PRELIMINARY SITE ASSESSMENT FOR PARCEL 117 MICHAEL & CAROLE RICHARDS PROPERTY (MIDWAY TRADING POST) 3296 SOUTHPORT SUPPLY ROAD BOLIVIA, BRUNSWICK COUNTY, NORTH CAROLINA

NC 211 FROM SR 1500 (MIDWAY ROAD) TO NC 87

WBS ELEMENT: 41582.1.1 STATE PROJECT: R-5021

CATLIN PROJECT NO. 213100

PREPARED FOR:

NCDOT GEOTECHNICAL ENGINEERING UNIT-GEOENVIRONMENTAL SECTION 1589 MSC RALEIGH, NORTH CAROLINA 27699-1589

SEPTEMBER 26, 2013

PREPARED BY:

CATLIN ENGINEERS AND SCIENTISTS P. O. BOX 10279 WILMINGTON, NORTH CAROLINA 28404-0279 (910) 452-5861

Page

1.0	INTRODUCTION						
2.0	PURPOSE OF INVESTIGATION AND DESCRIPTION						
3.0	METH	IODS	2				
	3.1 3.2	FIELD METHODS LABORATORY TESTING	2 3				
4.0	FIELD) ACTIVITIES	3				
	4.1 4.2 4.3	CURRENT SITE CONDITIONS AND FIELD OBSERVATIONS SOIL SAMPLING SURVEYING	3 3 4				
5.0	RESU	ILTS	4				
	5.1 5.2	SOIL RESULTS HISTORICAL GROUNDWATER RESULTS	4 5				
6.0	SUMI	MARY AND CONCLUSIONS	5				
7.0	SIGN	ATURES	6				

TABLES

TABLE 1	SUMMARY OF SOIL LABORATORY RESULTS – TOTAL PETROLEUM
	HYDROCARBON DIESEL AND GASOLINE RANGE ORGANICS
TABLE 2	HISTORICAL SUMMARY OF SOIL LABORATORY RESULTS – TOTAL
	PETROLEUM HYDROCARBON DIESEL AND GASOLINE RANGE
	ORGANICS

SHEETS

- SHEET 1 CONVENTIONAL PLAN SHEET SYMBOLS
- SHEET 2 GENERAL LOCATION USGS TOPOGRAPHIC QUADRANGLES
- SHEET 3 SITE MAP WITH SOIL BORING LOCATIONS AND SOIL SAMPLE RESULTS

APPENDICES

APPENDIX A BORING LOGS APPENDIX B LABORATORY REPORT AND CHAIN OF CUSTODY RECORD APPENDIX C PHOTOGRAPHS APPENDIX D SCHNABEL GEOPHYSICAL REPORT

PRELIMINARY SITE ASSESSMENT FOR PARCEL 117 MICHAEL & CAROLE RICHARDS PROPERTY (MIDWAY TRADING POST) 3296 SOUTHPORT SUPPLY ROAD BOLIVIA, BRUNSWICK COUNTY, NORTH CAROLINA

NC 211 FROM SR 1500 (MIDWAY ROAD) TO NC 87

WBS ELEMENT: 41582.1.1 STATE PROJECT: R-5021

SEPTEMBER 26, 2013

1.0 INTRODUCTION

The North Carolina Department of Transportation (NCDOT) is planning roadway construction activities along NC 211 and Midway Road. Catlin Engineers & Scientists (CATLIN) originally completed a Limited Preliminary Site Assessment within the proposed right of way (ROW) surrounding this property in June 2005 under TIP R-2245 for proposed drainage and roadway construction. The entire parcel will now be acquired for interchange construction. A site investigation is necessary to determine the presence of contaminated soil across the site.

2.0 PURPOSE OF INVESTIGATION AND DESCRIPTION

CATLIN was retained by the NCDOT Geotechnical Engineering Unit to provide a field investigation concluding with a Preliminary Site Assessment (PSA) for the above referenced property. In response to a Request for Technical and Cost Proposal (RFP) dated July 26, 2013, CATLIN submitted a proposal for conducting a PSA at the Michael and Carole Richards Property, located at 3296 Southport Supply Road in Bolivia, North Carolina 28422. The site currently operates as the Midway Trading Post convenience store for retail fuel sales and convenience items. CATLIN personnel conducted a field investigation at the property on August 15, 2013. This PSA report documents activities and findings.

According to the RFP, the active gas station currently operates two (2) underground storage tanks (USTs) at the site.

The NCDOT has requested an investigation to determine if contamination is present at the site. The purpose of this investigation was to:

- Locate all USTs and determine approximate size and contents (if any) within the parcel boundaries.
- Determine if contaminated soils are present.

- If contamination is evident, estimate the quantity of impacted soils and indicate the approximate area of soil contamination on a site map.
- Provide a MicroStation file with the location of USTs, soil contamination and monitoring wells.
- Prepare a report combining the results with the Catlin PSA, dated June 8, 2005, including field activities, findings, and recommendations for this site and submit to this office in triplicate.

3.0 METHODS

According to NCDENR file review information, On April 17, 2007, Applied Resource Management (ARM) installed one Type II monitoring well (AMW-1) south of temporary wells installed by others on the adjacent property north of the site. Groundwater was found to be at a depth of 4.87 feet by ARM. Based on this information, vadose zone soils are assumed to be above four (4) feet below land surface (BLS). Soil samples collected from less than four (4) feet deep with laboratory Total Petroleum Hydrocarbon (TPH concentrations greater than 10 milligrams per kilogram (mg/kg) will be considered contaminated for estimated contaminated vadose soil volume calculations. This includes data from the current and 2005 investigations. Contaminated soil volume is estimated from the midpoint distance between a clean sample location and dirty sample location or the property line and right of way / easement.

3.1 FIELD METHODS

CATLIN personnel gathered subsurface soil data by Direct Push Technology boring advancement using an AMS PowerProbe[™] 9600D (PowerProbe). When using the PowerProbe, the borings are advanced to depth by static force and a 90-pound hydraulic percussion hammer. Two and one-quarter inch diameter by four-foot length steel is used as casing. Soil samples are continuously collected in one and one-half inch clear liners. Liners are removed from the casing and then cut in half longitudinally to allow for visual/manual classification utilizing the Unified Soil Classification System (USCS). Soil samples were collected and packed in appropriate glassware for laboratory analysis.

New disposable nitrile gloves were worn during sampling activities. All samples were placed into the appropriately labeled glassware and packed on ice in an insulated cooler for transportation to the laboratory. Sample integrity was maintained by following proper chain of custody procedures.

Boreholes were abandoned to the surface in grassy areas and just below existing asphalt in asphalt areas using three-eighth inch bentonite chips. Bentonite and water were poured into the borehole simultaneously to facilitate hydration. Boreholes in asphalt were finished with asphalt patch to the surface. Refer to Appendix A for Boring Logs.

3.2 LABORATORY TESTING

Samples were transported to Pace Analytical Services, Inc. (Pace) in Huntersville, NC under proper chain of custody protocol (see Appendix B).

In an attempt to provide information regarding petroleum impacts to soils and estimated volumes with reasonable analytical expense, soil samples were analyzed for TPH by Environmental Protection Agency (EPA) Method 8015 Modified. Any soil samples revealing detectable laboratory concentrations are considered petroleum impacted. The North Carolina Department of Environment and Natural Resources (NCDENR) guidance documents propose analysis by risk based laboratory methods and site ranking by NCDENR to determine exceedances of action levels.

4.0 FIELD ACTIVITIES

4.1 CURRENT SITE CONDITIONS AND FIELD OBSERVATIONS

As previously mentioned, the site currently operates as a convenience store with retail fuel sales. Two USTs (one ethanol gasoline and one ethanol free gasoline) and associated dispensers are located at the site. Two (2) monitoring wells were observed at the site, one (1) on the north side of the UST basin and one (1) on the south side of the UST basin. Photographs taken during the recent soil sampling are provided in Appendix C.

A geophysical survey was conducted by Schnabel Engineering. The complete geophysical report is included in Appendix D. As indicated in the Schnabel report, the tanks were found to be approximately three (3) to four (4) feet BLS, eight (8) feet in diameter, approximately 21.5 feet long, and roughly 8,000 gallons in volume.

The NCDOT Conventional Plan Sheet Symbols are provided on Sheet 1, the site vicinity is illustrated on Sheet 2, and Sheet 3 illustrates the current site map with soil boring and sample locations.

4.2 SOIL SAMPLING

A total of 10 borings were installed as part of the investigation. During the 2005 assessment activities 13 borings were advanced. A soil

sample was collected from each boring and submitted for laboratory analysis. Recent and historical boring/sample locations are illustrated on Sheet 3. The recent boring logs are included in Appendix A.

Borings advanced during the current PSA are identified as "DPT2-##" to distinguish current from previous ("DPT-##") boring nomenclatures. Soils were collected continuously to approximately eight feet BLS from borings DPT2-01, DPT2-02, DPT2-07, DPT2-09, and DPT2-10. The remaining borings were advanced to four (4) feet BLS. After retrieving the drive, soil was visually/manually classified for USCS classification. One (1) soil sample was collected from each boring for laboratory analysis. Soil samples collected from each boring for laboratory analysis were packed in the appropriate glassware, labeled, and placed in a cooler on ice. A total of 11 soil samples were submitted to Pace for total petroleum hydrocarbon diesel and gasoline range organics (TPH DRO and GRO) analysis per EPA Method 8015 Modified. Chain of Custody documentation is included in Appendix B.

4.3 SURVEYING

Boring/sample locations were recorded utilizing a Trimble[®] global positioning survey instrument and data collector. Boring coordinates are shown on the Boring Logs provided in Appendix A. Borings locations are indicated on plan sheets provided by NCDOT and are included as Sheet 3.

5.0 RESULTS

5.1 SOIL RESULTS

Soil sample results from the recent assessment activities are illustrated on Table 1. Historical (2005) soil sample results are summarized on Table 2.

The soil sample collected from borings DPT2-04, -05, -08, and -10 were collected from above four (4) feet BLS and indicate DRO impacts ranging from 6.5 mg/kg to 10.3 mg/kg. The sample collected from DPT-09 at five (5) to (6) feet BLS revealed 13.5 mg/kg DRO but is below the approximate water table depth of four (4) feet BLS.

Recent and 2005 soil sample locations, summarized results and estimated extent of TPH impacted soils less than four (4) feet BLS are illustrated on Sheet 3. The complete recent laboratory analytical report is provided in Appendix B.

The estimated volume of petroleum impacted soils as illustrated on Sheet 3 includes approximately 450 feet² of soils around the southeast corner of the UST basin (and boring DPT2-05) and approximately 970 feet² around the 2005 boring DPT-12. The total estimated soil volume is 210 yards³.

5.2 HISTORICAL GROUNDWATER RESULTS

Following retrieval of the soil samples from DPT-02 during the 2005 investigation, a piezometer was installed to gauge the depth to water. The piezometer was located in the Midway Rd. SE (SR 1500) ROW near the northeast property corner. The following day, the well was gauged for depth to water. Groundwater measurements collected on April 20, 2005 (24 hours after installing DPT-02 boring) indicated depth to water was 1.49 feet BLS. A temporary well was subsequently constructed and a groundwater sample was collected for volatile and semi-volatile organics analysis per EPA Methods 602 and 625 Base Neutrals. Analytical results indicated no contaminant concentrations above the laboratory reporting limits.

According to NCDENR file review information, On April 17, 2007, Applied ARM installed one Type II monitoring well (AMW-1) south of temporary wells installed by others on the adjacent property north of the site. The adjacent property temporary wells had revealed groundwater sample results of MTBE contamination exceeding the State action limit of 200 parts per billion (ppb).

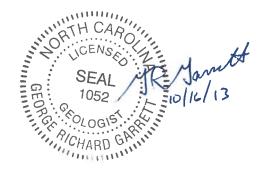
Groundwater was found to be at a depth of 4.87 feet by ARM. A groundwater sample was collected from the well (by ARM), packed on ice, and transported to SGS Laboratory for analysis per EPA Method 602 with MTBE. Based on laboratory results, all target compounds were found to be below quantitation limits.

6.0 SUMMARY AND CONCLUSIONS

The site operates two (2) 8,000 gallon gasoline USTs and associated dispensers as part of a convenience store with retail gasoline sales. Two (2) monitoring wells were identified, one (1) on the north side and one (1) on the south side of the UST basin.

Minor petroleum impact was discovered in the proposed drainage area during the 2005 PSA. Analytical results for soil sample DPT-02 indicated a TPH DRO concentration of 52.8 ppm at a depth of six feet BLS; however the sample collected from this boring at two feet BLS revealed no detectable concentrations. These results would appear to represent smear zone petroleum impacts by contaminated groundwater; however, groundwater analytical results for a sample collected from this same boring location were below laboratory quantitation limits. Additionally, shallow (1' BLS) soil contamination was detected in the 2005 borings DPT-11 and DPT-12 with TPH DRO concentrations of 9.41 ppm and 24.6 ppm, respectively. Soil contamination was not present above detectable levels in the six foot samples from these borings. The TPH impacted soil in the vicinity of DPT-11 and DPT-12 is along the existing ROW and should not be impacted during roadway construction unless a cut is required.

The depth to groundwater at the site as determined by ARM during monitoring well construction and sampling was approximately four (4) feet BLS. No groundwater impacts were revealed by ARM or during CATLIN's 2005 investigation.


Recent soil samples collected by CATLIN revealed minor TPH DRO impacts (10.3 mg/kg or less) near the east side of the USTs, west of the existing dispenser islands, and behind the western portion of the building. Also, one sample collected beneath the water table [sample ID: DPT2-09 (5-6')] revealed 13.5 mg/kg TPH DRO. However, a second, deeper sample, DPT2-09 (7-8') did not reveal detectable TPH concentrations.

The total estimated volume of petroleum impacted soil (assumed from the surface to four (4) feet BLS) greater than 10 mg/kg TPH DRO or TPH GRO is 210 yards³. This volume includes the two areas illustrated on Sheet 3 around borings DPT-12 (2005 boring location) and DPT2-05.

7.0 SIGNATURES

Benjamin J. Ashba, P.G. Project Manager

G. Richard Garrett, P.G. Contract Manager

TABLES

TABLE 1

SUMMARY OF SOIL LABORATORY RESULTS - TOTAL PETROLEUM HYDROCARBON DIESEL AND GASOLINE RANGE ORGANICS - EPA METHOD 8015 MODIFIED

Parcel 117 - Michael & Carole Richards Property 3296 Southport Supply Rd., Bolivia

Sample ID		Contaminant of Concern	ange s (DRO)	Gasoline Range Organics (GRO)	
Jampie u	Date Collected	Location	Diesel Range Organics (DRO)		
DPT2-01 (7-8')	8/15/13	Near northern property line, west of former "Barn"	<5.9	<5.1	
DPT2-02 (1-2')	8/15/13	Near northern property line, east of former "Barn"	<5.7	<5.3	
DPT2-03 (1-2')	8/15/13	Near former Kerosene tank and dispenser	<5.7	<5.4	
DPT2-04 (2.5-3.5')	8/15/13	Northern corner of UST basin	8.4	<5.3	
DPT2-05 (3-4')	8/15/13	Eastern corner of UST basin	10.3	<5.0	
DPT2-06 (2-3.5')	8/15/13	Near western corner of UST basin, north of dispensers	<5.8	<4.9	
DPT2-07 (5-6')	8/15/13	Near southern corner of UST basin, south of dispensers	<6.5	<6.4	
DPT2-08 (3-4')	8/15/13	Western corner of dispenser canopy	8.1	5.5	
*DPT2-09 (5-6')	8/15/13	Southern corner of dispenser canopy	*13.5	<7.0	
DPT2-09 (7-8')	8/15/13	Southern corner of dispenser canopy	<5.9	<5.1	
DPT2-10 (3-4')	8/15/13	Behind building, western portion of parcel	6.5	<4.7	

All results in milligrams per kilogram (mg/kg).

