Revised Preliminary Site Assessment Report

Parcel 85 US 17 North of NC 171 to Multi-lanes South of Williamston 9985 U.S. Highway 17 North Beaufort County, North Carolina WBS Number 35494.1.1 TIP Number R-2511 NCDOT Parcel No. 85 Beaufort County PIN 5771-02-1103

Prepared for

North Carolina Department of Transportation Geotechnical Engineering Unit GeoEnvironmental Section Raleigh, North Carolina

Prepared by

Duncklee & Dunham, P.C. Cary, North Carolina

June 14, 2019

ENVIRONMENTAL GEOLOGISTS & ENGINEERS 511 KEISLER DRIVE – SUITE 102 CARY, NORTH CAROLINA 27518 OFFICE: (919) 858–9898 WWW.DUNCKLEEDUNHAM.COM

VIA EMAIL TO: <u>dgli@ncdot.gov</u>

June 14, 2019

Mr. Dennis Li, L.G., PhD North Carolina Department of Transportation Geotechnical Engineering Unit GeoEnvironmental Section 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Reference:Revised Preliminary Site Assessment Report
Parcel 85
US 17 North of NC 171 to Multi-lanes South of Williamston
9985 U.S. Highway 17 North
Beaufort County, North Carolina
TIP Number R-2511
WBS Number 35494.1.1
NCDOT Parcel No. 85
Beaufort County PIN 5771-02-1103

Dear Mr. Li:

Duncklee & Dunham, P.C. (Duncklee & Dunham) is pleased to submit this *Revised Preliminary Site Assessment Report* for the referenced site. The objective of our services was to assist the North Carolina Department of Transportation (NCDOT) – Geotechnical Engineering Unit with identifying potential environmental concerns within the rights-of-way and/or easements of the above-referenced site. This work is consistent with the NCDOT's Request for Technical and Cost Proposal dated March 5, 2019 and our *Revised Technical and Cost Proposal for Preliminary Site Assessment* dated May 14, 2019. Based on the findings from this work, Duncklee & Dunham recommends submitting this report to the Washington Regional Office of the North Carolina Department of Environmental Quality.

MAILING ADDRESS – POST OFFICE BOX 639 – CARY, NORTH CAROLINA 27512 North Carolina Board of Examiners for Engineers and Surveyors License C-3559 North Carolina Board for Licensing of Geologists License C-261 NC DEQ Registered Environmental Consultant Number 00061

Revised Preliminary Site Assessment Report R-2511 Parcel 85 US 17 North of NC 171 to Multi-lanes South of Williamston Beaufort County, North Carolina June 14, 2019 Page ii of ii

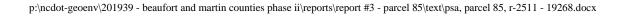
Please contact Rick Kolb at <u>rkolb@dunckleedunham.com</u> or (919) 858-9898, ext. 111 if you have any questions or require additional information.

Sincerely,

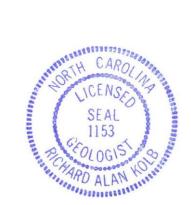
Duncklee & Dunham, P.C.

Alec N. Dziwanowski, G.I.T. Staff Geologist II

Kell


Richard A. Kolb, L.G. Senior Geologist North Carolina License No. 1153

Senior Peer Review


M

Andrew M. Rodak, P.E. Senior Engineer/Director of Engineering North Carolina No. 24576

Attachment: Revised Preliminary Site Assessment Report

Table of Contents

1	Intro	oduction	1
2	Hist	ory	1
3	Methods		
	3.1	Geophysics	2
	3.2	Soil Borings	
	3.3	Groundwater	3
4	Resi	llts	3
	4.1	Geophysics	3
	4.2	Soil Borings	3
	4.3	Groundwater	3
5	Con	clusions	4
	5.1	Geophysics	4
	5.2	Soil Sampling	4
	5.3	Groundwater Sampling	4
6	Reco	ommendations	4

Tables

1	Coordinates of Soil Borings
2	Summary of Soil Screening and Soil Test Results

3 Summary of Groundwater Test Results

Figures

- 1 Site Topographic Map
- 2 Site Map
- 3 Site Map with Results
- 4 Legend for Plan Sheet Figures

Appendices

- A Photographic Log
- B Boring Logs
- C Geophysical Survey Report
- D Laboratory Reports

Revised Preliminary Site Assessment Report Parcel 85 US 17 North of NC 171 to Multi-lanes South of Williamston 9985 U.S. Highway 17 North Beaufort County, North Carolina TIP Number R-2511 WBS Number 35494.1.1 NCDOT Parcel No. 85 Beaufort County PIN 5771-02-1103 June 14, 2019

1 Introduction

Duncklee & Dunham, P.C. (Duncklee & Dunham) conducted a Preliminary Site Assessment (PSA) on the referenced site located on the western side of U.S. Highway 17 (US 17) north of Washington in Beaufort County, North Carolina (Figures 1 and 2). The North Carolina Department of Transportation (NCDOT) plans to widen the two-lane portion of US 17 between Washington and Williamston, North Carolina. Our work is consistent with the NCDOT's *Request for Technical and Cost Proposal* dated March 5, 2019 and our *Revised Technical and Cost Proposal* dated May 14, 2019. The objective of this work was to assist the NCDOT – Geotechnical Engineering Unit with identifying potential environmental concerns within the rights-of-way and/or easements of the above-referenced site. Our services included a geophysical survey to identify subsurface metallic features such as underground storage tank (UST) systems, and the advancement of six soil borings to test for the presence of contaminants in the areas where the new roadway will be constructed, along rights-of-way for NCDOT, and at new utility easements.

2 History

The NCDOT prepared a Hazardous Materials Report dated November 14, 2011 that identified the site as a former gasoline station, which is now vacant. After review of the incident list of the UST Section of the North Carolina Department of Environment and Natural Resources (NCDENR, now the North Carolina Department of Environmental Quality – NCDEQ), the NCDOT determined that there were no known incidents associated with the site.

3 Methods

Duncklee & Dunham called NC811 on March 26, 2019 and requested utilities to be marked in the areas of investigation. NC811 notified the Beaufort County Water Department, USIC Locating Services, CenturyLink, MCNC, Piedmont Natural Gas, Suddenlink Communications, and the City of Washington. The clearance was valid through April 16, 2019.

Duncklee & Dunham reviewed regulatory records on NCDEQ's Laserfiche website and did not find records for this parcel. However, ECS Southeast, LLP (ECS), under contract with NCDOT, prepared a PSA report on June 18, 2018 for 10052 US 17, a parcel that adjoins Parcel 85 to the east. ECS determined that a leak from the UST system at the site had likely occurred, based on a groundwater sample collected from a monitoring well installed near the former dispensing island on the western side of the property that exhibited volatile organic compounds (VOCs) at concentrations that exceeded the North Carolina groundwater quality standards promulgated in Title 15A, Subchapter 2L, Section .0202 of the North Carolina Administrative Code (15A NCAC 2L .0202; the "2L standards").

During site reconnaissance, Duncklee & Dunham interviewed Rusty Roberson, a relative of the owner of the subject site. Mr. Roberson stated that two USTs used to store high-test and regular gasoline were formerly located near the southeastern corner of the building. He was not aware of when the tanks were installed or closed out. Mr. Roberson also stated that the store was formerly located closer the intersection of West Bear Grass Road and US 17 prior to the 1950s. Duncklee & Dunham did not observe unusual features or features indicative of a UST at this intersection or on the northern portion of the parcel.

3.1 Geophysics

ESP Associates (ESP), under contract to Duncklee & Dunham, conducted a geophysical survey at the site on April 1, 5, and 6, 2019. ESP used a Geonics EM61 MK2[®] metal detector equipment with a DGPS instrument to locate buried metal objects, and then used a Sensors and Software Noggin[®] GPR instrument with a 250 MHz antenna to image selected anomalies.

3.2 Soil Borings

Troxler Geologic Services, Inc. (Troxler), under contract to Duncklee & Dunham, used a Geoprobe[®] equipped with direct-push technology to advance six soil borings, nos. B-10 through B-15 on April 8, 2019. The locations of these borings are shown on Figure 2. Troxler advanced B-10 through B-12 near the former pump islands on the eastern side of the building (Photograph No. 1 in Appendix A), and B-13 through B-15 at the former location of the UST pit near the southeastern corner of the building (Photograph No. 2). Troxler advanced B-10 to a depth of 8 feet below land surface (bls) and the remaining borings to a depth of 4 feet bls. We encountered the water table at a depth of 3.25 feet bls. Duncklee & Dunham used a Trimble Geo $7x^{\text{@}}$ handheld data collector to determine the location of each boring. Approximate Northings, Eastings, and elevations above sea level for these borings are in Table 1.

Troxler collected soil samples in new acetate sleeves, each 4 feet long. A majority of the soil samples were comprised of dark gray to black, sandy, silty clay. Boring logs are provided in Appendix B. Duncklee & Dunham collected representative samples of native material at selected intervals in each soil boring and stored the samples in twin Ziploc[®] bags. After allowing one of the bags to sit untouched in the sun and the other in the shade for approximately 15 minutes, we used a photoionization detector (PID) to screen the headspace in each bag left in the sun for volatile organic compounds (VOCs). We recorded the soil-screening results in the field log. Table 2 summarizes the screening results. The soil samples collected from B-10 at 2.5 feet bls, which exhibited a petroleum odor and a PID reading of 2.9 parts per million (ppm). The PID readings of the other soil samples collected from 4 to 8 feet bls did not exceed 5.2 ppm, except the readings taken from B-14 and B-15 at 4 feet bls, which were 72.6 ppm and 563 ppm, respectively. These samples exhibited a petroleum odor.

Duncklee & Dunham collected a soil sample from B-15 at 2.5 feet bls to be tested in the laboratory because of all the samples above the water table, this sample exhibited the highest concentration of VOCs on the PID. We placed the soil sample in the other twin bag in a laboratory-supplied container, placed the container in a cooler with ice, and shipped the cooler under chain of custody to RED Lab, LLC (RED Lab) in Wilmington, North Carolina. The laboratory received the cooler and tested the samples for total petroleum hydrocarbons (TPH) – diesel range organics (DRO) and TPH – gasoline range organics (GRO) using Ultraviolet Fluorescence methodology.

3.3 Groundwater

The sample from boring B-15 collected below the water table exhibited the highest anomalous response on the PID. Therefore, Troxler constructed temporary monitoring well TW-2 in boring B-15 to a depth of 4 feet bls using Screen Point 16 groundwater sampling rods. Troxler screened the well from 0 to 4 feet bls. Duncklee & Dunham purged groundwater from the well using a peristaltic pump with a new length of low-density polyethylene tubing and silicon tubing for the pump head. Once the purge water appeared clear, Duncklee & Dunham sampled TW-2 with a peristaltic pump. We placed the groundwater sample in laboratory-supplied containers, placed the containers in a cooler with ice, and brought the cooler back to our office under chain of custody. A courier for Pace National Laboratory (Pace) shipped the cooler by overnight express mail to their laboratory in Mt. Juliet, Tennessee. The laboratory tested the groundwater samples for VOCs according to EPA Method 6200B, semivolatile organic compounds (SVOCs) according to EPA Method 625, and volatile petroleum hydrocarbons (VPH) according to the method of the Massachusetts Department of Environmental Protection (MADEP). In accordance with NCDEQ guidance, Duncklee & Dunham discharged the purge water on the ground around TW-2 once the groundwater sample was collected.

4 Results

4.1 Geophysics

ESP's *Geophysical Survey* report dated May 9, 2019 is provided in Appendix C. ESP identified six magnetic anomalies that they attributed to cultural features on the ground surface or buried, metallic debris and/or utilities. The ground penetrating radar (GPR) survey confirmed the electromagnetic (EM) anomalies were associated with unknown buried metallic features and not USTs.

4.2 Soil Borings

Table 2 and Figure 3 summarize the laboratory results for the soil sample collected from soil boring B-15. The laboratory report is in Appendix E. RED Lab did not detect TPH-GRO in the sample and detected TPH-DRO at a concentration of 1.8 milligrams per kilogram (mg/kg). This concentration does not exceed the action level of 100 mg/kg established by NCDEQ. RED Lab identified the hydrocarbon fingerprint of the TPH-DRO in B-6 as "very degraded petroleum hydrocarbons (PHC)," which is indicative of a petroleum product that had a substantial amount of time to degrade.

4.3 Groundwater

Table 3 and Figure 3 summarize the laboratory results for the sample collected from TW-2. Pace detected 18 petroleum constituents in this groundwater sample; the concentrations of 13 analytes exceeded the respective 2L Standards but did not the respective Gross Contamination Levels. The laboratory report is in Appendix D.

5 Conclusions

5.1 Geophysics

ESP identified six magnetic anomalies on Parcel 85 and attributed each to cultural features on the ground surface or buried, metallic debris and/or utilities. ESP did not identify anomalies indicative of abandoned USTs or buried metal drums. The GPR survey confirmed the remaining EM anomalies to be associated with suspected, buried, metallic debris, and/or utilities, and not USTs.

5.2 Soil Sampling

The soil sample from B-15 did not exhibit TPH-DRO at a concentration that exceeded NCDEQ's action level. Duncklee & Dunham did not detect petroleum odors or observe stains in the other soil samples collected above the water table. These results suggest the fuel dispensers formerly used at the site were not a contaminant source. We do not have evidence that soil on the site exhibits petroleum constituents at concentrations that exceed the action levels established by NCDEQ.

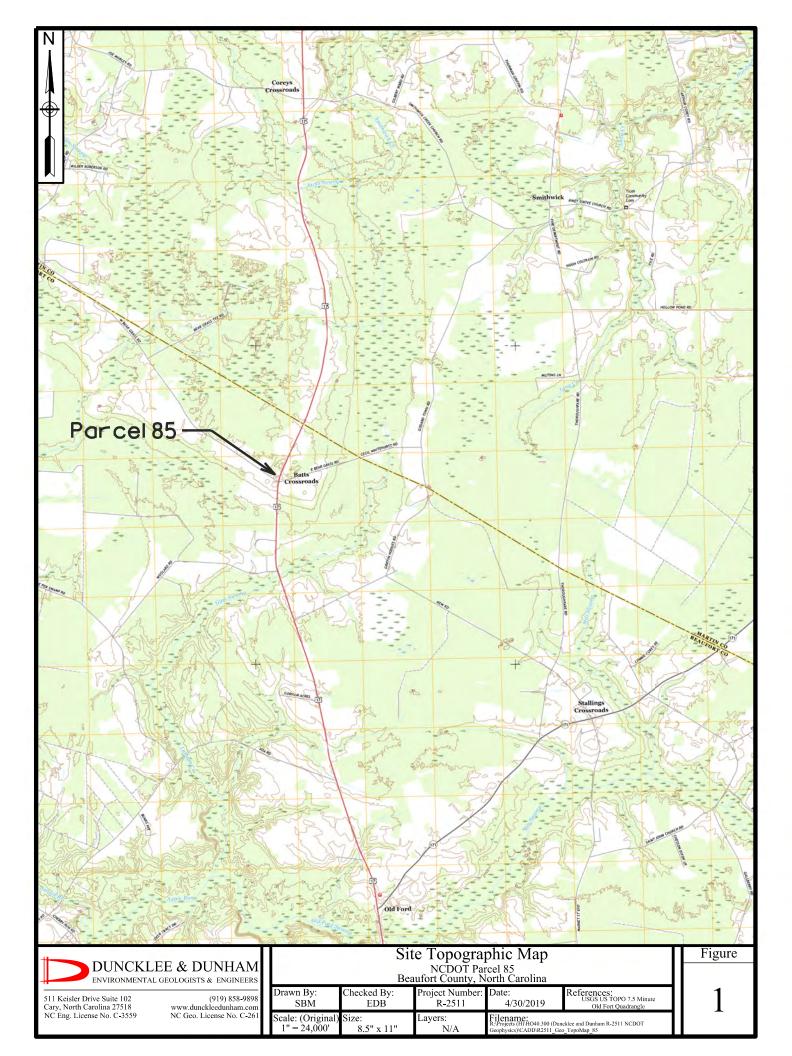
5.3 Groundwater Sampling

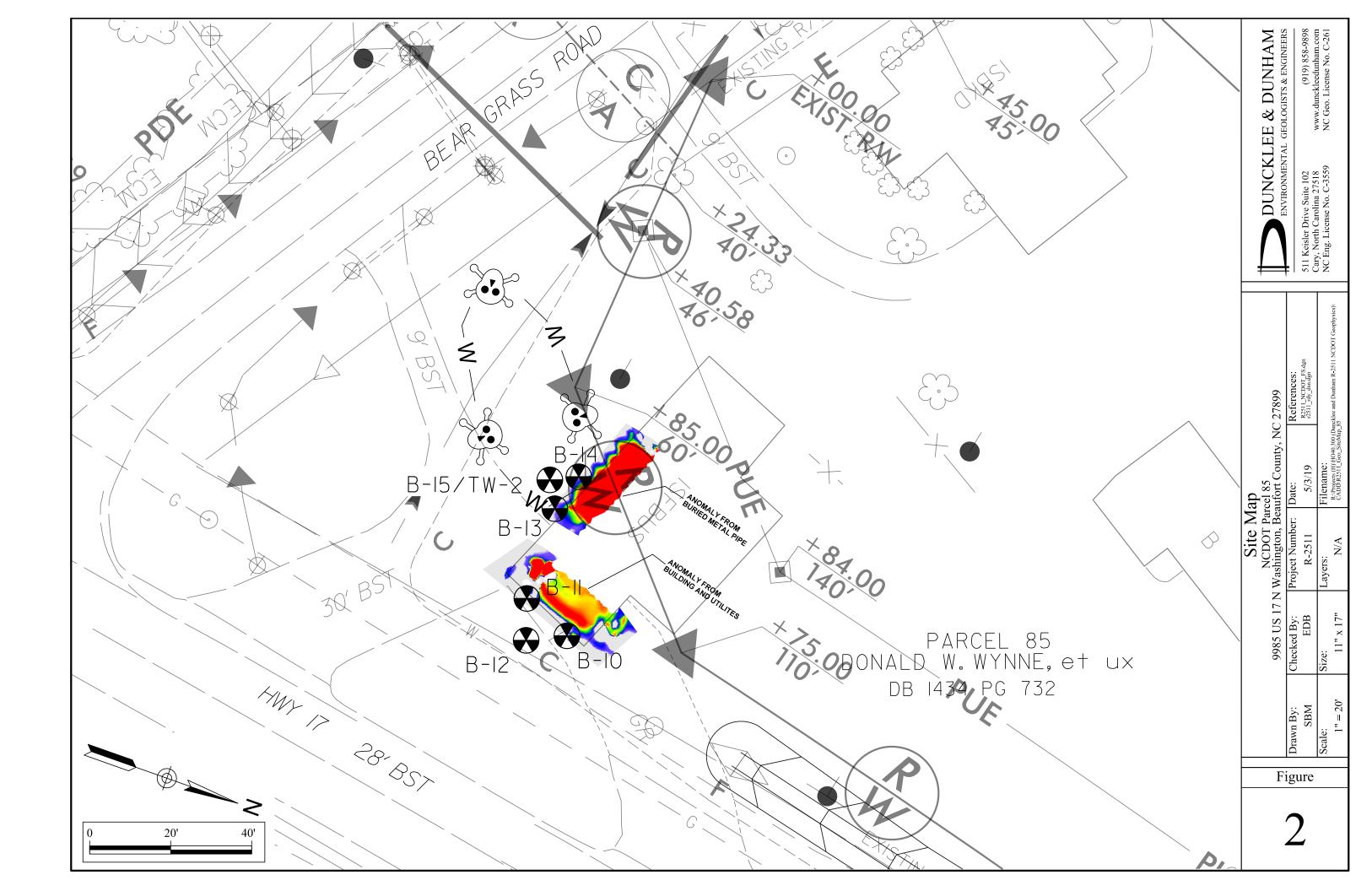
Most of the analytes detected in the groundwater sample were VOCs and VPH fractions, which suggests that a majority of the contaminants were derived from a low boiling point fuel such as gasoline. The estimated extent of contamination is shown on Figure 3. The shape of the plume reflects what we estimate is the direction of groundwater flow. These test results show the USTs formerly at the site were the probable source of the contamination.

