5794 REFERENCE **CONTENTS**

DESCRIPTION

LEGEND (SOIL & ROCK)

TITLE SHEET

CROSS SECTIONS

SITE PLAN

BORE LOGS SITE PHOTOGRAPHS

SHEET NO.

7-II

4839 M

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY FORSYTH

PROJECT DESCRIPTION WINSTON-SALEM BELTWAY FROM US 421 /I-40 BUS TO I-40

SITE DESCRIPTION BRIDGE NO. 722 ON SR 2632 (SEDGE GARDEN ROAD) OVER WINSTON-SALEM NORTHERN BELTWAY

	STATE	STATE PROJECT REPERENCE NO.	SHEET NO.	TOTAL SHEETS
l	N.C.	U-2579AB	1	12

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT (1991) 707-6805. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BORCHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION, THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS INCLORDED TO CLIMATIC CONDITIONS INCLORDING CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLODING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HINSELF AS TO CONDITIONS TO BE ENCOUNTERED OF AN PREASON RESULTING FROM THE AUTUAL CONDITIONS FOR AN PREASON RESULTING FROM THE AUTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:

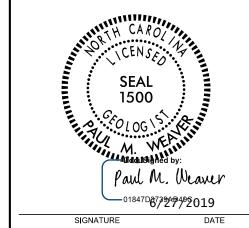
 1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

P.M. WEAVER C.R. PASTRANA

RED DOG DRILLING

INVESTIGATED BY ESP Associates, Inc.


DRAWN BY _C.R. PASTRANA

CHECKED BY __P.M. WEAVER

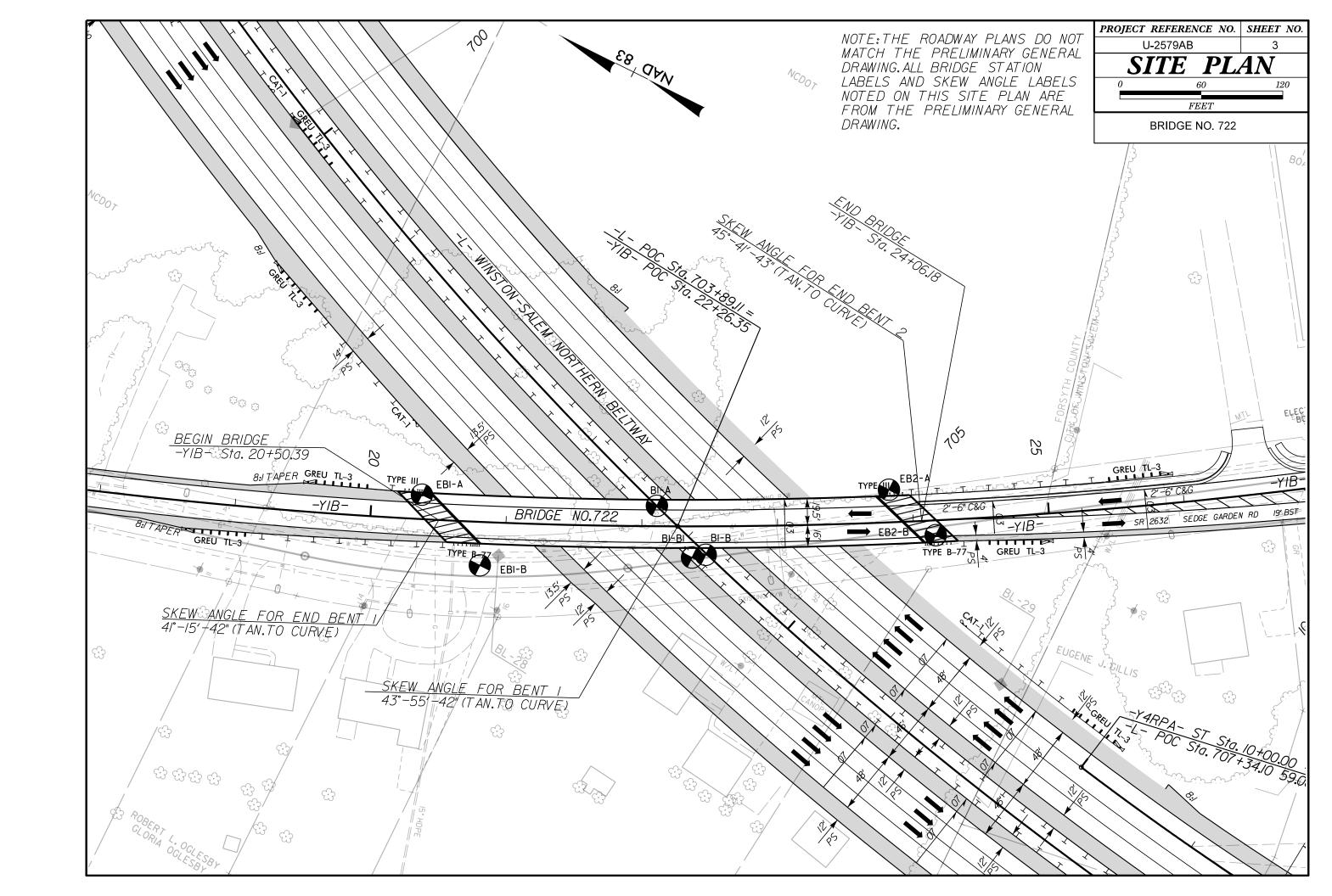
SUBMITTED BY ESP Associates, Inc.

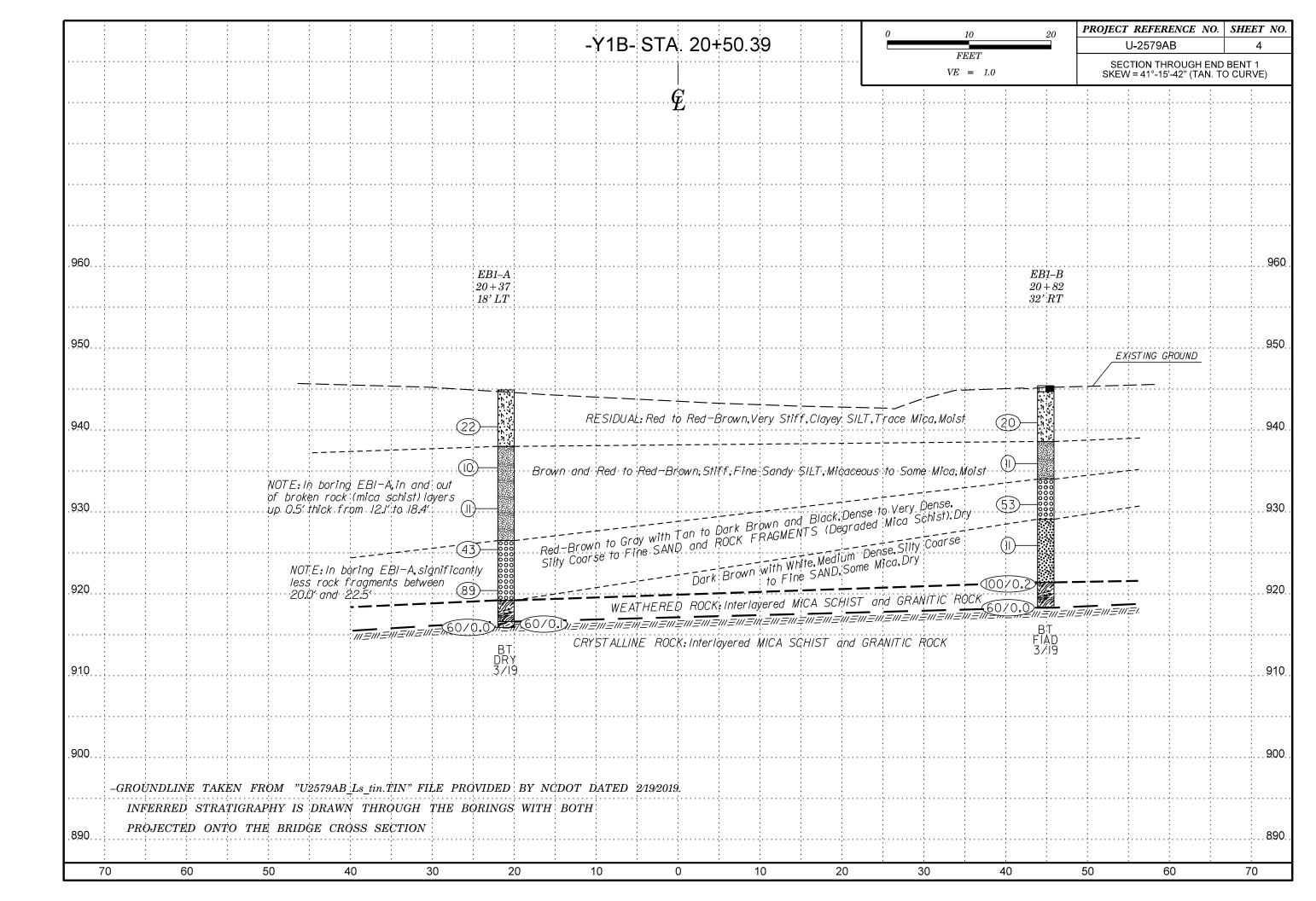
ESP ASSOCIATES, INC. 011 ALBERT PICK RD FIRM # C-0587 WWW.ESPASSOCIATES.COM

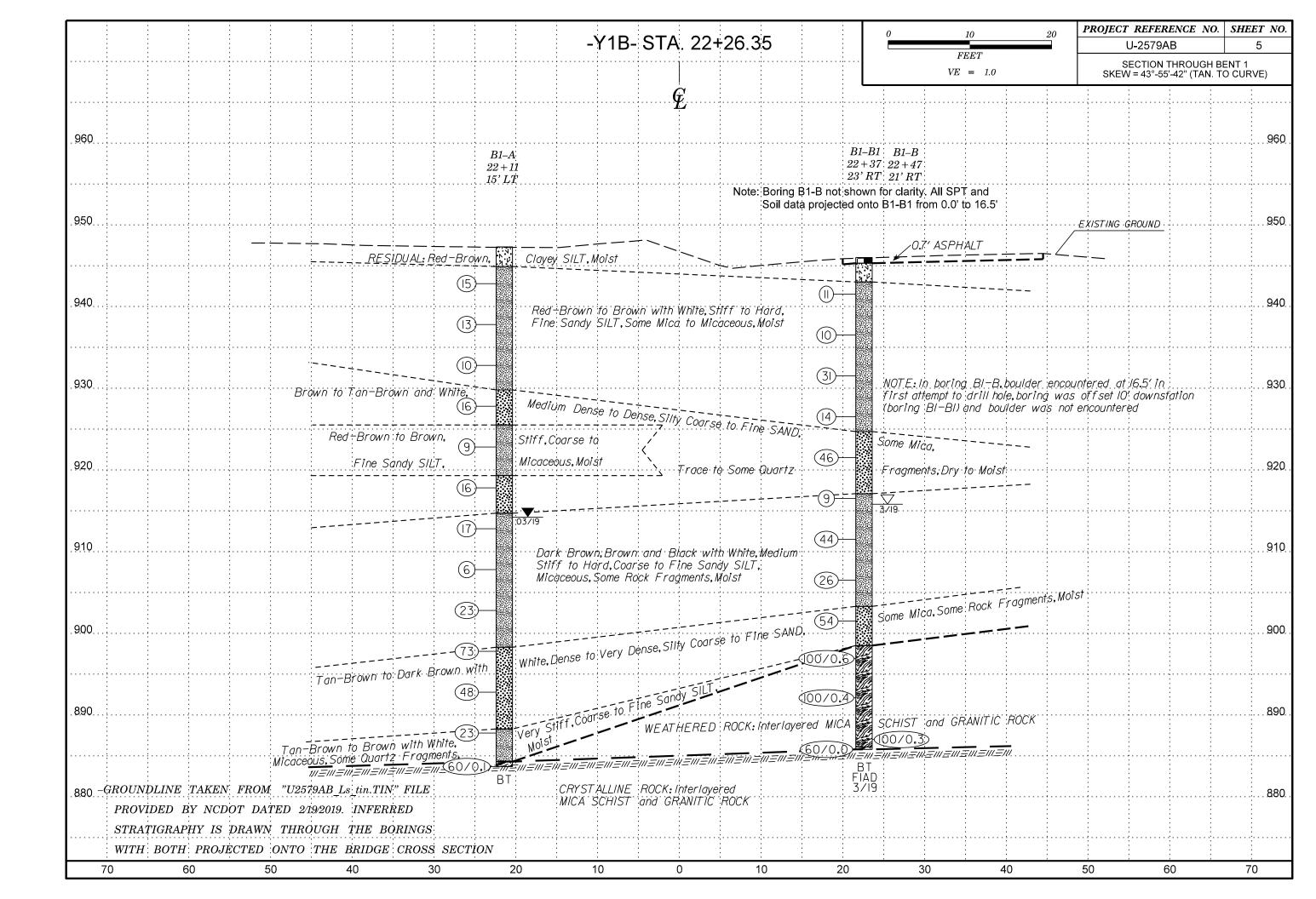
DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

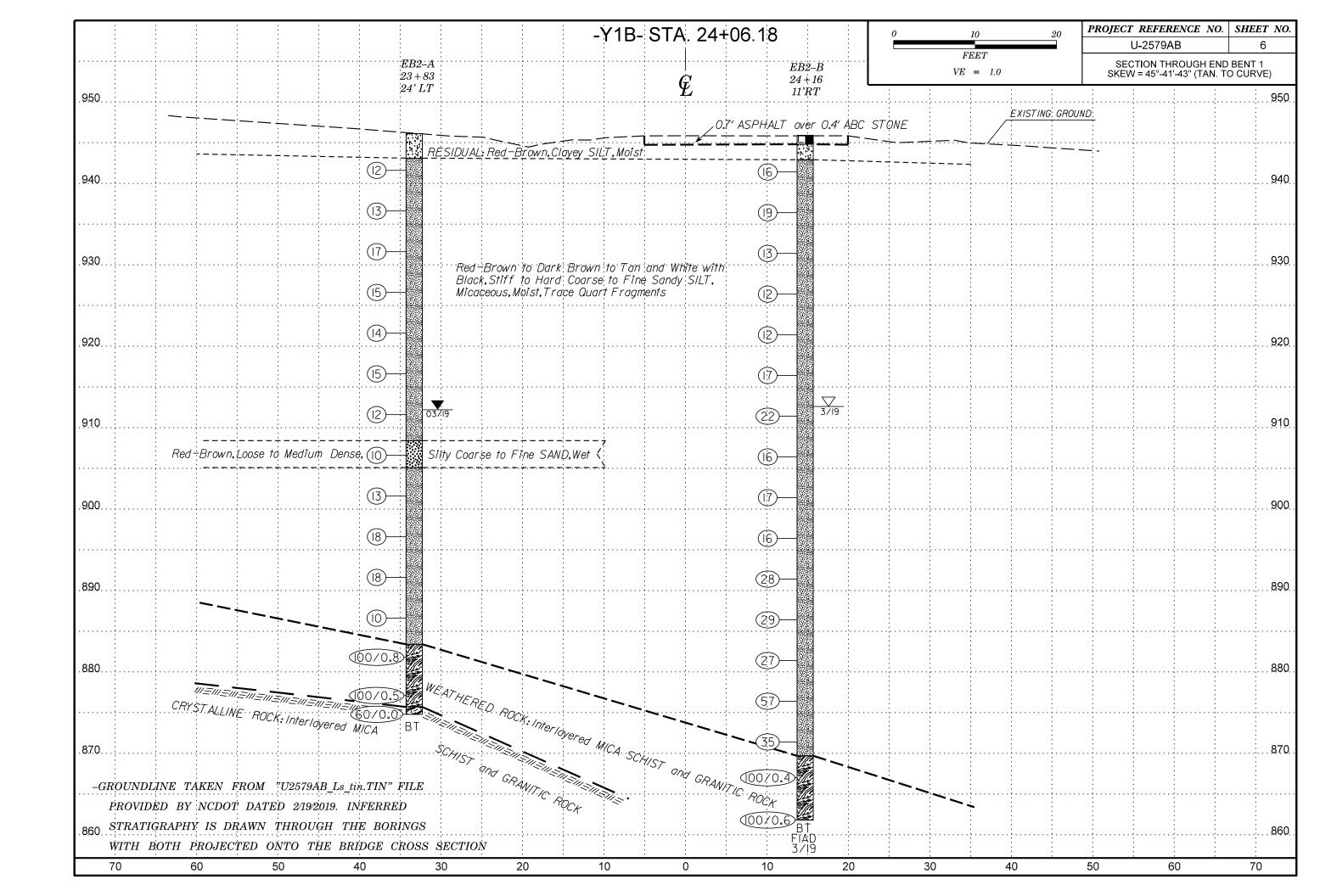
PROJECT REPERENCE NO. SHEET NO.