Sample depth below land surface provided in parenthesis as part of the sample identification.

< = Below Reporting Limit

* = Soil sample collected beneath the water table. Result not considered reflective of vadose soil conditions. Results in bold exceed 10 mg/kg.

TABLE 2

HISTORICAL SUMMARY OF SOIL LABORATORY RESULTS - TOTAL PETROLEUM HYDROCARBON DIESEL AND GASOLINE RANGE ORGANICS - EPA METHOD 8015 MODIFIED

Semala ID		Contaminant of Concern	ange (DRO)	Range (GRO)
Sample ID	Date Collected	Location	Diesel Range Organics (DRO)	Gasoline Range Organics (GRO)
DPT-01 (2')	4/19/05	Along drainage ditch	<7.37	<7.16
DPT-01 (6')	4/19/05	Along drainage ditch	<8.38	<7.79
DPT-02 (2')	4/19/05	Catch Basin 152	<7	<6.85
*DPT-02 (6')	4/19/05	Galdit Dasiit 152	*52.8	<7.88
DPT-03 (1')	4/20/05	East of former Kerosene tank and	<7.11	<6.85
DPT-03 (6')	4/20/05	dispenser at existing Right of Way	<7.95	<7.69
DPT-04 (1')	4/20/05	Catch Basin 150	<6.71	<6.89
DPT-04 (6')	4/20/05	Galeri Basiri 150	<7.26	<7.25
DPT-05 (1')	4/20/05	East of USTs at existing	<7	<6.86
DPT-05 (6')	4/20/05	Right of Way	<7.71	<7.4
DPT-06 (1')	4/20/05	Catch Basin 149	<6.92	<7.15
DPT-06 (6')	4/20/05	Galch Dasin 149	<7.57	<7.39
DPT-07 (1')	4/20/05	South of USTs at existing Right of Way	<6.91	<6.57
DPT-07 (6')	4/20/05	South of USTS at existing hight of Way	<6.84	<6.99
DPT-08 (1')	4/20/05	Catch Basin 148	<7.01	<6.85
DPT-08 (6')	4/20/05	Calcii Dasiii 140	<7.51	<7.37
DPT-09 (1')	4/20/05	Catch Basin 147	<6.59	<6.42
DPT-09 (6')	4/20/05		<7.85	<7.75
DPT-10 (1')	4/20/05	Catch Basin 146	<7.08	<6.69
DPT-10 (6')	4/20/05		<9.76	<9.4
DPT-11 (1')	4/20/05	West of Dispensers at existing Right of	9.41	<7
DPT-11 (6')	4/20/05	Way	<7.28	<7.11
DPT-12 (1')	4/20/05	West of DPT-11 at existing Right of	24.6	<6.86
DPT-12 (6')	4/20/05	Way	<7.85	<7.66
DPT-13 (2')	4/20/05	Catch Basin 145	<6.47	<6.52
DPT-13 (6')	4/20/05	Calch Dasin 145	<7.52	<7.45

Parcel 117 - Michael & Carole Richards Property 3296 Southport Supply Rd., Bolivia

All results in milligrams per kilogram (mg/kg).

Sample depth below land surface provided in parenthesis as part of the sample identification.

< = Below Reporting Limit

* = Soil sample collected beneath the water table. Result not considered reflective of vadose soil conditions.

Results in bold exceed 10 mg/kg.

SHEETS

Note: Not to Scale *S.U.E. = Subsurface Utility Engineering

STATE OF NORTH CAROLINA DIVISION OF HIGHWAYS CONVENTIONAL PLAN SHEET SYMBOLS

Orchard ·

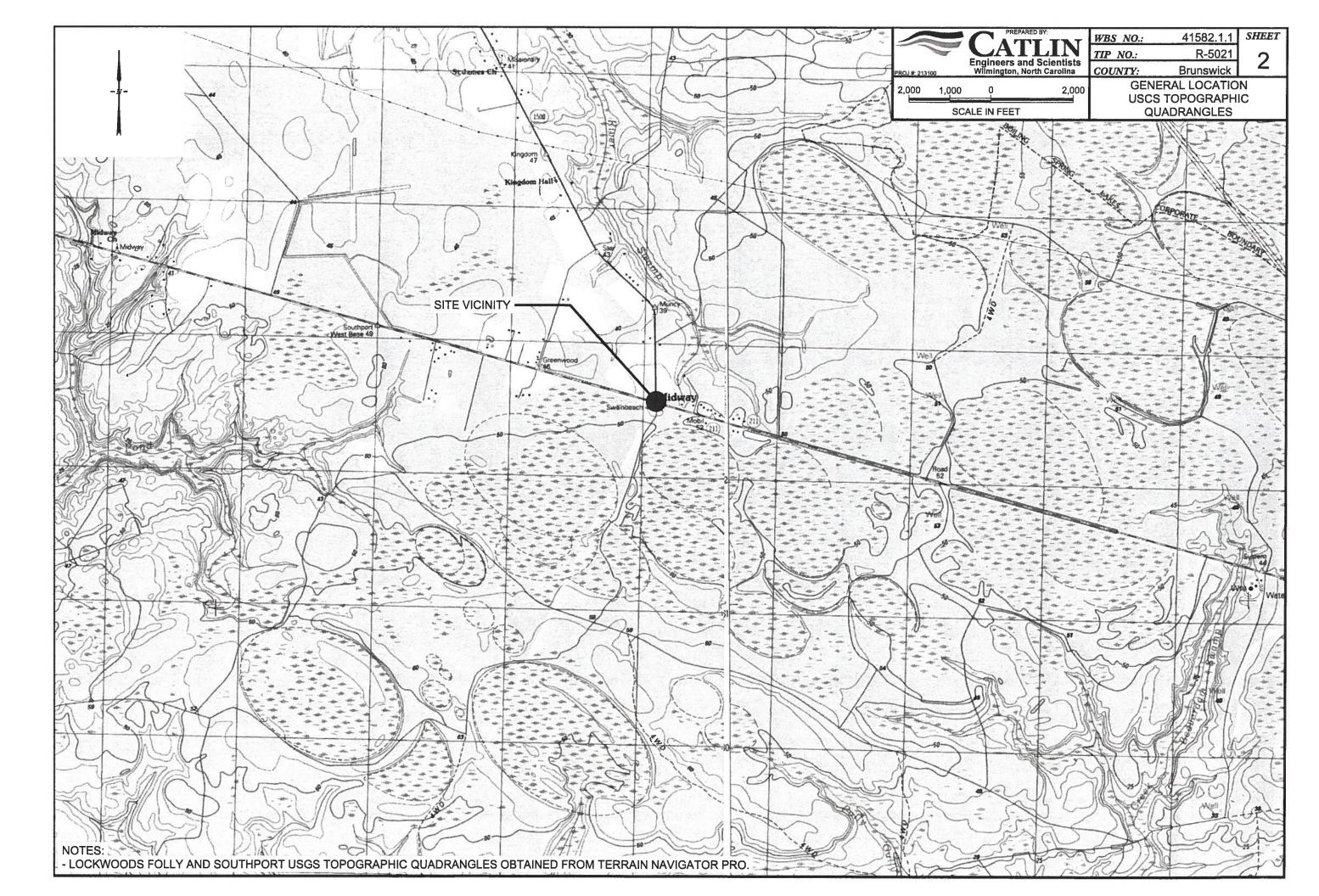
BOUNDARIES AND PROPERTY:

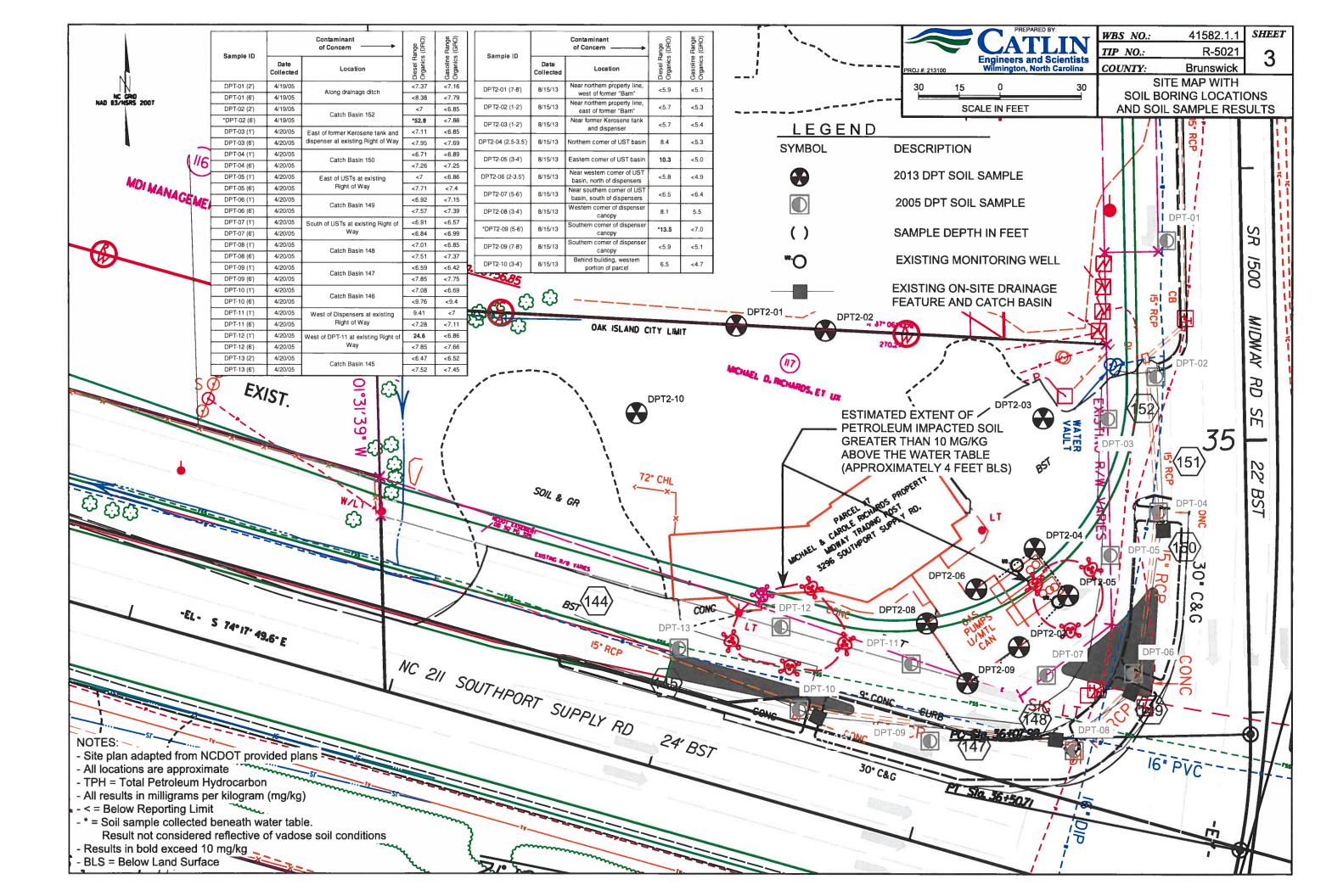
County Line	
Township Line	
City Line	
Reservation Line	
Property Line	
Existing Iron Pin	8
Property Corner	
Property Monument	
Parcel/Sequence Number	@
Existing Fence Line	
Proposed Woven Wire Fence	
Proposed Chain Link Fence	
Proposed Barbed Wire Fence	
Existing Wetland Boundary	
Proposed Wetland Boundary	ti
Existing Endangered Animal Boundary	
Existing Endangered Plant Boundary	
Known Soil Contamination: Area or Site	$-\infty - \infty$
Potential Soil Contamination: Area or Site	$\mathbf{x} - \mathbf{x}$
BUILDINGS AND OTHER CULTU	RE:
Gas Pump Vent or U/G Tank Cap	ο
Sign	ç
Well	Ŷ
Small Mine	*
Foundation	
Area Outline	
Cemetery	
Building	
School	<u> </u>
Church	<u>م</u>
Dam	
HYDROLOGY:	
Stream or Body of Water	

Stream or body of water	
Hydro, Pool or Reservoir	
Jurisdictional Stream	st
Buffer Zone 1	BZ 1
Buffer Zone 2	BZ 2
Flow Arrow	
Disappearing Stream	
Spring	<u> </u>
Wetland	*
Proposed Lateral, Tail, Head Ditch	$\rightarrow\rightarrow\rightarrow$
False Sump	>

Standard Gauge	
RR Signal Milepost	ette stalieskonsel Ĝ
Switch	and the second second
RR Abandoned	2002
RR Dismantled	
RIGHT OF WAY:	
Baseline Control Point	
Existing Right of Way Marker	×
Existing Right of Way Line	
Proposed Right of Way Line	
Proposed Right of Way Line with	
Iron Pin and Cap Marker Proposed Right of Way Line with	
Concrete or Granite RW Marker	
Proposed Control of Access Line with Concrete C/A Marker	
Existing Control of Access	
Proposed Control of Access	———
Existing Easement Line	——— E ———-
Proposed Temporary Construction Easement -	E
Proposed Temporary Drainage Easement ——	
Proposed Permanent Drainage Easement ——	PDE
Proposed Permanent Drainage / Utility Easeme	nt DUE
Proposed Permanent Utility Easement	PUE
Proposed Temporary Utility Easement	TUE
Proposed Aerial Utility Easement	AUE
Proposed Permanent Easement with Iron Pin and Cap Marker	۲
ROADS AND RELATED FEATUR	ES:
Existing Edge of Pavement	
Existing Curb	
Proposed Slope Stakes Cut	
Proposed Slope Stakes Fill	
Proposed Curb Ramp	(CR)
Existing Metal Guardrail	
Proposed Guardrail	
Existing Cable Guiderail	<u> </u>
Proposed Cable Guiderail	
Equality Symbol	•
Pavement Removal	
VEGETATION:	
Single Tree	· 63
Single Shrub	

Vineyard ———	Vineyord
EXISTING STRUCTURES:	
MAJOR:	
Bridge, Tunnel or Box Culvert	CONC
Bridge Wing Wall, Head Wall and End Wall-) cose aa (
MINOR: Head and End Wall	CORC HE
Pipe Culvert	
Footbridge	
Drainage Box: Catch Basin, DI or JB ————	
Paved Ditch Gutter	
Storm Sewer Manhole	9
Storm Sewer	

