US 221 South of US 74 Business (Charlotte Road) to North of SR 1366 (Roper Loop Road)

Parcel 186 – Michael Jones

923 US 221, Rutherfordton, North Carolina

State Project No. R-2233BB

WBS Element: 34400.1.S5

February 12, 2018

Terracon Project No. 71177323

Prepared for:

North Carolina Department of Transportation Raleigh, North Carolina

Prepared by:

Terracon Consultants, Inc. Charlotte, North Carolina

terracon.com

Environmental Facilities Geotechnical Materials

TABLE OF CONTENTS

Page No.

1.0	INTRODUCTION	1
1.1	Site Description	1
1.2	Site History	1
1.3	Scope of Work	
1.4	Standard of Care	
1.5	Additional Scope Limitations	2
1.6	Reliance	2
2.0	FIELD ACTIVITIES	2
2.1	Geophysical Survey	3
2.2	Soil Sampling	
3.0	DATA EVALUATION	
3.1	Soil Analytical Results	4
4.0	CONCLUSIONS AND RECOMMENDATIONS	6

TABLES

Table 1 – Summary of Field Screening Results

Table 2A – Summary of Soil Analytical Results

Table 2B - Summary of Additional Soil Analytical Results

EXHIBITS

Exhibit 1 – Topographic Map

Exhibit 2A – Site Diagram with Soil Boring Locations

Exhibit 2B - Site Diagram with Soil Boring Locations and Analytical Data

APPENDICES

Appendix A: Geophysical Survey Report

Appendix B: Soil Boring Logs

Appendix C: Laboratory Analytical Reports and Chain-of-Custody Forms

February 12, 2018

North Carolina Department of Transportation Attention: Mr. Craig Haden GeoEnvironmental Engineering Unit Century Center Complex Building B 1020 Birch Ridge Drive Raleigh, North Carolina 27610

Re: Preliminary Site Assessment (PSA)

US 221 South of US 74 Business (Charlotte Road) to North SR 1366 (Roper Loop

Road)

Parcel 186 – Michael Jones

923 US 221, Rutherfordton, North Carolina

State Project No. R-2233BB WBS Element: 34400.1.S5

Dear Mr. Haden:

Terracon Consultants, Inc. (Terracon) is pleased to submit a Preliminary Site Assessment (PSA) report for the above referenced site. This assessment was performed in accordance with our Proposal for Preliminary Site Assessment (Terracon Proposal No. P71177323) dated June 2, 2017. This report includes the findings of the investigation, and provides our conclusions and recommendations.

Terracon appreciates the opportunity to provide these services to the North Carolina Department of Transportation (NCDOT). If you have any questions concerning this report or need additional information, please contact us at 919-873-2211.

Sincerely,

Terracon Consultants, Inc.

Prepared by:

—DocuSigned by: S. Alex Chinery

--- F3F142104F4941D.

S. Alex Chinery, E.I.

Senior Staff Environmental Engineer

Reviewed by:

Christopher L. Corbitt, P.G.

DocuSigned by:

D334903BD0324DE...

Christopher L Corbit

Senior Geologist

Terracon Consultants, Inc. 2701 Westport Road Charlotte, NC 28208 P [704] 509 1777 F [704] 509 1888 terracon.com

Environmental Facilities Geotechnical Materials

PRELIMINARY SITE ASSESSMENT

US 221 SOUTH OF US 74 BUSINESS (CHARLOTTE ROAD) TO NORTH SR 1366 (ROPER LOOP ROAD)

RUTHERFORDTON, RUTHERFORD COUNTY, NORTH CAROLINA
STATE PROJECT NO. R-2233BB
WBS ELEMENT: 34400.1.S5
PARCEL 186 – MICHAEL JONES
923 US 221, RUTHERFORDTON, NORTH CAROLINA

1.0 INTRODUCTION

1.1 Site Description

Site Name	US 221 South of US 74 Business (Charlotte Road) to North SR 1366 (Roper Loop Road) in Rutherfordton			
Site Location/Address	923 US 221, Rutherfordton, NC 27834 (Rutherford County Tax PIN: 613408)			
General Site Description	The site consists of a commercial building that is currently vacant but formerly operated as a Sunbelt filling station and convenience store.			

1.2 Site History

The site is located at 923 US 221 in Rutherfordton, Rutherford County, North Carolina (site). At the time that PSA activities were conducted, the site was improved with a one-story commercial building formerly operated as a Sunbelt filling station and convenience store (Michael's Market). According to available regulatory information, five underground petroleum storage tanks (USTs) are currently located on the site. A Notice of Violation was issued by the North Carolina Department of Environmental Quality (NCDEQ) for the site in July 2015. At the present time, no records of a release are associated with the UST system on the site.

1.3 Scope of Work

Terracon conducted the following Preliminary Site Assessment (PSA) scope of work in accordance with Terracon's Proposal No. P71177323 dated June 2, 2017. This PSA is being completed prior to planned roadway improvements along US Highway 221 in Rutherfordton, North Carolina. The scope of work included a geophysical investigation, collection of 13 soil samples and preparation of a PSA report documenting the investigation activities. The PSA is not intended to delineate potential impacts. The PSA was performed within the proposed right-of-way (ROW) as indicated by North Carolina Department of Transportation (NCDOT) provided plan sheets.

Parcel 186 – Michael Jones • Rutherfordton, North Carolina February 12, 2018 • Terracon Project No. 71177323

1.4 Standard of Care

Terracon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. Terracon makes no warranties, either expressed or implied, regarding the findings, conclusions or recommendations. Please note that Terracon does not warrant the work of laboratories, regulatory agencies or other third parties supplying information used in the preparation of the report. These services were performed in accordance with Terracon Proposal No. P71177323 dated June 2, 2017 and were not conducted in accordance with ASTM E1903-11.

1.5 Additional Scope Limitations

Findings, conclusions and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, undetectable or not present during these services; thus, we cannot represent that the site is free of hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this PSA. Subsurface conditions may vary from those encountered at specific borings or wells or during other surveys, tests, assessments, investigations or exploratory services; the data, interpretations, findings, and our recommendations are based solely upon data obtained at the time and within the scope of these services.

1.6 Reliance

This report has been prepared for the exclusive use of the NCDOT. Authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the site) is prohibited without the expressed written authorization of the client and Terracon.

2.0 FIELD ACTIVITIES

The following PSA activities are presented in the order that they were conducted in the field.

Exhibit 1 presents the topography of the site on a portion of the USGS Rutherfordton North, North Carolina topographic quadrangle map dated 2002. **Exhibits 2A** and **2B** depict the approximate locations of the site features, soil boring locations and analytical results.

Parcel 186 – Michael Jones • Rutherfordton, North Carolina February 12, 2018 • Terracon Project No. 71177323

2.1 Geophysical Survey

On July 27 and August 2, 2017, Geophysical Survey Investigations, conducted a geophysical investigation at the site in an effort to evaluate and detect potentially unknown, metallic underground storage tanks and buried utilities beneath the proposed ROW area. The geophysical investigation included an electromagnetic (EM) induction survey using a Geonics EM61-MK2A metal detection instrument with a Hemisphere A101 GPS unit and a ground penetrating radar (GPR) survey using a Geophysical Survey Systems SIR-3000 unit equipped with a 400 MHz antenna.

The geophysical investigation confirmed the presence of five known USTs at the site and did not detect evidence of additional unknown metallic USTs within the survey area at a depth interval of zero to six feet below land surface (bls). In addition to the detection of the USTs, several underground utility lines were detected in the survey area. A copy of the geophysical report is included in **Appendix A**.

2.2 Soil Sampling

Based on the findings of the geophysical investigation and Terracon's site observations, Terracon provided oversight for the advancement of three soil borings (B-186-1, B-186-2 and B-186-3) within Parcel 186 in the vicinity of the known USTs and dispenser islands along the NCDOT ROW on August 16, 2017, then returned to the site on October 26, 2017 to oversee the advancement of ten additional borings (B-186-4 through B-186-13). The initial borings were completed by Innovative Environmental Technologies and the subsequent borings were completed by Environmental Probing and Drilling Services, both North Carolina Certified Well Contractors using a track-mounted AMS 9500-VTR® direct-push drill rig.

Soil samples were collected in 5-foot, disposable, Macro-Core[®] sampler tubes to document soil lithology, color, moisture content, and sensory evidence of impacts. Each soil sample was screened for organic vapors using an 11.7 eV photoionization detector (PID). The PID data were collected in order to corroborate laboratory data and assist in selection of sample intervals for laboratory analysis. PID readings from the borings ranged from 0.0 parts per million (ppm) to 78.7 ppm.

Based on the proposed disturbance depths and discussions with the NCDOT, each of the soil borings was advanced to a depth of approximately 15 feet bls. Thirteen soil samples, one from each boring, were collected from depths ranging between 5 to 15 feet bls. The initial three samples (B-186-1 through B-186-3) were placed in laboratory provided sample containers and delivered to Pace Analytical Services (Pace) for analysis of Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) Method 8260 and Semi-Volatile Organic Compounds (SVOCs) by EPA Method 8270. The additional 10 samples (B-186-4 through B-186-13) were

Parcel 186 – Michael Jones • Rutherfordton, North Carolina February 12, 2018 • Terracon Project No. 71177323

placed in laboratory provided sample containers and sent to RED Lab, LLC (RED) for UVF analysis of gasoline range organics (GRO) and diesel range organics (DRO). Soil samples were collected from the depth interval that was most likely to be impacted based on PID readings and field observations.

Soils generally consisted of orange brown, reddish brown and dark brown sandy clay. Groundwater was not encountered in the on-site borings. The soil boring logs are included in **Appendix B**. Sample locations were measured relative to site features and the locations depicted on **Exhibits 2A** and **2B** are approximate.

The drilling equipment used at the site was decontaminated prior to the advancement of each boring. Non-dedicated sampling equipment was decontaminated using a Liquinox®/water wash followed by a distilled water rinse. Each of the boreholes was backfilled with hydrated bentonite pellets and investigation derived waste (IDW).

3.0 DATA EVALUATION

3.1 Soil Analytical Results

Laboratory analyses reported the following VOC and SVOC constituent detections in soil borings B-186-1, B-186-2 and B-186-3.

Boring B-186-1:

- n acetone (0.346 milligrams per kilogram [mg/kg])
- n 2-butanone (0.034J mg/kg)
- n n-butylbenzene (0.0049J mg/kg)
- n sec-butylbenzene (0.0032J mg/kg)
- n p-isopropyltoluene (0.0053J mg/kg)
- n methylene chloride (0.0246 mg/kg)
- n napthalene (0.0178 mg/kg)
- n n-propylbenzene (0.0019J mg/kg)
- n 1,2,4-trimethylbenzene (0.0232 mg/kg)
- n 1,3,5-trimethylbenzene (0.0068 mg/kg)
- n total xylenes (0.0102J mg/kg)

Boring B-186-2:

- n acetone (0.124 mg/kg)
- n methylene chloride (0.0233J mg/kg)

Boring B-186-3:

- n acetone (0.0466J mg/kg)
- n methylene chloride (0.0215J mg/kg)

Parcel 186 – Michael Jones • Rutherfordton, North Carolina February 12, 2018 • Terracon Project No. 71177323

Laboratory analyses reported the following GRO and DRO constituent detections in soil borings B-186-4 through B-186-13.

Boring B-186-4:

- n DRO (10.4 mg/kg)
- n Total Aromatics (5.0 mg/kg)
- n PAH (0.56 mg/kg)

Boring B-186-5:

- n DRO (37.5 mg/kg)
- n Total Aromatics (18.0 mg/kg)
- n PAH (2.0 mg/kg)
- n BaP (0.045 mg/kg

Boring B-186-6:

- n DRO (36.6 mg/kg)
- n Total Aromatics (18.7 mg/kg)
- n PAH (1.0 mg/kg)

Boring B-186-7:

- n DRO (31.5 mg/kg)
- n Total Aromatics (15.1 mg/kg)
- n PAH (1.7 mg/kg)
- n BaP (0.039 mg/kg)

Boring B-186-8:

- n DRO (7.4 mg/kg)
- n Total Aromatics (3.6 mg/kg)
- n PAH (0.39 mg/kg)

Boring B-186-9:

- n DRO (1.5 mg/kg)
- n Total Aromatics (1.2 mg/kg)

Boring B-186-10:

- n DRO (6.6 mg/kg)
- n Total Aromatics (4.4 mg/kg)

Boring B-186-11:

- n DRO (79.8 mg/kg)
- n Total Aromatics (38.5 mg/kg)
- n PAH (4.3 mg/kg)

Parcel 186 – Michael Jones • Rutherfordton, North Carolina February 12, 2018 • Terracon Project No. 71177323

n BaP (0.099 mg/kg)

Boring B-186-12:

- n GRO (13.4 mg/kg)
- n DRO (34.7 mg/kg)
- n Total Aromatics (16.8 mg/kg)
- n PAH (1.9 mg/kg)
- n BaP (0.044 mg/kg)

Boring B-186-13:

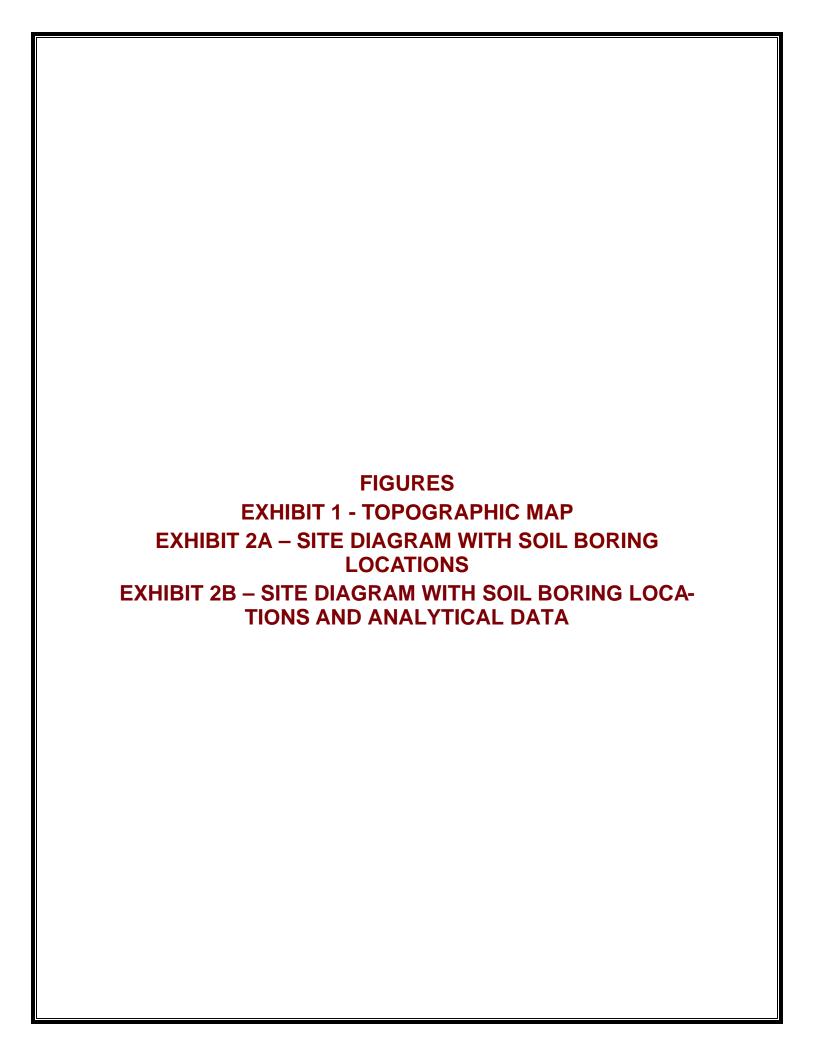
- n DRO (6.4 mg/kg)
- n Total Aromatics (3.1 mg/kg)
- n PAH (0.35 mg/kg)

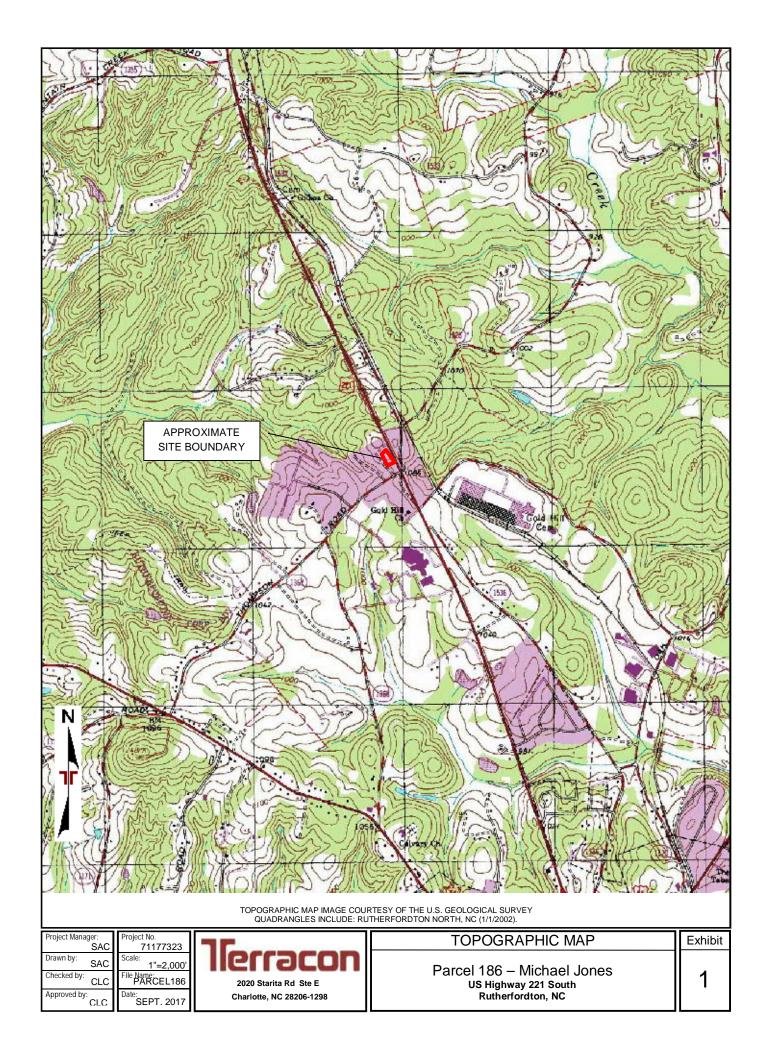
Methylene chloride was the only VOC constituent detected in borings B-186-1 to B-186-3 above its NCDEQ Soil-to-Groundwater Maximum Soil Contaminant Concentration Level (MSCC) of 0.02 mg/kg. Methylene chloride was identified by the laboratory as a common laboratory contaminant, not representative of the site conditions. The other constituents were detected at concentrations below their respective regulatory standards.

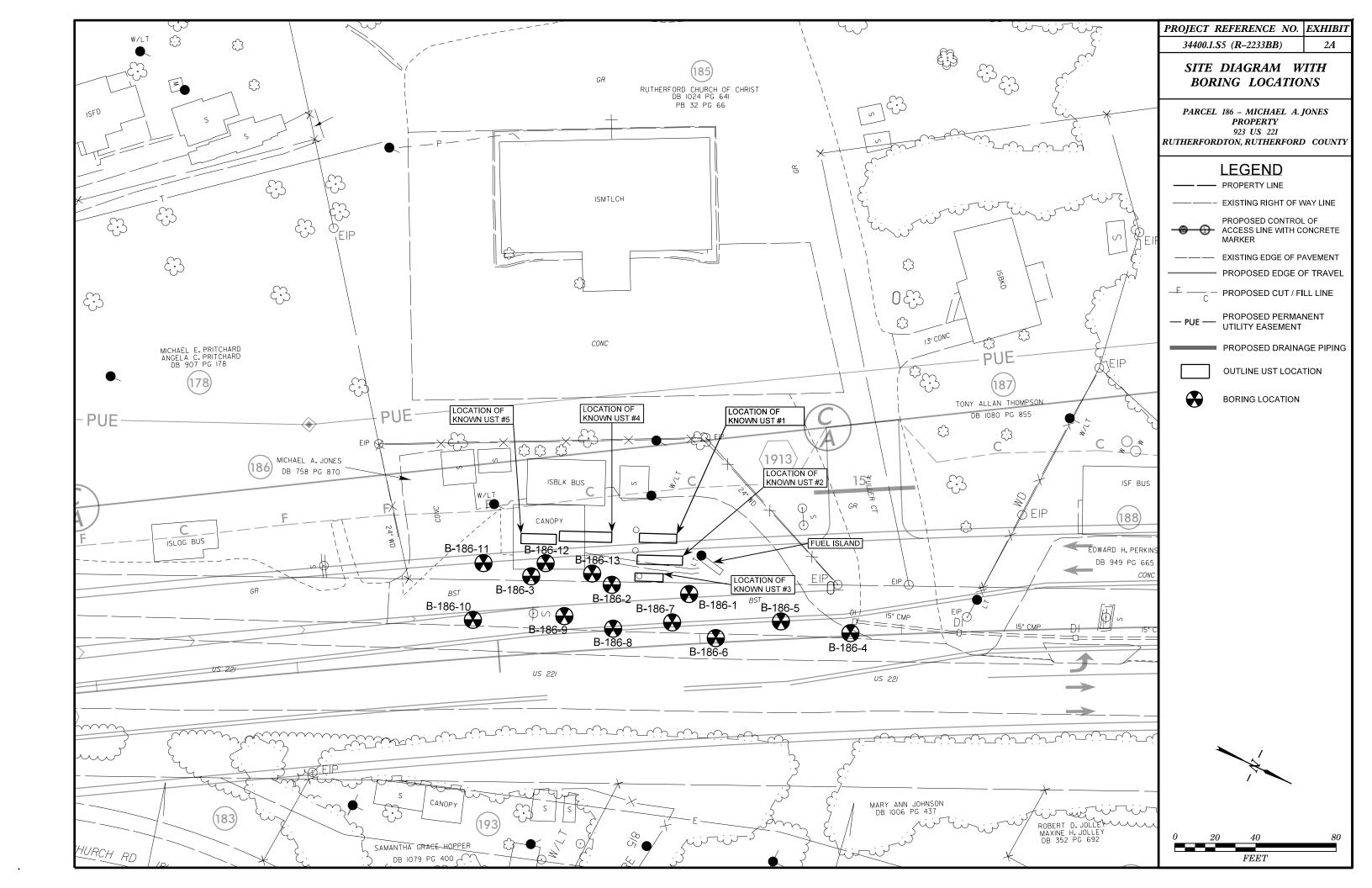
The J-flagged values represent estimated constituent concentrations that are above the method detection limit but below the reporting limit.

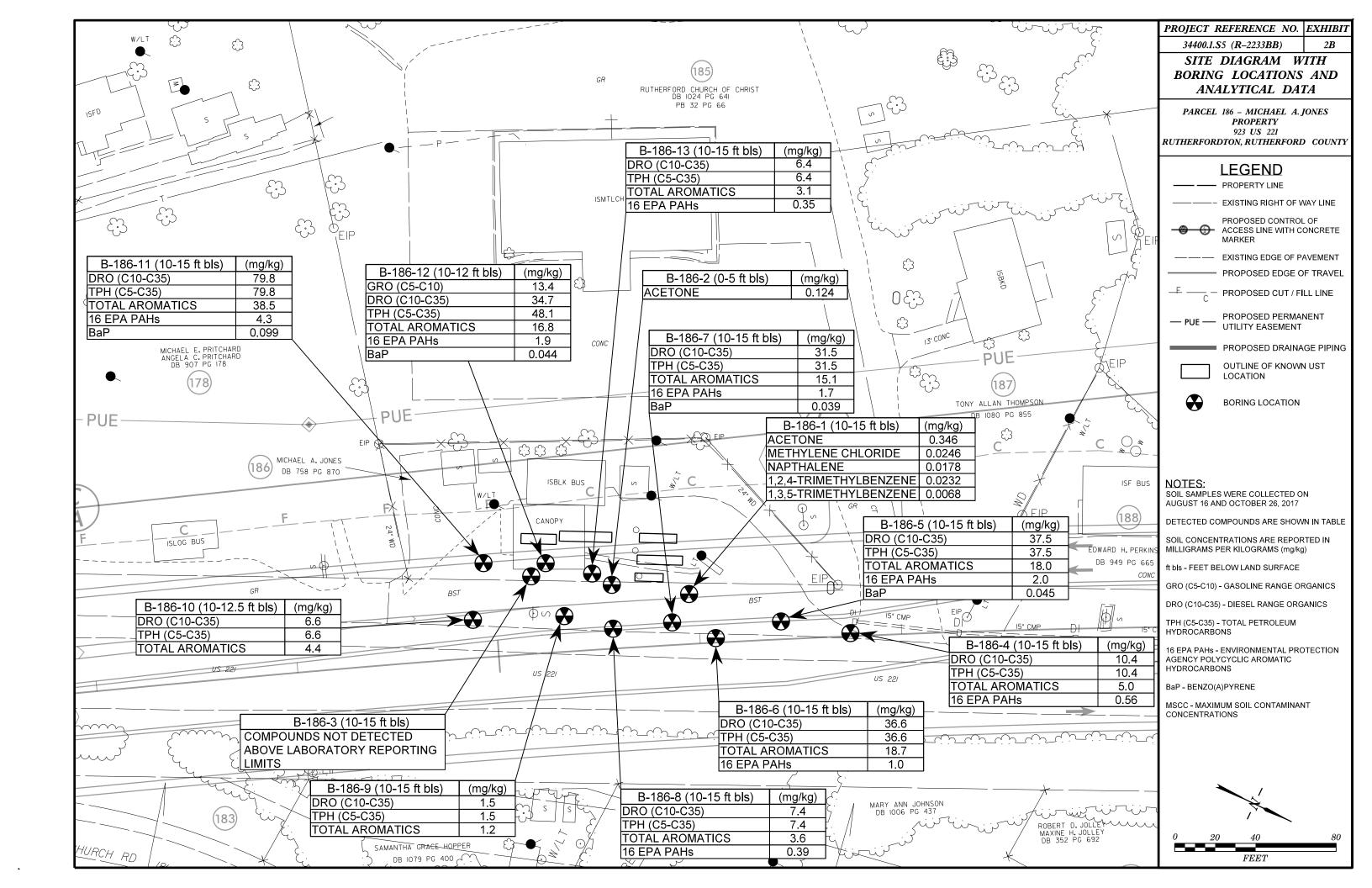
Tables 2A and 2B summarize the results of the analyses of the soil samples. **Exhibits 2A and 2B** depict the boring locations and analytical results.

4.0 CONCLUSIONS AND RECOMMENDATIONS


The findings of this investigation are discussed below.


- n The geophysical investigation confirmed the presence of five USTs on the site but did not detect evidence of additional unknown metallic USTs within the survey area at a depth interval of zero to six feet below land surface (bls).
- n Laboratory analytical results identified 11 constituents in the on-site soil borings above their respective laboratory reporting limits. Methylene chloride was the only constituent detected in the borings above its NCDEQ Soil-to-Groundwater MSCC. Methylene chloride was identified by the laboratory as a common laboratory contaminant, not representative of the site conditions. The other constituents were detected at concentrations below their respective MSCCs.


Parcel 186 – Michael Jones ■ Rutherfordton, North Carolina February 12, 2018 ■ Terracon Project No. 71177323



n Based on the analytical results, Terracon does not recommend additional assessment of Parcel 186 at this time; however, the detection of petroleum constituents (below regulatory standards) in borings B-186-1 and B-186-4 through B-186-11 are an indication of a potential release associated with the on-site UST system. As a result, future roadway construction activities at the site could encounter petroleum impacted soils within other areas of the site.

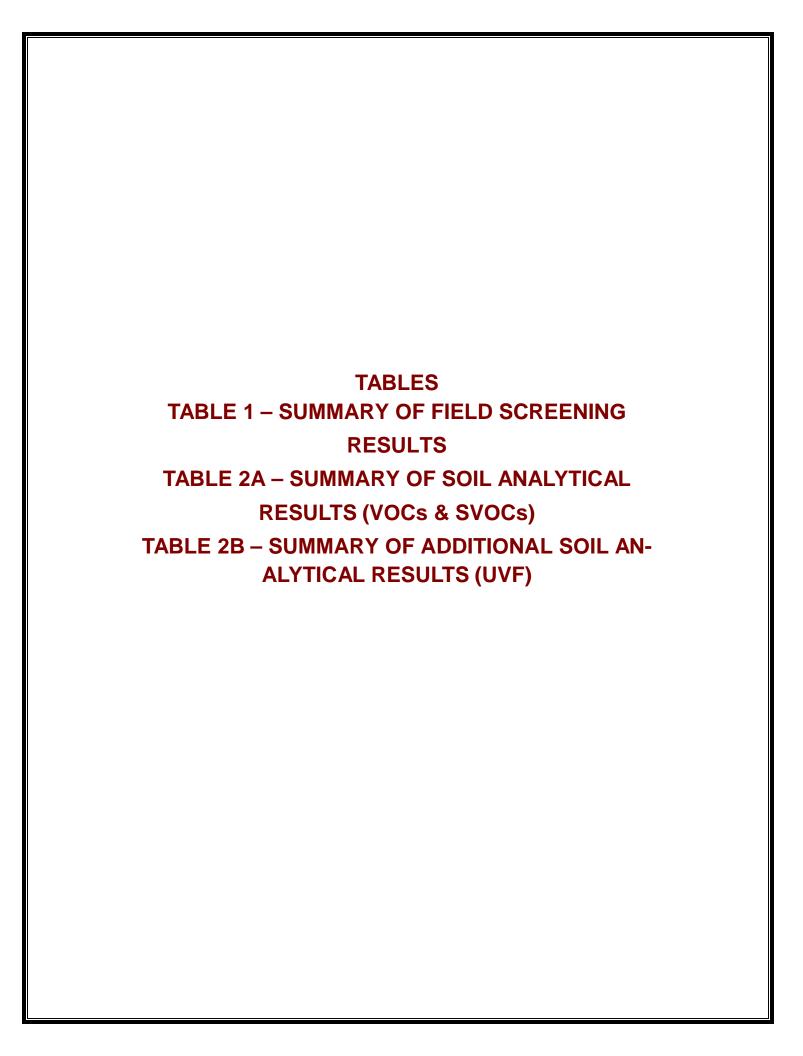


Table 1 Summary of Field Screening Results Preliminary Site Assessment Parcel 186 - Michael Jones Rutherfordton, Rutherford County, North Carolina Terracon Project No. 71177323

Sample	Screened Interval	PID
ID	Screened interval	Value
	0-5	6
B-118-1	5-10	32.1
D-110-1	10-15	78.7*
	0-5	1.8*
B-118-2	5-10	1.6
D-110-2	10-15	1.4
	0-5	1.7
B-118-3	5-10	1.7
D-110-3	10-15	1.7*
	0-5	0.0
B-118-4	5-10	0.0
D-110-4	10-15	0.0 0*
	0-5	0.0
B-118-5	5-10	0.0
D-110-3	10-15	0.0
	0-5	0.0
B-118-6	5-10	4.3
D-110-0	10-15	4.3 11.9*
	0-5	2.1
B-118-7	5-10	1.9
3	10-15	11.2*
	0-5	0.7
B-118-8	5-10	0.3
	10-15	0.2*
	0-5	0.0
B-118-9	5-10	0.0
	10-15	0*
	0-5	0.0
B-118-10	5-10	0.0
	10-12.5	0.0*
	0-5	0.0
B-118-11	5-10	0.0
	10-15	0.0*
	0-5	0.2
B-118-12	5-10	0.2
	10-12	0.2*
B-118-13	0-5 5-10	0.1 0.1
טוי-ט	10-15	0.1
	10 10	∵.∠

Notes:

Soil screening was conducted on August 15, 2017.

*indicates sampled interval.

Concentrations are reported in parts per million (ppm).

