Replace Bridge 87 Over the Norfolk Southern Railroad on NC 33

Parcel 13 - Wilson, Jesse Ray

7312 NC 33 East, Grimesland, North Carolina

TIP No. B-5301

WBS Element: 46015.1.1

June 6, 2018

Terracon Project No. 70187117

Prepared for:

North Carolina Department of Transportation Raleigh, North Carolina

Prepared by:

Terracon Consultants, Inc. Raleigh, North Carolina

terracon.com

Environmental Facilities Geotechnical Materials

TABLE OF CONTENTS

Page No.

1.0	INTRODUCTION	1
1.1	Site Description	1
1.2	Site History	1
1.3	Scope of Work	1
1.4	Standard of Care	2
1.5	Additional Scope Limitations	2
1.6	Reliance	2
2.0	FIELD ACTIVITIES	
2.1	Geophysical Survey	3
2.2	Soil Sampling	
2.3	Groundwater Sampling	
3.0	LABORATORY ANALYSES	5
4.0	DATA EVALUATION	5
4.1	Soil Analytical Results	5
4.2	Groundwater Analytical Results	6
5.0	CONCLUSIONS AND RECOMMENDATIONS	7
6.0	REFERENCES	7

TABLES

Table 1 – Summary of Soil Analytical Results

Table 2 – Summary of Groundwater Analytical Results

EXHIBITS

Exhibit 1 – Topographic Vicinity Map

Exhibit 2A - Site Diagram with Soil Boring Locations

Exhibit 2B – Site Diagram with Soil Boring Locations and Analytical Data

APPENDICES

Appendix A: Geophysical Survey Report

Appendix B: Soil Boring Logs and Temporary Well Construction Logs
Appendix C: Laboratory Analytical Reports and Chain-of-Custody Forms

North Carolina Department of Transportation Attention: Mr. Gordon Box, LG GeoEnvironmental Engineering Unit Century Center Complex Building B 1020 Birch Ridge Road Raleigh, North Carolina 27610

Re: Preliminary Site Assessment (PSA)

Replace Bridge 87 Over the Norfolk Southern Railroad on NC 33

Parcel 13 - Wilson, Jesse Ray

7312 NC 33 East, Grimesland, North Carolina

TIP No. B-5301

WBS Element: 46015.1.1

Dear Mr. Box:

Terracon Consultants, Inc. (Terracon) is pleased to submit a Preliminary Site Assessment (PSA) report for the above referenced site. This assessment was performed in accordance with our Proposal for Preliminary Site Assessment (Terracon Proposal No. P70187117) dated March 9, 2018. This report includes the findings of the investigation, and provides our conclusions and recommendations.

Terracon appreciates the opportunity to provide these services to the North Carolina Department of Transportation. If you have any questions concerning this report or need additional information, please contact us at 919-873-2211.

Sincerely,

Terracon Consultants, Inc.

DocuSigned by:

Prepared by:

William O. Frazier, P.G.

Staff Geologist

Reviewed by:

SEAL
#1930

CENSED. 14

Procusioned 15

CFC2FB1F9B60425

Michael T. Jordan, P.G.

Environmental Department Manager

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

Terracon Consultants, Inc. 2401 Brentwood Road, Suite 107 Raleigh, NC 27604 P [919] 873 2211 F [919] 873 9555 terracon.com

Environmental Facilities Geotechnical Materials

PRELIMINARY SITE ASSESSMENT

REPLACE BRIDGE 87 OVER THE NORFOLK SOUTHERN RAILROAD ON NC 33 TIP NO. B-5301

WBS ELEMENT: 46015.1.1
PARCEL 13 - WILSON, JESSE RAY
7312 NC 33 EAST, GRIMESLAND, NORTH CAROLINA

1.0 INTRODUCTION

1.1 Site Description

Site Name	Replace Bridge 87 Over the Norfolk Southern Railroad on NC 33
Site Location/Address	7312 NC 33 East, Grimesland, North Carolina 27837 (Pitt County Tax PIN: 25418)
General Site Description	The site currently consists of vacant, grass- and gravel-topped land.

1.2 Site History

The site is located at 7312 NC 33 East in Grimesland, Pitt County, North Carolina. At the time of the Preliminary Site Assessment (PSA), the site consisted of a vacant, grass- and gravel-topped lot. The site address does not appear on the North Carolina Department of Environmental Quality (NCDEQ) — Division of Waste Management UST Section Registered Tank Database. According to the Pitt County Geographic Information System database, the site formerly operated as a store. The site's location at an intersection along a rural highway is consistent with historical gas station locations. Based on the above, the site may have operated as a gas station in the past, and there is the possibility that abandoned/orphaned USTs are associated with the site.

1.3 Scope of Work

Terracon conducted the following PSA scope of work (SOW) in accordance with Terracon's Proposal for PSA (Proposal No. P70187117) dated March 9, 2018. This PSA is being completed prior to planned bridge replacement over the Norfolk Southern Railroad on NC 33 in Grimesland, North Carolina (site). The scope of work included a geophysical investigation, collection of soil and groundwater samples, and preparation of a report documenting our investigation activities. The PSA is not intended to delineate potential impacts. The PSA was performed within the proposed ROW as indicated by NCDOT provided plan sheets.

Parcel 13 – Wilson, Jesse Ray
7312 NC 33 East, Grimesland, NC
June 6, 2018
Terracon Project No. 70187117

1.4 Standard of Care

Terracon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. Terracon makes no warranties, either expressed or implied, regarding the findings, conclusions or recommendations. Please note that Terracon does not warrant the work of laboratories, regulatory agencies or other third parties supplying information used in the preparation of the report. These services were performed in accordance with our Proposal for Preliminary Site Assessment (Terracon Proposal No. P70187117) dated March 9, 2018 and were not conducted in accordance with ASTM E1903-11.

1.5 Additional Scope Limitations

Findings, conclusions and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, undetectable or not present during these services; thus, we cannot represent that the site is free of hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this PSA. Subsurface conditions may vary from those encountered at specific borings or wells or during other surveys, tests, assessments, investigations or exploratory services; the data, interpretations, findings, and our recommendations are based solely upon data obtained at the time and within the scope of these services.

1.6 Reliance

This report has been prepared for the exclusive use of the NCDOT. Authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the site) is prohibited without the expressed written authorization of the client and Terracon.

2.0 FIELD ACTIVITIES

The following PSA activities are presented in the order that they were conducted in the field.

Exhibit 1 presents the topography of the site on a portion of the USGS topographic quadrangle map of Grimesland, NC 1979. **Exhibits 2A and 2B** depict a site layout plan that includes the approximate locations of the site features, soil boring locations, and analytical results.

Parcel 13 – Wilson, Jesse Ray
7312 NC 33 East, Grimesland, NC
June 6, 2018
Terracon Project No. 70187117

2.1 Geophysical Survey

On April 18 and April 19, 2018, Geophysical Survey Investigations, PLLC conducted a geophysical investigation at the site in an effort to determine if unknown, metallic USTs were present beneath the proposed ROW area. The geophysical investigation included an electromagnetic (EM) induction survey using a Geonics EM61-MK2A metal detection instrument and a ground penetrating radar (GPR) survey using a Geophysical Survey Systems SIR-3000 unit.

The geophysical investigation identified one probable metallic UST on the parcel. The probable UST was observed as an approximate 7-foot by 3-foot geophysical anomaly at a depth of approximately 2.2 feet below land surface (bls). The anomaly is located on the southern edge of the existing NCDOT ROW. The approximate location of the anomaly is shown on Exhibit 2.

In addition to metal detection and GPR scans, the NC One Call public utility locator service was used to identify underground utility lines and to clear boring locations. A copy of the geophysical report is included in **Appendix A**.

2.2 Soil Sampling

Based on the findings of the geophysical investigation and Terracon's site observations, Terracon oversaw the advancement of eight soil borings (SB-11 through SB-18) along the northern and eastern portions of the parcel and within the NCDOT ROW. The borings were completed by a North Carolina Certified Well Contractor (Regional Probing Services) using a truck-mount Geoprobe® 5410 direct-push drill rig.

Soil samples were collected in 5-foot, disposable, Macro-Core® sampler tubes to document soil lithology, color, moisture content, and sensory evidence of impacts. Each soil sample was screened for organic vapors using an 11.7 eV photoionization detector (PID). The PID data were collected in order to corroborate laboratory data and assist in selection of sample intervals for laboratory analysis. PID readings from five of the borings (SB-11, SB-12, SB-16, SB-17, and SB-18) did not exceed 0.1 parts per million (ppm). PID readings from the remaining borings (SB-13, SB-14, and SB-15) ranged from less than 0.1 ppm to 369.5 ppm.

Based on the proposed disturbance depths and discussion with the NCDOT, each of the soil borings was advanced to a depth of approximately 10 feet below land surface (bls). Based on the results of the field screening, 16 soil samples, two from each boring, were collected from depths between approximately 2.5 feet and 9 feet bls. Samples were placed in laboratory provided sample containers and shipped to REDLAB/QROS, LLC – Environmental Testing for

Parcel 13 – Wilson, Jesse Ray
7312 NC 33 East, Grimesland, NC
June 6, 2018
Terracon Project No. 70187117

analysis by Ultraviolet Fluorescence (UVF). Soil samples were collected in the depth interval that was most likely to be impacted.

The drilling equipment used at the site was decontaminated prior to use and between the advancement of each boring. Non-dedicated sampling equipment was decontaminated using a Liquinox®/water wash followed by a distilled water rinse. Each of the boreholes was backfilled with hydrated bentonite pellets. Investigation derived waste (IDW) was spread on the site.

Soil generally consisted of silty clay to depths of approximately 6 to 8 feet bls on average, underlain by with fine- to medium-grained sand. Groundwater was encountered at a depth of approximately 4.17 feet bls in temporary well TW-02. The soil boring logs are included in **Appendix B**. Sample locations were measured using a Trimble Geo7x GPS and are depicted on **Exhibits 2A and 2B**.

2.3 Groundwater Sampling

Based on the results of the field screening, boring SB-15 was advanced to 13 feet bls and converted into temporary monitoring well TW-02, which was constructed as follows:

- Installation of a 10-foot section of 1-inch diameter, 0.010-inch machine slotted PVC well screen;
- Installation of a 3-foot section of 1-inch diameter, threaded, flush-joint PVC riser pipe to the ground surface; and
- Placement of sand in the borehole annulus to approximately two feet above the screened interval, followed by a layer of hydrated bentonite.

A groundwater sample was collected from TW-02 using low flow sampling techniques (i.e., <200 milliliters per minute). Groundwater parameters (pH, specific conductivity, dissolved oxygen, oxidation-reduction potential, and temperature.) were monitored and the well was purged until the parameters stabilized (i.e. three consecutive readings were within approximately 5 percent of one another). After the purging was complete, the sample was collected directly into laboratory supplied containers, packed in ice, and shipped to Shealy Environmental Services, Inc. (Shealy) in Columbia, South Carolina for analysis of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) by United States Environmental Protection Agency (USEPA) Method 8260B and USEPA Method 8270D, respectively.

Parcel 13 – Wilson, Jesse Ray
7312 NC 33 East, Grimesland, NC
June 6, 2018
Terracon Project No. 70187117

3.0 LABORATORY ANALYSES

Soil samples were submitted to QROS for analysis of the following:

- TPH-gasoline range organics (C₅-C₁₀) (TPH-GRO);
- TPH-diesel range organics (C₁₀-C₃₅) (TPH-DRO);
- Total petroleum hydrocarbons (C₅-C₃₅) (TPH);
- Benzene, toluene, ethylbenzene, and xylenes (BTEX);
- Total aromatics (C₁₀-C₃₅);
- 16 EPA Polycyclic Aromatic Hydrocarbons (16 EPA PAHs); and
- Benzo(a)pyrene (BaP).

Groundwater samples were submitted to Shealy for analysis of the following:

- VOCs via USEPA Method 8260B; and
- SVOCs via USEPA Method 8270D.

Please refer to **Appendix C** for the laboratory analytical reports.

4.0 DATA EVALUATION

4.1 Soil Analytical Results

Laboratory analysis reported the following detections above the laboratory reporting limits in soil borings SB-11 through SB-18:

- BTEX was reported at a concentration of 17.2 milligrams per kilogram (mg/kg) in SB-15 (9 ft);
- TPH-GRO reported within SB-13 (6.5 ft), SB-14 (4 ft), SB-14 (7 ft), SB-15 (9 ft), SB-16 (2.5 ft), SB-18 (2.5 ft), and SB-19 (7.5 ft) at concentrations ranging from 0.77 mg/kg to 59.7 mg/kg;
- TPH-DRO was reported within SB-12 (2.5 ft), SB-13 (2.5 ft), SB-13 (6.5 ft), SB-14 (4 ft), SB-14 (7 ft), SB-15 (9 ft), SB-16 (2.5 ft), and SB-18 (7.5 ft) at concentrations ranging from 0.28 mg/kg to 46.3 mg/kg;
- TPH (C_5 - C_{35}) was reported within SB-12 (2.5 ft), SB-13 (2.5 ft), SB-13 (6.5 ft), SB-14 (4 ft), SB-14 (7 ft), SB-15 (2.5 ft), SB-15 (9 ft), SB-16 (2.5 ft), SB-18 (2.6 ft), and SB-18 (7.5 ft) at concentrations ranging from 0.28 mg/kg to 106 mg/kg;

Parcel 13 – Wilson, Jesse Ray 7312 NC 33 East, Grimesland, NC June 6, 2018 Terracon Project No. 70187117

- Total aromatics (C_{10} - C_{35}) was reported within SB-12 (2.5 ft), SB-13 (2.5 ft), SB-13 (6.5 ft), SB-14 (4 ft), SB-14 (7 ft), SB-15 (2.5 ft), and SB-15 (9 ft) at concentrations ranging from 0.14 mg/kg to 7.1 mg/kg;
- 16 EPA PAHs was reported within SB-14 (7 ft) at a concentration of 0.8 mg/kg and SB-15 (9 ft) 0.62 mg/kg;
- BaP was not detected above laboratory reporting limits within the samples collected.

Laboratory analysis identified concentrations of TPH-GRO in excess of the NCDEQ Action Level (50 mg/kg) in SB-15-9'.

Concentrations of TPH-GRO and TPH-DRO were not identified about their respective NCDEQ Action Levels in the remaining borings.

Table 1 summarizes the results of the analyses of the soil samples. **Exhibits 2A and 2B** depict the boring locations, detected compounds, and estimated extent of contaminated media on the site.

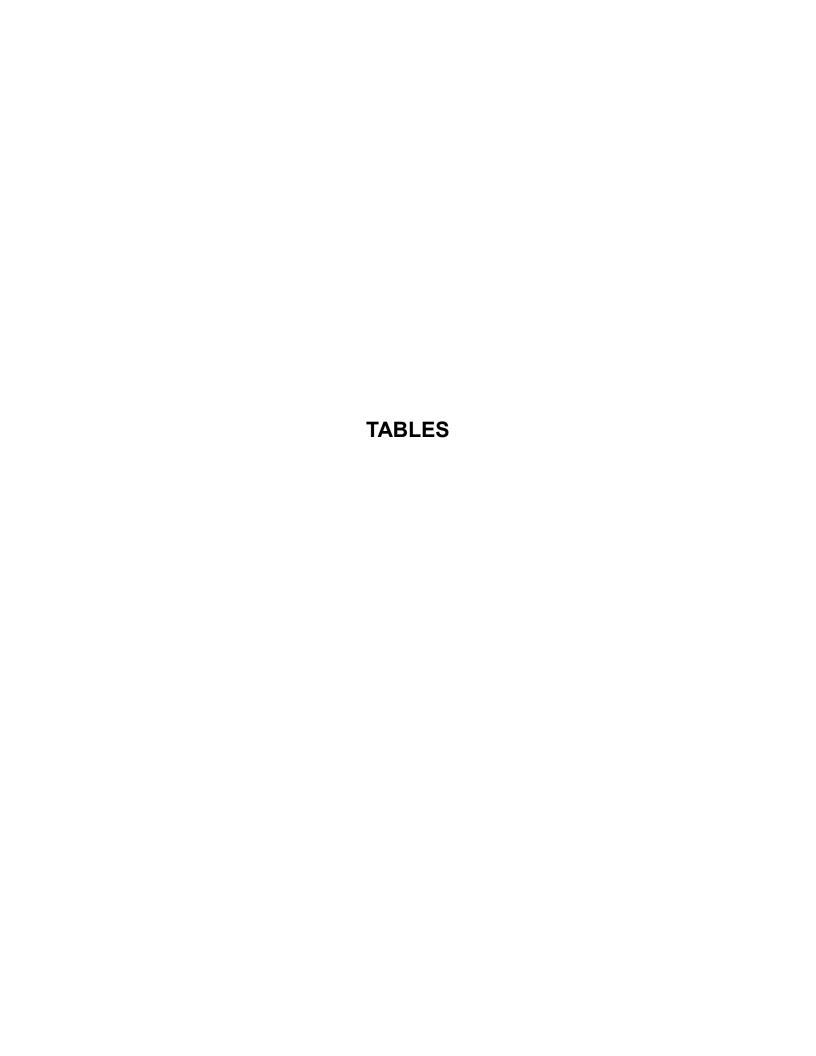
4.2 Groundwater Analytical Results

Laboratory analysis reported the following detections above the laboratory reporting limits in TW-02:

- The following VOCs were detected within TW-02: cyclohexane, ethylbenzene, isopropylbenzene, methylcyclohexane, toluene, and xylenes (total). The detected concentrations do not exceed their respective NCAC 2L Standards.
- The following SVOCs were detected within TW-02: 2-methylnaphthalene, and naphthalene. The detected concentrations do not exceed their respective NCAC 2L Standards.

