#### **CONTENTS**

-0002

BR-

REFERENCE

| <u>SHEET NO.</u> | <b>DESCRIPTION</b>        |
|------------------|---------------------------|
| I                | TITLE SHEET               |
| 2                | LEGEND (SOIL & ROCK)      |
| 2A               | SUPPLEMENTAL LEGEND (GSI) |
| 3                | SITE PLAN                 |
| 4-6              | PROFILES                  |
| 7-8              | CROSS SECTIONS            |
| 9-14             | BORE LOGS & CORE REPORTS  |
| 15-18            | CORE PHOTOGRAPHS          |

## STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

## **STRUCTURE** SUBSURFACE INVESTIGATION

COUNTY ASHE

PROJECT DESCRIPTION REPLACE BRIDGE #8 ON NC 194 OVER NORTH FORK NEW RIVER

SITE DESCRIPTION \_

# 67002 PROJECT

STATE PROJECT REFERENCE NO. STATE TOTAL SHEETS NO. 18 N.C **BR-0002** 1

#### **CAUTION NOTICE**

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1919/TO7-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAIL

GENERAL SOL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU UNI-PLACE)TEST DATA CAN BE RELIED ON ONLY TO THE DEOREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOL MOISTURE CONDITIONS MAY YARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

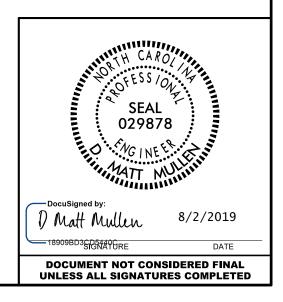
THE BIDDER OF CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLATORS. THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERRETATIONS MADE, OR OPHION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HINSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACULAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES: I. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT. 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE. 2.

PERSONNEL

C.D. JOHNSON

D.O. CHEEK


C.J. COFFEY

INVESTIGATED BY \_\_\_\_\_\_. MULLEN

CHECKED BY J.C. KUHNE

SUBMITTED BY \_\_\_\_\_\_\_

DATE <u>8/1/2019</u>



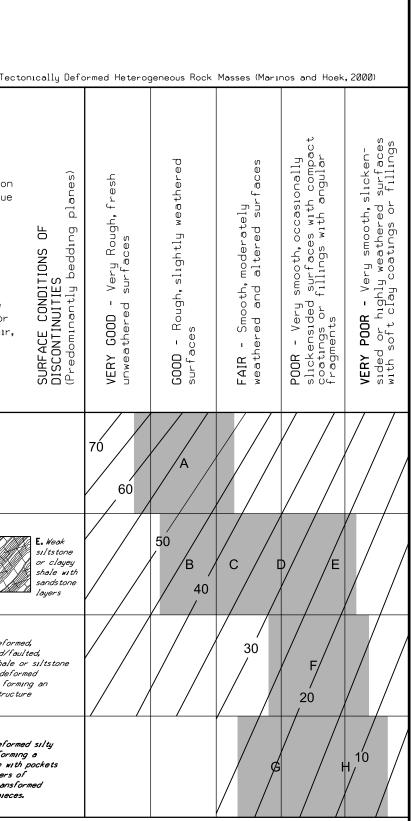
## NORTH CAROLINA DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT** SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

