Revised Preliminary Site Assessment Report

Parcel 85
US 17 North of NC 171 to Multi-lanes South of Williamston 9985 U.S. Highway 17 North
Beaufort County, North Carolina
WBS Number 35494.1.1
TIP Number R-2511
NCDOT Parcel No. 85
Beaufort County PIN 5771-02-1103

Prepared for

North Carolina Department of Transportation Geotechnical Engineering Unit GeoEnvironmental Section Raleigh, North Carolina

Prepared by

Duncklee & Dunham, P.C. Cary, North Carolina

June 14, 2019

ENVIRONMENTAL GEOLOGISTS & ENGINEERS

511 KEISLER DRIVE – SUITE 102 CARY, NORTH CAROLINA 27518 OFFICE: (919) 858–9898 WWW.DUNCKLEEDUNHAM.COM

VIA EMAIL TO: dgli@ncdot.gov

June 14, 2019

Mr. Dennis Li, L.G., PhD North Carolina Department of Transportation Geotechnical Engineering Unit GeoEnvironmental Section 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Reference: Revised Preliminary Site Assessment Report

Parcel 85

US 17 North of NC 171 to Multi-lanes South of Williamston

9985 U.S. Highway 17 North Beaufort County, North Carolina

TIP Number R-2511 WBS Number 35494.1.1 NCDOT Parcel No. 85

Beaufort County PIN 5771-02-1103

Dear Mr. Li:

Duncklee & Dunham, P.C. (Duncklee & Dunham) is pleased to submit this *Revised Preliminary Site Assessment Report* for the referenced site. The objective of our services was to assist the North Carolina Department of Transportation (NCDOT) — Geotechnical Engineering Unit with identifying potential environmental concerns within the rights-of-way and/or easements of the above-referenced site. This work is consistent with the NCDOT's Request for Technical and Cost Proposal dated March 5, 2019 and our *Revised Technical and Cost Proposal for Preliminary Site Assessment* dated May 14, 2019. Based on the findings from this work, Duncklee & Dunham recommends submitting this report to the Washington Regional Office of the North Carolina Department of Environmental Quality.

Revised Preliminary Site Assessment Report
R-2511 Parcel 85
US 17 North of NC 171 to Multi-lanes South of Williamston
Beaufort County, North Carolina
June 14, 2019
Page ii of ii

Please contact Rick Kolb at <u>rkolb@dunckleedunham.com</u> or (919) 858-9898, ext. 111 if you have any questions or require additional information.

Sincerely,

Duncklee & Dunham, P.C.

Alec N. Dziwanowski, G.I.T.

Staff Geologist II

Richard A. Kolb, L.G.

Senior Geologist

North Carolina License No. 1153

SEAL 1153
CFOLOGIS ARD ALAN KIND

Senior Peer Review

Andrew M. Rodak, P.E.

Senior Engineer/Director of Engineering

North Carolina No. 24576

Attachment: Revised Preliminary Site Assessment Report

 $p:\ \ prodot-geoenv\ 201939-beaufort\ and\ martin\ counties\ phase\ ii\ \ proports\ \ \#3-parcel\ 85\ \ text\ \ psa,\ parcel\ 85,\ r-2511-19268.docx$

Table of Contents

1	Intr	roduction	1
2	Hist	tory	1
3	Met	thods	1
	3.1	Geophysics	2
	3.2	Soil Borings	2
	3.3	Groundwater	3
4	Res	sults	3
	4.1	Geophysics	3
	4.2	Soil Borings	3
	4.3	Groundwater	3
5	Con	nclusions	4
	5.1	Geophysics	4
	5.2	Soil Sampling	4
	5.3	Groundwater Sampling	4
6	Rec	commendations	4
		Tables	
		Tables	
	1	Coordinates of Soil Borings	
	2 3	Summary of Soil Screening and Soil Test Results Summary of Groundwater Test Results	
	3	Summary of Groundwater Test Results	
		Eigen	
		Figures	
	1	Site Topographic Map	
	2	Site Map	
	3 4	Site Map with Results	
	4	Legend for Plan Sheet Figures	
		A non our disease	
		Appendices	
	A	Photographic Log	
	В	Boring Logs	
	C	Geophysical Survey Report	
	D	Laboratory Reports	

Revised Preliminary Site Assessment Report

Parcel 85
US 17 North of NC 171 to Multi-lanes South of Williamston
9985 U.S. Highway 17 North
Beaufort County, North Carolina
TIP Number R-2511
WBS Number 35494.1.1
NCDOT Parcel No. 85
Beaufort County PIN 5771-02-1103
June 14, 2019

1 Introduction

Duncklee & Dunham, P.C. (Duncklee & Dunham) conducted a Preliminary Site Assessment (PSA) on the referenced site located on the western side of U.S. Highway 17 (US 17) north of Washington in Beaufort County, North Carolina (Figures 1 and 2). The North Carolina Department of Transportation (NCDOT) plans to widen the two-lane portion of US 17 between Washington and Williamston, North Carolina. Our work is consistent with the NCDOT's *Request for Technical and Cost Proposal* dated March 5, 2019 and our *Revised Technical and Cost Proposal* dated May 14, 2019. The objective of this work was to assist the NCDOT – Geotechnical Engineering Unit with identifying potential environmental concerns within the rights-of-way and/or easements of the above-referenced site. Our services included a geophysical survey to identify subsurface metallic features such as underground storage tank (UST) systems, and the advancement of six soil borings to test for the presence of contaminants in the areas where the new roadway will be constructed, along rights-of-way for NCDOT, and at new utility easements.

2 History

The NCDOT prepared a Hazardous Materials Report dated November 14, 2011 that identified the site as a former gasoline station, which is now vacant. After review of the incident list of the UST Section of the North Carolina Department of Environment and Natural Resources (NCDENR, now the North Carolina Department of Environmental Quality – NCDEQ), the NCDOT determined that there were no known incidents associated with the site.

3 Methods

Duncklee & Dunham called NC811 on March 26, 2019 and requested utilities to be marked in the areas of investigation. NC811 notified the Beaufort County Water Department, USIC Locating Services, CenturyLink, MCNC, Piedmont Natural Gas, Suddenlink Communications, and the City of Washington. The clearance was valid through April 16, 2019.

Duncklee & Dunham reviewed regulatory records on NCDEQ's Laserfiche website and did not find records for this parcel. However, ECS Southeast, LLP (ECS), under contract with NCDOT, prepared a PSA report on June 18, 2018 for 10052 US 17, a parcel that adjoins Parcel 85 to the east. ECS determined that a leak from the UST system at the site had likely occurred, based on a groundwater sample collected from a monitoring well installed near the former dispensing island on the western side of the property that exhibited volatile organic compounds (VOCs) at concentrations that exceeded the North Carolina groundwater quality standards promulgated in Title 15A, Subchapter 2L, Section .0202 of the North Carolina Administrative Code (15A NCAC 2L .0202; the "2L standards").

Revised Preliminary Site Assessment Report
R-2511 Parcel 85
US 17 North of NC 171 to Multi-lanes South of Williamston
Beaufort County, North Carolina
June 14, 2019
Page 2 of 4

During site reconnaissance, Duncklee & Dunham interviewed Rusty Roberson, a relative of the owner of the subject site. Mr. Roberson stated that two USTs used to store high-test and regular gasoline were formerly located near the southeastern corner of the building. He was not aware of when the tanks were installed or closed out. Mr. Roberson also stated that the store was formerly located closer the intersection of West Bear Grass Road and US 17 prior to the 1950s. Duncklee & Dunham did not observe unusual features or features indicative of a UST at this intersection or on the northern portion of the parcel.

3.1 Geophysics

ESP Associates (ESP), under contract to Duncklee & Dunham, conducted a geophysical survey at the site on April 1, 5, and 6, 2019. ESP used a Geonics EM61 MK2® metal detector equipment with a DGPS instrument to locate buried metal objects, and then used a Sensors and Software Noggin® GPR instrument with a 250 MHz antenna to image selected anomalies.

3.2 Soil Borings

Troxler Geologic Services, Inc. (Troxler), under contract to Duncklee & Dunham, used a Geoprobe® equipped with direct-push technology to advance six soil borings, nos. B-10 through B-15 on April 8, 2019. The locations of these borings are shown on Figure 2. Troxler advanced B-10 through B-12 near the former pump islands on the eastern side of the building (Photograph No. 1 in Appendix A), and B-13 through B-15 at the former location of the UST pit near the southeastern corner of the building (Photograph No. 2). Troxler advanced B-10 to a depth of 8 feet below land surface (bls) and the remaining borings to a depth of 4 feet bls. We encountered the water table at a depth of 3.25 feet bls. Duncklee & Dunham used a Trimble Geo 7x® handheld data collector to determine the location of each boring. Approximate Northings, Eastings, and elevations above sea level for these borings are in Table 1.

Troxler collected soil samples in new acetate sleeves, each 4 feet long. A majority of the soil samples were comprised of dark gray to black, sandy, silty clay. Boring logs are provided in Appendix B. Duncklee & Dunham collected representative samples of native material at selected intervals in each soil boring and stored the samples in twin Ziploc® bags. After allowing one of the bags to sit untouched in the sun and the other in the shade for approximately 15 minutes, we used a photoionization detector (PID) to screen the headspace in each bag left in the sun for volatile organic compounds (VOCs). We recorded the soil-screening results in the field log. Table 2 summarizes the screening results. The soil samples collected above the water table were not stained and did not exhibit petroleum odors except for the sample collected from B-10 at 2.5 feet bls, which exhibited a petroleum odor and a PID reading of 2.9 parts per million (ppm). The PID readings of the other soil samples ranged from 0.2 to 5.2 ppm, indicative of background concentrations. The PID readings of the samples collected from 4 to 8 feet bls did not exceed 5.2 ppm, except the readings taken from B-14 and B-15 at 4 feet bls, which were 72.6 ppm and 563 ppm, respectively. These samples exhibited a petroleum odor.

Duncklee & Dunham collected a soil sample from B-15 at 2.5 feet bls to be tested in the laboratory because of all the samples above the water table, this sample exhibited the highest concentration of VOCs on the PID. We placed the soil sample in the other twin bag in a laboratory-supplied container, placed the container in a cooler with ice, and shipped the cooler under chain of custody to RED Lab, LLC (RED Lab) in Wilmington, North Carolina. The laboratory received the cooler and tested the samples for total petroleum hydrocarbons (TPH) – diesel range organics (DRO) and TPH – gasoline range organics (GRO) using Ultraviolet Fluorescence methodology.

Revised Preliminary Site Assessment Report
R-2511 Parcel 85
US 17 North of NC 171 to Multi-lanes South of Williamston
Beaufort County, North Carolina
June 14, 2019
Page 3 of 4

3.3 Groundwater

The sample from boring B-15 collected below the water table exhibited the highest anomalous response on the PID. Therefore, Troxler constructed temporary monitoring well TW-2 in boring B-15 to a depth of 4 feet bls using Screen Point 16 groundwater sampling rods. Troxler screened the well from 0 to 4 feet bls. Duncklee & Dunham purged groundwater from the well using a peristaltic pump with a new length of low-density polyethylene tubing and silicon tubing for the pump head. Once the purge water appeared clear, Duncklee & Dunham sampled TW-2 with a peristaltic pump. We placed the groundwater sample in laboratory-supplied containers, placed the containers in a cooler with ice, and brought the cooler back to our office under chain of custody. A courier for Pace National Laboratory (Pace) shipped the cooler by overnight express mail to their laboratory in Mt. Juliet, Tennessee. The laboratory tested the groundwater samples for VOCs according to EPA Method 6200B, semivolatile organic compounds (SVOCs) according to EPA Method 625, and volatile petroleum hydrocarbons (VPH) according to the method of the Massachusetts Department of Environmental Protection (MADEP). In accordance with NCDEQ guidance, Duncklee & Dunham discharged the purge water on the ground around TW-2 once the groundwater sample was collected.

4 Results

4.1 Geophysics

ESP's *Geophysical Survey* report dated May 9, 2019 is provided in Appendix C. ESP identified six magnetic anomalies that they attributed to cultural features on the ground surface or buried, metallic debris and/or utilities. The ground penetrating radar (GPR) survey confirmed the electromagnetic (EM) anomalies were associated with unknown buried metallic features and not USTs.

4.2 Soil Borings

Table 2 and Figure 3 summarize the laboratory results for the soil sample collected from soil boring B-15. The laboratory report is in Appendix E. RED Lab did not detect TPH-GRO in the sample and detected TPH-DRO at a concentration of 1.8 milligrams per kilogram (mg/kg). This concentration does not exceed the action level of 100 mg/kg established by NCDEQ. RED Lab identified the hydrocarbon fingerprint of the TPH-DRO in B-6 as "very degraded petroleum hydrocarbons (PHC)," which is indicative of a petroleum product that had a substantial amount of time to degrade.

4.3 Groundwater

Table 3 and Figure 3 summarize the laboratory results for the sample collected from TW-2. Pace detected 18 petroleum constituents in this groundwater sample; the concentrations of 13 analytes exceeded the respective 2L Standards but did not the respective Gross Contamination Levels. The laboratory report is in Appendix D.

Revised Preliminary Site Assessment Report
R-2511 Parcel 85
US 17 North of NC 171 to Multi-lanes South of Williamston
Beaufort County, North Carolina
June 14, 2019
Page 4 of 4

5 Conclusions

5.1 Geophysics

ESP identified six magnetic anomalies on Parcel 85 and attributed each to cultural features on the ground surface or buried, metallic debris and/or utilities. ESP did not identify anomalies indicative of abandoned USTs or buried metal drums. The GPR survey confirmed the remaining EM anomalies to be associated with suspected, buried, metallic debris, and/or utilities, and not USTs.

5.2 Soil Sampling

The soil sample from B-15 did not exhibit TPH-DRO at a concentration that exceeded NCDEQ's action level. Duncklee & Dunham did not detect petroleum odors or observe stains in the other soil samples collected above the water table. These results suggest the fuel dispensers formerly used at the site were not a contaminant source. We do not have evidence that soil on the site exhibits petroleum constituents at concentrations that exceed the action levels established by NCDEQ.

5.3 Groundwater Sampling

Most of the analytes detected in the groundwater sample were VOCs and VPH fractions, which suggests that a majority of the contaminants were derived from a low boiling point fuel such as gasoline. The estimated extent of contamination is shown on Figure 3. The shape of the plume reflects what we estimate is the direction of groundwater flow. These test results show the USTs formerly at the site were the probable source of the contamination.

The PSA conducted by ECS at 10052 US 17 reported similar analytes at similar concentrations to those detected in the groundwater sample collected from the subject site. Thus, the plumes at these two sites may be comingled. Additional assessment is required to determine if these two plumes have comingled, and to determine the extent of groundwater contamination.

6 Recommendations

Duncklee & Dunham recommends submitting this report to the Washington Regional Office of the NCDEQ.