Table 2 summarizes the results of the analyses of the groundwater sample.

Parcel 13 – Wilson, Jesse Ray
7312 NC 33 East, Grimesland, NC
June 6, 2018
Terracon Project No. 70187117


5.0 CONCLUSIONS AND RECOMMENDATIONS

The findings of this investigation are discussed below.

- The geophysical investigation identified a probable UST located along the southern edge of the existing NCDOT ROW on the parcel.
- Laboratory analysis reported concentrations of petroleum constituents in soil borings SB-12, SB-13, SB-14, SB-15, SB-16, and SB-18. Of the detected compounds, the concentration of TPH-GRO within SB-15 (9') exceeds the NCDEQ Action Level.
- The area of contamination appears to be localized around the identified probable UST. An estimated weight of petroleum impacted soil located within the ROW is 215 tons or 143 cubic yards. This calculation assumes an approximate area of 3,850 square feet located around the probable UST and extending to the edges of the existing and proposed ROWs as well as an average disturbance depth of 1 foot. The actual amount of impacted soil can only be determined after excavation or by advancing additional borings at the site to further delineate the extents of contamination.
- Laboratory analysis reported concentrations of multiple VOCs and SVOCs within groundwater at the site; however, none of the detected concentrations exceed the 2L Standards.
- Terracon recommends NCDOT provide a copy of the results to the owner and/or operator of the site.
- Terracon does not recommend further assessment of the ROW at this site. However, based on detections of petroleum compounds, construction workers should be alert for potential soil and/or groundwater impacts in other locations at the site.

6.0 REFERENCES

NCDOT, August. Revised GeoEnvironmental Report for Preliminary Site Assessments. "Hazardous Material Report." August 30, 2016.

Table 1 Summary of Soil Analytical Results Preliminary Site Assessment Parcel 13 - Wilson, Jesse Ray Grimesland, Pitt County, North Carolina Terracon Project No. 70187076

Sample ID:		SB-11	SB-12	SB-12	SB-13	SB-13	SB-14	SB-14	SB-15	SB-15	SB-16	SB-16	SB-17	SB-17	SB-18	SB-18	NCDEQ Action Level	MSCC Industrial/
Sample Depth (ft bls):	2.5	7.5	2.5	7.5	2.5	6.5	4	,	2.5	9	2.5	7.5	2.5	7.5	2.5	7.5	2010.	Commercial
BTEX (C ₆ - C ₉)	<0.49	<0.27	<0.52	<0.47	<0.28	<0.55	<0.51	<0.56	<0.3	17.2	<0.55	<0.48	<0.55	<0.53	<0.55	<0.29	NE	NE
GRO (C ₅ - C ₁₀)	<0.49	<0.27	<0.52	<0.47	<0.28	7.1	14.7	14.5	<0.3	59.7	0.66	<0.48	<0.55	<0.53	0.77	1	50	NE
DRO (C ₁₀ - C ₃₅)	<0.49	<0.27	0.52	<0.47	0.28	16.1	4.2	9.9	<0.3	46.3	<0.55	<0.48	<0.55	<0.53	<0.55	0.9	100	NE
TPH (C ₅ - C ₃₅)	<0.49	<0.27	0.52	<0.47	0.28	23.2	18.9	24.4	0.19	106	0.66	<0.48	<0.55	<0.53	0.77	1.9	NE	NE
Total Aromatics (C ₁₀ -C ₃₅)	<0.1	<0.05	0.32	<0.09	0.14	5.2	2.8	7.1	0.19	16.8	<0.11	<0.1	<0.11	<0.11	<0.11	<0.06	NE	NE
16 EPA PAHs	<0.16	<0.09	<0.17	<0.15	<0.09	<0.17	<0.16	0.38	<0.09	0.62	<0.17	<0.15	<0.18	<0.17	<0.17	<0.09	NE	NE
BaP	<0.019	<0.011	<0.021	<0.019	<0.011	<0.022	<0.02	<0.022	<0.012	<0.018	<0.022	<0.019	<0.022	<0.021	<0.022	<0.012	NE	0.78

Notes:

Soil samples were collected on April 23, 2018.

Detected compounds are shown in the table.

Concentrations are reported in milligrams per kilogram (mg/kg).

ft bls - feet below land surface.

GRO - Gasoline Range Organics.

DRO - Diesel Range Organics.

TPH - Total Petroleuem Hydrocarbons.

BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes.

16 EPA PAHs - Environmental Protection Agency Polycyclic Aromatic Hydrocarbons (acenaphthene, acenaphthylene, antrancene, benzo[a]anthrancene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[g,h,i]perylene, benzo[a]pyrene,

chrysene, dibenz[a,h]anthracene, fluoranthene, fluorene, indeno[1,2,3-c,d]pyrene, naphthalene, phenanthrene, pyrene).

NE - Standard not established.

Detections shaded in gray exceed the North Carolina Department of Environmental Quality (NCDEQ) Action Level.

MSCC Industrial/Commercial - Maximum Soil Contaminant Concentration Levels Industrial/Commercial soil cleanup levels.

Bold: Constituent concentration reported above the method detection limit.

Table 2 Summary of Groundwater Analytical Results Preliminary Site Assessment Parcel 13 - Wilson, Jesse Ray Grimesland, Pitt County, North Carolina

Terracon Project No. 70187117

Sample ID:	TW-02								
Sample Date:	04/23/18	NCAC 2L Standard							
Screen Interval (ft bls):	3-13								
Volatile Organic Compounds (EPA Method 8260) - (μg/L)									
Cyclohexane	3.8	NE							
Ethylbenzene	17	600							
Isopropylbenzene	6.4	70							
Methylcyclohexane	7.4	NE							
Toluene	0.5 J	600							
Xylenes (Total)	8.7	500							
Semi-Volatile Organic Compounds (EPA Method 8270) - (μg/L)									
2-Methylnaphthalene	2	30							
Naphthalene	2.9	6							

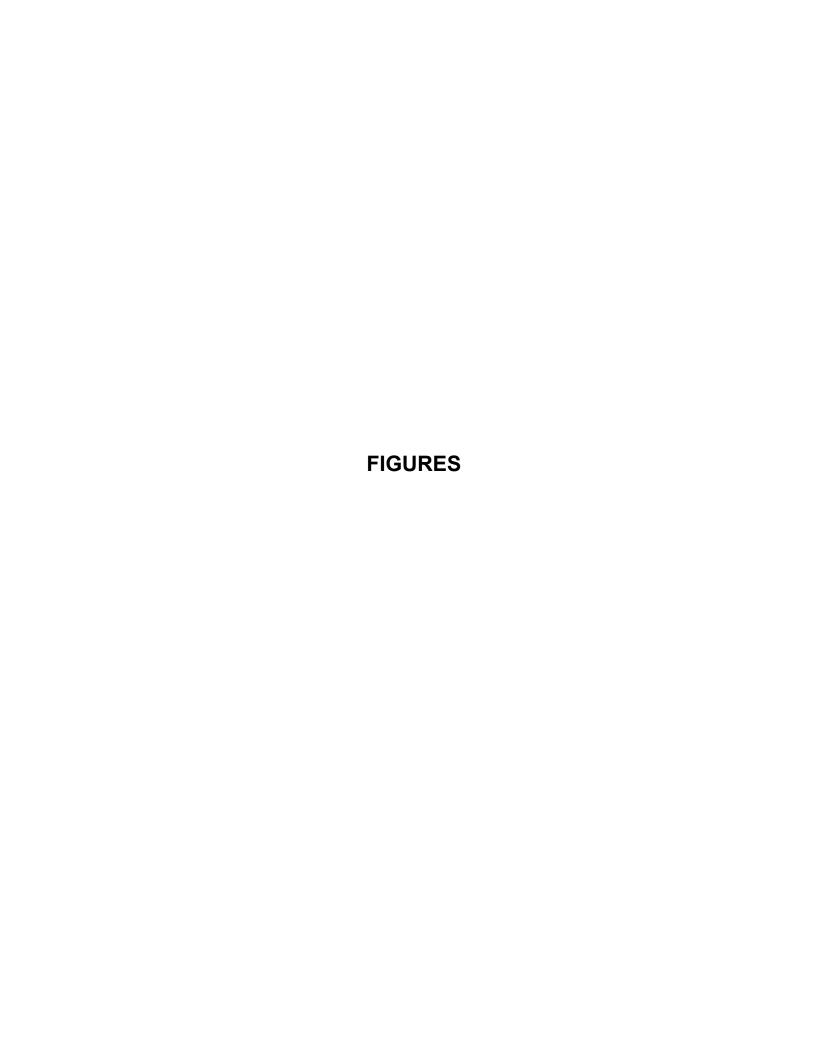
Notes

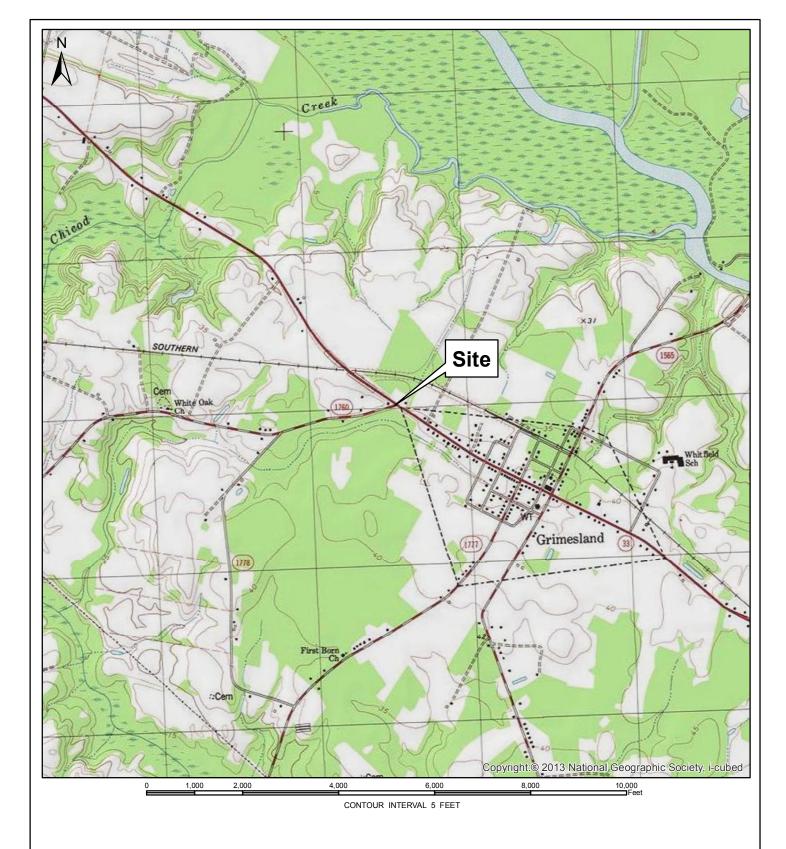
 $\label{lem:compounds} \mbox{Compounds detected above laboratory reporting limits are shown in the table}$

Concentrations are reported in micrograms per liter ($\mu g/L$)

NCAC 2L Standard - North Carolina Administrative Code

Subchapter 2L Groundwater Quality Standards (April 1, 2013)

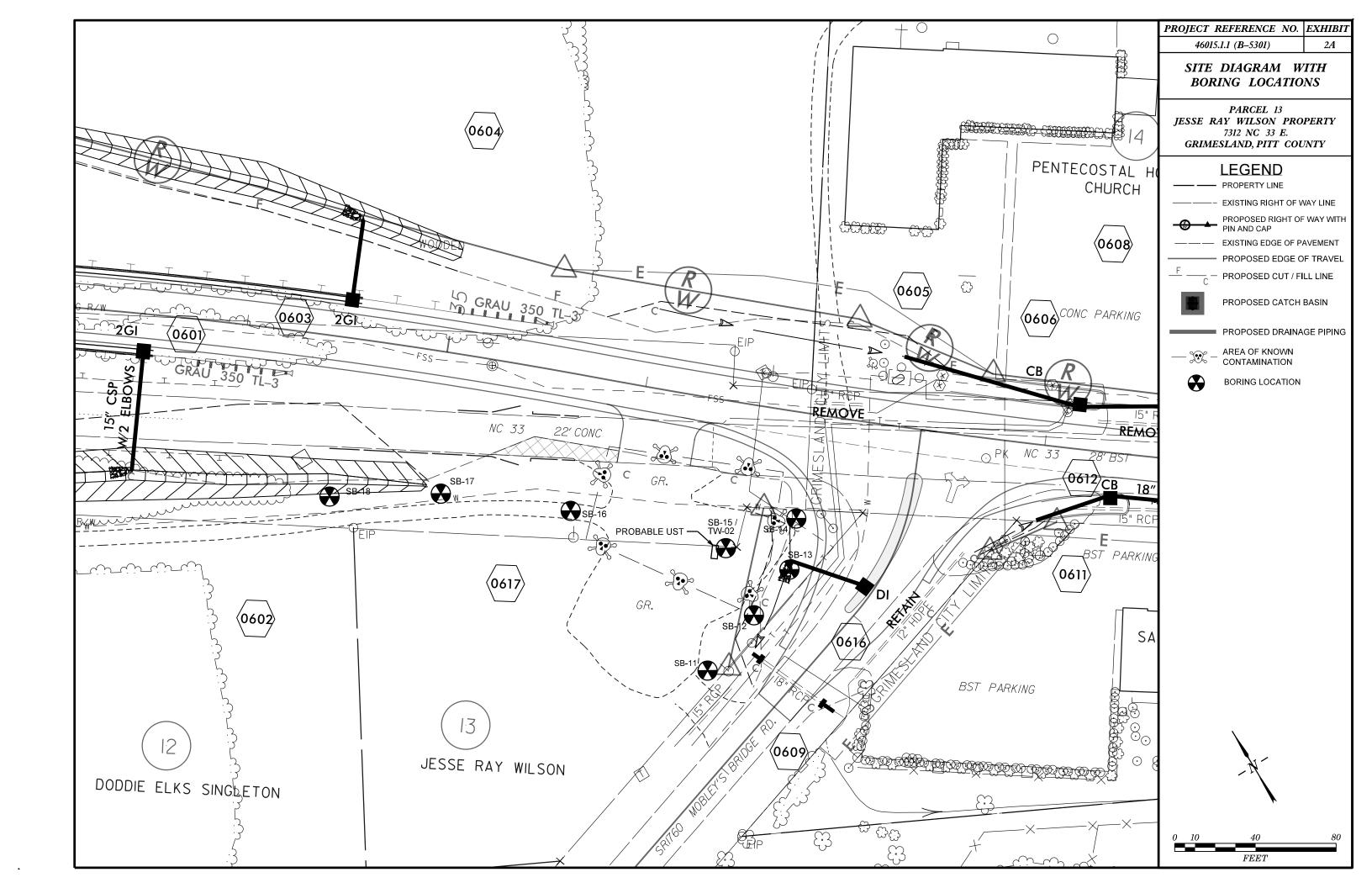

Detections in excess of a standard or screening level are shaded

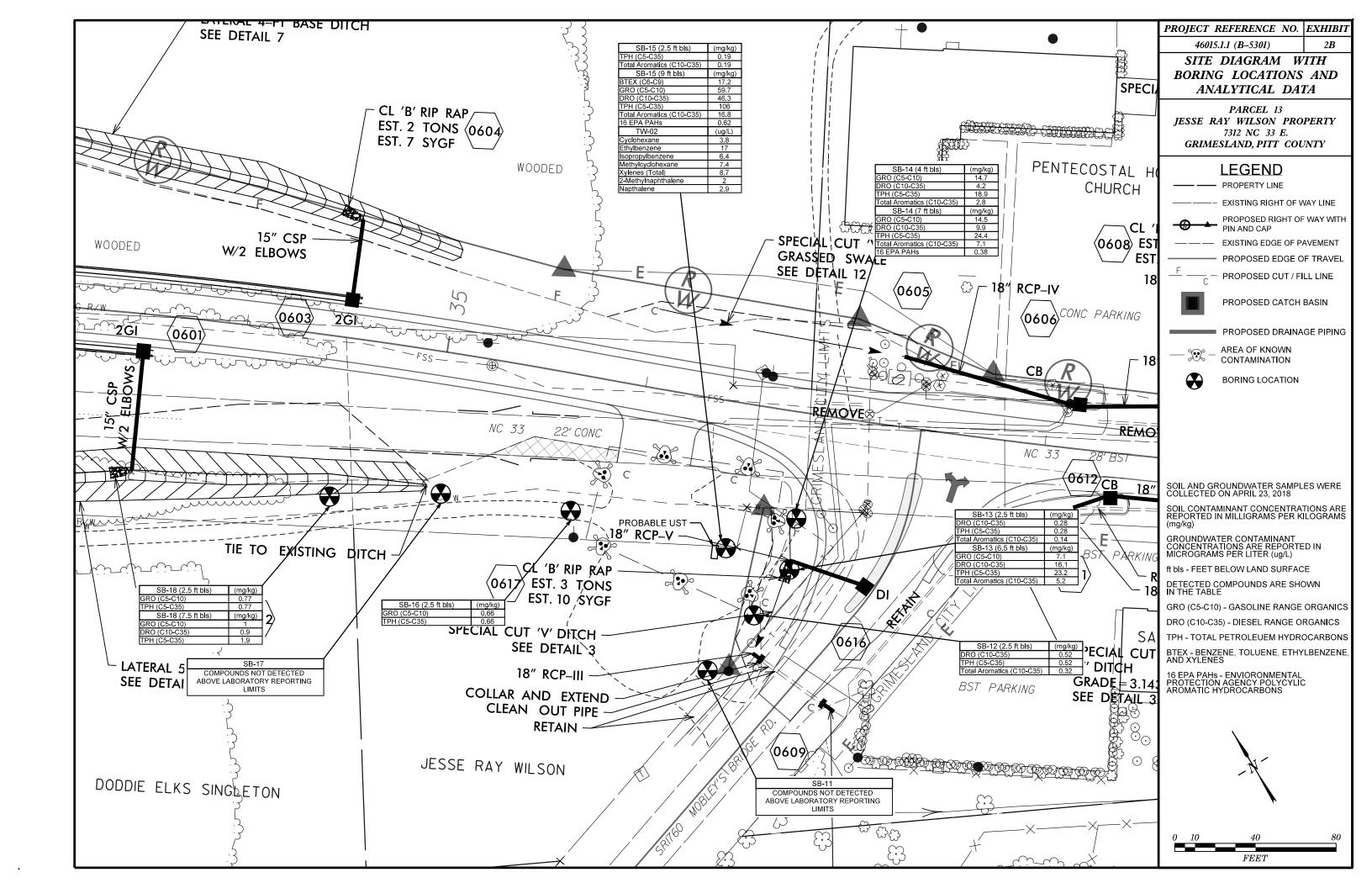

ft bls: feet below land surface

NE: Not established

J: Estimated concentration between the method detection limit and the reporting limit

