CONTENTS

 $\mathbf{\Lambda}$

566B

N

R

CE

FEREN

REJ

SHEET NO. 2 2A - 3 Δ 5-7 8-21 22-29 30

DESCRIPTION TITLE SHEET LEGEND (SOIL & ROCK) SUPPLEMENTAL LEGEND (GSI) SITE PLAN PROFILE CROSS SECTION(S) BORE LOGS, CORE LOGS, CORE PHOTOS ROCK TEST RESULTS SITE PHOTOS

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY WATAUGA

PROJECT DESCRIPTION BRIDGE NO. 5 ON -L- (NC 105) OVER WATAUGA RIVER

STATE	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
N.C.	R-2566BA	1	31

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FILLD BORING LOGS, ROCK CORES AND SOLT TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL LONGINEENING UNIT AT (1991 707-650, THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARLY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN STU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION, THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSDERABLY WITH TIME ACCORDING TO CLIMATIC CANDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DETAILS ANE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT DAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSIONION OF THE DOES ANT WARE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONAL COMPENSIONION FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SIDE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:
 THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.
 BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAINS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

PER	SONNEL
-----	--------

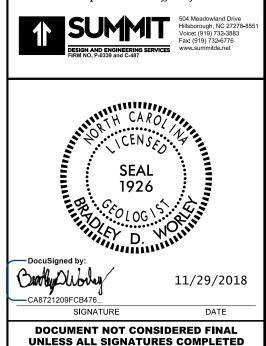
A. GROSS, GIT

L. GONZALEZ-CASTILLO

D. SUTTON

M. SHIPMAN, EI

INVESTIGATED BY <u>B. WORLEY, PG</u>


DRAWN BY _____. WORLEY, PG

CHECKED BY _____. D. DEWEY, PE

SUBMITTED BY <u>B. WORLEY, PG</u>

DATE _____ NOVEMBER, 2018

Prepared in the Office of:

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT SUBSURFACE INVESTIGATION

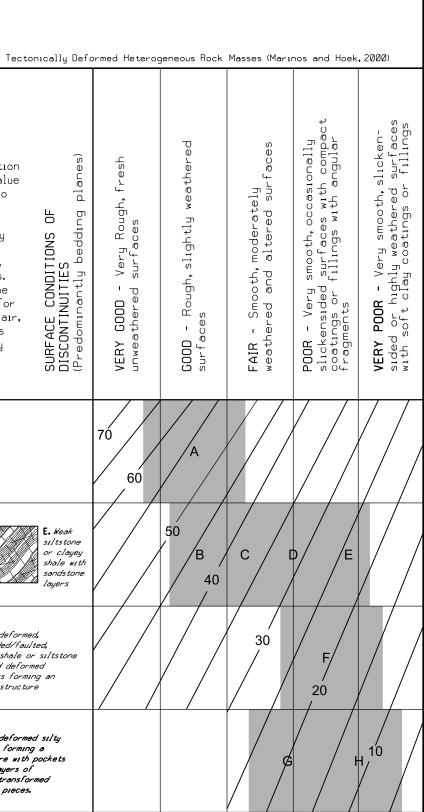
SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

			SOIL	DESCRIP	TION						GRA	ADATION						ROCK DE	SCRIPTION
			ONSOLIDATED, SEMI-C						WELL GRADED - INDICAT										WOULD YIELD SPT REFUSAL IF TESTED ASTAL PLAIN MATERIAL WOULD YIELD S
ACCOR	DING TO	THE STAN	NDARD PENETRATION	TEST (AASHTO	T 206, ASTM	D1586). SOIL	CLASSIFIC	CATION	UNIFORMLY GRADED - IN GAP-GRADED - INDICATE						SPT REFUSA	AL IS PENE	ETRATION B	BY A SPLIT SPOON SA	AMPLER EQUAL TO OR LESS THAN 0.1 F
			ASHTO SYSTEM. BASI TURE, MOISTURE, AASH									TY OF GRAI						MATERIAL, THE TRA ATHERED ROCK.	ANSITION BETWEEN SOIL AND ROCK I
0001515	AS MINE	RALOGICAL	. COMPOSITION, ANGU	LARITY, STRUC	TURE, PLASTIC	ITY.ETC. FOR	R EXAMPLE.					SOIL GRAINS IS D		THE TERMS				Y DIVIDED AS FOLLOW	VS:
	VERY ST		LECEND AND						ANGULAR, SUBAN						WEATHERED	222		NON-COASTAL PLA	IN MATERIAL THAT WOULD YIELD SPT
GENERAL		SOIL	LEGEND AND		AY MATERIALS					MIN	NERALOGIC	CAL COMPOS	ITION		ROCK (WR)		5.5	2	GRAIN IGNEOUS AND METAMORPHIC ROCH
CLASS.			(PASSING #200)		PASSING #200)	ORC	GANIC MATERI	ALS	MINERAL NAM	MES SUCH	H AS QUARTZ,	FELDSPAR, MICA, 1	TALC, KAOLIN, ET	с.	CRYSTALLINE ROCK (CR)	ē		STELD SPT	REFUSAL IF TESTED. ROCK TYPE INCL
GROUP	A-1	A-3	A-2	A-4 A	-5 A-6 A-7	A-1, A-2	A-4, A-5		ARE USED IN	I DESCRI		THEY ARE CONSID	DERED OF SIGNIF	FICANCE.			<u>ZZ ZZ</u>	GNEISS, GABBRO, SO	CHIST,ETC. GRAIN METAMORPHIC AND NON-COASTAL
CLASS.	A-1-a A		A-2-4 A-2-5 A-2-6	4-2-7	A-7-5, A-7 <u>-</u> 6	A-3	A-6, A-7					ESSIBILITY			NON-CRYSTAL ROCK (NCR)			SEDIMENTARY ROCI	K THAT WOULD YEILD SPT REFUSAL IF
SYMBOL		0000		\mathbf{S}							MPRESSIBLE COMPRESSIBLE	-	LL < 31 LL = 31 - 50	7	COASTAL PL	AIN			DES PHYLLITE, SLATE, SANDSTONE, ETC. EDIMENTS CEMENTED INTO ROCK, BUT M
% PASSING	000000	0000	20020-002000 PM / PM							LY COMPR		-	LL > 50		SEDIMENTAR			SPT REFUSAL. ROO	CK TYPE INCLUDES LIMESTONE, SANDST
= 1Ø	50 MX					GRANULAR	SILT- CLAY	MUCK.		PE	ERCENTAG	E OF MATER	RIAL		(CP)			SHELL BEDS, ETC.	HERING
=40 =200		0 MX 51 MN 5 MX 10 MX	35 MX 35 MX 35 MX 3	35 MX 36 MN 36	MN 36 MN 36 MI	SOILS	SOILS	PEAT	ORGANIC MATERIAL		GRANULAR SOILS	SILT - CLAY SOILS	OTHER M		- FREGU				
MATERIAL									TRACE OF ORGANIC M		2 - 3%	3 - 5%	TRACE	1 - 10%	FRESH		IF CRYSTAL		ITS MAY SHOW SLIGHT STAINING. ROCK R
PASSING #40						5011 0	WITH		LITTLE ORGANIC MAT		3 - 5%	5 - 12%	LITTLE	10 - 20%	VERY SLIGHT	ROCK GE	NERALLY F	RESH, JOINTS STAINED,	SOME JOINTS MAY SHOW THIN CLAY COA
LL PI	— 6 М)	K NP	40 MX 41 MN 40 MX 10 MX 10 MX 11 MN			4		HIGHLY	MODERATELY ORGANIC HIGHLY ORGANIC		5 - 10% > 10%	12 - 20% > 20%	SOME HIGHL Y	20 - 35% 35% AND ABOVE	(V SLI.)				SHINE BRIGHTLY. ROCK RINGS UNDER HAN
GROUP INDEX	0 11/		0 4 M		MX 16 MX NO M			ORGANIC			GROU	ND WATER					RYSTALLINE		AND DICCOLODATION EXTENDS INTO DOC
			8 41	A 0 MA 12	MA 10 MA NO MA	ORG		SOILS	$\overline{\nabla}$						SLIGHT (SLI.)				AND DISCOLORATION EXTENDS INTO ROCK IN GRANITOID ROCKS SOME OCCASIONAL
USUAL TYPES OF MAJOR	STONE FF			SILTY	CLAYEY	MAT	TER					ORE HOLE IMMEDIA		(ILLING		CRYSTALS	.s are duli	L AND DISCOLORED. CF	RYSTALLINE ROCKS RING UNDER HAMMER
MATERIALS	SANE	SAND	GRAVEL AND SAND	SOILS	SOILS							EL AFTER <u>24</u>			MODERATE				SCOLORATION AND WEATHERING EFFECTS.
GEN. RATING		EXCEL	LENT TO GOOD	FAI	r to poor	FAIR TO	POOR	UNSUITABLE	<u> </u>	PERCH	HED WATER, SA	TURATED ZONE, OF	R WATER BEARIN	G STRATA	(MOD.)				DULL AND DISCOLORED, SOME SHOW CLAY. SHOWS SIGNIFICANT LOSS OF STRENGTH (
AS SUBGRADE						POOR				SPRIN	IG OR SEEP						ESH ROCK.		
		P1 OF	A-7-5 SUBGROUP IS ≤						0 **				0.0		MODERATELY				R STAINED. IN GRANITOID ROCKS.ALL FE
			CONSISTEN							M	1ISCELLAN	EOUS SYMB	ULS		SEVERE (MOD. SEV.)				KAOLINIZATION. ROCK SHOWS SEVERE LOS ST'S PICK. ROCK GIVES "CLUNK" SOUND WH
PRIMARY	SOIL T	YPE	COMPACTNESS OR		OF STANDARD ION RESISTENC		E OF UNC RESSIVE S		ROADWAY EMB	3ANKMENT	T (RE) 25/025	5 DIP & DIP DIF	RECTION					YIELD SPT REFUSAL	
			CONSISTENCY		I-VALUE)		(TONS/FT		WITH SOIL DE	SCRIPTIC	on 🏳				SEVERE				R STAINED. ROCK FABRIC CLEAR AND EV
GENER	ALLY		VERY LOOSE		< 4 TO 10				SOIL SYMBOL			SPT OPTOMT TEST BOI VST PMT		SLOPE INDICATOR	(SEV.)				IN GRANITOID ROCKS ALL FELDSPARS AR STRONG ROCK USUALLY REMAIN.
GRANU			LOOSE MEDIUM DENSE		TO 10 1 TO 30		N/A						~					YIELD SPT N VALUES	
MATER (NON-C	IAL OHESIVE		DENSE	30	0 TO 50				ARTIFICIAL F			AUGER BORING		CONE PENETROMETER TEST	VERY				R STAINED. ROCK FABRIC ELEMENTS ARE
			VERY DENSE		> 50							0005 000000	-		SEVERE (V SEV.)				SOIL STATUS, WITH ONLY FRAGMENTS OF F ROCK WEATHERED TO A DEGREE THAT (
GENER			VERY SOFT SOFT		< 2 2 TO 4		< 0.25 0.25 TO 0		- INFERRED SOI	L BUUND		← CORE BORING	1	SOUNDING ROD	(V SEV.)				MAIN. <u>IF TESTED, WOULD YIELD SPT N VAL</u>
SILT-C	LAY		MEDIUM STIFF		TO 8		Ø.5 TO 1	.0	INFERRED ROOM	CK LINE	MW ()	MONITORING W		TEST BORING WITH CORE	COMPLETE	ROCK REI	DUCED TO	SOIL. ROCK FABRIC NO	DT DISCERNIBLE, OR DISCERNIBLE ONLY IN
MATER (COHES			STIFF VERY STIFF		TO 15 TO 30		1 TO 2 2 TO 4					PIEZOMETER						TRATIONS. QUARTZ MAY	Y BE PRESENT AS DIKES OR STRINGERS.
CONES			HARD		> 30		> 4		TTTTT ALLUVIAL SOI	L BUUND	DARY 🛆	INSTALLATION		SPT N-VALUE	L	HLSU HN	N EXAMPLE.		
			TEXTURE	OR GRA	IN SIZE					RE	ECOMMEND	ATION SYME	BOLS		1				IARDNESS
U.S. STD. S	IEVE SU	ZE	4 1	0 40	60 20	0 270					LASSIFIED EX	CAVATION -		IED EXCAVATION -	VERY HARD			HED BY KNIFE OR SHA WS OF THE GEOLOGIST	RP PICK. BREAKING OF HAND SPECIMENS
OPENING (M				00 0.42	0.25 0.0						UITABLE WAST			E, BUT NOT TO BE HE TOP 3 FEET OF	HARD				NLY WITH DIFFICULTY. HARD HAMMER BLC
BOULD	FR	COBBLE	GRAVEL	COARSE	FIN		SILT	CLAY	SHALLOW UNDERCUT		LASSIFIED EX(CAVATION - RADABLE ROCK		NT OR BACKFILL			ACH HAND SP		
(BLDR		(COB.)	(GR.)	SAND (CSE. SD.	SAN (F S	, ו טא	SL.)	(CL.)				EVIATIONS			MODERATELY				GOUGES OR GROOVES TO 0.25 INCHES DEE
GRAIN M	м 30	15	75 2	.0	0.25	0.05	0.005		AR - AUGER REFUSAL		MED M		VST - VA	ANE SHEAR TEST	HARD		ED BT HARL		IST'S PICK. HAND SPECIMENS CAN BE DET
SIZE I			3	.0	0.20	0.05	0.000		BT - BORING TERMINATE	D		MICACEOUS	WEA W	EATHERED	MEDIUM	CAN BE (GROOVED OF	R GOUGED 0.05 INCHES	S DEEP BY FIRM PRESSURE OF KNIFE OR
		รดบ	MOISTURE ·	CORREL	ATION OF	TERMS			CL CLAY	NI TECT		MODERATELY		T WEIGHT	HARD				PEICES 1 INCH MAXIMUM SIZE BY HARD B
SOTI	MOIST	URE SCAL		MOISTURE					CPT - CONE PENETRATIO CSE COARSE	NIESI	ORG 0	IN PLASTIC IRGANIC		UNIT WEIGHT	COLT			GIST'S PICK.	KNIFE OR PICK. CAN BE EXCAVATED IN F
		G LIMITS		RIPTION	GUIDE FOR	FIELD MOI	STURE DES	SCRIPTION	DMT - DILATOMETER TES	JT		PRESSUREMETER T	EST <u>SAMPL</u>	E ABBREVIATIONS	SOFT				BY MODERATE BLOWS OF A PICK POINT.
			- 541	JRATED -		IQUID: VERY	WET USUA		DPT - DYNAMIC PENETRA e - VOID RATIO	TION TES		SAPROLITIC	S - BULH	< _IT SPOON		PIECES C	CAN BE BRC	OKEN BY FINGER PRESS	SURE.
			(Sr	AT.)		OW THE GRO			F - FINE			LT, SILTY		ELBY TUBE	VERY SOF T				CAVATED READILY WITH POINT OF PICK. F
PLASTIC	- + 10	QUID LIMI	IT						FOSS FOSSILIFEROUS		SLI SI		RS - ROO		SUFT	FINGERNA		1235 CHIN DE DRUKEN I	BY FINGER PRESSURE. CAN BE SCRATCHE
RANGE <			- WET	- (W)		REQUIRES I			FRAC FRACTURED, FRAC FRAGS FRAGMENTS	TURES		IRICONE REFUSAL		COMPACTED TRIAXIAL	—	FRACTI	URE SPA	ACING	BEDDING
(PI) PL	_ 🔶 PL	ASTIC LI	MIT		HITHIN OF		TONE		HI HIGHLY		V - VER			ATIO	TERM			SPACING	TERM T
			- MOI	ST - (M)		OR NEAR OF		TOTUDE	EO	UIPME	NT USED	ON SUBJEC	T PROJECT		VERY WID	JE		E THAN 10 FEET	VERY THICKLY BEDDED
10		TIMUM MO	JISTURE	51 - (14)	SULID; HI	UR NEAR UP		ISTURE	DRILL UNITS:	ADVAN	NCING TOOLS:		HAMMER TYP	E:	WIDE MODERATI	ELY CLOSE		: TO 10 FEET 1 TO 3 FEET	THICKLY BEDDED 1.5 THINLY BEDDED 0.16
51	- + 5"	INTINKAGE			DEQUIDED	ADDITIONAL			CME-45C		CLAY BITS		X AUTOM	ATIC MANUAL	CLOSE		0.	.16 TO 1 FOOT	VERY THINLY BEDDED 0.03
			- DRY	- (D)		TIMUM MOIS		J			6" CONTINUOUS	FLIGHT AUGER	CORE SIZE:		VERY CLO	JSE	LESS	THAN 0.16 FEET	THICKLY LAMINATED 0.008 THINLY LAMINATED < 0
			n	LASTICIT					CME-55		8" HOLLOW AUG	ERS	Соле 5122.	П-н	<u> </u>			INDUF	RATION
									X CME-550X		HARD FACED FI				FOR SEDIMF	NTARY ROC	CKS, INDUR		NING OF MATERIAL BY CEMENTING, HEA
NO	N PLAST	пс	PLA	STICITY INDE 0-5	x (PI)	DF	VERY LOW				TUNGCARBIDE		×-N Q						FINGER FREES NUMEROUS GRAINS:
SL	IGHTLY	PLASTIC		6-15			SLIGHT		VANE SHEAR TEST		_		HAND TOOLS:	:	FRIAB			GENTLE BLOW	BY HAMMER DISINTEGRATES SAMPLE.
	DERATEL GHLY PL	LY PLAST	IC	16-25 26 OR MORE			MEDIUM HIGH				CASING X			HOLE DIGGER	MODE	RATELY IN			E SEPARATED FROM SAMPLE WITH STE
	JULI PL						1101		PORTABLE HOIST		TRICONE	• STEEL TEETH		AUGER					Y WHEN HIT WITH HAMMER.
—				COLOR							TRICONE	TUNGCARB.	SOUNDI	ING ROD	INDUR	₹ATED			IFFICULT TO SEPARATE WITH STEEL PI BREAK WITH HAMMER.
			UDE COLOR OR COL								CORE BIT		VANE S	SHEAR TEST					
м	IODIFIER	IS SUCH A	AS LIGHT, DARK, STR	REAKED, ETC. 4	RE USED TO	DESCRIBE A	PPEARANCE	Ξ.							EXTRE	EMELY INDU	JURATED		R BLOWS REQUIRED TO BREAK SAMPLE; (S ACROSS GRAINS.
L	_																	/_	