Table 2A Summary of Soil Analytical Results Preliminary Site Assessment Parcel 186 - Michael Jones

Rutherfordton, Rutherford County, North Carolina Terracon Project No. 71177323

Sample ID: Sample Depth (ft bls):	B-186-1 10-15	B-186-2 0-5	B-186-3 10-15	Soil-to-GW MSCC	Residential MSCC	Industrial/ Commercial PSRG
Volatile Organic Compounds	(EPA Meth	od 8260)				
Acetone	0.346	0.124	0.0466 J	24	14,000	360,000
2-Butanone (MEK)	0.034 J	<0.0034	<0.0032	16	9,385	245,280
n-Butylbenzene	0.0049 J	<0.0021	<0.0020	4.3	626	16,350
sec-Butylbenzene	0.0032 J	<0.0019	<0.0018	3.3	626	16,350
p-Isopropyltoluene	0.0053 J	<0.0020	<0.0019	NE	NE	NE
Methylene Chloride	0.0246	0.0233 J	0.0215 J	0.02	85	763
Naphthalene	0.0178	<0.0014	<0.0013	0.16	313	8,176
n-Propylbenzene	0.0019 J	<0.0020	<0.0019	1.7	626	16,350
1,2,4-Trimethylbenzene	0.0232	<0.0024	<0.0022	8.5	782	20,440
1,3,5-Trimethylbenzene	0.0068	<0.0021	<0.0020	8.3	782	20,440
Total Xylenes	0.0102 J	<0.0043	<0.0039	4.6	3,129	81,760

Notes:

Soil samples were collected on August 16, 2017.

Detected compounds are shown in the table.

J - estimated concentration between reporting and method detection limits.

Concentrations are reported in milligrams per kilogram (mg/kg).

ft bls - feet below land surface.

NE - Standard not established.

Detections shaded in gray exceed the North Carolina Department of Environmental Quality (NCDEQ) MSCCs.

MSCC - Maximum Soil Contaminant Concentrations.

GW - Groundwater.

Bold: Constituent concentration reported above the method detection limit.

Table 2B Summary of Additional Soil Analytical Results Preliminary Site Assessment Parcel 186 - Michael Jones Rutherfordton, Rutherford County, North Carolina Terracon Project No. 71177323

Sample ID:	B-186-4	B-186-5	B-186-6	B-186-7	B-186-8	B-186-9	B-186-10	B-186-11	B-186-12	B-186-13	TPH
Sample Depth (ft bls):	10-15	10-15	10-15	10-15	10-15	10-15	10-12.5	10-15	10-12	10-15	Action Level
UVF Analysis											
BTEX (C6-C9)	<0.57	<1.1	<0.55	<0.59	<0.57	<0.61	<0.63	<0.99	<0.68	<0.64	NE
GRO (C5-C10)	< 0.57	< 0.57	< 0.55	< 0.59	< 0.57	<0.61	<0.63	< 0.99	13.4	< 0.64	50
DRO (C10-C35)	10.4	37.5	36.6	31.5	7.4	1.5	6.6	79.8	34.7	6.4	100
TPH (C5-C35)	10.4	37.5	36.6	31.5	7.4	1.5	6.6	79.8	48.1	6.4	NE
Total Aromatics	5	18	18.7	15.1	3.6	1.2	4.4	38.5	16.8	3.1	NE
16 EPA PAHs	0.56	2	1	1.7	0.39	< 0.2	<0.2	4.3	1.9	0.35	NE
BaP	< 0.023	0.045	<0.022	0.039	< 0.023	<0.025	<0.025	0.099	0.044	<0.025	NE

Notes:

Soil samples were collected on October 26, 2017.

Detected compounds are shown in the table.

Concentrations are reported in milligrams per kilogram (mg/kg).

ft bls - feet below land surface.

Bold: Constituent concentration reported above the method detection limit.

Terracon Consultants, Inc.

GEOPHYSICAL INVESTIGATION TO LOCATE METALLIC USTS

Michael Jones Property (Parcel 186) 923 US Highway 221 Rutherford County, North Carolina

November 27, 2017 Geophysical Survey Investigations, PLLC Project No. 2017-22

4 Willimantic Drive, Greensboro, NC 27455 Office Tel: (336) 286-9718 denilm@bellsouth.net

Terracon Consultants, Inc. GEOPHYSICAL INVESTIGATION TO LOCATE METALLIC USTS Michael Jones Property (Parcel 186) 923 US Highway 221 Rutherford County, North Carolina

TABLE OF CONTENTS

		<u>Page</u>
1.0	INTRODUCTION	
2.0	FIELD METHODO	OGY 1
3.0	DISCUSSION OF	ESULTS
4.0	SUMMARY & CO	CLUSIONS
5.0	LIMITATIONS	5
		<u>FIGURES</u>
Figu Figu Figu Figu Figu Figu	re 2 EM61 re 3 EM61 re 4 GPR I re 5 GPR I re 6 NCDC	ical Equipment & Site Photographs IK2A Metal Detection – Early Time Gate Results IK2A Metal Detection – Differential Results age & Photograph Across Known USTs - 1, 2 & 3 ages & Photograph Across Known USTs - 4 & 5 Map – EM61 Early Time Gate Results Map – EM61 Differential Results
	Report prepared f	Christopher L. Corbitt, PG Terracon Consultants, Inc. 2020 Starita Road, Suite E Charlotte, North Carolina 28206
	Prepared b	Mark J. Denil P.G.

Geophysical Survey Investigations, PLLC

1.0 INTRODUCTION

Geophysical Survey Investigations, PLLC (GSI) conducted an electromagnetic (EM) metal detection survey, ground penetrating radar (GPR) scanning and utility line clearance search for Terracon Consultants, Inc. on July 27 and August 2, 2017 across the accessible portions of the Michael Jones property (Parcel 186) located at 923 US Highway 221 in Rutherford County, North Carolina. The geophysical investigation was performed as part of the North Carolina Department of Transportation (NCDOT) preliminary site assessment for State Project R-2233BB (WBS Element 34400.1.S1) US 221 south of US 74 Business (Charlotte Rd) to north of SR 1366.

The geophysical investigation was conducted to determine if buried, metallic, underground, storage tanks (USTs) are present beneath the proposed Right-of-Way (ROW) and PUE areas of the site. The perimeter of the geophysical survey area (approximate ROW & PUE areas) is shown as a red polygon in the aerial photograph presented in **Figure 1**. The property consists of an abandoned gas station with two dispenser islands surrounded primarily by asphalt pavement and grass surfaces.

Terracon representative Mr. Christopher L. Corbitt, PG provided guidance and site maps to Geophysical Survey Investigations, PLLC personnel prior to conducting the geophysical field work. The geophysical survey area at Parcel 186 has a maximum length and width of 235 feet and 115 feet, respectively. Please note that the ROW and PUE areas at this site were not marked in the field or the survey markers were not visible at the time the geophysical investigation was conducted.

2.0 FIELD METHODOLOGY

The EM investigation was performed across the geophysical survey area (proposed ROW and PUE areas) using a Geonics EM61-MK2A metal detection instrument with a Hemisphere A101 GPS unit. EM61 metal detection data and GPS coordinates were digitally collected in latitude and longitude geodetic format (NAD83) using a Juniper data recorder at approximately 1.0 foot intervals along survey lines spaced approximately five feet apart. The Trackmaker NAV61MK2 software program was used with the data recorder to view the relative positions of the survey lines in real time during data acquisition.

According to the instrument specifications, the EM61-MK2A can detect a metal drum down to a maximum depth of approximately 8 to 10 feet. Objects less than one foot in size can be detected to a maximum depth of 4 or 5 feet. The EM61 and GPS data were downloaded to a computer and processed in the field using the Trackmaker61 and Surfer for Windows software programs. GPS coordinates were converted during data processing to Universal Transverse Mercator (UTM) coordinates (in feet) which are used as location control in this report.

GPR scans were performed along northerly-southerly and easterly-westerly directions spaced primarily 3 to 5 feet apart across selected EM61differential anomalies and areas containing steel reinforced concrete using the Geophysical Survey Systems SIR-3000 unit equipped with a 400 MHz antenna. GPR data were viewed in real time in a continuous mode using a vertical scan of 512 samples, at a sampling rate of 48 scans per second. A 70 MHz high pass filter and an 800 MHz low pass filter were used during data acquisition with the 400 MHz antenna. GPR data were viewed to a maximum investigating depth of approximately 6.0 feet based on an estimated two-way travel time of 8.0 nanoseconds per foot.

Following the UST investigation, areas around the proposed Terracon soil borings were scanned with the GPR unit and a DitchWitch 910 utility locator for buried utility line clearance and no further discussion regarding the utility clearance work will be made in this report. Photographs of the geophysical equipment used for the investigation and of the site are presented in Figure 1.

3.0 <u>DISCUSSION OF RESULTS</u>

Contour plots of the EM61 early time gate results and the EM61 differential results are presented in Figures 2 and 3, respectively. The early time gate results represent the most sensitive component of the EM61 instrument and detect metal objects regardless of size. The early time gate response can be used to delineate metallic conduits or utility lines, small, isolated, metal objects and areas containing insignificant metal debris. The differential results are obtained from the difference between the early time gate channel and late time gate channel of the EM61 instrument. The differential results focus on the larger metal objects such as drums and UST-size objects and ignore the smaller, insignificant, metal objects or debris.

The linear, EM61 early time gate anomalies intersecting UTM coordinates 1351420-E 12857023-N, 1351452-E 12856971-N, 1351458-E 12856960-N, 1351463-E 12856952-N, 1351507-E 12856962-N, and 1351485-E 12856916-N are probably in response to buried utility lines or conduits. The early time gate anomalies at 1351434-E 12857003-N, 1351509-E 12856972-N and 1351499-E 12856894-N are probably in response to UST vent pipes, a metal light pole and a telephone, respectively. GPR scanning suggests the EM61 differential anomalies centered near coordinates 1351449-E, 12857041-N, 1351454-E, 12856929-N and 1351470-E, 12856912-N are in response to the pump dispenser and associated conduits and to the buildings, respectively.

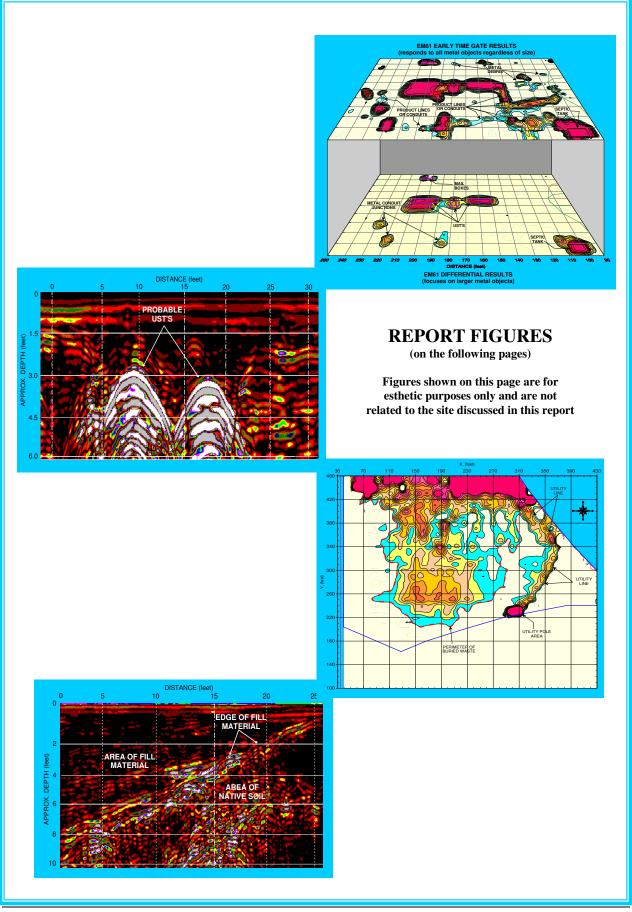
GPR scanning suggests that the large, high amplitude, EM61 differential anomalies centered near UTM coordinates 1351448-E 12857010-N, 1351458-E 12857014-N and 1351468-E 12857014-N are in response to three known USTs referred to in this report as "UST-1, UST-2 and UST-3", respectively. Based on GPR data, UST-1 is approximately 18.5 feet long, 4.5 feet wide and lies 2.5 feet below present grade. UST-2 is approximately 22.5 feet long, 4.5 feet wide and lies 3.3 feet below present grade. UST-3 is approximately 14.0 feet long, 4.0 feet wide and lies 2.3 feet below present grade. Valve covers are present at each of the three USTs which are oriented in a slightly northwesterly-southeasterly direction. A GPR image of the USTs and a photograph showing the locations of the USTs are presented in **Figure 4**.

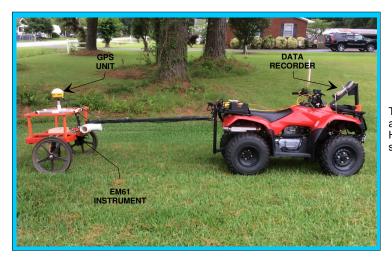
GPR scanning suggests that the large, high amplitude, EM61 differential anomalies centered near UTM coordinates 1351464-E 12856977-N and 1351475-E 12856956-N are in response to two known USTs referred to in this report as "UST-4 and UST-5", respectively. Based on GPR data, UST-4 is approximately 26.0 feet long, 5.0 feet wide and 1.8 feet below present grade. The length of UST-4 suggests a possibility that UST-4 consists of two separate tanks. However, the GPR data suggest only one tank with a set of valve covers located at the southerly end of the UST.

Based on GPR data, UST-5 is approximately 17.5 feet long, 5.0 feet wide and 2.0 feet below present grade. Two UST valve covers are visible at the northerly end of UST-5. USTs - 4 and 5 are oriented in a northwesterly-southeasterly direction. GPR images across UST-4 and UST-5 and a photograph showing the locations of the USTs are presented in **Figure 5**. The foot prints of the five aforementioned USTs were marked in the field using orange marking paint.

Excluding the aforementioned five USTs, the EM61 and GPR investigation suggests the remaining portion of the geophysical survey area (proposed ROW/PUE area) at Parcel 186 does not contain metallic USTs. Please refer to Figures 2 through 5 for additional (detailed) information regarding the geophysical findings at this site. The EM61 results are also shown on NCDOT base maps in **Figures** 6 and 7.

4.0 **SUMMARY & CONCLUSIONS**


Our evaluation of the EM61 and GPR data collected across the geophysical survey area at the Michael Jones property (Parcel 186) located at 923 US Highway 221 in Rutherford County, North Carolina provides the following summary and conclusions:


- The combination of EM61 and GPR surveys provided reliable results for the detection of metallic USTs across the survey area within the depth interval of 0 to 8 feet.
- The linear, EM61 early time gate anomalies intersecting UTM coordinates 1351420-E 12857023-N, 1351452-E 12856971-N, 1351458-E 12856960-N, 1351463-E 12856952-N, 1351507-E 12856962-N, and 1351485-E 12856916-N are probably in response to buried utility lines or conduits.
- GPR scanning suggests that the large, high amplitude, EM61 differential anomalies centered near UTM coordinates 1351448-E 12857010-N, 1351458-E 12857014-N and 1351468-E 12857014-N are in response to three known USTs referred to in this report as "UST-1, UST-2 and UST-3", respectively.
- GPR scanning suggests that the large, high amplitude, EM61 differential anomalies centered near UTM coordinates 1351464-E 12856977-N and 1351475-E 12856956-N are in response to two known USTs referred to in this report as "UST-4 and UST-5", respectively.

 Excluding the aforementioned five USTs, the EM61 and GPR investigation suggests the remaining portion of the geophysical survey area (proposed ROW/PUE area) at Parcel 186 does not contain metallic USTs.

5.0 LIMITATIONS

EM61 and GPR surveys have been performed and this report prepared for Terracon Consultants, Inc. in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the geophysical surveys are non-unique and may not represent actual subsurface conditions. Some of the EM61 and GPR anomalies interpreted as possible/probable USTs, utility lines, conduits, steel reinforced concrete, or miscellaneous, metal debris may be attributed to other surface or subsurface features and/or interference from cultural features.

EM61 METAL DETECTOR

The photograph shows the Geonics EM61-MK2A metal detector, a Hemisphere A101 GPS unit, a Juniper data recorder, and a Honda Recon ATV which were used to conduct the metal detection survey across the Michael Jones property.

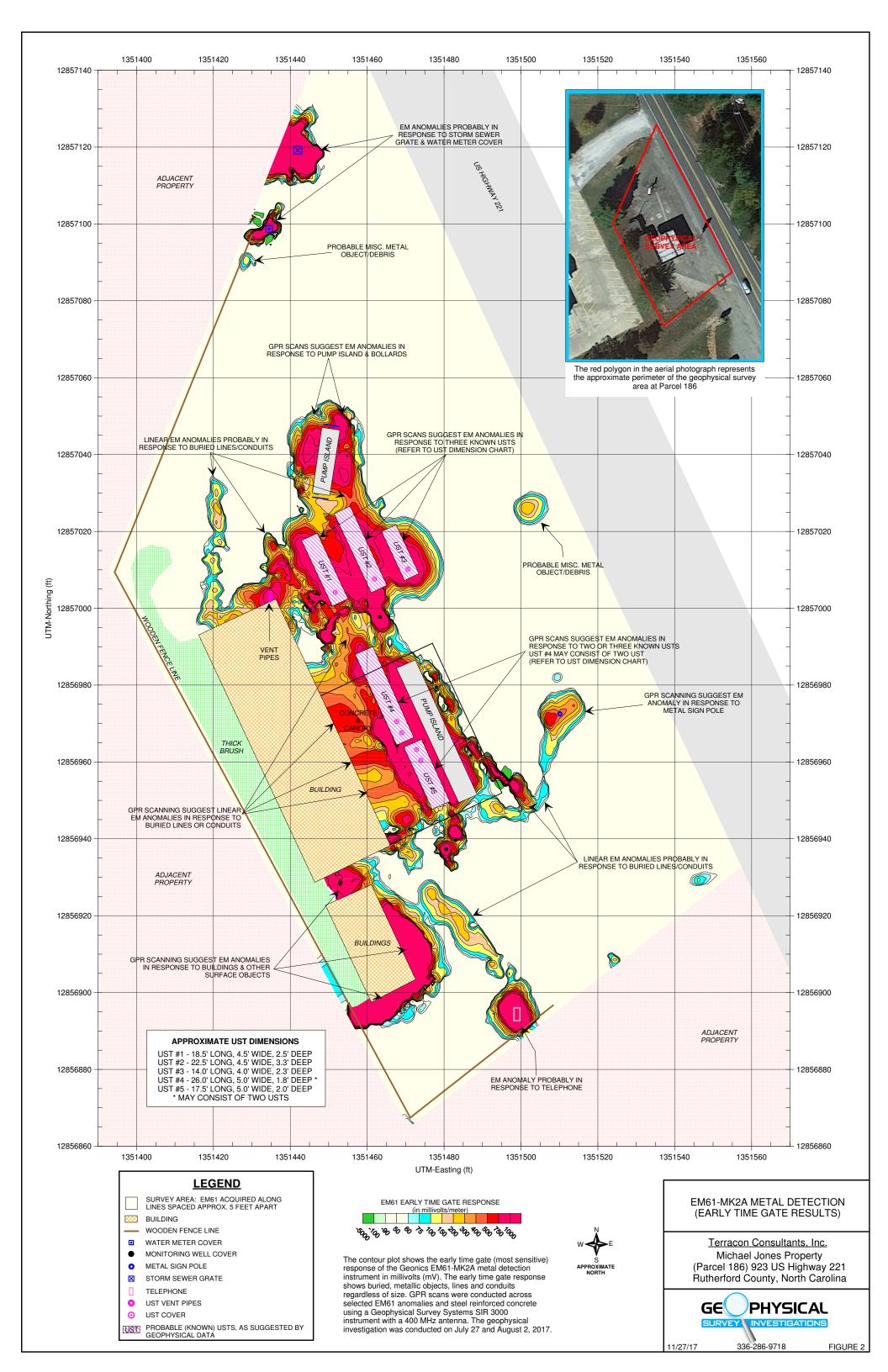
GROUND PENETRATING RADAR UNIT

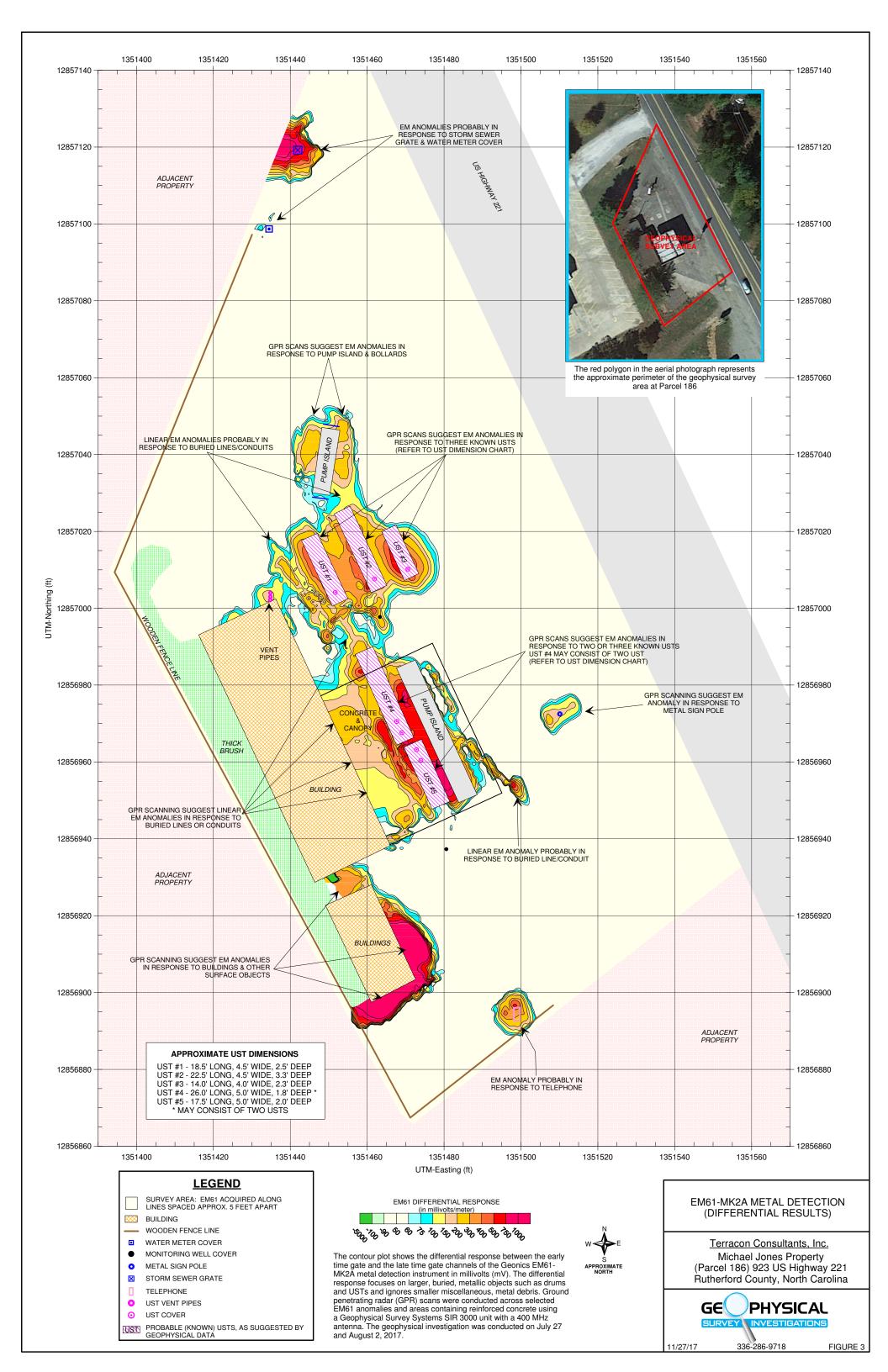
The photograph shows the Geophysical Survey Systems SIR-3000 ground penetrating radar (GPR) unit equiped with a 400 MHz antenna that were used to conduct the GPR scanning across selected portions of the site.

DITCHWITCH UTILITY LOCATOR

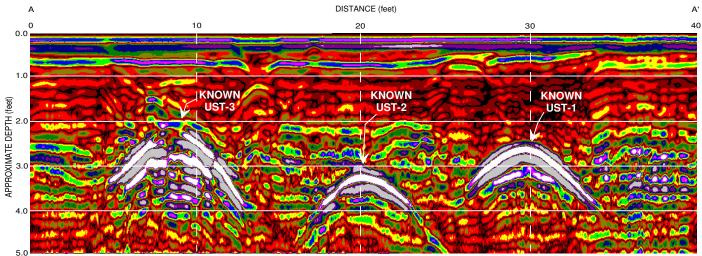
The photograph shows the DitchWitch 910 utility locator which was used to detect buried lines across the proposed boring locations.

GEOPHYSICAL SURVEY AREA

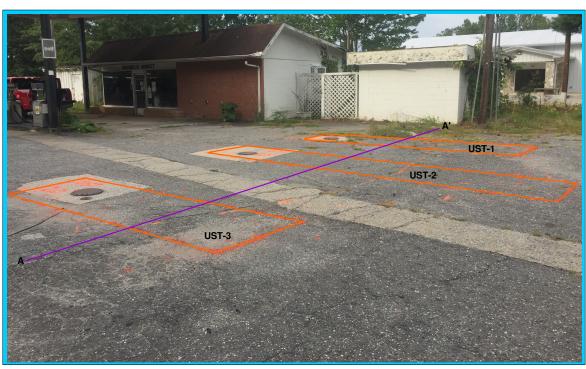

The red polygon in the aerial photograph represents the approximate perimeter of the geophysical survey area at the Michael Jones property (Parcel 186). The geophysical investigation was conducted on July 27 and August 2, 2017.



Terracon Consultants, Inc.
Michael Jones Property
(Parcel 186) 923 US Highway 221
Rutherford County, North Carolina

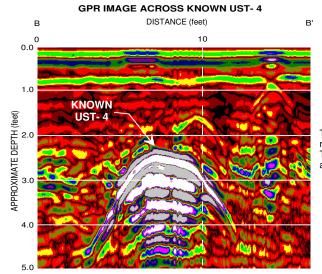

GEOPHYSICAL EQUIPMENT & SITE PHOTOGRAPHS

11/27/17 FIGURE 1



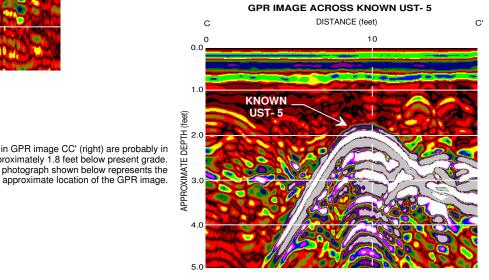
GPR IMAGE ACROSS KNOWN USTS-1, 2 & 3

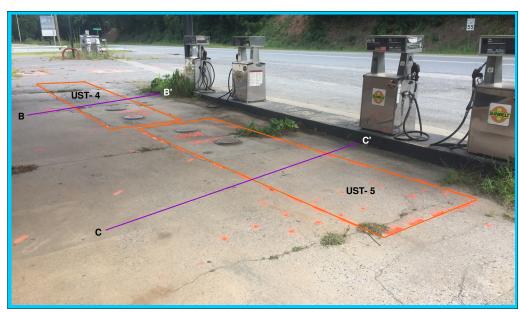
The three high amplitude, hyperbolic reflections in GPR image AA' are probably in response to known USTs -1, 2 and 3 buried approximately 2.5 feet, 3.3 feet and 2.0 feet below present grade, respectively. The purple line labeled AA' in the photograph shown below represents the approximate location of the GPR image.


The orange rectangles in the photograph represent the approximate foot prints of known USTS - 1, 2 and 3 that were detected by the geophysical investigation. Based on the GPR data, UST-1 is approximately 18.5 feet long, 4.5 feet wide and buried 2.5 feet below present grade. UST-2 is approximately 22.5 feet long, 4.5 feet wide and buried 3.3 feet below present grade. UST-3 is approximately 14.0 feet long, 4.0 feet wide and buried 2.0 feet below present grade. The solid purple line labeled AA' in the photograph represents the approximate location of GPR image AA' shown above. The photograph is viewed in a southwesterly direction.

Terracon Consultants, Inc.
Michael Jones Property
(Parcel 186) 923 US Highway 221
Rutherford County, North Carolina

