

FOUNDATION RECOMMENDATIONS

DUAL BRIDGES ON US 17 OVER GUM SWAMP CREEK BETWEEN SR 1421 AND SR 1420

REVISION 1

TIP NO. R-2511

BEAUFORT COUNTY, NORTH CAROLINA

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

May 3, 2021

г

	-	FOUN	DATION 1	RECOMN	IENDATIONS		
ST	TATE NO.		35494.1.1	DESCRIPTION BRIDGE ON US 17 OVER GUM			
	TIP NO.		R-2511	SWAMP C	REEK BETWEEN SR 1421 AND SR 1420		
	COUNTY	B	EAUFORT	LEFT LA	NE - REVISION 1		
	STATION	15	6+55.00 -L-	-			
		INITIAI	LS DATE		P.E. SEAL		
DESIGN	1	MS	4/5/21		SEAL		
CHECK	-	AA	4/14/21		018580		
APPROVE	2	GT	4/30/21		DocuSigned AVY R TANO		
					Sary Jaijts/2021 SIGNATURE ⁷⁴⁸⁵		
	BENT ST	ATION	FOUNDATION TYPE	FACTORED RESISTANCE	ADDITIONAL INFORMATION		
					Bottom of Cap Elev. = $34.6 \text{ ft} \pm (LT)$		
END BENT	156+2	1.18	CAP ON HP 12 x 53	98	33.2 ft \pm (RT)		
1	-L·	-	STEEL H-PILES	Tons/Pile	Avg. Estimated Pile Length $= 80$ ft		
					Number of Piles/Cap = 6		
					Bottom of Cap Elev. = $34.8 \text{ ft} \pm (LT)$		
End BENT	156+8	0.76	CAP ON HP 12 x 53	98	33.5 ft \pm (RT)		
2	-L·	-	STEEL H-PILES	Tons/Pile	Avg. Estimated Pile Length $= 80$ ft		
					Number of Piles/Cap = 6		

(SEE NOTES ON PLANS AND COMMENTS ON FOLLOWING PAGES.)

FOUNDATION RECOMMENDATIONS

BRIDGE ON US 17 OVER GUM SWAMP CREEK BETWEEN SR 1421 AND SR 1420 LEFT LANE

FOUNDATION RECOMMENDATION NOTES ON PLANS

- 1. FOR PILES, SEE SECTION 450 OF THE STANDARD SPECIFICATIONS.
- 2. PILES AT END BENTS NO. 1 AND NO. 2 ARE DESIGNED FOR A FACTORED RESISTANCE OF 98 TONS PER PILE.
- 3. DRIVE PILES AT END BENTS NO. 1 AND NO. 2 TO A REQUIRED DRIVING RESISTANCE OF 165 TONS PER PILE.
- 4. TESTING PILES WITH THE PDA DURING DRIVING, RESTRIKING OR REDRIVING MAY BE REQUIRED. THE ENGINEER WILL DETERMINE THE NEED FOR PDA TESTING. FOR PDA TESTING, SEE SECTION 450 OF THE STANDARD SPECIFICATIONS.
- 5. THE SCOUR CRITICAL ELEVATION FOR END BENTS NO. 1 AND NO. 2 IS ELEVATION 12 FT. SCOUR CRITICAL ELEVATIONS ARE USED TO MONITOR POSSIBLE SCOUR PROBLEMS DURING THE LIFE OF THE STRUCTURE.
- 6. OBSERVE A 6 MONTH WAITING PERIOD AFTER CONSTRUCTING THE EMBANKMENT TO WITHIN 2 FT OF FINISHED GRADE BEFORE BEGINNING END BENT CONSTRUCTION AT END BENTS NO. 1 AND NO. 2. FOR BRIDGE WAITING PERIODS, SEE ROADWAY PLANS AND SECTION 235 OF THE STANDARD SPECIFICATIONS.
- 7. SEE ROADWAY PLANS AND SECTION 235 OF THE STANDARD SPECIFICATIONS FOR THE SETTLEMENT GAUGES REQUIRED AT END BENTS NO. 1 AND NO. 2.

SPECIAL FOUNDATION RECOMMENDATION NOTES ON PLANS

1. INSTALL PZ27 OR EQUIVALENT SHEET PILE SECTION TO A TIP ELEVATION NO HIGHER THAN -10 FEET AT END BENTS NO. 1 AND NO. 2.

FOUNDATION RECOMMENDATIONS COMMENTS

- 1. PILE LENGTHS ARE BASED ON PLUMB PILES FROM BOTTOM OF CAP TO THE TIP ELEVATION PLUS 2 FEET EMBEDMENT, ROUNDED UP TO THE NEAREST FIVE FEET.
- 2. THE REQUIRED DRIVING RESISTANCE USES A RESISTANCE FACTOR OF 0.6
- 3. TYPE I STANDARD BRIDGE APPROACH FILLS OR TYPE A ALTERNATIVE APPROACH FILLS ARE REQUIRED FOR THE END BENTS IN ACCORDANCE WITH THE 2018 NCDOT STANDARD DRAWING 422.01 OR 422.03.
- 4. SCOUR CRITICAL ELEVATION IS 3 FEET BELOW DESIGN SCOUR ELEVATION.
- 5. THE DESIGN SCOUR ELEVATION AT END BENTS NO. 1 AND NO. 2 IS ELEVATION 15 FEET FOR DESIGN OF PZ27 SHEET PILING.
- 6. THE CORROSION PROTECTION OF SHEET PILES SHALL BE ADDRESSED BY THE STRUCTURE MANAGEMENT UNIT.

PILE PAY ITEMS (Revised 8/11/15)

WBS ELEMENT	35494.1.1	DATE	4/14/2021
TIP NO.	R-2511	DESIGNED BY	MS
COUNTY	BEAUFORT	CHECKED BY	AA
STATION	156+55 -L-		

DESCRIPTION BRIDGE ON US 17 OVER GUM SWAMP CREEK BETWEEN SR 1421 AND SR 1420 LEFT LANE

NUMBER OF BENTS WITH PILES NUMBER OF PILES PER BENT NUMBER OF END BENTS WITH PILES NUMBER OF PILES PER END BENT

Only required for "Predrilling for Piles" & "Pile Excavation" pay items

		PILE PAY ITEM QUANTITIES							
]	Pile			
	Steel				Exc	avation			
	Pile	Pipe Pile	Predrilling	Pile	(per l	inear ft)	PDA		
Bent # or	Points	Plates	For Piles	Redrives	In	Not In	Testing		
End Bent #	(yes/no)	(yes/no/maybe)	(per linear ft)	(per each)	Soil	Soil	(per each)		
END BENT NO. 1	No			3					
END BENT NO. 2	No			3			\land		
							$ \setminus / $		
							/ \		
тоты с					0				
TOTALS	0		0	6	0	0	l		

Notes:

Blanks or "no" represent quantity of zero.

If steel pile points are required, calculate quantity of "Steel Pile Points" as equal to the number of steel piles.

If pipe pile plates are or may be required, calculate the quantity of "Pipe Pile Plates" as equal to the number of pipe piles.

Show quantity of "PDA Testing" on the plans as total only.

Г

		FOUN	DATION 1	RECOMN	IENDATIONS		
ST	TATE NO.		35494.1.1	DESCRIPTION BRIDGE ON US 17 OVER GUM			
	TIP NO.		R-2511	SWAMP C	REEK BETWEEN SR 1421 AND SR 1420		
	COUNTY	B	EAUFORT	RIGHT LA	ANE - REVISION 1		
	STATION	15	6+55.00 -L-				
		INITIAI	LS DATE		P.E. SEAL		
DESIGN	V	MS	4/5/21		SEAL		
CHECK		AA	4/14/21		018580		
APPROVE	E	GT	4/30/21		DocuSigned WY R. TAY		
					Sary Jay 8/2021 SIGNATORE 185		
	BENT ST	ATION	FOUNDATION TYPE	FACTORED RESISTANCE	ADDITIONAL INFORMATION		
					Bottom of Cap Elev. = $33.5 \text{ ft} \pm (LT)$		
END BENT	156+2	8.87	CAP ON HP 12 x 53	98	$32.2 \text{ ft} \pm (\text{RT})$		
1	-L·	-	STEEL H-PILES	Tons/Pile	Avg. Estimated Pile Length $= 80$ ft		
					Number of Piles/Cap = 6		
					Bottom of Cap Elev. = $33.7 \text{ ft} \pm (\text{LT})$		
End BENT	156+8	9.29	CAP ON HP 12 x 53	98	$32.4 \text{ ft} \pm (\text{RT})$		
2	BENT -L-		STEEL H-PILES	Tons/Pile	Avg. Estimated Pile Length $= 80$ ft		
					Number of Piles/Cap = 6		

(SEE NOTES ON PLANS AND COMMENTS ON FOLLOWING PAGES.)

FOUNDATION RECOMMENDATIONS

BRIDGE ON US 17 OVER GUM SWAMP CREEK BETWEEN SR 1421 AND SR 1420 RIGHT LANE

FOUNDATION RECOMMENDATION NOTES ON PLANS

- 1. FOR PILES, SEE SECTION 450 OF THE STANDARD SPECIFICATIONS.
- 2. PILES AT END BENTS NO. 1 AND NO. 2 ARE DESIGNED FOR A FACTORED RESISTANCE OF 98 TONS PER PILE.
- 3. DRIVE PILES AT END BENTS NO. 1 AND NO. 2 TO A REQUIRED DRIVING RESISTANCE OF 165 TONS PER PILE.
- 4. TESTING PILES WITH THE PDA DURING DRIVING, RESTRIKING OR REDRIVING MAY BE REQUIRED. THE ENGINEER WILL DETERMINE THE NEED FOR PDA TESTING. FOR PDA TESTING, SEE SECTION 450 OF THE STANDARD SPECIFICATIONS.
- 5. THE SCOUR CRITICAL ELEVATION FOR END BENTS NO. 1 AND NO. 2 IS ELEVATION 12 FT. SCOUR CRITICAL ELEVATIONS ARE USED TO MONITOR POSSIBLE SCOUR PROBLEMS DURING THE LIFE OF THE STRUCTURE.
- 6. OBSERVE A 4 MONTH WAITING PERIOD AFTER CONSTRUCTING THE EMBANKMENT TO WITHIN 2 FT OF FINISHED GRADE BEFORE BEGINNING END BENT CONSTRUCTION AT END BENTS NO. 1 AND NO. 2. FOR BRIDGE WAITING PERIODS, SEE ROADWAY PLANS AND SECTION 235 OF THE STANDARD SPECIFICATIONS.
- 7. SEE ROADWAY PLANS AND SECTION 235 OF THE STANDARD SPECIFICATIONS FOR THE SETTLEMENT GAUGES REQUIRED AT END BENTS NO. 1 AND NO. 2.

SPECIAL FOUNDATION RECOMMENDATION NOTES ON PLANS

1. INSTALL PZ27 OR EQUIVALENT SHEET PILE SECTION TO A TIP ELEVATION NO HIGHER THAN -10 FEET AT END BENTS NO. 1 AND NO. 2.

FOUNDATION RECOMMENDATIONS COMMENTS

- 1. PILE LENGTHS ARE BASED ON PLUMB PILES FROM BOTTOM OF CAP TO THE TIP ELEVATION PLUS 2 FEET EMBEDMENT, ROUNDED UP TO THE NEAREST FIVE FEET.
- 2. THE REQUIRED DRIVING RESISTANCE USES A RESISTANCE FACTOR OF 0.6
- 3. TYPE I STANDARD BRIDGE APPROACH FILLS OR TYPE A ALTERNATIVE APPROACH FILLS ARE REQUIRED FOR THE END BENTS IN ACCORDANCE WITH THE 2018 NCDOT STANDARD DRAWING 422.01 OR 422.03.
- 4. SCOUR CRITICAL ELEVATION IS 3 FEET BELOW DESIGN SCOUR ELEVATION.
- 5. THE DESIGN SCOUR ELEVATION AT END BENTS NO. 1 AND NO. 2 IS ELEVATION 15 FEET FOR DESIGN OF PZ27 SHEET PILING.
- 6. THE CORROSION PROTECTION OF SHEET PILES SHALL BE ADDRESSED BY THE STRUCTURE MANAGEMENT UNIT.

PILE PAY ITEMS (Revised 8/11/15)

WBS ELEMENT	35494.1.1	DATE	4/14/2021
TIP NO.	R-2511	DESIGNED BY	MS
COUNTY	BEAUFORT	CHECKED BY	AA
STATION	156+55 -L-		

DESCRIPTION BRIDGE ON US 17 OVER GUM SWAMP CREEK BETWEEN SR 1421 AND SR 1420 RIGHT LANE

NUMBER OF BENTS WITH PILES NUMBER OF PILES PER BENT NUMBER OF END BENTS WITH PILES NUMBER OF PILES PER END BENT

Only required for "Predrilling for Piles" & "Pile Excavation" pay items

		n			IFC				
		PILE PAY ITEM QUANTITIES							
]	Pile			
	Steel				Exc	avation			
	Pile	Pipe Pile	Predrilling	Pile	(per l	inear ft)	PDA		
Bent # or	Points	Plates	For Piles	Redrives	In	Not In	Testing		
End Bent #	(yes/no)	(yes/no/maybe)	(per linear ft)	(per each)	Soil	Soil	(per each)		
END BENT NO. 1	No	ĺ		3					
END BENT NO. 2	No			3					
	L								
							/ \		
							/ \		
TOTALS	0	\sim	0	6	0	0	1		

Notes:

Blanks or "no" represent quantity of zero.

If steel pile points are required, calculate quantity of "Steel Pile Points" as equal to the number of steel piles.

If pipe pile plates are or may be required, calculate the quantity of "Pipe Pile Plates" as equal to the number of pipe piles.

Show quantity of "PDA Testing" on the plans as total only.

PROVIDED INFORMATION

STRUCTURAL INFORMATION PRELIMINARY GENERAL DRAWINGS BRIDGE SURVEY REPORT SUBSURFACE INFO

INFORMATION FROM STRUCTURAL ENGINEER

Project:	R2511	-US17	Bridge:		Left Bridge over Gum Swamp		
Bent No.:	EI	31	Prefered Pile Type:			HP12x53	
Number of Piles per bent:	6	6	Number of Wi _per bent:	ng Wall Piles		0	
Bent Station:	156+	21.18	_Bot. of Cap El	.:	34.56 L / 33.2	4 R (ft above m	ean sea level)
MSE Wall (yes/no):	n	0	Bottom of Lev	eling Pad El.:		n/a	
Integral Abutment (yes/no)	ye	es	Pile Spacing:			8'-4"	
Load Combination	Fx	Fy	Fz	Lateral Deflection if Integral	Мх	Му	Mz
(Load is per pile)	kip	kip	kip	inch	kip-ft	kip-ft	kip-ft
Strength I	\searrow	195		n/a	\searrow	\searrow	
Service I	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	140		n/a		\mathbf{i}	\searrow
Bent No.:	E	32	Prefered Pile Type:			HP12x53	
Number of Piles per bent:	6	3	Number of Wi _per bent:	ng Wall Piles	0		
Bent Station:	156+	80.76	_Bot. of Cap El	.:	34.79 L / 33.46 R (ft above mean sea level)		
MSE Wall (yes/no):	n	0	Bottom of Lev	eling Pad El.:		n/a	
Integral Abutment (yes/no)	ye	es	_Pile Spacing:			8'-4"	
Load Combination	Fx	Fy	Fz	Lateral Deflection if Integral	Мх	Му	Mz
	kip	kip	kip	inch	kip-ft	kip-ft	kip-ft
Strength I		195		n/a			\ge
Service I		140		n/a			\ge

Left Bridge End Bent 1 of 1

INFORMATION FROM STRUCTURAL ENGINEER

Project:	R2511	-US17	Bridge:		Right Bridge over Gum Swamp			
Bent No.:	E	31	Prefered Pile Type:			HP12x53		
Number of Piles per bent:	6		Number of Wing Wall Piles per bent:			0		
Bent Station:	156+2	28.87	_Bot. of Cap El	.:	33	.49 L / 32.17 R	(ft)	
MSE Wall (yes/no):	n	0	Bottom of Lev	veling Pad El.:		n/a		
Integral Abutment (yes/no)	ye	es	Pile Spacing:			8'-4"		
Load Combination	Fx	Fy	Fz	Lateral Deflection if Integral	Мх	Му	Mz	
(Load is per pile)	kip	kip	kip	inch	kip-ft	kip-ft	kip-ft	
Strength I		195		n/a		\searrow	\ge	
Service I		140		n/a			>	
Bent No.:	E	32	Prefered Pile Type:		HP12x53			
Number of Piles per bent:	6	3	Number of Wi _per bent:	ng Wall Piles	0			
Bent Station:	156+	89.29	_Bot. of Cap El	.:	33.	33.72 L / 32.40 R (ft)		
MSE Wall (yes/no):	n	0	_Bottom of Lev	veling Pad El.:		n/a		
Integral Abutment (yes/no)	ye	es	_Pile Spacing:			8'-4"		
Load Combination	Fx	Fy	Fz	Lateral Deflection if Integral	Мх	Му	Mz	
	kip	kip	kip	inch	kip-ft	kip-ft	kip-ft	
Strength I		195		n/a		\searrow	\searrow	
Service I	140 n/a		$\left \right\rangle$	$\left \right>$	\rightarrow			

Right Bridge End Bent 1 of 1

σ

		PROJEC	T NO.	<u></u> דפר	2511	
		STATIO	N: 156	5+55 . 0	CO 0 -L-	
1 Suite 700 5 NC License No, F-0112 agers Planners Scientists	BR. NO. 0364 - LEFT BR. NO. 0364 - LEFT PREIDING POR PREIDING SCIENCI	DEPAF DEPAF GE FC GUI ((S	STATE STMENT PRE NERA R BRIDO M SWAMF SRIFFIN R 1420 LE	OF NORTH CAR OF TRAI RALEIGH LIMIN. AL DR GE ON U' BETWE HODGES (BEAR GF FT LA	ARY ARY AWIN S 17 OVE EN SR 14 RASS RD. NE	TION G R 21)
olutions	· •	NO. BY:	REVIS DATE:	TONS NO. BY:	DATE:	SHEET NO. SL-2
ENT NOT CONSID	ERED FINAL COMPLETED	1		3 4		total sheets 3

UNLESS

P.V.I. = 158+25.00 -L-EL.= 42.54 V.C. = 180.00 FT. (+)0.4000% (-)0.3093%

-L- GRADE DATA

HYDRAULIC DATA

.....1,436 C.F.S.

OVERTOPPING FLOOD DATA

OVERTOPPING DISCHARGE2,790 C.F.S. FREQUENCY OF OVERTOPPING FLOOD 500 YR.+ OVERTOPPING FLOOD ELEVATION 41.0

HORIZONTAL CURVE DATA -L-

- P.I. STA. 158+92.32 △ = 17°05′49.9″(RT.) D = 1°41′06.6″
- L = 1,014.57' T = 511.08'
- R = 3,400.00

		PROJEC	CT NO. BEAUFO DN: <u>150</u>	<u>R-</u> 0RT 6+55.0	2511 CO 0 -L-	UNTY
		SHEET 1	OF 3	REPLA	CES BRIDG	E NO.0364
1 Suite 700 1 NC License No. F-0112 agers I Planners I Scientists	BR. NO. 0364 - RIGHT BR. NO. 0364 - RIGHT BR. NO. 0364 - RIGHT PREIDUNICALS FOR PREIDUNICALS FOR	DEPA G f gl	RTMENT PRE ENER/ OR BRID JM SWAM (GRIFFIN SR 1420 RI (OF NORTH CAR OF TRAN RALEIGH LIMINA GE ON US P BETWEI I HODGES (BEAR GF GHT LA	NSPORTA ARY AWIN S 17 OVE S 17 OVE N SR 14 RD.) ANE RASS RD. ANE	TION G R 21)
		NO BY	REVIS	SIONS	DATE	SHEET NO. SR-1
ENT NOT CONSID ALL SIGNATURES	ERED FINAL COMPLETED	1	DATE:	85: 종 작	DATE	TOTAL SHEETS 3

σ

		PROJEC	T NO. BEAUFO DN: 150	<u>R-</u> 0RT 6+55.0	2511 CO 0 -L-	UNTY
		SHEET 2	OF 3			
BR. NO. 0364 - RIGHT BR. NO. 0						G R 21
		NO BY	REVIS	LUNS	DATE	SHEET NO. SR-2
ENT NOT CONSID ALL SIGNATURES	ERED FINAL COMPLETED	1	DATE	3 4	DATES	TOTAL SHEETS 3

TYPICAL ON STRUCTURE

WANAGEMENT REGULATIONS. THIS PROJECT COMPLIES WITH LOCAL FLOODPLAIN

		<u>SITE DATA</u>	
	Drainage Area <u>3.86 SQ MI</u>	Source	USGS STREAM STATS 4.0, VERIFIED W/ USGS QUAD MAP – OLD FORD, NC
Elev	River Basin TAR-PAMLICO	Character	RURAL – COASTAL PLAINS (REGION 4)
Elev. <u>37.4</u> ft.	Stream Classification (Such as Trout, Hi	gh Quality Water, etc	.) WS–IV
Elev <u>41.0</u> ft.	Data on Existing Structure SINGLE SPAN, SPAN ADDED FOR NEW OUTSIDE GIRDER ON I–BEAMS W/A REINFORCED CONCRETE	1@21'-10", WHEN PREV S, REINFORCED CONCR SLAB, 32'-0" OUT-TO- Waterway C	(IOUSLY WIDENED AN H-PILE BENT @ CENTER ETE FLOOR OUT Total Waterway Opening
s	Debris Potential: Low Moderate	X. High	

Data on Structures Up and Down Stream 1.9 MI. UPSTREAM MARTIN CO. BRIDGE #570188 ON SR 1534

BRIDGE SURVEY & HYDRAULIC DESIGN REPORT

US17.PDF

SWAMP

N. C. DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS HYDRAULICS UNIT RALEIGH, N. C.

ŴŊ	I.D. No. <u>R-2511</u>	Projec	t No	4.1.1	. Proj. Static	on <u>STA. 156 + </u>	55.0L_
511 0	County BEAUFO	QRT	Bridge Over	GUM SW	AMP	. Bridge Inv.	No. 0056
R-2	On Highway	<u>US 17</u>	Between (GRII	SR 1421 FIN HODGES	and RD)	SR 1420 (BEAR GRASS	RD)
2018	Recommended Stru	ucture <u>DUA</u>		GLE SPAN, 1 @	<u>60′–0″, 36″</u>	AASHTO GIRDER	S,
056			END BENT CAPS	W VERTICAL ABU	<u>TMENTS, 42″</u> (
0 90	Recommended Wid	dth of Roadwa	<u>36'-0"</u>	CLR RDWY (NB	L)	Skew	<u>80°</u>
: פ	Recommended Loc	ation is (Up	, (At) Down) Strea i	n from Existi	ng Crossing.		
PDF Fi	Latitude .	35.679	93°	Longitud	e7	7.07518°	
-	Statewide Tier 🛛		Regional Tier	🗆 Su	vb-Regional Ti	er 🗌	
494.1	Bench Mark is	BM6, ON -L	– STA. 152+76.2,	155.6' RT, RR S	PIKE SET IN 1	4" PINE TREE	
35,	Northing 7070	087.6	Easting 2570501	<u>6</u> Ele	ev. 38.73′	ft. Datum: _ <u>N</u>	AVD 88
	Temporary Crossin	g NOT REC	QUIRED, STAGED (<u>ONSTRUCTION</u>			
/AMP Struc. Inv. No 0056 J.D. No R-2511 Project			RK&K ENG INEERS.	LLP DRIVE STE 350			
SW	R		900 RIDGEFIELD RALEIGH,NC 27609	DRIVE,STE.350 D,LICENSE NO-1) F-0112	NRTH C	SION
GUM	Assisted by:	JONATHAN W	HITTINGTON, PE			Eleni M	ARiggs
Ш	Project Engineer	—Docu tilyFedNy RIG(GS, PE	···· Date			582I.
re(Amit Sachan.	10/31/	2018	0 / 21 / 201	~ ^{<} NG	NEEK

DISCHARGE CALCULATIONS (SIR 2009-5158)	FEMA
DRAINAGE AREA = 3.86 SQ. MI. 100% HYDRAULIC REGION 4, RURAL CONDITION	DRAINAGE AREA=5.86 SQ. MI. EFFECTIVE: 7–7–2014 PRELIMINARY: 6–30–2016
$Q_{10} = 174 (DA)^{0.607} = 400 \text{ c.f.s.}$ SAY 400 c.f.s.	644 c.f.s.
$Q_{25} = 245 (DA) = 557 c.f.s.$ SAT 560 c.f.s. $Q_{50} = 309 (DA)^{0.600} = 695 c.f.s.$ SAY 700 c.f.s.	1,165 c.f.s.
$Q_{100} = 380 (DA)^{0.594} = 848 \text{ c.f.s.}$ SAY 850 c.f.s.	1,436 c.f.s.
$Q_{500} = 550 (DA)^{0.583} = 1,210 \text{ c.f.s.}$ SAY 1,200 c.f.s.	2,194 c.f.s.
SINCE THE FEMA FLOWS ARE HIGHER AND MORE CONSERVATIVE THAN EQUATIONS, THEY WILL BE USED IN THE REVISED HEC-RAS MODEL. THE NOT INCLUDE THE 25-YEAR STORM EVENT, HOWEVER, THE PRELIMINARY H THE FLOWS FOR THE 25-YEAR STORM. EVENT WHICH WILL BE INCLUDED	THE USGS RURAL REGRESSION PUBLISHED FEMA FLOWS DO IEC-RAS MODEL DOES INCLUDE IN THE REVISED HEC-RAS MODEL.
SCOUR CALCULATIONS (HEC-18, 5th EDITION, APRIL 2012)	67
ABUTMENT SCOUR (NCHRP 24–20 EQUATION) $Y_{MAX} = \alpha (Y_c) =$	$\alpha [Y_1(q_{2C}/q_1)] $ $Y_s = Y_{MAX} - Y_o$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	q ₁ = 286.16 /27.52 = 10.40
$Q_2 = 1207.57$ c.f.s. $W_2 = 53.00$ ft $\alpha = 1.17$ (HEC–18, FIGURE 8.9)	$q_{2C} = 1207.57 / 53.00 = 22.78$
$Y_{MAX} = \alpha(Y_c) = 1.17 [6.86 (22.78 / 10.40)^{\circ 7}] = 15.72 \text{ ft.}$	
$Y_s = Y_{max} - Y_o = 15.72 - 2.46 = 13.3 \text{ ft.}$	
500-YR: FROM RS 22348.8: $Y_1 = 8.56$ ft. $Q_1 = 356.86$ c.f.s. $W_1 = 27.52$ ft FROM RS 21950 BRU: $Y_0 = 130.33$ /53.00 = 2.46 ft. $Q_2 = 1844.99$ c.f.s. $W_2 = 53.00$ ft	$q_1 = 356.86 / 27.52 = 12.96$ $q_{2C} = 1844.99 / 53.0 = 34.81$
$\alpha = 1.13$ (HEC-18, FIGURE 8.9)	
$Y_{MAX} = \alpha(Y_{C}) = 1.10 [8.56 (34.81 / 12.96)] = 21.99 \text{ ft.}$	
$Y_s = Y_{MAX} - Y_{O} = 21.99 - 2.46 = 19.5 \text{ ft.}$	
OVERTOPPING OCCURS AT LOW POINT LOCATED AT -L- STA. 153+09.86 AT AN ELEVA ROADWAY IS SUPERELEVATED AT 2.5% AT THIS LOCATION. THE DISCHAR OVERTOPPING IS 2,790 c.f.s. WHICH IS THE 500-YR+ EVENT (Fut20 EVEN	tion of 41.0 ft. Ge required to begin Nt in preliminary model).
HISTORICAL FLOOD INFORMATION BERNICE TYSON IS A LOCAL RESIDENT OF ABOUT 41 YEARS. DURING AN WILL GET UP TO THE BARN AND WILL OCCASIONALLY GET TO THE HOU PER BEAUFORT COUNTY MAINTENANCE ENGINEER OF 7 YEARS, APPROXIMA THE BRIDGE DURING MAJOR RAIN EVENTS.	(MAJOR RAIN EVENT THE WATER JSE. TELY 6"–8" OF WATER WILL CROSS

INFORMATION TO BE SHOWN ON PLANS WS EL. Taken @ River Station 22034.5

<u>1,436</u> c.f.s. Frequency <u>100</u> yr.