SHEET NO.

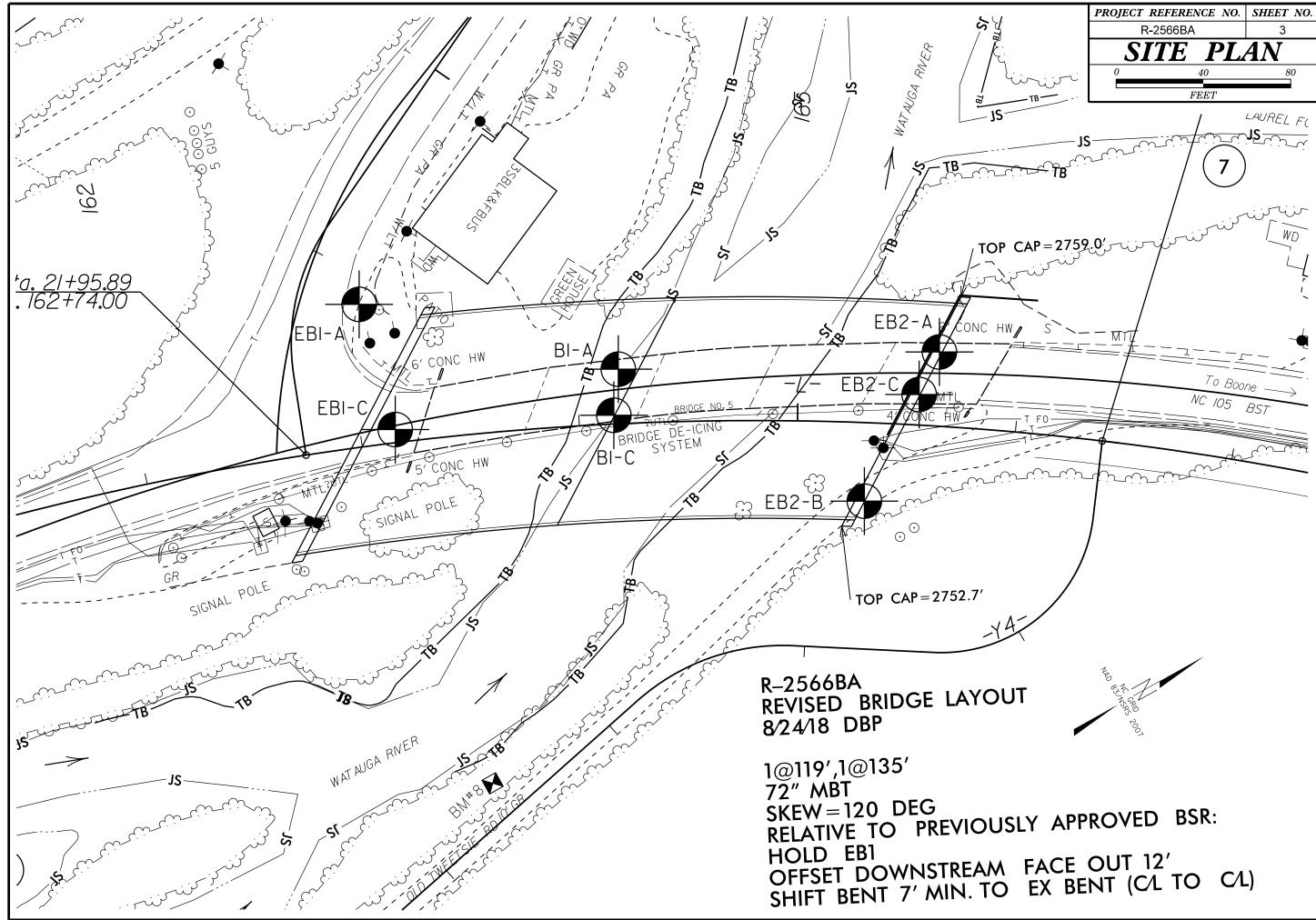
2

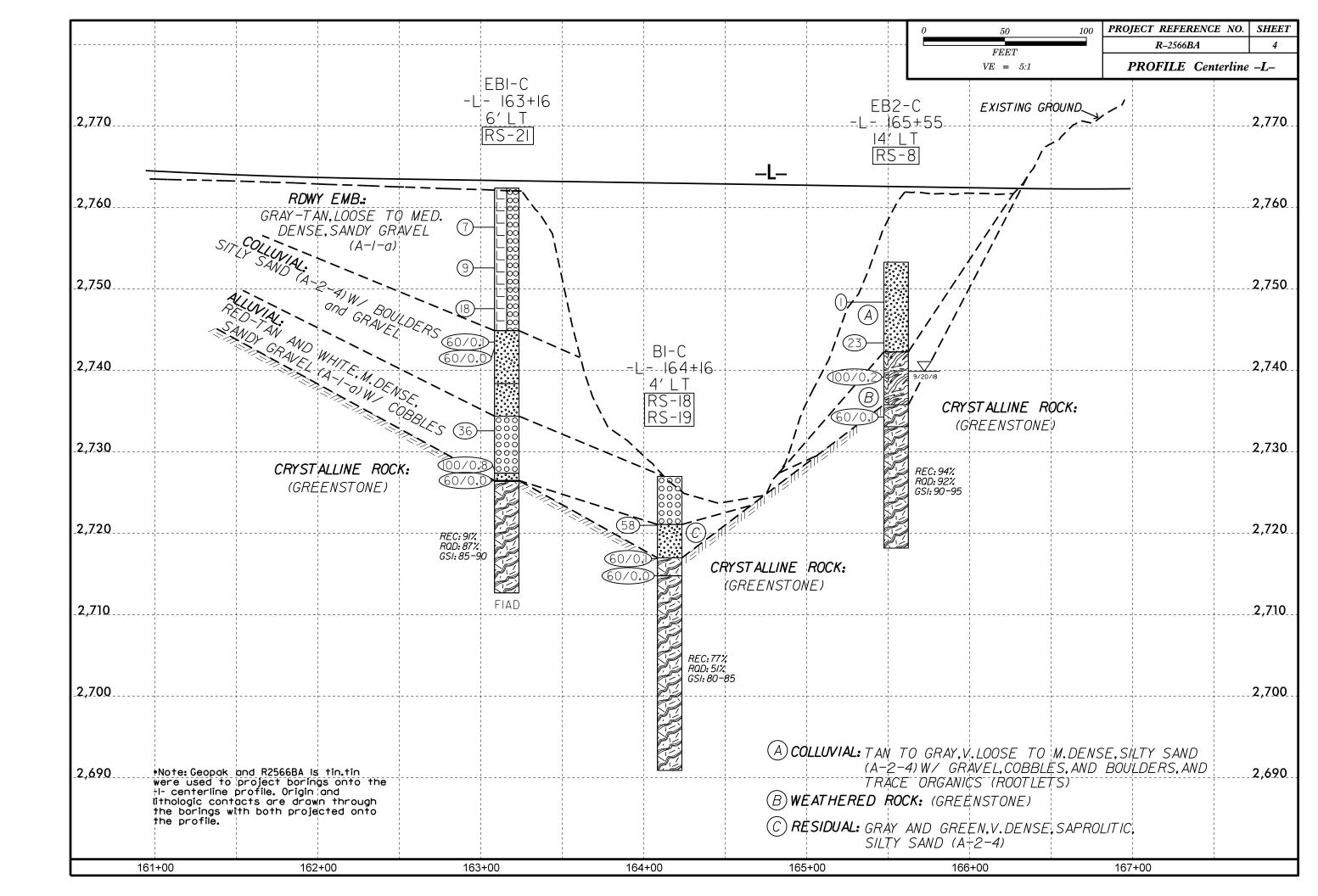
DATE: 8-15-14

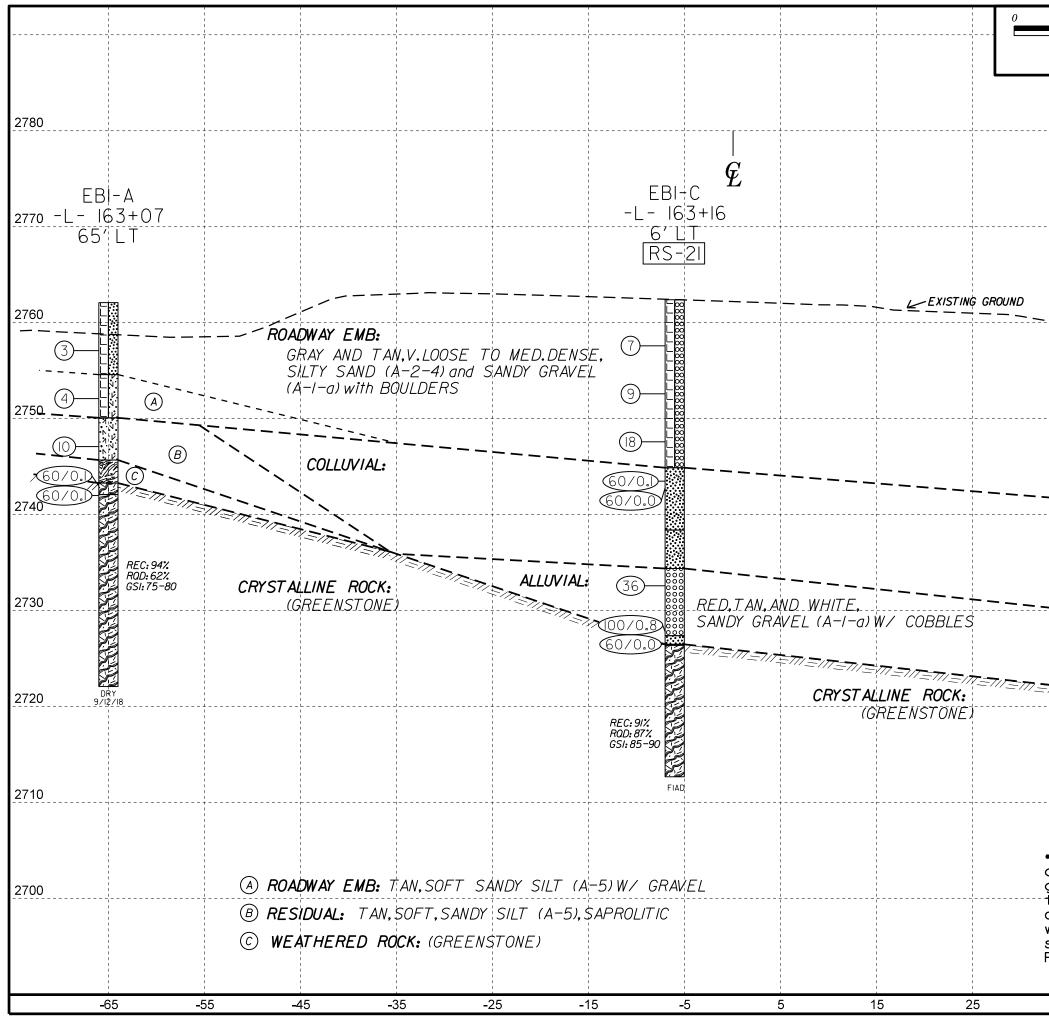

PROJECT REFERENCE NO.