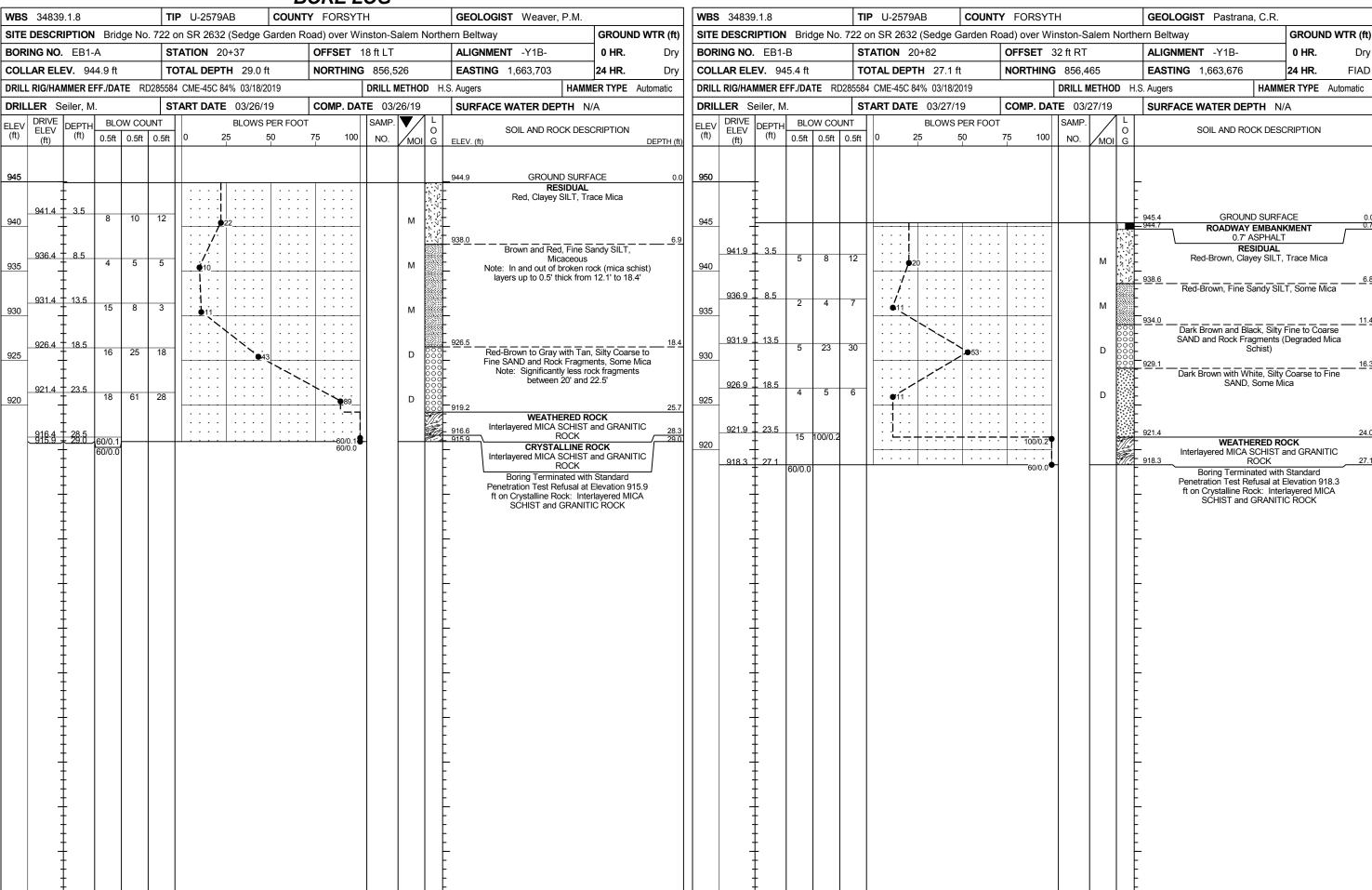
U-2579AB

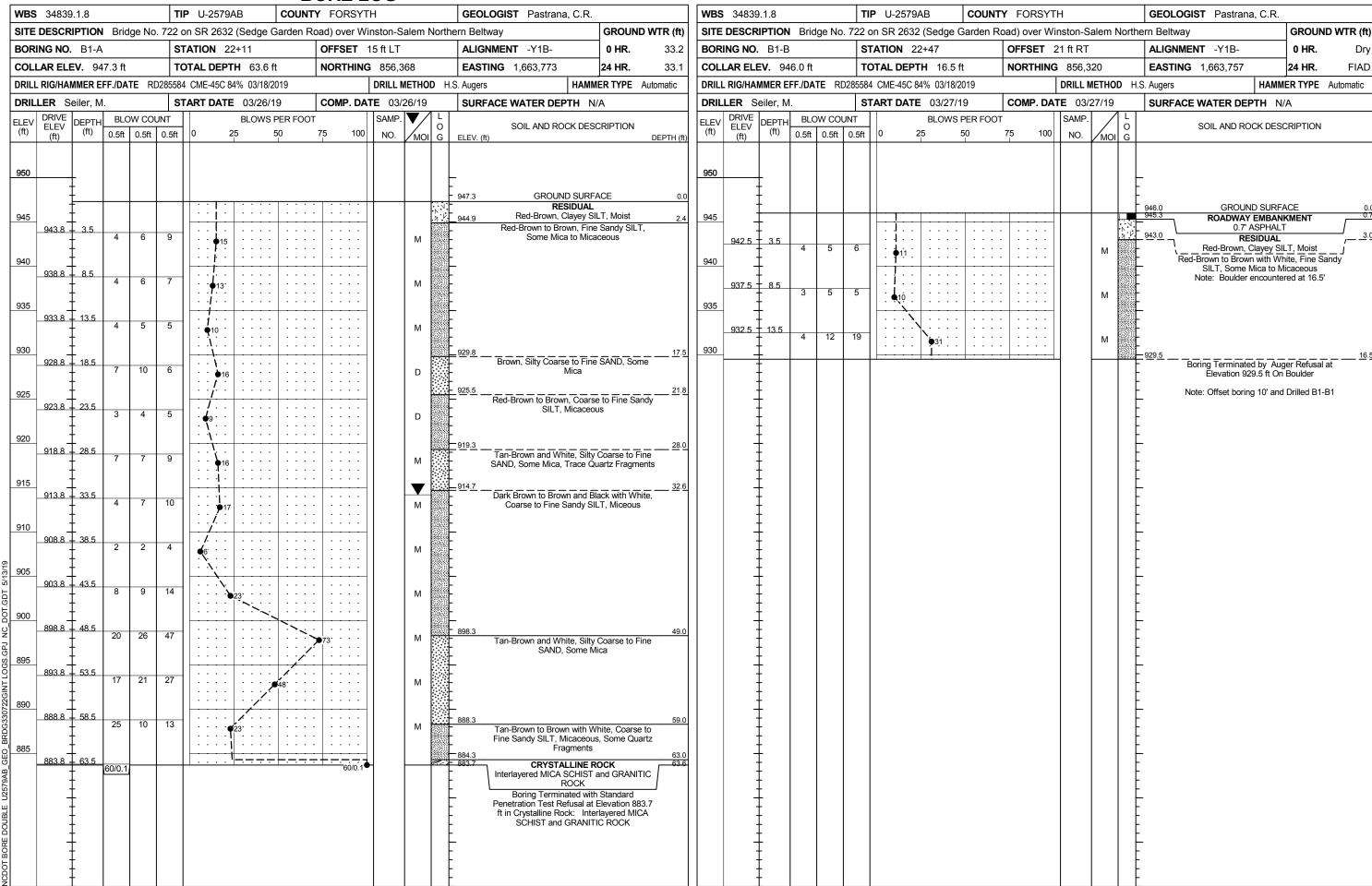

2


NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT


SUBSURFACE INVESTIGATION


SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS


SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM DI586). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING:	GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN	AQUIFER - A WATER BEARING FORMATION OR STRATA.
CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDOED FINE SAID LAYERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	WEATHERED WAS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES >	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED. MINERALOGICAL COMPOSITION	ROCK (WR) 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) ORGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	CRYSTALLINE CRYSTALLINE WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE.	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	ROCK (CR) GNEISS, GABBRO, SCHIST, ETC. GNEISS, GABBRO, SCHIST, ETC. FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
CLASS. A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-7-6 A-7-6 A-3 A-6, A-7	COMPRESSIBILITY	NON-CATSTALLINE SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM
SYMBOL 000000000000000000000000000000000000	SLIGHTLY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50	ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC. COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD	OF SLOPE. CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED
7. PASSING SILT-	HIGHLY COMPRESSIBLE LL > 50	SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED SHELL BEDS, ETC.	BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
*10 50 MX GRANULAR CLAY MUCK, *40 30 MX 50 MX 51 MN PEAT	PERCENTAGE OF MATERIAL	WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
*288 15 MX 25 MX 18 MX 35 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN 36 MN 36 MN	ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
MATERIAL PASSING *40	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20%	HAMMER IF CRYSTALLINE. VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	HORIZONTAL.
LL 48 MX 41 MN LITTLE OR PI 6 MX NP 18 MX 18 MX 11 MN 11 MN 18 MX 18 MX 11 MN 11 MN MOREATE HIGHLY	MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	<u>DIP DIRECTION (DIP AZIMUTH)</u> - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH,
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF UNDANIL	GROUND WATER	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
USUAL TYPES STONE FRAGS. FINE SILTY OR CLAYEY SILTY CLAYEY MATTER	WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	(SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
OF MAJOR GRAVEL, AND SAND GRAVEL AND SAND SOILS SOILS	▼ STATIC WATER LEVEL AFTER 24 HOURS	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
GEN. RATING EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE	PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED	PARENT MATERIAL.
AS SUBGRADE PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ;PI OF A-7-6 SUBGROUP IS > LL - 30	SPRING OR SEEP	WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM, FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	MODERATELY ALL ROCK EXCEPT OUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH	FIELD.
COMPACTNESS OR RANGE OF STANDARD RANGE OF UNCONFINED	TT 25,025	(MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES 'CLUNK' SOUND WHEN STRUCK, IF TESTED, WOULD YIELD SPT REFUSAL	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE CONSISTENCY PENETRATION RESISTENCE COMPRESSIVE STRENGTH (N-VALUE) (TONS/FT ²)	ROADWAY EMBANKMENT (RE) DIP & DIP DIRECTION WITH SOIL DESCRIPTION OF ROCK STRUCTURES	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.
GENERALLY VERY LOOSE < 4	SOIL SYMBOL SOFT DATE TEST BORING SLOPE INDICATOR INSTALLATION	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
GRANULAR LUUSE 4 IU 100	VST PMT UNSTREEMTION	TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS
MATERIAL DENSE 30 TO 50	ARTIFICIAL FILL (AF) OTHER AUGER BORING CONE PENETROMETER THAN ROADWAY EMBANKMENT AUGER BORING TEST	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
VERY DENSE > 50 VERY SOFT < 2		SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK (V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM.
GENERALLY SOFT 2 TO 4 0.25 TO 0.5	MW C TEST ROPING	VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u>	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0 MATERIAL STIFF 8 TO 15 1 TO 2	INFERRED ROCK LINE MONITORING WELL WITH CORE	COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
(COHESIVE) VERY STIFF 15 TO 30 2 TO 4 HARD > 30 > 4	TTTTT ALLUVIAL SOIL BOUNDARY A PIEZOMETER ON SPT N-VALUE	ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
U.S. STD. SIEVE SIZE 4 10 40 60 200 270		VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	ROCK. SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	USED IN THE TOP 2 FEET OF	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO
BOULDER COBBLE GRAYEL COARSE FINE SILT CLAY	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK EMBANKMENT OR BACKFILL	TO DETACH HAND SPECIMEN.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT
(BLDR.) (COB.) (GR.) (CSE. SD.) (F SD.) (SL.) (CL.)	ABBREVIATIONS	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED	OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.05 0.005 SIZE IN. 12 3	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB, HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL
	\perp CL CLAY MOD MODERATELY γ - UNIT WEIGHT	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE	WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL
SOIL MOISTURE - CORRELATION OF TERMS SOIL MOISTURE SCALE FIELD MOISTURE COURS FOR THE AMOUNT OF TERMS	CPT - CONE PENETRATION TEST NP - NON PLASTIC $\gamma_{ m d}$ - DRY UNIT WEIGHT CSE COARSE ORG ORGANIC	POINT OF A GEOLOGIST'S PICK.	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
(ATTERBERG LIMITS) DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY	DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	PIECES CAN BE BROKEN BY FINGER PRESSURE.	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
(SAT,) FROM BELOW THE GROUND WATER TABLE	F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
PLASTIC CENTROL ID DECUIDES DOVING TO	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL	FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
RANGE - WET - (W) SEMISULISI REGUIRES DITTING TO ATTAIN OPTIMUM MOISTURE (PI) PL PLASTIC LIMIT	FRAGS FRAGMENTS	FRACTURE SPACING BEDDING	BENCH MARK: BL-28: N 856,456.0410 E 1,663,688.1040
	EQUIPMENT USED ON SUBJECT PROJECT	TERM SPACING TERM THICKNESS VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET	ELEVATION: 944.90 FEET
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	WIDE	
SL _ SHRINKAGE LIMIT	X CME-45C CLAY BITS X AUTOMATIC MANUAL	CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET	NOTES:
- DRY - (D) ATTAIN OPTIMUM MOISTURE	CME-55 G' CONTINUOUS FLIGHT AUGER CORE SIZE:	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED < 0.008 FEET	FIAD= FILLED IN AFTER DRILLING
PLASTICITY	X 8' HOLLOW AUGERS	INDURATION	
PLASTICITY INDEX (PI) DRY STRENGTH	CME-550 HARD FACED FINGER BITS	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	
NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC 6-15 SLIGHT	VANE SHEAR TEST TUNG,-CARBIDE INSERTS HAND TOOLS:	FRIABLE RUBBING WITH FINGER FREES NUMEROUS GRAINS; GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
MODERATELY PLASTIC 16-25 MEDIUM	CASING W/ ADVANCER POST HOLE DIGGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE;	
HIGHLY PLASTIC 26 OR MORE HIGH	PORTABLE HOIST TRICONE*STEEL TEETH HAND AUGER	BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR	TRICONE TUNG,-CARB. SOUNDING ROD	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE: OFFICULT TO BREAK WITH HAMMER.	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	CORE BIT VANE SHEAR TEST	CHARD HAMMED BLOWS BEGLIDED TO BREAK SAMPLE.	
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.		EXTREMELY INDURATED SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-1