|                                        |                                        |                                             | SOIL C                                         | ESCRIP.                                  | TION                                       |                                                                                             |                                       |                                                                                  |           | GRADATION                                                                                                          |                                   |                                                               |                                                           |                                      |                                                       | ROCK DE                                                                       | SCRIPTION                                                                                                                                |
|----------------------------------------|----------------------------------------|---------------------------------------------|------------------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| BE PENET<br>ACCORDI<br>IS B            | TRATED WIT<br>ING TO THE<br>BASED ON T | H A CONTINUO<br>STANDARD PE<br>HE AASHTO SI | US FLIGHT POW<br>NETRATION TE<br>STEM. BASIC [ | IER AUGER (<br>ST (AASHTO<br>DESCRIPTION | AND YIELD LE<br>T 206, ASTM<br>S GENERALLY | ) EARTH MATERIA<br>SS THAN 100 BLC<br>D1586). SOIL CLA<br>INCLUDE THE FO<br>HER PERTINENT F | WS PER FOOT<br>SSIFICATION<br>LOWING: | UNIFORMLY GRADED - I                                                             | INDICATE  | GOOD REPRESENTATION OF PARTI<br>ES THAT SOIL PARTICLES ARE A<br>IXTURE OF UNIFORM PARTICLE S<br>ANGULARITY OF GRAI | LL APPROXIMA                      | ATELY THE SAME SIZE.                                          | ROCK LINE IN<br>SPT REFUSAL<br>BLOWS IN NO<br>REPRESENTED | NDICATE<br>IS PEN<br>ON-COAS<br>BY A | S THE LEVE<br>NETRATION E<br>STAL PLAIN<br>ZONE OF WE | L AT WHICH NON-CO<br>BY A SPLIT SPOON S<br>MATERIAL, THE TR<br>EATHERED ROCK. | WOULD YIELD SPT REFUSAL IF TEST<br>ASTAL PLAIN MATERIAL WOULD YIELD<br>AMPLER EQUAL TO OR LESS THAN Ø.<br>ANSITION BETWEEN SOIL AND ROCK |
| A                                      | S MINERALC                             | OGICAL COMPOS                               | ITION, ANGULAR                                 | ITY, STRUCT                              | URE, PLASTIC                               | TY, ETC. FOR EXERS, HIGHLY PLASTIC.                                                         | MPLE.                                 | THE ANGULARI                                                                     | TY OR F   | ROUNDNESS OF SOIL GRAINS IS D                                                                                      |                                   | Y THE TERMS:                                                  |                                                           | ALS ARE                              | E TYPICALL                                            | Y DIVIDED AS FOLLO<br>역                                                       |                                                                                                                                          |
|                                        |                                        |                                             | END AND                                        |                                          |                                            |                                                                                             | 7.0                                   | ANGULAR, SUBA                                                                    |           | , <u>SUBROUNDED</u> , OR <u>ROUNDED</u> .                                                                          |                                   |                                                               | WEATHERED<br>ROCK (WR)                                    |                                      |                                                       | NON-COASTAL PLA                                                               | IN MATERIAL THAT WOULD YIELD SP<br>OOT IF TESTED.                                                                                        |
| GENERAL                                |                                        | GRANULAR MATE                               | RIALS                                          | SILT-CL                                  | ay materials                               |                                                                                             | MATERIALS                             | <b>-</b>                                                                         |           | INERALOGICAL COMPOS                                                                                                |                                   |                                                               | CRYSTALLINE                                               |                                      | 7.7.                                                  |                                                                               | GRAIN IGNEOUS AND METAMORPHIC RO                                                                                                         |
| CLASS.                                 |                                        | (≤ 35% PASSING                              |                                                | _                                        | PASSING #200)                              |                                                                                             |                                       |                                                                                  |           | JCH AS QUARTZ, FELDSPAR, MICA,<br>RIPTIONS WHEN THEY ARE CONSI                                                     |                                   |                                                               | ROCK (CR)                                                 |                                      |                                                       | GNEISS, GABBRO, S                                                             | REFUSAL IF TESTED. ROCK TYPE IN<br>CHIST, ETC.                                                                                           |
| GROUP<br>CLASS.                        | A-1<br>A-1-a A-1-b                     | A-3<br>A-2-4 4                              | A-2<br>-2-5 A-2-6 A-2-                         | A-4 A-                                   | 5 A-6 A-7                                  |                                                                                             | , A-5<br>, A-7                        |                                                                                  |           | COMPRESSIBILITY                                                                                                    |                                   |                                                               | NON-CRYSTAL                                               | .LINE                                |                                                       |                                                                               | GRAIN METAMORPHIC AND NON-COAST<br>K THAT WOULD YEILD SPT REFUSAL                                                                        |
| SYMBOL                                 |                                        |                                             |                                                |                                          |                                            |                                                                                             |                                       |                                                                                  |           | COMPRESSIBLE<br>Y COMPRESSIBLE                                                                                     | LL < 31<br>LL = 31 -              | 50                                                            | ROCK (NCR)                                                |                                      | ===                                                   | ROCK TYPE INCLU                                                               | DES PHYLLITE, SLATE, SANDSTONE, ET<br>EDIMENTS CEMENTED INTO ROCK, BUT                                                                   |