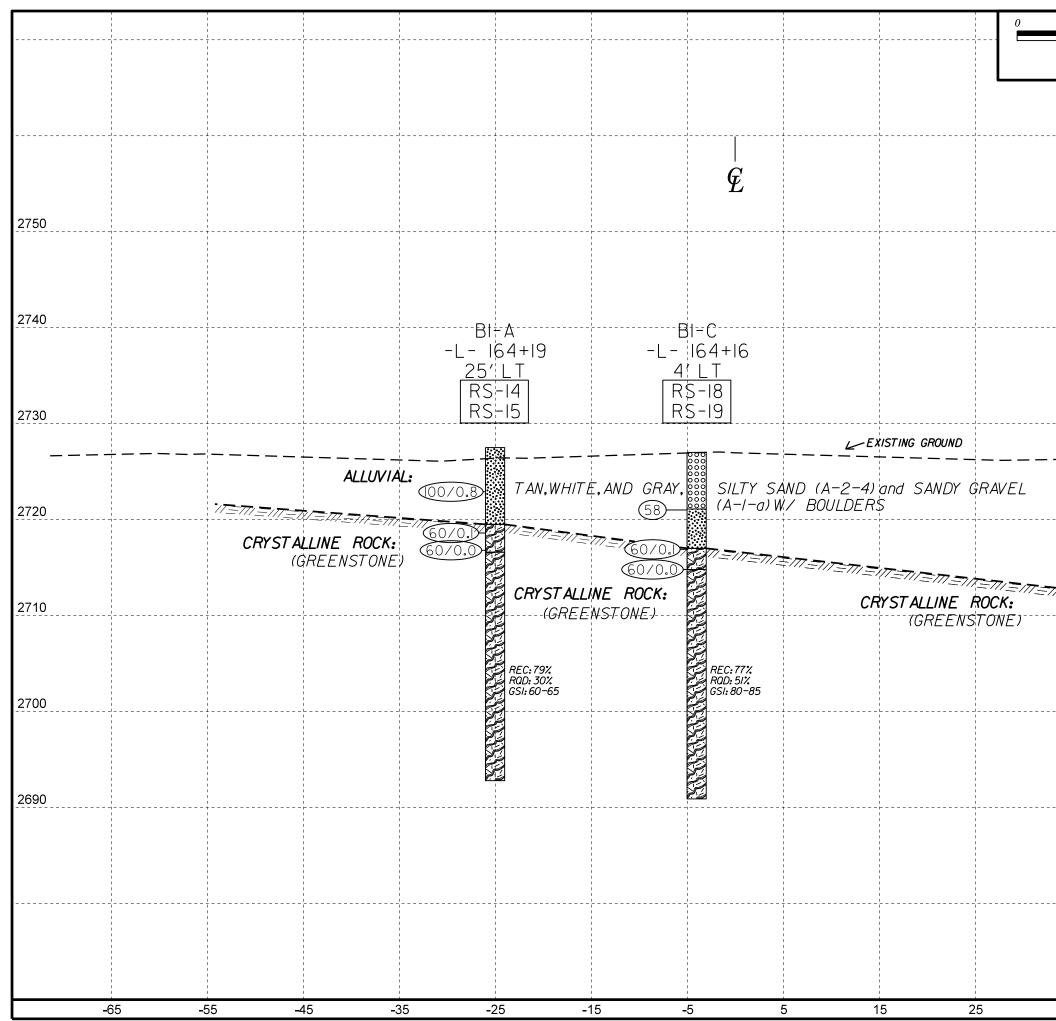
	TERMS AND DEFINITIONS
ED. AN INFERRED D SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
1 FOOT PER 60 IS OFTEN	AQUIFER - A WATER BEARING FORMATION OR STRATA.
15 OF TEN	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
T N VALUES >	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
OCK THAT	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND
NCLUDES GRANITE,	SURFACE.
AL PLAIN	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
IF TESTED. C.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
MAY NOT YIELD STONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
	$\underline{\text{DIKE}}$ - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
RINGS UNDER	$\underline{\text{DIP}}$ - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.
COATINGS IF OPEN, HAMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
DCK UP TO AL FELDSPAR	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
R BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
IS. IN AY. ROCK HAS	\underline{FLOAT} - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.
H AS COMPARED	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
LOSS OF STRENGTH WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
EVIDENT BUT	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.
ARE KAOLINIZED	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
RE DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
DF STRONG ROCK T ONLY MINOR	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM.
VALUES < 100 BPF	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
IN SMALL AND	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
S. SAPROLITE IS	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
NS REQUIRES	
BLOWS REQUIRED	<u>SILL</u> - AN INTRUSIVE BODY OF IONEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT. THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUGED ROCKS.
DEEP CAN BE DETACHED	$\underline{\mathrm{SLICKENSIDE}}$ - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
OR PICK POINT. BLOWS OF THE	STANDARD PENETRATION TEST (PENETRATION RESISTANCE)(SPI) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL
BEOMO OF THE	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
N FRAGMENTS NT. SMALL, THIN	<u>STRATA CORE RECOVERY (SREC.)</u> - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
. PIECES 1 INCH HED READILY BY	STRATA ROCK DUALITY DESIGNATION (SROD) - A MEASURE OF ROCK DUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EDUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
	BENCH MARK: See Note
THICKNESS	
4 FEET 1.5 - 4 FEET	ELEVATION: FEET
.16 - 1.5 FEET 03 - 0.16 FEET	NOTES:
08 - 0.03 FEET	•Collar elevations dervied using GeoPak and the TIN file
< 0.008 FEET	(R2566BA_Is_tin.tin)
	 Cross sections were cut/drawn using GeoPak, the TIN file (R2566BA_ls_tin.tin), and the Microstation DGN file
EAT, PRESSURE, ETC.	(R-2566BA_2span bridge layout_20180824.dan). The DGN
	was supplied by NCDOT Geotechnical Asheville Field Office
TEEL PROBE;	on October 25,2018.
PROBE:	

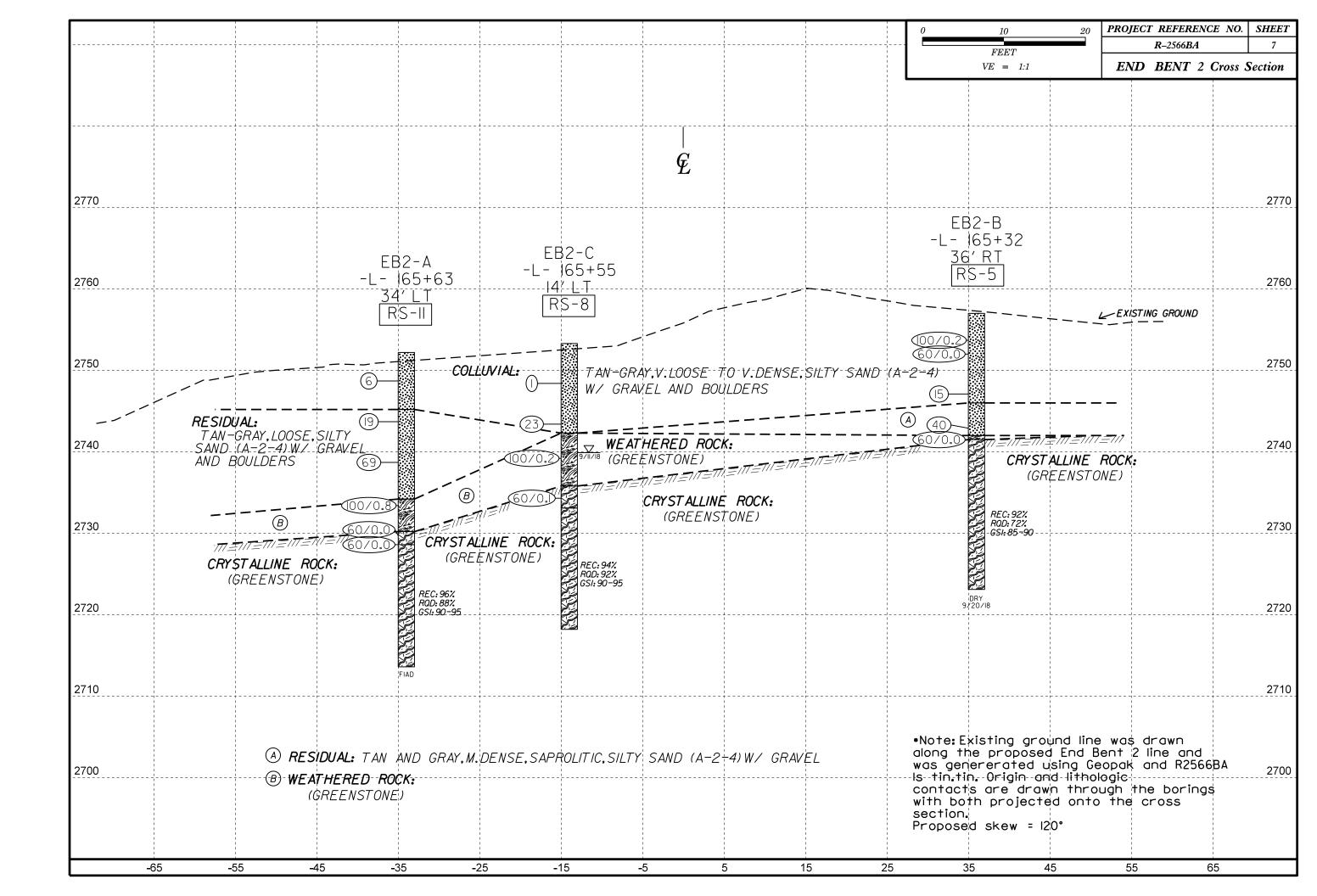
NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT SUBSURFACE INVESTIGATION


SUPPLEMENTAL LEGEND, GEOLOGICAL STRENGTH INDEX (GSI) TABLES FROM AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS


AASHTO LRFD Figure 10.4.6.4-1 — Determination of GSI for Jointed	Rock Mass (Mar)	nos and Hoek,	2000)			AASHTO LRFD Figure 10.4.6.4-2 — Determination of GSI for Te
GEOLOGICAL STRENGTH INDEX (GSI) FOR JOINTED ROCKS (Hoek and Marinos, 2000) From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Quoting a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavorable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced if water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis.	VERY GOOD Very rough, fresh unweathered surfaces	GOOD Rough, slightly weathered, iron stained surfaces	FAIR Smooth, moderately weathered and altered surfaces	POOR Slickensided, highly weathered surfaces with compact coatings or fillings or angular fragments	VERY POOR Slickensided, highly weathered surfaces with soft clay coatings or fillings	GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos. P and Hoek E., 2000) From a description of the lithology, structure and surface conditions (particularly of the bedding planes), choose a box in the chart. Locate the position in the box that corresponds to the condition of the discontinuities and estimate the average value of GSI from the contours. Do not attempt to be too precise. Quoting a range from 33 to 37 is more realistic than giving GSI = 35. Note that the Hoek-Brown criterion does not apply to structurally controlled failures. Where unfavourably oriented continuous weak planar discontinuities are present, these will dominate the behaviour of the rock mass. The strength of some rock masses is reduced by the presence of groundwater and this can be allowed for by a slight shift to the right in the columns for fair poor and very poor conditions. Water pressure does not change the value of GSI and it is dealt with by using effective stress analysis.
STRUCTURE	DE	CREASING S	1			COMPOSITION AND STRUCTURE
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities	90			N/A	N/A	A. Thick bedded, very blocky sandstone The effect of pelitic coatings on the bedding planes is minimized by the confinement of the rock mass. In shallow tunnels or slopes these bedding planes may cause structurally controlled instability.
BLOCKY - well interlocked un- disturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets		70 60				B. Sand- stone with thin inter-
VERY BLOCKY - interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets			50			layers of sultstone
BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity			40	30		C, D, E, and G - may be more or less folded than illustrated but this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H .
DISINTEGRATED - poorly inter- locked, heavily broken rock mass with mixture of angular and rounded rock pieces				20		G. Undisturbed silty or clayey shale with or without a few very thin sandstone layers
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes	N/A	N/A			10	Means deformation after tectonic disturbance



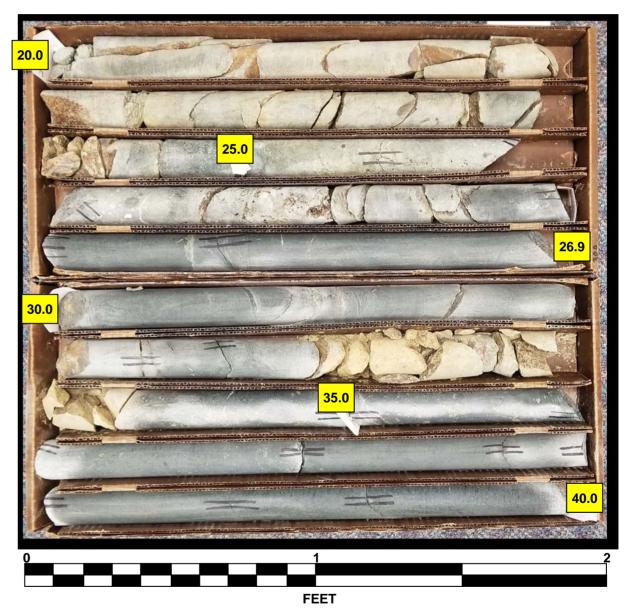

DATE: 8-19-16



10 20) P	ROJECI	r Referi	ENCE NO.	SHEET
FEET			R –2566 B /	1	5
1:1		END	BENT	1 Cross S	Section
		1			
					2780
					2770
					2760
	`~`	· · · · · · · · · · · · · · · · · · ·	·	<u> </u>	2750
					- 2740
		·			2730
=1/7 <u>=7</u> //=//7=7//=//7	=777				2720
					2710
•Nate: Existing grou along the proposed genererated using tintin. Origin and li contacts are drawn with both projected section. Proposed skew = 120	Enc Geor itho itho n th d or	l Ben Dak d logic Iroug	nt Iline and R25 h the	ond 566BA Is borings	

10	20	PROJ	ECT REI	FERENC	E NO.	SHEET
FEET			R –25	66 BA		6
1:1			BENT	1 Cros	s Sect	ion
	1 1 1		 			
	1 1 1 1		 			
	, , , ,		, , , ,			
			 			2750
+			 			
	, 		, 			
 	 		 			2740
	- 		 			
<u>+</u>	 		, , , ,		 	2730
				_		
	, , , , ,		, 			
	1 1 1 1		 			0700
	, 		, 			2720
	1 		 			
	 		 			2710
			¦ 			
	1 		 			
	, , , , ,		, , , , ,			2700
	1 1 1 1		 			
	 		 			2690
•Note:Exist	ing gro		line w	as dr	awn	
along the p genererat tin.tin. Oric	ed usin	u be g Ge	opak	and R	s 2566E	BA Is
contacts a	re drav	vn ti	hrougt	1 the	bori	ngs
with both r section.	project	ed o	nto ti	ne cr	oss	-
Proposed s	kew = I	20°	- 			
1						