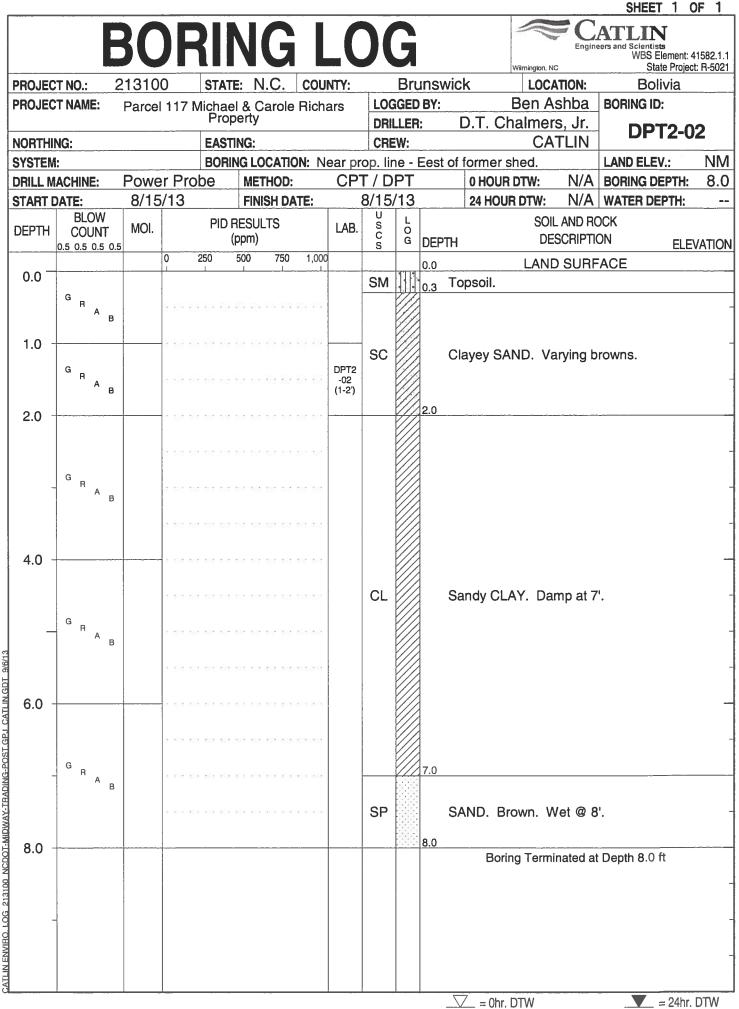

UTILITIES:

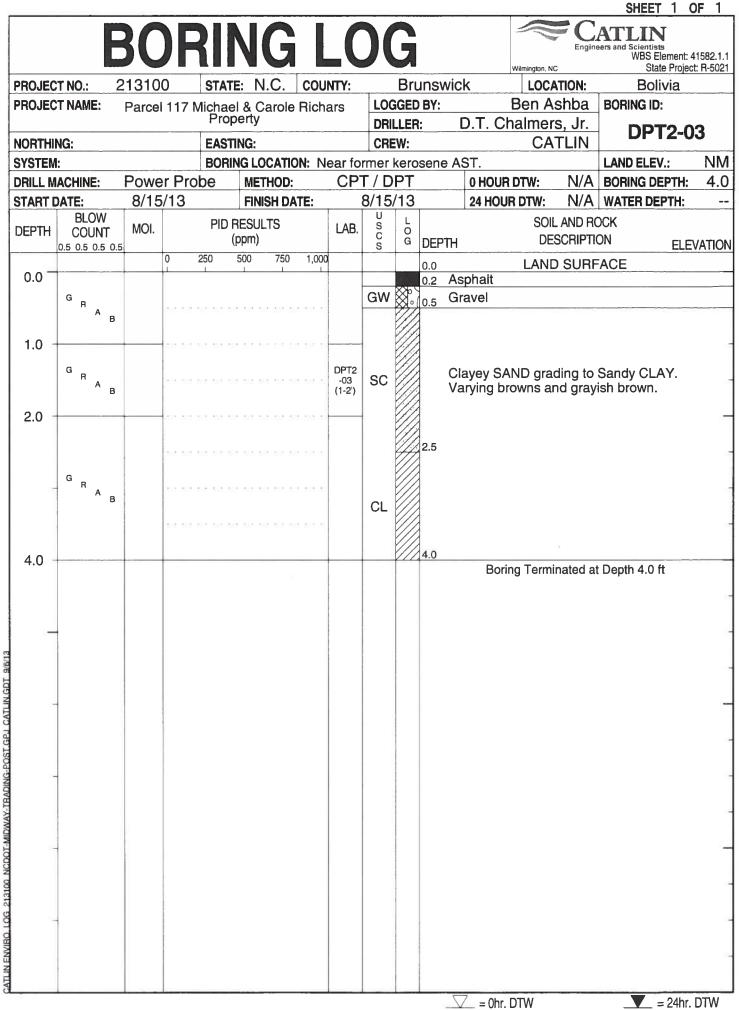

POWER:	
Existing Power Pole	•
Proposed Power Pole	6
Existing Joint Use Pole	-
Proposed Joint Use Pole	- 6 -
Power Manhole	۲
Power Line Tower	\boxtimes
Power Transformer	
U/G Power Cable Hand Hole	
H-Frame Pole	••
Recorded U/G Power Line	;
Designated U/G Power Line (S.U.E.*)	

TELEPHONE:

Existing Telephone Pole
Proposed Telephone Pole
Telephone Manhole 🛛 🕜
Telephone Booth 1
Telephone Pedestal 🔤 🔟
Telephone Cell Tower ———— 🙏
U/G Telephone Cable Hand Hole 🖪
Recorded U/G Telephone Cable /
Designated U/G Telephone Cable (S.U.E.*)
Recorded U/G Telephone Conduit
Designated U/G Telephone Conduit (S.U.E.*)
Recorded U/G Fiber Optics Cable
Designated U/G Fiber Optics Cable (S.U.E.*)

		PROJECT REFERENCE NO.	SHEET NO.
		R –3601	1
OLS			
	WATER:		
	Water Manhole		9
	Water Meter		0
	Water Valve		•
8888	Water Hydrant		4
Vineyord		- Line	
		ter Line (S.U.E.*)	
	-	r Line	
	Above Ground male		
C0HC	TV:		
) core as (
			8
CORE HE			
			\otimes
		Hole ———	8
_	Recorded U/G TV C	able	
	Designated U/G TV	Cable (S.U.E.*)	
6	Recorded U/G Fiber	Optic Cable ——— —	
	Designated U/G Fibe	er Optic Cable (S.U.E.*)—	
	GAS:		
	Gas Valve		♦
4	Gas Meter		٥
, i	Recorded U/G Gas L	ine	
♦	Designated U/G Gas	Line (S.U.E.*)	
- b -	Above Ground Gas I	_ine	A/G Gos
Ø	SANITARY SEWER:		
		ole	
		out	œ
		Line	· ·
••		ury Sewer	
		Main Line	
		d Main Line (S.U.E.*)	
		a mani tino (a.a.t.)	
	MISCELLANEOUS:		
-			
••	•	}	
Ø		·	
Ð			0
Ξ		ox	E
		Line	
8		s, Oil	
	- +	Tank, Approx. Loc. ——	
		s, Oil	
	Geoenvironmental Bo	ring	•
	U/G Test Hole (S.U.E	.*)	٩
1 79	Abandoned According	g to Utility Records ——	AATUR
	End of Information —		E.O.I.

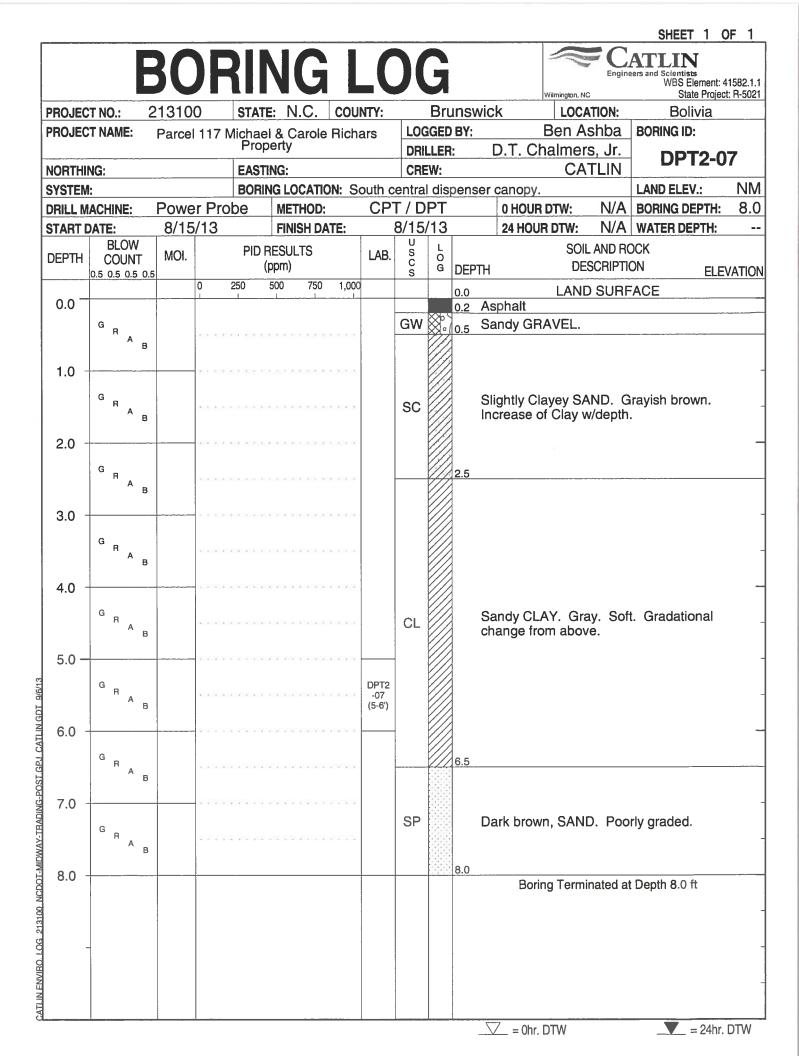




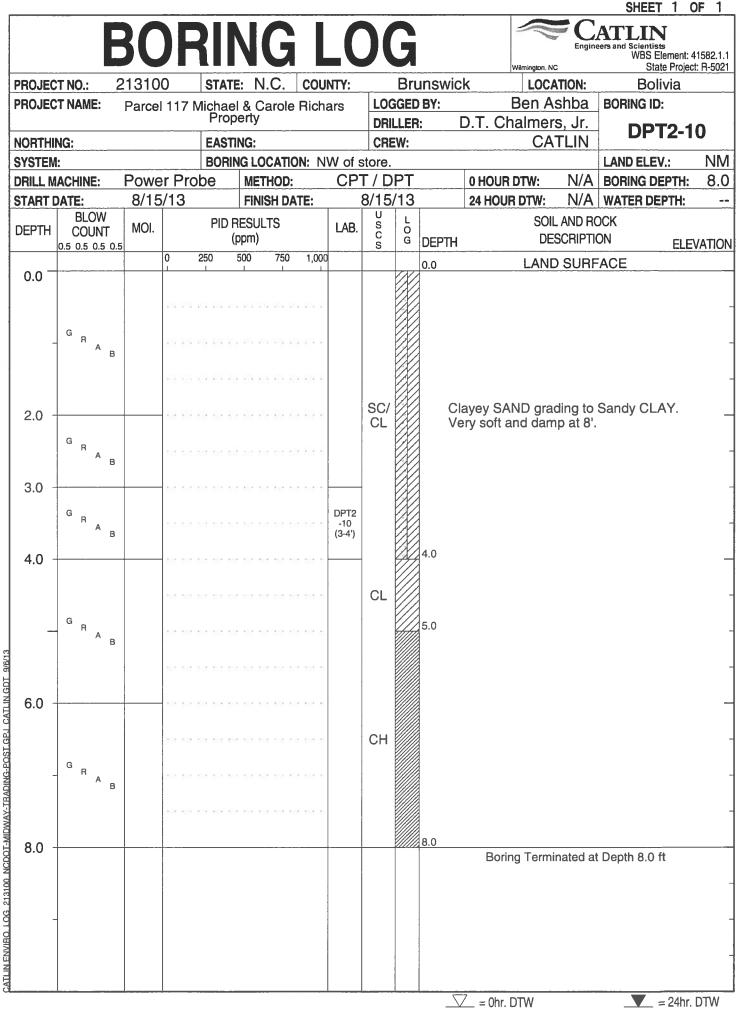
APPENDIX A

BORING LOGS

PROJEC		3 (21310) F		N re: N		COU		J						ers and Scientists WBS Eleme State P Bolivia	roject: R-50
PROJECT NAME: Parcel 11			/lichae		Carole	Richa	ars	Brunswick LOGGED BY: DRILLER: D.T. C				Ben Ashba halmers, Jr.		BORING ID: DPT2-01		
ORTHIN	IG:			EAS					CRE				CA	ΓLIN	DP12	
SYSTEM:		<u> </u>									West	of former		NI/A	LAND ELEV.:	NI NI
START D	ACHINE:	Powe 8/15	er Pro	be		thod: ISH D/			<u>T / D</u> 8/15			0 HOUR 24 HOUF		N/A N/A	BORING DEPT	
DEPTH	BLOW COUNT	MOI.			RESU (ppm)		ATL.	LAB.	U S C	L G	DEDT	·	SOIL	AND RC	DCK	
	0.5 0.5 0.5 0.5		0 2	250	500	750	1,000	1	S	G	DEPT	IH		SURF		ELEVATIO
0.0	G R A B		a 104 104 2 102 103	1 • 0.8 •0.9 • 0.6 •0.9					SC		0.0	Sandy Top and gradin	osoil and	l surfac	e Clay increa	asing
2.0 -	G _H A B			, 10, 10, , 10, 10, , 10, 10,	- 403 - 403 - 404 - 404 - 404 - 404 - 404 - 404	63 63 63 63 63 63	- 404 - 404 - 405 - 405 - 405 - 405				2.0					
4.0 -	G R B		, ,,, ,,, , ,,, ,,, , ,,, ,,,	1 23 23 1 23 23 1 23 23 1 23 23					CL			Brown to g	rayish b	prown, S	Sandy CLAY.	
6.0 -	G R B					- 10 10 - 10 10					7.0					
7.0 -	G R B		12 1375 1371	. For 181	111 111	277 272		DPT-2 -01 (7-8')	SP		8.0	Dark brow	n, f. SAI	ND. W	et @ 8'.	
8.0 -										,- ,*		Borir	ng Termiı	nated at	Depth 8.0 ft	



PROJEC			310	O STAT	: N.C					insw	ick	Wilmington, NC	TION:	State Proj Bolivia	ect: R-502
PROJEC	T NAME:	Pa	arcel	117 Michae	& Carc	le Richa	ars	LOC	GED	BY:		Ben As		BORING ID:	
				Prop				-	LLER		D.T. CI	nalmers		DPT2-	04
NORTHI SYSTEM				EAST		TION: N	Ecor			[basi	n	CA	LIN	LAND ELEV.:	NN
	I. IACHINE:	Ρ	owe	r Probe	METHO			T / D		Dasi		DTW:	N/A		
START			3/15		FINISH			8/15			24 HOU		N/A		
DEPTH	BLOW COUNT 0.5 0.5 0.5 0		MOI.		RESULTS		LAB.	U S C S	L O G	DEPT	н		AND RO	ON	EVATIO
	0.0 0.0 0.0 0			0 250	500 7	50 1,000				0.0		LAND	SURF		
0.0 -								GW	X • `		Asphalt				
	G R A			a tat tat tat tat ta	105 105 105	en es eñ		Gw	Ø•)	0.5	Gravel				
10		,						sc					wich h	2011/0	
1.0	G R A					102 100 100		30			Clayey SA	IND. GIR	ayısıı D	TOWIT.	
1.5	В			er far far far far	tes not test	ton test ton				1.5					
2.5					es sa sa	na na na									
	GR						DPT2	SP		\ \	Very fine S	SAND. [ark br	own. Wet at 3	.5'.
	- П. А. В.	5		in his sit his sit	13 53 53		-04 (2.5-3.5')								
3.5	G	-			53 56 58	505 505 505									
	R A B	3								4.0					
4.0											Bori	ng Termir	nated at	Depth 4.0 ft	
]														
-															
,															