^{*}Interim Maxium Allowable Concentration


USGS TOPOGRAPHIC MAP GRIMESLAND NC QUADRANGLE (1979)


PM: SJK	Project No. 70187117
Drawn By: WOF	Scale: 1:24,000
Checked By: WOF	File Path:
Approved By MTJ	Date: 5/7/2018

lerracon

101 Brentwood Drive, Suite 107	Raleigh, NC 27604
hone: (919) 873-2211	Fax: (919) 873-9555

Topographic Vicinity Map	EXHIBIT NO.
Preliminary Site Assessment U-5301 Grimesland, Pitt County, North Carolina	1

APPENDIX A GEOPHYSICAL SURVEY REPORT

TERRACON CONSULTANTS, INC.

GEOPHYSICAL INVESTIGATION TO LOCATE METALLIC USTS

Jesse Ray Wilson (Parcel 13) Property NC-33 & Mobleys Bridge Road Grimesland, North Carolina

April 28, 2018 Geophysical Survey Investigations, PLLC Project No. 2018-16

4 Willimantic Drive, Greensboro, NC 27455 Office Tel: (336) 286-9718 denilm@bellsouth.net

TERRACON CONSULTANTS, INC. GEOPHYSICAL INVESTIGATION TO LOCATE METALLIC USTS

Jesse Ray Wilson (Parcel 13) Property NC-33 & Mobleys Bridge Road Grimesland, North Carolina

TABLE OF CONTENTS

		<u>Page</u>
1.0	INTRODUC	CTION1
2.0	FIELD MET	THODOLOGY
3.0	DISCUSSIO	ON OF RESULTS 2
4.0	SUMMARY	Y & CONCLUSIONS
5.0	LIMITATIO	ONS 4
		FIGURES
Figu Figu Figu Figu	re 2 re 3	Geophysical Equipment & Site Photographs EM61-MK2A Metal Detection – Early Time Gate Results EM61-MK2A Metal Detection – Differential Results GPR Image & Photograph Across Probable UST
Prep	pared by:	Mark J. Denil, P.G.

1.0 INTRODUCTION

Geophysical Survey Investigations, PLLC (GSI) conducted an electromagnetic (EM) metal detection survey, ground penetrating radar (GPR) scanning and buried, utility line clearance search for Terracon Consultants, Inc. on April 18 and 19, 2018 across the northeastern portion of the Jesse Ray Wilson (Parcel 13) property located at the intersection of NC-33 (Pitt Street) and Mobleys Bridge Road near Grimesland, North Carolina. The work was conducted as part of the North Carolina Department of Transportation (NCDOT) site assessment for TIP Project B-5301 (WBS Element No. 46015.11).

The geophysical investigation was conducted to determine if metallic, underground, storage tanks (USTs) are present within the proposed Right-of-Way (ROW) on the Wilson property. Terracon Consultants representative Mr. William Frazier was on site during the geophysical investigation and provided guidance and assistance during data acquisition to Geophysical Survey Investigations, PLLC personnel. The geophysical survey area has a maximum length and width of 270 feet and 150 feet, respectively. Presently, the site comprises of an open, flat-lying, undeveloped field with a gravel-covered island surrounded by grass and wooded terrain.

2.0 FIELD METHODOLOGY

The EM investigation was performed across the survey area using a Geonics EM61-MK2A metal detection instrument with a Hemisphere A101 GPS unit. EM61 metal detection data and GPS coordinates were digitally collected in latitude and longitude geodetic format (NAD83) using a Juniper data recorder at approximately 1.0 foot intervals along survey lines spaced approximately five feet apart. The Trackmaker NAV61MK2 software program was used with the data recorder to view the relative positions of the survey lines in real time during data acquisition. A Honda Recon ATV was used to tow the EM61 instrument, GPS unit and data recorder during data acquisition.

According to the instrument specifications, the EM61-MK2A can detect a metal drum down to a maximum depth of approximately 8 to 10 feet. Objects less than one foot in size can be detected to a maximum depth of 4 or 5 feet. The EM61 and GPS data were downloaded to a computer and

processed in the field using the Trackmaker61MK2 and Surfer for Windows software programs. GPS coordinates were converted during data processing to Universal Transverse Mercator (UTM) coordinates (in feet) which are used as location control in this report.

GPR scanning was conducted across selected EM61 differential metal detection anomalies. GPR scans were performed along northerly-southerly and easterly-westerly directions spaced primarily 3 to 5 feet apart across the selected EM61 differential anomalies using the Geophysical Survey Systems SIR-3000 unit equipped with a 400 MHz antenna. GPR data were viewed in real time in a continuous mode using a vertical scan of 512 samples, at a sampling rate of 48 scans per second. A 70 MHz high pass filter and an 800 MHz low pass filter were used during data acquisition with the 400 MHz antenna. GPR data were viewed to a maximum investigating depth of approximately 6.0 feet based on an estimated two-way travel time of 8.0 nanoseconds per foot.

Following the UST investigation, the geophysical survey area (ROW area) was scanned with the GPR unit and a DitchWitch 910 utility locator for buried utility line clearance. Detected buried lines were marked in the field with orange marking paint and pin flags. Photographs of the geophysical equipment used for the investigation and of the site are presented in **Figure 1**.

3.0 DISCUSSION OF RESULTS

Contour plots of the EM61 early time gate results and the EM61 differential results are presented in Figures 2 and 3, respectively. The early time gate results represent the most sensitive component of the EM61 instrument and detect metal objects regardless of size. The early time gate response can be used to delineate metallic conduits or utility lines, small, isolated, metal objects and areas containing insignificant metal debris. The differential results are obtained from the difference between the early time gate channel and late time gate channel of the EM61 instrument. The differential results focus on the larger metal objects such as drums and UST-size objects and ignore the smaller, insignificant, metal objects and debris.

The linear, EM61 early time gate anomalies intersecting UTM coordinates 986061-E 12920805-N and 986087-E 12920786-N are probably in response to buried lines or conduits. The linear, EM61

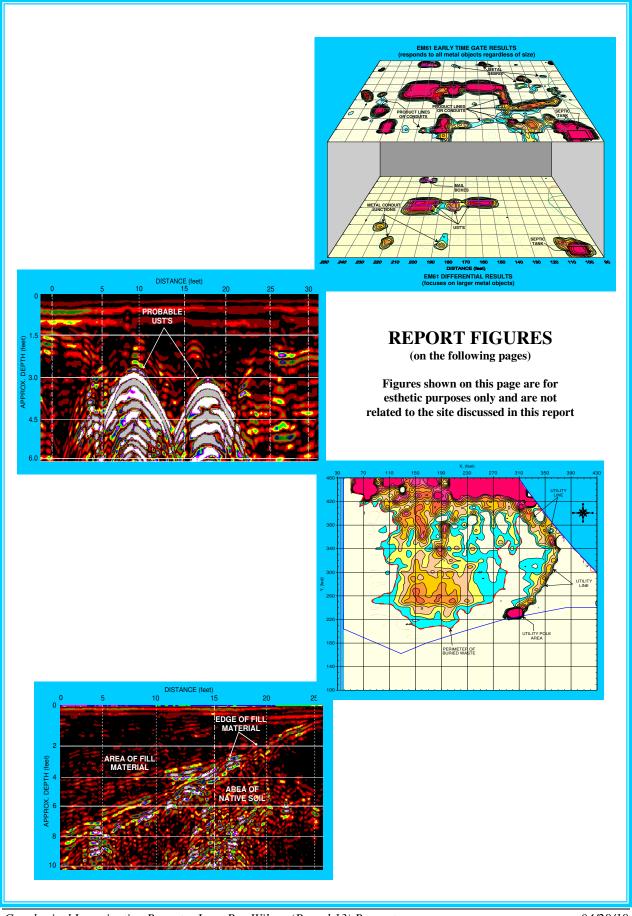
early time gate anomalies intersecting coordinates 985969-E 12920895-N and 985982-E 12920739-N are probably in response to buried miscellaneous objects or debris and a culvert, respectively.

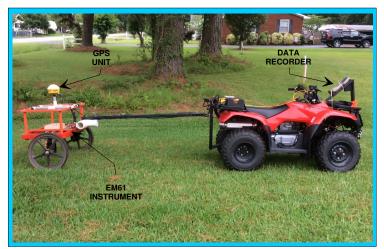
GPR scanning suggests the large, high amplitude, EM61 differential metal detection anomalies centered near coordinates 986042-E 12920815-N, 986059-E 12920776-N, and 986012-E 12920762-N are in response to either portions of buried conduits and/or miscellaneous metal objects. GPR scanning across the EM61 differential anomaly centered near coordinates 986027.5-E 12920801.5-N suggests the presence of a probable, metallic UST that is approximately 7.0 feet long, 3.0 feet wide and 2.2 feet below present grade. The axis of the probable UST is oriented in a northerly-southerly direction and a possible product line appears to run from the northern edge of the probable UST northward towards NC-33. A GPR image acquired across the probable UST and a photograph showing the location of the probable, buried tank are presented in **Figure 4**. The approximate foot print of the probable UST was marked in the field with orange marking paint and pin flags.

The remaining EM61 anomalies not discussed in this summary are probably in response to known surface objects, buried utility lines, steel reinforced concrete, or to buried, miscellaneous, metal debris. No additional geophysical surveys for the detection of metallic USTs are warranted at this time within the same area of interest.

As previously mentioned, scanning for utility line clearance purposes was conducted across the geophysical survey area. Detected lines or conduits were marked in the field with orange marking paint and pin flags.

4.0 <u>SUMMARY & CONCLUSIONS</u>


Our evaluation of the EM61 and GPR data collected across the geophysical survey area at the Jesse Ray Wilson (Parcel 13) property located at the intersection of NC-33 (Pitt Street) and Mobleys Bridge Road near Grimesland, North Carolina provides the following summary and conclusions:


• The combination of EM61 and GPR surveys provided reliable results for the detection of metallic USTs across the survey area within the depth interval of 0 to 6 feet.

- All of the linear, EM61 early time gate anomalies are probably in response to buried, metallic utility lines, conduits, culverts, or possible product lines.
- The geophysical investigation detected a probable UST centered near grid coordinates 986027.5-E 12920801.5-N. Based on GPR data, the probable UST is approximately 7.0 feet long, 3.0 feet wide and buried 2.2 feet below present grade.

5.0 LIMITATIONS

EM61 and GPR surveys have been performed and this report prepared for Terracon Consultants, Inc. in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the geophysical surveys are non-unique and may not represent actual subsurface conditions. Some of the EM61 and GPR anomalies interpreted as possible/probable USTs, utility lines, conduits, steel reinforced concrete, or miscellaneous, metal debris may be attributed to other surface or subsurface features and/or interference from cultural features.

EM61 METAL DETECTOR

The photograph shows the Geonics EM61-MK2A metal detector, a Hemisphere A101 GPS unit, a Juniper data recorder, and a Honda Recon ATV which were used to conduct the metal detection survey across the proposed ROW & easement areas of Parcel 13.

GROUND PENETRATING RADAR UNIT

The photograph shows the Geophysical Survey Systems SIR-3000 ground penetrating radar (GPR) unit equiped with a 400 MHz antenna that were used to conduct the GPR scanning across selected areas.

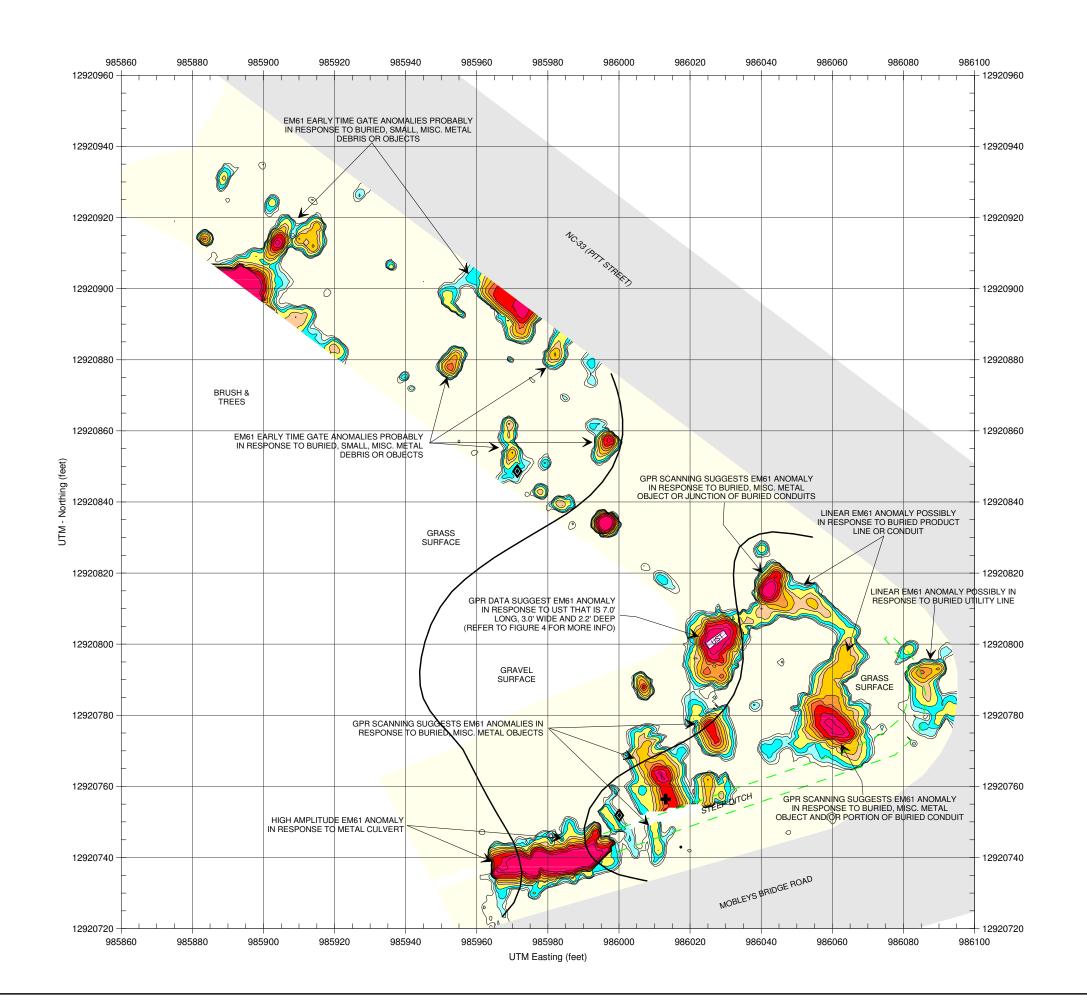
DITCHWITCH RECEIVER DITCHWITCH TRANSMITTER

DITCHWITCH UTILITY LOCATOR

The photograph shows the DitchWitch 910 utility locator which was used to detect buried lines across the geophysical survey area.