GEOTECHNICAL BORING REPORT BORE LOG


COUNTY WATAUGA **WBS** 37512.1.4 **TIP** R-2566BA GEOLOGIST Gross, A. SITE DESCRIPTION Bridge No. 5 on -L- (NC 105) over Watauga River GROUND WTR (ft) **STATION** 163+07 OFFSET 65 ft LT ALIGNMENT -L-BORING NO. EB1-A 0 HR. Dry **COLLAR ELEV.** 2,762.1 ft TOTAL DEPTH 40.0 ft **NORTHING** 900,702 **EASTING** 1,189,910 24 HR. Dry DRILL RIG/HAMMER EFF./DATE SUM3123 CME-550X 95% 11/30/2017 DRILL METHOD NW Casing W/SPT & Core HAMMER TYPE Automatic DRILLER Gonzalez-Castillo, L. START DATE 09/11/18 **COMP. DATE** 09/11/18 SURFACE WATER DEPTH N/A ELEV DRIVE (ff) DEPTH BLOW COUNT SAMP. BLOWS PER FOOT SOIL AND ROCK DESCRIPTION (ft) (ft) 0.5ft 0.5ft 0.5ft 25 50 75 100 NO. MOI G (ft) ELEV. (ft) DEPTH (ft 2765 GROUND SURFACE 2.762.1 ROADWAY EMBANKMENT Gray and tan, v. loose, Silty SAND (A-2-4), with gravel and BOULDERS 2760 2,758.1 4.0 3 2 W **•**3 2755 1 2,754.6 Tan, soft, Sandy SILT (A-5), with gravel <u>2,753.1 9.0</u> Μ **•**4 . . . · · · · 2750 2,750.1 12.0 RESIDUAL 2,748.1 14.0 Tan, stiff, Sandy SILT (A-5), saprolitic 2 4 6 М **b**10 2,745.7 16. <u>.....</u> <u>ن ن</u> ا 2745 2,742.1 WEATHERED ROCK (Greenstone) 18.8 2,743.1 19.0 . . . • • . . . · 60/0.1 CRYSTALLINE ROCK 2,742.1 20.0 60/0.1 20.0 . . . 60/0.1 60/0.1 (Greenstone) 2740 (Greenstone) . 2735 . 2730 . 2725 . 40 Boring Terminated at Elevation 2,722.1 ft in 11/14/18 Crystalline Rock (greenstone) GDT DOT ÿ GPJ GINT. SUMMIT BRDG GEO DOUBLE CORE [

WBS 37512.1.4 TIP R-2566BA COU SITE DESCRIPTION Bridge No. 5 on -L- (NC 105) over Watauga STATION 163+07 BORING NO. EB1-A COLLAR ELEV. 2,762.1 ft TOTAL DEPTH 40.0 ft DRILL RIG/HAMMER EFF./DATE SUM3123 CME-550X 95% 11/30/2017 DRILLER Gonzalez-Castillo, L. **START DATE** 09/11/18 TOTAL RUN 20.0 ft CORE SIZE NQ2 RUN STRA REC. (ft) % DRILL RUN ELEV DEPTH RUN REC. (ft) % SAMP. RQD (ft) % ELEV RATE (ft) NO. (ft) (ft) (ft) (Min/ft) 2742.1 742.1 20.0 04:12/1.0 (4.4) (0.0) N=60/0.1 88% 0% 04:12/1.0 05:38/1.0 (18.7) 94% 5.0 2740 2,737.1 25.0 07:08/1. 03:06/1. 07:34/1. 2735 06:27/1 04:30/1 2,732.1 30.0 5.0 02:52/1.0 (4.8) (3.2) 03:56/1.0 96% 64% 03:24/1.0 2730 03:53/1.0 2,727.1 35.0 06:00/1.0 04:00/1.0 (4.9) (4.9) 04:25/1.0 98% 98% 5.0 2725 04:45/1.0 04:10/1.0 2,722.1 40.0 05:24/1.0

GEOTECHNICAL BORING REPORT CORE LOG

ידאנ	YV	VATAUC	GA		GEOLOGIST Gros	ss, A.						
a Ri	ver						GROUND WTR (ft)					
	OF	FSET (65 ft LT		ALIGNMENT -L-		0 HR. Dry					
	NO	RTHING	G 900,702		EASTING 1,189,9	10	24 HR.	Dry				
			DRILL METHOD	NW	Casing W/SPT & Core	HAMM	ER TYPE	Automatic				
	СО	MP. DA	TE 09/11/18		SURFACE WATER	DEPTH N/	A					
					,							
TA RQD	L O											
(ft) %	G	ELEV. (1	ft)	D	ESCRIPTION AND REM	IARKS		DEPTH (ft)				
		_			Begin Coring @ 20	0 ft						
12.3) 52%		2,742.1	Green-tan to gree	en-gr v. c	ay, severely. weathered lose- to close-fractured,	to fresh, mod. greenstone	hard to v.	hard, 20.0				
		_			GSI = 70-75							
		_										
		_										
		_										
		-										
	S.											
	N.											
	R	_										
		2,722.1						40.0				
		-	Boring Terminat	ed at	Elevation 2,722.1 ft in C	Crystalline Roc	k (greensto	one)				
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										
		-										

EB1-A BOXES 1 & 2: 20.0 - 40.0 FEET

SHEET 9 37512.1.4 (R-2566BA)Watauga County **GEOTECHNICAL BORING REPORT** ROPEIOC

										1		DRE L						1	
	37512						R-2566	-				WATAU	GA			GEOLOGIST Gross, A.			WB
	DESCR			lge No			-			atauga	-					T	-	ND WTR (ft)	SIT
	ING NO.			~							-	OFFSET				ALIGNMENT -L-	0 HR.	Dry	BO
												NORTHING			2D N	EASTING 1,189,968	24 HR.	FIAD	CO DRI
	. RIG/HAM .LER G				-							COMP. DA						Automatic	DR
				W CO						PER FO		COMP. DA	SAMP.		, / []	SURFACE WATER DEPTH N	A		co
ELEV (ft)	ELEV (ft)	DEPTH (ft)	0.5ft	1	0.5ft	0		25		50		75 100	NO.	М	O DI G	SOIL AND ROCK DES	CRIPTION		ELE
2765								•											(ft) 2742
	-	-														 - 2,762.4 GROUND SURF		0.0	274
							· · · ·				:					- ROADWAY EMBAN	KMENT		
2760	2.758.6-	- - 3.8					<u> </u>	<u> </u>		+						Gray and tan, loose to med GRAVEL (A-1-		andy	
	-	-	9	4	3		∳ 7: : :	:	· · ·		:			w		-			273
2755	-	-					·1· · ·	· ·	· · ·	· · ·						-			
	2,753.6-	- 8.8 -	5	4	5		i i i i	:	· · · · · ·		:	· · · · ·		l w		-			273
2750	-	-					. .		 		:	· · · · ·				-			
2100	2,748.6-	- - 13.8		11	7		\ .									-			070
	-	-	9	11	7		\ 1	18						M		-			272
2745	2 742 6	_ _ _ 10 0							· · ·						Ļõ	2,744.9COLLUVIAL		17.5	
	2,743.6- 2,742.8-	- 19.6 - 19.6	60/0.1 60/0.0								•	- 60/0.1 60/0.0	8			Greenstone, greenschist, ar basalt BOULDERS with Silt	d amygdal / SAND (A	oidal -2-4)	272
2740	-	_	00,0.0				· · · ·		· · ·	· · ·	•					– (Advancer refusal at – (Begin core at 19.8 feet; b	9.6 feet)		
	-	-				:	 	:		∔÷∺	_:_	÷÷÷:-:-				- 2,738.4 24.0') - Silty SAND (A-2-4), w		24.0	271
2735		-					 		¦	· · · ·	:	· · · ·				- -	an graver		
2735	2,733.6-	- - 28.8						<u> </u>	$+$ \cdot \cdot	<u> </u>					000			28.0	
	-	-	8	10	26		· · · · ·		●36		:			Sat	000	Red, tan, and white, med. GRAVEL (A-1-a), witi	dense, Sai i cobbles	ndy	
2730	-	-					· · · ·	· ·	••••		`_	\sim			000				
	2,728.6-	-	12	88/0.3		:	· · · · ·	.	· · ·			100/0.8			000	- - <u>2,727.4</u> - 2.726.5 Tan med dense Silty SAN		with <u>35.0</u>	
2725	2,726.5	- <u>35.9</u> -	60/0.0									60/0.0			P	2.726.4/ gravel and cobb	les	36.0	
	-	_				:		·	· · ·		:				P	(Boulder affected blow cou drive)		eet	
0700	-	-					 		 		:		RS-21		R	CRYSTALLINE R (Greenstone			
2720		-						<u> </u>		· · ·						(Casing advancer and SPT		35.9')	
	-	-					 	.	· · · · · ·		:				R	- (Greenstone			
2715		-					· · · ·		••••	· · ·	•					-			
		-					· · · · ·				:				R	- 2,712.7 Boring Torminated at Elevat	on 2 712 7	49.7 7 ft in	
	-	-														Boring Terminated at Elevat Crystalline Rock (gre		πιη	
	-	_														-			
		_														-			
	_	_														-			
		_														-			
	-	-														-			
	-	-														-			
		ŀ														-			
		-														-			
		ŀ														-			
		-														-			
		-														-			
		-														-			
L				I	I														

COUNT **BS** 37512.1.4 **TIP** R-2566BA TE DESCRIPTION Bridge No. 5 on -L- (NC 105) over Watauga Ri DRING NO. EB1-C **STATION** 163+16 **OLLAR ELEV.** 2,762.4 ft TOTAL DEPTH 49.7 ft RILL RIG/HAMMER EFF./DATE SUM3123 CME-550X 95% 11/30/2017 RILLER Gonzalez-Castillo, L. **START DATE** 10/03/18 ORE SIZE NQ2 TOTAL RUN 23.6 ft RUN REC. RQD (ft) (ft) % % SAMP. NO. SAMP. REC. (ft) % EV RUN ELEV (ft) DRILL RATE (Min/ft) DEPTH RUN (ft) (ft) 2.6
 4.9
 03:13/0.9
 (3.3)
 (2.3)

 01:24/1.0
 67%
 47%

 02:11/1.0
 67%
 Colluvial

 01:34/1.0
 cobles
 and

 01:34/1.0
 00:49/1.0
 and

 5.0
 00:48/1.0
 (0.7)

 00:39/1.0
 00:39/1.0
 0%

 00:53/1.0
 0%
 0%
 2,742.6 19.8 40 2,737.7 24.7 35 2,732.7 29.7 Colluvia 00:53/1.0 N=36 cobbles and boulders 30 N=100/0.8 2,726.4 36.0
 3.7
 W=60/0_0/(3.0) 02:22/0.7
 (3.0) 03:47/1.0

 03:12/1.0
 81%
 81%

 03:22/1.0
 81%
 81%

 03:22/1.0
 98%
 84%

 02:32/1.0
 02:32/1.0
 84%

 02:32/1.0
 02:32/1.0
 98%

 02:32/1.0
 02:32/1.0
 90%

 02:32/1.0
 02:36/1.0
 90%

 02:32/1.0
 03:52/1.0
 03%
 (12.4) (11.9) 91% 87% 25 <u>2,722.7 39.7</u> 20 2,717.7 44.7 15 2,712.7 49.7 03:52/1.0

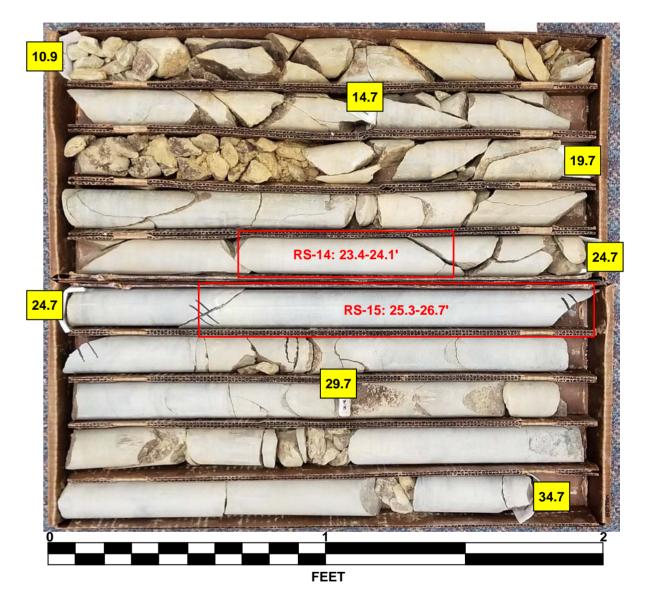
GEOTECHNICAL BORING REPORT CORE LOG

Y۷	۷A٦	AUC	SΑ			GEOLOGIS	зт	Gross, A			
ver										GROUN	ID WTR (ft)
OF	FSE	ET 6	6 ft	LT		ALIGNMEN	т	-L-		0 HR.	Dry
NC	RT	HING	i (900,689		EASTING	1,1	189,968		24 HR.	FIAD
			D	RILL METHOD	NW	Casing W/SPT	& (Core	HAMME	ER TYPE	Automatic
cc	MP	. DA	ΓE	10/04/18		SURFACE	WA	TER DEP	TH N//	Ą	
L O					D	ESCRIPTION) REMARKS	3		
Ğ									-		
	-				о /Г	Begin Corin COLI	LUV	/IAL	Crooner	biot and	
	- 2.	738.4		BOULDER	3 (FI	esh, slightly we Amygdalo			Greenso		24.0
	-			*N		ack to colluvial Silty SAND (A-					
	- 	734.4						,, <u> </u>			28.0
	-			Red, tan, and v	vhite,	ALL , med. dense, S			. (A-1-a),	with cobbl	es
	E										
	2	727.4									35.0
	- 2,	726.5				se, Silty SAND r affected blow					$\frac{35.0}{35.9}$
E	-		Ľ	×.		CRYSTAL	LIN.	IE ROCK			
R	F		(Gray Greenston		me MnO, slight close to wide of core left in g	frac	ture spacing	3		ard,
	-			(0.4	icci	GSI =			oreareve	-)	
	-										
P	-										
É	- 2,	712.7		Boring Terminat	<u></u>	Flowetion 0.71	07	ft in On oto	lling Deal	(groonot	49.7
	F		I	sonng renninal	eu al	Elevation 2,7 1	2.1	n in Crysta		(greensu	ne)
	E										
	E										
	-										
	L										
	L										
	F										
	F										
	F										
	þ										
	È.										
	F										
	E										
	E										
	Ē										
	F										
	E										
	F										
	F										
	F										
	F										
	F										
	F										
	-										