The PSA conducted by ECS at 10052 US 17 reported similar analytes at similar concentrations to those detected in the groundwater sample collected from the subject site. Thus, the plumes at these two sites may be comingled. Additional assessment is required to determine if these two plumes have comingled, and to determine the extent of groundwater contamination.

6 Recommendations

Duncklee & Dunham recommends submitting this report to the Washington Regional Office of the NCDEQ.


Tables


Table 1 Coordinates of Soil Borings Parcel 85 Beaufort County, North Carolina TIP No. R-2511; WBS No. 35494.1.1				
Boring	Northing	Easting	Elevation	
Identification	(feet)	(feet)	(feet asl)	
B-10	711903.004	2570149.754	61.467	
B-11	711890.585	2570144.408	61.340	
B-12	711893.902	2570154.213	61.909	
B-13	711887.620	2570124.680	60.231	
B-14	711890.506	2570115.267	61.287	
B-15	711884.039	2570118.400	61.782	
Notes: Coordinate system NAD83 NC State Plane - Survey Feet GPS data collected using a Trimble Geo 7x handheld data collector GPS data are approximate				

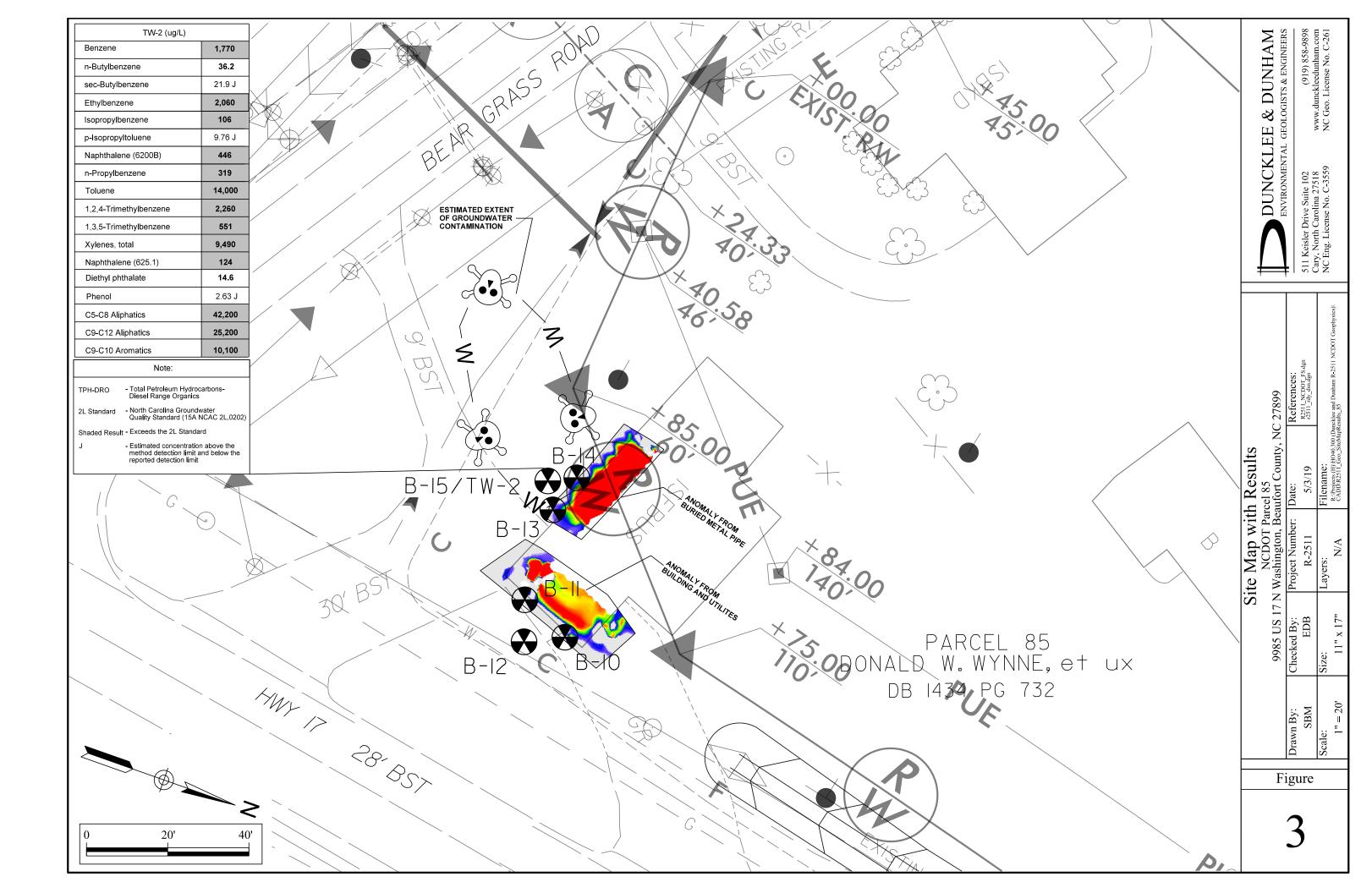

Table 2 Summary of Soil Screening and Soil Test Results Parcel 85 Beaufort County, North Carolina TIP Number R-2511; WBS No. 35494.1.1				
	Soil Screening Results			
Boring Identification	Depth (feet bls)	PID Reading (ppm)		
B-10	1.5 2.5	0.3 2.9		
B-11	6 1 2	0.6 1.1 0.5		
B-12	<u> </u>	0.2		
B-13	1 2.5 4	0.6 0.2 5.2		
B-14	1.5 2.5 4	0.2 2.6 72.6		
B-15	1 2.5* 4	1.1 5.2 563		
	4 Soil Test Results	303		
Sample TPH-GRO (mg/kg) TPH-DRO (mg/kg)				
B-15	< 0.63	1.8		
Notes: Soil sample and PID data collected on April 8, 2019 * - Sample selected from this interval for laboratory testing TPH-GRO - Total Petroleum Hydrocarbons-Gasoline Range Organics TPH-DRO - Total Petroleum Hydrocarbons-Diesel Range Organics NCDEQ Action Level for TPH-GRO - 50 mg/kg NCDEQ Action Level for TPH-DRO - 100 mg/kg mg/kg - Milligrams per kilogram bls - Feet below land surface ppm - Parts per million PID - Photoionization detector Result in bold exceeds the report limit Results shaded in blue were collected from below the water table <# - Analyte not detected at a concentration that exceeds the reporting limit shown				

Table 3 Summary of Groundwater Test Results Parcel 85 Beaufort County, North Carolina TIP No. R-2511; WBS No. 35494.1.1				
	Sample Ide		TW-2	
Analyte	2L Standard	GCL	Value	Q
	Prganic Compound			
Benzene	1	5,000	1,770	
n-Butylbenzene	70	6,900	36.2	
sec-Butylbenzene	70	8,500	21.9	J
Ethylbenzene	600	84,500	2,060	
Isopropylbenzene	70	25,000	106	
p-Isopropyltoluene	NE	NE	9.76	J
Naphthalene	6	6,000	446	
n-Propylbenzene	70	30,000	319	
Toluene	600	260,000	14,000	
1,2,4-Trimethylbenzene	400	28,500	2,260	
1,3,5-Trimethylbenzene	400	25,000	551	
Xylenes-total	500	85,500	9,490	
	e Organic Compo	-		
Naphthalene	6	6,000	124	
Diethyl phthalate	NE	NE	14.6	
Phenol	30	30,000	2.63	J
	etroleum Hydroca		EP Method	
C5-C8 Aliphatics	400	NE	42,200	
C9-C12 Aliphatics	700	NE	25,200	
C9-C10 Aromatics	200	NE	10,100	
Notes: Units are μg/L Sample collected on April 8, 2019 2L Standard - North Carolina Groundwater Quality Standard (15A NCAC 2L.0202) GCL - North Carolina Gross Contamination Levels for groundwater Result in bold exceeds the reported detection limit Result with shaded cell exceeds the 2L Standard MADEP - Massachusetts Department of Environmental Protection NE - Not Established Q - Qualifier J - Estimated concentration above the method detection limit and below the reported detection				

Figures

STATE OF NORTH CAROLINA, DIVISION OF HIGHWAYS CONVENTIONAL Note: Not to Scale PLAN SHEET SYMBOLS *S.U.E. = Subsurface Utility Engineering

BOUNDARIES AND PROPERTY:

State Line	
County Line	
Township Line	
City Line	
Reservation Line	
Property Line	
Existing Iron Pin	€I₽
Computed Property Corner	
Property Monument ———	ECM
Parcel/Sequence Number	(23)
Existing Fence Line	_xxx-
Proposed Woven Wire Fence	0
Proposed Chain Link Fence	
Proposed Barbed Wire Fence	
Existing Wetland Boundary	— — — #LB— — — —
Proposed Wetland Boundary	
Existing Endangered Animal Boundary	EAB
Existing Endangered Plant Boundary	
Existing Historic Property Boundary	мрв ———
Known Contamination Area: Soil	- 🕱 — s — 🕱 ·
Potential Contamination Area: Soil	- X - s - X ·
Known Contamination Area: Water	- 🕱 — w — 🕱 ·
Potential Contamination Area: Water	
Contaminated Site: Known or Potential	X X
BUILDINGS AND OTHER CULTU	RE:
Gas Rump Vontor II/G Tank Can	0

Gas Pump Vent or U/G Tank Cap	· 0
Sign	. Ç
Well	. O
Small Mine	· 🛠
Foundation ————	
Area Outline	
Cemetery	· _ † _]
Building —	
School	
Church	
Dam ————	
HYDROLOGY:	
Stream or Body of Water	
Stream or Body of Water Hydro, Pool or Reservoir	
Hydro, Pool or Reservoir	
Hydro, Pool or Reservoir ———— Jurisdictional Stream	JSBZ 1
Hydro, Pool or Reservoir Jurisdictional Stream Buffer Zone 1 Buffer Zone 2 Flow Arrow	BZ 1 BZ 2
Hydro, Pool or Reservoir Jurisdictional Stream Buffer Zone 1 Buffer Zone 2 Flow Arrow Disappearing Stream	□JS BZ 1 BZ 2 ►
Hydro, Pool or Reservoir Jurisdictional Stream Buffer Zone 1 Buffer Zone 2 Flow Arrow	□JS BZ 1 BZ 2 ►
Hydro, Pool or Reservoir Jurisdictional Stream Buffer Zone 1 Buffer Zone 2 Flow Arrow Disappearing Stream	□JS BZ 1 BZ 2 ►
Hydro, Pool or Reservoir Jurisdictional Stream Buffer Zone 1 Buffer Zone 2 Flow Arrow Disappearing Stream Spring	- JS

RAILROADS:	Note: Not to Scale	*S
Standard Gauge ——		ţ,
RR Signal Milepost ——	⊙ MILEPOST 35	
Switch ———	Switch	
RR Abandoned		-
RR Dismantled ———		_

RIGHT OF WAY & PROJECT CONTROL:

Secondary Horiz and Vert Control Point	•
Primary Horiz Control Point	Ó
Primary Horiz and Vert Control Point	•
Exist Permanent Easment Pin and Cap	\diamond
New Permanent Easement Pin and Cap ——	۲
Vertical Benchmark	
Existing Right of Way Marker	\bigtriangleup
Existing Right of Way Line	
New Right of Way Line	
New Right of Way Line with Pin and Cap—	
New Right of Way Line with Concrete or Granite RW Marker	
New Control of Access Line with Concrete C/A Marker	
Existing Control of Access	(<u>¯</u>
New Control of Access	
Existing Easement Line	——E——
New Temporary Construction Easement -	E
New Temporary Drainage Easement	TDE
New Permanent Drainage Easement	PDE
New Permanent Drainage / Utility Easement	DUE
New Permanent Utility Easement	PUE
New Temporary Utility Easement	TUE
New Aerial Utility Easement	AUE

ROADS AND RELATED FEATURES:

Existing Edge of Pavement	
Existing Curb	
Proposed Slope Stakes Cut	<u>c</u>
Proposed Slope Stakes Fill	<u>F</u>
Proposed Curb Ramp	
Existing Metal Guardrail ————	<u> </u>
Proposed Guardrail	<u> </u>
Existing Cable Guiderail	
Proposed Cable Guiderail	
Equality Symbol	$igodoldsymbol{\Theta}$
Pavement Removal	$\times\!\!\!\times\!\!\!\times\!\!\!\times\!\!\!\times\!\!\!\times$
VEGETATION:	
Single Tree	ය
Single Shrub	0

Hedge ———	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Woods Line	-നംനംനംനംന
Orchard ———	0 0 0 0
Vineyard ———	Vineyard
EXISTING STRUCTURES:	
MAJOR:	
Bridge, Tunnel or Box Culvert ———— [CONC
Bridge Wing Wall, Head Wall and End Wall-) CONC WW (
MINOR:	
Head and End Wall	CONC HW
Pipe Culvert	
Footbridge	
Drainage Box: Catch Basin, DI or JB	СВ
Paved Ditch Gutter —————	
Storm Sewer Manhole	\$
Storm Sewer	s
UTILITIES:	
POWER:	
Existing Power Pole	•
Proposed Power Pole	6
Existing Joint Use Pole	
Proposed Joint Use Pole	- 6 -
Power Manhole	P
Power Line Tower	\boxtimes
Power Transformer	
U/G Power Cable Hand Hole	
H-Frame Pole	
H–Frame Pole	
H-Frame Pole	P

Existing Telephone Pole	-•-
Proposed Telephone Pole	-0-
Telephone Manhole	T
Telephone Pedestal	Ξ
Telephone Cell Tower	,ā ,
U/G Telephone Cable Hand Hole	н
U/G Telephone Cable LOS B (S.U.E.*)	
U/G Telephone Cable LOS C (S.U.E.*)	
U/G Telephone Cable LOS D (S.U.E.*)	t
U/G Telephone Conduit LOS B (S.U.E.*)	
U/G Telephone Conduit LOS C (S.U.E.*)	TC
U/G Telephone Conduit LOS D (S.U.E.*)	тс
U/G Fiber Optics Cable LOS B (S.U.E.*)	
U/G Fiber Optics Cable LOS C (S.U.E.*)	T FO
U/G Fiber Optics Cable LOS D (S.U.E.*)	T F0

/ater Manhole —
/ater Meter ——
/ater Valve ——
/ater Hydrant —
/G Water Line l
/G Water Line I
/G Water Line I
bove Ground W
:
√ Pedestal ——
V Tower

WATER:	
Water Manhole	W
Water Meter	0
Water Valve	8
Water Hydrant	ŵ
U/G Water Line LOS B (S.U.E*)	
U/G Water Line LOS C (S.U.E*)	
U/G Water Line LOS D (S.U.E*)	ı
Above Ground Water Line	A/G Woter
TV:	
TV Pedestal	C
TV Tower	\otimes
U/G TV Cable Hand Hole	Η _Η
U/G TV Cable LOS B (S.U.E.*)	
U/G TV Cable LOS C (S.U.E.*)	
U/G TV Cable LOS D (S.U.E.*)	Tv
U/G Fiber Optic Cable LOS B (S.U.E.*)	
U/G Fiber Optic Cable LOS C (S.U.E.*)	
U/G Fiber Optic Cable LOS D (S.U.E.*)	
GAS:	
Gas Valve	<u>ہ</u>
Gas Meter	¢
U/G Gas Line LOS B (S.U.E.*)	•
U/G Gas Line LOS D (S.U.E.*)	
Above Ground Gas Line	
SANITARY SEWER:	
Sanitary Sewer Manhole	•
Sanitary Sewer Cleanout	Ð
U/G Sanitary Sewer Line	
Above Ground Sanitary Sewer	
SS Forced Main Line LOS B (S.U.E.*)	
SS Forced Main Line LOS C (S.U.E.*)	
SS Forced Main Line LOS D (S.U.E.*)	FSS
MISCELLANEOUS:	
Utility Pole	•
Utility Pole with Base	·
Utility Located Object	\odot
Utility Traffic Signal Box	S
Utility Unknown U/G Line LOS B (S.U.E.*)	
U/G Tank; Water, Gas, Oil	
Underground Storage Tank, Approx. Loc. ——	
A/G Tank; Water, Gas, Oil	
Geoenvironmental Boring	•
U/G Test Hole LOS A (S.U.E.*)	•
Abandoned According to Utility Records —	AATUR
End of Information	E.O.I.

DUNCKLEE & DUNHAM			511 Keisler Drive Suite 102 (919) 858-9898 Carv North Carolina 27518 www. dunckloedunham com	6	
n Sheet Figures Parcel 85 North Carolina	Date: References:	-	5/3/2019 NCDOT PLAN SHEET SYMBOLOGY, Microstation Cell, 12/2/2016	Filename:	R.Protects19 (H)HO40.300 (Duncklee and Dunham R-2511 NCDOT Geophysics)) CADD/R2511_Geo_Legend_85
Legend for Plan Sheet NCDOT Parcel 85 Beaufort County, North Co	Project Number	Toport manager	R-2511	Layers:	N/A
Leger	Charbad By:	CILCUM DJ.	EDB	Size:	11" x 17"
	Drawn Rv.	Jumpin Jy.	SBM	Scale:	N/A
Fi	ig	;u	ire		
	_	1			

Appendix A

PHOTOGRAPHIC LOG

Date: 4/8/19

DUNCKLEE & DUNHAM ENVIRONMENTAL GEOLOGISTS & ENGINEERS

Client Name:

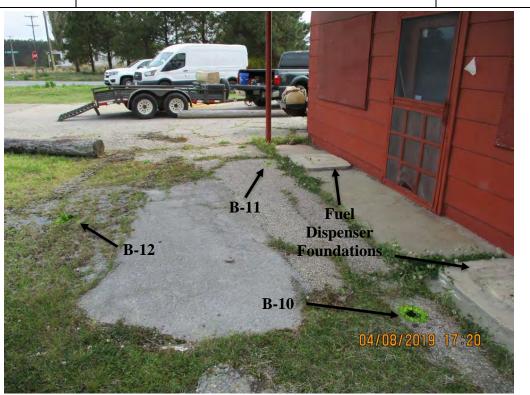
Photo No.