Tables

Table 1 Coordinates of Soil Borings Parcel 85

Beaufort County, North Carolina TIP No. R-2511; WBS No. 35494.1.1

Boring	Northing	Easting	Elevation
Identification	(feet)	(feet)	(feet asl)
B-10	711903.004	2570149.754	61.467
B-11	711890.585	2570144.408	61.340
B-12	711893.902	2570154.213	61.909
B-13	711887.620	2570124.680	60.231
B-14	711890.506	2570115.267	61.287
B-15	711884.039	2570118.400	61.782

Notes:

Coordinate system NAD83 NC State Plane - Survey Feet

GPS data collected using a Trimble Geo 7x handheld data collector

GPS data are approximate

Table 2 Summary of Soil Screening and Soil Test Results Parcel 85

Beaufort County, North Carolina TIP Number R-2511; WBS No. 35494.1.1

Soil Screening Results						
Boring Identification	Depth (feet bls)	PID Reading (ppm)				
	1.5	0.3				
B-10	2.5	2.9				
	6	0.6				
B-11	1	1.1				
D -11	2	0.5				
B-12	1.5	0.2				
D 12	2.5	0.5				
	1	0.6				
B-13	2.5	0.2				
	4	5.2				
	1.5	0.2				
B-14	2.5	2.6				
	4	72.6				
	1	1.1				
B-15	2.5*	5.2				
	4	563				
	Soil Test Results					
Sample Identification	TPH-GRO (mg/kg)	TPH-DRO (mg/kg)				
B-15	< 0.63	1.8				

Notes:

Soil sample and PID data collected on April 8, 2019

* - Sample selected from this interval for laboratory testing

TPH-GRO - Total Petroleum Hydrocarbons-Gasoline Range Organics

TPH-DRO - Total Petroleum Hydrocarbons-Diesel Range Organics

NCDEQ Action Level for TPH-GRO - 50 mg/kg

NCDEQ Action Level for TPH-DRO - 100 mg/kg

mg/kg - Milligrams per kilogram

bls - Feet below land surface

ppm - Parts per million

PID - Photoionization detector

Result in bold exceeds the report limit

Results shaded in blue were collected from below the water table

<# - Analyte not detected at a concentration that exceeds the reporting limit</p> shown

Table 3 Summary of Groundwater Test Results Parcel 85

Beaufort County, North Carolina TIP No. R-2511; WBS No. 35494.1.1

	Sample Identification $\;\; ightarrow$		TW-2	2	
Analyte	2L Standard	GCL	Value	Q	
Volatile O	rganic Compoun	ds by EPA Meth	od 6200B		
Benzene	1	5,000	1,770		
n-Butylbenzene	70	6,900	36.2		
sec-Butylbenzene	70	8,500	21.9	J	
Ethylbenzene	600	84,500	2,060		
Isopropylbenzene	70	25,000	106		
p-Isopropyltoluene	NE	NE	9.76	J	
Naphthalene	6	6,000	446		
n-Propylbenzene	70	30,000	319		
Toluene	600	260,000	14,000		
1,2,4-Trimethylbenzene	400	28,500	2,260		
1,3,5-Trimethylbenzene	400	25,000	551		
Xylenes-total	500	85,500	9,490		
Semivolatile	organic Compo	unds by EPA Me	ethod 625.1		
Naphthalene	6	6,000	124		
Diethyl phthalate	NE	NE	14.6		
Phenol	30	30,000	2.63	J	
Volatile Petroleum Hydrocarbons by MADEP Method					
C5-C8 Aliphatics	400	NE	42,200		
C9-C12 Aliphatics	700	NE	25,200		
C9-C10 Aromatics	200	NE	10,100		

Notes:

Units are μ g/L

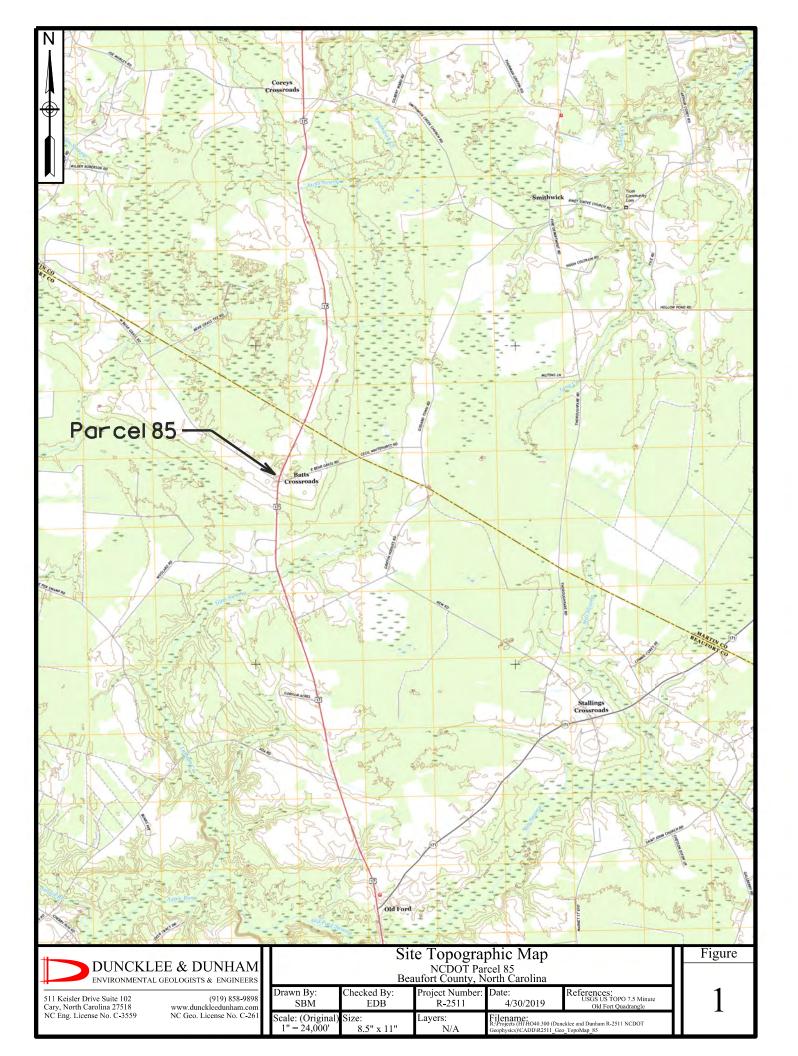
Sample collected on April 8, 2019

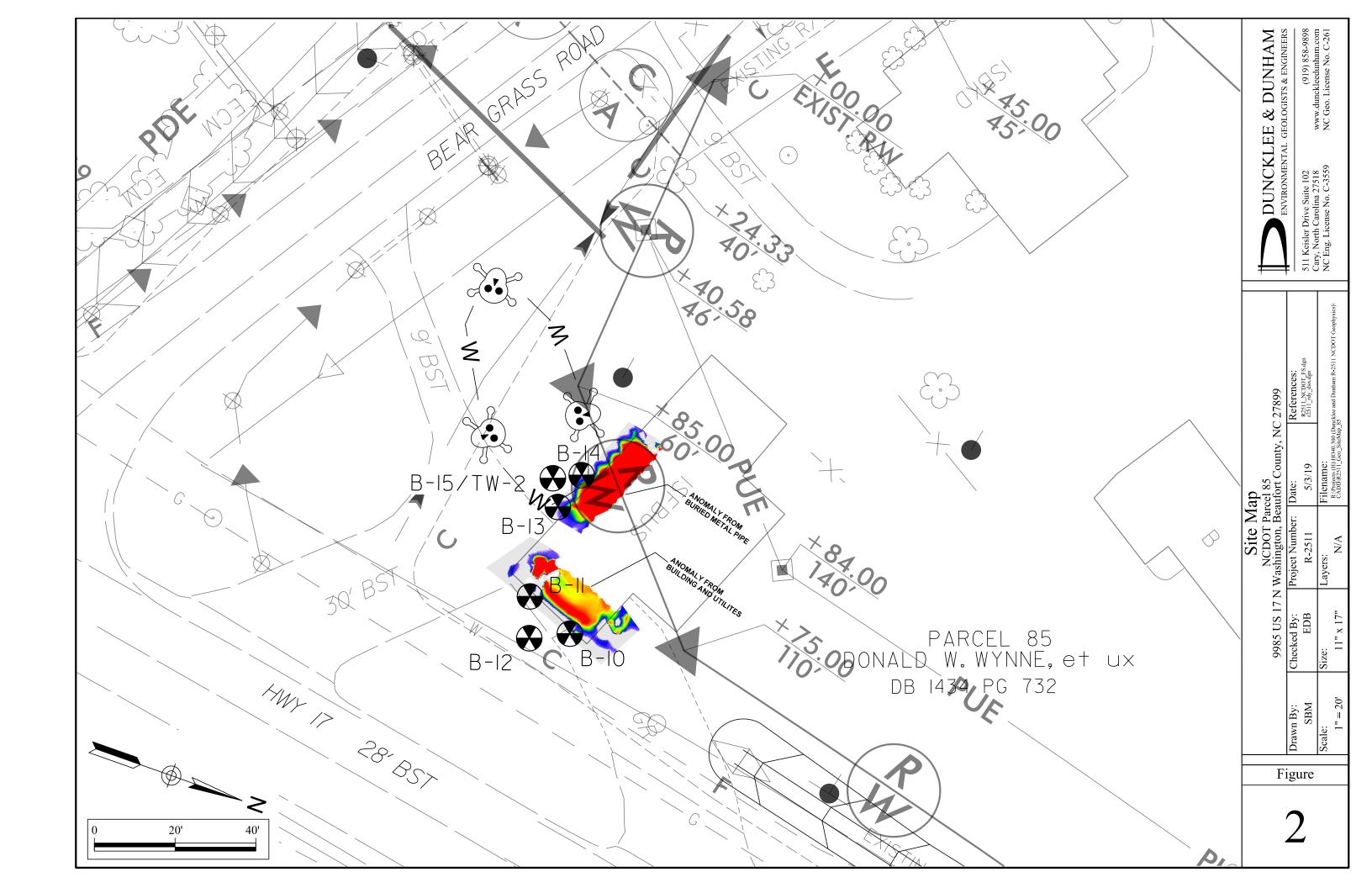
2L Standard - North Carolina Groundwater Quality Standard (15A NCAC 2L .0202)

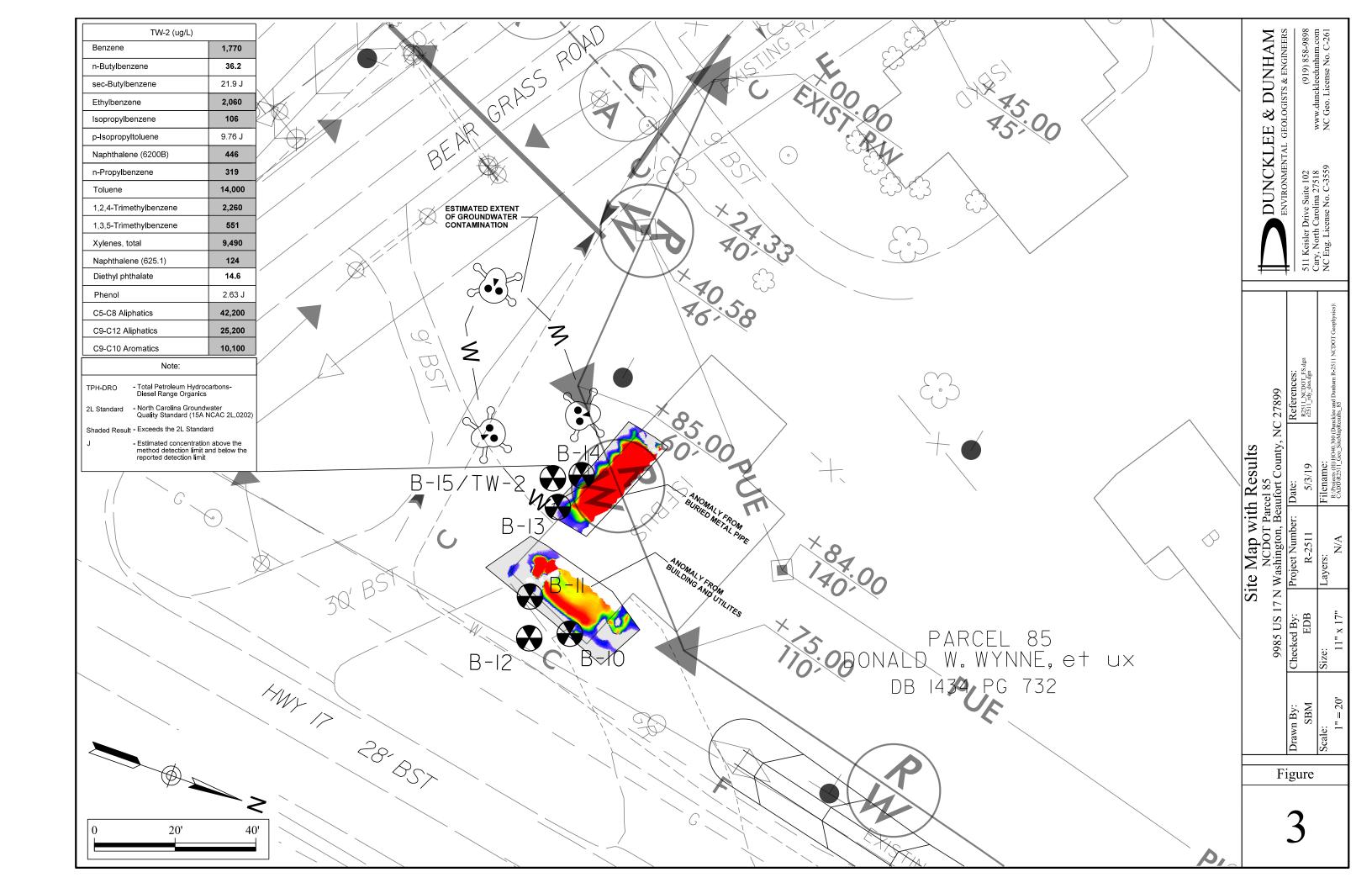
GCL - North Carolina Gross Contamination Levels for groundwater

Result in bold exceeds the reported detection limit

Result with shaded cell exceeds the 2L Standard


MADEP - Massachusetts Department of Environmental Protection


NE - Not Established


Q - Qualifier

 ${\it J}$ - Estimated concentration above the method detection limit and below the reported detection limit

Figures

STATE OF NORTH CAROLINA, DIVISION OF HIGHWAYS PLAN SHEET SYMBOLS *S.U.E. = Subsurface Utility Engineering CONVENTIONAL Note: Not to Scale

BOUNDARIES AND PROPERT	Y :	PAUL BOADS. Note: Not to S	Scale *S.	.U.E. = Subsurface Utility Engineering		WATER:	
Sidle Lille		KAILKOADS:				Water Manhole —	W
County Line		Standard Gauge ————	CSX TRANSPORTATION	Hedge — Woods Line — — — — — — — — — — — — — — — — — — —		Water Meter —	0
Township Line —		RR Signal Milepost ————————————————————————————————————	WILEPOST 35			Water Valve —————	⊗
City Line		Switch —	SWITCH	Orchard —		Water Hydrant —	
Reservation Line		RR Abandoned ————		Vineyard —	Vineyard	U/G Water Line LOS B (S.U.E*)	
Property Line		RR Dismantled —————		EXISTING STRUCTURES:		U/G Water Line LOS C (S.U.E*)	
Existing Iron Pin				MAJOR:		U/G Water Line LOS D (S.U.E*)	
Computed Property Corner		RIGHT OF WAY & PROJECT C	ONTROL:	Bridge, Tunnel or Box Culvert ————	CONC	Above Ground Water Line	A/G Water
Property Monument	<u>.</u>	Secondary Horiz and Vert Control Point ——	•	Bridge Wing Wall, Head Wall and End Wall -) CONC WW (Above Ground Water Line —————	
Parcel/Sequence Number —		Primary Horiz Control Point ————	Ò	MINOR:		TV:	
Existing Fence Line		Primary Horiz and Vert Control Point	•	Head and End Wall	CONC HW	TV Pedestal —————	
=		Exist Permanent Easment Pin and Cap	Ĭ	Pipe Culvert ————		TV Tower —	
Proposed Woven Wire Fence		New Permanent Easement Pin and Cap —	ž.	Footbridge>		U/G TV Cable Hand Hole —————	
Proposed Chain Link Fence		Vertical Benchmark —	×	Drainage Box: Catch Basin, DI or JB ———	СВ	U/G TV Cable LOS B (S.U.E.*)	tv
Proposed Barbed Wire Fence		Existing Right of Way Marker	\triangle	· ·	_	U/G TV Cable LOS C (S.U.E.*)	
Existing Wetland Boundary		,	Δ			U/G TV Cable LOS D (S.U.E.*)	тү
Proposed Wetland Boundary		Existing Right of Way Line		Storm Sewer Manhole ———	G	U/G Fiber Optic Cable LOS B (S.U.E.*)	TV FO
Existing Endangered Animal Boundary —	EAB	New Right of Way Line		Storm Sewer —	s	U/G Fiber Optic Cable LOS C (S.U.E.*)——	
Existing Endangered Plant Boundary	EPB	New Right of Way Line with Pin and Cap—	─	UTILITIES:		U/G Fiber Optic Cable LOS D (S.U.E.*)	
Existing Historic Property Boundary	——————————————————————————————————————	New Right of Way Line with	•	POWER:			
Known Contamination Area: Soil		Concrete or Granite R/W Marker		Existing Power Pole ————————————————————————————————————	•	GAS:	_
Potential Contamination Area: Soil ———		New Control of Access Line with	A	Proposed Power Pole —	Α.	Gas Valve ————————————————————————————————————	
Known Contamination Area: Water		Concrete C/A Marker	9 4	Existing Joint Use Pole	<u> </u>	Gas Meter ———————————————————————————————————	•
Potential Contamination Area: Water —		Existing Control of Access	10	Proposed Joint Use Pole —	Ă	U/G Gas Line LOS B (S.U.E.*)	
Contaminated Site: Known or Potential —		New Control of Access	4	Power Manhole	•	U/G Gas Line LOS C (S.U.E.*)	
		Existing Easement Line ——————	_		e N	U/G Gas Line LOS D (S.U.E.*)	
BUILDINGS AND OTHER CUI		New Temporary Construction Easement -	Е	Power Line Tower	<u> </u>	Above Ground Gas Line ————	A/G Gas
Gas Pump Vent or U/G Tank Cap		New Temporary Drainage Easement ——	TDE	Power Transformer	Ø	SANITARY SEWER:	
Sign —		New Permanent Drainage Easement ——	PDE	U/G Power Cable Hand Hole			
Well —		New Permanent Drainage / Utility Easement	DUE	H-Frame Pole	•••	Sanitary Sewer Manhole	
Small Mine		New Permanent Utility Easement	PUE	U/G Power Line LOS B (S.U.E.*)		Sanitary Sewer Cleanout	
Foundation —		New Temporary Utility Easement	TUF	U/G Power Line LOS C (S.U.E.*)		U/G Sanitary Sewer Line ——————	
Area Outline		New Aerial Utility Easement ————		U/G Power Line LOS D (S.U.E.*)	Р	Above Ground Sanitary Sewer ————	
Cemetery		, , , , , , , , , , , , , , , , , , ,	AGE	TELEPHONE:		SS Forced Main Line LOS B (S.U.E.*) ———	FSS
Building —		ROADS AND RELATED FEATUR	PES.	TELETTIONE.		SS Forced Main Line LOS C (S.U.E.*)———	
School -		Existing Edge of Pavement		Existing Telephone Pole ————	-•-	SS Forced Main Line LOS D (S.U.E.*)——	FSS
Church —	— 	Existing Curb ———		Proposed Telephone Pole ————	-O -		
Dam —				Telephone Manhole	•	MISCELLANEOUS:	
HYDROLOGY:		Proposed Slope Stakes Cut		Telephone Pedestal ——————	Ⅱ	Utility Pole ————————————————————————————————————	
Stream or Body of Water —		Proposed Slope Stakes Fill ——————————————————————————————————		Telephone Cell Tower —————	,基,	Utility Pole with Base —————	
Hydro, Pool or Reservoir ————————————————————————————————————		Proposed Curb Ramp —————	CR	U/G Telephone Cable Hand Hole ———	HH	Utility Located Object ——————	0
Jurisdictional Stream		Existing Metal Guardrail ————————————————————————————————————		U/G Telephone Cable LOS B (S.U.E.*)		Utility Traffic Signal Box ——————	S
Buffer Zone 1	•••	Proposed Guardrail —————		U/G Telephone Cable LOS C (S.U.E.*)		Utility Unknown U/G Line LOS B (S.U.E.*)	
Buffer Zone 2 ———————————————————————————————————		Existing Cable Guiderail —————		U/G Telephone Cable LOS D (S.U.E.*)		U/G Tank; Water, Gas, Oil —————	
Flow Arrow		Proposed Cable Guiderail		U/G Telephone Conduit LOS B (S.U.E.*)		Underground Storage Tank, Approx. Loc. ——	UST
Disappearing Stream —		Equality Symbol ——————	•	U/G Telephone Conduit LOS C (S.U.E.*)		A/G Tank; Water, Gas, Oil	
Spring ————————————————————————————————————		Pavement Removal —————		. , ,		Geoenvironmental Boring ————	₩
Wetland —		VEGETATION:		U/G Telephone Conduit LOS D (S.U.E.*)		U/G Test Hole LOS A (S.U.E.*)	⊙
		Single Tree	- (:	U/G Fiber Optics Cable LOS B (S.U.E.*)		Abandoned According to Utility Records —	_
Proposed Lateral, Tail, Head Ditch ———	< FLOW	Single Shrub	- 0	U/G Fiber Optics Cable LOS C (S.U.E.*)——		End of Information ————	AATUR
False Sump ——————	$ \Leftrightarrow$			U/G Fiber Optics Cable LOS D (S.U.E.*)	T FO	Life of information ————————————————————————————————————	E.O.I.

