This electronic collection of documents is provided for the convenience of the user and is Not a Certified Document –

The documents contained herein were originally issued and sealed by the individuals whose names and license numbers appear on each page, on the dates appearing with their signature on that page.

This file or an individual page shall not be considered a certified document.

(+)

LOCATION SKETCH

GRADE DATA

GRADE POINT ELEV. @ STA. 65+70.00 -Y7- = 61.33 BED ELEV. @ STA. 65+70.00 -Y7- = 51.73 ROADWAY SLOPES 3:1

HYDRAULIC DATA

DESIGN DISCHARGE = 310 C.F.S. FREQUENCY OF DESIGN FLOOD = 25 YRS. DESIGN HIGH WATER ELEVATION = 57.0 FT DRAINAGE AREA = 1.5 SQ. MI. BASE DISCHARGE (Q100) = 480 C.F.S. BASE HIGH WATER ELEVATION = 58.1 FT

OVERTOPPING FLOOD DATA

OVERTOPPING DISCHARGE = 480 C.F.S FREQUENCY OF OVERTOPPING FLOOD = 100 YRS. OVERTOPPING FLOOD ELEVATION = 57.6 FT

PROPOSED OVERTOPPING OCCURS AT STA. 44+00 -Y7-

TOTAL STRUCTURE QUA	ANTIT	IES
CLASS A CONCRETE		
BARREL @ 2.230 CY/FT	148.3	_C.Y.
WINGS, ETC	31.9	_C.Y.
TOTAL	180.2	_C.Y.
REINFORCING STEEL		
BARREL 2	29789	LBS.
WINGS	1747	LBS.
TOTAL	31536	_LBS.
CULVERT EXCAVATION STA. 65+70.00	-Y7-	LUMP SUM
FOUNDATION COND. MAT'L.	1	131.3 TONS

NOTES

ASSUMED LIVE LOAD ------ HL-93 OR ALTERNATE LOADING.

DESIGN FILL----- 4.42 FT. (MAX.), 2.58 FT. (MIN.)

FOR OTHER DESIGN DATA AND NOTES SEE STANDARD NOTE SHEET.

3"Ø WEEP HOLES INDICATED TO BE IN ACCORDANCE WITH THE SPECIFICATIONS.

CONCRETE IN CULVERTS TO BE POURED IN THE FOLLOWING ORDER:

1. WING FOOTINGS AND FLOOR SLAB INCLUDING 4" OF ALL VERTICAL WALLS.

2. THE REMAINING PORTIONS OF THE WALLS AND WINGS FULL HEIGHT FOLLOWED BY ROOF SLAB AND HEADWALLS.

THE RESIDENT ENGINEER SHALL CHECK THE LENGTH OF CULVERT BEFORE STAKING IT OUT TO MAKE CERTAIN THAT IT WILL PROPERLY TAKE CARE OF THE FILL.

DIMENSIONS FOR WING LAYOUT AS WELL AS ADDITIONAL REINFORCING STEEL EMBEDDED IN BARREL ARE SHOWN ON WING SHEET.

STEEL IN THE BOTTOM SLAB MAY BE SPLICED AT THE PERMITTED CONSTRUCTION JOINT AT THE CONTRACTOR'S OPTION. EXTRA WEIGHT OF STEEL DUE TO THE SPLICES SHALL BE PAID FOR BY THE CONTRACTOR.

AT THE CONTRACTOR'S OPTION, HE MAY SPLICE THE VERTICAL REINFORCING STEEL IN THE INTERIOR FACE OF EXTERIOR WALL AND BOTH FACES OF INTERIOR WALLS ABOVE LOWER WALL CONSTRUCTION JOINT. THE SPLICE LENGTH SHALL BE AS PROVIDED IN THE SPLICE LENGTH CHART SHOWN ON THE PLANS. EXTRA WEIGHT OF STEEL DUE TO THE SPLICES SHALL BE PAID FOR BY THE CONTRACTOR.

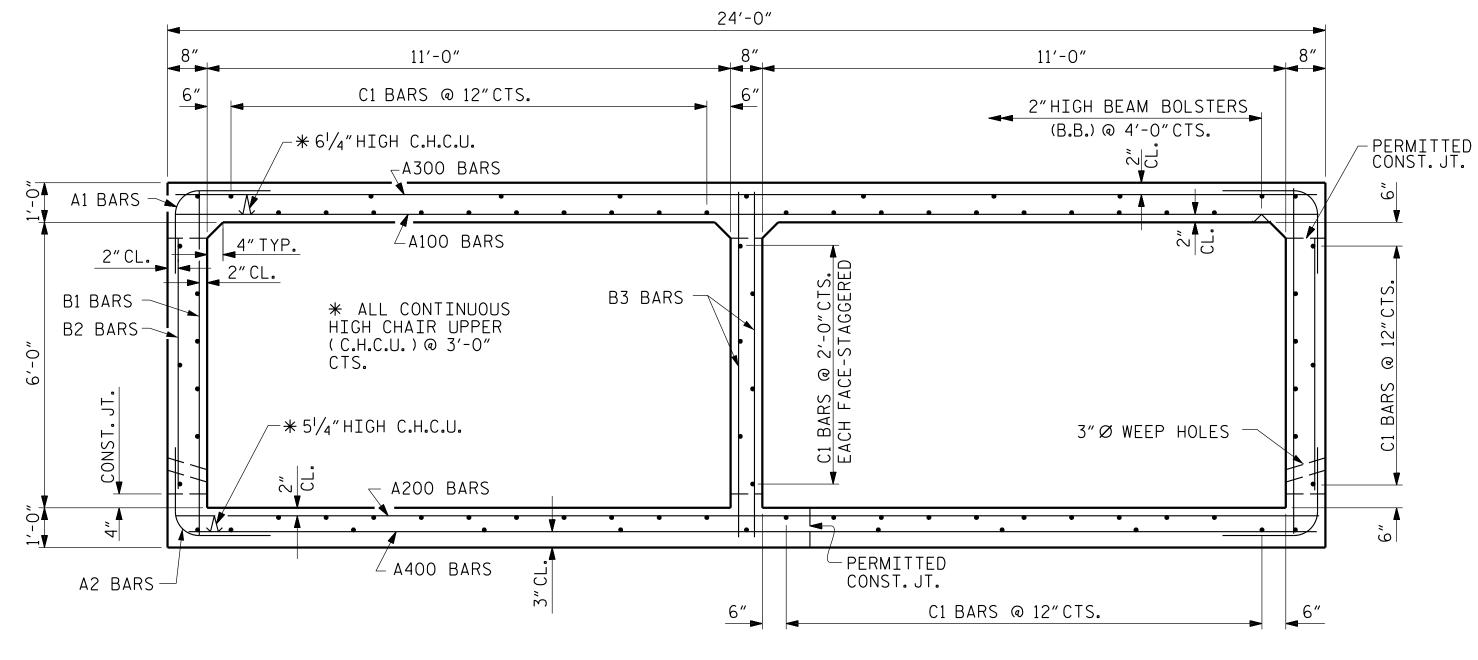
AT THE CONTRACTOR'S OPTION HE MAY SUBMIT, TO THE ENGINEER FOR APPROVAL, DESIGN AND DETAIL DRAWINGS FOR A PRECAST REINFORCED CONCRETE BOX CULVERT IN LIEU OF THE CAST-IN-PLACE CULVERT SHOWN ON THE PLANS. THE DESIGN SHALL PROVIDE THE SAME SIZE AND NUMBER OF BARRELS AS USED ON THE CAST-IN-PLACE DESIGN. FOR OPTIONAL PRECAST REINFORCED CONCRETE BOX CULVERT, SEE SPECIAL PROVISIONS.

FOR SUBMITTAL OF WORKING DRAWINGS, SEE SPECIAL PROVISIONS.

FOR FALSEWORK AND FORMWORK, SEE SPECIAL PROVISIONS.

FOR CRANE SAFETY, SEE SPECIAL PROVISIONS.