				R)(Wilmington, N	c	S	tate Project	
PROJEC	T NO.: T NAME:	213 ⁻) 117 M		TE: N				100	Bri GED		wick	Ben A	ATION: shba	T	WBS Element: 419 State Project: BORING ID: DPT2-05 LAND ELEV.: BORING DEPTH: WATER DEPTH: CK N ELEV/	
NOULO		Par	cei		Pro	perty	arole	пісна	ars					Chalmer		1		-
VORTHI	NG:				EAS	FING:				CRE					TLIN	DP	12-0	5
SYSTEM	:				BOR	ING LC	CATIC	DN: SE	E corr	ner of	USI	l pa	isin.			1	EV.:	NM
DRILL M	ACHINE:			r Prot	be	ME	THOD:			T/D				R DTW:	N/A			4.0
START [8/	15/	/13		FIN	ISH DA	TE:		<mark>8/15</mark> /	<u>/13</u>		24 HO	UR DTW:	N/A		EPTH:	
DEPTH	BLOW COUNT 0.5 0.5 0.5 0	MC	DI.		PID	RESUI (ppm)			LAB.	S C S	L O G	DEI	PTH		L AND RO SCRIPTI		ELE\	VATIO
_				0 2	250	500	750	1,000				0.0		LANE) SURF	ACE		
0.0 -										0.00	Xto	0.2						
	G R A				e 223	e ee e				GW	8.	0.5	Gravel					
	8																	
1.0 -		+		aca ata at	0 809 S	(3 3)3 S	(3 8)3 8)	- 8.4 X										
	GR																	
	— А В			ala 204-20	5 - 365 - A	ca acara										.	1.	
2.0 -		_	_	49 V9 V	ei aci a			a 404 m)		SP			Very fine 1.5' then	sharp co	AND.	areenisn nge to da	gray to rk	
2.0										0.			brown.	onaip oo		igo to du		
	G R A			ana ana an	sa asa a	es ses s		a sea s ^e										
	1 8																	
3.0 -		_	_		en 200 - 5	1.1.1.1.1		5 KS KS		-								
	GR								DPT2			3.5						
	A B				01.000400			0 XO 8	-05 (3-4')	sw			Dark bro	wn, v.f. to	o f. SAN	ID w/mine	or to tr.	
4.0		_								500		4.0	shell has					
													Bo	ring Termi	inated a	t Depth 4.0) ft	
	1																	
9. <u>4</u>	_																	5
		3																
5	-																	
											r -							

ROJECT NO.: 213100 STATE: N.C. COUNTY: Brunswick LOCATION: Bolivia ROJECT NAME: Parcel 117 Michael & Carole Richars Property Parcel 117 Michael & Carole Richars Property LOGGED BY: Ben Ashba DRILLER: D.T. Chalmers, Jr. DPT2-06 DRTHING: EASTING: CREW: CATLIN DPT2-06 YSTEM: BORING LOCATION: North side center of canpoy. LAND ELEV.: N NILL MACHINE: Power Probe METHOD: CPT / DPT 0 HOUR DTW: N/A BORING DEPTH: 4 YATT DATE: 8/15/13 FINISH DATE: 8/15/13 24 HOUR DTW: N/A WATER DEPTH: SOIL AND ROCK COUNT (ppm) PID RESULTS (ppm) LAB. S C SOIL AND ROCK 0.0 0.0 LAND SURFACE 0.0 LAND SURFACE 0.2 Asphalt 0.0 0.05 0.5 0.5 0.5 0.5 0 750 1.000 0.0 LAND SURFACE 0.2 Asphalt 0.0 G R A B SC Clayey SAND. Grayish brown. 1.5 2.0 G R SP Very fine			В	U	F		NC	i L	_()(3				Wilmington,	-	ALL eers and Sci W	BS Element: 4	
NOJECT NAME: Parcel 117 Michael & Carole Richars Property LOGGED BY: Ben Ashba DRILLER: BORING ID: DRTHING: EASTING: CREW: CATLIN DPT2-06 STEM: BORING LOCATION: North side center of canpoy. LAND ELEV.: N NULL MACHINE: Power Probe METHOD: CPT / DPT 0 HOUR DTW: N/A BORING DEPTH: 4 ART DATE: 8/15/13 FINISH DATE: 8/15/13 24 HOUR DTW: N/A BORING DEPTH: 4 COUNT MOI. PID RESULTS (ppm) LAB. U S 0 DerTH DESCRIPTION ELEVATIV 0.0 0 250 500 750 1,000 0.0 LAND SURFACE 0.2 Asphalt 0.0 0 260 500 750 1,000 0.2 Asphalt GW 0.5 Gravel 1.5 1.0 a a a B <	PRO.IEC					T		1					wick	<			F		I. H-902
Property DRILLER: D.T. Chalmers, Jr. CREW: DPT2-06 DRTHING: EASTING: CREW: CATLIN STEM: BORING LOCATION: North side center of canpoy. LAND ELEV: N NILL MACHINE: Power Probe METHOD: CPT / DPT 0 HOUR DTW: N/A BORING DEPTH: 4 rart DATE: 8/15/13 FINISH DATE: 8/15/13 24 HOUR DTW: N/A WATER DEPTH: 2PTH BLOW COUNT 0.5 0.5 0.5 0.5 MOI. PID RESULTS (ppm) LAB. U SOIL AND ROCK 0.0 CATLIN Very fine SAND. Gravish brown. ELEVATIV 0.0 G R A 1.0 G R A G R A B 2.0 G G SP 3.0 G A B						1		-		LOC				-					
PRTHING: EASTING: CREW: CATLIN 'STEM: BORING LOCATION: North side center of canpoy. LAND ELEV:: N RILL MACHINE: Power Probe METHOD: CPT / DPT 0 HOUR DTW: N/A BORING DEPTH: 4 rart DATE: 8/15/13 FINISH DATE: 8/15/13 24 HOUR DTW: N/A WATER DEPTH: EPTH BLOW COUNT 0.5 0.5 0.5 0.5 0.5 MOI. PID RESULTS (ppm) LAB. U SOIL AND ROCK 0.0 0 250 500 750 1.000 0.0 LAND SURFACE 0.0 0 250 500 750 1.000 0.0 LAND SURFACE 0.0 0 250 500 750 1.000 0.2 Asphalt GW 0.2 Asphalt GW 0.2 Asphalt GW 0.5 Gravel SC Clayey SAND. Grayish brown. 1.5 SP Very fine SAND. Dark brown. Wet at 3.5'. 3.0 GR GA GA 4.0						Prop	perty			DRI	LLEF	}:	Ľ).T. C			n		G
NULL MACHINE: Power Probe METHOD: CPT / DPT 0 HOUR DTW: N/A BORING DEPTH: 4 ART DATE: 8/15/13 FINISH DATE: 8/15/13 24 HOUR DTW: N/A WATER DEPTH: 4 2PTH BLOW COUNT (DS 0.5 0.5 0.5 0.5 MOI. PID RESULTS (ppm) LAB. Solid AND ROCK Solid AND ROCK 0.0 0 250 500 750 1,000 0.0 LAND SURFACE 0.2 Asphalt 0.0 0 250 500 750 1,000 0.2 Asphalt 0.2 Asphalt 0.0 GR A B SC Clayey SAND. Grayish brown. 1.5 1.0 GR A B SP Very fine SAND. Dark brown. Wet at 3.5'. 3.0 GR A B SP Very fine SAND. Dark brown. Wet at 3.5'.	ORTHI	NG:				EAST	1NG:	÷		CRE	:W:							12-0	Ö
ART DATE: 8/15/13 FINISH DATE: 8/15/13 24 HOUR DTW: N/A WATER DEPTH: BLOW COUNT 0.5 0.5 0.5 0.5 0.5 MOI. PID RESULTS (ppm) LAB. LAB. Solid AND ROCK 0.0 Solid AND ROCK DEPTH DESCRIPTION ELEVATION 0.0 0 250 500 750 1,000 0.0 LAND SURFACE 0.0 LAND SURFACE 0.0	SYSTEM					BORI	NG LOCAT	ION: N	orth s	ide ce	ntei	r of c	canp	oy.			LAND E	ELEV.:	NM
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DRILL M	ACHINE:	P	owe	r Pro	be	METHOD):	CP	T/D	PT			0 HOU	R DTW:	N/A	BORING	G DEPTH:	4.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	START (8	3/15/	/13		FINISH D	ATE:		1	<u>/13</u>			24 HO	UR DTW:	N/A	WATER	DEPTH:	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DEPTH	COUNT		/101.					LAB.	S C	0	DEP	νTH					ELE	VATIO
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0	250	500 750) 1,000							LAN	ID SURF	ACE		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0 -										XX	0.2	As						
1.0 $G_{R_{A_{B}}}$ 2.0 $G_{R_{A_{B}}}$ 3.0 $G_{R_{A_{B}}}$ 3.0 $G_{R_{A_{A}}}$ 3.0 $G_{R_{A_{A}}}$ 3.0 $G_{R_{A_{A}}}$ 3.0 $G_{R_{A_{A}}}$ 3.0 $G_{R_{A}}$ 3.0 G_{R_{A}		R			1 101 10	na na	203 103 103 10	a 107 405		GW	×.	0.5	Gra	avel					
$\begin{array}{c c} & & & & & \\ & & & & \\ & & & & \\ & & & &$		<u> </u>	в									1							
2.0 $\begin{array}{c c} & & & \\ $	1.0		-		2 202 203	181-181	13 DI 19 P	7 IN 18		SC			Cla	ayey S	AND. G	arayish b	rown.		
2.0 $\begin{array}{c c} & A \\ & B \\ &$		G																	
$3.0 \qquad \begin{array}{c c} G \\ B \\ A \\ B \end{array} \qquad \begin{array}{c c} G \\ G \\ B \\ B \end{array} \qquad \begin{array}{c c} G \\ G $		A	в		0 100 100	102 102		1 101 101				1.5							
$3.0 \qquad \begin{array}{c c} G \\ B \\ A \\ B \end{array} \qquad \begin{array}{c c} G \\ G \\ B \\ B \end{array} \qquad \begin{array}{c c} G \\ G $	0.0							2 1211 112											
$3.0 \qquad \begin{array}{c c} & & & \\ \hline & & \\ 3.0 \\ & & \\ \hline & & \\ & &$	2.0 -						1004 1004 1004 10												
3.0 $\frac{B}{B}$		R			- 52 m	ana ana	110 110 010 II	1 101 101											
3.0 G R A B 4.0 4.0		A 1	в							SP			Vei	rv fine	SAND.	Dark br	own. V	Vet at 3.5	5'.
4 0	3.0					0.0		9 - 9 - 92 19 - 92						.,					
4 0		G							ידסח										
4.0		R A				0.0			-06										
									(0.4)			40							
	4.0											4.0		Во	ring Tern	ninated at	Depth 4	4.0 ft	
		-																	
	ž																		
		-						}											
	-	ĺ																	5
	i .																		

						N				八				Wilmington, N	; ;		State Projec	1582.1. t: R-502
ROJEC	T NO.: T NAME:		1310			TE: N				1.00	Bru GED		wick	Ben A	<u>TION:</u>	BORING	Bolivia and	
NUJEU		F	arcei	117	Pro	ael & C operty	arole	RICH	ars					Chalmer		1		•
IORTHI	NG:				EAS	STING:				CRE					TLIN	ט	PT2-0	8
YSTEM					BO	RING LO	OCATIO	DN: N	N cor	ner o	f car	юру	1.			LAND E		NN
RILL M	ACHINE:	F	Powe	r Pr	obe	ME	THOD:			<u>T / D</u>			0 HOU	R DTW:		1	DEPTH:	4.(
TART			8/15	/13		FIN	ISH DA	TE:		8/15	/13		24 HO	UR DTW:	N/A	WATER	DEPTH:	-
DEPTH	BLOW COUNT 0.5 0.5 0.5 0		MOI.		PI) RESU (ppm)			LAB.	U S C S	L O G	DEF	ΫTH		AND RO		ELE	VATIO
				0	250	500 1	750	1,000				0.0		LAND) SURF	ACE		
0.0 -											X	0.2	Asphalt					
	G R A				- 201 - 201			a na n		GW	ו	0.5	GRAVEL	-				
		в																
1.0 -		-		231.82	801 801	53 53 X	S 83 8	a sa s		SP			Gray, f. S	SAND.				
	G											1.5						
	R A	в			801-52	19 19 I	02 872 87	3 63 5			11	1.5						
2.0																~ • •	~	
2.0 -						101 101 I	102 - 302 - 80 -			sc			Clayey S soft from	AND gra	ding to	Sandy	JLAY. V	•
	G R A			1000	0.8 89	डाव स्टब व				00			Slight HO					
	^	в																
3.0 -					000 800	0.3 0.3 0	() = (()	• e• e			44	3.0						
	G								DPT2									
	RA	в		A				a 354 8	-08 (3-4')	CL								
	8								()			4.0						
4.0 -													Bo	ring Termi	nated a	t Depth 4	.0 ft	
	. C. C.																	
								-										
_	•																	
-	1																	
-	4																	
				8				8										
-																		
-	-											1						
												1						