(919) 858-9898 www.dunckleedunham.com NC Geo. License No. C-261 DUNCKLEE & DUNHAM ENVIRONMENTAL GEOLOGISTS & ENGINEERS

References:
NCDOT PLAN SHEET SYMBC
Microstation Cell, 12/2/2016 Legend for Plan Sheet Figures

NCDOT Parcel 85
Beaufort County, North Carolina
ed By: Project Number: Date: Refer 5/3/2019
Filename:
R:Projects & H) HO40, 300 (Dune CADD/R2511_Goo_Legend_88 Checked By: EDB Drawn By: SBM Scale: N/A

N/A

Figure

Appendix A

PHOTOGRAPHIC LOG

Client Name:

NCDOT-GeoEnvironmental

Site Location:

R-2511 Parcel 85; Beaufort County, North Carolina

Project No.

201939

Photo No. Date: 1 4/8/19

Direction of Photo:

Southwest

Description:

Soil borings B-10 through B-12 were advanced near the foundations of the former fuel dispensers. West Bear Grass Road is in the background.

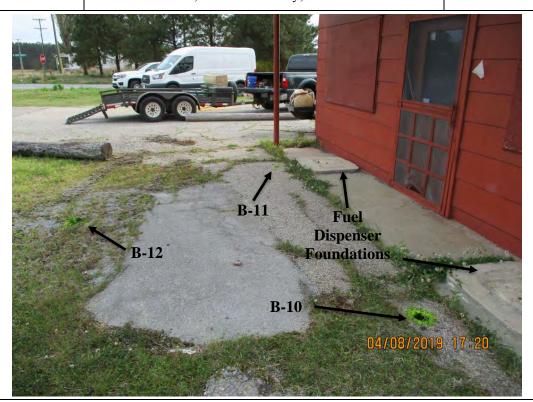
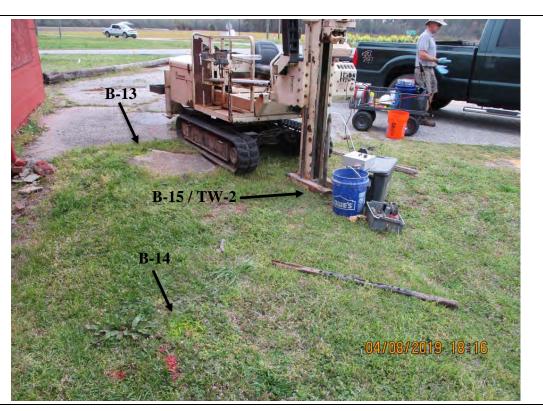


Photo No.


Date: 4/8/19

Direction of Photo:

Southeast

Description:

Soil borings B-13 through B-15 were advanced near the former location of the UST pit. U.S Highway 17 is in the background, and Ben Troxler of Troxler Geologic is pictured.

Appendix B

Petricum odor?

I. D. Number	B-10	Purpose	Soil Boring
Project Name	Beaufort & Martin Co Site 8	Contractor	Troxier goologic
Project No.	201939	Registration No.	2511
Geologist	Alec Dziwanowski	Driller	Ben Troxler
Start Date	4/8/19 Complete Date 4/8/19	Equipment	Geoprobe

Drilling Method direct - push

Comments WT at 3.25' bls insted

Petroleum oder abserved at 3.25' - 8' bls

			FID / PID	
	nstruction mation	Depth From - To (ft.)	Lithology	(ppm) @ Depth (ft.)
Borehole Diameter	WT@ 3.25	0-3.5	dark gray, Sandy, Silly CLAY 5 bug1:	0.301.5
Riser Type		35-4	DIVILLE Sandy, SITTY CLAY	NAK
Diameter		4-7	dark gray, Sitty CLAY with sand	0.6661
Screen Type		7-8	light gray Sandy CLAY	NA
Diameter			J 5 11	,
Riser Interval				
Screen Interval				
Slot Size				
Grout Type				
Interval				
Bentonite Type				
Interval				
Filter Pack				
Interval				
Total Depth				
R.P. Elevation				
Datum				
Water Leve	el Information			
Date	W.L. Below R.P.			
				0
		1		

I. D. Number	B-11	Purpose	soil bonng
Project Name	Beaufort & Martin Co Site 8	Contractor	Troxler Creebugic
Project No.	2019.39	Registration No.	2511
Geologist	Hec Dawanowski	Driller	Ben Troxier
Start Date	4/8/19 Complete Date 4/8/19	Equipment	Geoprobe

Drilling Method direct - fush

Comments WT at 3.25

No pervicum adors/stains

			FID / PID	
	onstruction rmation	Depth From - To (ft.)	Lithology	(ppm) @ Depth (ft.)
Borehole Diameter	r	0-4	dork gray, sandy, sitty CLAY > bags	1.101
Riser Type		-	bad?	0.502
Diameter			J	
Screen Type				
Diameter				
Riser Interval				
Screen Interval				
Slot Size				
Grout Type				
Interval				
Bentonite Type				
Interval				
Filter Pack				
Interval				
Total Depth				
R.P. Elevation				
Datum				
Water Lev	el Information			
Date	W.L. Below R.P.			

Petroleum Oder?

no

I. D. Number	B-12	Purpose	Soil bonny
Project Name	Beaufort & Martin Co Site 8	Contractor	Troxler Greologic
Project No.	201939	Registration No.	2511
Geologist	Alec Dziwanowski	Driller	Ben Troxlor
Start Date	4/8/19 Complete Date 4/8/19	Equipment	Geophibe

Drilling Method direct-push
Comments WT at 3,25

No petroleum dors / stains

			FID / PID
		Lithology	(ppm) @ Depth (ft.)
	0,-9	dark gray, Swidy, sifty CLAY > bag1	0.2 @ 1.5
		L'brig 2	0.5 @ 2.5
Information			
W.L. Below R.P.			
	Information W.L. Below R.P.	nation From - To (ft.)	Information From - To (ft.) On - A dark gray, Sundy, Sifty Char Shage Lithology Do - A dark gray, Sundy, Sifty Char Shage Lithology Litho

Petroleum Odor? no

NO

Petroleum odor?

bag 2:

I. D. Number	B-13	Purpose	Soil bonna
Project Name	Beaufort & Martin Co Site 8	Contractor	Trokler Geologic
Project No.	201939	Registration No.	2511
Geologist	Alex Dziwanowski	Driller	Ben Troxler
Start Date	4/8/19 Complete Date 4/8/19	Equipment	Creoprobe

Drilling Method direct-push

Comments WT at 3.25° W/ perched WT near land Surface

Petrolleum oder/Staining not observed

				FID / PID
	nstruction rmation	Depth From - To (ft.)	Lithology	(ppm) @ Depth (ft.)
Borehole Diameter		0-3.5	dark gravi sandy silty any bagi:	0.601
Riser Type		3.5-4	dark gray, sandy silty clay bagi: black, sandy, silty CLAY	5.2 0 41
Diameter				K
Screen Type				
Diameter				
Riser Interval				
Screen Interval				
Slot Size				
Grout Type				
Interval				
Bentonite Type				
Interval				
Filter Pack				
Interval				
Total Depth				
R.P. Elevation				
Datum				
Water Leve	el Information			
Date W.L. Below R.P.				

Petroicum odor?

I. D. Number	B-14	Purpose	Soil bonna
Project Name	Beaufort & Martin Co Site 8	Contractor	7 Ben Troxler
Project No.	201939	Registration No.	2511
Geologist	Alec Dziwanowski	Driller	Moxter Geologic
Start Date	4/8/19 Complete Date 4/8/19	Equipment	Geoprobe

Drilling Method direct-push

Comments WT at 3.25' bls

Pholoum odor noted from 3.5-4' bls

		, ,		FID / PID
Well Construc		Depth		(ppm)
Information	n	From - To (ft.)		@ Depth (ft.)
Borehole Diameter		0 - 3.5	dark gray, Sandy, Sitty CLAY & bugs.	72.60 41
Riser Type		3.5-4	black, Sundy, Silty CLAY	72.68 41
Diameter				-
Screen Type				
Diameter				
Riser Interval				
Screen Interval				
Slot Size				
Grout Type				
Interval				
Bentonite Type				
Interval				
Filter Pack				
Interval				
Total Depth				
R.P. Elevation				
Datum				
Water Level Information				,
Date W	V.L. Below R.P.			

B-15/TW-2 Soil bonng/GW sampling I. D. Number Purpose Beaufort & Martin Co. - Site 8 Troxier Grédogic **Project Name** Contractor 201939 2511 Project No. Registration No. Alec Dzi wanowski Ben Troxler Driller Geologist 4/8/19 Start Date **Complete Date** Geophibe Equipment

Drilling Method direct push, well type-gw scampling rods (screen point 16)

Comments WT @ 3.25" bis

Dehroleum odor noted from 3.5-4" bis

Collected soil from 2.5" at 1800

Collected gw sample at -4" at 1800

	Je sal	1		FID / PID	
Well Co	nstruction	Depth		(ppm)	
Information		From - To (ft.)	Lithology	@ Depth (ft.)	
Borehole Diameter		0-3.5	dark gray, Sandy, sitty CLAY > bag1:	1.101	
Riser Type	Stampling rod		Dlang?	5.2 @ 2.5	
Diameter	1.25*	3.5-4	black, Sandy, Silty CLAY	563C 41	
Screen Type	Sampling nod				
Diameter	1.25 k				
Riser Interval	NA		* Water had oder during sampling		
Screen Interval	0-41 Ws				
Slot Size	0.000				
Grout Type	1				
Interval					
Bentonite Type	NA				
Interval	1				
Filter Pack					
Interval	V				
Total Depth	4 bis				
R.P. Elevation	o'bs				
Datum	Land Sivface				
Water Leve	el Information				
Date	W.L. Below R.P.				
4/8/19	2.25				

Petroisum:
ador?
no

YUS

Appendix C

May 9, 2019

Richard A. Kolb, L.G. Duncklee & Dunham, P.C. 511 Keisler Drive, Suite 102 Cary, North Carolina 27518

Reference: REPORT ON GEOPHYSICAL SERVICES

FOR PARCEL 85, NORMA E. ROBERSON

8889 US 17 North, Washington, North Carolina

ESP Project No. HO40.300

TIP Number: R-2511 WBS Number: 35494.1.1

County: Beaufort and Martin

Description: US 17 North of NC 171 to Multi-lanes South of Williamston in Beaufort

and Martin Counties

Dear Mr. Kolb:

ESP Associates, Inc. (ESP) is pleased to present this report to Duncklee & Dunham, P.C. (Duncklee & Dunham) on the geophysical services we provided for the referenced project. This work was performed under our subcontractor agreement dated January 28, 2019, as authorized by the Work Authorization dated March 26, 2019, and in accordance with our cost proposal to you dated March 13, 2019. The purpose of the work was to help identify possible underground storage tanks (USTs).

1.0 GEOPHYSICAL DATA COLLECTION

On April 3 and 5, 2019, ESP performed geophysical studies at Parcel 85, located on the west side of US 17, north of Washington, North Carolina. The work consisted of metal detection using a Geonics EM61 MK2 instrument, obtaining the approximate locations of relevant site features using a DGPS instrument and collecting ground-penetrating radar (GPR) data over selected EM61 anomalies.

The limits of the study area were based on NCDOT field staking and on the NCDOT MicroStation file provided by Duncklee & Dunham, and extended from the edge of the current roadway to the proposed right-of-way (ROW)/easement. Representative photographs of the geophysical study area are provided on Figure 1.

The EM61 data were collected over the accessible areas of the study area using a line spacing of approximately 3 feet. We used a Hemisphere XF101 differential GPS instrument (DGPS) connected to an Archer field computer to provide approximate locations of the EM61 data in real time. The DGPS instrument was also used to obtain the approximate location of site features that could affect the EM61 readings.

We compared the location of the EM61 responses to the location of site features and noted several anomalies that did not correspond to known features. We collected GPR data in four areas using a Sensors and Software Noggin GPR system with a 250 MHz antenna.

2.0 DATA ANALYSIS AND PRESENTATION

The EM61 data were gridded and contoured in Surfer to produce plan view contour maps of the early time gate response (Figure 2) and the differential response (Figure 3). The differential response is calculated by subtracting the response of the bottom coil from the response of the top coil of the EM61. Typically, the differential response diminishes the response from smaller, near-surface metallic objects, thus emphasizing the response from deeper and larger metallic objects, such as USTs. The DGPS locations of observed site features were superimposed on the EM61 contour maps so that anomalies caused by site features such as metal objects on the ground surface could be recognized. Figures 2 and 3 show the EM61 data and the site features that we observed and mapped in the field with DGPS; these figures do not necessarily show all existing site features.

The GPR data were collected over four areas and were reviewed in the field. The metallic anomaly along the southern building wall was attributed to the metal siding and a buried metal pipe located parallel to the building. The GPR data did not indicate the presence of abandoned USTs on site.

The EM61 early time gate response and differential response were exported from Surfer as georeferenced images and attached to the NCDOT plan sheet in MicroStation (Figures 4 and 5). The legend for the NCDOT line types and symbols is shown on Figure 6.

4.0 SUMMARY AND CONCLUSIONS

Our review of the geophysical data collected for this project does not indicate the presence of USTs within the proposed ROW/easement of Parcel 85.

5.0 LIMITATIONS

These services have been provided to Duncklee & Dunham in accordance with generally accepted guidelines for performing geophysical surveys. It is recognized that the results of geophysical surveys are non-unique and subject to interpretation. Further, the locations of data and features included in this report are approximate and were collected using a DGPS instrument. ESP makes no guarantee as to the accuracy of these locations.

Thank you for the opportunity to be of service on this project. Please contact us if you have any questions or need further information.

Sincerely,

ESP Associates, Inc.