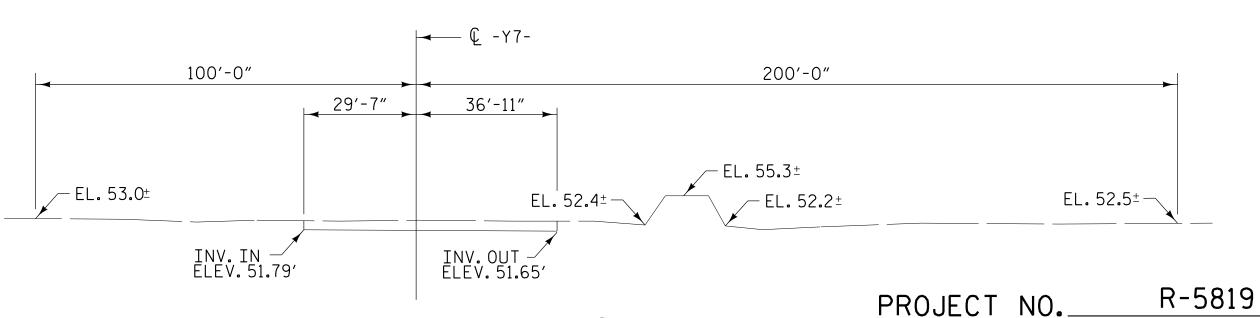
FOR GROUT FOR STRUCTURES, SEE SPECIAL PROVISIONS.


FOUNDATION NOTES

THE REINFORCED BOX CULVERT SHALL BE PLACED ON THE STANDARD 1.0 FOOT BLANKET OF FOUNDATION CONDITIONING MATERIAL. SEE SECTION 414 OF THE STANDARD SPECIFICATIONS.

REMOVE ANY STUMPS OR ROOT MATS BENEATH THE CULVERT AND FILL THE UNDERCUT AREAS WITH FOUNDATION CONDITIONING MATERIAL.

4/11/2022


A CAMBER IS NOT REQUIRED FOR CONSTRUCTION OF THE CULVERT.

PAY ITEM)

AND SPECIAL PROVISIONS.

FOR UTILITY INFORMATION, SEE UTILITY PLANS

PROFILE ALONG & CULVERT

COLUMBUS COUNTY

65+70.00 -Y7-STATION: _

SHEET 1 OF 7 STRUCTURE NO. C-230423

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

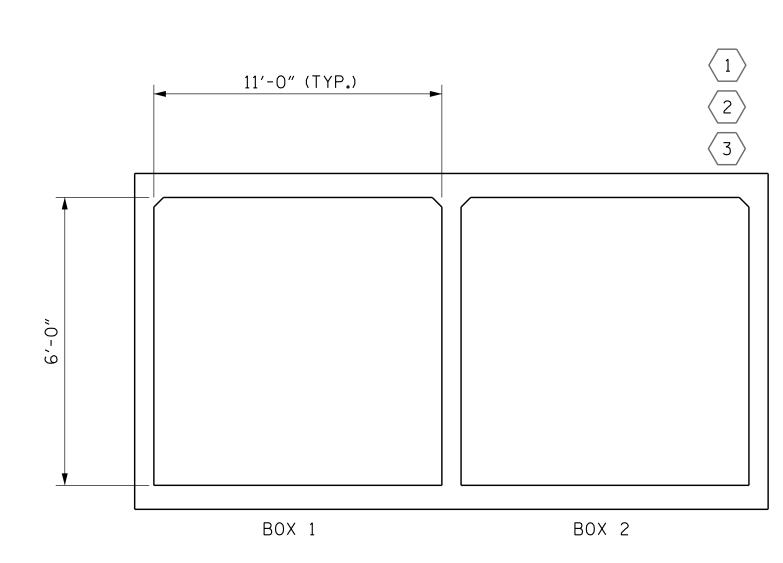
DOUBLE 11 FT. X 6 FT. CONCRETE BOX CULVERT 117° SKEW

SHEET NO REVISIONS C-1 NO. BY: DATE: DATE: TOTAL SHEETS

RIGHT ANGLE SECTION OF BARREL THERE ARE 82 "C" BARS IN SECTION OF BARREL.

I HEREBY CERTIFY THESE PLANS ARE THE AS-BUILT PLANS

> PLANS PREPARED BY: 3300 REGENCY PARKWAY, SUITE 100 CARY, NC 27518 P: 919.851.1912 NC License # F-1333 formerly CALYX Engineers & Consultants


DOCUMENT NOT CONSIDERED FINAL **UNLESS ALL SIGNATURES COMPLETED**

J. A. PANDOLI L. K. AUSTIN DRAWN BY: J.A.PANDOLI DATE: 2/22
CHECKED BY: L.K.AUSTIN DATE: 2/22
DESIGN ENGINEER OF RECORD: L.K.AUSTIN DATE: 2/22

+

LOAD AND RESISTANCE FACTOR RATING (LRFR) SUMMARY FOR REINFORCED CONCRETE BOX CULVERTS

							STRENGTH I LIMIT STATE									
										MOMENT				SHEAR		
LEVEL		VEHICLE	WEIGHT (W) (TONS)	CONTROLLING (#)	MINIMUM RATING FACTORS (RF)	TONS = W × RF	LIVE-LOAD FACTORS (Q _L)	RATING FACTOR	BOX NO.	ELEMENT	DISTANCE FROM LEFT END OF ELEMENT (ft)	RATING FACTOR	BOX NO.	ELEMENT	DISTANCE FROM LEFT END OF ELEMENT (ft)	COMMENT NUMBER
		HL-93 (INVENTORY)	N/A	1	1.26		1.75	1.95	1	TOP ·SLAB	4.667	1.26	2	TOP ·SLAB	0.333	•
DESIGN LOAD		HL-93 (OPERATING)	N/A	•	1.63		1.35	2.52	1	TOP SLAB	4.667	1.63	2	TOP SLAB	0.333	
RATING		HS-20 (INVENTORY)	36.000	2	1.32	47:52	1.75	2.03	1	TOP SLAB	4.667	1.32	2	TOP SLAB	0.333	
		HS-20 (OPERATING)	36.000	•	1.71	61 : 56	1.35	2.63	1	TOP SLAB	4.667	1.71	2	TOP SLAB	0.333	
		SNSH	13.500	•	2.43	32:81	1.40	3.66	1	TOP SLAB	4.667	2.43	2	TOP SLAB	0.333	
	VEHICLE V)	SNGARBS2	20.000	•	2.26	45:20	1.40	3.25	1	BOTTOM SLAB	0.333	2.26	2	TOP SLAB	0.333	
		SNAGRIS2	22.000	•	2.37	52:14	1.40	3.08	1	BOTTOM SLAB	0.333	2.37	2	TOP SLAB	0.333	
		SNCOTTS3	27.250	3	1.45	39:51	1.40	2.27	1	TOP SLAB	4.667	1.45	2	TOP SLAB	0.333	
	SLE (S	SNAGGRS4	34.925	•	1.75	61:12	1.40	2.02	1	BOTTOM SLAB	0.333	1.75	2	TOP SLAB	0.333	
	SINGL	SNS5A	35.550	•	1.63	57:95	1.40	2.05	1	BOTTOM SLAB	0.333	1.63	2	TOP SLAB	0.333	
		SNS6A	39.950	•	1.60	63:92	1.40	2.08	1	BOTTOM SLAB	0.333	1.60	2	TOP SLAB	0.333	
LEGAL LOAD		SNS7B	42.000	•	1.60	67:20	1.40	2.00	1	BOTTOM SLAB	0.333	1.60	2	TOP SLAB	0.333	
RATING	LER	TNAGRIT3	33.000	•	1.94	64:02	1.40	2.23	1	BOTTOM SLAB	0.333	1.94	2	BOTTOM SLAB	0.333	
	TRAIL	TNT4A	33.075	•	1.65	54:57	1.40	2.34	1	BOTTOM SLAB	0.333	1.65	2	TOP SLAB	0.333	
	L-IM	TNT6A	41.600	•	1.60	66:56	1.40	2.07	1	BOTTOM SLAB	0.333	1.60	2	TOP SLAB	0.333	
	SEMI-	TNT7A	42.000	•	1.61	67:62	1.40	2.02	1	BOTTOM SLAB	0.333	1.61	2	TOP SLAB	0.333	
	TOR (TT	TNT7B	42.000	•	1.64	68:88	1.40	2.11	1	BOTTOM SLAB	0.333	1.64	2	TOP SLAB	0.333	
	TRAC	TNAGRIT4	43.000	•	1.60	68:80	1.40	2.01	1	BOTTOM SLAB	0.333	1.60	2	TOP SLAB	0.333	
	TRUCK	TNAGT5A	45.000	•	1.60	72:00	1.40	2.09	1	BOTTOM SLAB	0.333	1.60	2	TOP SLAB	0.333	
	TRI	TNAGT5B	45.000	•	1.54	69:30	1.40	1.79	1	BOTTOM SLAB	0.333	1.54	2	BOTTOM SLAB	0.333	