| % PASSING                              | 00000000000                            |                                             |                                                | <b>S</b> alation ( )                     |                                            |                                                                                             |                                       | HIGH                                                                             | HLY COM   | IPRESSIBLE                                                                                                         | LL > 50                           | 90                                                            | SEDIMENTARY                                               |                                      |                                                       | SPT REFUSAL. RO                                                               | CK TYPE INCLUDES LIMESTONE, SAND                                                                                                         |
| *10 5                                  | 50 MX                                  | <b>51 M</b>                                 |                                                |                                          |                                            | GRANULAR                                                                                    | AY PEAT                               |                                                                                  | F         | PERCENTAGE OF MATE                                                                                                 | RIAL                              |                                                               | (CP)                                                      |                                      |                                                       | SHELL BEDS, ETC.                                                              | HERING                                                                                                                                   |
|                                        | 30 MX 50 MX<br>15 MX 25 MX             |                                             | 5 MX 35 MX 35 N                                | IX 36 MN 36 I                            | MN 36 MN 36 MI                             | SOILS S                                                                                     | ILS PERI                              | ORGANIC MATERIA                                                                  | <u>IL</u> | GRANULAR SILT - CLAY<br>SOILS SOILS                                                                                | <u>OTHE</u>                       | MATERIAL                                                      | FRESH                                                     | ROCK F                               | RESH, CRYST                                           | ALS BRIGHT, FEW JOIN                                                          | ITS MAY SHOW SLIGHT STAINING. ROCK                                                                                                       |
| MATERIAL<br>PASSING *40<br>LL<br>PI    | _<br>6 MX                              |                                             | 1 MN 40 MX 41 M<br>3 MX 11 MN 11 M             |                                          |                                            | SOILS WITH<br>LITTLE OR                                                                     | HIGHL                                 | TRACE OF ORGANIC N<br>LITTLE ORGANIC MAT<br>MODERATELY ORGANIC<br>HIGHLY ORGANIC | TTER      | 2 - 3% 3 - 5%<br>3 - 5% 5 - 12%<br>5 - 10% 12 - 20%<br>> 10% > 20%                                                 | TRACE<br>LITTLE<br>SOME<br>HIGHLY | 1 - 10%<br>10 - 20%<br>20 - 35%<br>35% AND ABOVE              | VERY SLIGHT<br>(V SLI.)                                   | ROCK G<br>CRYSTA                     |                                                       | RESH, JOINTS STAINED<br>OKEN SPECIMEN FACE                                    | ,SOME JOINTS MAY SHOW THIN CLAY C<br>SHINE BRIGHTLY. ROCK RINGS UNDER F                                                                  |
| GROUP INDEX                            | 0                                      | 0 0                                         | 4 MX                                           | -                                        | 4X 16 MX NO M                              | MUDERATE                                                                                    | ORGANI                                | c                                                                                |           | GROUND WATER                                                                                                       |                                   |                                                               | SLIGHT                                                    |                                      |                                                       |                                                                               | AND DISCOLORATION EXTENDS INTO R                                                                                                         |
| USUAL TYPES S<br>OF MAJOR<br>MATERIALS | STONE FRAGS.<br>GRAVEL, AND<br>SAND    | FINE SIL                                    | TY OR CLAYEY<br>VEL AND SAND                   | SIL TY<br>SOIL S                         | CLAYEY<br>SOILS                            | ORGANIC<br>MATTER                                                                           | SOILS                                 |                                                                                  |           | ER LEVEL IN BORE HOLE IMMEDI<br>TIC WATER LEVEL AFTER _24_                                                         |                                   | DRILLING                                                      | (SLI.)<br>MODERATE                                        | 1 INCH.<br>CRYSTA                    | . OPEN JOINT<br>ALS ARE DUL                           | S MAY CONTAIN CLAY.<br>L AND DISCOLORED. C                                    | . IN GRANITOID ROCKS SOME OCCASIONA<br>RYSTALLINE ROCKS RING UNDER HAMMEN<br>SCOLORATION AND WEATHERING EFFECT                           |
| GEN. RATING                            | SHIND                                  |                                             |                                                |                                          |                                            | FAIR TO                                                                                     |                                       |                                                                                  |           | CHED WATER, SATURATED ZONE, O                                                                                      |                                   | RING STRATA                                                   | (MOD.)                                                    | GRANIT                               | OID ROCKS, M                                          | 10ST FELDSPARS ARE                                                            | DULL AND DISCOLORED, SOME SHOW CLA                                                                                                       |
| AS SUBGRADE                            |                                        | EXCELLENT TO                                | 500D                                           | FAIR                                     | TO POOR                                    | POOR                                                                                        | IOR UNSUITAI                          |                                                                                  | SPR       | ING OR SEEP                                                                                                        |                                   |                                                               |                                                           |                                      | SOUND UNDER<br>RESH ROCK.                             | HAMMER BLOWS AND                                                              | SHOWS SIGNIFICANT LOSS OF STRENGTH                                                                                                       |