			V			N	U				3			Wilmington, N	-	ers and So V	VBS Element: State Project	
PROJEC	CT NO.:	213	100)	STA	TE: N	I.C.	COU	NTY:		Bru	uns	wick	LOC	ATION:		Bolivia	
PROJEC	CT NAME:	Pa	rcel	117	Micha Pro	ael & C operty	arole	Richa	ars		iged Ller			Ben A		BORIN		
NORTHI	NG:					STING:				CRE		1.	D.1. C		TLIN)PT2-0	9
SYSTEM						RING LC	CATIC	DN: SI	W cor			юру	/.			LAND	ELEV.:	NN
DRILL M	ACHINE:	Pc	we	r Pro	obe	ME	THOD:		CP	T / D	PT		0 HOU	R DTW:	N/A	BORIN	IG DEPTH:	8.0
START I		8	<u>/15</u>	/13		FIN	ISH DA	TE:		8/15/	/13	T	24 HOI	JR DTW:	N/A	WATE	R DEPTH:	
DEPTH	BLOW COUNT 0.5 0.5 0.5		OI.		PI) RESU (ppm)	LTS		LAB.	S C S	L O G	DEF	ΥТH		L AND RO		ELE	VATIC
	0.0 0.0 0.0	0.0		0	250	500	750	1,000				0.0		LAN	D SURF	ACE		
0.0 -											Xb	0.2	Asphalt					
	G R A			a 197 i	100 ENE 7	a ea ea	102-202	ea 122		GW	×.	0.5	Sandy G	RAVEL				
		В																
1.0 -	1		_	1 200 2	102 2002 0	02 202 202	202 202			sc			Drawn C					
	G R			4 294 3	83 105 1	a 102 ma	500 - 506	en en		50			Brown, C	layey 5/	AND.			
	A	в																
2.0	1					• • • • •		e e			$\forall f f$	2.0	- X X			·		
	GR																	
	A	в		0.565.5	95 59 5 5	8 161 164 	105-105											
3.0				a Ba i			10.13											
	G																	
	RA	в		5 505 5	235 5385 5	07 2002 2003	5335 - 5645	100 100										
4.0		_		a			2012 2012			CL			Dark brov grayish b	vn gradi rown v i	ng to gra E Sandv	ay grad CLAY	ding to	
	G												Gradation					
	G R A	в		a 100 t	905 Vit 5	a tao tao	553 X.S.	5.5 5.5										
5.0																		
5.0 -				8 58 5	195 ENE 7	10 818 468	Ant Ent	5.8 5.5 J										
	G R A			a na i		a na na	that that	ea ea	DPT2 -09									
		в							(5-6')			6.0						
6.0				2 102 1	53 353 S		101 AU	er er				0.0				_		
	G R A			a tita t			NA 101			sc			Clayey S	AND.				
	^	в																
7.0	1	_	_	8 (OL)		a wa wa	101 K.A.	104 104 j			[]]	7.0						
	GR								DPT2	SP			Poorly gr	aded SA	ND. Po	ssible	HCO or	
	A 1	в		0. 100 1		a sua sua	103 103		-09 (7-8')	55			organics.					
8.0	-											8.0				Dauth	0.0.4	
													Boi	ing Term	inated at	Depth	σ.υ π	
	_																	

APPENDIX B

LABORATORY REPORT AND CHAIN OF CUSTODY RECORD

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

August 22, 2013

Ben Ashba NCDOT South East 220 Old Dairy Road Wilmington, NC 28405

RE: Project: Midway Trading WBS: 41582.1.1 Pace Project No.: 92169157

Dear Ben Ashba:

Enclosed are the analytical results for sample(s) received by the laboratory on August 16, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Analyses were performed at the Pace Analytical Services location indicated on the sample analyte page for analysis unless otherwise footnoted.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

angela M. Baioni

Angela Baioni

angela.baioni@pacelabs.com Project Manager

Enclosures

cc: Chemical Testing Engineer, Materials and Tests Unit

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: Midway Trading WBS: 41582.1.1

Pace Project No.: 92169157

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001

Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 West Virginia Certification #: 357 Virginia/VELAP Certification #: 460221

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

SAMPLE ANALYTE COUNT

Project:	Midway Trading WBS: 41582.1.1
----------	-------------------------------

Pace Project No.: 92169157

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92169157001	DPT2-01 (7-8')	EPA 8015 Modified	EJK	2	PASI-C
		EPA 8015 Modified	GAW	2	PASI-C
		ASTM D2974-87	TNM	1	PASI-C
92169157002	DPT2-02 (1-2')	EPA 8015 Modified	EJK	2	PASI-C
		EPA 8015 Modified	GAW	2	PASI-C
		ASTM D2974-87	TNM	1	PASI-C
92169157003	DPT2-03 (1-2')	EPA 8015 Modified	EJK	2	PASI-C
		EPA 8015 Modified	GAW	2	PASI-C
		ASTM D2974-87	TNM	1	PASI-C
92169157004	DPT2-04 (2.5-3.5')	EPA 8015 Modified	EJK	2	PASI-C
		EPA 8015 Modified	GAW	2	PASI-C
		ASTM D2974-87	TNM	1	PASI-C
92169157005	DPT2-05 (3-4')	EPA 8015 Modified	EJK	2	PASI-C
		EPA 8015 Modified	GAW	2	PASI-C
		ASTM D2974-87	TNM	1	PASI-C
92169157006	DPT2-06 (2-3.5')	EPA 8015 Modified	EJK	2	PASI-C
		EPA 8015 Modified	GAW	2	PASI-C
		ASTM D2974-87	TNM	1	PASI-C
92169157007	DPT2-07 (5-6')	EPA 8015 Modified	EJK	2	PASI-C
		EPA 8015 Modified	GAW	2	PASI-C
		ASTM D2974-87	TNM	1	PASI-C
92169157008	DPT2-08 (3-4')	EPA 8015 Modified	EJK	2	PASI-C
		EPA 8015 Modified	GAW	2	PASI-C
		ASTM D2974-87	TNM	1	PASI-C
92169157009	DPT2-09 (5-6')	EPA 8015 Modified	EJK	2	PASI-C
		EPA 8015 Modified	GAW	2	PASI-C
		ASTM D2974-87	TNM	1	PASI-C
92169157010	DPT2-09 (7-8')	EPA 8015 Modified	EJK	2	PASI-C
		EPA 8015 Modified	GAW	2	PASI-C
		ASTM D2974-87	TNM	1	PASI-C
92169157011	DPT2-10 (3-4')	EPA 8015 Modified	EJK	2	PASI-C
		EPA 8015 Modified	GAW	2	PASI-C
		ASTM D2974-87	TNM	1	PASI-C

Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: Midway Trading WBS: 41582.1.1

Pace Project No.: 92169157

Sample: DPT2-01 (7-8')	Lab ID: 92169	157001	Collected: 08/	15/13	12:30	Received: 08	/16/13 14:35 N	Aatrix: Solid	
Results reported on a "dry-weight	t" basis								
Parameters	Results	Units	Report Lim	it	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical Metho	d: EPA 80	015 Modified Pre	oarati	on Me	thod: EPA 3546			
Diesel Components Surrogates	ND mg/k	g	5	.9	1	08/16/13 16:33	08/19/13 21:11	68334-30-5	
n-Pentacosane (S)	85 %		41-1	19	1	08/16/13 16:33	08/19/13 21:11	629-99-2	
Gasoline Range Organics	Analytical Metho	d: EPA 80	015 Modified Pre	oarati	on Me	thod: EPA 5035A	/5030B		
Gasoline Range Organics Surrogates	ND mg/k	g	5	.1	1	08/21/13 09:38	08/21/13 23:23	8006-61-9	
4-Bromofluorobenzene (S)	89 %		70-1	67	1	08/21/13 09:38	08/21/13 23:23	460-00-4	
Percent Moisture	Analytical Metho	d: ASTM	D2974-87						
Percent Moisture	15.2 %		0.	10	1		08/20/13 08:59		

ANALYTICAL RESULTS

Project: Midway Trading WBS: 41582.1.1

Pace Project No.: 92169157

Sample: DPT2-02 (1-2')	Lab ID: 9216915700	02 Collected: 08/15/1	3 13:00) Received: 08	B/16/13 14:35	Matrix: Solid	
Results reported on a "dry-weigh	nt" basis						
Parameters	Results Unit	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical Method: EP/	A 8015 Modified Prepara	ation Me	ethod: EPA 3546			
Diesel Components Surrogates	ND mg/kg	5.7	1	08/16/13 16:33	08/19/13 21:35	68334-30-5	
n-Pentacosane (S)	87 %	41-119	1	08/16/13 16:33	08/19/13 21:35	629-99-2	
Gasoline Range Organics	Analytical Method: EPA	A 8015 Modified Prepara	ation Me	ethod: EPA 5035A	V5030B		
Gasoline Range Organics Surrogates	ND mg/kg	5.3	1	08/21/13 09:38	08/21/13 23:45	8006-61-9	
4-Bromofluorobenzene (S)	86 %	70-167	1	08/21/13 09:38	08/21/13 23:45	460-00-4	
Percent Moisture	Analytical Method: AS	FM D2974-87					
Percent Moisture	11.5 %	0.10	1		08/20/13 08:59)	

ANALYTICAL RESULTS

Project: Midway Trading WBS: 41582.1.1

Pace Project No.: 92169157

Sample: DPT2-03 (1-2')	Lab ID: 92169157003	Collected: 08/15/1	3 13:30	Received: 08	8/16/13 14:35 N	Aatrix: Solid	
Results reported on a "dry-weigh	t" basis						
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical Method: EPA 807	15 Modified Prepara	ition Me	ethod: EPA 3546			
Diesel Components Surrogates	ND mg/kg	5.7	1	08/16/13 16:33	08/19/13 21:35	68334-30-5	
n-Pentacosane (S)	87 %	41-119	1	08/16/13 16:33	08/19/13 21:35	629-99-2	
Gasoline Range Organics	Analytical Method: EPA 807	15 Modified Prepara	tion Me	ethod: EPA 5035A	/5030B		
Gasoline Range Organics <i>Surrogates</i>	ND mg/kg	5.4	1	08/21/13 09:38	08/22/13 00:54	8006-61-9	
4-Bromofluorobenzene (S)	89 %	70-167	1	08/21/13 09:38	08/22/13 00:54	460-00-4	
Percent Moisture	Analytical Method: ASTM D	02974-87					
Percent Moisture	12.9 %	0.10	1		08/20/13 09:00		

ANALYTICAL RESULTS

Project: Midway Trading WBS: 41582.1.1

Pace Project No.: 92169157

Sample: DPT2-04 (2.5-3.5')	Lab ID: 92169	157004	Collected: 08/1	5/13 15:	00 Received: 0	8/16/13 14:35 I	Matrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical Metho	d: EPA 80	015 Modified Prep	aration M	lethod: EPA 3546			
Diesel Components Surrogates	8.4 mg/k	kg	5.	91	08/16/13 16:33	8 08/20/13 21:41	68334-30-5	
n-Pentacosane (S)	83 %		41-11	91	08/16/13 16:33	8 08/20/13 21:41	629-99-2	
Gasoline Range Organics	Analytical Metho	d: EPA 80	015 Modified Prep	aration M	/lethod: EPA 5035	A/5030B		
Gasoline Range Organics <i>Surrogates</i>	ND mg/k	kg	5.	31	08/21/13 09:38	8 08/22/13 01:16	8006-61-9	
4-Bromofluorobenzene (S)	94 %		70-16	71	08/21/13 09:38	8 08/22/13 01:16	6 460-00-4	
Percent Moisture	Analytical Metho	d: ASTM	D2974-87					
Percent Moisture	15.4 %		0.1	D 1		08/20/13 09:00)	

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: Midway Trading WBS: 41582.1.1

Pace Project No.: 92169157

Sample: DPT2-05 (3-4')	Lab ID: 921	69157005	Collected: 08	/15/13	3 14:45	Received: 08	/16/13 14:35 N	latrix: Solid	
Results reported on a "dry-weigh	nt" basis								
Parameters	Results	Units	Report Lin	nit	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical Meth	nod: EPA 80	015 Modified Pre	eparat	tion Me	thod: EPA 3546			
Diesel Components Surrogates	10.3 mg	g/kg		5.8	1	08/16/13 16:33	08/19/13 21:58	68334-30-5	
n-Pentacosane (S)	89 %		41-1	119	1	08/16/13 16:33	08/19/13 21:58	629-99-2	
Gasoline Range Organics	Analytical Meth	nod: EPA 80	015 Modified Pre	eparat	tion Me	thod: EPA 5035A	/5030B		
Gasoline Range Organics Surrogates	ND mỹ	g/kg		5.0	1	08/21/13 09:38	08/22/13 01:39	8006-61-9	
4-Bromofluorobenzene (S)	93 %		70-1	67	1	08/21/13 09:38	08/22/13 01:39	460-00-4	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87						
Percent Moisture	14.1 %		0	.10	1		08/20/13 09:00		

ANALYTICAL RESULTS

Project: Midway Trading WBS: 41582.1.1

Pace Project No.: 92169157

Sample: DPT2-06 (2-3.5')	Lab ID: 92169157006	Collected: 08/15/1	3 15:15	5 Received: 08	3/16/13 14:35 N	/atrix: Solid	
Results reported on a "dry-weight" basis							
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical Method: EPA 8015 Modified Preparation Method: EPA 3546						
Diesel Components Surrogates	ND mg/kg	5.8	1	08/16/13 16:33	08/19/13 22:22	68334-30-5	
n-Pentacosane (S)	94 %	41-119	1	08/16/13 16:33	08/19/13 22:22	629-99-2	
Gasoline Range Organics	Analytical Method: EPA 8015 Modified Preparation Method: EPA 5035A/5030B						
Gasoline Range Organics Surrogates	ND mg/kg	4.9	1	08/21/13 09:38	08/22/13 02:02	8006-61-9	
4-Bromofluorobenzene (S)	96 %	70-167	1	08/21/13 09:38	08/22/13 02:02	460-00-4	
Percent Moisture	Analytical Method: ASTM I	02974-87					
Percent Moisture	13.2 %	0.10	1		08/20/13 09:00		

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: Midway Trading WBS: 41582.1.1

Pace Project No.: 92169157

Sample: DPT2-07 (5-6')	Lab ID: 9216	69157007	Collected:	08/15/1	3 14:30	Received: 08	8/16/13 14:35 N	/latrix: Solid	
Results reported on a "dry-weigh	nt" basis								
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical Meth	od: EPA 80	015 Modified	Prepara	ation Me	ethod: EPA 3546			
Diesel Components Surrogates	ND mg	J/kg		6.5	1	08/16/13 16:33	08/19/13 22:22	68334-30-5	
n-Pentacosane (S)	86 %			41-119	1	08/16/13 16:33	08/19/13 22:22	629-99-2	
Gasoline Range Organics	Analytical Meth	od: EPA 80	015 Modified	Prepara	ation Me	ethod: EPA 5035A	/5030B		
Gasoline Range Organics Surrogates	ND mg	J/kg		6.4	1	08/21/13 09:38	08/22/13 02:25	8006-61-9	
4-Bromofluorobenzene (S)	90 %			70-167	1	08/21/13 09:38	08/22/13 02:25	460-00-4	
Percent Moisture	Analytical Meth	od: ASTM	D2974-87						
Percent Moisture	22.6 %			0.10	1		08/20/13 09:01		

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: Midway Trading WBS: 41582.1.1

Pace Project No.: 92169157

Sample: DPT2-08 (3-4')	Lab ID: 921	69157008	Collected:	08/15/1	3 15:30) Received: 08	8/16/13 14:35 N	Matrix: Solid	
Results reported on a "dry-weigh	nt" basis								
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical Meth	nod: EPA 80	015 Modified	Prepara	ation Me	ethod: EPA 3546			
Diesel Components Surrogates	8.1 mg	g/kg		6.2	1	08/16/13 16:33	08/20/13 21:41	68334-30-5	
n-Pentacosane (S)	88 %			41-119	1	08/16/13 16:33	08/20/13 21:41	629-99-2	
Gasoline Range Organics	Analytical Meth	nod: EPA 80	015 Modified	Prepara	ation Me	ethod: EPA 5035A	/5030B		
Gasoline Range Organics Surrogates	5.5 mg	g/kg		5.3	1	08/21/13 09:38	08/22/13 02:48	8006-61-9	
4-Bromofluorobenzene (S)	99 %			70-167	1	08/21/13 09:38	08/22/13 02:48	460-00-4	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87						
Percent Moisture	19.1 %			0.10	1		08/20/13 09:01		

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: Midway Trading WBS: 41582.1.1