(LOOKING DOWNSTREAM)

DATE: 2/22 DATE: 2/22 ASSEMBLED BY: JAP CHECKED BY: LKA DRAWN BY: WMC 7/II REV. 10/1/II REV. 12/17

LOAD FACTORS:

DESIGN LOAD RATING FACTORS

LOAD TYPE	MAX FACTOR	MIN FACTOR
DC	1.25	0.90
DW	1.50	0.65
EV	1.30	0.90
EH	1.35	0.90
ES	1.35	0.90
LS	1.75	
WA	1.00	

NOTE:

RATING FACTORS ARE BASED ON THE STRENGTH I LIMIT STATE.

COMMENTS:

(#) CONTROLLING LOAD RATING

 $\langle 1 \rangle$ DESIGN LOAD RATING (HL-93)

2 DESIGN LOAD RATING (HS-20)

(3) LEGAL LOAD RATING **

** SEE CHART FOR VEHICLE TYPE

PROJECT NO.____

R-5819

__ COUNTY

COLUMBUS

STATION: 65+70.00 -Y7-

SHEET 2 OF 7

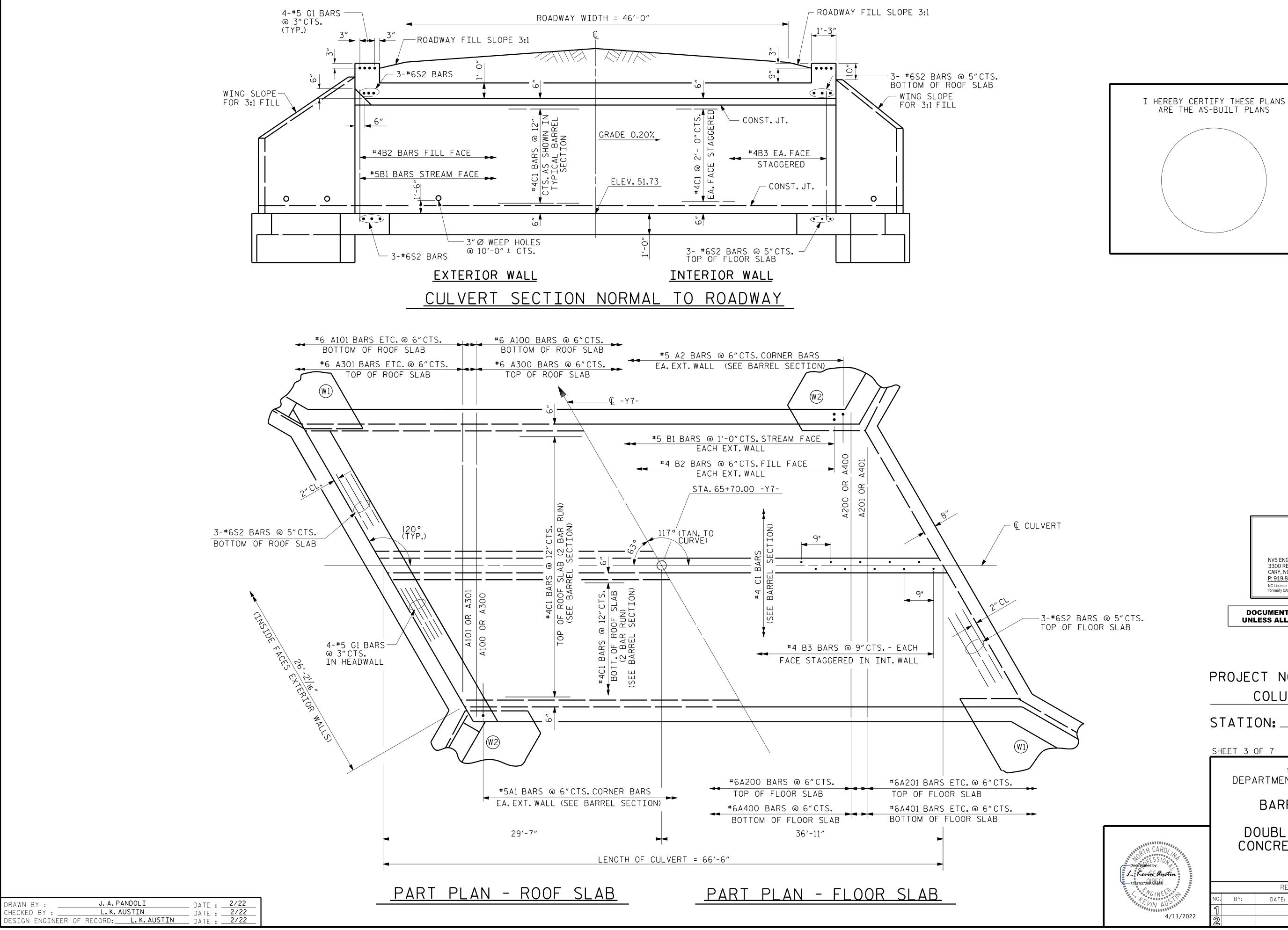
STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

STANDARD

LRFR SUMMARY FOR REINFORCED CONCRETE BOX CULVERTS (NON-INTERSTATE TRAFFIC)

DATE: DATE: BY:

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED


PLANS PREPARED BY:

NV5 ENGINEERS & CONSULTANTS, INC. 3300 REGENCY PARKWAY, SUITE 100

P: 919.851.1912

NC License # F-1333 formerly CALYX Engineers & Consultants

+

PLANS PREPARED BY: NV5 ENGINEERS & CONSULTANTS, INC. 3300 REGENCY PARKWAY, SUITE 100 CARY, NC 27518 P: 919.851.1912

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

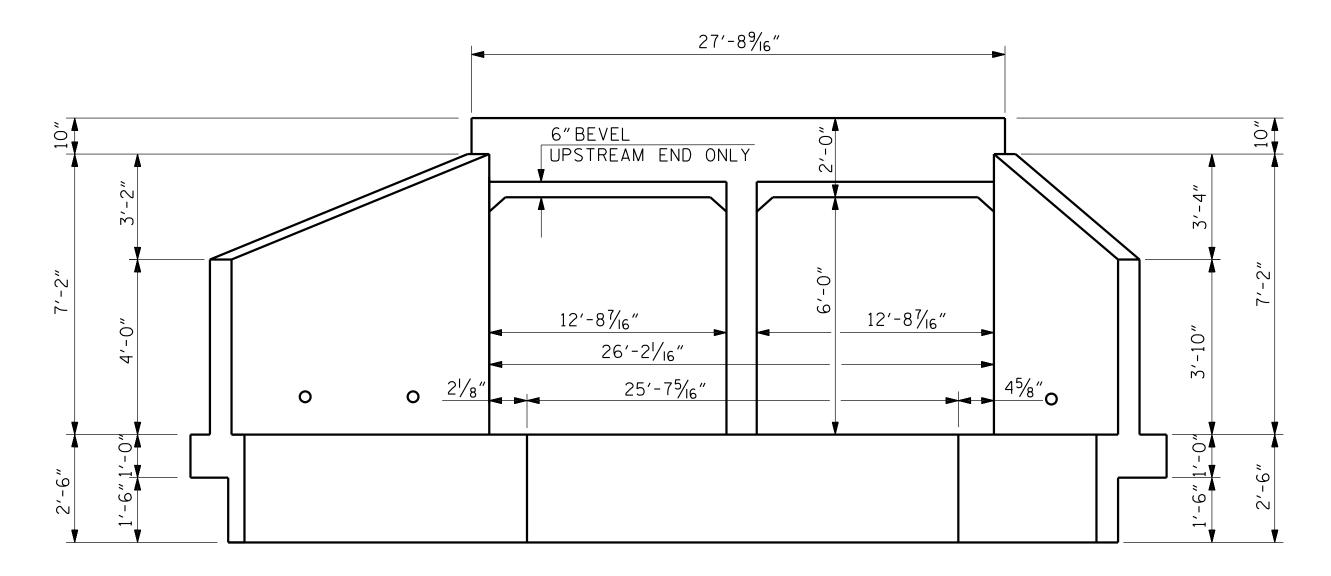
NC License # F-1333 formerly CALYX Engineers & Consultants