GPR IMAGES & PHOTOGRAPH ACROSS KNOWN USTS -1, 2 & 3

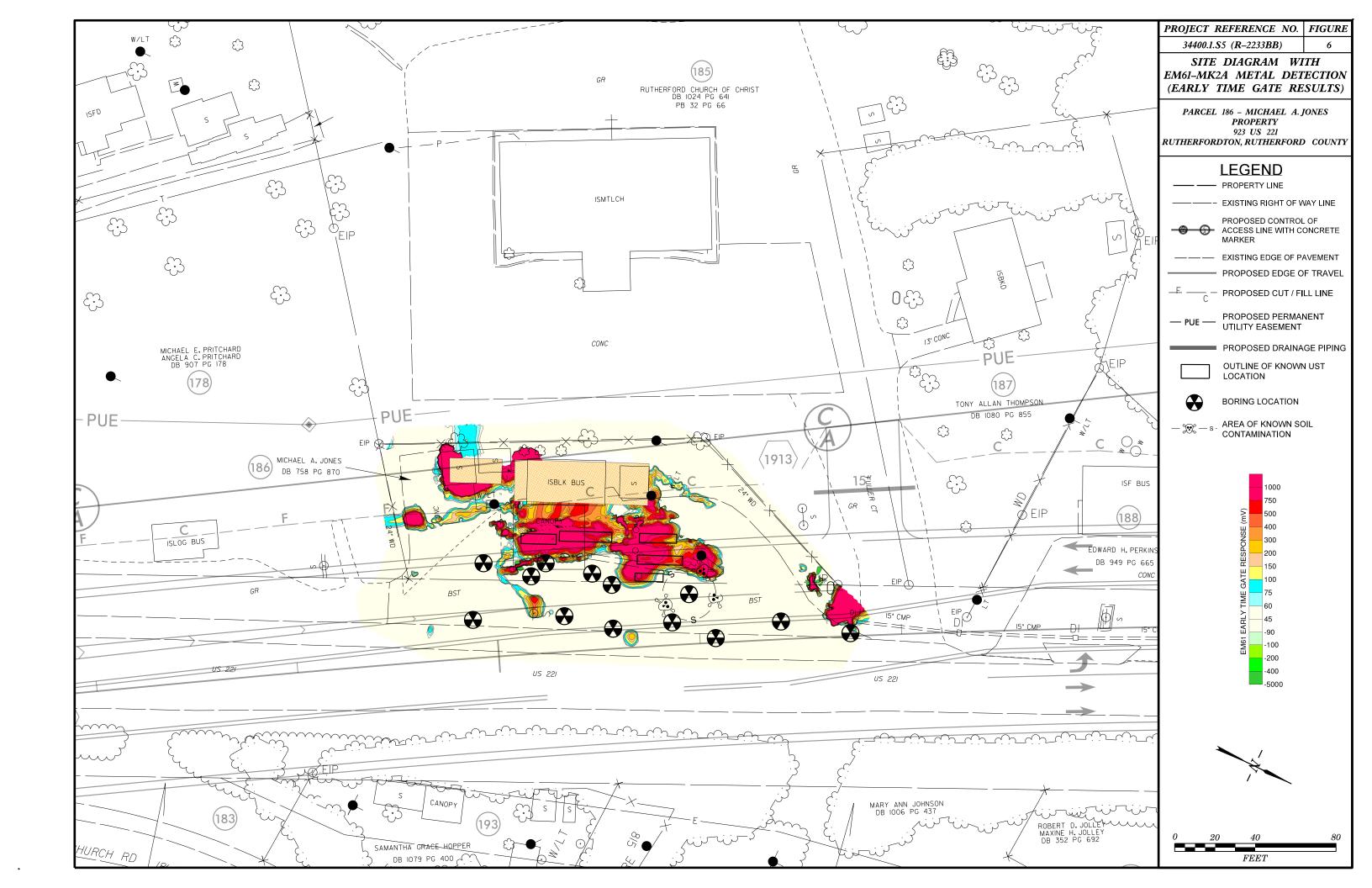

11/27/17 FIGURE 4

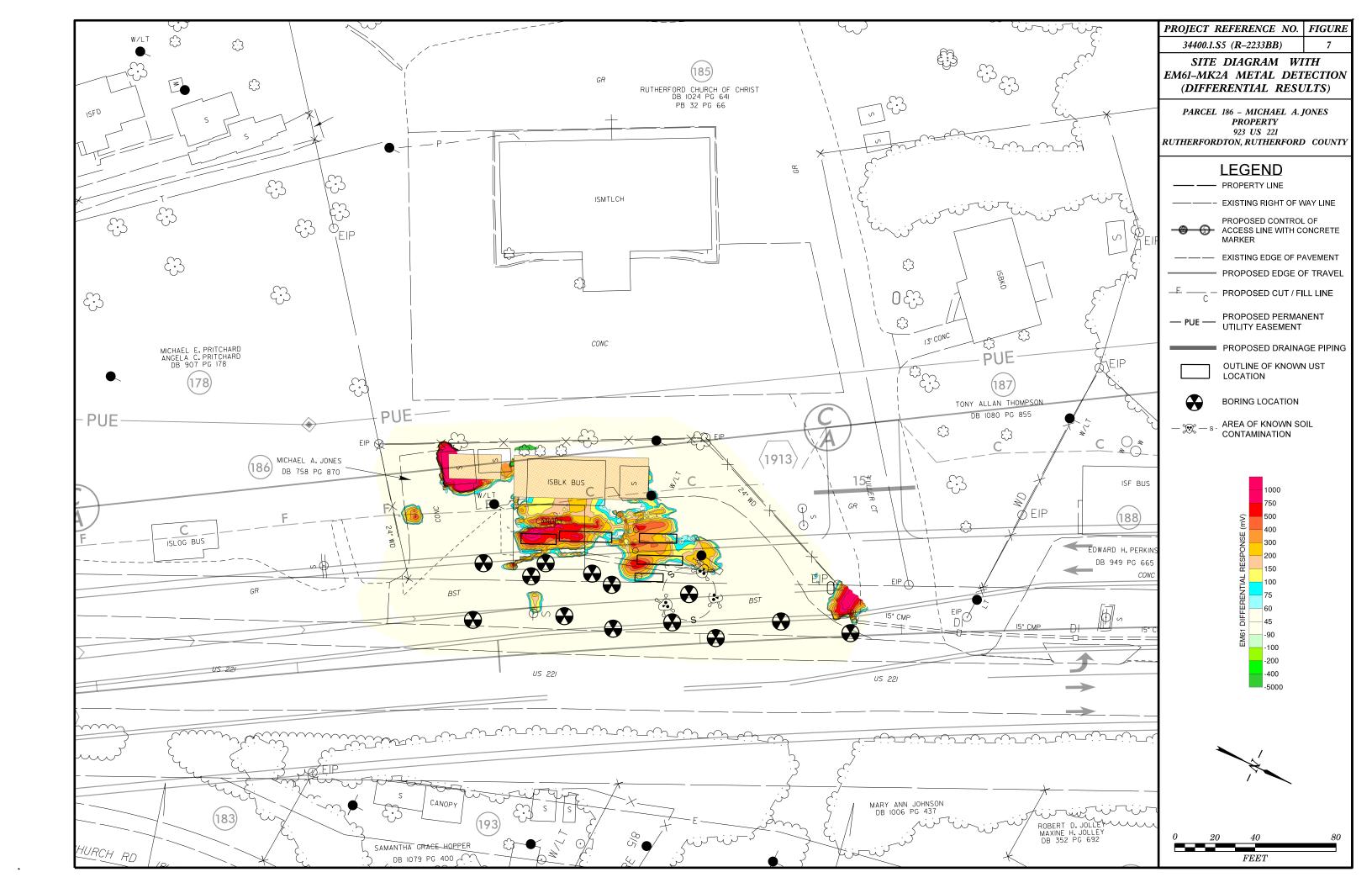


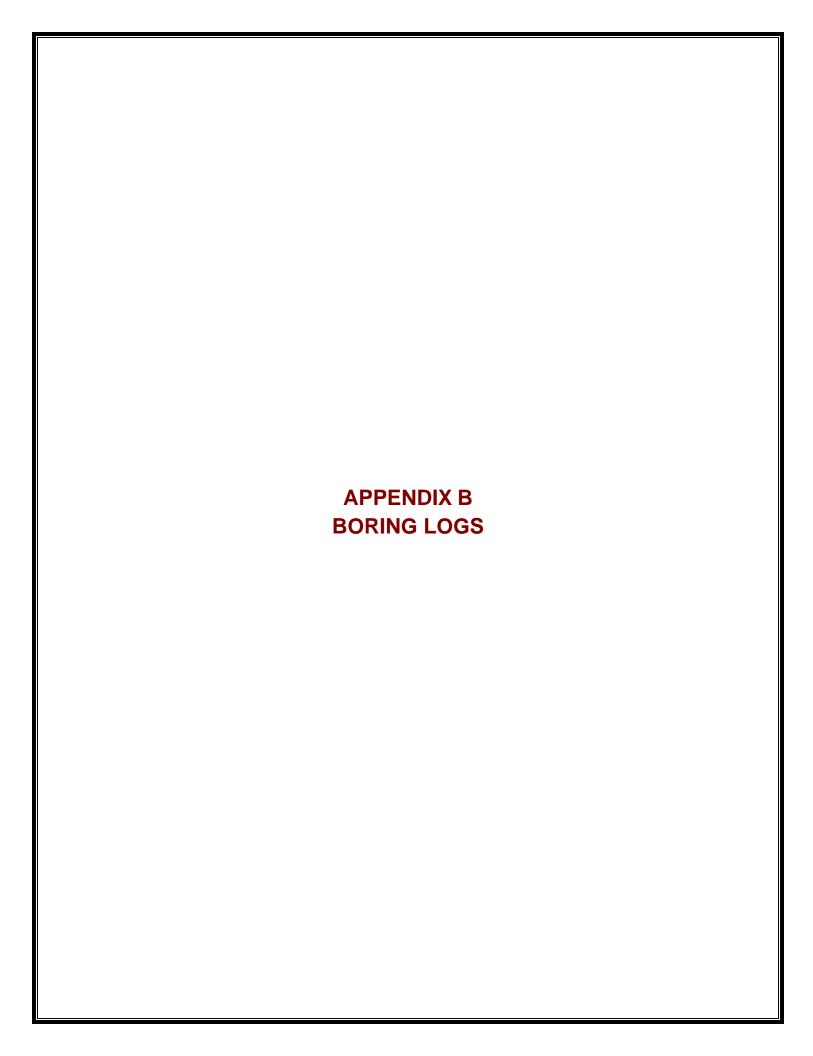
The high amplitude, hyperbolic reflections in GPR image BB' (left) are probably in response to known UST - 4 that lies approximately 2.3 feet below present grade. The purple line labeled BB' in the photograph shown below represents the approximate location of the GPR image.

The high amplitude, hyperbolic reflections in GPR image CC' (right) are probably in response to known UST - 5 that lies approximately 1.8 feet below present grade.

The purple line labeled CC' in the photograph shown below represents the


The orange rectangles in the photograph represent the approximate foot prints of known USTS - 4 and 5 that were detected by the geophysical investigation. Based on the GPR data, UST- 4 is approximately 26.0 feet long, 5.0 feet wide and buried 2.3 feet below present grade. UST- 5 is approximately 17.5 feet long, 5.0 feet wide and buried 1.8 feet below present grade. The solid purple lines labeled BB' and CC' in the photograph represent the approximate locations of GPR images BB' and CC' shown above. The photograph is viewed in a northerly direction.




Terracon Consultants, Inc.
Michael Jones Property
(Parcel 186) 923 US Highway 221
Rutherford County, North Carolina

GPR IMAGES & PHOTOGRAPH ACROSS KNOWN USTS - 4 & 5

11/27/17 FIGURE 5

				SOIL	BORING L	OG
PRO IECT NA	ΔME: Parce	l 186 -Michs	ael lones	SOIL BORING I.D. B-186-1		
PROJECT NAME: Parcel 186 -Michael Jones PROJECT NO. 71177323						DATE(S) DRILLED: August 16, 2017
		-				(2)
PROJECT LO	OCATION:	923 US 221				DRILLING CONTR: Innovative Environmental Technologies
		Rutherfordto	on, North Caroli	DRILL METHOD: Direct Push		
				BORING DIAMETER: 2 inches		
CLIENT: Nort	th Carolina	Department	of Transportation	SAMPLING METHOD/INTERVAL: GP (5-Foot)		
LOGGED BY:		hinery			REMARKS: BGS = below grade surface	
DESCRIPTIV	E LOG					
SAMPLE	SAMPLE	BLOWS	PID/FID	GRAPHIC		
INTERVAL	REC. (IN.)	PER 6"	(ppm)	COLUMN	(FT)	DESCRIPTION OF SOIL
					0.0	
					0.5	
			-		1.0	
					1.5 2.0	
					2.5	
					3.0	
					3.5	
					4.0	
					4.5	brown/red sandy clay
0-5.0		NA	6.0		5.0	, ,
					5.5	
					6.0	
					6.5	
					7.0	
					7.5	
					8.0	
					8.5	
					9.0	
5.0-10.0		NA	32.1		9.5	
3.0-10.0		INA	32.1		10.5	
					11.0	
					11.5	
					12.0	
					15.5	tan/brown/red sandy clay
					13.0	
					13.5	
					14.0	
					14.5	
10.0-15.0		NA	78.7		15.0	BORING TERMINATED AT 15 FEET BGS
					15.5	
			-		16.0	
DRILLING METHO AR - AIR ROTAR' CFA - CONTINUC DC - DRIVEN CA: HA - HAND AUGE HSA - HOLLOW S MD - MUD DRILLI RC - ROCK CORI WR - WATER RO	Y DUS FLIGHT A SING ER STEM AUGER ING ING	UGER \$	SAMPLING METHO SS - SPLIT SPOON ST - SHELBY TUBE GP - GEOPROBE - Sample collected I ND = <1 ppm	≣		Terracon

				SOII	BORING L	OG
PROJECT NA	MF: Parce	l 186 -Micha	el .lones	00.2	DOM:NO L	SOIL BORING I.D. B-186-2
PROJECT NO			201 001100			DATE(S) DRILLED: August 16, 2017
						,
PROJECT LO	CATION:	923 US 221				DRILLING CONTR: Innovative Environmental Technologies
		Rutherfordto	on, North Carol	ina		DRILL METHOD: Direct Push
						BORING DIAMETER: 2 inches
CLIENT: Nort	h Carolina I	Department	of Transportati	ion		SAMPLING METHOD/INTERVAL: GP (5-Foot)
LOGGED BY		hinery				REMARKS: BGS = below grade surface
DESCRIPTIV			1			
SAMPLE	SAMPLE	BLOWS	PID/FID	GRAPHIC	DEPTH	DECORPTION OF COLL
INTERVAL	REC. (IN.)	PER 6"	(ppm)	COLUMN	(FT)	DESCRIPTION OF SOIL
					0.0	
					0.5 1.0	
					1.5	
					2.0	
					2.5	
					3.0	
	i				3.5	
					4.0	
					4.5	brown/tan sandy clay
0-5.0		NA	1.8		5.0	
					5.5	
					6.0	
					6.5	
					7.0	
					7.5	
					8.0	
					8.5	
					9.0 9.5	
5.0-10.0		NA	1.6		10.0	
0.0 .0.0					10.5	
					11.0	
					11.5	
					12.0	
					15.5	dark brown/black sandy clay
					13.0	
					13.5	
					14.0	
10.0.45.0		NI A	1.4		14.5	DODING TERMINATED AT 45 FEET DOG
10.0-15.0		NA	1.4		15.0	BORING TERMINATED AT 15 FEET BGS
					15.5 16.0	
					10.0	
DRILLING METH	ons					
DRILLING ME I HI AR - AIR ROTAR' CFA - CONTINUO DC - DRIVEN CA HA - HAND AUGE HSA - HOLLOW S MD - MUD DRILL RC - ROCK CORI WR - WATER RO	Y DUS FLIGHT AU SING ER STEM AUGER ING NG	JGER \$	SAMPLING METHO SS - SPLIT SPOON ST - SHELBY TUB GP - GEOPROBE - Sample collected ND = <1 ppm	E		Terracon

				SOIL	BORING L	OG
PRO JECT N	IAME: Parce	el 186 -Micha	el lones	COIL	DOMINO L	SOIL BORING I.D. B-186-3
PROJECT N			iei Jones			DATE(S) DRILLED: August 16, 2017
PROJECT L	OCATION:	923 US 221				DRILLING CONTR: Innovative Environmental Technologies
			n, North Caro	lina		DRILL METHOD: Direct Push
			,			BORING DIAMETER: 2 inches
CLIENT: No	rth Carolina	Department	of Transportat	ion		SAMPLING METHOD/INTERVAL: GP (5-Foot)
LOGGED BY						REMARKS: BGS = below grade surface
DESCRIPTIV	VE LOG					
SAMPLE	SAMPLE	BLOWS	PID/FID	GRAPHIC	DEPTH	
INTERVAL	REC. (IN.)	PER 6"	(ppm)	COLUMN	(FT)	DESCRIPTION OF SOIL
					0.0	
					0.5	
					1.0	
					1.5	
					2.0	
					2.5	
					3.0	
	1				3.5	
	 				4.0	
255		114	4		4.5	dark brown, chalky white sandy clay
0-5.0		NA	1.7		5.0	
					5.5	
					6.0	
					6.5	
					7.0 7.5	
	1				8.0	
					8.5	
					9.0	
					9.5	
5.0-10.0		NA	1.4		10.0	
					10.5	
					11.0	
					11.5	
					12.0	
					15.5	
					13.0	
					13.5	
					14.0	
10 0 15 0	+	NIA	4 7		14.5	DODING TERMINATED AT 15 TOTAL
10.0-15.0		NA	1.7		15.0	BORING TERMINATED AT 15 FEET BGS
	+				15.5 16.0	
					16.0	
	+					
	1					
	1					
DRILLING METH AR - AIR ROTAF CFA - CONTINU DC - DRIVEN CA HA - HAND AUG	RY IOUS FLIGHT A ASING GER	NUGER S	SAMPLING METHO SS - SPLIT SPOON ST - SHELBY TUB GP - GEOPROBE	l E		Terracon
HSA - HOLLOW MD - MUD DRIL RC - ROCK COF WR - WATER R	LING RING		- Sample collected ND = <1 ppm	for analysis		iici i acui i

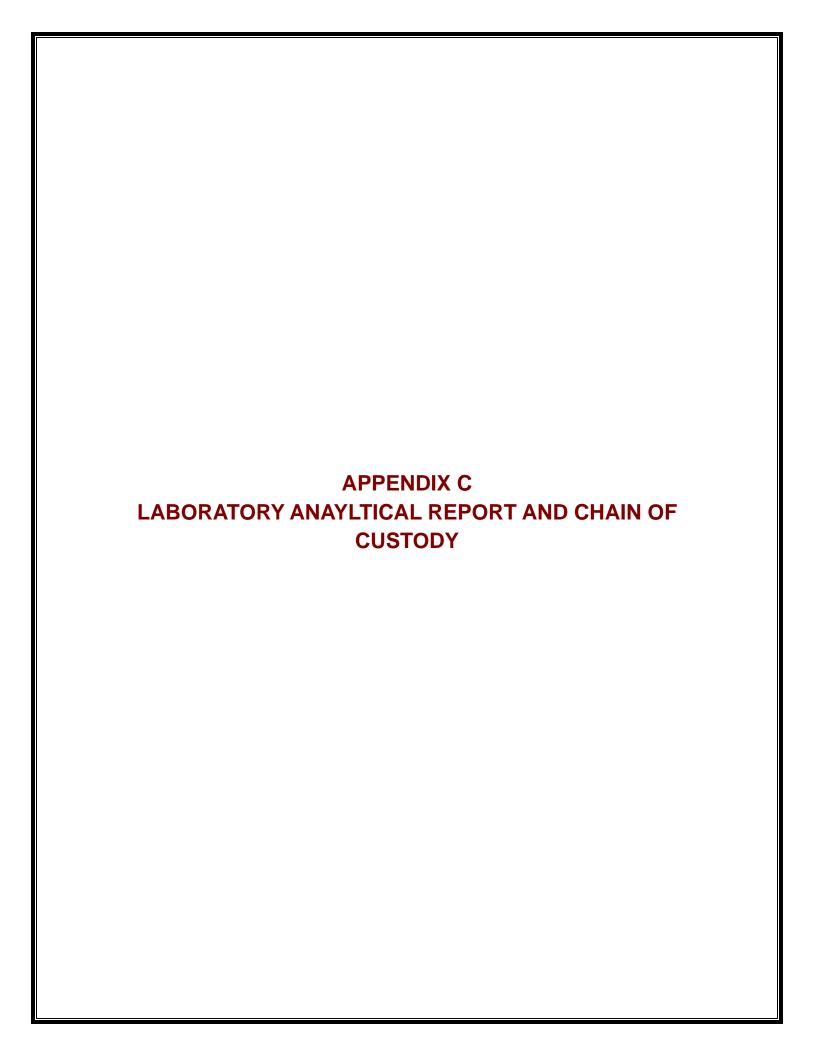
				2011	BORING I	LOG
PROJECT NA	ME. Dore	ol 106 Miol-	al lanca	3011		
PROJECT NO			iei Junes			SOIL BORING I.D. B-186-4 DATE(S) DRILLED: October 26, 2017
. NOOLOT NO	J. 111113					5.11 E(0) BINELED. GOIODGI 20, 2011
PROJECT LC	CATION:	923 LIS 221				DRILLING CONTR: Environmental Drilling and Probing Service
. NOULOT LC	ZOTATION.		n, North Carol	ina		DRILL METHOD: Direct Push
		Rutherfordic	ii, Nortii Caroi	IIIa		BORING DIAMETER: 2 inches
CLIENT: Nort	h Carolina	Denartment	of Transportat	ion		SAMPLING METHOD/INTERVAL: GP (5-Foot)
LOGGED BY:			or Transportat	1011		REMARKS: BGS = below grade surface
DESCRIPTIV				Tellin witter 200 Solow grade carried		
SAMPLE	SAMPLE	BLOWS	PID/FID	GRAPHIC	DEPTH	
INTERVAL	REC. (IN.)	PER 6"	(ppm)	COLUMN		DESCRIPTION OF SOIL
					0.0	
					0.5	
					1.0	
					1.5	
					2.0	
					2.5	
					3.0	
					3.5	
					4.0	
					4.5	orange/brown sandy clay
0-5.0		NA	0.0		5.0	
					5.5	
					6.0	
					6.5	
					7.0 7.5	
					8.0	
					8.5	
					9.0	
					9.5	
5.0-10.0		NA	0.0		10.0	
					10.5	
					11.0	
					11.5	
					12.0	
					15.5	
					13.0	
					13.5	
					14.0	
10.0-15.0	<u> </u>	NA	0.0		14.5	BORING TERMINATED AT 15 FEET BGS
10.0-10.0		INA	0.0		15.0 15.5	DONING LENWINATED AT 13 FEET BGS
					16.0	
					10.0	
DRILLING METHO) DS					
DRILLING METHODS						Terracon

LOGGED BY:			of Transportation)TI			SAMPLING METHOD/INTERVAL: GP (5-Foot) REMARKS: BGS = below grade surface
DESCRIPTIV		ninery					REMARKS: BGS = below grade surface
SAMPLE	SAMPLE	BLOWS	PID/FID	GRA	PHIC	DEPTH	
INTERVAL	REC. (IN.)	PER 6"	(ppm)	COL	UMN	(FT)	DESCRIPTION OF SOIL
						0.0	
						0.5	
						1.0	
						1.5 2.0	1
						2.5	1
						3.0	1
						3.5]
						4.0	1
0.5.0		NIA.	0.0			4.5	orange/brown sandy clay
0-5.0		NA	0.0			5.0 5.5	1
						6.0	1
						6.5	1
						7.0	
						7.5	
						8.0	{
						8.5 9.0	
						9.5	1
5.0-10.0		NA	0.0			10.0	
						10.5	
						11.0	
						11.5 12.0	1
						15.5	light brown silty clay
						13.0	, ,
						13.5	
						14.0	
10.0-15.0		NA	0.0			14.5	DODING TERMINATED AT 45 FEET DOG
10.0-15.0		INA	0.0			15.0 15.5	BORING TERMINATED AT 15 FEET BGS
						16.0	1
]
							1
							1
							1
						+	1
]
							-
							1
							<u> </u>
DRILLING METHODS AR - AIR ROTARY SAMPLING METHODS AR - AIR ROTARY SS - SPLIT SPOON CFA - CONTINUOUS FLIGHT AUGER SS - SPLIT SPOON DC - DRIVEN CASING ST - SHELBY TUBE HA - HAND AUGER GP - GEOPROBE HSA - HOLLOW STEM AUGER * - Sample collected for analysis MD - MUD DRILLING ND = <1 ppm							Terracon

LOGGED BY	: S. Alex C		of Transportati				SAMPLING METHOD/INTERVAL: GP (5-Foot) REMARKS: BGS = below grade surface
DESCRIPTIV				·			
SAMPLE	SAMPLE	BLOWS	PID/FID	GRAPH	IC DE	PTH	
INTERVAL	REC. (IN.)	PER 6"	(ppm)	COLUN		FT)	DESCRIPTION OF SOIL
).0).5	
						.0	
						.5	
					2	2.0	
					2	2.5	
						3.0	
						3.5	
-						l.0 l.5	dark brown sandy clay
0-5.0		NA	0.0			5.0	dark brown sandy day
						5.5	
					6	6.0	
						5.5	
						'.0 '.5	
						.5 3.0	
						3.5	
					9	0.0	
						9.5	
5.0-10.0		NA	4.3			0.0	
						0.5 1.0	
						1.5	
						2.0	
					15	5.5	brown/orange sandy clay
						3.0	
						3.5 4.0	
						4.0 4.5	
10.0-15.0		NA	11.9			5.0	BORING TERMINATED AT 15 FEET BGS
					15	5.5	
					10	6.0	
DRILLING METHODS							Terracon

	=					
PROJECT LO			on, North Caroli	na		DRILLING CONTR: Environmental Drilling and Probing Service DRILL METHOD: Direct Push
		ranonorac	ni, i torui Oaron	Πα		BORING DIAMETER: 2 inches
			of Transportati	on		SAMPLING METHOD/INTERVAL: GP (5-Foot)
LOGGED BY		hinery				REMARKS: BGS = below grade surface
DESCRIPTIV SAMPLE	SAMPLE	BLOWS	PID/FID	GRAPHIC	DEPT	
INTERVAL	REC. (IN.)	PER 6"	(ppm)	COLUMN		DESCRIPTION OF SOIL
					0.0	
					0.5	4
					1.0	4
					2.0	1
					2.5	1
					3.0	4
					3.5 4.0	-
					4.0	orange/tan sandy clay
0-5.0		NA	2.1		5.0	Grango, tan banay olay
					5.5]
					6.0	4
					6.5 7.0	1
					7.5	1
					8.0]
					8.5	4
					9.0 9.5	4
5.0-10.0		NA	1.9		10.0	†
					10.5	
					11.0	
					11.5	
					15.5	- 1
					13.0	-
					13.5	-1
					14.0	-
10.0-15.0		NA	11.2		14.5	-
					15.5	
					16.0	4
						-
						1
						1
	-					4
						1
						1
]
DDILLING MET	ODS					
DRILLING METH AR - AIR ROTAR CFA - CONTINUO	Υ	UGER S	SAMPLING METHO SS - SPLIT SPOON	<u>DS</u>		
DC - DRIVEN CA HA - HAND AUG	SING		ST - SPEIT SPOON ST - SHELBY TUB! GP - GEOPROBE	1		75
HSA - HOLLOW	STEM AUGER		- Sample collected	for analysis		lerracon
RC - ROCK COR WR - WATER RC			ND = <1 ppm			_ _

PROJECT LO	OCATION:	923 US 221				1	DRILLING CONTR: Environmental Drilling and Probing Service
		Rutherfordto	on, North Caroli	na			DRILL METHOD: Direct Push
A=							BORING DIAMETER: 2 inches
CLIENT: Nor			of Transportation	on		_	SAMPLING METHOD/INTERVAL: GP (5-Foot) REMARKS: BGS = below grade surface
DESCRIPTIV		ппету			INCINIANNO. DOS – Delow grade surface		
SAMPLE	SAMPLE	BLOWS	PID/FID	GRAPH	IC DE	PTH	
INTERVAL	REC. (IN.)	PER 6"	(ppm)	COLUM	IN (F	-T)	DESCRIPTION OF SOIL
						.0	
						.5	
						.5	
					2	.0	
						.5	
						.0	
						.0	
						.5	orange/tan sandy clay
0-5.0		NA	0.7			.0	
						.5	
						.5	
						.0	
						.5	
						.0	
						.5	
						.5	
5.0-10.0		NA	0.3			0.0	
						0.5	
						1.0	
						2.0	
						5.5	brown/orange sandy clay
					10	3.0	
						3.5	
						4.0 4.5	
10.0-15.0		NA	0.2			5.0	BORING TERMINATED AT 15 FEET BGS
						5.5	
					16	6.6	
					-	_	
	1						
						_	
	 						
DRILLING METH	ODS						
AR - AIR ROTAR CFA - CONTINUO	Υ	.UGER S	SAMPLING METHOL SS - SPLIT SPOON	<u>os</u>			
DC - DRIVEN CA HA - HAND AUGI	SING		ST - SHELBY TUBE GP - GEOPROBE				Terracon
HSA - HOLLOW : MD - MUD DRILL	ING		- Sample collected f	or analysis			IIGUOCON
RC - ROCK COR WR - WATER RC			ND = <1 ppm				


10.0-15.0		NA	0.0		_	5.5	BORING TERMINATED AT 15 FEET BGS
10.0-15.0		NA	0.0		_	5.0	BORING TERMINATED AT 15 FEET BGS
					_	4.5	
						3.5 4.0	
						3.0	
					1	5.5	light brown sandy clay
						2.0	
						1.0	
						0.5	
5.0-10.0		NA	0.0			0.0	
						9.0 9.5	
						8.5 9.0	
						8.0	
						7.5	
	<u></u>					7.0	
						6.0 6.5	
						5.5 6.0	
0-5.0		NA	0.0			5.0	
						4.5	dark brown sandy clay
						4.0	
						3.0 3.5	
						2.5	
						2.0	
						1.5	
						0.5 1.0	
						0.0	
INTERVAL	REC. (IN.)	PER 6"	(ppm)	COLUI		(FT)	DESCRIPTION OF SOIL
SAMPLE	SAMPLE	BLOWS	PID/FID	GRAPI	HIC DI	EPTH	
LOGGED BY DESCRIPTIVE		ninery					REMARKS: BGS = below grade surface
			of Transportation	on			SAMPLING METHOD/INTERVAL: GP (5-Foot)
							BORING DIAMETER: 2 inches
			on, North Carolin	na			DRILL METHOD: Direct Push
PROJECT LO	OCATION.	923 US 221					DRILLING CONTR: Environmental Drilling and Probing Service
PROJECT N	O. 7117732	23					DATE(S) DRILLED: October 26, 2017
		el 186 -Micha	el Jones				SOIL BORING I.D. B-186-9
DDO IECT N.				SC	IL BORII	NG I	_OG

PROJECT NA	ME: Parco	ol 186 -Micha	ael lones	SOĪL	BORING	LOG SOIL BORING I.D. B-186-10
PROJECT NO			201 JUNES			DATE(S) DRILLED: October 26, 2017
. NOOLOT IN	J. 1111132					5.112(3) DIVILLED. GOLODGI 20, 2011
PROJECT LO	OCATION:	923 US 221	1			DRILLING CONTR: Environmental Drilling and Probing Service
		Rutherfordto	on, North Carol	ina		DRILL METHOD: Direct Push
						BORING DIAMETER: 2 inches
			of Transportati	on		SAMPLING METHOD/INTERVAL: GP (5-Foot)
LOGGED BY		hinery				REMARKS: BGS = below grade surface
DESCRIPTIV	E LOG					
SAMPLE	SAMPLE	BLOWS	PID/FID	GRAPHIC		
INTERVAL	REC. (IN.)	PER 6"	(ppm)	COLUMN	(FT)	DESCRIPTION OF SOIL
					0.0	
			1		0.5 1.0	
					1.5	
					2.0	brown sandy clay
					2.5	brown Sandy Gay
					3.0	
					3.5	
					4.0	
					4.5	
0-5.0		NA	0.0		5.0	
					5.5	
					6.0	
					6.5	
					7.0	
					7.5	dark brown sandy clay
					8.0	
					8.5	
-					9.0 9.5	
5.0-10.0		NA	0.0		10.0	
3.0 10.0		1471	0.0		10.5	
					11.0	
					11.5	
					12.0	
					15.5	brown/gray sandy clay
					13.0	
					13.5	
					14.0	
40.0.15.6		N/ 0	0.0		14.5	
10.0-15.0		NA	0.0		15.0	BORING TERMINATED AT 15 FEET BGS
-					15.5 16.0	
					10.0	
					-	
DDII I WIG	000					
DRILLING METH AR - AIR ROTAR' CFA - CONTINUC DC - DRIVEN CA HA - HAND AUGE HSA - HOLLOW S MD - MUD DRILL RC - ROCK CORI WR - WATER RO	Y DUS FLIGHT AI SING ER STEM AUGER ING	UGER :	SAMPLING METHO SS - SPLIT SPOON ST - SHELBY TUB GP - GEOPROBE ' - Sample collected ND = <1 ppm	E		Terracon

				001	L DODING	100
DDO ISOT :::	NAE 5	1400 14:	at take	SOI	L BORING	
PROJECT NO			iel Jones			SOIL BORING I.D. B-186-11 DATE(S) DRILLED: October 26, 2017
FROJECTIVO	J. 711773.	23				DATE(3) DIVIELED. OCIODEI 20, 2017
PROJECT LO	CATION:	923 US 221				DRILLING CONTR: Environmental Drilling and Probing Service
			on, North Carol	ina		DRILL METHOD: Direct Push
						BORING DIAMETER: 2 inches
CLIENT: Nort	h Carolina	Department	of Transportat	ion		SAMPLING METHOD/INTERVAL: GP (5-Foot)
LOGGED BY:		Chinery		REMARKS: BGS = below grade surface		
DESCRIPTIV	E LOG		7	1		
SAMPLE	SAMPLE	BLOWS	PID/FID	GRAPHIC		
INTERVAL	REC. (IN.)	PER 6"	(ppm)	COLUMN		DESCRIPTION OF SOIL
					0.0	
					0.5	
					1.0	
					2.0	
					2.5	
					3.0	
					3.5	
					4.0	
					4.5	
0-5.0		NA	0.0		5.0	
					5.5	harrier farm
					6.0	brown/gray sandy clay
					7.0	
					7.5	
					8.0	
					8.5	
					9.0	
					9.5	
5.0-10.0		NA	0.0		10.0	
					10.5	
					11.0 11.5	
					12.0	
					15.5	
					13.0	
					13.5	
					14.0	
					14.5	
10.0-15.0		NA	0.0		15.0	BORING TERMINATED AT 15 FEET BGS
					15.5	
					16.0	
<u> </u>						
DRILLING METHO						
AR - AIR ROTAR' CFA - CONTINUC DC - DRIVEN CA: HA - HAND AUGE HSA - HOLLOW S MD - MUD DRILL! RC - ROCK CORI WR - WATER RO	Y DUS FLIGHT A SING ER STEM AUGER ING ING	.UGER \$	SAMPLING METHO SS - SPLIT SPOON ST - SHELBY TUB GP - GEOPROBE - Sample collected ND = <1 ppm	E		lerracon

				001	L DODING	100
DDC IECT III	ANAE: D	1400 14:1	al lance	SOI	L BORING	
PROJECT NO			ael Jones			SOIL BORING I.D. B-186-12 DATE(S) DRILLED: October 26, 2017
FROJECTIVO	J. 711773.	23				DATE(3) DIVIELED. OCIODEI 20, 2017
PROJECT LO	CATION:	923 US 221				DRILLING CONTR: Environmental Drilling and Probing Service
			on, North Carol	ina		DRILL METHOD: Direct Push
						BORING DIAMETER: 2 inches
CLIENT: Nort	th Carolina	Department	of Transportat	ion		SAMPLING METHOD/INTERVAL: GP (5-Foot)
LOGGED BY:		Chinery			REMARKS: BGS = below grade surface	
DESCRIPTIV	E LOG			1		
SAMPLE	SAMPLE	BLOWS	PID/FID	GRAPHIC		
INTERVAL	REC. (IN.)	PER 6"	(ppm)	COLUMN		DESCRIPTION OF SOIL
					0.0	
					1.0	
					1.5	
					2.0	
					2.5	
					3.0	
					3.5	
					4.0	
0.5.0		NA	0.2		4.5	
0-5.0		NA	0.2		5.0 5.5	
					6.0	brown/gray sandy clay
					6.5	Biomingray carray stay
					7.0	
					7.5	
					8.0	
					8.5	
					9.0	
5.0-10.0		NA	0.2		9.5 10.0	
0.0 10.0		14/1	0.2		10.5	
					11.0	
					11.5	
					12.0	
					15.5	
					13.0	
					13.5 14.0	
					14.0	
10.0-15.0		NA	0.2		15.0	BORING TERMINATED AT 15 FEET BGS
					15.5	
					16.0	
DRILLING METH	ODS					
AR - AIR ROTAR' CFA - CONTINUC DC - DRIVEN CA: HA - HAND AUGE HSA - HOLLOW S MD - MUD DRILL! RC - ROCK CORI WR - WATER RO	Y DUS FLIGHT A SING ER STEM AUGER ING ING	.UGER \$	SAMPLING METHO SS - SPLIT SPOON ST - SHELBY TUB GP - GEOPROBE - Sample collected ND = <1 ppm	E		lerracon

				001	L DODING	100
DDC ICCT !!!	ME B	1400 121	al larre	SOI	L BORING	
PROJECT NO			ael Jones			SOIL BORING I.D. B-186-13 DATE(S) DRILLED: October 26, 2017
FROSECTING	J. 111113.	23				DATE(3) DIVILLED. OCIODEI 20, 2017
PROJECT LC	CATION:	923 US 221				DRILLING CONTR: Environmental Drilling and Probing Service
			on, North Carol	ina		DRILL METHOD: Direct Push
						BORING DIAMETER: 2 inches
CLIENT: Nort	h Carolina	Department	of Transportat	ion		SAMPLING METHOD/INTERVAL: GP (5-Foot)
LOGGED BY:		hinery			REMARKS: BGS = below grade surface	
DESCRIPTIV	E LOG			1		
SAMPLE	SAMPLE	BLOWS	PID/FID	GRAPHIC		
INTERVAL	REC. (IN.)	PER 6"	(ppm)	COLUMN		DESCRIPTION OF SOIL
					0.0	
					0.5 1.0	
					1.5	
					2.0	
					2.5	
					3.0	
					3.5	
					4.0	
2.5.0		110	0.4		4.5	
0-5.0		NA	0.1		5.0 5.5	
					6.0	brown/gray sandy clay
					6.5	brown gray sarruy ciay
					7.0	
					7.5	
					8.0	
					8.5	
					9.0	
5.0-10.0		NA	0.1		9.5	
3.0-10.0		INA	0.1		10.0	
					11.0	
					11.5	
					12.0	
					15.5	
					13.0	
					13.5	
					14.0 14.5	
10.0-15.0		NA	0.2		15.0	BORING TERMINATED AT 15 FEET BGS
					15.5	
					16.0	
DRILLING METLY) DDS					
DRILLING METHO AR - AIR ROTARY CFA - CONTINUO DC - DRIVEN CAS HA - HAND AUGE HSA - HOLLOW S MD - MUD DRILLI RC - ROCK CORII WR - WATER RO	Y DUS FLIGHT A SING ER STEM AUGER ING ING	UGER \$	SAMPLING METHO SS - SPLIT SPOON ST - SHELBY TUB GP - GEOPROBE - Sample collected ND = <1 ppm	E		Terracon

August 18, 2017

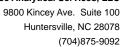
Alex Chinery Terracon 2020E Starita Road Charlotte, NC 28206

RE: Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Dear Alex Chinery:

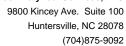
Enclosed are the analytical results for sample(s) received by the laboratory on August 16, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.