1

NCDOT-GeoEnvironmental

Site Location:

R-2511 Parcel 85; Beaufort County, North Carolina


Project No.

201939

Southwest Description: Soil borings B-10

Direction of Photo:

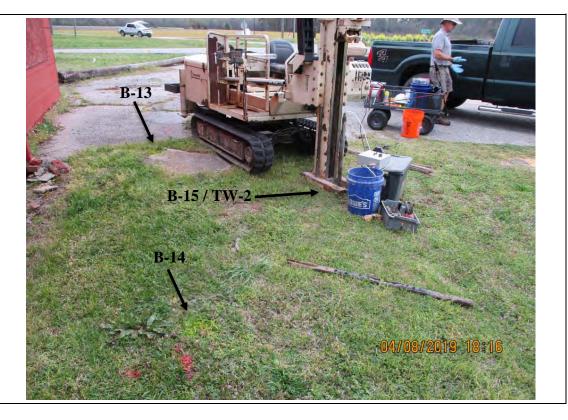

soll borings B-10 through B-12 were advanced near the foundations of the former fuel dispensers. West Bear Grass Road is in the background.

Photo No.Date:24/8/19Direction of Photo:Southeast

Description:

Soil borings B-13 through B-15 were advanced near the former location of the UST pit. U.S Highway 17 is in the background, and Ben Troxler of Troxler Geologic is pictured.

Appendix B

Boring/Well Cons	truction		DUNCKLEE & DUNHAM		
D. Number Broject Name Broject No. Geologist Her Date Beaufort d 201939 Alec D2 4/8/19	Martin Co Wanowski Complete Date	Purpose Soil Bon D Site 8 Contractor Troxicer Registration No. 2511 Driller Bon Tro 4/3/19 Equipment Geoprote	geologic Xler		
Drilling Method Orrect - push Comments WT at 3.25 Petroleum Ode	bls incled X classification	t [*] at 3.25'-8' bls			
Well Construction Information	Depth From - To (ft.)	Lithology	FID / PID (ppm) @ Depth (ft.)		
Borehole Diameter WT@ 3.25	0-3.5	dark gray, Sandy, Silty CLAY 5 bugi.			
Riser Type	3.5-4	black Sandy, Sitty CLAY	NAK		
Diameter	4-7	Cark gray, Sitty CLAY with sand	0.666		
Screen Type	7-8	light gray, Sandy CLAY	NA		
Diameter		5 5 11 1	1		
Riser Interval					
Screen Interval					
Slot Size					
Grout Type					
Interval			-		
Bentonite Type					
Interval					
Filter Pack					
Interval					
Total Depth			1		
Total Depth R.P. Elevation Datum					
Total Depth R.P. Elevation Datum Water Level Information					
Total Depth R.P. Elevation Datum					
Total Depth R.P. Elevation Datum Water Level Information			*		
Total Depth R.P. Elevation Datum Water Level Information			*		
Total Depth R.P. Elevation Datum Water Level Information					
Total Depth R.P. Elevation Datum Water Level Information					
Total Depth R.P. Elevation Datum Water Level Information					

MSL = Mean Sea Level

R.P. = Reference Point W.L. = Water Level TBM = Temporary Benchmark M

Boring/V	Vell Const	ruction	a Log DUNC	
. D. Number Project Name Project No. Geologist Itart Date		l Martin Wanowski Complete Date	PurposeDoil boxCo Site 8ContractorTroxler 0Registration No.2511DrillerBen Tro4/8/19EquipmentGeoprot	inebugic kier
Comments	direct - push wt at 3.25 No petroleum	adors/sta	ins	
Well Con	estruction mation	Depth From - To (ft.)	Lithology	FID / PID (ppm) @ Depth (ft.)
Borehole Diameter	mation	0-4	dovk gray, sandy, sithy CLAY To buy!	1.1 C 1'
Riser Type			born gray, sandy still control bag	
Diameter			J	
Screen Type				
Diameter				
Riser Interval				
Screen Interval				
Slot Size				
Grout Type				
nterval				
Bentonite Type				
Interval				
Filter Pack				
Interval				
Fotal Depth				
R.P. Elevation	Information			
Datum				
Datum Water Leve				
Datum	W.L. Below R.P.			
Datum Water Leve				

R.P. = Reference Point W.L. = Water Level

TBM = Temporary Benchmark

MSL = Mean Sea Level

Boring/Well Construction Log DUNCKLEE & DUNHAM						
Project No. 2	101939 Hec Dzi	Martin Co Wanowski Complete Date		Purpose Contractor Registration No. Driller Equipment	Soll bonn Troxler (2511 Ben Troxl Geoproba	ortologic or
Comments WT (-push at 3,25 etwieum	alors / sta	uns			
Well Construction		Depth From - To (ft.)		Lithology		FID / PID (ppm) @ Depth (ft.)
Borehole Diameter		D, - 4	dark gray,		LAY >bag1	0.2 @ 1.5
Riser Type			and and a		LAY Sbag1	0.5 @ 2.5
Diameter					1-	
Screen Type						
Diameter						
Riser Interval						
Screen Interval						
Slot Size						
Grout Type						
Interval						
Bentonite Type						
Interval						
Filter Pack						
Interval						
Total Depth						
R.P. Elevation						
Datum						
Water Level Infor						
Date W.I	L. Below R.P.					

R.P. = Reference Point W.L. = Water Level

TBM = Temporary Benchmark

Boring/Well Const	truction	n Log	DUNCH & DUN		
Project No. 201939 Geologist Alco Daw		PurposeCo Site 8ContractorRegistration No.Driller4/8/19Equipment	c Sife 8 Contractor Tipkler Geolog Registration No. 2511 Driller Ben Troxler		
Drilling Method Circct - push Comments WT at 3.25 Actualization ado	w/ perch r/Staining	ed wit near land surface not observed		FID / PID	0
Well Construction Information	Depth From - To (ft.)	Lithology		(ppm) (ppth (ft.)	Petro ad
Borehole Diameter	D-3.5	dark gray, sandy silty ch	y Thagi:	0.6@1'	bag
Riser Type	3.5-4	black, Sandy, Silty CLAY	, ordin	5.2 0 4'	bag Q2 C
Diameter		12000 1 (201) 201		K	1
Screen Type				1	Vno
Diameter					
Riser Interval					
Screen Interval					
Slot Size					
Grout Type					
Interval					
Bentonite Type					
Interval					
Filter Pack Interval					
Total Depth					
R.P. Elevation					
Datum					
Water Level Information					
Date W.L. Below R.P.					

R.P. = Reference Point W.L. = Water Level TBM = Temporary Benchmark MSL = Mean Sea Level

Boring/W	ell Const	truction	Log DUNCI & DUN	
I. D. Number Project Name Project No. Geologist Start Date	201939 Alec D:	Marhn Co. BiWanowski Complete Date	Registration No. 2511	ler Reologic
Comments WT	irect-push at 3.25' bla vicum edor	s noted fro	m 3.5 -41 bis	
Well Cons Inform		Depth From - To (ft.)	Lithology	FID / PID (ppm) @ Depth (ft.)
Borehole Diameter	ation	D - 3.5	dark gray, Sandy, silty CLAY - S bagi:	0.2 @ 1.5'
Riser Type		3.5-4	black, Sundy, Silty CLAY	72.60 41
Diameter			and the first of the first	K
Screen Type				
Diameter				
Riser Interval				
Screen Interval				
Slot Size				
Grout Type				
Interval				
Bentonite Type				
Interval				
Filter Pack				
Interval				
Total Depth				
R.P. Elevation				
Datum Water Level	Information			
Date	W.L. Below R.P.			

R.P. = Reference Point W.L. = Water Level TBM = Temporary Benchmark MSL = Mean Sea Level

Boring/W	ell Const	ruction	Log DUNC & DUN		
I. D. Number Project Name Project No. Geologist Start Date			Purpose Soil bonne Co Sile 8 Contractor Troxier G Registration No. 2511 Driller Ben Troxie 4/8/19 Equipment Geoprobe	er	ncj
Comments WT @ petro colle	V. 40 V.J	noted from a 2.5° at	gw Sampling rods (Screen point 16) m 3.5-4° bls 1800 4° at 1800	FID / PID	Petroieum
Well Cons Inform		Depth From - To (ft.)	Lithology	(ppm) @ Depth (ft.)	ador?
Borehole Diameter	2.75"	0-3.5			no
Riser Type	kampling rod		dark gray, sandy, silly CLAY -> bag1	5.2 @ 2.5'	no
Diameter	1.25*	3.5-4	black, sandy, silty CLAY	563C 41	Yes
Screen Type 🗧	ampling rod				
Diameter	1.25"				
Riser Interval	NA		*Water had oder during Sampting		
Screen Interval	0-4 65) , , ,		
Slot Size	0.0005				
Grout Type	7				
Interval	da				
Bentonite Type	NA				
Interval					
Filter Pack Interval	V.				
Total Depth	4' bis				
R.P. Elevation	o'bis				
Datum	Land Surface				
Water Level					
Date	W.L. Below R.P.				
4/8/19	2.25'				

TBM = Temporary Benchmark

Appendix C

May 9, 2019

Richard A. Kolb, L.G. Duncklee & Dunham, P.C. 511 Keisler Drive, Suite 102 Cary, North Carolina 27518

Reference :	REPORT ON GEOPHYSICAL SERVICES FOR PARCEL 85, NORMA E. ROBERSON 8889 US 17 North, Washington, North Carolina ESP Project No. HO40.300
TIP Number: WBS Number: County: Description:	R-2511 35494.1.1 Beaufort and Martin US 17 North of NC 171 to Multi-lanes South of Williamston in Beaufort and Martin Counties

Dear Mr. Kolb:

ESP Associates, Inc. (ESP) is pleased to present this report to Duncklee & Dunham, P.C. (Duncklee & Dunham) on the geophysical services we provided for the referenced project. This work was performed under our subcontractor agreement dated January 28, 2019, as authorized by the Work Authorization dated March 26, 2019, and in accordance with our cost proposal to you dated March 13, 2019. The purpose of the work was to help identify possible underground storage tanks (USTs).

1.0 GEOPHYSICAL DATA COLLECTION

On April 3 and 5, 2019, ESP performed geophysical studies at Parcel 85, located on the west side of US 17, north of Washington, North Carolina. The work consisted of metal detection using a Geonics EM61 MK2 instrument, obtaining the approximate locations of relevant site features using a DGPS instrument and collecting ground-penetrating radar (GPR) data over selected EM61 anomalies.

The limits of the study area were based on NCDOT field staking and on the NCDOT MicroStation file provided by Duncklee & Dunham, and extended from the edge of the current roadway to the proposed right-of-way (ROW)/easement. Representative photographs of the geophysical study area are provided on Figure 1.

The EM61 data were collected over the accessible areas of the study area using a line spacing of approximately 3 feet. We used a Hemisphere XF101 differential GPS instrument (DGPS) connected to an Archer field computer to provide approximate locations of the EM61 data in real time. The DGPS instrument was also used to obtain the approximate location of site features that could affect the EM61 readings.

We compared the location of the EM61 responses to the location of site features and noted several anomalies that did not correspond to known features. We collected GPR data in four areas using a Sensors and Software Noggin GPR system with a 250 MHz antenna.

2.0 DATA ANALYSIS AND PRESENTATION

The EM61 data were gridded and contoured in Surfer to produce plan view contour maps of the early time gate response (Figure 2) and the differential response (Figure 3). The differential response is calculated by subtracting the response of the bottom coil from the response of the top coil of the EM61. Typically, the differential response diminishes the response from smaller, near-surface metallic objects, thus emphasizing the response from deeper and larger metallic objects, such as USTs. The DGPS locations of observed site features were superimposed on the EM61 contour maps so that anomalies caused by site features such as metal objects on the ground surface could be recognized. Figures 2 and 3 show the EM61 data and the site features that we observed and mapped in the field with DGPS; these figures do not necessarily show all existing site features.

The GPR data were collected over four areas and were reviewed in the field. The metallic anomaly along the southern building wall was attributed to the metal siding and a buried metal pipe located parallel to the building. The GPR data did not indicate the presence of abandoned USTs on site.

The EM61 early time gate response and differential response were exported from Surfer as georeferenced images and attached to the NCDOT plan sheet in MicroStation (Figures 4 and 5). The legend for the NCDOT line types and symbols is shown on Figure 6.

4.0 SUMMARY AND CONCLUSIONS

Our review of the geophysical data collected for this project does not indicate the presence of USTs within the proposed ROW/easement of Parcel 85.

5.0 LIMITATIONS

These services have been provided to Duncklee & Dunham in accordance with generally accepted guidelines for performing geophysical surveys. It is recognized that the results of geophysical surveys are non-unique and subject to interpretation. Further, the locations of data and features included in this report are approximate and were collected using a DGPS instrument. ESP makes no guarantee as to the accuracy of these locations.

Thank you for the opportunity to be of service on this project. Please contact us if you have any questions or need further information.

Sincerely,

ESP Associates, Inc.

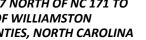
Sund of

Edward D. Billington, PG Senior Geophysicist

SBM/EDB

Attachments: Figures 1 - 6

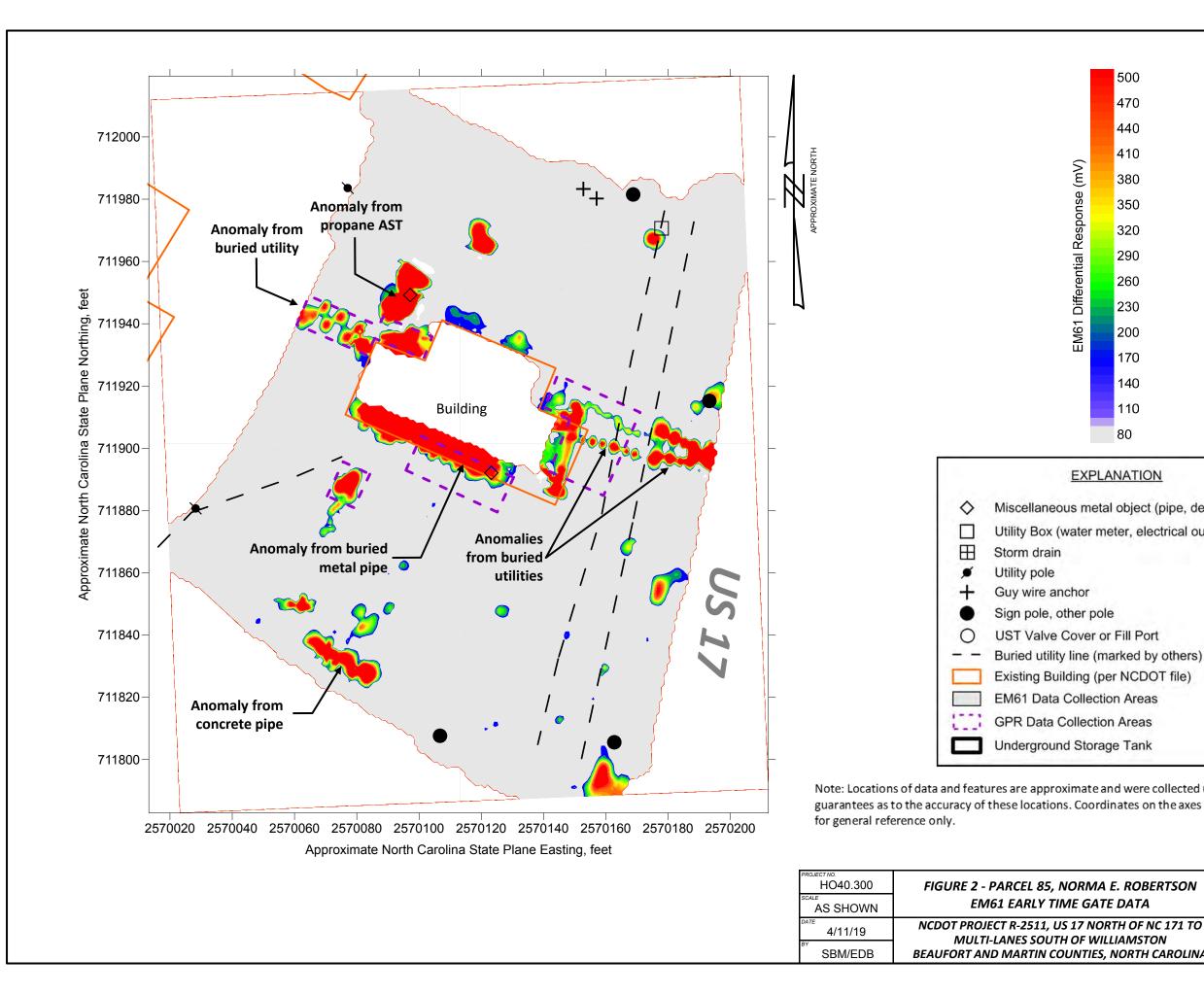
A. Photograph showing a portion of Parcel 85 survey area, looking north.


C. Close-up view of old dispenser pedestal locations on the front of the building.

B. Front of former gas station building, photograph taken looking west. Note relic concrete pads on porchj from former dispenser locations.

PROJECT NO. HO40.300	FIGURE 1 - PARCEL 85, NOR
^{scale} N/A	SITE PHOTOG
^{date} 4/11/19	NCDOT PROJECT R-2511, US 17 MULTI-LANES SOUTH OF
SBM/EDB	BEAUFORT AND MARTIN COUNT

RMA E. ROBERTSON GRAPHS 7 NORTH OF NC 171 TO **DF WILLIAMSTON**



ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

www.espassociates.com

	500
	470
	440
~	410
È	380
esu	350
espc	320
R R	290
len	260
LIIE	230
	200
П	170
	140
	110
	80

EXPLANATION

Miscellaneous metal object (pipe, debris, etc.) Utility Box (water meter, electrical outlet, etc.)