ADDITIONAL INFORMATION AND COMPUTATIONS

Overtopping: Discharge <u>2,790</u> c.f.s. Frequency <u>500</u>+ yr.

Design:

Base Flood:

Discharge

			VF 100_YFAR @ R	\$ 22034 5)	
Design Contro					N1/4
Gage Station	No. IVA	· · · · · · · · · · · · · · · · · · ·	Period of Recoi	rds	. IVA
Max. Discharç	geN⁄A	c.f.s.	DateN/A	Fr	equency N⁄A
<u>Historical Floc</u>	od Information: SE	e note in add	ITIONAL INFORMAT	ION SECTION	
Date E	lev. 35.5 ft. Est. F	-req. <u>. < 10</u> .yr. So	Urce LOC	AL RESIDENT	Period of Knowledge
Date E	Elev <u>37.5</u> ft. Est. F	Freq. <u>25</u> yr.So			Reriod of
Date <u>NA</u> E	elev. <u>N/A</u> ft. Est. F	req. <u>N/A</u> yr So	urce	N/A	Knowledge <u>NA</u> yr
Historical Scou	ur Info. : General	. N⁄A ft. Co	ntractionN/A .	ft. Local	N⁄A ft.
Channel Slope	0.0015 ft/ft So	ource <u>F</u> IĘĻD ȘĻ	JRYEY Norm	al Water Surfac	e Elev
Manning's n:	Left O.B. 0.08-0.14	.Channel	Right O.B. 0.0	<u>)8-0.14</u> . Source	FIELD SURVEY 12/19/2017
Flood Study /	DETA Status (BEAUFORT C	ILED FLOOD STU CO. FIS REPORT-EF	JDY, PANEL #5770 =F. 7/7/14, PRELIM. 6	/30/16) Floodwr	av Established? YES
			With		Without
Flood Study L	OOvr Dicchargo I	136 252 10/0		383 H	Floodway 376 ft
Flood Study I	00yr. Dischargel	1 <u>,436</u> c.f.s. WS	Elev.: Floodway		Floodway <u>37.6</u> ft. on 21982
Flood Study I	00yr. Discharge _ !	1,436c.f.s. WS	Elev.: Floodway.	<u>38.3</u> ft. @ River Statio	Floodway <u>37.6</u> ft. on 21982
Flood Study I	00yr. Discharge _ !	1,436c.f.s. WS	Elev.: Floodway. ESIGN DATA		Floodway <u>37.6</u> ft. on 21982
Flood Study I Hydrological A	00yr. Discharge . 1 Nethod	1,436c.f.s. WS <u>DI</u> 5 RURAL REGRESSI	Elev.: Floodway. ESIGN DATA ON EQUATIONS (Floodway <u>37.6</u> ft. on 21982
Hood Study I Hydrological <i>N</i> Hydraulic Des	Wethod <u>USGS</u>	1,436c.f.s. WS <u>DI</u> 5 RURAL REGRESSI RAS 4.1.0 FILENA	Elev.: Floodway. ESIGN DATA ON EQUATIONS (ME: R-2511_GumSw		Floodway <u>37.6</u> ft. on 21982
Hood Study I Hydrological <i>N</i> Hydraulic Des Floods Evalua	Wethod <u>USGS</u> ign Method <u>HEC</u> - ited: Freq.	1,436c.f.s. WS <u>DI</u> 5 RURAL REGRESSI RAS 4.1.0 FILENA	Elev.: Floodway. ESIGN DATA ON EQUATIONS (ME: R-2511_GumSw Elev.		Floodway <u>37.6</u> ft. on 21982 Bridge Opening Velocity
Hydrological / Hydraulic Des Floods Evalua River Station	Wethod <u>USGS</u> ign Method <u>HEC</u> - ited: Freq. (yr.) 10	1,436c.f.s. WS <u>DI</u> 5 RURAL REGRESSI RAS 4.1.0 FILENA Q (c.f.s) 644	Elev.: Floodway. <u>ESIGN DATA</u> <u>ON EQUATIONS (</u> <u>ME: R-2511_GumSw</u> <u>Elev.</u> (ff.) <u>36.1</u>		Floodway <u>37.6</u> on 21982 Bridge Opening Velocity (f.p.s.) 3.7
Hydrological <i>I</i> Hydraulic Des Floods Evalua River Station 22034.5	Wethod <u>USGS</u> ign Method <u>HEC</u> ited: Freq. (yr.) 10	2436	Elev.: Floodway. ESIGN DATA ON EQUATIONS (ME: R-2511_GumSw Elev. (ff.) 36.1 		Floodway <u>37.6</u> ft. on 21982 Bridge Opening Velocity (f.p.s.) <u>3.7</u> <u>4.6</u>
Hydrological <i>I</i> Hydraulic Des Floods Evalua River Station 22034.5	Wethod USGS sign Method HEC- nted: Freq. (yr.) 10 	2436	Elev.: Floodway. ESIGN DATA ON EQUATIONS (ME: R-2511_GumSw Elev. (ff.) 36.1 37.0 37.1		Floodway <u>37.6</u> ft. on 21982 Bridge Opening Velocity (f.p.s.) <u>3.7</u> <u>4.6</u> <u>4.9</u>
Hood Study I Hydrological <i>I</i> Hydraulic Des Floods Evalua River Station 22034.5	Wethod	2436c.f.s. WS DI S RURAL REGRESSI RAS 4.1.0 FILENA (c.f.s) 	Elev.: Floodway. ESIGN DATA ON EQUATIONS (ME: R-2511_GumSw Elev. (ff.) 36.1 		Floodway
Hood Study I Hydrological <i>I</i> Hydraulic Des Floods Evalua River Station 22034.5	Wethod USGS ign Method <u>HEC</u> - ited: Freq. (yr.) 10 25 50 (DESIGN) 100 	2,194	Elev.: Floodway. ESIGN DATA ON EQUATIONS (ME: R-2511_GumSw Elev. (ff.) 36.1 37.0 37.1 37.4 39.0		Floodway <u>37.6</u> ft. on 21982 Bridge Opening Velocity (f.p.s.) <u>3.7</u> <u>4.6</u> <u>4.9</u> <u>6.0</u> <u>9.2</u>
Hydrological <i>I</i> Hydraulic Des Floods Evalua River Station 22034.5	Wethod USGS sign Method HEC- nted: Freq. (yr.) 10 25 50 (DESIGN) 100 500 500 500 500 500 500 500 	I/436 .c.f.s. WS DI S RURAL REGRESSI RAS 4.1.0 FILENA Q (c.f.s) .644	Elev.: Floodway. ESIGN DATA ON EQUATIONS (ME: R-2511_GumSw Elev. (ff.) 36.1 37.0 37.1 37.4 39.0 Elev237.8 .s.f., 10	 38.3 ft. @ River Static SIR 2009–5158). amp_US17.pr[Backwater (ft.) 0.7 1.2 0.9 0.7 1.6 O0yr W.S. Elev. 	Floodway 37.6 ft. on 21982 Bridge Opening Velocity (f.p.s.) 3.7 4.6 4.9 6.0 9.2 237.8 s.f. Total 237.8 s.f.
Hydrological / Hydraulic Des Floods Evalua River Station 22034.5 Waterway Ope	Wethod USGS sign Method HEC- nted: Freq. (yr.) 	I/436 .c.f.s. WS DI S RURAL REGRESSI RAS 4.1.0 FILENA Q (c.f.s) .644 .924 .1,165 .1,436 .2,194 low:Design W.S. un) 1.4	Elev.: Floodway. ESIGN DATA ON EQUATIONS (ME: R-2511_GumSw Elev. (ff.) 36.1 37.0 37.1 37.4 39.0 Elev. 237.8		Floodway

PROJECT REFERENCE NO. SHEET NO. R-2511 3 SITE PLAN 40 80 FEET $\psi_{-}\psi$ $\tilde{SKEW} = 80^{\circ}$ BRIDGE NO.060364 160 TO BEAR GRASS ROAD pata K K K K K K K K K К K K K K K K K K K K K K K K \swarrow К K К K K K K

cuSigr	n Envelo	pe ID: 68	E798FF-	7224-4120	C-AACA-1	EDD74620	2864			1	1	1	1			1	1	1	1	1	1	1	1	
6/2		150	140	130	120	110	100	90	80	70	60	50 4	40	30	2 0 1	10	Ò	10	20	30	40	50	60	70
													1 1 1			1 1 1								
					1 	, , , , , , , , , , , , , , , , , , , ,					· · · · · · · · · ·	, , , , , , , , , , , , , , , , , , , ,	, ,		, , ,	1 1 7							, , , ,	, -
													1											
																· 4								
	70			1	1	1			1		1		1 1 1			1 1 1		1		1			1	
	/.0															1 1 1								
	60												· · · · · · · · · · · ·			, , , , , , , ,								
		1		1	A	RUADWA	Y EME	SANKMENI	Brown- to sandy	grey, loose / GRAVEL,	, moist to	ım aense, wet	SITY CIC	ayey SAN	D,	1 1 1		1		1			1	
					B	Brown f	o grey	r,soff,silty s	andy CL	AY,†race g	gravel, wei	t to saturc	afed -		-		;EE	3)=A	- - EB1-	· B			+	
													1				150	6+28	156+	30		Botto	m of c	ap
	40				<u>+</u> 1		·			3:1										Pav	ement			,
					·															В		>		
ĺ								Grey, very so trace shell f	oft to me ragment	dium stif s,wet to s	f,silty sc saturated	ndy CLAY	 9 1			 	5		2		NDIVIDE	ردممی م	ΔΙ ΡΙΔΙ	V
	20				-		, , ,	, , ,				· ·	, , ,		, , ,	, , , ,	WOH-		WOH-					
ĺ				1	_		· ·	Green-grey,	,mˈedium	stiff,sill	ty sandy o	clayey SIL	T,trace	shell fra	gments,sc	iturate	d <u>5</u>	4 5 4 4 5 4 4 5 4	5					
	10			,		!		Green, stiff, (Yorktown F	sandy ci	layey _SILT_	,trace_sh	ell fragme	ents, sati	urated.	- I	- - -	9	7 4 7 4 7 4 7 4 7 4 7 4						
										· · · · · · · · · · · · · · · · · · ·			· · · · · · ·			, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		× 7 × 7	(13)	4: () K	UAST AL	PLA/N	· · · · · · · · · · · · · · · · · · ·	
	0							Green, mediu	ım stiff	to stiff,	silty sana	ly CLAY,tr	ace she	ell fragme	nts, saturo	ated								
	-10			-		 1 1		Green, stiff	to very	stiff,claye	ey sandy	 SILT,satu	÷ irated					2 4 7 X	, (II)	G	 reen mer	 lium der	se clavev	 S D N
	10				· · · · · ·					· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · ·				(19)	4. 7. 4. 7. 4. 7. 4. 7. 4. 7. 4. 7. 4. 7. 4. 7. 4. 7. 4. 7. 4. 7. 4. 7. 4. 7. 4. 7. 4. 7. 7. 4. 7. 7. 4. 7. 7. 4. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	$\dot{(14)}$					
	20 .							Green, mediu	ım stiff	to stiff,	silty sana	ly CLAY,tr	ace she	ll fragme	nțs, saturo	ated	5		6				, , , , , ,	101
													1 1 1			1 1 1	7							
	30 .				1 <u>1</u> 1		·									1 1	6]			<u>-</u>	
													1 1 1			- - -	(4) (9)							
	40 .																<u> </u>		00/0.D-				<u></u>	
	-50							Green,very (SANDSTON	dense,si VE)	ilty SAND,	saturateo	1							00/0.D-),
			1	1		, , ,		·		, , ,	, , ,	, , ,	, , , ,		, , , ,	, , ,	(00/0.3)-		00/0.8-		, , ,	+		<u> </u>
	60 .							-Green, medi	um dens	se to dens	se, si Ity - SA	AND, satur	ated		, , , , , , , , , , , , , , , , , , , ,	: : :	29		32				+	
				1				(TOLKTOWIT I	- 01 1110110	117			1				(18)	BT BT	(17)— B	9 T	1			
								· · · · · · · · · ·			· - <mark>-</mark>	· · · · · · · · ·	· 			: 	F	JAD		۹D			<u>-</u>	
																; 156.		n n						
																		y						
						, , , , , , , , , , , , , , , , , , ,						, , , , , , , , , , , ,			, , ,	: : : :			, , , , , , , , , , ,				1 1 1 	-
				1												I	-/							
1		150	140	130	120	110	100	90	80	70	60	50 4	10	30	20 1	່າດ	ò	10	20	30	40	50	60	70

1	1	1	C	5 10	PR	ROJ. REFEREN	ce no. 1	SHEET NO.	
70	80	90	100	110	120	130	140	150	_
- - -			-						-
									-
						<u>.</u>			-
- - -		1 1 1							
								60 .	-
				1					
			> De	oth ()	Pile)			-
			, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,		, , , ,		40	-
3:/	<u>ر</u> 	/	· · · · · · · · · · · · · · · · · · ·	, , 				, , ,	
									-
				1					
<u></u>	,							<i>20</i> .	-
						, , ,			-
; ;		·							
			<u>-</u> -					0	-
 א תאל ו		ll fraam	ents satu	urated				-10	
		,							-
laye	rI	Y =	57.6	pct	C=8	DC pst		-20	-
						 - -	·	-30	-
1 1 1				1 1 1				-40	
: 	<u> </u>		 						
Jai	jer (50	-
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·						
		· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			 - 		60.	-
	¹								-
1 1 1				1 1 1 1					
									-
				1 1 1					
-	,			· · ·, · · · · ·	,	 - -		, - - -	-
70	80	90	100	110	120	130	140	150	

150	140	130	120	110	100	90	80	7,0	60	50	40	30	20	10 0		10 20	30	40	50 6	0 70
			-					·,	· · · · · · · · ·					SOIL TEST	DECIT					
									DEDT		1101770			SOIL TEST	KESUL	IS BY WEIGHT		0	6 PASSING SI	
 - -		¹ 1 1	L - -	¹ 1 1	S A	NO.	STATION	LINE	INTERV.	4 4 L	AASHIO CLASS.	L.L.	<i>P.I.</i>	C. SAND	F. SA	ND SILT	CLAY	10	40	200 N
					ST	-2A/2B	8 156+79	-L-	10.4 - 1	0.8	A-7-6 (53)	71	47	0.5	3.7	7 27.7	68.1	100.0	99.7	97.7
					No	te:ST-2	2A and ST-2B	were ext	truded from	the sh	helby tube	at a depth	of 10.4'-10).8' and mixe	ed toget	her to obtain	a representa	tive sam	ple of the two	o tubes.
.60.									EB 	2 - A2 6 + 7 9 T - 2 A T - 2 B	≥ }	(A) F	ROADWAY	<i>Embankmi</i> EB2	ЕNT Ві	rown-grey a	nd grey,silt	y coarse	e SAND,†race	e gravel,moi
			1	1					<u> </u>	- L-	1			157	+ 4	157+20) J	Dotlo,	n ot ca _l =	
10			<u>-</u> 1 1	¹ 1 1		 - -	3:1-			- L - -			$\overline{\mathbb{A}}$				-Pavement	1		
		\								3	'	~=	===		02/	(<u>;</u> (5)				
		Gr Si	een-grey ty and si	-CUAST-AL and grey ilty sandy	L PLAIN – black, CLAY, fr	very so ace;rc	oft to mediu pots, moist to	m stiff saturat	ed 5											
)		Gr	ey-black-	-brown to	green-	grey,v	ery loose to	loose,	· · · · · · · · · · · · · · · · · · ·	/././				3		(6)				, , , , , , , , , , , , , , , , , , ,
1	i I I	CIC WE	iyey and t to satur	silty, claye rated	y SAND	,trace	shell t ragm	ents,	8-	<u> </u>	1 1 1			7	 بد: بر) (9)	Green-grey	v,mediun	n stiff to s	tiff,sandy S
;				·		·		·!									COASTAL	PLAIN		
, Ci	OASTAL PL	_AIN Gr an	ey-black d sandy	and gree silty CLAY	en−grey, ⁄,some_t	mediur. o_high	n stiff to s shellfragm	stiff,sar ents,wet	ndy (8) t to						<i></i>	(12)	trace shell	r, meaiun fragmei	n dense,silly hts,moist to	/ clayey tine wet (Yorktow
		50	turated (Yorktown	Formati	'on) ¦ 						I	1	6						· · · · · · · · · · · · · · · · · · ·
0	· · · · · · · · · ·						·		(5)							- 22-	Grey-black silty-and-c	and g <mark>r</mark> clayey fin	reen-grey,loo ne-\$AND,tra	pse to mediu ce-to-little-s
		Gr	ey-black	and gree	en-grey,	mediur.	n stiff to v	very stif	f, (7)		1						wet to satu	irated		
20	· · · · · · · · · ·	sh	ell fragme	ents, trace	gravel,	moist-1	to-saturatea	<i>SUIIIE</i>	5				· · · · · · · ·						10	yer()
70									6					(5)						
30	¹ 1		<u>1</u> 1 1		!		· · · · · · · · · · · · · · · · · · ·				J 1 1		I	4						
40								, , , ,	(16)]			1	(14)			Greeh-gre	v.mediun AND moi	n dense, clay	ey silty fine
		Gr so	ey-black, me shell t	hard,fine fragments	sandy trace q	silty C ravel,s	LAY,trace to saturated		0/0.3 0/0.0	ST,				<u>60/0.</u>		60/0.0	Greenare	v verv de	ense clavev	silty fine to
50		(M	UDSTONE	E) 		·		6	50/0,0 FI	ар - ;				00/0.6-		60/0.	coarse SA - (SANDST-0	ND, moi si NE)	to wet	ayer
	1			1 1 1		1	1	1			1 1 1			(00/0.3-		100/0.8				
50			+	, , , , , , , , , , , , , , , , , , , ,		, , ,					, , , , , , , , , , , , , , , , , , , ,		I	23	ä.	22 	Green-gre	v, mediun SAND, ma	n dense,clay pist to wet	ey silty fine
1		1	1	I I		1	1	I I I			I I	1	I I I	(16) B	XXI T	(15) B T	(Y OF KTOW N	Formatio	וחכ	
								·						Fl/	<u>A</u> D	FIAD				
			-								, , ,			157+0	00.0	0		1		
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			·		·,					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				,		
150	140	130	120	110	100	90	80	70	60	50	40	30	20	10 0)	10 20	30	40	50 6	0 70

I I	1	0	5 10) P	<mark>roj. referen</mark> R−251	ce no. 1	sheet no. 7
80	90	100	110	120	130	140	150
					1 1 1		
, , , , , , , , , , , , , , , , , , , ,		· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , , ,				· · · · · · · · · ·
					1		
% DISTURE	% ORGANI	<i>C</i>					
90	-						70
1							
		· · · · · · · ·					60
4					I I I		
	> Dep	th (L	Pile)				
1	1						40
1		1			1		
			,		 I I		
LT, moist	and wet				, , , ,		
; to_mediu	m SAND	1 1 9			1 1 1 1		
Formati	'on)						
n dense,	clayey						-10
hell firagn	nents,		,				
Y = F	57.6 f	र्ट्न ५	<u> </u>	آدم ن			-20
					<u>-</u>	J -	-30
to ; tion)	· · · · · · · · · · · · · · · · · · ·						-40
· · · · · · · · · · · · · · · · · · ·			1				
)		·					50
	· · · · · · · ·			· · · · · · ·	 I I		60
							· ·
		·					
					1 1 1		
· · · · · · · · · · · · · · · · · · ·			,		· · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
80	90	100	110	120	130	140	150

FOUNDATION CALCULATIONS

END BENT NO. 1

END BENT NO.2

SHEET PILE DESIGN

CALCULATIONS FOR END BENT NO. 1

			Job No.:	R-2511					
			Task:	Foundation Rec	ommendations				
			Job Name:	Bridge over Gun	n Swamp				
			By:	AB	Date: 2/24/2021				
		CI	necked By:	MS	Date: 2/24/2021				
		End	d Bent #1						
Refer	ences: AASHTO LRFD	(8th Ed.) and NCD	OT LRFD D	Priven Pile Founda	ation Policy (6th Update)				
PROVIDED IN	FORMATION								
- Location o	т End Bent #1:		() <u>(</u> , -	· · · · · · · · · · · · · · · · · · ·					
		-L- Sta. 156+21	(Left B	ridge)					
- ···		-L- Sta. 156+29	(Ridge	Bridge)					
- Type of Ab	outment:	Integral abutme	Integral abutment						
		Vertical abutme	nt with St	eel Sheet Piles					
- Foundatio	n Type:	Vertical HP 12x5	3 steel pi	les					
- Number o	f piles:	6							
- Bottom of	Cap (B/C) Elev. (ft)	:34.6LT / 33.2 RT	(Left B	ridge)					
		33.5 LT / 32.2 R ⁻	Г (Ridge	Bridge)					
- Design Sco	our Fley, (ft):	15-ft (100-	Yr)						
(from B	SR)	9-ft (500-	Yr)						
(nom b.		5 10 (500	,						
Factored Loa	ds (Provided by Str	uctures)							
- Max Axial	Load (Strength I):	195 kips per pile	:						
- Max Axial	Load (Service I):	140 kips per pile	2						
BORING SUM	IMARY								
	Ground	Top of Very Do	ense	.	Boring				
Derive	Surface Elev.	Layer Elev		Groundwater	Termination				
Boring	<u>(IT)</u>	(π)		Elev. (ft)	Elev. (ft)				
EB1-A	36.9	-42.1		$32.9^{(-)}$	-b3.b				
EB1-B	36.8	-42.2		33.3	-63.7				

(1) 0-hr Groundwater

(2) NWS = Normal Water Surface (See BSR)

			Job No.: R-25	511	
			Task: Fou	ndation Recommer	ndations
			Job Name: Brid	ge over Gum Swan	ıp
			By: AB		Date: 2/24/2021
			Checked By: MS		Date: 2/24/2021
		End I	Bent #1 (Continued)		
References: A	ASHTO LRFD (8th E	d.) and NCDOT LRFD	Driven Pile Foundati	on Policy (6th Upda	ite)
DYNAMIC A	NALYSIS				
$R_{ndr} = (R_f + $	γDD)/φ _{dyn} + DD=	325 kips (Use	330 kips) = 1	65 tons	
where:	R. = 195	kins			
where.	$\phi_{1} = 0.60$			Policy 2.2	
	$\psi_{dyn} = 0.00$			Policy 5.2	
	$\gamma = 1.25$	line	NCDUT PILE		
	UU = 0	кірз			
% Shaft resis	stance = F _{skin} / F	R _{ndr} = 82%			
where:	$F_{skin} = 270 \text{ kips}$		From static	axial analysis wit	h Apile
				,	•
Min b	low count = 30 b	pf	NCDOT Pile	Policy 2.1.1	
Max bl	ow count = 180 b	pf	NCDOT Pile	Policy 2.1.2	
	σ_{dr} = 45 k	si	NCDOT Pile	Policy 2.2.1	
	Enormy	Max Comp	Max Topsilo	Stroko	
Hammer	(kip-ft)	Stress (ksi)	Stress (ksi)	(ft)	Blow Count (bpf)
D 19-32	43	36	0.1	11	70
Delmag D 10	-32 04				
Actual drivin	-52 OK g system to be ev	aluated prior to co	unstruction		
	g system to be ev				
SUMMARY					
JOIMMAN			Approximate		
			Top of Very	Est. Pile	
		B/C Elev.	Dense Layer	Tip Elev.	Recommended Pile
Bridge	Location	(ft)	Elev. (ft)	(ft)	Length (ft)
left	Left	34.6	-42 0	-43.0	80
LCIU	Right	33.2	72.0	-43.0	80
	Left	33.5		-43.0	80

Estimated Pile Tip Elevation = Top of Very Dense Layer EL - (1 ft)

Right

Right

Recommended Pile Length = (B/C EL) - (Estimated Pile Tip Elevation) + (2 ft Pile Embedment into Cap) (Round up to nearest 5-ft)

32.2

-42.0

-43.0

80

```
APILE for Windows, Version 2015.7.8
                   Serial Number : 139303838
                  A Program for Analyzing the Axial Capacity
                   and Short-term Settlement of Driven Piles
                           under Axial Loading.
                 (c) Copyright ENSOFT, Inc., 1987-2015
                      All Rights Reserved
    _____
    This program is licensed to :
    RK&K
    Raleigh, NC
    Path to file locations
\\ad.rkk.com\fs\Cloud\Projects\2015\15213_NCEastLSA\I01_R-2511_US17\Design\Geotech\InvestigationDesign\NON_CADD\Brid
ge\Recommendations\EB1\Apile\
    Name of input data file
                          : .ap7d
    Name of output file : .ap7o
Name of plot output file : .ap7p
    _____
                    Time and Date of Analysis
    _____
            Date: February 21, 2021 Time: 18:47:51
1
        *****
        * INPUT INFORMATION *
        *******
        R-2511 Dual Bridge EB1
        DESIGNER : AB
        JOB NUMBER : R-2511
        METHOD FOR UNIT LOAD TRANSFERS :
        - FHWA (Federal Highway Administration)
         Unfactored Unit Side Friction and Unit Side Resistance are used.
        COMPUTATION METHOD(S) FOR PILE CAPACITY :
        - FHWA (Federal Highway Administration)
        TYPE OF LOADING :
        - COMPRESSION
        PILE TYPE :
        H-Pile/Steel Pile
```

DATA FOR AXIAL STIFFNESS :

-	MODULUS OF ELASTI	CITY =	0.290E+08	PSI
-	CROSS SECTION ARE	Α =	15.50	IN2

NONCIRCULAR PILE PROPERTIES :

-	TOTAL PILE LENGTH, TL	=	76.00	FT.
-	PILE STICKUP LENGTH, PSL	=	0.00	FT.
-	ZERO FRICTION LENGTH, ZFL	=	0.00	FT.
-	PERIMETER OF PILE	=	69.13	IN.
-	TIP AREA OF PILE	=	15.50	IN2
-	INCREMENT OF PILE LENGTH			
	USED IN COMPUTATION	=	1.00	FT.

