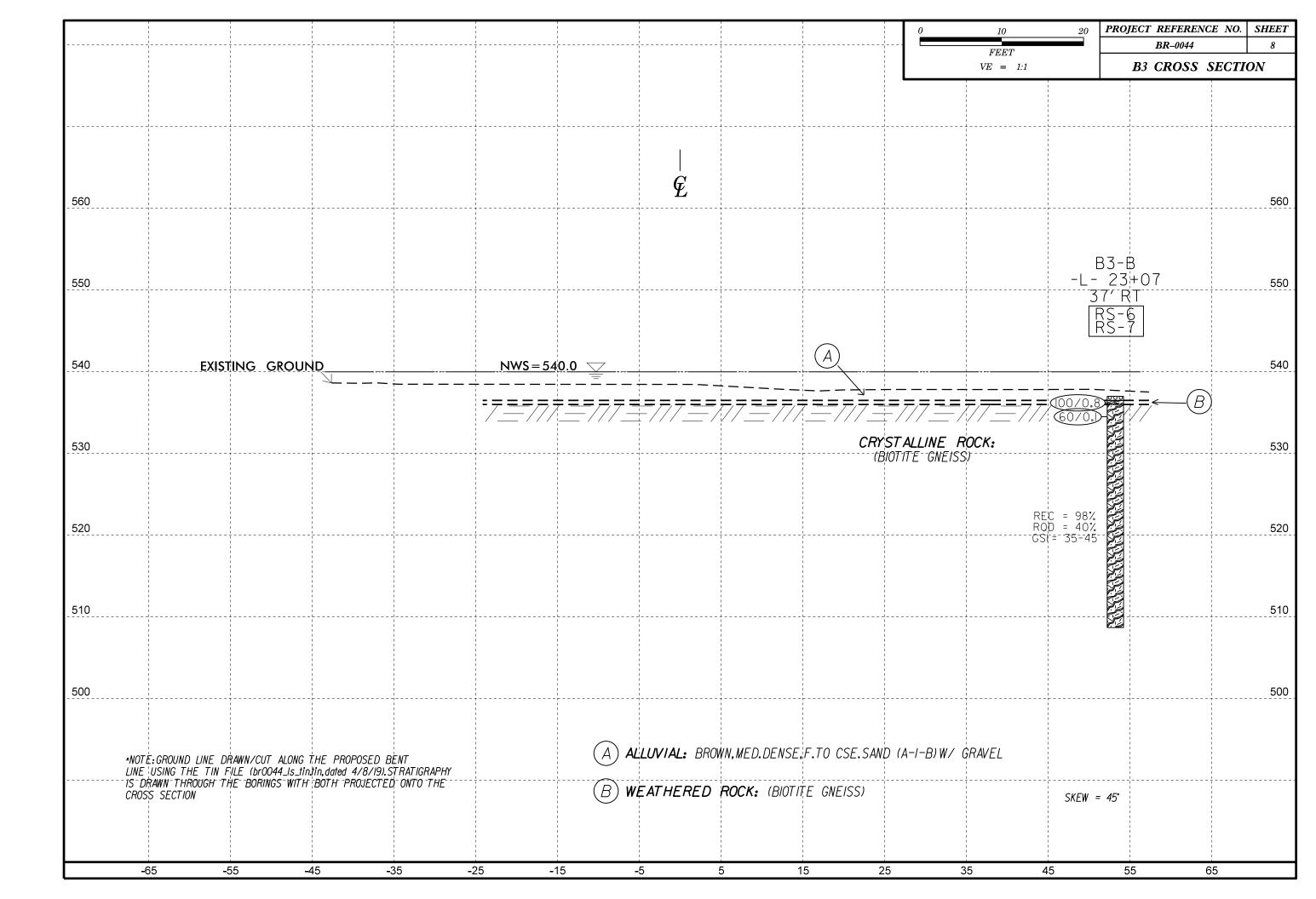

DATE: 8-19-16

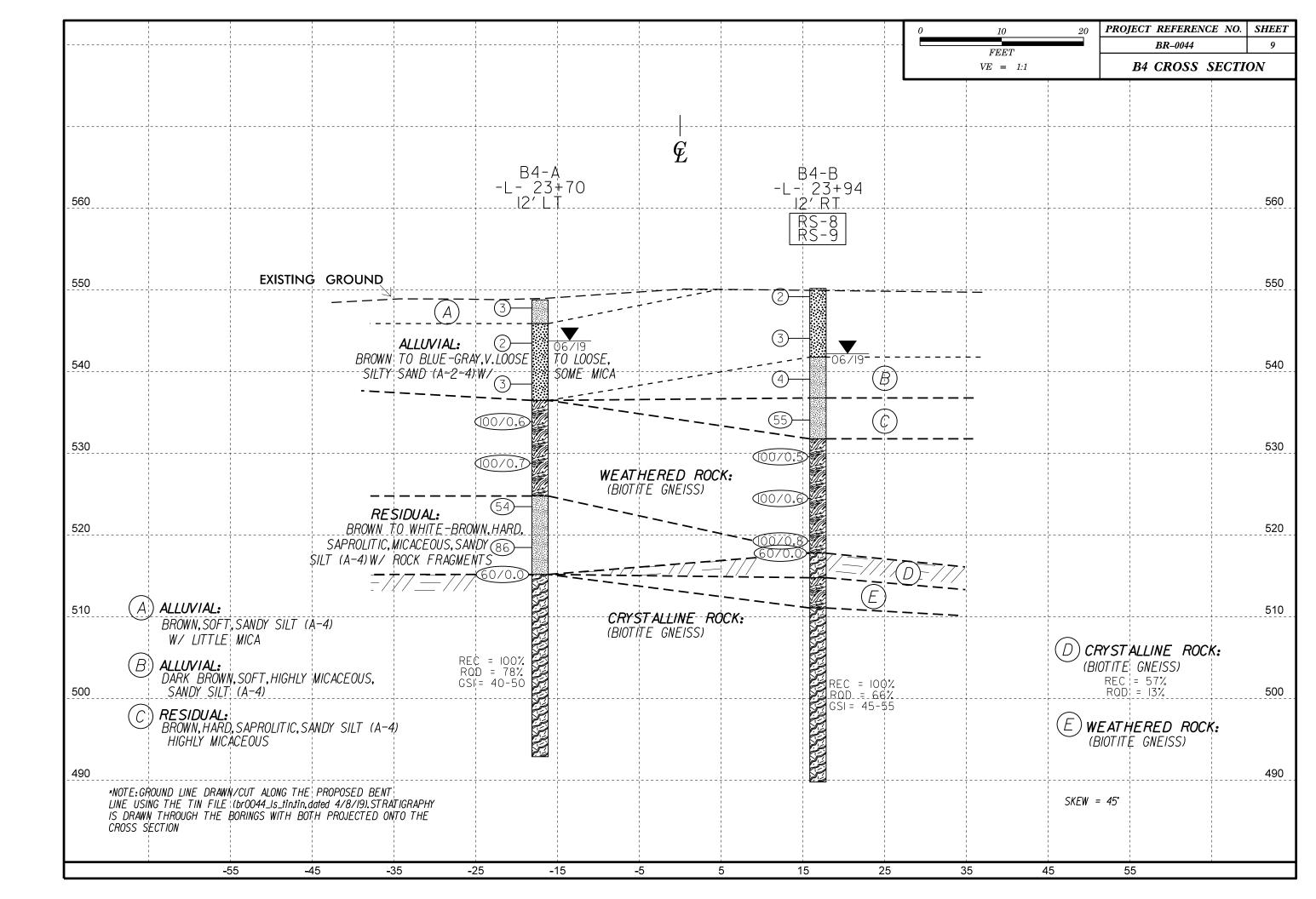

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

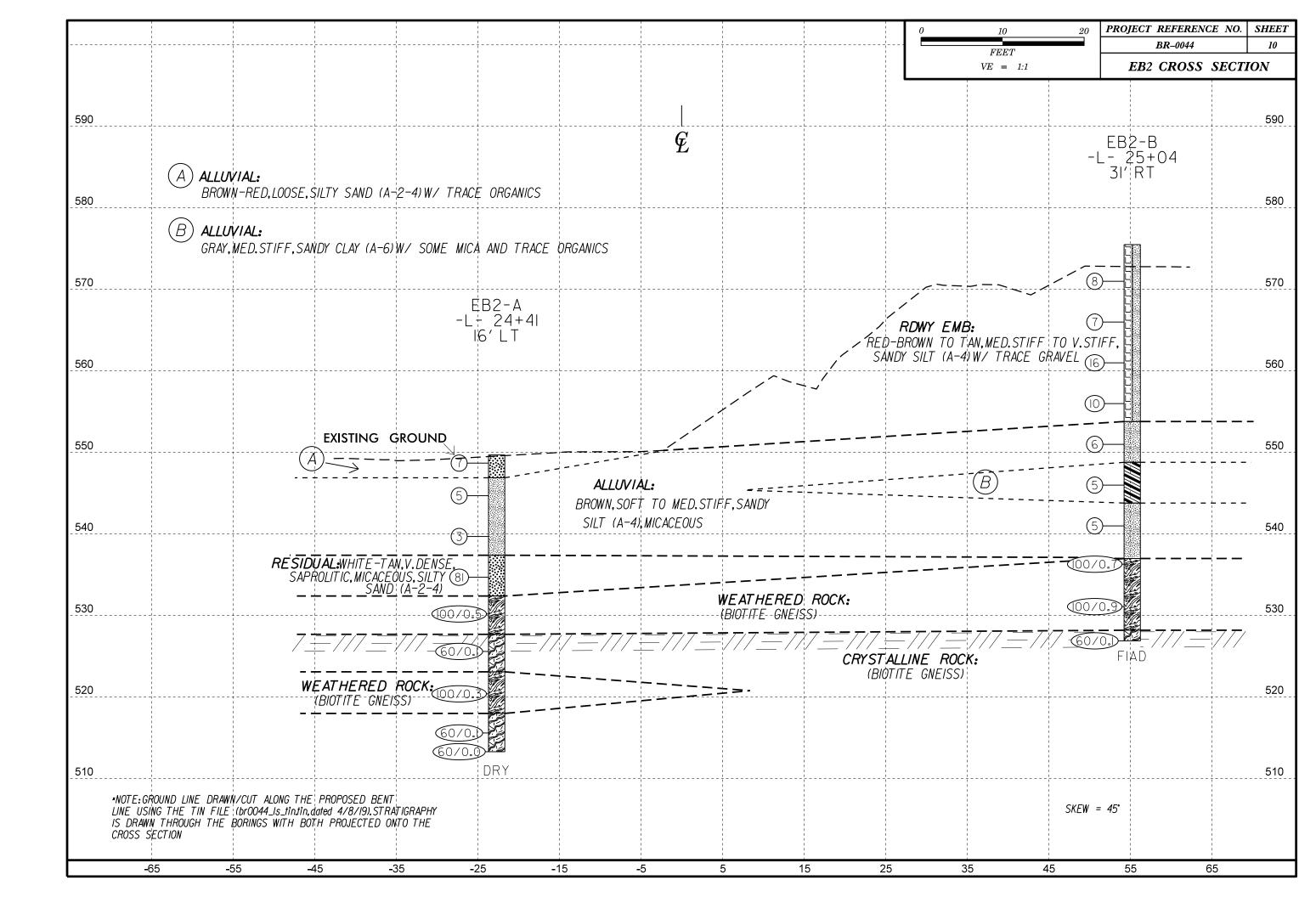

SUBSURFACE INVESTIGATION

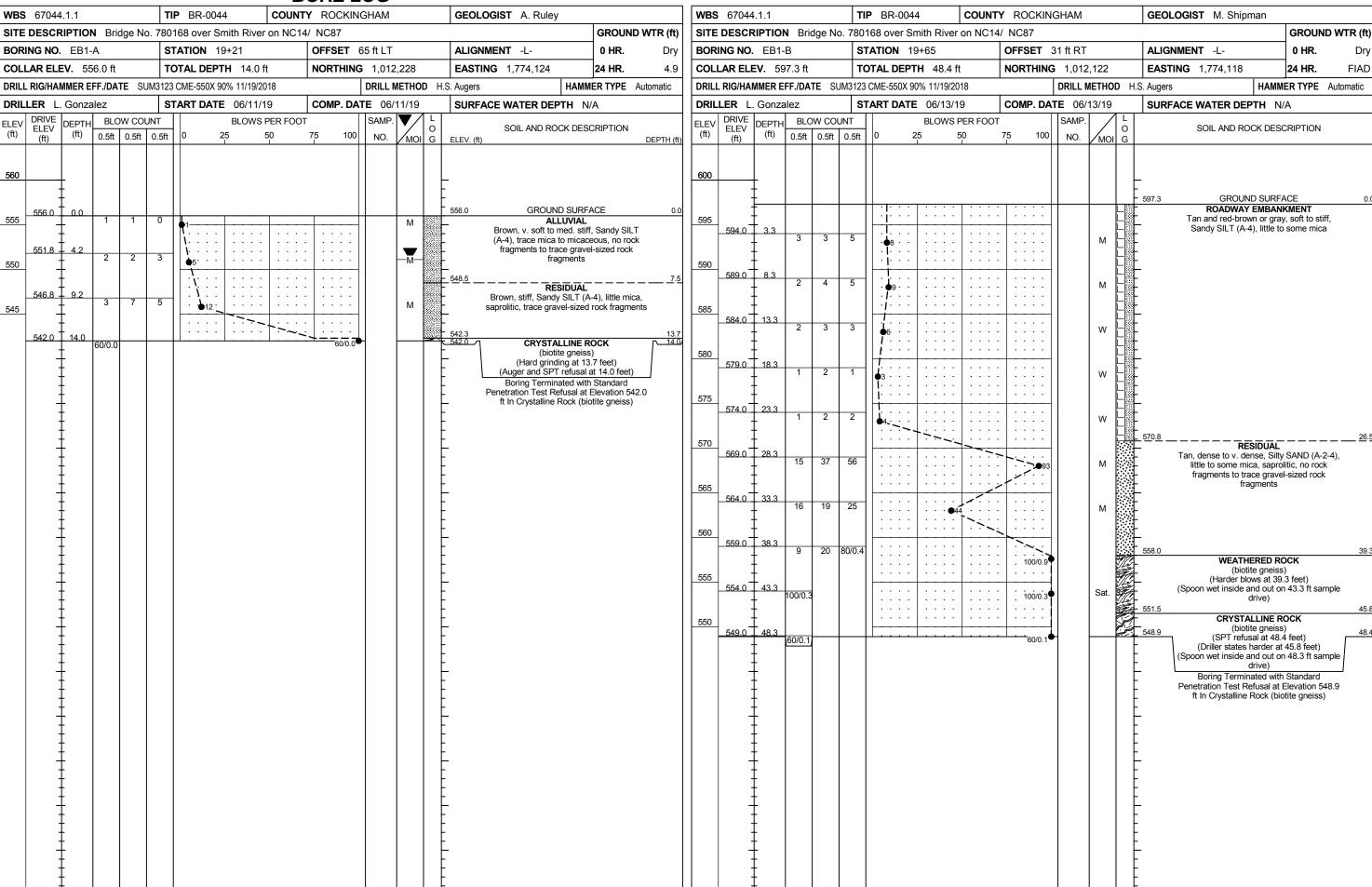

SUPPLEMENTAL LEGEND GEOLOGICAL STRENGTH INDEX (GSI) TARLES


AASHTO LRFD Figure 10.4.6.4-1 — Determination of GSI for Joi	inted Ro	ock Mass (Marinos and F	oek, 2000)			AASHTO LRFD Figure 10.4.6.4-2 — Determination of GSI for Tectonically Deformed Heterogeneous Rock Masses (Marinos and Hoek, 2000)
GEOLOGICAL STRENGTH INDEX (GSI) FOR JOINTED ROCKS (Hoek and Marinos, 2000)		s p		s e o	S O O O	GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos.P and Hoek E., 2000)
From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Guoting a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavorable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced if water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis.	SURFACE CONDITIONS	VERY GOOD Very rough, fresh unweathered surface: GOOD Rough, slightly weathered, iron stained	FAIR Smooth, moderately weathered and altered surfaces	ensided, highly weathered surf compact coatings or fillings gular fragments	VERY FUUK Slickensided, highly weathered surfac with soft clay coatings or fillings	Surface conditions (barticularly of the pedding planes), choose a pox in the chart. Tocate the bosition in the pox that corresponds to the condition of the discontinuities and estimate the average value of GSI from the contours. Do not attempt to be too precise. Gnoting a range from 33 to 37 is more realistic than giving QSI = 35. Note that the Hoek-Brown criterion does not abply to structurally controlled failures. Where intavorably oriented continuous weak blanar discontinuities are present, these will dominate the personne of grideness with compacts. NERACE CONDITIONS OF Disconness of the condition of the disconness of the conditions of the disconness of the conditions. We should be a single of the conditions of the condition of the conditions of the condition of the conditions of the condition of the conditions of the condition of th