Pace Project No.: 92169157

Sample: DPT2-09 (5-6')	Lab ID: 921	69157009	Collected:	08/15/1	3 14:00	Received: 08	/16/13 14:35 N	Aatrix: Solid	
Results reported on a "dry-weigh	nt" basis								
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical Meth	nod: EPA 80	015 Modified	Prepara	ition Me	ethod: EPA 3546			
Diesel Components Surrogates	13.5 mg	g/kg		6.3	1	08/16/13 16:33	08/19/13 22:45	68334-30-5	
n-Pentacosane (S)	83 %		4	1-119	1	08/16/13 16:33	08/19/13 22:45	629-99-2	
Gasoline Range Organics	Analytical Meth	nod: EPA 80	015 Modified	Prepara	ition Me	ethod: EPA 5035A	/5030B		
Gasoline Range Organics Surrogates	ND mg	g/kg		7.0	1	08/21/13 09:38	08/22/13 03:11	8006-61-9	
4-Bromofluorobenzene (S)	99 %		7	0-167	1	08/21/13 09:38	08/22/13 03:11	460-00-4	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87						
Percent Moisture	21.1 %			0.10	1		08/20/13 09:02		

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176

ANALYTICAL RESULTS

Project: Midway Trading WBS: 41582.1.1

Pace Project No.: 92169157

Sample: DPT2-09 (7-8')	Lab ID: 92169157	010 Collected: 08/15/	13 14:10	Received: 08	3/16/13 14:35 N	Matrix: Solid	
Results reported on a "dry-weigl	ht" basis						
Parameters	Results U	nits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical Method: E	PA 8015 Modified Prepar	ation Me	ethod: EPA 3546			
Diesel Components Surrogates	ND mg/kg	5.9	1	08/16/13 16:33	08/19/13 23:09	68334-30-5	
n-Pentacosane (S)	79 %	41-119	1	08/16/13 16:33	08/19/13 23:09	629-99-2	
Gasoline Range Organics	Analytical Method: E	PA 8015 Modified Prepar	ation Me	ethod: EPA 5035A	V5030B		
Gasoline Range Organics Surrogates	ND mg/kg	5.1	1	08/21/13 09:38	08/22/13 03:34	8006-61-9	
4-Bromofluorobenzene (S)	95 %	70-167	1	08/21/13 09:38	08/22/13 03:34	460-00-4	
Percent Moisture	Analytical Method: A	STM D2974-87					
Percent Moisture	15.8 %	0.10	1		08/20/13 09:02		

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: Midway Trading WBS: 41582.1.1

Pace Project No.: 92169157

Sample: DPT2-10 (3-4')	Lab ID: 92169	157011	Collected: 08/	15/13	12:00	Received: 08	/16/13 14:35 N	latrix: Solid	
Results reported on a "dry-weight	t" basis								
Parameters	Results	Units	Report Lim	it	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical Metho	d: EPA 80	015 Modified Pre	oarati	on Me	thod: EPA 3546			
Diesel Components Surrogates	6.5 mg/ł	kg	5	.8	1	08/16/13 16:33	08/19/13 23:09	68334-30-5	
n-Pentacosane (S)	85 %		41-1	19	1	08/16/13 16:33	08/19/13 23:09	629-99-2	
Gasoline Range Organics	Analytical Metho	d: EPA 80	015 Modified Pre	oarati	on Me	thod: EPA 5035A	/5030B		
Gasoline Range Organics <i>Surrogates</i>	ND mg/ł	kg	2	.7	1	08/21/13 09:38	08/22/13 03:57	8006-61-9	
4-Bromofluorobenzene (S)	97 %		70-1	67	1	08/21/13 09:38	08/22/13 03:57	460-00-4	
Percent Moisture	Analytical Metho	d: ASTM	D2974-87						
Percent Moisture	14.2 %		0.	10	1		08/20/13 09:03		

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176

QUALITY CONTROL DATA

•	Midway Tra 92169157	ading WBS: 41	582.1.1									
QC Batch:	GCV/722	20		Analys	is Method:	: E	PA 8015 Mo	dified				
QC Batch Method:	EPA 503	5A/5030B		Analys	is Descript	tion: G	asoline Ran	ge Organic	s			
Associated Lab Samp		2169157001, 92 2169157008, 92					2169157005	, 9216915 ⁻	7006, 9216	69157007,		
METHOD BLANK:	1033464			N	Aatrix: Soli	id						
Associated Lab Samp		2169157001, 92 2169157008, 92		, 92169157	010, 92169	9157011	2169157005	i, 9216915 ⁻	7006, 9216	69157007,		
Parame	eter		Units	Blank Resul		eporting Limit	Analyz	ed	Qualifiers			
- araint			01			-			quamere			
Casoline Range Orga	anice	ma/ka			ND							
0 0		mg/kg %			ND 87	6.0 70-167						
4-Bromofluorobenzer	ne (S) TROL SAN eter	% MPLE: 10334	65 Units	Spike Conc.	87 LCS Resu	70-167	08/21/13 2 LCS % Rec	23:00 % Rec Limits	Q	ualifiers		
4-Bromofluorobenzer	ne (S) TROL SAN eter anics	% MPLE: 10334		•	87 LCS Resu	70-167	08/21/13 2	23:00 % Rec Limits 70		ualifiers	-	
4-Bromofluorobenzer	ne (S) TROL SAM eter anics ne (S)	% MPLE: 10334 	Units	49.7	87 LCS Resu	70-167	08/21/13 2 LCS % Rec 111	23:00 % Rec Limits 70	Q -165	ualifiers	-	
4-Bromofluorobenzer	ne (S) TROL SAM eter anics ne (S)	% MPLE: 10334 	Units	49.7	87 LCS Resu	70-167	08/21/13 2 LCS % Rec 111	23:00 % Rec Limits 70	Q -165	ualifiers	-	
4-Bromofluorobenzer LABORATORY CON Parame Gasoline Range Orga 4-Bromofluorobenzer MATRIX SPIKE & MA	ne (S) TROL SAM eter anics ne (S) ATRIX SPI	WPLE: 10334 mg/kg % KE DUPLICATE 921	Units E: 10334 69157002	66 MS Spike	87 LCS Resu MSD Spike	70-167	08/21/13 2 LCS % Rec 111 90 MSD	23:00 % Rec Limits 70 70 MS	Q -165 -167 MSD	% Rec		
Gasoline Range Orga 4-Bromofluorobenzer LABORATORY CON Parame Gasoline Range Orga 4-Bromofluorobenzer MATRIX SPIKE & MA Paramete Gasoline Range Orga	ne (S) TROL SAM eter anics ne (S) ATRIX SPI	MPLE: 10334	Units E: 10334	66 MS	87 LCS Resu MSD	70-167	08/21/13 2 LCS % Rec 111 90	23:00 % Rec Limits 70 70	Q -165 -167	% Rec Limits	RPD1	Qual

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176

QUALITY CONTROL DATA

Project:	Midway Trading V	VBS: 41	582.1.1									
Pace Project No .:	92169157											
QC Batch:	OEXT/23489			Analys	is Method:	E	PA 8015 Mo	dified				
QC Batch Method:	EPA 3546			Analys	is Descript	ion: 80	015 Solid G	CSV				
Associated Lab Sam				, 92169157 , 92169157			2169157005	5, 9216915	7006, 921	69157007,		
METHOD BLANK:	1031122			N	1atrix: Soli	d						
Associated Lab Sam		,		, 92169157	010, 92169	9157011	2169157005	5, 9216915	7006, 921	69157007,		
Dorom	otor		Units	Blank Result		eporting Limit	Analyz	od	Qualifiers			
	elei		Units	Resul					Quaimers			
Param												
Diesel Components n-Pentacosane (S)		mg/kg %			ND 86	5.0 41-119						
Diesel Components n-Pentacosane (S) LABORATORY CON		% 103112	-	Spike	86 LCS	41-119	08/19/13	18:51 % Rec		Jualifiers		
Diesel Components n-Pentacosane (S) LABORATORY CON Param		% 103112	23 Units	Conc.	86	41-119	08/19/13 LCS % Rec	18:51 % Rec Limits	C	Qualifiers		
Diesel Components n-Pentacosane (S) LABORATORY CON		% 103112	-	•	86 LCS	41-119	08/19/13	18:51 % Rec Limits 49		Qualifiers		
Diesel Components n-Pentacosane (S) LABORATORY CON Param Diesel Components	eter	% 103112 mg/kg %	Units	66.7	86 LCS	41-119	08/19/13 LCS % Rec 85	18:51 % Rec Limits 49	-113	Qualifiers	-	
Diesel Components n-Pentacosane (S) LABORATORY CON Param Diesel Components n-Pentacosane (S)	eter	% 103112 mg/kg % PLICATE	Units E: 103112	24 MS	86 LCS	41-119 It	08/19/13 LCS % Rec 85 86	18:51 % Rec Limits 49 41	-113 -119			
Diesel Components n-Pentacosane (S) LABORATORY CON Param Diesel Components n-Pentacosane (S) MATRIX SPIKE & Ma	eter ATRIX SPIKE DU	% 103112 mg/kg % PLICATE 9210	Units E: 103112 69131001	Conc. 66.7 24 MS Spike	86 LCS Resu MSD Spike	41-119 It 56.9 1031125 MS	08/19/13 LCS % Rec 85 86 MSD	18:51 % Rec Limits 49 41 MS	-113 -119 MSD	% Rec		
Diesel Components n-Pentacosane (S) LABORATORY CON Param Diesel Components n-Pentacosane (S)	eter ATRIX SPIKE DU	% 103112 mg/kg % PLICATE	Units : 103112 69131001 Result	24 MS	86 LCS Resu MSD	41-119 It	08/19/13 LCS % Rec 85 86	18:51 % Rec Limits 49 41	-113 -119		RPD	Qual
Diesel Components n-Pentacosane (S) LABORATORY CON Param Diesel Components n-Pentacosane (S) MATRIX SPIKE & Ma	eter ATRIX SPIKE DU	% 103112 	Units E: 103112 69131001	Conc. 66.7 24 MS Spike	86 LCS Resu MSD Spike	41-119 It 56.9 1031125 MS	08/19/13 LCS % Rec 85 86 MSD	18:51 % Rec Limits 49 41 MS	-113 -119 MSD	% Rec Limits 10-146		Qual

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176

QUALITY CONTROL DATA

Project:	Midway Trading \	VBS: 41582.1.1					
Pace Project No.:	92169157						
QC Batch:	PMST/5774		Analysis Meth	od: /	ASTM D2974-	87	
QC Batch Method:	ASTM D2974-8	7	Analysis Desc	ription: I	Dry Weight/Pe	ercent	t Moisture
Associated Lab Sar		,)2, 92169157003, 92)9, 92169157010, 92	,	92169157005	, 921	69157006, 92169157007,
SAMPLE DUPLICA	TE: 1031636						
			92169203001	Dup			
Paran	neter	Units	Result	Result	RPD		Qualifiers
Percent Moisture		%	24.7	24.	7	0	
SAMPLE DUPLICA	TE: 1031637						
			92169070010	Dup			
Parar	neter	Units	Result	Result	RPD		Qualifiers
Percent Moisture		%	10.1	1	0	1	

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALIFIERS

Project: Midway Trading WBS: 41582.1.1

Pace Project No.: 92169157

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Acid preservation may not be appropriate for 2-Chloroethylvinyl ether, Styrene, and Vinyl chloride.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-C Pace Analytical Services - Charlotte

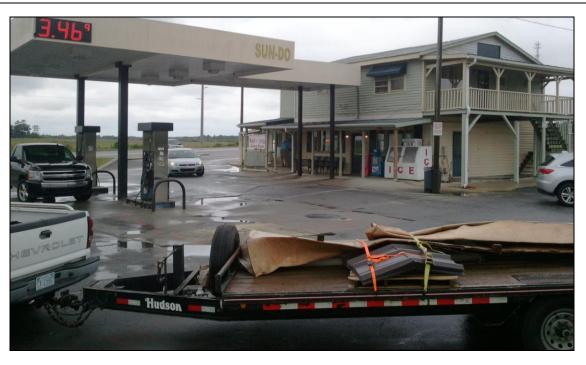
Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Midway Trading WBS: 41582.1.1 Pace Project No.: 92169157

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92169157001	DPT2-01 (7-8')	EPA 3546	OEXT/23489	EPA 8015 Modified	GCSV/15353
92169157002	DPT2-02 (1-2')	EPA 3546	OEXT/23489	EPA 8015 Modified	GCSV/15353
92169157003	DPT2-03 (1-2')	EPA 3546	OEXT/23489	EPA 8015 Modified	GCSV/15353
92169157004	DPT2-04 (2.5-3.5')	EPA 3546	OEXT/23489	EPA 8015 Modified	GCSV/15353
92169157005	DPT2-05 (3-4')	EPA 3546	OEXT/23489	EPA 8015 Modified	GCSV/15353
92169157006	DPT2-06 (2-3.5')	EPA 3546	OEXT/23489	EPA 8015 Modified	GCSV/15353
92169157007	DPT2-07 (5-6')	EPA 3546	OEXT/23489	EPA 8015 Modified	GCSV/15353
92169157008	DPT2-08 (3-4')	EPA 3546	OEXT/23489	EPA 8015 Modified	GCSV/15353
92169157009	DPT2-09 (5-6')	EPA 3546	OEXT/23489	EPA 8015 Modified	GCSV/15353
92169157010	DPT2-09 (7-8')	EPA 3546	OEXT/23489	EPA 8015 Modified	GCSV/15353
92169157011	DPT2-10 (3-4')	EPA 3546	OEXT/23489	EPA 8015 Modified	GCSV/15353
92169157001	DPT2-01 (7-8')	EPA 5035A/5030B	GCV/7220	EPA 8015 Modified	GCV/7223
92169157002	DPT2-02 (1-2')	EPA 5035A/5030B	GCV/7220	EPA 8015 Modified	GCV/7223
92169157003	DPT2-03 (1-2')	EPA 5035A/5030B	GCV/7220	EPA 8015 Modified	GCV/7223
92169157004	DPT2-04 (2.5-3.5')	EPA 5035A/5030B	GCV/7220	EPA 8015 Modified	GCV/7223
92169157005	DPT2-05 (3-4')	EPA 5035A/5030B	GCV/7220	EPA 8015 Modified	GCV/7223
92169157006	DPT2-06 (2-3.5')	EPA 5035A/5030B	GCV/7220	EPA 8015 Modified	GCV/7223
92169157007	DPT2-07 (5-6')	EPA 5035A/5030B	GCV/7220	EPA 8015 Modified	GCV/7223
92169157008	DPT2-08 (3-4')	EPA 5035A/5030B	GCV/7220	EPA 8015 Modified	GCV/7223
92169157009	DPT2-09 (5-6')	EPA 5035A/5030B	GCV/7220	EPA 8015 Modified	GCV/7223
92169157010	DPT2-09 (7-8')	EPA 5035A/5030B	GCV/7220	EPA 8015 Modified	GCV/7223
92169157011	DPT2-10 (3-4')	EPA 5035A/5030B	GCV/7220	EPA 8015 Modified	GCV/7223
92169157001	DPT2-01 (7-8')	ASTM D2974-87	PMST/5774		
92169157002	DPT2-02 (1-2')	ASTM D2974-87	PMST/5774		
92169157003	DPT2-03 (1-2')	ASTM D2974-87	PMST/5774		
92169157004	DPT2-04 (2.5-3.5')	ASTM D2974-87	PMST/5774		
92169157005	DPT2-05 (3-4')	ASTM D2974-87	PMST/5774		
92169157006	DPT2-06 (2-3.5')	ASTM D2974-87	PMST/5774		
92169157007	DPT2-07 (5-6')	ASTM D2974-87	PMST/5774		
92169157008	DPT2-08 (3-4')	ASTM D2974-87	PMST/5774		
92169157009	DPT2-09 (5-6')	ASTM D2974-87	PMST/5774		
92169157010	DPT2-09 (7-8')	ASTM D2974-87	PMST/5774		
92169157011	DPT2-10 (3-4')	ASTM D2974-87	PMST/5774		