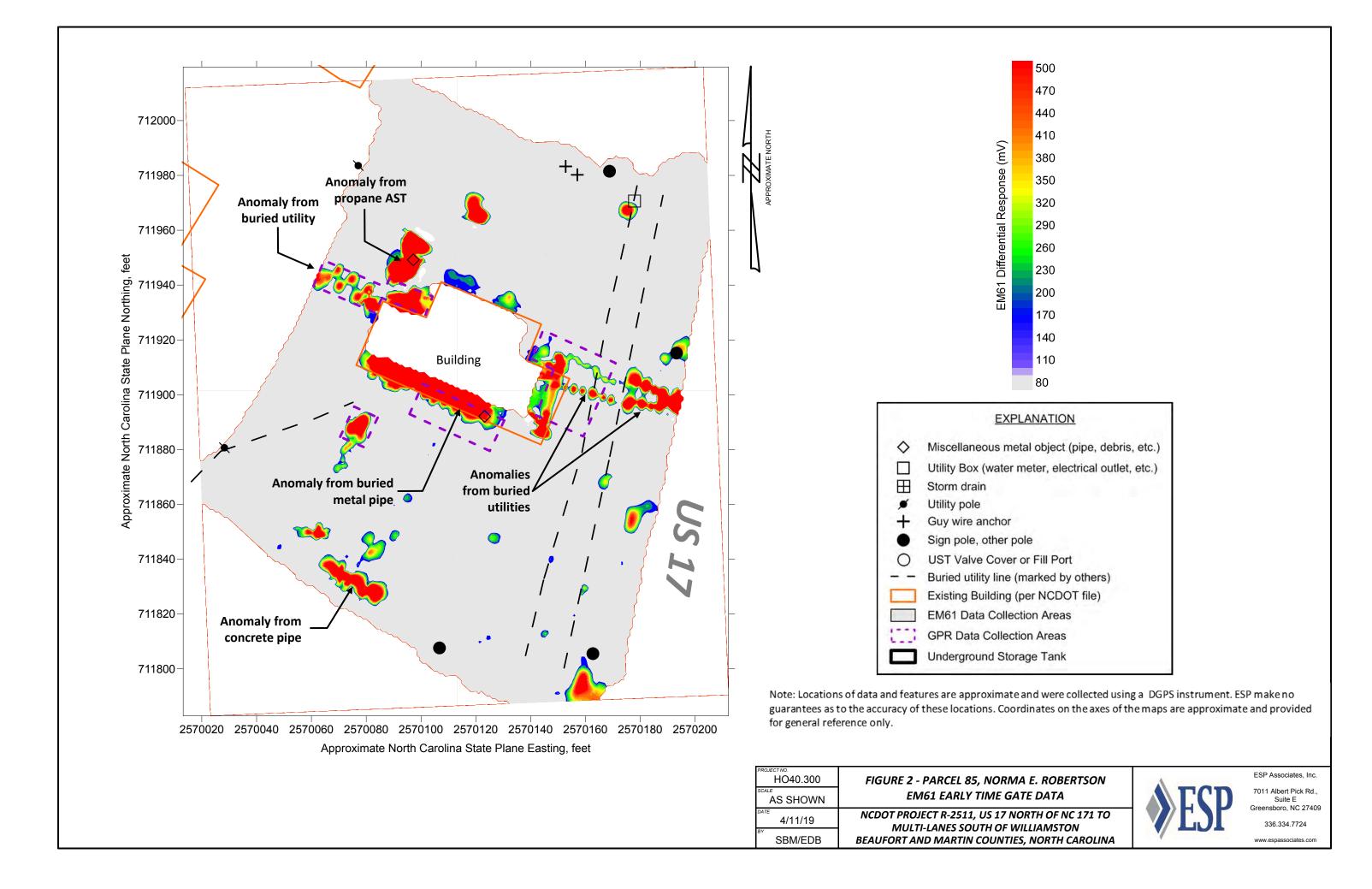
Shoul !

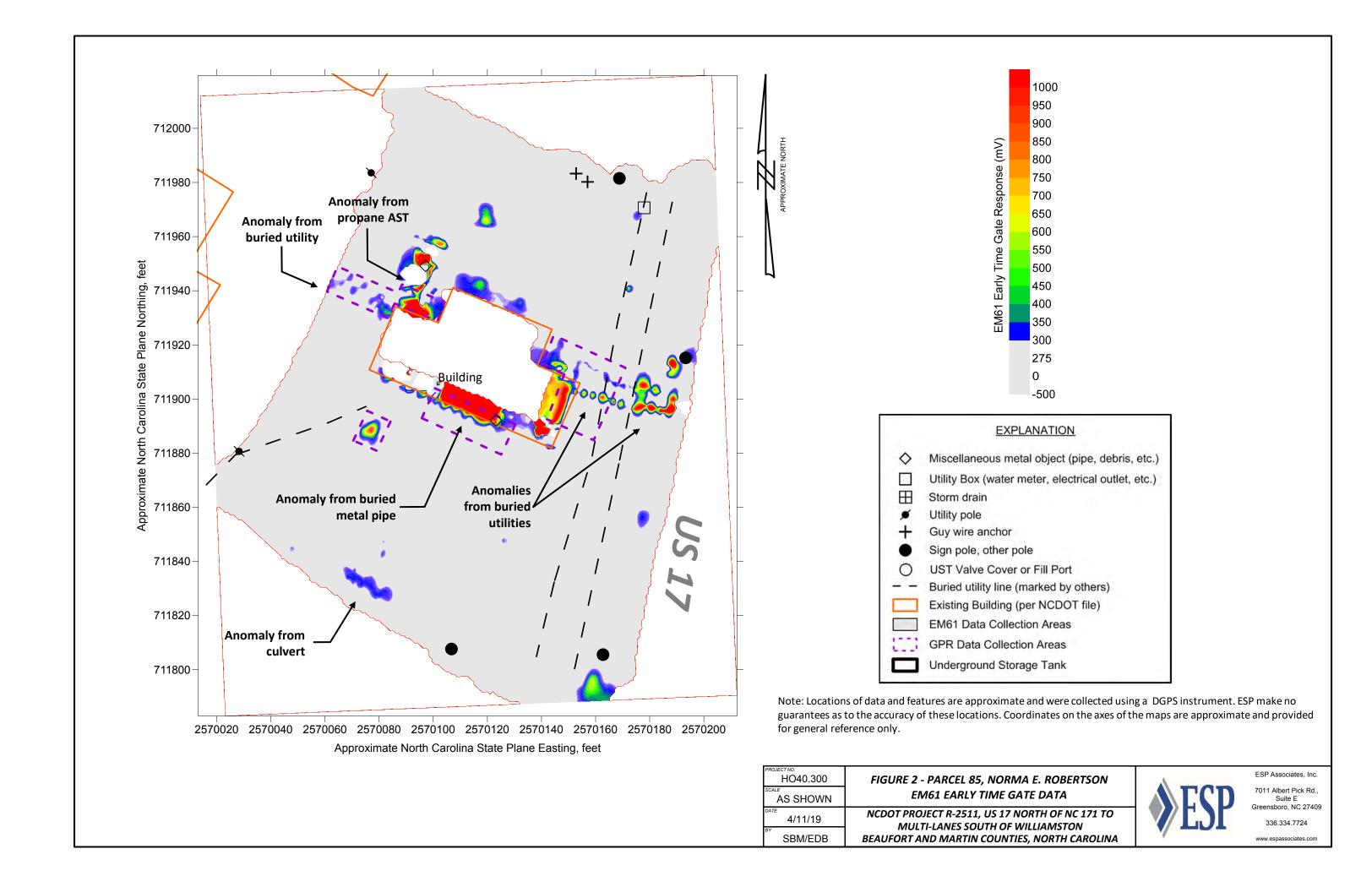
Edward D. Billington, PG Senior Geophysicist

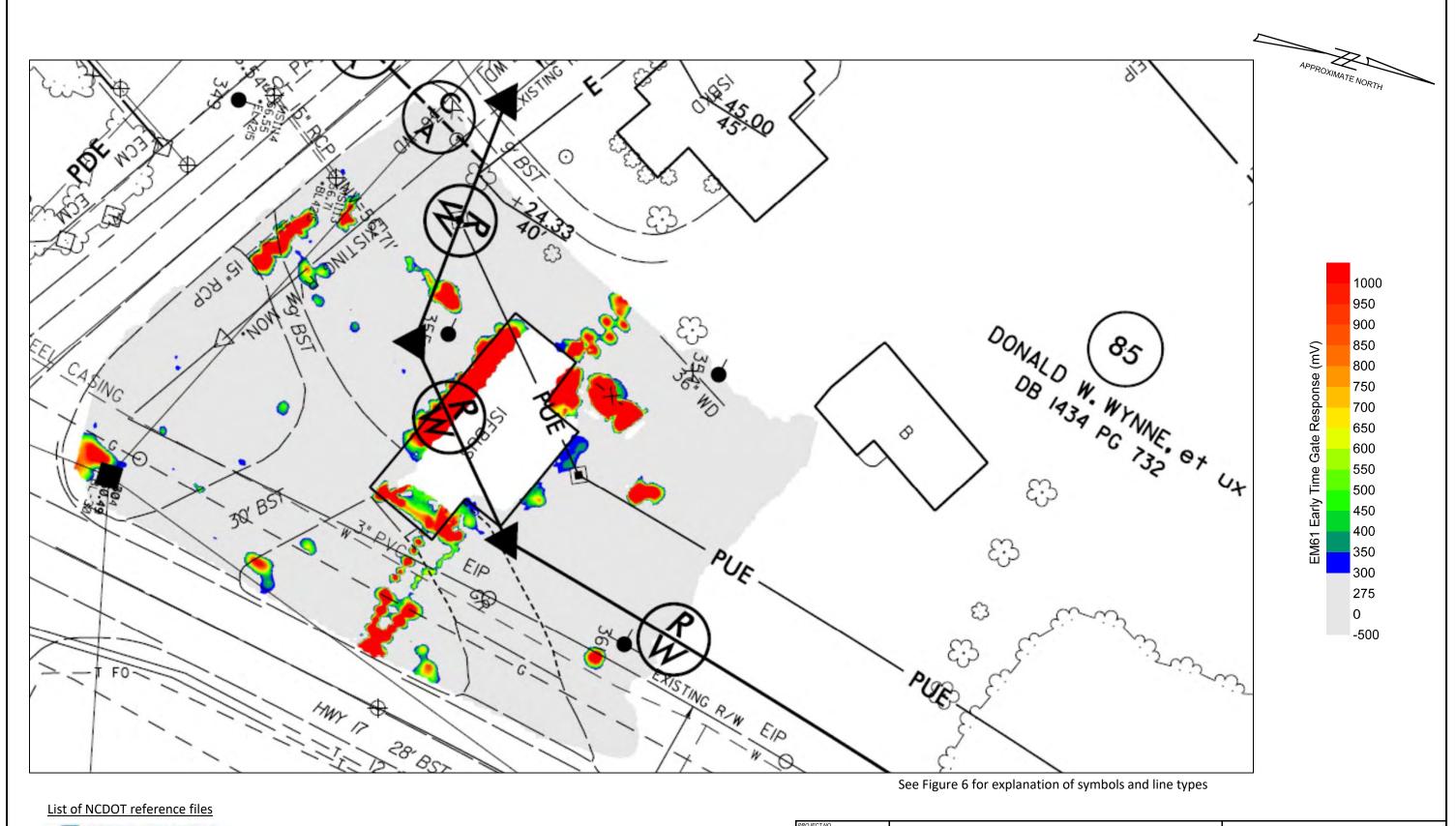
SBM/EDB

Attachments: Figures 1 - 6

A. Photograph showing a portion of Parcel 85 survey area, looking north.


C. Close-up view of old dispenser pedestal locations on the front of the building.



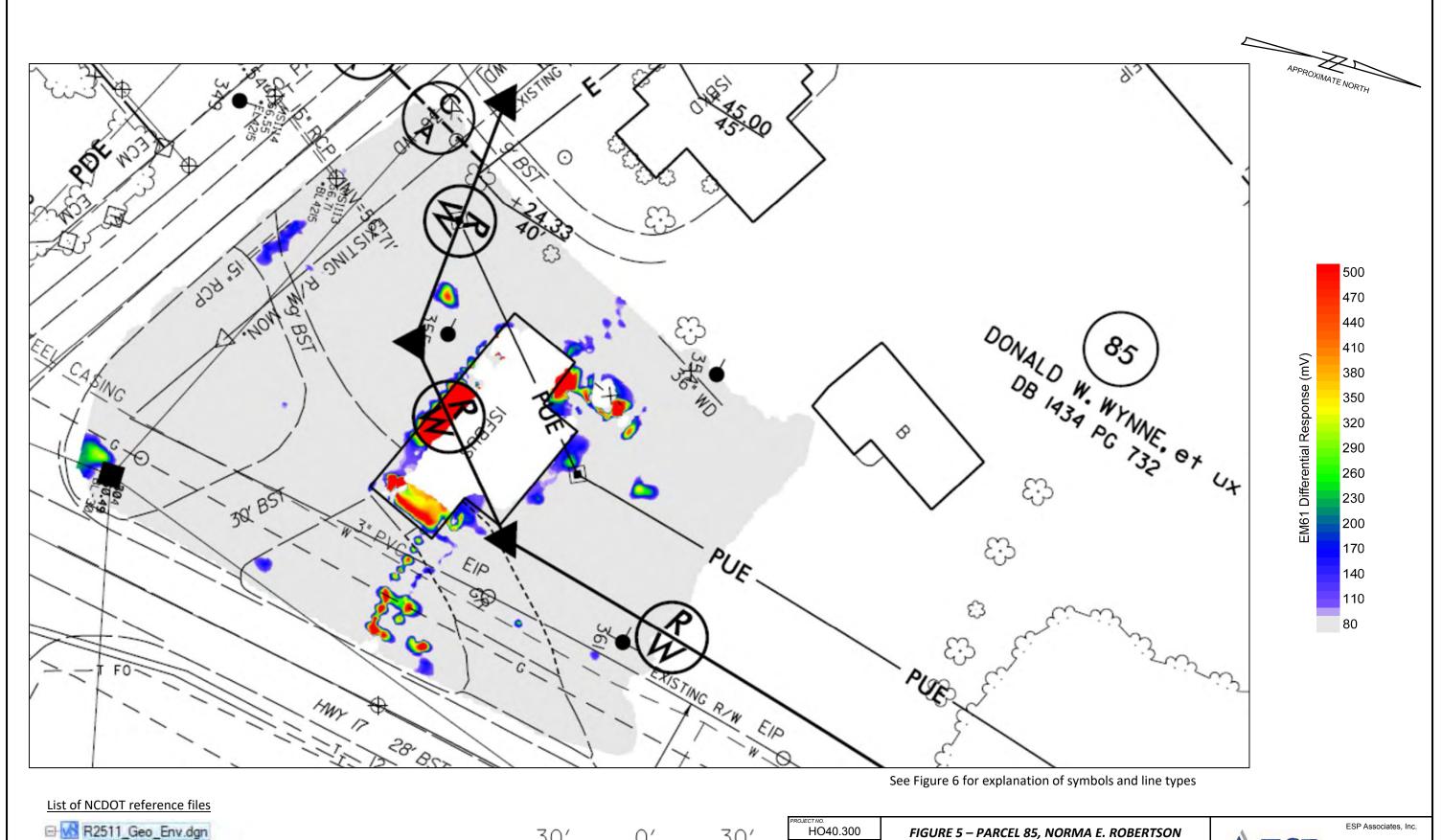

B. Front of former gas station building, photograph taken looking west. Note relic concrete pads on porchj from former dispenser locations.

OJECT NO. HO40.300	FIGURE 1 - PARCEL 85, NORMA E. ROBERTSON
N/A	SITE PHOTOGRAPHS
4/11/19	NCDOT PROJECT R-2511, US 17 NORTH OF NC 171 TO MULTI-LANES SOUTH OF WILLIAMSTON
SBM/EDB	BEAUFORT AND MARTIN COUNTIES, NORTH CAROLINA

R2511_Geo_Env.dgn

R2511_NCDOT_FS.dgn

R2511_Rdy_row.dgn


30′	0	_	0
GRAP	HIC	SCALE	

HO40.300	FIGURE 4 – PARCEL 85, NORMA E. ROBERTSON
1" = 30'	EM61 EARLY TIME GATE DATA ON PLAN SHEET, SHOP
Δ/11/1 Q	NCDOT PROJECT R-2511, US 17 NORTH OF NC 171 TO

SBM/EDB

NCDOT PROJECT R-2511, US 17 NORTH OF NC 171 TO MULTI-LANES SOUTH OF WILLIAMSTON BEAUFORT AND MARTIN COUNTIES, NORTH CAROLINA

R2511_Geo_Env.dgn
R2511_NCDOT_FS.dgn
R2511_Rdy_row.dgn

30' O' 30' GRAPHIC SCALE

PROJEC	HO40.300	
SCALE	1" = 30'	
DATE	4/11/19	

SBM/EDB

FIGURE 5 – PARCEL 85, NORMA E. ROBERTSON EM61 DIFFERENTIAL DATA ON PLAN SHEET, SHOP

NCDOT PROJECT R-2511, US 17 NORTH OF NC 171 TO MULTI-LANES SOUTH OF WILLIAMSTON BEAUFORT AND MARTIN COUNTIES, NORTH CAROLINA