Sign pole, other pole

UST Valve Cover or Fill Port

Buried utility line (marked by others)

Existing Building (per NCDOT file)

EM61 Data Collection Areas

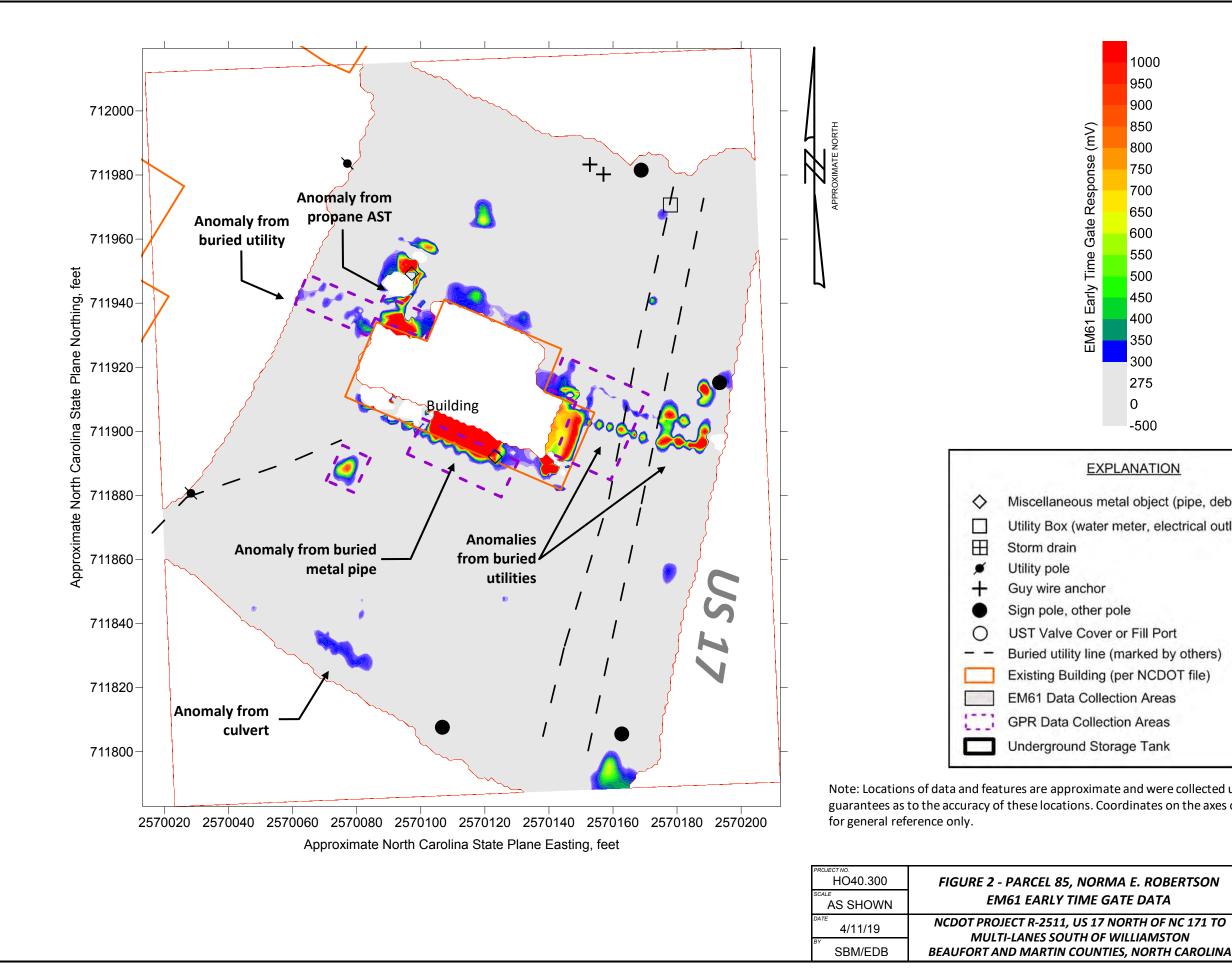
GPR Data Collection Areas

Underground Storage Tank

Note: Locations of data and features are approximate and were collected using a DGPS instrument. ESP make no guarantees as to the accuracy of these locations. Coordinates on the axes of the maps are approximate and provided

> FIGURE 2 - PARCEL 85, NORMA E. ROBERTSON EM61 EARLY TIME GATE DATA

MULTI-LANES SOUTH OF WILLIAMSTON BEAUFORT AND MARTIN COUNTIES, NORTH CAROLINA



ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

www.espassociates.

1000
950
900
850
800
750
700
650
600
550
500
450
400
350
300
275
0
-500

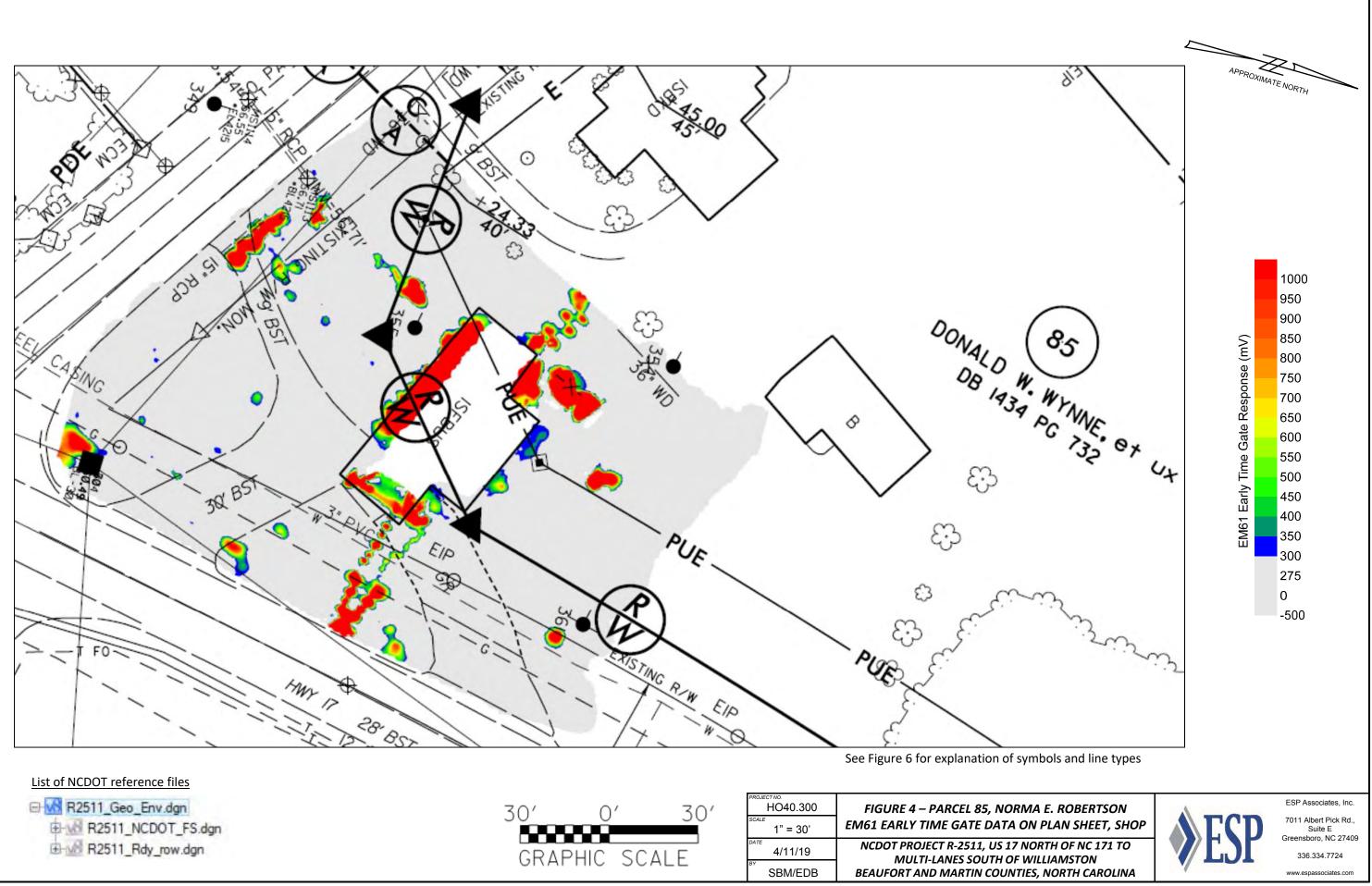
EXPLANATION

Miscellaneous metal object (pipe, debris, etc.) Utility Box (water meter, electrical outlet, etc.)

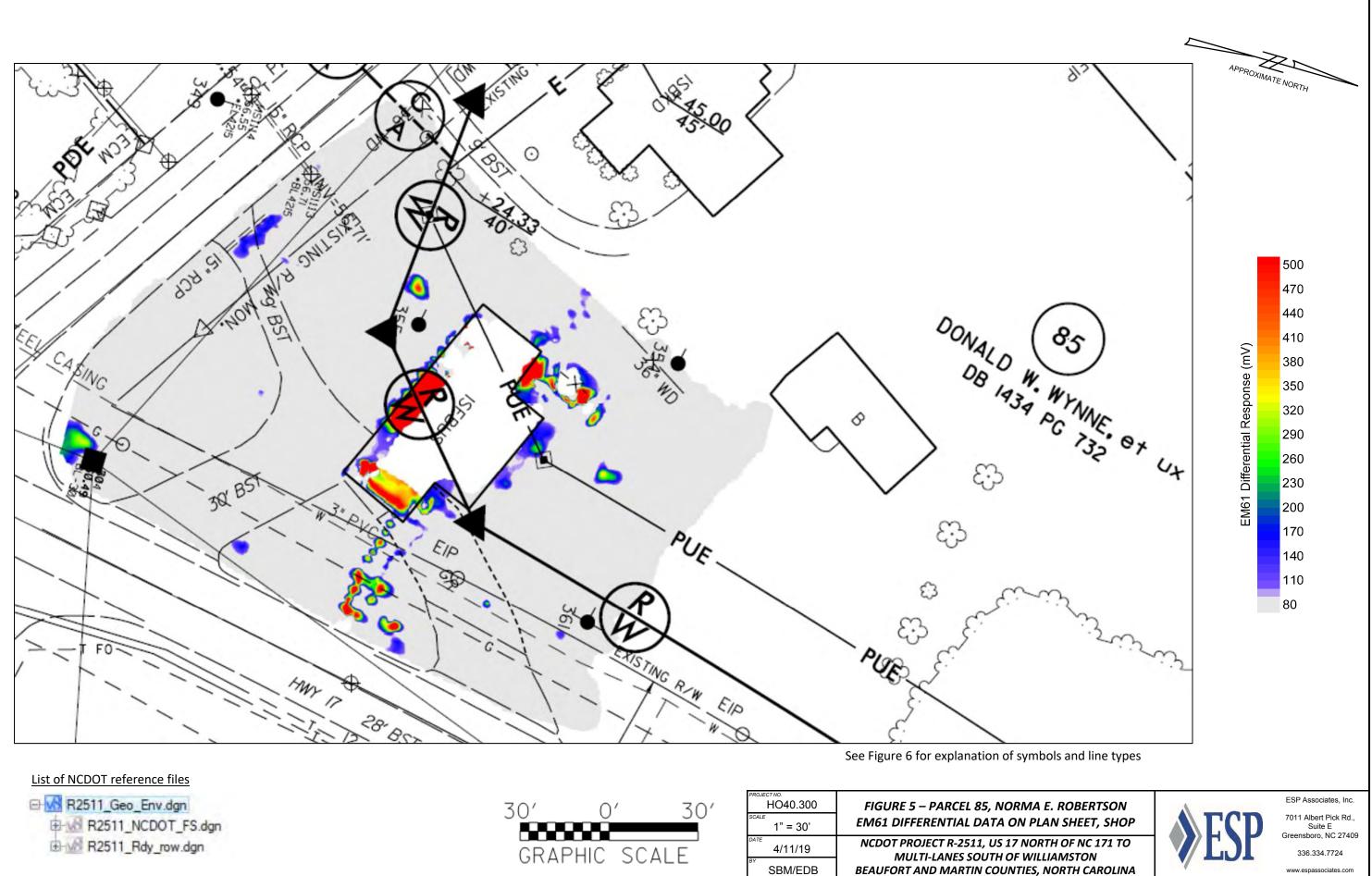
Buried utility line (marked by others)

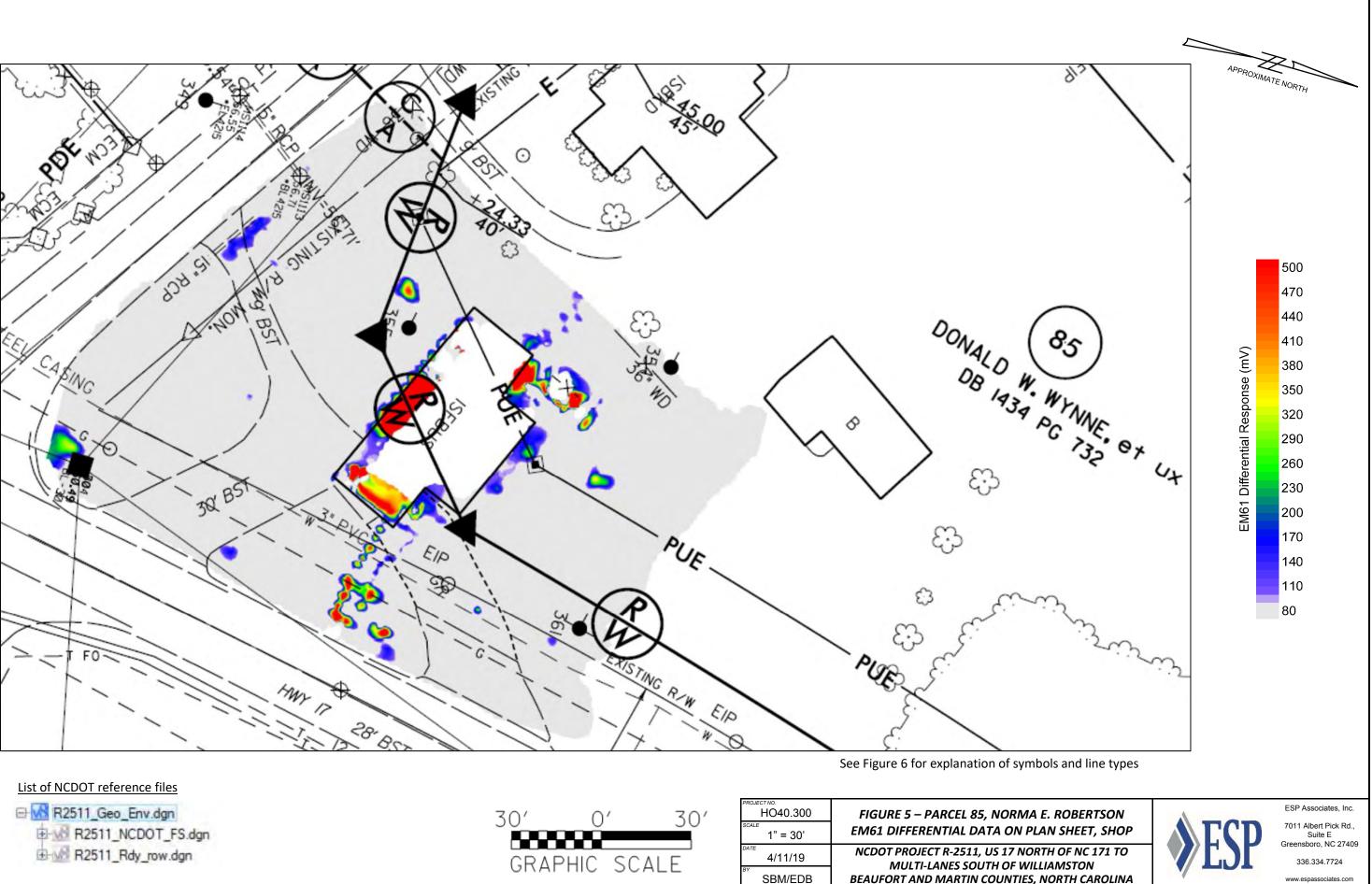
Existing Building (per NCDOT file)

Note: Locations of data and features are approximate and were collected using a DGPS instrument. ESP make no guarantees as to the accuracy of these locations. Coordinates on the axes of the maps are approximate and provided



ESP Associates, Inc.