R-5819 PROJECT NO._

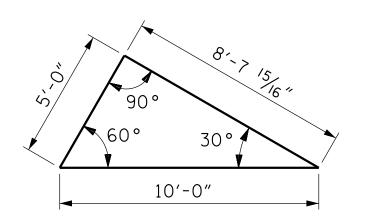
> COLUMBUS COUNTY

65+70.00 -Y7-STATION: _

SHEET 3 OF 7


4/11/2022

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION


BARREL STANDARD

DOUBLE 11 FT. X. 6 FT. CONCRETE BOX CULVERT 117° SKEW

SHEET NO REVISIONS C-3 NO. BY: DATE: DATE: TOTAL SHEETS

END ELEVATION NORMAL TO SKEW

SKEW TRIANGLE

BILL OF MATERIAL FOR BOX CULVERT

WEIGHT

1913

1913

1056

3761

491

29789 LBS

875

BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT	BAR	NO.	SIZE	TYPE	LENGTH
A100	105	#6	STR	23′-8″	3732	A400	105	#6	STR	23'-8"
A101	4	#6	STR	22'-4"	134	A401	4	#6	STR	22'-4"
A102	4	#6	STR	20′-7″	124	A402	4	#6	STR	20′-7″
A103	4	#6	STR	18'-10"	113	A403	4	#6	STR	18′-10″
A104	4	#6	STR	17'-1"	103	A404	4	#6	STR	17'-1"
A105	4	#6	STR	15'-4"	92	A405	4	#6	STR	15′-4″
A106	4	#6	STR	13'-8"	82	A406	4	#6	STR	13′-8″
A107	4	#6	STR	11'-11"	72	A407	4	#6	STR	11'-11"
A108	4	#6	STR	10'-2"	61	A408	4	#6	STR	10'-2"
A109	4	#6	STR	8′-5″	51	A409	4	#6	STR	8′-5″
A110	4	#6	STR	6′-8″	40	A410	4	#6	STR	6′-8″
A111	4	#6	STR	5′-0″	30	A411	4	#6	STR	5′-0″
A112	4	#6	STR	3'-3"	20	A412	4	#6	STR	3'-3"
A113	4	#6	STR	1'-6"	9	A413	4	#6	STR	1'-6"
A200	105	#6	STR	23′-8″	3732	Α1	262	#5	1	7′-0″
A201	4	#6	STR	22'-4"	134	Α2	262	#5	1	7′-0″
A202	4	#6	STR	20′-7″	124					
A203	4	#6	STR	18'-10"	113	B1	132	#5	STR	7′-8″
A204	4	#6	STR	17'-1"	103	B2	262	#4	STR	5′-0″
A205	4	#6	STR	15'-4"	92	В3	176	#4	STR	7′-8″
A206	4	#6	STR	13'-8"	82					
A207	4	#6	STR	11'-11"	72	C1	164	#4	STR	34'-4"
A208	4	#6	STR	10'-2"	61					
A209	4	#6	STR	8′-5″	51	G1	8	#5	STR	27'-3"
A210	4	#6	STR	6′-8″	40					
A211	4	#6	STR	5′-0″	30	S2	12	#6	STR	27'-3"
A212	4	#6	STR	3′-3″	20					
A213	4	#6	STR	1'-6"	9	TOTAL	_ REI	NFORC	ING ST	EEL 29
A300	105	#6	STR	23′-8″	3732				<u> </u>	VDE
A301	4	#6	STR	22'-4"	134			BA	AR T	YPE
A302	4	#6	STR	20′-7″	124					
A303	4	#6	STR	18'-10"	113		VFF	RTICAL	I FG	\
A304	4	#6	STR	17'-1"	103					, , ,
A305	4	#6	STR	15'-4"	92					
A306	4	#6	STR	13'-8"	82				s =	3'-21/
A307	4	#6	STR	11'-11"	72			(6″R.−	(
A308	4	#6	STR	10'-2"	61					
A309	4	#6	STR	8'-5"	51					3/2
A310	4	#6	STR	6'-8"	40			A1	3′-0″_	31
A311	4	#6	STR	5′-0″	30				-	
A312	4	#6	STR	3'-3"	20			A2 _	3′-0″_	
	<u>'</u>	 						→	-	٦

SPLI	CE LEN	NGTH CHART			
BAR	SIZE	SPLICE LENGTH			
C1	#4	2'-5"			

A313 4 #6 STR 1'-6"