Size Inc. See I		STATE OF NORTH	H CAROLI	NA, DIVISION OF HIGHWA	YS		
Size Use Secretary Use Se							
Secretary Control Co	BOUNDARIES AND PROPERTY:				LS	WATER:	
RUBINOUS		Note: Not to	scate 's	Subsurface Unitity Engineering			
Committee Comm		<u></u>					- 0
Second Concess							
Name of the Control	City Line	Standard Gauge	CSX TRANSPORTATION	Orchard —	8 8 8 8		
Property former			O MILEPOST 55	Vineyard —	Vineyard		
Sk Abordoved Sk A		Switch	SWITCH	EXISTING STRUCTURES:			
Right Florender Right Flor		RR Abandoned		MAJOR:			
RIGHT OF MAY: Saring Right of Way Marker Eating Right of Way Washer Eating Right of Way Use Proposed Claim Link Force Proposed Claim Link Force Proposed Claim Link Force Proposed Bland Way Line Proposed B		RR Dismantled		Bridge, Tunnel or Box Culvert	COMC		
Road-Sizenees Number		RIGHT OF WAY:		Bridge Wing Wall, Head Wall and End Wall -) COMC ## (Above Ground Water Line	20 1010
Flashing Sight of Work Morker Proposed Mover. Wire Fance Proposed Chein Link Frence Proposed Solin Link Frence		Baseline Control Point	. •		•	TV:	
Samp grave Wire Fretze Proposed Wire Wire Fretze Proposed Right of Way Line Proposed Right of Way Line with Proposed Right	Parcel/Sequence Number —		*	Head and End Wall	CONC HW	TV Pedestal	- C
Proposed Right of Way Line Proposed Righ				Pipe Culvert		TV Tower	- ⊗
Proposed Ramb Link Fence Proposed Right of Way Line with Lon R and Cop Morker Florable Blook S (SUE) Florable Bloo				Footbridge	———		
Proposed Barbed Wire Ferror	Troposed Chain Link Fence =	Proposed Right of Way Line with		Drainage Box: Catch Basin, DL or IR-	Псв	U/G TV Cable LOS B (S.U.E.*)	n
Facing Methods Boundary Proposed Right of Way Line with Concrusion or Greater RW Moetar Proposed Mined Boundary Proposed Animal Boundary Proposed Animal Boundary Proposed Control of Access Line with Proposed Control of Access Line Line With Proposed Control of Access Line Line Line Line Line Line Line Line		Iron Pin and Cap Marker			_	U/G TV Cable LOS C (S.U.E.*)	r
Proposed Centrel of Acess Lise with Concrete Aximal Boundary Existing Endangered Existing Endangered Existing Endangered Existing Control Existing Control Existing Control Existing Endangered Existing Existing Endangered Existing Existing Endangered Existing Existing Endangered Existing Existing Endangered Ex	,	Troposed right of tray Elite with				U/G TV Cable LOS D (S.U.E.*)	-
Easting Endangered Animal Soundary Easting Endangered Fort Boundary Easting Endangered Fort Boundary Easting Endangered Fort Boundary Florential Centermination Area: Sell X	·	B 10 114 11 11	9 9			U/G Fiber Optic Cable LOS B (S.U.E.*)	
Eating Control of Access Froposed Control of Access Froposed Enemonary Control Estating Estating Fower Pole Froposed Enemonary Control Estating Fower Pole Froposed Enemonary Control Estating Estating Fower Pole Froposed Enemonary Control Estating Fower Pole Froposed Enemonary Control Estating Fower Pole Froposed Enemonary Drainage Estating	Existing Endangered Animal Boundary ————————————————————————————————————		- 		•	U/G Fiber Optic Cable LOS C (S.U.E.*)	
Proposed Control of Access Proposed Control of Access Proposed Control of Access Proposed Control of Access Proposed Temporary Construction Essement Proposed Temporary Construction Esse	Existing Endangered Plant Boundary ————————————————————————————————————	Existing Control of Access	(<u>c</u>)	UTILITIES:		U/G Fiber Optic Cable LOS D (S.U.E.*)	- ——
Second Contemination Area Sell 25	Existing Historic Property Boundary	Proposed Control of Access				GAS:	
Proposed Temporary Construction Essement Proposed Joint Use Pole Use Gas Line LOS B (S.U.E.*) U	Known Contamination Area: Soil ————————————————————————————————————	9C90	~		•		_ ^
Froposed Temporary Drainage Easement DE Froposed Temporary Drainage Temporary Drainage Easement DE Froposed Temporary Drainage Tempora	Potential Contamination Area: Soil	— °5°	_		8		
Proposed Permanent Drainage Easement not Proposed Joint Use Pole UG Gas Line LOS C (S.U.E.*) BUILDINGS AND OTHER CULTURE: Gas Pumy Vent or UG Tank Cop O Proposed Permanent Drainage / Utility Easement not Power Interface Not	Known Contamination Area: Water ————————————————————————————————————	— 'M' ' ' '	_	Existing Joint Use Pole	-		•
Proposed Permanent Drainage / Utility Easement Dutility Easeme	Potential Contamination Area: Water	— 😘		Proposed Joint Use Pole	⊹ -		
## Proposed Femanent Disagraph Only Essement Proposed Annual Ulily Essement Proposed Annual Ulily Essement Ulily Ulily Essement Ulily Unknown Ulily Ulily Essement Ulily Ulily Essem	Contaminated Site: Known or Potential	(2)		Power Manhole	•		
Gas Pump Vent or UG Tank Cap		Proposed Permanent Drainage / Offility Easem		Power Line Tower	⊠	U/G Gas Line LOS D (S.U.E.*)	
Sign		,			Z	Above Ground Gas Line	270 005
Well Proposed Aeria Unity Easement Jule H-Frame Pole Sanitary Sewer Manhole Brown August Proposed Permanent Easement With Iron Pin and Cap Marker Iron LOS & (S.U.E.*) Sonitary Sewer Cleenout @ UG Power Line LOS & (S.U.E.*) UG Sanitary Sewer Cleenout Iron Pin and Cap Marker Iron Pin and Cap Marker UG Power Line LOS & (S.U.E.*) UG Sanitary Sewer Cleenout Iron Pin and Cap Marker UG Power Line LOS & (S.U.E.*) UG Sanitary Sewer Cleenout Iron Pin and Cap Marker UG Power Line LOS & (S.U.E.*) UG Sanitary Sewer Cleenout Iron Pin and Cap Marker UG Power Line LOS & (S.U.E.*) UG Sanitary Sewer Cleenout Iron Iron Pin and Cap Marker UG Power Line LOS & (S.U.E.*) UG Sanitary Sewer Manhole Iron Pin and Cap Marker UG Power Line LOS & (S.U.E.*) UG Sanitary Sewer Manhole Iron Pin and Cap Marker UG Sanitary Sewer Line LOS & (S.U.E.*) UG Sanitary Sewer Line LOS & (S.U.E.*) UG Sanitary Sewer Cleenout Iron UG Sanitary Sewer Cleenout Iron UG Sanitary Sewer Line LOS & (S.U.E.*) Under Sanitary S						SANITARY SEWER:	
Froposed Fermanent Essement with from Pin and Cop Marker UG Power Line LOS B (S.U.E.*) Sanitary Sewer Cleanout Genderal Gend		Proposed Aerial Utility Easement ——————	AUE			Sanitary Sewer Manhole	-
Fron Pin and Cap Marker ROADS AND RELATED FEATURES: UG Power Line LOS C (S.U.E.*) Above Ground Sanitary Sewer Line Existing Edge of Pavement Existing Edge of Pavement Existing Curb Proposed Slope Stakes Cut Proposed Slope Stakes Cut Proposed Slope Stakes Cut Proposed Curb Romp Existing Metal Guardrail Telephone Pole Proposed Guardrail Telephone Pedestal Telephone Pedestal Telephone Pedestal Telephone Cell Tower Telephone Cell Tower Telephone Cable LOS B (S.U.E.*) UG Telephone Conduit LOS B (S.U.E.*) UG Telephone	•		•			Sanitary Sewer Cleanout —	- ⊕
Arag Outline Cemetery Cemetery Existing Edge of Povement Existing Curb Proposed Slope Stakes Cul Proposed Slope Stakes Fill Proposed Curb Romp Existing Metal Guardrail Existing Metal Guardrail Froposed Curb Romp Existing Metal Guardrail Froposed Curb Romp Existing Metal Guardrail Froposed Curb Romp Existing Cable Guardrail Froposed Curb Romp Existing Metal Guardrail Froposed Curb Romp Froposed Curb Romp Existing Metal Guardrail Froposed Curb Romp Froposed Cu		-	•			U/G Sanitary Sewer Line —	s
Esting Carb Esting		ROADS AND RELATED FEATUR	RES:			Above Ground Sanitary Sewer	A/G Sanitary Sever
Existing Curb Building Proposed Slope Stakes Cut Proposed Slope Stakes Fill Proposed Slope Stakes Fill Proposed Slope Stakes Fill Proposed Curb Ramp Proposed Curb Ramp Existing Cable Guardrail Froposed Guardrail Frop		Existing Edge of Pavement					
School School Proposed Slope Stakes Cut Proposed Slope Stakes Cut Proposed Slope Stakes Cut Proposed Slope Stakes Fill Proposed Curb Ramp Proposed Guardrail Telephone Manhole Utility Pole Utility Pole With Base Utility Pole with Base Utility Pole with Base Utility Pole with Base Utility Indicated Object Utility Traffic Signal Box Utility Traf	,			TELEPHONE:			
Proposed Slope Stakes Fill Proposed Telephone Pole Proposed Curb Ramp Existing Metal Guardrail Froposed Gurb ramp Existing Metal Guardrail Froposed Gurb ramp Existing Metal Guardrail Froposed Gurb ramp Existing Metal Guardrail Froposed Gurb Ramp Existing Cable Guiderail Froposed Guardrail Froposed Gurd Reservoir Froposed Cable Guiderail Froposed Cable Gui				Existing Telephone Pole —	-		
Existing Metal Guardrail HYDROLOGY: Froposed Guardrail Froposed Cable Guiderail Froposed Guardrail Froposed Cable Guiderail Froposed Cable Guiderail Froposed Guiderail Froposed Guardrail Froposed Cable Guiderail Froposed Cable Guiderail Froposed Cable Guiderail Froposed Cable Guide		Proposed Slope Stakes Fill -	<u>-</u>	Proposed Telephone Pole	-0-		
Existing Metal Guardrail HYDROLOGY: Stream or Body of Water Froposed Guardrail Frop				Telephone Manhole	•	MISCELLANEOUS:	
Stream or Body of Water				•	ш	Utility Pole —	- •
Stream or Body of Water Hydro, Pool or Reservoir Froposed Cable Guiderail Froposed Cable LOS B (S.U.E.*) Froposed Cable LOS B (S.U.E.*) Froposed Lateral, Tail, Head Ditch Froposed Lateral, Tail,		Proposed Guardrail		-	-	Utility Pole with Base —	- 🗈
Hydro, Pool or Reservoir Jurisdictional Stream Jurisdictional Stre	-	Existing Cable Guiderail	<u> </u>		F9		
Buffer Zone 1 Buffer Zone 2 Flow Arrow Disappearing Stream Spring Wetland Wetland Proposed Lateral, Tail, Head Ditch Buffer Zone 1 Woods Line Equality Symbol Pavement Removal VEGETATION: UG Telephone Cable LOS D (S.U.E.*) UG Telephone Conduit LOS D (S.U.E.*)		Proposed Cable Guiderail		·		,	-
Buffer Zone 1 Buffer Zone 2 Buffer		Equality Symbol	• •			· -	
Buffer Zone 2 Flow Arrow Disappearing Stream Single Tree Single Shrub Wetland Wetland Proposed Lateral, Tail, Head Ditch Woods Line Woods Line WEGETATION: UG Telephone Conduit LOS B (S.U.E.*) UG Telephone Conduit LOS C (S.U.E.*) UG Telephone Conduit LOS D (S.U.E.*)		Pavement Removal				, , ,	_
Single Tree Single Tree Single Shrub Wetland Wetland Proposed Lateral, Tail, Head Ditch Woods Line Single Tree Single Tree Single Tree UG Telephone Conduit LOS C (S.U.E.*) UG Telephone Conduit LOS D (S.U.E.*) Woods Line Woods Line Woods Line Single Tree UG Telephone Conduit LOS D (S.U.E.*) Woods Line Woods Line Woods Line Single Tree UG Telephone Conduit LOS D (S.U.E.*) Woods Line Woods Line Single Tree UG Telephone Conduit LOS D (S.U.E.*) Woods Line Woods Line Woods Line Find of Information		VEGETATION:		, , , , , , , , , , , , , , , , , , , ,			
Spring — Single Shrub — Single Shrub — Single Shrub — Shrub — Spring — Wetland — Woods Line — Single Shrub — AATUR — Abandoned According to Utility Records — AATUR — Abandoned According to Utility Records — AATUR — Single Shrub — Single Shrub — Woods Line — Abandoned According to Utility Records — AATUR — Abandoned According to Utility Records — AATUR — Single Shrub — Single Shrub — Single Shrub — Woods Line — Woods Line — Woods Line — Single Shrub — Woods Line — Woods Line — Abandoned According to Utility Records — AATUR — Single Shrub — Single Shrub — Woods Line — Single Shrub — Single Shrub — Woods Line — Woods Line — Woods Line — Single Shrub — Woods Line — Single Shrub — Woods Line — Woods Line — Woods Line — Single Shrub — Woods Line — Woods Line — Woods Line — Woods Line — Single Shrub — Woods Line — Woods			− &				
Wetland — Hedge — Woods Line — Woods Line — Woods Line — Addition and Ditch — Abandoned According to Utility Records — AATUR				. , ,			_ 🚅
Proposed Lateral, Tail, Head Ditch — Woods Line — Woods Line — AATUR Woods Line — Woods Line — ABandoned According to Utility Records — AATUR Find of Information — Find of In						-	•
Proposed Lateral, Tail, Head Ditch — Abandoned According to Utility Records — AATUR	Trendana -	Woods Line				· ·	-
Folso Sump	· · · · · · · · · · · · · · · · · · ·	**************************************				• •	,
False sump ————————————————————————————————————	False Sump ———	•		U/G Fiber Optics Cable LOS D (S.U.E.*)	1 Po	Ena of Information —	- E.O.I.

PROJECT NO.
HO40.300

SCALE
N/A

DATE
4/11/19
BY
SBM/EDB

FIGURE 6

LEGEND FOR PLAN SHEET FIGURES

NCDOT PROJECT R-2511, US 17 NORTH OF NC 171 TO
MULTI-LANES SOUTH OF WILLIAMSTON
BEAUFORT AND MARTIN COUNTIES, NORTH CAROLINA

Appendix D

Hydrocarbon Analysis Results

Client: DUNCKLEE AND DUNHAM Address: 511 KEISLER DR STE 102

CARY NC 27518

Samples taken Samples extracted Samples analysed

Monday, April 08, 2019 Monday, April 08, 2019 Thursday, April 11, 2019

Contact: RICK KOLB Operator JENN RYAN

Project: 201939

													U04049
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	% Ratios		5	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
Soil	B - 15	25.0	<0.63	<0.63	1.8	1.8	0.91	0.04	0.001	0	79.7	20.3	V.Deg.PHC 75.1%,(FCM),(BO)
	Initial Ca	alibrator (QC check	OK					Final FO	CM QC	Check	OK	100.7%

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Abbreviations:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence of hydrocarbon identification: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate detected

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only. Data generated by HC-1 Analyser

Client Name:	Dunckier & Dunham
Address:	511 Keisler Drive, Suite 102 Cary, NC 27518
Contact:	Prick Kolb
Project Ref.:	201939
Email:	rkolb@dunckleedunham.gon
Phone #:	(919) 794-6 858-9898
Collected by:	Alec Dziwanowski

REQUEST FORM

RED Lab, LLC 5598 Marvin K Moss Lane MARBIONC Bldg, Suite 2003 Wilmington, NC 28409

Each sample will be analyzed for BTEX, GRO, DRO, TPH, PAH total aromatics and BaP

Sample Collection TAT Requested		4.50.1							
Date/Time	24 Hour	48 Hour	Initials		Sample II	Total Wt.	Tare Wt.	Sample Wt.	
4/8/19 1800		/	P	B-15			55 54.5	44.1	10.4
- V									
									,
`ammanta:								21 1 1105	
Comments:							Ri	D Lab USE	ONLY
Reling	uished by		Date/Time 4/10/19 1640		Accepted by	Date/Time			
Relinq	uished by		Date/	Time	Accepted by	Date/Time			

Divider Page

ANALYTICAL REPORT

April 25, 2019

Duncklee and Dunham

Sample Delivery Group: L1088281 Samples Received: 04/11/2019 Project Number: 201939

Description: NCDOT R-2511 Beaufort and Martin Counties-Parcel 85

Report To: Rick Kolb

PO Box 639

Cary, NC 27512

Entire Report Reviewed By:

Heather J Wagner

Hanhlage

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
TW-2 L1088281-02	5
Qc: Quality Control Summary	8
Volatile Organic Compounds (GC/MS) by Method 6200B-2011	8
Semi Volatile Organic Compounds (GC/MS) by Method 625.1	13
GI: Glossary of Terms	18
Al: Accreditations & Locations	19
Sc: Sample Chain of Custody	20

Collected by

Collected date/time Received date/time

TW-2 L1088281-02 GW			Alec Dziwanowski	04/08/19 18:00	04/11/19 09:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC/MS) by Method 6200B-2011	WG1265185	25	04/12/19 23:04	04/12/19 23:04	GLN	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 6200B-2011	WG1267331	200	04/17/19 12:27	04/17/19 12:27	GLN	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 625.1	WG1264757	1	04/12/19 16:46	04/13/19 13:12	LEA	Mt. Juliet, TN

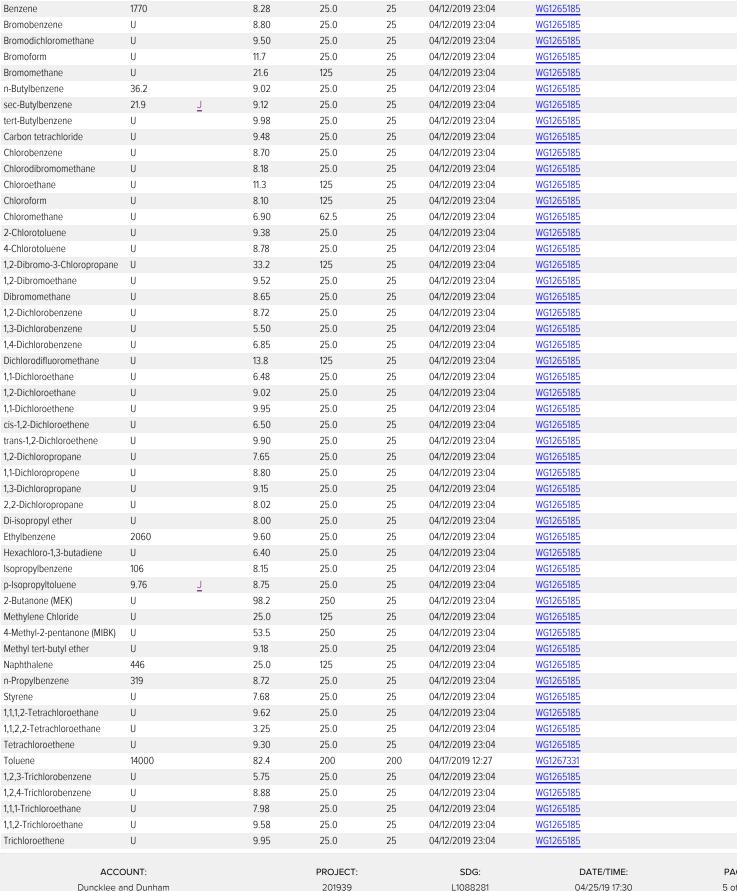
All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Sample TW-2 is reported separately per client request. All samples listed on the attached COC have been reported individually under SDG number L1088281 based on their Parcel ID.