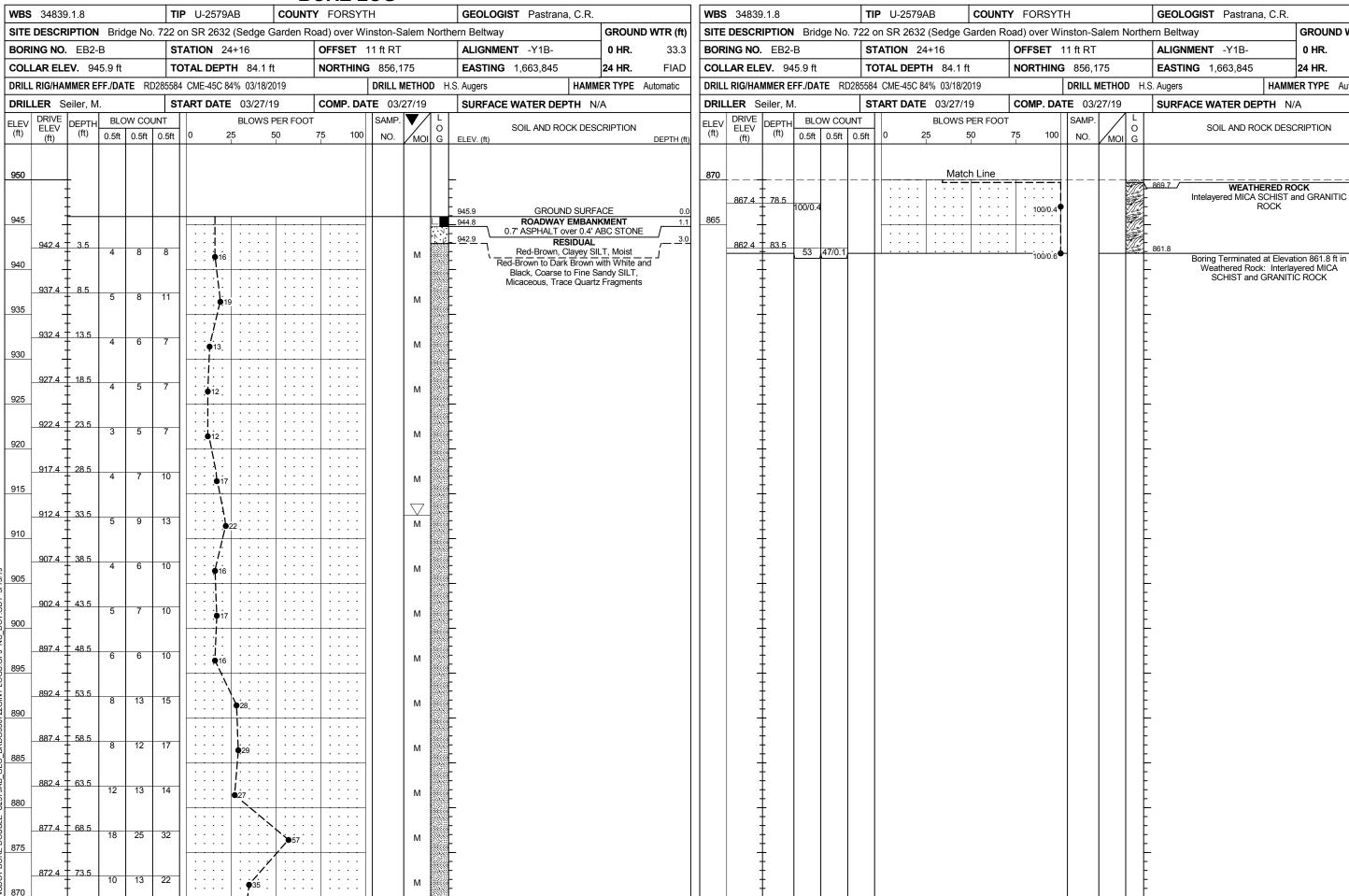


									UKE L	.00				
WBS	34839.	1.8			TI	P U-2579	AΒ	COUNT	Y FORSYT	Н			GEOLOGIST Pastrana, C.R.	
SITE	DESCRI	PTION	Bric	lge No	. 722 (on SR 2632	(Sedge G	arden Ro	oad) over W	inston-S	alem	North	ern Beltway	GROUND WTR (ft)
BOR	ING NO.	B1-B	1		ST	TATION 2	2+37		OFFSET	23 ft RT			ALIGNMENT -Y1B-	0 HR. 30.2
COLI	LAR ELE	V . 94	6.0 ft		т	OTAL DEPT	H 60.2 ft	t	NORTHING	856,3	28		EASTING 1,663,751	24 HR. FIAD
DRILL	RIG/HAM	MER EI	FF./DA	TE RE	0285584	4 CME-45C 8	4% 03/18/2	D19		DRILL N	METHO	D H.:	S. Augers HAMME	R TYPE Automatic
DRIL	LER Se	iler M			S	TART DATE	03/27/1	9	COMP. DA				SURFACE WATER DEPTH N//	
	DDI\/E	DEPTH		OW COL	_			PER FOOT		SAMP.	V /	1 - 1		
ELEV (ft)	ELEV (ft)	(ft)	0.5ft		0.5ft	0 2			75 100	NO.	MOI	O G	SOIL AND ROCK DESC ELEV. (ft)	RIPTION DEPTH (ft)
950	+												_	
945													946.0 GROUND SURFA 945.3 ROADWAY EMBANK	
	942.5	3.5										121	0.7' ASPHALT -943.0	
	342.3	3.5	4	5	6	∳11 :					М	H	Red-Brown, Clayey SIL	
940	+	.				 		ļ	+			-	Red-Brown to Brown with Whi SILT, Some Mica to Mi	caceous
	937.5	8.5										F	Note: Boulder encountered a attempt to drill hole. Boring	
935	‡		3	5	5	10					М		and boulder was not end	
300	1 ‡	.											-	
	932.5	13.5	4	12	19		\				М			
930	1 ±	.					/ ⁹³¹				I	l L	-	
	1	40.5				:::::::::::::::::::::::::::::::::::::	1					H		
	927.5	18.5	6	7	7	14					М	F		
925	‡	.							ļ · · · ·				924.7	21.3
	922.5	23.5					\\.\.\.\.						White with Tan-Brown, Silty (SAND, Some Quartz Fr	
000	1		28	29	17			 46			D			
920	1 🛨	.					,/	· · · ·				_	_	
	917.5	28.5	3	4	5	: : :/.'	1 : : : :					-	917.1	28.9
915	Ŧ		3		3	. •9					$\vdash \vee$	-	Brown to Dark Brown with Wh SILT, Micaceous, Some Roo	
	l Ŧ						\.\.\.		1			F		· ·
	912.5	33.5	11	27	17			: : : :			М	F		
910	‡	.					/	<u> </u>					<u> </u>	
	907.5	38.5					· / · · ·							
	1	-00.0	12	13	13		2 6				М			
905	1 ±	.						<u> </u>	+			E	_	40.7
	902.5	43.5	21	35	19		` \					-	Dark Brown to Tan-Brown wi	
900	l Ŧ		21	33	19			● 54			M	::::- <u>-</u>	Coarse to Fine SAND, So Fragments	ome Rock
	1 7							<u> </u>					898.5	47.5
	897.5 +	48.5	53	47/0.1					100/0.6	,			WEATHERED RO Interlayered MICA SCHIST a	
895	‡	.						: : : :	100/0.0				ROCK	
	892.5	53.5				::::		: : : :						
05.	1	JJ.J	100/0.4	4					100/0.4	'				
890	1	.						 	+				_	
	887.5	58.5	100/0											
	885.8	60.2	100/0.3 60/0.0					: : : :	100/0.3	,			886.1 CRYSTALLINE RO	59.9 DCK \(\sum_{60.2}
	‡		50/0.0						25.0.0				Interlayered MICA SCHIST a ROCK	
	‡												Boring Terminated with	
	‡	.											 Penetration Test Refusal at E ft In Crystalline Rock: Interl 	ayered MICA
													SCHIST and GRANITIO	
	1											F		
	‡	.										F	_	
	‡													
	‡													

							В	ORE L	<u>.UG</u>													
WBS	34839	9.1.8			TII	U -2579AB	COUNT	Y FORSY	ТН			GEOLOGI	ST Pastrana, C.R.		WBS	34839.	1.8			TIP U-2	2579AB	
SITE	DESCR	RIPTION	Bric	lge No	. 722 c	n SR 2632 (Sedge C	arden R	oad) over W	inston-S	alem	North	ern Beltway		GROUND WTR (ft)	SITE	DESCRI	PTION	Bridge	e No. 72	No. 722 on SR 2632 (Sec		
BOF	ING NO.	. EB2-	A		ST	ATION 23+83		OFFSET	24 ft LT			ALIGNME	NT -Y1B-	0 HR. 35.8	BOR	ING NO.	EB2-A	١		STATIO	N 23+83	
COL	LAR ELI	EV . 94	6.1 ft		TC	TAL DEPTH 71.3 f	t	NORTHIN	G 856,2	220		EASTING	1,663,860	24 HR. 33.9	COL	LAR ELE	V. 946	6.1 ft		TOTAL [DEPTH 7	
DRIL	L RIG/HAI	MMER E	FF./DA	TE R	0285584	CME-45C 84% 03/18/2	019		DRILL N	ИЕТНО	D H	.S. Augers	HAMN	MER TYPE Automatic	DRIL	L RIG/HAM	MER EF	F./DATE	RD285	584 CME-	45C 84% 03	
DRII	LER S	eiler, M	l.		ST	ART DATE 03/25/1	9	COMP. DA	TE 03/	25/19		SURFACE	WATER DEPTH N	I/A	DRIL	LER Se	iler, M.			START [DATE 03	
ELEV	DRIVE ELEV	DEPTH	BLC	ow cou	JNT	BLOWS I	PER FOOT	·	SAMP.	V /	LO		SOIL AND ROCK DES	CDIDTION	ELEV	DRIVE ELEV	DEPTH	BLOW	/ COUNT		BLC	
(ft)	(ft)	(ft)	0.5ft	0.5ft	0.5ft	0 25	50	75 100	NO.	МОІ		ELEV. (ft)	SOIL AND ROCK DES	DEPTH (ft	(ft)	(ft)	(ft)	0.5ft (0.5ft 0.5f	ft 0	25	
950												_			870_						'	
	-	ŧ										- -				l ±						
		<u> </u>										946.1	GROUND SURF	ACE 0.0	<u>.</u>	±						
945	-	ł				 			-		, V	_	RESIDUAL Red-Brown, Clayey Sl	ILT, Moist		\pm						
	942.6	3.5	3	6	6					١.,	7	943.1R	ed-Brown, Tan and Whit	te, Fine Sandy	-	\perp						
940		Ŧ				1. 12.				M		-	SILT, Micaceo	ous		\perp						
	-07.0	Ŧ , ,										-				l Ŧ						
	937.6	+ 8.5 -	4	6	7	13.				М		-				Ŧ						
935	-	Ŧ				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		+	-			<u>-</u>				+						
	932.6	13.5	8	8	9	: : : : : :				_		-				Ŧ						
930		Ŧ	°	0	9	· · · · • • • • • · · · · · · · · · ·				D		-				Ŧ						
	-	Ŧ.,, _										-				Ŧ	'					
	927.6	18.5	5	8	7	↑ ↑ ↑ ↑ · · · · · · · · · · · · · · · ·				М		-				Ŧ						
925	-	Ŧ							-			- -				1 +						
	922.6	23.5										- -				‡						
920		Ŧ	4	7	7	14				M		- -				ļ Ţ						
020	-	‡							1			 -				‡	'					
	917.6	28.5	5	7	8	15				М		- -				‡						
915	-	‡							-			- -				‡						
	912.6	33.5				: : j: : : : : :						- -				‡						
910		‡	5	5	7	12.				M		- -				‡						
	Ī	Ť												37.7			'					
	907.6	+ 38.5 -	4	5	5					w		- R -	ed-Brown, Silty Coarse t	to Fine SAND		‡						
905	-	‡				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-			905.1	ark Brown to Black, Fine	9 Sandy SILT 41.0		‡						
	902.6	43.5										- -	Micaceous			‡						
900		‡	4	'	6	13				M		- -				‡						
	-	‡							1			 -				‡	'					
	897.6	+ 48.5 +	5	8	10					М		- -				‡						
895	-	‡				1			-			- 				‡						
	892.6	53.5	<u> </u>									- -				‡						
890		‡	4	7	11	18				М		- -				‡						
500	1 -	‡.				/			1			- -				‡						
	887.6	<u>+ 58.5</u> -	4	5	5	10				М		- -				‡						
885		‡							-			- -				‡	.					
	882.6	63.5				:	- · · ·				777	- 883.4	WEATHERED R	OCK 62.7	-	‡						
880		‡	32	68/0.3				100/0.8	†			- Inte	rlayered MICA SCHIST ROCK	and GRANITIC		‡						
500	-	‡							[]			- -				‡						
	877.6	+ 68.5 +	100/0.					100/0.5	 			- - - 075 7		 -		‡						
875	874.8 -	71.3	60/0.0						11			- 875.7 874.8	CRYSTALLINE R			‡	.					
	-	+	60/0.0	1	 			30/0.0		1	ı ŀ	- \ Inte	rlayered MICA SCHIST	and GRANITIC	11	1 †						
	-	╁										- L	ROCK Boring Terminated with			†	- 1		l l			

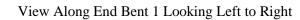
NBS	34839	.1.8			TI	P U-2	579AB	COUN	NTY FO	RSYT	H			GEOLOGIST Pastrana, 0	C.R.	
SITE	DESCR	IPTION	I Brid	lge No	. 722	on SR 2	2632 (Sedg	e Garden	Road) ov	er Wi	nston-S	alem I	North	nern Beltway	GROU	ND WTR (fi
BORI	NG NO.	EB2-	-A		S.	TATION	l 23+83		OFFS	SET 2	4 ft LT			ALIGNMENT -Y1B-	0 HR.	35.8
COLL	AR ELE	V . 94	16.1 ft		T	OTAL D	EPTH 71.	.3 ft	NOR'	THING	856,2	220		EASTING 1,663,860	24 HR.	33.9
ORILL	. RIG/HAI	MER E	FF./DA	TE RI	D28558	4 CME-4	5C 84% 03/1	8/2019			DRILL I	ИЕТНО	D H	.S. Augers	HAMMER TYPE	Automatic
DRIL	LER S	eiler, N	1.		S	TART D	ATE 03/2	5/19	СОМ	P. DA1	TE 03/	25/19		SURFACE WATER DEPTH	H N/A	
LEV	DRIVE ELEV	DEPTH	BLC	w co	UNT			VS PER FO			SAMP.		LO	SOIL AND ROCK	DESCRIPTION	I
(ft)	(ft)	(ft)	0.5ft	0.5ft	0.5ft	0	25	50	75 	100	NO.	MOI	Ğ			-
8 <u>7</u> 0_				<u> </u>		ļ	<u>M</u>	atch Line			<u> </u>	<u> </u>	∤ _∤	ft on Crystalling Rock	k: Interlayered y	
	-	-												ft on Crystalline Rock MICA SCHIST and	GRANITIC RO	CK
	-	-												- -		
	-	-												- -		
	-	-												- -		
	-	-												- -		
		- -												- -		
	-	-												- -		
	_	-												_ -		
	-	-												- -		
	-	_												- -		
	-	_												<u>-</u> -		
	-	-												- -		
	_	_												-		
	-	-												- -		
	-	-												- -		
	-	-												- -		
	-	-												- -		
	-	-												- -		
	-	-												- -		
	-	-												- -		
	_	_												_ -		
	-	-												- -		
	-	_												- -		
	-	_												<u>-</u> -		
	-	_												-		
	_	_												- -		
	-	-												- -		
	-	-												- -		
	-	-												- -		
	-	-												- -		
	-	-												- -		
	-	-												- -		
	-	-												- -		
		_												_ -		
	_	_												- -		
	-	_												<u>-</u>		
	-	-												- -		
	-	-												- -		
	-	-												- -		
	-	-												- -		
	-	-	1									1	ı ŀ	_		

GROUND WTR (ft)


33.3

FIAD

0 HR.


24 HR.

HAMMER TYPE Automatic

SITE PHOTOGRAPHS

Bridge No. 722 on SR 2632 (-Y1B- Sedge Garden Road) over -L- (Winston-Salem Northern Beltway)

View Along End Bent 2 Looking Left to Right

View Along Bent 1 Looking Left to Right

View Along -Y1B- Downstation to Upstation

REFERENCE

4839 M

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

CONTENTS

22

SHEET NO.	<u>DESCRIPTION</u>
1	TITLE SHEET
2	LEGEND (SOIL & ROCK)
2A	SUPPLEMENTAL LEGEND (GSI)
3	SITE PLAN
4-6	CROSS SECTIONS
7-20	BORE LOGS, CORE LOGS, AND CORE PHOTOGRAPHS
21	SOIL TEST RESULTS

SITE PHOTOGRAPHS

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY_	<i>FORSYTH</i>			
PROJECT	DESCRIPTION	WINSTO	N-SALEM	BELTWAY
	US 421 /I-40			
SITE DES	CRIPTION BRI	DGE NO	. 724 ON -	-Y15REV-
	YPASS) OVER			

BELTWAY)

STATE PROJECT REPERENCE NO. 22 U-2579AB

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT (1991) 707-6805. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BORCHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION, THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS INCLORDED TO CLIMATIC CONDITIONS INCLORDING CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLODING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HINSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:

 1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

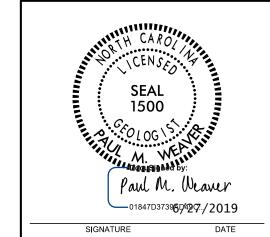
 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

P.M. WEAVER C.R. PASTRANA

RED DOG DRILLING

INVESTIGATED BY ESP Associates, Inc.

DRAWN BY _C.R. PASTRANA


CHECKED BY P.M. WEAVER

SUBMITTED BY ESP Associates, Inc.

DATE <u>MAY</u> 2019

ESP ASSOCIATES, INC. '011 ALBERT PICK RD GREENSBORO, NC 27409 FIRM # C-0587 WWW.ESPASSOCIATES.COM

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

PROJECT REPERENCE NO. SHEET NO.