EB1-C BOXES 1 & 2: 19.8 - 49.7 FEET

SHEET 11 37512.1.4 (R-2566BA), Watauga County

FEET


GEOTECHNICAL BORING REPORT BORE LOG

GEOTECHNICAL BORING REPORT

WBS 37512.1.4 TIP R-2566			Gross A]	1	ORE LUG	1	
SITE DESCRIPTION Bridge No. 5 on -L- (NC 10)		GA GEOLOGIST	GROUND WTR (ft)	WBS 37512.1.4		Y WATAUGA	GEOLOGIST Gross, A.	
BORING NO. B1-A STATION 1	, .	25 ft LT ALIGNMENT		CITE DECORATION Bridge No. 0	, , ,	1	1	GROUND WTR (ft)
				BORING NO. B1-A	STATION 164+19	OFFSET 25 ft LT	ALIGNMENT -L-	0 HR. N/A
COLLAR ELEV. 2,727.5 ft TOTAL DEPT		G 900,791 EASTING 1,1		COLLAR ELEV. 2,727.5 ft	TOTAL DEPTH 34.7 ft	NORTHING 900,791	EASTING 1,189,994	24 HR. N/A
DRILL RIG/HAMMER EFF./DATE SUM3123 CME-550X 9		DRILL METHOD NW Casing W/SPT & C		DRILL RIG/HAMMER EFF./DATE SUM	3123 CME-550X 95% 11/30/2017	DRILL METHOD N	W Casing W/SPT & Core HAMN	IER TYPE Automatic
DRILLER Gonzalez-Castillo, L. START DATE			TER DEPTH N/A	DRILLER Gonzalez-Castillo, L.	START DATE 10/01/18	COMP. DATE 10/02/18	SURFACE WATER DEPTH N	I/A
ELEV (ft) DRIVE ELEV (ft) DEPTH (ft) BLOW COUNT 0 22	BLOWS PER FOOT 25 50 75 100		IL AND ROCK DESCRIPTION	CORE SIZE NQ2	TOTAL RUN 23.8 ft			
(it) (it) 0.5ft 0.5ft 0.5ft 0		MOI G ELEV. (ft)	DEPTH (fr	I ELEV DEPTH RUN DATE	RUN SAMP. STRATA REC. RQD SAMP. REC. RQD (ft) (ft) NO. (ft) (ft) (ft)		DESCRIPTION AND REMARKS	
				(ft) ELEV (ft) (ft) (ft) (Min/ft)	(ii) (ii) NO. (ii) (ii) % %	G ELEV. (ft)		DEPTH (ft)
2730				2716.6 2715 2,716.6 10.9 3.8 02:25/0.8			Continued from previous page with MnO in fractures, severely weather	ed to fresh with 10.9
		- 2,727.5	GROUND SURFACE 0.4		(3.1) (0.4) 82% 11% (18.9) (7.2) 79% 30%	complete weatherin	ng from 15.5 to 18.5 feet, med. hard to h	hard, v. close to
2725		Tan and	d grav. alluvial BOULDERS and v.	2,712.8 14.7 04:13/1.0			mod. close fracture spacing	
2,723.7 3.8 20 80/0.3			se Silty SAND (A-2-4) w/ gravel	2710	(2.6) (0.0) 52% 0%		GSI = 60-65	
		T E		2,707.8 19.7 05:11/1.0				
2720		-2,719.5	CRYSTALLINE ROCK	5.0 02:24/1.0	(3.9) (1.1) 78% 22%			
2.716.8 + 10.7			(Greenstone)			2,716.6 Gray, Greenstone v complete weatherin		
2715		(A	dvancer refusal at 10.7 feet)	2,702.8 24.7 03:48/1.0 5.0 02:42/1.0	(4.7) (3.4)	27		
			(Begin core at 10.9 feet) (Greenstone)	2700	(4.7) (3.4) 94% 68% RS-15			
				2,697.8 29.7 03.10/1.0 03:07/1.0 03:07/1.0		27		
				5.0 02:19/1.0	(4.6) (2.3) 92% 46%	27		
				2695 <u>-</u> 02:29/1.0 02:49/1.0 03:04/1.0	9276 4076			
2705				2,692.8 34.7 03:28/1.0		2,692.8 Poring Termineted	at Elevation 2,692.8 ft in Crystalline Roo	34.7
		RS-14					at Elevation 2,092.0 it in Crystalline Rot	ck (greensione)
		RS-15						
2700	· · · · · · · · · · · · · · · · · · ·							
	· · · · · · · · · · · · · · ·							
2695								
		2.692.8	34.7					
			erminated at Elevation 2,692.8 ft in					
			rystalline Rock (greenstone)					
						I F		
		F						
						-		
						-		
				' ž∟		-		

CORE LOG

B1-A

SHEET 13 37512.1.4 (R-2566BA), Watauga County


BOXES 1 & 2: 10.9 - 34.7 FEET

GEOTECHNICAL BORING REPORT

		ORE LOG	ONT								02				ORE L	.0G				
WBS 37512.1.4	TIP R-2566BA COUN	ITY WATAUGA	GEOLOGIST Gross, A.		WBS	S 3751	2.1.4			TIP	R-256	6BA	0		Y WATAU	GA	GEOLOG	ST Gross, A.		
SITE DESCRIPTION Bridge No.	5 on -L- (NC 105) over Watauga	River	-	GROUND WTR (ft)	SITE	E DESC	RIPTIO	N Bri	dge No.	5 on -L	(NC 1	05) ove	r Wata	auga R	liver				GROU	ND WTR (ft)
BORING NO. B1-C	STATION 164+16	OFFSET 4 ft LT	ALIGNMENT -L-	0 HR. N/A	BOF	ring no). B1-0	С		STA	ATION	164+16			OFFSET	4 ft LT	ALIGNME	NT -L-	0 HR.	N/A
COLLAR ELEV. 2,727.0 ft	TOTAL DEPTH 36.1 ft	NORTHING 900,779	EASTING 1,190,012	24 HR. N/A	COL	LAR EL	.EV . 2	2,727.0) ft	тот	TAL DE	PTH 36	5.1 ft		NORTHIN	G 900,779	EASTING	1,190,012	24 HR.	N/A
DRILL RIG/HAMMER EFF./DATE SU	M3123 CME-550X 95% 11/30/2017	DRILL METHOD N	W Casing W/SPT & Core HAMM	ER TYPE Automatic	DRIL	L RIG/H	AMMER	EFF./DA	ATE SU							DRILL METHOD	NW Casing W/SF	PT & Core	HAMMER TYPE	Automatic
DRILLER Gonzalez-Castillo, L.	START DATE 10/02/18	COMP. DATE 10/03/18	SURFACE WATER DEPTH N/	/A	—	LLER			stillo, L.	-		TE 10/			COMP. DA	TE 10/03/18	SURFACE	WATER DEPT	H N/A	
ELEV DRIVE ELEV (ft) (ft) (ft) (ft) 0.5ft 0.5ft			SOIL AND ROCK DESC	CRIPTION	<u> </u>	RE SIZE	_	_				N 23.9		RATA						
(it) (ft) (it) 0.5ft 0.5ft	0.511 0 23 30	75 100 NO. MOI G			ELEV (ft)		DEPTH (ft)	H RUN (ft)		REC.	. RQD (ft) %	SAMP. NO.	REC. (ft)	RATA RQD (ft) %	O G		DESCRIPTION	AND REMARKS		
2730					2714 8	8			(%		%	%			Continued fro	m previous pag	۵	
-			-			2,714.8	3 12.2	3.9	N=60/0 01:59/0 02:07/1 02:42/1 03:21/1	.0 (1.8)) (0.0)		(18.3) (12.2) 2,714.8	Tan and gray	(FROM 12.2 complete to mod. se	2 TO 22.4 FEET)		12.: oft to
			2,727.0 GROUND SURFA	ACE 0.0		2,710.9	∏ 9 16.1		02:07/1	.0							med. hard, v. close	to close fracture s	pacing	
2725		· · · · · · · · · · · · · · · · · · ·	White and tan, alluvial BOL sandy gravel (A-1		2710	<u>)</u>	+	5.0	03:21/1 04:14/1 02:35/1 03:12/1	.0 (2.2) .0 44%) (0.0)					Grav and gree	(FROM 22.4 en, Greenstone, free	4 TO 36.1 FEET) sh. v. hard. mod. c	lose to wide frac	ture
2,722.0 5.0				-		2 705 (+ 9] 21.1		00:45/1	.0							S	pacing		
2720 18 26		· · · · · · Sat. 000	2,721.1 RESIDUAL	5.9	2705	5	+		01:36/1	.0 (4.5)) (3.0)						GS	I = 80-85		
2.717.0 10.0			Gray and green, v. dense, (A-2-4), saprolit 2,717.0 (Can see relict epidote porpl	tic			ŧ		02:10/1	.0 90% .0	00%									
2715 2,714.8 12.2		: : : 60/0.1		,	2700	2,700.9	9 <u> </u>	5.0	02:55/1	.0 .0 (4.9)) (4.4)	RS-18	-		Æ					
2,714.0=12.2		60/0.0					ŧ		03:48/1	.0 98% .0	88%		1							
			- (Begin core at 12.2 (Greenstone)	2 feet)	2695	2,695.9	9 31.1		03:46/1	.0										
2710					2095	<u>'</u>	‡	5.0	02:57/1 03:05/1	.0 (4.9) .0 98% .0) (4.8) 5 96%	RS-19	1							
			-			2.690.9	+ ∋36.1		02:30/1	.0					2,690.9)				36.
2705		· · · · · ·	-			2,000.0	+										ated at Elevation 2,6	690.9 ft in Crystalli	ne Rock (greens	
			-				Ŧ								ΙE					
2700		· · · · · · · · RS-18	-				1													
			-				ŧ													
			-				‡													
			-				ŧ													
			- 2 690 9	36.1			Ŧ								I E					
			Boring Terminated at Elevatio Crystalline Rock (gree	ion 2,690.9 ft in			Ŧ													
				ensione)			ŧ													
			-				‡													
			-				ŧ													
			-				ŧ													
			-				Ŧ													
			-				Ŧ								I E					
			-				Ŧ								E					
			-				ŧ													
			-				1													
			-				ŧ													
			-				ŧ													
			-				Ŧ													
			-				Ŧ								I E					
			-				Ŧ								E					
			-				ŧ													
			-				‡													
			-				‡													
							‡													
							+													

GEOTECHNICAL BORING REPORT

B1-C BOXES 1 & 2: 12.2 - 36.1 FEET

SHEET 15 37512.1.4 (R-2566BA), Watauga County GEOTECHNICAL BORING REPORT BORE LOG

GEOTECHNICAL BORING REPORT CORE LOG

			-			-	ORE																		RE LO					
WBS 37512				R-2566			Y WATA	JGA		GE	OLOGIS	T Gross,				WBS	37512.1.4			TIP F	R-256	6BA	CC	DUNTY	NATAUGA	4	GE	OLOGIST Gross, A.		
SITE DESCR		idge No.				/atauga R	1							GROUND WT	R (ft)		DESCRIPTI		lge No. 5	-	-	-	Watau	-					GROUN	ND WTR (ft)
BORING NO.	EB2-A		ST	ATION 10	65+63		OFFSET	34 ft LT	-	AL	IGNMEN	T -L-		0 HR.	Dry	BOR	ING NO. E	32-A		STAT		165+63		OF	FSET 34	l ft LT	ALI	IGNMENT -L-	0 HR.	Dry
COLLAR ELE	EV. 2,752.2	2 ft	то	TAL DEPT	H 38.6	ft	NORTHIN					1,190,059)	24 HR.	FIAD	COLI	LAR ELEV.	2,752.2	ft	ΤΟΤΑ		TH 38.	.6 ft	NC	ORTHING	900,924	EA	STING 1,190,059	24 HR.	FIAD
DRILL RIG/HAI	MMER EFF./D/	ATE SU	JM3123 (CME-550X 9	5% 11/30/2	017		DRILL	METHO	NW Casi	ing W/SPT	& Core	HAMME	R TYPE Auton	natic	DRILL	RIG/HAMME	R EFF./DA	TE SUM	3123 CME	E-550X	95% 11/30	0/2017		I	ORILL METHOD	D NW Casi	ng W/SPT & Core H	AMMER TYPE	Automatic
DRILLER G	onzalez-Cas	stillo, L.	ST	ART DATE	09/25/	18	COMP. D	ATE 09	/26/18	SU	RFACE V	VATER DE	EPTH N/A	A		DRIL	LER Gonza	alez-Cast	tillo, L.	STAR	T DAT	E 09/2	25/18	CC	MP. DATI	E 09/26/18	SU	RFACE WATER DEPTH	N/A	
ELEV DRIVE	DEPTH BL	ow cou				PER FOO			P. ▼∕	L O	ç	SOIL AND R	ROCK DESC	RIPTION		COR	E SIZE NQ	2		ΤΟΤΑ	L RUN	I 15.0 f								
(ft) (ft)	(ft) 0.5ft	t 0.5ft	0.5ft	0 2	25	50	75 10	⁰ NO.	моі						PTH (ft)	ELEV	RUN ELEV DEP	TH RUN	DRILL RATE	RUI REC. (ft) %	N RQD	SAMP. NO.	STR/ REC.	ATA L RQD O (ft) G			DESC	RIPTION AND REMARKS		
																(ft)	(ft) (ft	t) (ft)	(Min/ft)	(ft) %	(ft) %	NO.	(ft) %	(ft) % G	ELEV. (ft)					DEPTH (f
2755	-									L						2728.6	2 728 6 23	6 50			(2.2)			(12.0)	0.700.0	Cray and a		ued from previous page		
										- 2,752	2.2	GROU	JND SURFA	CE	0.0			.0 5.0	03:02/1.0	88%	64%	RS-11	96%	88%	2,728.0	phenocrysts,	, slightly wea	stone, generally massive wit athered to fresh, hard to v. h	hard, close to wi	e 23.0 de
	-			$1 \cdot \cdot \cdot$						-		C	OLLUVIAL		0.0	2725	2,728.6 23. 2,723.6 28.	e	04:45/1.0									fracture spacing		
2750 2,749.7	2.5	3	3			<u> </u>			w	-	Tan, I		SAND (A-2-2 nd boulders	l), with gravel			2,723.6+ 28.	.6 5.0	03:44/1.0	(5.0)	(5.0)				4 4			GSI = 90-95		
																2720	‡		03:15/1.0	100%	100%				4 4					
2745 2,744.7	75			· · \. ·						2,745	5.2				7.0		2,718.6-33	.6	02:47/1.0 02:47/1.0 03:15/1.0 03:33/1.0 03:34/1.0 03:27/1.0											
	7	8	11	· · · • •1	9				w		Tan a	nd gray, me	RESIDUAL ed. dense to	v. dense, Silty			‡	5.0	05:52/1.0 05:14/1.0 03:46/1.0	(5.0)	(5.0) 100%									
							.				SA	and (A-2-4)), with gravel	, saprolitic		2715			03:47/1.0						2,728.6					
2740 2,739.7	12.5	16	53		·				м								2,713.6-38.	.6	04:01/1.0						– 2,713.6 –	Boring Termina	ated at Elev	ation 2,713.6 ft in Crystalline	e Rock (greenst	38.0 one)
									IVI								‡								-	- *Deck	c to datum di	istance: 11.0 ft to embankm	ent surface	
2735 2,734.7	17.5																‡								-					
- 2,134.1	17.5	15	85/0.3								.2		HERED RO	ск	18.0		‡								-					
							.	Ϋ́Ι		2,730		(G	Greenstone)												F					
2730 2,729.7	- 22.5					· · ·				2,730				ск	22.0										-					
2,728.6-	- <u>23.6</u> 60/0.1 - 60/0.1	0					60/0.	₽		<u>7 - 2,728</u>	5.6		Greenstone)	Г	23.6		l ±								L					
2725	-							RS-1'	4		(SPT	and Casing	Advancer re n core at 23.	efusal at 23.6')											F					
-	-							1					Greenstone)	0)			l I								-					
							· · · · · ·										ĮŦ								F					
2720 -						· · ·		4									Ŧ								F					
-	-																								-					
	-						. .																		F					
2715	-							-11		2,713	8.6				38.6		‡								-					
	-			•		•					Boring		ed at Elevatio Rock (greer	n 2,713.6 ft in			‡								-					
										Ł	*r	,	um distance:	,	81/1	2									-					
										E	L		nkment surfa		11/1		‡								-					
	t l									Ł					TUC										F					
										F					LOC		‡								F					
										F							‡								F					
										F						5	‡								F					
	Ł I									E					TNE		‡								F					
										F					L										F					
	-									F							1								F					
	F									F							±								F					
	F									F						5	+								F					
	F									F					U I U										F					
	t l									F					V H H		_ 								F					
	<u>t</u>									F					DORG		7								E					
	t									þ					L L		‡								F					
										Ę							‡								F					
										F							‡								F					
										Ę							‡								F					
-	+									<u> </u>															<u> </u>					