R-5819 PROJECT NO.____

> COLUMBUS COUNTY

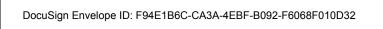
ALL BAR DIMENSIONS ARE OUT TO OUT

STATION: 65+70.00 -Y7-

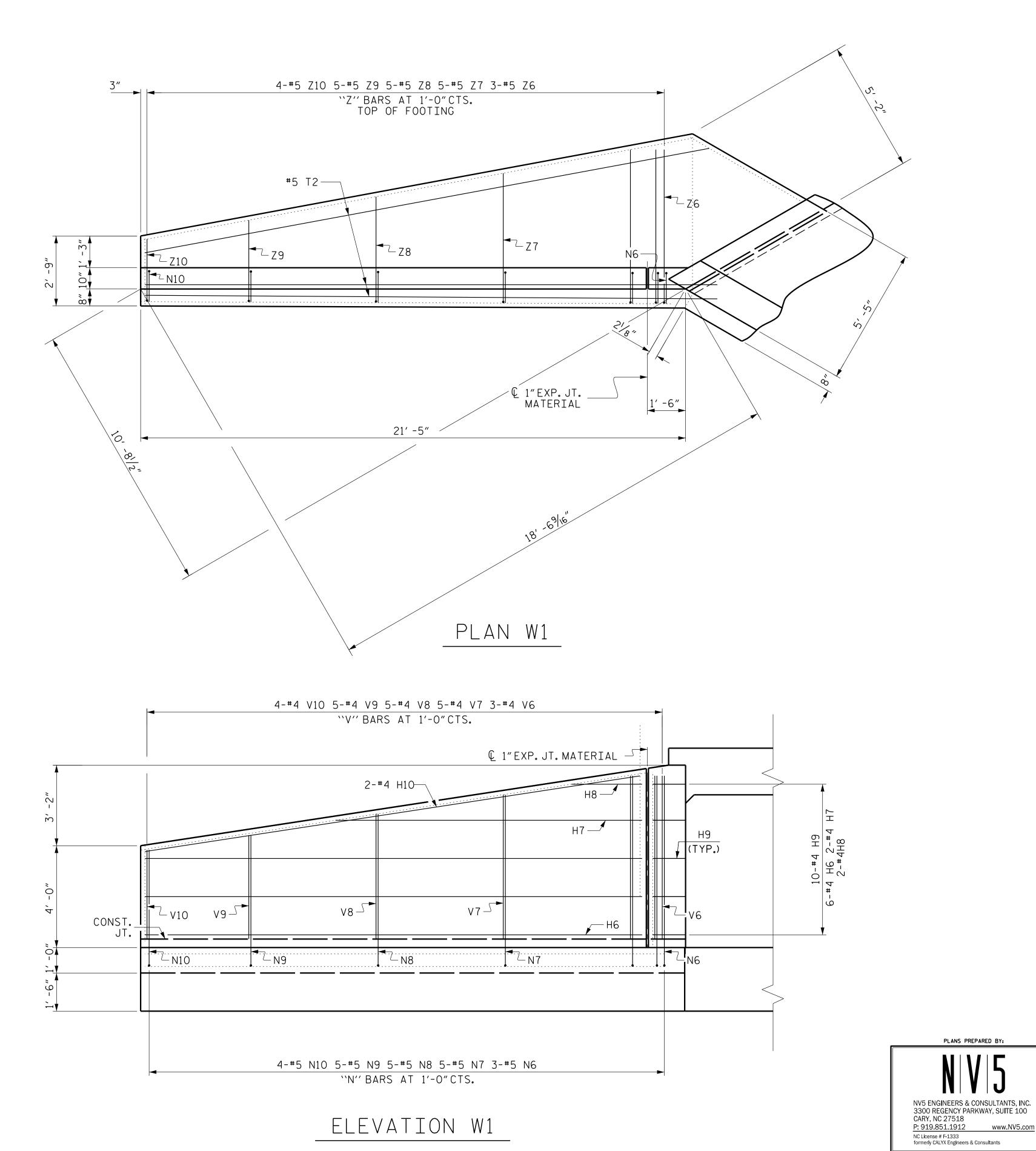
SHEET 4 OF 7

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

END ELEVATION AND BILL OF MATERIAL FOR BOX CULVERT


NV5 ENGINEERS & CONSULTANTS, INC. 3300 REGENCY PARKWAY, SUITE 100 CARY, NC 27518 P: 919.851.1912 NC License # F-1333 formerly CALYX Engineers & Consultants

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED


PLANS PREPARED BY:

	SHEET NO.				
BY:	DATE:	NO.	BY:	DATE:	C-4
		3			TOTAL SHEETS
		4			7

DRAWN BY: J.A. PANDOLI DATE: 2/22
CHECKED BY: L.K. AUSTIN DATE: 2/22
DESIGN ENGINEER OF RECORD: L.K. AUSTIN DATE: 2/22

+

PROJECT NO. R-5819

COLUMBUS COUNTY

STATION: 65+70.00 -Y7-

SHEET 5 OF 7

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION

RALEIGH

WINGS FOR CONCRETE BOX CULVERT

H = 6'-0"

SLOPE = 3:1

TOTAL SHEETS

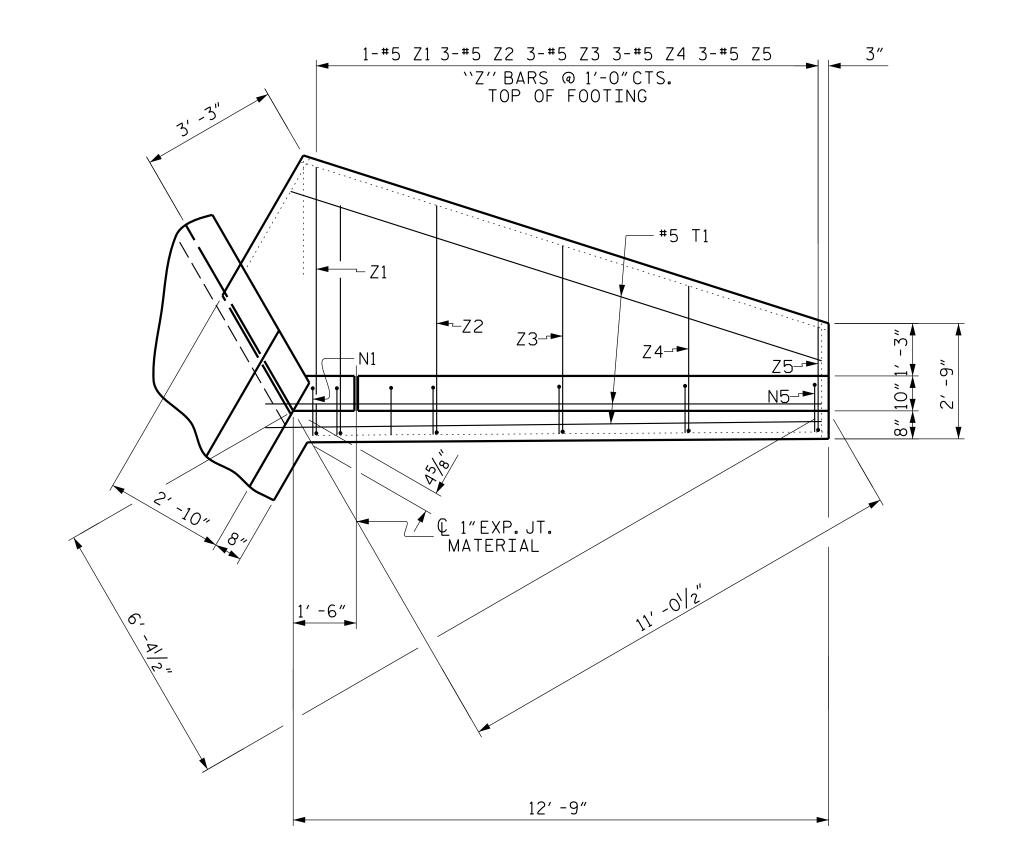
120° SKEW

REVISIONS SHEET NO.
BY: DATE: NO. BY: DATE: C-5

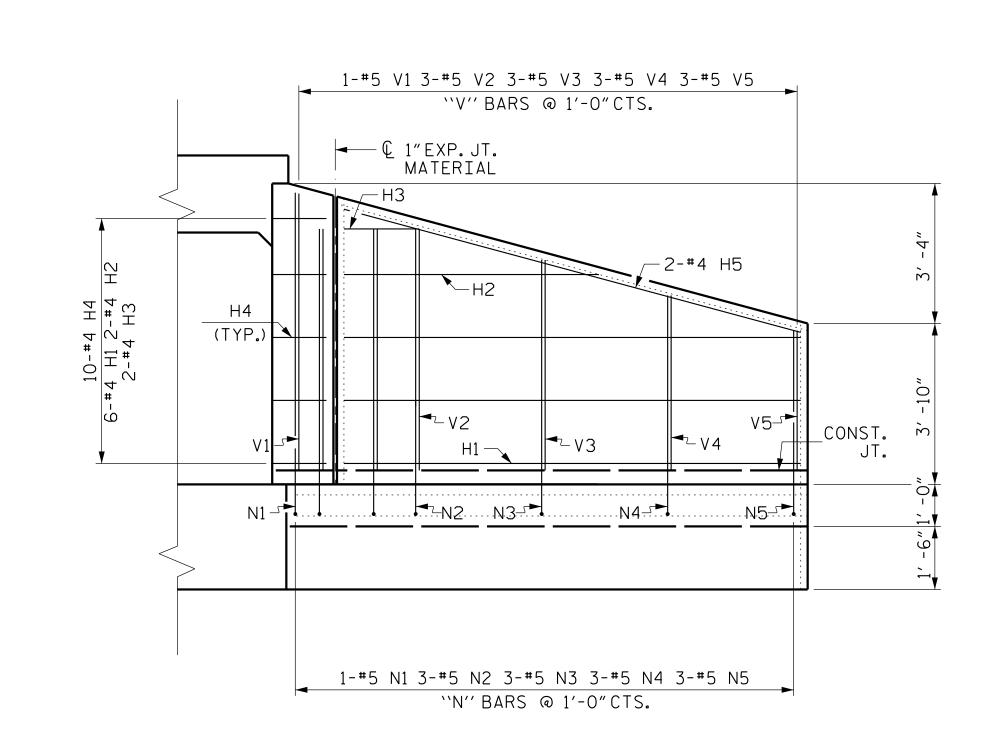
Doubsigned by:

L. Kerine Austin

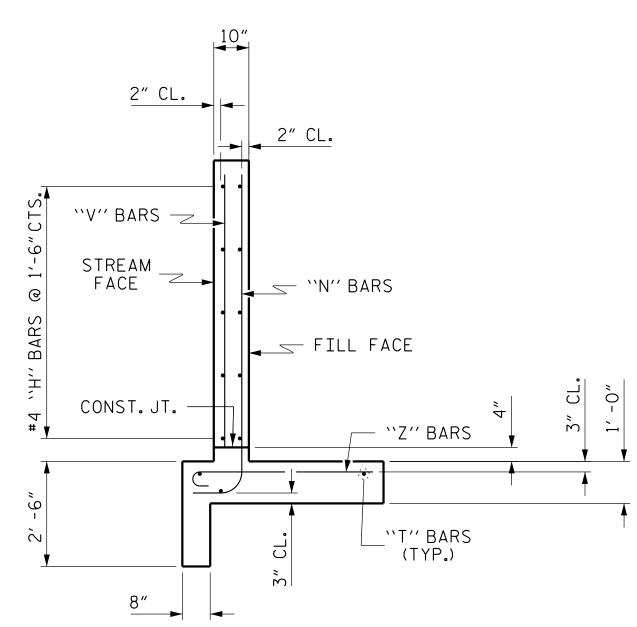
7287B3720EAAA6B...


CINEER

LEVIN AUSTIN


DRAWN BY: J.A.PANDOLI DATE: 2/22
CHECKED BY: L.K.AUSTIN DATE: 2/22
DESIGN ENGINEER OF RECORD: L.K.AUSTIN DATE: 2/22

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED



PLAN W2

ELEVATION W2

SECTION

BAR TYPES BILL OF MATERIAL BAR | NO. | SIZE | TYPE | LENGTH | WEIGHT 12 #4 STR 10'-10" 4 #4 STR 6'-0" 4 | #4 | STR | 1'-10" #4 | 1 | 3'-3" 20 4 | #4 | STR | 11'-3" #4 | STR | 19'-6" 4 | #4 | STR | 12'-0" 4 #4 STR 2'-3" 1'-3" 1'-0" 20 | #4 | 2 | 3'-3" 4 | #4 | STR | 19'-9" 53 2 | #5 | 3 | 8'-8" **#**5 | 3 | 7′-10″ #5 3 7′-0″ #5 3 6'-3" #5 5′-5″ #5 | 3 | 8'-5" 1′-8¾″ 1 10 7′-8″ #5 | 3 | 10 | #5 | 3 | 6'-11" Ν9 10 #5 | 3 | 6'-2" N10 8 #5 3 5'-7" T1 | 6 | #5 | STR | 13'-0" T2 | 6 | #5 | STR | 22'-3" 2 | #4 | STR | 6'-7" #4 STR 5'-9" #4 | STR | 5'-0" #4 | STR | 4'-2" #4 | STR | 3'-4" #4 | STR | 6'-5" 10 | #4 | STR | 5'-8" 10 | #4 | STR | 4'-11" 10 | #4 | STR | 4'-1" 27 6′-3″ V10 | 8 | #4 | STR | 3'-6" 5′-4″ 2 | #5 | 4 | 6'-9" 4'-4" **#**5 4 5′-10″ 3′-5″ #5 | 4 | 4'-10" 2′-5″ #5 4 | 3'-11" #5 | 4 | 2'-11" 5′-11″ #5 6′-5″ 4 5′-0″ 1 10 | #5 | 4 | 5'-6" 4'-1" 10 **#**5 | 4 | 4'-7" 10 #5 4 3'-8" 3'-2" Z10 8 #5 4 2'-11" 24 2'-5" REINFORCING STEEL FOR 4 WINGS 1747 LBS CLASS A CONCRETE 4 WINGS 24.9 CY 2 HEADWALLS 2.6 CY 2 END CURTAIN WALLS 4.4 CY

> R-5819 PROJECT NO.__ COLUMBUS COUNTY

SHEET 6 OF 7

STATION: _

ALL BAR DIMENSIONS ARE OUT TO OUT.

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

65+70.00 -Y7-

WINGS FOR CONCRETE BOX CULVERT

H = 6'-0''

4/11/2022

SLOPE = 3:1

TOTAL 31.9 CY

120° SKEW REVISIONS SHEET NO C-6 NO. BY: DATE: DATE: TOTAL SHEETS

TYPICAL WING

PLANS PREPARED BY: NV5 ENGINEERS & CONSULTANTS, INC. 3300 REGENCY PARKWAY, SUITE 100 CARY, NC 27518 P: 919.851.1912 NC License # F-1333 formerly CALYX Engineers & Consultants

> DOCUMENT NOT CONSIDERED FINAL **UNLESS ALL SIGNATURES COMPLETED**

DRAWN BY:	J. A. PANDOLI	DATE:	2/
CHECKED BY:	L.K.AUSTIN	DATE:	2/
DESIGN ENGINEER O	F RECORD: L.K.AUSTIN	DATE:	2/

+

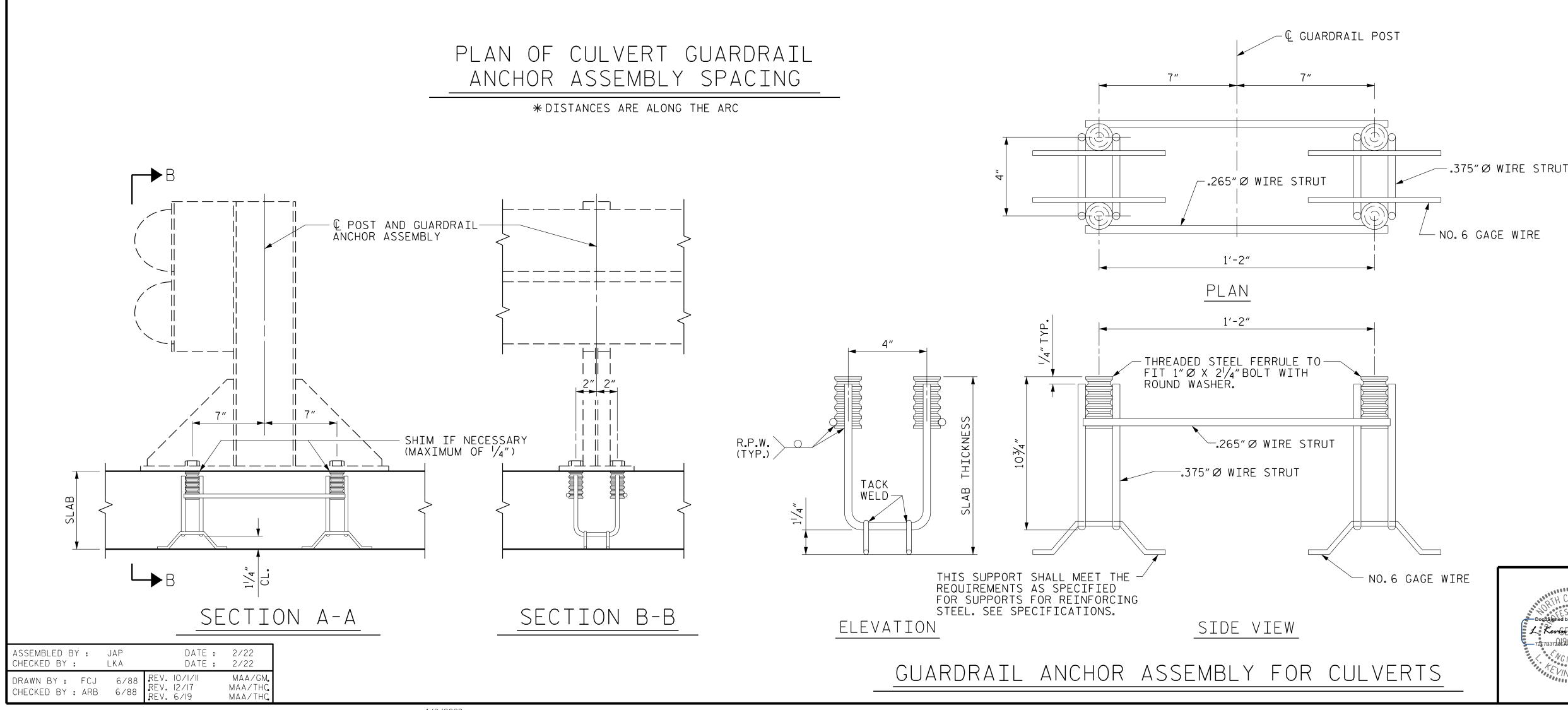
NOTES

THE GUARDRAIL ANCHOR ASSEMBLY FOR CULVERTS SHALL CONSIST OF THE FOLLOWING COMPONENTS:

- A. FERRULES SHALL BE MADE FROM STEEL MEETING THE REQUIREMENTS OF AASHTO M169, GRADE 12L14 AND SHALL HAVE A MINIMUM LENGTH OF THREADS OF 21/2".
- B. 4 1" Ø X 2 4 BOLTS WITH WASHERS, BOLTS SHALL CONFORM TO THE REQUIREMENTS OF ASTM A307. BOLTS AND WASHERS SHALL BE GALVANIZED. (AT THE CONTRACTOR'S OPTION, STAINLESS STEEL BOLTS AND WASHERS MAY BE USED AS AN ALTERNATE FOR THE 1" Ø X 2 4 GALVANIZED BOLTS AND WASHERS. THEY SHALL CONFORM TO OR EXCEED THE MECHANICAL REQUIREMENTS OF ASTM A307. THE USE OF THIS ALTERNATE SHALL BE APPROVED BY THE ENGINEER.)
- C. WIRE STRUTS SHOWN IN THE GUARDRAIL ANCHOR ASSEMBLY FOR CULVERTS DETAIL ARE MINIMUM ALLOWABLE SIZE AND SHALL HAVE A MINIMUM TENSILE STRENGTH OF 100,000 P.S.I. AS AN OPTION, A 7_{16} " Ø WIRE STRUT WITH A MINIMUM TENSILE STRENGTH OF 90,000 PSI IS ACCEPTABLE.

GUARDRAIL ANCHOR ASSEMBLY WITH BOLTS SHALL BE ASSEMBLED IN THE SHOP. BOLT THREADS MAY BE RECUT AS NECESSARY TO INSURE FIT.

THE COST OF THE GUARDRAIL ANCHOR ASSEMBLY FOR CULVERTS COMPLETE IN PLACE, SHALL BE INCLUDED IN THE UNIT CONTRACT PRICE BID FOR CLASS "A" CONCRETE.


FERRULES TO BE PLUGGED DURING POURING OF SLAB AS RECOMMENDED BY THE MANUFACTURER.

AT THE CONTRACTOR'S OPTION, FERRULES WITH OPEN OR CLOSED ENDS MAY BE USED.

PAYMENT FOR GUARDRAIL, POSTS, AND POST BASE PLATES IS INCLUDED IN ROADWAY PAY ITEMS.

SLAB REINFORCING STEEL MAY BE SHIFTED AS NECESSARY TO CLEAR GUARDRAIL ANCHOR ASSEMBLY. CARE SHOULD BE TAKEN TO KEEP THE SHIFTING OF REINFORCING STEEL TO A MINIMUM.

THE CONTRACTOR MAY USE ADHESIVELY ANCHORED ANCHOR BOLTS IN PLACE OF GUARDRAIL ANCHOR ASSEMBLY. LEVEL TWO FIELD TESTING IS REQUIRED, AND THE YIELD LOAD OF THE 1"Ø BOLT IS 21.8 KIPS. FOR ADHESIVELY ANCHORED ANCHOR BOLTS OR DOWELS, SEE STANDARD SPECIFICATIONS.

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

PROJECT NO. R-5819

COLUMBUS

STATION: 65+70.00 -Y7-

SHEET 7 OF 7

4/11/2022

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION

RALEIGH

STANDARD

ANCHORAGE DETAILS FOR GUARDRAIL ANCHOR ASSEMBLY FOR CULVERTS

		SHEET NO.				
0.	BY:	DATE:	NO.	BY:	DATE:	C-7
			3			TOTAL SHEETS
2			4			7

PRESET ANCHOR-

ASSEMBLY (TYP.)

√117°-00'-Ò0" (TAN. TO\

CURVE)

GUARDRAIL

∽STA.65+70.00 -Y7-

V

- € CULVERT

(TYP.)

ANCHOR ASSEMBLY

COUNTY

STANDARD NOTES

DESIGN DATA:

SPECIFICATIONS	A.A.S.H.T.O. (CURRENT)
LIVE LOAD	SEE PLANS
IMPACT ALLOWANCE	SEE A.A.S.H.T.O.
STRESS IN EXTREME FIBER OF STRUCTURAL STEEL - AASHTO M270 GRADE 36	20,000 LBS.PER SQ.IN
- AASHTO M270 GRADE 50W	27,000 LBS. PER SO. IN
- AASHTO M270 GRADE 50	27,000 LBS. PER SQ. IN
REINFORCING STEEL IN TENSION - GRADE 60	24,000 LBS. PER SO. IN.
CONCRETE IN COMPRESSION	1,200 LBS. PER SQ. IN.
CONCRETE IN SHEAR	SEE A.A.S.H.T.O.
STRUCTURAL TIMBER - TREATED OR UNTREATED EXTREME FIBER STRESS	1,800 LBS. PER SQ. IN.
COMPRESSION PERPENDICULAR TO GRAIN OF TIMBER	375 LBS. PER SQ. IN.
EQUIVALENT FLUID PRESSURE OF EARTH	30 LBS.PER CU.FT.

MATERIAL AND WORKMANSHIP:

EXCEPT AS MAY OTHERWISE BE SPECIFIED ON PLANS OR IN THE SPECIAL PROVISIONS, ALL MATERIAL AND WORKMANSHIP SHALL BE IN ACCORDANCE WITH THE 2018 "STANDARD SPECIFICATIONS FOR ROADS AND STRUCTURES" OF THE N. C. DEPARTMENT OF TRANSPORTATION.

(MINIMUM)

21-FEB-2019 11:17 Z:\Structures\Plans\Final\499_001_B5326_sn_910247.dgn

STEEL SHEET PILING FOR PERMANENT OR TEMPORARY APPLICATIONS SHALL BE HOT ROLLED.

CONCRETE:

UNLESS OTHERWISE REQUIRED ON PLANS, CLASS A CONCRETE SHALL BE USED FOR ALL PORTIONS OF ALL STRUCTURES WITH THE EXCEPTION THAT: CLASS AA CONCRETE SHALL BE USED IN BRIDGE SUPERSTRUCTURES, ABUTMENT BACKWALLS, AND APPROACH SLABS; AND CLASS B CONCRETE SHALL BE USED FOR SLOPE PROTECTION AND RIP RAP.

CONCRETE CHAMFERS:

UNLESS OTHERWISE NOTED ON THE PLANS, ALL EXPOSED CORNERS ON STRUCTURES SHALL BE CHAMFERED 3/4" WITH THE FOLLOWING EXCEPTIONS: TOP CORNERS OF CURBS MAY BE ROUNDED TO 11/2" RADIUS WHICH IS BUILT INTO CURB FORMS: CORNERS OF TRANSVERSE FLOOR EXPANSION JOINTS SHALL BE ROUNDED WITH A 1/4" FINISHING TOOL UNLESS OTHERWISE REQUIRED ON PLANS; AND CORNERS OF EXPANSION JOINTS IN THE ROADWAY FACES AND TOPS OF CURBS AND SIDEWALKS SHALL BE ROUNDED TO A 1/4" RADIUS WITH A FINISHING STONE OR TOOL UNLESS OTHERWISE REQUIRED ON PLANS.