If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Taylor Ezell taylor.ezell@pacelabs.com (704)875-9092 Project Manager

Enclosures

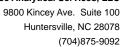

CERTIFICATIONS

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221



SAMPLE SUMMARY

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
92351820001	B-186-1	Solid	08/16/17 09:05	08/16/17 15:55	
92351820002	B-186-2	Solid	08/16/17 09:12	08/16/17 15:55	
92351820003	B-186-3	Solid	08/16/17 09:16	08/16/17 15:55	

SAMPLE ANALYTE COUNT

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92351820001	B-186-1	EPA 8270	RES	74	PASI-C
		EPA 8260	DLK	70	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92351820002	B-186-2	EPA 8270	RES	74	PASI-C
		EPA 8260	DLK	70	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92351820003	B-186-3	EPA 8270	RES	74	PASI-C
		EPA 8260	DLK	70	PASI-C
		ASTM D2974-87	KDF	1	PASI-C

(704)875-9092

SUMMARY OF DETECTION

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92351820001	B-186-1					
EPA 8260	Acetone	346	ug/kg	108	08/18/17 12:18	
EPA 8260	2-Butanone (MEK)	34.0J	ug/kg	108	08/18/17 12:18	
EPA 8260	n-Butylbenzene	4.9J	ug/kg	5.4	08/18/17 12:18	
EPA 8260	sec-Butylbenzene	3.2J	ug/kg	5.4	08/18/17 12:18	
EPA 8260	p-Isopropyltoluene	5.3J	ug/kg	5.4	08/18/17 12:18	
EPA 8260	Methylene Chloride	24.6	ug/kg	21.5	08/18/17 12:18	C9
EPA 8260	Naphthalene	17.8	ug/kg	5.4	08/18/17 12:18	
EPA 8260	n-Propylbenzene	1.9J	ug/kg	5.4	08/18/17 12:18	
EPA 8260	1,2,4-Trimethylbenzene	23.2	ug/kg	5.4	08/18/17 12:18	
EPA 8260	1,3,5-Trimethylbenzene	6.8	ug/kg	5.4	08/18/17 12:18	
EPA 8260	m&p-Xylene	5.7J	ug/kg	10.8	08/18/17 12:18	
EPA 8260	o-Xylene	4.5J	ug/kg	5.4	08/18/17 12:18	
ASTM D2974-87	Percent Moisture	19.0	%	0.10	08/17/17 08:06	
2351820002	B-186-2					
EPA 8260	Acetone	124	ug/kg	118	08/17/17 15:18	
PA 8260	Methylene Chloride	23.2J	ug/kg	23.7	08/17/17 15:18	
ASTM D2974-87	Percent Moisture	17.2	%	0.10	08/17/17 08:07	
2351820003	B-186-3					
EPA 8260	Acetone	46.6J	ug/kg	109	08/17/17 15:38	
PA 8260	Methylene Chloride	21.5J	ug/kg	21.9	08/17/17 15:38	
ASTM D2974-87	Percent Moisture	5.8	%	0.10	08/17/17 08:07	

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Method: EPA 8270

Description: 8270 MSSV Microwave

Client: Terracon NC

Date: August 18, 2017

General Information:

3 samples were analyzed for EPA 8270. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

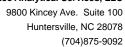
All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 373744

L2: Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

- LCS (Lab ID: 2070918)
 - 1,3-Dichlorobenzene

Matrix Spikes:


All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 373744

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92351820001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 2070919)
 - 1,2-Dichlorobenzene
 - 2,2'-Oxybis(1-chloropropane)

PROJECT NARRATIVE

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Method: EPA 8270

Description: 8270 MSSV Microwave

Client: Terracon NC

Date: August 18, 2017

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Method: EPA 8260

Description: 8260/5035A Volatile Organics

Client: Terracon NC

Date: August 18, 2017

General Information:

3 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 373848

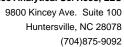
A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92351821001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 2072234)
 - Vinyl acetate

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.


Additional Comments:

Analyte Comments:

QC Batch: 373848

C9: Common Laboratory Contaminant.

- DUP (Lab ID: 2072235)
 - Methylene Chloride

PROJECT NARRATIVE

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Method: EPA 8260

Description: 8260/5035A Volatile Organics

Client: Terracon NC

Date: August 18, 2017

Analyte Comments: QC Batch: 374049

C9: Common Laboratory Contaminant.

• B-186-1 (Lab ID: 92351820001)

• Methylene Chloride

This data package has been reviewed for quality and completeness and is approved for release.

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

Sample: B-186-1 Lab ID: 92351820001 Collected: 08/16/17 09:05 Received: 08/16/17 15:55 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Microwave	Analytical	Method: EP	A 8270 Prepa	ration Meth	od: EP/	A 3546			
Acenaphthene	ND	ug/kg	410	94.4	1	08/16/17 19:11	08/17/17 15:38	83-32-9	
Acenaphthylene	ND	ug/kg	410	96.9	1	08/16/17 19:11	08/17/17 15:38	208-96-8	
Aniline	ND	ug/kg	410	111	1	08/16/17 19:11	08/17/17 15:38	62-53-3	
Anthracene	ND	ug/kg	410	91.9	1	08/16/17 19:11	08/17/17 15:38	120-12-7	
Benzo(a)anthracene	ND	ug/kg	410	75.8	1	08/16/17 19:11	08/17/17 15:38	56-55-3	
Benzo(a)pyrene	ND	ug/kg	410	78.3	1	08/16/17 19:11	08/17/17 15:38	50-32-8	
Benzo(b)fluoranthene	ND	ug/kg	410	70.8	1	08/16/17 19:11	08/17/17 15:38	205-99-2	
Benzo(g,h,i)perylene	ND	ug/kg	410	104	1	08/16/17 19:11	08/17/17 15:38	191-24-2	
Benzo(k)fluoranthene	ND	ug/kg	410	80.7	1	08/16/17 19:11	08/17/17 15:38	207-08-9	
Benzoic Acid	ND	ug/kg	2050	74.5	1	08/16/17 19:11	08/17/17 15:38	65-85-0	
Benzyl alcohol	ND	ug/kg	820	82.0	1	08/16/17 19:11	08/17/17 15:38	100-51-6	
4-Bromophenylphenyl ether	ND	ug/kg	410	74.5	1	08/16/17 19:11	08/17/17 15:38		
Butylbenzylphthalate	ND	ug/kg	410	87.0	1	08/16/17 19:11	08/17/17 15:38		
4-Chloro-3-methylphenol	ND	ug/kg	820	84.5	1	08/16/17 19:11	08/17/17 15:38		
4-Chloroaniline	ND	ug/kg	2050	114	1	08/16/17 19:11	08/17/17 15:38		
bis(2-Chloroethoxy)methane	ND	ug/kg	410	95.7	1	08/16/17 19:11	08/17/17 15:38		
bis(2-Chloroethyl) ether	ND	ug/kg	410	104	1	08/16/17 19:11	08/17/17 15:38		
2-Chloronaphthalene	ND	ug/kg	410	80.7	1	08/16/17 19:11	08/17/17 15:38		
2-Chlorophenol	ND	ug/kg	410	112	1	08/16/17 19:11	08/17/17 15:38		
4-Chlorophenylphenyl ether	ND	ug/kg	410	84.5	1	08/16/17 19:11	08/17/17 15:38		
Chrysene	ND	ug/kg ug/kg	410	54.7	1	08/16/17 19:11	08/17/17 15:38		
Dibenz(a,h)anthracene	ND	ug/kg	410	87.0	1	08/16/17 19:11	08/17/17 15:38		
Dibenzofuran	ND	ug/kg	410	67.1	1	08/16/17 19:11	08/17/17 15:38		
1,2-Dichlorobenzene	ND	ug/kg ug/kg	410	109	1	08/16/17 19:11	08/17/17 15:38		M1
1,3-Dichlorobenzene	ND ND	ug/kg ug/kg	410	93.2	1	08/16/17 19:11	08/17/17 15:38		L2
1,4-Dichlorobenzene	ND ND	ug/kg ug/kg	410	116	1	08/16/17 19:11	08/17/17 15:38		LZ
3,3'-Dichlorobenzidine	ND	ug/kg ug/kg	2050	89.4	1	08/16/17 19:11	08/17/17 15:38		
2,4-Dichlorophenol	ND ND	ug/kg ug/kg	410	89.4	1	08/16/17 19:11	08/17/17 15:38		
Diethylphthalate	ND ND	ug/kg ug/kg	410	63.4	1	08/16/17 19:11	08/17/17 15:38		
* *	ND ND			161	1	08/16/17 19:11	08/17/17 15:38		
2,4-Dimethylphenol Dimethylphthalate	ND ND	ug/kg ug/kg	410 410	83.2	1	08/16/17 19:11	08/17/17 15:38		
	ND ND		410	67.1	1	08/16/17 19:11	08/17/17 15:38		
Di-n-butylphthalate		ug/kg							
4,6-Dinitro-2-methylphenol	ND	ug/kg	820	82.0	1	08/16/17 19:11	08/17/17 15:38		
2,4-Dinitrophenol	ND	ug/kg	2050	67.1	1	08/16/17 19:11	08/17/17 15:38		
2,4-Dinitrotoluene	ND	ug/kg	410	77.0	1	08/16/17 19:11	08/17/17 15:38		
2,6-Dinitrotoluene	ND	ug/kg	410	85.7	1	08/16/17 19:11	08/17/17 15:38		
Di-n-octylphthalate	ND	ug/kg	410	85.7	1	08/16/17 19:11	08/17/17 15:38		
bis(2-Ethylhexyl)phthalate	ND	ug/kg	410	112	1	08/16/17 19:11	08/17/17 15:38		
Fluoranthene	ND	ug/kg	410	59.6	1	08/16/17 19:11	08/17/17 15:38		
Fluorene	ND	ug/kg	410	84.5	1	08/16/17 19:11	08/17/17 15:38		
Hexachloro-1,3-butadiene	ND	ug/kg	410	70.8	1	08/16/17 19:11	08/17/17 15:38		
Hexachlorobenzene	ND	ug/kg	410	52.2	1	08/16/17 19:11	08/17/17 15:38		
Hexachlorocyclopentadiene	ND	ug/kg	410	75.8	1	08/16/17 19:11	08/17/17 15:38		
Hexachloroethane	ND	ug/kg	410	108	1	08/16/17 19:11	08/17/17 15:38		
Indeno(1,2,3-cd)pyrene	ND	ug/kg	410	84.5	1	08/16/17 19:11	08/17/17 15:38	193-39-5	

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

Sample: B-186-1 Lab ID: 92351820001 Collected: 08/16/17 09:05 Received: 08/16/17 15:55 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Microwave	Analytical	Method: EP	A 8270 Prepa	ration Meth	od: EP	A 3546			
Isophorone	ND	ug/kg	410	91.9	1	08/16/17 19:11	08/17/17 15:38	78-59-1	
1-Methylnaphthalene	ND	ug/kg	410	107	1	08/16/17 19:11	08/17/17 15:38	90-12-0	
2-Methylnaphthalene	ND	ug/kg	410	88.2	1	08/16/17 19:11	08/17/17 15:38	91-57-6	
2-Methylphenol(o-Cresol)	ND	ug/kg	410	124	1	08/16/17 19:11	08/17/17 15:38	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/kg	410	161	1	08/16/17 19:11	08/17/17 15:38	15831-10-4	
Naphthalene	ND	ug/kg	410	101	1	08/16/17 19:11	08/17/17 15:38	91-20-3	
2-Nitroaniline	ND	ug/kg	2050	127	1	08/16/17 19:11	08/17/17 15:38	88-74-4	
3-Nitroaniline	ND	ug/kg	2050	112	1	08/16/17 19:11	08/17/17 15:38	99-09-2	
4-Nitroaniline	ND	ug/kg	820	116	1	08/16/17 19:11	08/17/17 15:38	100-01-6	
Nitrobenzene	ND	ug/kg	410	112	1	08/16/17 19:11	08/17/17 15:38	98-95-3	
2-Nitrophenol	ND	ug/kg	410	99.4	1	08/16/17 19:11	08/17/17 15:38	88-75-5	
4-Nitrophenol	ND	ug/kg	2050	73.3	1	08/16/17 19:11	08/17/17 15:38	100-02-7	
N-Nitrosodimethylamine	ND	ug/kg	410	133	1	08/16/17 19:11	08/17/17 15:38	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/kg	410	78.3	1	08/16/17 19:11	08/17/17 15:38	621-64-7	
N-Nitrosodiphenylamine	ND	ug/kg	410	122	1	08/16/17 19:11	08/17/17 15:38	86-30-6	
2,2'-Oxybis(1-chloropropane)	ND	ug/kg	410	109	1	08/16/17 19:11	08/17/17 15:38	108-60-1	M1
Pentachlorophenol	ND	ug/kg	2050	74.5	1	08/16/17 19:11	08/17/17 15:38	87-86-5	
Phenanthrene	ND	ug/kg	410	68.3	1	08/16/17 19:11	08/17/17 15:38		
Phenol	ND	ug/kg	410	123	1	08/16/17 19:11	08/17/17 15:38		
Pyrene	ND	ug/kg	410	69.6	1	08/16/17 19:11	08/17/17 15:38		
1,2,4-Trichlorobenzene	ND	ug/kg	410	79.5	1	08/16/17 19:11	08/17/17 15:38		
2,4,5-Trichlorophenol	ND	ug/kg	410	127	1	08/16/17 19:11	08/17/17 15:38		
2,4,6-Trichlorophenol	ND	ug/kg	410	90.7	1	08/16/17 19:11	08/17/17 15:38		
Surrogates		99			•				
Nitrobenzene-d5 (S)	47	%	23-110		1	08/16/17 19:11	08/17/17 15:38	4165-60-0	
2-Fluorobiphenyl (S)	42	%	30-110		1	08/16/17 19:11	08/17/17 15:38	321-60-8	
Terphenyl-d14 (S)	49	%	28-110		1	08/16/17 19:11	08/17/17 15:38	1718-51-0	
Phenol-d6 (S)	44	%	22-110		1	08/16/17 19:11	08/17/17 15:38	13127-88-3	
2-Fluorophenol (S)	44	%	13-110		1	08/16/17 19:11	08/17/17 15:38		
2,4,6-Tribromophenol (S)	61	%	27-110		1	08/16/17 19:11	08/17/17 15:38		
8260/5035A Volatile Organics	Analytical	Method: EP	A 8260						
Acetone	346	ug/kg	108	10.8	1		08/18/17 12:18	67-64-1	
Benzene	ND	ug/kg	5.4	1.7	1		08/18/17 12:18	71-43-2	
Bromobenzene	ND	ug/kg	5.4	2.2	1		08/18/17 12:18	108-86-1	
Bromochloromethane	ND	ug/kg	5.4	1.8	1		08/18/17 12:18	74-97-5	
Bromodichloromethane	ND	ug/kg	5.4	2.0	1		08/18/17 12:18	75-27-4	
Bromoform	ND	ug/kg	5.4	2.5	1		08/18/17 12:18		
Bromomethane	ND	ug/kg	10.8	2.7	1		08/18/17 12:18		
2-Butanone (MEK)	34.0J	ug/kg	108	3.1	1		08/18/17 12:18		
n-Butylbenzene	4.9J	ug/kg	5.4	1.9	1		08/18/17 12:18		
sec-Butylbenzene	3.2J	ug/kg	5.4	1.7	1		08/18/17 12:18		
tert-Butylbenzene	ND	ug/kg ug/kg	5.4	2.2	1		08/18/17 12:18		
Carbon tetrachloride	ND	ug/kg ug/kg	5.4	2.8	1		08/18/17 12:18		
Chlorobenzene	ND	ug/kg ug/kg	5.4	2.0	1		08/18/17 12:18		
J 3501120110	110	~9, \\9	Οτ	2.0			33, 13, 17 12.10	.00 00 1	

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

Sample: B-186-1 Lab ID: 92351820001 Collected: 08/16/17 09:05 Received: 08/16/17 15:55 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical	Method: EP	A 8260						
Chloroethane	ND	ug/kg	10.8	2.6	1		08/18/17 12:18	75-00-3	
Chloroform	ND	ug/kg	5.4	1.7	1		08/18/17 12:18	67-66-3	
Chloromethane	ND	ug/kg	10.8	2.6	1		08/18/17 12:18	74-87-3	
2-Chlorotoluene	ND	ug/kg	5.4	1.8	1		08/18/17 12:18	95-49-8	
4-Chlorotoluene	ND	ug/kg	5.4	1.9	1		08/18/17 12:18		
1,2-Dibromo-3-chloropropane	ND	ug/kg	5.4	3.9	1		08/18/17 12:18	96-12-8	
Dibromochloromethane	ND	ug/kg	5.4	1.9	1		08/18/17 12:18		
1,2-Dibromoethane (EDB)	ND	ug/kg	5.4	1.9	1		08/18/17 12:18	106-93-4	
Dibromomethane	ND	ug/kg	5.4	2.7	1		08/18/17 12:18	74-95-3	
1,2-Dichlorobenzene	ND	ug/kg	5.4	2.0	1		08/18/17 12:18	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	5.4	2.2	1		08/18/17 12:18	541-73-1	
1,4-Dichlorobenzene	ND	ug/kg	5.4	1.8	1		08/18/17 12:18	106-46-7	
Dichlorodifluoromethane	ND	ug/kg	10.8	3.9	1		08/18/17 12:18	75-71-8	
1,1-Dichloroethane	ND	ug/kg	5.4	1.6	1		08/18/17 12:18	75-34-3	
1,2-Dichloroethane	ND	ug/kg	5.4	2.4	1		08/18/17 12:18		
1,1-Dichloroethene	ND	ug/kg	5.4	1.9	1		08/18/17 12:18	75-35-4	
cis-1,2-Dichloroethene	ND	ug/kg	5.4	1.5	1		08/18/17 12:18	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	5.4	2.0	1		08/18/17 12:18	156-60-5	
1,2-Dichloropropane	ND	ug/kg	5.4	1.8	1		08/18/17 12:18	78-87-5	
1,3-Dichloropropane	ND	ug/kg	5.4	2.0	1		08/18/17 12:18	142-28-9	
2,2-Dichloropropane	ND	ug/kg	5.4	1.8	1		08/18/17 12:18	594-20-7	
1,1-Dichloropropene	ND	ug/kg	5.4	1.6	1		08/18/17 12:18	563-58-6	
cis-1,3-Dichloropropene	ND	ug/kg	5.4	1.9	1		08/18/17 12:18	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/kg	5.4	1.6	1		08/18/17 12:18	10061-02-6	
Diisopropyl ether	ND	ug/kg	5.4	1.8	1		08/18/17 12:18	108-20-3	
Ethylbenzene	ND	ug/kg	5.4	1.9	1		08/18/17 12:18	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/kg	5.4	2.2	1		08/18/17 12:18	87-68-3	
2-Hexanone	ND	ug/kg	53.8	4.2	1		08/18/17 12:18	591-78-6	
Isopropylbenzene (Cumene)	ND	ug/kg	5.4	2.0	1		08/18/17 12:18	98-82-8	
p-Isopropyltoluene	5.3J	ug/kg	5.4	1.8	1		08/18/17 12:18	99-87-6	
Methylene Chloride	24.6	ug/kg	21.5	3.2	1		08/18/17 12:18	75-09-2	C9
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	53.8	4.0	1		08/18/17 12:18	108-10-1	
Methyl-tert-butyl ether	ND	ug/kg	5.4	1.6	1		08/18/17 12:18	1634-04-4	
Naphthalene	17.8	ug/kg	5.4	1.3	1		08/18/17 12:18	91-20-3	
n-Propylbenzene	1.9J	ug/kg	5.4	1.8	1		08/18/17 12:18	103-65-1	
Styrene	ND	ug/kg	5.4	1.9	1		08/18/17 12:18	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	5.4	2.3	1		08/18/17 12:18	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	5.4	2.0	1		08/18/17 12:18	79-34-5	
Tetrachloroethene	ND	ug/kg	5.4	1.8	1		08/18/17 12:18	127-18-4	
Toluene	ND	ug/kg	5.4	1.9	1		08/18/17 12:18	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	5.4	2.4	1		08/18/17 12:18		
1,2,4-Trichlorobenzene	ND	ug/kg	5.4	1.7	1		08/18/17 12:18		
1,1,1-Trichloroethane	ND	ug/kg	5.4	1.9	1		08/18/17 12:18		
1,1,2-Trichloroethane	ND	ug/kg	5.4	2.3	1		08/18/17 12:18		
Trichloroethene	ND	ug/kg	5.4	2.3	1		08/18/17 12:18	79-01-6	

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

Sample: B-186-1 Lab ID: 92351820001 Collected: 08/16/17 09:05 Received: 08/16/17 15:55 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Farameters	- Results -	Units	- 		<u>DF</u>	—————	— Allalyzeu		— Quai
8260/5035A Volatile Organics	Analytical	Method: EPA	A 8260						
Trichlorofluoromethane	ND	ug/kg	5.4	2.4	1		08/18/17 12:18	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	5.4	1.7	1		08/18/17 12:18	96-18-4	
1,2,4-Trimethylbenzene	23.2	ug/kg	5.4	2.2	1		08/18/17 12:18	95-63-6	
1,3,5-Trimethylbenzene	6.8	ug/kg	5.4	1.9	1		08/18/17 12:18	108-67-8	
Vinyl acetate	ND	ug/kg	53.8	9.5	1		08/18/17 12:18	108-05-4	
Vinyl chloride	ND	ug/kg	10.8	1.9	1		08/18/17 12:18	75-01-4	
Xylene (Total)	ND	ug/kg	10.8	3.9	1		08/18/17 12:18	1330-20-7	
m&p-Xylene	5.7J	ug/kg	10.8	3.9	1		08/18/17 12:18	179601-23-1	
o-Xylene	4.5J	ug/kg	5.4	2.0	1		08/18/17 12:18	95-47-6	
Surrogates									
Toluene-d8 (S)	99	%	70-130		1		08/18/17 12:18	2037-26-5	
4-Bromofluorobenzene (S)	101	%	70-130		1		08/18/17 12:18	460-00-4	
1,2-Dichloroethane-d4 (S)	86	%	70-132		1		08/18/17 12:18	17060-07-0	
Percent Moisture	Analytical	Method: AS	ΓM D2974-87						
Percent Moisture	19.0	%	0.10	0.10	1		08/17/17 08:06		

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

Sample: B-186-2 Lab ID: 92351820002 Collected: 08/16/17 09:12 Received: 08/16/17 15:55 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Microwave	Analytical	Method: EP	A 8270 Prepa	ration Meth	od: EP	A 3546			
Acenaphthene	ND	ug/kg	399	91.8	1	08/16/17 19:11	08/17/17 16:38	83-32-9	
Acenaphthylene	ND	ug/kg	399	94.3	1	08/16/17 19:11	08/17/17 16:38	208-96-8	
Aniline	ND	ug/kg	399	108	1	08/16/17 19:11	08/17/17 16:38	62-53-3	
Anthracene	ND	ug/kg	399	89.4	1	08/16/17 19:11	08/17/17 16:38	120-12-7	
Benzo(a)anthracene	ND	ug/kg	399	73.7	1	08/16/17 19:11	08/17/17 16:38	56-55-3	
Benzo(a)pyrene	ND	ug/kg	399	76.1	1	08/16/17 19:11	08/17/17 16:38	50-32-8	
Benzo(b)fluoranthene	ND	ug/kg	399	68.9	1	08/16/17 19:11	08/17/17 16:38	205-99-2	
Benzo(g,h,i)perylene	ND	ug/kg	399	102	1	08/16/17 19:11	08/17/17 16:38	191-24-2	
Benzo(k)fluoranthene	ND	ug/kg	399	78.5	1	08/16/17 19:11	08/17/17 16:38		
Benzoic Acid	ND	ug/kg	1990	72.5	1	08/16/17 19:11	08/17/17 16:38		
Benzyl alcohol	ND	ug/kg	798	79.8	1	08/16/17 19:11	08/17/17 16:38		
4-Bromophenylphenyl ether	ND	ug/kg	399	72.5	1	08/16/17 19:11	08/17/17 16:38		
Butylbenzylphthalate	ND	ug/kg	399	84.6	1	08/16/17 19:11	08/17/17 16:38		
4-Chloro-3-methylphenol	ND	ug/kg	798	82.2	1	08/16/17 19:11	08/17/17 16:38		
4-Chloroaniline	ND	ug/kg	1990	111	1	08/16/17 19:11	08/17/17 16:38		
bis(2-Chloroethoxy)methane	ND	ug/kg ug/kg	399	93.0	1	08/16/17 19:11	08/17/17 16:38		
bis(2-Chloroethyl) ether	ND	ug/kg ug/kg	399	102	1	08/16/17 19:11	08/17/17 16:38		
2-Chloronaphthalene	ND	ug/kg ug/kg	399	78.5	1	08/16/17 19:11	08/17/17 16:38		
2-Chlorophenol	ND	ug/kg ug/kg	399	109	1	08/16/17 19:11	08/17/17 16:38		
4-Chlorophenylphenyl ether	ND	ug/kg ug/kg	399	82.2	1	08/16/17 19:11	08/17/17 16:38		
Chrysene	ND ND	ug/kg ug/kg	399	53.2	1	08/16/17 19:11	08/17/17 16:38		
Dibenz(a,h)anthracene	ND	ug/kg ug/kg	399	84.6	1	08/16/17 19:11	08/17/17 16:38		
Dibenzofuran	ND	ug/kg ug/kg	399	65.3	1	08/16/17 19:11	08/17/17 16:38		
1,2-Dichlorobenzene	ND	ug/kg ug/kg	399	106	1	08/16/17 19:11	08/17/17 16:38		
1,3-Dichlorobenzene	ND ND	ug/kg ug/kg	399	90.6	1	08/16/17 19:11	08/17/17 16:38		L2
1,4-Dichlorobenzene	ND ND	ug/kg ug/kg	399	112	1	08/16/17 19:11	08/17/17 16:38		LZ
3,3'-Dichlorobenzidine	ND	ug/kg ug/kg	1990	87.0	1	08/16/17 19:11	08/17/17 16:38		
	ND ND		399	87.0	1	08/16/17 19:11	08/17/17 16:38		
2,4-Dichlorophenol	ND ND	ug/kg	399	61.6	1	08/16/17 19:11	08/17/17 16:38		
Diethylphthalate		ug/kg							
2,4-Dimethylphenol	ND ND	ug/kg	399 399	157 81.0	1 1	08/16/17 19:11	08/17/17 16:38 08/17/17 16:38		
Dimethylphthalate		ug/kg				08/16/17 19:11			
Di-n-butylphthalate	ND	ug/kg	399	65.3	1	08/16/17 19:11	08/17/17 16:38		
4,6-Dinitro-2-methylphenol	ND	ug/kg	798	79.8	1	08/16/17 19:11	08/17/17 16:38		
2,4-Dinitrophenol	ND	ug/kg	1990	65.3	1	08/16/17 19:11	08/17/17 16:38		
2,4-Dinitrotoluene	ND	ug/kg	399	74.9	1	08/16/17 19:11	08/17/17 16:38		
2,6-Dinitrotoluene	ND	ug/kg	399	83.4	1	08/16/17 19:11	08/17/17 16:38		
Di-n-octylphthalate	ND	ug/kg	399	83.4	1	08/16/17 19:11	08/17/17 16:38		
bis(2-Ethylhexyl)phthalate	ND	ug/kg	399	109	1	08/16/17 19:11	08/17/17 16:38		
Fluoranthene	ND	ug/kg	399	58.0	1	08/16/17 19:11	08/17/17 16:38		
Fluorene	ND	ug/kg	399	82.2	1	08/16/17 19:11	08/17/17 16:38		
Hexachloro-1,3-butadiene	ND	ug/kg	399	68.9	1	08/16/17 19:11	08/17/17 16:38		
Hexachlorobenzene	ND	ug/kg	399	50.8	1	08/16/17 19:11	08/17/17 16:38		
Hexachlorocyclopentadiene	ND	ug/kg	399	73.7	1	08/16/17 19:11	08/17/17 16:38		
Hexachloroethane	ND	ug/kg	399	105	1	08/16/17 19:11	08/17/17 16:38		
Indeno(1,2,3-cd)pyrene	ND	ug/kg	399	82.2	1	08/16/17 19:11	08/17/17 16:38	193-39-5	