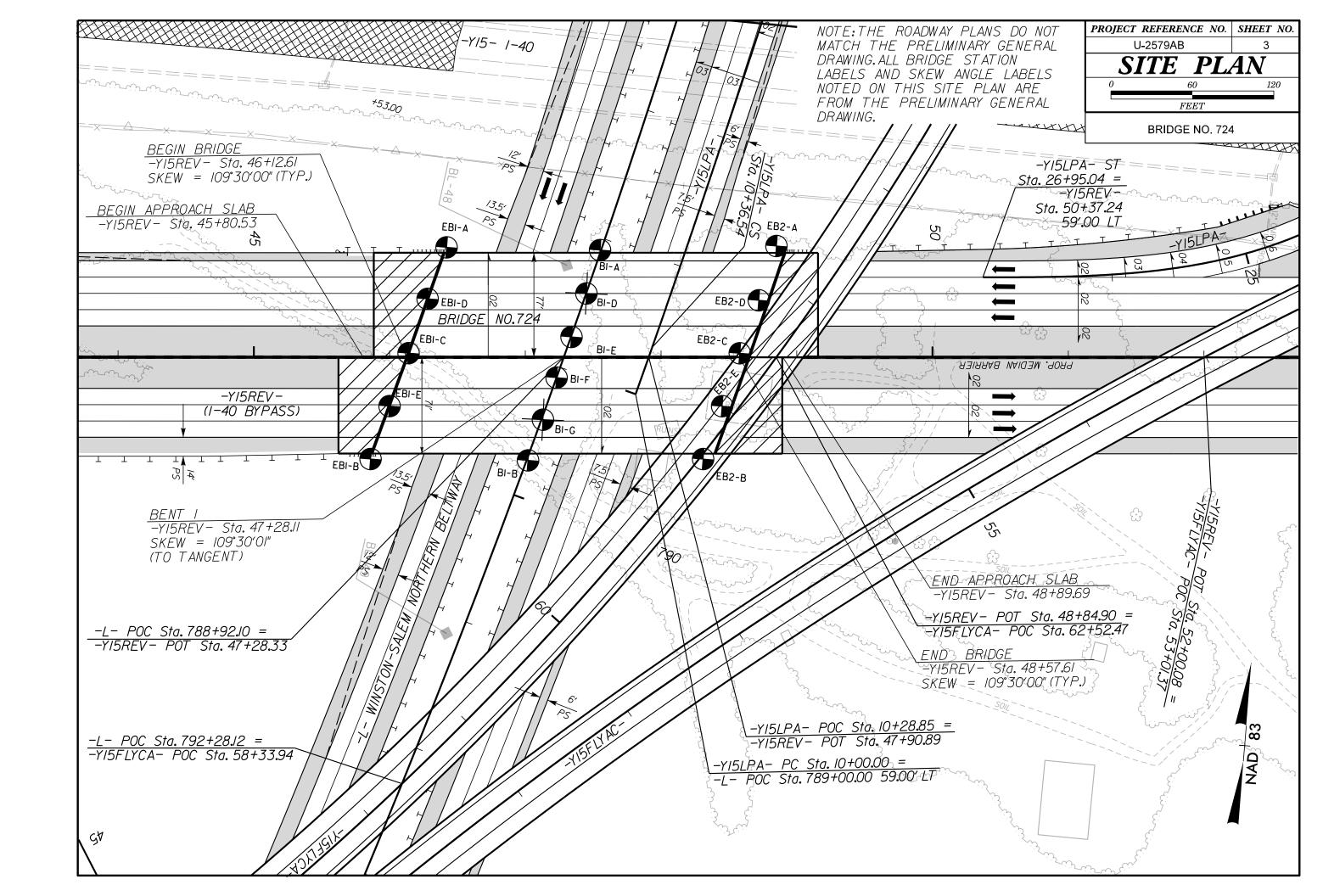
U-2579AB

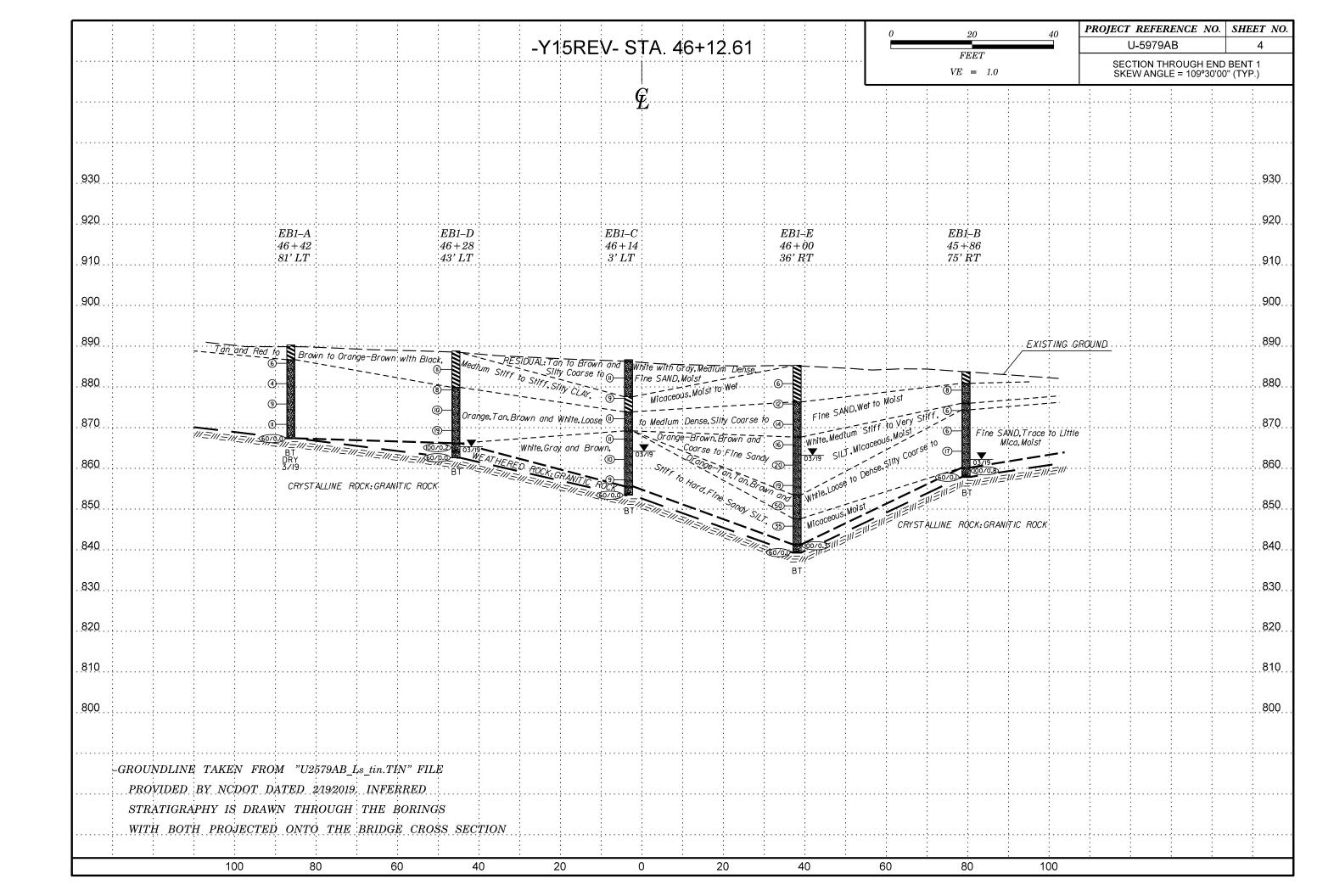
2

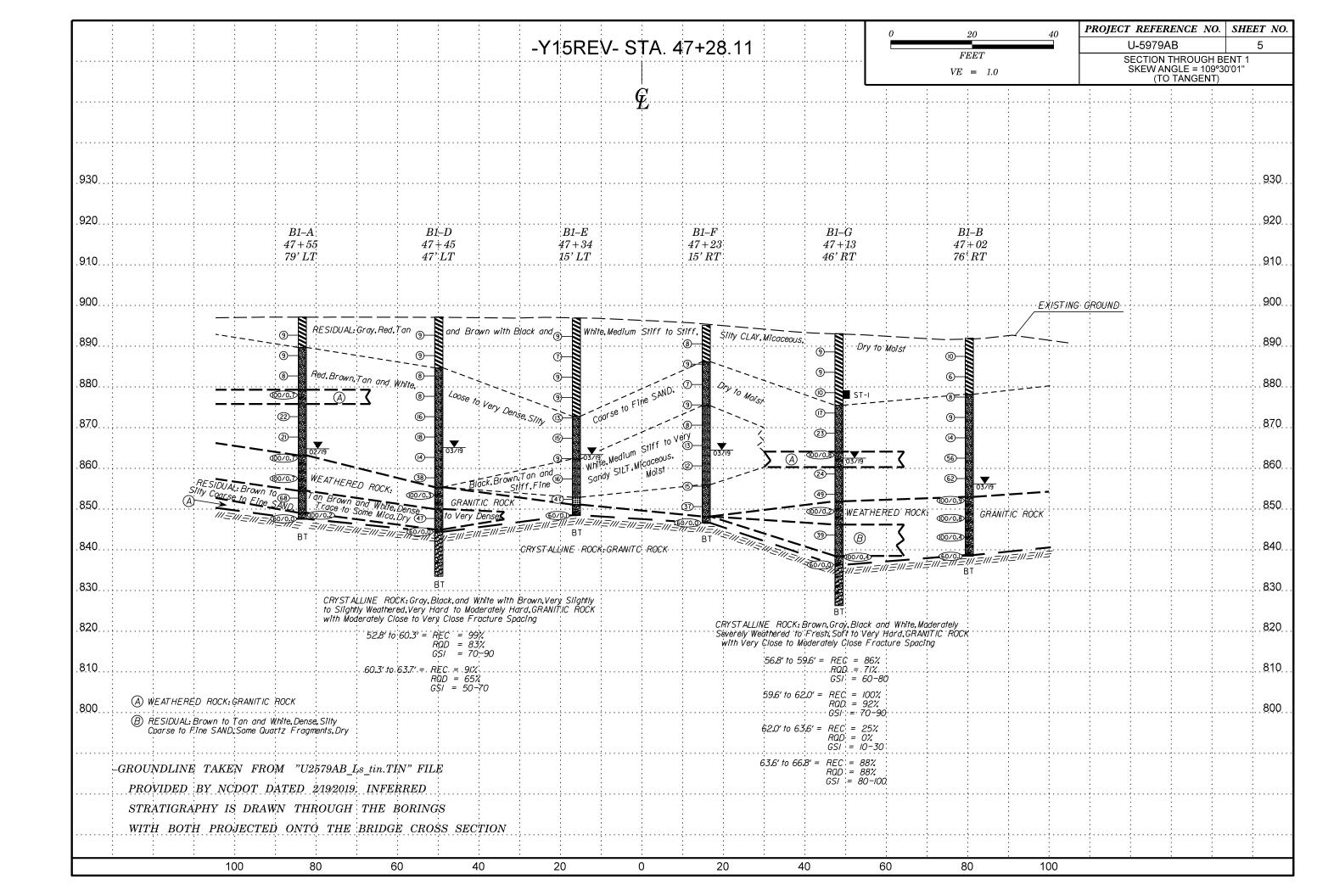
NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

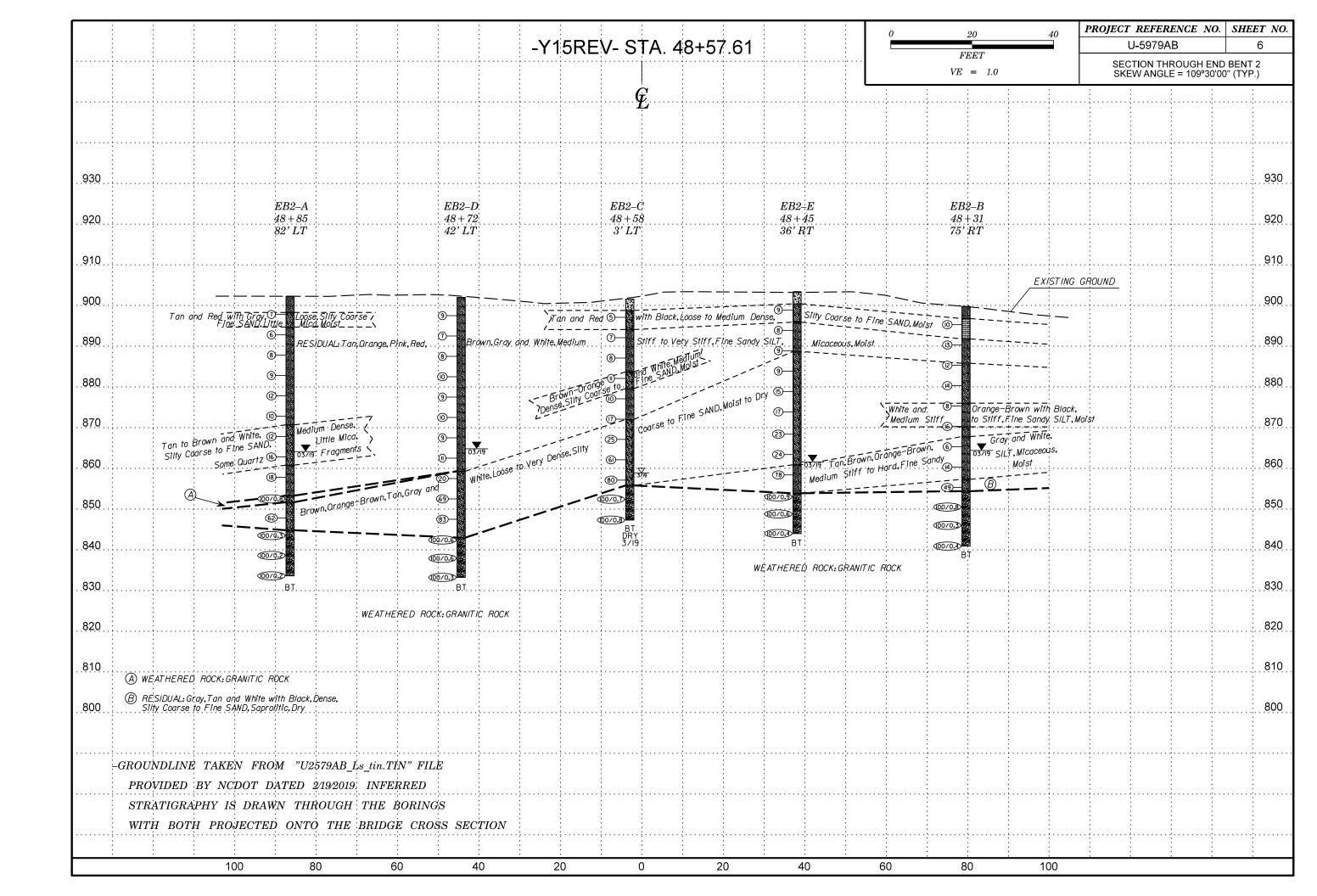
SUBSURFACE INVESTIGATION

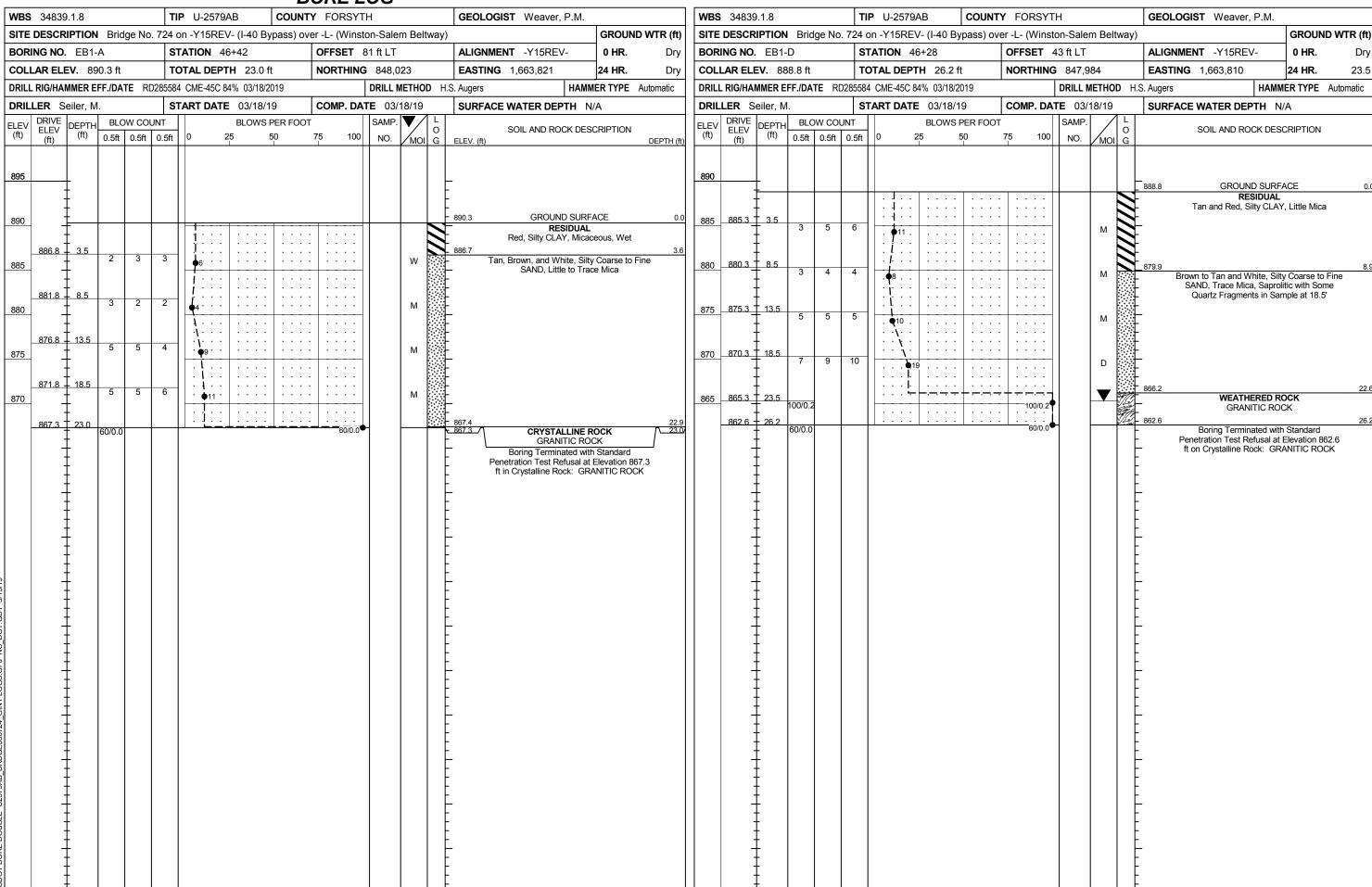
SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