Pace Analytical*	Sample Condition Upon		Page 1 of 2
	Document Nu F-CHR-CS-03-		Issuing Authority:
Client Name: Cuttin / ()	CDOT		Pace Huntersville Quality Office
	ersville	Eden	Raleigh
Courier: 🗌 Fed Ex 🗌 UPS 🗌 USF	PS Client Commercia	Pace Other	Optional
Custody Seal on Cooler/Box Present	t: 🗌 yes 🗹 no 🛛 Sea	ls intact: 🗌 yes	no Proj. Due Date: Proj. Name:
Packing Material: 🗹 Bubble Wrap		Other	
Thermometer Used: IR Gun T1102			Samples on ice, cooling process has begun
O C		No Correction	
Corrected Cooler Temp.: <u>3,9</u>	C Biological Tissu	e is Frozen: Yes No	Date and Initials of person examining contents:
Temp should be above freezing to 6°C		Comments:	
Chain of Custody Present:	ÍYes □No □N/		
Chain of Custody Filled Out:		A 2.	
Chain of Custody Relinquished:		A 3.	
Sampler Name & Signature on COC:	1	A 4.	
Samples Arrived within Hold Time:			
Short Hold Time Analysis (<72hr):	Yes ☑No □N/		
Rush Turn Around Time Requested:		A 7.	
Sufficient Volume:		A 8.	
Correct Containers Used:		A 9.	
-Pace Containers Used:	QYes □No □N	A	
Containers Intact:	/	A 10.	
Filtered volume received for Dissolved		A 11.	
Sample Labels match COC:	□Yes ☑No □N	A 12. Sample #7 6	wille time is 1413
-Includes date/time/ID/Analysis All containers needing preservation have been	Matrix:		
s in containers needing preservation have been	Tchecked. Yes No No	A 13.	
All containers needing preservation are four compliance with EPA recommendation.	nd to be in Yes No	Ά	
exceptions: VOA, coliform, TOC, O&G, WI-DRO	(water) 🛛 Yes 🖓 No		·
Samples checked for dechlorination:	□Yes □No ☑N	'A 14.	
Headspace in VOA Vials (>6mm):	□Yes □No □/N	^{/A} 15.	
Trip Blank Present:	□Yes □No ☑N	^{/A} 16.	
Trip Blank Custody Seals Present	□Yes □No ØN	/A	
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution:			Field Data Required? Y / N
Person Contacted:	Dat	e/Time:	
Comments/ Resolution:			
SCURF Review: PMB	Date: 8-10-13		Place label here
SRF Review: AMB	Date: 8-10-13	WO# : 9	2169157
Note: Whenever there is a discrepancy a samples, a copy of this form will be set	affecting North Carolina compliance nt to the North Carolina DEHNR		
Certification Office (i.e out of hold, inc	correct preservative, out of temp,		
incorrect cont	ands)	92169157	


F-ALL-Q-020rev.07, 15-May-2007				for any invoices not	of 1.5% per month	eing to late charges	ent terms and agre	ay paym	's NET 30 c	form you are accepting Pace	*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.	
C Sea Sam	2013 Te		(MM/DD/YY): 08/15	Sert	SIGNATURE of SAMPLER:	SIGNATURE						
ceived ce (Y/I Custoc led Ca (Y/N) aples I (Y/N)	mp in		tsha	1×91	PRINT Name of SAMPLER:	PRINT Name			A	ORIGINAL		
N) dy ooler)	, °C		\$)	ID SIGNATURE	SAMPLER NAME AND SIGNATURE	SAM			-		
							U		0		•	
< 2 <	13 4:36 3.9	8/16/13	Shild Marce	1425 7	8/12/3	Ro	D	λ		(-(° *	
	526 21	8/kd/3	when the	15,2/1600	0	ATUN agent for MODI	CATUN	Ashler	ScyA	8	J Sunnary E.	USI
SAMPLE CONDITIONS	'E TIME	DATE	ACCEPTED BY / AFFILIATION	TIME	DATE	.IATION	RELINQUISHED BY / AFFILIATION	INQUIS	REL	NTS	ADDITIONAL COMMENTS	
												12
011			K X	A P	1200	¥		5	Ł	3-4.)	DPT2-10 ("	11
010					1410				-	(-8-2	DPT2-09 (10
629					1400					5-61	DPT2-09 (9
008					1530					3-41)	DOT2-08 (00
73					1430					5-61)		7
JUU					ISIS					2-3.51)	DPT2-06 ()	6
SN1					1445					3-41	DPT2-05 (сл
(e)4					1500					2.5-3.51	DPT2-04 (4
2 WU S					1330					1-21)	DPT2-03 (ω
67					1300			-		1-2')	-	N
ŝ			<	L V	1230	8.15.13		9	×	7-8.)	12-01 (
92169157 Pace Project No./ Lab I.D.	Residual Chlorir		HCI NaOH Na ₂ S ₂ O ₃ Methanol Other Analysis Tes	# OF CONTAINE Unpreserved H ₂ SO ₄ HNO ₃	TMM SAMPLE TEMP AT	ME DATE	DATE TIME	SAMPLE TYPE (ゴの方 MATRIX CODE	Wipe Air Tissue Other	2 2	ITEM #
				RS		COMPOSITE END/GRAB	COMPOSITE	G=GRAB C=C	이 연 고 美 국 및 (see valid codes	e Water olid	SAMPLE ID	
			Preservatives	Pre			0	OMP)		0 de	Section D Required Client Information	71 (0
	Filtered (Y/N)	Analysis I	Requested Analysis Filtered			÷						
	STATE:	ST/	2818-2	Pace Protile #:		0	213100		Project Number:	Proje	Requested Due Date/TAT:	Requ
	ation A IC	Site Location	onny/Angela	Pace Project Manager:	1115	Post Parce	nadia	may	Project Name	No. of Concession, name	B100-452-384 910-4	Bhon Bhon
T OTHER	RCRA	X UST	cilo T	Pace Quote N Reference:	Brunswick	21.18	41583		Purchase Order No.:	-	Email To: beg. ashba cattinusa.co	Email
ATER DRINKING WATER	ES GROUND WATER	NPDES		Address:		814 - 148 -					Wilmington, NC 28405	3
	REGULATORY AGENCY	REGULA		Company Name:			00 7	rcc	2	Copy To:	Address 220 old Dairy	Addre
I COTEOT			87	Attention: NC	CATLIN	CCAT	Ashba	No.	Report To:	NGOT Repo	て~~/	Comp
	Τ		on:	Invoice Information:			ation:	t Inforn	Required Project Information:	Requ	Required Client Information:	Requ
of /	Page:			Section C					ם. ס	C pot		Sect
	y.	כת מככתו מופו	רוופ טרומווד-טו-טעצעטע) וא מ בבטאב בעטטעובוער. אוו ופופאמות וופוטא ווועאר עפ טעוווטופופע מטענו מפוץ.		-oi-Custody is a	The Chain					Pace Analytical	
	nt		CHAIN-OF-CUSTODY / Analytical Request Document	ISTODY /	N-OF-CU	CHAI					S	

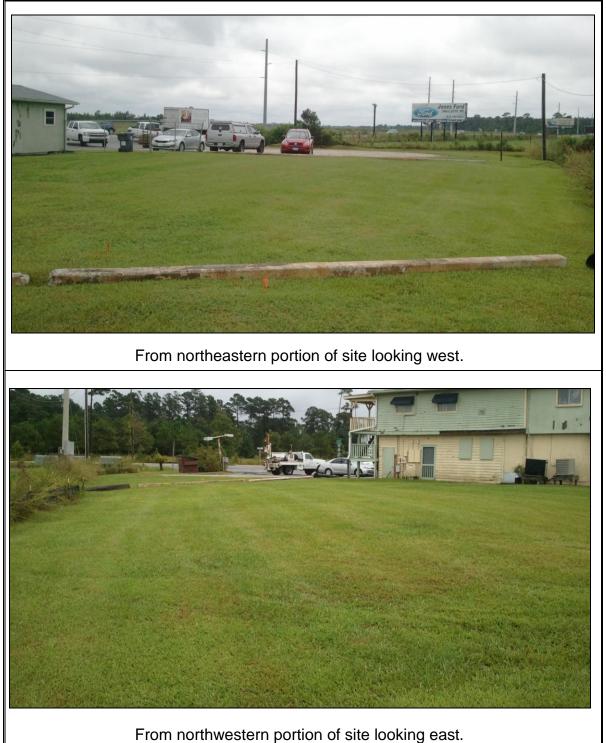
APPENDIX C

PHOTOGRAPHS

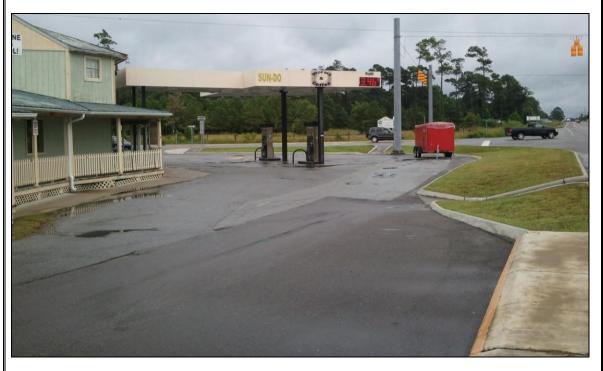
From near corner of Southport Supply Rd. (NC 211) and Midway Rd (SR 1500) looking west.

From near corner of Southport Supply Rd. (NC 211) and Midway Rd (SR 1500) looking northwest.

From near corner of Southport Supply Rd. (NC 211) and Midway Rd (SR 1500) looking west.



From near northeast property corner along Midway Rd (SR 1500) looking west along northern property line.


From northeastern portion of site looking south.

From northwestern portion of site looking southeast.

From southwestern portion of site near Southport Supply Rd. (NC 211) looking east.

APPENDIX D

SCHNABEL GEOPHYSICAL REPORT

September 4, 2013

Mr. Richard Garrett, LG Catlin Engineers and Scientists, Inc. P.O. Box 10279 Wilmington, NC 28404-0279

RE: State Project: R-5021 WBS Element: 41582.1.1 County: Brunswick Description: NC 211 from SR 1500 (Midway Road) to NC 87

Subject: Project 11821014.31, Report on Geophysical Surveys Parcel 117, Michael and Carole Richards Property, Bolivia, North Carolina

Dear Mr. Garrett:

SCHNABEL ENGINEERING SOUTH, PC (Schnabel) is pleased to present this report on the geophysical surveys we performed on the subject property. The report includes two 11x17 color figures and four 8.5x11 color figures. This study was performed in accordance with our proposal for Geophysical Surveys to Locate Possible USTs dated August 5, 2013, as approved by Terry Farr on August 7, 2013, and our agreement dated June 2, 2011. Cyrus Parker provided a verbal notice to proceed on August 6, 2013.

INTRODUCTION

The field work described in this report was performed on August 7 and August 13, 2013, by Schnabel under our 2011 contract with the NCDOT. The purpose of the geophysical surveys is to evaluate the potential presence of metal underground storage tanks (USTs) in the accessible areas of Parcel 117. Photographs of the property are included on Figure 1. The property is located in the northwest quadrant of NC 211 (Southport Supply Road SE) and SR 1500 (Midway Road SE), in Bolivia, NC (3296 Southport Supply Road SE).

The geophysical surveys consisted of an electromagnetic (EM) induction survey and a ground penetrating radar (GPR) survey. The EM survey was performed using a Geonics EM61-MK2 instrument. The EM61 is a time domain metal detector that stores data digitally for later processing and review. Sensitivity to metallic objects is dependent on the size, depth, and orientation of the buried object and the amount of noise (i.e. response from spurious metallic objects) in the area. The EM61 can generally observe a single buried 55 gallon drum at a depth of 10 feet or less. The EM61 makes measurements by creating an

schnabel-eng.com

electromagnetic pulse and then measuring the response from metallic objects with time after the pulse is generated. We recorded the response at several times after the pulse to help evaluate relative size and depth of metallic objects in the earth.

The GPR survey was performed over selected EM61 anomalies using a Geophysical Survey Systems SIR-3000 system equipped with a 400 MHz antenna to further evaluate EM responses that could indicate a potential UST.

Photographs of the equipment used are shown on Figure 2.

FIELD METHODOLOGY

Locations of geophysical data points were obtained using a sub-meter Trimble Pro-XRS differential global positioning system (DGPS). References to direction and location in this report are based on the US State Plane 1983 System, North Carolina 3200 Zone, using the NAD 83 datum, with units in US survey feet. We recorded the locations of existing site features (metal objects, signs, etc.) with the DGPS for later correlation with the geophysical data and a site plan provided by the NCDOT.

The EM61 data were collected along parallel survey lines spaced approximately 2.5 feet apart. The EM61 and DGPS data were recorded digitally using a field computer and later transferred to a desktop computer for data processing. The GPR data were collected along survey lines spaced approximately one to two feet apart in orthogonal directions over anomalous EM readings not attributed to cultural features. The GPR data were reviewed in the field to evaluate the possible presence of USTs. The GPR data also were recorded digitally and later transferred to a desktop computer for further review.

DISCUSSION OF RESULTS

The contoured EM61 data collected over Parcel 117 and the GPR survey area locations are shown on Figure 3, EM61 Early Time Gate Response, and Figure 4, EM61 Differential Response. Areas outside the colored, contoured EM61 data were not surveyed. Early time data refer to the response measured at a short time after the initial EM pulse is generated. Early time data are sensitive to all metal objects, small or large and shallow or deep, within the sensitivity range of the instrument. Differential data represent the difference in response between the top and bottom coils of the EM61 instrument at a later time after the initial pulse than early time data. Differential data naturally tend to filter out the effect of surface and very shallowly buried metallic objects. Typically, the differential response emphasizes anomalies from deeper and larger objects such as USTs.

The EM data contain multiple anomalies on the site, most of which appear to be the result of buried utilities, small pieces of metal at the ground surface or at shallow depths, or metal structures at the ground surface, including signs, guy wires, reinforced concrete slabs, etc. However, we collected GPR data over several EM anomalies of an unknown cause as shown on Figures 3 and 4 to further investigate the EM anomalies. The GPR data collected near the southeastern corner of Parcel 117 over the tank pit area indicated the presence of two known USTs, as shown on Figures 3 and 4. The identification of Known UST Nos. 1 and 2 was selected in accordance with the anomaly categories provided by the NCDOT in their letter, dated May 19, 2009, entitled "Geophysical Surveys to Identify USTs". Example GPR images from lines oriented over the marked locations of Known UST Nos. 1 and 2 are shown on

Figure 5. The GPR data suggest the tops of Known UST Nos. 1 and 2 are approximately 3.0 to 4.0 feet below ground surface and that the known USTs are about 8 feet in diameter and about 21.5 feet long, equivalent to a capacity of a 8000 gallon UST. Photographs of the approximate locations of the known USTs that were marked in the field are included on Figure 6.