7011 Albert Pick Rd., Suite E Greensboro, NC 27409


336.334.7724

www.espassociates.c

	STATE OF NORTH	CAROLII	NA, DIVISION OF HIGHWA	AYS .	
	CONVENTION	ΔΙ ΡΙ	AN SHEET SYMBO		
BOUNDARIES AND PROPERTY:	Note: Not to S		U.E. = Subsurface Utility Engineering		WATER:
State Line					Water Manhole —
County Line	DATI DOADS.				Water Meter
Township Line	RAILROADS:		Orchard		Water Valve
City Line	Standard Gauge	CSX TRANSPORTATION	Vineyard		Water Hydrant —
Reservation Line	RR Signal Milepost	WILEPOST 35	inojala		U/G Water Line I
Property Line	Switch ————————————————————————————————————	SHITCH	EXISTING STRUCTURES:		U/G Water Line I
Existing Iron Pin 🔤	RR Dismantled		MAJOR:		U/G Water Line I
Property Corner			Bridge, Tunnel or Box Culvert		Above Ground W
Property Monument	RIGHT OF WAY:	•	Bridge Wing Wall, Head Wall and End Wall-	J CONC *** L	754
Parcel/Sequence Number 🕑	Baseline Control Point	•	MINOR: Head and End Wall —————		TV: TV Pedestal ——
Existing Fence Line ————————————————————————————————————	Existing Right of Way Marker	\bigtriangleup	Pipe Culvert		TV Tower
Proposed Woven Wire Fence	Existing Right of Way Line	-	Footbridge		U/G TV Cable H
Proposed Chain Link Fence	Proposed Right of Way Line	$- \odot$			U/G TV Cable LO
Proposed Barbed Wire Fence	Proposed Right of Way Line with Iron Pin and Cap Marker		Drainage Box: Catch Basin, DI or JB	Св	U/G TV Cable LC
Existing Wetland Boundary	Proposed Right of Way Line with		Paved Ditch Gutter		U/G TV Cable LO
Proposed Wetland Boundary	Concrete or Granite R/W Marker		Storm Sewer Manhole		U/G Fiber Optic (
Existing Endangered Animal Boundary	Proposed Control of Access Line with Concrete C/A Marker		Storm Sewer	s	U/G Fiber Optic (
Existing Endangered Plant Boundary	Existing Control of Access		UTILITIES:		U/G Fiber Optic (
Existing Historic Property Boundary	0		POWER:		
Known Contamination Area: Soil ————————————————————————————————————	Proposed Control of Access	F	Existing Power Pole	4	GAS:
Potential Contamination Area: Soil ————————————————————————————————————	0	-	Proposed Power Pole	8	Gas Valve
Known Contamination Area: Water - 🔍 - 🕱	Proposed Temporary Construction Easement –		Existing Joint Use Pole	- -	Gas Meter —
Potential Contamination Area: Water - 🔊 - 🕱 🕱	Proposed Temporary Drainage Easement		Proposed Joint Use Pole	- 6 -	U/G Gas Line LC
Contaminated Site: Known or Potential —— 🕱 🅱	Proposed Permanent Drainage Easement —		Power Manhole	Ø	U/G Gas Line LC
BUILDINGS AND OTHER CULTURE:	Proposed Permanent Drainage / Utility Easement		Power Line Tower	\boxtimes	U/G Gas Line LC
Gas Pump Vent or U/G Tank Cap O	Proposed Permanent Utility Easement		Power Transformer	2	Above Ground G
Sign 9	Proposed Temporary Utility Easement		U/G Power Cable Hand Hole		SANITARY SEWER:
Well 2	Proposed Aerial Utility Easement —	AUE	H-Frame Pole		Sanitary Sewer M
Small Mine 🔶 🛠	Proposed Permanent Easement with	۲	U/G Power Line LOS B (S.U.E.*)		Sanitary Sewer C
Foundation	Iron Pin and Cap Marker ROADS AND RELATED FEATURE	•	U/G Power Line LOS C (S.U.E.*)		U/G Sanitary Sew
Area Outline	Existing Edge of Pavement		U/G Power Line LOS D (S.U.E.*)		Above Ground So
Cemetery †	Existing Curb		TELEPHONE:		SS Forced Main
Building	Proposed Slope Stakes Cut				SS Forced Main
School	Proposed Slope Stakes Cut		Existing Telephone Pole	-	SS Forced Main
Church			Proposed Telephone Pole	-0-	
	Proposed Curb Ramp Existing Metal Guardrail	CR 	Telephone Manhole	Ð	MISCELLANEOUS:
HYDROLOGY:	Proposed Guardrail		Telephone Pedestal	Ш	Utility Pole ——
Stream or Body of Water	Existing Cable Guiderail		Telephone Cell Tower	"	Utility Pole with I
Hydro, Pool or Reservoir	Proposed Cable Guiderail		U/G Telephone Cable Hand Hole		Utility Located Ob
Jurisdictional Stream			U/G Telephone Cable LOS B (S.U.E.*)		Utility Traffic Sign
Buffer Zone 1BZ 1BZ 1	Equality Symbol	•	U/G Telephone Cable LOS C (S.U.E.*)		Utility Unknown U
Buffer Zone 2BZ 2BZ 2	Pavement Removal		U/G Telephone Cable LOS D (S.U.E.*)		U/G Tank; Water,
Flow Arrow	VEGETATION:	~	U/G Telephone Conduit LOS B (S.U.E.*)		Underground Stor
Disappearing Stream	Single Tree Single Shrub	÷	U/G Telephone Conduit LOS C (S.U.E.*)	ĸ	A/G Tank; Water,
Spring	Single Shrub ————————————————————————————————————	¢	U/G Telephone Conduit LOS D (S.U.E.*)		Geoenvironmenta
Wetland 🗕 🛨	Hedge		U/G Fiber Optics Cable LOS B (S.U.E.*)		U/G Test Hole LC
Proposed Lateral, Tail, Head Ditch — 🛛 🗾	woods Line		U/G Fiber Optics Cable LOS C (S.U.E.*)	1 Kk	Abandoned Accor
False Sump			U/G Fiber Optics Cable LOS D (S.U.E.*)	1 No	End of Informatio
-					

	PROJECT NO. HO40.300	FIGURE 6
DA	scale N/A	LEGEND FOR PLAN SHEET FIGURES
	^{date} 4/11/19	NCDOT PROJECT R-2511, US 17 NORTH OF NC 171 TO MULTI-LANES SOUTH OF WILLIAMSTON
	SBM/EDB	BEAUFORT AND MARTIN COUNTIES, NORTH CAROLINA

PRD/JCT R	EFERENCE NO. SHEET NO.
ole	Ŵ
	ŏ
	8
	ő
	Ŷ
Line LOS B (S.U.E*)	
Line LOS C (S.U.E*)	
Line LOS D (S.U.E*) nd Water Line	A/G Bater
nd Water Line ————	
	\otimes
ble Hand Hole ————	8
ble LOS B (S.U.E.*)	
ble LOS C (S.U.E.*)	
ble LOS D (S.U.E.*)	
Optic Cable LOS B (S.U.E.*)	
Optic Cable LOS C (S.U.E.*)	
Optic Cable LOS D (S.U.E.*)	
	٥
	¢
ne LOS B (S.U.E.*)	
ne LOS C (S.U.E.*)	
ne LOS D (S.U.E.*)	e
nd Gas Line	A/G Gas
WER:	
ver Manhole	
ver Mannole	⊕
	•
y Sewer Line	A/G Sonitory Sever
nd Sanitary Sewer	
Main Line LOS B (S.U.E.*)	
Nain Line LOS C (S.U.E.*)	
Nain Line LOS D (S.U.E.*)	P35
DUS:	
	•
with Base	
ed Object	o
Signal Box ————	5
own U/G Line LOS B (S.U.E.*)	
Vater, Gas, Oil	
d Storage Tank, Approx. Loc. ——	(III)
Vater, Gas, Oil	
nenta Boring	•
e LOS A (S.U.E.*)	Θ
According to Utility Records	-
mation	E.O.I.
- 6	4

ESP Associates, Inc.

7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

www.espassociates.com

Appendix D

Q	ED			6		RED PID ENVIRONM		B					<u>aros</u>
Address	DUNCKLEE AND DUNHAM 511 KEISLER DR STE 102 CARY NC 27518			Hydroca			esuits		Sa Sample Sampl		acted		Monday, April 08, 2019 Monday, April 08, 2019 Thursday, April 11, 2019
Contact:	RICK KOLB									Ор	erator		JENN RYAN
Project:	20	1939											
Matrix	Sample ID	Dilution	BTEX	GRO (C5 - C10)	DRO	TPH	Total Aromatics	16 EPA PAHs	BaP	o,	% Ratios	5	HC Fingerprint Match
		useu	(00-09)	(05-010)	(010-035)	(05 - 035)	(C10-C35)	PARS		C5 - C10	C10 - C18	C18	
Soil	B - 15	25.0	<0.63	<0.63	1.8	1.8	0.91	0.04	0.001	0	79.7	20.3	V.Deg.PHC 75.1%,(FCM),(BO)
	Init	ial Calibrator (QC check	OK					Final FO	CM QC	Check	OK	100.7%
Abbreviatior B = Blank D	on values in mg/kg for soil samples ar ns :- FCM = Results calculated using rift : (SBS)/(LBS) = Site Specific or Lit timated aromatic carbon number prop	Fundamental Calil prary Background	oration Mod Subtraction	e : % = confic applied to res	lence of hydro sult : (BO) = E	ocarbon ident Background O	ification : (PFN rganics detecte	1) = Poor Fi ed : (OCR)	ngerprint Ma	atch : (T) al range	= Turbic : (M) = N	d : (P) = l	Particulate detected

Client Name:	Dunckies & Dunham		RED Lab, LLC
Address:	511 Keister Drive, Suite 102 Cary, NC 27518		5598 Marvin K Moss Lane MARBIONC Bldg, Suite 2003
Contact:	Prick Kollo		Wilmington, NC 28409
Project Ref.:	201939	RAPID ENVIRONMENTAL DIAGNOSTICS	
Email:	rkolb@dunckleedunham.dom	RAFID ENVIRONMENTAL DIAGNOSTICS	Each sample will be analyzed for
Phone #:	(919) 794-6 858-9898	CHAIN OF CUSTODY AND ANALYTICAL	BTEX, GRO, DRO, TPH, PAH total
Collected by:	Alec Dziwanowski	REQUEST FORM	aromatics and BaP

Sample Collection	TAT Requested		In this la		6				
Date/Time	24 Hour	48 Hour	Initials		Sample ID		Total Wt.	Tare Wt.	Sample Wt.
4/8/19 1900			AP	B-15			55 54.5	544.1	10.11
								1	
Comments:							RE	D Lab USE	ONLY
	uished by		Date/	'Time 1640	Accepted by	Date/Time			
Reling	uished by		Date/	Time	Accepted by	Date/Time		\bigcirc	

Divider Page

ANALYTICAL REPORT

Duncklee and Dunham

Sample Delivery Group:	L1088281
Samples Received:	04/11/2019
Project Number:	201939
Description:	NCDOT R-2511 Beaufort and Martin Counties-Parcel 85

Report To:

Rick Kolb PO Box 639 Cary, NC 27512

Entire Report Reviewed By:

Afrank Wags

Heather J Wagner Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

ACCOUNT: Duncklee and Dunham PROJECT: 201939

SDG: L1088281 DATE/TIME: 04/25/19 17:30 PAGE: 1 of 20

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

TABLE OF CONTENTS

*	
¹ Cp	

Ss

Cn

Sr

Qc

GI

ΆI

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
TW-2 L1088281-02	5
Qc: Quality Control Summary	8
Volatile Organic Compounds (GC/MS) by Method 6200B-2011	8
Semi Volatile Organic Compounds (GC/MS) by Method 625.1	13
GI: Glossary of Terms	18
Al: Accreditations & Locations	19
Sc: Sample Chain of Custody	20

SDG: L1088281

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

TW-2 L1088281-02 GW			Collected by Alec Dziwanowski	Collected date/time 04/08/19 18:00	Received dat 04/11/19 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC/MS) by Method 6200B-2011	WG1265185	25	04/12/19 23:04	04/12/19 23:04	GLN	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 6200B-2011 Semi Volatile Organic Compounds (GC/MS) by Method 625.1	WG1267331 WG1264757	200 1	04/17/19 12:27 04/12/19 16:46	04/17/19 12:27 04/13/19 13:12	GLN LEA	Mt. Juliet, TN Mt. Juliet, TN

*

Ср

SDG: L1088281

D 04 PAGE: 3 of 20

CASE NARRATIVE

*

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Heather J Wagner Project Manager

Project Narrative

Sample TW-2 is reported separately per client request. All samples listed on the attached COC have been reported individually under SDG number L1088281 based on their Parcel ID.

SDG: L1088281 DATE/TIME: 04/25/19 17:30

SAMPLE RESULTS - 02

Volatile Organic Compounds (GC/MS) by Method 6200B-2011

Analyte	Result ug/l	Qualifier	MDL ug/l	RDL ug/l	Dilution	Analysis date / time	Batch	
cetone	U		250	1250	25	04/12/2019 23:04	WG1265185	
Acrolein	U		222	1250	25	04/12/2019 23:04	WG1265185	
Acrylonitrile	U		46.8	250	25	04/12/2019 23:04	WG1265185	
Benzene	1770		8.28	25.0	25	04/12/2019 23:04	WG1265185	
Bromobenzene	U		8.80	25.0	25	04/12/2019 23:04	WG1265185	
Bromodichloromethane	U		9.50	25.0	25	04/12/2019 23:04	WG1265185	
Bromoform	U		11.7	25.0	25	04/12/2019 23:04	WG1265185	
Bromomethane	U		21.6	125	25	04/12/2019 23:04	WG1265185	
	36.2		9.02	25.0	25	04/12/2019 23:04		
n-Butylbenzene		I					WG1265185	
ec-Butylbenzene	21.9	J	9.12	25.0	25	04/12/2019 23:04	WG1265185	
ert-Butylbenzene	U		9.98	25.0	25	04/12/2019 23:04	WG1265185	
Carbon tetrachloride	U		9.48	25.0	25	04/12/2019 23:04	WG1265185	
Chlorobenzene	U		8.70	25.0	25	04/12/2019 23:04	<u>WG1265185</u>	
Chlorodibromomethane	U		8.18	25.0	25	04/12/2019 23:04	WG1265185	
Chloroethane	U		11.3	125	25	04/12/2019 23:04	WG1265185	
Chloroform	U		8.10	125	25	04/12/2019 23:04	WG1265185	
Chloromethane	U		6.90	62.5	25	04/12/2019 23:04	WG1265185	
2-Chlorotoluene	U		9.38	25.0	25	04/12/2019 23:04	WG1265185	
l-Chlorotoluene	U		8.78	25.0	25	04/12/2019 23:04	WG1265185	
,2-Dibromo-3-Chloropropane	U		33.2	125	25	04/12/2019 23:04	WG1265185	
,2-Dibromoethane	U		9.52	25.0	25	04/12/2019 23:04	WG1265185	
)ibromomethane	U		8.65	25.0	25	04/12/2019 23:04	WG1265185	
,2-Dichlorobenzene	U		8.72	25.0	25	04/12/2019 23:04	WG1265185	
,3-Dichlorobenzene	U		5.50	25.0	25	04/12/2019 23:04	WG1265185	
	U		6.85	25.0	25	04/12/2019 23:04		
4-Dichlorobenzene							WG1265185	
Dichlorodifluoromethane	U		13.8	125	25	04/12/2019 23:04	WG1265185	
,1-Dichloroethane	U		6.48	25.0	25	04/12/2019 23:04	WG1265185	
,2-Dichloroethane	U		9.02	25.0	25	04/12/2019 23:04	<u>WG1265185</u>	
,1-Dichloroethene	U		9.95	25.0	25	04/12/2019 23:04	WG1265185	
is-1,2-Dichloroethene	U		6.50	25.0	25	04/12/2019 23:04	WG1265185	
rans-1,2-Dichloroethene	U		9.90	25.0	25	04/12/2019 23:04	WG1265185	
,2-Dichloropropane	U		7.65	25.0	25	04/12/2019 23:04	WG1265185	
,1-Dichloropropene	U		8.80	25.0	25	04/12/2019 23:04	WG1265185	
,3-Dichloropropane	U		9.15	25.0	25	04/12/2019 23:04	WG1265185	
2,2-Dichloropropane	U		8.02	25.0	25	04/12/2019 23:04	WG1265185	
)i-isopropyl ether	U		8.00	25.0	25	04/12/2019 23:04	WG1265185	
Ethylbenzene	2060		9.60	25.0	25	04/12/2019 23:04	WG1265185	
lexachloro-1,3-butadiene	U		6.40	25.0	25	04/12/2019 23:04	WG1265185	
sopropylbenzene	106		8.15	25.0	25	04/12/2019 23:04	WG1265185	
-Isopropyltoluene	9.76	J	8.75	25.0	25	04/12/2019 23:04	WG1265185	
2-Butanone (MEK)	U	<u> </u>	98.2	250	25	04/12/2019 23:04	WG1265185	
Nethylene Chloride	U		25.0	125	25	04/12/2019 23:04	WG1265185	
					25 25	04/12/2019 23:04		
-Methyl-2-pentanone (MIBK)	U		53.5	250			WG1265185	
Nethyl tert-butyl ether	U		9.18	25.0	25	04/12/2019 23:04	WG1265185	
laphthalene	446		25.0	125	25	04/12/2019 23:04	WG1265185	
I-Propylbenzene	319		8.72	25.0	25	04/12/2019 23:04	WG1265185	
tyrene	U		7.68	25.0	25	04/12/2019 23:04	WG1265185	
1,1,2-Tetrachloroethane	U		9.62	25.0	25	04/12/2019 23:04	<u>WG1265185</u>	
1,2,2-Tetrachloroethane	U		3.25	25.0	25	04/12/2019 23:04	WG1265185	
etrachloroethene	U		9.30	25.0	25	04/12/2019 23:04	WG1265185	
oluene	14000		82.4	200	200	04/17/2019 12:27	WG1267331	
,2,3-Trichlorobenzene	U		5.75	25.0	25	04/12/2019 23:04	WG1265185	
,2,4-Trichlorobenzene	U		8.88	25.0	25	04/12/2019 23:04	WG1265185	
,1,1-Trichloroethane	U		7.98	25.0	25	04/12/2019 23:04	WG1265185	
1,1,2-Trichloroethane	U		9.58	25.0	25	04/12/2019 23:04	WG1265185	
Trichloroethene	U		9.95	25.0	25	04/12/2019 23:04	WG1265185	
ACCO	OUNT:			PROJECT:		SDG:	DATE/TIME:	PAGE:

Duncklee and Dunham

201939

SDG: L1088281 04/25/19 17:30

Р. 5

5 of 20

SAMPLE RESULTS - 02 L1088281

A

Sc

Volatile Organic Compounds (GC/MS) by Method 6200B-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		L
Trichlorofluoromethane	U		30.0	125	25	04/12/2019 23:04	WG1265185	:
1,2,3-Trichloropropane	U		20.2	62.5	25	04/12/2019 23:04	WG1265185	
1,2,4-Trimethylbenzene	2260		9.32	25.0	25	04/12/2019 23:04	WG1265185	
1,3,5-Trimethylbenzene	551		9.68	25.0	25	04/12/2019 23:04	WG1265185	
Vinyl chloride	U		6.48	25.0	25	04/12/2019 23:04	WG1265185	L
Xylenes, Total	9490		26.5	75.0	25	04/12/2019 23:04	WG1265185	4
(S) Toluene-d8	99.6			80.0-120		04/12/2019 23:04	WG1265185	
(S) Toluene-d8	98.2			80.0-120		04/17/2019 12:27	WG1267331	
(S) a,a,a-Trifluorotoluene	97.1			80.0-120		04/12/2019 23:04	WG1265185	
(S) a,a,a-Trifluorotoluene	96.1			80.0-120		04/17/2019 12:27	WG1267331	
(S) 4-Bromofluorobenzene	101			77.0-126		04/12/2019 23:04	WG1265185	6
(S) 4-Bromofluorobenzene	97.4			77.0-126		04/17/2019 12:27	WG1267331	
(S) 1,2-Dichloroethane-d4	94.4			70.0-130		04/12/2019 23:04	WG1265185	5
(S) 1,2-Dichloroethane-d4	94.0			70.0-130		04/17/2019 12:27	WG1267331	