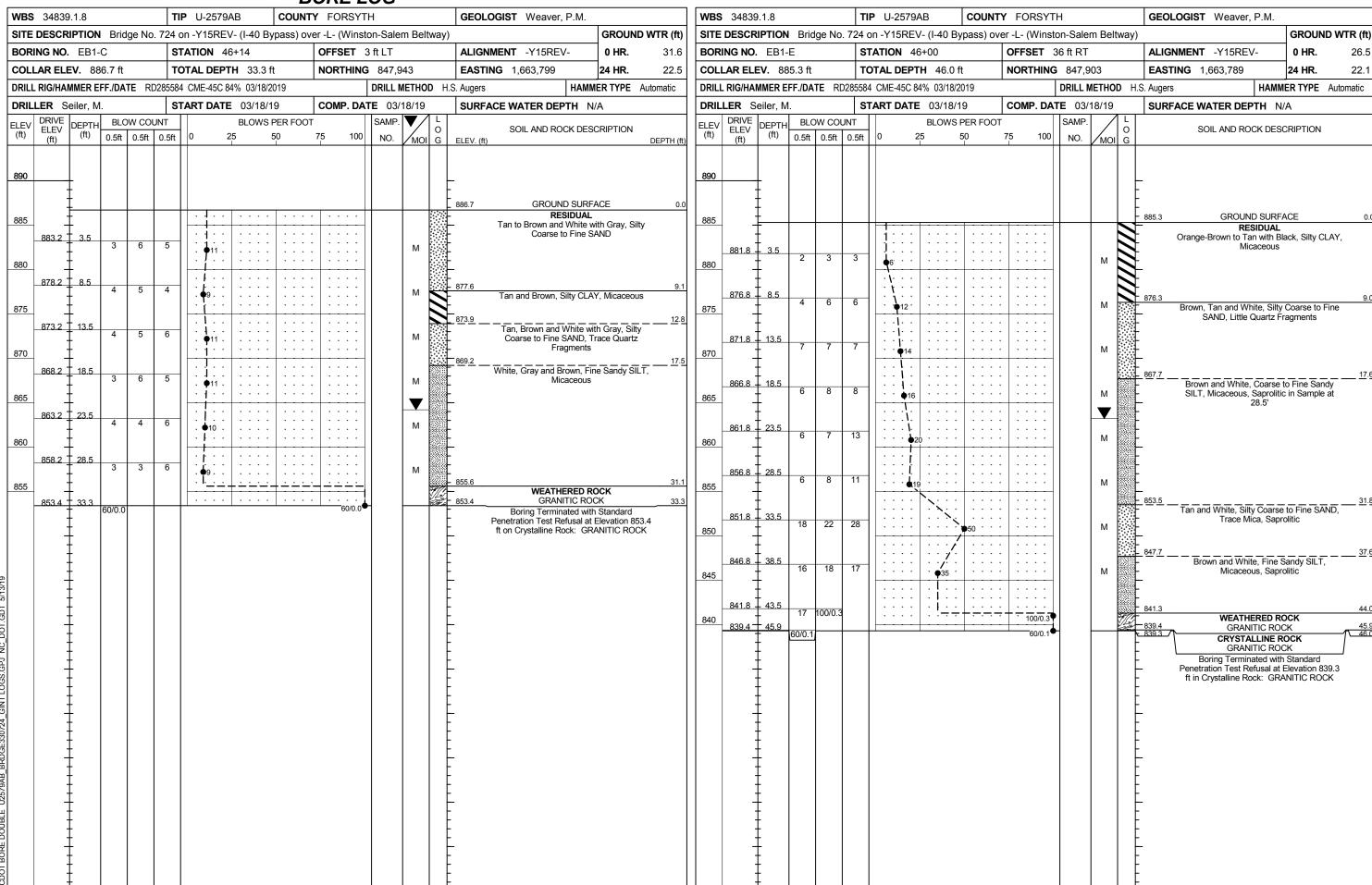

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM DI586). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING:	GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL. THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN	AQUIFER - A WATER BEARING FORMATION OR STRATA.
CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE,	ANGULARITY OF GRAINS	REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND. ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING
VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS: ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES >	A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	MINERALOGICAL COMPOSITION	ROCK (WR) 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS ORGANIC MATERIALS (> 35% PASSING *200) C> 35% PASSING *200) ORGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	CRYSTALLINE ROCK (CR) FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE.	SURFACE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
CLASS. A-1-6 A-1-6 A-2-4 A-2-5 A-2-6 A-2-7 A-7-6 A-3 A-6, A-7	COMPRESSIBILITY SLIGHTLY COMPRESSIBLE LL < 31	NON-CRYSTALLINE ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YELLD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
SYMBOL COCCEDORGE COCC	MODERATELY COMPRESSIBLE LL = 31 - 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED
7. PASSING 10 50 MX GRANULAR SILT- CLAY MUCK,	PERCENTAGE OF MATERIAL	(CP) SHELL BEDS, ETC. WEATHERING	BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
"40 30 MX 50 MX 51 MN PEAT 15 MN 35 MX 35 MX 35 MX 35 MX 36 MN 3	GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER	ROCKS OR CUTS MASSIVE ROCK.
MATERIAL	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%	HAMMER IF CRYSTALLINE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.
PASSING *40 LL	LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, (V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY, ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF SOILS	GROUND WATER	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
USUAL TYPES STONE FRAGS. FINE SILTY OR CLAYEY SILTY CLAYEY MATTER	WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	(SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
OF MAJOR GRAVEL, AND MATERIALS SAND SAND GRAVEL AND SAND SOILS SOILS	▼ STATIC WATER LEVEL AFTER <u>24</u> HOURS	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
GEN, RATING EXCELLENT TO GOOD FAIR TO POOR FAIR TO POOR POOR UNSUITABLE	PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED	PARENT MATERIAL.
AS SUBGRADE PI OF A-7-5 SUBGROUP IS < LL - 30 ;PI OF A-7-6 SUBGROUP IS > LL - 30	SPRING OR SEEP	WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM, FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	MODERATELY ALL ROCK EXCEPT OUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH	FIELD.
COMPACTNIESS OR RANGE OF STANDARD RANGE OF UNCONFINED	IT 25,425	(MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES 'CLUNK' SOUND WHEN STRUCK, IF TESTED, WOULD YIELD SPT REFUSAL	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE CONFIDENCY PENETRATION RESISTENCE COMPRESSIVE STRENGTH (N-VALUE) (TONS/FT ²)	ROADWAY EMBANKMENT (RE) OF ROCK STRUCTURES	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.
GENERALLY VERY LOOSE < 4	SOIL SYMBOL SOIL SYMBOL SPT TEST BORING SLOPE INDICATOR INSTALLATION	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
LOOSE	M	IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS
(NON-COHESIVE) DENSE 30 TO 50 VERY DENSE > 50	ARTIFICIAL FILL (AF) OTHER AUGER BORING COME PENETROMETER THAN ROADWAY EMBANKMENT TEST	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE. PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
VERY SOFT	── _ INFERRED SOIL BOUNDARY - CORE BORING ■ SOUNDING ROD	(V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	OF AN INTERVENING IMPERVIOUS STRATUM.
GENERALLY SOFT 2 TO 4 0.25 TO 0.5 SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0	INFERRED ROCK LINE MONITORING WELL TEST BORING	VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u> COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
MATERIAL STIFF 8 TO 15 1 TO 2 (COHESIVE) VERY STIFF 15 TO 30 2 TO 4	### CORE #### CORE ###################################	SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS ALSO AN EXAMPLE.	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
HARD > 30 > 4 TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
U.S. STD. SIEVE SIZE 4 10 40 60 200 270		VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	ROCK. SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	UNDERCOT UNSUITABLE WASTE	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO
BOULDER	UNDERCUT SHELLOW ACCEPTABLE DEGRADABLE ROCK EMBANKMENT OR BACKFILL	TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT
(USE, SU.) (F SU.)	ABBREVIATIONS AB - AUGED REGUENT MED - MEDIUM MED - MEDIUM MED - MEDIUM	HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS.	OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.05 0.005 SIZE IN. 12 3	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED CL CLAY MOD MODERATELY 7'- UNIT WEIGHT	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) SPID - NUMBER OF BLOWS IN OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL
SOIL MOISTURE - CORRELATION OF TERMS	CPT - CONE PENETRATION TEST NP - NON PLASTIC 7/6- DRY UNIT WEIGHT CSE COARSE ORG ORGANIC	POINT OF A GEOLOGIST'S PICK.	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY (SAT.) FROM BELOW THE GROUND WATER TABLE	DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON f - FINE SL SILT, SILTY ST - SHELBY TUBE	PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE, CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATIA AND EXPRESSED AS A PERCENTAGE.
PLASTIC LIQUID LIMIT	FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
RANGE / SEMISULID; REQUIRES DATING TO	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL RAT - RECOMPACTED TRIAXIAL CBR - CALIFORNIA BEARING	FRACTURE SPACING BEDDING	BENCH MARK: BL-48: N 848,016,4680 E 1,663,910,4720
(P) PL PLASTIC LIMIT ATTAIN OPTIMUM MOISTURE	HI HIGHLY V - VERY RATIO	TERM SPACING TERM THICKNESS	
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	EQUIPMENT USED ON SUBJECT PROJECT DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET	ELEVATION: 894.60 FEET
SL SHRINKAGE LIMIT	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE: X CME-45C CLAY BITS X AUTOMATIC MANUAL	MODERATELY CLOSE	NOTES:
- DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE	6 CONTINUOUS ELIGHT AUGER	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED < 0.008 FEET	FIAD= FILLED IN AFTER DRILLING
PLASTICITY	CME-55	INDURATION	1
PLASTICITY INDEX (PI) DRY STRENGTH	CME-550 HARD FACED FINGER BITS X-N Q	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	
NON PLASTIC 0-5 VERY LOW	TUNGCARBIDE INSERTS	RUBBING WITH FINGER FREES NUMEROUS GRAINS: FRIABLE GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
SLIGHTLY PLASTIC 6-15 SLIGHT MODERATELY PLASTIC 16-25 MEDIUM	VANE SHEAR TEST X CASING W/ ADVANCER HAND TOOLS: POST HOLE DIGGER	CRAINC CAN BE CERARATER FROM CAMPLE WITH CTEEL PROPE.	
HIGHLY PLASTIC 26 OR MORE HIGH	PORTABLE HOIST TRICONE STEEL TEETH HAND AUGER	MODERATELY INDURATED ORALING CHILD SE SCHARMLED FROM SHIPLE WITH SIEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR	TRICONE TUNGCARB. SOUNDING ROD	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE;	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	CORE BIT VANE SHEAR TEST	CHARD HAMMED BLOWS BEGLIDED TO BREAK SAMPLE.	
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.		EXTREMELY INDURATED SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-1


PROJECT REFERENCE NO.	SHEET NO.
U-2579AB	2A


NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT


SUBSURFACE INVESTIGATION


		SUPPLEM Fi	IENTAL LI ROM AAS	EGEND, G HTO LRI	EOLOGIC FD BRID	AL STRENGTH INDEX (GSI) TABLES GE DESIGN SPECIFICATIONS					
AASHTO LRFD Figure 10.4.6.4-1 — Determination of GSI for Joint GEOLOGICAL STRENGTH INDEX (GSI) FOR JOINTED ROCKS (Hoek and Marinos, 2000)	ted Rock		<, 2000)	v O	ν Φ	AASHTO LRFD Figure 10.4.6.4-2 — Determination of GSI for Tectonically Defo GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos. P and Hoek E., 2000)	ormed Hetero	ogeneous Rock	Masses (Mar)	nos and Hoek	2000)
From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Quoting a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavorable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced if water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis.	SURFACE CONDITIONS	VERY GOOD Very rough, fresh unweathered surfaces Coop Boogh, slightly weathered, iron stained Surfaces	FAIR Smooth, moderately weathered and	POOR Slickensided, highly weathered surface with compact coatings or fillings or angular fragments	VERY POOR Slickensided, highly weathered surfaces with soft clay coatings or fillings	From a description of the lithology, structure and surface conditions (particularly of the bedding planes), choose a box in the chart. Locate the position in the box that corresponds to the condition of the discontinuities and estimate the average value of GSI from the contours. Do not attempt to be too precise. Quoting a range from 33 to 37 is more realistic than giving GSI = 35. Note that the Hoek-Brown criterion does not apply to structurally controlled failures. Where unfavourably oriented continuous weak planar discontinuities are present, these will dominate the behaviour of the rock mass. The strength of some rock masses is reduced by the presence of groundwater and this can be allowed for by a slight shift to the right in the columns for fair, poor and very poor conditions. Water pressure does not change the value of GSI and it is dealt with by using effective stress analysis. COMPOSITION AND STRUCTURE	VERY GOOD - Very Rough, fresh unweathered surfaces	GOOD - Rough, slightly weathered surfaces	FAIR - Smooth, moderately weathered and altered surfaces	POOR - Very smooth, occasionally slickensided surfaces with compact coatings or fillings with angular fragments	VERY POOR - Very smooth, slicken- sided or highly weathered surfaces
		DECREASING	SURFACE GO	†		COMPOSITION AND STRUCTURE					/
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities	CES	90 80		N/A	N/A	A. Thick bedded, very blocky sandstone The effect of pelitic coatings on the bedding planes is minimized by the confinement of the rock mass, in shallow tunnels or slopes these bedding planes may cause structurally controlled instability.	70 60	A			
BLOCKY - well interlocked undisturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets	- ROCK PIE	70 60				B. Sand- Stone with Stone and State or silty shale Siltstone		50			
VERY BLOCKY - interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets	OCKING OF		50			B. Sand- stone with stone with siltstone layers of siltstone siltstone siltstone siltstone siltstone siltstone siltstone siltstone layers siltstone siltston		40	C /	D/ /E	
BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity	ASING INTERLO		40	30		C.D.E. and G - may be more or less folded than illustrated but this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H.			30	F 20	
DISINTEGRATED - poorly inter- locked, heavily broken rock mass with mixture of angular and rounded rock pieces	DECRE			20		G. Undisturbed silty or clayey shale with or without a few very thin sandstone layers H. Tectonically deformed silty or clayey shale forming a chaotic structure with pockets of clay, Thin layers of sandstone are transformed into small rock aveces.	/ /		9	} / H	10
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes	₩ <u> </u>	N/A N/A			10	#####################################					DATE: 8-1



					_				1		JKE					T
WBS	34839	1.8			TI	P U-25	79A	В	COU	NTY	FORS	SYTI	Н			GEOLOGIST Weaver, P.M.
SITE	DESCR	IPTION	Brid	ge No.	724 (on -Y15F	REV-	- (I-40 B	ypass)	over	-L- (W	insto	on-Saler	n Bel	tway)	GROUND WTR (ft)
BOR	ING NO.	EB1-	В		S	TATION	45	+86		[OFFSE	T 7	'5 ft RT			ALIGNMENT -Y15REV- 0 HR. 22.6
COL	LAR ELE	EV . 88	3.7 ft		T	OTAL DE	EPTH	1 25.91	ft	Ti	NORTH	ING	847,8	63		EASTING 1,663,778 24 HR. 21.5
DRILI	RIG/HAI	MMER E	FF./DA	TE RD	28558	4 CME-45	5C 84	% 03/18/2	2019				DRILL N	IETHO	D H.S	. Augers HAMMER TYPE Automatic
DRIL	LER S	eiler, M	l		S	TART DA	ATE	03/18/	19		COMP.	DAT	TE 03/	18/19		SURFACE WATER DEPTH N/A
ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)		0.5ft		0	25	BLOWS		DOT		100	SAMP. NO.	MOI	L O G	SOIL AND ROCK DESCRIPTION ELEV. (ft) DEPTH (ft)
885 880	880.2	3.5	3	4	4									M	N	883.7 GROUND SURFACE 0.0 RESIDUAL Tan and Red, Silty CLAY, Moist Orange, Tan and White, Silty Coarse to Fine SAND, Little Mica
875	875.2	- - - 8.5	3	3	3		:			• •		:		М	200000	876.0 7.7 874.4 Orange-Brown and Brown, Fine Sandy SILT, 9.3 Micaceous 9.3
870	870.2	- - - 13.5				● 6				· · · · · · · · · · · · · · · · · · ·						Orange-Tan, Brown and White, Silty Coarse to Fine SAND, Trace to Little Mica
865	- - 865.2	- - - 18.5	3	3	3	•6 								M		
003	-	-	5	10	7		17 . .					-		M		
860	860.2 857.9	23.5	30 60/0.1	70/0.3			:			· · ·	100/	0.8				860.2 23.5 WEATHERED ROCK 857.9 GRANITIC ROCK 25.8 857.8 CRYSTALLINE ROCK QRANITIC ROCK
																Boring Terminated with Standard Penetration Test Refusal at Elevation 857.8 ft in Crystalline Rock: GRANITIC ROCK