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

Sample: B-186-2 Lab ID: 92351820002 Collected: 08/16/17 09:12 Received: 08/16/17 15:55 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Microwave	Analytical	Method: EPA	A 8270 Prepa	ration Meth	od: EP	A 3546			
Isophorone	ND	ug/kg	399	89.4	1	08/16/17 19:11	08/17/17 16:38	78-59-1	
1-Methylnaphthalene	ND	ug/kg	399	104	1	08/16/17 19:11	08/17/17 16:38	90-12-0	
2-Methylnaphthalene	ND	ug/kg	399	85.8	1	08/16/17 19:11	08/17/17 16:38	91-57-6	
2-Methylphenol(o-Cresol)	ND	ug/kg	399	121	1	08/16/17 19:11	08/17/17 16:38	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/kg	399	157	1	08/16/17 19:11	08/17/17 16:38	15831-10-4	
Naphthalene	ND	ug/kg	399	97.9	1	08/16/17 19:11	08/17/17 16:38	91-20-3	
2-Nitroaniline	ND	ug/kg	1990	123	1	08/16/17 19:11	08/17/17 16:38	88-74-4	
3-Nitroaniline	ND	ug/kg	1990	109	1	08/16/17 19:11	08/17/17 16:38	99-09-2	
4-Nitroaniline	ND	ug/kg	798	112	1	08/16/17 19:11	08/17/17 16:38	100-01-6	
Nitrobenzene	ND	ug/kg	399	109	1	08/16/17 19:11	08/17/17 16:38	98-95-3	
2-Nitrophenol	ND	ug/kg	399	96.7	1	08/16/17 19:11	08/17/17 16:38	88-75-5	
4-Nitrophenol	ND	ug/kg	1990	71.3	1	08/16/17 19:11	08/17/17 16:38		
N-Nitrosodimethylamine	ND	ug/kg	399	129	1	08/16/17 19:11	08/17/17 16:38	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/kg	399	76.1	1	08/16/17 19:11	08/17/17 16:38		
N-Nitrosodiphenylamine	ND	ug/kg	399	118	1	08/16/17 19:11	08/17/17 16:38		
2,2'-Oxybis(1-chloropropane)	ND	ug/kg	399	106	1	08/16/17 19:11	08/17/17 16:38	108-60-1	
Pentachlorophenol	ND	ug/kg	1990	72.5	1	08/16/17 19:11	08/17/17 16:38		
Phenanthrene	ND	ug/kg	399	66.5	1	08/16/17 19:11	08/17/17 16:38		
Phenol	ND	ug/kg	399	120	1	08/16/17 19:11	08/17/17 16:38		
Pyrene	ND	ug/kg	399	67.7	1	08/16/17 19:11	08/17/17 16:38		
1,2,4-Trichlorobenzene	ND	ug/kg	399	77.3	1	08/16/17 19:11	08/17/17 16:38		
2,4,5-Trichlorophenol	ND	ug/kg	399	123	1	08/16/17 19:11	08/17/17 16:38		
2,4,6-Trichlorophenol	ND	ug/kg	399	88.2	1	08/16/17 19:11	08/17/17 16:38		
Surrogates		~g/g	000	00.2		00, 10, 11 10111	00, 11, 11 10100	00 00 2	
Nitrobenzene-d5 (S)	55	%	23-110		1	08/16/17 19:11	08/17/17 16:38	4165-60-0	
2-Fluorobiphenyl (S)	60	%	30-110		1	08/16/17 19:11	08/17/17 16:38	321-60-8	
Terphenyl-d14 (S)	43	%	28-110		1	08/16/17 19:11	08/17/17 16:38	1718-51-0	
Phenol-d6 (S)	52	%	22-110		1	08/16/17 19:11	08/17/17 16:38	13127-88-3	
2-Fluorophenol (S)	46	%	13-110		1	08/16/17 19:11	08/17/17 16:38	367-12-4	
2,4,6-Tribromophenol (S)	68	%	27-110		1	08/16/17 19:11	08/17/17 16:38	118-79-6	
8260/5035A Volatile Organics	Analytical	Method: EPA	A 8260						
Acetone	124	ug/kg	118	11.8	1		08/17/17 15:18	67-64-1	
Benzene	ND	ug/kg	5.9	1.9	1		08/17/17 15:18	71-43-2	
Bromobenzene	ND	ug/kg	5.9	2.4	1		08/17/17 15:18	108-86-1	
Bromochloromethane	ND	ug/kg	5.9	2.0	1		08/17/17 15:18	74-97-5	
Bromodichloromethane	ND	ug/kg	5.9	2.3	1		08/17/17 15:18	75-27-4	
Bromoform	ND	ug/kg	5.9	2.7	1		08/17/17 15:18	75-25-2	
Bromomethane	ND	ug/kg	11.8	3.0	1		08/17/17 15:18	74-83-9	
2-Butanone (MEK)	ND	ug/kg	118	3.4	1		08/17/17 15:18	78-93-3	
n-Butylbenzene	ND	ug/kg	5.9	2.1	1		08/17/17 15:18		
sec-Butylbenzene	ND	ug/kg	5.9	1.9	1		08/17/17 15:18		
tert-Butylbenzene	ND	ug/kg	5.9	2.4	1		08/17/17 15:18		
Carbon tetrachloride	ND	ug/kg	5.9	3.1	1		08/17/17 15:18		
Chlorobenzene	ND	ug/kg	5.9	2.3	1		08/17/17 15:18		

(704)875-9092

ANALYTICAL RESULTS

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

Sample: B-186-2 Lab ID: 92351820002 Collected: 08/16/17 09:12 Received: 08/16/17 15:55 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical	Method: EP	A 8260						
Chloroethane	ND	ug/kg	11.8	2.8	1		08/17/17 15:18	75-00-3	
Chloroform	ND	ug/kg	5.9	1.9	1		08/17/17 15:18	67-66-3	
Chloromethane	ND	ug/kg	11.8	2.8	1		08/17/17 15:18	74-87-3	
2-Chlorotoluene	ND	ug/kg	5.9	2.0	1		08/17/17 15:18	95-49-8	
4-Chlorotoluene	ND	ug/kg	5.9	2.1	1		08/17/17 15:18	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/kg	5.9	4.3	1		08/17/17 15:18	96-12-8	
Dibromochloromethane	ND	ug/kg	5.9	2.1	1		08/17/17 15:18	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/kg	5.9	2.1	1		08/17/17 15:18	106-93-4	
Dibromomethane	ND	ug/kg	5.9	3.0	1		08/17/17 15:18		
1,2-Dichlorobenzene	ND	ug/kg	5.9	2.3	1		08/17/17 15:18		
1,3-Dichlorobenzene	ND	ug/kg	5.9	2.4	1		08/17/17 15:18		
1,4-Dichlorobenzene	ND	ug/kg	5.9	2.0	1		08/17/17 15:18		
Dichlorodifluoromethane	ND	ug/kg	11.8	4.3	1		08/17/17 15:18		
1,1-Dichloroethane	ND	ug/kg	5.9	1.8	1		08/17/17 15:18		
1,2-Dichloroethane	ND	ug/kg	5.9	2.6	1		08/17/17 15:18		
1,1-Dichloroethene	ND	ug/kg ug/kg	5.9	2.1	1		08/17/17 15:18		
cis-1,2-Dichloroethene	ND	ug/kg ug/kg	5.9	1.7	1		08/17/17 15:18		
trans-1,2-Dichloroethene	ND	ug/kg ug/kg	5.9	2.3	1		08/17/17 15:18		
1,2-Dichloropropane	ND	ug/kg ug/kg	5.9	2.0	1		08/17/17 15:18		
1,3-Dichloropropane	ND ND	ug/kg ug/kg	5.9	2.3	1		08/17/17 15:18		
2,2-Dichloropropane	ND ND	ug/kg ug/kg	5.9	2.0	1		08/17/17 15:18		
1,1-Dichloropropene	ND ND	ug/kg ug/kg	5.9	1.8	1		08/17/17 15:18		
cis-1,3-Dichloropropene	ND ND	ug/kg ug/kg	5.9	2.1	1		08/17/17 15:18		
trans-1,3-Dichloropropene	ND ND	ug/kg ug/kg	5.9	1.8	1		08/17/17 15:18		
Diisopropyl ether	ND ND	ug/kg ug/kg	5.9	2.0	1		08/17/17 15:18		
Ethylbenzene	ND ND	ug/kg ug/kg	5.9	2.0	1		08/17/17 15:18		
Hexachloro-1,3-butadiene	ND ND	ug/kg ug/kg	5.9	2.4	1		08/17/17 15:18		
2-Hexanone	ND ND	ug/kg ug/kg	59.2	4.6	1		08/17/17 15:18		
Isopropylbenzene (Cumene)	ND ND	ug/kg ug/kg	5.9	2.3	1		08/17/17 15:18		
p-Isopropyltoluene	ND ND	ug/kg ug/kg	5.9	2.0	1		08/17/17 15:18		
Methylene Chloride	23.2J	ug/kg ug/kg	23.7	3.6	1		08/17/17 15:18		
4-Methyl-2-pentanone (MIBK)	ND	ug/kg ug/kg	59.2	4.4	1		08/17/17 15:18		
Methyl-tert-butyl ether	ND ND	ug/kg ug/kg	5.9	1.8	1		08/17/17 15:18		
Naphthalene	ND ND		5.9 5.9	1.4	1		08/17/17 15:18		
· ·		ug/kg			1				
n-Propylbenzene	ND ND	ug/kg	5.9 5.9	2.0 2.1	1		08/17/17 15:18 08/17/17 15:18		
Styrene		ug/kg			1				
1,1,1,2-Tetrachloroethane	ND	ug/kg	5.9	2.5	•		08/17/17 15:18		
1,1,2,2-Tetrachloroethane	ND	ug/kg	5.9	2.3	1		08/17/17 15:18		
Tetrachloroethene	ND	ug/kg	5.9	2.0	1		08/17/17 15:18		
Toluene	ND	ug/kg	5.9	2.1	1		08/17/17 15:18		
1,2,3-Trichlorobenzene	ND	ug/kg	5.9	2.6	1		08/17/17 15:18		
1,2,4-Trichlorobenzene	ND	ug/kg	5.9	1.9	1		08/17/17 15:18		
1,1,1-Trichloroethane	ND	ug/kg	5.9	2.1	1		08/17/17 15:18		
1,1,2-Trichloroethane	ND	ug/kg	5.9	2.5	1		08/17/17 15:18		
Trichloroethene	ND	ug/kg	5.9	2.5	1		08/17/17 15:18	79-01-6	

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

Sample: B-186-2 Lab ID: 92351820002 Collected: 08/16/17 09:12 Received: 08/16/17 15:55 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
- arameters		Offics	- -			————	— ———		Quai
8260/5035A Volatile Organics	Analytical	Method: EP	A 8260						
Trichlorofluoromethane	ND	ug/kg	5.9	2.6	1		08/17/17 15:18	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	5.9	1.9	1		08/17/17 15:18	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	5.9	2.4	1		08/17/17 15:18	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	5.9	2.1	1		08/17/17 15:18	108-67-8	
Vinyl acetate	ND	ug/kg	59.2	10.4	1		08/17/17 15:18	108-05-4	
Vinyl chloride	ND	ug/kg	11.8	2.1	1		08/17/17 15:18	75-01-4	
Xylene (Total)	ND	ug/kg	11.8	4.3	1		08/17/17 15:18	1330-20-7	
m&p-Xylene	ND	ug/kg	11.8	4.3	1		08/17/17 15:18	179601-23-1	
o-Xylene	ND	ug/kg	5.9	2.3	1		08/17/17 15:18	95-47-6	
Surrogates									
Toluene-d8 (S)	101	%	70-130		1		08/17/17 15:18	2037-26-5	
4-Bromofluorobenzene (S)	101	%	70-130		1		08/17/17 15:18	460-00-4	
1,2-Dichloroethane-d4 (S)	89	%	70-132		1		08/17/17 15:18	17060-07-0	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
Percent Moisture	17.2	%	0.10	0.10	1		08/17/17 08:07		

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

Sample: B-186-3 Lab ID: 92351820003 Collected: 08/16/17 09:16 Received: 08/16/17 15:55 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Microwave	Analytical	Method: EP	A 8270 Prepa	ration Meth	od: EP	A 3546			
Acenaphthene	ND	ug/kg	352	81.0	1	08/16/17 19:11	08/17/17 17:39	83-32-9	
Acenaphthylene	ND	ug/kg	352	83.1	1	08/16/17 19:11	08/17/17 17:39	208-96-8	
Aniline	ND	ug/kg	352	94.8	1	08/16/17 19:11	08/17/17 17:39	62-53-3	
Anthracene	ND	ug/kg	352	78.8	1	08/16/17 19:11	08/17/17 17:39		
Benzo(a)anthracene	ND	ug/kg	352	65.0	1	08/16/17 19:11	08/17/17 17:39	56-55-3	
Benzo(a)pyrene	ND	ug/kg	352	67.1	1	08/16/17 19:11	08/17/17 17:39	50-32-8	
Benzo(b)fluoranthene	ND	ug/kg	352	60.7	1	08/16/17 19:11	08/17/17 17:39		
Benzo(g,h,i)perylene	ND	ug/kg	352	89.5	1	08/16/17 19:11	08/17/17 17:39	191-24-2	
Benzo(k)fluoranthene	ND	ug/kg	352	69.3	1	08/16/17 19:11	08/17/17 17:39		
Benzoic Acid	ND	ug/kg	1760	63.9	1	08/16/17 19:11	08/17/17 17:39		
Benzyl alcohol	ND	ug/kg	703	70.3	1	08/16/17 19:11	08/17/17 17:39		
4-Bromophenylphenyl ether	ND	ug/kg	352	63.9	1	08/16/17 19:11	08/17/17 17:39		
Butylbenzylphthalate	ND	ug/kg	352	74.6	1	08/16/17 19:11	08/17/17 17:39		
4-Chloro-3-methylphenol	ND	ug/kg	703	72.5	1	08/16/17 19:11	08/17/17 17:39		
4-Chloroaniline	ND	ug/kg	1760	98.0	1	08/16/17 19:11	08/17/17 17:39		
bis(2-Chloroethoxy)methane	ND	ug/kg	352	82.0	1	08/16/17 19:11	08/17/17 17:39		
bis(2-Chloroethyl) ether	ND	ug/kg	352	89.5	1	08/16/17 19:11	08/17/17 17:39		
2-Chloronaphthalene	ND	ug/kg	352	69.3	1	08/16/17 19:11	08/17/17 17:39		
2-Chlorophenol	ND	ug/kg	352	95.9	1	08/16/17 19:11	08/17/17 17:39		
4-Chlorophenylphenyl ether	ND	ug/kg ug/kg	352	72.5	1	08/16/17 19:11	08/17/17 17:39		
Chrysene	ND	ug/kg ug/kg	352	46.9	1	08/16/17 19:11	08/17/17 17:39		
Dibenz(a,h)anthracene	ND	ug/kg ug/kg	352	74.6	1	08/16/17 19:11	08/17/17 17:39		
Dibenzofuran	ND	ug/kg ug/kg	352	57.5	1	08/16/17 19:11	08/17/17 17:39		
1,2-Dichlorobenzene	ND	ug/kg ug/kg	352	93.8	1	08/16/17 19:11	08/17/17 17:39		
1,3-Dichlorobenzene	ND	ug/kg ug/kg	352	79.9	1	08/16/17 19:11	08/17/17 17:39		L2
1,4-Dichlorobenzene	ND ND	ug/kg ug/kg	352	99.1	1	08/16/17 19:11	08/17/17 17:39		LZ
3,3'-Dichlorobenzidine	ND	ug/kg ug/kg	1760	76.7	1	08/16/17 19:11	08/17/17 17:39		
2,4-Dichlorophenol	ND	ug/kg ug/kg	352	76.7	1	08/16/17 19:11	08/17/17 17:39		
Diethylphthalate	ND	ug/kg ug/kg	352	54.3	1	08/16/17 19:11	08/17/17 17:39		
2,4-Dimethylphenol	ND	ug/kg ug/kg	352	139	1	08/16/17 19:11	08/17/17 17:39		
Dimethylphthalate	ND	ug/kg ug/kg	352	71.4	1	08/16/17 19:11	08/17/17 17:39		
Di-n-butylphthalate	ND	ug/kg ug/kg	352	57.5	1	08/16/17 19:11	08/17/17 17:39		
4,6-Dinitro-2-methylphenol	ND	ug/kg ug/kg	703	70.3	1	08/16/17 19:11	08/17/17 17:39		
2,4-Dinitrophenol	ND	ug/kg ug/kg	1760	57.5	1	08/16/17 19:11	08/17/17 17:39		
2,4-Dinitrotoluene	ND ND	ug/kg ug/kg	352	66.1	1	08/16/17 19:11	08/17/17 17:39		
2,6-Dinitrotoluene	ND ND	ug/kg ug/kg	352	73.5	1	08/16/17 19:11	08/17/17 17:39		
Di-n-octylphthalate	ND ND	ug/kg ug/kg	352	73.5	1	08/16/17 19:11	08/17/17 17:39		
bis(2-Ethylhexyl)phthalate	ND ND	ug/kg ug/kg	352	95.9	1	08/16/17 19:11	08/17/17 17:39		
Fluoranthene	ND ND	ug/kg ug/kg	352	51.1	1	08/16/17 19:11	08/17/17 17:39		
Fluorene	ND ND	ug/kg ug/kg	352	72.5	1	08/16/17 19:11	08/17/17 17:39		
Hexachloro-1,3-butadiene	ND ND	ug/kg ug/kg	352 352	60.7	1	08/16/17 19:11	08/17/17 17:39		
Hexachlorobenzene							08/17/17 17:39		
	ND	ug/kg	352 352	44.7 65.0	1	08/16/17 19:11	08/17/17 17:39		
Hexachlorocyclopentadiene	ND ND	ug/kg	352	65.0	1	08/16/17 19:11			
Hexachloroethane	ND	ug/kg	352	92.7	1	08/16/17 19:11	08/17/17 17:39		
Indeno(1,2,3-cd)pyrene	ND	ug/kg	352	72.5	1	08/16/17 19:11	08/17/17 17:39	193-39-5	

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

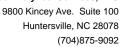
Date: 08/18/2017 04:33 PM

Sample: B-186-3 Lab ID: 92351820003 Collected: 08/16/17 09:16 Received: 08/16/17 15:55 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV Microwave	Analytical	Method: EP/	A 8270 Prepa	ration Meth	od: EP	A 3546			
Isophorone	ND	ug/kg	352	78.8	1	08/16/17 19:11	08/17/17 17:39	78-59-1	
1-Methylnaphthalene	ND	ug/kg	352	91.6	1	08/16/17 19:11	08/17/17 17:39	90-12-0	
2-Methylnaphthalene	ND	ug/kg	352	75.6	1	08/16/17 19:11	08/17/17 17:39	91-57-6	
2-Methylphenol(o-Cresol)	ND	ug/kg	352	107	1	08/16/17 19:11	08/17/17 17:39	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/kg	352	139	1	08/16/17 19:11	08/17/17 17:39	15831-10-4	
Naphthalene	ND	ug/kg	352	86.3	1	08/16/17 19:11	08/17/17 17:39	91-20-3	
2-Nitroaniline	ND	ug/kg	1760	109	1	08/16/17 19:11	08/17/17 17:39	88-74-4	
3-Nitroaniline	ND	ug/kg	1760	95.9	1	08/16/17 19:11	08/17/17 17:39	99-09-2	
4-Nitroaniline	ND	ug/kg	703	99.1	1	08/16/17 19:11	08/17/17 17:39		
Nitrobenzene	ND	ug/kg	352	95.9	1	08/16/17 19:11	08/17/17 17:39		
2-Nitrophenol	ND	ug/kg	352	85.2	1	08/16/17 19:11	08/17/17 17:39		
4-Nitrophenol	ND	ug/kg	1760	62.9	1	08/16/17 19:11	08/17/17 17:39		
N-Nitrosodimethylamine	ND	ug/kg	352	114	1	08/16/17 19:11	08/17/17 17:39		
N-Nitroso-di-n-propylamine	ND	ug/kg	352	67.1	1	08/16/17 19:11	08/17/17 17:39		
N-Nitrosodiphenylamine	ND	ug/kg	352	104	1	08/16/17 19:11	08/17/17 17:39		
2,2'-Oxybis(1-chloropropane)	ND	ug/kg	352	93.8	1	08/16/17 19:11	08/17/17 17:39		
Pentachlorophenol	ND	ug/kg	1760	63.9	1	08/16/17 19:11	08/17/17 17:39		
Phenanthrene	ND	ug/kg	352	58.6	1	08/16/17 19:11	08/17/17 17:39		
Phenol	ND	ug/kg	352	105	1	08/16/17 19:11	08/17/17 17:39		
Pyrene	ND	ug/kg ug/kg	352	59.7	1	08/16/17 19:11	08/17/17 17:39		
1,2,4-Trichlorobenzene	ND	ug/kg ug/kg	352	68.2	1	08/16/17 19:11	08/17/17 17:39		
2,4,5-Trichlorophenol	ND	ug/kg ug/kg	352	109	1	08/16/17 19:11	08/17/17 17:39		
2,4,6-Trichlorophenol	ND	ug/kg ug/kg	352	77.8	1	08/16/17 19:11	08/17/17 17:39		
Surrogates	ND	ug/kg	332	77.0	'	00/10/17 13.11	00/17/17 17.55	00 00 2	
Nitrobenzene-d5 (S)	55	%	23-110		1	08/16/17 19:11	08/17/17 17:39	4165-60-0	
2-Fluorobiphenyl (S)	62	%	30-110		1	08/16/17 19:11	08/17/17 17:39		
Terphenyl-d14 (S)	79	%	28-110		1	08/16/17 19:11	08/17/17 17:39		
Phenol-d6 (S)	56	%	22-110		1	08/16/17 19:11	08/17/17 17:39		
2-Fluorophenol (S)	49	%	13-110		1	08/16/17 19:11	08/17/17 17:39		
2,4,6-Tribromophenol (S)	76	%	27-110		1	08/16/17 19:11	08/17/17 17:39		
8260/5035A Volatile Organics	Analytical	Method: EP/	A 8260						
Acetone	46.6J	ug/kg	109	10.9	1		08/17/17 15:38	67-64-1	
Benzene	ND	ug/kg ug/kg	5.5	1.8	1		08/17/17 15:38		
Bromobenzene	ND	ug/kg ug/kg	5.5	2.2	1		08/17/17 15:38		
Bromochloromethane	ND	ug/kg ug/kg	5.5	1.9	1		08/17/17 15:38		
Bromodichloromethane	ND	ug/kg ug/kg	5.5	2.1	1		08/17/17 15:38		
Bromoform	ND	ug/kg ug/kg	5.5	2.5	1		08/17/17 15:38		
Bromomethane	ND ND	ug/kg ug/kg	10.9	2.7	1		08/17/17 15:38		
2-Butanone (MEK)	ND	ug/kg ug/kg	10.9	3.2	1		08/17/17 15:38		
n-Butylbenzene	ND ND	ug/kg ug/kg	5.5	2.0	1		08/17/17 15:38		
sec-Butylbenzene	ND ND	ug/kg ug/kg	5.5 5.5	1.8	1		08/17/17 15:38		
tert-Butylbenzene	ND ND		5.5 5.5	2.2	1		08/17/17 15:38		
Carbon tetrachloride	ND ND	ug/kg	5.5 5.5	2.2 2.8	1		08/17/17 15:38		
Chlorobenzene	ND ND	ug/kg					08/17/17 15:38		
Chiloropenzene	טא	ug/kg	5.5	2.1	1		06/17/17 15:38	100-90-7	

Project: RFP-RUTHERFORD 71177323


Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

Sample: B-186-3 Lab ID: 92351820003 Collected: 08/16/17 09:16 Received: 08/16/17 15:55 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
8260/5035A Volatile Organics	Analytical Method: EPA 8260									
Chloroethane	ND	ug/kg	10.9	2.6	1		08/17/17 15:38	75-00-3		
Chloroform	ND	ug/kg	5.5	1.8	1		08/17/17 15:38	67-66-3		
Chloromethane	ND	ug/kg	10.9	2.6	1		08/17/17 15:38	74-87-3		
2-Chlorotoluene	ND	ug/kg	5.5	1.9	1		08/17/17 15:38	95-49-8		
4-Chlorotoluene	ND	ug/kg	5.5	2.0	1		08/17/17 15:38	106-43-4		
1,2-Dibromo-3-chloropropane	ND	ug/kg	5.5	3.9	1		08/17/17 15:38	96-12-8		
Dibromochloromethane	ND	ug/kg	5.5	2.0	1		08/17/17 15:38	124-48-1		
1,2-Dibromoethane (EDB)	ND	ug/kg	5.5	2.0	1		08/17/17 15:38	106-93-4		
Dibromomethane	ND	ug/kg	5.5	2.7	1		08/17/17 15:38			
1,2-Dichlorobenzene	ND	ug/kg	5.5	2.1	1		08/17/17 15:38			
1,3-Dichlorobenzene	ND	ug/kg	5.5	2.2	1		08/17/17 15:38			
1,4-Dichlorobenzene	ND	ug/kg	5.5	1.9	1		08/17/17 15:38			
Dichlorodifluoromethane	ND	ug/kg	10.9	3.9	1		08/17/17 15:38			
1,1-Dichloroethane	ND	ug/kg	5.5	1.6	1		08/17/17 15:38			
1,2-Dichloroethane	ND	ug/kg	5.5	2.4	1		08/17/17 15:38			
1,1-Dichloroethene	ND	ug/kg ug/kg	5.5	2.0	1		08/17/17 15:38			
cis-1,2-Dichloroethene	ND	ug/kg ug/kg	5.5	1.5	1		08/17/17 15:38			
trans-1,2-Dichloroethene	ND	ug/kg ug/kg	5.5	2.1	1		08/17/17 15:38			
1,2-Dichloropropane	ND	ug/kg ug/kg	5.5	1.9	1		08/17/17 15:38			
1,3-Dichloropropane	ND ND	ug/kg ug/kg	5.5	2.1	1		08/17/17 15:38			
2,2-Dichloropropane	ND ND	ug/kg ug/kg	5.5	1.9	1		08/17/17 15:38			
1,1-Dichloropropene	ND ND	ug/kg ug/kg	5.5	1.6	1		08/17/17 15:38			
cis-1,3-Dichloropropene	ND ND	ug/kg ug/kg	5.5	2.0	1		08/17/17 15:38			
trans-1,3-Dichloropropene	ND ND	ug/kg ug/kg	5.5	1.6	1		08/17/17 15:38			
Diisopropyl ether	ND ND	ug/kg ug/kg	5.5	1.0	1		08/17/17 15:38			
Ethylbenzene	ND ND	ug/kg ug/kg	5.5	2.0	1		08/17/17 15:38			
Hexachloro-1,3-butadiene	ND ND	ug/kg ug/kg	5.5	2.2	1		08/17/17 15:38			
2-Hexanone	ND ND		54.7	4.3	1		08/17/17 15:38			
	ND ND	ug/kg	5.5	4.3 2.1	1		08/17/17 15:38			
Isopropylbenzene (Cumene)		ug/kg		1.9						
p-Isopropyltoluene	ND 21.5J	ug/kg	5.5 21.9	3.3	1 1		08/17/17 15:38 08/17/17 15:38			
Methylene Chloride		ug/kg			1		08/17/17 15:38			
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	54.7	4.1						
Methyl-tert-butyl ether	ND	ug/kg	5.5	1.6	1		08/17/17 15:38			
Naphthalene	ND	ug/kg	5.5	1.3	1		08/17/17 15:38			
n-Propylbenzene	ND	ug/kg	5.5	1.9	1		08/17/17 15:38			
Styrene	ND	ug/kg	5.5	2.0	1		08/17/17 15:38			
1,1,1,2-Tetrachloroethane	ND	ug/kg	5.5	2.3	1		08/17/17 15:38			
1,1,2,2-Tetrachloroethane	ND	ug/kg	5.5	2.1	1		08/17/17 15:38			
Tetrachloroethene	ND	ug/kg	5.5	1.9	1		08/17/17 15:38			
Toluene	ND	ug/kg	5.5	2.0	1		08/17/17 15:38			
1,2,3-Trichlorobenzene	ND	ug/kg	5.5	2.4	1		08/17/17 15:38			
1,2,4-Trichlorobenzene	ND	ug/kg	5.5	1.8	1		08/17/17 15:38			
1,1,1-Trichloroethane	ND	ug/kg	5.5	2.0	1		08/17/17 15:38			
1,1,2-Trichloroethane	ND	ug/kg	5.5	2.3	1		08/17/17 15:38			
Trichloroethene	ND	ug/kg	5.5	2.3	1		08/17/17 15:38	79-01-6		

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

Sample: B-186-3 Lab ID: 92351820003 Collected: 08/16/17 09:16 Received: 08/16/17 15:55 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

,		•	Report		•	•	•		
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical	Method: EP/	A 8260						
Trichlorofluoromethane	ND	ug/kg	5.5	2.4	1		08/17/17 15:38	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	5.5	1.8	1		08/17/17 15:38	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	5.5	2.2	1		08/17/17 15:38	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	5.5	2.0	1		08/17/17 15:38	108-67-8	
Vinyl acetate	ND	ug/kg	54.7	9.6	1		08/17/17 15:38	108-05-4	
Vinyl chloride	ND	ug/kg	10.9	2.0	1		08/17/17 15:38	75-01-4	
Xylene (Total)	ND	ug/kg	10.9	3.9	1		08/17/17 15:38	1330-20-7	
m&p-Xylene	ND	ug/kg	10.9	3.9	1		08/17/17 15:38	179601-23-1	
o-Xylene Surrogates	ND	ug/kg	5.5	2.1	1		08/17/17 15:38	95-47-6	
Toluene-d8 (S)	101	%	70-130		1		08/17/17 15:38	2037-26-5	
4-Bromofluorobenzene (S)	95	%	70-130		1		08/17/17 15:38	460-00-4	
1,2-Dichloroethane-d4 (S)	90	%	70-132		1		08/17/17 15:38	17060-07-0	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
Percent Moisture	5.8	%	0.10	0.10	1		08/17/17 08:07		

QUALITY CONTROL DATA

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

QC Batch: 373848 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 92351820002, 92351820003

METHOD BLANK: 2071347 Matrix: Solid

Associated Lab Samples: 92351820002, 92351820003

,	, , , , , , , , , , , , , , , , , , , ,	Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	6.2	2.6	08/17/17 12:54	
1,1,1-Trichloroethane	ug/kg	ND	6.2	2.2	08/17/17 12:54	
1,1,2,2-Tetrachloroethane	ug/kg	ND	6.2	2.4	08/17/17 12:54	
1,1,2-Trichloroethane	ug/kg	ND	6.2	2.6	08/17/17 12:54	
1,1-Dichloroethane	ug/kg	ND	6.2	1.9	08/17/17 12:54	
1,1-Dichloroethene	ug/kg	ND	6.2	2.2	08/17/17 12:54	
1,1-Dichloropropene	ug/kg	ND	6.2	1.9	08/17/17 12:54	
1,2,3-Trichlorobenzene	ug/kg	ND	6.2	2.7	08/17/17 12:54	
1,2,3-Trichloropropane	ug/kg	ND	6.2	2.0	08/17/17 12:54	
1,2,4-Trichlorobenzene	ug/kg	ND	6.2	2.0	08/17/17 12:54	
1,2,4-Trimethylbenzene	ug/kg	ND	6.2	2.5	08/17/17 12:54	
1,2-Dibromo-3-chloropropane	ug/kg	ND	6.2	4.5	08/17/17 12:54	
1,2-Dibromoethane (EDB)	ug/kg	ND	6.2	2.2	08/17/17 12:54	
1,2-Dichlorobenzene	ug/kg	ND	6.2	2.4	08/17/17 12:54	
1,2-Dichloroethane	ug/kg	ND	6.2	2.7	08/17/17 12:54	
1,2-Dichloropropane	ug/kg	ND	6.2	2.1	08/17/17 12:54	
1,3,5-Trimethylbenzene	ug/kg	ND	6.2	2.2	08/17/17 12:54	
1,3-Dichlorobenzene	ug/kg	ND	6.2	2.5	08/17/17 12:54	
1,3-Dichloropropane	ug/kg	ND	6.2	2.4	08/17/17 12:54	
1,4-Dichlorobenzene	ug/kg	ND	6.2	2.1	08/17/17 12:54	
2,2-Dichloropropane	ug/kg	ND	6.2	2.1	08/17/17 12:54	
2-Butanone (MEK)	ug/kg	ND	124	3.6	08/17/17 12:54	
2-Chlorotoluene	ug/kg	ND	6.2	2.1	08/17/17 12:54	
2-Hexanone	ug/kg	ND	62.0	4.8	08/17/17 12:54	
4-Chlorotoluene	ug/kg	ND	6.2	2.2	08/17/17 12:54	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	62.0	4.6	08/17/17 12:54	
Acetone	ug/kg	ND	124	12.4	08/17/17 12:54	
Benzene	ug/kg	ND	6.2	2.0	08/17/17 12:54	
Bromobenzene	ug/kg	ND	6.2	2.5	08/17/17 12:54	
Bromochloromethane	ug/kg	ND	6.2	2.1	08/17/17 12:54	
Bromodichloromethane	ug/kg	ND	6.2	2.4	08/17/17 12:54	
Bromoform	ug/kg	ND	6.2	2.9	08/17/17 12:54	
Bromomethane	ug/kg	ND	12.4	3.1	08/17/17 12:54	
Carbon tetrachloride	ug/kg	ND	6.2	3.2	08/17/17 12:54	
Chlorobenzene	ug/kg	ND	6.2	2.4	08/17/17 12:54	
Chloroethane	ug/kg	ND	12.4	3.0	08/17/17 12:54	
Chloroform	ug/kg	ND	6.2	2.0	08/17/17 12:54	
Chloromethane	ug/kg	ND	12.4	3.0	08/17/17 12:54	
cis-1,2-Dichloroethene	ug/kg	ND	6.2	1.7	08/17/17 12:54	
cis-1,3-Dichloropropene	ug/kg	ND	6.2	2.2	08/17/17 12:54	
Dibromochloromethane	ug/kg	ND	6.2	2.2	08/17/17 12:54	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