STRUCTURE		· '	II.	UALITY		COMPOSITION AND STRUCTURE
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities BLOCKY - well interlocked un-	PIECES	90		N/A	N/A	A. Thick bedded, very blocky sandstone The effect of pelitic coatings on the bedding planes is minimized by the confinement of the rock mass. In shallow tunnels or slopes these bedding planes may cause structurally controlled instability.
disturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets	OF ROCK	70 60				B. Sand- stone with stone and stone with stone and stone with stone stone with stone stone with stone stone with stone with sand- wi
VERY BLOCKY - interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets	OCKING O		50			thin inter- siltstone amounts with sand- stone layers of siltstone siltstone layers of siltstone layers of siltstone layers of siltstone layers
BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity	- INTERL		40	30		C. D. E. and G - may be more or less folded than illustrated but this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H. F. Tectonically deformed, intensively folded/faulted, sheared clayey shale or siltstone with broken and deformed sandstone layers forming an almost chaotic structure
DISINTEGRATED - poorly inter- locked, heavily broken rock mass with mixture of angular and rounded rock pieces	 			20		G. Undisturbed silty or clayey shale with or without a few very thin sandstone layers H. Tectonically deformed silty or clayey shale forming a chaotic structure with pockets of clay. Thin layers of sandstone are transformed into small sock places.
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes	— - -	N/A N/A			10	thin sandstone layers of clay. Thin layers of sandstone are transformed into small rock pieces. Means deformation after tectonic disturbance





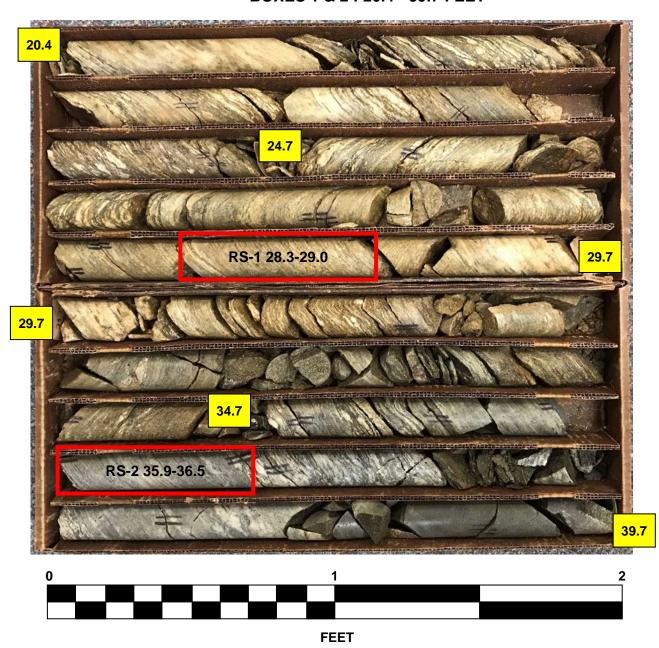




GEOTECHNICAL BORING REPORT BORE LOG

N/A

5.9


DEPTH (ft)