Semi Volatile Organic Compounds (GC/MS) by Method 625.1

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Acenaphthene	U		0.316	1.00	1	04/13/2019 13:12	<u>WG1264757</u>	
Acenaphthylene	U		0.309	1.00	1	04/13/2019 13:12	<u>WG1264757</u>	
Anthracene	U		0.291	1.00	1	04/13/2019 13:12	<u>WG1264757</u>	
Benzidine	U		4.32	10.0	1	04/13/2019 13:12	<u>WG1264757</u>	
Benzo(a)anthracene	U		0.0975	1.00	1	04/13/2019 13:12	<u>WG1264757</u>	
Benzo(b)fluoranthene	U		0.0896	1.00	1	04/13/2019 13:12	<u>WG1264757</u>	
Benzo(k)fluoranthene	U		0.355	1.00	1	04/13/2019 13:12	<u>WG1264757</u>	
Benzo(g,h,i)perylene	U		0.161	1.00	1	04/13/2019 13:12	<u>WG1264757</u>	
Benzo(a)pyrene	U		0.340	1.00	1	04/13/2019 13:12	<u>WG1264757</u>	
Bis(2-chlorethoxy)methane	U		0.329	10.0	1	04/13/2019 13:12	WG1264757	
Bis(2-chloroethyl)ether	U		1.62	10.0	1	04/13/2019 13:12	WG1264757	
Bis(2-chloroisopropyl)ether	U		0.445	10.0	1	04/13/2019 13:12	WG1264757	
4-Bromophenyl-phenylether	U		0.335	10.0	1	04/13/2019 13:12	WG1264757	
2-Chloronaphthalene	U	<u>J4</u>	0.330	1.00	1	04/13/2019 13:12	WG1264757	
4-Chlorophenyl-phenylether	U		0.303	10.0	1	04/13/2019 13:12	WG1264757	
Chrysene	U		0.332	1.00	1	04/13/2019 13:12	WG1264757	
Dibenz(a,h)anthracene	U		0.279	1.00	1	04/13/2019 13:12	WG1264757	
3,3-Dichlorobenzidine	U		2.02	10.0	1	04/13/2019 13:12	WG1264757	
2,4-Dinitrotoluene	U		1.65	10.0	1	04/13/2019 13:12	WG1264757	
2,6-Dinitrotoluene	U		0.279	10.0	1	04/13/2019 13:12	WG1264757	
Fluoranthene	U		0.310	1.00	1	04/13/2019 13:12	WG1264757	
Fluorene	U		0.323	1.00	1	04/13/2019 13:12	WG1264757	
Hexachlorobenzene	U		0.341	1.00	1	04/13/2019 13:12	WG1264757	
Hexachloro-1,3-butadiene	U		0.329	10.0	1	04/13/2019 13:12	WG1264757	
Hexachlorocyclopentadiene	U		2.33	10.0	1	04/13/2019 13:12	WG1264757	
Hexachloroethane	U	<u>J4</u>	0.365	10.0	1	04/13/2019 13:12	WG1264757	
Indeno(1,2,3-cd)pyrene	U	_	0.279	1.00	1	04/13/2019 13:12	WG1264757	
Isophorone	U		0.272	10.0	1	04/13/2019 13:12	WG1264757	
Naphthalene	124		0.372	1.00	1	04/13/2019 13:12	WG1264757	
Nitrobenzene	U		0.367	10.0	1	04/13/2019 13:12	WG1264757	
n-Nitrosodimethylamine	U		1.26	10.0	1	04/13/2019 13:12	WG1264757	
n-Nitrosodiphenylamine	U		1.19	10.0	1	04/13/2019 13:12	WG1264757	
n-Nitrosodi-n-propylamine	U		0.403	10.0	1	04/13/2019 13:12	WG1264757	
Phenanthrene	U		0.366	1.00	1	04/13/2019 13:12	WG1264757	
Benzylbutyl phthalate	U		0.275	3.00	1	04/13/2019 13:12	WG1264757	
Bis(2-ethylhexyl)phthalate	U		0.709	3.00	1	04/13/2019 13:12	WG1264757	
Di-n-butyl phthalate	U		0.266	3.00	1	04/13/2019 13:12	WG1264757	
Diethyl phthalate	14.6		0.282	3.00	1	04/13/2019 13:12	WG1264757	
ACC	OUNT:			PROJECT:		SDG:	DATE/TIME:	PAG
Duncklee	and Dunham			201939		L1088281	04/25/19 17:30	6 of 2

GE: 6 of 20

SAMPLE RESULTS - 02

*

Semi Volatile Organic Compounds (GC/MS) by Method 625.1

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l	ug/l		date / time		
Dimethyl phthalate	U		0.283	3.00	1	04/13/2019 13:12	WG1264757	² Tc
Di-n-octyl phthalate	U		0.278	3.00	1	04/13/2019 13:12	WG1264757	
Pyrene	U		0.330	1.00	1	04/13/2019 13:12	WG1264757	3
1,2,4-Trichlorobenzene	U	<u>J4</u>	0.355	10.0	1	04/13/2019 13:12	WG1264757	ິSs
4-Chloro-3-methylphenol	U		0.263	10.0	1	04/13/2019 13:12	WG1264757	
2-Chlorophenol	U		0.283	10.0	1	04/13/2019 13:12	WG1264757	⁴ Cn
2,4-Dichlorophenol	U		0.284	10.0	1	04/13/2019 13:12	WG1264757	- On
2,4-Dimethylphenol	U		0.624	10.0	1	04/13/2019 13:12	WG1264757	5
4,6-Dinitro-2-methylphenol	U		2.62	10.0	1	04/13/2019 13:12	WG1264757	⁵ Sr
2,4-Dinitrophenol	U		3.25	10.0	1	04/13/2019 13:12	WG1264757	
2-Nitrophenol	U		0.320	10.0	1	04/13/2019 13:12	WG1264757	⁶ Qc
4-Nitrophenol	U		2.01	10.0	1	04/13/2019 13:12	WG1264757	
Pentachlorophenol	U		0.313	10.0	1	04/13/2019 13:12	WG1264757	7
Phenol	2.63	J	0.334	10.0	1	04/13/2019 13:12	WG1264757	GI
2,4,6-Trichlorophenol	U		0.297	10.0	1	04/13/2019 13:12	WG1264757	
(S) Nitrobenzene-d5	36.3			15.0-314		04/13/2019 13:12	WG1264757	⁸ Al
(S) 2-Fluorobiphenyl	34.9			22.0-127		04/13/2019 13:12	WG1264757	7.4
(S) p-Terphenyl-d14	58.4			29.0-141		04/13/2019 13:12	WG1264757	9
(S) Phenol-d5	20.7			8.00-424		04/13/2019 13:12	WG1264757	Sc
(S) 2-Fluorophenol	22.6			10.0-120		04/13/2019 13:12	WG1264757	
(S) 2,4,6-Tribromophenol	63.7			10.0-153		04/13/2019 13:12	WG1264757	

SDG: L1088281 Volatile Organic Compounds (GC/MS) by Method 6200B-2011

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

MB) R3402078-3 04/12/	9 15:56					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/l		ug/l	ug/l		
cetone	U		10.0	50.0		
crolein	U		8.87	50.0		
crylonitrile	U		1.87	10.0		
enzene	U		0.331	1.00		
Bromobenzene	U		0.352	1.00		
Bromodichloromethane	U		0.380	1.00		
romoform	U		0.469	1.00		
romomethane	U		0.866	5.00		
-Butylbenzene	U		0.361	1.00		
ec-Butylbenzene	U		0.365	1.00		
ert-Butylbenzene	U		0.399	1.00		
Carbon tetrachloride	U		0.379	1.00		
Chlorobenzene	U		0.348	1.00		
Chlorodibromomethane	U		0.327	1.00		
Chloroethane	U		0.453	5.00		
Chloroform	U		0.324	5.00		
hloromethane	U		0.276	2.50		
-Chlorotoluene	U		0.375	1.00		
-Chlorotoluene	U		0.351	1.00		
2-Dibromo-3-Chloropropane	U		1.33	5.00		
2-Dibromoethane	U		0.381	1.00		
Dibromomethane	U		0.346	1.00		
2-Dichlorobenzene	U		0.349	1.00		
3-Dichlorobenzene	U		0.220	1.00		
4-Dichlorobenzene	U		0.274	1.00		
vichlorodifluoromethane	U		0.551	5.00		
1-Dichloroethane	U		0.259	1.00		
,2-Dichloroethane	U		0.361	1.00		
,1-Dichloroethene	U		0.398	1.00		
is-1,2-Dichloroethene	U		0.260	1.00		
rans-1,2-Dichloroethene	U		0.396	1.00		
,2-Dichloropropane	U		0.306	1.00		
,1-Dichloropropene	U		0.352	1.00		
,3-Dichloropropane	U		0.366	1.00		
2,2-Dichloropropane	U		0.321	1.00		
Di-isopropyl ether	U		0.320	1.00		
thylbenzene	U		0.384	1.00		
lexachloro-1,3-butadiene	U		0.256	1.00		
sopropylbenzene	U		0.326	1.00		
-Isopropyltoluene	U		0.350	1.00		

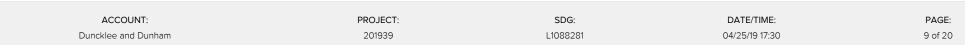
Duncklee and Dunham

PROJECT: 201939

SDG: L1088281 DATE/TIME: 04/25/19 17:30 PAGE: 8 of 20 Volatile Organic Compounds (GC/MS) by Method 6200B-2011

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.


Ср

Method Blank (MB)

(MB) R3402078-3 04/12/1	9 15:56				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Tc
2-Butanone (MEK)	U		3.93	10.0	
Methylene Chloride	U		1.00	5.00	³ Ss
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	0.5
Methyl tert-butyl ether	U		0.367	1.00	4
Naphthalene	U		1.00	5.00	Cn
n-Propylbenzene	U		0.349	1.00	
Styrene	U		0.307	1.00	⁵Sr
1,1,1,2-Tetrachloroethane	U		0.385	1.00	
1,1,2,2-Tetrachloroethane	U		0.130	1.00	6
Tetrachloroethene	U		0.372	1.00	⁶ Qc
1,2,3-Trichlorobenzene	U		0.230	1.00	-
1,2,4-Trichlorobenzene	U		0.355	1.00	⁷ Gl
1,1,1-Trichloroethane	U		0.319	1.00	
1,1,2-Trichloroethane	U		0.383	1.00	8
Trichloroethene	U		0.398	1.00	⁻ Al
Trichlorofluoromethane	U		1.20	5.00	
1,2,3-Trichloropropane	U		0.807	2.50	°Sc
1,2,4-Trimethylbenzene	U		0.373	1.00	
1,3,5-Trimethylbenzene	U		0.387	1.00	
Vinyl chloride	U		0.259	1.00	
Xylenes, Total	U		1.06	3.00	
(S) Toluene-d8	102			80.0-120	
(S) a,a,a-Trifluorotoluene	98.5			80.0-120	
(S) 4-Bromofluorobenzene	98.7			77.0-126	
(S) 1,2-Dichloroethane-d4	94.4			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Acetone	125	134	142	107	114	19.0-160			5.73	27
Acrolein	125	126	131	101	105	10.0-160			3.94	26
Acrylonitrile	125	128	136	103	109	55.0-149			5.92	20
Benzene	25.0	24.7	25.6	98.7	102	70.0-123			3.67	20
Bromobenzene	25.0	23.0	24.0	92.0	96.0	73.0-121			4.31	20
Bromodichloromethane	25.0	25.2	26.1	101	104	75.0-120			3.49	20
Bromoform	25.0	24.9	26.0	99.5	104	68.0-132			4.55	20
Bromomethane	25.0	28.2	30.3	113	121	10.0-160			7.10	25

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3402078-1 04/12/19	9 14:53 • (LCSE	D) R3402078-2	2 04/12/19 15:14	Ļ							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
-Butylbenzene	25.0	24.7	25.8	99.0	103	73.0-125			4.17	20	
ec-Butylbenzene	25.0	25.5	26.2	102	105	75.0-125			3.00	20	
ert-Butylbenzene	25.0	25.6	26.8	102	107	76.0-124			4.56	20	
Carbon tetrachloride	25.0	26.2	27.4	105	109	68.0-126			4.27	20	
Chlorobenzene	25.0	24.7	25.7	99.0	103	80.0-121			3.79	20	
Chlorodibromomethane	25.0	25.2	25.9	101	104	77.0-125			2.85	20	
Chloroethane	25.0	25.4	27.1	101	108	47.0-150			6.49	20	
Chloroform	25.0	25.5	26.9	102	107	73.0-120			5.06	20	
Chloromethane	25.0	24.9	27.6	99.4	111	41.0-142			10.6	20	
2-Chlorotoluene	25.0	25.2	26.7	101	107	76.0-123			5.62	20	
4-Chlorotoluene	25.0	24.9	26.0	99.7	104	75.0-122			4.00	20	
I,2-Dibromo-3-Chloropropane	25.0	24.8	26.2	99.2	105	58.0-134			5.54	20	
1,2-Dibromoethane	25.0	25.9	26.4	103	106	80.0-122			2.19	20	
Dibromomethane	25.0	25.0	26.0	99.8	104	80.0-120			4.01	20	
,2-Dichlorobenzene	25.0	25.1	26.5	101	106	79.0-121			5.48	20	
,3-Dichlorobenzene	25.0	25.6	26.6	102	107	79.0-120			3.94	20	
,4-Dichlorobenzene	25.0	23.5	24.5	94.1	98.1	79.0-120			4.24	20	
Dichlorodifluoromethane	25.0	22.4	23.5	89.8	94.1	51.0-149			4.75	20	
,1-Dichloroethane	25.0	24.3	26.1	97.0	104	70.0-126			7.21	20	
,2-Dichloroethane	25.0	22.7	23.8	90.8	95.0	70.0-128			4.53	20	
,1-Dichloroethene	25.0	24.9	26.3	99.4	105	71.0-124			5.72	20	
tis-1,2-Dichloroethene	25.0	24.8	26.4	99.2	106	73.0-120			6.26	20	
rans-1,2-Dichloroethene	25.0	27.8	28.7	111	115	73.0-120			3.33	20	
,2-Dichloropropane	25.0	25.1	25.6	101	102	77.0-125			1.73	20	
,1-Dichloropropene	25.0	25.9	26.8	104	107	74.0-126			3.40	20	
l,3-Dichloropropane	25.0	26.5	26.8	106	107	80.0-120			0.930	20	
2,2-Dichloropropane	25.0	19.0	19.4	76.1	77.7	58.0-130			2.04	20	
Di-isopropyl ether	25.0	24.2	25.4	96.8	101	58.0-138			4.71	20	
Ethylbenzene	25.0	26.7	26.9	107	108	79.0-123			1.07	20	
Hexachloro-1,3-butadiene	25.0	24.2	25.0	96.9	99.8	54.0-138			2.92	20	
sopropylbenzene	25.0	25.4	26.4	102	106	76.0-127			3.98	20	
o-Isopropyltoluene	25.0	24.8	26.2	99.2	105	76.0-125			5.50	20	
2-Butanone (MEK)	125	119	124	95.6	99.0	44.0-160			3.57	20	
Methylene Chloride	25.0	23.5	24.2	94.0	96.7	67.0-120			2.84	20	
1-Methyl-2-pentanone (MIBK)	125	128	129	102	103	68.0-142			0.817	20	
Nethyl tert-butyl ether	25.0	25.0	25.4	100	102	68.0-125			1.46	20	
laphthalene	25.0	24.2	26.2	97.0	105	54.0-135			7.92	20	
-Propylbenzene	25.0	24.7	25.9	99.0	103	77.0-124			4.45	20	
Styrene	25.0	27.4	28.3	110	113	73.0-130			3.30	20	
,1,1,2-Tetrachloroethane	25.0	25.0	25.7	100	103	75.0-125			2.52	20	
					0.1507						
	CCOUNT:				OJECT:		SDG:			DATE/TIME:	PAGE:
Dunckle	e and Dunham			2	01939		L10882	81		04/25/19 17:30	10 of 20

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3402078-1 04/12											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
1,1,2,2-Tetrachloroethane	25.0	24.0	24.8	95.9	99.2	65.0-130			3.46	20	
Tetrachloroethene	25.0	25.6	26.5	102	106	72.0-132			3.76	20	
1,2,3-Trichlorobenzene	25.0	25.5	27.9	102	112	50.0-138			9.02	20	
1,2,4-Trichlorobenzene	25.0	25.4	27.0	102	108	57.0-137			6.03	20	
1,1,1-Trichloroethane	25.0	25.1	26.4	101	105	73.0-124			4.80	20	
1,1,2-Trichloroethane	25.0	24.6	25.2	98.5	101	80.0-120			2.16	20	
Trichloroethene	25.0	28.8	29.4	115	118	78.0-124			2.18	20	
Trichlorofluoromethane	25.0	27.2	28.1	109	112	59.0-147			3.12	20	
1,2,3-Trichloropropane	25.0	25.4	27.1	102	108	73.0-130			6.33	20	
1,2,4-Trimethylbenzene	25.0	25.9	27.1	103	108	76.0-121			4.53	20	
1,3,5-Trimethylbenzene	25.0	24.1	25.3	96.2	101	76.0-122			4.99	20	
Vinyl chloride	25.0	25.8	27.7	103	111	67.0-131			7.31	20	
Xylenes, Total	75.0	78.2	80.0	104	107	79.0-123			2.28	20	
(S) Toluene-d8				98.1	98.7	80.0-120					
(S) a,a,a-Trifluorotoluene				97.1	101	80.0-120					
(S) 4-Bromofluorobenzene				101	103	77.0-126					
(S) 1,2-Dichloroethane-d4				107	106	70.0-130					

SDG: L1088281 DATE/TIME: 04/25/19 17:30 PAGE: 11 of 20

Volatile Organic Compounds (GC/MS) by Method 6200B-2011

QUALITY CONTROL SUMMARY L1088281-02

ONE LAB. NATIONWIDE.