METHOD BLANK: 2071347 Matrix: Solid

Associated Lab Samples: 92351820002, 92351820003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Dibromomethane	ug/kg	ND	6.2	3.1	08/17/17 12:54	
Dichlorodifluoromethane	ug/kg	ND	12.4	4.5	08/17/17 12:54	
Diisopropyl ether	ug/kg	ND	6.2	2.1	08/17/17 12:54	
Ethylbenzene	ug/kg	ND	6.2	2.2	08/17/17 12:54	
Hexachloro-1,3-butadiene	ug/kg	ND	6.2	2.5	08/17/17 12:54	
Isopropylbenzene (Cumene)	ug/kg	ND	6.2	2.4	08/17/17 12:54	
m&p-Xylene	ug/kg	ND	12.4	4.5	08/17/17 12:54	
Methyl-tert-butyl ether	ug/kg	ND	6.2	1.9	08/17/17 12:54	
Methylene Chloride	ug/kg	ND	24.8	3.7	08/17/17 12:54	
n-Butylbenzene	ug/kg	ND	6.2	2.2	08/17/17 12:54	
n-Propylbenzene	ug/kg	ND	6.2	2.1	08/17/17 12:54	
Naphthalene	ug/kg	ND	6.2	1.5	08/17/17 12:54	
o-Xylene	ug/kg	ND	6.2	2.4	08/17/17 12:54	
p-Isopropyltoluene	ug/kg	ND	6.2	2.1	08/17/17 12:54	
sec-Butylbenzene	ug/kg	ND	6.2	2.0	08/17/17 12:54	
Styrene	ug/kg	ND	6.2	2.2	08/17/17 12:54	
tert-Butylbenzene	ug/kg	ND	6.2	2.5	08/17/17 12:54	
Tetrachloroethene	ug/kg	ND	6.2	2.1	08/17/17 12:54	
Toluene	ug/kg	ND	6.2	2.2	08/17/17 12:54	
trans-1,2-Dichloroethene	ug/kg	ND	6.2	2.4	08/17/17 12:54	
trans-1,3-Dichloropropene	ug/kg	ND	6.2	1.9	08/17/17 12:54	
Trichloroethene	ug/kg	ND	6.2	2.6	08/17/17 12:54	
Trichlorofluoromethane	ug/kg	ND	6.2	2.7	08/17/17 12:54	
Vinyl acetate	ug/kg	ND	62.0	10.9	08/17/17 12:54	
Vinyl chloride	ug/kg	ND	12.4	2.2	08/17/17 12:54	
Xylene (Total)	ug/kg	ND	12.4	4.5	08/17/17 12:54	
1,2-Dichloroethane-d4 (S)	%	83	70-132		08/17/17 12:54	
4-Bromofluorobenzene (S)	%	100	70-130		08/17/17 12:54	
Toluene-d8 (S)	%	102	70-130		08/17/17 12:54	

LABORATORY CONTROL SAMPLE:	2071348					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	66.5	64.3	97	74-137	
1,1,1-Trichloroethane	ug/kg	66.5	57.5	86	67-140	
1,1,2,2-Tetrachloroethane	ug/kg	66.5	61.2	92	72-141	
1,1,2-Trichloroethane	ug/kg	66.5	61.6	93	78-138	
1,1-Dichloroethane	ug/kg	66.5	56.9	86	69-134	
1,1-Dichloroethene	ug/kg	66.5	54.0	81	67-138	
1,1-Dichloropropene	ug/kg	66.5	63.0	95	69-139	
1,2,3-Trichlorobenzene	ug/kg	66.5	64.1	96	70-146	
1,2,3-Trichloropropane	ug/kg	66.5	61.2	92	69-144	
1,2,4-Trichlorobenzene	ug/kg	66.5	64.0	96	68-148	
1,2,4-Trimethylbenzene	ug/kg	66.5	62.8	94	74-137	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

LABORATORY CONTROL SAMPLE	E: 2071348	.			a. 5	
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						Qualifiers
1,2-Dibromo-3-chloropropane	ug/kg	66.5	63.1	95	65-140	
I,2-Dibromoethane (EDB)	ug/kg	66.5	67.0	101	77-135	
1,2-Dichlorobenzene	ug/kg	66.5	64.2	97	77-141	
,2-Dichloroethane	ug/kg	66.5	54.4	82	65-137	
,2-Dichloropropane	ug/kg	66.5	63.3	95	72-136	
1,3,5-Trimethylbenzene	ug/kg	66.5	63.1	95	76-133	
1,3-Dichlorobenzene	ug/kg	66.5	63.5	96	74-138	
,3-Dichloropropane	ug/kg	66.5	68.3	103	71-139	
,4-Dichlorobenzene	ug/kg	66.5	64.9	98	76-138	
2,2-Dichloropropane	ug/kg	66.5	58.8	88	68-137	
-Butanone (MEK)	ug/kg	133	119J	89	58-147	
2-Chlorotoluene	ug/kg	66.5	64.8	97	73-139	
-Hexanone	ug/kg	133	133	100	62-145	
-Chlorotoluene	ug/kg	66.5	63.8	96	76-141	
-Methyl-2-pentanone (MIBK)	ug/kg	133	129	97	64-149	
Acetone	ug/kg	133	140	105	53-153	
Benzene	ug/kg	66.5	61.6	93	73-135	
Bromobenzene	ug/kg	66.5	65.5	98	75-133	
Bromochloromethane	ug/kg	66.5	60.0	90	73-134	
Bromodichloromethane	ug/kg	66.5	63.6	96	71-135	
Bromoform	ug/kg	66.5	61.6	93	66-141	
Bromomethane	ug/kg	66.5	60.1	90	53-160	
Carbon tetrachloride	ug/kg	66.5	58.7	88	60-145	
Chlorobenzene	ug/kg	66.5	64.7	97	78-130	
Chloroethane	ug/kg	66.5	59.0	89	64-149	
Chloroform	ug/kg	66.5	58.2	87	70-134	
Chloromethane	ug/kg	66.5	60.6	91	52-150	
sis-1,2-Dichloroethene	ug/kg	66.5	60.4	91	70-133	
sis-1,3-Dichloropropene	ug/kg	66.5	65.5	99	68-134	
Dibromochloromethane	ug/kg	66.5	65.3	98	71-138	
Dibromomethane	ug/kg ug/kg	66.5	59.9	90	74-130	
Dichlorodifluoromethane	ug/kg ug/kg	66.5	51.3	90 77	40-160	
Diisopropyl ether	ug/kg ug/kg	66.5	61.1	92	69-141	
Ethylbenzene		66.5	63.6	92 96	75-133	
•	ug/kg	66.5	63.3	96 95	68-143	
Hexachloro-1,3-butadiene	ug/kg					
sopropylbenzene (Cumene)	ug/kg	66.5	61.4	92	76-143 75-136	
n&p-Xylene	ug/kg	133	125	94	75-136	
Methyl-tert-butyl ether	ug/kg	66.5	58.1	87	68-144	
Methylene Chloride	ug/kg	66.5	55.1	83	45-154	
-Butylbenzene	ug/kg	66.5	62.0	93	72-137	
-Propylbenzene	ug/kg	66.5	62.4	94	76-136	
laphthalene	ug/kg	66.5	65.5	98	68-151	
p-Xylene	ug/kg	66.5	62.6	94	76-141	
o-Isopropyltoluene	ug/kg	66.5	62.5	94	76-140	
sec-Butylbenzene	ug/kg	66.5	61.6	93	79-139	
Styrene	ug/kg	66.5	64.6	97	79-137	
ert-Butylbenzene	ug/kg	66.5	56.1	84	74-143	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

ABORATORY CONTROL SAMPLE:	2071348					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
etrachloroethene	ug/kg	66.5	61.0	92	71-138	
oluene	ug/kg	66.5	61.3	92	74-131	
ans-1,2-Dichloroethene	ug/kg	66.5	56.7	85	67-135	
ans-1,3-Dichloropropene	ug/kg	66.5	64.4	97	65-146	
chloroethene	ug/kg	66.5	63.5	95	67-135	
chlorofluoromethane	ug/kg	66.5	55.2	83	59-144	
yl acetate	ug/kg	133	113	85	40-160	
vl chloride	ug/kg	66.5	58.3	88	56-141	
ene (Total)	ug/kg	199	188	94	76-137	
-Dichloroethane-d4 (S)	%			87	70-132	
romofluorobenzene (S)	%			99	70-130	
uene-d8 (S)	%			97	70-130	

MATRIX SPIKE SAMPLE:	2072234						
		92351821001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	22.1	21.5	97	70-130	
1,1,1-Trichloroethane	ug/kg	ND	22.1	20.1	91	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	ND	22.1	20.7	93	70-130	
1,1,2-Trichloroethane	ug/kg	ND	22.1	20.6	93	70-130	
1,1-Dichloroethane	ug/kg	ND	22.1	20.8	94	70-130	
1,1-Dichloroethene	ug/kg	ND	22.1	20.1	91	49-180	
1,1-Dichloropropene	ug/kg	ND	22.1	21.8	99	70-130	
1,2,3-Trichlorobenzene	ug/kg	ND	22.1	16.0	72	70-130	
1,2,3-Trichloropropane	ug/kg	ND	22.1	21.1	95	70-130	
1,2,4-Trichlorobenzene	ug/kg	ND	22.1	17.1	77	70-130	
1,2,4-Trimethylbenzene	ug/kg	ND	22.1	24.9	113	70-130	
1,2-Dibromo-3-chloropropane	ug/kg	ND	22.1	24.6	111	70-130	
1,2-Dibromoethane (EDB)	ug/kg	ND	22.1	22.4	101	70-130	
1,2-Dichlorobenzene	ug/kg	ND	22.1	22.2	100	70-130	
1,2-Dichloroethane	ug/kg	ND	22.1	19.3	87	70-130	
1,2-Dichloropropane	ug/kg	ND	22.1	21.4	97	70-130	
1,3,5-Trimethylbenzene	ug/kg	ND	22.1	25.3	114	70-130	
1,3-Dichlorobenzene	ug/kg	ND	22.1	22.7	103	70-130	
1,3-Dichloropropane	ug/kg	ND	22.1	23.2	105	70-130	
1,4-Dichlorobenzene	ug/kg	ND	22.1	23.1	104	70-130	
2,2-Dichloropropane	ug/kg	ND	22.1	19.7	89	70-130	
2-Butanone (MEK)	ug/kg	ND	44.2	40.0J	90	70-130	
2-Chlorotoluene	ug/kg	ND	22.1	25.1	114	70-130	
2-Hexanone	ug/kg	ND	44.2	39.9J	90	70-130	
4-Chlorotoluene	ug/kg	ND	22.1	24.3	110	70-130	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	44.2	41.0J	93	70-130	
Acetone	ug/kg	ND	44.2	45.9J	104	70-130	
Benzene	ug/kg	ND	22.1	22.1	100	50-166	
Bromobenzene	ug/kg	ND	22.1	25.0	113	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

Б	11.5	92351821001	Spike	MS	MS	% Rec	0 ""
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifier
Bromochloromethane	ug/kg	ND	22.1	20.7	94	70-130	
Bromodichloromethane	ug/kg	ND	22.1	22.0	99	70-130	
Bromoform	ug/kg	ND	22.1	18.0	81	70-130	
Bromomethane	ug/kg	ND	22.1	19.1	86	70-130	
Carbon tetrachloride	ug/kg	ND	22.1	21.5	97	70-130	
Chlorobenzene	ug/kg	ND	22.1	22.9	104	43-169	
Chloroethane	ug/kg	ND	22.1	21.5	97	70-130	
Chloroform	ug/kg	ND	22.1	21.1	96	70-130	
Chloromethane	ug/kg	ND	22.1	21.8	98	70-130	
is-1,2-Dichloroethene	ug/kg	ND	22.1	21.1	95	70-130	
sis-1,3-Dichloropropene	ug/kg	ND	22.1	20.1	91	70-130	
Dibromochloromethane	ug/kg	ND	22.1	21.4	97	70-130	
Dibromomethane	ug/kg	ND	22.1	21.1	95	70-130	
Dichlorodifluoromethane	ug/kg	ND	22.1	17.4	79	70-130	
Diisopropyl ether	ug/kg	ND	22.1	19.7	89	70-130	
thylbenzene	ug/kg	ND	22.1	23.3	105	70-130	
lexachloro-1,3-butadiene	ug/kg	ND	22.1	24.3	110	70-130	
sopropylbenzene (Cumene)	ug/kg	ND	22.1	23.2	105	70-130	
n&p-Xylene	ug/kg	ND	44.2	44.9	102	70-130	
Nethyl-tert-butyl ether	ug/kg	ND	22.1	18.7	84	70-130	
lethylene Chloride	ug/kg	ND	22.1	18.4J	83	70-130	
-Butylbenzene	ug/kg	ND	22.1	24.9	113	70-130	
-Propylbenzene	ug/kg	ND	22.1	25.4	115	70-130	
laphthalene	ug/kg	ND	22.1	16.9	76	70-130	
-Xylene	ug/kg	ND	22.1	22.6	102	70-130	
-Isopropyltoluene	ug/kg	ND	22.1	25.1	114	70-130	
ec-Butylbenzene	ug/kg	ND	22.1	25.8	117	70-130	
Styrene	ug/kg	ND	22.1	21.9	99	70-130	
ert-Butylbenzene	ug/kg	ND	22.1	23.5	106	70-130	
etrachloroethene	ug/kg	ND	22.1	22.4	101	70-130	
oluene	ug/kg	ND	22.1	21.7	98	52-163	
rans-1,2-Dichloroethene	ug/kg	ND	22.1	20.9	94	70-130	
rans-1,3-Dichloropropene	ug/kg	ND	22.1	20.4	92	70-130	
Frichloroethene	ug/kg	ND	22.1	22.2	101	49-167	
richlorofluoromethane	ug/kg	ND	22.1	21.0	95	70-130	
/inyl acetate	ug/kg	ND	44.2	11.9J	27	70-130 N	<i>I</i> 11
/inyl chloride	ug/kg	ND	22.1	19.5	88	70-130	
,2-Dichloroethane-d4 (S)	%				90	70-132	
-Bromofluorobenzene (S)	%				96	70-130	
Foluene-d8 (S)	%				95	70-130	

ParameterUnits92351820002 ResultDup ResultMax ResultMax Result1,1,1,2-Tetrachloroethaneug/kgNDND30

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

SAMPLE DUPLICATE: 2072235		92351820002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/kg		ND		30	
1,1,2,2-Tetrachloroethane	ug/kg	ND	ND		30	
1,1,2-Trichloroethane	ug/kg	ND	ND		30	
1,1-Dichloroethane	ug/kg	ND	ND		30	
1,1-Dichloroethene	ug/kg	ND	ND		30	
1,1-Dichloropropene	ug/kg	ND	ND		30	
1,2,3-Trichlorobenzene	ug/kg	ND	ND		30	
1,2,3-Trichloropropane	ug/kg	ND	ND		30	
1,2,4-Trichlorobenzene	ug/kg	ND	ND		30	
1,2,4-Trimethylbenzene	ug/kg	ND	ND		30	
1,2-Dibromo-3-chloropropane	ug/kg	ND	ND		30	
1,2-Dibromoethane (EDB)	ug/kg	ND	ND		30	
1,2-Dichlorobenzene	ug/kg	ND	ND		30	
1,2-Dichloroethane	ug/kg	ND	ND		30	
1,2-Dichloropropane	ug/kg	ND	ND		30	
1,3,5-Trimethylbenzene	ug/kg	ND	ND		30	
1,3-Dichlorobenzene	ug/kg	ND	ND		30	
1,3-Dichloropropane	ug/kg	ND	ND		30	
1,4-Dichlorobenzene	ug/kg	ND	ND		30	
2,2-Dichloropropane	ug/kg	ND	ND		30	
2-Butanone (MEK)	ug/kg	ND	ND		30	
2-Chlorotoluene	ug/kg	ND	ND		30	
2-Hexanone	ug/kg	ND	ND		30	
4-Chlorotoluene	ug/kg	ND	ND		30	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	ND		30	
Acetone	ug/kg	124	47.9J		30	
Benzene	ug/kg	ND	ND		30	
Bromobenzene	ug/kg	ND	ND		30	
Bromochloromethane	ug/kg	ND	ND		30	
Bromodichloromethane	ug/kg	ND	ND		30	
Bromoform	ug/kg	ND	ND		30	
Bromomethane	ug/kg	ND	ND		30	
Carbon tetrachloride	ug/kg	ND	ND		30	
Chlorobenzene	ug/kg	ND	ND		30	
Chloroethane	ug/kg	ND	ND		30	
Chloroform	ug/kg	ND	ND		30	
Chloromethane	ug/kg	ND	ND		30	
cis-1,2-Dichloroethene	ug/kg	ND	ND		30	
cis-1,3-Dichloropropene	ug/kg	ND	ND		30	
Dibromochloromethane	ug/kg	ND	ND		30	
Dibromomethane	ug/kg	ND	ND		30	
Dichlorodifluoromethane	ug/kg	ND	ND		30	
Diisopropyl ether	ug/kg	ND	ND		30	
Ethylbenzene	ug/kg	ND	ND		30	
Hexachloro-1,3-butadiene	ug/kg	ND	ND		30	
Isopropylbenzene (Cumene)	ug/kg	ND	ND		30	
m&p-Xylene	ug/kg	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

SAMPLE DUPLICATE: 2072235						
		92351820002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Methyl-tert-butyl ether	ug/kg	ND	ND		30)
Methylene Chloride	ug/kg	23.2J	21.1		30	C9
n-Butylbenzene	ug/kg	ND	ND		30)
n-Propylbenzene	ug/kg	ND	ND		30)
Naphthalene	ug/kg	ND	ND		30)
o-Xylene	ug/kg	ND	ND		30)
p-Isopropyltoluene	ug/kg	ND	ND		30)
sec-Butylbenzene	ug/kg	ND	ND		30)
Styrene	ug/kg	ND	ND		30)
tert-Butylbenzene	ug/kg	ND	ND		30)
Tetrachloroethene	ug/kg	ND	ND		30)
Toluene	ug/kg	ND	ND		30)
trans-1,2-Dichloroethene	ug/kg	ND	ND		30)
trans-1,3-Dichloropropene	ug/kg	ND	ND		30)
Trichloroethene	ug/kg	ND	ND		30)
Trichlorofluoromethane	ug/kg	ND	ND		30)
Vinyl acetate	ug/kg	ND	ND		30)
Vinyl chloride	ug/kg	ND	ND		30)
Xylene (Total)	ug/kg	ND	ND		30)
1,2-Dichloroethane-d4 (S)	%	89	87	28		
4-Bromofluorobenzene (S)	%	101	100	27		
Toluene-d8 (S)	%	101	103	24		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

QC Batch: 374049 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 92351820001

METHOD BLANK: 2072404 Matrix: Solid

Associated Lab Samples: 92351820001

Associated Lab Samples. 9233162		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
						Qualificity
1,1,1,2-Tetrachloroethane	ug/kg	ND	5.4	2.3	08/18/17 11:57	
1,1,1-Trichloroethane	ug/kg	ND	5.4	1.9	08/18/17 11:57	
1,1,2,2-Tetrachloroethane	ug/kg	ND	5.4	2.0	08/18/17 11:57	
,1,2-Trichloroethane	ug/kg	ND	5.4	2.3	08/18/17 11:57	
,1-Dichloroethane	ug/kg	ND	5.4	1.6	08/18/17 11:57	
,1-Dichloroethene	ug/kg	ND	5.4	1.9	08/18/17 11:57	
,1-Dichloropropene	ug/kg	ND	5.4	1.6	08/18/17 11:57	
,2,3-Trichlorobenzene	ug/kg	ND	5.4	2.4	08/18/17 11:57	
,2,3-Trichloropropane	ug/kg	ND	5.4	1.7	08/18/17 11:57	
,2,4-Trichlorobenzene	ug/kg	ND	5.4	1.7	08/18/17 11:57	
,2,4-Trimethylbenzene	ug/kg	ND	5.4	2.2	08/18/17 11:57	
,2-Dibromo-3-chloropropane	ug/kg	ND	5.4	3.9	08/18/17 11:57	
,2-Dibromoethane (EDB)	ug/kg	ND	5.4	1.9	08/18/17 11:57	
,2-Dichlorobenzene	ug/kg	ND	5.4	2.0	08/18/17 11:57	
,2-Dichloroethane	ug/kg	ND	5.4	2.4	08/18/17 11:57	
,2-Dichloropropane	ug/kg	ND	5.4	1.8	08/18/17 11:57	
,3,5-Trimethylbenzene	ug/kg	ND	5.4	1.9	08/18/17 11:57	
,3-Dichlorobenzene	ug/kg	ND	5.4	2.2	08/18/17 11:57	
,3-Dichloropropane	ug/kg	ND	5.4	2.0	08/18/17 11:57	
,4-Dichlorobenzene	ug/kg	ND	5.4	1.8	08/18/17 11:57	
,2-Dichloropropane	ug/kg	ND	5.4	1.8	08/18/17 11:57	
-Butanone (MEK)	ug/kg	ND	108	3.1	08/18/17 11:57	
-Chlorotoluene	ug/kg	ND	5.4	1.8	08/18/17 11:57	
-Hexanone	ug/kg	ND	53.8	4.2	08/18/17 11:57	
-Chlorotoluene	ug/kg	ND	5.4	1.9	08/18/17 11:57	
-Methyl-2-pentanone (MIBK)	ug/kg	ND	53.8	4.0	08/18/17 11:57	
cetone	ug/kg	ND	108	10.8	08/18/17 11:57	
enzene	ug/kg	ND	5.4	1.7	08/18/17 11:57	
romobenzene	ug/kg	ND	5.4	2.2	08/18/17 11:57	
romochloromethane	ug/kg	ND	5.4	1.8	08/18/17 11:57	
romodichloromethane	ug/kg	ND	5.4	2.0	08/18/17 11:57	
romoform	ug/kg	ND	5.4	2.5	08/18/17 11:57	
romomethane	ug/kg	ND	10.8	2.7	08/18/17 11:57	
arbon tetrachloride	ug/kg	ND	5.4	2.8	08/18/17 11:57	
Chlorobenzene	ug/kg	ND ND	5.4	2.0	08/18/17 11:57	
chloroberizerie	ug/kg	ND ND	10.8	2.6	08/18/17 11:57	
chloroform	ug/kg ug/kg	ND ND	5.4	1.7	08/18/17 11:57	
Chloromethane	ug/kg ug/kg	ND ND	10.8	2.6	08/18/17 11:57	
	ug/kg ug/kg	ND ND	5.4	1.5	08/18/17 11:57	
is-1,2-Dichloroethene				1.5		
is-1,3-Dichloropropene	ug/kg	ND	5.4	_	08/18/17 11:57	
Dibromochloromethane	ug/kg	ND	5.4	1.9	08/18/17 11:57	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

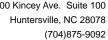
METHOD BLANK: 2072404 Matrix: Solid

Associated Lab Samples: 92351820001

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Dibromomethane	ug/kg	ND	5.4	2.7	08/18/17 11:57	
Dichlorodifluoromethane	ug/kg	ND	10.8	3.9	08/18/17 11:57	
Diisopropyl ether	ug/kg	ND	5.4	1.8	08/18/17 11:57	
Ethylbenzene	ug/kg	ND	5.4	1.9	08/18/17 11:57	
Hexachloro-1,3-butadiene	ug/kg	ND	5.4	2.2	08/18/17 11:57	
Isopropylbenzene (Cumene)	ug/kg	ND	5.4	2.0	08/18/17 11:57	
m&p-Xylene	ug/kg	ND	10.8	3.9	08/18/17 11:57	
Methyl-tert-butyl ether	ug/kg	ND	5.4	1.6	08/18/17 11:57	
Methylene Chloride	ug/kg	ND	21.5	3.2	08/18/17 11:57	
n-Butylbenzene	ug/kg	ND	5.4	1.9	08/18/17 11:57	
n-Propylbenzene	ug/kg	ND	5.4	1.8	08/18/17 11:57	
Naphthalene	ug/kg	ND	5.4	1.3	08/18/17 11:57	
o-Xylene	ug/kg	ND	5.4	2.0	08/18/17 11:57	
p-Isopropyltoluene	ug/kg	ND	5.4	1.8	08/18/17 11:57	
sec-Butylbenzene	ug/kg	ND	5.4	1.7	08/18/17 11:57	
Styrene	ug/kg	ND	5.4	1.9	08/18/17 11:57	
tert-Butylbenzene	ug/kg	ND	5.4	2.2	08/18/17 11:57	
Tetrachloroethene	ug/kg	ND	5.4	1.8	08/18/17 11:57	
Toluene	ug/kg	ND	5.4	1.9	08/18/17 11:57	
trans-1,2-Dichloroethene	ug/kg	ND	5.4	2.0	08/18/17 11:57	
trans-1,3-Dichloropropene	ug/kg	ND	5.4	1.6	08/18/17 11:57	
Trichloroethene	ug/kg	ND	5.4	2.3	08/18/17 11:57	
Trichlorofluoromethane	ug/kg	ND	5.4	2.4	08/18/17 11:57	
Vinyl acetate	ug/kg	ND	53.8	9.5	08/18/17 11:57	
Vinyl chloride	ug/kg	ND	10.8	1.9	08/18/17 11:57	
Xylene (Total)	ug/kg	ND	10.8	3.9	08/18/17 11:57	
1,2-Dichloroethane-d4 (S)	%	84	70-132		08/18/17 11:57	
4-Bromofluorobenzene (S)	%	98	70-130		08/18/17 11:57	
Toluene-d8 (S)	%	101	70-130		08/18/17 11:57	

LABORATORY CONTROL SAMPLE:	2072405					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	62.2	58.3	94	74-137	
1,1,1-Trichloroethane	ug/kg	62.2	52.7	85	67-140	
1,1,2,2-Tetrachloroethane	ug/kg	62.2	55.9	90	72-141	
1,1,2-Trichloroethane	ug/kg	62.2	57.0	92	78-138	
1,1-Dichloroethane	ug/kg	62.2	52.0	84	69-134	
1,1-Dichloroethene	ug/kg	62.2	52.6	85	67-138	
1,1-Dichloropropene	ug/kg	62.2	56.8	91	69-139	
1,2,3-Trichlorobenzene	ug/kg	62.2	59.9	96	70-146	
1,2,3-Trichloropropane	ug/kg	62.2	57.5	92	69-144	
1,2,4-Trichlorobenzene	ug/kg	62.2	59.2	95	68-148	
1,2,4-Trimethylbenzene	ug/kg	62.2	56.4	91	74-137	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.


Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

_ABORATORY CONTROL SAMPLE:	2072405	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2-Dibromo-3-chloropropane	ug/kg	62.2	60.1	97	65-140	
1,2-Dibromoethane (EDB)	ug/kg	62.2	63.3	102	77-135	
1,2-Dichlorobenzene	ug/kg	62.2	59.1	95	77-141	
,2-Dichloroethane	ug/kg	62.2	51.1	82	65-137	
,2-Dichloropropane	ug/kg	62.2	58.5	94	72-136	
,3,5-Trimethylbenzene	ug/kg	62.2	56.2	90	76-133	
,3-Dichlorobenzene	ug/kg	62.2	58.5	94	74-138	
,3-Dichloropropane	ug/kg	62.2	62.0	100	71-139	
,4-Dichlorobenzene	ug/kg	62.2	59.9	96	76-138	
2,2-Dichloropropane	ug/kg	62.2	51.0	82	68-137	
2-Butanone (MEK)	ug/kg	124	122J	98	58-147	
2-Chlorotoluene	ug/kg	62.2	58.4	94	73-139	
?-Hexanone	ug/kg	124	126	101	62-145	
I-Chlorotoluene	ug/kg	62.2	56.6	91	76-141	
I-Methyl-2-pentanone (MIBK)	ug/kg	124	122	98	64-149	
Acetone	ug/kg	124	150	121	53-153	
Benzene	ug/kg	62.2	56.1	90	73-135	
Bromobenzene	ug/kg	62.2	60.4	97	75-133	
Bromochloromethane	ug/kg	62.2	55.5	89	73-134	
Bromodichloromethane	ug/kg	62.2	57.7	93	71-135	
Bromoform	ug/kg	62.2	56.4	91	66-141	
Bromomethane	ug/kg	62.2	50.2	81	53-160	
Carbon tetrachloride	ug/kg	62.2	54.2	87	60-145	
Chlorobenzene	ug/kg	62.2	58.4	94	78-130	
Chloroethane	ug/kg	62.2	52.5	84	64-149	
Chloroform	ug/kg	62.2	54.4	88	70-134	
Chloromethane	ug/kg	62.2	53.8	87	52-150	
sis-1,2-Dichloroethene	ug/kg	62.2	54.3	87	70-133	
is-1,3-Dichloropropene	ug/kg	62.2	60.9	98	68-134	
Dibromochloromethane	ug/kg	62.2	63.1	101	71-138	
Dibromomethane	ug/kg	62.2	57.4	92	74-130	
Dichlorodifluoromethane	ug/kg	62.2	43.9	71	40-160	
Diisopropyl ether	ug/kg	62.2	55.2	89	69-141	
Ethylbenzene	ug/kg	62.2	57.5	92	75-133	
Hexachloro-1,3-butadiene	ug/kg	62.2	57.2	92	68-143	
sopropylbenzene (Cumene)	ug/kg	62.2	57.0	92	76-143	
n&p-Xylene	ug/kg	124	114	92	75-136	
Methyl-tert-butyl ether	ug/kg	62.2	52.8	85	68-144	
Methylene Chloride	ug/kg	62.2	50.5	81	45-154	
-Butylbenzene	ug/kg	62.2	55.1	89	72-137	
-Propylbenzene	ug/kg	62.2	56.9	92	76-136	
laphthalene	ug/kg	62.2	59.8	96	68-151	
-Xylene	ug/kg	62.2	59.3	95	76-141	
o-Isopropyltoluene	ug/kg	62.2	55.2	89	76-140	
sec-Butylbenzene	ug/kg	62.2	56.2	90	79-139	
Styrene	ug/kg	62.2	60.2	97	79-137	
ert-Butylbenzene	ug/kg	62.2	50.4	81	74-143	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

LABORATORY CONTROL SAMPLE:	2072405					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Tetrachloroethene	ug/kg	62.2	55.0	89	71-138	
Toluene	ug/kg	62.2	55.2	89	74-131	
trans-1,2-Dichloroethene	ug/kg	62.2	51.9	83	67-135	
trans-1,3-Dichloropropene	ug/kg	62.2	58.9	95	65-146	
Trichloroethene	ug/kg	62.2	59.5	96	67-135	
Trichlorofluoromethane	ug/kg	62.2	49.7	80	59-144	
Vinyl acetate	ug/kg	124	122	98	40-160	
Vinyl chloride	ug/kg	62.2	51.3	83	56-141	
Xylene (Total)	ug/kg	187	174	93	76-137	
1,2-Dichloroethane-d4 (S)	%			94	70-132	
4-Bromofluorobenzene (S)	%			100	70-130	
Toluene-d8 (S)	%			97	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