SHEET 9

							UKE L				1	
WBS	34839.1.8			TI	P U-2579AB	COUNT	Y FORSYT	Н			GEOLOGIST Pastrana, C.R.	T
SITE	DESCRIPTION	l Brid	lge No	. 724 (on -Y15REV- (I-4	D Bypass) ove	er -L- (Winst	on-Salen	n Beltv	vay)		GROUND WTR (ft)
BORI	ING NO . B1-A			S	TATION 47+55		OFFSET 7	79 ft LT			ALIGNMENT -Y15REV-	0 HR . Dry
COLL	LAR ELEV. 89	7.2 ft		TO	OTAL DEPTH 49	9.6 ft	NORTHING	848,03	30		EASTING 1,663,934	24 HR. 32.4
DRILL	RIG/HAMMER E	FF./DA	TE RE	0285584	4 CME-45C 84% 03	18/2019		DRILL M	ETHOD	H.S	S. Augers HAMM	ER TYPE Automatic
DRIL	LER Seiler, M	1		s	TART DATE 03/	20/19	COMP. DA				SURFACE WATER DEPTH N/	Α
	DDIVE		OW COL			WS PER FOOT		SAMP.	V /	L	CONTACE WATER DEFINITION	
ELEV (ft)	ELEV (ft)		0.5ft	0.5ft	0 25	50	75 100	NO.		O G	SOIL AND ROCK DESC	CRIPTION DEPTH (ft)
900						• • • • • •				-	897.2 GROUND SURFA	ACE 0.0
895	<u> </u>				: : : : :					7	RESIDUAL Red-Brown to Tan-Brown to	
	893.7 - 3.5	3	4	5						Y	CLAY, Micaceon	us
	‡	3	4	5	9				М	1		
890	1									1	-889.7	7.5
	888.7 + 8.5	4	4	5	::::::::::				Ĺ		Tan-Brown, Silty Coarse to	Fine SAND
	Ŧ	'	'						D	F		
885	1				• • • • • •				:	L		
-	883.7 + 13.5	5	4	4					D			
	<u>†</u>				.							
880	 								•	E	879.3	17.9
1	878.7 - 18.5	44	56/0.2				100/0.7		27		WEATHERED RO GRANITIC ROO	
	#				· · · · <u> </u> · ·	· · · · · · ·	100/0:/		87 > 2		875.8	21.4
875	+ 873.7 + 23.5										. TRIASSIC RESID Tan, Brown and White, Silty	
	873.7 - 23.5	17	12	10					D	F	SAND, Trace Mi	
070	‡				::::i ::				:			
870	+ 868.7 + 28.5				 		 					
	+	5	10	11	21				D			
865	Į				::::					:::F		
000	863.7 + 33.5								-		863.2	34.0
	1	39	55	45/0.2	: : : : ' - -		. 100/0.7	.	97 V		WEATHERED RO	OCK
860	+								2		GRANITIC ROC	CK
	858.7 - 38.5	36	00	20/0.0					2 03		•	
	‡	36	62	38/0.2			. 100/0.7		2			
855									2		· 854.5	42.7
	853.7 + 43.5	25	31	37	::	· · · · · · Ŀ	7			:::: -	TRIASSIC RESID	UAL
		_~		3,			88		D	₩F.	White and Brown, Silty Co SAND, Trace Mi	arse to fine ca
850	‡					<u></u>	1		9		849.1	48.1
}	848.7 + 48.5 847.6 + 49.6	100/0.2				 	. 100/0.2		9 3 ≥		847 6 WEATHERED RO	OCK 49 6
İ	1 73.0	60/0.0			<u>'</u>	-	60/0.0	7	Ť	Ŧ	GRANITIC ROC Boring Terminated with	:к
	I I									F	 Penetration Test Refusal at E 	Elevation 847.6
	‡									þ	ft on Crystalline Rock: GRA	ANTIC ROCK
	1									Ł		
	+									H	•	
	ļ Į									F		
	‡									ļ		
	†									F		
	+									F		
	‡									F		
	‡									F	•	
	+									F		
	‡									F		
	‡									F	•	
	+									F		
	‡									ļ		

GEOTECHNICAL BORING REPORT

SHEET 11 **BORE LOG**

									_		JKL					1					
WBS	34839	9.1.8			TI	P U-2	2579A	\B	СО	UNTY	FOR	SYT	1			GEOLO	OGIST	Pastra	na, C.R		
SITE	DESCR	IPTION	N Brid	dge No	724	on -Y1	5REV	/- (I-40 E	Bypass	s) ove	r -L- (V	/insto	on-Saler	m Belt	tway)					GROUI	ND WTR (
BORI	NG NO.	B1-E)		S	TATIO	N 47	' +45			OFFSE	T 4	7 ft LT			ALIGNI	MENT	-Y15R	EV-	0 HR.	37
COLL	AR ELI	EV . 89	97.2 ft		TO	OTAL	DEPT	H 63.7	ft		NORTI	HING	847,9	97		EASTIN	NG 1,	663,927	,	24 HR.	32
RILL	RIG/HA	MMER E	FF./DA	TE R	D28558	4 CME-	45C 84	1% 03/18	/2019				DRILL N	IETHO	D H.S	S. Augers			HAN	IMER TYPE	Automatio
RIL	LER S	eiler, N	1.		S ⁻	TART	DATE	03/20	/19		COMP	DAT	E 03/2	21/19		SURFA	CE W	ATER DI	EPTH	N/A	
LEV	DRIVE	DEPTH	T =: .	ow co	UNT			BLOW	S PER I	FOOT			SAMP.	V /		1					
(ft)	ELEV (ft)	(ft)		0.5ft	0.5ft	0	2	5	50		75	100	NO.	MOI	O G	ELEV. (ft)	50	JIL AND F	KOCK DE	SCRIPTION	DEPTH
									·												
900																					
	-	F													l F	-					
			-			 					T	\dashv				897.2			JND SUF		
895	-	ļ				<u> </u>					ļ	_				-				n and Red, S Rock Fragm	
	893.7	3.5	4	4	5		9							М			OD (I,	Milodocoo	10, 001110	rtook r ragin	iorito
890		<u> </u>				: : -															
030	888.7	8.5									<u> </u>					-					
		‡	5	4	5	:•!	9							D							
885	-	_				• •										884.7					1
	883.7 -	13.5	5	4	4	:	, : :							D			Tan-Br		White, Sil D, Trace	ty Coarse to Mica	Fine
		<u> </u>				• T °	' : :								<u> </u>				,		
880	878.7 ·	18.5				 _ <u>; </u>					<u> </u>					-					
			4	4	4]	3 : :							D	-						
375	_	Ł				. 7	\ · · ·		- -						Ŀ	_					
	873.7	23.5	6	7	9	: :	. ·					.			l:::-						
							16							D	-						
870	868.7	28.5					1:		+		+				F						
		20.5	6	9	9	::	· 18	: : :	. .		: : :			М	F						
865		F					-;;:				: : :				F						
	863.7	33.5	4	6	8		7:]:::F	-					
		ļ	4	0	0	::	14							M	-						
860	-	ļ					- ^				ļ · · · ·	_			 	-					
	858.7	38.5	8	15	23	::	: :	38						М							
855		‡				::	: :	: : <u> </u> : :								855.4					2
000	853.7	43.5						- : 			T					-			HERED ANITIC R		
		‡	100/0.	3		::	: :				- 100	0/0.3									
850	-	‡				• •			<u>. . </u>							850.0			FOIDILA		
	848.7	48.5	40	28	19	::	: :		. .					D		E	Brown to	Tan-Bro		Vhite, Silty C	oarse
045		<u> </u>				::	: :		:[]						-	0.45.0		to Fine S	SAND, So	me Mica	
845	844.4	52.8	60/0.0)					:+-		60	0/0.0				845.0		WEAT	HERED	ROCK	
		<u> </u>	00,010			::	: :									_			ANITIC R		
840	_	ţ										_				_	Gra Weath	y, Black a	nd White	, Very Slight Hard, GRAN	ly JITIC
		<u> </u>				: :	: :											K with Clo		derately Clo	se
		ŀ				: :										836.9		C=99% F	RQD=839	6 GSI=70-9	
835	-	†							+-		 					833.5	Wea	thered, M	oderately	Brown, Slight Hard to Har	rd, ,
		<u> </u>				<u> </u>		-			1		1		E	300.0		Frac	cture Spa		Jose
		Ł													E	. L		C=91% F	RQD=65%	6 GSI=50-7 vation 833.5	
	-	Ē.													F	-				ANITIC ROC	
		F													F						
	-	F														-					
		ļ																			
		‡																			
			1		1								1	1	1 1						

GEOTECHNICAL BORING REPORT **CORE LOG**

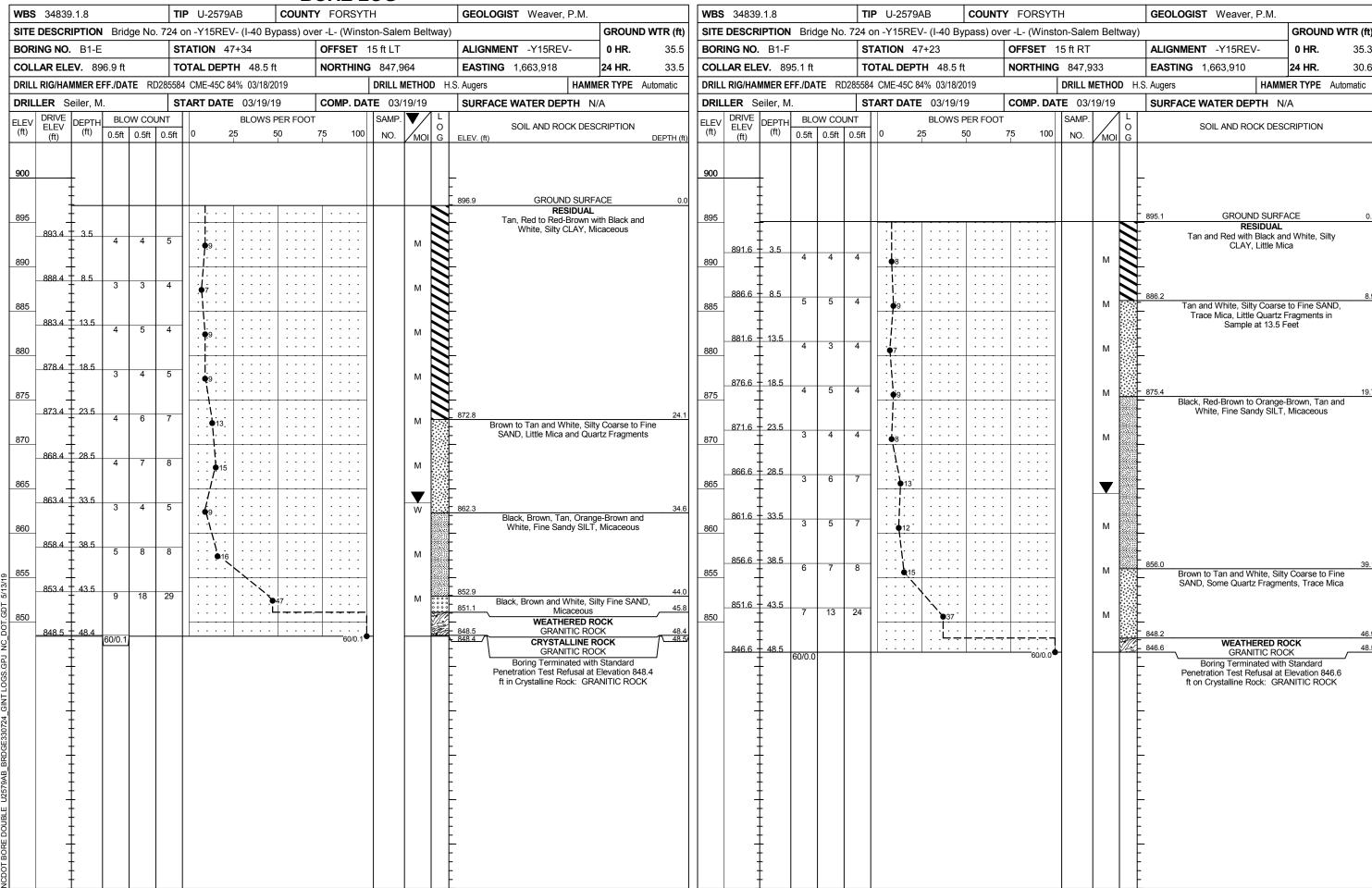
SHEET 11

									C	<u>UI</u>	RE LO	JG						
WBS	34839	9.1.8			TIP	U-257	79AB	C	DUNT	Y F	FORSYTH			GEOLOGI	ST Pastran	a, C.R.		
SITE	DESCR	RIPTION	Brid	lge No. 7	24 on	-Y15R	EV- (I-40	Вура	ss) ov	er -L	- (Winstor	n-Salem Beltwa	ay)				GROUN	D WTR (ft)
BOR	ING NO	. B1-D)		STA	TION	47+45			OF	FSET 47	ft LT	1	ALIGNME	NT -Y15RE	V-	0 HR.	37.4
COL	LAR EL	EV . 89	97.2 ft		TOT	AL DE	PTH 63	.7 ft		NC	ORTHING	847,997	E	EASTING	1,663,927		24 HR.	32.1
DRILL	L RIG/HA	MMER E	FF./DA	TE RD28	5584 C	ME-450	C 84% 03/	18/2019			[DRILL METHOD	H.S. <i>A</i>	Augers		HAMM	IER TYPE	Automatic
DRIL	LER S	Seiler, M	1.		STAI	RT DA	TE 03/2	0/19		СС	OMP. DATE	E 03/21/19	- 1	SURFACE	WATER DE	PTH N	/A	
	E SIZE				TOTA	AL RU	N 10.9 f	t										
ELEV	RUN	DEPTH	RUN	DRILL	REC.	UN RQD	SAMP.	STR REC.	ATA RQD	L								
(ft)	ELEV (ft)	(ft)	(ft)	RATE (Min/ft)	(ft) %	(ft) %	NO.	(ft) %	(ft)	O G	ELEV. (ft)		DES	SCRIPTION	I AND REMARI	KS		DEPTH (ft)
844.4													Е	Begin Cori	ing @ 52.8 ft			
	844.4	52.8	3.9	1:48/1.0 1:33/1.0	(3.8) 97%	(3.0) 77%		(7.4) 99%	(6.2) 83%		844.4	Grav Black ar	ind Wh		LLINE ROCK ghtly Weathere	ed Hard to	Very Hard	52.8
840	840.5	56.7		2:01/1.0 1:20/0.9	0.70	,		0070	0070		‡	GRANITIC RO	OCK w	ith Close to	Moderately Clo 0 degrees to 80	ose Fracti	ure Spacing	
040	-	‡	5.0	1:43/1.0 1:16/1.0	(5.0) 100%	(4.4) 88%						Three ar	reas <	0.16' thick v	vith very close	fracture sp	pacing	
		‡		1:25/1.0 1:34/1.0	.0070	0070					836.9			GS	ning of fracture SI=70-90			60.3
835	835.5	61.7	2.0	1:39/1.0	(1.7)	(1.0)		(3.1) 91%	(2.2) 65%		_	White with Gray a	CROC	K with Very	Close to Close	Fracture	Spacing	ard,
	833.5	63.7		1:27/1.0	85%	50%				SA	- 833.5 - \	Iron	n stainii	ng and mica	acous silt on fra urred at end of	acture face	es	63.7
		İ									<u> </u>	Davina Tarreina		GS	SI=50-70		CDANITI	
	-	ł									F	Boring Termina	aled at	Elevation 8	33.5 It III Crysti ROCK	alline Roci	K. GRANIII	
		+									-							
		+									-							
		Ŧ									F							
		Ŧ									F							
	_	Ŧ									F							
		Ŧ									F							
		‡									F							
	-	‡									-							
		‡									ļ.							
	_	‡									L							
		‡									-							
	;	‡									<u> </u>							
	-	‡									-							
		‡									-							
	_	Ī									Ł							
		ł									Ł							
		+									-							
	_	Ŧ									F							
		Ŧ									F							
		Ŧ									F							
	-	Ŧ									F							
		‡									ļ.							
	-	‡									Ļ							
] :	‡									ļ.							
		‡									ļ.							
	-	‡									<u> </u>							
		‡									<u> </u>							
		‡									Ł							
	-	Ŧ									F							
		Ŧ									F							
		Ŧ									F							
		‡									F							
		‡									ļ.							
	-	+			1						<u> </u>							