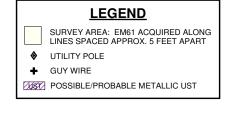
GEOPHYSICAL SURVEY AREA

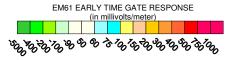
The red polygon in the aerial photograph represents the approximate perimeter of the geophysical survey area at Parcel 13 The geophysical investigation was conducted on April 18-19, 2018.



Terracon Consultants, Inc.

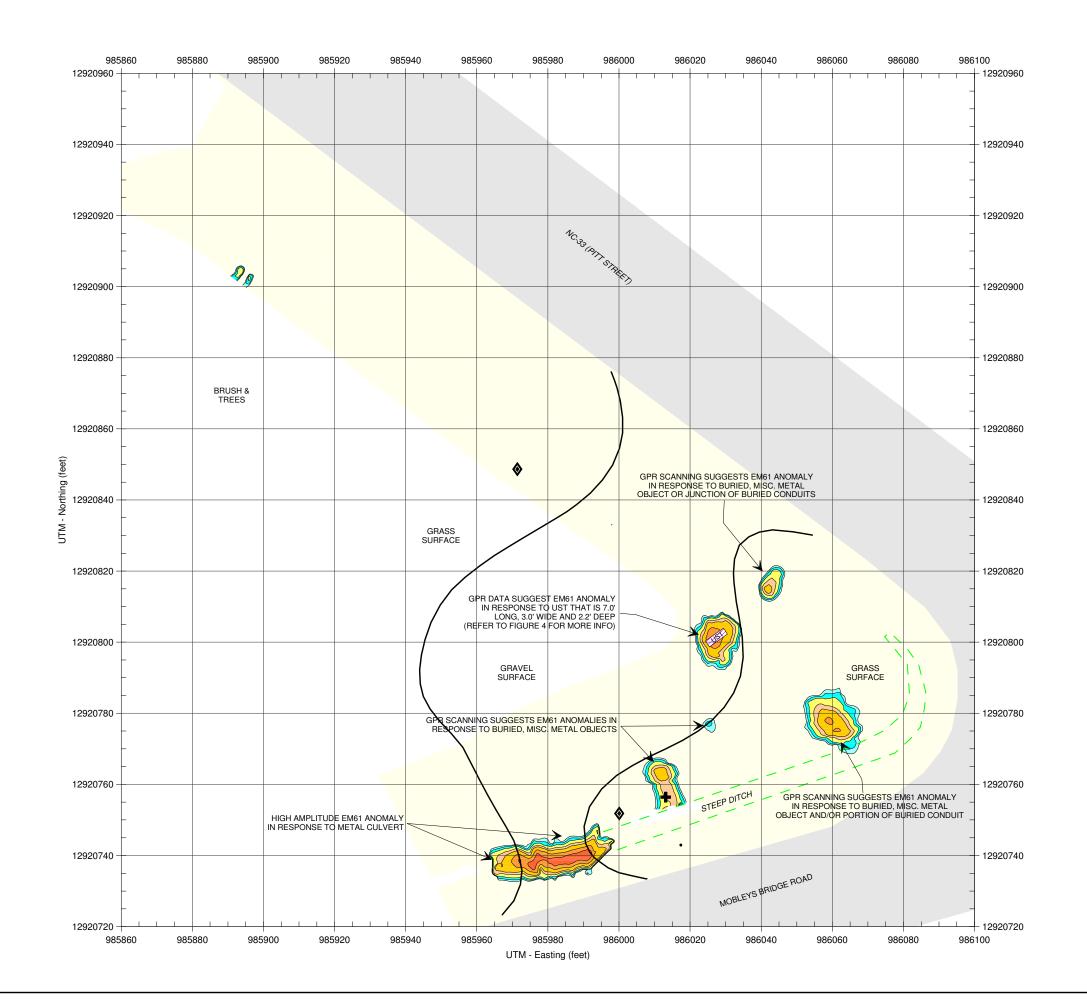
Jesse Ray Wilson (Parcel 13) Property
NC-33 & Mobleys Bridge Road
Grimesland, North Carolina


GEOPHYSICAL EQUIPMENT & SITE PHOTOGRAPHS


04/28/18 FIGURE 1

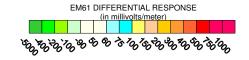
The red polygon in the aerial photograph represents the approximate perimeter of the geophysical survey area at Parcel 13.

The contour plot shows the early time gate (most sensitive) response of the Geonics EM61-MK2A metal detection instrument in millivolts (mV). The early time gate response shows buried, metallic objects, lines and conduits regardless of size. GPR scans were conducted across selected EM61 anomalies and steel reinforced concrete using a Geophysical Survey Systems SIR 3000 instrument with a 400 MHz antenna. The geophysical investigation was conducted on April 18-19, 2018.



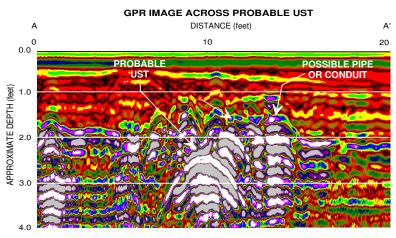
EM61-MK2A METAL DETECTION (EARLY TIME GATE RESULTS)

Terracon Consultants, Inc. Jesse Ray Wilson (Parcel 13) Property NC-33 & Mobleys Bridge Road Grimesland, North Carolina

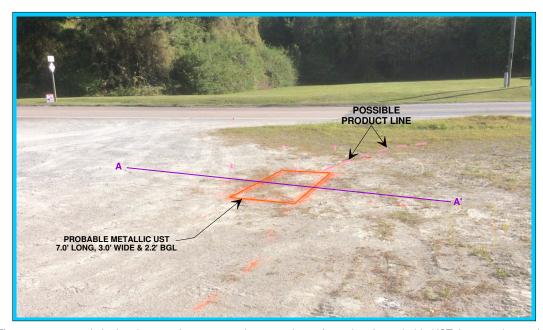

336-286-9718 04/28/18

The red polygon in the aerial photograph represents the approximate perimeter of the geophysical survey area at Parcel 13.

The contour plot shows the differential response between the early time gate and the late time gate channels of the Geonics EM61-MK2A metal detection instrument in millivolts (mV). The differential response focuses on larger, buried, metallic objects such as drums and USTs and ignores smaller miscellaneous, metal debris. Ground penetrating radar (GPR) scans were conducted across selected EM61 anomalies using a Geophysical Survey Systems SIR 3000 unit with a 400 MHz antenna. The geophysical investigation was conducted on April 18-19, 2018.



EM61-MK2A METAL DETECTION (DIFFERENTIAL RESULTS)


Terracon Consultants, Inc. Jesse Ray Wilson (Parcel 13) Property NC-33 & Mobleys Bridge Road Grimesland, North Carolina

04/28/18

GPR scanning across the EM61 differential anomaly centered near UTM coordinates 986027.5-E 12920801.5-N yielded high amplitude, hyperbolic reflections in the GPR image shown above. The GPR anomaly is probably in response to a metallic UST buried approximately 2.2 feet below present grade. The purple line labeled AA' in the photograph shown below represents the approximate location of the GPR image.

The orange rectangle in the photograph represents the approximate foot print of a probable UST that was detected by the geophysical investigation. Based on the GPR data, the UST is approximately 7.0 feet long, 3.0 feet wide and buried 2.2 feet below present grade. The solid purple line labeled AA' in the photograph represents the approximate location of GPR image AA' shown above. The dashed pink line represents the approximate location of a possible product line that runs from the UST in a northerly direction. The photograph is viewed in a northerly direction.

Terracon Consultants, Inc.

Jesse Ray Wilson (Parcel 13) Property
NC-33 & Mobleys Bridge Road
Grimesland, North Carolina

GPR IMAGE & PHOTOGRAPH ACROSS PROBABLE UST

04/28/18 FIGURE 4

APPENDIX B

SOIL BORING LOGS AND TEMPORARY WELL CONSTRUCTION LOGS

Projec	Project Number: 70187117				Start Date/Time: 4/23/18	Sample Method	Drilling Method
	e Location:				End Date/Time: 4/23/18	☐ Hand Auger	Ξ DPT
	Weather:	Sunny, 60s			Boring Diameter: 2.25"	Ξ Macro-Core	□ HSA
	ogged By:		JC RPS		Total Depth: 10 ft bls	☐ Split Spoon	☐ Mud Rotary
וט	rilling Sub: Drill Rig:	Geo	probe 541	0 DT	Water Level: NA Well Installed: NA	☐ Shelby Tube	☐ Air Rotary☐ Rock Core
Depth (ft bls)	Recovery (inches)	Blow Counts (n)	GIA (mdd)	U.S.C.S	(Depth interval) Color, MAIN COMPONENT, minor component(s), structure, moisture, angularity, odor, staining	Lab Sample: ID, analysis, time	Drilling method, tooling, depth
				ML	(0-2): brown to tan SILT, dry		
0-5	60		<0.1	CL	(2-7.5) tan to light brown SILTY CLAY, moist 2.5-4 bls, dry 4-7.5 ft bls (1.5-6) grey/orange/light brown CLAY, mottled, stiff, some SILT, odor not observed	SB 11 (2.5') 18:20	
			<0.1	50	(1.5 d) grey, orange, ngme brown east, mother, sun, some sier, door not observed	SB 11	
5-10	48		<0.1			(7.5') 18:25	
			<0.1		Design Assessing Add 6 kbls are seen		
1					Boring terminated 10 ft bls per scope		ļ
İ							
j							
j							
Notes:			1				
140163.							
nnm: narte	per million	1	nnh: nart	s per billio	n NA= Not applicable bls = below land surface		
- p puits	, pc		PP Puit	- 60. 0111101	Side applicable Side below falls during		

	Tillg ID.		3D-12		C) 1 D 1 /T' 1/20/10	OI- Mathaul	Daillia a Mada ad
	t Number:		70187117		Start Date/Time: 4/23/18	Sample Method	Drilling Method
	Location:		imesland		End Date/Time: 4/23/18	☐ Hand Auger	Ξ DPT
	Weather:		Sunny, 60	S	Boring Diameter: 2.25"	Ξ Macro-Core	☐ HSA
	ogged By:		JC		Total Depth: 10 ft bls	☐ Split Spoon	☐ Mud Rotary
Dr	illing Sub:		RPS		Water Level: NA	☐ Shelby Tube	☐ Air Rotary
	Drill Rig:	Geo	probe 541	.0 DT	Well Installed: NA		□ Rock Core
Depth (ft bls)	Recovery (inches)	Blow Counts (n)	OId (mdd)	U.S.C.S	(Depth interval) Color, MAIN COMPONENT, minor component(s), structure, moisture, angularity, odor, staining	Lab Sample: ID, analysis, time	Drilling method, tooling, depth
				ML	(0-2): brown to tan SILT, dry		
			<0.1			ļ	
0-5	48			CL	(2-9) tan SILTY CLAY, dry 2-3 ft bls, moist 3-4 ft bls, saturated past 4 bls	SB 12	
			<0.1			(2.5')	
					(1.5-6) grey/orange/light brown CLAY, mottled, stiff, some SILT, odor not observed	18:05	
			<0.1		, , , , , , , , , , , , , , , , , , , ,		
						SB 12	
5-10	44		<0.1	sc	(9-10) tan CLAYEY SAND	(7.5')	
			.0.2		(5 15) (6.11 62 11 21 67 11 5	18:10	
			<0.1			10.10	
			-0.1		Boring terminated 10 ft bls per scope		
				1	pornig reminiated to it his her scohe		
				1			
				1			
				1			
				1			
				1			
				1			
				1			
				1			
				1		1	
				1			
				1			
				1			
				1			
				1			
				1			
				1			
				1			
				1			
				1			
				1			
Notes:					•		
opm: parts	per million	1	ppb: part	s per billion	NA= Not applicable bls = below land surface		

Project Number: 70187117		7	Start Date/Time: 4/23/18	Sample Method	Drilling Method		
	e Location:	Location: Grimesland NC			End Date/Time: 4/23/18	☐ Hand Auger	Ξ DPT
	Weather:		Sunny, 60	S	Boring Diameter: 2.25"	Ξ Macro-Core	☐ HSA
	Logged By:	WF			Total Depth: 10 ft bis	□ Split Spoon	☐ Mud Rotary
Di	rilling Sub:	RPS			Water Level: NA	 Shelby Tube 	☐ Air Rotary
	Drill Rig:		probe 541	LO DT	Well Installed: NA		☐ Rock Core
Depth (ft bls)	Recovery (inches)	Blow Counts (n)	Old (mdd)	U.S.C.S	(Depth interval) Color, MAIN COMPONENT, minor component(s), structure, moisture, angularity, odor, staining	Lab Sample: ID, analysis, time	Drilling method, tooling, depth
				SP	(0-0.5): grey to tan medium-grained SAND, dry		
			<0.1				
0-5	60			ML	(0.5-2.5) dark brown to light gray SILT, dry	SB 13	
			<0.1			(2.5')	
			.0.4	CL	(1.5-6) grey/orange/light brown CLAY, mottled, stiff, some SILT, odor not observed	17:50	
			<0.1	CL	(4-5) light brown SILTY CLAY, orange mottling, dry, stiff	SB 13	
5-10	60		8.2	CL	(4-5) light brown Sich Cear, orange motting, dry, still	(6.5')	
			0.2	CL	(5-6) light brown SILTY CLAY, gray/brown staining, moist, saturated beyond 6 ft bls	17:55	
			<0.1		G. ,		
				CL	(6-10) gray SILTY CLAY, grades into fine sandy clay around 9 ft bls		
					Boring terminated 10 ft bls per scope		
Notes:			•	•	•		
ppm: parts	per millior	1	ppb: part	s per billior	n NA= Not applicable bls = below land surface		

	Project Number: 70187117			,	Start Date/Time: 4/23/18	Sample Method	Drilling Method	
	Site Location: Grimesland NC				End Date/Time: 4/23/18	☐ Hand Auger	E DPT	
	Weather:	Sunny, 60s			Boring Diameter: 2.25"		□ HSA	
	ogged By:	WF			Total Depth: 10 ft bis	☐ Split Spoon	☐ Mud Rotary	
	rilling Sub:		RPS		Water Level: NA	☐ Shelby Tube	☐ Air Rotary	
	Drill Rig:	Geo	probe 541	.0 DT	Well Installed: NA	,	☐ Rock Core	
Depth (ft bls)	Recovery (inches)	Blow Counts (n)	OId (mdd)	U.S.C.S	(Depth interval) Color, MAIN COMPONENT, minor component(s), structure, moisture, angularity, odor, staining	Lab Sample: ID, analysis, time	Drilling method, tooling, depth	
					(0-0.5): gravel			
1			0.6					
0-5			40.0	SM	(0.5-1) light brown SAND, moist, odor not observed	SB 14		
			13.2	sc	(1.5-6) grey/orange/light brown CLAY, mottled, stiff, some SILT, odor not observed	(4') 17:25		
			16.1	30	(1.5-0) grey/orange/ngnt brown cext, mottled, still, some siet, oddr not observed	17.23		
			10.1	CL	(2.5-9) grey/orange/brown CLAY, mottled, petroleum odor, moist, lean	SB 14		
5-10			68.7		-SILT starting at 9 ft bls	(7')		
					-heavy odor at 7 ft bls	17:30		
			1.6					
				CL	(9-10): white/orange SANDY CLAY, saturated, light petroleum odor			
					Boring terminated 10 ft bls per scope			
Notes:	1		1	1	<u> </u>	,		
ppm: parts	per millior	1	ppb: part	s per billio	n NA= Not applicable bls = below land surface			

Projec	Project Number: 70187117			'	Start Date/Time: 4/23/18	Sample Method	Drilling Method	
Site	Site Location: Grimesland NC				End Date/Time: 4/23/18	☐ Hand Auger	Ξ DPT	
	Weather:			S	Boring Diameter: 2.25"	Ξ Macro-Core	☐ HSA	
	ogged By:				Total Depth: 10 ft bis	□ Split Spoon	☐ Mud Rotary	
Di	rilling Sub:	RPS Geoprobe 5410 DT			Water Level: 4.17 ft bls	☐ Shelby Tube	☐ Air Rotary	
	Drill Rig:		probe 541	.0 DT	Well Installed: TW-02		☐ Rock Core	
Depth (ft bls)	Recovery (inches)	Blow Counts (n)	PID (ppm)	U.S.C.S	(Depth interval) Color, MAIN COMPONENT, minor component(s), structure, moisture, angularity, odor, staining	Lab Sample: ID, analysis, time	Drilling method, tooling, depth	
					(0-0.5) GRAVEL			
0-5			0.8	SM	(0.5-2) light brown fine-grained SAND, moist, odor not observed	SB 15 (2.5')		
			1.3	SC	(1.5-6) grey/orange/light brown CLAY, mottled, stiff, some SILT, odor not observed -mottled, plastic 4 ft bls -petroleum odor 7 ft bls	17:05 SB 15		
5-10			11.3	SM	-petroleum duoi 7 it dis	(9') 17:10		
			364.5		(9-10) white/light brown, SAND, staining at 9 ft bls, heavy petroleum odor, saturated	17.10		
					Boring terminated 10 ft bls per scope			
Ì								
Ì								
l								
1								
Notes:								
ppm: parts per million ppb: parts per billion NA= Not applicable bls = below land surface								