|                                        |                                        |                                             | GROUP IS ≤ LL                                  |                                          |                                            |                                                                                             |                                       | 0.001                                                                            |           |                                                                                                                    | <u></u>                           |                                                               | MODERATELY                                                |                                      |                                                       |                                                                               | OR STAINED. IN GRANITOID ROCKS, ALL                                                                                                      |
| -                                      |                                        |                                             | NSISTENC                                       |                                          | STANDARD                                   |                                                                                             | UNCONFINED                            |                                                                                  |           | MISCELLANEOUS SYMB                                                                                                 | ULS                               |                                                               | SEVERE<br>(MOD. SEV.)                                     |                                      |                                                       |                                                                               | KAOLINIZATION. ROCK SHOWS SEVERE L<br>ST'S PICK. ROCK GIVES 'CLUNK' SOUND                                                                |
| PRIMARY S                              |                                        | CONSI                                       | INESS OR<br>STENCY                             | PENETRATI<br>(N                          | ON RESISTENC                               | E COMPRESS                                                                                  | IVE STRENGTH<br>IS/FT <sup>2</sup> )  |                                                                                  | DESCRIPT  |                                                                                                                    |                                   | SLOPE INDICATOR                                               | SEVERE<br>(SEV.)                                          | ALL RO                               | DCK EXCEPT                                            |                                                                               | DR STAINED. ROCK FABRIC CLEAR AND E<br>IN GRANITOID ROCKS ALL FELDSPARS (                                                                |
| GENERAL<br>GRANULA                     |                                        | LC                                          | OSE<br>1 DENSE                                 | 4                                        | TO 10                                      |                                                                                             |                                       | SOIL SYMBOL                                                                      | •         | OPT DMT TEST BC                                                                                                    |                                   | INSTALLATION                                                  |                                                           |                                      |                                                       | SOME FRAGMENTS OF S<br><u>YIELD SPT N VALUES</u>                              | STRONG ROCK USUALLY REMAIN.                                                                                                              |
| MATERIA<br>(NON-CO                     |                                        | DE                                          | NSE<br>DENSE                                   | 30                                       | TO 30<br>TO 50<br>> 50                     |                                                                                             | N/A                                   |                                                                                  | AY EMBA   |                                                                                                                    | ;                                 | CONE PENETROMETER<br>TEST<br>SOUNDING ROD                     | VERY<br>SEVERE<br>(V SEV.)                                | ALL RO<br>BUT MA                     | DCK EXCEPT<br>ASS IS EFFE                             | QUARTZ DISCOLORED (<br>CTIVELY REDUCED TO                                     | DR STAINED. ROCK FABRIC ELEMENTS AF<br>SOIL STATUS, WITH ONLY FRAGMENTS OF<br>F ROCK WEATHERED TO A DEGREE THAT                          |
| GENERAL<br>SILT-CL<br>MATERIA          | AY.                                    | SI                                          | SOFT<br>DFT<br>1 STIFF<br>IFF                  | 2<br>4                                   | < 2<br>TO 4<br>TO 8<br>TO 15               | Ø.25<br>Ø.5                                                                                 | 0.25<br>TO 0.5<br>TO 1.0<br>TO 2      |                                                                                  |           | MW C                                                                                                               | /ELL 🔶                            | TEST BORING<br>WITH CORE                                      | COMPLETE                                                  | VESTIG<br>ROCK R                     | SES OF ORIGI<br>REDUCED TO                            | NAL ROCK FABRIC REN<br>SOIL. ROCK FABRIC NO                                   | AAIN, <i>IF TESTED, WOULD YIELD SPT N</i><br>DT DISCERNIBLE, OR DISCERNIBLE ONLY<br>Y BE PRESENT AS DIKES OR STRINGER:                   |
| (COHESI)                               |                                        | VERY                                        | STIFF                                          | 15                                       | TO 30                                      | 2                                                                                           | TO 4                                  | ALLUVIAL SO                                                                      | JIL BOU⊾  | NDARY A PIEZOMETER<br>INSTALLATION                                                                                 | , Ò                               | - SPT N-VALUE                                                 |                                                           |                                      | AN EXAMPLE.                                           | INTERIORS. GORNEZ PR                                                          | T DE TRESERT HS DIRES ON STRINGER.                                                                                                       |