EB2-A BOXES 1 & 2: 23.6 - 38.6 FEET

SHEET 17 37512.1.4 (R-2566BA), Watauga County

FEET

GEOTECHNICAL BORING REPORT BORE LOG

GEOTECHNICAL BORING REPORT CORE LOG

							БО	RELO	JG								
	37512					P R-2566		Y WATAL	JGA			GEOLOGIST Gross, A	۹.			WBS	37
				ge No.		-L- (NC 105	atauga Ri	-				1		4	ID WTR (ft)	SITE	DE
	ING NO.				_	TATION 16		OFFSET				ALIGNMENT -L-		0 HR.	Dry	BORI	NG
-	LAR ELE	-				DTAL DEPT		NORTHIN	-			EASTING 1,190,102		24 HR.	Dry	COLL	
					-	CME-550X 9		[DRILL			V Casing W/SPT & Core			Automatic	DRILL	RIC
	LER G							COMP. D		/18/18	<u> </u>	SURFACE WATER DE	PTH N/	/A		DRILL	
ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)	BLC 0.5ft	W COL 0.5ft	INT 0.5ft	0 2	PER FOOT	75 100	SAMP.	мо	O I G	SOIL AND RC	OCK DESC	CRIPTION		CORE	RI
	ELEV (ft) 2,753.9 2,752.0 2,748.1	(ft) 3.1 5.0 8.9	·			0 2		75 100	● NO.	м		2,757.0 GROUN CO Tan and gray, med SAND (A-2 (Advancer r (Begin core at 4 continue with casi 2,746.0 Tan and gray, m (A-2-4), with 2,741.5 WEATH (Gru (SPT and Casing A (Begin	ID SURFA LLUVIAL . dense to .4), with b efusal at 4 .0 feet, re ng advance SIDUAL ed. dense n gravel, s ERED RC eenstone) dvancer r core at 15	ACE o v. dense, oulders 4.0 feet) eturn to soi cer at 8.9 fe e, Silty SAN aprolitic DCK	l, eet) ID <u>15.0</u>	ELEV (ft) 2753 2750 2745 2745 2740	2,74 2,74 2,74 2,74 2,74
2735 2730 2725									RS-5	-		CRYSTA	ALLINE Re	OCK	33.9	2725	<u>2,72</u> 2,72
												Boring Terminated Crystalline F					

										N
WBS	37512	2.1.4			TIP	R-256	6BA	C	OUNT	Y
SITE	DESCR	IPTION	Brid	ge No. 5	on -L-	(NC 1	05) over	Wata	luga Ri	ve
	ING NO.			-	STA	-	165+32			0
COLI		V . 2	757.0	ft	тот	AL DE	PTH 33	.9 ft		
	RIG/HAI	,			_		(95% 11/3)			-
	LER G						TE 09/1			6
			2-0431	O, L.			N 23.3 f			ŀ
	RUN	NQ2		DRILL					RATA	
ELEV (ft)	ELEV (ft)	DEPTH (ft)	RUN (ft)	RATE (Min/ft)	REC. (ft) %	RQD (ft) %	SAMP. NO.	REC. (ft) %	RQD (ft) %	
2753	0 750 0									
2750	2,753.0 - 2,748.1		4.9	03:23/0.9 00:42/1.0 <i>N=60/0.0</i> 00:42/1.0 00:27/1.0 00:26/1.0	(0.0) 0%	(0.0) 0%				
2745	-			N=15						
	2,741.5-	15.5		N=40	(0.0)			(17.0)		
2740	2,738.1	18.9	3.4	N=60/0.0 04:35/1.0 03:52/1.0 03:21/1.0 00:51/0.4/	(3.2) 94%	(3.2) 94%		(17.0) 92%	72%	
2735	-		5.0	02:47/1.0 02:10/1.0 02:39/1.0 04:00/1.0 03:35/1.0	(4.3) 86%	(1.1) 22%	RS-5) (13.3) 72%	
	2,733.1	23.9	5.0	03:35/1.0	(4.5)	(4.0)				ĥ
2730	-			03:04/1.0 02:40/1.0 02:42/1.0	90%	80%				
	2,728.1	28.9	5.0	02:31/1.0 03:05/1.0	(5.0)	(5.0)				P
2725	- 	33.9		02:57/1.0 03:01/1.0 02:50/1.0	100%	100%				7.17
	2,723.1	33.8		02:42/1.0						f
	-	Ł								
	-	F								
	-	F								
	-	ļ.								
	-	ţ								
	-	ł								
		F								
	-	ţ.								
	-	Ł								
	-	-								
	-	ļ.								
	-	ţ								
	-	F								
	-	F								
	-	ţ								
	-	t								
	-	+								
	-	F								
		ţ								
	-	t								
	-	╞								
	-	F								
	-	ŧ								
	-	Ł								
	-	F								
	-	t							1	1

r v	VAT	AUC	ΞA			GEOLOGI	ST (Bross, A.				
/er										GROUN	D WTF	R (ft)
OF	FSE	т	36 f	t RT		ALIGNMEN	IT -			0 HR.		Dry
NO	RTH	IING	; ;	900,860		EASTING	1,19	0,102		24 HR.		Dry
			DF	RILL METHOD	NW	Casing W/SP	T & Co	re	HAMME	R TYPE	Autom	atic
со	MP.	DA	TE	09/18/18		SURFACE			TH N//	۹		
L					_							
O G					D	ESCRIPTION	AND I	REMARKS				
					Со	ntinued from	n prev	ious pag	je			
	-			Tan. med. (COL e, Silty SAND	LUVIA	L		ntinued)		
				,			·	,,	,	,		
	-											
	2,7	746.0				RES	IDUA	L				11.0
	-							_				
ien.	2,7	742.0 741.5				WEATHE	RED	ROCK				- <u>15.0</u> 15.5
			\square			(Gree	enston	e)				
	-		C	Gray greenstone	, son	CRYSTAL ne epidote, oth	nerwis	e massive,	fresh, m	nod. hard t	0 V.	
	-				ha	rd, close to wi			ing			
	-					GSI	= 85-9	0				
	-											
	-											
	-											
×	-											
	2.7	723.1										33.9
~			E	Boring Terminat	ed at	Elevation 2,72	23.1 ft	in Crystall	ine Rock	(greensto	ne)	
	-											
	-											
	-											
	-											
	-											
	_											
	-											
	-											
	-											
	-											
	-											
	-											
	-											
	-											
	-											
	_											
	-											
	-											
	-											
	-											
	-											
	_											
	-											
	_											

EB2-B BOXES 1 & 2: 15.5 - 33.9 FEET

FEET

SHEET 19 37512.1.4 (R-2566BA), Watauga County

GEOTECHNICAL BORING REPORT BORE LOG

WBS 37512.1.4 TIP R-2566BA COUNTY WATAUGA GEOLOGIST Gross, A.	WBS 375
SITE DESCRIPTION Bridge No. 5 on -L- (NC 105) over Watauga River GROUND WTR (ft)	SITE DESC
BORING NO. EB2-C STATION 165+55 OFFSET 14 ft LT ALIGNMENT -L- 0 HR. 13.4	BORING N
COLLAR ELEV. 2,753.3 ft TOTAL DEPTH 35.1 ft NORTHING 900,906 EASTING 1,190,072 24 HR. Caved	COLLAR E
DRILL RIG/HAMMER EFF./DATE SUM3123 CME-550X 95% 11/30/2017 DRILL METHOD NW Casing W/SPT & Core HAMMER TYPE Automatic	DRILL RIG/H
DRILLER Gonzalez-Castillo, L. START DATE 09/20/18 COMP. DATE 09/21/18 SURFACE WATER DEPTH N/A	DRILLER
ELEV DRIVE DEPTH BLOW COUNT BLOWS PER FOOT SOIL AND ROCK DESCRIPTION	CORE SIZE
(ft) (ft) 0.5ft 0.5ft 0 25 50 75 100 NO. MOI G ELEV. (ft) DEPTH (ft)	
	(ft) (ft)
2755	2733.1
2,753.3 GROUND SURFACE 0.0	
COLLUVIAL Tan to gray, v. loose to med. dense, Silty	2730
2750 2749 4 3.9 SAND(A-2-4), with graveliand coolles and	2,728.
	2725
	2,723.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & $	2720
2740 2.739.4 13.9 (Greenstone)	2,718.
(Begin core at 20.2')	
Image: Constraint of the second sec	
Crystalline Rock (greenstone)	
*Deck to datum distance: 9.65 ft	
	11/14/18
	11
	GDT
	DOT
	SZ SZ
	GB
	N. TN
	5
	0 0
	BRD
	BA
	25661
	2
	SORI
	NCDOT CORE DOUBLE R2566BA_GEO_BRDG_SUMMIT_GINT.GPJ NC_DOT.GDT
	NC

A_GEO_BRDG_SUMMIT_GINT.GPJ_NC_DOT.GDT_11/14/18


JBLE

									<u> </u>		ELOG				
WBS	37512	.1.4			TIP	R-256	6BA	C	OUNT	YW	ATAUGA	GEOLOGIST Gross,	Α.	_	
SITE	DESCR	IPTION	Brid	ge No. 5	on -L-	(NC 1	05) over	Wata	uga Ri	iver				GROUN	ID WTR (f
BORI	NG NO.	EB2-	C		STA	ΓΙΟΝ	165+55			OFF	SET 14 ft LT	ALIGNMENT -L-		0 HR.	13.4
COLL	AR ELE	V. 2,	753.3	ft	тот	AL DEI	PTH 35	.1 ft		NOF	THING 900,906	EASTING 1,190,072		24 HR.	Cave
DRILL	RIG/HAI	MMER E	FF./DA	TE SUM3	123 CN	1E-550X	95% 11/3	0/2017			DRILL METHOD NW	Casing W/SPT & Core	HAMME	ER TYPE	Automatic
DRILI	L ER G	onzale	z-Cast	illo, L.	STA	RT DA	TE 09/2	0/18		CO	P. DATE 09/21/18	SURFACE WATER D	EPTH N/	Ą	
CORE	E SIZE	NQ2			тот	AL RUI	N 14.9 f	ť				L			
ELEV	RUN	DEPTH	RUN	DRILL	REC.	JN RQD	SAMP.	STR REC.	ATA RQD	L					
(ft)	ELEV (ft)	(ft)	(ft)	RATE (Min/ft)	(ft) %	(ft) %	NO.	(ft) %	(ft) %	O G	ELEV. (ft)	ESCRIPTION AND REMAR	KKS		DEPTH
2733.1											Co	ntinued from previous	oage		
	2,733.1	20.2	4.9	03:04/0.9 03:21/1.0	(4.0) 82%	(3.7) 76%	RS-8	(14.0) 94%	(13.7) 92%		2,733.1 Gray, greenstone with	epidote, generally massive to v. wide fracture spacir		ard, mod.	close 20
2730	-	-		03:00/1.0 01:59/1.0 02:42/1.0								GSI = 90-95	•		
ŀ	2,728.2	25.1	5.0	02:44/1.0	(5.0)	(5.0)									
2725	-	-		03:04/1.0 02:36/1.0		100%				K					
	2,723.2	- 30.1		03:02/1.0						R					
	-	-	5.0	03:04/1.0	(5.0)	(5.0) 100%				R					
2720	-	F		02:30/1.0						R					
ŀ	2,718.2	35.1		02:59/1.0 02:37/1.0						P	2,718.2 Boring Terminated at	Elevation 2,718.2 ft in Crys	stalline Rock	(greensto	35 one)
	-	F										*Deck to datum distance: 9			
	-	-											-		
	-	-								-					
	-	-													
	-	-													
	-	-													
	-	-													
	-	-													
	-	-													
	-	-													
	-	-													
	-	-													
	-	-													
	-	-													
	-	-													
	-	_													
	-	-													
	-	_													
	-	_													
	-	-													
	-	-													
	-	-													
	-	-													
	-	-								-					
	-	-													
	-	-													
	-	-													
	-	-													
	-	-													
	-	F													
	-	Ļ													
	-	L													
	_	F								ΙF					

GEOTECHNICAL BORING REPORT CORE LOG

SHEET 20

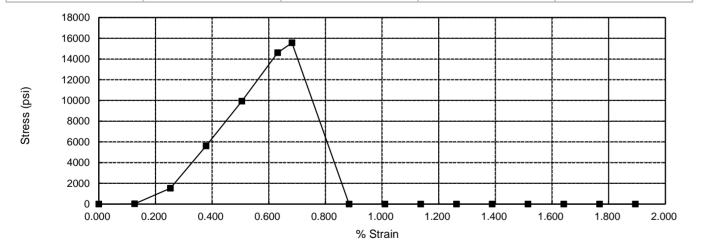
EB2-C BOXES 1 & 2: 20.2 - 35.1 FEET

SHEET 21 37512.1.4 (R-2566BA), Watauga County

Performed in General Accordance with ASTM D7012

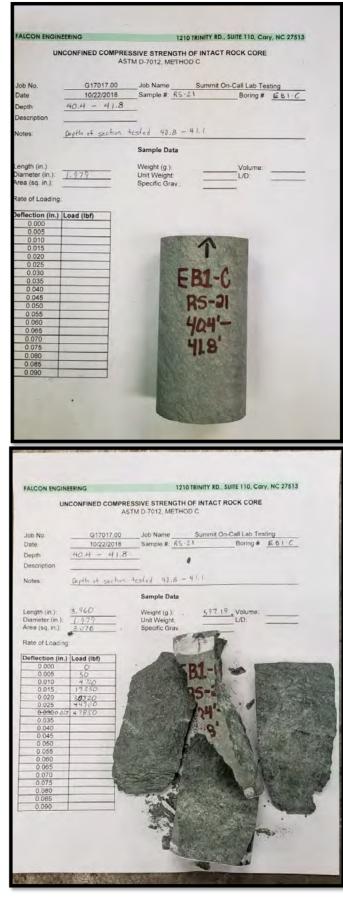
October 24, 2018

Project Name: Bridge Over Watauga River on NC 105 Project Number: 37512.1.4 (R-2566BA) Sample ID: RS-21 Location: EB1-C Depth (ft): 40.4 - 41.8


Compressive Strength (psi): 15560

Time to Failure, mins:sec: 4:26

Length (in.): 3.96 Diameter (in.): 1.98 Area (in²): 3.076 L/D 2.00


Unit Weight (pcf): 186.8

	,	-	Compressive	Young's
Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0.000	0.000	0	0	
0.005	0.126	50	20	15,840
0.010	0.253	4720	1530	605,880
0.015	0.379	17250	5610	1,481,040
0.020	0.505	30520	9920	1,964,160
0.025	0.631	44900	14600	2,312,640
0.027	0.682	47850	15560	2,282,133
0.035	0.884		0	0
0.040	1.010		0	0
0.045	1.136		0	0
0.050	1.263		0	0
0.055	1.389		0	0
0.060	1.515		0	0
0.065	1.641		0	0
0.070	1.768		0	0
0.075	1.894		0	0

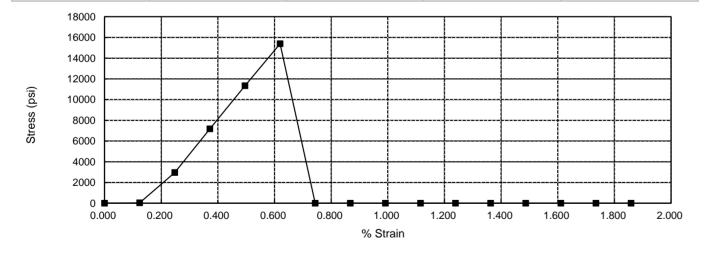
Note : "Uniaxial compressive strength was determined in general accordance with ASTM D7012-14 Method C. Deflection, Strain, and Young's modulus data is provided for reference only and is not intended to be in accordance with ASTM D7012-14 Method D as deflection and strain is not measured in accordance with that procedure. Young's Modulus is calculated using this data to determine the secant modulus at each data interval per Figure 2 (C) in ASTM D 7012-14."