ONE LAB. NATIONWIDE.

Collected date/time: 04/08/19 18:00

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l	ug/l		date / time		
Acetone	U		250	1250	25	04/12/2019 23:04	WG1265185	
Acrolein	U		222	1250	25	04/12/2019 23:04	WG1265185	
Acrylonitrile	U		46.8	250	25	04/12/2019 23:04	WG1265185	
Benzene	1770		8.28	25.0	25	04/12/2019 23:04	WG1265185	
Bromobenzene	U		8.80	25.0	25	04/12/2019 23:04	WG1265185	
Bromodichloromethane	U		9.50	25.0	25	04/12/2019 23:04	WG1265185	
Bromoform	U		11.7	25.0	25	04/12/2019 23:04	WG1265185	
Bromomethane	U		21.6	125	25	04/12/2019 23:04	WG1265185	
n-Butylbenzene	36.2		9.02	25.0	25	04/12/2019 23:04	WG1265185	
sec-Butylbenzene	21.9	<u>J</u>	9.12	25.0	25	04/12/2019 23:04	WG1265185	
tert-Butylbenzene	U		9.98	25.0	25	04/12/2019 23:04	WG1265185	
Carbon tetrachloride	U		9.48	25.0	25	04/12/2019 23:04	WG1265185	
Chlorobenzene	U		8.70	25.0	25	04/12/2019 23:04	WG1265185	
Chlorodibromomethane	U		8.18	25.0	25	04/12/2019 23:04	WG1265185	
Chloroethane	U		11.3	125	25	04/12/2019 23:04	WG1265185	
Chloroform	U		8.10	125	25	04/12/2019 23:04	WG1265185	
Chloromethane	U		6.90	62.5	25	04/12/2019 23:04	WG1265185	
2-Chlorotoluene	U		9.38	25.0	25	04/12/2019 23:04	WG1265185	
4-Chlorotoluene	U		8.78	25.0	25	04/12/2019 23:04	WG1265185	
1,2-Dibromo-3-Chloropropane	U		33.2	125	25	04/12/2019 23:04	WG1265185	
1,2-Dibromoethane	U		9.52	25.0	25	04/12/2019 23:04	WG1265185	
Dibromomethane	U		8.65	25.0	25	04/12/2019 23:04	WG1265185	
1,2-Dichlorobenzene	U		8.72	25.0	25	04/12/2019 23:04	WG1265185	
1,3-Dichlorobenzene	U		5.50	25.0	25	04/12/2019 23:04	WG1265185	
1,4-Dichlorobenzene	U		6.85	25.0	25	04/12/2019 23:04	WG1265185	



SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Ss

Cn

Gl

Sc

Collected date/time: 04/08/19 18:00

L1088281

Volatile Organic Compounds (GC/MS) by Method 6200B-2011

Volatile Organic Compounds (GC/MS) by Method 6200B-2011									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>		
Analyte	ug/l		ug/l	ug/l		date / time			
Trichlorofluoromethane	U		30.0	125	25	04/12/2019 23:04	WG1265185		
1,2,3-Trichloropropane	U		20.2	62.5	25	04/12/2019 23:04	WG1265185		
1,2,4-Trimethylbenzene	2260		9.32	25.0	25	04/12/2019 23:04	WG1265185		
1,3,5-Trimethylbenzene	551		9.68	25.0	25	04/12/2019 23:04	WG1265185		
Vinyl chloride	U		6.48	25.0	25	04/12/2019 23:04	WG1265185		
Xylenes, Total	9490		26.5	75.0	25	04/12/2019 23:04	WG1265185		
(S) Toluene-d8	99.6			80.0-120		04/12/2019 23:04	WG1265185		
(S) Toluene-d8	98.2			80.0-120		04/17/2019 12:27	WG1267331		
(S) a,a,a-Trifluorotoluene	97.1			80.0-120		04/12/2019 23:04	WG1265185		
(S) a,a,a-Trifluorotoluene	96.1			80.0-120		04/17/2019 12:27	WG1267331		
(S) 4-Bromofluorobenzene	101			77.0-126		04/12/2019 23:04	WG1265185		
(S) 4-Bromofluorobenzene	97.4			77.0-126		04/17/2019 12:27	WG1267331		
(S) 1,2-Dichloroethane-d4	94.4			70.0-130		04/12/2019 23:04	WG1265185		
(S) 1.2-Dichloroethane-d4	94.0			70.0-130		04/17/2019 12:27	WG1267331		

Semi Volatile Organic Compounds (GC/MS) by Method 625.1

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Acenaphthene	U		0.316	1.00	1	04/13/2019 13:12	WG1264757
Acenaphthylene	U		0.309	1.00	1	04/13/2019 13:12	WG1264757
Anthracene	U		0.291	1.00	1	04/13/2019 13:12	WG1264757
Benzidine	U		4.32	10.0	1	04/13/2019 13:12	WG1264757
Benzo(a)anthracene	U		0.0975	1.00	1	04/13/2019 13:12	WG1264757
Benzo(b)fluoranthene	U		0.0896	1.00	1	04/13/2019 13:12	WG1264757
Benzo(k)fluoranthene	U		0.355	1.00	1	04/13/2019 13:12	WG1264757
Benzo(g,h,i)perylene	U		0.161	1.00	1	04/13/2019 13:12	WG1264757
Benzo(a)pyrene	U		0.340	1.00	1	04/13/2019 13:12	WG1264757
Bis(2-chlorethoxy)methane	U		0.329	10.0	1	04/13/2019 13:12	WG1264757
Bis(2-chloroethyl)ether	U		1.62	10.0	1	04/13/2019 13:12	WG1264757
Bis(2-chloroisopropyl)ether	U		0.445	10.0	1	04/13/2019 13:12	WG1264757
4-Bromophenyl-phenylether	U		0.335	10.0	1	04/13/2019 13:12	WG1264757
2-Chloronaphthalene	U	<u>J4</u>	0.330	1.00	1	04/13/2019 13:12	WG1264757
4-Chlorophenyl-phenylether	U		0.303	10.0	1	04/13/2019 13:12	WG1264757
Chrysene	U		0.332	1.00	1	04/13/2019 13:12	WG1264757
Dibenz(a,h)anthracene	U		0.279	1.00	1	04/13/2019 13:12	WG1264757
3,3-Dichlorobenzidine	U		2.02	10.0	1	04/13/2019 13:12	WG1264757
2,4-Dinitrotoluene	U		1.65	10.0	1	04/13/2019 13:12	WG1264757
2,6-Dinitrotoluene	U		0.279	10.0	1	04/13/2019 13:12	WG1264757
Fluoranthene	U		0.310	1.00	1	04/13/2019 13:12	WG1264757
Fluorene	U		0.323	1.00	1	04/13/2019 13:12	WG1264757
Hexachlorobenzene	U		0.341	1.00	1	04/13/2019 13:12	WG1264757
Hexachloro-1,3-butadiene	U		0.329	10.0	1	04/13/2019 13:12	WG1264757
Hexachlorocyclopentadiene	U		2.33	10.0	1	04/13/2019 13:12	WG1264757
Hexachloroethane	U	<u>J4</u>	0.365	10.0	1	04/13/2019 13:12	WG1264757
ndeno(1,2,3-cd)pyrene	U		0.279	1.00	1	04/13/2019 13:12	WG1264757
sophorone	U		0.272	10.0	1	04/13/2019 13:12	WG1264757
Naphthalene	124		0.372	1.00	1	04/13/2019 13:12	WG1264757
Nitrobenzene	U		0.367	10.0	1	04/13/2019 13:12	WG1264757
n-Nitrosodimethylamine	U		1.26	10.0	1	04/13/2019 13:12	WG1264757
n-Nitrosodiphenylamine	U		1.19	10.0	1	04/13/2019 13:12	WG1264757
n-Nitrosodi-n-propylamine	U		0.403	10.0	1	04/13/2019 13:12	WG1264757
Phenanthrene	U		0.366	1.00	1	04/13/2019 13:12	WG1264757
Benzylbutyl phthalate	U		0.275	3.00	1	04/13/2019 13:12	WG1264757
Bis(2-ethylhexyl)phthalate	U		0.709	3.00	1	04/13/2019 13:12	WG1264757
Di-n-butyl phthalate	U		0.266	3.00	1	04/13/2019 13:12	WG1264757
Diethyl phthalate	14.6		0.282	3.00	1	04/13/2019 13:12	WG1264757

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Duncklee and Dunham
 201939
 L1088281
 04/25/19 17:30
 6 of 20

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 04/08/19 18:00

(S) 2,4,6-Tribromophenol

63.7

L1088281

Semi Volatile Organic Compounds (GC/MS) by Method 625.1

	Decemb	0	MDI	DDI	Diletien	A In red-	Datak
	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Dimethyl phthalate	U		0.283	3.00	1	04/13/2019 13:12	WG1264757
Di-n-octyl phthalate	U		0.278	3.00	1	04/13/2019 13:12	WG1264757
Pyrene	U		0.330	1.00	1	04/13/2019 13:12	WG1264757
1,2,4-Trichlorobenzene	U	<u>J4</u>	0.355	10.0	1	04/13/2019 13:12	WG1264757
4-Chloro-3-methylphenol	U		0.263	10.0	1	04/13/2019 13:12	WG1264757
2-Chlorophenol	U		0.283	10.0	1	04/13/2019 13:12	WG1264757
2,4-Dichlorophenol	U		0.284	10.0	1	04/13/2019 13:12	WG1264757
2,4-Dimethylphenol	U		0.624	10.0	1	04/13/2019 13:12	WG1264757
4,6-Dinitro-2-methylphenol	U		2.62	10.0	1	04/13/2019 13:12	WG1264757
2,4-Dinitrophenol	U		3.25	10.0	1	04/13/2019 13:12	WG1264757
2-Nitrophenol	U		0.320	10.0	1	04/13/2019 13:12	WG1264757
4-Nitrophenol	U		2.01	10.0	1	04/13/2019 13:12	WG1264757
Pentachlorophenol	U		0.313	10.0	1	04/13/2019 13:12	WG1264757
Phenol	2.63	<u>J</u>	0.334	10.0	1	04/13/2019 13:12	WG1264757
2,4,6-Trichlorophenol	U		0.297	10.0	1	04/13/2019 13:12	WG1264757
(S) Nitrobenzene-d5	36.3			15.0-314		04/13/2019 13:12	WG1264757
(S) 2-Fluorobiphenyl	34.9			22.0-127		04/13/2019 13:12	WG1264757
(S) p-Terphenyl-d14	58.4			29.0-141		04/13/2019 13:12	WG1264757
(S) Phenol-d5	20.7			8.00-424		04/13/2019 13:12	WG1264757
(S) 2-Fluorophenol	22.6			10.0-120		04/13/2019 13:12	WG1264757

10.0-153

04/13/2019 13:12

WG1264757

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 6200B-2011

L1088281-02

Method Blank (MB)

Method Blank (MB)				
(MB) R3402078-3 04/12/19	15:56			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
	U		10.0	50.0
Acrolein	U		8.87	50.0
	U		1.87	10.0
	U		0.331	1.00
	U		0.352	1.00
	U		0.380	1.00
	U		0.469	1.00
	U		0.866	5.00
			0.361	1.00
	U			
	U		0.365	1.00
	U		0.399	1.00
	U		0.379	1.00
	U		0.348	1.00
	U		0.327	1.00
Chloroethane	U		0.453	5.00
Chloroform	U		0.324	5.00
Chloromethane	U		0.276	2.50
2-Chlorotoluene	U		0.375	1.00
4-Chlorotoluene	U		0.351	1.00
	U		1.33	5.00
	U		0.381	1.00
	U		0.346	1.00
	U		0.349	1.00
	U		0.220	1.00
	U		0.220	1.00
			0.274	5.00
	U			
	U		0.259	1.00
	U		0.361	1.00
	U		0.398	1.00
	U		0.260	1.00
	U		0.396	1.00
1,2-Dichloropropane	U		0.306	1.00
	U		0.352	1.00
1,3-Dichloropropane	U		0.366	1.00
	U		0.321	1.00
	U		0.320	1.00
	U		0.384	1.00
	U		0.256	1.00
	U		0.326	1.00
	U		0.350	1.00
p-130p10pyItoluelle	U		0.550	1.00

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 6200B-2011

L1088281-02

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3402078-3 04/12/1	9 15:56				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	ľ
2-Butanone (MEK)	U		3.93	10.0	L
Methylene Chloride	U		1.00	5.00	3
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	L
Methyl tert-butyl ether	U		0.367	1.00	4
Naphthalene	U		1.00	5.00	
n-Propylbenzene	U		0.349	1.00	느
Styrene	U		0.307	1.00	5
1,1,1,2-Tetrachloroethane	U		0.385	1.00	L
1,1,2,2-Tetrachloroethane	U		0.130	1.00	6
Tetrachloroethene	U		0.372	1.00	
1,2,3-Trichlorobenzene	U		0.230	1.00	
1,2,4-Trichlorobenzene	U		0.355	1.00	7
1,1,1-Trichloroethane	U		0.319	1.00	L
1,1,2-Trichloroethane	U		0.383	1.00	8
Trichloroethene	U		0.398	1.00	
Trichlorofluoromethane	U		1.20	5.00	<u> </u>
1,2,3-Trichloropropane	U		0.807	2.50	9
1,2,4-Trimethylbenzene	U		0.373	1.00	L
1,3,5-Trimethylbenzene	U		0.387	1.00	
Vinyl chloride	U		0.259	1.00	
Xylenes, Total	U		1.06	3.00	
(S) Toluene-d8	102			80.0-120	
(S) a,a,a-Trifluorotoluene	98.5			80.0-120	
(S) 4-Bromofluorobenzene	98.7			77.0-126	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

70.0-130

(LCS) R3402078-1 04/12/19 14:53 • (LCSD) R3402078-2 04/12/19 15:14													
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%			
Acetone	125	134	142	107	114	19.0-160			5.73	27			
Acrolein	125	126	131	101	105	10.0-160			3.94	26			
Acrylonitrile	125	128	136	103	109	55.0-149			5.92	20			
Benzene	25.0	24.7	25.6	98.7	102	70.0-123			3.67	20			
Bromobenzene	25.0	23.0	24.0	92.0	96.0	73.0-121			4.31	20			
Bromodichloromethane	25.0	25.2	26.1	101	104	75.0-120			3.49	20			
Bromoform	25.0	24.9	26.0	99.5	104	68.0-132			4.55	20			
Bromomethane	25.0	28.2	30.3	113	121	10.0-160			7.10	25			