SOIL INFORMATIONS :

		LATERAL	EFFECTIVE	FRICTION	BEARING
	SOIL	EARTH	UNIT	ANGLE	CAPACITY
DEPTH	TYPE	PRESSURE	WEIGHT	DEGREES	FACTOR
FT.			LB/CF		
0.00	CLAY	0.00	57.60	0.00	0.00
76.00	CLAY	0.00	57.60	0.00	0.00
76.00	SAND	0.00	67.60	0.00	0.00
100.00	SAND	0.00	67.60	0.00	0.00

MAXIMUM	MAXIMUM	UNDISTURB	REMOLDED			
UNIT	UNIT	SHEAR	SHEAR	BLOW	UNIT SKIN	UNIT END
FRICTION	BEARING	STRENGTH	STRENGTH	COUNT	FRICTION	BEARING
KSF	KSF	KSF	KSF		KSF	KSF
0.10E+08*	0.10E+08*	0.80	0.00	0.00	0.00	0.00
0.10E+08*	0.10E+08*	0.80	0.00	0.00	0.00	0.00
0.10E+08*	0.10E+08*	0.00	0.00	0.00	0.00	0.00
0.10E+08*	0.10E+08*	0.00	0.00	0.00	0.00	0.00

* MAXIMUM UNIT FRICTION AND/OR MAXIMUM UNIT BEARING WERE SET TO BE 0.10E+08 BECAUSE THE USER DOES NOT PLAN TO LIMIT THE COMPUTED DATA.

	LRFD FACTOR ON UNIT	LRFD FACTOR ON UNIT
DEPTH	FRICTION	BEARING
FT.		
0.00	1.000	1.000
76.00	1.000	1.000
76.00	1.000	1.000
100.00	1.000	1.000

1

PILE	TOTAL SKIN	END	ULTIMATE
PENETRATION	FRICTION	BEARING	CAPACITY
FT.	KIP	KIP	KIP
0.00	0.0	0.4	0.4
1.00	0.0	0.4	0.4
2.00	1.8	0.5	2.3
3.00	5.4	0.8	6.2
4.00	9.0	0.8	9.8
5.00	12.6	0.8	13.4
6.00	16.3	0.0	17.0
7 00	19.9	0.0	20.6
2.00	19.9 22 E	0.0	20.0
0.00	23.5	0.0	24.2
9.00	27.1	0.8	27.9
10.00	30.7	0.8	31.5
11.00	34.3	0.8	35.1
12.00	37.9	0.8	38.7
13.00	41.5	0.8	42.3
14.00	45.1	0.8	45.9
15.00	48.8	0.8	49.5
16.00	52.4	0.8	53.1
17.00	56.0	0.8	56.8
18.00	59.6	0.8	60.4
19.00	63.2	0.8	64.0
20.00	66.8	0.8	67.6
21.00	70.4	0.8	71.2
22.00	74.0	0.8	74.8
23.00	77.6	0.8	78.4
24.00	81.3	0.8	82.0
25.00	84 9	0.0	85.6
25.00	88 5	0.0	89.3
20.00	00.5	0.0	02.0
27.00	92.1	0.0	92.9
20.00	95.7	0.0	90.5
29.00	99.3	0.8	100.1
30.00	102.9	0.8	105.7
31.00	106.5	0.8	107.3
32.00	110.1	0.8	110.9
33.00	113.8	0.8	114.5
34.00	117.4	0.8	118.1
35.00	121.0	0.8	121.8
36.00	124.6	0.8	125.4
37.00	128.2	0.8	129.0
38.00	131.8	0.8	132.6
39.00	135.4	0.8	136.2
40.00	139.0	0.8	139.8
41.00	142.6	0.8	143.4
42.00	146.3	0.8	147.0
43.00	149.9	0.8	150.6
44.00	153.5	0.8	154.3
45.00	157.1	0.8	157.9
46.00	160.7	0.8	161.5
47.00	164.3	0.8	165.1
48.00	167.9	0.8	168.7
49.00	171.5	0.8	172.3
50.00	175.1	0.8	175.9
51 00	178 8	0.0	179 5
52 00	182 /	0.0	183 1
53.00	186 0	0.0	196.9
53.00	190.6	0.0	100.0
54.00	102.0	0.0	190.4
55.00	193.2	0.8	194.0
50.00	190.8	0.8	TA\'P
57.00	200.4	0.8	201.2
58.00	204.0	0.8	204.8
59.00	207.7	0.8	208.4
60.00	211.3	0.8	212.0
61.00	214.9	0.8	215.6
62.00	218.5	0.8	219.3
63.00	222.1	0.8	222.9

64.00	225.7	0.8	226.5
65.00	229.3	0.8	230.1
66.00	232.9	0.8	233.7
67.00	236.5	0.8	237.3
68.00	240.2	0.8	240.9
69.00	243.8	0.8	244.5
70.00	247.4	0.8	248.2
71.00	251.0	0.8	251.8
72.00	254.6	0.8	255.4
73.00	258.2	0.8	259.0
74.00	261.8	0.8	262.6
75.00	265.4	0.8	266.2
76.00	269.0	0.8	269.9

NOTES:

- AN ASTERISK IS PLACED IN THE END-BEARING COLUMN IF THE TIP RESISTANCE IS CONTROLLED BY THE FRICTION
 - OF SOIL PLUG INSIDE AN OPEN-ENDED PIPE PILE.

DocuSign Envelope ID: 68E798FF-7224-412C-AACA-1EDD7462C864

RK&K R-2511 Dual Bridges

24-Feb-2021 GRLWEAP Version 2010

RK&K R-2511 Dual Bridges

24-Feb-2021 GRLWEAP Version 2010

	Maximum	Maximum				
Ultimate	Compression	Tension	Blow			
Capacity	Stress	Stress	Count	Stroke	Energy	
kips	ksi	ksi	bl/ft	ft	kips-ft	
150.0	28.60	0.13	23.1	7.25	17.61	
190.0	29.39	0.00	31.4	7.54	17.52	
230.0	29.85	0.06	43.7	7.71	17.89	
270.0	30.45	0.09	62.0	7.94	18.42	
310.0	30.07	0.11	00.4	8.15	18.05	-
330.0	31.20	0.12	111.1	8.24	19.18	
390.0	31.01	0.15	Z04.ŏ	0.37	19.47	
430.0	31.90	0.17	525.5	8.48	19.78	
470.0	32.15	0.19	2759.4	8.58	19.98	
510.0	32.27	0.21	9999.0	8.62	20.13	

REVISED 4/5/2021

R-2511

Left Bridge Settlement Summary:

- A 6-month waiting period is expected to reach less than 1-in of remaining settlement.
- This analysis is for both end bents.
- See the inventory report for the boring plan and subsurface profile.
- The subsurface profile under the bridge is assumed to be:

(Not to scale)

Consolidation tests:

- -L-Sta. 156+79: Two samples were tested (Sample A and Sample B) from a tube roughly between 11'-6" and 11'-9"; Sample ST-2A and Sample ST-2B.
- -L-Sta. 159+00: One sample (ST-2) was tested from a tube taken from 5.5'-7.5'.

-The consolidation coefficients of the three samples are calculated/summarized on the attached sheets. -Samples ST-2A and ST-2B test results were fairly similar. Therefore, Sample A was used for both CLAY layers (No. 1 and No. 3) in the consolidation settlement results presented here.

-Layer No. 5 includes silty sandy CLAY with trace gravel. Similar materials had been encountered in a boring at Sta. 159+00. Therefore

-See attached NCDOT Spreadsheet for the settlement analysis.

Summary of the results:

- Total Settlement = 11.5-in
- Time:
 - About 150-days to reach U=90%
 - About 180-days to reach less than 1-in of remaining settlement (criteria for bridge approach slabs*)

*This criteria is usually noted in the NCDOT RFPs for Design-Build projects.

REVISED 4/5/2021

R-2511

Right Bridge Settlement Summary

- A 4-month waiting period is expected to reach less than 1-in of remaining settlement.
- This analysis is for both end bents.
- See the inventory report for the boring plan and subsurface profile.
- The subsurface profile under the bridge is assumed to be:

Consolidation tests:

- -L-Sta. 156+79: Two samples were tested (Sample A and Sample B) from a tube roughly between 11'-6" and 11'-9"; Sample ST-2A and Sample ST-2B.
- -L-Sta. 159+00: One sample (ST-2) was tested from a tube taken from 5.5'-7.5'.

-The consolidation coefficients of the three samples are calculated/summarized on the attached sheets. -Samples ST-2A and ST-2B test results were fairly similar. Therefore, Sample A was used for both CLAY layers (No. 1 and No. 3) in the consolidation settlement results presented here.

-Layer No. 5 includes silty sandy CLAY with trace gravel. Similar materials had been encountered in a boring at Sta. 159+00. Therefore

-See attached NCDOT Spreadsheet for the settlement analysis.

Summary of the results:

- Total Settlement = 9.3-in
- Time:
 - About 120-days to reach U=90%
 - About 120-days to reach less than 1-in of remaining settlement (criteria for bridge approach slabs*)

*This criteria is usually noted in the NCDOT RFPs for Design-Build projects.

Sample ST-2A

Index	Loading Sequence	Void	T90 Cv
	(tsf)	Ratio	(in²/Min)
0	0.0000	2.296	0.00000
1	0.0625	2.289	0.00000
2	0.1250	2.283	0.14604
3	0.2500	2.267	0.16884
4	0.5000	2.230	0.13863
5	1.0000	1.984	0.02960
6	2.0000	1.539	0.00482
7	4.0000	1,179	0.00218
8	2.0000	1.205	0.00000
9	0.5000	1.320	0.00000
10	2.0000	1.242	0.00586
11	4.0000	1.145	0.00431
12	8.0000	0.920	0.00088
13	16.0000	0.715	0.00015

DocuSign Envelope ID: 68E798FF-7224-412C-AACA-1EDD7462C864

Sample ST2-B

	Loading		Т90
Index	Sequence		Cv
	1	Void	
	(tsf)	Ratio	(in²/Min)
0	0.0000	2.327	0.00000
1	0.0625	2.326	0.00000
2	0.1250	2.321	0.58661
3	0.2500	2.307	0.06872
4	0.5000	2.267	0.15983
5	1.0000	2.030	0.01834
6	2.0000	1.607	0.00382
7	4.0000	1.247	0.00231
8	2.0000	1.270	0.00000
9	0.5000	1.379	0.00000
10	2.0000	1.305	0.00737
11	4.0000	1.200	0.00363
12	8.0000	0.972	0.00096
13	16.0000	0.768	0.00022
DocuSign Envelope ID: 68E798FF-7224-412C-AACA-1EDD7462C864

Index	Stress	Voids Ratio (ef)	Cv
	(TSF)		(ft2/day)
1	0.050	0.9418	0.417
2	0.250	0.9297	0.018
3	0.500	0.9171	0.021
4	1.000	0.8865	0.018
5	2.000	0.8381	0.010
6	4.000	0.7749	0.010
7	8.000	0.7075	0.009
8	4.000	0.7210	
9	1.000	0.7667	
10	0.050	0.8282	
11	0.250	0.8262	0.048
12	0.500	0.8202	0.020
13	1.000	0.8058	0.010
14	2.000	0.7813	0.009
15	4.000	0.7393	0.008
16	8.000	0.6910	0.008
17	16.000	0.6155	0.006
18	32.000	0.5301	0.005

Sample ST-2

R-2511

	Summary of Co	onsolidation t	est results		
Boring Number			EB2-	A2	L 158+80 RT [*]
Alignment			-L	-L-	
Station			156+	158+80	
Offset			52' 1	LT	46' RT
Sample No. (in the geotech report)			ST-2A	ST-B	ST-2
Blow Count			5		4
Shelby tube depth			10.0 -	12.0	5.5-7.5
Sample depth		11.5	11.8	6.5	
AASHTO Class			A-7	-6	A-7-6
PI			47	,	34
Liquid limit	LL		71		53
Dry Unit weight	γ _{dry} (pcf)		50.6	50.1	86.1
Unit weight	γ _{moist} (pcf)		91.3	91.7	116.3
Moisture content	w (%)		80.4	83.1	35.1
Degree of saturation	S _r (%)		93.5	95.4	99.7
Initial void ratio - e_0	<i>e</i> ₀		2.30	2.33	0.94
Preconsolidation pressure	σ'_P (ksf)		1.56	1.64	2.4
Vertical (effective) overburden stress	σ'_{v0} (ksf)		1.05	1.08	0.76
Overconsolidation ratio	OCR		1.49	1.52	3.17
Coefficient of compression index	C	lab	1.337	1.301	0.217
	C _c	Correlation	0.5	5	0.39
Coefficient of recompression index	C	lab	0.194	0.198	0.07
	C _r	Correlation	0.1	1	0.08
Coefficient of secondary compression	C_{α}	Correlation	0.040	0.039	0.01
Coefficient of consolidation	$c (ft^2/dm)$	lab	0.3 (for 1 TSF)	0.2 (for 1 TSF)	0.02 (fot 1 TSF)
	$c_v (\mu / u dy)$	Correlation	-		0.60

^{*} Lab results are included in the roadway inventory report.

Correlations:

 $\begin{array}{l} \mbox{Coefficient of compression index: } Cc = 0.009^{*}(LL\mbox{-}10)\\ \mbox{Coefficient of recompression index: } Cr = 0.2^{*}Cc\\ \mbox{Coefficient of secondary compression: } C\alpha = .03^{*}Cc\\ \mbox{Coefficient of consolidation: } FHWA \mbox{NHI-}06\mbox{-}088 \mbox{-} Figure 5\mbox{-}10 \end{array}$

DocuSign Envelope ID: 68E798FF-7224-412C-AACA-1EDD746	2C864 T:		R-2	511	CC	OUNTY:			
DEPARTMENT OF TRANSPORTATION	SUBJECT:	Settlerr	nent Cal	culations	s for Roadwa	ay Embankr	ments (Consolidation	Theo	ry)
GEOTECHNICAL ENGINEERING UNIT				Dua	al Bridge ov	ver US17 ((Left Lane Bridge)		
1589 MAIL SERVICE CENTER	PREPARE	D BY:	AB	DATE:	11/23/20	STATION	N:		
RALEIGH, NC 27699	CHECKE	D BY:	MS	DATE:	11/23/20	STR. NO	0.: PAGE: 1	OF	8

DISCLAIMER: The application of this	DISCLAIMER: The application of this spreadsheet is the responsibility of the user. It is imperative that the user understands									
the potential accuracy limitations and examines the reasonableness of the results with engineering knowledge and experience.										
There are no expressed or implied warranties.										
	Embankme	nt Width (a	at top) =12(0.00 ft						
a =30.00 ft	b =60	00 ft į	Finisher	d Grade						
								42.00 ft		
V = 1										
H = 3.00 h = 10.00 ft γ _{emb} = 0.120 kcf										
			Natural	Ground			\sim	→32.00 ft		
				/ / /		///				
		Center	Line		_					
		+	Ground	<u>water Tab</u>	<u>le_▼</u>			––– 3 2.00 ft		
General Project Information	Typical En	nbankme	ent (Not to	o Scale)						
				2 . 4	0					
Units System = English Emba	ankment Sid	le Slope	(H:V) =	3 : 1	Serv	ICE LITE C	of Structure :	= 50 years		
Finished Grade Elev.	= 42.0	ft	Emba	nkment \	Nidth (at	top) =	120.0 ft			
Natural Ground Elev.	= 32.0	ft	Emb	pankmen	t Unit We	eight =	0.120 kcf			
Groundwater Table Elev.	= 32.0	ft		Unit We	ight of W	ater = (0.0624 kcf			
Consolidation Information	Check	box if no	specific la	ab test da	ata is ava	ilable to d	determine pa	rameters		
Name of Test Sample or		Sampla								
Description of Cohesive	OCR	Depth	ρ _c	e	C	Cr	C.,	Cα		
Material if not using test sample	,	(ft)	(ksf)	0	0		(ft²/day)	ŭ		
1 Sample A		11.5	1.560	2.300	1.337	0.194	0.300	0.04011		
2 Sample B		11.8	1.640	2.330	1.301	0.198	0.200	0.03903		
3 Correlation	√ 2.35	\searrow	\ge	0.940	0.200	0.070	0.600	0.01000		
4										
5										

Existing Soil Layer Information

Soil	Soil Lover Material	Layer E	Layer Elevations		Depth to	Soloct Tost Sample Number
Layer		Тор	Bottom	Unit Wt.	Midpoint	to use for Soil Laver
No.	Description	(ft)	(ft)	(kcf)	(ft)	
1	Cohesive Soil (Clay)	32.0	20.0	0.092	6.0	1 - Sample A
2	Cohesionless Soil (Sand)	20.0	5.0	0.120	19.5	N/A - Layer is Cohesionless
3	Cohesive Soil (Clay)	5.0	-5.0	0.092	32.0	1 - Sample A
4	Cohesionless Soil (Sand)	-5.0	-10.0	0.120	39.5	N/A - Layer is Cohesionless
5	Cohesive Soil (Clay)	-10.0	-42.0	0.116	58.0	3 - Correlation
6	Cohesionless Soil (Sand)	-42.0	-45.0	0.120	75.5	N/A - Layer is Cohesionless
7						
8						
9						
10						

STATE OF NORTH CAROLINA	PROJECT:		R-2511		COUNTY:					
DEPARTMENT OF TRANSPORTATION	SUBJECT: S	Settler	ment C	alculation	s for Roadwa	ay Embankm	ients (Consolida	ition	Thec	ory)
GEOTECHNICAL ENGINEERING UNIT				Dua	al Bridge ov	/er US17 (L	_eft Lane Bridç	je)		
1589 MAIL SERVICE CENTER	PREPARED	BY:	AB	DATE:	11/23/20	STATION	l:			
RALEIGH, NC 27699	CHECKED '	BY:	MS	DATE:	11/23/20	STR. NO.	.: PAGE:	2	OF	8
								_		

Calculate the total increase in vertical stress due to the weight of the embankment

 $\Delta \rho$ = total stress increase from embankment fill = (h)(γ_{emb}) = <u>1.200 ksf</u>

h = height of embankment = 10.0 ft

45

40

35

30

, ALUE VALUE

NFLUENCE

 γ_{emb} = unit weight of embankment = 0.120 kcf

Calculate initial vertical stress, vertical stress increase, and final vertical stress at the center of each soil layer

 $\rho_{o(n)}$ = initial effective vertical stress at the center of layer n

= initial total vertical stress - pore water pressure at the center of layer n

VALUE OF 을

 $\Delta \rho_{(n)}$ = stress increase from embankment fill at the center of layer n = 2(*I*)($\Delta \rho$)

I = influence factor for stress underneath an embankment

08

ò

NAVFAC DM-7.01, p. 7.1-170 (Figure 6)

40

35

30

25

(1) *I* from Fig 6 is only for half of the embankment. Use *I* x 2 to calculate influence factor for whole embankment.

(2) Numerical methods that replicate the values in Fig 6 were used to calculate *I* values in this spreadsheet. See "Murthy, V.N.S., Geotechnical Engineering: Principles and Practices of Soil Mechanics and Engineering, Chapter 6.

 $\Delta\rho$ = total stress increase from embankment fill = 1.200 ksf

 $\rho_{f(n)}$ = final effective vertical stress at the center of layer n = $\rho_{o(n)} + \Delta \rho_{(n)}$

DocuSign Envelope ID: 68E798FF-7224-412C-AACA-1EDD7462	C864 T	:	R-2511	CO	UNTY:				
DEPARTMENT OF TRANSPORTATION	SUBJECT	: Settlemen	t Calculation	s for Roadwa	ıy Embankmeı	nts (Consolidati	on Th	eory	/)
GEOTECHNICAL ENGINEERING UNIT			Dua	al Bridge ov	er US17 (Le	ft Lane Bridge	e)		
1589 MAIL SERVICE CENTER	PREPARE	ED BY: A	B DATE:	11/23/20	STATION:				
RALEIGH, NC 27699	CHECKE	ED BY: M	S DATE:	11/23/20	STR. NO.:	PAGE:	3 0	F 8	8
					-				

<u>Calculat</u>	e initial ver	tical stres	<u>s, vertical</u>	stress ind	crease, an	d final vei	rtical stres	s at the n	nidpoint of	f each soil	layer (coi
Soil Layer	Layer Thickness ∆z	Depth to Center Z	γ	Total Stress	Pore Water Pressure	ρ _{o(n)}	<u>a</u> z	b z	2(1)	$\Delta ho_{(n)}$	$\rho_{f(n)}$
NO.	(ft)	(ft)	(kcf)	(ksf)	(ksf)	(ksf)				(ksf)	(ksf)
1	12.0	6.0	0.092	0.552	0.374	0.178	5.0	10.0	1.000	1.200	1.4
2	15.0	19.5	0.120	2.004	1.217	0.787	1.5	3.1	0.993	1.191	2.0
3	10.0	32.0	0.092	3.364	1.997	1.367	0.9	1.9	0.971	1.166	2.5
4	5.0	39.5	0.120	4.124	2.465	1.659	0.8	1.5	0.951	1.142	2.8
5	32.0	58.0	0.116	6.280	3.619	2.661	0.5	1.0	0.885	1.062	3.7
6	3.0	75.5	0.120	8.316	4.711	3.605	0.4	0.8	0.812	0.974	4.6

Determine the overconsolidation ratio, degree of consolidation, and the overconsolidation margin for each test sampl

OCR = overconsolidation ratio =
$$\frac{\rho_c}{\rho_o}$$
 = $\frac{\text{preconsolidation pressure of the test sample}}{\text{initial effective vertical stress at the depth of the test sample}}$

 ρ_{m} = overconsolidation margin = ρ_{c} - ρ_{o}

 ρ_m = 0 for normally consolidated soils

Test Sample / Consolidation Parameters Used	Depth (ft)	ρ _o (ksf)	ρ _c (ksf)	OCR	Degree of Consolidation	ρ _m (ksf)
1 - Sample A	11.5	0.340	1.560	4.58	overconsolidated (OCR > 1.2)	1.220
2 - Sample B	11.8	0.349	1.640	4.70	overconsolidated (OCR > 1.2)	1.291
3 - Correlation	N/A	N/A	N/A	2.35	overconsolidated (OCR > 1.2)	N/A

Determine the preconsolidation pressure and overconsolidation ratio at the midpoint of each cohesive soil layer

 ρ_{c} = preconsolidation pressure at the center of layer n = ρ_{o} + ρ_{m}

Soil Layer No.	Soil Layer Material Description	Test Sample / Consolidation Parameters used for Soil Layer	ρ _o (ksf)	ρ _m (ksf)	ρ _c (ksf)	OCR
1	Cohesive Soil (Clay)	1 - Sample A	0.178	1.560	1.738	9.78
2	Cohesionless Soil (Sand)	N/A	N/A	N/A	N/A	N/A
3	Cohesive Soil (Clay)	1 - Sample A	1.367	1.560	2.927	2.14
4	Cohesionless Soil (Sand)	N/A	N/A	N/A	N/A	N/A
5	Cohesive Soil (Clay)	3 - Correlation	2.661	N/A	6.253	2.35
6	Cohesionless Soil (Sand)	N/A	N/A	N/A	N/A	N/A