Projec	Project Number: 70187117				Start Date/Time: 4/23/18	Sample Method	Drilling Method
Site Location: Grimesland NC					End Date/Time: 4/23/18	☐ Hand Auger	Ξ DPT
	Weather: Sunny, 60s			s	Boring Diameter: 2.25"	Ξ Macro-Core	□ HSA
	Logged By: JC				Total Depth: 10 ft bls	☐ Split Spoon	☐ Mud Rotary
Di	rilling Sub:	Coo	RPS probe 541	0 DT	Water Level: NA	☐ Shelby Tube	☐ Air Rotary
	Drill Rig:		probe 541	וט טו	Well Installed: NA		☐ Rock Core
Depth (ft bls)	Recovery (inches)	Blow Counts (n)	PID (mdd)	U.S.C.S	(Depth interval) Color, MAIN COMPONENT, minor component(s), structure, moisture, angularity, odor, staining	Lab Sample: ID, analysis, time	Drilling method, tooling, depth
					(0-0.5) ORGANICS		
0-5			<0.1	SC	(0.5-1.5) brown SILTY CLAY, moist, odor not observed	SD 16	
0-3			<0.1	30	(0.5-1.5) DIOWIT SILTY CLAY, MOISE, OUD! HOE OBSERVED	SB 16 (2.5')	
				CL	(1.5-6) grey/orange/light brown CLAY, mottled, stiff, some SILT, odor not observed	16:50	
			<0.1	SC	(6-8) light brown/grey SILTY CLAY, mottled, moist, odor not observed	SB 16	
5-10			<0.1	30	(0-8) light brown/grey Sierr Cear, mottled, moist, odor not observed	(7.5')	
				SM	(8-10) white/orange SAND, saturated, odor not observed, medium to fine-grained	16:55	
			<0.1			ļ	
					Boring terminated 10 ft bls per scope		
						ļ	
						ļ	
						ļ	
						ļ	
						ļ	
						ļ	
						ļ	
						ļ	
						ļ	
						ļ	
						ļ	
						ļ	
						ļ	
						ļ	
						ļ	
						ļ	
Notes:							
ppm: parts	s per millior	ı	ppb: part	s per billio	n NA= Not applicable bls = below land surface		

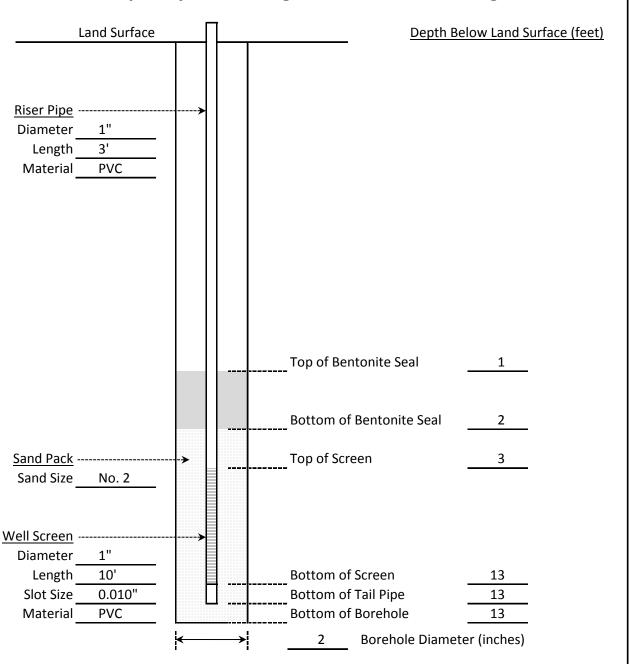
Lithology Log

Boring ID: SB-17

Projec	t Number:		70187117	'	Start Date/Time: 4/23/18	Sample Method	Drilling Method
	e Location:		rimesland		End Date/Time: 4/23/18	☐ Hand Auger	Ξ DPT
	Weather:		Sunny, 60	S	Boring Diameter: 2.25"	Ξ Macro-Core	☐ HSA
L	.ogged By:		JC		Total Depth: 10 ft bls	☐ Split Spoon	☐ Mud Rotary
Dr	rilling Sub:		RPS		Water Level: NA	☐ Shelby Tube	☐ Air Rotary
	Drill Rig:		probe 541	.0 DT	Well Installed: NA		☐ Rock Core
Depth (ft bls)	Recovery (inches)	Blow Counts (n)	PID (mdd)	U.S.C.S	(Depth interval) Color, MAIN COMPONENT, minor component(s), structure, moisture, angularity, odor, staining	Lab Sample: ID, analysis, time	Drilling method, tooling, depth
					(0-0.5) ORGANICS		
0-5	60		<0.1	SM	(0.5-2) light brown/orange SAND, moist, odor not observed, fine	SB 17 (2.5')	
			<0.1	SC	(1.5-6) grey/orange/light brown CLAY, mottled, stiff, some SILT, odor not observed	16:25	
5-10	60		<0.1	SM	(7-10) white/orange SAND, saturated, medium-grained, odor not observed	SB 17 (7.5')	
			<0.1			16:30	
					Boring terminated 10 ft bls per scope		
1							
Notes:			1	1	1		
ppm: parts	per millior	1	ppb: part	s per billio	n NA= Not applicable bls = below land surface		

Lithology Log

Boring ID: SB-18


	t Number:		70187117		Start Date/Time: 4/23/18	Sample Method	Drilling Method
Site	e Location:		rimesland		End Date/Time: 4/23/18	☐ Hand Auger	Ξ DPT
	Weather:		Sunny, 60:	S	Boring Diameter: 2.25"	Ξ Macro-Core	☐ HSA
	ogged By:		WF		Total Depth: 10 ft bis	☐ Split Spoon	☐ Mud Rotary
Dr	rilling Sub:		RPS		Water Level: NA	Shelby Tube	☐ Air Rotary
	Drill Rig:		probe 541	.0 DT	Well Installed: NA		☐ Rock Core
Depth (ft bls)	Recovery (inches)	Blow Counts (n)	PID (ppm)	U.S.C.S	(Depth interval) Color, MAIN COMPONENT, minor component(s), structure, moisture, angularity, odor, staining	Lab Sample: ID, analysis, time	Drilling method, tooling, depth
				SP	(0-1) dark brown fine-grained SAND, dry, no observed odor		
0-5	60		<0.1	SM	(1-2) brown to tan SILTY SAND, dry, no odors observed	SB 18 (2.5')	
			<0.1	ML	(1.5-6) grey/orange/light brown CLAY, mottled, stiff, some SILT, odor not observed	16:15	
5-10	48		<0.1	SC	(5-8) light tan CLAYEY SAND, wet, no odors observed	SB 18 (7.5')	
			<0.1	SW	(8-10) light tan med-grained SAND, saturated, no odors observed	16:20	
					Boring terminated 10 ft bls per scope		
1					Boring terminated to it bis per scope		
Notes:			•	•			
ppm: parts	per millior	1	ppb: part	s per billio	n NA= Not applicable bls = below land surface		

Well ID: TW-02 Project No.: 70187117 Site Name: NCDOT PSA U-5301 Field Personnel: WOF + KC Date: 4/23/2018 Location: Grimesland, NC **Drilling Method:** DPT **Driller: Regional Probe Service**

2401 Brentwood Road Suite 107 Raleigh, NC 27604 919.873.2211

Temporary Monitoring Well Construction Diagram

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY FORMS

Monday, April 23, 2018

Monday, April 23, 2018

Thursday, April 26, 2018

Samples taken

Samples extracted

Samples analysed

Hydrocarbon Analysis Results

Client: TERRACON

Address: 2401 BRENTWOOD RD

107

RALEIGH, NC 27604

Contact: WILL FRAZIER PANTESCO

Project: # 70187117

													H09
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	Q.	% Ratios	3	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
S	SB11 (2.5)	19.4	<0.49	< 0.49	<0.49	< 0.49	<0.1	<0.16	<0.019	0	0	0	PHC not detected,(BO)
S	SB11 (7.5)	10.9	<0.27	<0.27	<0.27	<0.27	<0.05	<0.09	<0.011	0	0	0	,(FCM)
S	SB12 (2.5)	20.8	<0.52	<0.52	0.52	0.52	0.32	<0.17	<0.021	0	36.6	63.4	,(FCM),(P)
S	SB12 (7.5)	18.8	<0.47	<0.47	<0.47	<0.47	<0.09	<0.15	<0.019	0	0	0	PHC not detected
S	SB13 (2.5)	11.0	<0.28	<0.28	0.28	0.28	0.14	<0.09	<0.011	0	73.5	26.5	Deg Fuel 53.9%,(FCM)
S	SB13 (6.5)	21.8	<0.55	7.1	16.1	23.2	5.2	<0.17	<0.022	91.7	7.2	1.1	Deg.Diesel 78.5%,(FCM)
S	SB14 (4)	20.3	<0.51	14.7	4.2	18.9	2.8	<0.16	<0.02	98.4	1.4	0.2	Deg.Fuel 71.8%,(FCM)
S	SB14 (7)	22.4	<0.56	14.5	9.9	24.4	7.1	0.38	<0.022	76.4	18.8	4.8	Deg.Fuel 87.3%,(FCM)
S	SB15 (2.5)	11.9	<0.3	<0.3	<0.3	0.19	0.19	<0.09	<0.012	0	60.1	39.9	Residual HC
S	SB15 (9)	17.7	17.2	59.7	46.3	106	16.8	0.62	<0.018	98	1.6	0.4	Deg.Diesel 88.1%,(FCM),(P)
	Initial C	alibrator	QC check	OK					Final FO	CM QC	Check	OK	105

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Abbreviations:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence of hydrocarbon identification: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate detected

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only. Data generated by HC-1 Analyser

Monday, April 23, 2018

Monday, April 23, 2018

Thursday, April 26, 2018

Samples taken

Samples extracted

Samples analysed

Hydrocarbon Analysis Results

Client: TERRACON

Address: 2401 BRENTWOOD RD

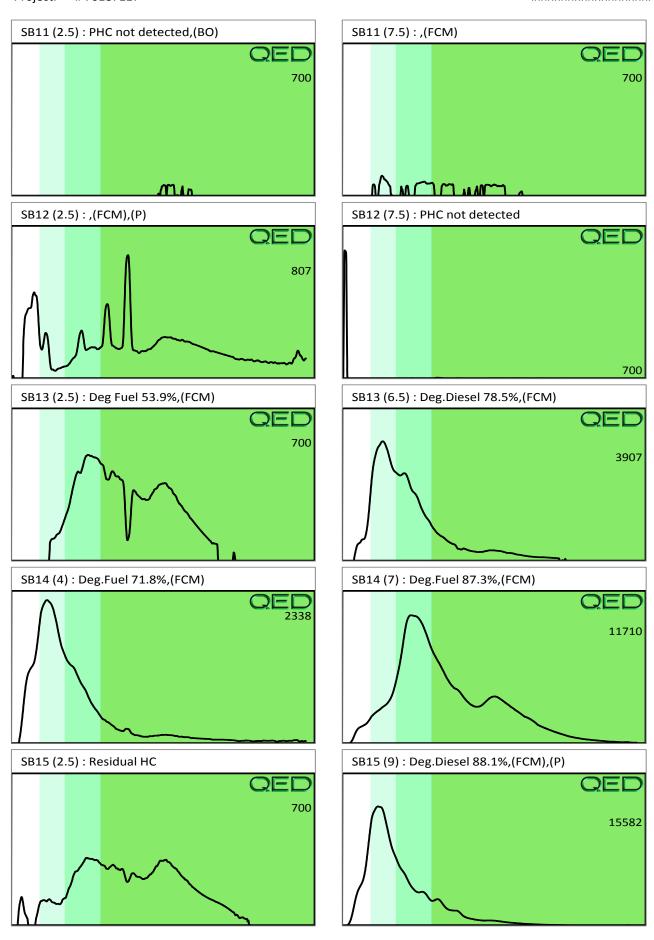
107

RALEIGH, NC 27604

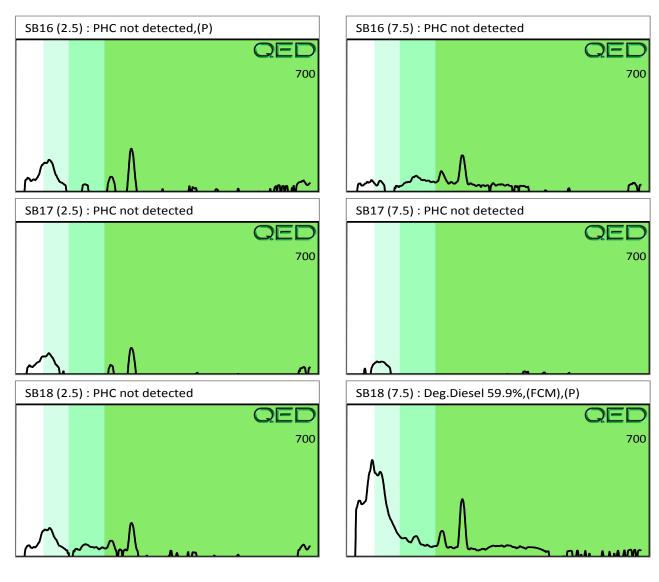
Contact: WILL FRAZIER PANTESCO

Project: # 70187117

													H09
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	Ċ	% Ratios	3	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
S	SB16 (2.5)	21.8	<0.55	0.66	<0.55	0.66	<0.11	<0.17	<0.022	100	0	0	PHC not detected,(P)
S	SB16 (7.5)	19.1	<0.48	<0.48	<0.48	<0.48	<0.1	<0.15	<0.019	0	0	0	PHC not detected
S	SB17 (2.5)	22.0	<0.55	<0.55	<0.55	<0.55	<0.11	<0.18	<0.022	100	0	0	PHC not detected
S	SB17 (7.5)	21.3	<0.53	<0.53	<0.53	<0.53	<0.11	<0.17	<0.021	0	0	0	PHC not detected
S	SB18 (2.5)	21.8	<0.55	0.77	<0.55	0.77	<0.11	<0.17	<0.022	98.7	1.3	0	PHC not detected
S	SB18 (7.5)	11.6	<0.29	1	0.9	1.9	<0.06	<0.09	<0.012	99.2	0.8	0	Deg.Diesel 59.9%,(FCM),(P)
	Initial C	alibrator	QC check	OK					Final F	CM QC	Check	OK	98


Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Abbreviations:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence of hydrocarbon identification: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate detected


B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only. Data generated by HC-1 Analyser

Project: # 70187117

Project: # 70187117

Client Name:	Terraion
Address:	Ruley NC 27604
Contact:	will frazien tempronium
Project Ref.:	70187117
Email:	Steve. Kerling terracuricia
Phone #:	11cc-573-701
Collected by:	JOHN COME

RAPID	70
ENVIR	
ENVIRONMENTAL DIAGNOSTICS	D
I JAT	
DIAGN	
OSTIC	
S	M

RED Lab, LLC 5598 Marvin K Moss Lane MARBIONC Bldg, Suite 2003 Wilmington, NC 28409

Each sample will be analyzed for BTEX, GRO, DRO, TPH, PAH total aromatics and BaP

CHAIN OF CUSTODY AND ANALYTICAL

REQUEST FORM

Reling		Reling	Comments:	SE01 A	1030	020	Juls	1055	1050	1176	IIIS	1153	1130	olCl	1205	ट्रस्त <u>्</u>	0.55(05€1	211/5	0151	(3/2)	Ohbo	4/23/18 0935	Date/Time	Sample Collection
Relinquished by		Relinquished by		4																				24 Hour 48 Hour	TAT Requested
Date/Time	811 hQh	Date/Time		JC	K	7(X	X	X	7	X	X	X	36	X	ソ	メ	X	X	X	Χď	1	30	our	
ime /	1000	ime		SISIC	5810	5809	SBOQ	51308	5803		SRU7	SBal	SBOL	SBOS	SBUZ	SBOH	SBOY	5803	5 Ro 3	SBOZ	SBOX	SROI (SBOI (
Accepted by	P	Accepted by		(7.5)	(2.5)	(7.5)	(2.5)	(7.5)	(2)	(7.5)	(3.5)	(7.5)	(25)	(7.5)	(2.5)	(7.5)	(2)	(4)	(M.S)	シ	(3.5)	7.5)	2.5)	Sample to	Sample ID
Date/Time	4.25.18 1235	Date/Time																							
			RE	55.5	57.0	4:55	56.0	8.55	54.8	57.2	8.95	56.0	57.5	4:55	57.6	56.6	55.5	54.8	55.6	54.3	57-1	56.3	BUSINE	56.1	Total W/t
	170		RED Lab USE ONLY	0.74	43.6	43.5	43.6	h'hh	43.8	44.2	144.	43.6	44.0	t 2h	43.8	43.6	43.6	43.7	144	43.4	0.7h	14.0	43.2		Tare W/t
	\		ONLY	157	3.4	12.2	12,4	2	11.0	13.0	12.7	12.4	13.5	12-0	13.8	13.0	5	,	i.V	10.9	13.1	12.3	12.9	7	Sample W/t

Client Name:	1erawa,
Address:	Roleins, NC 27 604
Contact:	Will tokie Otonoco, Cot
Project Ref.:	70187117
Email:	steve. Kerlin a tension. Com
Phone #:	919 - 873 - 2211
Collected by:	James Charle

RAPID ENVIRONMENTAL DIAGNOSTICS CHAIN OF CUSTODY AND ANALYTICAL

REQUEST FORM

RED Lab, LLC 5598 Marvin K Moss Lane MARBIONC Bldg, Suite 2003 Wilmington, NC 28409

Each sample will be analyzed for BTEX, GRO, DRO, TPH, PAH total aromatics and BaP

Reling	Comments:		/	30	1615	0591	Scal	1635	lla So	(MC)	1765	178	SELI	555	36	1811	50%	- 55%	M/x/18	Date/Time	Sample Collection
Relinguished by Relinguished by				E														-	_	24 Hour 48 Hour	TAT Requested
Date/Time			*	A	Q	×)C	オ	×	X	X	A	X	X	1	ユ	2	J	1	J'		nitials
1000	0	1		508	SBIS	5817	5817	5B16 (SISI (SB15 (5) hlas			12	SR 2 (7.	SR12 (1)	SBH (7.5)	SBII (2.5		
Accepted by Accepted by				(7.5)	2.5)	(7.5)	2.5)	7.5)	2.5)	9)	2.5)	7)	4)	(a.5)	7	5)	<u> </u>				Sample ID
Date/Time U.25.10 12.35 Date/Time						55:															
	R	/		55.6	£.25		5.55	5.43	55.8	58.5	55.5	56.1	4.95	56.3	56.7	4.45	56.5	56.4	57.2		Total Wt.
(6	RED Lab USE ONLY			43.5	43.8	43.7	43.7	43.7	43.9	43.8	43.7	STA	43.6	44.4	44.0	43.6	74,0	43.5	43.8		Tare Wt.
	ONLY			12	I.a	122	1.8	13.6	1.9	T.H.	= 0	1.6	12.8	1.9	12.7	3.8	12.5	12.9	13,4		Sample Wt.