DOWELS:

DOWELS WHEN INDICATED ON PLANS AS FOR CULVERT EXTENSIONS, SHALL BE EMBEDDED AT LEAST 12" INTO THE OLD CONCRETE AND GROUTED INTO PLACE WITH 1:2 CEMENT MORTAR.

ALLOWANCE FOR DEAD LOAD DEFLECTION, SETTLEMENT, ETC. IN CASTING SUPERSTRUCTURES:

BRIDGES SHALL BE BUILT ON THE GRADE OR VERTICAL CURVE SHOWN ON PLANS. SLABS, CURBS AND PARAPETS SHALL CONFORM TO THE GRADE OR CURVE.

ALL DIMENSIONS WHICH ARE GIVEN IN SECTION AND ARE AFFECTED BY DEAD LOAD DEFLECTIONS ARE DIMENSIONS AT CENTER LINE OF BEARING UNLESS OTHERWISE NOTED ON PLANS. IN SETTING FORMS FOR STEEL BEAM BRIDGES AND PRESTRESSED CONCRETE GIRDER BRIDGES, ADJUSTMENTS SHALL BE MADE DUE TO THE DEAD LOAD DEFLECTIONS FOR THE ELEVATIONS SHOWN. WHERE BLOCKS ARE SHOWN OVER BEAMS FOR BUILDING UP TO THE SLAB, THE VERTICAL DIMENSIONS OF THE BLOCKS SHALL BE ADJUSTED BETWEEN BEARINGS TO COMPENSATE FOR DEAD LOAD DEFLECTIONS, VERTICAL CURVE ORDINATE, AND ACTUAL BEAM CAMBER. WHERE BOTTOM OF SLAB IS IN LINE WITH BOTTOM OF TOP FLANGES, DEPTH OF SLAB BETWEEN BEARINGS SHALL BE ADJUSTED TO COMPENSATE FOR DEAD LOAD DEFLECTION, VERTICAL CURVE ORDINATE, AND ACTUAL BEAM CAMBER.

IN SETTING FALSEWORK AND FORMS FOR REINFORCED CONCRETE SPANS. AN ALLOWANCE SHALL BE MADE FOR DEAD LOAD DEFLECTIONS, SETTLEMENT OF FALSEWORK, AND PERMANENT CAMBER WHICH SHALL BE PROVIDED FOR IN ADDITION TO THE ELEVATIONS SHOWN. AFTER REMOVAL OF THE FALSEWORK, THE FINISHED STRUCTURES SHALL CONFORM TO THE PROFILE AND ELEVATIONS SHOWN ON THE PLANS AND CONSTRUCTION ELEVATIONS FURNISHED BY THE ENGINEER.

DETAILED DRAWINGS FOR FALSEWORK OR FORMS FOR BRIDGE SUPERSTRUCTURE AND ANY STRUCTURE OR PARTS OF A STRUCTURE AS NOTED ON THE PLANS SHALL BE SUBMITTED TO THE ENGINEER FOR APPROVAL BEFORE CONSTRUCTION OF THE FALSEWORK OR FORMS IS STARTED.

REINFORCING STEEL:

ALL REINFORCING STEEL SHALL BE DEFORMED. DIMENSIONS RELATIVE TO PLACEMENT OF REINFORCING ARE TO CENTERS OF BARS UNLESS OTHERWISE INDICATED IN THE PLANS. DIMENSIONS ON BAR DETAILS ARE TO CENTERS OF BARS OR ARE OUT TO OUT AS INDICATED ON PLANS.

WIRE BAR SUPPORTS SHALL BE PROVIDED FOR REINFORCING STEEL WHERE INDICATED ON THE PLANS. WHEN BAR SUPPORT PIECES ARE PLACED IN CONTINUOUS LINES, THEY SHALL BE SO PLACED THAT THE ENDS OF THE SUPPORTING WIRES SHALL BE LAPPED TO LOCK LEGS ON ADJOINING PIECES.

STRUCTURAL STEEL:

AT THE CONTRACTOR'S OPTION, HE MAY SUBSTITUTE $\frac{7}{8}$ " Ø SHEAR STUDS FOR THE $\frac{3}{4}$ "Ø STUDS SPECIFIED ON THE PLANS. THIS SUBSTITUTION SHALL BE MADE AT THE RATE OF 3 - $\frac{7}{8}$ "Ø STUDS FOR 4 - $\frac{3}{4}$ "Ø STUDS, AND STUD SPACING CHANGES. SHALL BE MADE AS NECESSARY TO PROVIDE THE SAME EQUIVALENT NUMBER OF $\frac{7}{8}$ " Ø STUDS ALONG THE BEAM, AS SHOWN FOR $\frac{3}{4}$ " Ø STUDS BASED ON THE RATIO OF 3 - $\frac{7}{8}$ " Ø STUDS FOR 4 - 3/4" Ø STUDS. STUDS OF THE LENGTH SPECIFIED ON THE PLANS MUST BE PROVIDED. THE MAXIMUM SPACING SHALL BE 2'-0".

EXCEPT AT THE INTERIOR SUPPORTS OF CONTINUOUS BEAMS WHERE THE COVER PLATE IS IN CONTACT WITH BEARING PLATE, THE CONTRACTOR MAY, AT HIS OPTION, SUBSTITUTE FOR THE COVER PLATES DESIGNATED ON THE PLANS COVER PLATES OF THE EQUIVALENT AREA PROVIDED THESE PLATES ARE AT LEAST 5/16" IN THICKNESS AND DO NOT EXCEED A WIDTH EQUAL TO THE FLANGE WIDTH LESS 2"OR A THICKNESS EQUAL TO 2 TIMES THE FLANGE THICKNESS. THE SIZE OF FILLET WELDS SHALL CONFORM TO THE REQUIREMENTS OF THE CURRENT ANSI/AASHTO/AWS "BRIDGE WELDING CODE". ELECTROSLAG WELDING WILL NOT BE PERMITTED.

WITH THE SOLE EXCEPTION OF EDGES AT SURFACES WHICH BEAR ON OTHER SURFACES.ALL SHARP EDGES AND ENDS OF SHAPES AND PLATES SHALL BE SLIGHTLY ROUNDED BY SUITABLE MEANS TO A RADIUS OF APPROXIMATELY 1/16 INCH OR EQUIVALENT FLAT SURFACE AT A SUITABLE ANGLE PRIOR TO PAINTING, GALVANIZING, OR METALLIZING.

HANDRAILS AND POSTS:

METAL STANDARDS AND FACES OF THE CONCRETE END POSTS FOR THE METAL RAIL SHALL BE SET NORMAL TO THE GRADE OF THE CURB, UNLESS OTHERWISE SHOWN ON PLANS. THE METAL RAIL AND TOPS OF CONCRETE POSTS USED WITH THE ALUMINUM RAIL SHALL BE BUILT PARALLEL TO THE GRADE OF THE CURB.

METAL HANDRAILS SHALL BE IN ACCORDANCE WITH THE PLANS. RAILS SHALL BE AS MANUFACTURED FOR BRIDGE RAILING. CASTINGS SHALL BE OF A UNIFORM APPEARANCE. FINS AND OTHER DEFORMATIONS RESULTING FROM CASTING OR OTHERWISE SHALL BE REMOVED IN A MANNER SO THAT A UNIFORM COLORING OF THE COMPLETED CASTING SHALL BE OBTAINED. CASTINGS WITH DISCOLORATIONS OR OF NON-UNIFORM COLORING WILL NOT BE ACCEPTED. CERTIFIED MILL REPORTS ARE REQUIRED FOR METAL RAILS AND POSTS.

SPECIAL NOTES:

GENERALLY, IN CASE OF DISCREPANCY, THIS STANDARD SHEET OF NOTES SHALL GOVERN OVER THE SPECIFICATIONS, BUT THE REMAINDER OF THE PLANS SHALL GOVERN OVER NOTES HEREON, AND SPECIAL PROVISIONS SHALL GOVERN OVER ALL. SEE SPECIFICATIONS ARTICLE 105-4.

ENGLISH

JANUARY, 1990

STD. NO. SN