COUNTY:

DEPARTMENT OF TRANSPORTATION	SUBJECT:	Settle	ment C	alculation	s for Roadwa	ay Embankme	ents (Consolidation	Theo	ory)
GEOTECHNICAL ENGINEERING UNIT				Dua	al Bridge ov	er US17 (L	eft Lane Bridge)		
1589 MAIL SERVICE CENTER	PREPAREI	D BY:	AB	DATE:	11/23/20	STATION:			
RALEIGH, NC 27699	CHECKEI	DBY:	MS	DATE:	11/23/20	STR. NO.:	PAGE: 4	OF	8
		-				-			

R-2511

T:

Calculate the primary consolidation settlement at the midpoint of each cohesive soil layer

For normally consolidated soils,
$$\rho_c \approx \rho_o$$
 (0.8 ≤ OCR ≤ 1.2)
 $S_c = \sum_{i}^{n} \frac{C_c}{1 + e_o} H_o \log_{10} \left(\frac{\rho_f}{\rho_o}\right)$

For overconsolidated soils where, $\rho_0 < \rho_c \le \rho_f$ (OCR > 1.2)

$$S_{c} = \sum_{i}^{n} \frac{H_{o}}{1 + e_{o}} \left(C_{r} \log_{10} \frac{\rho_{c}}{\rho_{o}} + C_{c} \log_{10} \frac{\rho_{f}}{\rho_{c}} \right)$$
FHWA NHI-06-089 Eq. 74

For overconsolidated soils where, $\rho_0 < \rho_f \le \rho_c$ (OCR > 1.2)

 $S_{c} = \sum_{i}^{n} \frac{C_{r}}{1 + e_{o}} H_{o} \log_{10} \left(\frac{\rho_{f}}{\rho_{o}}\right)$

For underconsolidated soils, $\rho_c < \rho_o$ (OCR < 0.8)

$$S_{c} = \sum_{i}^{n} \frac{H_{o}}{1 + e_{o}} \left(C_{c} \log_{10} \frac{\rho_{o}}{\rho_{c}} + C_{c} \log_{10} \frac{\rho_{f}}{\rho_{o}} \right)$$

Where,

S_c = settlement

H_o = layer thickness

e_o = initial void ratio

C_c = compression index

C_r = recompression index

 ρ_o = initial effective vertical stress at the center of layer n

 ρ_f = final effective vertical stress at the center of layer n

 ρ_c = preconsolidation pressure at the center of layer n

Soil						FHWA				
Layer	H₀	ρο	ρ _c	ρ _f	OCR	Settlement	eo	C _c	Cr	δ
No.	(ft)	(ksf)	(ksf)	(ksf)		Equation				(in)
1	12.0	0.178	1.738	1.377	9.78	FHWA Eq. 7-2 (modified)	2.300	1.337	0.194	7.53
2	15.0	N/A	N/A	N/A	N/A	N/A (Cohesionless Layer)	N/A	N/A	N/A	0.00
3	10.0	1.367	2.927	2.533	2.14	FHWA Eq. 7-2 (modified)	2.300	1.337	0.194	1.89
4	5.0	N/A	N/A	N/A	N/A	N/A (Cohesionless Layer)	N/A	N/A	N/A	0.00
5	32.0	2.661	6.253	3.723	2.35	FHWA Eq. 7-2 (modified)	0.940	0.200	0.070	2.02
6	3.0	N/A	N/A	N/A	N/A	N/A (Cohesionless Layer)	N/A	N/A	N/A	0.00
<u>.</u>	•	•	-							

FHWA NHI-06-089 Eq. 7-2

-4

FHWA NHI-06-089 Eq. 7-2 (modified per FHWA NHI-06-089 p. A.6.9-10)

FHWA NHI-06-089 Eq. 7-6

STATE OF NORTH CAROLINA	PROJECT:	R-	2511	CC	UNTY:			
DEPARTMENT OF TRANSPORTATION	SUBJECT: Sett	lement C	alculations	s for Roadwa	ay Embankme	ents (Consolidati	on The	eory)
GEOTECHNICAL ENGINEERING UNIT			Dua	al Bridge ov	ver US17 (L	eft Lane Bridg.	e)	
1589 MAIL SERVICE CENTER	PREPARED BY	: AB	DATE:	11/23/20	STATION:			
RALEIGH, NC 27699	CHECKED BY	: MS	DATE:	11/23/20	STR. NO.:	PAGE:	5_OF	- 8

Calculate the time rate of settlement for the cohesive layers to reach 90% consolidation, (tan) $t = \frac{T_v H_d^2}{c_v}$ FHWA NHI-06-089 Eq. 7-8Where,t = time T_v = time factor based on the percent consolidation (U)FHWA NHI-06-089 Table 7-4 c_v = coefficient of consolidationH_d = length of longest drainage path in compressible layerAASHTO 10.6.2.4.3, page 10-61The length of the drainage path is the longest distance from any point in a compressible layer to a drainage boundary at the top or bottom of the compressible soil unit. Where a compressible layer is located between two drainage boundaries, H_d equals one-half the

actual height of the layer. Where a compressible layer is adjacent to an impermeable boundary (usually below), H_d equals the full height of the layer. (AASHTO 10.6.2.4.3, page 10.61)

Where a compressible layer is not adjacent to a drainage boundary, H_d will include the full height of any additional layers that are necessary to reach a drainage boundary. For this situation the calculation of t becomes;

t =	$T_{\rm ex} \Sigma (H_{\rm ex}^2/c_{\rm ex})$
ι-	$I_V \Delta (I_{di} / C_{vi})$

		Layer	Drainage			At 90)% Consolic	lation
Layer	Material	Thickness	Path	C _V	0	Time	Time	Settlement
No.	Description	H ₀	H _d		$\Sigma (H_d^2/c_v)$	Factor	(t ₉₀)	(S _{c_90})
		(ft)	(ft)	(ft²/day)	(days)	T_{v}	(days)	(in)
1	Cohesive Soil (Clay)	12.00	6.00	0.300	120	0.848	102	6.777
2	Cohesionless Soil (Sand)	15.00	N/A	N/A	N/A	N/A	N/A	N/A
3	Cohesive Soil (Clay)	10.00	5.00	0.300	83	0.848	71	1.701
4	Cohesionless Soil (Sand)	5.00	N/A	N/A	N/A	N/A	N/A	N/A
5	Cohesive Soil (Clay)	32.00	16.00	0.600	427	0.848	362	1.818
6	Cohesionless Soil (Sand)	3.00	N/A	N/A	N/A	N/A	N/A	N/A
7								
8								
9								
10								

DocuSign Envelope ID: 68E798FF-7224-412C-AACA-1EDD7462C864

uSign Envelope ID: 68E798FF-7224-412C-AACA-1EDD7462	C864 T:		R-3	2511	CO	UNTY:				
DEPARTMENT OF TRANSPORTATION	SUBJECT:	Settlen	nent Ca	alculations	s for Roadwa	y Embankme	ents (Consolidat	ion	Theo	ry)
GEOTECHNICAL ENGINEERING UNIT				Dua	al Bridge ov	er US17(L	eft Lane Bridg	je)		
1589 MAIL SERVICE CENTER	PREPARED	DBY:	AB	DATE:	11/23/20	STATION:				
RALEIGH, NC 27699	CHECKED	DBY:	MS	DATE:	11/23/20	STR. NO.:	PAGE:	6	OF	8
				-		-				

Calculate	e the Overa	all Percen	<u>it Consolic</u>	dation as a	a function	of time								
T _v = -	$\frac{tc_v}{H_d^2} = \Sigma$	E t(c _v / H _d ²	²)			Rearrangi	ng FHWA	NHI-06-0)89 Eq. 7-	8 and solv	ving for T			
Lover				Tir	ne Factor	(T _v) for di	fferent va	lues of tin	ne (t)					
Layer	$\Sigma (H^2/c_v)$					Time,	t (days)							
INO.	(days)	60	120	180	240	300	360	420	480	540	600			
1	120.000	0.500	1.000	1.500	2.000	2.500	3.000	3.500	4.000	4.500	5.000			
3	83.333	0.720	1.440	2.160	2.880	3.600	4.320	5.040	5.760	6.480	7.200			
5	426.667	0.141	0.281	0.422	0.563	0.703	0.844	0.984	1.125	1.266	1.406			
Time Fa	actor (T), P	ercent Co	onsolidatio	on (U), and	d Primary	Consolida	tion Settl	ement (S _c) for differ	rent value	s of time			
Soil	Time, t (days)													
Layer		60	120	180	240	300	360	420	480	540	600			
	T _v =	0.500	1.000	1.500	2.000	2.500	3.000	3.500	4.000	4.500	5.000			
1	U =	76%	93%	98%	99%	100%	100%	100%	100%	100%	100%			
	S _c =	5.723	7.003	7.379	7.455	7.53	7.53	7.53	7.53	7.53	7.53			
	T =	0.720	1.440	2.160	2.880	3.600	4.320	5.040	5.760	6.480	7.200			
2	U =	86%	98%	100%	100%	100%	100%	100%	100%	100%	100%			
	S _c =	1.625	1.852	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89			
	T =	0.141	0.281	0.422	0.563	0.703	0.844	0.984	1.125	1.266	1.406			
3	U =	42%	60%	71%	80%	86%	90%	93%	95%	96%	97%			
	S _c =	0.848	1.212	1.434	1.616	1.737	1.818	1.879	1.919	1.939	1.959			
	T =													
4	U =													
	S _c =													
	T =													
5	U =													
	S _c =													
	T =													
6	U =													
	S _c =													
	T =													
7	U =													
<u> </u>	С _с –													
0														
0	= U 													
	З _с –													
	S _c =	8.196	10.067	10.703	10.961	11.157	11.238	11.299	11.339	11.359	11.379			
Total	U =	72%	88%	94%	96%	98%	98%	99%	99%	99%	99%			

DocuSign Envelope ID: 68E798FF-7224-412C-AACA-1EDD7462C864

T: R-2511 COUNTY:

FHWA NHI-06-089 Equation 7-10

DEPARTMENT OF TRANSPORTATION	SUBJECT: Settlement Calculations for Roadway Embankments (Consolidation Th									
GEOTECHNICAL ENGINEERING UNIT	Dual Bridge over US17 (Left Lane Bridge)									
1589 MAIL SERVICE CENTER	PREPARED BY:	AB	DATE:	11/23/20	STATION:					
RALEIGH, NC 27699	CHECKED BY:	MS	DATE:	11/23/20	STR. NO.:	PAGE: 8	OF	8		

Calculate the amount of secondary compression

$$S_{s} = \frac{C_{\alpha}}{1 + e_{o}} H_{c} \log_{10} \frac{t_{2}}{t_{1}}$$

Where, S_c = secondary compression

- C_{α} = coefficient of secondary compression The values of C_{α} can be determined using FHWA NHI-06-089 Equation 7-9 or by using the ratio of C_{α} / C_{c} presented in FHWA-NHI-06-089 Section 5.4.6.4.
- e_o = initial void ratio
- H_c = layer thickness
- t_1 = time when approximately 90% of primary compression has occurred <u>for the actual</u> <u>clay layer being considered</u> as determined from FHWA NHI-06-089 Equation 7-8.
- t_2 = the service life of the structure or any other time of interest (typically assumed to be 50 years) If t_1 is greater than t_2 , then there will be no secondary compression in that soil layer.

Soil	O dillar Mataial	Layer El	evations						
Layer	Soil Layer Material	Тор	Bottom	Ca	eo	H _c	t ₁	t ₂	δ_{S}
No.	Description	(ft)	(ft)			(ft)	(years)	(years)	(in)
1	Cohesive Soil (Clay)	32.00	20.0	0.04011	2.300	12	50.00	50.00	0
2	Cohesionless Soil (Sand)	20.00	5.0	N/A	N/A	15	50.00	50.00	N/A
3	Cohesive Soil (Clay)	5.00	-5.0	0.04011	2.300	10	50.00	50.00	0
4	Cohesionless Soil (Sand)	-5.00	-10.0	N/A	N/A	5	50.00	50.00	N/A
5	Cohesive Soil (Clay)	-10.00	-42.0	0.01	0.940	32	50.00	50.00	0
6	Cohesionless Soil (Sand)	-42.00	-45.0	N/A	N/A	3	50.00	50.00	N/A
7									
8									
9									
10									

Total Secondary Consolidation Settlement= 0.00 in

DocuSign Envelope ID: 68E798FF-7224-412C-AACA-1EDD746	2C864 T		R-2	2511	CC	OUNTY:		
DEPARTMENT OF TRANSPORTATION	SUBJECT	Settler	ment Ca	alculation	s for Roadwa	ay Embankmei	nts (Consolida	tion Theory)
GEOTECHNICAL ENGINEERING UNIT			Dual	Bridge o	ver US17 (Right Lane B	ridge)	ADDED
1589 MAIL SERVICE CENTER	PREPARE	D BY:	MS	DATE:	03/30/21	STATION:	4	4/5/2021
RALEIGH, NC 27699	CHECKE	D BY:	AA	DATE:	03/31/21	STR. NO.:	PAGE:	1 OF 8

<u>DISCLAIMER</u> : The application of this spreadsheet is the responsibility of the user. It is imperative that the user understands the potential accuracy limitations and examines the reasonableness of the results with engineering knowledge and experience. There are no expressed or implied warranties.											
	; F	mbankme	nt Width (;	at top) = 40	00 ft						
a =24.00 ft		h =20		at top) -40.	00 11						
<u> </u>		0 20.		Finished	Grade				40 00 ft		
V=1 H=3.00 h=8.00 ft $\gamma_{emb}=0.120$ kcf											
Natural Ground 32 00 ft											
Center Line											
Groundwater Table ▼32.00 ft											
General Project Information											
Units System = English En	nbank	ment Sid	ie Slope	(H:V) =	3 : 1	Serv	ICE LITE O	of Structure :	= 50 years		
Finished Grade Ele	ev. =	40.0	ft	Emba	nkment \	Vidth (at	top) =	40.0 ft			
Natural Ground Ele	ev. =	32.0	ft	Emb	ankmen	t Unit We	eight =	0.120 kcf			
Groundwater Table Ele	ev. =	32.0	ft		Unit We	ight of W	/ater = (0.0624 kcf			
-	_										
Consolidation Information	$(\cap$	Check	box if no	specific la	ab test da	ata is ava	ilable to d	determine pa	arameters		
Name of Test Sample or Description of Cohesive Material if not using test sampleOCRSample Depth ρ_c e_o C_c C_r c_v C_{α}											
1 Sample A		\geq	11.5	1.560	2.300	1.337	0.194	0.300	0.04011		
2 Sample B		\triangleright	11.8	1.640	2.330	1.301	0.198	0.200	0.03903		
3 Correlation	V	2.35	$\left \right>$	\ge	0.940	0.200	0.070	0.600	0.01000		
4		\geq									
5		\searrow									

Existing Soil Layer Information

Soil	Soil Lover Material	Layer El	levations	Total	Depth to	Soloot Toot Sample Number to
Layer		Тор	Bottom	Unit Wt.	Midpoint	use for Soil Laver
No.	Besonption	(ft)	(ft)	(kcf)	(ft)	
1	Cohesive Soil (Clay)	32.0	20.0	0.092	6.0	1 - Sample A
2	Cohesionless Soil (Sand)	20.0	5.0	0.120	19.5	N/A - Layer is Cohesionless
3	Cohesive Soil (Clay)	5.0	-5.0	0.092	32.0	1 - Sample A
4	Cohesionless Soil (Sand)	-5.0	-10.0	0.120	39.5	N/A - Layer is Cohesionless
5	Cohesive Soil (Clay)	-10.0	-42.0	0.116	58.0	3 - Correlation
6	Cohesionless Soil (Sand)	-42.0	-45.0	0.120	75.5	N/A - Layer is Cohesionless
7						
8						
9						
10						

Calculate the total increase in vertical stress due to the weight of the embankment

 $\Delta \rho$ = total stress increase from embankment fill = (h)(γ_{emb}) = 0.960 ksf

h = height of embankment = 8.0 ft

 γ_{emb} = unit weight of embankment = 0.120 kcf

Calculate initial vertical stress, vertical stress increase, and final vertical stress at the center of each soil layer

 $\rho_{o(n)}$ = initial effective vertical stress at the center of layer n

= initial total vertical stress - pore water pressure at the center of layer n

 $\Delta \rho_{(n)}$ = stress increase from embankment fill at the center of layer n = 2(*I*)($\Delta \rho$)

I = influence factor for stress underneath an embankment

 $\rho_{f(n)}$ = final effective vertical stress at the center of layer n = $\rho_{o(n)} + \Delta \rho_{(n)}$

DocuSign Envelope ID: 68E798FF-7224-412C-AACA-1EDD746	62C864	T:		R-2511	CO	UNTY:				
DEPARTMENT OF TRANSPORTATION	SUBJE	CT:	Settleme	nt Calculation	is for Roadwa	ay Embankme	ents (Consolida	tion	Theo	vry)
GEOTECHNICAL ENGINEERING UNIT			D	ual Bridge o	over US17 (I	Right Lane B	Bridge)			
1589 MAIL SERVICE CENTER	PREPA	ARED	BY: M	IS DATE:	03/30/21	STATION:				
RALEIGH, NC 27699	CHEC	CKED	BY: A	A DATE:	03/31/21	STR. NO.:	PAGE:	3	OF	8

<u>Calculat</u>	e initial ver	tical stress	s, vertical :	stress inc	rease, and	final vert	ical stress	at the mid	dpoint of e	each soil la	ayer (con't)
Soil Layer	Layer Thickness Δz	Depth to Center Z	γ	Total Stress	Pore Water Pressure	ρ _{ο(n)}	<u>a</u> z	b z	2(1)	$\Delta ho_{(n)}$	ρ _{f(n)}
110.	(ft)	(ft)	(kcf)	(ksf)	(ksf)	(ksf)				(ksf)	(ksf)
1	12.0	6.0	0.092	0.552	0.374	0.178	4.0	3.3	0.996	0.957	1.1
2	15.0	19.5	0.120	2.004	1.217	0.787	1.2	1.0	0.923	0.886	1.7
3	10.0	32.0	0.092	3.364	1.997	1.367	0.8	0.6	0.803	0.771	2.1
4	5.0	39.5	0.120	4.124	2.465	1.659	0.6	0.5	0.731	0.702	2.4
5	32.0	58.0	0.116	6.280	3.619	2.661	0.4	0.3	0.581	0.558	3.2
6	3.0	75.5	0.120	8.316	4.711	3.605	0.3	0.3	0.478	0.459	4.1

Determine the overconsolidation ratio, degree of consolidation, and the overconsolidation margin for each test sample

OCR = overconsolidation ratio = $\frac{\rho_c}{\rho_o}$ = $\frac{\text{preconsolidation pressure of the test sample}}{\text{initial effective vertical stress at the depth of the test sample}}$

 ρ_{m} = overconsolidation margin = ρ_{c} - ρ_{o}

 ρ_m = 0 for normally consolidated soils

Test Sample / Consolidation Parameters Used	Depth (ft)	ρ _o (ksf)	ρ _c (ksf)	OCR	Degree of Consolidation	ρ _m (ksf)
1 - Sample A	11.5	0.340	1.560	4.58	overconsolidated (OCR > 1.2)	1.220
2 - Sample B	11.8	0.349	1.640	4.70	overconsolidated (OCR > 1.2)	1.291
3 - Correlation	N/A	N/A	N/A	2.35	overconsolidated (OCR > 1.2)	N/A

Determine the preconsolidation pressure and overconsolidation ratio at the midpoint of each cohesive soil layer

 ρ_{c} = preconsolidation pressure at the center of layer n = ρ_{o} + ρ_{m}

Soil Layer No.	Soil Layer Material Description	Test Sample / Consolidation Parameters used for Soil Layer	ρ _o (ksf)	ρ _m (ksf)	ρ _c (ksf)	OCR
1	Cohesive Soil (Clay)	1 - Sample A	0.178	1.560	1.738	9.78
2	Cohesionless Soil (Sand)	N/A	N/A	N/A	N/A	N/A
3	Cohesive Soil (Clay)	1 - Sample A	1.367	1.560	2.927	2.14
4	Cohesionless Soil (Sand)	N/A	N/A	N/A	N/A	N/A
5	Cohesive Soil (Clay)	3 - Correlation	2.661	N/A	6.253	2.35
6	Cohesionless Soil (Sand)	N/A	N/A	N/A	N/A	N/A

DocuSign Envelope ID: 68E798FF-7224-412C-AACA-1EDD7462C864 R-2511 COUNTY: T: DEPARTMENT OF TRANSPORTATION SUBJECT: Settlement Calculations for Roadway Embankments (Consolidation Theory) GEOTECHNICAL ENGINEERING UNIT Dual Bridge over US17 (Right Lane Bridge) **1589 MAIL SERVICE CENTER** PREPARED BY: MS DATE: 03/30/21 STATION: STR. NO.: PAGE: 4 OF 8 RALEIGH, NC 27699 CHECKED BY: AA DATE: 03/31/21

Calculate the primary consolidation settlement at the midpoint of each cohesive soil layer

For normally consolidated soils, $\rho_c \approx \rho_o$ (0.8 ≤ OCR ≤ 1.2)

$$S_{c} = \sum_{i}^{n} \frac{C_{C}}{1 + e_{o}} H_{o} \log_{10} \left(\frac{\rho_{f}}{\rho_{o}} \right)$$

For overconsolidated soils where, $\rho_0 < \rho_c \le \rho_f$ (OCR > 1.2)

 $S_{c} = \sum_{i}^{n} \frac{H_{o}}{1 + e_{o}} \left(C_{r} \log_{10} \frac{\rho_{c}}{\rho_{o}} + C_{c} \log_{10} \frac{\rho_{f}}{\rho_{c}} \right)$ FHWA NHI-06-089 Eq. 7-4

FHWA NHI-06-089 Eq. 7-2

FHWA NHI-06-089 Eq. 7-2

(modified per FHWA NHI-06-089 p. A.6.9-10)

For overconsolidated soils where, $\rho_0 < \rho_f \le \rho_c$ (OCR > 1.2)

 $S_{c} = \sum_{i}^{n} \frac{C_{r}}{1 + e_{o}} H_{o} \log_{10} \left(\frac{\rho_{f}}{\rho_{o}}\right)$

For underconsolidated soils, $\rho_c < \rho_o$ (OCR < 0.8)

$$S_{c} = \sum_{i}^{n} \frac{H_{o}}{1 + e_{o}} \left(C_{c} \log_{10} \frac{\rho_{o}}{\rho_{c}} + C_{c} \log_{10} \frac{\rho_{f}}{\rho_{o}} \right)$$
FHWA NHI-06-089 Eq. 7-6

Where, S_c = settlement

H_o = layer thickness

e_o = initial void ratio

C_c = compression index

C_r = recompression index

 ρ_{o} = initial effective vertical stress at the center of layer n

 ρ_{f} = final effective vertical stress at the center of layer n

 ρ_{c} = preconsolidation pressure at the center of layer n

Soil Layer No.	H _o (ft)	ρ _o (ksf)	ρ _c (ksf)	ρ _f (ksf)	OCR	FHWA Settlement Equation	e _o	C _c	C _r	δ (in)
1	12.0	0.178	1.738	1.134	9.78	FHWA Eq. 7-2 (modified)	2.300	1.337	0.194	6.82
2	15.0	N/A	N/A	N/A	N/A	N/A (Cohesionless Layer)	N/A	N/A	N/A	0.00
3	10.0	1.367	2.927	2.138	2.14	FHWA Eq. 7-2 (modified)	2.300	1.337	0.194	1.37
4	5.0	N/A	N/A	N/A	N/A	N/A (Cohesionless Layer)	N/A	N/A	N/A	0.00
5	32.0	2.661	6.253	3.219	2.35	FHWA Eq. 7-2 (modified)	0.940	0.200	0.070	1.15
6	3.0	N/A	N/A	N/A	N/A	N/A (Cohesionless Layer)	N/A	N/A	N/A	0.00

Total Primary Consolidation Settlement = 9.34 in

cuSign Envelope	e ID: 68E798FF-7224-412C-A	ACA-1EDD746	62C864 T:	R-	2511	COUNTY	′ :	
DEPARTM	IENT OF TRANSPORT	ATION	SUBJECT:	Settlement C	alculations for	Roadway Emb	ankments (Co	onsolidation Theory
GEOTECHN	NICAL ENGINEERING UN	IT		Dual	Bridge over	US17 (Right L	_ane Bridge)	
1589 MAIL \$	SERVICE CENTER		PREPARE	D BY: MS	DATE: 03	8/30/21 STA	TION:	
RALEIGH, N	NC 27699		CHECKE	D BY: AA	DATE: 03	8/31/21 STR	. NO.: I	PAGE: 5 OF 8
Calculate	e the time rate of settlen	nent for the	cohesive lay	ers to reach	90% conso	olidation, (t ₉₀)	<u>)</u>	
t =-	$\frac{T_v H_d^2}{c_v}$					F	HWA NHI-C	06-089 Eq. 7-8
v	/here, t = time							
	T _v = time facto	or based on	the percent	consolidatio	n (U)	FH	NA NHI-06-	089 Table 7-4
	c _v = coefficier	t of consolic	lation					
	H _d = length of	longest draii	nage path in	compressit	ole layer	AASH1	TO 10.6.2.4.	3, page 10-61
	The lengt to a drain compress height of (usually b Where a height of	th of the drai age bounda sible layer is the layer. W below), H _d ec compressibl any addition	nage path is ry at the top located betw here a comp guals the full e layer is no al layers tha	the longest or bottom o ween two dr. pressible lay height of th t adjacent to t are necess	distance fro f the compr ainage bour er is adjace e layer. (AA a drainage sary to reac	om any point ressible soil u ndaries, H _d e ent to an impe SHTO 10.6.2 e boundary, H h a drainage	t in a compr unit. Where quals one-h ermeable bo 2.4.3, page H _d will incluc boundary. I	essible layer a lalf the actual bundary 10-61) le the full For this
	situation	the calculation	on of t becor	nes;				
			t =	= $\Gamma_v \Sigma(H_{di}^2/c$	vi)			
		Layer	Drainage			At 90	0% Consolio	dation
Layer No.	r Material	Thickness H ₀	Path H _d	C _v	$\Sigma (H_d^2/c_v)$	Time Factor	Time (t ₉₀)	Settlement (S _{c. 90})
	Description	(ft)	(ft)	(ft²/day)	(days)	T _v	(days)	(in)
1	Cohesive Soil (Clav)	12.00	6.00	0.300	120	0.848	102	6,138