Ср

Sr

Qc

GI

A

Sc

Method Blank (MB)

(MB) R3402560-4 04/17/	19 10:08				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Toluene	U		0.412	1.00	
(S) Toluene-d8	97.7			80.0-120	
(S) a,a,a-Trifluorotoluene	98.0			80.0-120	
(S) 4-Bromofluorobenzene	95.9			77.0-126	
(S) 1,2-Dichloroethane-d4	94.8			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Toluene	25.0	24.9	25.5	99.8	102	79.0-120			2.30	20
(S) Toluene-d8				94.9	96.1	80.0-120				
(S) a,a,a-Trifluorotoluene				97.7	98.6	80.0-120				
(S) 4-Bromofluorobenzene				101	96.5	77.0-126				
(S) 1,2-Dichloroethane-d4				93.9	92.4	70.0-130				

DATE/TIME: 04/25/19 17:30

PAGE: 12 of 20 Semi Volatile Organic Compounds (GC/MS) by Method 625.1

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3401482-3 04/13/1	9 12:08					Ċ
	MB Result	MB Qualifier	MB MDL	MB RDL		2
Analyte	ug/l		ug/l	ug/l		 T
Acenaphthene	U		0.316	1.00		
Acenaphthylene	U		0.309	1.00		³ S
Anthracene	U		0.291	1.00		Ľ
Benzidine	U		4.32	10.0		4
Benzo(a)anthracene	U		0.0975	1.00		[†] C
Benzo(b)fluoranthene	U		0.0896	1.00		
Benzo(k)fluoranthene	U		0.355	1.00		⁵ S
Benzo(g,h,i)perylene	U		0.161	1.00		Ľ
Benzo(a)pyrene	U		0.340	1.00		6
Bis(2-chlorethoxy)methane	U		0.329	10.0		°Q
Bis(2-chloroethyl)ether	U		1.62	10.0		
Bis(2-chloroisopropyl)ether	U		0.445	10.0		⁷ G
4-Bromophenyl-phenylether	U		0.335	10.0		Ľ
2-Chloronaphthalene	U		0.330	1.00		8
4-Chlorophenyl-phenylether	U		0.303	10.0		Ă
Chrysene	U		0.332	1.00		
Dibenz(a,h)anthracene	U		0.279	1.00		°S
3,3-Dichlorobenzidine	U		2.02	10.0		Ľ
2,4-Dinitrotoluene	U		1.65	10.0		
2,6-Dinitrotoluene	U		0.279	10.0		
Fluoranthene	U		0.310	1.00		
Fluorene	U		0.323	1.00		
Hexachlorobenzene	U		0.341	1.00		
Hexachloro-1,3-butadiene	U		0.329	10.0		
Hexachlorocyclopentadiene	U		2.33	10.0		
Hexachloroethane	U		0.365	10.0		
Indeno(1,2,3-cd)pyrene	U		0.279	1.00		
Isophorone	U		0.272	10.0		
Naphthalene	U		0.372	1.00		
Nitrobenzene	U		0.367	10.0		
n-Nitrosodimethylamine	U		1.26	10.0		
n-Nitrosodiphenylamine	U		1.19	10.0		
n-Nitrosodi-n-propylamine	U		0.403	10.0		
Phenanthrene	U		0.366	1.00		
Benzylbutyl phthalate	U		0.275	3.00		
Bis(2-ethylhexyl)phthalate	U		0.709	3.00		
Di-n-butyl phthalate	U		0.266	3.00		
Diethyl phthalate	U		0.282	3.00		
Dimethyl phthalate	U		0.283	3.00		
Di-n-octyl phthalate	U		0.278	3.00		

Duncklee and Dunham

201939

SDG: L1088281 DATE/TIME: 04/25/19 17:30

PAGE: 13 of 20 Semi Volatile Organic Compounds (GC/MS) by Method 625.1

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3401482-3 04/13/1	9 12:08				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Tc
Pyrene	U		0.330	1.00	
1,2,4-Trichlorobenzene	U		0.355	10.0	³ Ss
4-Chloro-3-methylphenol	U		0.263	10.0	
2-Chlorophenol	U		0.283	10.0	4
2,4-Dichlorophenol	U		0.284	10.0	⁴ Cn
2,4-Dimethylphenol	U		0.624	10.0	
4,6-Dinitro-2-methylphenol	U		2.62	10.0	⁵Sr
2,4-Dinitrophenol	U		3.25	10.0	
2-Nitrophenol	U		0.320	10.0	6_
4-Nitrophenol	U		2.01	10.0	ိုင္ရင
Pentachlorophenol	U		0.313	10.0	
Phenol	U		0.334	10.0	⁷ Gl
2,4,6-Trichlorophenol	U		0.297	10.0	
(S) Nitrobenzene-d5	49.5			15.0-314	8
(S) 2-Fluorobiphenyl	48.0			22.0-127	ĨAĬ
(S) p-Terphenyl-d14	63.6			29.0-141	
(S) Phenol-d5	24.1			8.00-424	⁹ Sc
(S) 2-Fluorophenol	37.8			10.0-120	
(S) 2,4,6-Tribromophenol	51.0			10.0-153	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3401482-1 04/13/19	. ,					De a Linsita			000	
		LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier		RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Acenaphthene	50.0	32.8	31.7	65.6	63.4	47.0-145			3.41	48
Acenaphthylene	50.0	31.5	30.7	63.0	61.4	33.0-145			2.57	74
Anthracene	50.0	36.0	35.5	72.0	71.0	27.0-133			1.40	66
Benzidine	100	34.7	40.5	34.7	40.5	1.00-120			15.4	36
Benzo(a)anthracene	50.0	37.0	36.6	74.0	73.2	33.0-143			1.09	53
Benzo(b)fluoranthene	50.0	36.0	35.9	72.0	71.8	24.0-159			0.278	71
Benzo(k)fluoranthene	50.0	36.9	35.9	73.8	71.8	11.0-162			2.75	63
Benzo(g,h,i)perylene	50.0	35.4	35.0	70.8	70.0	1.00-219			1.14	97
Benzo(a)pyrene	50.0	35.0	34.4	70.0	68.8	17.0-163			1.73	72
Bis(2-chlorethoxy)methane	50.0	30.1	29.2	60.2	58.4	1.00-219			3.04	54
Bis(2-chloroethyl)ether	50.0	30.0	28.5	60.0	57.0	33.0-185			5.13	108
Bis(2-chloroisopropyl)ether	50.0	29.9	28.7	59.8	57.4	36.0-166			4.10	76
4-Bromophenyl-phenylether	50.0	37.0	35.7	74.0	71.4	53.0-127			3.58	43
2-Chloronaphthalene	50.0	29.7	28.3	59.4	56.6	60.0-120	<u>J4</u>	<u>J4</u>	4.83	24

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Duncklee and Dunham
 201939
 L1088281
 04/25/19 17:30
 14 of 20

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3401482-1 04/13/19	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		2
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		Tc
1-Chlorophenyl-phenylether	50.0	33.7	33.2	67.4	66.4	25.0-158			1.49	61		
Chrysene	50.0	37.6	36.9	75.2	73.8	17.0-168			1.88	87		³Ss
Dibenz(a,h)anthracene	50.0	35.7	35.2	71.4	70.4	1.00-227			1.41	126		55
3,3-Dichlorobenzidine	100	73.2	72.0	73.2	72.0	1.00-262			1.65	108		4
2,4-Dinitrotoluene	50.0	37.4	37.7	74.8	75.4	39.0-139			0.799	42		Cr
2,6-Dinitrotoluene	50.0	34.9	34.4	69.8	68.8	50.0-158			1.44	48		
luoranthene	50.0	38.3	38.2	76.6	76.4	26.0-137			0.261	66		⁵Sr
Fluorene	50.0	33.9	33.4	67.8	66.8	59.0-121			1.49	38		
Hexachlorobenzene	50.0	36.4	35.3	72.8	70.6	1.00-152			3.07	55		6
Hexachloro-1,3-butadiene	50.0	21.0	18.9	42.0	37.8	24.0-120			10.5	62		૿૾Qc
Hexachlorocyclopentadiene	50.0	21.4	20.0	42.8	40.0	10.0-120			6.76	31		
Hexachloroethane	50.0	19.0	17.4	38.0	34.8	40.0-120	<u>J4</u>	<u>J4</u>	8.79	52		⁷ Gl
ndeno(1,2,3-cd)pyrene	50.0	33.8	34.2	67.6	68.4	1.00-171	_	_	1.18	99		
Isophorone	50.0	31.2	30.0	62.4	60.0	21.0-196			3.92	93		8
Naphthalene	50.0	26.0	24.4	52.0	48.8	21.0-133			6.35	65		ٌAI
Nitrobenzene	50.0	27.6	26.8	55.2	53.6	35.0-180			2.94	62		
n-Nitrosodimethylamine	50.0	21.5	20.8	43.0	41.6	10.0-120			3.31	34		⁹ Sc
n-Nitrosodiphenylamine	50.0	35.0	35.0	70.0	70.0	44.0-120			0.000	21		130
n-Nitrosodi-n-propylamine	50.0	34.5	33.4	69.0	66.8	1.00-230			3.24	87		
Phenanthrene	50.0	36.1	35.4	72.2	70.8	54.0-120			1.96	39		
Benzylbutyl phthalate	50.0	37.6	37.4	75.2	74.8	1.00-152			0.533	60		
Bis(2-ethylhexyl)phthalate	50.0	38.4	37.6	76.8	75.2	8.00-158			2.11	82		
Di-n-butyl phthalate	50.0	39.2	39.3	78.4	78.6	1.00-120			0.255	47		
Diethyl phthalate	50.0	35.5	35.3	71.0	70.6	1.00-120			0.565	100		
Dimethyl phthalate	50.0	34.9	34.3	69.8	68.6	1.00-120			1.73	183		
Di-n-octyl phthalate	50.0	38.9	38.9	77.8	77.8	4.00-146			0.000	69		
Pyrene	50.0	37.2	36.7	74.4	73.4	52.0-120			1.35	49		
1,2,4-Trichlorobenzene	50.0	23.0	21.2	46.0	42.4	44.0-142		<u>J4</u>	8.14	50		
4-Chloro-3-methylphenol	50.0	33.5	33.6	67.0	67.2	22.0-147		_	0.298	73		
2-Chlorophenol	50.0	29.1	28.0	58.2	56.0	23.0-134			3.85	61		
2,4-Dichlorophenol	50.0	29.4	28.4	58.8	56.8	39.0-135			3.46	50		
2,4-Dimethylphenol	50.0	29.4	28.6	58.8	57.2	32.0-120			2.76	58		
4,6-Dinitro-2-methylphenol	50.0	39.7	40.2	79.4	80.4	1.00-181			1.25	203		
2,4-Dinitrophenol	50.0	30.0	29.8	60.0	59.6	1.00-191			0.669	132		
2-Nitrophenol	50.0	31.1	30.4	62.2	60.8	29.0-182			2.28	55		
4-Nitrophenol	50.0	17.6	17.9	35.2	35.8	1.00-132			1.69	131		
Pentachlorophenol	50.0	30.4	30.5	60.8	61.0	14.0-176			0.328	86		
Phenol	50.0	15.4	15.2	30.8	30.4	5.00-120			1.31	64		
2,4,6-Trichlorophenol	50.0	31.3	30.5	62.6	61.0	37.0-144			2.59	58		
(S) Nitrobenzene-d5				56.3	53.7	15.0-314						
AC	COUNT: e and Dunham				OJECT: 01939		SDG: L10882			DATE/TIME: 04/25/19 17:30	PAGE: 15 of 20	

Тс

Ss

Cn

Sr

Qc

GI

AI

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3401482-1 04/13/	'19 11:27 • (LCSD)	R3401482-2	04/13/19 11:47								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
(S) 2-Fluorobiphenyl				60.1	58.1	22.0-127					
(S) p-Terphenyl-d14				72.1	70.2	29.0-141					
(S) Phenol-d5				28.4	27.8	8.00-424					
(S) 2-Fluorophenol				43.3	41.7	10.0-120					
(S) 2,4,6-Tribromophenol				66.0	66.0	10.0-153					

L1087068-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1087068-01 04/13/19 14:47 • (MS) R3401475-1 04/13/19 15:11 • (MSD) R3401475-2 04/13/19 15:34

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Acenaphthene	50.0	U	26.4	30.2	52.8	60.4	1	47.0-145			13.4	48
Acenaphthylene	50.0	U	24.8	28.6	49.6	57.2	1	33.0-145			14.2	74
Anthracene	50.0	U	31.2	35.7	62.4	71.4	1	27.0-133			13.5	66
Benzo(a)anthracene	50.0	U	33.9	37.0	67.8	74.0	1	33.0-143			8.74	53
Benzo(b)fluoranthene	50.0	0.0164	31.3	33.8	62.6	67.6	1	24.0-159			7.68	71
Benzo(k)fluoranthene	50.0	U	32.5	34.3	65.0	68.6	1	11.0-162			5.39	63
Benzo(g,h,i)perylene	50.0	U	33.3	36.1	66.6	72.2	1	1.00-219			8.07	97
Benzo(a)pyrene	50.0	U	31.0	33.2	62.0	66.4	1	17.0-163			6.85	72
Bis(2-chlorethoxy)methane	50.0	U	21.2	23.8	42.4	47.6	1	33.0-184			11.6	54
Bis(2-chloroethyl)ether	50.0	U	18.9	22.7	37.8	45.4	1	12.0-158			18.3	108
Bis(2-chloroisopropyl)ether	50.0	U	22.7	27.5	45.4	55.0	1	36.0-166			19.1	76
4-Bromophenyl-phenylether	50.0	U	30.4	33.3	60.8	66.6	1	53.0-127			9.11	43
2-Chloronaphthalene	50.0	U	22.9	26.6	45.8	53.2	1	60.0-120	<u>J6</u>	<u>J6</u>	14.9	24
4-Chlorophenyl-phenylether	50.0	U	27.6	31.1	55.2	62.2	1	25.0-158			11.9	61
Chrysene	50.0	U	31.4	34.1	62.8	68.2	1	17.0-168			8.24	87
Dibenz(a,h)anthracene	50.0	U	32.7	35.2	65.4	70.4	1	1.00-227			7.36	126
3,3-Dichlorobenzidine	100	U	38.9	50.5	38.9	50.5	1	1.00-262			26.0	108
2,4-Dinitrotoluene	50.0	U	33.7	38.7	67.4	77.4	1	39.0-139			13.8	42
2,6-Dinitrotoluene	50.0	U	29.2	33.2	58.4	66.4	1	50.0-158			12.8	48
Benzidine	100	U	ND	4.71	0.000	4.71	1	1.00-120	<u>J6</u>	<u>J3</u>	200	40
Fluoranthene	50.0	U	36.0	39.4	72.0	78.8	1	26.0-137			9.02	66
Fluorene	50.0	U	28.6	32.7	57.2	65.4	1	59.0-121	<u>J6</u>		13.4	38
Hexachlorobenzene	50.0	U	29.5	32.9	59.0	65.8	1	1.00-152			10.9	55
Hexachloro-1,3-butadiene	50.0	U	18.2	21.3	36.4	42.6	1	24.0-120			15.7	62
Hexachlorocyclopentadiene	50.0	U	17.1	20.3	34.2	40.6	1	10.0-146			17.1	34
Hexachloroethane	50.0	U	15.7	18.4	31.4	36.8	1	40.0-120	<u>J6</u>	<u>J6</u>	15.8	52
Indeno(1,2,3-cd)pyrene	50.0	U	32.0	34.8	64.0	69.6	1	1.00-171			8.38	99
Isophorone	50.0	U	22.0	24.6	44.0	49.2	1	21.0-196			11.2	93

 ACCOUNT:
 PROJECT:
 SDG:

 Duncklee and Dunham
 201939
 L1088281

PAGE: 16 of 20

L1087068-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1087068-01 04/13/1	19 14:47 • (MS) R	3401475-1 04/	13/19 15:11 • (N	ISD) R3401475-	2 04/13/19 15	:34						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Naphthalene	50.0	U	20.9	24.0	41.8	48.0	1	21.0-133			13.8	65
Nitrobenzene	50.0	0.827	21.3	25.2	40.9	48.7	1	35.0-180			16.8	62
n-Nitrosodimethylamine	50.0	U	19.6	24.1	39.2	48.2	1	10.0-120			20.6	40
n-Nitrosodiphenylamine	50.0	U	31.1	35.5	62.2	71.0	1	16.0-160			13.2	28
n-Nitrosodi-n-propylamine	50.0	U	23.1	27.2	46.2	54.4	1	1.00-230			16.3	87
Phenanthrene	50.0	U	31.9	34.9	63.8	69.8	1	54.0-120			8.98	39
Benzylbutyl phthalate	50.0	U	37.4	40.2	74.8	80.4	1	1.00-152			7.22	60
Bis(2-ethylhexyl)phthalate	50.0	0.772	38.4	41.5	75.3	81.5	1	8.00-158			7.76	82
Di-n-butyl phthalate	50.0	U	38.9	43.0	77.8	86.0	1	1.00-120			10.0	47
Diethyl phthalate	50.0	U	33.2	36.8	66.4	73.6	1	1.00-120			10.3	100
Dimethyl phthalate	50.0	U	30.0	33.5	60.0	67.0	1	1.00-120			11.0	183
Di-n-octyl phthalate	50.0	0.420	40.9	44.6	81.0	88.4	1	4.00-146			8.65	69
Pyrene	50.0	U	31.1	34.2	62.2	68.4	1	52.0-120			9.49	49
1,2,4-Trichlorobenzene	50.0	U	18.7	21.3	37.4	42.6	1	44.0-142	<u>J6</u>	<u>J6</u>	13.0	50
4-Chloro-3-methylphenol	50.0	U	30.1	34.3	60.2	68.6	1	22.0-147			13.0	73
2-Chlorophenol	50.0	U	22.0	25.8	44.0	51.6	1	23.0-134			15.9	61
2,4-Dichlorophenol	50.0	U	26.9	31.8	53.8	63.6	1	39.0-135			16.7	50
2,4-Dimethylphenol	50.0	U	26.1	29.3	52.2	58.6	1	32.0-120			11.6	58
4,6-Dinitro-2-methylphenol	50.0	U	42.7	49.2	85.4	98.4	1	1.00-181			14.1	203
2,4-Dinitrophenol	50.0	U	28.9	33.6	57.8	67.2	1	1.00-191			15.0	132
2-Nitrophenol	50.0	U	28.7	33.1	57.4	66.2	1	29.0-182			14.2	55
4-Nitrophenol	50.0	U	16.2	18.4	32.4	36.8	1	1.00-132			12.7	131
Pentachlorophenol	50.0	U	29.8	32.8	59.6	65.6	1	14.0-176			9.58	86
Phenol	50.0	U	11.1	13.7	22.2	27.4	1	5.00-120			21.0	64
2,4,6-Trichlorophenol	50.0	U	27.5	32.2	55.0	64.4	1	37.0-144			15.7	58
(S) Nitrobenzene-d5					44.0	50.0		15.0-314				
(S) 2-Fluorobiphenyl					47.6	54.3		22.0-127				
(S) p-Terphenyl-d14					60.3	65.4		29.0-141				
(S) Phenol-d5					19.9	22.0		8.00-424				
(S) 2-Fluorophenol					32.5	38.3		10.0-120				
(S) 2,4,6-Tribromophenol					65.0	72.0		10.0-153				

SDG: L1088281 DATE/TIME: 04/25/19 17:30 Τс

Ss

Cn

GLOSSARY OF TERMS

×

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contro sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

SDG: L1088281

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–N
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina
Georgia	NELAP	North Carolina
Georgia ¹	923	North Dakota
ldaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky 16	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ^{1 4}
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Duncklee and Dunham