GEOTECHNICAL BORING REPORT

GEOTECHNICAL BORING REPORT **BORE LOG**

CORE LOG COUNTY ROCKINGHAM **WBS** 67044.1.1 **TIP** BR-0044 GEOLOGIST A. Ruley COUNTY ROCKINGHAM **WBS** 67044.1.1 **TIP** BR-0044 **GEOLOGIST** A. Ruley **GROUND WTR (ft)** SITE DESCRIPTION Bridge No. 780168 over Smith River on NC14/ NC87 **GROUND WTR (ft)** SITE DESCRIPTION Bridge No. 780168 over Smith River on NC14/ NC87 OFFSET 12 ft LT ALIGNMENT -L-OFFSET 12 ft LT ALIGNMENT -L-BORING NO. B1-A **STATION** 20+47 BORING NO. B1-A **STATION** 20+47 0 HR. N/A 0 HR. TOTAL DEPTH 39.7 ft **NORTHING** 1,012,123 **EASTING** 1,774,211 COLLAR ELEV. 551.3 ft TOTAL DEPTH 39.7 ft **NORTHING** 1,012,123 **EASTING** 1,774,211 COLLAR ELEV. 551.3 ft 24 HR. 5.9 24 HR. DRILL RIG/HAMMER EFF./DATE SUM3123 CME-550X 90% 11/19/2018 DRILL METHOD H.S. Augers HAMMER TYPE Automatic **DRILL RIG/HAMMER EFF./DATE** SUM3123 CME-550X 90% 11/19/2018 **DRILL METHOD** H.S. Augers **HAMMER TYPE** Automatic **DRILLER** L. Gonzalez **START DATE** 06/11/19 COMP. DATE 06/12/19 **DRILLER** L. Gonzalez **START DATE** 06/11/19 **COMP. DATE** 06/12/19 SURFACE WATER DEPTH N/A SURFACE WATER DEPTH N/A ELEV DRIVE DEPTH BLOW COUNT SAMP. **BLOWS PER FOOT** CORE SIZE NQ-2 TOTAL RUN 19.3 ft SOIL AND ROCK DESCRIPTION ELEV (ft) (ft) 0.5ft 0.5ft 0.5ft 75 100 NO. MOI G STRATA REC. RQD (ft) (ft) % (ft) ELEV. (ft) ELEV DEPTH RUN SAMP. ELEV RATE O G DESCRIPTION AND REMARKS NO. (ft) (ft) (ft) (ft) (ft) (ft) (Min/ft) Begin Coring @ 20.4 ft CRYSTALLINE ROCK (18.9) (15.2) — 530.9 98% 79% 555 (4.3) (3.9) 100% 91% Brown and gray, mod. to v. slightly weathered, mod. hard to hard, closely fractured, biotite gneiss **GROUND SURFACE** 551.3 526.6 \downarrow 24.7 ALLUVIAL 550 М (5.0) (4.3) 100% 86% GSI: 45-55 Brown, v. soft to stiff, Sandy SILT (A-4), 525 some mica, no organic matter to trace 547.3 organic matter RS-1 ¶r ▼ 521.6 + 29.7 545 (4.6) (3.0) 92% 60% 520 1:18/1.0 Blue-brown, v. soft, Silty CLAY (A-7), little 2:06/1 (2:01/1.0 WOH WOH WOH M <u>516.6 \downarrow 34.</u>7 1:59/1.0 (5.0) (4.0) 1:59/1.0 100% 80% RS-2 540 5.0 515 537.3 † 14.0 'WOH 2:45/1. 27 73/0.4 511.6 4 39.7 2:58/1. 100/0.9 WEATHERED ROCK 535 Boring Terminated at Elevation 511.6 ft In Crystalline Rock (biotite gneiss) (biotite schist to biotite gneiss) 532.3 † 19.0 530.9 20.4 100/0.-100/0.4 60/0.0 CRYSTALLINE ROCK (biotite gneiss) (Driller states harder at 20.4 feet) (Auger and SPT refusal at 20.4 feet) (Switch to coring at 20.4 feet) 525 GSI: 45-55 RS-1 520 515 RS-2 Boring Terminated at Elevation 511.6 ft In Crystalline Rock (biotite gneiss)

B1-ABOXES 1 & 2 : 20.4 - 39.7 FEET

SHEET 14

GEOTECHNICAL BORING REPORT BORE LOG

								DO	RE LC	<i>'</i> G							
WBS	67044	.1.1			TI	P BR-004	4	COUNT	Y ROCKIN	GHAM			GEOLOGI	ST A. Rule	у		
SITE	DESCR	RIPTIO	N Bri	dge No	o. 780	168 over Sı	mith River	on NC14	/ NC87							GROUN	ID WTR (ft)
BORI	NG NO.	B1-E	3		S	TATION 2	0+55		OFFSET	12 ft RT			ALIGNME	NT -L-		0 HR.	N/A
COLL	AR ELE	EV . 55	51.6 ft		т	OTAL DEPT	TH 50.6 f	t	NORTHING	1,012	2,098		EASTING	1,774,207		24 HR.	FIAD
RILL	RIG/HAN	MMER E	FF./DA	TE SU	JM3123	CME-550X 9	0% 11/19/20)18		DRILL N	METHO	D H	.S. Augers		HAMM	ER TYPE	Automatic
RILL	ER L.	Gonza	alez		S	TART DATE	06/17/1	9	COMP. DA	TE 06/	17/19		SURFACE	WATER DE	PTH N/	Α	
LEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)	0.5ft	OW COL	JNT 0.5ft	0 2		PER FOOT 50	75 100	SAMP. NO.	MO	L O I G	1	SOIL AND RO	OCK DESC	CRIPTION	
555		-											_ -				
	551.6 -	- 0.0						_					- - 551.6		ND SURFA	ACE	0.
550	_	-	1	0	1	1	• • • •	<u> </u>			М		– – Br	own, v. soft to	LUVIAL hard, Sand	dy SILT (A	-4),
	- 547.5	4.1				: : : : : : . ;] : : : :						- tr	ace rootlets, so	me mica t	o micaceo	us
.,, [-		2	6	27		33]				М		- -				
545	-	-				/.		<u> </u>	1				544.0	_,,			
	542.5	9.1	WOH	WOH	1	. : : / نر ا					М		_ Gra -	y-brown, v. sof	mica	4Y (A-7), t	race
40	_					1,					"		- 				
	- 537.5 -	14.1						+	+				_ 538.9		IERED RO		12.
	- 557.5	- 13.1	100/0.5	•					100/0.5)			- -	(biot (Driller states	ite gneiss harder at) 12.7 feet)	
35	-	_				 	 	 	1::::				- -	•			
-	532.5	19.1	100/0.5							,			- -				
30	_]					100/0.5				- 				
	- 527.5 -	24.1							: : : :				- -				
İ	527.5	24.1	55	45/0.1					100/0.6	,			_				
25	_ 523.8 -	27.8					1	1	-				523.8				27.
	525.0 -	27.0	60/0.1	1			: : : :	: : : :	60/0.1	"			-		ALLINE Re		
520	-	F					: : : :	: : : :					_	(Auger and SP (Switched to	T refusal a	t 27.8 feet)
	-	F					: : : :	T : : : :					-	•	•	27.0 (eet)	
	-	F					: : : :	: : : :					-	G	SI: 70-80		
515		F					 	+	+				<u>-</u>				
	-	F					: : : :	: : : :			1		-				
510	-	F								RS-3	1		-				
	-	-											- -				
	-	F											- -				
05	- 1	Ė						ļ · · · ·					- 				
	- 1	F											- -				
-				\vdash		<u> </u>	L	<u> </u>		-			501.0	ring Terminate	d at Flevat	ion 501 0	50.
	-	F											_ 50	Crystalline R	ock (biotit	e gneiss)	
	-	‡											- -				
	-	ļ.											- 				
	-	‡											- -				
	1	‡											- -				
	-	<u> </u>											-				
	-	<u> </u>											- -				
	-	 											- 				
	-	 											- -				
	-	‡											- -				
	-	<u> </u>											-				
	-	<u> </u>											- -				
	-	Ł											-				

GEOTECHNICAL BORING REPORT

									CO	R	E LOG	
WBS	67044	1.1.1			TIP	BR-00)44	C	DUNT	Y	ROCKINGHAM GEOLOGIST A. Ruley	
SITE	DESCF	RIPTION	N Brid	dge No. 7	80168	over	Smith Riv	er on	NC14	/ N	NC87 GROUND WTR	(ft)
BOR	ING NO.	B1-B			STAT	ION	20+55			OF	FFSET 12 ft RT ALIGNMENT -L- 0 HR. N	N/A
COLI	LAR ELE	EV . 55	1.6 ft		TOTA	AL DEI	PTH 50.	6 ft		NC	ORTHING 1,012,098	AD
DRILL	RIG/HAI	MMER E	FF./DA	TE SUM3	123 CM	IE-550X	90% 11/19	9/2018			DRILL METHOD H.S. Augers HAMMER TYPE Automati	ic
DRIL	LER L	Gonza	lez		STAF	RT DA	FE 06/1	7/19		CC	OMP. DATE 06/17/19 SURFACE WATER DEPTH N/A	
COR	E SIZE	NQ-2			TOTA	L RUI	l 22.8 f	t			<u>'</u>	
ELEV (ft)	RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft) %	JN RQD (ft) %	SAMP. NO.	STR REC. (ft) %	ATA RQD (ft) %	L O G		
523.8				,	70	70		70	70		Begin Coring @ 27.8 ft	
520	523.8 _ 521.0 - - - - 516.0	27.8 30.6 35.6	5.0	1:12/0.8 N=60/0.1 1:12/0.8 1:09/1.0 1:06/1.0 1:48/1.0 1:57/1.0 1:57/1.0 1:24/1.0 2:12/1.0	(2.0) 71% (3.9) 78%	(1.6) 57% (3.3) 66%		(20.6) 90%	(18.9) 83%			27.8
-10	511.0	40.6		1:52/1.0 3:07/1.0 2:34/1.0 2:54/1.0 3:15/1.0	100%	90%	RS-3/					
510	506.0	15.6	5.0	2:29/1.0 2:58/1.0 2:59/1.0 5:48/1.0	(4.7) 94%	(4.5) 90%						
505	- 500.0	45.0	5.0	9:39/1.0 4:34/1.0 4:23/1.0 4:27/1.0 4:17/1.0	(5.0) 100%	(5.0) 100%						
	501.0	50.6		4:57/1.0							Boring Terminated at Elevation 501.0 ft In Crystalline Rock (biotite gneiss)	50.6

B1-BBOXES 1, 2 & 3 : 27.8 - 50.6 FEET

GROUND WTR (ft)