Technician: M. Bauer NCDOT CERT.# 105-02-0803

	EERING		TY RD., SUITE 110, Car	y, NC 27513
UN	AST	SIVE STRENGTH OF IN M D-7012, METHOD C	ITACT ROCK CORE	
ob No.	G17017.00	Job Name Su	mmit On-Call Lab Tes	sting
ate	10/22/2018	Sample #: RS-21	Boring #	EBIC
epth	40.4 - 41.8			
escription		- •		
rescription		-	1	
otes:	Depth of section +	tested 40.8 - 41.1		
		Sample Data		
	3,960	Weight (g.):	597.19 Volume:	
ength (in.): Diameter (in.):	1.979	Unit Weight	L/D.	-
rea (sq. in.);	3.076	Specific Grav.		
ou (out mit).	2.010			
te of Load	g:	1		
eflection (in.) Load (lbf)	a new s	-	
eflection (in. 0.000) Load (lbf)	1		
		A		lines
0.000	0	N	一个门	
0.000	0	· N	TT	
0.000 0.005 0.010	0 50 4720 17250 36520	N	77	
0.000 0.005 0.010 0.015 0.020 0.025	0 50 4720 17250 30520 44900	N	TPT-	
0.000 0.005 0.010 0.015 0.020 0.025	0 50 4720 17250 36520		TEL-C	
0.000 0.005 0.010 0.015 0.020 0.025	0 50 4720 17250 30520 44900		ГТ. ДВ1-С	
0.000 0.005 0.010 0.015 0.020 0.025 0.03 00.00 0.035 0.040	0 50 4720 17250 30520 44900		B1-C	
0.000 0.005 0.010 0.015 0.020 0.025 0.03 00.00 0.035 0.040 0.045	0 50 4720 17250 30520 44900	· Ne	B1-C R5-21	
0.000 0.005 0.010 0.015 0.020 0.025 0.03 00.00 0.035 0.040	0 50 4720 17250 30520 44900		B1-C R5-21	
0.000 0.005 0.010 0.015 0.020 0.025 0.03 00.00 0.035 0.040 0.045	0 50 4720 17250 30520 44900		B1-C R5-a1 404-	
0.000 0.005 0.010 0.025 0.020 0.025 0.040 0.045 0.040 0.045 0.050 0.055 0.060	0 50 4720 17250 30520 44900	·N	B1-C R5-21 404-	
0.000 0.005 0.010 0.020 0.025 0.035 0.040 0.035 0.040 0.045 0.055 0.060 0.065	0 50 4720 17250 30520 44900		B1-C H5-ai 4024'-	
0.000 0.005 0.010 0.025 0.025 0.025 0.040 0.045 0.045 0.055 0.060 0.065 0.070	0 50 4720 17250 30520 44900		B1-C 195-a1 404'- 4138'	
0.000 0.005 0.010 0.020 0.025 0.040 0.045 0.040 0.045 0.050 0.055 0.060 0.065 0.060 0.075	0 50 4720 17250 30520 44900		B1-C R5-ai 404- 4138	
0 000 0.005 0.010 0.025 0.020 0.025 0.040 0.035 0.040 0.045 0.055 0.060 0.065 0.065 0.060 0.075 0.080	0 50 4720 17250 30520 44900		B1-C 195-21 404'- 41.8'	
0.005 0.010 0.015 0.020 0.025 0.040 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.065	0 50 4720 17250 30520 44900		B1-C 195-21 4094'- 4128'	

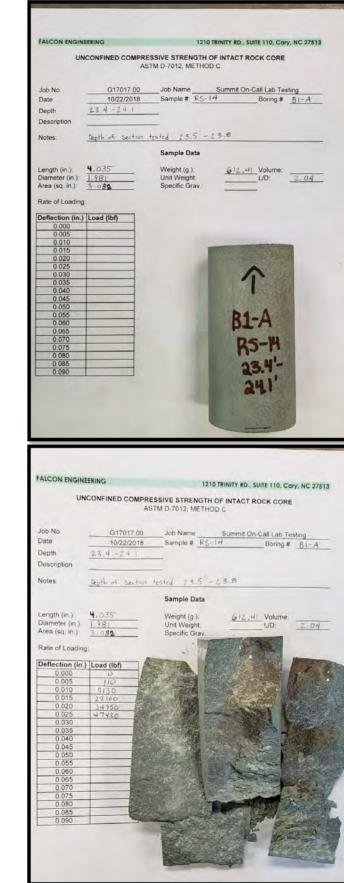
Performed in General Accordance with ASTM D7012

October 24, 2018


Project Name: Bridge Over Watauga River on NC 105 Project Number: 37512.1.4 (R-2566BA) Sample ID: RS-14 Location: B1-A Depth (ft): 23.4 - 24.1

Compressive Strength (psi): 15390

Time to Failure, mins:sec: 4:24


Length (in.): 4.04 Diameter (in.): 1.98 Area (in²): 3.082 L/D 2.04 Unit Weight (pcf): 187.6

			Compressive	Young's
Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0.000	0.000	0	0	
0.005	0.124	110	40	32,280
0.010	0.248	9130	2960	1,194,360
0.015	0.372	22100	7170	1,928,730
0.020	0.496	34950	11340	2,287,845
0.025	0.620	47430	15390	2,483,946
0.030	0.743		0	0
0.035	0.867		0	0
0.040	0.991		0	0
0.045	1.115		0	0
0.050	1.239		0	0
0.055	1.363		0	0
0.060	1.487		0	0
0.065	1.611		0	0
0.070	1.735		0	0
0.075	1.859		0	0

Note : "Uniaxial compressive strength was determined in general accordance with ASTM D7012-14 Method C. Deflection, Strain, and Young's modulus data is provided for reference only and is not intended to be in accordance with ASTM D7012-14 Method D as deflection and strain is not measured in accordance with that procedure. Young's Modulus is calculated using this data to determine the secant modulus at each data interval per Figure 2 (C) in ASTM D 7012-14."

Technician: M. Bauer NCDOT CERT.# 105-02-0803

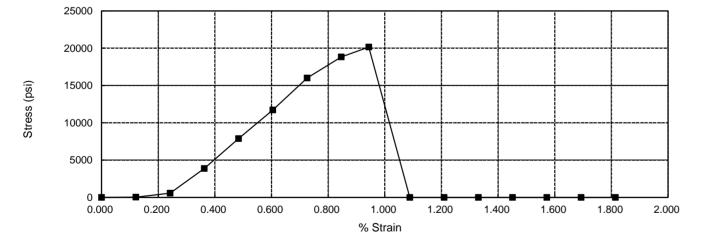
	EERING	1210 TRINITY	RD., SUITE 110, Cary, NC 27513
U		SSIVE STRENGTH OF INTA TM D-7012, METHOD C	CT ROCK CORE
Job No.	G17017.00	Job Name Summ	
Date	10/22/2018	Sample #: R5-14	Boring # BI-A
Depth Description	23.4 - 24.1	-	
Notes:	Depth of Section .	tested 23.5 - 23.8	
		Sample Data	
Length (in.):	4.035	Weight (g.): GI	2,41 Volume:
Diameter (in.):		Unit Weight:	L/D: 2.04
Area (sq. in.)	3.082	Specific Grav.:	2104
Rate of Loading	;	the second	and the second s
Deflection (in.)			1 Frank
0.000	0		
0.005	110		State of the second
0.010	9130		and a state of the
0.015	22100	-	The second s
0.020	34950	6100	No. of the Local Division of the Local Divis
0.025	47430		
0.030		1.1.1	A CONTRACTOR OF THE OWNER
0.035			bi bi
0.040			
		Section and the section of the	
0.045			and the second s
0.050		And Address of the Ad	No. of Concession, Name
0.050			
0.050 0.055 0.060			
0.050 0.055 0.060 0.065			
0.050 0.055 0.060 0.065 0.070			11
0.050 0.055 0.060 0.065 0.070 0.075			A
0.050 0.055 0.060 0.065 0.070 0.075 0.080			A
0.050 0.055 0.060 0.065 0.070 0.075			IN :

Performed in General Accordance with ASTM D7012

Project Name: Bridge Over Watauga River on NC 105

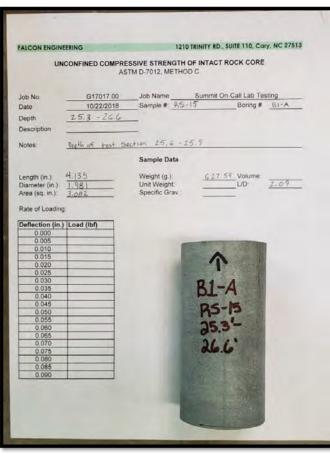
Project Number: 37512.1.4 (R-2566BA)

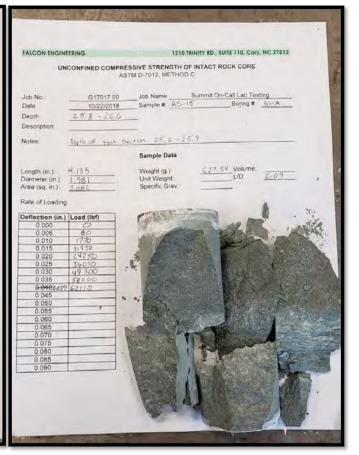
Sample ID: RS-15 Location: B1-A Depth (ft): 25.3 - 26.6


Length (in.): 4.14 Diameter (in.): 1.98

Compressive Strength (psi): 20150

Time to Failure, mins:sec: 5:45


Area (in²): 3.082 L/D 2.09 Unit Weight (pcf): 187.6 Compressive Young's Strenath (psi) Modulus (psi)


Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0.000	0.000	0	0	
0.005	0.121	80	30	24,810
0.010	0.242	1770	570	235,695
0.015	0.363	11950	3880	1,069,587
0.020	0.484	24250	7870	1,627,123
0.025	0.605	36090	11710	1,936,834
0.030	0.726	49300	16000	2,205,333
0.035	0.846	58000	18820	2,223,449
0.039	0.943	62110	20150	2,136,417
0.045	1.088		0	0
0.050	1.209		0	0
0.055	1.330		0	0
0.060	1.451		0	0
0.065	1.572		0	0
0.070	1.693		0	0
0.075	1.814		0	0

Note : "Uniaxial compressive strength was determined in general accordance with ASTM D7012-14 Method C. Deflection, Strain, and Young's modulus data is provided for reference only and is not intended to be in accordance with ASTM D7012-14 Method D as deflection and strain is not measured in accordance with that procedure. Young's Modulus is calculated using this data to determine the secant modulus at each data interval per Figure 2 (C) in ASTM D 7012-14."

> Technician: M. Bauer NCDOT CERT.# 105-02-0803

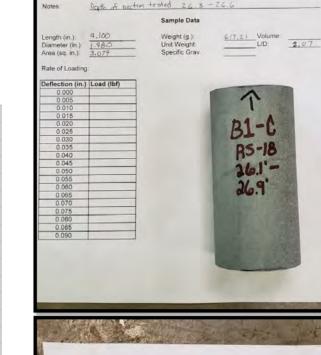
Performed in General Accordance with ASTM D7012

October 24, 2018


Project Name: Bridge Over Watauga River on NC 105 Project Number: 37512.1.4 (R-2566BA) Sample ID: RS-18 Location: B1-C Depth (ft): 26.1 - 26.9

Length (in.): 4.10 Diameter (in.): 1.98 Area (in²): 3.079 L/D 2.07 Unit Weight (pcf): 186.3

Compressive Strength (psi): 16410 Time to Failure, mins:sec: 4:41


			Compressive	Young's
Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0.000	0.000	0	0	
0.005	0.122	1070	350	287,000
0.010	0.244	12710	4130	1,693,300
0.015	0.366	24450	7940	2,170,267
0.020	0.488	36140	11740	2,406,700
0.025	0.610	47400	15390	2,523,960
0.027	0.659	50540	16410	2,491,889
0.035	0.854		0	0
0.040	0.976		0	0
0.045	1.098		0	0
0.050	1.220		0	0
0.055	1.341		0	0
0.060	1.463		0	0
0.065	1.585		0	0
0.070	1.707		0	0
0.075	1.829		0	0

.

Note : "Uniaxial compressive strength was determined in general accordance with ASTM D7012-14 Method C. Deflection, Strain, and Young's modulus data is provided for reference only and is not intended to be in accordance with ASTM D7012-14 Method D as deflection and strain is not measured in accordance with that procedure. Young's Modulus is calculated using this data to determine the secant modulus at each data interval per Figure 2 (C) in ASTM D 7012-14."