94.4

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 6200B-2011

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3402078-1 04/12/19 14:53 • (LCSD) R3402078-2 04/12/19 15:14												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
n-Butylbenzene	25.0	24.7	25.8	99.0	103	73.0-125			4.17	20		
sec-Butylbenzene	25.0	25.5	26.2	102	105	75.0-125			3.00	20		
tert-Butylbenzene	25.0	25.6	26.8	102	107	76.0-124			4.56	20		
Carbon tetrachloride	25.0	26.2	27.4	105	109	68.0-126			4.27	20		
Chlorobenzene	25.0	24.7	25.7	99.0	103	80.0-121			3.79	20		
Chlorodibromomethane	25.0	25.2	25.9	101	104	77.0-125			2.85	20		
Chloroethane	25.0	25.4	27.1	101	108	47.0-150			6.49	20		
Chloroform	25.0	25.5	26.9	102	107	73.0-120			5.06	20		
Chloromethane	25.0	24.9	27.6	99.4	111	41.0-142			10.6	20		
2-Chlorotoluene	25.0	25.2	26.7	101	107	76.0-123			5.62	20		
4-Chlorotoluene	25.0	24.9	26.0	99.7	104	75.0-122			4.00	20		
1,2-Dibromo-3-Chloropropane	25.0	24.8	26.2	99.2	105	58.0-134			5.54	20		
1,2-Dibromoethane	25.0	25.9	26.4	103	106	80.0-122			2.19	20		
Dibromomethane	25.0	25.0	26.0	99.8	104	80.0-120			4.01	20		
1,2-Dichlorobenzene	25.0	25.1	26.5	101	106	79.0-121			5.48	20		
1,3-Dichlorobenzene	25.0	25.6	26.6	102	107	79.0-120			3.94	20		
1,4-Dichlorobenzene	25.0	23.5	24.5	94.1	98.1	79.0-120			4.24	20		
Dichlorodifluoromethane	25.0	22.4	23.5	89.8	94.1	51.0-149			4.75	20		
1,1-Dichloroethane	25.0	24.3	26.1	97.0	104	70.0-126			7.21	20		
1,2-Dichloroethane	25.0	22.7	23.8	90.8	95.0	70.0-128			4.53	20		
1,1-Dichloroethene	25.0	24.9	26.3	99.4	105	71.0-124			5.72	20		
cis-1,2-Dichloroethene	25.0	24.8	26.4	99.2	106	73.0-120			6.26	20		
trans-1,2-Dichloroethene	25.0	27.8	28.7	111	115	73.0-120			3.33	20		
1,2-Dichloropropane	25.0	25.1	25.6	101	102	77.0-125			1.73	20		
1,1-Dichloropropene	25.0	25.9	26.8	104	107	74.0-126			3.40	20		
1,3-Dichloropropane	25.0	26.5	26.8	106	107	80.0-120			0.930	20		
2,2-Dichloropropane	25.0	19.0	19.4	76.1	77.7	58.0-130			2.04	20		
Di-isopropyl ether	25.0	24.2	25.4	96.8	101	58.0-138			4.71	20		
Ethylbenzene	25.0	26.7	26.9	107	108	79.0-123			1.07	20		
Hexachloro-1,3-butadiene	25.0	24.2	25.0	96.9	99.8	54.0-138			2.92	20		
Isopropylbenzene	25.0	25.4	26.4	102	106	76.0-127			3.98	20		
p-Isopropyltoluene	25.0	24.8	26.2	99.2	105	76.0-125			5.50	20		
2-Butanone (MEK)	125	119	124	95.6	99.0	44.0-160			3.57	20		
Methylene Chloride	25.0	23.5	24.2	94.0	96.7	67.0-120			2.84	20		
4-Methyl-2-pentanone (MIBK)	125	128	129	102	103	68.0-142			0.817	20		
Methyl tert-butyl ether	25.0	25.0	25.4	100	102	68.0-125			1.46	20		
Naphthalene	25.0	24.2	26.2	97.0	105	54.0-135			7.92	20		
n-Propylbenzene	25.0	24.7	25.9	99.0	103	77.0-124			4.45	20		
Styrene	25.0	27.4	28.3	110	113	73.0-130			3.30	20		
1,1,1,2-Tetrachloroethane	25.0	25.0	25.7	100	103	75.0-125			2.52	20		

(S) 1,2-Dichloroethane-d4

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 6200B-2011

L1088281-02

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

107

106

// CC\ D2402070.1	04/10/10 14.50	(LCSD) R3402078-2	0.4/10/10 15:14
11 U STR 34U7U78-1	04/1//19 14:53	11 U SIDIR 34UZUZX=Z	04/12/19 15:14

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
1,1,2,2-Tetrachloroethane	25.0	24.0	24.8	95.9	99.2	65.0-130			3.46	20
Tetrachloroethene	25.0	25.6	26.5	102	106	72.0-132			3.76	20
1,2,3-Trichlorobenzene	25.0	25.5	27.9	102	112	50.0-138			9.02	20
1,2,4-Trichlorobenzene	25.0	25.4	27.0	102	108	57.0-137			6.03	20
1,1,1-Trichloroethane	25.0	25.1	26.4	101	105	73.0-124			4.80	20
1,1,2-Trichloroethane	25.0	24.6	25.2	98.5	101	80.0-120			2.16	20
Trichloroethene	25.0	28.8	29.4	115	118	78.0-124			2.18	20
Trichlorofluoromethane	25.0	27.2	28.1	109	112	59.0-147			3.12	20
1,2,3-Trichloropropane	25.0	25.4	27.1	102	108	73.0-130			6.33	20
1,2,4-Trimethylbenzene	25.0	25.9	27.1	103	108	76.0-121			4.53	20
1,3,5-Trimethylbenzene	25.0	24.1	25.3	96.2	101	76.0-122			4.99	20
Vinyl chloride	25.0	25.8	27.7	103	111	67.0-131			7.31	20
Xylenes, Total	75.0	78.2	80.0	104	107	79.0-123			2.28	20
(S) Toluene-d8				98.1	98.7	80.0-120				
(S) a,a,a-Trifluorotoluene				97.1	101	80.0-120				
(S) 4-Bromofluorobenzene				101	103	77.0-126				

70.0-130

PAGE:

11 of 20

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 6200B-2011

L1088281-02

Method Blank (MB)

(MB) R3402560-4 04/17/1	MB) R3402560-4 04/17/19 10:08									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	ug/l		ug/l	ug/l						
Toluene	U		0.412	1.00						
(S) Toluene-d8	97.7			80.0-120						
(S) a,a,a-Trifluorotoluene	98.0			80.0-120						
(S) 4-Bromofluorobenzene	95.9			77.0-126						
(S) 1,2-Dichloroethane-d4	94.8			70.0-130						

^⁴Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3402560-1 04/17/19 08:50 • (LCSD) R3402560-2 04/17/19 09:09												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
Toluene	25.0	24.9	25.5	99.8	102	79.0-120			2.30	20		
(S) Toluene-d8				94.9	96.1	80.0-120						
(S) a,a,a-Trifluorotoluene				97.7	98.6	80.0-120						
(S) 4-Bromofluorobenzene				101	96.5	77.0-126						
(S) 1,2-Dichloroethane-d4				93.9	92.4	70.0-130						

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 625.1

L1088281-02

Method Blank (MB)

(MD) D3401403 3 04/13/10				
(MB) R3401482-3 04/13/19				
Amelida	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Acenaphthene	U		0.316	1.00
Acenaphthylene	U		0.309	1.00
Anthracene	U		0.291	1.00
Benzidine	U		4.32	10.0
Benzo(a)anthracene	U		0.0975	1.00
Benzo(b)fluoranthene	U		0.0896	1.00
Benzo(k)fluoranthene	U		0.355	1.00
Benzo(g,h,i)perylene	U		0.161	1.00
Benzo(a)pyrene	U		0.340	1.00
Bis(2-chlorethoxy)methane	U		0.329	10.0
Bis(2-chloroethyl)ether	U		1.62	10.0
Bis(2-chloroisopropyl)ether	U		0.445	10.0
4-Bromophenyl-phenylether	U		0.335	10.0
2-Chloronaphthalene	U		0.330	1.00
4-Chlorophenyl-phenylether	U		0.303	10.0
Chrysene	U		0.332	1.00
Dibenz(a,h)anthracene	U		0.279	1.00
3,3-Dichlorobenzidine	U		2.02	10.0
2,4-Dinitrotoluene	U		1.65	10.0
2,6-Dinitrotoluene	U		0.279	10.0
Fluoranthene	U		0.310	1.00
Fluorene	U		0.323	1.00
Hexachlorobenzene	U		0.341	1.00
Hexachloro-1,3-butadiene	U		0.329	10.0
Hexachlorocyclopentadiene	U		2.33	10.0
Hexachloroethane	U		0.365	10.0
Indeno(1,2,3-cd)pyrene	U		0.279	1.00
Isophorone	U		0.272	10.0
Naphthalene	U		0.372	1.00
Nitrobenzene	U		0.367	10.0
n-Nitrosodimethylamine	U		1.26	10.0
n-Nitrosodiphenylamine	U		1.19	10.0
n-Nitrosodi-n-propylamine	U		0.403	10.0
Phenanthrene	U		0.366	1.00
Benzylbutyl phthalate	U		0.275	3.00
Bis(2-ethylhexyl)phthalate	U		0.709	3.00
Di-n-butyl phthalate	U		0.266	3.00
Diethyl phthalate	U		0.282	3.00
Dimethyl phthalate	U		0.283	3.00
Di-n-octyl phthalate	U		0.278	3.00
2 octyr phinalate	-		0.270	5.00

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 625.1

L1088281-02

Method Blank (MB)

(MB) R3401482-3 04/13/	19 12:08				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	² T(
Pyrene	U		0.330	1.00	
1,2,4-Trichlorobenzene	U		0.355	10.0	³ S:
4-Chloro-3-methylphenol	U		0.263	10.0	
2-Chlorophenol	U		0.283	10.0	4
2,4-Dichlorophenol	U		0.284	10.0	⁴ C
2,4-Dimethylphenol	U		0.624	10.0	
4,6-Dinitro-2-methylphenol	U		2.62	10.0	⁵ Sı
2,4-Dinitrophenol	U		3.25	10.0	
2-Nitrophenol	U		0.320	10.0	6
4-Nitrophenol	U		2.01	10.0	⁶ Q
Pentachlorophenol	U		0.313	10.0	
Phenol	U		0.334	10.0	⁷ G
2,4,6-Trichlorophenol	U		0.297	10.0	
(S) Nitrobenzene-d5	49.5			15.0-314	8
(S) 2-Fluorobiphenyl	48.0			22.0-127	Å
(S) p-Terphenyl-d14	63.6			29.0-141	
(S) Phenol-d5	24.1			8.00-424	⁹ S
(S) 2-Fluorophenol	37.8			10.0-120	
(S) 2,4,6-Tribromophenol	51.0			10.0-153	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3401482-1 04/13/19 11:27 • (LCSD) R3401482-2 04/13/19 11:47											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Acenaphthene	50.0	32.8	31.7	65.6	63.4	47.0-145			3.41	48	
Acenaphthylene	50.0	31.5	30.7	63.0	61.4	33.0-145			2.57	74	
Anthracene	50.0	36.0	35.5	72.0	71.0	27.0-133			1.40	66	
Benzidine	100	34.7	40.5	34.7	40.5	1.00-120			15.4	36	
Benzo(a)anthracene	50.0	37.0	36.6	74.0	73.2	33.0-143			1.09	53	
Benzo(b)fluoranthene	50.0	36.0	35.9	72.0	71.8	24.0-159			0.278	71	
Benzo(k)fluoranthene	50.0	36.9	35.9	73.8	71.8	11.0-162			2.75	63	
Benzo(g,h,i)perylene	50.0	35.4	35.0	70.8	70.0	1.00-219			1.14	97	
Benzo(a)pyrene	50.0	35.0	34.4	70.0	68.8	17.0-163			1.73	72	
Bis(2-chlorethoxy)methane	50.0	30.1	29.2	60.2	58.4	1.00-219			3.04	54	
Bis(2-chloroethyl)ether	50.0	30.0	28.5	60.0	57.0	33.0-185			5.13	108	
Bis(2-chloroisopropyl)ether	50.0	29.9	28.7	59.8	57.4	36.0-166			4.10	76	
4-Bromophenyl-phenylether	50.0	37.0	35.7	74.0	71.4	53.0-127			3.58	43	
2-Chloronaphthalene	50.0	29.7	28.3	59.4	56.6	60.0-120	<u>J4</u>	<u>J4</u>	4.83	24	

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 625.1

L1088281-02

(LCS) R3401482-1 04/13/19	, ,										
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
4-Chlorophenyl-phenylether	50.0	33.7	33.2	67.4	66.4	25.0-158			1.49	61	
Chrysene	50.0	37.6	36.9	75.2	73.8	17.0-168			1.88	87	
Dibenz(a,h)anthracene	50.0	35.7	35.2	71.4	70.4	1.00-227			1.41	126	
3,3-Dichlorobenzidine	100	73.2	72.0	73.2	72.0	1.00-262			1.65	108	
2,4-Dinitrotoluene	50.0	37.4	37.7	74.8	75.4	39.0-139			0.799	42	
2,6-Dinitrotoluene	50.0	34.9	34.4	69.8	68.8	50.0-158			1.44	48	
Fluoranthene	50.0	38.3	38.2	76.6	76.4	26.0-137			0.261	66	
Fluorene	50.0	33.9	33.4	67.8	66.8	59.0-121			1.49	38	
Hexachlorobenzene	50.0	36.4	35.3	72.8	70.6	1.00-152			3.07	55	
Hexachloro-1,3-butadiene	50.0	21.0	18.9	42.0	37.8	24.0-120			10.5	62	
Hexachlorocyclopentadiene	50.0	21.4	20.0	42.8	40.0	10.0-120			6.76	31	
Hexachloroethane	50.0	19.0	17.4	38.0	34.8	40.0-120	<u>J4</u>	<u>J4</u>	8.79	52	
Indeno(1,2,3-cd)pyrene	50.0	33.8	34.2	67.6	68.4	1.00-171			1.18	99	
sophorone	50.0	31.2	30.0	62.4	60.0	21.0-196			3.92	93	
Naphthalene	50.0	26.0	24.4	52.0	48.8	21.0-133			6.35	65	
Nitrobenzene	50.0	27.6	26.8	55.2	53.6	35.0-180			2.94	62	
n-Nitrosodimethylamine	50.0	21.5	20.8	43.0	41.6	10.0-120			3.31	34	
n-Nitrosodiphenylamine	50.0	35.0	35.0	70.0	70.0	44.0-120			0.000	21	
n-Nitrosodi-n-propylamine	50.0	34.5	33.4	69.0	66.8	1.00-230			3.24	87	
Phenanthrene	50.0	36.1	35.4	72.2	70.8	54.0-120			1.96	39	
Benzylbutyl phthalate	50.0	37.6	37.4	75.2	74.8	1.00-152			0.533	60	
Bis(2-ethylhexyl)phthalate	50.0	38.4	37.6	76.8	75.2	8.00-158			2.11	82	
Di-n-butyl phthalate	50.0	39.2	39.3	78.4	78.6	1.00-120			0.255	47	
Diethyl phthalate	50.0	35.5	35.3	71.0	70.6	1.00-120			0.565	100	
Dimethyl phthalate	50.0	34.9	34.3	69.8	68.6	1.00-120			1.73	183	
Di-n-octyl phthalate	50.0	38.9	38.9	77.8	77.8	4.00-146			0.000	69	
Pyrene	50.0	37.2	36.7	74.4	73.4	52.0-120			1.35	49	
,2,4-Trichlorobenzene	50.0	23.0	21.2	46.0	42.4	44.0-142		<u>J4</u>	8.14	50	
1-Chloro-3-methylphenol	50.0	33.5	33.6	67.0	67.2	22.0-147		<u></u>	0.298	73	
2-Chlorophenol	50.0	29.1	28.0	58.2	56.0	23.0-134			3.85	61	
2,4-Dichlorophenol	50.0	29.4	28.4	58.8	56.8	39.0-135			3.46	50	
2,4-Dimethylphenol	50.0	29.4	28.6	58.8	57.2	32.0-120			2.76	58	
I,6-Dinitro-2-methylphenol	50.0	39.7	40.2	79.4	80.4	1.00-181			1.25	203	
2,4-Dinitrophenol	50.0	30.0	29.8	60.0	59.6	1.00-181			0.669	132	
2-Nitrophenol	50.0	31.1	30.4	62.2	60.8	29.0-182			2.28	55	
1-Nitrophenol	50.0	17.6	17.9	35.2	35.8	1.00-132			1.69	131	
Pentachlorophenol	50.0	30.4	30.5	60.8	61.0	14.0-132			0.328	86	
Phenol	50.0	15.4	15.2	30.8	30.4	5.00-120			1.31	64	
			30.5						2.59		
2,4,6-Trichlorophenol (S) Nitrobenzene-d5	50.0	31.3	30.5	62.6 56.3	61.0 <i>53.7</i>	37.0-144 <i>15.0-314</i>			2.59	58	

Semi Volatile Organic Compounds (GC/MS) by Method 625.1

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3401482-1 04/13/19 11:27 • (LCSD) R3401482-2 04/13/19 11:47												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
(S) 2-Fluorobiphenyl				60.1	58.1	22.0-127						
(S) p-Terphenyl-d14				72.1	70.2	29.0-141						
(S) Phenol-d5				28.4	27.8	8.00-424						
(S) 2-Fluorophenol				43.3	41.7	10.0-120						
(S) 2,4,6-Tribromophenol				66.0	66.0	10.0-153						