CONCLUSIONS

As shown in Figures 3 and 4, the EM data we collected at Parcel 117 cover most of the planned survey area with the exception of small vegetated areas on the eastern and western portions of the site, in addition to other inaccessible areas where there are buildings and other obstacles. The EM data include responses from several visible metallic objects at grade (e.g. signs and storm sewer inlets) and reinforced concrete.

The geophysical data indicate the presence of two known USTs outside the existing right-of-way on Parcel 117. The EM and GPR data suggest Known UST Nos. 1 and 2 are about the size of a 8000-gallon capacity UST and the tops are about 3.0 to 4.0 feet below ground surface.

LIMITATIONS

These services have been performed and this report prepared for Catlin Engineers and Scientists, Inc. and the North Carolina Department of Transportation in accordance with generally accepted guidelines for conducting geophysical surveys. It is generally recognized that the results of geophysical surveys are non-unique and may not represent actual subsurface conditions.

We appreciate the opportunity to have provided these services. Please call if you need additional information or have any questions.

Sincerely,

SCHNABEL ENGINEERING SOUTH, PC

What

James W. Whitt, PG Senior Staff Geophysicist

Gary D. Rogers, PG Senior Associate

JWW:GDR Attachments: Figures (6) CC: NCDOT, Terry Fox

FILE: 6:/2011-SDE-JOBS/11821014_00_NCDOT_2011_GEOTECHNICAL_UNIT_SERVICES/11821014_31_R-5021_BRUNSWICK_COUNTY/REPORT/SCHNABEL GEOPHYSICAL REPORT ON PARCEL 117 (R-5021).DOCX

Attachments:

Figure 1 - Parcel 117 Site Photos

Figure 2 - Photos of Geophysical Equipment Used

Figure 3 - Parcel 117 EM61 Early Time Gate Response

Figure 4 - Parcel 117 EM61 Differential Response

Figure 5 - Parcel 117 Example GPR Images

Figure 6 - Parcel 117 Photos of Known UST Locations

Parcel 117 (Michael & Carole Richards Property), looking northeast

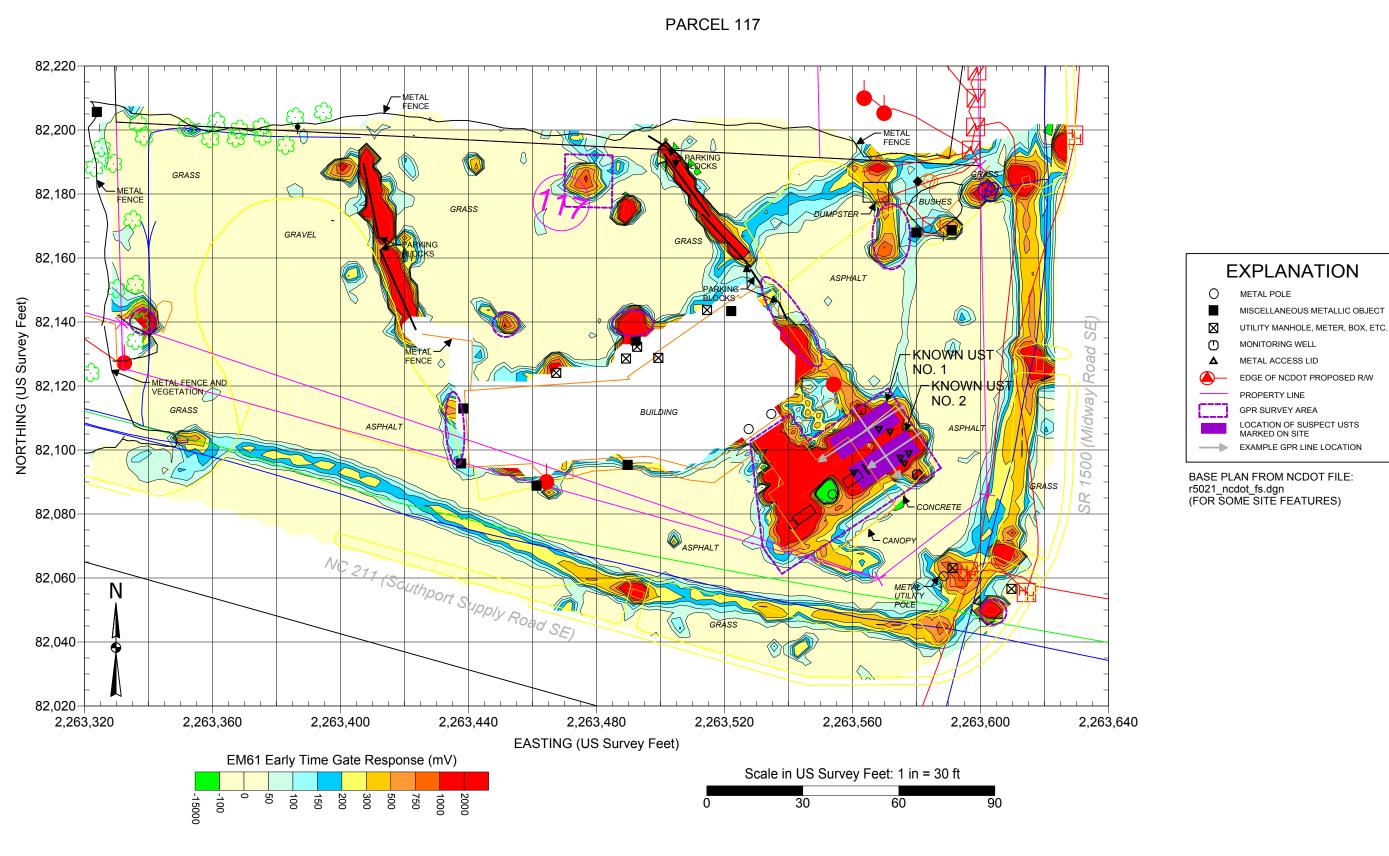
Parcel 117 (Michael & Carole Richards Property), looking northwest

STATE PROJECT R-5021 NC DEPT. OF TRANSPORTATION BRUNSWICK COUNTY, NC PROJECT NO. 11821014.31

PARCEL 117 SITE PHOTOS

FIGURE 1

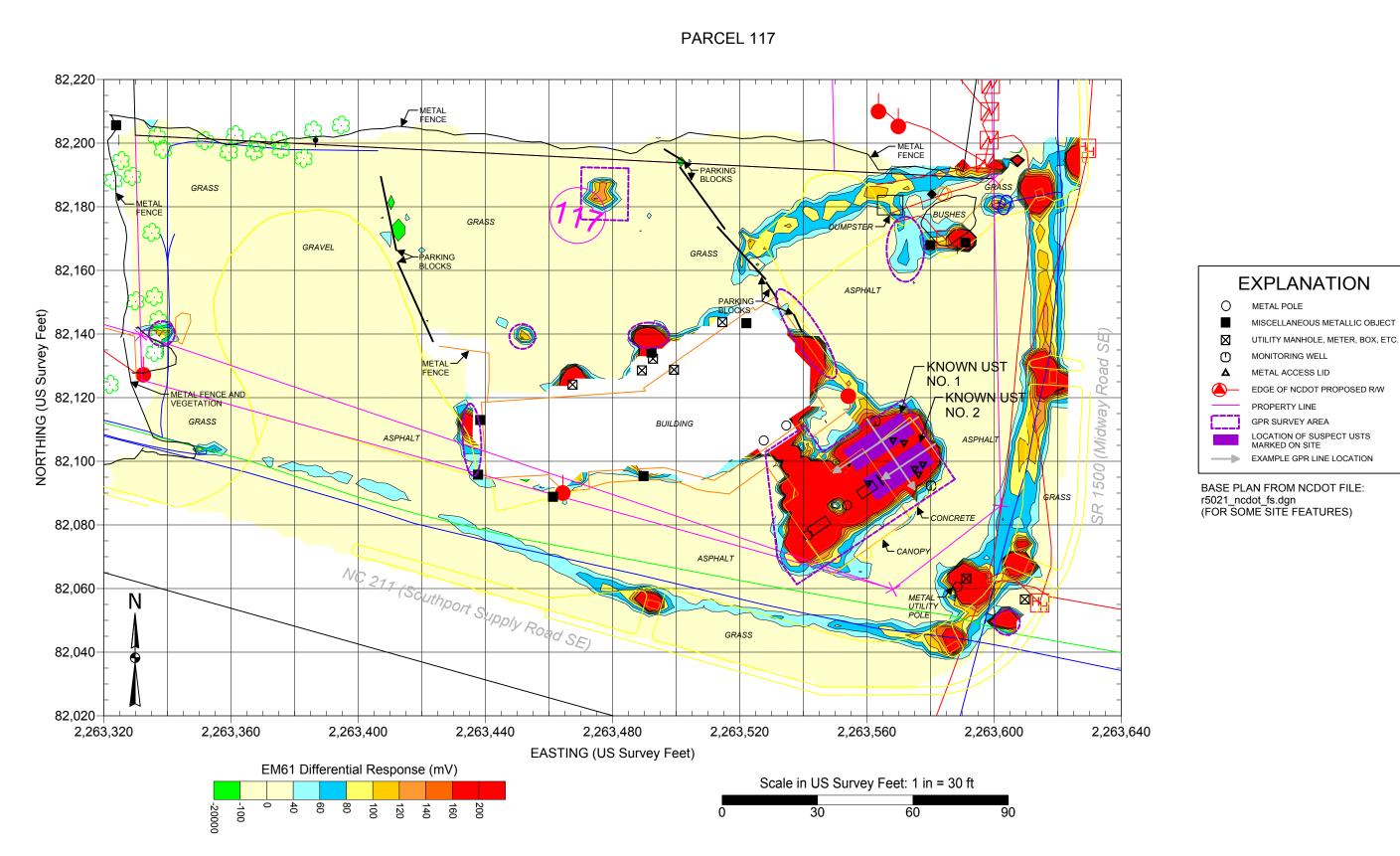
Geonics EM61-MK2 Metal Detector with Trimble DGPS Unit


GSSI SIR-3000 Ground-Penetrating Radar with 400 MHz Antenna

Note: Stock photographs – not taken on site.

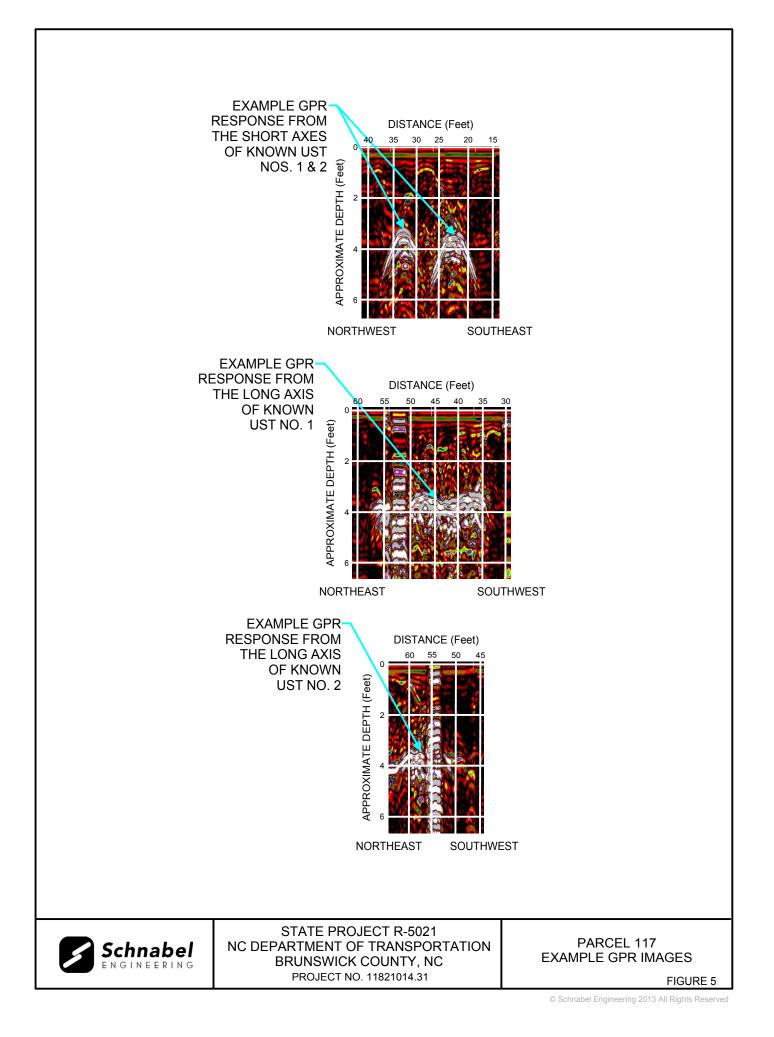
STATE PROJECT R-5021 NC DEPT. OF TRANSPORTATION BRUNSWICK COUNTY, NC PROJECT NO. 11821014.31 PHOTOS OF GEOPHYSICAL EQUIPMENT USED

FIGURE 2



Note: The contour plot shows the earliest and more sensitive time gate of the EM61 bottom coil/channel in millivolts (mV). The EM data were collected on August 7 and August 13, 2013, using a Geonics EM61-MK2 instrument. Positioning for the EM61 survey was provided using a submeter Trimble ProXRS DGPS system. Coordinates are in the US State Plane 1983 System, North Carolina Zone 3200, using the NAD 1983 datum. GPR data were acquired on August 13, 2013, using a Geophysical Survey Systems SIR 3000 equipped with a 400 MHz antenna.

STATE PROJECT R-5021 NC DEPARTMENT OF TRANSPORTATION BRUNSWICK COUNTY, NC PROJECT NO. 11821014.31



Note: The contour plot shows the difference, in millivolts (mV), between the readings from the top and bottom coils of the EM61. The difference is taken to reduce the effect of shallow metal objects and emphasize anomalies caused by deeper metallic objects, such as drums and tanks. The EM data were collected on August 7 and August 13, 2013, using a Geonics EM61-MK2 instrument. Positioning for the EM61 survey was provided using a submeter Trimble ProXRS DGPS system. Coordinates are in the US State Plane 1983 System, North Carolina 3200 Zone, using the NAD 1983 datum. GPR data were acquired on August 13, 2013, using a Geophysical Survey Systems SIR 3000 equipped with a 400 MHz antenna.

STATE PROJECT R-5021 NC DEPARTMENT OF TRANSPORTATION BRUNSWICK COUNTY, NC PROJECT NO. 11821014.31

Parcel 117 (Michael & Carole Richards Property), looking southwest. Photo shows approximate marked location of Known USTs Nos. 1 & 2 near the southeast corner of the parcel.

Parcel 117 (Michael & Carole Richards Property), looking northwest. Photo shows approximate marked location of Known USTs Nos. 1 & 2 near the southeast corner of the parcel.

STATE PROJECT R-5021 NC DEPT. OF TRANSPORTATION BRUNSWICK CO., NORTH CAROLINA PROJECT NO. 11821014.31

PARCEL 117 PHOTOS OF KNOWN UST LOCATIONS FIGURE 6