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

201939

L1088281

PAGE: 19 of 20

04/25/19 17:30

			Billing Info	rmatic	on.			T			A	Analysis	/ Contai	ner / Pr	eservativ	/e	₩. * ¹ 4		Chain of Custody	Page of						
Dunckies and Dunhan	n		Project N 511 Keis		1000000000	, Suite	102	Pres Chk								Pace			Analytical [®]							
PO Box 639 Cary, NC 27512			Cary, NC	275:	18															анцы их тваний е ницоканою						
Report to: Rick Kolb			Email To: rkolb@dunckleedunham.com																12065 Lebanon Rd Mount Juliet, TN 3 Phone: 615-758-58	7122						
Project Description: NCDOT R-2511 Beau	fort and Ma	artin Coun	tie		/State ected	14000	shington a liamston											Phone: 800-767-5859 Fax: 615-758-5859		0 952%						
Phone: 919-858-9898 Fax: 919-858-9899					Proje NDU	ect #	NCDOT R251	1	es										L# L108							
Collected by (print): Alec Dziwanowski	Site/Facility ID)#	indard	P.O.#				b NoPr	ACI					Acctnum: DUNDUNNC												
Collected by (signature): Acce Junto	Rush? (L Same Da Next Da	ab MUST Be ay Five I y 5 Day	Notified) Day (Rad Only)	tified) Quote #			Quote #		The second se						100ml Amb I	40mlAmb-HCl	Nill								Template: T147651 Prelogin: P699279 TSR: 873 - Heather J Wagner	
Immediately Packed on Ice N Y	Two Day Three D	ay.	ay (Rad Only)	1				No. of Cntrs	8	1 888								16.4	PB: Shipped Via:	edEX Ground						
Sample ID	Comp/Grab	Matrix *	Depth		Dat	te	Time									a de la			Remarks	Sample # (lab only)						
TW-1	Grab	GW	NA	1	-1/8	3/19	1450	5	X	X	di consti									-01						
TW-Z		GW		L	1/8	119	1800	5	X	X	1									-02						
TW-3		GW		4	19	119	1655	5	X	X								and the		-03						
TW-4	1.55	GW		4	10	119	1120	5	X	X								25.05		-04						
TW-5		GW	J	4	110	119	1215	5	X	X						62.6										
		GW	2		1	<i>1</i> · · · ·		5	×	X	M															
												RAI	SCF	EEN:	<0.5	nR/h										
					1.1.1							1.		1.600												
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water	Remarks: +		TW-5 - When	-> We	we k	wi cnali	n contea if we	ict -	the	lab it to	sted	pH Flo	w		np	-	Bottl	Seal Providence of the seal of the seal of the seal of the search of the search of the search of the seal of the sea of the seal of the sea of the seal of the sea of the sea of the sea of the seal of the sea of the seal of the sea of the seal of the seal of the seal of the sea of the seal of the sea of the seal of the seal of the sea of the sea of the seal of the sea of the seal of the sea of the seal of the seal of the seal of the sea of the seal of the sea	ble Receipt of resent/Intac /Accurate: rive intact: ttles used: volume sent	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\$						
OT - Other Relinquished by : (Signature)	irier	Time:			acking # 48 aceived by: (Signa	A ature	0%	46	390	Trip Bl	ank Rece	eived:	Yes / No HCL / T		VOA Z	lero He	If Applica eadspace: on Correct/C	ble /y_N								
Reinquished by (Signature)	,	4/10 Date:	19	Time:	4/	Re	ceived by Siek	atorel	Þ	_		Temp:	4		TBR ttles Rece	eived:	If pres	ervatio	n required by L	ogin: Date/Time						
Relinguistica by (Stenature)		Date:	15	Time:	2	Re	ceived for lab by		iture)			Date:	19		me: 390,	2	Holds	03-	-0237	Condition: NCF / OK						

Divider Page

ANALYTICAL REPORT

Duncklee and Dunham

Sample Delivery Group:	L1091336
Samples Received:	04/11/2019
Project Number:	201939
Description:	NCDOT R-2511 Beaufort and Martin Counties-Parcel 85

Report To:

Rick Kolb PO Box 639 Cary, NC 27512

Entire Report Reviewed By:

Afrank Wags

Heather J Wagner Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

ACCOUNT: Duncklee and Dunham PROJECT: 201939

SDG: L1091336 DATE/TIME: 04/26/19 10:51 PAGE: 1 of 10

¹Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

TABLE OF CONTENTS

₩	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	

Sr

Qc

GI

ΆI

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
TW-2 L1091336-02	5
Qc: Quality Control Summary	6
Volatile Petroleum Hydrocarbons by Method MADEPV	6
GI: Glossary of Terms	7
Al: Accreditations & Locations	8
Sc: Sample Chain of Custody	9

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

TW-2 L1091336-02 GW			Collected by Alec Dziwanowski	Collected date/time 04/08/19 18:00	Received date 04/11/19 09:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Petroleum Hydrocarbons by Method MADEPV	WG1270096	20	04/22/19 19:16	04/22/19 19:16	ACG	Mt. Juliet, TN

*

Ср

CASE NARRATIVE

*

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Heather J Wagner Project Manager

Project Narrative

Sample TW-2 is reported separately per client request. All samples listed on the attached COC have been reported individually under SDG number L1091336 based on their Parcel ID.

SDG: L1091336 DATE/TIME: 04/26/19 10:51

SAMPLE RESULTS - 02

*

Qc

Gl

Â

Sc

Volatile Petroleum Hydrocarbons by Method MADEPV

	· ·	,						l' Ch l
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	 Cp
Analyte	ug/l		ug/l	ug/l		date / time		 2
Unadjusted C5-C8 Aliphatics	42200		666	2000	20	04/22/2019 19:16	WG1270096	Тс
Unadjusted C9-C12 Aliphatics	25200		666	2000	20	04/22/2019 19:16	WG1270096	
Unadjusted C9-C10 Aromatics	10100		666	2000	20	04/22/2019 19:16	WG1270096	³Ss
Total VPH	77500		666	2000	20	04/22/2019 19:16	WG1270096	55
(S) 2,5-Dibromotoluene(FID)	100			70.0-130		04/22/2019 19:16	WG1270096	4
(S) 2,5-Dibromotoluene(PID)	93.1			70.0-130		04/22/2019 19:16	WG1270096	Cn

Volatile Petroleum Hydrocarbons by Method MADEPV

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

Method Blank (MB)

(MB) R3404446-3 04/22/1	9 17:38			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Unadjusted C5-C8 Aliphatics	U		33.3	100
Unadjusted C9-C12 Aliphatics	U		33.3	100
Unadjusted C9-C10 Aromatics	U		33.3	100
Total VPH	U		33.3	100
(S) 2,5-Dibromotoluene(FID)	96.7			70.0-130
(S) 2,5-Dibromotoluene(PID)	91.2			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

Laboratory control				uor Sump	ic Duplicati						
LCS) R3404446-1 04/22/	9 15:28 • (LCSI	D) R3404446	-2 04/22/19 15:	59							٦.
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Unadjusted C5-C8 Aliphatics	1200	1030	1030	86.0	86.2	70.0-130			0.289	25	
Unadjusted C9-C12 Aliphatics	1400	1280	1290	91.5	92.1	70.0-130			0.700	25	
Unadjusted C9-C10 Aromatics	200	159	160	79.5	79.9	70.0-130			0.510	25	
Total VPH	2800	2470	2480	88.2	88.6	70.0-130			0.445	25	
(S) 2,5-Dibromotoluene(FID)				95.5	99.0	70.0-130					
(S) 2,5-Dibromotoluene(PID)				90.8	92.8	70.0-130					

SDG: L1091336 DATE/TIME: 04/26/19 10:51 **PAGE**: 6 of 10

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
	Description

PROJECT: 201939

SDG: L1091336

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alaska17-026NevadaArizonaAZ0612New HArkansas88-0469New JCalifornia2932New MColoradoTN00003New YConnecticutPH-0197North CFloridaE87487North CGeorgiaNELAPNorth CGeorgia ¹ 923North CIllinois200008OklahoIndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKansasE-10277RhodeKansaiAl30792TennesLouisiana ¹ LA180010TexasMaineTN0003UtahMaine324UtahMinnesota047-999-395WashinMississippiTN0003WerrouMissouri340Wiscour	Alabama	40660	Nebras
ArizonaA20612ArizonaA20612Arkansas88-0469California2932ColoradoTN00003ConnecticutPH-0197FloridaE87487GeorgiaNELAPGeorgia ¹ 923IdahoTN00003Olinois20008IndianaC-TN-01OregorOregorIowa364Kentucky ¹⁶ 90010Kentucky ¹⁶ 90010LouisianaA130792Louisiana ¹ LA180010MaireTN0002MaireMO02Maryland324Minnesota047-999-395WashirNoto03Wissouri340Wiscouri340			
Arkansas88-0469New JeCalifornia2932New MColoradoTN00003New YeConnecticutPH-0197North CFloridaE87487North CGeorgiaNELAPNorth CGeorgia ¹ 923North CIdahoTN00003Ohio-NIllinois200008OklahoIndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky ¹⁶ 90010South CLouisianaAl30792TennesLouisianaS24UtahMaryland324UtahMinnesota047-999-395WashinMississippiTN0003West VMissouri340Wiscouri			
California2932New MColoradoTN00003New YConnecticutPH-0197North CFloridaE87487North CGeorgiaNELAPNorth CGeorgia 1923North CIdahoTN00003Ohio-VIllinois200008OklahoIndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky 1690010South CLouisianaAl30792TennesLouisianaAl30792Texas SMaineTN0002Texas SMaryland324UtahMinnesota047-999-395WashirMississippiTN0003West VMissouri340Wiscouri			
ColoradoTN00003New YaConnecticutPH-0197North GFloridaE87487North GGeorgiaNELAPNorth GGeorgia 1923North GIdahoTN00003Ohio-VIllinois200008OklahoIndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky 1690010South GLouisianaAl30792TennesLouisiana 1LA180010Texas SMaineTN0002Texas SMaryland324UtahMinnesota047-999-395WashirMississippiTN0003West VMissouri340Wiscouri			
ConnecticutPH-0197North GFloridaE87487North GGeorgiaNELAPNorth GGeorgia 1923North GIdahoTN00003Ohio-VIllinois200008OklahoIndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky 1690010South GLouisianaAl30792TennesLouisiana 1LA180010TexasMaineTN0002TexasMaine324UtahMinnesota047-999-395WashinMississippiTN0003West VMissouri340Wiscouri			
FloridaE87487North CGeorgiaNELAPNorth CGeorgia 1923North CIdahoTN00003Ohio-VIllinois200008OklahoIndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky 1690010South CLouisianaAl30792TennesLouisiana 1LA180010TexasMaineTN0002TexasMaineM-TN003VermonMichigan9958VirginiaMinnesota047-999-395WashinMississippiTN0003West VMissouri340Wiscouri			
GeorgiaNELAPNorth CGeorgia 1923North DIdahoTN00003Ohio-VIllinois200008OklahoIndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky 1690010South DLouisianaAl30792TennesLouisiana 1LA180010TexasMaineTN0002TexasMaryland324UtahMinnesota047-999-395WashinMississippiTN0003West VMissouri340Wiscouri			North C
Georgia 1923North IIdahoTN00003Ohio-VIllinois20008OklahoIndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky 1690010South ILouisianaAl30792TennesLouisiana 1LA180010TexasMaineTN0002TexasMaryland324UtahMinnesota047-999-395WashinMississippiTN0003West VMissouri340Wiscouri	Georgia	NELAP	North C
IdahoTN00003Ohio-VIllinois200008OklahoIndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky ¹⁶ 90010South ILouisianaAl30792TennesLouisiana ¹ LA180010TexasMaineTN0002TexasMaryland324UtahMinnesota047-999-395WashirMississippiTN0003West VMissouri340Wiscouri	•	923	North D
IndianaC-TN-01OregorIowa364PennsyKansasE-10277RhodeKentucky ¹⁶ 90010South OKentucky ² 16South OLouisianaAl30792TennesLouisiana ¹ LA180010TexasMaineTN0002TexasMaryland324UtahMinnesota047-999-395WashinMississippiTN0003West VMissouri340Wiscont		TN00003	Ohio–V
Iowa364PensyKansasE-10277RhodeKentucky ¹⁶ 90010South OKentucky ² 16South OLouisianaAl30792TennesLouisiana ¹ LA180010TexasMaineTN0002TexasMaryland324UtahMichigan9958VirginiaMinnesota047-999-395WashirMississippiTN0003West VMissouri340Wiscont	Illinois	200008	Oklaho
KansasE-10277RhodeKentucky ¹⁶ 90010South 0Kentucky ² 16South 0LouisianaAl30792TennesLouisiana ¹ LA180010TexasMaineTN0002TexasMaryland324UtahMinesota047-999-395WashinMississippiTN0003West VMissouri340Wiscont	Indiana	C-TN-01	Oregon
Kentucky 1690010South 0Kentucky 216South 0LouisianaAl30792TennesLouisiana 1LA180010TexasMaineTN0002TexasMaryland324UtahMassachusettsM-TN003VermooMichigan9958VirginiaMinnesota047-999-395WashinMississippiTN0003West VMissouri340Wiscont	lowa	364	Pennsy
Kentucky 216South ILouisianaAl30792TennesLouisiana 1LA180010TexasMaineTN0002TexasMaryland324UtahMassachusettsM-TN003VermootMichigan9958VirginiaMinnesota047-999-395WashimMississippiTN0003West VMissouri340Wiscont	Kansas	E-10277	Rhode
Kentucky 216South ILouisianaAl30792TennesLouisiana 1LA180010TexasMaineTN0002TexasMaryland324UtahMassachusettsM-TN003VermootMichigan9958VirginiaMinnesota047-999-395WashimMississippiTN0003West VMissouri340Wiscont	Kentucky ¹⁶	90010	South C
Louisiana 1LA180010TexasMaineTN0002Texas 5Maryland324UtahMassachusettsM-TN003VermoiMichigan9958VirginiaMinnesota047-999-395WashimMississippiTN0003West VMissouri340Wiscont		16	South E
MaineTN0002Texas 5Maryland324UtahMassachusettsM-TN003VermoiMichigan9958VirginiaMinnesota047-999-395WashimMississippiTN0003West VMissouri340Wiscont	Louisiana	AI30792	Tennes
Maryland324UtahMassachusettsM-TN003VermonMichigan9958VirginiaMinnesota047-999-395WashimMississippiTN00003West VMissouri340Wiscon	Louisiana ¹	LA180010	Texas
MassachusettsM-TN003VermonMichigan9958VirginiaMinnesota047-999-395WashimMississippiTN00003West VMissouri340Wiscont	Maine	TN0002	Texas ⁵
Michigan 9958 Virginia Minnesota 047-999-395 Washin Mississippi TN00003 West V Missouri 340 Wiscont	Maryland	324	Utah
Minnesota047-999-395WashinMississippiTN00003West VMissouri340Wiscont	Massachusetts	M-TN003	Vermor
MississippiTN00003West VMissouri340Wiscont	Michigan	9958	Virginia
Missouri 340 Wiscon	Minnesota	047-999-395	Washin
	Mississippi	TN00003	West V
Montana CERT0086 Wyomi	Missouri	340	Wiscon
	Montana	CERT0086	Wyomii

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 14	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Duncklee and Dunham

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

201939

L1091336

PAGE: 8 of 10

04/26/19 10:51

	Billing Infor	illing Information.						An	nalysis / Container / Preservative					Charles and	Chain of Custody Page of				
			Project Manager 511 Keisler Drive, Suite 102 Cary, NC 27518														Pace, Metroe Ca	Analytical * case for Ensing & moderation	
Report to: Email To: r			Email To: r	rkolb@dunckleedunham.com													12065 Lebanon Rd Mount Juliet, TN 37 Phone: 615-758-58 Phone: 800-767-58	122 88	
Project Description: NCDOT R-2511 Beaufort and Martin Countie			ie	City/State Washington and Collected: Williamston / MC													Fax: 615-758-5859	回经验的	NJ V/221
Phone: 919-858-9898 Fax: 919-858-9899 2019.39				Lab Project # DUNDUNNC-NCDOT R2511												F078 L1091336			
Collected by (print): Alec Dziwanowski	Site/Facility ID #			P.O.#					Amb NoPres mb-HCl							Acctnum: DUNDUNNC Template:T147651			
							No.	100ml	40mlAmb-HG	40mlAmb							Prelogin: P69 TSR: 873 - Hea PB:	9279 ther J Wagner	
Sample ID	Comp/Grab	Matrix *	Depth	D	ate	Time	Cntrs	30008	000200								Shipped Via: F	edEX Ground Sample # (lab only)	-
TW-1	Grab	GW	NA	4	8/19	1450	5	X	X									-01	-01
TW-Z		GW	1	1 1	3/19	1800	5	X	X									-02 -	02
TW-3	2.40 3.44	GW	Section 2	40	1/19	1655	5	X	x	1.1		1.1			. N.		a Programme and the	-07	03
TW-4	Carden State	GW		1-1/11	119	1120	5	X	X									-04	de
TW-5	J.	GW	10	4/1	5/19	1215	5	X	X	ia			12	a mar				11202	
		GW	P				5	+*	X	10									
7								-			DAT	000							
the second second				12				12-00	-		nu	SCH	EEN:	<0.5 mE	/hr				-
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:		TW-5 when	-> W We	e W Kna	in conte s if wi	uct o	the	lab it to	ङान्त्रे	рН Flov	×	Tem Othe		C B C	OC Seal OC Signe ottles a orrect b	TDle Receipt (Present/Intac d/Accurate: zrive intact: ottles used: t volume sent	$r : - \frac{\nabla Y}{\frac{\gamma Y}{\chi Y}} - \frac{\gamma Y}{\chi Y} - $	N
DW - Drinking Water Samples refurned v OT - Other UPS √ FedEx		rned via: edExCo	burier		T	racking # 48	X	105	9t	396	8				U	Sufficient volume sent: $\underline{ZY} = \underline{If Applicable}$ VOA Zero Headspace: $\underline{ZY} = \underline{YY}$ Preservation Correct/Checked: $\underline{ZY} = \underline{YY}$			N
12 F 4/10/19			Time: Received by: (Sleeature)					/	1.	Trip Blank Received: Yes / No) HCL / MeoH TBR					reservat	ion Correct/C	necked: <u>√</u> Y	N	
Reinquished by Signature) Alter Hallies		2/15	Time: 1		econod by Sie	ature	D			Temp: Q-S	-0.1:		les Receiver	: If	preservat	ion required by L	ogin: Date/Time		
Relinguistication 19 matures Date:		Date:		Time:		eceived for lab t	y: (Sit	nature)			Date: Time:			14	03	3-0237	Condition: NCF / OK		

Andy Vann

From:Heather WagnerSent:Monday, April 22, 2019 9:09 AMTo:LoginSubject:L1088281 - relog for VPH - expires today

Please relog L1088281-01, -02, -03 and -04 for VPHNC. -01 and -02 go out of hold today. R5 due 4/29

Thanks,

Heather Wagner Project Manager

Pace Analytical National Center for Testing & Innovation 12065 Lebanon Road | Mt. Juliet, TN 37122 Office 615.773.9686 | Cell 615.289.9801 hwagner@pacenational.com | pacenational.com

ESC Lab Sciences is now Pace Analytical National Center for Testing & Innovation! Please make note of my new email address and website.