QC Batch: 373744 Analysis Method: EPA 8270

QC Batch Method: EPA 3546 Analysis Description: 8270 Solid MSSV Microwave

Associated Lab Samples: 92351820001, 92351820002, 92351820003

METHOD BLANK: 2070917 Matrix: Solid

Associated Lab Samples: 92351820001, 92351820002, 92351820003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2,4-Trichlorobenzene	ug/kg	ND ND	331	64.2	08/17/17 14:37	
1,2-Dichlorobenzene	ug/kg	ND	331	88.3	08/17/17 14:37	
1,3-Dichlorobenzene	ug/kg	ND	331	75.3	08/17/17 14:37	
1,4-Dichlorobenzene	ug/kg	ND	331	93.3	08/17/17 14:37	
1-Methylnaphthalene	ug/kg	ND	331	86.3	08/17/17 14:37	
2,2'-Oxybis(1-chloropropane)	ug/kg	ND	331	88.3	08/17/17 14:37	
2,4,5-Trichlorophenol	ug/kg	ND	331	102	08/17/17 14:37	
2,4,6-Trichlorophenol	ug/kg	ND	331	73.2	08/17/17 14:37	
2,4-Dichlorophenol	ug/kg	ND	331	72.2	08/17/17 14:37	
2,4-Dimethylphenol	ug/kg	ND	331	130	08/17/17 14:37	
2,4-Dinitrophenol	ug/kg	ND	1660	54.2	08/17/17 14:37	
2,4-Dinitrotoluene	ug/kg	ND	331	62.2	08/17/17 14:37	
2,6-Dinitrotoluene	ug/kg	ND	331	69.2	08/17/17 14:37	
2-Chloronaphthalene	ug/kg	ND	331	65.2	08/17/17 14:37	
2-Chlorophenol	ug/kg	ND	331	90.3	08/17/17 14:37	
2-Methylnaphthalene	ug/kg	ND	331	71.2	08/17/17 14:37	
2-Methylphenol(o-Cresol)	ug/kg	ND	331	100	08/17/17 14:37	
2-Nitroaniline	ug/kg	ND	1660	102	08/17/17 14:37	
2-Nitrophenol	ug/kg	ND	331	80.3	08/17/17 14:37	
3&4-Methylphenol(m&p Cresol)	ug/kg	ND	331	130	08/17/17 14:37	
3,3'-Dichlorobenzidine	ug/kg	ND	1660	72.2	08/17/17 14:37	
3-Nitroaniline	ug/kg	ND	1660	90.3	08/17/17 14:37	
4,6-Dinitro-2-methylphenol	ug/kg	ND	662	66.2	08/17/17 14:37	
4-Bromophenylphenyl ether	ug/kg	ND	331	60.2	08/17/17 14:37	
4-Chloro-3-methylphenol	ug/kg	ND	662	68.2	08/17/17 14:37	
4-Chloroaniline	ug/kg	ND	1660	92.3	08/17/17 14:37	
4-Chlorophenylphenyl ether	ug/kg	ND	331	68.2	08/17/17 14:37	
4-Nitroaniline	ug/kg	ND	662	93.3	08/17/17 14:37	
4-Nitrophenol	ug/kg	ND	1660	59.2	08/17/17 14:37	
Acenaphthene	ug/kg	ND	331	76.3	08/17/17 14:37	
Acenaphthylene	ug/kg	ND	331	78.3	08/17/17 14:37	
Aniline	ug/kg	ND	331	89.3	08/17/17 14:37	
Anthracene	ug/kg	ND	331	74.2	08/17/17 14:37	
Benzo(a)anthracene	ug/kg	ND	331	61.2	08/17/17 14:37	
Benzo(a)pyrene	ug/kg	ND	331	63.2	08/17/17 14:37	
Benzo(b)fluoranthene	ug/kg	ND	331	57.2	08/17/17 14:37	
Benzo(g,h,i)perylene	ug/kg	ND	331	84.3	08/17/17 14:37	
Benzo(k)fluoranthene	ug/kg	ND	331	65.2	08/17/17 14:37	
Benzoic Acid	ug/kg	ND	1660	60.2	08/17/17 14:37	
Benzyl alcohol	ug/kg	ND	662	66.2	08/17/17 14:37	
bis(2-Chloroethoxy)methane	ug/kg	ND	331	77.3	08/17/17 14:37	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

METHOD BLANK: 2070917 Matrix: Solid

Associated Lab Samples: 92351820001, 92351820002, 92351820003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
bis(2-Chloroethyl) ether	ug/kg	ND	331	84.3	08/17/17 14:37	
bis(2-Ethylhexyl)phthalate	ug/kg	ND	331	90.3	08/17/17 14:37	
Butylbenzylphthalate	ug/kg	ND	331	70.2	08/17/17 14:37	
Chrysene	ug/kg	ND	331	44.1	08/17/17 14:37	
Di-n-butylphthalate	ug/kg	ND	331	54.2	08/17/17 14:37	
Di-n-octylphthalate	ug/kg	ND	331	69.2	08/17/17 14:37	
Dibenz(a,h)anthracene	ug/kg	ND	331	70.2	08/17/17 14:37	
Dibenzofuran	ug/kg	ND	331	54.2	08/17/17 14:37	
Diethylphthalate	ug/kg	ND	331	51.2	08/17/17 14:37	
Dimethylphthalate	ug/kg	ND	331	67.2	08/17/17 14:37	
Fluoranthene	ug/kg	ND	331	48.2	08/17/17 14:37	
- Fluorene	ug/kg	ND	331	68.2	08/17/17 14:37	
lexachloro-1,3-butadiene	ug/kg	ND	331	57.2	08/17/17 14:37	
łexachlorobenzene	ug/kg	ND	331	42.1	08/17/17 14:37	
lexachlorocyclopentadiene	ug/kg	ND	331	61.2	08/17/17 14:37	
lexachloroethane	ug/kg	ND	331	87.3	08/17/17 14:37	
ndeno(1,2,3-cd)pyrene	ug/kg	ND	331	68.2	08/17/17 14:37	
sophorone	ug/kg	ND	331	74.2	08/17/17 14:37	
I-Nitroso-di-n-propylamine	ug/kg	ND	331	63.2	08/17/17 14:37	
N-Nitrosodimethylamine	ug/kg	ND	331	107	08/17/17 14:37	
N-Nitrosodiphenylamine	ug/kg	ND	331	98.3	08/17/17 14:37	
laphthalene	ug/kg	ND	331	81.3	08/17/17 14:37	
Nitrobenzene	ug/kg	ND	331	90.3	08/17/17 14:37	
Pentachlorophenol	ug/kg	ND	1660	60.2	08/17/17 14:37	
Phenanthrene	ug/kg	ND	331	55.2	08/17/17 14:37	
Phenol	ug/kg	ND	331	99.3	08/17/17 14:37	
Pyrene	ug/kg	ND	331	56.2	08/17/17 14:37	
2,4,6-Tribromophenol (S)	%	53	27-110		08/17/17 14:37	
2-Fluorobiphenyl (S)	%	46	30-110		08/17/17 14:37	
2-Fluorophenol (S)	%	43	13-110		08/17/17 14:37	
Nitrobenzene-d5 (S)	%	46	23-110		08/17/17 14:37	
Phenol-d6 (S)	%	43	22-110		08/17/17 14:37	
Геrphenyl-d14 (S)	%	67	28-110		08/17/17 14:37	

LABORATORY CONTROL SAMPLE:	2070918					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trichlorobenzene	ug/kg	1670	1010	60	36-120	
1,2-Dichlorobenzene	ug/kg	1670	968	58	41-120	
1,3-Dichlorobenzene	ug/kg	1670	945	57	66-120 L	_2
1,4-Dichlorobenzene	ug/kg	1670	952	57	42-120	
1-Methylnaphthalene	ug/kg	1670	1040	62	40-120	
2,2'-Oxybis(1-chloropropane)	ug/kg	1670	821	49	17-120	
2,4,5-Trichlorophenol	ug/kg	1670	1220	73	37-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

Parameter	LABORATORY CONTROL SAMPLE:	2070918	Spike	LCS	LCS	% Rec	
2.4-Dinktylphenol	Parameter	Units					Qualifiers
2.4-Dinktylphenol	2,4,6-Trichlorophenol	ug/kg		1190	72	40-120	
2.4-Dintrophenol ug/kg 8330 6620 79 22-121 2.4-Dintrophenol ug/kg 1670 1180 71 60-120 2.4-Dintrotoluene ug/kg 1670 1180 71 54-120 2.6-Dintrotoluene ug/kg 1670 1180 71 54-120 2.6-Dintrotoluene ug/kg 1670 1180 71 54-120 2.6-Dintrophenol ug/kg 1670 1997 60 39-120 2.6-Dintrophenol ug/kg 1670 1020 61 26-120 2.6-Methylphaphthalene ug/kg 1670 1020 61 26-120 2.6-Methylphaphthalene ug/kg 1670 1030 62 41-120 2.6-Methylphaphthalene ug/kg 3330 2410 72 45-120 2.6-Methylphanol(o-Cresol) ug/kg 3330 2410 72 45-120 2.6-Mitrophinol ug/kg 3330 2410 62 35-120 2.6-Dintro-2-methylphenol ug/kg 3330 250 65 16-125 2.6-Dintro-2-methylphenol ug/kg 3330 250 65 36-120 2.6-Dintro-2-methylphenol ug/kg 3330 250 65 36-120 2.6-Dintro-2-methylphenol ug/kg 3330 200 62 37-120 2.6-Dintro-2-methylphenol ug/kg 3330 200 62 37-120 2.6-Dintro-3-methylphenol ug/kg 3330 200 62 37-120 2.6-Dintrophylphenyl ether ug/kg 1670 1150 69 46-120 2.6-Dintrophylphenyl ether ug/kg 1670 1150 69 46-120 2.6-Dintrophylphenol ug/kg 1670 1130 68 63-120 2.6-Dintrophylphenol ug/kg 1670 1130 73 56-120 2.6-Dintrophylphinalate ug/kg 1670 120 73 56-120 2.6-Dintrophylphinalate ug/kg 1670 120 73 56-120 2.6-Dintrophylphinalate ug/kg 1670 120 73 56-120 2.6-Dintrophylphinalate ug/kg 1670 1160 70 55-120 2.6-Dintrophylphinala	2,4-Dichlorophenol			1060	64	33-120	
2.4 - Dinitrophenol ug/kg 8330 6620 79 22-121 2.4 - Dinitrotoluene ug/kg 1670 1180 71 60-120 2.6 - Dinitrotoluene ug/kg 1670 1180 71 54-120 2.6 - Chlorophenol ug/kg 1670 1140 68 41-120 2.6 - Methylaphthalene ug/kg 1670 1020 61 26-120 2. Methylphenol(o-Cresol) ug/kg 1670 1030 62 41-120 2. Mitrophenol ug/kg 3330 2410 72 45-120 2. Mitrophenol ug/kg 1670 1060 63 35-120 3.8.4 Methylphenol(m&p Cresol) ug/kg 3330 2390 72 45-120 3.8.4 Methylphenol(m&p Cresol) ug/kg 3330 2390 72 45-120 3.8.4 Microaniline ug/kg 3330 2390 72 45-120 4.B. Dintiro-2-methylphenol ug/kg 3330 2070 62 37-120	•			1000	60		
A-Dinitrotoluene							
2.6-Dinitrotoluene ug/kg 1670 1180 71 54-120 2.C-Chloropaphthalene ug/kg 1670 1140 68 41-120 2.C-Methylpaphthalene ug/kg 1670 997 60 39-120 2.Methylpaphthalene ug/kg 1670 1020 61 26-120 2.Methylpaphthalene ug/kg 1670 1030 62 41-120 2.Methylpaphthalene ug/kg 1670 1030 62 41-120 2.Methylpaphol(o-Cresol) ug/kg 1670 1030 62 41-120 2.Mitrophenol ug/kg 1670 1060 63 35-120 3.3-Dichlorobenzidine ug/kg 3330 2410 72 45-120 3.3-Dichlorobenzidine ug/kg 3330 2150 65 16-125 3.3-Dichlorobenzidine ug/kg 3330 2990 72 45-120 3.3-Dichlorobenzidine ug/kg 3330 2990 72 45-120 3.3-Dichlorobenzidine ug/kg 3330 2990 87 46-120 3.3-Dichlorobenzidine ug/kg 1670 1150 69 57-120 3.3-Dichlorobenzidine ug/kg 1670 1150 69 57-120 3.3-Dichlorobenzidine ug/kg 1670 1150 69 57-120 3.3-Dichlorobenzidine ug/kg 1670 1150 69 58-120 3.3-Dichlorobenzidine ug/kg 1670 1160 70 56-1	•						
Chloronaphthalene							
2-Chlorophenol ug/kg 1670 1997 60 39-120Methylipaphthalene ug/kg 1670 1020 61 26-120Methylipaphthalene ug/kg 1670 1030 62 41-120Methylipaphthalene ug/kg 3330 2410 72 45-120Methylipaphthalene ug/kg 3330 2410 72 45-120Methylipaphthalene ug/kg 3330 2410 72 45-120						41-120	
Methylinaphthalene							
-Methylphenol(o-Cresol) ug/kg 1670 1030 62 41-120 -Nitroanline ug/kg 3330 2410 72 45-120 -Nitrophenol ug/kg 1670 1060 63 35-120 -8.4-Methylphenol(m&p Cresol) ug/kg 1670 1030 62 35-120 -8.4-Methylphenol(m&p Cresol) ug/kg 1670 1030 62 35-120 -8.4-Methylphenol(m&p Cresol) ug/kg 3330 2150 65 16-125 -Nitroanline ug/kg 3330 2910 87 46-120 -6Dinitro-2-methylphenol ug/kg 3330 2910 87 46-120 -8-bromophenylphenyl ether ug/kg 1670 986 56 36-120 -Chloro-arthylphenol ug/kg 3330 2070 62 37-120 -Chloro-arthylphenol ug/kg 3330 2070 62 37-120 -Chloro-arthylphenol ug/kg 3330 2060 62 35-120 -Chlorophenylphenyl ether ug/kg 3330 2060 62 35-120 -Chlorophenylphenyl ether ug/kg 3330 2560 77 48-120 -Chlorophenylphenyl ether ug/kg 3330 2560 77 48-120 -Chlorophenylphenyl ether ug/kg 3330 2560 77 48-120 -Chlorophenylphenyl ether ug/kg 3330 6340 76 43-120 -Chlorophenylphenyl ether ug/kg 1670 1120 67 46-120 -Nitroanline ug/kg 1670 1150 69 46-120 -Nitrophenol ug/kg 1670 1120 67 46-120 -Cenaphthylene ug/kg 1670 1120 67 46-120 -Cenaphthylene ug/kg 1670 1120 67 46-120 -Intracene ug/kg 1670 1130 68 63-120 -Intracene ug/kg 1670 1120 73 61-120 -Intracene ug/kg 1670 1130 68 63-120 -Intracene ug/kg 1670 1120 73 61-120 -Intracene ug/kg 1670 1150 69 57-120 -Intracene ug/kg 1670 1160 70 55-120 -Intracene ug/kg 1670 1360 81 55-120 -Intracene ug/kg 1670 1360 70 5							
-Nitrophenol ug/kg 1670 1060 63 35-120 (3-Nitrophenol ug/kg 1670 1060 63 35-120 (3-Nitrophenol ug/kg 1670 1060 63 35-120 (3-Nitrophenol ug/kg 1670 1030 62 35-120 (3-Nitrophenol ug/kg 3330 2150 65 16-125 (3-Nitroaniline ug/kg 3330 2150 65 16-125 (3-Nitroaniline ug/kg 3330 2910 87 45-120 (3-Nitroaniline ug/kg 3330 2910 87 46-120 (3-Ri-Dintroz-methylphenol ug/kg 3330 2910 87 46-120 (3-Ri-Dintroz-methylphenol ug/kg 3330 2910 87 46-120 (3-Ri-Dintroz-methylphenol ug/kg 3330 2070 62 37-120 (3-Ri-Dintrophenylphenol ug/kg 8330 6340 76 43-120 (3-Ri-Dintroz-methylphenol ug/kg 8330 6340 76 43-120 (3-Ri-Dintroz-methylphenol ug/kg 1670 1150 69 46-120 (3-Ri-Dintroz-methylphenol ug/kg 1670 1150 69 46-120 (3-Ri-Dintroz-methylphenol ug/kg 1670 1120 67 46-120 (3-Ri-Dintroz-methylphenol ug/kg 1670 1130 68 63-120 (3-Ri-Dintroz-methylphenol ug/kg 1670 1130 69 57-120 (3-Ri-Dintroz-methyl) ether ug/kg 1670 1130 69 57-120 (3-Ri-Dintroz-methyl) ether ug/kg 1670 120 73 56-120 (3-Ri-Dintroz-methyl) ether ug/kg 1670 1360 81 56-123 (3-Ri-Dintroz-Myl) ether ug/kg 1670 1360 81 56-123 (3-Ri-Dintroz-Myl) ether ug/kg 1670 120 73 58-120 (3-Ri-Dintroz-Myl) ether ug/kg 1670 1360 81 56-120 (3-Ri-Dintroz-Myl) ether ug/kg 1670 1360 70 55-120 (3-Ri-Dintroz-Myl) ether ug/kg 1670 1360 70 55-120 (3-Ri-Dintroz-Myl) ether ug/kg 1							
Politrophenol Ug/kg 1670 1060 63 35-120 184-Methylphenol(m&p Cresol) Ug/kg 1670 1030 62 35-120 184-Methylphenol(m&p Cresol) Ug/kg 3330 2150 65 66 16-125							
&4-Methylphenol(m&p Cresol) ug/kg 1670 1030 62 35-120 ,3'-Dichlorobenzidine ug/kg 3330 2150 65 16-125 -Nitroaniline ug/kg 3330 2390 72 45-120 ,6-Dinitro-2-methylphenol ug/kg 3330 2910 87 46-120 -Bromophenylphenyl ether ug/kg 3330 2070 62 37-120 -Chloro-3-methylphenol ug/kg 3330 2060 62 35-120 -Chlorophenylphenyl ether ug/kg 3330 2060 62 35-120 -Chlorophenylphenyl ether ug/kg 1670 987 59 30-120 -Nitrophenol ug/kg 8330 6340 76 43-120 -Nitrophenol ug/kg 8330 6340 76 43-120 -Necenaphthylene ug/kg 1670 1120 67 46-120 -Renzolaphtylene ug/kg 1670 1120 67 46-120 -Renzolaph							
1.3-Dichlorobenzidine							
3-Nitroaniline							
1,6-Dinitro-2-methylphenol							
Bromophenylphenyl ether							
-Chloro-3-methylphenol ug/kg 3330 2070 62 37-120 -Chloropaniline ug/kg 3330 2060 62 35-120 -Chlorophenylphenyl ether ug/kg 1670 987 59 30-120 -Nitrophenylphenyl ether ug/kg 3330 2560 77 48-120 -Nitrophenol ug/kg 8330 6340 76 43-120 -Nitrophenol ug/kg 8330 6340 76 43-120 -Nitrophenol ug/kg 1670 1150 69 46-120 -Nitrophenol ug/kg 1670 1150 69 46-120 -Nitrophenol ug/kg 1670 1120 67 46-120 -Nitrophenol ug/kg 1670 1130 68 63-120 -Nitrophenol ug/kg 1670 1130 68 63-120 -Nitrophenol ug/kg 1670 1220 73 61-120 -Nitrophenol ug/kg 1670 1220 73 61-120 -Nitrophenol ug/kg 1670 1130 68 55-120 -Nitrophenol ug/kg 1670 1160 69 57-120 -Nitrophenol ug/kg 1670 1220 73 56-120 -Nitrophenol ug/kg 1670 120 73 56-120 -Nitrophenol ug/kg 1670 160 65 34-120 -Nitrophenol ug/kg 1670 160 867 52 25-120 -Nitrophenol ug/kg 1670 1360 81 56-123 -Nitrophenol ug/kg 1670 120 73 58-120 -Nitrophenol ug/kg 1670 1160 70 56-120 -Nitrophenol ug/kg 1670 1							
Choroaniline Ug/kg 3330 2060 62 35-120 Chorophenylphenyl ether Ug/kg 1670 987 59 30-120 Chirophenylphenyl ether Ug/kg 3330 2560 77 48-120 Chirophenylphenol Ug/kg 8330 6340 76 43-120 Choroaniline Ug/kg 1670 1150 69 46-120 Choroaniline Ug/kg 1670 1120 67 46-120 Choroaniline Ug/kg 1670 1120 67 46-120 Choroaniline Ug/kg 1670 1120 67 46-120 Choroaniline Ug/kg 1670 1130 68 63-120 Choroaniline Ug/kg 1670 1130 68 55-120 Choroaniline Ug/kg 1670 1130 68 55-120 Choroaniline Ug/kg 1670 1160 69 57-120 Choroaniline Ug/kg 1670 1160 69 57-120 Choroaniline Ug/kg 3330 2160 65 34-120 Choroaniline Ug/kg 1670 1220 73 56-120 Choroaniline Ug/kg 1670 1969 58 21-120 Choroaniline Ug/kg 1670 1360 81 56-123 Chirysene Ug/kg 1670 1360 81 56-123 Chirysene Ug/kg 1670 1230 74 64-120 Chirysene Ug/kg 1670 1200 73 58-120 Chirysene Ug/kg 1670 1200 73 58-120 Chirysene Ug/kg 1670 1200 73 58-120 Chirysene Ug/kg 1670 1160 70 56-120 Chirysene Ug/kg 1670 1160 70 55-120 Chirysene Ug/kg 1670 1160 70 55-120 Chirysene Ug/kg 1670 1160 70 55-120 Chirysen							
-Chlorophenylphenyl ether ug/kg 1670 987 59 30-120 -Nitrophiconiline ug/kg 3330 2560 77 48-120 -Nitrophenol ug/kg 8330 6340 76 43-120 -Nitrophenol ug/kg 1670 1150 69 46-120 -Nitrophenol ug/kg 1670 1150 69 46-120 -Nitrophenol ug/kg 1670 1120 67 46-120 -Nitrophenol ug/kg 1670 1120 67 46-120 -Nitrophenol ug/kg 1670 1120 73 61-120 -Nitrophenol ug/kg 1670 1130 68 63-120 -Nitroacene ug/kg 1670 1130 68 63-120 -Nitroacene ug/kg 1670 1130 68 63-120 -Nitroacene ug/kg 1670 1190 71 59-120 -Nitroacene ug/kg 1670 1190 71 59-120 -Nitroacene ug/kg 1670 1130 68 55-120 -Nitroacene ug/kg 1670 1160 69 57-120 -Nitroachene ug/kg 1670 1160 69 57-120 -Nitroachene ug/kg 1670 120 73 56-120 -Nitroachene ug/kg 3330 2160 65 34-120 -Nitroachene ug/kg 1670 969 58 21-120 -Nitroachene ug/kg 1670 969 58 21-120 -Nitroachene ug/kg 1670 1360 81 56-123 -Nitroachene ug/kg 1670 1360 81 56-123 -Nitroachene ug/kg 1670 1310 78 57-120 -Nitroachene ug/kg 1670 1200 73 58-120 -Nitroachene ug/kg 1670 1200 73 58-120 -Nitroachene ug/kg 1670 1200 73 58-120 -Nitroachene ug/kg 1670 1160 70 56-120 -Nitroachene ug/kg 1670 1150 69 54-120	, .						
New through the least of the							
-Nitrophenol ug/kg 8330 6340 76 43-120 cenaphthene ug/kg 1670 1150 69 46-120 cenaphthene ug/kg 1670 1150 69 46-120 cenaphthylene ug/kg 1670 1120 67 46-120 cenaphthylene ug/kg 1670 896 54 33-120 centhylene ug/kg 1670 1130 68 63-120 centhylene ug/kg 1670 1130 68 55-120 centhylene ug/kg 1670 1190 71 59-120 centhylene ug/kg 1670 1130 68 55-120 centhylene ug/kg 1670 1130 68 55-120 centhylene ug/kg 1670 1160 69 57-120 centhylene ug/kg 1670 1160 69 57-120 centhylene ug/kg 1670 1220 73 56-120 centhylene ug/kg 8330 4400 53 13-120 centhylene ug/kg 8330 4400 53 13-120 centhylene ug/kg 3330 2160 65 34-120 centhylene ug/kg 3330 2160 65 34-120 centhylene ug/kg 1670 969 58 21-120 centhylene ug/kg 1670 867 52 25-120 centhylenelylphthalate ug/kg 1670 1360 81 56-123 centhylenelylphthalate ug/kg 1670 1360 81 56-123 centhylenelylphthalate ug/kg 1670 1230 74 64-120 centhylphthalate ug/kg 1670 1220 73 58-120 centhylphthalate ug/kg 1670 1220 73 58-120 centhylphthalate ug/kg 1670 1230 74 64-120 centhylphthalate ug/kg 1670 1220 73 58-120 centhylphthalate ug/kg 1670 1220 73 58-120 centhylphthalate ug/kg 1670 1270 76 47-121 centhylphthalate ug/kg 1670 1160 70 56-120 centhylphthalate ug/kg 1670 1160 70 56-120 centhylphthalate ug/kg 1670 1160 70 55-120 centhylphthalate ug/kg 1670 1150 69 54-120 centhylphthalate ug/kg 1670 1150 67 55-120 cen							
Accenaphthene ug/kg 1670 1150 69 46-120 Accenaphthylene ug/kg 1670 1120 67 46-120 Accenaphthylene ug/kg 1670 1120 67 46-120 Accenaphthylene ug/kg 1670 896 54 33-120 Accenaphthylene ug/kg 1670 1130 68 63-120 Accenaphthylene ug/kg 1670 1130 68 63-120 Accenaphthylene ug/kg 1670 1130 68 63-120 Accenaphthylene ug/kg 1670 1120 73 61-120 Accenacy(a)pyrene ug/kg 1670 1190 71 59-120 Accenacy(a)pyrene ug/kg 1670 1130 68 55-120 Accenacy(a)pyrene ug/kg 1670 1130 68 55-120 Accenacy(a)pyrene ug/kg 1670 1160 69 57-120 Accenacy(a)fluoranthene ug/kg 1670 1160 69 57-120 Accenacy(a)fluoranthene ug/kg 8330 4400 53 13-120 Accenacy(a)fluoranthene ug/kg 8330 4400 53 13-120 Accenacy(a)fluoranthene ug/kg 33330 2160 65 34-120 Accenacy(a)fluoranthene ug/kg 1670 969 58 21-120 Accenacy(a)fluoranthene ug/kg 1670 867 52 25-120 Accenacy(a)fluoranthene ug/kg 1670 1360 81 56-123 Accenacy(a)fluoranthene ug/kg 1670 1360 81 56-123 Accenacy(a)fluoranthene ug/kg 1670 1310 78 57-120 Accenacy(a)fluoranthene ug/kg 1670 1230 74 64-120 Accenacy(a)fluoranthene ug/kg 1670 1220 73 58-120 Accenacy(a)fluoranthene ug/kg 1670 1220 73 58-120 Accenacy(a)fluoranthene ug/kg 1670 1160 70 56-120 Accenacy(a)fluoranthene ug/kg 1670 1160 70 56-120 Accenacy(a)fluoranthene ug/kg 1670 1150 69 54-120 Accenacy(a)fluoranthene ug/kg 1670 1150 67 51-120 Accenacy(a)fluoranthene ug/kg 1670 115							
Second phthylene Ug/kg 1670 1120 67 46-120 Mailline Ug/kg 1670 896 54 33-120 Mailline Ug/kg 1670 1130 68 63-120 Mailline Ug/kg 1670 1130 68 63-120 Mailline Ug/kg 1670 1120 73 61-120 Mailline Ug/kg 1670 1190 71 59-120 Mailline Ug/kg 1670 1130 68 55-120 Mailline Ug/kg 1670 1130 68 55-120 Mailline Ug/kg 1670 1130 68 55-120 Mailline Ug/kg 1670 1160 69 57-120 Mailline Ug/kg 1670 1160 69 57-120 Mailline Ug/kg 1670 1220 73 56-120 Mailline Ug/kg 8330 4400 53 13-120 Mailline Ug/kg 3330 2160 65 34-120 Mailline Ug/kg 1670 969 58 21-120 Mailline Ug/kg 1670 867 52 25-120 Mailline Ug/kg 1670 867 52 25-120 Mailline Ug/kg 1670 1360 81 56-123 Mailline Ug/kg 1670 1360 81 56-123 Mailline Ug/kg 1670 1310 78 57-120 Mailline Ug/kg 1670 1230 74 64-120 Mailline Ug/kg 1670 1230 74 64-120 Mailline Ug/kg 1670 1270 76 47-121 Mailline Ug/kg 1670 1160 70 56-120 Mailline Ug/kg 1670 1160 70 56-120 Mailline Ug/kg 1670 1160 70 56-120 Mailline Ug/kg 1670 1160 70 55-120 Mailline Ug/kg							
Aniline ug/kg 1670 896 54 33-120 Anthracene ug/kg 1670 1130 68 63-120 Anthracene ug/kg 1670 1130 68 63-120 Anthracene ug/kg 1670 1220 73 61-120 Anthracene ug/kg 1670 1190 71 59-120 Anthracene ug/kg 1670 1190 71 59-120 Anthracene ug/kg 1670 1190 71 59-120 Anthracene ug/kg 1670 1190 69 57-120 Anthracene ug/kg 1670 1160 69 57-120 Anthracene ug/kg 1670 1160 69 57-120 Anthracene ug/kg 1670 1160 69 57-120 Anthracene ug/kg 1670 1220 73 56-120 Anthracene ug/kg 8330 4400 53 13-120 Anthracene ug/kg 3330 2160 65 34-120 Anthracene ug/kg 1670 969 58 21-120 Anthracene ug/kg 1670 867 52 25-120 Anthracene ug/kg 1670 1360 81 56-123 Anthracene ug/kg 1670 1360 81 56-123 Anthracene ug/kg 1670 1230 74 64-120 Anthracene ug/kg 1670 1220 73 58-120 Anthracene ug/kg 1670 1270 76 47-121 Anthracene ug/kg 1670 1160 70 56-120 Anthracene ug/kg							
Anthracene ug/kg 1670 1130 68 63-120 68-120 68-120 120 73 61-120 68-120 68-120 120 73 61-120 68-120 68-120 120 73 61-120 68-120							
Senzo(a)anthracene ug/kg 1670 1220 73 61-120 190 1							
Benzo(a)pyrene ug/kg 1670 1190 71 59-120 Benzo(b)fluoranthene ug/kg 1670 1130 68 55-120 Benzo(g,h,i)perylene ug/kg 1670 1160 69 57-120 Benzo(g,h,i)perylene ug/kg 1670 1220 73 56-120 Benzo(k)fluoranthene ug/kg 1670 1220 73 56-120 Benzoic Acid ug/kg 8330 4400 53 13-120 Benzyl alcohol ug/kg 3330 2160 65 34-120 Benzyl alcohol ug/kg 1670 969 58 21-120 Benzyl alcohol ug/kg 1670 969 58 21-120 Benzyl alcohol ug/kg 1670 1360 81 56-123 Benzyl benzyl bether ug/kg 1670 1360 81 56-123 Benzyl b							
Benzo (b) fluoranthene ug/kg 1670 1130 68 55-120 Benzo (g,h,i) perylene ug/kg 1670 1160 69 57-120 Benzo (k) fluoranthene ug/kg 1670 1220 73 56-120 Benzo (k) fluoranthene ug/kg 8330 4400 53 13-120 Benzo (a Acid ug/kg 8330 4400 53 13-120 Benzyl alcohol ug/kg 3330 2160 65 34-120 Bis (2-Chloroethoxy) methane ug/kg 1670 969 58 21-120 Bis (2-Chloroethyl) ether ug/kg 1670 867 52 25-120 Bis (2-Ethylhexyl) phthalate ug/kg 1670 1360 81 56-123 Bis (2-Ethylhexyl) phthalate ug/kg 1670 1310 78 57-120 Chrysene ug/kg 1670 1230 74 64-120 Chrysene ug/kg 1670 1220 73 58-120 Di-n-buty							
Benzo (g,h,i)perylene ug/kg 1670 1160 69 57-120 Benzo (k)fluoranthene ug/kg 1670 1220 73 56-120 Benzoic Acid ug/kg 8330 4400 53 13-120 Benzyl alcohol ug/kg 3330 2160 65 34-120 Bis(2-Chloroethoxy)methane ug/kg 1670 969 58 21-120 Bis(2-Chloroethyl) ether ug/kg 1670 867 52 25-120 Bis(2-Ethylhexyl)phthalate ug/kg 1670 1360 81 56-123 Butylbenzylphthalate ug/kg 1670 1310 78 57-120 Chrysene ug/kg 1670 1230 74 64-120 Di-n-butylphthalate ug/kg 1670 1220 73 58-120 Di-n-octylphthalate ug/kg 1670 1270 76 47-121 Dibenz(a,h)anthracene ug/kg 1670 1180 71 43-120 Dibenzofuran							
Senzo(k)fluoranthene	. ,						
Senzolic Acid ug/kg 8330 4400 53 13-120 Senzyl alcohol ug/kg 3330 2160 65 34-120 Senzyl alcohol ug/kg 1670 969 58 21-120 Sis(2-Chloroethoxy)methane ug/kg 1670 867 52 25-120 Sis(2-Ethylhexyl)phthalate ug/kg 1670 1360 81 56-123 Sutylbenzylphthalate ug/kg 1670 1310 78 57-120 Chrysene ug/kg 1670 1230 74 64-120 Chrysene ug/kg 1670 1220 73 58-120 Christophthalate ug/kg 1670 1270 76 47-121 Oibenz(a,h)anthracene ug/kg 1670 1160 70 56-120 Oibenzofuran ug/kg 1670 1180 71 43-120 Oibethylphthalate ug/kg 1670 1160 70 55-120 Oimethylphthalate ug/kg 1670 1150 69 54-120 Ciluoranthene ug/kg 1670 1200 72 61-120 Ciluoranthene ug/kg 1670 1110 67 51-120 Ciluo	· - · · · · · · · · · · · · · · · · · ·						
Benzyl alcohol ug/kg 3330 2160 65 34-120 bis(2-Chloroethoxy)methane ug/kg 1670 969 58 21-120 bis(2-Chloroethyl) ether ug/kg 1670 867 52 25-120 bis(2-Ethylhexyl)phthalate ug/kg 1670 1360 81 56-123 Butylbenzylphthalate ug/kg 1670 1310 78 57-120 bis(2-Ethylhexyl)phthalate ug/kg 1670 1310 78 57-120 bis(2-Ethylhexyl)phthalate ug/kg 1670 1230 74 64-120 bisn-butylphthalate ug/kg 1670 1230 74 64-120 bisn-butylphthalate ug/kg 1670 1220 73 58-120 bisn-butylphthalate ug/kg 1670 1270 76 47-121 bibenz(a,h)anthracene ug/kg 1670 1160 70 56-120 bibenzofuran ug/kg 1670 1180 71 43-120 biethylphthalate ug/kg 1670 1160 70 55-120 biethylphthalate ug/kg 1670 1150 69 54-120 bimethylphthalate ug/kg 1670 1150 69 54-120 bimethylphthalate ug/kg 1670 1200 72 61-120 billouranthene ug/kg 1670 1100 67 51-120	. ,						
bis(2-Chloroethoxy)methane ug/kg 1670 969 58 21-120 bis(2-Chloroethyl) ether ug/kg 1670 867 52 25-120 bis(2-Ethylhexyl)phthalate ug/kg 1670 1360 81 56-123 Butylbenzylphthalate ug/kg 1670 1310 78 57-120 Chrysene ug/kg 1670 1230 74 64-120 Chrysene ug/kg 1670 1220 73 58-120 Di-n-butylphthalate ug/kg 1670 1270 76 47-121 Dibenz(a,h)anthracene ug/kg 1670 1160 70 56-120 Dibenzofuran ug/kg 1670 1180 71 43-120 Diethylphthalate ug/kg 1670 1160 70 55-120 Dimethylphthalate ug/kg 1670 1150 69 54-120 Cluoranthene ug/kg 1670 1150 69 54-120 Cluorene ug/kg 1670 1110 67 51-120							
dis(2-Chloroethyl) ether ug/kg 1670 867 52 25-120 dis(2-Ethylhexyl)phthalate ug/kg 1670 1360 81 56-123 Butylbenzylphthalate ug/kg 1670 1310 78 57-120 Chrysene ug/kg 1670 1230 74 64-120 Di-n-butylphthalate ug/kg 1670 1220 73 58-120 Di-n-octylphthalate ug/kg 1670 1270 76 47-121 Dibenz(a,h)anthracene ug/kg 1670 1160 70 56-120 Dibenzofuran ug/kg 1670 1180 71 43-120 Diethylphthalate ug/kg 1670 1160 70 55-120 Dimethylphthalate ug/kg 1670 1150 69 54-120 Cluoranthene ug/kg 1670 1150 69 54-120 Cluorene ug/kg 1670 1110 67 51-120	•						
bis(2-Ethylhexyl)phthalate ug/kg 1670 1360 81 56-123 Butylbenzylphthalate ug/kg 1670 1310 78 57-120 Chrysene ug/kg 1670 1230 74 64-120 Di-n-butylphthalate ug/kg 1670 1220 73 58-120 Di-n-octylphthalate ug/kg 1670 1270 76 47-121 Dibenz(a,h)anthracene ug/kg 1670 1160 70 56-120 Dibenzofuran ug/kg 1670 1180 71 43-120 Diethylphthalate ug/kg 1670 1160 70 55-120 Dimethylphthalate ug/kg 1670 1150 69 54-120 Eluoranthene ug/kg 1670 110 67 51-120						_	
Butylbenzylphthalate ug/kg 1670 1310 78 57-120 20 20 20 20 20 20 20 20 20 20 20 20 2							
Chrysene ug/kg 1670 1230 74 64-120 Di-n-butylphthalate ug/kg 1670 1220 73 58-120 Di-n-octylphthalate ug/kg 1670 1270 76 47-121 Dibenz(a,h)anthracene ug/kg 1670 1160 70 56-120 Dibenzofuran ug/kg 1670 1180 71 43-120 Diethylphthalate ug/kg 1670 1160 70 55-120 Dimethylphthalate ug/kg 1670 1150 69 54-120 Fluoranthene ug/kg 1670 1200 72 61-120 Fluorene ug/kg 1670 1110 67 51-120							
Di-n-butylphthalate ug/kg 1670 1220 73 58-120 Di-n-octylphthalate ug/kg 1670 1270 76 47-121 Dibenz(a,h)anthracene ug/kg 1670 1160 70 56-120 Dibenzofuran ug/kg 1670 1180 71 43-120 Diethylphthalate ug/kg 1670 1160 70 55-120 Dimethylphthalate ug/kg 1670 1150 69 54-120 Fluoranthene ug/kg 1670 1200 72 61-120 Fluorene ug/kg 1670 1110 67 51-120							
Di-n-octylphthalate ug/kg 1670 1270 76 47-121 Dibenz(a,h)anthracene ug/kg 1670 1160 70 56-120 Dibenzofuran ug/kg 1670 1180 71 43-120 Diethylphthalate ug/kg 1670 1160 70 55-120 Dimethylphthalate ug/kg 1670 1150 69 54-120 Eluoranthene ug/kg 1670 1200 72 61-120 Eluorene ug/kg 1670 1110 67 51-120							
Dibenz(a,h)anthracene ug/kg 1670 1160 70 56-120 Dibenzofuran ug/kg 1670 1180 71 43-120 Diethylphthalate ug/kg 1670 1160 70 55-120 Dimethylphthalate ug/kg 1670 1150 69 54-120 Cluoranthene ug/kg 1670 1200 72 61-120 Cluorene ug/kg 1670 1110 67 51-120							
Dibenzofuran ug/kg 1670 1180 71 43-120 Diethylphthalate ug/kg 1670 1160 70 55-120 Dimethylphthalate ug/kg 1670 1150 69 54-120 Cluoranthene ug/kg 1670 1200 72 61-120 Cluorene ug/kg 1670 1110 67 51-120							
Diethylphthalate ug/kg 1670 1160 70 55-120 Dimethylphthalate ug/kg 1670 1150 69 54-120 Cluoranthene ug/kg 1670 1200 72 61-120 Cluorene ug/kg 1670 1110 67 51-120	,						
Dimethylphthalate ug/kg 1670 1150 69 54-120 Fluoranthene ug/kg 1670 1200 72 61-120 Fluorene ug/kg 1670 1110 67 51-120							
Fluoranthene ug/kg 1670 1200 72 61-120 Fluorene ug/kg 1670 1110 67 51-120							
Fluorene ug/kg 1670 1110 67 51-120							
., ,							
10/2001010-1 3-011201000 10/20 10/20 16/0 06/1 60 00 10/0	Hexachloro-1,3-butadiene	ug/kg ug/kg	1670	964	58	22-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