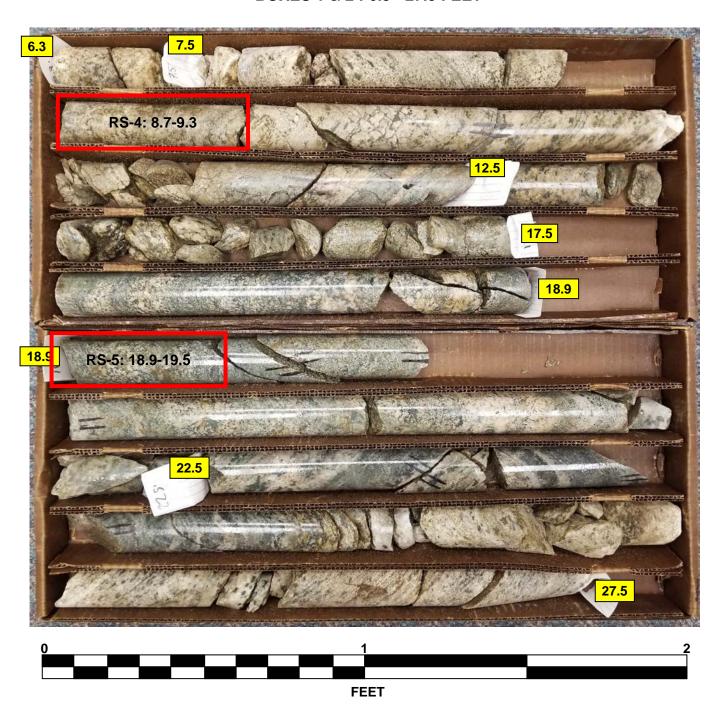
N/A

N/A

DEPTH (ft

0 HR.

24 HR.

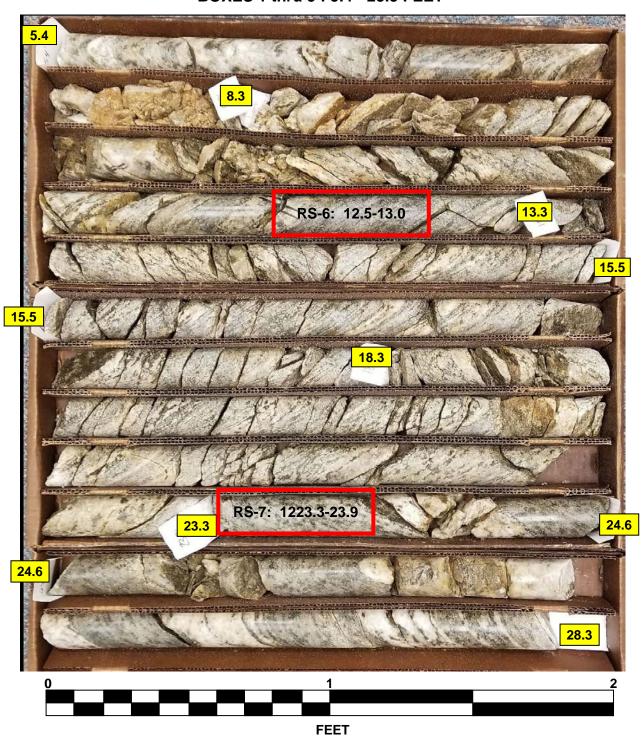

HAMMER TYPE Automatic

GEOTECHNICAL BORING REPORT **BORE LOG**

TIP BR-0044 **COUNTY** ROCKINGHAM **WBS** 67044.1.1 **GEOLOGIST** A. Gross **WBS** 67044.1.1 **TIP** BR-0044 **COUNTY** ROCKINGHAM **GEOLOGIST** A. Gross **GROUND WTR (ft)** SITE DESCRIPTION Bridge No. 780168 over Smith River on NC14/ NC87 SITE DESCRIPTION Bridge No. 780168 over Smith River on NC14/ NC87 OFFSET 38 ft RT ALIGNMENT -L-**BORING NO.** B2-B **STATION** 21+93 0 HR. N/A BORING NO. B2-B **STATION** 21+93 OFFSET 38 ft RT ALIGNMENT -L-COLLAR ELEV. 534.7 ft TOTAL DEPTH 27.5 ft **NORTHING** 1,012,012 **EASTING** 1,774,318 24 HR. N/A COLLAR ELEV. 534.7 ft TOTAL DEPTH 27.5 ft **NORTHING** 1,012,012 **EASTING** 1.774.318 DRILL RIG/HAMMER EFF./DATE SUM3123 CME-550X 90% 11/19/2018 DRILL METHOD NW Casing w/ Advancer HAMMER TYPE Automatic DRILL RIG/HAMMER EFF./DATE SUM3123 CME-550X 90% 11/19/2018 DRILL METHOD NW Casing w/ Advancer **DRILLER** L. Gonzalez **START DATE** 09/19/19 COMP. DATE 09/20/19 **SURFACE WATER DEPTH** 3.2ft **DRILLER** L. Gonzalez **START DATE** 09/19/19 **COMP. DATE** 09/20/19 SURFACE WATER DEPTH 3.2ft ELEV DRIVE DEPTH BLOW COUNT SAMP. **BLOWS PER FOOT** CORE SIZE NQ-2 TOTAL RUN 21.2 ft SOIL AND ROCK DESCRIPTION ELEV (ft) (ft) 0.5ft 0.5ft 0.5ft 25 75 100 NO. MOI G STRATA REC. RQD (ft) (ft) % % (ft) ELEV. (ft) DEPTH RUN ELEV RQD (ft) % SAMP ELEV RATE DESCRIPTION AND REMARKS (ft) (ft) (ft) NO. Ğ (ft) (Min/ft) ELEV. (ft) (16.8) (9.6) 79% 45% Continued from previous page 535 528.4 GROUND SURFACE 534.7 1.2 3:11/1.0 (0.4) (0.0) 7=60/0.1 33% 0% 3:11/1.0 (4.5) (3.0) 0:31/0.2 (4.5) (3.0) CRYSTALLINE ROCK Sat. ALLUVIAL Gray and white, soft to v. hard, mod. weathered to fresh, close to Black, loose, Silty SAND (A-2-4), micaceous, (4.5) (3.0) RS-4 525 moderately close fractured, biotite gneiss with organics and wood chunks 90% CRYSTALLINE ROCK 530 GSI = 40-50 (biotite gneiss) 522.2 5.0 2:12/1.0 (2.0) (0.4) 2:55/1.0 40% 8% 528.4 5284 + 63 60/0. · 60/0.1 **CRYSTALLINE ROCK** 520 (biotite gneiss) *Note: 12.5'-17.5' is interpreted as CR. Poor recovery due to equipment 525 RS-4 GSI = 40-50 malfunction (inner core barrel not locking in) during third core run, 517.2 † 17.5 2:33/1.0 3:42/1.0 2:06/1.0 2:13/1.0 2:33/1.0 2:34/1.0 868 RS-5 per conversation w/ field geologist and driller. 5.0 515 520 512.2 + 22.5 3:01/1. 3:34/1.0 (4.9) (2.9) 3:25/1.0 98% 58% 510 2:29/1.0 4:35/1.0 515 RS-5 507.2 † 27.5 Boring Terminated at Elevation 507.2 ft In Crystalline Rock (biotite gneiss) *Deck to datum: 52.5 feet 510 Boring Terminated at Elevation 507.2 ft In Črystalline Rock (biotite gneiss) *Deck to datum: 52.5 feet

GEOTECHNICAL BORING REPORT **CORE LOG**

B2-BBOXES 1 & 2 : 6.3 - 27.5 FEET


GEOTECHNICAL BORING REPORT BORE LOG

COUNTY ROCKINGHAM GEOLOGIST A. Gross **WBS** 67044.1.1 **TIP** BR-0044 **GROUND WTR (ft** SITE DESCRIPTION Bridge No. 780168 over Smith River on NC14/ NC87 ALIGNMENT -L-**STATION** 23+07 OFFSET 37 ft RT 0 HR. BORING NO. B3-B COLLAR ELEV. 537.0 ft TOTAL DEPTH 28.3 ft **NORTHING** 1,011,960 **EASTING** 1,774,419 24 HR. N/A **DRILL RIG/HAMMER EFF./DATE** SUM3123 CME-550X 90% 11/19/2018 DRILL METHOD NW Casing w/ Advancer HAMMER TYPE Automatic **COMP. DATE** 09/23/19 **DRILLER** L. Gonzalez **START DATE** 09/20/19 SURFACE WATER DEPTH 4.5ft DRIVE DEPTH BLOW COUNT SOIL AND ROCK DESCRIPTION (ft) 75 0.5ft 0.5ft 0.5ft 50 NO. MOI G (ft) ELEV. (ft) 540 GROUND SURFACE 537.0 İ ALLUVIAL 535 534.6 2.4 100/0.8 Brown, med. dense, Fine to Coarse SAND (A-1-b) with gravel - 60/0.1 WEATHERED ROCK (granitic schist) CRYSTALLINE ROCK 530 (biotite gneiss) (casing advancer refusal at 5.1') GSI = 35-45 525 RS-6 520 515 RS-7 510 Boring Terminated at Elevation 508.7 ft In Crystalline Rock (biotite gneiss) *Deck to datum: 46.7 feet