L1087068-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1087068-01 04/13/1	9 14:47 • (MS) R	3401475-1 04/	13/19 15:11 • (N	1SD) R3401475-	2 04/13/19 15	i:34							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Acenaphthene	50.0	U	26.4	30.2	52.8	60.4	1	47.0-145			13.4	48	
Acenaphthylene	50.0	U	24.8	28.6	49.6	57.2	1	33.0-145			14.2	74	L
Anthracene	50.0	U	31.2	35.7	62.4	71.4	1	27.0-133			13.5	66	
Benzo(a)anthracene	50.0	U	33.9	37.0	67.8	74.0	1	33.0-143			8.74	53	
Benzo(b)fluoranthene	50.0	0.0164	31.3	33.8	62.6	67.6	1	24.0-159			7.68	71	Г
Benzo(k)fluoranthene	50.0	U	32.5	34.3	65.0	68.6	1	11.0-162			5.39	63	
Benzo(g,h,i)perylene	50.0	U	33.3	36.1	66.6	72.2	1	1.00-219			8.07	97	L
Benzo(a)pyrene	50.0	U	31.0	33.2	62.0	66.4	1	17.0-163			6.85	72	
Bis(2-chlorethoxy)methane	50.0	U	21.2	23.8	42.4	47.6	1	33.0-184			11.6	54	
Bis(2-chloroethyl)ether	50.0	U	18.9	22.7	37.8	45.4	1	12.0-158			18.3	108	
Bis(2-chloroisopropyl)ether	50.0	U	22.7	27.5	45.4	55.0	1	36.0-166			19.1	76	
4-Bromophenyl-phenylether	50.0	U	30.4	33.3	60.8	66.6	1	53.0-127			9.11	43	
2-Chloronaphthalene	50.0	U	22.9	26.6	45.8	53.2	1	60.0-120	<u>J6</u>	<u>J6</u>	14.9	24	
4-Chlorophenyl-phenylether	50.0	U	27.6	31.1	55.2	62.2	1	25.0-158			11.9	61	
Chrysene	50.0	U	31.4	34.1	62.8	68.2	1	17.0-168			8.24	87	
Dibenz(a,h)anthracene	50.0	U	32.7	35.2	65.4	70.4	1	1.00-227			7.36	126	
3,3-Dichlorobenzidine	100	U	38.9	50.5	38.9	50.5	1	1.00-262			26.0	108	
2,4-Dinitrotoluene	50.0	U	33.7	38.7	67.4	77.4	1	39.0-139			13.8	42	
2,6-Dinitrotoluene	50.0	U	29.2	33.2	58.4	66.4	1	50.0-158			12.8	48	
Benzidine	100	U	ND	4.71	0.000	4.71	1	1.00-120	<u>J6</u>	<u>J3</u>	200	40	
Fluoranthene	50.0	U	36.0	39.4	72.0	78.8	1	26.0-137			9.02	66	
Fluorene	50.0	U	28.6	32.7	57.2	65.4	1	59.0-121	<u>J6</u>		13.4	38	
Hexachlorobenzene	50.0	U	29.5	32.9	59.0	65.8	1	1.00-152			10.9	55	
Hexachloro-1,3-butadiene	50.0	U	18.2	21.3	36.4	42.6	1	24.0-120			15.7	62	
Hexachlorocyclopentadiene	50.0	U	17.1	20.3	34.2	40.6	1	10.0-146			17.1	34	
Hexachloroethane	50.0	U	15.7	18.4	31.4	36.8	1	40.0-120	<u>J6</u>	<u>J6</u>	15.8	52	
Indeno(1,2,3-cd)pyrene	50.0	U	32.0	34.8	64.0	69.6	1	1.00-171			8.38	99	
Isophorone	50.0	U	22.0	24.6	44.0	49.2	1	21.0-196			11.2	93	

(S) 2-Fluorophenol

(S) 2,4,6-Tribromophenol

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 625.1

L1088281-02

L1087068-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1087068-01 04/13/19 14:47 • (MS) R3401475-1 04/13/19 15:11 • (MSD) R3401475-2 04/13/19 15:34

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Naphthalene	50.0	U	20.9	24.0	41.8	48.0	1	21.0-133			13.8	65
Nitrobenzene	50.0	0.827	21.3	25.2	40.9	48.7	1	35.0-180			16.8	62
n-Nitrosodimethylamine	50.0	U	19.6	24.1	39.2	48.2	1	10.0-120			20.6	40
n-Nitrosodiphenylamine	50.0	U	31.1	35.5	62.2	71.0	1	16.0-160			13.2	28
n-Nitrosodi-n-propylamine	50.0	U	23.1	27.2	46.2	54.4	1	1.00-230			16.3	87
Phenanthrene	50.0	U	31.9	34.9	63.8	69.8	1	54.0-120			8.98	39
Benzylbutyl phthalate	50.0	U	37.4	40.2	74.8	80.4	1	1.00-152			7.22	60
Bis(2-ethylhexyl)phthalate	50.0	0.772	38.4	41.5	75.3	81.5	1	8.00-158			7.76	82
Di-n-butyl phthalate	50.0	U	38.9	43.0	77.8	86.0	1	1.00-120			10.0	47
Diethyl phthalate	50.0	U	33.2	36.8	66.4	73.6	1	1.00-120			10.3	100
Dimethyl phthalate	50.0	U	30.0	33.5	60.0	67.0	1	1.00-120			11.0	183
Di-n-octyl phthalate	50.0	0.420	40.9	44.6	81.0	88.4	1	4.00-146			8.65	69
Pyrene	50.0	U	31.1	34.2	62.2	68.4	1	52.0-120			9.49	49
1,2,4-Trichlorobenzene	50.0	U	18.7	21.3	37.4	42.6	1	44.0-142	<u>J6</u>	<u>J6</u>	13.0	50
4-Chloro-3-methylphenol	50.0	U	30.1	34.3	60.2	68.6	1	22.0-147			13.0	73
2-Chlorophenol	50.0	U	22.0	25.8	44.0	51.6	1	23.0-134			15.9	61
2,4-Dichlorophenol	50.0	U	26.9	31.8	53.8	63.6	1	39.0-135			16.7	50
2,4-Dimethylphenol	50.0	U	26.1	29.3	52.2	58.6	1	32.0-120			11.6	58
4,6-Dinitro-2-methylphenol	50.0	U	42.7	49.2	85.4	98.4	1	1.00-181			14.1	203
2,4-Dinitrophenol	50.0	U	28.9	33.6	57.8	67.2	1	1.00-191			15.0	132
2-Nitrophenol	50.0	U	28.7	33.1	57.4	66.2	1	29.0-182			14.2	55
4-Nitrophenol	50.0	U	16.2	18.4	32.4	36.8	1	1.00-132			12.7	131
Pentachlorophenol	50.0	U	29.8	32.8	59.6	65.6	1	14.0-176			9.58	86
Phenol	50.0	U	11.1	13.7	22.2	27.4	1	5.00-120			21.0	64
2,4,6-Trichlorophenol	50.0	U	27.5	32.2	55.0	64.4	1	37.0-144			15.7	58
(S) Nitrobenzene-d5					44.0	50.0		15.0-314				
(S) 2-Fluorobiphenyl					47.6	54.3		22.0-127				
(S) p-Terphenyl-d14					60.3	65.4		29.0-141				
(S) Phenol-d5					19.9	22.0		8.00-424				

32.5

65.0

38.3

72.0

10.0-120

10.0-153

GLOSSARY OF TERMS

GLUSSART OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

Appleviations and	a Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

C C C C C C C C C C C C C C C C C C C	2 000p0
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
.16	The sample matrix interfered with the ability to make any accurate determination; spike value is low

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

PAGE:

19 of 20

			Billing Info	rmation	١.			T		i sa sa	· A	nalysis ,	Contair	ner / Pr	eservativ	/e	ha ka		Chain of Custod	y Page of
Dunckies and Dunhan PO Box 639 Cary, NC 27512	n		Project M 511 Keis Cary, NC	ler Dri	ive, S	Suite :	102	Pres Chk											Pace National G	Analytical® Penter for Testing & Innovation
Report to:			Email To: r	kolb@d	lunckl	eedun	ham.com												12065 Lebanon Ro Mount Juliet, TN 3 Phone: 615-758-5	7122
Project Description: NCDOT R-2511 Beau	fort and Ma	rtin Coun	tie	City/S Collec	State cted:		nington a												Phone: 800-767-56 Fax: 615-758-5859	
Phone: 919-858-9898 Fax: 919-858-9899	Client Project	# 1939		3	roject IDUN	#	ICDOT R251			4,-				75					F07	
collected by (print): Alec Dawanowsk	A CONTRACTOR OF THE PARTY OF TH	D sto		P.O. #					Amb NoPres	HCI									Acctnum: DU	
Collected by (signature): Aux June 15 Immediately Packed on Ice N Y	Rush? (L Same Da Next Da Two Day Three Da	y 5 Day / 10 Da		Quot		Result	s Needed	No.	E 100ml An	9 40mlAmb-HC						1			Prelogin: P69 TSR: 873 - He	99279 other J Wagner
Sample ID	Comp/Grab	Matrix *	Depth		Date		Time	Cntrs	100 100 11	6200									Shipped Via:	Sample # (lab only)
TW-I	Grab	GW	NA	4	181	19	1450	5	X	X	44					-6.4				-01
TW-Z		GW		H	181	19	1800	5	X	Х										-02
TW-3		GW		41	9/	19	1655	5	X	Х				71	45					-03
TW-4		GW		14/	10	19	1120	5	Х	Х			1							-04
Tw-5	1	GW	1	41	1	19	1215	5	X	Х										
		GW						5	×	X										
												RAL	SCR	EEN:	<0.5	nR/h				
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other	Samples retur	ned via:	when	we	ve Kv	10W Tra	Contection (Contection)	n n	the cod	lab it to	sted	pH Flor	N	Ter Oth	mp		COC S COC S Bottl Corre Suffi	ct bot	tles used: volume sent If Applicated adspace:	$\frac{1}{2} \frac{1}{2} \frac{1}$
Relinquished by: (Signature) Relinquished by: (Signature)))	Date: 10 Date: 4/00	/19	Time: /	1/		eived by: (Signa	1/				Temp:	-0.1	C Bo	HCL / I TBR ttles Rece	ИеоН			on Correct/C	necked: <u>J</u> Y
Relinguished by (Senature)		Date:		Time:	/	Rec	eived for lab by	r: (Signa	ture)			Date:	19	Ti Q	me: 390	2	Holds	03-	0237	Condition: NCF / OK

Divider Page

ANALYTICAL REPORT

April 26, 2019

Duncklee and Dunham

Sample Delivery Group: L1091336 Samples Received: 04/11/2019 Project Number: 201939

Description: NCDOT R-2511 Beaufort and Martin Counties-Parcel 85

Report To: Rick Kolb

PO Box 639

Cary, NC 27512

Entire Report Reviewed By:

Heather J Wagner

Hanhlage

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
TW-2 L1091336-02	5
Qc: Quality Control Summary	6
Volatile Petroleum Hydrocarbons by Method MADEPV	6
Gl: Glossary of Terms	7
Al: Accreditations & Locations	8
Sc: Sample Chain of Custody	9

TW-2 L1091336-02 GW			Collected by Alec Dziwanowski	Collected date/time 04/08/19 18:00	Received date 04/11/19 09:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Petroleum Hydrocarbons by Method MADEPV	WG1270096	20	04/22/19 19:16	04/22/19 19:16	ACG	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Heather J Wagner Project Manager

Project Narrative

Sample TW-2 is reported separately per client request. All samples listed on the attached COC have been reported individually under SDG number L1091336 based on their Parcel ID.

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 04/08/19 18:00

L1091336

Volatile Petroleum Hydrocarbons by Method MADEPV

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Unadjusted C5-C8 Aliphatics	42200		666	2000	20	04/22/2019 19:16	WG1270096
Unadjusted C9-C12 Aliphatics	25200		666	2000	20	04/22/2019 19:16	WG1270096
Unadjusted C9-C10 Aromatics	10100		666	2000	20	04/22/2019 19:16	WG1270096
Total VPH	77500		666	2000	20	04/22/2019 19:16	WG1270096
(S) 2,5-Dibromotoluene(FID)	100			70.0-130		04/22/2019 19:16	WG1270096
(S) 2,5-Dibromotoluene(PID)	93.1			70.0-130		04/22/2019 19:16	WG1270096

ONE LAB. NATIONWIDE.

Volatile Petroleum Hydrocarbons by Method MADEPV

L1091336-02

Method Blank (MB)

(MB) R3404446-3 04/22/1	9 17:38			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Unadjusted C5-C8 Aliphatics	U		33.3	100
Unadjusted C9-C12 Aliphatics	U		33.3	100
Unadjusted C9-C10 Aromatics	U		33.3	100
Total VPH	U		33.3	100
(S) 2,5-Dibromotoluene(FID)	96.7			70.0-130
(S) 2,5-Dibromotoluene(PID)	91.2			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3404446-1 04/22/	19 15:28 • (LCSI	D) R3404446-	2 04/22/19 15:5	59						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Unadjusted C5-C8 Aliphatics	1200	1030	1030	86.0	86.2	70.0-130			0.289	25
Unadjusted C9-C12 Aliphatics	1400	1280	1290	91.5	92.1	70.0-130			0.700	25
Unadjusted C9-C10 Aromatics	200	159	160	79.5	79.9	70.0-130			0.510	25
Total VPH	2800	2470	2480	88.2	88.6	70.0-130			0.445	25
(S) 2,5-Dibromotoluene(FID)				95.5	99.0	70.0-130				
(S) 2,5-Dibromotoluene(PID)				90.8	92.8	70.0-130				

PAGE:

6 of 10

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

Guide to Reading and Understanding Your Laboratory Report

Deliminons
Method Detection Limit.
Reported Detection Limit.
Recovery.
Relative Percent Difference.
Sample Delivery Group.
Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Not detected at the Reporting Limit (or MDL where applicable).
The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Confidence level of 2 sigma.
A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana 1	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

IB				Billing Information.							Analy	sis / Contair	ner / Pre	servative	* 	Chain of Custody Page of		
Dunckies and Dunham PO Box 639 Cary, NC 27512		Project Manager 511 Keisler Drive, Suite 102 Cary, NC 27518												6		e Analytical * Cartes for Teating & Inspection	ю	
Report to: Rick Kolb Project Description: NCDOT R-2511 Beaufort and Martin Counties			Email To: rl	edun	ham.com									12065 Lebanon Mount Juliet, TN Phone: 615-758	37122 5858			
			tie	city/state Wishington Collected: Williamston												Fax: 615-758-58	Phone: 800-767-5859 Fax: 615-758-5859	
Phone: 919-858-9898 Client Project # 201939				Lab Project # DUNDUNNC-NCDOT R2511									4			F078 L1091330		N.V.
ollected by (print): Alec Dziwanowski	Site/Facility ID# DLD Standard			P.O.#					PoN dr	D-HG							UNDUNNC	Annual Property and Publishers
Immediately Next Day 50		Five 5 Da 10 D	e Day			Resul	esults Needed		100ml Amb NoPres	40mlAmb-HC						Prelogin: P699279 TSR: 873 - Heather J Wagner PB:		
Sample ID	Comp/Grab	Matrix *	Depth		Date		Time	Of	38	6200						Shipped Via Remarks	FedEX Ground Sample # (lab only)	-
TW-I	Grab	GW	NA	L	181	19	1450	5	X	X				1			01	
TW-Z	15.	GW		4	181	19	1800	5	X	X							-02	
TW-3		GW		4	9/1	9	1655	5	X	X				- - - - -			-63-	
Tw-4		GW		10	10/1	9	1120	5	Х	X							-04	
TW-5	V	GW	TU	4	10/	19	1215	5	X	X			1					
		GW						55)	X	X								
											F	RAD SCI	REFN.	<0.5 mR/I				And the street
														KOIO IIIIVI				
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bloassay WW - WasteWater			TW-5 When	we know if we n						lab it test	d	pH	Ter	np	COC S Bottle Correc	Sample Receipt eal Present/Int igned/Accurate: es azrive intac ct bottles used	act: $NP = \frac{Y}{YY} = \frac{1}{1}$	N N N
DW - Drinking Water OT - Other	Samples returned via:UPS V_FedExCourier						Tracking # 4874 1009-630				18	7			Sufficient volume sent:			N
Relinquished by: (Signature) Date:		0/19	Time:			Received by: (Slegature)				Tri	Trip Blank Received: Yes / No HCL / MeoH TBR			de				
Relinquished by (Signature) Date:		2/15	Time: Received by Synstyre!				V		Te	mp: 2-5-0-1		ottles Received:	If presi	ervation required b	y Login: Date/Time			
Relinguistied by 15 mature) Da		Date:		Time:	7	Received for lab by: (Si			nature)			hilia	T	ime:	Holds	03-0237	Condition: NCF / OK	

Andy Vann

From:

Heather Wagner

Sent:

Monday, April 22, 2019 9:09 AM

To:

Login

Subject:

L1088281 - relog for VPH - expires today

Please relog L1088281-01, -02, -03 and -04 for VPHNC. -01 and -02 go out of hold today. R5 due 4/29

Thanks,

Heather Wagner

Project Manager

Pace Analytical National Center for Testing & Innovation 12065 Lebanon Road | Mt. Juliet, TN 37122 Office 615.773.9686 | Cell 615.289.9801 hwagner@pacenational.com | pacenational.com

ESC Lab Sciences is now Pace Analytical National Center for Testing & Innovation! Please make note of my new email address and website.