Report of Analysis

Terracon Consultants, Inc.

2401 Brentwood Road Suite 107 I Raleigh, NC 27604 Attention: Will Frazier

Project Name: NCDOT B-5301 PSA

Project Number: 70187117

Lot Number: TD25013

Date Completed:05/04/2018

05/05/2018 11:04 AM
Approved and released by:
Project Manager: Cathy S. Dover

The electronic signature above is the equivalent of a handwritten signature.

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

SC DHEC No: 32010001 NELAC No: E87653 NC DENR No: 329 NC Field Parameters No: 5639

Case Narrative Terracon Consultants, Inc. Lot Number: TD25013

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

Sample Summary Terracon Consultants, Inc.

Lot Number: TD25013

Project Name: NCDOT B-5301 PSA Project Number: 70187117

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	TW01	Aqueous	04/23/2018 1510	04/25/2018
002	TW02	Aqueous	04/23/2018 1815	04/25/2018
003	TRIP BLANK	Aqueous	04/23/2018	04/25/2018

(3 samples)

Detection Summary Terracon Consultants, Inc.

Lot Number: TD25013

Project Name: NCDOT B-5301 PSA Project Number: 70187117

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	TW01	Aqueous	Benzene	8260B	38		ug/L	5
001	TW01	Aqueous	Cyclohexane	8260B	6.7		ug/L	5
001	TW01	Aqueous	Ethylbenzene	8260B	27		ug/L	5
001	TW01	Aqueous	Isopropylbenzene	8260B	4.5		ug/L	5
001	TW01	Aqueous	Methyl tertiary butyl ether	8260B	33		ug/L	5
001	TW01	Aqueous	Methylcyclohexane	8260B	0.65	J	ug/L	5
001	TW01	Aqueous	Toluene	8260B	0.42	J	ug/L	5
001	TW01	Aqueous	Xylenes (total)	8260B	9.8		ug/L	6
001	TW01	Aqueous	Naphthalene	8270D	4.2		ug/L	8
002	TW02	Aqueous	Cyclohexane	8260B	3.8		ug/L	9
002	TW02	Aqueous	Ethylbenzene	8260B	17		ug/L	9
002	TW02	Aqueous	Isopropylbenzene	8260B	6.4		ug/L	9
002	TW02	Aqueous	Methylcyclohexane	8260B	7.4		ug/L	9
002	TW02	Aqueous	Toluene	8260B	0.50	J	ug/L	9
002	TW02	Aqueous	Xylenes (total)	8260B	8.7		ug/L	10
002	TW02	Aqueous	2-Methylnaphthalene	8270D	2.0		ug/L	11
002	TW02	Aqueous	Naphthalene	8270D	2.9		ug/L	12

(17 detections)

Volatile Organic Compounds by GC/MS

Client: Terracon Consultants, Inc.

Laboratory ID: TD25013-001

Description: TW01 Matrix: Aqueous

Date Sampled:04/23/2018 1510 Project Name: NCDOT B-5301 PSA

Date Received: 04/25/2018 Project Number: 70187117

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 5030B
 8260B
 1
 04/28/2018 0201
 BWS
 70748

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260B	ND	20	2.0	ug/L	1
Benzene	71-43-2	8260B	38	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260B	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260B	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260B	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260B	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260B	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260B	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260B	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260B	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	1.0	0.40	ug/L	1
Cyclohexane	110-82-7	8260B	6.7	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260B	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260B	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260B	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260B	ND	2.0	0.40	ug/L	1
1,1-Dichloroethane	75-34-3	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260B	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260B	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260B	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260B	27	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260B	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260B	4.5	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260B	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	33	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260B	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260B	0.65 J	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260B	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260B	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260B	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260B	0.42 J	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260B	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank
N = Recovery is out of criteria

e DL = Detection Limit

H = Out of holding time

W = Reported on wet weight basis

 $J = Estimated result < LOQ and \ge DL$

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

Volatile Organic Compounds by GC/MS

Client: Terracon Consultants, Inc.

Laboratory ID: TD25013-001 Matrix: Aqueous

Description: TW01

Date Sampled:04/23/2018 1510

Project Name: NCDOT B-5301 PSA

Date Received: 04/25/2018

Project Number: 70187117

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260B	1	04/28/2018 0201 BWS		70748

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Trichloroethene	79-01-6	8260B	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260B	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260B	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260B	9.8	1.0	0.40	ug/L	1

Surrogate	Q	Run 1 % Recovery	Acceptance Limits	
1,2-Dichloroethane-d4		102	70-130	
Bromofluorobenzene		104	70-130	
Toluene-d8		104	70-130	

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

N = Recovery is out of criteria

W = Reported on wet weight basis

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS

Client: Terracon Consultants, Inc. Laboratory ID: TD25013-001

Description: TW01 Matrix: Aqueous

Date Sampled:04/23/2018 1510 Project Name: NCDOT B-5301 PSA

Date Received: 04/25/2018 Project Number: 70187117

Run Prep Method Analytical Method Dilution Analysis Date Analyst **Prep Date Batch** 3520C 05/03/2018 1836 JCG 04/26/2018 1829 70602

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1'-Biphenyl	92-52-4	8270D	ND	4.0	0.50	ug/L	1
2,4,5-Trichlorophenol	95-95-4	8270D	ND	4.0	0.50	ug/L	1
2,4,6-Trichlorophenol	88-06-2	8270D	ND	4.0	0.50	ug/L	1
2,4-Dichlorophenol	120-83-2	8270D	ND	8.0	1.0	ug/L	1
2,4-Dimethylphenol	105-67-9	8270D	ND	4.0	1.0	ug/L	1
2,4-Dinitrophenol	51-28-5	8270D	ND	20	1.0	ug/L	1
2,4-Dinitrotoluene	121-14-2	8270D	ND	8.0	0.50	ug/L	1
2,6-Dinitrotoluene	606-20-2	8270D	ND	8.0	0.50	ug/L	1
2-Chloronaphthalene	91-58-7	8270D	ND	4.0	0.50	ug/L	1
2-Chlorophenol	95-57-8	8270D	ND	4.0	0.50	ug/L	1
2-Methylnaphthalene	91-57-6	8270D	ND	0.80	0.20	ug/L	1
2-Methylphenol	95-48-7	8270D	ND	4.0	1.0	ug/L	1
2-Nitroaniline	88-74-4	8270D	ND	8.0	0.50	ug/L	1
2-Nitrophenol	88-75-5	8270D	ND	4.0	1.0	ug/L	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND	4.0	1.8	ug/L	1
3+4-Methylphenol	106-44-5	8270D	ND	4.0	1.5	ug/L	1
3-Nitroaniline	99-09-2	8270D	ND	8.0	1.0	ug/L	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND	20	1.0	ug/L	1
4-Bromophenyl phenyl ether	101-55-3	8270D	ND	4.0	0.50	ug/L	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND	4.0	0.50	ug/L	1
4-Chloroaniline	106-47-8	8270D	ND	8.0	0.50	ug/L	1
4-Chlorophenyl phenyl ether	7005-72-3	8270D	ND	4.0	0.50	ug/L	1
4-Nitroaniline	100-01-6	8270D	ND	8.0	1.5	ug/L	1
4-Nitrophenol	100-02-7	8270D	ND	20	2.0	ug/L	1
Acenaphthene	83-32-9	8270D	ND	0.80	0.20	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	0.80	0.20	ug/L	1
Acetophenone	98-86-2	8270D	ND	4.0	0.50	ug/L	1
Anthracene	120-12-7	8270D	ND	0.80	0.20	ug/L	1
Atrazine	1912-24-9	8270D	ND	4.0	0.50	ug/L	1
Benzaldehyde	100-52-7	8270D	ND	8.0	0.50	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	0.80	0.20	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	0.80	0.20	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	0.80	0.20	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	0.80	0.20	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	0.80	0.20	ug/L	1
bis (2-Chloro-1-methylethyl) ether	108-60-1	8270D	ND	4.0	0.50	ug/L	1
bis(2-Chloroethoxy)methane	111-91-1	8270D	ND	4.0	0.50	ug/L	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND	4.0	0.50	ug/L	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND	4.0	0.50	ug/L	1
Butyl benzyl phthalate	85-68-7	8270D	ND	4.0	0.50	ug/L	1
Caprolactam	105-60-2	8270D	ND	8.0	1.0	ug/L	1
Carbazole	86-74-8	8270D	ND	4.0	0.50	ug/L	1
Chrysene	218-01-9	8270D	ND	0.80	0.20	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	0.80	0.20	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank N = Recovery is out of criteria

 $J = Estimated result < LOQ and \ge DL$

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range DL = Detection Limit P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the DL H = Out of holding time W = Reported on wet weight basis

Semivolatile Organic Compounds by GC/MS

Client: Terracon Consultants, Inc. Laboratory ID: TD25013-001

Description: TW01 Matrix: Aqueous

Date Sampled:04/23/2018 1510 Project Name: NCDOT B-5301 PSA

Date Received: 04/25/2018 Project Number: 70187117

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 3520C
 8270D
 1
 05/03/2018 1836
 JCG
 04/26/2018 1829
 70602

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Dibenzofuran	132-64-9	8270D	ND	4.0	0.50	ug/L	1
Diethylphthalate	84-66-2	8270D	ND	4.0	0.50	ug/L	1
Dimethyl phthalate	131-11-3	8270D	ND	4.0	0.50	ug/L	1
Di-n-butyl phthalate	84-74-2	8270D	ND	4.0	0.50	ug/L	1
Di-n-octylphthalate	117-84-0	8270D	ND	4.0	0.50	ug/L	1
Fluoranthene	206-44-0	8270D	ND	0.80	0.20	ug/L	1
Fluorene	86-73-7	8270D	ND	0.80	0.20	ug/L	1
Hexachlorobenzene	118-74-1	8270D	ND	4.0	0.50	ug/L	1
Hexachlorobutadiene	87-68-3	8270D	ND	4.0	0.50	ug/L	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND	20	2.0	ug/L	1
Hexachloroethane	67-72-1	8270D	ND	4.0	1.0	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	0.80	0.20	ug/L	1
Isophorone	78-59-1	8270D	ND	4.0	0.50	ug/L	1
Naphthalene	91-20-3	8270D	4.2	0.80	0.20	ug/L	1
Nitrobenzene	98-95-3	8270D	ND	4.0	1.5	ug/L	1
N-Nitrosodi-n-propylamine	621-64-7	8270D	ND	4.0	0.50	ug/L	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270D	ND	4.0	0.50	ug/L	1
Pentachlorophenol	87-86-5	8270D	ND	20	2.0	ug/L	1
Phenanthrene	85-01-8	8270D	ND	0.80	0.20	ug/L	1
Phenol	108-95-2	8270D	ND	4.0	0.50	ug/L	1
Pyrene	129-00-0	8270D	ND	0.80	0.20	ug/L	1

_	Run 1 A	Acceptance
Surrogate	Q % Recovery	Limits
2-Fluorobiphenyl	85	37-129
2-Fluorophenol	49	24-127
Nitrobenzene-d5	100	38-127
Phenol-d5	87	28-128
Terphenyl-d14	32	10-148
2,4,6-Tribromophenol	81	35-144

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank

DL = Detection Limit

N = Recovery is out of criteria
W = Reported on wet weight basis

 $J = Estimated result < LOQ and \ge DL$

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range
P = The RPD between two GC columns exceeds 40%

Volatile Organic Compounds by GC/MS

Client: Terracon Consultants, Inc. Laboratory ID: TD25013-002

Description: TW02 Matrix: Aqueous

Date Sampled:04/23/2018 1815 Project Name: NCDOT B-5301 PSA

Date Received: 04/25/2018 Project Number: 70187117

Run Prep Method Analytical Method Dilution Analysis Date Analyst **Prep Date Batch** 5030B 04/28/2018 0225 BWS 70748

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67-64-1	8260B	ND	20	2.0	ug/L	1
Benzene	71-43-2	8260B	ND	1.0	0.40	ug/L	1
Bromodichloromethane	75-27-4	8260B	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260B	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260B	ND	10	2.0	ug/L	1
Carbon disulfide	75-15-0	8260B	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260B	ND	1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260B	ND	1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260B	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260B	ND	1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	1.0	0.40	ug/L	1
Cyclohexane	110-82-7	8260B	3.8	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260B	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260B	ND	1.0	0.40	ug/L	1
1,3-Dichlorobenzene	541-73-1	8260B	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260B	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260B	ND	2.0	0.40	ug/L	1
1,1-Dichloroethane	75-34-3	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-06-2	8260B	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260B	ND	1.0	0.40	ug/L	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8260B	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260B	17	1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260B	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260B	6.4	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260B	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentanone	108-10-1	8260B	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260B	7.4	5.0	0.40	ug/L	1
Methylene chloride	75-09-2	8260B	ND	1.0	0.40	ug/L	1
Styrene	100-42-5	8260B	ND	1.0	0.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260B	ND	1.0	0.40	ug/L	1
Toluene	108-88-3	8260B	0.50 J	1.0	0.40	ug/L	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	1.0	0.42	ug/L	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	8260B	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00-5	8260B	ND	1.0	0.40	ug/L	1

LOQ = Limit of Quantitation

B = Detected in the method blank N = Recovery is out of criteria

ND = Not detected at or above the DL H = Out of holding time

W = Reported on wet weight basis

 $J = Estimated result < LOQ and \ge DL$

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range DL = Detection Limit P =The RPD between two GC columns exceeds 40%

Volatile Organic Compounds by GC/MS

Client: Terracon Consultants, Inc.