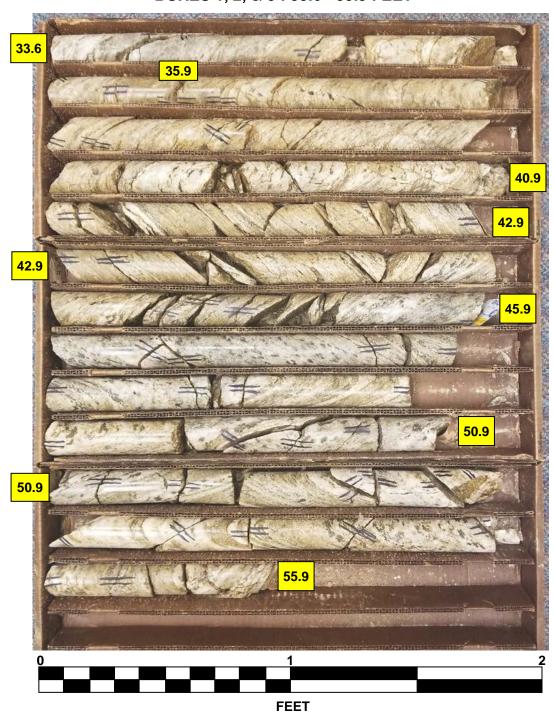
GEOTECHNICAL BORING REPORT CORE LOG

														_							
	67044					BR-00					ROCKIN	GHAM		GEC	DLOGIS	ST A. G	Gross				
SITE	DESCR	RIPTIO	N Bri	dge No. 7	780168	3 over	Smith Ri	ver on	NC14	1/ N	C87								GROUN	ID WTR	(ft)
BOR	ING NO.	В3-В			STAT	ΓΙΟN	23+07			OF	FSET :	37 ft RT		ALIC	SNMEN	IT -L-			0 HR.		N/A
COLI	LAR ELE	EV . 53	7.0 ft		TOTA	AL DE	PTH 28	.3 ft		NO	RTHING	1,011	960	EAS	TING	1,774,4	19		24 HR.		N/A
DRILL	RIG/HAI	MMER E	FF./DA	TE SUM3	3123 CN	1E-550X	390% 11/1	9/2018				DRILL N	ETHOD NV	V Casin	g w/ Adv	ancer		HAMME	R TYPE	Automa	tic
DRIL	LER L.	Gonza	alez		STAI	RT DA	TE 09/2	20/19		СО	MP. DA	TE 09/	23/19	SUR	FACE	WATER	DEPT	H 4.5	ft		
COR	E SIZE	NQ-2			TOTA	AL RUI	N 22.9 f	t						'							
ELEV	RUN	DEPTH	RUN	DRILL		JN	SAMP.		ATA RQD	L											
(ft)	ELEV (ft)	(ft)	(ft)	RATE (Min/ft)	(ft) %	(ft) %	NO.	(ft) %	(ft) %	O G				DESCRI	IPTION .	AND REN	//ARKS				
531.6	, ,				,,	,,,		,,,	,,,				Co	ontinue	ed from	n previou	is nag				
530	531.6 -	5.4	2.9	2:11/1.0	(2.6)	(1.6)		(22.4) 98%	(9.1)		- 531.6	Crayo		CF	RYSTAI	LINE RO	OCK		alaaa ta d	olooo.	5.4
	528.7	8.3	F 0	2:03/1.0 2:29/0.9	90%	55%		96%	40%		-	Gray a	nd white, mod			biotite gn		naru, v.	ciose to t	lose	
	-	F	5.0	2:08/1.0 2:18/1.0	(4.8) 96%	(1.6) 32%					- -				GSI	= 35-45					
525		1,,,		2:51/1.0 2:17/1.0							-										
	523.7 -	13.3	5.0	2:23/1.0 1:59/1.0	(5.0)	(1.6)	RS-6	1			-										
500	-	_		2:24/1.0 2:26/1.0	100%	32%					- -										
520	518.7 ₋	18.3	L	2:11/1.0 2:18/1.0							-										
	-		5.0	2:00/1.0 1:36/1.0	(5.0) 100%	(1.2) 24%					_										
515	_	E		2:21/1.0 2:20/1.0	.50 /6	/ 0					L										
	513.7	23.3	5.0	1:21/1.0 3:00/1.0	(5.0)	(3.1)	RS-7				-										
	-	F	3.0	1:53/1.0	100%	62%	<u> </u>	1			-										
510		L		2:50/1.0 3:10/1.0							- 										
	508.7 -	28.3		3:21/1.0							<u>508.7</u>	Boring	Terminated a	at Elevat	tion 508	.7 ft In Cr	ystalline	Rock (b	oiotite gne	eiss)	28.3
	-	_									- -			*De	eck to da	itum: 46.7	feet				
	_	_									-										
	-	_									<u>-</u>										
	-	-									_										
	-	F									-										
	-	-									- -										
	_	-									_										
	-										- -										
	-	_									-										
	_	E									_										
	-	-									-										
	-	F																			
	-	ļ									-										
	-	_									- -										
	-	_									_										
	-	_									-										
	-	<u> </u>									_										
	_	-									_										
	-	Ī									-										
	-	‡									- -										
	_	<u> </u>									-										
	-	<u> </u>									-										
	-	_									_										
	-	E									Ŀ										
	-	-									_										
	_	-									_										
	-	<u> </u>									- -										
	-	<u> </u>									_										
	_	ŀ									_										
	-	F									-										
										_											

B3-BBOXES 1 thru 3 : 5.4 - 28.3 FEET

GROUND WTR (ft)