		Layer	Drainage			At 90	0% Consolid	lation
Layer	Material	Thickness	Path	C _v	0	Time	Time	Settlement
No.	Description	H ₀	H _d		$\Sigma (H_d^2/c_v)$	Factor	(t ₉₀)	(S _{c_90})
		(ft)	(ft)	(ft²/day)	(days)	Τ _ν	(days)	(in)
1	Cohesive Soil (Clay)	12.00	6.00	0.300	120	0.848	102	6.138
2	Cohesionless Soil (Sand)	15.00	N/A	N/A	N/A	N/A	N/A	N/A
3	Cohesive Soil (Clay)	10.00	5.00	0.300	83	0.848	71	1.233
4	Cohesionless Soil (Sand)	5.00	N/A	N/A	N/A	N/A	N/A	N/A
5	Cohesive Soil (Clay)	32.00	16.00	0.600	427	0.848	362	1.035
6	Cohesionless Soil (Sand)	3.00	N/A	N/A	N/A	N/A	N/A	N/A
7								
8								
9								
10								

DocuSign Envelope ID: 68E798FF-7224-412C-AACA-1EDD7462C864

Calculate the Overall Percent Consolidation as a function of time

COUNTY:

DEPARTMENT OF TRANSPORTATION	SUBJECT: S	Settlen	nent Ca	alculation	s for Roadwa	ay Embankmer	nts (Consolida	tion	Theo	ry)
GEOTECHNICAL ENGINEERING UNIT			Dual	Bridge o	ver US17 (I	Right Lane B	ridge)			
1589 MAIL SERVICE CENTER	PREPARED	BY:	MS	DATE:	03/30/21	STATION:				
RALEIGH, NC 27699	CHECKED	BY:	AA	DATE:	03/31/21	STR. NO.:	PAGE:	6	OF	8

R-2511

T:

 $T_v = \frac{tc_v}{H_d^2} = \Sigma t(c_v / H_d^2)$ Rearranging FHWA NHI-06-089 Eq. 7-8 and solving for T_v Time Factor (T_v) for different values of time (t) Layer $\Sigma (H^2/c_v)$ Time, t (days) No. 60 120 240 420 (days) 180 300 360 480 540 600 120.000 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000 1 83.333 0.720 1.440 2.160 2.880 3.600 4.320 5.040 5.760 6.480 7.200 3 5 426.667 0.141 0.281 0.422 0.563 0.703 0.844 0.984 1.125 1.266 1.406 Time Factor (T), Percent Consolidation (U), and Primary Consolidation Settlement (S_c) for different values of time Soil Time, t (days) Layer 120 300 420 480 540 60 180 240 360 600 $T_v =$ 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000 1 U = 76% 93% 98% 99% 100% 100% 100% 100% 100% 100% $S_c =$ 5.183 6.343 6.684 6.752 6.82 6.82 6.82 6.82 6.82 6.82 0.720 T = 1.440 2.160 2.880 3.600 4.320 5.040 5.760 6.480 7.200 2 U = 86% 98% 100% 100% 100% 100% 100% 100% 100% 100% 1.178 1.37 1.37 1.37 1.37 $S_c =$ 1.343 1.37 1.37 1.37 1.37 0.141 0.281 0.422 0.563 0.703 0.844 0.984 1.266 1.406 T = 1.125 42% 71% 90% 93% 95% 96% 97% 3 U = 60% 80% 86% $S_c =$ 0.483 0.69 0.817 0.92 0.989 1.035 1.07 1.093 1.104 1.116 T = 4 U = $S_c =$ Т= 5 U = S_c = T = 6 U = $S_c =$ T = 7 U = $S_c =$ T = U = 8 $S_c =$ 9.306 6.844 8.376 8.871 9.042 9.179 9.225 9.26 9.283 9.294 $S_c =$ U = 73% 90% 95% 97% 98% 99% 99% 99% 100% 100% Total

DocuSign Envelope ID: 68E798FF-7224-412C-AACA-1EDD7462C864

R-2511 COUNTY:

FHWA NHI-06-089 Equation 7-10

DEPARTMENT OF TRANSPORTATION	SUBJECT: Settle	ement C	alculation	s for Roadwa	ay Embankme	nts (Consolida	tion T	heo	ry)
GEOTECHNICAL ENGINEERING UNIT	Dual Bridge over US17 (Right Lane Bridge)								
1589 MAIL SERVICE CENTER	PREPARED BY:	MS	DATE:	03/30/21	STATION:				
RALEIGH, NC 27699	CHECKED BY:	AA	DATE:	03/31/21	STR. NO.:	PAGE:	7 (OF	8

T:

Calculate the amount of secondary compression

$$S_{s} = \frac{C_{\alpha}}{1 + e_{o}} H_{c} \log_{10} \frac{t_{2}}{t_{1}}$$

Where, S_c = secondary compression

- C_{α} = coefficient of secondary compression
 - The values of C $_{\alpha}$ can be determined using FHWA NHI-06-089 Equation 7-9 or by using the ratio of C $_{\alpha}$ / C $_{c}$ presented in FHWA-NHI-06-089 Section 5.4.6.4.

 e_o = initial void ratio

 H_c = layer thickness

- t₁ = time when approximately 90% of primary compression has occurred <u>for the actual</u> <u>clay layer being considered</u> as determined from FHWA NHI-06-089 Equation 7-8.
- t_2 = the service life of the structure or any other time of interest (typically assumed to be 50 years) If t_1 is greater than t_2 , then there will be no secondary compression in that soil layer.

Soil		Layer El	evations						
Layer	Soil Layer Material	Тор	Bottom	C _a	e _o	H _c	t ₁	t ₂	δ_{S}
No.	Description	(ft)	(ft)			(ft)	(years)	(years)	(in)
1	Cohesive Soil (Clay)	32.00	20.0	0.04011	2.300	12	50.00	50.00	0
2	Cohesionless Soil (Sand)	20.00	5.0	N/A	N/A	15	50.00	50.00	N/A
3	Cohesive Soil (Clay)	5.00	-5.0	0.04011	2.300	10	50.00	50.00	0
4	Cohesionless Soil (Sand)	-5.00	-10.0	N/A	N/A	5	50.00	50.00	N/A
5	Cohesive Soil (Clay)	-10.00	-42.0	0.01	0.940	32	50.00	50.00	0
6	Cohesionless Soil (Sand)	-42.00	-45.0	N/A	N/A	3	50.00	50.00	N/A
7									
8									
9									
10									

Total Primary Consolidation Settlement = 0.00 i

in

CALCULATIONS FOR END BENT NO. 2

			Lab N	- · D 2511		
			N dol	D.: K-2511		
			la:	SK: Foundation Recor	nmendations	
			Job Nam	ie: Dual Bridges over	Gum Swamp	
		_		BY: AB	Date: 2/24/2021	
			Checked E	sy: MS	Date: 2/24/2021	
			End Bent #	2		
Refer	ences: AASHTO LRFD	(8th Ed.) and I	NCDOT LRFD	Driven Pile Foundation	on Policy (6th Update)	
PROVIDED IN	IFORMATION					
- Location	of End Bent #2:					
		-L- Sta. 156+	-81 (Left	Bridge)		
		-L- Sta. 156+	-89 (Rigl	nt Bridge)		
- Type of A	butment:	Integral abu	tment			
		Vertical abu	tment with	Steel Sheet Piles		
- Foundation Type: Vertical HP 12x53 steel piles						
- Number o	of piles:	6				
- Bottom o	f Cap (B/C) Elev. (ft)	: 34.8 LT / 33	.5 RT (Left	Bridge)		
		33.7 LT / 32	.4 RT (Rid	ge Bridge)		
- Design Sc	our Elev. (ft):	15-ft (100-Yr)			
(Fro	om BSR)	9-ft (500-Yr)			
Factored Loa	ds (Provided by Str	uctures)				
- Max Axia	I Load (Strength I):	195 kips per	pile			
- Max Axia	l Load (Service I):	140 kips per	pile			
BORING SUM	<u>IMARY</u>					
	Ground	Top of Ve	y Dense	- ·	Boring	
Poring	Surface Elev.	Layer	Elev.	Groundwater	Termination	
	<u>(π)</u>	(π	<u> </u>	(11)		
	33.3	-38	./	$33.3^{(2)}$	-41.1	
	30.8	-41	.5	55.2	-03.4	
EDZ-D	30.õ	-41	.э	55.5	-03.4	

(1) NWS = Normal Water Surface (See BSR)

(2) 0-hr Groundwater

			Job No.: R-251	1		
			Task: Found	ation Recommen	dations	
			Job Name: Dual B	ridges over Gum	Swamp	
			By: AB		Date:	2/24/2021
			Checked By: MS		Date:	2/24/2021
		Enc	d Bent #2 (Continued	1)		
References: A	ASHTO LRFD (8th E	d.) and NCDOT LF	RFD Driven Pile Founda	tion Policy (6th U	Ipdate)	
Embankmer	nt Settlement, Axi	al, Lateral, and	Dynamic Analyses			
* See EB1 cald	culations					
<u>SUMMARY</u>						
			Approximate			
			Top of Very	Est. Pile		
		B/C Elev.	Dense Layer	Tip Elev.	Recon	nmended Pile
Bridge	Location	(ft)	Elev. (ft)	(ft)	Le	ength (ft)
left	Left	34.8		-43.0		80
Leit	Right	33.5	42.0	-43.0		80
	left	33 7	-42.0	-43 0		80
Right	Right	32.4		-43.0		80
	Mart	52.7		-5.0		00

Estimated Pile Tip Elevation = Top of Very Dense Layer EL - (1 ft)

Recommended Pile Length = (B/C EL) - (Estimated Pile Tip Elevation) + (2 ft Pile Embedment into Cap) (Round up to nearest 5-ft)

CALCULATIONS FOR SHEET PILE DESIGN

Calculation Summary

Assumptions:

- Model Geometry:
 - Grade Point: EL 41.7 ft
 - Ground water: EL 33.3 ft (NWS)
 - Top of wall: EL 34.
 - o DSE

EL 34.6 ft (Bottom of Cap) EL 15 ft

- LRFD design method:
 - Load factors: (AASHTO LRFD Tables 3.4.1-1)
 - Active horizontal earth pressure, $\gamma_{EH} = 1.50$ (Strength I)
 - \blacktriangleright Live load $\gamma_{LL} = 1.75$
 - Resistance factor (AASHTO LRFD Table 11.5.6-1)
 - > Passive resistance of vertical elements for non-gravity cantilevered walls,
 - $\varphi_{PEP} = 0.75$ (Strength I)
- Subsurface:
 - See the "Provided Information" section.
- Soil Properties:
 - o $c = 800 \text{ psf} \approx \phi' = 30\text{-deg}$ (Drained condition)
 - $\gamma = 120 \text{ pcf} / \gamma' = 57.6 \text{ pcf}$ (Drained condition)

Sheet Pile Wall

- Calculations show embedment of 25 ft below the DSE is required for sheet piles (sheet pile tip at Elev. -10 ft).
- PZ27 or similar sections with 50 ksi steel.

Sheet Pile Wall Design - Embedment Design (2016 AASHTO LRFD Bridge Design Specifications) REVISED

Project: R-2511

Section: Dual Bridge Abutment

Design: MS **Date:** 4/5/2021 Check: AA Date: 4/5/2021

Soil Input

Soil Unit Weight (pcf) =	120
Friction Angle (deg) =	30
K_a (Rankine) =	0.333
K_p (Rankine) =	3.000
Cohesion (psf) =	0
GWT Elev. (ft) =	33.3

Wall Geometry

Grade Point Elev., $E_1 =$	41.7
Bottom of Cap Elev., BOC =	34.6
Design Scour Elev., $E_2 =$	15.0
Bottom of Wall Elev., $E_3 =$	-9.6
Front Slope, β (deg) =	0.0

Load/Resistance Factors

(AASHTO LRFD Tables 3.4.1-1, 3.4.1-2, and 11.5.7-1)

Active Horizontal EP, $\gamma_{EH} =$	1.5
Live Load Surcharge , $\gamma_{LL} =$	1.75
Passive Horizontal EP, $\phi_{PEP} =$	0.75

Factored Soil Pressure

Active EP at Bottom of Cap, σ_{a1} (psf) =	426
Active EP at Tip, σ_{a2} (psf) =	1,741
Live Load Stress at Tip, σ_{LL} (psf) =	146
Passive EP at Tip, σ_p (psf) =	3,193

Factored Loads

Active EP (uniform), P_{a1} (lb) =	18,846
Active EP (triangular), P_{a2} (lb) =	29,079
Live Load Pressure, P_{LL} (lb) =	6,451
Passive EP, P_p (lb) =	39,337

(A typical simplified earth pressure diagram)

NWS EL 33.3 used for GWT

Sheet Pile Wall Design - Embedment Design (2016 AASHTO LRFD Bridge Design Specifications)

Project: R-2511

Design: MS **Date:** 4/5/2021

REVISED

Check: AA Date: 4/5/2021

Section: Dual Bridge Abutment

Moment Arm - From the Bottom of Cap

Active EP - P_{a1} (ft) =	22
Active EP - P_{a2} (ft) =	29
Live Load - P_{LL} (ft) =	22
Passive EP - P_P (ft) =	36

Factored Moment

Active EP - P_{a1} (kip-ft) =	417
Active EP - P_{a2} (kip-ft) =	858
Live Load - P_{LL} (kip-ft) =	143
Passive EP - P_P (kip-ft) =	1,417
Sum of moments (kip-ft) =	0

Find Bottom of Wall Elevation using Excel Solver to set moment equal to zero:

Minimum Embedment Below DSE, D (ft) = 25

Use 25 ft

REVISED

(2016 AASHTO LRFD Bridge Design Specifications)

Project: R-2511

Section: Dual Bridge Abutment

Design: MS Date: 4/5/2021

Check: AA Date: 4/5/2021

Soil Input

Soil Unit Weight (pcf) =	120.0
Friction Angle (deg) =	30
K_a (Rankine) =	0.33
K_p (Rankine) =	3.00
Cohesion (psf) =	0.0
GWT Depth (ft) =	33.3

Wall Geometry

Grade Point Elev., $E_1 =$	41.7
Bottom of Cap Elev., BOC =	34.6
Design Scour Elev., $E_2 =$	15.0
Elev. at $y = P^*/(\gamma(K_p-K_a))$	7.3
Point of Zero Shear Elev., POZS =	-3.4
Bottom of Wall Elev., $E_3 =$	-9.6
Front Slope, β (deg) =	0.0

Load/Resistance Factors

Active Horizontal EP, γ_{EH} =	1.5
Live Load Surcharge , γ_{LL} =	1.75
Passive Horizontal EP, $\phi_{PEP} =$	0.75

Factored Soil Pressure

Active EP at Bottom of Cap, σ_{a1} (psf) =	426
Active EP at DSE, σ_{a2} (psf) =	1,031
Live Load Stress at DSE, σ_{LL} (psf) =	146
Passive EP at POZS, σ_p (psf) =	1,234

Factored Loads - Find Point of Zero Shear using Excel Solver:

	-
Pull at the cap, P_{cap} (lb) =	-15,038
Active EP (uniform), P_{a1} (lb) =	8,350
Active EP (triangular), P_{a2} (lb) =	5,929
Live Load Pressure, P_{LL} (lb) =	2,858
Active EP (triangular), P_{ay} (lb) =	4,509
Passive EP (triangular), P_{p2} (lb) =	-6,607
Sum of Horizontal Forces (lb) =	0

⁽A typical fixed earth support pressure diagram) NWS EL 33.3 used for GWT

Sheet Pile Wall Design - Section Design/Check

REVISED

(2016 AASHTO LRFD Bridge Design Specifications)

Project: R-2511

Design: MS **Date:** 4/5/2021

Check: AA Date: 4/5/2021

Section: Dual Bridge Abutment

Moment Arm - From the Point of Zero Shear

Pull at the cap - P_{cap} (ft) =	38
Active EP - P_{a1} (ft) =	28
Active EP - P_{a2} (ft) =	25
Live Load - P_{LL} (ft) =	28
Active EP - P_{ax} (ft) =	16
Passive EP - P_{P2} (ft) =	4

Maximum Moment at Point of Zero Shear

Pull at the cap - P_{cap} (kip-ft) =	-571
Active EP - P_{a1} (kip-ft) =	235
Active EP - P_{a2} (kip-ft) =	148
Live Load - P_{LL} (kip-ft) =	81
Active EP - P_{ax} (ft) =	71
Passive EP - P_{P2} (kip-ft) =	-24
Sum of moments (kip-ft) =	-60

Required Section Modulus

F_y of steel, ksi =	50
M_{max} , kip-in/ft =	719
$S_{req.} = M_{max} / (0.9*F_y)$, $in^3/ft =$	16.0
Section modulus of PZ27, $in^3 =$	30.2
Is $S > S_{req}$?	YES

S

N

R

REFERENCE

CONTENTS

13-30

<u>SHEET NO.</u>	DESCRIPTION
I	TITLE SHEET
2	LEGEND (SOIL & ROCK)
3	SITE PLAN
4-5	PROFILES
6-7	CROSS SECTIONS
8-12	BORE LOGS

LAB RESULTS

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY _**BEAUFORT**

PROJECT DESCRIPTION US 17 FROM NORTH OF NC 171 TO EXISTING MULTI-LANES SOUTH OF

WILLIAMSTON

SITE DESCRIPTION **DUAL BRIDGE ON US 17 OVER** GUM SWAMP CREEK BETWEEN SR 1421 (GRIFFIN HODGES ROAD) AND SR 1420 (BEAR GRASS ROAD)

INVENTORY

	STATE	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
\mathbf{N}	J.C.	R-2511	1	30

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOLI TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1991 707-6860. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSUFFACE DATA AND MAY NOT NECESSARLY REFLECT THE ACTUAL SUBSUFFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELED ON ONLY TO THE DECREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOLL MOSTUME CONDITIONS INDICATED IN THE SUBSUFFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOLL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT MARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR THE DEPARTMENT AS TO THE TYPE OF MATERNALS AND CONSTRUCTIONS TO BE ENCOUNTERED. OPNION OF THE DEPARTMENT AS TO THE TYPE OF MATERNALS AND CONSTRUCTIONS TO BE ENCOUNTERED. AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OF FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FOM THE ACTUAL CONDENSATION. OF FOR AN THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

NOTES

- ES: THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT. BY HAVING REDUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

PERSONNEL

G. GOSLIN

A. BOZORGI

M. METRY

S&ME PERSONNEL

GET PERSONNEL

INVESTIGATED BY _**RK&K, LLP** DRAWN BY __M. METRY, P. CARY

CHECKED BY _____. BOZORGI

SUBMITTED BY _**RK&K, LLP**

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

		T	
		ROCK DESCRIPTION	TERMS AND DEFINITIONS
BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	WELL GRADED - INDICATES A GOUD REPRESENTATION OF PARTICLE SIZES FROM FINE TO CUARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE.	ROCK LINE INDICATES THE LEVEL AT WHICH HIM WOOLD FIELD MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM DI586). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING:	GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN	AUDIFER - A WATER BEARING FURMATION OR STRATA.
CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	
VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	WEATHERED	A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION		ROCK (WR)	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS ORGANIC MATERIALS		CRYSTALLINE FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT	SURFACE.
CERSI. C = 53/k FH = 51/k 2 = 60/k CR01IP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1 A-7 A-4 A-5 A-6 A-7 A-1 A-7 A-4 A-5 A-6 A-7 A-1 A-7 A-4 A-5 A-7 A-1 A-7 A-4 A-5 A-7 A-7	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	ROCK (CR) CNEISS, GABBRO, SCHIST, ETC.	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
CLASS. A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-7-5 A-3 A-6, A-7	COMPRESSIBILITY	NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM
SYMBOL DOCODOODS		ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.	OF SLOPE.
2 PASSING	HIGHLY COMPRESSIBLE LL > 50	SEDIMENTARY ROCK SPT REFUSAL ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
10 50 MX GRANULAR SILT MUCK,	PERCENTAGE OF MATERIAL		DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
•40 30 MX 50 MX 51 MN •200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN 36 MN	GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL		ROCKS OR CUTS MASSIVE ROCK.
MATERIAL	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%	HAMMER IF CRYSTALLINE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
PASSING #40 40 MY 41 MN 40 MY 41 MN 40 MY 41 MN 40 MY 41 MN 50ILS WITH	MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE
PI 6 MX NP 10 MX 10 MX 11 MN 11 MN 10 MX 10 MX 11 MN 11 MN 11 MN MOREATE HIGHLY	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	OF A CRYSTALLINE NATURE.	LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
GROUP INDEX Ø Ø Ø 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF SOILS	GROUND WATER	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE
USUAL TYPES STONE FRAGS. FINE SILTY OR CLAYEY SILTY CLAYEY MATTER	WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	(SLI.) 1 INCH, OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED, CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSUE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
OF MAJOR GRAVEL, AND MATERIALS SAND SAND GRAVEL AND SAND SOILS SOILS	STATIC WATER LEVEL AFTER <u>24</u> HOURS	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
GEN. RATING FUEL TO COOD FAIR TO COULD TO COOD	→ PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY, ROCK HAS	PARENT MATERIAL.
AS SUBGRADE EXLELLENT TO GUOD FAIR TO POUR POOR ONSUITAB		UULL SUUND UNDER HAMMER BLUWS AND SHUWS SIGNIFICANI LUSS OF SIRENGIH AS CUMPARED WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30		MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION, ROCK SHOWS SEVERE LOSS OF STRENGTH	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE COMPACTNESS OR PENETRATION RESISTENCE COMPRESSIVE STRENGTH	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION	IF TESTED, WOULD YIELD SPT REFUSAL	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
(N-VALUE) (TONS/FT ²)	U WITH SOIL DESCRIPTION - OF ROCK STRUCTURES	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT	ITS LATERAL EXTENT.
GENERALLY VERY LOOSE < 4	SOIL SYMBOL	TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
GRANULAR MEDIUM DENSE 10 TO 30 N/A		IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS
(NON-COHESIVE) DENSE 30 TO 50 VERY DENSE > 50	THAN ROADWAY EMBANKMENT THAN ROADWAY EMBANKMENT	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOLL STATUS WITH ONLY ERAGMENTS OF STRONG BOCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
VERY SOFT < 2 < 0.25	- INFERRED SOIL BOUNDARY - CORE BORING • SOUNDING ROD	(V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	OF AN INTERVENING IMPERVIOUS STRATUM.
GENERALLY SOFT 2 TO 4 0.25 TO 0.5		VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u>	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
MATERIAL STIFF 8 TO 15 1 TO 2		SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
(COHESIVE) VERY STIFF 15 TO 30 2 TO 4 HARD > 30 > 4	TTTTT ALLUVIAL SOIL BOUNDARY A PIEZUMETER OF SPT N-VALUE	ALSO AN EXAMPLE.	RUN AND EXPRESSED AS A PERCENTAGE.
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
ULS STD SIEVE SIZE 4 10 40 60 200 270	XXI UNCLASSIFIED EXCAVATION -	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES	RULK.
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	UNDERCUT I UNSUITABLE WASTE	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO
BOULDER COBBLE GRAVEL COARSE FINE SILT CLAY	UNDERCUT UNCLASSIFIED EXCAVATION - EMBANKMENT OR BACKFILL	TO DETACH HAND SPECIMEN.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
(BLDR.) (COB.) (GR.) SANU SANU (SL.) (CL.)	ABBREVIATIONS	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	<u>SLICKENSIDE</u> - PULISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.05 0.005	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	BY MODERATE BLOWS.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF
SIZE IN. 12 3	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	A 140 LB.HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION FOUND
SOIL MOISTURE - CORRELATION OF TERMS	CPT - CONE PENETRATION TEST NP - NON PLASTIC γ_d - DRY UNIT WEIGHT	POINT OF A GEOLOGIST'S PICK.	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION	CSE COARSE ORG ORGANIC	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY
	DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	FRUM UHIPS TU SEVERAL INUHES IN SIZE BY MUUERATE BLUWS UF A PILK PUINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE.	STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY (SAT,) FROM BELOW THE GROUND WATER TABLE	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON E - FINE SL SILT SILTY ST - SHELRY TURE	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH	LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
	FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
RANGE < - WET - (W) SEMISOLID: REQUIRES DRYING TO	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL FRACS FRACMENTS W - MOISTURE CONTENT CRR - CALLEGRADA REARING	ERACTURE SPACING REDDING	
	HI HIGHLY V - VERY RATIO	TERM SPACING TERM THICKNESS	IN 14" PINE TREE
- MOIST - (M) SOLID: AT OR NEAR OPTIMUM MOISTURE	EQUIPMENT USED ON SUBJECT PROJECT	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET	ELEVATION: 38.73 FEET
OM OPTIMUM MOISTURE SL SHRINKAGE LIMIT	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET	NOTES
REQUIRES ADDITIONAL WATER TO	X CME-45C CLAY BITS	CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET	COLLAR ELEVATIONS FOR BORINGS FRI-A, FRI-B, FR2-A, FR2-B, DETERMINED
ATTAIN OPTIMUM MOISTURE	CME-55 CONTINUOUS FLIGHT AUGER CORE SIZE:	THINLY LAMINATED < 0.008 FEET	USING SURVEY-GRADE GPS
PLASTICITY	8' HOLLOW AUGERS □-BH	INDURATION	COLLAR ELEVATION FOR BORING EB2-A2 DETERMINED FROM PROVIDED
PLASTICITY INDEX (PI) DRY STRENGTH	X CME-550 HARD FACED FINGER BITS	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	ABBREVIATIONS.
NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC 6-15 SLIGHT		FRIABLE GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
MODERATELY PLASTIC 16-25 MEDIUM	CASING W/ ADVANCER POST HOLE DIGGER	GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE;	TIAU - TILLEU IMMEUTATELT AFTER UKILLING
	L PORTABLE HOIST LX TRICONE21%6_ STEEL TEETH HAND AUGER	BREAKS EASILY WHEN HIT WITH HAMMER.	
	TRICONE TUNGCARB.	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE; DIFFICULT TO BREAK WITH HAMMER.	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	VANE SHEAR TEST		
MUUI⊢IERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.		EXTREMELY INDURATED SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-14