Laboratory ID: TD25013-002 Matrix: Aqueous

Description: TW02

1

Date Sampled:04/23/2018 1815

Project Name: NCDOT B-5301 PSA

Date Received: 04/25/2018

Project Number: 70187117

Run Prep Method 5030B **Analytical Method** Dilution **Analysis Date Analyst**

8260B 04/28/2018 0225 BWS **Prep Date**

Batch 70748

	CAS	Analytical					
Parameter	Number	Method	Result Q	LOQ	DL	Units	Run
Trichloroethene	79-01-6	8260B	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75-69-4	8260B	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260B	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260B	8.7	1.0	0.40	ug/L	1

Surrogate	Q	Run 1 % Recovery	Acceptance Limits
1,2-Dichloroethane-d4		99	70-130
Bromofluorobenzene		127	70-130
Toluene-d8		108	70-130

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria

W = Reported on wet weight basis

DL = Detection Limit

 $J = Estimated result < LOQ and \ge DL$

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range P =The RPD between two GC columns exceeds 40%

Semivolatile Organic Compounds by GC/MS

Client: Terracon Consultants, Inc. Laboratory ID: TD25013-002

Description: TW02 Matrix: Aqueous

Date Sampled:04/23/2018 1815 Project Name: NCDOT B-5301 PSA

Date Received: 04/25/2018 Project Number: 70187117

Run Prep Method **Analytical Method Dilution Analysis Date Analyst Prep Date Batch** 1 3520C 8270D 05/03/2018 1902 JCG 04/26/2018 1829 70602

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1'-Biphenyl	92-52-4	8270D	ND	4.0	0.50	ug/L	1
2,4,5-Trichlorophenol	95-95-4	8270D	ND	4.0	0.50	ug/L	1
2,4,6-Trichlorophenol	88-06-2	8270D	ND	4.0	0.50	ug/L	1
2,4-Dichlorophenol	120-83-2	8270D	ND	8.0	1.0	ug/L	1
2,4-Dimethylphenol	105-67-9	8270D	ND	4.0	1.0	ug/L	1
2,4-Dinitrophenol	51-28-5	8270D	ND	20	1.0	ug/L	1
2,4-Dinitrotoluene	121-14-2	8270D	ND	8.0	0.50	ug/L	1
2,6-Dinitrotoluene	606-20-2	8270D	ND	8.0	0.50	ug/L	1
2-Chloronaphthalene	91-58-7	8270D	ND	4.0	0.50	ug/L	1
2-Chlorophenol	95-57-8	8270D	ND	4.0	0.50	ug/L	1
2-Methylnaphthalene	91-57-6	8270D	2.0	0.80	0.20	ug/L	1
2-Methylphenol	95-48-7	8270D	ND	4.0	1.0	ug/L	1
2-Nitroaniline	88-74-4	8270D	ND	8.0	0.50	ug/L	1
2-Nitrophenol	88-75-5	8270D	ND	4.0	1.0	ug/L	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND	4.0	1.8	ug/L	1
3+4-Methylphenol	106-44-5	8270D	ND	4.0	1.5	ug/L	1
3-Nitroaniline	99-09-2	8270D	ND	8.0	1.0	ug/L	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND	20	1.0	ug/L	1
4-Bromophenyl phenyl ether	101-55-3	8270D	ND	4.0	0.50	ug/L	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND	4.0	0.50	ug/L	1
4-Chloroaniline	106-47-8	8270D	ND	8.0	0.50	ug/L	1
4-Chlorophenyl phenyl ether	7005-72-3	8270D	ND	4.0	0.50	ug/L	1
4-Nitroaniline	100-01-6	8270D	ND	8.0	1.5	ug/L	1
4-Nitrophenol	100-02-7	8270D	ND	20	2.0	ug/L	1
Acenaphthene	83-32-9	8270D	ND	0.80	0.20	ug/L	1
Acenaphthylene	208-96-8	8270D	ND	0.80	0.20	ug/L	1
Acetophenone	98-86-2	8270D	ND	4.0	0.50	ug/L	1
Anthracene	120-12-7	8270D	ND	0.80	0.20	ug/L	1
Atrazine	1912-24-9	8270D	ND	4.0	0.50	ug/L	1
Benzaldehyde	100-52-7	8270D	ND	8.0	0.50	ug/L	1
Benzo(a)anthracene	56-55-3	8270D	ND	0.80	0.20	ug/L	1
Benzo(a)pyrene	50-32-8	8270D	ND	0.80	0.20	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	0.80	0.20	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	0.80	0.20	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	0.80	0.20	ug/L	1
bis (2-Chloro-1-methylethyl) ether	108-60-1	8270D	ND	4.0	0.50	ug/L	1
bis(2-Chloroethoxy)methane	111-91-1	8270D	ND	4.0	0.50	ug/L	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND	4.0	0.50	ug/L	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND	4.0	0.50	ug/L	1
Butyl benzyl phthalate	85-68-7	8270D	ND	4.0	0.50	ug/L	1
Caprolactam	105-60-2	8270D	ND	8.0	1.0	ug/L	1
Carbazole	86-74-8	8270D	ND	4.0	0.50	ug/L	1
Chrysene	218-01-9	8270D	ND	0.80	0.20	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	0.80	0.20	ug/L	1

LOQ = Limit of Quantitation ND = Not detected at or above the DL B = Detected in the method blank N = Recovery is out of criteria

W = Reported on wet weight basis

 $J = Estimated result < LOQ and \ge DL$

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range DL = Detection Limit P =The RPD between two GC columns exceeds 40%

H = Out of holding time

Semivolatile Organic Compounds by GC/MS

Client: Terracon Consultants, Inc. Laboratory ID: TD25013-002

Description: TW02 Matrix: Aqueous

Date Sampled:04/23/2018 1815 Project Name: NCDOT B-5301 PSA

Date Received: 04/25/2018 Project Number: 70187117

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 3520C
 8270D
 1
 05/03/2018 1902
 JCG
 04/26/2018 1829
 70602

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Dibenzofuran	132-64-9	8270D	ND	4.0	0.50	ug/L	1
Diethylphthalate	84-66-2	8270D	ND	4.0	0.50	ug/L	1
Dimethyl phthalate	131-11-3	8270D	ND	4.0	0.50	ug/L	1
Di-n-butyl phthalate	84-74-2	8270D	ND	4.0	0.50	ug/L	1
Di-n-octylphthalate	117-84-0	8270D	ND	4.0	0.50	ug/L	1
Fluoranthene	206-44-0	8270D	ND	0.80	0.20	ug/L	1
Fluorene	86-73-7	8270D	ND	0.80	0.20	ug/L	1
Hexachlorobenzene	118-74-1	8270D	ND	4.0	0.50	ug/L	1
Hexachlorobutadiene	87-68-3	8270D	ND	4.0	0.50	ug/L	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND	20	2.0	ug/L	1
Hexachloroethane	67-72-1	8270D	ND	4.0	1.0	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	0.80	0.20	ug/L	1
Isophorone	78-59-1	8270D	ND	4.0	0.50	ug/L	1
Naphthalene	91-20-3	8270D	2.9	0.80	0.20	ug/L	1
Nitrobenzene	98-95-3	8270D	ND	4.0	1.5	ug/L	1
N-Nitrosodi-n-propylamine	621-64-7	8270D	ND	4.0	0.50	ug/L	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270D	ND	4.0	0.50	ug/L	1
Pentachlorophenol	87-86-5	8270D	ND	20	2.0	ug/L	1
Phenanthrene	85-01-8	8270D	ND	0.80	0.20	ug/L	1
Phenol	108-95-2	8270D	ND	4.0	0.50	ug/L	1
Pyrene	129-00-0	8270D	ND	0.80	0.20	ug/L	1

	Run 1 A	Acceptance
Surrogate	Q % Recovery	Limits
2-Fluorobiphenyl	87	37-129
2-Fluorophenol	62	24-127
Nitrobenzene-d5	90	38-127
Phenol-d5	90	28-128
Terphenyl-d14	105	10-148
2,4,6-Tribromophenol	75	35-144

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank

W = Reported on wet weight basis

N = Recovery is out of criteria

 $P = The \ RPD$ between two GC columns exceeds 40%

 $J = Estimated result < LOQ and \ge DL$

Shealy Environmental Services, Inc.

 $[\]label{eq:energy} \textbf{E} = \textbf{Quantitation of compound exceeded the calibration range}$

DL = Detection Limit

QC Summary

QC Data for Lot Number: TD25013

Volatile Organic Compounds by GC/MS - MB

Sample ID: TQ70748-001 Batch: 70748

Analytical Method: 8260B

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Acetone	ND		1	20	2.0	ug/L	04/27/2018 2132
Benzene	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Bromodichloromethane	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Bromoform	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Bromomethane (Methyl bromide)	ND		1	2.0	0.40	ug/L	04/27/2018 2132
2-Butanone (MEK)	ND		1	10	2.0	ug/L	04/27/2018 2132
Carbon disulfide	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Carbon tetrachloride	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Chlorobenzene	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Chloroethane	ND		1	2.0	0.40	ug/L	04/27/2018 2132
Chloroform	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Chloromethane (Methyl chloride)	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Cyclohexane	ND		1	1.0	0.40	ug/L	04/27/2018 2132
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Dibromochloromethane	ND		1	1.0	0.40	ug/L	04/27/2018 2132
1,2-Dibromoethane (EDB)	ND		1	1.0	0.40	ug/L	04/27/2018 2132
1,2-Dichlorobenzene	ND		1	1.0	0.40	ug/L	04/27/2018 2132
1,3-Dichlorobenzene	ND		1	1.0	0.40	ug/L	04/27/2018 2132
1,4-Dichlorobenzene	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Dichlorodifluoromethane	ND		1	2.0	0.40	ug/L	04/27/2018 2132
1,1-Dichloroethane	ND		1	1.0	0.40	ug/L	04/27/2018 2132
1,2-Dichloroethane	ND		1	1.0	0.40	ug/L	04/27/2018 2132
1,1-Dichloroethene	ND		1	1.0	0.40	ug/L	04/27/2018 2132
cis-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	04/27/2018 2132
trans-1,2-Dichloroethene	ND		1	1.0	0.40	ug/L	04/27/2018 2132
1,2-Dichloropropane	ND		1	1.0	0.40	ug/L	04/27/2018 2132
cis-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	04/27/2018 2132
trans-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Ethylbenzene	ND		1	1.0	0.40	ug/L	04/27/2018 2132
2-Hexanone	ND		1	10	2.0	ug/L	04/27/2018 2132
Isopropylbenzene	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Methyl acetate	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Methyl tertiary butyl ether (MTBE)	ND		1	1.0	0.40	ug/L	04/27/2018 2132
4-Methyl-2-pentanone	ND		1	10	2.0	ug/L	04/27/2018 2132
Methylcyclohexane	ND		1	5.0	0.40	ug/L	04/27/2018 2132
Methylene chloride	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Styrene	ND		1	1.0	0.41	ug/L	04/27/2018 2132
1,1,2,2-Tetrachloroethane	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Tetrachloroethene	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Toluene	ND		1	1.0	0.40	ug/L	04/27/2018 2132
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		1	1.0	0.42	ug/L	04/27/2018 2132
1,2,4-Trichlorobenzene	ND		1	1.0	0.40	ug/L	04/27/2018 2132
1,1,1-Trichloroethane	ND		1	1.0	0.40	ug/L	04/27/2018 2132
1,1,2-Trichloroethane	ND		1	1.0	0.40	ug/L	04/27/2018 2132

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the DL

Volatile Organic Compounds by GC/MS - MB

Sample ID: TQ70748-001 Batch: 70748

Analytical Method: 8260B

Matrix: Aqueous Prep Method: 5030B

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
Trichloroethene	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Trichlorofluoromethane	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Vinyl chloride	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Xylenes (total)	ND		1	1.0	0.40	ug/L	04/27/2018 2132
Surrogate	Q % Rec		ceptance Limit				
1,2-Dichloroethane-d4	94		70-130				
Bromofluorobenzene	99	•	70-130				
Toluene-d8	100		70-130				

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the DL

Volatile Organic Compounds by GC/MS - LCS

Sample ID: TQ70748-002 Batch: 70748 Matrix: Aqueous Prep Method: 5030B

Analytical Method: 8260B

	Spike						
Parameter	Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Acetone	100	88		1	88	60-140	04/27/2018 2034
Benzene	50	46		1	91	70-130	04/27/2018 2034
Bromodichloromethane	50	50		1	101	70-130	04/27/2018 2034
Bromoform	50	53		1	107	70-130	04/27/2018 2034
Bromomethane (Methyl bromide)	50	49		1	97	70-130	04/27/2018 2034
2-Butanone (MEK)	100	92		1	92	70-130	04/27/2018 2034
Carbon disulfide	50	44		1	88	70-130	04/27/2018 2034
Carbon tetrachloride	50	47		1	93	70-130	04/27/2018 2034
Chlorobenzene	50	49		1	98	70-130	04/27/2018 2034
Chloroethane	50	45		1	89	70-130	04/27/2018 2034
Chloroform	50	44		1	87	70-130	04/27/2018 2034
Chloromethane (Methyl chloride)	50	56		1	111	60-140	04/27/2018 2034
Cyclohexane	50	43		1	85	70-130	04/27/2018 2034
1,2-Dibromo-3-chloropropane (DBCP)	50	43		1	85	70-130	04/27/2018 2034
Dibromochloromethane	50	52		1	104	70-130	04/27/2018 2034
1,2-Dibromoethane (EDB)	50	49		1	98	70-130	04/27/2018 2034
1,2-Dichlorobenzene	50	47		1	95	70-130	04/27/2018 2034
1,3-Dichlorobenzene	50	49		1	97	70-130	04/27/2018 2034
1,4-Dichlorobenzene	50	47		1	95	70-130	04/27/2018 2034
Dichlorodifluoromethane	50	58		1	115	60-140	04/27/2018 2034
1,1-Dichloroethane	50	43		1	87	70-130	04/27/2018 2034
1,2-Dichloroethane	50	45		1	90	70-130	04/27/2018 2034
1,1-Dichloroethene	50	44		1	89	70-130	04/27/2018 2034
cis-1,2-Dichloroethene	50	45		1	89	70-130	04/27/2018 2034
trans-1,2-Dichloroethene	50	45		1	89	70-130	04/27/2018 2034
1,2-Dichloropropane	50	50		1	99	70-130	04/27/2018 2034
cis-1,3-Dichloropropene	50	53		1	105	70-130	04/27/2018 2034
trans-1,3-Dichloropropene	50	51		1	101	70-130	04/27/2018 2034
Ethylbenzene	50	48		1	96	70-130	04/27/2018 2034
2-Hexanone	100	97		1	97	70-130	04/27/2018 2034
Isopropylbenzene	50	50		1	99	70-130	04/27/2018 2034
Methyl acetate	50	52		1	103	70-130	04/27/2018 2034
Methyl tertiary butyl ether (MTBE)	50	42		1	84	70-130	04/27/2018 2034
4-Methyl-2-pentanone	100	100		1	102	70-130	04/27/2018 2034
Methylcyclohexane	50	50		1	102	70-130	04/27/2018 2034
	50			1		70-130	04/27/2018 2034
Methylene chloride Styrene	50	43 50			85 99	70-130 70-130	04/27/2018 2034
				1			
1,1,2,2-Tetrachloroethane	50 50	42 55		1	84	70-130 70-130	04/27/2018 2034
Tetrachloroethene	50 50	55 51		1 1	110 103	70-130 70-130	04/27/2018 2034
Toluene							04/27/2018 2034
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	44		1	88	70-130	04/27/2018 2034
1,2,4-Trichlorobenzene	50	50		1	100	70-130	04/27/2018 2034
1,1,1-Trichloroethane	50	44		1	89	70-130	04/27/2018 2034
1,1,2-Trichloroethane	50	47		1	94	70-130	04/27/2018 2034

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the DL

Volatile Organic Compounds by GC/MS - LCS

Sample ID: TQ70748-002 Batch: 70748

Analytical Method: 8260B

Matrix: Aqueous Prep Method: 5030B

Parameter	Spike Amount (ug/L)	Result (ug/L) Q	Dil	% Rec	% Rec Limit	Analysis Date
Trichloroethene	50	52	1	104	70-130	04/27/2018 2034
Trichlorofluoromethane	50	48	1	95	70-130	04/27/2018 2034
Vinyl chloride	50	50	1	101	70-130	04/27/2018 2034
Xylenes (total)	100	97	1	97	70-130	04/27/2018 2034
Surrogate	Q % Rec	Acceptance Limit				
1,2-Dichloroethane-d4	91	70-130				
Bromofluorobenzene	103	70-130				
Toluene-d8	104	70-130				