5.0

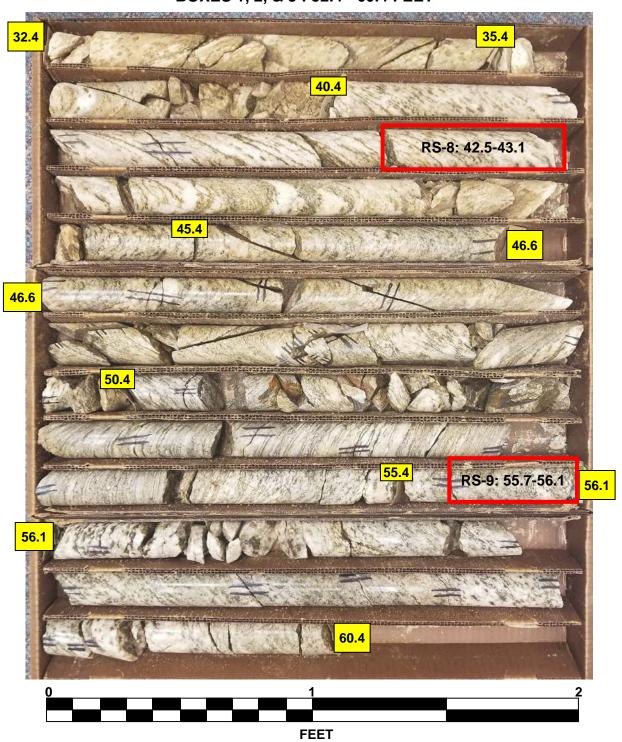

HAMMER TYPE Automatic

GEOTECHNICAL BORING REPORT

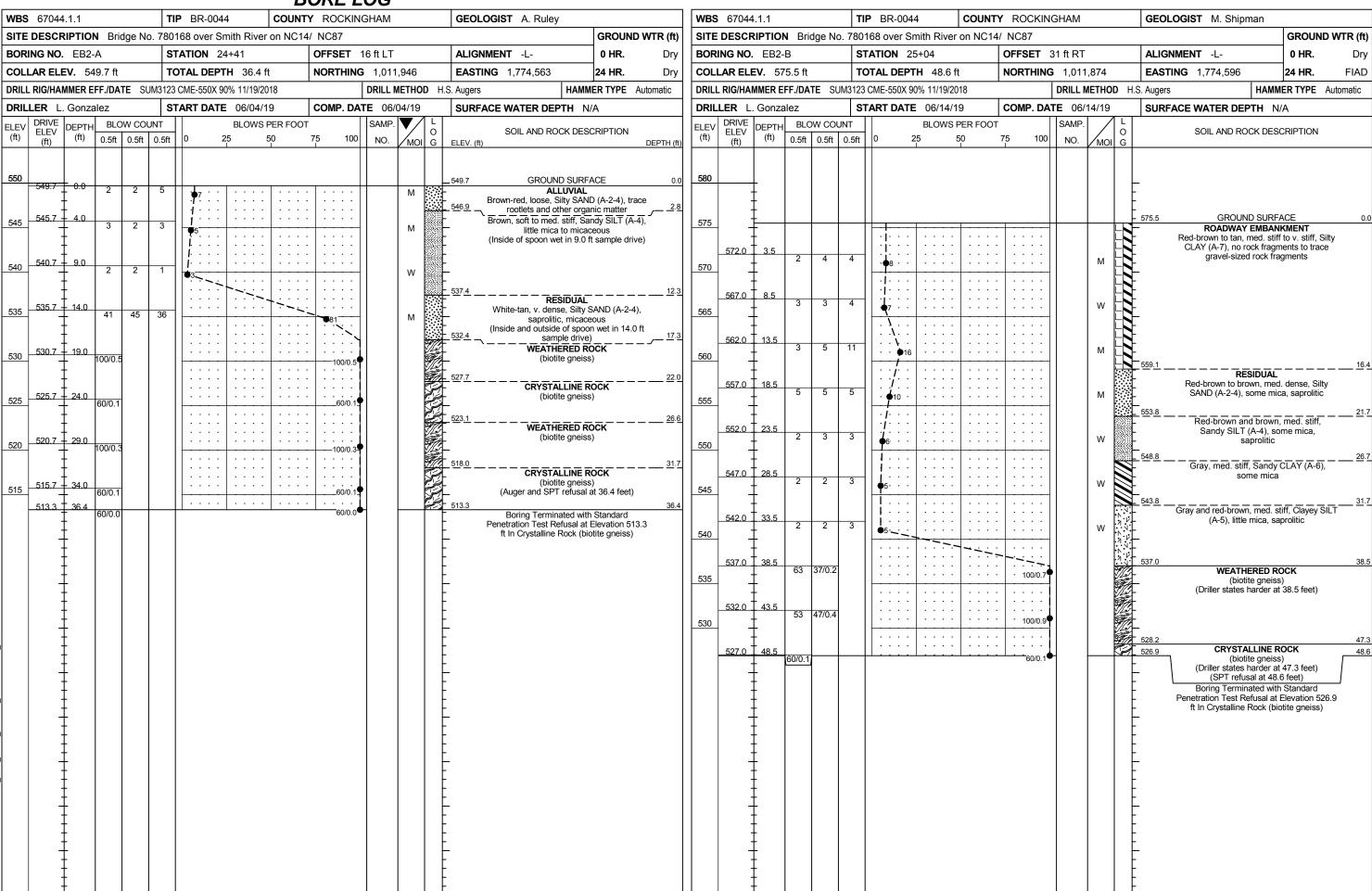
GEOTECHNICAL BORING REPORT BORF LOG

BORE LOG	FUKI	CORE LOG
WBS 67044.1.1 TIP BR-0044 COUNTY ROCKINGHAM	GEOLOGIST A. Ruley	WBS 67044.1.1 TIP BR-0044 COUNTY ROCKINGHAM GEOLOGIST A. Ruley
SITE DESCRIPTION Bridge No. 780168 over Smith River on NC14/ NC87	GROUND WTR (ft)	SITE DESCRIPTION Bridge No. 780168 over Smith River on NC14/ N87 GROUND WT
BORING NO. B4-A STATION 23+70 OFFSET 12 ft LT	ALIGNMENT -L- 0 HR. N/A	BORING NO. B4-A STATION 23+70 OFFSET 12 ft LT ALIGNMENT -L- 0 HR.
COLLAR ELEV. 548.8 ft TOTAL DEPTH 55.9 ft NORTHING 1,011,975	EASTING 1,774,498 24 HR . 5.0	COLLAR ELEV. 548.8 ft TOTAL DEPTH 55.9 ft NORTHING 1,011,975 EASTING 1,774,498 24 HR.
DRILL RIG/HAMMER EFF./DATE SUM3123 CME-550X 90% 11/19/2018 DRILL METHOD		DRILL RIG/HAMMER EFF./DATE SUM3123 CME-550X 90% 11/19/2018 DRILL METHOD H.S. Augers HAMMER TYPE Auton
DRILLER L. Gonzalez START DATE 06/06/19 COMP. DATE 06/07/19	SURFACE WATER DEPTH N/A	DRILLER L. Gonzalez START DATE 06/06/19 COMP. DATE 06/07/19 SURFACE WATER DEPTH N/A
ELEV (ft) DRIVE DEPTH BLOW COUNT BLOWS PER FOOT SAMP. Under the control of the contr		CORE SIZE NQ-2 TOTAL RUN 22.3 ft
(ft) (ft) (0.5ft 0.5ft 0.5ft 0 25 50 75 100 NO. MOI G	ELEV. (ft) DEPTH (ft)	TELEVI FUEL DEFINITOUN I DATE I RECUIRON I SAIVIF. I RECUIRON I O I DECODIDATION AND DEMARKO
		545s2 Continued from previous page
550 548.8 + 0.0	548.8 GROUND SURFACE 0.0	(ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ALLUVIAL Brown, soft, Sandy SILT (A-4), little mica 2.9	512.9 33.9 2:50/1.0 100% 83% 100% 76% 100% 76% 100% 100% 100% 100% 100% 100% 100% 10
545 544.5 4.3		510
	(Inside of spoon wet at 9.3 ft sample drive)	507.9 40.9 1.47/1.0 2.16/1.0 (5.0) (2.3)
540		5.0 2:16/1.0 (5.0) (2.3) 2:03/1.0 100% 46%
539.5 + 9.3		5.0
	536.5 12.3 WEATHERED ROCK	5.0 2:26/1.0 (5.0) (4.6) 2:27/1.0 100% 92%
535 534.5 14.3 59 41/0.1 100/0.6 530 529.5 19.3 43 57/0.2 100/0.7	(biotite gneiss) (Driller states harder at 12.3 feet)	500 2:30/1.0 2:13/1.0
	(Boulders at 11.3 feet) (Inside and outside of spoon wet at 14.3 ft	497.9 50.9 2:29/1.0 5.0 2:08/1.0 (5.0) (4.5)
530 529.5 19.3	sample drive)	495 3:02/1.0 100% 90% 2:19/1.0 2:19/1.0
43 57/0.2		492.9 55.9 2:08/1.0 Boring Terminated at Elevation 492.9 ft In Crystalline Rock (biotite gneiss)
1 525	524.8 24.0	Borring Terminated at Elevation 492.9 it in Crystalline Rock (blottle gnelss)
524.5 + 24.3 9 23 31 · · · · · · · · · · · · · · · · · ·	RESIDUAL Brown to white-brown, hard, Sandy SILT	
	(A-4), saprolitic, micaceous, trace cobble-sized rock fragments	
520 519.5 29.3 13 47 30	(Harder drilling from 24.5 feet to 29.0 feet)	
13 47 39 M	-	
515 515.2 33.6 60/0.0	515.2 33.6	
60/0.0	CRYSTALLINE ROCK (biotite gneiss)	
510 +	(Switch to coring at 33.6 feet)	
	GSI = 40-50	
<u>φ</u> 505	o	
104/149		
5 500	[
505 500 500 500 500 500 500 500 500 500	<u> </u>	
)- -	
3 495 T	492.9 55.9 5	
	Boring Terminated at Elevation 492.9 ft In	
	Crystalline Rock (biotite gneiss)	
	្ត ក	
	-	
44	400	

B4-ABOXES 1, 2, & 3 : 33.6 - 55.9 FEET


GEOTECHNICAL BORING REPORT BORE LOG

								<u>B</u>	<u>ORE L</u>	<u>OG</u>					
WBS	67044	1.1.1			TI	P BR-0044	(COUNT	ROCKIN	GHAM			GEOLOGIST A. Ruley		
SITE	DESCF	RIPTIO	N Bri	dge N	o. 780	168 over Smit	h River o	n NC14	/ N87					GROUND W	TR (ft)
BORI	NG NO	. B4-E	3		ST	TATION 23+	94		OFFSET	12 ft RT	,		ALIGNMENT -L-	0 HR.	N/A
COLL	AR ELI	EV . 55	50.2 ft		TO	OTAL DEPTH	60.4 ft		NORTHING	1,011	,942		EASTING 1,774,508	24 HR.	8.0
DRILL	RIG/HA	MMER E	FF./DA	TE S	UM3123	CME-550X 90%	11/19/2018	3		DRILL I	METHO	D H.	S. Augers HAMN	IER TYPE Auto	matic
DRILI	LER L	. Gonza	alez		Sī	TART DATE	06/04/19		COMP. DA	TE 06/	05/19		SURFACE WATER DEPTH N	/A	
ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)	0.5ft	OW CO		0 25	BLOWS PE		75 100	SAMP. NO.	моі	L O G	SOIL AND ROCK DES	CRIPTION	
555													_		
550	550.2	0.0	1	1	1	1:					М	- - -	550.2 GROUND SURF	ACE	0.0
545	545.1	5.1				\begin{pmatrix} 2 & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot		· · · · · · · · · · · · · · · · · · ·			IVI	-	Brown, loose, Silty SAND some mica, trace i		
040		J. J.	2	1	2	•3 · · · · · · · · · · · · · · · · · · ·					M	- - - -	541.8		<u>8.4</u>
540	540.1 <u> </u>	10.1	WOH	1	3	1					М		Dark-brown, soft, Sandy SII micaceous	LI (A-4), highly	
535	535.1 <u> </u>	15.1	4	10	45			●55, <u>·</u> ·			М			olitic	<u>13.4</u>
530	530.1	20.1	100/0.					? , 					(Spoon wet on outside and drive) WEATHERED R (biotite gneiss	оск	18.4
525	525.1	25.1	100/0.	9					. 100/0.5				(Driller states harder at		
525	525.1 <u> </u>	25.1	72	28/0.1					- 100/0.6						
520	520.1 <u>.</u> 517.8 -	30.1	20	80/0.3	5				- 100/0.8				517.8		32.4
515	- - -	† † †	60/0.0										CRYSTALLINE R (biotite gneiss _514.8 (Auger and SPT refusal (Driller states harder at	s) at 32.4 feet) t 32.4 feet)	35.4
510	- -	† - -											(Switch to coring at 3 WEATHERED R (biotite gneiss (Driller states softer at	OCK s)	39.1
505										RS-8			CRYSTALLINE R (biotite gneiss (Driller states harder	3)	
													GSI = 45-55		
500	-	 											<u> </u>		
495	- -	 - -								RS-9			-		
490	- - -	 - -											_489.8 Boring Terminated at Eleva	ation 489.8 ft In	60.4
		 											Črystalline Rock (bioti	te gneiss)	
		 - -										-			
	-	 										-	-		
	-	+													