SHEET NO. 2

PROJECT REFERENCE NO. SHEET NO. R-2511 3 SITE PLAN 40 80 SÒ FEET $\overline{SKEW} = 80^{\circ}$ BRIDGE NO.060364 160 TO BEAR GRASS ROAD \geq T F0-in the there is a start in the start in the start is a start in the start in t A. K K K K K K K K K К K K K K K K K K K K K K K \swarrow К K K K K K

DocuSign Envelope ID: 82CB83C2-66E0-43AB-B612-FB3CD556825D

	154+00	155+00	156+00		157+00	0	158+00
		1 <i>F IAD</i>					
- 40	BOTH PROJECTED ONTO THE PROFILE				(14)		(16) BT- FIND
 - - -	NOTE: GROUNDLINE PROFILE TAKEN FROM TIN FILE ALONG CENTERLINE OF -L- NOTE: INFERRED STRATIGRAPHY IS	29			4		23
30		00/0.3		11	5		00/0.3
		(B)			7		00/0.6
20	Green-grey,medium stiff to stiff, silty sandy CLAY,trace shell fragments,saturated		5		6		60/0.0
			(19)			Green-grey saturated	,loose,clayey fi
-10	Green, stiff to very stiff, clayey sar	dy SILT, saturated	9—				
			(7)		6		
0	Green-gray, medium stiff to stiff, s trace shell fragments saturated	andy silty CLAY,				trace shell (Yorktown	r, mearum - aense fragments,satur formation)
	Green, stiff, clayey SILT, saturated (Yorktown formation)						COAST
10	COASTAL	PLAIN	9—				
	Green-gray, medium stiff, sandy SIL trace shell fragments, saturated	-Τ,	(5)			Green-grey,	very loose, claye
20			WOH-		WOH		
	Brown-grey,very soft to medium st trace shell fragments,wet to saturat	cuasi al PLAIN iff,silty sandy CLAY, ed	(-5) (-5) (-4)		4		
30		A) 12 7				
+0			Pavement —	water		Pavement	E
40	SAND, saturated (Yorktown Formati	IITy TINE TO COARSE on))' RT		<u>′ RT</u>	
J - 1 1 1 1	B Green-grey, very dense, clayey silty with cemented layers, saturated (Yc	fine to coarse SAND rktown Formation)) E	BI-A 6+28	E 15	B2-A 57+14	
50	A ROADWAY EMBANKMENT B Green-grey, very dense, c with cemented layers sa	Brown-gr GRAVEL,t layey silty turated (Yo	Brown-grey,loose to medium GRAVEL,trace gravel,moist to layey silty fine to coarse SAND turated (Yorktown Formation)	FBrown-grey,loose to medium dense,silty of GRAVEL,trace gravel,moist to wet layey silty fine to coarse SAND furated (Yorktown Formation)	Brown-grey,loose to medium dense,silty clayey SAI GRAVEL,trace gravel,moist to wet layey silty fine to coarse SAND EBI-A	FBrown-grey,loose to medium dense,silty clayey SAND to sandy GRAVEL,trace gravel,moist to wet layey silty fine to coarse SAND EBI-A Everated (Yorktown Formation)	FBrown-grey, loose to medium dense, silty clayey SAND to sandy GRAVEL, trace gravel, moist to wet layey silty fine to coarse SAND EBI-A EB2-A turated (Yorktown Formation)

50	100	PROJECT	<i>REFERENCE</i> R-2511	<i>NO</i> .	SHEI	ET NO. 4
FEET $VE = 5$			PROFILE ALC	DNG - JNE)	-L	
Proposed Grac	/e					
visting Ground	line					40
						<u> </u>
OASTAL PLAIN						30
						20
fine SAND, so	iturate	d				20
			. <u></u>			
 Ι ΡΙΔΙΝ			<u> </u>			10
silty-clayey-SA	N.D.,					
		· · ·	<u> </u>			0
					, , ,	
						-10
e SAND,trace	shell f	ragments	 2,			
· · · · · · · · · · · · · · · · · · ·			. <u></u>	, - - - -		20
)						-20
50						
						-30
50	- - -					
/ 	· · · ·				L L	-40
; 	- - 					
15	9+00		1	60+00)	

	154+00 15	55+00	156+00			157+00	158+00)
						· · · · · · · · ·		
-40	NOIE:INFERRED STRATIGRAPHY IS DRAWN THROUGH THE BORING WITH BOTH PROJECTED ONTO THE PROFILE	$ \begin{array}{c c} & & & \\ \hline \\ \hline$				21		BT IAD
	NOTE: GROUNDLINE PROFILE TAKEN FROM TIN FILE ALONG CENTERLINE OF -L-	32 -60	5			6		·····
-30						5		
		-50		111		5		····i ····i ····i
-20	silty sandy CLAY,trace shell fragments,saturated			111		6		
, , , , , , , , , , , , , , , , , , ,	(roop-grou modium stiff to stiff		(14)			9		
-10	Green-grey, loose to medium dense, cl trace shell fragments, saturated	uyey IIne SAND,		, o - o , o o - o , o o - o , o o o - o o o o o - o o o o o		22		
ا ا ا ا ا ا			6		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
0	Green,medium stiff to stiffsilty sand	dy CLAY,saturated	(10)	111			(Yorktown formation	:e snell 1 n)
	Green, stitt, sandy SILL, trace shell fr (Yorktown formation)	agments, saturated	(13)				COASTAL PL Green-grey, medium	AIN dense
10					· · · · · · · · · · · · · · · · · · ·			
- 	Green-grey,medium stiff to stiff,sau saturated	ndy clayey SILT,	(5)			6	Green-grey, loose, s	silty fin
20			WOH-		· · · · · · · · · · · · · · · · · · ·	2		
	Green-grey,very soft to medium stiff wet to saturated	,silty sandy C'LAY,	2-			ă 		
30	UNDIVIDE	D COASTAL PLAIN	(A) (2)== (2)		Ì, È F-A	3	UNDIVIDED COAS	STAL PL
					surrace	<u>-</u>		
40	fine to medium SAND, saturated (Yor	rktown Formation) Pa	Lement	8" KI	ourf app		C Pavement	
	(C) Green-grey, very dense, clayey silty fi with cemented layers, saturated (York (D) Green-grey, medium dense to dense, o	ne to medium (SANL (town Formation) clayey silty	I5	6+30 6		15	7+20	
50	(D) RUADWAL EMBANKMENT GLEY, 1005E,	STITY _COULSE_SAND, II	uce gruver, i		аларана аларана. Колтория аларана алар			

50	100	PROJECT	REFERENCE	<i>NO</i> .	SHEET NO.
FEET			R-2011	NG -	0 ./_
VE = 5	1		(CENTERL	INE)	
Proposed G	rade —				1
					40
''					
· · · · · · · · · · · · · · · · · · ·		- I			
_A/N				1	30
				'	
					20
e SAND, satur	ated			1	
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	<u></u>		
					10
· <u></u>					
cilty clavey f	ing to				
fragments, sat	urated				
· · ·		, , , , , , , , , , , , , , , , , , ,		, , , , , , , ,	0
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
					10
					-10
				-	
· · · · · · · · · · · · · · · · · · ·			<u></u>		
· · · · · · · · · · · · · · · · · · ·					-20
0				¹	
				-	00
					-30
0				1	
		 	<u> </u>		
	([, , ,	-40
				-	
· · · · · · · · · · · · · · · · · · ·				, , , _ , _ ,	
1	59+00		10	50+00	Ű

150	140	130	120	110	100	90 80) 7 ₀ 0	60	50	40	30	20	10	o	10	20	30	40	50	60	70	80
																	; ; ;					
	, , , , , , , , , , , , , , , , , , , ,			1 1 1									1 1 1		1 1 1		1 1 1 2					
	1	1	i i	i i i				1			1	1			1			1	- - -		1	
															1 1 1							
			<u>-</u>			· · · · · · · · · · · · · · · · · · ·							1 1 1 1				1 				· · · · · · ·	
			(Ā) F	ROADWAY	EMBANK	MENT Bro	own-grey, lo	ose to medi	ium dens	e,silty c	layey SAl	ID.										
		1	(B)	; Rrown to	arev.sof	to t. siltv sana	sandy GRAV Iv CLAY.trac	EL,moist to ce aravel.w) wet et to satu	rated		1		1	1 1 1		1 1 1					1
.50													*	E-E	3)A	- EB1-	B					
										1				156	5+28	156+3	30		្នា			
.40		¹ 1 1	<u>+</u>	¹	¹		3:1		- <u>-</u> <u>-</u> - <u>-</u>					· · · · · · ·			– Pave	ment	<u> </u>		3./	
														- 5-		′ (4)	B		>			
50					Grey trace	very soft i shell frag	fo⁻mēdlum⁻ īments,wet t	stiff,silty s o saturated	sandy CLA 1	4Y,				5		2			COAST			
20	1	1 1 1	i i	I I						1	1	I I	1 1	WOH		WOH-	010	UNIDED	CUAST A		1	I I
20	,		· · · · · · · · · · · · · · · · · · ·		Gree	en'-grey, me	dium stiff,	silty sandy	clayey Si	ILT,trac	e shell fr	agments, s	aturated	5		5-1,1						
10	, , ,	1		·	Gree	n stiff.sar		ILT_trace_s	shell fraar	mentsso	turated.	- <u></u>		9	××××××××××××××××××××××××××××××××××××××		•				, , ,	
1	1	1	1 1 1	1	(Yor)	ktown Forn	nation)		, , , , , , , , , , , , , , , , , , ,			1	1		マ マ マ マ マ マ マ マ マ マ マ マ マ マ マ マ マ マ マ	(13)	CO.	ASTAL F	PLAIN			
. 0			·		Gree	n, medium	stiff to sti	ff , silty sar	ndy CLAY,	tr'ace st	nell fragm	ents, satul	ated) 					
													· ·	7		6		, , ,				
10			-		Gree	n,stiff to	very stiff,c	layey sandy	v SILT, sai	turated				9			Gre	een, mediu	um dens	e, clayey	SAND, tra	ice shel
		1		· ·		· · ·			, , ,		·	· · · · · · · · · · · · · · · · · · · ·		(19)				, , ,		, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , 	,
-20		,		,	Gree	n, medium	stiff to sti	ff,silty sar	ndy CLAY,	trace st	nell fragm	ents, satur	ated	5								
-30			· 1						· 					6))			- <u>-</u>		-
-40																						
		1	1 1 1	1	Gree	en,very der	nse, silty SA	ND with ce	mented lo	ŋyers,sa	turated	1								1		1
-50														100/0.3								
60				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · · ·	·	·	·	(29)		(32)			· · · · · · · · · · · · · · · · · · · ·	· · ·	· 	· · ·
		 	+ I I	l I I	Grei (Yor	sh, mealum ktown Fori	-aense 10 d mation) ¦	ense, si-ity - S	SAND,-SATU	ur area	1	- I	+			(17)			- I	- +		-1
														E F	Β΄Τ ΙΆΠ	BT FIA	-¦ D					
	'			'	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·				, ,		U '	· - ·				
	1	1	1 1 1	I I			1 1 1	1			1	I I	156+	00.00	Ď		1 1	1 1	1		1 1	I I
	· · · · · · · · · ·			· ·							· · · · · · · · · · · · · · · · · · ·				· · ·							
	1	1	1	1						1	1 1 1	1	·	/ _	1 1 1		1 1 1	1 1 1	1 1 1	1	1 1 1	1
150	140	130	120	110	100	90 80	70	60	50	40	30	20	10	Ó	10	20	30	40	50	60	70	80

			0 :	5 10	PROJ.	reference R-2511	NO.	sheet no. 6
8	0 9	0 10	00 11	0	120	130	140	150
,				, , ,				
1		, , , ,		1 1	1			
,		· · · · · · · · · · · · · · · · · · ·		,	- , - -		· · · · · · · · · · · · · · · · · · ·	
1		, , , ,		1 1 1		1 1 1		
		· · · · · · · · · · · · · · · · · · ·		 				
1				1	1			70
'								
				, , ,				60
,								
		 		1	1 1			50
							· · · · · · · · · · · · · · · · · · ·	
1				1	1			10
3./				' '				
				<u> </u>				
				 			· · · · · · · · ·	
				1 1				20
		· · · · · · · · · · · · · · · · · · ·		, , ,			·	-,- 20 <u>-</u>
1				1 1 1	1 1 1			
		<u></u> 		<u>L</u> : :				1. 10.
· '				<u></u>				
				'				U
ND traci	e shell fr	aaments	saturate					-10
		- diginolino,						
 , ,		,, , ,			1			-20
				, , ,				
								-30
		· · · · · · · · · · · · · · · · · · ·		·	1			-
, , ,								-40
·		, ,,		- 	1			
, , , , , , , , , , ,		· · · · · · ·						-50
				· ·				
, , , , , , , , , , , , , , , , , , , ,								-60
1		, , , ,		1 1 1	1	1		
، ا	'							
1				1 1 1				
, , , , , , , , , , , , , , , , , , , ,							·	·
				1 1		1		1
,				,				
				1				1
) 8	09	0 10	00 11	0	120	130	140	150

15(J 140	130	120	110 	ιψυ 	YU 	8υ	/U 60		ວບ 40) 	3,U 	2 U	ιν 	• • • • • • •	ι υ	2U	.sv 4	ιυ 50 	6 U	/U		
			-	,											,					-			
	1			1										SOIL T	EST RESU	LTS							
					SAN N	IPLE S.	TATION OFF.	SET LINE	E	DEPTH INTERVAL	AASH CLA	TO SS.	L.L.	<i>P.I.</i>	C SAND	% BY V	VEIGHT	CLAY	% PAS	SING SIEV.	200		
					ST-2	2A/2B	156+79 49'	LT -L-		10.4 - 10.8	A-7-6	(53)	71	47	0.5	3.7	27.7	68.1	100.0	99.7	97.7		
.70					Note	e: ST-2A a	and ST-2B wer	e extruded f	from th	e shelby tub	e at a de	pth of 1	0.4'-10.8'	and mixed	dtogether	to obtain a	represent	ative sampl	e of the two tu	bes.			
60									EB	2-A2													
										Τ+2Δ		\bigcirc F	OADW AY	ÉMBAN	IKMENT	Brown-gr	ey and g	r'ey,loose,	silty coarse s	SAND, tro	ace grave		
.50			+					· · ·		T-2B-			, , , , , , , , , , , , , , , , , , , ,	;F	- R2-4	· · · · · · F P	2-B		· · · · · · · · · · · · · · · · · · ·	+			
1	1				1	1			3				1 1 1		57+14	157	7+20	1		1	-		
40						4	3:1-										Pav	rement	 				
										3		=	==	<u> </u>		<u>7 ¦5</u> //8 (3)-							
50		Gr	vDIVIDE een-gre	D-COAST ey and gr	rey-black,v	ery sofi	t to medium	stiff,				· · · · · ·		3		5							
20		si 	lty and ————	silty sand	dy CL'AY,tro	ice root	s,moist to so	aturated (; ;	, , 	WOH		2 2				1 1 1			
		Gr cla	ey-blac iyey and	ck-brown d silty clo	to green-g ayey SAND,	rey,very trace sl	y loose to lo hell f.ragment	ose, (2 ts, ;						3-		6	<u> </u>		· · · ·	, ,			
10		W6	et to sat	turated												9	Gre	Green-grey, medium stiff to stif					
	COAST AL	. PLAIN Gr	ev-blac	ck and ar		nedium	 stiff to stit	f.sandy (8					1	(13)-		(13)	Gre	ASTAL PL/ eh-grey,m	AIN hedium dense	e,silty cl	ayey fine		
0		ar sc	nd sand iturated	ly silty ČL ' (Yorktow	AY, some to In Formatic	_high_si n)	hell fragmeni	ts,wet to															
				· · · · · · · · · · · · · · · · · · ·					 D					8			Gre	v-black a	nd green-gr	ev, loose	to mediu		
-10									5					(7)-		(9)	silty wet	y and clay to satura	∕ey Ťine SĂN. ted	Ó,†race i	to-little-s		
-20	Grey fine		rey-blac ne sand	-иаск and green sandy silty and s fraamooto traco	en−grey,mediu 1 silty sandy¦C	nedium ndy:CLA	um stift to ver CLAY,trace to s	y stift, C ome	D			1	1	6) (6)		1	· · ·				
	· · · · · · · · · · · · · · · · · · ·	shell trag		iments, tra	ice gravei, n	noi șt-to -	saturatea					· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	7-		5		· · · · · · · · ·					
-30			<u>-</u>	, , , , , , , , , , , , , , , , , , , ,									,	5		5		, , , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , , ,			
														4-		6							
-40		Gr	 ev-blac	ck.hard.fi	ne sandv s	iltv. CLA	Y.trace.to	00/0.	3			· 		(14)-		(21)	Gre	tium SAN	D, moist to we	e, Clayey et (Yorkto	silly The own Form 		
		SC	me shel	ll fragmen	nts,trace gr	avel, sai	turated	(60/0.0 (60/0.0	D FI	AD				(60/0.		60/0.0	Gre coa	en-grey,vo rse_SAND	ery dense,cla with cement	yey silty ed laver	/ fine to		
-50													· · · · · · · ·	(100/0.	9 3)-								
-60						i i								23-		22	Gre	en-grey,m	nedium dense	e, clayey	silty fine		
-00		· · · · · · · · · · · · · · · · · · ·										· · · · · · · · · · · · · · · · · · ·	· -	(16)-		(15)	Yor	coarse SA rktown Fo	ND,moist to w rmation)	vet			
													L		BT FIAD	F	BT IAD		, , , , , , , , , , , , , , , , , , ,	<u>1</u>			
																				1			
							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·					, , , ,	157	+ 00.	00			· · · · · · · · · · · · · · · · · · ·	1 			
1 1 1								1 1 1 1 1 1 1 1				1 1 1		1 1 1									
			-	,			·						·	-	/				· · · · · · · · · · · · · · · · · · ·				
		1	100	110	100	0	80	70 60		50 40	,	30	20	10	_ <u>/</u> ,	10	20	30	0 50	40	70		

I. I	1	0	5 10	PROJ. REFERENCE	NO. SHEET NO.
80	90	100		20 130	40 150
n n n		1			
			,	 	1 1 7
		-	1 1 1		
% 10ISTURE	% ORGANIC	1 4			
90	-				
20		1 		· · · · · · · · · · · · · · · · · · ·	
		1			r r r r
				· · · · · · · · · · · · · · · · · · ·	
, moi st		1		1 1 1 1 1 1	
, , , , , , , , , , , , , , ,			, , , ,, , , , , , , , , , ,		
n n n		1			
1 1					40
1 1 1		1	1 1 1		
				/	
					20
T moist a	and wet				
				· · · · · · · · · · · · · · · · · · · ·	JO JO
to mediun	n SAND,				
				· · · · · · · · · · · · · · · · · · ·	
		1	1		
n dense,c nell firagm	ents,				
		1			
			, , , ,, , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	-20
i i i		1	1 1 1		
, , !		, , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,		-30
· ·		1			
to ition)				· · · · · · · · · · · · · · · · · · ·	-40
		1			
weł		1			-50
		1	1		
		-			-60
I I I	1	1			
¹ 1	¹				
		1			
					· · · · · · · · · · · · · · · · · · ·
r r		1			
			,		
		100	110		
80	90	100	110 12	20 130	140 150

DocuSign Envelope ID: 82CB83C2-66E0-43AB-B612-FB3CD556825D

GEOTECHNICAL BORING REPORT BORE LOG

WBS 35494.1.1						TIP R-2511 COUNTY BEAUFORT								GEOLOGIST A Bozorgi					WBS 35494.1.1 TIP R-2511 CO								
SITE DESCRIPTION Dual Bridge on US 17 over G						Gum Swa	mp Cree	k between	between SR 1421 and SR 1420					GRO	UND WTR (ft)	SITE	DESCR	RIPTIO	N Dua	ge on l	n US 17 over Gum Swamp Cree						
BORING NO. EB1-A STATION 156+28								OFFSET	10 ft R1	Γ		ALIGNN	ALIGNMENT -L- 0 HF			BOR	BORING NO. EB1-A						STATION 156+28				
COL	LAR EL	EV. 36	.9 ft		Т	OTAL I	DEPT	H 100.5	ft	NORTHIN	IG 707,	375		EASTIN	EASTING 2,570,262 24 HR. FIAD			COLLAR ELEV. 36.9 ft TOTAL DEPTH 100.5 ft									
DRILL RIG/HAMMER EFF./DATE SME9403 CME-550X 83% 02/02/2018							2018		DRILL	METH	OD N	lud Rotary	н	AMMER TY	PE Automatic	DRILL RIG/HAMMER EFF./DATE SME9403 CME-550X 83% 02/02/2018											
DRILLER S. Hardee ST						TART	DATE	02/08/1	8	COMP. DATE 02/08/18				SURFAC	CE WATER DEPTH	N/A		DRIL	LER S	6. Hard	e	S	START DATE 02/08/18				
ELEV	DRIVE	DEPTH	BLC		JNT			BLOWS	PER FOOT	(A	SAMP	: V			SOIL AND ROCK	DESCRIPTI	ON	ELEV	DRIVE	DEPTH			UNT		BLOW	/S PER FOOT	
(11)	(ft)	(it)	0.5ft	0.5ft	0.5ft		2	25 I	50	75 10	NO.	/мс	DI G	ELEV. (ft)			DEPTH (ft)	(11)	(ft)	(it)	0.5ft	0.5ft	0.5ft	0		50	
40		ł												_				-40	+	<u>+</u>		+			M	atch Line	
		Ŧ												36.9	GROUND S	URFACE	0.0		-42.1	79.0	100/0.1	1					
35	35.9	1.0	4	6	6							м		35.9	Asph	alt BANKMENT	1.0	-45		Ŧ							
	33.1	3.8			-	./				.					Brown, sandy GF	AVEL (A-1-	<u>b)</u> <u>3.0</u>		-47.1	1 84.0							
	30.9	6.0	2	3	2	●5-	· ·			.		W		<u>31.4</u>	Brown-grey, clayey S	AND (A-2-5) el	, trace <u>5.5</u>			1	100/0.1	1					
30	-	t	2	2	3] -• 5-						w		_	UNDIVIDED COA Grey, sandy (ASTAL PLAI XLAY (A-6)	Ν	-50		Ŧ							
	27.9	9.0	WOH	2	2		· ·			.		Sat		-					-52.1	<u> </u>	100/0.3	3					
25		Ł				T· ·								24.9			12.0	-55		Ŧ							
	22.9	14.0				/::	•••			.					Grey, silty CLAY (A	-7-5), trace s	shell		-57.1	1 94.0							
			WOH	WOH	WOH		•••					Sat.								1	10	13	16		• 9 29		
20	-	ł				 								<u>19.9</u>	Green, sandy SILT	(A-5), trace	<u>17.0</u>	-60		Ŧ					1		
	17.9	19.0	2	2	3		•••			.		Sat	л V И V		fragme	nts			-62.1	99.0	5	8	10				
15		Ł				T °.							л <i>V</i> Л V				20 F			±				'	210		
	12.9	24.0				·j·	•••			.			N N	<u></u>			22.3			ł							
		1	2	3	6] :•	9··			.		Sat.	7 V V		(Yorktown F	SILT (A-5) prmation)				Ŧ							
10	-	ł											1 V N						-	Ŧ							
	7.9	29.0	3	4	7							Sat	л V N							Ŧ							
5		Ł				i	••••						N N N	_					_	Ŧ							
	2.9	34.0					•••			.			л. Г.	<u>3.9</u>	Green, silty CLAY (A		shell 33.0			ŧ							
		1	3	4	6] :•	10 :			.		Sat.		-	fragme	ents				Ŧ							
0	-	ł												_					-	Ŧ							
	-2.1	39.0	2	3	4		· ·	· · · ·		.		Sat		-						ŧ							
-5		ł				. \	•••										42.0		_	Ŧ							
	-7.1	44.0				: ! :	•••			.			N N V	<u> </u>	Green, clayey sa	ndy SILT (A-	5)			ŧ							
		+	4	4	5	:•	9 · · ·			.		Sat.	N N V	-						ŧ							
-10	-	ŧ				`	\		· · · ·				N N V	-					-	ŧ							
11/21	-12.1	49.0	4	8	11					.		Sat	N N V	-						ŧ							
ິ⊭ -15		<u>+</u>					1.						N N V				52.0			1							
T.GD	-17.1					: <i>1</i>	' 	· · · ·		.				-	Green, silty Cl	AY (A-7-5)				ŧ							
		ŧ	3	2	3	• 5'	· · · ·	· · · ·		.		Sat.		_						ŧ							
Z -20	-	ŧ							· · · ·					-					-	ŧ							
G.GF	-22.1	<u> </u>	2	3	4		· ·	· · · ·		. .		Sat								ŧ							
L25		<u>t</u>					•••							-					_	ŧ							
GEO	-27.1	64.0			-		· · · ·			. .				-						ŧ							
2511		‡	2	3	3	●6	· · · ·	 		· · · · · ·		Sat.		- -						‡							
<u>н</u> -30 ш	-	ŧ				 †.			· · · ·					 -					-	‡							
DUBL	-32.1	<u>+ 69.0</u> +	2	2	2		· · · ·	 		. .		Sat.		F						‡							
ă ш -35		‡				\ .	•••							- 					_	‡							
T BOI	-37.1	74.0				<u>`</u> \:	· · · ·	· · · · ·		. .				F						‡							
40	· ·	‡	2	3	6	:•	•:-:-	· · · · ·		. .		Sat.		F						‡							
∠40		L	I	L	L	LL												· L		1	1	1	I	L			