CORE PHOTOGRAPHS

B1-D BOX 1: 52.8 - 61.7 FEET

52.8


THE STATE OF THE STATE OF

B1-DBOX 2: 61.7 - 63.7 FEET

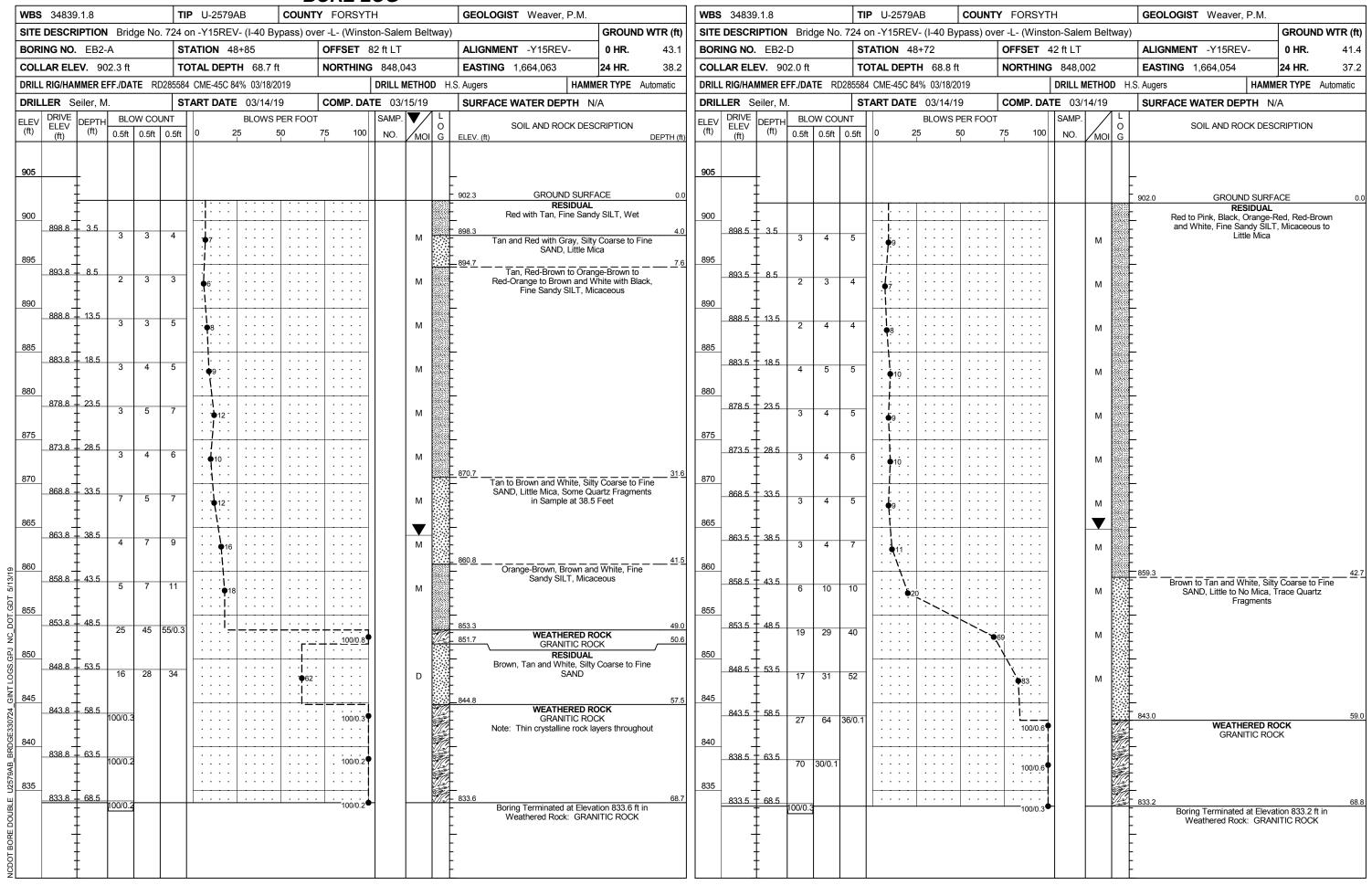
889									<u>P</u>	UKE I	<u>_UG</u>							. —								_
OPPINE NO. BI-G	WBS	34839	9.1.8			TI	P U-2579	9AB	COUNT	Y FORSY	TH			GEO	LOGIST Weaver, P.N	М.		WB	S 3483	9.1.8			TIF	U -2579	AB	COUNTY
COLLAR ELEV SS3.1 TOTAL DEFTH SS3. MODITION SF7.002 SST ST MODITION SF7.002 SST ST MODITION SF7.002 SST ST MODITION SF7.002 SST ST MODITION SF7.002 SST MODITION SST MODI	SITE	DESCR	RIPTION	I Brid	lge No	o. 724 (on -Y15RE	V- (I-40 By	/pass) ove	er -L- (Wins	ston-Sale	em Bel	tway))		(GROUND WTR (ft)	SITI	DESC	RIPTION	I Brid	ge No.	. 724 o	n -Y15RE	V- (I-40 B	Bypass) ove
Dellar D	BORI	NG NO	. B1-0	3		S.	TATION 4	17+13		OFFSET	46 ft R1	Γ		ALIG	NMENT -Y15REV-		0 HR. 31.3	BOF	RING NO) . B1-0	}		ST	ATION 4	7+13	
PRILLER Select XI. START PARTE 091919 COMPLANTE 0921919 SUBFACE WATER DEPTH NA.	COLL	AR ELI	EV . 89	93.1 ft		T	OTAL DEP	TH 66.8 f	t	NORTHIN	G 847,	902		EAS	TING 1,663,902	2	24 HR. 30.6	COL	LAR EL	.EV . 89	93.1 ft		то	TAL DEP	TH 66.8	ft
Big Big	DRILL	RIG/HA	MMER E	FF./DA	TE R	D28558	4 CME-45C	84% 03/18/2	019		DRILL	METHO	D H	.S. Auger	S H/	AMMER	R TYPE Automatic	DRIL	L RIG/H	AMMER E	FF./DA	TE RD	285584	CME-45C 8	34% 03/18/	<u>'</u> 2019
Big Big	DRILI	LER S	Seiler, M	1.		S.	TART DAT	E 03/19/1	9	COMP. DA	ATE 03	/21/19		SURI	ACE WATER DEPTH	N/A		DRI	LLER :	Seiler, M	1.		ST	ART DATI	E 03/19/	′19
March 10 10 10 10 10 10 10 1					ow co					<u> </u>	SAMP	· 🔻 /	1 [-				1 -	, DRIVE	1		W COL				
Mail			(ft)	0.5ft	0.5ft	0.5ft] o	25	50	75 100	NO.	MOI		ELEV. (1		DESCR			ELEV		0.5ft	0.5ft	0.5ft	0	25	50
Section Sect								'	'	'				,	7										1	'
Section Sect	895																	815							Mat	ch Line
### SERVICE 1902 1914 1915	000		‡											 	GROUND SI	URFAC	E oc		†	 			+			
150			‡						: : : :					-	RESIDU	JAL		1		‡						
980	890	- 889.6	+ - 3.5								1			_						‡						
882 884 88 8 4 4 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			‡	4	4	5]			1		М		-						‡						
980			‡				:[:::							_						‡						
### 200 ### 20	885	884.6	8.5	4	4	5		+	 	 	+			_						<u>†</u>						
### ### ### ### ### ### ### ### ### ##			ŧ	'			. ¶ ⁹							_						İ						
## 2016	880		<u> </u>							1				_						Ŧ						
\$70. \$74.6		8/9.6	13.5	4	4	6	10		1]	220/		_						Ŧ						
Brown to Tan and White, Sity Coarse to Fring SAND, Trace Mice and Quartz Fragments			Ŧ				::\:::					23%		-						Ŧ						
570 980 8 23.6 6 10 13 8 22 10 10 13 82 20 10 10 13 82 20 10 10 10 13 82 20 10 10 10 10 10 10 10 10 10 10 10 10 10	875	874.6 -	18.5	<u> </u>			1 / .	<u> </u>	 	+				<u>875.5</u>	Brown to Tan and White,	, Silty C	Coarse to Fine	1		Ŧ						
Second S			‡	′	8	9	I I \	7				D		-	SAND, Trace Mica and	l Quartz	z Fragments			‡						
189 1	870		‡				:::;							-						‡						
965	0/0	869.6	23.5	6	10	13	1	22			1	l D		_						‡						
100 100			‡				: : : :							-						‡						
100 100	865	864 6 -	28.5]						00.0			1						
Second S		004.0	1 20.5	26	54	46/0.3	1 : : : :	+	+	100/0.8	-		110	864.1			K	1		İ						
Section Sect			ł									_			GRANTIC	ROCK				İ						
Section Sect	860	859.6	33.5	15	1/1	10		<u> </u>			4	١		860.3				1		 						
Section			Ŧ	'	'-	10	1	24				M		_	Brown to Tan and Wh Coarse to Fine SAN	ite with ID, Som	ı Gray, Silty ne Quartz			Ŧ						
850 849.6 43.5 15 14 35 860 849.6 43.5 17 22 17 89 1000.2 845 844.6 48.5 17 22 17 89 1000.4 840 838.6 53.5 11 15 1000.4 835 836.3 56.8 600.0 839 839 839 839 839 839 839 839 839 839	855		Ŧ											_	Fragme	ents				Ŧ						
850 849.6 43.5 10000.2 10000.2 10000.2 10000.2 845 851.9 WEATHERED ROCK GRANTIC ROCK 846 846.6 48.5 17 22 17 930 10000.4 86.9 Brown to Tan and White, Silly Coarse to Fine SAND, Some Quartz Fragments 850 844.6 48.5 17 22 17 930 10000.4 86.8 GRANTIC ROCK 96.8 GRYSTALLINE ROCK 96.8 GRYS		854.6	38.5	15	14	35					11	М		-						Ŧ						
840 844.6 43.5 1000.2 1			‡							· +	41		3000	851.9	WEATHERE	D DOC				‡						
B45 B44.6 48.5 17 22 17	850	849.6 -	43.5								<u> </u>			-						‡						
840 839.6 53.5 11 15 1000.3			‡	100/0.2	1		I		1		TI .			-						‡						
840	045		‡				I	: : <u>; -</u> :-	<u> </u>		.			846.2	DESIDI	IAI	46.9			‡						
830 8 53.5 11 15 100/0.4 100/0.4 100/0.4 838.5 WEATHERED ROCK GRAYITIC ROCK 55.8 CRYSTALLINE ROCK GRAYITIC ROCK with Very Close to Close Fracture Spacing REC=80% RQD=92% GSI=70-90 White, Block and GRAYITIC ROCK with Very Close to Close Fracture Spacing REC=80% RQD=92% GSI=70-90 White, Block and GRAYITIC ROCK with Very Close to Close Fracture Spacing REC=80% RQD=92% GSI=70-90 White, Block and Gray, Moderately Close Fracture Spacing REC=80% RQD=92% GSI=70-90 White, Block and Gray, Moderately Close Fracture Spacing REC=80% RQD=92% GSI=70-90 White, Block and Gray, Moderately Weathered, Soft to Medium Hand, GRAYITIC ROCK with Close to Moderately Close Fracture Spacing REC=80% RQD=92% GSI=70-90 White, Block and Gray, Moderately Weathered, Soft to Medium Hand, GRAYITIC ROCK with Close GSI=10-30 Gray, Black and White, Very Sightly Weathered to Fresh, Hard Cork With Close GSI=10-30 Gray, Black and White, Very Sightly Weathered to Fresh, Hard to Very Hard, Sightly Weathered to Fresh, Hard to Very Hard,	043	844.6	48.5	17	22	17		1 20			1			_	Brown to Tan and White,	, Silty C				‡						
839.6 53.5 11 15 100/0.4			‡				1 1		1					-	SAND, Some Qua	iliz Fla	gments			‡						
836.3 56.8 60/0.0 60/0.0 838.5 54.6 GRANITIC ROCK 56.8 GRANITIC ROCK Weathered, Soft to Medium Hard, GRANITIC ROCK with Close to Moderately General GRANITIC ROCK with Close to Moderately General Granitic Granit	840	839.6-	53.5					1 : : :]			_						1						
836.3		003.0	1 33.3	11	15	100/0.4	I	<u> .</u> .					977	838.5	WEATHEDE	D BOC				İ						
830 831. 8		836.3	56.8	00/0.0							11			836.3	GRANITIC	ROCK	56.8			<u>†</u>						
830 Ball 1 Ball 1 Ball 1 Ball 1 Ball 1 Ball 1 Ball 2 Ball 2 Ball 3 Ball 3 Ball 3 Ball 4 Ball 4 Ball 4 Ball 5 Ball 5 Ball 6 Ball 7 B	835	_	Ŧ	60/0.0				+	+		{						tely Severely			Ŧ						
830. 831.1 Close Fracture Spacing RC=86% RQD=71% GSI=60-80 White with Gray and Brown, Slightly to Very Slightly Weathered, Hard to Very Hard, GRANITIC ROCK with Close to Moderately Close Fracture Spacing REC=100% RQD=92% GSI=70-90 White, Brown, Black and Gray, Moderately Severely to Moderately Noderately Severely to Moderately Severely to Moderately RCD-87 (Close Fracture Spacing REC=25% RQD=0% GSI=10-30) REC=25% RQD=0% GSI=10-30 Gray, Black and White, Very Slightly Weathered to Fresh, Hard to Very Hard,			Ŧ				1 1		1	1]			- 833.5	to Moderately Weather	ed, Sof	ft to Medium (59.6	1		Ŧ						
White with Gray and Brown, Slightly to Very Slightly Weathered, Hard to Very Hard, GRANITIC ROCK with Close to Moderately Close Fracture Spacing REC=100% RQD=92% GSI=70-90 White, Brown, Black and Gray, Moderately Severely to Moderately Weathered, Soft to Medium Hard, GRANITIC ROCK with Very Close Fracture Spacing REC=25% RQD=0% GSI=10-30 Gray, Black and White, Very Slightly Weathered to Fresh, Hard to Very Hard,	830		Ŧ											_	Close Fracture	e Spac	ing 62.0	1		Ŧ						
826.3 GRANITIC ROCK with Close to Moderately Close Fracture Spacing REC=100% RQD=92% GSI=70-90 White, Brown, Black and Gray, Moderately Severely to Moderately Weathered, Soft to Medium Hard, GRANITIC ROCK with Very Close Fracture Spacing REC=25% RQD=0% GSI=10-30 Gray, Black and White, Very Slightly Weathered to Fresh, Hard to Very Hard,		-	‡				1 1	1	1	1	11			 829.5 	White with Gray and Bro	own, Sl	ighlty to Very	1		‡						
Close Fracture Spacing REC=100% RQD=92% GSI=70-90 White, Brown, Black and Gray, Moderately Severely to Moderately Weathered, Soft to Medium Hard, GRANITIC ROCK with Very Close Fracture Spacing REC=25% RQD=0% GSI=10-30 Gray, Black and White, Very Slightly Weathered to Fresh, Hard to Very Hard,			‡				1 1	1						- 826.3						‡						
White, Brown, Black and Gray, Moderately Severely to Moderately Weathered, Soft to Medium Hard, GRANITIC ROCK with Very Close Fracture Spacing REC=25% RQD=0% GSI=10-30 Gray, Black and White, Very Slightly Weathered to Fresh, Hard to Very Hard,	Ţ	-	‡			1		1		1			1	_	Close Fracture	e Spaci	ing Julian	1		‡						
Medium Hard, GRANITIC ROCK with Very Close Fracture Spacing REC=25% RQD=0% GSI=10-30 Gray, Black and White, Very Slightly Weathered to Fresh, Hard to Very Hard,			‡											_	White, Brown, Black an	nd Gray	, Moderately			‡						
REC=25% RQD=0% GSI=10-30 Gray, Black and White, Very Slightly Weathered to Fresh, Hard to Very Hard,			‡											_	Medium Hard, GRANIT	IC RO	CK with Very			‡						
Gray, Black and White, Very Slightly Weathered to Fresh, Hard to Very Hard,		_	t											_	Close Fracture REC=25% RQD=0	e Spac 0% GS	ing SI=10-30			\pm						
			Ŧ											_	Gray, Black and Wh	ite, Ver	ry Slightly			Ŧ						
			Ŧ											-						Ŧ						