GEOTECHNICAL BORING REPORT CORE LOG

COLLAR ELEV.	SITE DESCRIPTION Bridge No. 780168 over Smith River on NC14/ NC87 GROWNING NO. B4-B STATION 23+94 OFFSET 12 ft RT ALIGNMENT -L- 0 0 0 0 0 0 0 0 0	
BORING NO. B4-B	BORING NO. B4-B STATION 23+94 OFFSET 12 ft RT ALIGNMENT -L- Q COLLAR ELEV. 550.2 ft TOTAL DEPTH 60.4 ft NORTHING 1,011,942 EASTING 1,774,508 24 DRILL RIG/HAMMER EFF, DATE SUM3123 CME-550X 90% 11/19/2018 DRILL METHOD H.S. Augers HAMMER 1 DRILLER L. Gonzalez START DATE 06/04/19 COMP. DATE 06/05/19 SURFACE WATER DEPTH N/A CORE SIZE NQ-2 TOTAL RUN 28.0 ft REC. ROD. (ft)	
COLLAR ELEV. 550.2 ft TOTAL DEPTH 60.4 ft NORTHING 1,011,942 EASTING 1,774,508 24 HR. 8.0	COLLAR ELEV. 550.2 ft TOTAL DEPTH 60.4 ft NORTHING 1,011,942 EASTING 1,774,508 24	GROUND WTR (ft)
DRILL RIG/HAMMER EFF/DATE SUM3123 CME.550X 90% 11/19/2018 DRILL METHOD H.S. Augers HAMMER TYPE Automatic	DRILL RIG/HAMMER EFF,/DATE SUM3123 CME-550X 90% 11/19/2018 DRILL METHOD H.S. Augers HAMMER 1 DRILLER L. Gonzalez START DATE 06/04/19 COMP. DATE 06/05/19 SURFACE WATER DEPTH N/A	0 HR. N/A
DRILLER L. Gonzalez START DATE 06/04/19 COMP. DATE 06/05/19 SURFACE WATER DEPTH N/A	DRILLER L. Gonzalez START DATE 06/04/19 COMP. DATE 06/05/19 SURFACE WATER DEPTH N/A	4 HR. 8.0
CORE SIZE NQ-2	CORE SIZE NQ-2 TOTAL RUN 28.0 ft	TYPE Automatic
CORE SIZE NQ-2 TOTAL RUN 28.0 ft	CORE SIZE NQ-2 TOTAL RUN 28.0 ft	
ELEV (ft)	ELEV (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	
Continued from previous page St78 St8 St	Continued from previous page Continued from previous page	
Since Sinc	S17.8 S17.	
517.8 32.4 3.0 N=69/0.0 (1.7) (0.4) 511.8 511.8 511.8 Srown and gray, mod. to slightly weathered, mod. hard to hard, closely fractured, biotite gneiss 35. 510 509.8 40.4 2.33/1.0 2.33/1.0 0.0% 2.33/1.0 0.0% 2.33/1.0 0.0% 2.33/1.0 0.0% 2.33/1.0 0.0% 2.33/1.0 0.0% 2.33/1.0 0.0% 2.33/1.0 0.0% 2.33/1.0 0.0% 2.33/1.0 0.0%	517.8 32.4 3.0 N=60/0 to (1.7) (0.4) 57% 13% 13% 57% 13% 57% 13% 57% 13% 57% 13% 57% 13% 13% 57% 13% 13% 57% 13% 13% 57% 13%	
Solution Solution	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	32.4
Solution Solution	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	35.4
510 509.8 40.4 2:13/1.0 2:33/1.0 66% 509.8 40.4 5.0 2:01/1.0 1.57/1.0 100% 80% 74% 5.0 2:05/1	510 509.8 40.4 2:13/1.0 2:33/1.0	
505 504.8 45.4 2:17/1.0 100% 80% RS-8 506 504.8 45.4 2:17/1.0 100% 74% 2:05/1.0 2:05/1.0 1:25/1.0 100% 52% 2:04/1.0 1:25/1.0 1:2	5.0 2:01/1.0 (5.0) (4.0) 1:57/1.0 100% 80% RS-8 505 504.8 45.4 2:17/1.0 2:06/1.0 2:05/1.0 2:	39.1
2:08/1.0	505 504.8 45.4 2:17/1.0 1.58/1.0 2:31/1.0 (5.0) (3.7) 2:26/1.0 100% 74% 2:05/1.0 2:05/1.0 2:05/1.0 499.8 50.4 4:56/1.0 5.0 1:52/1.0 100% 52% 2:04/1.0 1:25/1	d, closely
505 504.8 45.4 15.8/1.0 2:17/1.0 (5.0) (3.7) 500 499.8 50.4 45.6/1.0 100% 45.6/1.0 100% 52% 2:04/1.0 1:25/1.0	505 504.8 45.4 1.58/1.0 2:17/1.0 (5.0) (3.7) 2:26/1.0 100% 74% 500 499.8 50.4 4.56/1.0 50% 491.0 1.25/	
5.0	500 499.8 50.4 50.4 100% 74% 2:05/1.0 4:56/1.0 5.0) (2.6) 1.25/1.0 100% 52% 2:04/1.0 1.25/1.0	
500	500 499.8 50.4 2:05/1.0 2:05/1.0 4:56/1.0 5:00 1:00 1:00 1:00 1:00 1:00 1:00 1:0	
499. 499.8 50.4 4:56/1.0 5.0 (2.6) 495 494.8 55.4 50.0 1:52/1.0 (5.0) (2.7) 496 494.8 55.4 50.0 1:65/1.0 2:51/1.0 2:51/1.0 2:15/1.0 2:15/1.0 2:15/1.0 2:15/1.0 3:04/1.0 (5.0) 74% 490 489.8 60.4 3:04/1.0 (5.0) 2:15/1.0 60.0 (6.0) 489.8 60.4 60.0 60.0 60.0 60.0 60.0 60.0 60.0	499.8 50.4 4:56/1.0 5.0 1:52/1.0 (5.0) (2.6) 1.25/1.0 1.2	
495 494.8 55.4 1.49/1.0 100% 52% 1.25/1.0 1.25/1.0 1.25/1.0 1.25/1.0 1.25/1.0 1.00% 74% RS-9 490 489.8 60.4 3.04/1.0 2.15/1.0 2.15/1.0 3.04/1.0 489.8 60.4	495 494.8 55.4 1.49/1.0 100% 52% 1.25/1.0 1.25/1.	
495 494.8 55.4 1:25/1.0 3:06/1.0	495 494.8 55.4 1:25/1.0 3:06/1.0 5.0 1:43/1.0 (5.0) (3.7)	
490 489.8 60.4 (5.0) (5.0) (3.7) (5.0) (3.7) (4.8) (4.10) (4.8) (4	5.0 1:43/1.0 (5.0) (3.7) RS-9	
490 489.8 60.4 2:51/1.0 100% 74% 489.8 60.4 3:04/1.0 60.		
490 489.8 ± 60.4 $3:04/1.0$ 489.8 60.4		
Boring Terminated at Elevation 489.8 ft In Crystalline Rock (biotite gneiss)	490 489.8 60.4 3:04/1.0 490 489.8	60.4

B4-BBOXES 1, 2, & 3 : 32.4 - 60.4 FEET

GEOTECHNICAL BORING REPORT BORE LOG

Performed in General Accordance with ASTM D7012

October 1, 2019

Project Name: Replace Bridge No. 780168 over Smith River on NC-14/NC-78

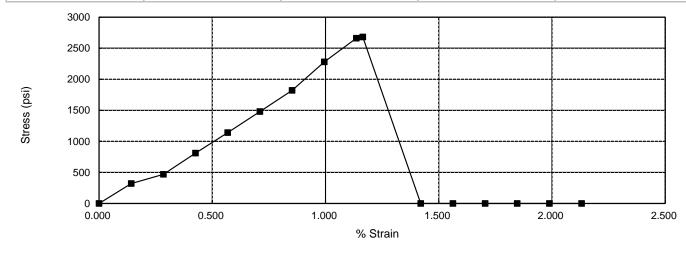
Project Number: 67044.1.1

 Sample ID: RS-1
 Length (in.): 3.52

 Location: B1-A
 Diameter (in.): 1.99

 Depth (ft): 28.5 - 28.8
 Area (in²): 3.110

L/D 1.8


FALCON

Compressive Strength (psi): 2680

Time to Failure, mins:sec: 0:56

Unit Weight (pcf): 159.5

	o to 1 anaro, 1111110.000	. 0.00		
			Compressive	Young's
Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0.000	0.000	0	0	
0.005	0.142	980	320	225,280
0.010	0.284	1460	470	165,440
0.015	0.426	2520	810	190,080
0.020	0.568	3560	1140	200,640
0.025	0.710	4590	1480	208,384
0.030	0.852	5660	1820	213,547
0.035	0.994	7100	2280	229,303
0.040	1.136	8270	2660	234,080
0.041	1.165	8350	2680	230,088
0.050	1.420		0	0
0.055	1.563		0	0
0.060	1.705		0	0
0.065	1.847		0	0
0.070	1.989		0	0
0.075	2.131		0	0

Note: "Uniaxial compressive strength was determined in general accordance with ASTM D7012-14 Method C. Deflection, Strain, and Young's modulus data is provided for reference only and is not intended to be in accordance with ASTM D7012-14 Method D as deflection and strain is not measured in accordance with that procedure. Young's Modulus is calculated using this data to determine the secant modulus at each data interval per Figure 2 (C) in ASTM D 7012-14."

Performed in General Accordance with ASTM D7012

October 1, 2019

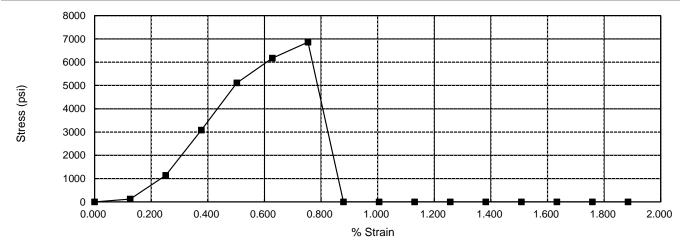
FALCON

Project Name: Replace Bridge No. 780168 over Smith River on NC-14/NC-78

Project Number: 67044.1.1

 Sample ID: RS-2
 Length (in.): 3.98

 Location: B1-A
 Diameter (in.): 1.99


 Depth (ft): 36.0 - 36.3
 Area (in²): 3.110

 L/D 2.0

Compressive Strength (psi): 6860 Unit Weight (pcf): 163.6

Time to Failure, mins:sec: 2:13

			Compressive	Young's
Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0.000	0.000	0	0	
0.005	0.126	360	120	95,520
0.010	0.251	3560	1140	453,720
0.015	0.377	9590	3080	817,227
0.020	0.503	15890	5110	1,016,890
0.025	0.628	19200	6170	982,264
0.030	0.754	21350	6860	910,093
0.035	0.879		0	0
0.040	1.005		0	0
0.045	1.131		0	0
0.050	1.256		0	0
0.055	1.382		0	0
0.060	1.508		0	0
0.065	1.633		0	0
0.070	1.759		0	0
0.075	1.884		0	0

Note: "Uniaxial compressive strength was determined in general accordance with ASTM D7012-14 Method C. Deflection, Strain, and Young's modulus data is provided for reference only and is not intended to be in accordance with ASTM D7012-14 Method D as deflection and strain is not measured in accordance with that procedure. Young's Modulus is calculated using this data to determine the secant modulus at each data interval per Figure 2 (C) in ASTM D 7012-14."

Performed in General Accordance with ASTM D7012

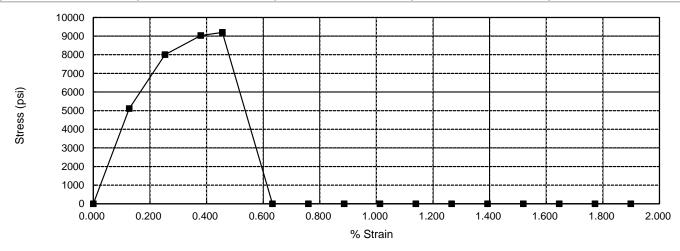
October 1, 2019

Project Name: Replace Bridge No. 780168 over Smith River on NC-14/NC-78

Project Number: 67044.1.1

 Sample ID: RS-3
 Length (in.): 3.95

 Location: B1-B
 Diameter (in.): 1.99


 Depth (ft): 39.2 - 39.5
 Area (in²): 3.110

L/D 2.0

FALCON

Compressive Strength (psi): 9200 Time to Failure, mins:sec: 2:30 Unit Weight (pcf): 165.9

			Compressive	Young's
Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0.000	0.000	0	0	
0.005	0.127	15890	5110	4,036,900
0.010	0.253	24890	8000	3,160,000
0.015	0.380	28090	9030	2,377,900
0.018	0.456	28600	9200	2,018,889
0.025	0.633		0	0
0.030	0.759		0	0
0.035	0.886		0	0
0.040	1.013		0	0
0.045	1.139		0	0
0.050	1.266		0	0
0.055	1.392		0	0
0.060	1.519		0	0
0.065	1.646		0	0
0.070	1.772		0	0
0.075	1.899		0	0

Note: "Uniaxial compressive strength was determined in general accordance with ASTM D7012-14 Method C. Deflection, Strain, and Young's modulus data is provided for reference only and is not intended to be in accordance with ASTM D7012-14 Method D as deflection and strain is not measured in accordance with that procedure. Young's Modulus is calculated using this data to determine the secant modulus at each data interval per Figure 2 (C) in ASTM D 7012-14."