SHEET 8 OF 30

DocuSign Envelope ID: 82CB83C2-66E0-43AB-B612-FB3CD556825D

GEOTECHNICAL BORING REPORT BORE LOG

WBS 35494.1.1						TIP R-2511 COUNTY BEAUFORT							ORT GEOLOGIST A Bozorgi						WBS	3 5494	1.1.1		т	TIP R-2511 COU					
SITE DESCRIPTION Dual Bridge on US 17 c						17 over (Gum Swai	mp Creek	k between S	R 1421	and	SR 14	20	20			GROUND WTR (ft)			SITE DESCRIPTION Dual Bridge on US 17 over G									
BORING NO. EB1-B STATION 156+30								OFFSET	28 ft RT	-		ALIGN	MENT -L-		0 HR.	BOR	ING NO	. EB1-	-B	S	STATION 156+30								
COL	LAR EL	EV. 36	.8 ft		Т	ΟΤΑ	L DEPT	H 100.5	ft	NORTHING	3 707,3	381		EASTI	EASTING 2,570,279 24 HR.			-IAD	COL	LAR EL	EV. 36	6.8 ft		т	TOTAL DEPTH 100.5 ft				
DRILL RIG/HAMMER EFF./DATE SME9403 CME-550X 83% 02/02/2018							018	DRILL METHOD Mu				/ud Rotary			R TYPE Autom	natic	DRILL RIG/HAMMER EFF./DATE SME9403 CME-550X 83% 02/02/2018												
DRILLER S. Hardee START DATE 0						02/09/18	8	COMP. DATE 02/09/18			8	SURF	ACE WATER DEF	PTH N/A	4		DRILLER S. Hardee					S	START DATE 02/09/18						
ELEV	DRIVE	DEPTH	BLC	ow co	UNT			BLOWS F	ER FOOT		SAMP.								ELEV	DRIVE	DEPTH	H BLOW COUNT				BLOW	S PER FOOT		
(ft)	ELEV (ft)	(ft)	0.5ft	0.5ft	0.5ft	0	2	5 5	0	75 100	NO.	Им	DI G	ELEV. (ft)	SOIL AND RU	JCK DESC	RIPTION	PTH (ft)	(ft)	ELEV (ft)	(ft)	0.5ft	0.5ft	0.5ft	0	25	50		
40																			-40							Ma	tch Line		
		ł												E						-42.2	79.0								
	35.8					$H_{\rm L}$								36.8	GROUN	ID SURFA	CE	0.0			t	100/0.1	1						
35		F	2	2	2	∔	4			+		w		- 35.3	ROADWAY	EMBANK	MENT	1.5	-45		Ŧ								
	32.8	4.0	2	1	1	¦-								F	Brown to grey, silt trac	ty sandy C ce gravel	LAY (A-7-5),			-47.2	84.0	100/0 1	1						
30	30.8	6.0				•	<u>.</u>					Sat		<u>- 31.3</u>		COASTAL		<u>5.5</u>	-50		Ŧ	100/0.1							
		ŧ			'	• 2	<u></u>					Sat		F	Grey, silty sa	andy CLAY	(A-7-5)				‡								
	27.8	+ 9.0 +	1	1	1		$\frac{1}{2}$ · · ·		· · · · ·			Sat		t i						-52.2	<u>+ 89.0</u> +	100/0.8	3						
25		ŧ				ļĻ				· · · ·									-55		‡						· · · · ·		
	22.8	14.0				:	· · · ·	· · · ·	· · · ·											-57.2	94.0						· · · · · ·		
00		ŧ	WOH	WOH	WOH	 ♠º:		· · · · ·	· · · · ·			Sat							CO		ŧ	12	14	18		•32			
20	-	ŧ				Ħ				1				18.8				18.0	-00	-	ŧ					/			
	17.8	<u> </u>	1	2	3	i l ì	5		· · · ·			Sat	N	L L	Green-grey, sandy shell	clayey SIL fragments	.T (A-5), trace			-62.2	99.0	5	7	10		/ · · ·			
15		Ł					· · ·						N V	F		0					<u>t</u>								
	12.8	24 0											N N	L							ł								
		t	2	3	4		♦ 7 · ·					Sat	N N								Ł								
10	-	Ŧ					1						- 1 - 1 - 1 - 1	<u>9.8</u>			<u> </u>	<u> </u>		-	Ŧ								
	7.8	29.0	3	5	8	:							N 1 1 1	F	Green, sandy S	GILT (A-5),	trace shell				Ŧ								
5		Ŧ				:	9 .13 [•] .					Sau	N 1 1 1		(Yorktow	vn Formati	on)	32.0			Ŧ								
		Ŧ "				-								⊨ <u>+.</u> º	Green, silty sa	andy CLAY	(A-7-5)	_ <u>52.0</u>		-	Ŧ								
		+ 34.0 +	4	5	5	:						Sat									ŧ								
0		ŧ				-:	ļ.													-	ŧ								
	-2.2	39.0				:	$\left \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right $	· · · · ·						t i							ŧ								
5	· ·	ŧ	2	2	4	•	6 6 · · ·		· · · ·			Sat								· ·	ŧ								
-5	-	ŧ				 .	1							<u> </u>	Green, clayey SA	ND (A-2-7), trace shell	<u>42.0</u>		-	ŧ								
	-7.2	+ 44.0 +	5	4	7	:	· • • 11 ·	· · · · ·	· · · ·			Sat		+	fra	agments					ŧ								
-10	-	‡				Ŀ	· · · ·							-						-	‡								
51	-12.2	49.0] :	: :\: :		· · · ·					-							ŧ								
3/31/		ŧ	4	4	10	:		· · · ·	· · · ·			Sat									ŧ								
-15	-	ł					<u> </u>			+				<u>-15.2</u>	Green. sandy CL	AY (A-7-5)	. trace shell	<u> </u>		-	Ł								
00T.0	-17.2	54.0	3	2	4				· · · ·			Sat		Ł	fra	igmènts <i>É</i>					Ł								
9 -20		ł												\mathbf{F}							ł								
I LGE		F 50.0				1 🗆	1							F							Ŧ								
ZDG.0	·	F 03.0	2	3	4		•7 · ·					Sat		F							Ŧ								
<u>ы</u> -25		ŧ				H	<u> · · ·</u>							F						-	Ŧ								
Ū.	-27.2	64.0	1	2	3	i								F							ŧ								
-2511		ŧ				•	5					Sat									ŧ								
<u>ж</u>		†				†i				<u> </u>				F						-	ŧ								
OUBI	-32.2	+ 69.0 +	2	2	3	╢╽	 5 [.]		· · · · · · · ·			Sat		t L							‡								
<u>а</u> ш -35		‡					$\frac{1}{1}$			· · · ·				F F						-	‡								
T BO	-37.2	74.0				:			· · · · · · · ·					ţ							ŧ								
		ŧ		S S		:	•10-:-		· · · · · · · ·			Sat									ŧ								
<u>۲</u>	·		·	·	I	<u> </u>			•	1	L.	-							L			I	·	·					

SHEET 9 OF 30

DocuSign Envelope ID: 82CB83C2-66E0-43AB-B612-FB3CD556825D

GEOTECHNICAL BORING REPORT BORE LOG

WBS	35494	4.1.1			T	IP R-25	511		(COUN	TY	BEAUF	ORT				GEOLOGIST M. Metry				WBS	3549	4.1.1			Т	TIP F	R-2511		COUNT	TY E
SITE	DESCR	RIPTION	l Dua	ıl Bridg	ge on l	US 17 oʻ	over (Gum S	wam	p Cre	ek be	etween S	SR 142	1 and	SR	142	20	GR		WTR (ft)	SITE	DESC	RIPTIO	N Dua	al Brid	ge on	US 1	17 over	Gum Swa	amp Cree	ek be
BOR	ING NO	. EB2-	A2		S	TATION	l 15	6+79			0	FFSET	51 ft L	Т			ALIGNMENT -L-	01	HR.	N/A	BOR	ING NO). EB2	-A2		s	STAT	ION 15	56+79		OF
COL	LAR EL	EV. 33	3.3 ft		T	OTAL D	EPT	H 74.4	4 ft		N	ORTHIN	G 707	,410			EASTING 2,570,190	24 I	HR.	FIAD	COL	LAR EL	.EV. 3	3.3 ft		Т	OTA		H 74.4	ft	NC
DRILL	RIG/HA	MMER E	FF./DA	TE G	ET0674	CME-450	C 86%	6 02/24/2	2019				DRILI	METH	IOD	М	/ud Rotary	HAMMER T	YPE Au	utomatic	DRILI	RIG/HA	AMMER E	EFF./DA	TE G	ET0674	4 CME	E-45C 86%	% 02/24/20	19	
DRIL	LER T	. Donal	nue		S		ATE	03/02	2/20		C	omp. D/	ATE 0	3/02/2	20		SURFACE WATER DEP	TH N/A			DRIL	LER	T. Dona	hue		S	STAR	T DATE	03/02/2	20	CC
ELEV	DRIVE	DEPTH	BLC				21	BLOW	IS PE	R FOO)T 75	100	SAM	₽. ▼		0	SOIL AND RO	CK DESCRIPT	TION		ELEV	DRIVE ELEV	DEPTH					~	BLOWS	PER FOO	T 75
(11)	(ft)	(11)	0.5ft	0.5ft	0.5ft		2:	5	50		/5	100	NO	_/м	01	G	ELEV. (ft)			DEPTH (ft)	(11)	(ft)	(11)	0.5ft	0.5ft	0.5ft		2	5 	50	/5
35		ł														ŀ					<u>45</u> _	+	+	-	+		+-		Mate	ch Line	
			woн	WOH	1				:		:			Sa	ıt.	1		COASTAL PL		0.0			ł								
30	29.8 -	35				$\left \begin{array}{c} \chi \\ \chi \end{array} \right $			•		•						Grey-black, silty CL	AY (A-7-6), tr	ace roots	6			1								
		1	3	3	3] \ e		· · ·	-	· · ·	:			Sa	ıt.		4 4						ł								
		ŧ							•	· · ·	•						L L						ł								
25		8.5	3	3	2									Sa			↓						+								
		ł				T °	· ·		•	· · ·	•									12.0			ł								
20	19.8	- 13.5							·		·				N%		Grey-black-brown, c	ayey fine SAN	ND (A-2-7	7) 12.0			‡								
		‡	1	1	1	4 2 : :		· · · · · ·	:	· · ·	:	· · · ·		Sa	it. 🕺	~~~	(Yorktow	n Formation)					ŧ								
4-		ŧ				\	· ·	· · ·	:	· · ·	:	· · · ·			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	///	16.3 Black group sitter at			<u> </u>			±								
15	14.8 -	- 18.5	2	3	5									Sa	t. %	///	trac	e shells	J (A-2-0),	,			+								
		ŧ						· · ·	:	· · ·	:	· · · ·			~~~~	\sim	-						1								
10	9.8 -	23.5							•		•				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\mathbb{Z}	-						1								
		ţ	3	3	4] . ∳ 7 :		· · ·	:	· · ·	:	· · · ·		Sa	it. %	///	-						1								
		ŧ					· ·	· · ·	:	· · ·	:	· · · ·				\mathbb{N}				<u> </u>			±								
5	4.8 -	28.5	3	4	4								11	Sa	ıt.	I	Grey-black, sandy C	LAY (A-6), sol	me to hig	jh			‡								
	· ·	ŧ						· · ·	:	· · ·	:	· · · ·					(Yorktow	nells n Formation)					‡								
0	-0.2 -	- 33.5		_	_				·		·						-						‡								
		ŧ	4	5	5		0 .	· · · · · ·	:	· · ·	:	· · · · ·		Sa	ıt.		} -						‡								
5		ŧ				\. \.	· ·	· · · · · ·	•	· · ·	:	· · · ·					- <u>-3.7</u> Grev-black_clavev		.2-5) little	<u> </u>			‡								
-5	-5.2 -	- <u>38.5</u>	4	5	11		•16						11	Sa	t.			hells	2 0), inde	-			‡								
		ŧ					j:	· · · · · ·	:	· · · · · ·	:	· · · · · · · ·					8.7			42.0			‡								
-10	-10.2 -	43.5		-					•		•					3	Grey-black, fine sa	ndy silty CLAY	7 (A-7-6), ravel	·			‡								
		ŧ		<i>'</i>	°		15	· · · · · ·	:	· · · · · ·	:	· · · · · · · ·		Sa	ıt.	3		,					‡								
-15		‡				: /:		· · · · · ·		· · · · · ·		· · · · · · · ·				3							‡								
-	-15.2 -	+ 48.5	2	3	4	4 7			•				11	Sa	ıt.	3	F						ŧ		1						
117/2		ŧ					· ·	· · · · · ·	:	· · · · · ·	:	· · · · · · · ·				3							ŧ								
-20	-20.2 -	53.5	2	2	3	 		· · ·	•	· · ·	•					J	-						Ŧ		1						
01.6		Ŧ	-	-		● ⁵		· · · ·	:	· · ·	:			Sa	ι.	3	-						Ŧ								
니 -25	_25.2	F8 5								· · ·	:	· · · ·				3							Ŧ		1						
L L L L L	-20.2 -	- 50.5	3	3	3	• • •			-		-			Sa	ıt.	J							Ŧ								
DG.O		Ŧ														J							Ŧ								
<u>協</u> -30 0	-30.2 -	63.5	3	5	5				•	· · · ·	•				. [Ŧ								
1- 6		Ŧ					0.							Sa		J							Ŧ								
-35	-35.2	68 5							•		•						<u> </u>						Ŧ		1						
SLE F			9	8	8		b 16		٠T		: [Sa	ıt.		4						Ŧ								
DOUE		£							<u> </u>								- <u>-38.7</u>			72.0			Ŧ		1						
-40 BYO	-40.2 -	73.5	100/0.3						<u> </u>		<u> </u>			Sa	ıt.	7	-41.1 Grey-black, fine sa	hay slity CLAY shells, trace g	r (A-7-6), ravel	, 74.4			÷								
OTB	-41.1	<u>↑ ′⁴.4</u> 	60/0.0 60/0 0									60/0.0 60/0.0		Sa Sa	it. it.	F	Boring Terminated Coastal Plain: fi	at Elevation - ne sandy silty	41.1 ft in CLAY				ŧ		1						
NCD		+	0.0														- (Yorktow	n Formation)					ł								

Y BEAUFORT	GEOLOGIST M. Metry	
k between SR 1421 and SR 14	20	GROUND WTR (ft)
OFFSET 51 ft LT	ALIGNMENT -L-	0 HR. N/A
NORTHING 707,410	EASTING 2,570,190	24 HR. FIAD
DRILL METHOD M	ud Rotary HAMM	IER TYPE Automatic
COMP. DATE 03/02/20	SURFACE WATER DEPTH N	/A
SAMP.		
75 100 NO. MOI G	SOIL AND ROCK DES	CRIPTION
	ST-2 taken at the followi Station: 156+7	ng location:
	Offset: 49' LT	-
	- <u>Other Samples:</u>	
	- 51-2 (9.0 - 11.0)	
	•	
	_	
	-	
	-	
	_	
	-	
	—	
	_	
	_	
	-	
	-	
	_	
	-	

DocuSign Envelope ID: 82CB83C2-66E0-43AB-B612-FB3CD556825D

GEOTECHNICAL BORING REPORT BORE LOG

WBS 35494.1.1		TIP R-2511	COUNT	Y BEAUFO	ORT		GEC	DLOGIST G. Goslin	1		WBS	3 35494	4.1.1			ווד	P R-251	1	COUNT
SITE DESCRIPTION D	ual Bridge	on US 17 over Gur	n Swamp Creek	k between S	SR 1421	and SR 1	420		GRO	OUND WTR (ft)	SITE	DESCR	RIPTION	D ua	al Bridg	je on L	JS 17 ove	r Gum Sv	vamp Cree
BORING NO. EB2-A		STATION 157+7	14	OFFSET	1 ft RT		ALIC	GNMENT -L-	0 HI	R. 3.6	BOR	ING NO	. EB2-	-A		ST	ATION	157+14	
COLLAR ELEV. 36.8 ft	t	TOTAL DEPTH	100.2 ft	NORTHING	G 707,4	156	EAS	TING 2,570,233	24 HI	R. FIAD	COL	LAR EL	EV. 36	6.8 ft		тс	TAL DEP	TH 100	.2 ft
DRILL RIG/HAMMER EFF./	DATE SME	9563 CME-550X 88%	08/10/2017		DRILL	METHOD	Mud Rotar	у	HAMMER TY	PE Automatic	DRIL	L RIG/HA	MMER E	FF./DA	TE SN	/E9563	CME-550X	88% 08/1	0/2017
DRILLER J. White		START DATE 02	2/08/18	COMP. DA	TE 02/	08/18	SUR	FACE WATER DEP	TH N/A		DRIL	LER J	. White	1		ST	ART DAT	E 02/08	/18
ELEV DRIVE DEPTH B		T BL	LOWS PER FOOT	75 100	SAMP.	o o		SOIL AND ROO	CK DESCRIPTI	ON	ELEV	ELEV	DEPTH	BLC		JNT		BLOW	3 PER FOOT
(ft) (ft) 0.5	σπ 0.5π 0	.5π 0 25	50	15 100	NO.	MOI G	ELEV.	(ft)		DEPTH (ft)	(14)	(ft)	(11)	0.51	0.5π	0.511		25	
40							F				-40		<u>+</u>			+		Ma	
							36.8	GROUNE	SURFACE	0.0		-41.9	78.7	60/0.1					· · · · ·
35 35.7 - 1.1	2 4	2					- 35.7		phalt EMBANKMENT	1.1 r	-45		ŧ						
326 + 42		$\left \begin{array}{c} \mathbf{P}^{0} \\ \mathbf{P}^{\mathbf$	· · · · · · · ·				33.4	Brown-grey, silty coa	rse SAND (A-2-	-4), trace <u>3.4</u>		-46.9	83.7		40	57/0 4			· · · · · ·
30.5 + 6.3	1	1	· · · · · · · ·			w W				<u>n</u> — — ′			ŧ	28	43	57/0.1			
	1	2 93				w E	28.5	Brown-grey, silty	/ sandy CLAY (/	A-6) 8.3	-50	-	ŧ				<u> </u>		
	2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	· · · · · · · · · · ·			Sat.		Green-grey, sa	ndy CLAY (A-7	-6)		-51.9	<u> </u>	100/0.3	3				
25 -		$\int \frac{1}{1} \cdot \cdot$	· · · · · · ·								-55		ŧ				· · · ·		
23.1 13.7			· · · · · · · · · · · · · · · · · · ·									-56.9	93.7	11	10	12		· · · · ·	· · · · · · · · · · · · · · · · · · ·
		^{OH} •0	· · · · · · · · · · · · · · · · · · ·			Sat.							ŧ		10	13		• <u></u> 23	· · · · · ·
		<u> -</u>					<u>19.8</u>	Green-gey, claye	y fine SAND (A	<u>-2-6) 17.0</u>	-60	-	±				<u> į</u>		
	1	2 3 3 3 3 3 3 3 3 3 3	· · · · · · · · · · · · · · · · · · ·			Sat.						-61.9	<u> </u>	9	8	8		 6	· · · · · ·
15 +			· · · · · · ·				14.8			22.0			+						
13.1 23.7	3		· · · · · · · · · · · · · · · · · · ·			N N	"⊥ ∕⊦	green-grey, s	andy SILT (A-5	5)			ŧ						
		[↑] , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · ·			Sat.							‡						
							<u>9.8</u>	COAST		27.0		-	ŧ						
8.1 28.7	5	8	· · · · · · · · · · ·			Sat.		Green-grey, silty fin shell fi	e SAND (A-2-5 ragments), trace			ŧ						
5			· · · · · · ·				<u>4.8</u>	(Yorktowr	n Formation)			-	‡						
3.1 33.7			· · · · · · · · · · ·					Green-grey, clayey ا trace she	medium SAND ell fragments	(A-2-7),			ŧ						
			· · · · · · · · · · ·	· · · · ·		Sat.	÷ ;+						‡						
							<u> </u>	Green-gray, sandy	silty CLAY (A-6), trace <u>37.0</u>		-	ŧ						
-1.9 - 30.7 - 3	3	3 6	· · · · · · · · · · · · · · · · · · ·			Sat.		shell fi	ragments				ŧ						
-5 +			· · · · · · ·									-	ŧ						
-6.9 43.7	3	5	· · · · · · · · · ·			Set 1	\$						ŧ						
			· · · · · · · ·				10.2			47.0			ŧ						
						N.,	<u>↓</u> ↓	Green-grey, clayey fi	ne SAND (A-2-	6), trace 47.0		-	Ŧ						
	3	4 • 7 · · · ·	· · · · · · · ·			Sat.	\$ \$	Shell h	agments				Ŧ						
			· · · · · · · · · · · · · · · · · · ·				- <u>15.2</u>	Groop grov silty san		<u>52.0</u>		-	Ŧ						
0 -16.9 53.7 2	3	3				Sat		shell fi	ragments	0), liace			Ŧ						
□ ♀ -20													Ŧ						
-21.9 58.7		1					F					-	Ŧ						
	3	4 • 7 • • •				Sat.							Ŧ						
							-					-	Ŧ						
⊎ <u>-26.9 <u></u>63.7 2</u>	2	3				Sat	F						Ŧ						
							F						Ŧ						
<u> </u>							F						Ŧ						
	2	2				Sat.	ł						Ŧ						
				+			F					-	Ŧ						
й <u>-36.9 73.7</u>	6	8				Sat.	ł						£						
<u><u></u> <u>-40</u> <u></u></u>													ł						