> M. Bauer Technician: NCDOT CERT.# 105-02-0803

FALCON ENGINEERING

Job No

Date

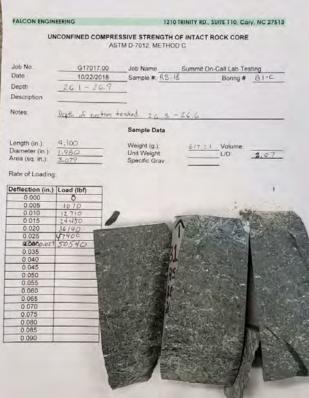
Depth

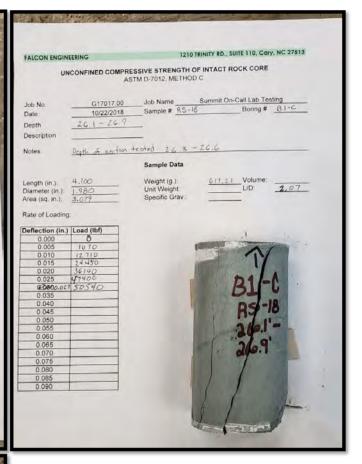
Description

1210 TRINITY RD., SUITE 110, Cary, NC 27513

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE

 Job Name
 Summit On-Call Lab Testing


 10/22/2018
 Sample #: RS-18
 P


 6, 1 = 76, 9
 P
 P

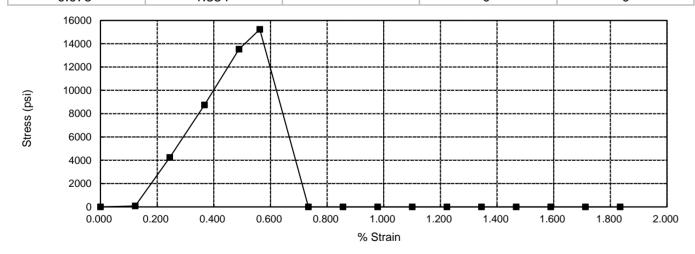
ASTM D-7012, METHOD C

G17017.00 Job Name

26.1-26.9

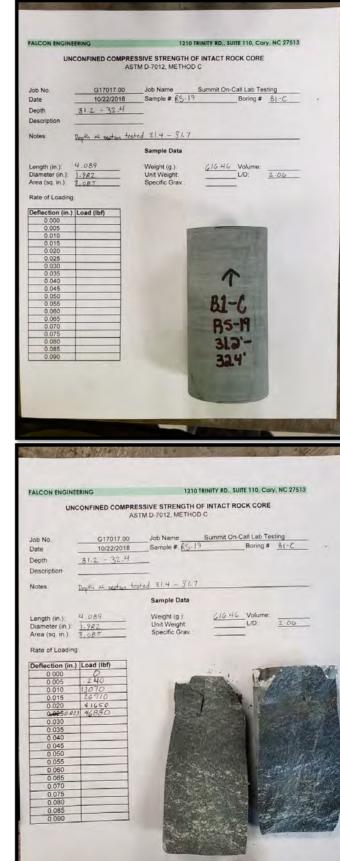
Performed in General Accordance with ASTM D7012

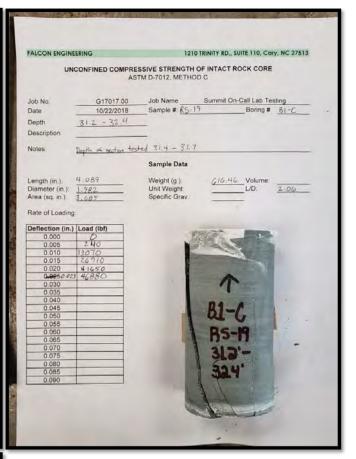
Project Name: Bridge Over Watauga River on NC 105 Project Number: 37512.1.4 (R-2566BA) Sample ID: RS-19 Location: B1-C Depth (ft): 31.2 - 32.4


Length (in.): 4.09 Diameter (in.): 1.98 Area (in²): 3.079 L/D 2.07

October 24, 2018

Compressive Strength (psi): 15230 Time to Failure, mins:sec: 4:20


Unit Weight (pcf): 186.5


			Compressive	Young's
Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0.000	0.000	0	0	
0.005	0.122	240	80	65,424
0.010	0.245	13070	4240	1,733,736
0.015	0.367	26910	8740	2,382,524
0.020	0.489	41650	13530	2,766,209
0.023	0.562	46880	15230	2,707,629
0.030	0.734		0	0
0.035	0.856		0	0
0.040	0.978		0	0
0.045	1.101		0	0
0.050	1.223		0	0
0.055	1.345		0	0
0.060	1.467		0	0
0.065	1.590		0	0
0.070	1.712		0	0
0.075	1.834		0	0

Note : "Uniaxial compressive strength was determined in general accordance with ASTM D7012-14 Method C. Deflection, Strain, and Young's modulus data is provided for reference only and is not intended to be in accordance with ASTM D7012-14 Method D as deflection and strain is not measured in accordance with that procedure. Young's Modulus is calculated using this data to determine the secant modulus at each data interval per Figure 2 (C) in ASTM D 7012-14."

> Technician: M. Bauer NCDOT CERT.# 105-02-0803

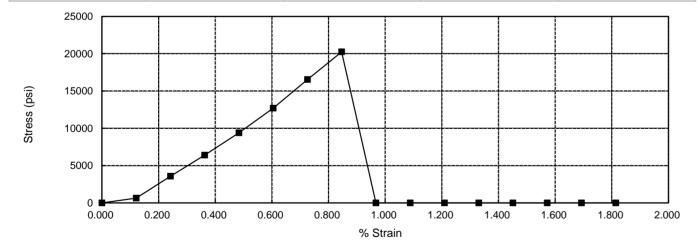
Performed in General Accordance with ASTM D7012

October 24, 2018

Project Name: Bridge Over Watauga River on NC 105 Project Number: 37512.1.4 (R-2566BA) Sample ID: RS-11 Location: EB2-A

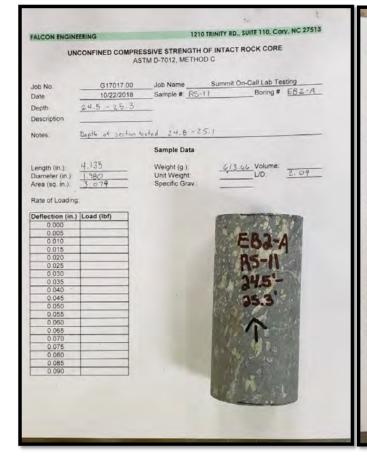
Depth (ft): 24.5 -25.3

Length (in.): 4.14 Diameter (in.): 1.98


Compressive Strength (psi): 20240

Time to Failure, mins:sec: 5:46

Area (in²): 3.079 L/D 2.09


Unit Weight (pcf): 183.6

11111	e lo rallure, mins.sec.	5.40		
			Compressive	Young's
Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0.000	0.000	0	0	
0.005	0.121	1970	640	529,280
0.010	0.242	10990	3570	1,476,195
0.015	0.363	19750	6410	1,767,023
0.020	0.484	28900	9390	1,941,383
0.025	0.605	39110	12700	2,100,580
0.030	0.726	50900	16530	2,278,385
0.035	0.846	62320	20240	2,391,211
0.040	0.967		0	0
0.045	1.088		0	0
0.050	1.209		0	0
0.055	1.330		0	0
0.060	1.451		0	0
0.065	1.572		0	0
0.070	1.693		0	0
0.075	1.814		0	0

Note : "Uniaxial compressive strength was determined in general accordance with ASTM D7012-14 Method C. Deflection, Strain, and Young's modulus data is provided for reference only and is not intended to be in accordance with ASTM D7012-14 Method D as deflection and strain is not measured in accordance with that procedure. Young's Modulus is calculated using this data to determine the secant modulus at each data interval per Figure 2 (C) in ASTM D 7012-14."

> M. Bauer Technician: NCDOT CERT.# 105-02-0803

ALCON ENGIN	EERING	121	TRINITY RD., SUIT	E 110, Cary,	NC 2/513
U	CONFINED COMPRE	SSIVE STRENGTH		CK CORE	
b No.	G17017.00		Summit On-C		
	10/22/2018	Sample # RS-	11	Boring #	BZ-A
th	24.5 - 25.3				
cription					
	Dapth of section to	ded 24.8 -2	5.1		
		Sample Data			
	1. 1.95				
	4.135	Weight (g.):	613.66	Volume:	1
neter (in.):	1.980	Unit Weight:		L/D	2.09
sq. in.);	3.079	Specific Grav.:			
of Loading	p.		-	-	
tion (in	Load (lbf)	Contraction and	AN THE OTHER C	THE OWNER	Q.A.F
0.000	Coad (ibi)	10 - 50 - 100	A Print and and	and the second	ar
0.005	1970	ALL STATE	AND DE CONTRACTOR	The second	a lana da
0.010	10990	A STATISTICS	Martin C	10/17/	ALC: NO
0.015	19750	1 15 5 4 8	NOTES STA	and the second	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.020	28900	CALL AND	ACTIVAL AND	5-11	
0.025	39110	A SERVICE STREET			
0.030	50900	(A State State)	AND ALL AND	AL COL	
0.035	62320	Contraction States	20210		
0.040		E. C. TOTA	SHOULD SET	And shall	2.6
0.045		A DECKAR SHE	AND 125-10	A A A A A	10516
0.050		CONTRACT OF	a hade at	128	100
		Cheve of	Phylas - and	1000	the film
0.060		a. 18	Carl Mart	Elson	A TAK
0.065		Contraction of the second	-	int.	Real Provention
0.075		185.70	State State	and the second	STATING IN
.080		Contraction of the second	and the second is	Mar - Cr	a sent
0.085			1000 1275	19	Ser Mail
0.090		1 1 1 M P 1 7		1 1 1 1 1	11.2

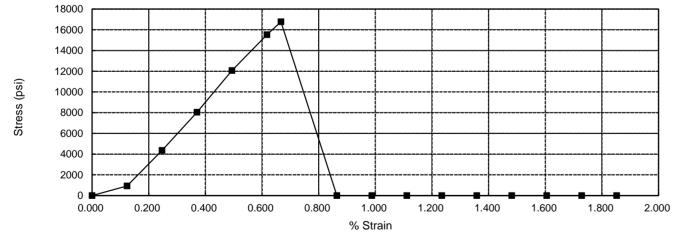
Performed in General Accordance with ASTM D7012

October 24, 2018

Project Name: Bridge Over Watauga River on NC 105

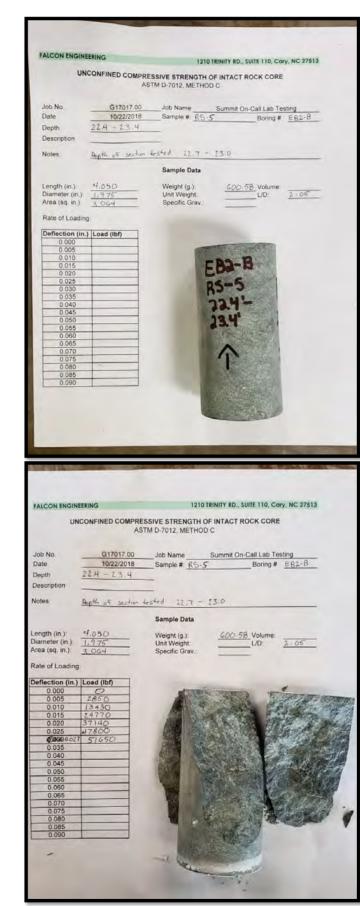
Project Number: 37512.1.4 (R-2566BA) Sample ID: RS-5 Location: EB2-B

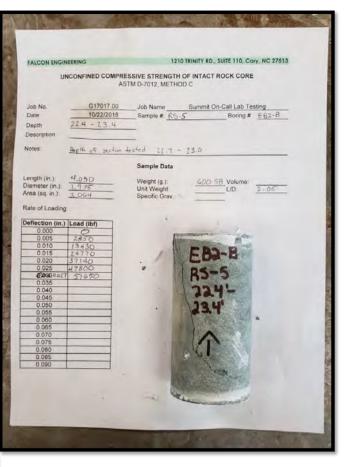
Depth (ft): 22.4 - 23.4


Length (in.): 4.05 Diameter (in.): 1.98 Area (in²): 3.079 L/D 2.05

Compressive Strength (psi): 16770

Time to Failure, mins:sec: 4:47

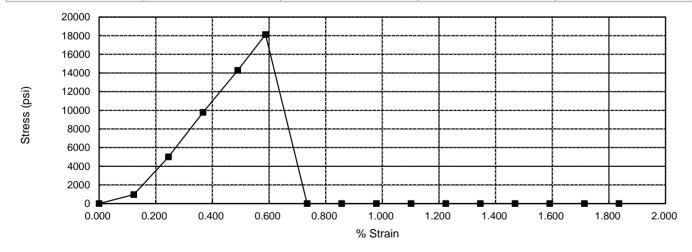

Unit Weight (pcf): 183.5


			Compressive	Young's
Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0.000	0.000	0	0	
0.005	0.123	2850	930	753,300
0.010	0.247	13430	4360	1,765,800
0.015	0.370	24770	8040	2,170,800
0.020	0.494	37140	12060	2,442,150
0.025	0.617	47800	15520	2,514,240
0.027	0.667	51650	16770	2,515,500
0.035	0.864		0	0
0.040	0.988		0	0
0.045	1.111		0	0
0.050	1.235		0	0
0.055	1.358		0	0
0.060	1.481		0	0
0.065	1.605		0	0
0.070	1.728		0	0
0.075	1.852		0	0

Note : "Uniaxial compressive strength was determined in general accordance with ASTM D7012-14 Method C. Deflection, Strain, and Young's modulus data is provided for reference only and is not intended to be in accordance with ASTM D7012-14 Method D as deflection and strain is not measured in accordance with that procedure. Young's Modulus is calculated using this data to determine the secant modulus at each data interval per Figure 2 (C) in ASTM D 7012-14."

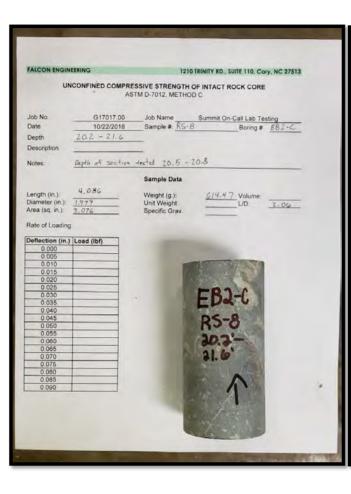
> Technician: M. Bauer NCDOT CERT.# 105-02-0803

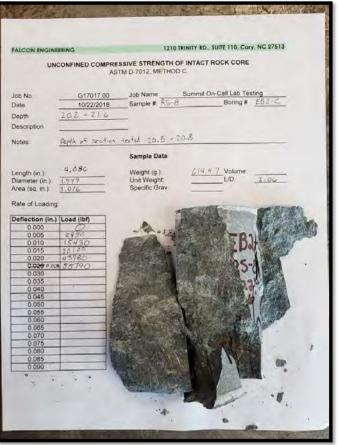
Performed in General Accordance with ASTM D7012


October 24, 2018

Project Name: Bridge Over Watauga River on NC 105 Project Number: 37512.1.4 (R-2566BA) Sample ID: RS-8 Location: EB2-C Depth (ft): 20.2 - 21.6

Length (in.): 4.09 Diameter (in.): 1.98 Area (in²): 3.079 L/D 2.06 Unit Weight (pcf): 186.1


Compressive Strength (psi): 18120 Time to Failure, mins:sec: 5:10


			Compressive	Young's
Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0.000	0.000	0	0	
0.005	0.122	2950	960	784,512
0.010	0.245	15430	5010	2,047,086
0.015	0.367	30100	9780	2,664,072
0.020	0.489	43980	14280	2,917,404
0.024	0.587	55790	18120	3,084,930
0.030	0.734		0	0
0.035	0.857		0	0
0.040	0.979		0	0
0.045	1.101		0	0
0.050	1.224		0	0
0.055	1.346		0	0
0.060	1.468		0	0
0.065	1.591		0	0
0.070	1.713		0	0
0.075	1.836		0	0

Note : "Uniaxial compressive strength was determined in general accordance with ASTM D7012-14 Method C. Deflection, Strain, and Young's modulus data is provided for reference only and is not intended to be in accordance with ASTM D7012-14 Method D as deflection and strain is not measured in accordance with that procedure. Young's Modulus is calculated using this data to determine the secant modulus at each data interval per Figure 2 (C) in ASTM D 7012-14."

Technician: M. Bauer NCDOT CERT.# 105-02-0803

SITE PHOTOGRAPHS R-2566BA, BRIDGE NO. 5, WATAUGA COUNTY

View along existing NC 105, facing North

View along existing NC 105, facing South