Performed in General Accordance with ASTM D7012

October 1, 2019

Project Name: Replace Bridge No. 780168 over Smith River on NC-14/NC-78

Project Number: 67044.1.1

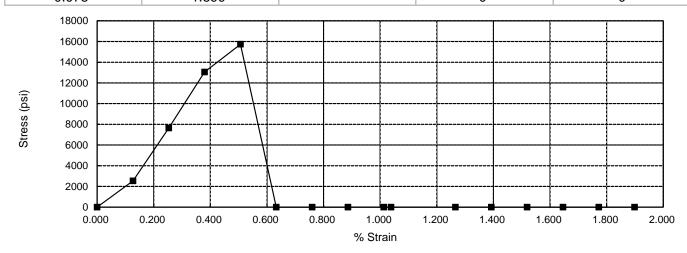
 Sample ID: RS-5
 Length (in.): 3.95

 Location: B2-B
 Diameter (in.): 1.97

 Depth (ft): 19.0 - 19.4
 Area (in²): 3.048

L/D 2.0

FALCON


Young's

Compressive Strength (psi): 15730

Unit Weight (pcf): 161.8

Tim	e to Failure, mins:sec:		
			Compressive
n (in.)	Strain (%)	Load (lbf)	Strength (psi)
1	0.000	0	0

Defle	ction (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0	.000	0.000	0	0	
0	.005	0.127	7700	2530	1,998,700
0	.010	0.253	23290	7640	3,017,800
0	.015	0.380	39770	13050	3,436,500
0	.020	0.506	47940	15730	3,106,675
0	.025	0.633		0	0
0	.030	0.759		0	0
0	.035	0.886		0	0
0	.040	1.013		0	0
0	.041	1.038		0	0
0	.050	1.266		0	0
0	.055	1.392		0	0
0	.060	1.519		0	0
0.	.065	1.646		0	0
0.	.070	1.772		0	0
0.	.075	1.899		0	0

Note: "Uniaxial compressive strength was determined in general accordance with ASTM D7012-14 Method C. Deflection, Strain, and Young's modulus data is provided for reference only and is not intended to be in accordance with ASTM D7012-14 Method D as deflection and strain is not measured in accordance with that procedure. Young's Modulus is calculated using this data to determine the secant modulus at each data interval per Figure 2 (C) in ASTM D 7012-14."

Performed in General Accordance with ASTM D7012

October 1, 2019

FALCON

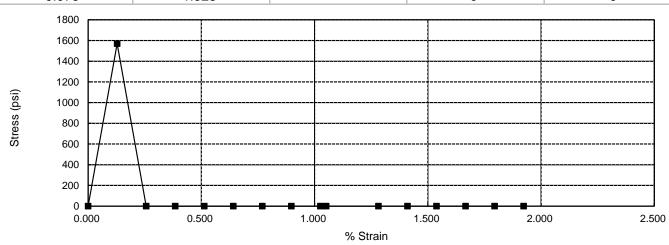
Project Name: Replace Bridge No. 780168 over Smith River on NC-14/NC-78

Project Number: 67044.1.1

 Sample ID: RS-6
 Length (in.): 3.90

 Location: B3-B
 Diameter (in.): 1.97

 Depth (ft): 12.5 to 13.0
 Area (in²): 3.048


 L/D 2.0

Compressive Strength (psi): 1570

Time to Failure, mins:sec: 0:17

Unit Weight (pcf): 164.0

1 11111	c to i andic, illino.scc.			
5 (1 . 4 .)			Compressive	Young's
Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0.000	0.000	0	0	
0.005	0.128	4790	1570	1,224,600
0.010	0.256		0	0
0.015	0.385		0	0
0.020	0.513		0	0
0.025	0.641		0	0
0.030	0.769		0	0
0.035	0.897		0	0
0.040	1.026		0	0
0.041	1.051		0	0
0.050	1.282		0	0
0.055	1.410		0	0
0.060	1.538		0	0
0.065	1.667		0	0
0.070	1.795		0	0
0.075	1.923		0	0

Note: "Uniaxial compressive strength was determined in general accordance with ASTM D7012-14 Method C. Deflection, Strain, and Young's modulus data is provided for reference only and is not intended to be in accordance with ASTM D7012-14 Method D as deflection and strain is not measured in accordance with that procedure. Young's Modulus is calculated using this data to determine the secant modulus at each data interval per Figure 2 (C) in ASTM D 7012-14."

Performed in General Accordance with ASTM D7012

October 1, 2019

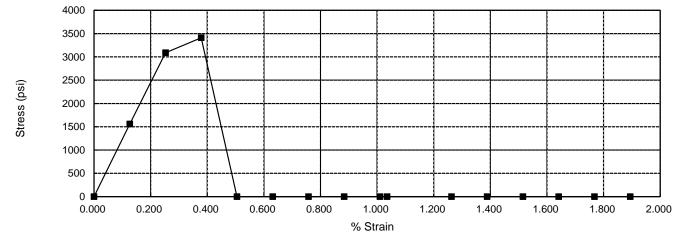
FALCON

Project Name: Replace Bridge No. 780168 over Smith River on NC-14/NC-78

Project Number: 67044.1.1

 Sample ID: RS-7
 Length (in.): 3.96

 Location: B3-B
 Diameter (in.): 1.97


 Depth (ft): 23.5 - 23.8
 Area (in²): 3.048

 L/D 2.0

Unit Weight (pcf): 164.4

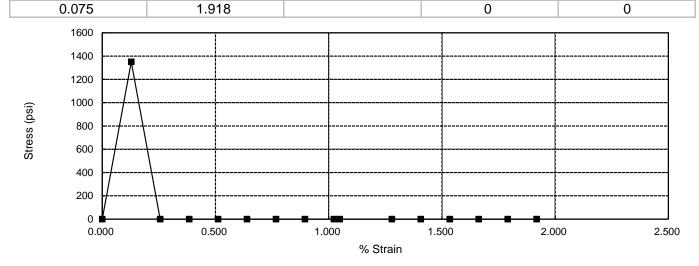
Compressive Strength (psi): 3410 Time to Failure, mins:sec: 0:47

			Compressive	Young's
Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0.000	0.000	0	0	
0.005	0.126	4770	1560	1,235,520
0.010	0.253	9430	3090	1,223,640
0.015	0.379	10400	3410	900,240
0.020	0.505		0	0
0.025	0.631		0	0
0.030	0.758		0	0
0.035	0.884		0	0
0.040	1.010		0	0
0.041	1.035		0	0
0.050	1.263		0	0
0.055	1.389		0	0
0.060	1.515		0	0
0.065	1.641		0	0
0.070	1.768		0	0
0.075	1.894		0	0

Note: "Uniaxial compressive strength was determined in general accordance with ASTM D7012-14 Method C. Deflection, Strain, and Young's modulus data is provided for reference only and is not intended to be in accordance with ASTM D7012-14 Method D as deflection and strain is not measured in accordance with that procedure. Young's Modulus is calculated using this data to determine the secant modulus at each data interval per Figure 2 (C) in ASTM D 7012-14."

Performed in General Accordance with ASTM D7012

FALCON


Project Name: Replace Bridge No. 780168 over Smith River on NC-14/NC-78

Project Number: 67044.1.1

Sample ID: RS-8 Length (in.): 3.91 Diameter (in.): 1.99 Location: B4-B Area (in²): 3.110 Depth (ft): 42.7 - 43.0 L/D 2.0 Unit Weight (pcf): 160.2

Compressive Strength (psi): 1350 Time to Failure, mins:sec: 0:19

	•		Compressive	Young's
Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0.000	0.000	0	0	
0.005	0.128	4210	1350	1,055,700
0.010	0.256		0	0
0.015	0.384		0	0
0.020	0.512		0	0
0.025	0.639		0	0
0.030	0.767		0	0
0.035	0.895		0	0
0.040	1.023		0	0
0.041	1.049		0	0
0.050	1.279		0	0
0.055	1.407		0	0
0.060	1.535		0	0
0.065	1.662		0	0
0.070	1.790		0	0

Note: "Uniaxial compressive strength was determined in general accordance with ASTM D7012-14 Method C. Deflection, Strain, and Young's modulus data is provided for reference only and is not intended to be in accordance with ASTM D7012-14 Method D as deflection and strain is not measured in accordance with that procedure. Young's Modulus is calculated using this data to determine the secant modulus at each data interval per Figure 2 (C) in ASTM D 7012-14."

Performed in General Accordance with ASTM D7012

October 1, 2019

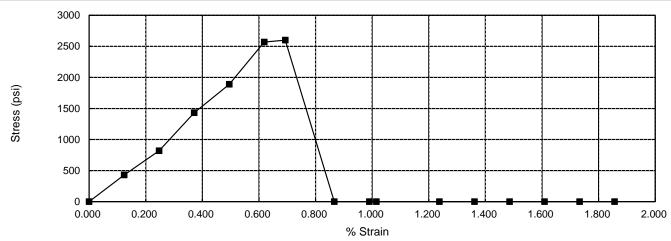
FALCON

Project Name: Replace Bridge No. 780168 over Smith River on NC-14/NC-78

Project Number: 67044.1.1

 Sample ID: RS-9
 Length (in.): 4.04

 Location: B4-B
 Diameter (in.): 1.99


 Depth (ft): 55.7 - 56.0
 Area (in²): 3.110

 L/D 2.0

Compressive Strength (psi): 2600 Unit Weight (pcf): 160.5


Time to Failure, mins:sec: 0:40

			Compressive	Young's
Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0.000	0.000	0	0	
0.005	0.124	1340	430	347,440
0.010	0.248	2560	820	331,280
0.015	0.371	4460	1430	385,147
0.020	0.495	5890	1890	381,780
0.025	0.619	7980	2570	415,312
0.028	0.693	8080	2600	375,143
0.035	0.866		0	0
0.040	0.990		0	0
0.041	1.015		0	0
0.050	1.238		0	0
0.055	1.361		0	0
0.060	1.485		0	0
0.065	1.609		0	0
0.070	1.733		0	0
0.075	1.856		0	0

Note: "Uniaxial compressive strength was determined in general accordance with ASTM D7012-14 Method C. Deflection, Strain, and Young's modulus data is provided for reference only and is not intended to be in accordance with ASTM D7012-14 Method D as deflection and strain is not measured in accordance with that procedure. Young's Modulus is calculated using this data to determine the secant modulus at each data interval per Figure 2 (C) in ASTM D 7012-14."

SITE PHOTOGRAPHS

Bridge No. 780168 on -L- (NC14/NC87) over Smith River

View near existing end bent 1, facing upstation (east)

View near existing end bent 2, facing downstation (west)

Note: Images are courtesy Google Maps street view.