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

LOD = Limit of Detection

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

ND = Not detected at or above the DL

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: TQ70602-001 Batch: 70602

Matrix: Aqueous Prep Method: 3520C

Prep Date: 04/26/2018 1829 Analytical Method: 8270D

Parameter	Result	Q	Dil	LOQ	DL	Units	Analysis Date
1,1'-Biphenyl	ND		1	4.0	0.50	ug/L	05/03/2018 1746
2,4,5-Trichlorophenol	ND		1	4.0	0.50	ug/L	05/03/2018 1746
2,4,6-Trichlorophenol	ND		1	4.0	0.50	ug/L	05/03/2018 1746
2,4-Dichlorophenol	ND		1	8.0	1.0	ug/L	05/03/2018 1746
2,4-Dimethylphenol	ND		1	4.0	1.0	ug/L	05/03/2018 1746
2,4-Dinitrophenol	ND		1	20	1.0	ug/L	05/03/2018 1746
2,4-Dinitrotoluene	ND		1	8.0	0.50	ug/L	05/03/2018 1746
2,6-Dinitrotoluene	ND		1	8.0	0.50	ug/L	05/03/2018 1746
2-Chloronaphthalene	ND		1	4.0	0.50	ug/L	05/03/2018 1746
2-Chlorophenol	ND		1	4.0	0.50	ug/L	05/03/2018 1746
2-Methylnaphthalene	ND		1	0.80	0.20	ug/L	05/03/2018 1746
2-Methylphenol	ND		1	4.0	1.0	ug/L	05/03/2018 1746
2-Nitroaniline	ND		1	8.0	0.50	ug/L	05/03/2018 1746
2-Nitrophenol	ND		1	4.0	1.0	ug/L	05/03/2018 1746
3,3'-Dichlorobenzidine	ND		1	4.0	1.8	ug/L	05/03/2018 1746
3+4-Methylphenol	ND		1	4.0	1.5	ug/L	05/03/2018 1746
3-Nitroaniline	ND		1	8.0	1.0	ug/L	05/03/2018 1746
4,6-Dinitro-2-methylphenol	ND		1	20	1.0	ug/L	05/03/2018 1746
4-Bromophenyl phenyl ether	ND		1	4.0	0.50	ug/L	05/03/2018 1746
4-Chloro-3-methyl phenol	ND		1	4.0	0.50	ug/L	05/03/2018 1746
4-Chloroaniline	ND		1	8.0	0.50	ug/L	05/03/2018 1746
4-Chlorophenyl phenyl ether	ND		1	4.0	0.50	ug/L	05/03/2018 1746
4-Nitroaniline	ND		1	8.0	1.5	ug/L	05/03/2018 1746
4-Nitrophenol	ND		1	20	2.0	ug/L	05/03/2018 1746
Acenaphthene	ND		1	0.80	0.20	ug/L	05/03/2018 1746
Acenaphthylene	ND		1	0.80	0.20	ug/L	05/03/2018 1746
Acetophenone	ND		1	4.0	0.50	ug/L	05/03/2018 1746
Anthracene	ND		1	0.80	0.20	ug/L	05/03/2018 1746
Atrazine	ND		1	4.0	0.50	ug/L	05/03/2018 1746
Benzaldehyde	ND		1	8.0	0.50	ug/L	05/03/2018 1746
Benzo(a)anthracene	ND		1	0.80	0.20	ug/L	05/03/2018 1746
Benzo(a)pyrene	ND		1	0.80	0.20	ug/L	05/03/2018 1746
Benzo(b)fluoranthene	ND		1	0.80	0.20	ug/L	05/03/2018 1746
Benzo(g,h,i)perylene	ND		1	0.80	0.20	ug/L	05/03/2018 1746
Benzo(k)fluoranthene	ND		1	0.80	0.20	ug/L	05/03/2018 1746
bis (2-Chloro-1-methylethyl) ether	ND		1	4.0	0.50	ug/L	05/03/2018 1746
bis(2-Chloroethoxy)methane	ND		1	4.0	0.50	ug/L	05/03/2018 1746
bis(2-Chloroethyl)ether	ND		1	4.0	0.50	ug/L	05/03/2018 1746
bis(2-Ethylhexyl)phthalate	ND		1	4.0	0.50	ug/L	05/03/2018 1746
Butyl benzyl phthalate	ND		1	4.0	0.50	ug/L	05/03/2018 1746
Caprolactam	ND		1	8.0	1.0	ug/L	05/03/2018 1746
Carbazole	ND		1	4.0	0.50	ug/L	05/03/2018 1746
Chrysene	ND		1	0.80	0.20	ug/L	05/03/2018 1746
Dibenzo(a,h)anthracene	ND					- 3	05/03/2018 1746

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the DL

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: TQ70602-001 **Batch:** 70602

Matrix: Aqueous Prep Method: 3520C

Analytical Method: 8270D

Prep Date: 04/26/2018 1829

Parameter	Result	Q Dil	LOQ	DL	Units	Analysis Date
Dibenzofuran	ND	1	4.0	0.50	ug/L	05/03/2018 1746
Diethylphthalate	ND	1	4.0	0.50	ug/L	05/03/2018 1746
Dimethyl phthalate	ND	1	4.0	0.50	ug/L	05/03/2018 1746
Di-n-butyl phthalate	ND	1	4.0	0.50	ug/L	05/03/2018 1746
Di-n-octylphthalate	ND	1	4.0	0.50	ug/L	05/03/2018 1746
Fluoranthene	ND	1	0.80	0.20	ug/L	05/03/2018 1746
Fluorene	ND	1	0.80	0.20	ug/L	05/03/2018 1746
Hexachlorobenzene	ND	1	4.0	0.50	ug/L	05/03/2018 1746
Hexachlorobutadiene	ND	1	4.0	0.50	ug/L	05/03/2018 1746
Hexachlorocyclopentadiene	ND	1	20	2.0	ug/L	05/03/2018 1746
Hexachloroethane	ND	1	4.0	1.0	ug/L	05/03/2018 1746
Indeno(1,2,3-c,d)pyrene	ND	1	0.80	0.20	ug/L	05/03/2018 1746
Isophorone	ND	1	4.0	0.50	ug/L	05/03/2018 1746
Naphthalene	ND	1	0.80	0.20	ug/L	05/03/2018 1746
Nitrobenzene	ND	1	4.0	1.5	ug/L	05/03/2018 1746
N-Nitrosodi-n-propylamine	ND	1	4.0	0.50	ug/L	05/03/2018 1746
N-Nitrosodiphenylamine (Dipheny	/lamine) ND	1	4.0	0.50	ug/L	05/03/2018 1746
Pentachlorophenol	ND	1	20	2.0	ug/L	05/03/2018 1746
Phenanthrene	ND	1	0.80	0.20	ug/L	05/03/2018 1746
Phenol	ND	1	4.0	0.50	ug/L	05/03/2018 1746
Pyrene	ND	1	0.80	0.20	ug/L	05/03/2018 1746
Surrogate	Q % Red	Acceptance Limit				
2-Fluorobiphenyl	78	37-129				
2-Fluorophenol	42	24-127				
Nitrobenzene-d5	82	38-127				
Phenol-d5	74	28-128				
Terphenyl-d14	106	10-148				
2,4,6-Tribromophenol	49	35-144				

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and \ge DL$

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the DL

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: TQ70602-002 **Batch:** 70602

Matrix: Aqueous Prep Method: 3520C

Analytical Method: 8270D

Prep Date: 04/26/2018 1829

	Spike						
Parameter	Amount	Result	Q	Dil	% Rec	% Rec Limit	Analysia Data
Parameter 4.41 Bink and	(ug/L)	(ug/L)	Q	Dil			Analysis Date
1,1'-Biphenyl	40	35		1	88	30-130 30-123	05/03/2018 1811
2,4,5-Trichlorophenol	40	33		1	83		05/03/2018 1811
2,4,6-Trichlorophenol	40	35		1	87	30-130	05/03/2018 1811
2,4-Dichlorophenol	40	33		1	84	30-121	05/03/2018 1811
2,4-Dimethylphenol	40	23		1	58	20-125	05/03/2018 1811
2,4-Dinitrophenol	80	55		1	68	11-126	05/03/2018 1811
2,4-Dinitrotoluene	40	36		1	90	30-130	05/03/2018 1811
2,6-Dinitrotoluene	40	37		1	92	30-130	05/03/2018 1811
2-Chloronaphthalene	40	34		1	86	30-130	05/03/2018 1811
2-Chlorophenol	40	35		1	88	30-130	05/03/2018 1811
2-Methylnaphthalene	40	34		1	84	40-132	05/03/2018 1811
2-Methylphenol	40	37		1	93	30-130	05/03/2018 1811
2-Nitroaniline	40	39		1	99	30-130	05/03/2018 1811
2-Nitrophenol	40	35		1	87	30-130	05/03/2018 1811
3,3'-Dichlorobenzidine	40	24		1	61	10-126	05/03/2018 1811
3+4-Methylphenol	40	38		1	96	30-130	05/03/2018 1811
3-Nitroaniline	40	38		1	96	30-130	05/03/2018 1811
4,6-Dinitro-2-methylphenol	40	35		1	88	30-130	05/03/2018 1811
4-Bromophenyl phenyl ether	40	35		1	88	30-124	05/03/2018 1811
4-Chloro-3-methyl phenol	40	37		1	93	30-123	05/03/2018 1811
4-Chloroaniline	40	38		1	95	12-157	05/03/2018 1811
4-Chlorophenyl phenyl ether	40	34		1	85	30-121	05/03/2018 1811
4-Nitroaniline	40	42		1	104	30-135	05/03/2018 1811
4-Nitrophenol	80	68		1	84	30-130	05/03/2018 1811
Acenaphthene	40	35		1	87	30-122	05/03/2018 1811
Acenaphthylene	40	37		1	91	30-130	05/03/2018 1811
Acetophenone	40	41		1	102	30-130	05/03/2018 1811
Anthracene	40	37		1	92	30-123	05/03/2018 1811
Atrazine	40	41		1	102	30-130	05/03/2018 1811
Benzaldehyde	40	35		1	87	20-115	05/03/2018 1811
Benzo(a)anthracene	40	39		1	98	40-125	05/03/2018 1811
` '	40	35		1	88	40-128	05/03/2018 1811
Benzo(a)pyrene		42		1	106	30-130	
Benzo(b)fluoranthene	40						05/03/2018 1811
Benzo(g,h,i)perylene	40	40		1	100	30-130	05/03/2018 1811
Benzo(k)fluoranthene	40	41		1	104	30-130	05/03/2018 1811
bis (2-Chloro-1-methylethyl) ether	40	51		1	128	30-130	05/03/2018 1811
bis(2-Chloroethoxy)methane	40	38		1	96	30-130	05/03/2018 1811
bis(2-Chloroethyl)ether	40	41		1	104	30-130	05/03/2018 1811
bis(2-Ethylhexyl)phthalate	40	36		1	89	30-130	05/03/2018 1811
Butyl benzyl phthalate	40	39		1	98	30-130	05/03/2018 1811
Caprolactam	40	39		1	97	30-130	05/03/2018 1811
Carbazole	40	38		1	94	30-130	05/03/2018 1811
Chrysene	40	39		1	98	30-130	05/03/2018 1811
Dibenzo(a,h)anthracene	40	39		1	99	30-130	05/03/2018 1811

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection

ND = Not detected at or above the DL

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Shealy Environmental Services, Inc.

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: TQ70602-002 **Batch:** 70602

Matrix: Aqueous Prep Method: 3520C

Prep Date: 04/26/2018 1829

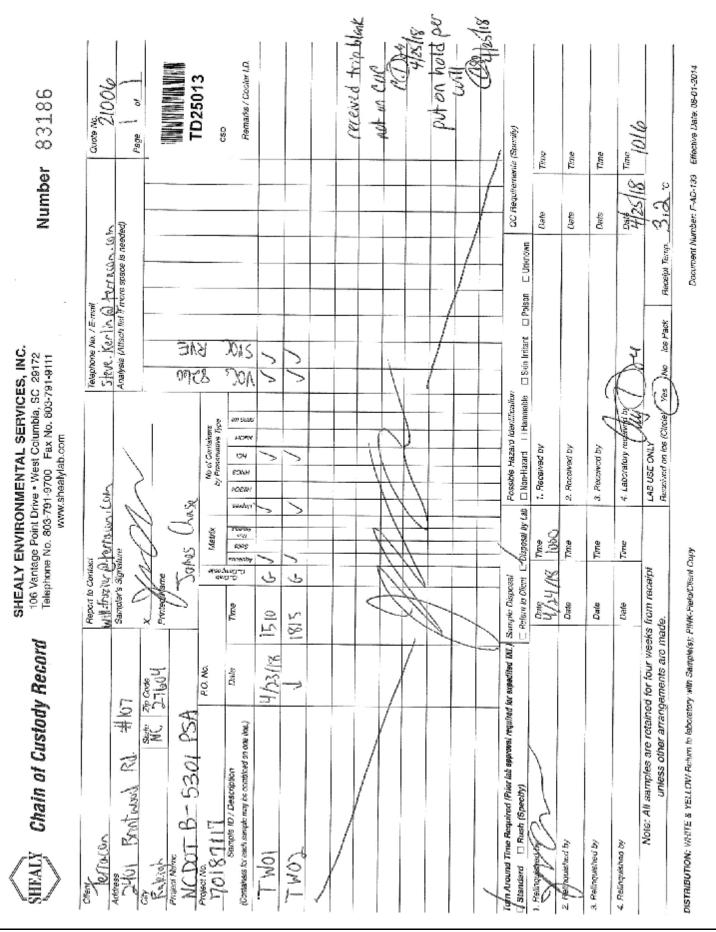
	Dateii.	10002
Analytical	Method:	8270D

Parameter	Spike Amount (ug/L)	Res (ug		Dil	% Rec	% Rec Limit	Analysis Date
			<i>(L)</i>		87		
Dibenzofuran Diatakat katata	40	35		1	-	30-118	05/03/2018 1811
Diethylphthalate	40	39		1	97	40-125	05/03/2018 1811
Dimethyl phthalate	40	36		1	91	40-127	05/03/2018 1811
Di-n-butyl phthalate	40	40		1	99	40-127	05/03/2018 1811
Di-n-octylphthalate	40	34		1	85	30-130	05/03/2018 1811
Fluoranthene	40	42		1	105	40-128	05/03/2018 1811
Fluorene	40	35		1	87	30-124	05/03/2018 1811
Hexachlorobenzene	40	36		1	89	30-125	05/03/2018 1811
Hexachlorobutadiene	40	30		1	75	24-110	05/03/2018 1811
Hexachlorocyclopentadiene	200	120)	1	58	22-122	05/03/2018 1811
Hexachloroethane	40	32		1	80	30-130	05/03/2018 1811
Indeno(1,2,3-c,d)pyrene	40	39		1	98	30-130	05/03/2018 1811
Isophorone	40	41		1	102	30-130	05/03/2018 1811
Naphthalene	40	35		1	88	30-130	05/03/2018 1811
Nitrobenzene	40	39		1	97	30-130	05/03/2018 1811
N-Nitrosodi-n-propylamine	40	46		1	116	30-130	05/03/2018 1811
N-Nitrosodiphenylamine (Diphenylamine)	40	33		1	83	30-123	05/03/2018 1811
Pentachlorophenol	80	60		1	75	30-130	05/03/2018 1811
Phenanthrene	40	36		1	90	40-123	05/03/2018 1811
Phenol	40	38		1	96	30-130	05/03/2018 1811
Pyrene	40	41		1	103	40-126	05/03/2018 1811
Surrogate	Q % F	Rec	cceptance Limit				
2-Fluorobiphenyl	87	7	37-129				
2-Fluorophenol	82	2	24-127				
Nitrobenzene-d5	10	0	38-127				
Phenol-d5	10	0	28-128				
Terphenyl-d14	11	1	10-148				
2,4,6-Tribromophenol	80)	35-144				

LOQ = Limit of Quantitation

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria


DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

+ = RPD is out of criteria

LOD = Limit of Detection ND = Not detected at or above the DL

Chain of Custody and Miscellaneous Documents

Sheaty Environmental Services, Inc. Document Number: ME0018C-13

Page 1 of 1 Effective Date: 4/5/2018

Sample Receipt Checklist (SRC)	
Client: Terracon Cooler Inspected by/date: (20 / 4/25//8 Lot #: TD 250/3	
Means of receipt: SESI Client UPS AFedEx Other:	
☐ Yes ☐ No 1. Were custody seals present on the cooler?	
☐ Yes ☐ No ☐ NA 2. If custody seals were present, were they intact and unbroken?	
pH Strip ID: NA- Chlorine Strip ID: MA	
Cooler ID / Original temperature upon receipt / Derived (Corrected) temperature upon receipt:	
/ 3·2/ 3·2c / / °c / / °c / / °c	
Method: Temperature Blank Against Bottles IR Gun ID: 6 IR Gun Correction Factor: O °C	
Method of coolant: Wet Ice lee Packs Dry Ice None	
12 If temperature of any cooler eveneded 6 00C upp Project Manager Natified?	
Yes No No NA Project Manager Nottheo? PM was Notified by: phone / email / face-to-face (circle one).	
☐ Yes ☐ No ☐ NA 4. Is the commercial courier's packing slip attached to this form?	
Yes No 5. Were proper custody procedures (relinquished/received) followed?	
Ycs No 6. Were sample IDs listed on the COC?	
Ves □ No 7. Were sample IDs listed on all sample containers?	
Yes No 8. Was collection date & time listed on the COC?	
☑ Yes ☐ No 9. Was collection date & time listed on all sample containers?	
Tes No 10. Did all container label information (ID, date, time) agree with the COC? My quate changed free	dest
Yes No 11. Were tests to be performed listed on the COC?	at
12. Did all samples arrive in the proper containers for each test and/or in good condition	
Yes No (unbroken, lids on, etc.)?	
Yes- No 13. Was adequate sample volume available?	
Yes No 14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?	
Yes ANO 15. Were any samples containers missing/excess (circle one) samples Not listed on COC?	
Yes No NA 16. For VOA and RSK-175 samples, were bubbles present >"pea-size" (1/4" or 6mm in diameter) in	
any of the VOA vials? Yes No WA 17. Were all DRO/metals/nutrient samples received at a pH of < 2?	
Yes \(\text{No} \) \(\text{LMA} \) 17. Were all DRO/metals/nutrient samples received at a pH of < 2? \(\text{LMA} \) Yes \(\text{No} \) \(\text{LMA} \) 18. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9?	
19 Were all applicable NH, TKN/cyanide/phonol/625 (< 0.5mg/l) samples free of recidual	
Yes No NA chlorine?	
20 Warn client supporte fragments (i.e. requested dilutions, MSA4SD designations, etc.)	
Yes No	
Yes No 21. Was the quote number used taken from the container label? Containers from another prace /su	
	KEIPPEC
Sample Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.)	ukstn
Sample(s)were received incorrectly preserved and were adjusted accordingly	77
in sample receiving with (H2SO4, HNO3, HCl, NaOH) using SR #	
Time of preservation	
Sample(s) were received with bubbles >6 mm in diameter.	
Samples(s) were received with TRC > 0.5 mg/L (If #19 is no) and were	
adjusted accordingly in sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID:	
SR barcode labels applied by: Date:Date:	
Comments:	
•	