ABORATORY CONTROL SAMPLE:	2070918					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Hexachlorobenzene	ug/kg	1670	1120	67	53-120	
Hexachlorocyclopentadiene	ug/kg	1670	1020	61	18-150	
Hexachloroethane	ug/kg	1670	939	56	39-120	
ndeno(1,2,3-cd)pyrene	ug/kg	1670	1160	69	58-120	
sophorone	ug/kg	1670	1100	66	38-120	
I-Nitroso-di-n-propylamine	ug/kg	1670	1060	63	30-120	
l-Nitrosodimethylamine	ug/kg	1670	994	60	32-120	
-Nitrosodiphenylamine	ug/kg	1670	1170	70	50-120	
aphthalene	ug/kg	1670	1030	62	38-120	
trobenzene	ug/kg	1670	1020	61	37-120	
entachlorophenol	ug/kg	3330	2710	81	10-120	
nenanthrene	ug/kg	1670	1130	68	62-120	
enol	ug/kg	1670	962	58	37-120	
rene	ug/kg	1670	1200	72	63-120	
4,6-Tribromophenol (S)	%			80	27-110	
Fluorobiphenyl (S)	%			68	30-110	
Fluorophenol (S)	%			59	13-110	
trobenzene-d5 (S)	%			60	23-110	
nenol-d6 (S)	%			61	22-110	
erphenyl-d14 (S)	%			72	28-110	

MATRIX SPIKE SAMPLE:	2070919						
		92351820001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trichlorobenzene	ug/kg	ND	2060	728	35	18-119	
1,2-Dichlorobenzene	ug/kg	ND	2060	722	35	50-110	M1
1,3-Dichlorobenzene	ug/kg	ND	2060	673	33	27-110	
1,4-Dichlorobenzene	ug/kg	ND	2060	690	34	28-110	
1-Methylnaphthalene	ug/kg	ND	2060	832	40	24-116	
2,2'-Oxybis(1-chloropropane)	ug/kg	ND	2060	632	31	50-150	M1
2,4,5-Trichlorophenol	ug/kg	ND	2060	1180	58	28-110	
2,4,6-Trichlorophenol	ug/kg	ND	2060	1080	53	17-117	
2,4-Dichlorophenol	ug/kg	ND	2060	919	45	21-128	
2,4-Dimethylphenol	ug/kg	ND	2060	769	37	10-120	
2,4-Dinitrophenol	ug/kg	ND	10300	5680	55	10-107	
2,4-Dinitrotoluene	ug/kg	ND	2060	1180	57	36-109	
2,6-Dinitrotoluene	ug/kg	ND	2060	1110	54	32-110	
2-Chloronaphthalene	ug/kg	ND	2060	879	43	30-107	
2-Chlorophenol	ug/kg	ND	2060	767	37	14-106	
2-Methylnaphthalene	ug/kg	ND	2060	791	38	10-135	
2-Methylphenol(o-Cresol)	ug/kg	ND	2060	793	39	10-124	
2-Nitroaniline	ug/kg	ND	4110	2360	57	26-116	
2-Nitrophenol	ug/kg	ND	2060	884	43	28-103	
3&4-Methylphenol(m&p Cresol)	ug/kg	ND	2060	850	41	10-109	
3,3'-Dichlorobenzidine	ug/kg	ND	4110	1850J	45	10-150	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

MATRIX SPIKE SAMPLE:	2070919	92351820001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
3-Nitroaniline	ug/kg	ND	4110	2310	56	22-110	
4,6-Dinitro-2-methylphenol	ug/kg	ND	4110	2850	69	13-121	
4-Bromophenylphenyl ether	ug/kg	ND	2060	793	39	31-109	
4-Chloro-3-methylphenol	ug/kg	ND	4110	2190	53	13-128	
4-Chloroaniline	ug/kg	ND	4110	1750J	42	18-102	
4-Chlorophenylphenyl ether	ug/kg	ND	2060	856	42	29-112	
4-Nitroaniline	ug/kg	ND	4110	2550	62	16-111	
4-Nitrophenol	ug/kg	ND	10300	6220	60	14-135	
Acenaphthene	ug/kg	ND	2060	923	45	26-114	
Acenaphthylene	ug/kg	ND	2060	912	44	32-108	
Aniline	ug/kg	ND	2060	590	29	10-107	
Anthracene	ug/kg	ND	2060	978	48	32-111	
Benzo(a)anthracene	ug/kg	ND	2060	1030	50	25-117	
Benzo(a)pyrene	ug/kg	ND	2060	994	48	25-117	
Benzo(b)fluoranthene	ug/kg	ND	2060	973	47	24-110	
Benzo(g,h,i)perylene	ug/kg	ND	2060	945	46	19-112	
Benzo(k)fluoranthene	ug/kg	ND	2060	1000	49	24-114	
Benzoic Acid	ug/kg	ND	10300	2320	23	10-110	
Benzyl alcohol		ND	4110	1740	42	24-106	
,	ug/kg ug/kg	ND ND	2060	795	39	13-119	
ois(2-Chloroethoxy)methane		ND ND	2060	795 676	33	10-134	
ois(2-Chloroethyl) ether	ug/kg	ND ND	2060	1240			
ois(2-Ethylhexyl)phthalate	ug/kg	ND ND	2060		60 57	10-125	
Butylbenzylphthalate	ug/kg	ND ND		1170	57	18-110	
Chrysene	ug/kg	ND ND	2060	1060	52	30-110	
Di-n-butylphthalate	ug/kg	ND ND	2060	1070	52 57	19-112	
Di-n-octylphthalate	ug/kg		2060	1160	57	17-105	
Dibenz(a,h)anthracene	ug/kg	ND	2060	945	46	23-111	
Dibenzofuran	ug/kg	ND	2060	970	47	35-103	
Diethylphthalate	ug/kg	ND	2060	1060	52	27-113	
Dimethylphthalate	ug/kg	ND	2060	1110	54	26-111	
Fluoranthene	ug/kg	ND	2060	1020	50	33-109	
Fluorene	ug/kg	ND	2060	974	47	32-113	
Hexachloro-1,3-butadiene	ug/kg	ND	2060	648	32	16-116	
Hexachlorobenzene	ug/kg	ND	2060	943	46	27-120	
Hexachlorocyclopentadiene	ug/kg	ND	2060	637	31	10-108	
Hexachloroethane	ug/kg	ND	2060	642	31	10-117	
ndeno(1,2,3-cd)pyrene	ug/kg	ND	2060	956	47	10-122	
sophorone	ug/kg	ND	2060	968	47	28-114	
N-Nitroso-di-n-propylamine	ug/kg	ND	2060	873	42	27-113	
N-Nitrosodimethylamine	ug/kg	ND	2060	674	33	10-109	
N-Nitrosodiphenylamine	ug/kg	ND	2060	1050	51	10-128	
Naphthalene	ug/kg	ND	2060	759	37	25-110	
Nitrobenzene	ug/kg	ND	2060	793	39	18-114	
Pentachlorophenol	ug/kg	ND	4110	2540	62	10-122	
Phenanthrene	ug/kg	ND	2060	969	47	30-114	
Phenol	ug/kg	ND	2060	756	37	11-102	
Pyrene	ug/kg	ND	2060	1080	52	25-116	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

MATRIX SPIKE SAMPLE:	2070919						
Parameter	Units	92351820001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
					58	27-110	
2,4,6-Tribromophenol (S)						_	
2-Fluorobiphenyl (S)	%				34	30-110	
2-Fluorophenol (S)	%				34	13-110	
Nitrobenzene-d5 (S)	%				39	23-110	
Phenol-d6 (S)	%				37	22-110	
Terphenyl-d14 (S)	%				40	28-110	

SAMPLE DUPLICATE: 2070920						
		92351820001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2,4-Trichlorobenzene	ug/kg	ND	ND		30	
1,2-Dichlorobenzene	ug/kg	ND	ND		30	
1,3-Dichlorobenzene	ug/kg	ND	ND		30	
1,4-Dichlorobenzene	ug/kg	ND	ND		30	
1-Methylnaphthalene	ug/kg	ND	ND		30	
2,2'-Oxybis(1-chloropropane)	ug/kg	ND	ND		30	
2,4,5-Trichlorophenol	ug/kg	ND	ND		30	
2,4,6-Trichlorophenol	ug/kg	ND	ND		30	
2,4-Dichlorophenol	ug/kg	ND	ND		30	
2,4-Dimethylphenol	ug/kg	ND	ND		30	
2,4-Dinitrophenol	ug/kg	ND	ND		30	
2,4-Dinitrotoluene	ug/kg	ND	ND		30	
2,6-Dinitrotoluene	ug/kg	ND	ND		30	
2-Chloronaphthalene	ug/kg	ND	ND		30	
2-Chlorophenol	ug/kg	ND	ND		30	
2-Methylnaphthalene	ug/kg	ND	ND		30	
2-Methylphenol(o-Cresol)	ug/kg	ND	ND		30	
2-Nitroaniline	ug/kg	ND	ND		30	
2-Nitrophenol	ug/kg	ND	ND		30	
3&4-Methylphenol(m&p Cresol)	ug/kg	ND	ND		30	
3,3'-Dichlorobenzidine	ug/kg	ND	ND		30	
3-Nitroaniline	ug/kg	ND	ND		30	
4,6-Dinitro-2-methylphenol	ug/kg	ND	ND		30	
4-Bromophenylphenyl ether	ug/kg	ND	ND		30	
4-Chloro-3-methylphenol	ug/kg	ND	ND		30	
4-Chloroaniline	ug/kg	ND	ND		30	
4-Chlorophenylphenyl ether	ug/kg	ND	ND		30	
4-Nitroaniline	ug/kg	ND	ND		30	
4-Nitrophenol	ug/kg	ND	ND		30	
Acenaphthene	ug/kg	ND	ND		30	
Acenaphthylene	ug/kg	ND	ND		30	
Aniline	ug/kg	ND	ND		30	
Anthracene	ug/kg	ND	ND		30	
Benzo(a)anthracene	ug/kg	ND	ND		30	
Benzo(a)pyrene	ug/kg	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

		92351820001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Benzo(b)fluoranthene	ug/kg	ND ND	ND		30	
Benzo(g,h,i)perylene	ug/kg	ND	ND		30)
Benzo(k)fluoranthene	ug/kg	ND	ND		30)
Benzoic Acid	ug/kg	ND	ND		30)
Benzyl alcohol	ug/kg	ND	ND		30)
ois(2-Chloroethoxy)methane	ug/kg	ND	ND		30)
ois(2-Chloroethyl) ether	ug/kg	ND	ND		30)
ois(2-Ethylhexyl)phthalate	ug/kg	ND	ND		30)
Butylbenzylphthalate	ug/kg	ND	ND		30	1
Chrysene	ug/kg	ND	ND		30	1
Di-n-butylphthalate	ug/kg	ND	ND		30)
Di-n-octylphthalate	ug/kg	ND	ND		30)
Dibenz(a,h)anthracene	ug/kg	ND	ND		30	1
Dibenzofuran	ug/kg	ND	ND		30	1
Diethylphthalate	ug/kg	ND	ND		30)
Dimethylphthalate	ug/kg	ND	ND		30)
Fluoranthene	ug/kg	ND	ND		30)
Fluorene	ug/kg	ND	ND		30	1
Hexachloro-1,3-butadiene	ug/kg	ND	ND		30	1
Hexachlorobenzene	ug/kg	ND	ND		30)
Hexachlorocyclopentadiene	ug/kg	ND	ND		30)
Hexachloroethane	ug/kg	ND	ND		30)
ndeno(1,2,3-cd)pyrene	ug/kg	ND	ND		30	1
sophorone	ug/kg	ND	ND		30	1
N-Nitroso-di-n-propylamine	ug/kg	ND	ND		30)
N-Nitrosodimethylamine	ug/kg	ND	ND		30	1
N-Nitrosodiphenylamine	ug/kg	ND	ND		30	1
Naphthalene	ug/kg	ND	ND		30	1
Nitrobenzene	ug/kg	ND	ND		30	1
Pentachlorophenol	ug/kg	ND	ND		30)
Phenanthrene	ug/kg	ND	ND		30)
Phenol	ug/kg	ND	ND		30)
Pyrene	ug/kg	ND	ND		30)
2,4,6-Tribromophenol (S)	%	61	75	20		
2-Fluorobiphenyl (S)	%	42	59	33		
2-Fluorophenol (S)	%	44	49	11		
Nitrobenzene-d5 (S)	%	47	58	20		
Phenol-d6 (S)	%	44	52	15		
Terphenyl-d14 (S)	%	49	60	19		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

QC Batch: 373707 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 92351820001, 92351820002, 92351820003

SAMPLE DUPLICATE: 2070768

 Parameter
 Units
 92351820001 Result
 Dup Result
 Max RPD
 Max RPD
 Qualifiers

 Percent Moisture
 %
 19.0
 19.2
 1
 25

SAMPLE DUPLICATE: 2070769

Date: 08/18/2017 04:33 PM

		92351821010	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	 %	16.5	17.1	3	25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-C Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

Date: 08/18/2017 04:33 PM

C9 Common Laboratory Contaminant.

L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated

samples may be biased low.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: RFP-RUTHERFORD 71177323

Pace Project No.: 92351820

Date: 08/18/2017 04:33 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92351820001	B-186-1	EPA 3546	373744	EPA 8270	373891
92351820002	B-186-2	EPA 3546	373744	EPA 8270	373891
92351820003	B-186-3	EPA 3546	373744	EPA 8270	373891
92351820001	B-186-1	EPA 8260	374049		
92351820002	B-186-2	EPA 8260	373848		
92351820003	B-186-3	EPA 8260	373848		
92351820001	B-186-1	ASTM D2974-87	373707		
92351820002	B-186-2	ASTM D2974-87	373707		
92351820003	B-186-3	ASTM D2974-87	373707		

Pace Analytical"	Sample Condition Up Docume F-CAR-CS-03	oon Receipt(SCUR) nt No.:	Page 1 of 2 Issuing Authority: Pace Quality Office
Laboratory receiving samples: Asheville Eden	Greenwood 🗌	Huntersvill	Raleigh Mechanicsville
Sample Condition Client Name:		Project #	WO#:92351820
Courier: ☐ 5ed Ex ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	JPSUSPS Other:	Client	92351820
ustody Seal Present? Yes No	Seals Intact? ☐Yes	□N ₀	Date/Initials Person Examining Contents: 8-16-17
racking Material: Bubble Wrap Thermometer: Thermometer: The Regunitorial Repubble Wrap Thermometer: Cooler Temp Corrected	Type of Ice:]Wet 🗆 Blue 🗆	Biological Tissue Frozen? Yes No N/A Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling proces has begun
SDA Regulated Søil (N/A, water sample) id samples originate in a quarantine zone within th	e United States: CA, NY, or S	C (check maps)? Did	samples originate from a foreign source (internationally, uding Hawaii and Puerto Rico)? ☐ Yes ☐ No
			Comments/Discrepancy:
Chain of Custody Present?	·Dres \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	□N/A 1.	
Samples Arrived within Hold Time?	Yes □No	□N/A 2.	
Short Hold Time Analysis (<72 hr.)?	□Yes □No/	□N/A 3.	
Rush Turn Around Time Requested?	□Yes □No	□N/A 4.	
Sufficient Volume?	□Yes □No	□N/A S.	
Correct Containers Used? -Pace Containers Used?	□Yes □No	□N/A 6.	
Containers Intact?	ØYes □No	□N/A 7.	
Dissolved analysis: Samples Field Filtered?	□Yes □No	□N/A 8.	
Sample Labels Match COC?	ØYes □No	□N/A 9.	
-Includes Date/Time/ID/Analysis Matrix:	ラレ		
Headspace in VOA Vials (>5-6mm)?	□Yes □No	☑N/A 10.	
Trip Blank Present?	□Yes 🗖No	□N/A 11.	
Trip Blank Custody Seals Present?	□Yes □No	⊠N/A	
CLIENT NOTIFICATION/RESOLUTION		VE-2015 M	Field Data Required? ☐Yes ☐No
and the property of the party o		Date/T	ime:
Comments/Sample Discrepancy:			
Lot ID of split containers:			
Project Manager SCURF Review:	(Fe)		Date:
Project Manager SRF Review:	190		Date:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers)

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.04 Document Revised: August 4, 2017 Page 2 of 2

Issuing Authority: Dana Ovality Office

*Check mark top half of box if pH and/or dechlorination

Project #

WO#: 92351820

PM: PTE

Due Date: 08/18/17

CLIENT: 92-Terrac NC

is verified and within the acceptance range for preservation samples.

**Bottom half of box is to list number of bottles

ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (Cl-)	8P3U-250 mL Plastic Unpreserved (N/A)	8P2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	8P4Z-12S mL Plastic ZN Acetate & NaOH (>9)	8P4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCI (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG35-750 mL Amber H2504 (pH < 2)	AG3A[DG3A]-250 ml. Amber NH4CI (N/A)[CI-)	DG9H 40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 ml. Plastic (NH2)2504 (9.3-9.7)	Cubitainer	VSGU-20 mL Scintillation vials (N/A)	NS
1					/		/	/	1		/			1						6				/				
2	/				1	1		/	ĺ		/		1	/						6				/	/			
3	/				1	1	/	/	1		/		/	7										/	/			
4	/	4			1	/	/	7			1		1	7	7				-	6				7	1			
5	/				1	7	7	1			7		7	7	1					× 1-1				1	1			
6	1				1	/	1	1			1		/	1	1									7	7			
7	1				1	7	1	/			7		/	7	7									7	1			
8	1				/	/	7	1			1		1	1	/									1	1			
9	1				/	/	/	/			1		1	/	1									/	1			
10	1		C TEST		/	/	/	1			7		/	/	1						0			/	1	- 1		20.5
11	1		. 5-04		/	7	/	1		_	1		1	7	1									7	1			
12	/				/	/	/	1					/	/	/									1	/			

	1		justment Log for Pres			10000
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
				4.000 E		

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

TIEM SAMPLE ID	Received or re Y/N) Sustady ealed	MP in G			ERY	3	5	X	A	14	77	SAMPLE	PRINT Name of SAMPLER: SIGNATURE of SAMPLER:	PRIN							
Page	1										TURE	ND SIGNA	NAME A	SAMPLER				-			
Page Page Information Page Page Page Information Page	5.7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ñ	25	Hν	Ray	67	1 1/2		1 3		6		ERA	170	1 1/1.	1 1				
Required Project Information: Report of Market Cheery Report of	SAMPLE CON	m	MIT	DATE	LIATION	BY / AFFI	CEPTED	A		TIME		DATE	_	FILIATION	ED BY / AF	HSIND	RELIN			ADDITIONAL COMMENTS	
Page										_				L	L		-				12
Required Project Information: Invoice Inf																					=
Page																	-				6
Required Project Information: Report To. Report To. Alco Chonory Alco Ch																					9
Required Project Information: Required Project Information																					8
Required Project Information: Invoice Inf																					7
Required Project Information: Invoice Inf																					6
Regulated Project Information:																					Oi
Required Project Information: Record No. Required Project Information: Record No. Repetition: Reptition: Repetition: Reptition: Repetition: Repetition																					4
Required Project Information: Import Information: Report To Alex Chinery Affection: Appoint To Alex Chinery Company Name: Compan	8				×	Ţ	-			-	4	91.6					<			186-	
Required Project Information: Involce Information: Required Project Information: Reduired Project Information: Redui	3				× ×						_		0							-186-	
Required Project Information: Invoice Information: Allers Chinery Address: A	E				メイ	12	_			_	4	7:05				-2-	3			-186-	
Required Project Information:	93516	Residual Chlorine /Vikit				Analyses Test	Methanol	NaOH	HNO3			TIME	DATE	TIME	STA		MATRIX CODE (see valid cod	one on the control of	Water Water Water Piodal Soulisi Oil Wipe Au Other Tonue	SAMPLE ID One Character per box. (A-2, 0-91, -) Sample lds must be unique	ITEM#
Required Project Information: Invoice Information: In						Y/N	is.	ervative	Pres		in.		CTED	COLLE		COMP)	es to left)	3000 x	MATR		
Required Project Information:			(N/Y) be	nalysis Filter	Requested A	H					1										$\ $
Required Project Information: Report To: Alex Chinery Attention: Copy To: Company Name: Address: Purchase Order #: Pace Quete:	NC / Location	Sta			bs.com,	l@paceta	ylor ezel	10	# S	e Projec	Pao	0.400		1 /	323	子子	10	Project #	20	すると	quested Du
Required Project Information: Invoice Information: Page: 1 Report To: Alex Chinery Company Name: Company Name: Regulatory Agency					A COLUMN AND A COL					e Quate	Pao						order #	Purchase (lerracon.com	ail: sachi
Required Project Information: Invoice Information: Page: 1 Report To: Alex Chinery Communication: Page: 1	atory Agency	Regu							i i	SSB1	Add							addi in		S206	S
Required Project Information: Invoice Information: Page: 1										ntion:	Alle				S,	Chine	Alex	Report To.		erracon NC	mpany
	-	Page:						n.	rmation	ice Info	Invo				nation:	Inform	roject	Required F		t Information;	quired Clie

Hydrocarbon Analysis Results

Client: TERRACON

Address: 2020-E STARITA ROAD

CHARLOTTE NC

Samples taken Samples extracted

Samples analysed

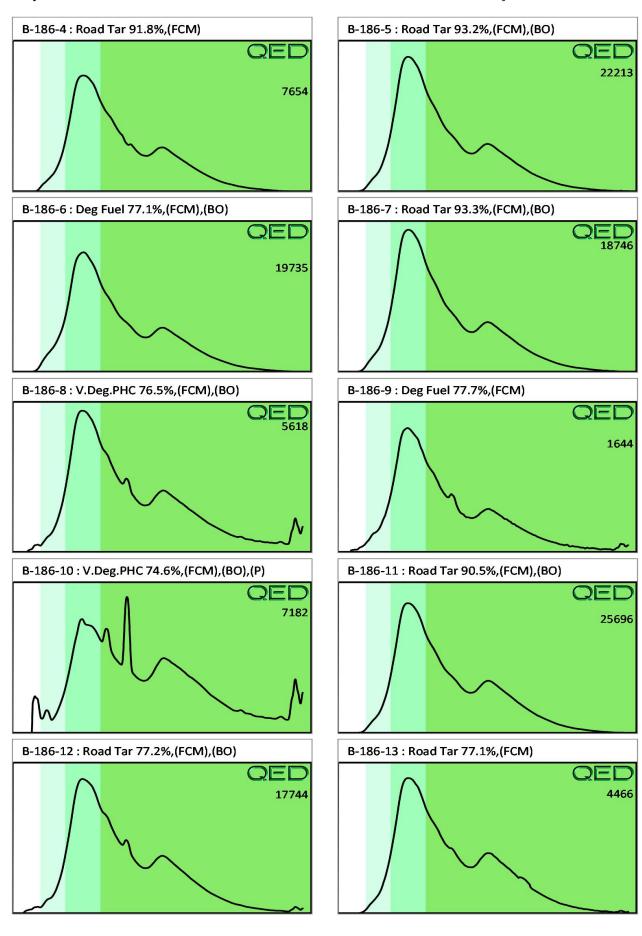
Thursday, October 26, 2017 Thursday, October 26, 2017

Friday, October 27, 2017

Contact: ALEX CHINERY Operator HENDRIX

Project: #71177323

													H09382
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	9	% Ratios	5	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
S	B-186-4	22.6	<0.57	<0.57	10.4	10.4	5	0.56	<0.023	0	83.1	16.9	Road Tar 91.8%,(FCM)
S	B-186-5	22.6	<1.1	<0.57	37.5	37.5	18	2	0.045	0.5	85.9	13.6	Road Tar 93.2%,(FCM),(BO)
S	B-186-6	22.0	<0.55	<0.55	36.6	36.6	18.7	1	<0.022	0	85.5	14.5	Deg Fuel 77.1%,(FCM),(BO)
S	B-186-7	23.6	<0.59	<0.59	31.5	31.5	15.1	1.7	0.039	0	85.9	14.1	Road Tar 93.3%,(FCM),(BO)
S	B-186-8	22.6	<0.57	<0.57	7.4	7.4	3.6	0.39	<0.023	0	80.9	19.1	V.Deg.PHC 76.5%,(FCM),(BO)
s	B-186-9	24.5	<0.61	<0.61	1.5	1.5	1.2	<0.2	<0.025	0	84	16	Deg Fuel 77.7%,(FCM)
S	B-186-10	25.0	< 0.63	<0.63	6.6	6.6	4.4	<0.2	<0.025	0	73.3	26.7	V.Deg.PHC 74.6%,(FCM),(BO),(P)
s	B-186-11	39.6	<0.99	<0.99	79.8	79.8	38.5	4.3	0.099	0	85.1	14.9	Road Tar 90.5%,(FCM),(BO)
S	B-186-12	27.4	<0.68	13.4	34.7	48.1	16.8	1.9	0.044	48.7	42.8	8.5	Road Tar 77.2%,(FCM),(BO)
s	B-186-13	25.5	<0.64	<0.64	6.4	6.4	3.1	0.35	<0.025	0	81.5	18.5	Road Tar 77.1%,(FCM)
	Initial	Calibrator	QC check	OK					Final FO	CM QC	Check	OK	104.5 %


Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only. Data generated by HC-1 Analyser

Project: #71177323 Friday, October 27, 2017