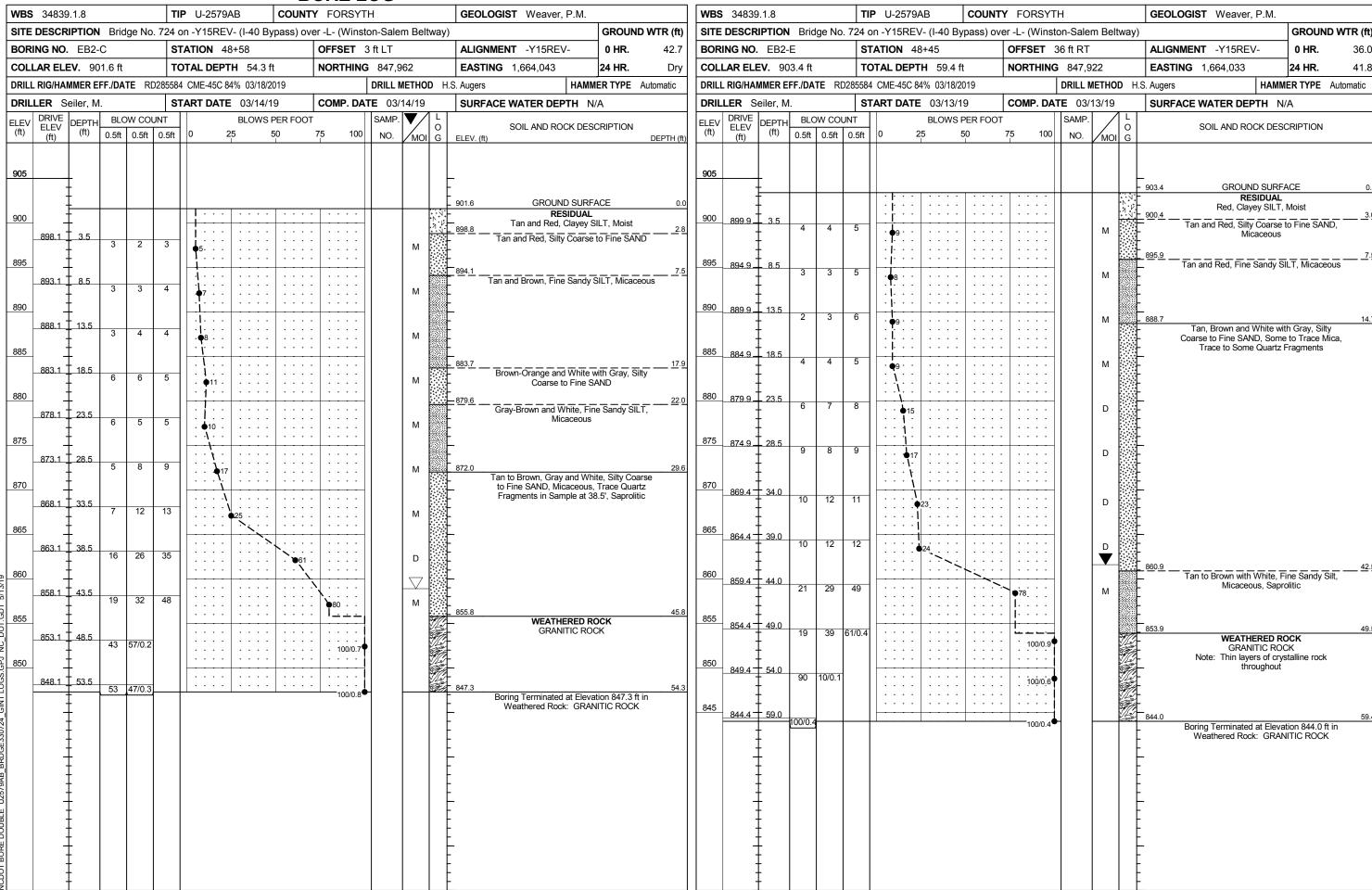
MIDS 24920 1 9	TIP II 2570AP	V FOREVILL	CEOLOCIST Weaver D.M.	
WBS 34839.1.8	<u> </u>	Y FORSYTH	GEOLOGIST Weaver, P.M.	CDOUND VED (C)
SITE DESCRIPTION Bridge No. 72	1		ALICAIMENT MACREM	GROUND WTR (ft)
BORING NO. B1-G	STATION 47+13	OFFSET 46 ft RT	ALIGNMENT -Y15REV-	0 HR. 31.3
COLLAR ELEV. 893.1 ft		NORTHING 847,902	· · · · · · · · · · · · · · · · · · ·	24 HR. 30.6
DRILL RIG/HAMMER EFF./DATE RD285		DRILL METHOD H.S		ER TYPE Automatic
DDIVE	START DATE 03/19/19	COMP. DATE 03/21/19	SURFACE WATER DEPTH N/	A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		75 100 NO. MOI G	SOIL AND ROCK DESC	CRIPTION
815	Match Line		Fracture Spacin REC=88% RQD=88% (Boring Terminated at Elevat Crystalline Rock: GRANI Other Samples: ST-1 (14.0 - 16.0)	GSI=80-100 ion 826.3 ft in

Name		
BORING NO. B1-G		
COLLAR ELEV. 893.1 ft TOTAL DEPTH 66.8 ft NORTHING 847,902 EASTING 1,663,902 24 HR.	ID WTR (ft)	
DRILL RIG/HAMMER EFF/DATE	31.3	
DRILLER Seiler M. START DATE 03/19/19 COMP. DATE 03/21/19 SURFACE WATER DEPTH N/A	30.6	
CORE SIZE NQ	Automatic	
RUN		
SAMP REC. (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)		
835 836.3 56.8 5.0 1:34/1.0 (4.6) (4.2) (2.0) 836.3 (2.4) (2.0) 833.5 (2.4) (2.0) 833.5 (2.4) (2.0) 833.5 (2.4) (2.0) (2.1)	DEPTH (
1:00/1.0 92% 84% 1:00/1.0 1:45/1.0 1:45/1.0 1:17/1.0 831.3 61.8 1:17/1.0 831.3 61.8 61.8 1:17/1.0 68% 56% 66.8 2:37/1.0 68% 66% 71% 833.5 66.8 2:37/1.0 68% 66% 71% 833.5 66.8 66.8 2:37/1.0 68% 66% 66.8		
831.3		
0:38/1.0 1:36/1.0 1:36/1.0 1:45/1.0 2:37/1.0 25% (2.8)	62	
1:45/1.0 2:37/1.0 88% 88% 88% 88% 88% 88% 88% 88% 88% 88	63.	
Spacing No foliation GSI=70-90 White, Brown, Black and Gray, Moderately Severely to Moderately Weathered, Soft to Medium Hard, GRANITIC ROCK with Very Clos Fracture Spacing GSI=10-30 Gray, Black and White, Very Slightly Weathered to Fresh, Hard to Vo Hard, GRANITIC ROCK with Moderately Close Fracture Spacing One fracture at 10 degrees Isolated foliateion at 10 degrees to 30 degrees Note: Bottom 0.4' of core not retrieved GSI=80-100 Boring Terminated at Elevation 826.3 ft in Crystalline Rock: GRANITIC		
White, Brown, Black and Gray, Moderately Severely to Moderately Weathered, Soft to Medium Hard, GRANITIC ROCK with Very Clos Fracture Spacing GSI=10-30 Gray, Black and White, Very Slightly Weathered to Fresh, Hard to VI Hard, GRANITIC ROCK with Moderately Close Fracture Spacing One fracture at 10 degrees Isolated foliateion at 10 degrees to 30 degrees Note: Bottom 0.4' of core not retrieved GSI=80-100 Boring Terminated at Elevation 826.3 ft in Crystalline Rock: GRANITIC	66.	
Fracture Spacing GSI=10-30 Gray, Black and White, Very Slightly Weathered to Fresh, Hard to V Hard, GRANITIC ROCK with Moderately Close Fracture Spacing One fracture at 10 degrees Isolated foliateion at 10 degrees to 30 degrees Note: Bottom 0.4' of core not retrieved GSI=80-100 Boring Terminated at Elevation 826.3 ft in Crystalline Rock: GRANITI		
Hard, GRANITIC ROCK with Moderately Close Fracture Spacing One fracture at 10 degrees Isolated foliateion at 10 degrees to 30 degrees Note: Bottom 0.4' of core not retrieved GSI=80-100 Boring Terminated at Elevation 826.3 ft in Crystalline Rock: GRANITIC		
Isolated foliateion at 10 degrees to 30 degrees Note: Bottom 0.4' of core not retrieved GSI=80-100 Boring Terminated at Elevation 826.3 ft in Crystalline Rock: GRANIT	ery	
Note: Bottom 0.4' of core not retrieved SSI=80-100 Boring Terminated at Elevation 826.3 ft in Crystalline Rock: GRANIT		
Boring Terminated at Elevation 826.3 ft in Crystalline Rock: GRANIT		
	TIC	
T		
T		
 		

SHEET 15

CORE PHOTOGRAPHS


B1-GBOX 1: 56.8 - 66.8 FEET



							OKE L				
	34839.1.8				P U-2579AE		TY FORSYT			GEOLOGIST Weaver, P.M.	_
SITE	DESCRIPTION	I Brid	lge No	724 (on -Y15REV-	(I-40 Bypass) o	ver -L- (Winst	on-Saler	n Beltwa	y)	GROUND WTR (ft)
BORI	ING NO . B1-B	3		S	TATION 47+	-02	OFFSET	76 ft RT		ALIGNMENT -Y15REV-	0 HR. 33.2
COLL	LAR ELEV. 89	92.0 ft		т	OTAL DEPTH	I 53.6 ft	NORTHING	847,8	71	EASTING 1,663,894	24 HR. 35.8
DRILL	RIG/HAMMER E	FF./DA	TE RI	D285584	4 CME-45C 84%	6 03/18/2019	<u> </u>	DRILL M	IETHOD	H.S. Augers HAMI	MER TYPE Automatic
DRIL	LER Seiler, M	1		s	TART DATE	03/13/19	COMP. DA			SURFACE WATER DEPTH N	J/A
	DDIVE	T	ow co			BLOWS PER FOC		SAMP.	▼/ L	CONTROL WATER BEI THE I	071
ELEV (ft)	ELEV (ft) (ft)	-	0.5ft		0 25		75 100	NO.	MOI G	SOIL AND ROCK DES	SCRIPTION DEPTH (ft
895										- - - - - - - - - - - - - - - - - - -	
890	+									RESIDUAL Tan and Red-Brown, Silty C	
	888.5 + 3.5									Ŧ	,
	ļ Ī	3	4	6	10 .				М	\$	
885					<u> : j: : : </u>					<u>‡</u>	
	883.5 + 8.5	3	3	3	:/: : :				S	<u> </u>	
	Ŧ	ľ	ľ		6				М	-	
880	, ‡				1 -1					T	
	878.5 + 13.5	3	4	4	: j : : :				М	878.2 Brown to Tan and White, Sil	ty Coarso to Fino
	. 1								141	SAND, Some to Little Qua	artz Fragments,
875	+				 					Little to Trace N	Mica
	873.5 + 18.5 +	5	5	4	.				М	-	
070	‡				: 🐧 : :					<u></u>	
870	+ 868.5 + 23.5				 \ 					_	
	868.5 + 23.5 +	11	8	6					D	_	
865	, ‡				::::::					<u>.</u>	
000	+ 863.5 + 28.5								****	_	
	1	20	28	28		56			D	<u>+</u>	
860	Ŧ								\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	_	
	858.5 + 33.5									- -	
	1	16	29	33						• <u> </u>	
855	<u> </u>					· · · · · ·j ·				_	
	853.5 7 38.5								8	853.0	39.
	‡	32	41	59/0.4			. 100/0.9	,		WEATHERED R	OCK
850	. 1									GRANITIC RO	ICK
	848.5 43.5	25	75/0.3								
	Ŧ	20	13/0.3				. 100/0.8	'			
845	, ‡								V/2=		
-	843.5 + 48.5	100/0.4	4					,		1	
	1						. 100/0.4			1	
840	, I									000.7	50.
	838.5 + 53.5 +	60/0.1					60/0.1	┥╶	Will a	838.7 838.4 \ CRYSTALLINE F	
	<u> </u>		1							GRANITIC RO	
	+									Boring Terminated wit Penetration Test Refusal at	Elevation 838.4
	, ‡									ft in Crystalline Rock: GR	ANITIC ROCK
	‡									‡	
	†									<u> </u>	
	+									t	
	ļ Ţ									F	
	†									<u></u>	
	t									t	
	Ŧ									}	
	, ‡									F	
	<u>†</u>									t	
	Į Į									-	

									1.				<u> </u>			T			\neg
	34839		. –			P U-25					FOF					GEOLOGIST Weaver, P.M			_
	DESCR			lge No					ypass)	_					tway)	T		ND WTR (`
BOR	ING NO.	EB2-	В		ST	TATION	48+	-31		_	OFFS	ET 7	5 ft RT			ALIGNMENT -Y15REV-	0 HR.	36	6.4
COL	LAR ELE	V . 89	9.8 ft		TC	OTAL DE	PTH	58.9 t	ft		NORT	HING	847,8	882		EASTING 1,664,022	24 HR.	35	5.4
DRILI	RIG/HAI	MER E	FF./DA	TE RI	D285584	CME-45	iC 84%	6 03/18/2	2019				DRILL N	NETHO	D H.S	S. Augers HAI	IMER TYPE	Automation	С
DRIL	LER S	eiler, M			ST	ART DA	λΤΕ	03/15/	19		COMF	P. DAT	TE 03/	15/19		SURFACE WATER DEPTH	N/A		
ELEV	DRIVE ELEV	DEPTH	BLC	w co	UNT			BLOWS	PER F				SAMP.	$ \nabla/$	1 L	SOIL AND ROCK DE	SCRIPTION	I	
(ft)	(ft)	(ft)	0.5ft	0.5ft	0.5ft	0	25		50	7	75 	100	NO.	МО		ELEV. (ft)		DEPTH	러 (ft)
900						<u></u>										899.8 GROUND SUI			0.0
	-	-				. .						: :				RESIDUA Red, Fine Sandy S			
	896.3	3.5	3	5	5	• •								l		896.8 Tan and Red with Black,		AND,	3.0
895	_	_	3	5	l °	10	_		+ : :		-			M	0000	- Little Mic	а	,	
	_	Ī				; ; ;	-		: :		: :					891.8			8.0
890	891.3	8.5	4	6	7	: : '}.			: :		: :			М	i i	White, Brown and Tan, I		SILT,	
	-	-				7			T		ļ			"	F	- Micaceou	S		
	- 886.3	- - 13.5				: : :													
885		- 13.3	4	6	6] . ——•1	2		<u> </u>	• •		• •		D		885.8 Tan, Brown and White, S	Ity Coarse to		14.0
	-					: ·j:			: :			: :				SAND, Little to T	ace Mica		
	881.3	18.5				1 : : 1	.												
880	_		4	6	8	•	14		+		ļ : ·			D	F	-			
	-					: ;;			: :		: :								
375	876.3	23.5	3	4	4	: / : 			: :					М		876.0 White and Orange-Brown	with Black		23.8
510	-	-				. \\.			: :		1			"		Sandy SII		i iiie	
	871.3 ⁻	- - 28.5				/.						: :							
870	0/ 1.5		3	4	12	<u> </u>	16		<u> </u>	• •	<u> </u>	• •		D		870.2	0.11 0		29.6
	-					: :/:	-		: :		: :	::				White and Orange-Brow 867.8 Fine SAN	n, Silty Coars D		32.0
	866.3	33.5				$ \cdot '$.								E	White, Dark Gray, Tan, a to Brown, Fine Sandy S		rown	
865	_		2	3	3	6	+		+						J. F	- Saproliti		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	-	-				. / .					: :	: :			F				
860	861.3	38.5	8	5	9	/.	.		: :		: :			М	F				
-	-	-												"	F	-			
	856.3 ⁻	- 135					: `		: :						-	857.3 Gray, Tan and White with	Black Silty C	narse 4	<u>42.5</u>
855		-	15	19	30		-	· · · ``	49	• •	ļ : :			D		to Fine SAND, S	aprolitic		45.4
	-	_										771				WEATHERED GRANITIC F			
	851.3	48.5	50	50/0.3								: :				GIVANITIO	OCK		
850	_		30	30/0.3		 	\pm		+		10	0/0.8				-			
	-											[
845	846.3	53.5	100/0.3	3		: : :			: :		10	0/0.3							
] -	F					-		: :							•			
	841.3	- 58.5				: : :			: :		: :					840.9		ı	58.9
	_		100/0.4	1			•	• • • •		• •	10	0/0.4	1			Boring Terminated at Ele	vation 840.9	ft in	50.5
			100/0.4								10	00/0.4♥			-	Boring Terminated at Ele Weathered Rock: GR	vation 840.9	ft in SK	

SOILS LABORATORY TESTS RESULTS

WBS NO.: 34839.1.8 **TIP NO.:** U-2579AB

COUNTY: Forsyth

SITE DESCRIPTION: Bridge No. 724 on -Y1REV- (I-40 Bypass) over -L- (Winston-Salem Beltway)

BORING	SAMPLE	BORING	DEPTH	AASHTO	N	L.L	P.I.		% P/	ASSING SIE	VES	%	UNIT			
NO.	NO.	LOCATION	INTERVAL (FT)	CLASS				CSE. SAND	F. SAND	SILT	CLAY	10	40	200	MOISTURE	WT (pcf)
B1-G	ST-1	-Y15REV- STA. 47+13, 46' RT	14.0-16.0	A-7-5 (4)	N/A	51	13	31	27	22	20	100	78	47	23	68.3

Signed:

NCDOT Certification No. 129-04-0411

Show F. Jane

SITE PHOTOGRAPHS

Bridge No. 724 on –Y15REV– (I-40 Bypass) over -L- (Winston-Salem Beltway)

View of Along End Bent 1 Looking Left to Right

View of Along End Bent 2 Looking Left to Right

View Along Bent 1 Looking Left to Right