SHEET 11 OF 30

DocuSign Envelope ID: 82CB83C2-66E0-43AB-B612-FB3CD556825D

GEOTECHNICAL BORING REPORT BORE LOG

	WBS	35494	l.1.1			Т	IP R-25	511		COUNT	TY BEAUF	ORT			GEOL	OGIST G. Goslin	1		WBS	35494	4.1.1			TI	P R-251	1	COUNT
	SITE	DESCR		Dua	l Bridg	ge on	US 17 o\	/er Gı	um Swa	mp Cree	ek between S	SR 1421	and S	SR 14	120		GROUN	D WTR (ft)	SITE	DESCF	RIPTION	N Dua	al Bridg	ge on l	JS 17 ove	r Gum S،	wamp Cree
	BORI	NG NO.	. EB2-	В		S	TATION	157·	+20		OFFSET	19 ft RT	-		ALIGN	IMENT -L-	0 HR.	N/A	BOR	ING NO	. EB2	-В		S	TATION	157+20	
	COLL	AR ELE	EV. 36	5.8 ft		Т	OTAL DE	EPTH	100.2	ft	NORTHIN	G 707,4	466		EASTI	NG 2,570,250	24 HR.	FIAD	COL	LAR EL	EV. 36	6.8 ft		т	OTAL DEI	•TH 100	.2 ft
	DRILL	RIG/HAI	MMER E	FF./DA	TE SM	/E9563	3 CME-550	DX 88%	% 08/10/2	2017		DRILL	METHO	DD N	/lud Rotary		HAMMER TYPE	Automatic	DRIL	L RIG/HA	MMER E	FF./DA	TE SN	NE9563	CME-550>	(88% 08/1	0/2017
	DRILI	ER J.	White			S	TART DA	ATE	02/09/1	8	COMP. DA	ATE 02/	/09/18	3	SURF	ACE WATER DEP	TH N/A		DRIL	.LER J	. White			S		FE 02/09)/18
1	ELEV	DRIVE ELEV	DEPTH	BLC	w co	JNT		I	BLOWS F	PER FOO	Т	SAMP.	. 🔻			SOIL AND ROO	CK DESCRIPTION		ELEV	DRIVE ELEV	DEPTH	BLC	ow cou	JNT		BLOW	S PER FOOT
	(ft)	(ft)	(ft)	0.5ft	0.5ft	0.5ft	0	25	5	50	75 100) NO.	Имо	DI G	ELEV. (ft)			DEPTH (ft)	(ft)	(ft)	(ft)	0.5ft	0.5ft	0.5ft	0	25	50
F	40		-																<u>40</u> _	+	-		+			<u>M</u> a	<u>itch Line</u>
		-	ŧ												- 36.8	GROUNE		0.0		-41.9	78.7	60/0 0	5				· · · · · ·
	35	- 35.5	1.3		-		<u> </u>	•							- 35.5	As	sphalt	1.3	-45		ŧ					· · · · ·	· · · · · ·
	00		†	7	3	2	9 ⁵					11	м		<u> </u>	ROADWAY I Grey, silty coarse SA	EMBANKMENT ND (A-2-4), trace g	ravel <u>3.3</u>	10	-16.9	+						
			- 3.9	1	2	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	· · · · ·	· · · ·	· · · · · ·		w		- `	UNDIVIDED C	COASTAL PLAIN)		-40.3	+ 00.7	60/0.1				· · · · ·	· · · · · ·
-	30	30.6 -	- 6.2 -	2	2	3		•	· · · ·		· · · · ·		Sat.		-			,	-50		‡					· · · ·	· · · · ·
	-	28.1	8.7	2	2	2	T °··· F °···	:	· · · · · · · ·	· · · ·	· · · · · ·		Cat		-					-51.9	88.7	26	63	47/0.3		· · · · ·	
	25	-	ŧ	-	-	-		:	· · · ·	· · · ·	· · · · · ·		Sal.					10.0	-55		‡			11/0.0		 	· · · · · ·
	25		+									11			<u>24.8</u>	Green-grey, silty	sandy CLAY (A-6)	<u> </u>	-00	56.0	+						· · · · · · · · · ·
	ľ		- 13.7	1	1	1		•	· · · · · · · ·		· · · · · ·		Sat.		<u>↓</u>					-30.9	+ 93.7 +	10	10	12		•22	
	20	-	ŧ				<u>i</u>	•	 		· · · · ·				<u>19.8</u>			<u>17.0</u>	-60		‡					<u>/</u>	· · · · ·
	-	18.1	18.7	2	3	3	\ \	:	· · · ·	· · · ·	· · · · · ·					Green-grey, silty	/ fine SAND (A-2-5)			-61.9	98.7	Q	7	9		· · · · ·	· · · · ·
	45	-	ŧ	2	3	3	♦6. ·	·	 	· · · ·	· · · · · ·		Sat.								<u>+</u>	°	· ·	0	· · ∳ 1	5	<u> </u>
	15	-	+				 _ i							- T	<u>14.8</u>	Green-grey, s	andy SILT (A-5)	<u>22.0</u>		-	ŧ						
			23.7	3	4	5	- . \ . \ 9 .		 		· · · · · ·		Sat.	N N	<u>↓</u>						t						
	10	-	ŧ					•						л V V	<u> </u>			27.0		-	ŧ						
		8.1	28.7			7	: <u>i</u> :	:		· · ·	· · · · · ·					COAST Green-grey, silty fin	T AL PLAIN ne SAND (A-2-5), tra	ace			ŧ						
	_	-	ŧ	4	0		· ·∳1 ∮1	13.	· · · ·		· · · · · ·		Sat.			shell fi (Yorktowr	ragments n Formation)				t						
F	5		<u>+</u>												<u> 4.8 </u>	Green-grey, clayey	fine to medium SA	ND <u>32.0</u>		-	ŧ						
			33.7	5	5	7	j. j.	2.		· · · · · ·	· · · · · ·		Sat.			(A	-2-6)				ŧ						
	0	-	ŧ				_::':	•							_ 			37.0		-	ŧ						
		-1.9	38.7			_	. <i> </i> . <i> </i>	:		· · ·	· · · · · ·					Green-grey, s	ilty CLAY (A-7-6)				ŧ						
	_	-	ŧ	3	3	4		·	· · · ·		· · · · · ·		Sat.								t						
F	-5		÷					<u>, </u>							<u>-</u> - <u>-</u> 5.2	Green-grey, clayey fi	ine SAND (A-2-6), t	race <u>42.0</u>		-	ŧ						
	ŀ	-6.9	43.7	6	9	13		22		· · ·	· · · · · ·		Sat.			shell fr	ragments				ŧ						
	-10	-	Ł					<i>i</i>							.					_	ŧ						
21	ļ	-11.9	48.7			_	: :/:	:							- -						ŧ						
3/31/		-	ŧ	4	4	5	. ∮ 9 . . ∫	:		· · ·	· · · · · ·		Sat.								ŧ						
Ц	-15	-	F				-+								<u>-15.2</u>	Green-grey, silty sa	Indy CLAY (A-6), tra	<u> 52.0</u>		-	ŧ						
00T.0	F	-16.9	53.7	2	2	4				· · ·			Sat.		-	shell fr	ragments				ŧ						
NC	-20	-	Ł					•							-20.2			57.0		_	Ŧ						
GPJ		-21.9	58.7		-										E	Green-grey, silty san shell fi	ndy CLAY (A-7-6), to	race			ŧ						
SDG.		-	E	2	2	3	• 5	•					Sat.			0.00.0	ag.neme				Ŧ						
0 BI	-25	-	Ē											K	<u>-25.2</u>	Green-grev silty C	AY (A-6) trace sh	<u> 62.0</u>		-	Ŧ						
1_GE	ŀ	-26.9	63.7	2	2	3		·					Sat.		ł	frag	iments				ŧ						
R-251	-30	-	Ł					•							-						£						
Ч Ц Ц Ц		-31.9	68.7																	-	f	1					
DOUE		-	Ē	2	3	3	•6 •						Sat.		E						Ŧ	1					
REL	-35	-	F				 ``\`	·		+ • • •					<u>-35.2</u>	Green-grey clave	v silty fine to mediu	<u>72.0</u>		-	Ŧ						
DT BC	ŀ	-36.9	73.7	3	8	13		21					Sat			SANE) (A-2-4)				£						
NCD	-40	-	Ē					·		<u> </u>											Ŧ						

SHEET 12 OF 30

Final Voids [Log]

Preconsolidation Stress (tsf)	0.7296			Cc	1.337	Cr 0.037
	BEFORE	AFTER	Liquid Limits	71	Test Da	te 3/17/2020
Moisture (%)	80.4	37.8	Plastic Limits	24		
Dry Density (pcf)	50.6	82.9				
Saturation (%)	93.5	100.0				
Void Ratio	2.30	1.01	Specific Gravity	2.67	ASSUMI	ED
Sample Description	Gray, A-7-6 (53)				
Project Number	66Y-0050		Depth (ft)	9.0' - 11.0'	Remark	s
Sample Number	ST-2A		Boring Number	EB2-A2	NA	
Project	R-2511: US17	Widening				
Client	RK&K					
Location	EB2-A2					
Location	EB2-A2					
Station	L 156+79					

Station	L 156+7
Offset	49' LT

Percent Strain [Log]

Preconsolidation Stress (tsf)	0.7296			Cc	ND Cr NE)
	BEFORE	AFTER	Liquid Limits	71	Test Date 3/17/2020	
Moisture (%)	80.4	37.8	Plastic Limits	24		
Dry Density (pcf)	50.6	82.9				
Saturation (%)	93.5	100.0				
Void Ratio	2.30	1.01	Specific Gravity	2.67	ASSUMED	
Sample Description	Gray, A-7-6 (5	53)				
Project Number	66Y-0050		Depth (ft) 9	.0' - 11.0'	Remarks	
Sample Number	ST-2A		Boring Number E	B2-A2	NA	
Project	R-2511: US17	Widening				
Client	RK&K					
Location	EB2-A2					

100.0

1.0

Consolidation Test - Information - Section 1

Consolidated Test Results

Saturation (%)

Void Ratio

AASHTO T-216

Project:	R-2511: US17 Widenir	ıg			
Project Number:	66Y-0050				
Job Number:	66Y-0050-01				
Test Date:	3/17/2020				
-					
Sampling Date:	3/16/2020				
Sample Number:	ST-2A				
Depth (ft)	9.0' - 11.0'				
Boring Number:	EB2-A2				
Location:	EB2-A2				
Client Name:	RK&K				
Remarks:	NA				
r					
Specific Gravity:	2.67	Plastic Limit: 24		Liquid Limit: 71	
Specific Gravity Method:	ASSUMED		Weig	ht of Ring (g) 110.3	
Sampling Method:	Undisturbed	Soil Classification:			
Specimen Description:	Gray, A-7-6 (53)				
Ι	Parameters	Ini	itial .	Final	
	Height (in)	1.0	0000	0.5214	
F	leight Source	N	JA	TEST RESULTS	
I	Diameter (in)	2.5	5000	NA	
	Area (in²)	4.	909	NA	

Boring Number: EB2-A2			
Location: EB2-A2			
Client Name: RK&K			
Remarks: NA			
	D1 T	24	T
Specific Gravity: 2.67	Plastic Limit:	24	Liquid Limit: 71
Specific Gravity Method: ASSUMED		N	Veight of Ring (g) 110.3
Sampling Method: Undisturbed	Soil Classification:		
Specimen Description: Gray, A-7-6 (53)			
Parameters		Initial	Final
Height (in)		1.0000	0.5214
Height Source		NA	TEST RESULTS
Diameter (in)		2.5000	NA
Area (in²)		4.909	NA
Volume (in ³)		4.9087	2.5594
Weight of Container (g)		15.5	30.8
Weight of Wet Soil + Container (g)		61.7	112.5
Weight of Dry Soil + Container (g)		41.1	90.1
Moisture Content (%)		80.4	37.8
Moist Weight + Ring Weight (g)		227.9	187.1
Dry Density (pcf)		50.6	82.9
Wet Density (pcf)		91.2	114.3

93.5

2.3

Consolidation Test - Results Summary

Sample Description	Gray, A-7-6 (53)		
Project Number	66Y-0050	Depth (ft) 9.0' - 11.0'	Remarks
Sample Number	ST-2A	Boring Number EB2-A2	NA
Project	R-2511: US17 Widening		
Client	RK&K		
Location	EB2-A2		

		Height	Height	Voids							
Index	(tsf)	(in)	(in)	(in)	(%)	Ratio	(Hr)	(Hr)	(in²/Min)	(in²/Min)	Status
0	0.0000	0.0000	1.0000	0.0000	0.0	2.296	0.000	0.000	0.00000	0.00000	ENABLED
1	0.0625	0.0002	0.9998	0.6959	0.0	2.289	0.000	0.000	0.00000	0.00000	ENABLED
2	0.1250	0.0023	0.9977	0.6938	0.2	2.283	0.102	0.024	0.14604	0.03393	ENABLED
3	0.2500	0.0069	0.9931	0.6892	0.7	2.267	0.092	0.020	0.16884	0.03922	ENABLED
4	0.5000	0.0182	0.9818	0.6779	1.8	2.230	0.107	0.024	0.13863	0.03220	ENABLED
5	1.0000	0.0931	0.9069	0.6030	9.3	1.984	0.357	0.091	0.02960	0.00688	ENABLED
6	2.0000	0.2282	0.7718	0.4679	22.8	1.539	1.229	0.288	0.00482	0.00112	ENABLED
7	4.0000	0.3378	0.6622	0.3583	33.8	1.179	1.047	0.248	0.00218	0.00051	ENABLED
8	2.0000	0.3297	0.6703	0.3664	33.0	1.205	0.000	0.000	0.00000	0.00000	ENABLED
9	0.5000	0.2948	0.7052	0.4013	29.5	1.320	0.000	0.000	0.00000	0.00000	ENABLED
10	2.0000	0.3186	0.6814	0.3775	31.9	1.242	0.359	0.085	0.00586	0.00136	ENABLED
11	4.0000	0.3482	0.6518	0.3479	34.8	1.145	0.363	0.085	0.00431	0.00100	ENABLED
12	8.0000	0.4165	0.5835	0.2796	41.7	0.920	0.772	0.177	0.00088	0.00020	ENABLED
13	16,0000	0.4786	0 5214	0.2175	47.9	0.715	0.660	0.157	0.00015	0.00003	ENABLED

Location	EB2-A2
Station	L 156+79
Offset	49' LT

Consolidation Test - Information - Section 2

Consolidation Test - Results

Consolidation Test Results

AASHTO T-216

	Specim	ien 1
Test Description:	One-Dimensional Consolidation	
Other Associated Tests:	NA	
Device Details:	Oedometer 1	
Test Specification:	AASHTO-216	
Test Time:	3/17/2020 12:00:00 AM	
Technician:	Drew Council	Sampling Method: Undisturbed
Specimen Code:	ST-2A	Specimen Lab #: ST-2 (A)
Specimen Description:	Gray, A-7-6 (53)	
Specimen Preparation:	Ring-Lined Sampler	
Large Particle:	NA	
Moisture Content:	Natural Moisture	
Test Condition:	Soaked	
Test Procedure:	AASHTO T-216 [Changes - NA]	
Seating Pressure Used:	YES	Seating Pressure (kPa): 5.0000
Preconsolidation Stress:		
Percent Strain [LOC	G] Graph (tsf): 0.7296	Final Voids Graph (tsf): 0.7296
Location	EB2-A2	
Station	L 156+79	
Offset	49' LT	

Square Root Time [1] 0.0625 tsf

Tangent Construction Re	esults
T90 (Min)	NA
T50 (Min)	NA
Cv (in ² /Min)	NA

Consolidation Test - Results

Square Root Time [2] 0.1250 tsf

Tangent Construction Results		
T90 (Min)	NA	
T50 (Min)	NA	
Cv (in²/Min)	NA	
Location	EB2-A2	
Station	L 156+79	
Offset	49' LT	

Square Root Time [3] 0.2500 tsf

Tangent Construction Results		
T90 (Min)	NA	
T50 (Min)	NA	
Cv (in²/Min)	NA	
Location	EB2-A2	
Station	L 156+79	
Offset	49' LT	

Consolidation Test - Results

Square Root Time [4] 0.5000 tsf

Tangent Construction Results		
T90 (Min)	NA	
T50 (Min)	NA	
Cv (in ² /Min)	NA	
Location	EB2-A2	
Station	L 156+79	
Offset	49' LT	

Square Root Time [5] 1.0000 tsf

Tangent Construction Results		
T90 (Min)	NA	
T50 (Min)	NA	
Cv (in²/Min)	NA	
Location	EB2-A2	
Station	L 156+79	
Offset	49' LT	

SHEET 17

Consolidation Test - Results

Square Root Time [6] 2.0000 tsf

Tangent Construction Results		
NA		
NA		
NA		
EB2-A2		
L 156+79		
49' LT		

Square Root Time [7] 4.0000 tsf

Tangent Construction	Results
T90 (Min)	NA
T50 (Min)	NA
Cv (in²/Min)	NA
Location	EB2-A2
Station	L 156+79
Offset	49' LT

SHEET 18

Consolidation Test - Results

Square Root Time [8] 2.0000 tsf

Tangent Construction Results		
T90 (Min)	NA	
T50 (Min)	NA	
Cv (in²/Min)	NA	
Location	EB2 A2	
Station	L 156+79	
Offset	49' I T	
	40 61	

Square Root Time [9] 0.5000 tsf

Tangent Construction Results		
T90 (Min)	NA	
T50 (Min)	NA	
Cv (in²/Min)	NA	
Location	FB2-A2	
Station	L 156+79	
Offset	49' LT	

Consolidation Test - Results

Square Root Time [10] 2.0000 tsf

Tangent Construction Results		
T90 (Min)	NA	
T50 (Min)	NA	
Cv (in²/Min)	NA	
	-	
Location	EB2-A2	
Station	L 156+79	
Offset	49' LT	

Square Root Time [11] 4.0000 tsf

Tangent Construction Results		
T90 (Min)	NA	
T50 (Min)	NA	
Cv (in²/Min)	NA	
Location	EB2-A2	
Station	L 156+79	
Offset	49' LT	

SHEET 20

Square Root Time [12] 8.0000 tsf

Tangent Constructio	n Results
T90 (Min)	NA
T50 (Min)	NA
Cv (in ² /Min)	NA
Location	EB2-A2
Station	L 156+79
Offset	49' LT

Square Root Time [13] 16.0000 tsf

Tangent Construction Results					
T90 (Min)	NA				
T50 (Min)	NA				
Cv (in²/Min)	NA				
Location	EB2-A2				
Station	L 156+79				
Offset	49' LT				

Preconsolidation Stress (tsf)	0.5837			Cc	39.166	Cr	0.947
	BEFORE	AFTER	Liquid Limits	71	Test Dat	e 3/17/20	20
Moisture (%)	83.1	37.6	Plastic Limits	24			
Dry Density (pcf)	50.1	88.3					
Saturation (%)	95.4	113.2					
Void Ratio	2.33	0.89	Specific Gravity	2.67	ASSUME	D	
Sample Description	Gray, A-7-6 (5	53)					
Project Number	66Y-0050		Depth (ft)	9.0' - 11.0'	Remarks	;	
Sample Number	ST-2B		Boring Number	EB2-A2	NA		
Project	R-2511: US17	Widening					
Client	RK&K						
Location	EB2-A2						
Location	EB2-A2						
Station	L 156+79						
Offset	49' LT						

Final Voids [Log]

Preconsolidation Stress (tsf)	0.9732			Cc	1.301	Cr	0.031
	BEFORE	AFTER	Liquid Limits	71	Test Da	te 3/17/20	020
Moisture (%)	83.1	37.6	Plastic Limits	24			
Dry Density (pcf)	50.1	88.3					
Saturation (%)	95.4	113.2					
Void Ratio	2.33	0.89	Specific Gravity	2.67	ASSUME	D	
Sample Description	Create A 76 (5	:2)					
Sample Description	Gray, A-7-6 (3	(5)					
Project Number	66Y-0050		Depth (ft)	9.0' - 11.0'	Remark	s	
Sample Number	ST-2B		Boring Number	EB2-A2	NA		
Project	R-2511: US17	Widening					
Client	RK&K						
Location	EB2-A2						

Consolidation Test - Information - Section 1

Consolidated Test Results

AASHTO T-216

Project:	R-2511: US17 Wideni	ng			
Project Number:	66Y-0050				
Job Number:	66Y-0050-01				
Test Date:	3/17/2020				
Sampling Date:	3/16/2020				
Sample Number:	ST-2B				
Depth (ft)	9.0' - 11.0'				
Boring Number:	EB2-A2				
Location:	EB2-A2				
Client Name:	RK&K				
Remarks:	NA				
Specific Gravity:	2.67	Plastic Limit:	24	Liquid Limit:	
Specific Gravity Method:	ASSUMED			Weight of Ring (g)	104.3
Sampling Method:	Undisturbed	Soil Classification:			
Specimen Description:	Gray, A-7-6 (53)				
I	Parameters		Initial	Fi	
	Height (in)		1.0000	0.5	5324
H	leight Source		NA	TEST R	ESULTS
L	Diameter (in)		2.5000	N	JA
Area (in²)			4.909 NA		

	Depth (ft)	9.0' - 11.0'			
	Boring Number:	EB2-A2			
	Location:	EB2-A2			
Status	Client Name:	RK&K			
ENABLED	Remarks:	NA			
ENABLED					
ENABLED					
ENABLED	Specific Gravity:	2.67	Plastic Limit:	24	Liquid Limit: 71
ENABLED	Specific Gravity Method:	ASSUMED			Weight of Ring (g) 104.3
ENABLED	Sampling Method:	Undisturbed	Soil Classification:		
ENABLED	Specimen Description:	Gray, A-7-6 (53)			
ENABLED					
ENABLED	P	arameters		Initial	Final
ENABLED		Height (in)		1.0000	0.5324
ENABLED	Н	eight Source		NA	TEST RESULT
ENABLED	E	Piameter (in)		2.5000	NA
ENABLED		Area (in²)		4.909	NA
	V	volume (in ³)		4.9087	2.6134

Height Source	NA	TEST RESULTS
Diameter (in)	2.5000	NA
Area (in²)	4.909	NA
Volume (in³)	4.9087	2.6134
Weight of Container (g)	32.2	30.7
Weight of Wet Soil + Container (g)	79.9	113.6
Weight of Dry Soil + Container (g)	58.2	91.0
Moisture Content (%)	83.1	37.6
Moist Weight + Ring Weight (g)	222.6	187.7
Dry Density (pcf)	50.1	88.3
Wet Density (pcf)	91.8	121.5
Saturation (%)	95.4	113.2
Void Ratio	2.3	0.9

Consolidation Test - Results

Summary

	1-Z.	

Sample Description	Gray, A-7-6 (53)		
Project Number	66Y-0050	Depth (ft) 9.0' - 11.0'	Remarks
Sample Number	ST-2B	Boring Number EB2-A2	NA
Project	R-2511: US17 Widening		
Client	RK&K		
Location	EB2-A2		

	Loading	Cummulative Change in Height	Specimen Hoight	Height of Voide							
	(tsf)	(in)	(in)		(%)		(Hr)	(Hr)			Status
0	0.0000	0.0000	1.0000	0.0000	0.0	2.327	0.000	0.000	0.00000	0.00000	ENABLED
1	0.0625	-0.0015	1.0015	0.7004	-0.2	2.326	0.000	0.000	0.00000	0.00000	ENABLED
2	0.1250	0.0000	1.0000	0.6989	0.0	2.321	0.026	0.006	0.58661	0.13628	ENABLED
3	0.2500	0.0042	0.9958	0.6947	0.4	2.307	0.292	0.051	0.06872	0.01596	ENABLED
4	0.5000	0.0162	0.9838	0.6827	1.6	2.267	0.089	0.021	0.15983	0.03713	ENABLED
5	1.0000	0.0875	0.9125	0.6114	8.8	2.030	0.624	0.147	0.01834	0.00426	ENABLED
6	2.0000	0.2149	0.7851	0.4840	21.5	1.607	1.899	0.382	0.00382	0.00089	ENABLED
7	4.0000	0.3233	0.6767	0.3756	32.3	1.247	1.157	0.269	0.00231	0.00054	ENABLED
8	2.0000	0.3164	0.6836	0.3825	31.6	1.270	0.000	0.000	0.00000	0.00000	ENABLED
9	0.5000	0.2836	0.7164	0.4153	28.4	1.379	0.000	0.000	0.00000	0.00000	ENABLED
10	2.0000	0.3059	0.6941	0.3930	30.6	1.305	0.313	0.077	0.00737	0.00171	ENABLED
11	4.0000	0.3374	0.6626	0.3615	33.7	1.200	0.538	0.116	0.00363	0.00084	ENABLED
12	8.0000	0.4063	0.5937	0.2926	40.6	0.972	0.826	0.196	0.00096	0.00022	ENABLED
13	16.0000	0.4676	0.5324	0.2313	46.8	0.768	0.714	0.169	0.00022	0.00005	ENABLED

Location	EB2-A2
Station	L 156+79
Offset	49' LT

Consolidation Test - Information - Section 2

Consolidation Test - Results

Consolidation Test Results

AASHTO T-216

	Specia	
Test Description:	One-Dimensional Consolidation	
Other Associated Tests:	NA	
Device Details:	Oedometer 2	
Test Specification:	AASHTO T-216	
Test Time:	3/17/2020 12:00:00 AM	
Technician:	Drew Council	Sampling Method: Undisturbed
Specimen Code:	ST-2B	Specimen Lab #: ST-2 (B)
Specimen Description:	Gray, A-7-6 (53)	
Specimen Preparation:	Ring-Lined Sampler	
Large Particle:	NA	
Moisture Content:	Natural Moisture	
Test Condition:	Soaked	
Test Procedure:	AASHTO T-216 [Changes - NA]	
Seating Pressure Used:	NO	Seating Pressure (tsf): 0.0000
Preconsolidation Stress:		
Percent Strain [LOO	G] Graph (tsf): 0.5837	Final Voids Graph (tsf): 0.9732
Location	EB2.42	
Station	1 156±79	
Offset	49' LT	

Square Root Time [1] 0.0625 tsf

Tangent Construct	ion Results
T90 (Min)	NA
T50 (Min)	NA
$Cv_{(in^2/Min)}$	NA

Consolidation Test - Results

Square Root Time [2] 0.1250 tsf

Tangent Construction Results	
T90 (Min)	1.536
T50 (Min)	0.362
Cv (in²/Min)	0.5866
Location	B2-A2
Station	_ 156+79
Offset	49' LT

Square Root Time [3] 0.2500 tsf

AASHTO T-216

Tangent Construction Results	
T90 (Min)	17.539
T50 (Min)	3.050
Cv (in²/Min)	0.0687
Location	EB2-A2
Station	L 156+79
Offset	49' LT

Consolidation Test - Results

Square Root Time [4] 0.5000 tsf

AASHTO T-216

Tangent Construction Results	
T90 (Min)	5.331
T50 (Min)	1.262
Cv (in²/Min)	0.1598
Location	EB2-A2
Station	L 156+79
Offset	49' LT

Square Root Time [5] 1.0000 tsf

AASHTO T-216

Tangent Construction Results	
T90 (Min)	37.422
T50 (Min)	8.829
Cv (in²/Min)	0.0183
Location	EB2-A2
Station	L 156+79
Offset	49' LT

SHEET 26

SHEET 27

Consolidation Test - Results

Consolidation Test - Results

Square Root Time [6] 2.0000 tsf

Tangent Construction Results	
T90 (Min)	113.944
T50 (Min)	22.937
Cv (in²/Min)	0.0038
Location	EB2-A2
Station	L 156+79
Offset	49' LT

Square Root Time [7] 4.0000 tsf

AASHTO T-216

Tangent Construction Results	
T90 (Min)	69.413
T50 (Min)	16.139
Cv (in²/Min)	0.0023
Location	EB2-A2
Station	L 156+79
Offset	49' LT

Consolidation Test - Results

Square Root Time [8] 2.0000 tsf

Tangent Construe	tion Results
T90 (Min)	NA
T50 (Min)	NA
Cv (in²/Min)	NA
li di	ED0.40
Location	EBZ-AZ
Station	L 156+79
Offset	49' LT

Square Root Time [9] 0.5000 tsf

Tangent Construction Results	
T90 (Min)	NA
T50 (Min)	NA
Cv (in²/Min)	NA
Looption	EP2 A2
Station	L 156±70
Offset	49' I T

Consolidation Test - Results

Square Root Time [10] 2.0000 tsf AASHTO T-216

Tangent Construction Results	
T90 (Min)	18.793
T50 (Min)	4.643
Cv (in²/Min)	0.0074
Location	EB2-A2
Station	L 156+79
Offset	49' LT

Square Root Time [11] 4.0000 tsf

AASHTO T-216

Tangent Construction Results	
T90 (Min)	32.286
T50 (Min)	6.956
Cv (in²/Min)	0.0036
Location	EB2-A2
Station	L 156+79
Offset	49' LT

SHEET 30

Consolidation Test - Results

Consolidation Test - Results

Square Root Time [12] 8.0000 tsf

Tangent Construction Results		
T90 (Min)	49.540	
T50 (Min)	11.787	
Cv (in²/Min)	0.0010	
Location	EB2-A2	
Station	L 156+79	
Offset	49' LT	

Square Root Time [13] 16.0000 tsf

AASHTO T-216

Tangent Construction Results	
T90 (Min)	42.851
T50 (Min)	10.131
Cv (in²/Min)	0.0002
Location	EB2-A2
Station	L 156+79
Offset	49' LT