|                                        |                                        |                                             |                                                |                                          | > 30                                       |                                                                                             | > 4                                   |                                                                                  | F         | RECOMMENDATION SYME                                                                                                |                                   |                                                               |                                                           |                                      |                                                       | ROCK H                                                                        | IARDNESS                                                                                                                                 |
| U.S. STD. SIE                          | VE SIZE                                |                                             | 4 10                                           | 40                                       | 60 20                                      | 0 270                                                                                       |                                       |                                                                                  |           | CLASSIFIED EXCAVATION -                                                                                            |                                   | SIFIED EXCAVATION -                                           | VERY HARD                                                 |                                      |                                                       | HED BY KNIFE OR SHA<br>WS OF THE GEOLOGIST                                    | RP PICK. BREAKING OF HAND SPECIMEN                                                                                                       |
| OPENING (MM<br>BOULDER                 | 4)<br>                                 | DBBLE (                                     | 4.76 2.00                                      | Ø.42<br>COARSE                           | 0.25 0.0                                   | 75 0.053                                                                                    | CLAY                                  | SHALLOW<br>UNDERCUT                                                              |           | NSUITABLE WASTE<br>NCLASSIFIED EXCAVATION -<br>CCEPTABLE DEGRADABLE ROCK                                           | USED I                            | ABLE,BUT NOT TO BE<br>N THE TOP 3 FEET OF<br>MENT OR BACKFILL | HARD                                                      | CAN BE<br>TO DET                     | E SCRATCHED<br>TACH HAND S                            | BY KNIFE OR PICK O<br>PECIMEN.                                                | NLY WITH DIFFICULTY. HARD HAMMER B                                                                                                       |
| (BLDR.)<br>GRAIN MM                    | (1                                     | COB.)<br>75                                 | (GR.)                                          | SAND<br>(CSE. SD.)                       | 0.25                                       | D.) (SL.)                                                                                   | (CL.)                                 | AR - AUGER REFUSAL                                                               |           | ABBREVIATIONS<br>MED MEDIUM                                                                                        |                                   | - VANE SHEAR TEST                                             | MODERATELY<br>HARD                                        | EXCAVA                               |                                                       | D BLOW OF A GEOLOG                                                            | GOUGES OR GROOVES TO 0.25 INCHES D<br>IST'S PICK. HAND SPECIMENS CAN BE D                                                                |
| SIZE IN.                               |                                        | 3                                           |                                                |                                          |                                            |                                                                                             |                                       | BT - BORING TERMINATE<br>CL CLAY                                                 | ED        | MICA MICACEOUS<br>MOD MODERATELY                                                                                   | WEA.                              | - WEATHERED<br>UNIT WEIGHT                                    | MEDIUM<br>HARD                                            |                                      |                                                       |                                                                               | S DEEP BY FIRM PRESSURE OF KNIFE (                                                                                                       |
|                                        |                                        |                                             | STURE - I                                      |                                          | TION OF                                    | TERMS                                                                                       |                                       | CPT - CONE PENETRATIO                                                            | ON TEST   | NP - NON PLASTIC                                                                                                   |                                   | DRY UNIT WEIGHT                                               | HHND                                                      |                                      | OF A GEOLOG                                           |                                                                               | PEICES 1 INCH MAXIMUM SIZE BY HARD                                                                                                       |
|                                        | MOISTURE                               |                                             | FIELD MO<br>DESCRI                             | PTION                                    |                                            | FIELD MOISTUR                                                                               |                                       | CSE COARSE<br>DMT - DILATOMETER TE<br>DPT - DYNAMIC PENETRA                      |           | ORG ORGANIC<br>PMT - PRESSUREMETER T<br>EST SAP SAPROLITIC                                                         | rest <u>sa</u><br>s - e           | MPLE ABBREVIATIONS<br>BULK                                    | SOFT                                                      | FROM C                               | CHIPS TO SE                                           |                                                                               | KNIFE OR PICK. CAN BE EXCAVATED IN<br>E BY MODERATE BLOWS OF A PICK POIN<br>SURE.                                                        |
| ᄕᇆᆮ                                    |                                        | LIMIT                                       | - SATURA<br>(SAT.)                             |                                          |                                            | IQUID; VERY WET<br>)W THE GROUND                                                            |                                       | e - VOID RATIO<br>F - FINE<br>FOSS FOSSILIFEROUS                                 |           | SD SAND, SANDY<br>SL SILT, SILTY<br>SLI SLIGHTLY                                                                   |                                   | SPLIT SPOON<br>SHELBY TUBE<br>ROCK                            | VERY<br>SOFT                                              |                                      | RE IN THICKN                                          |                                                                               | CAVATED READILY WITH POINT OF PICK.<br>BY FINGER PRESSURE. CAN BE SCRATCH                                                                |
| PLASTIC<br>RANGE <                     |                                        |                                             | - WET -                                        | (W)                                      |                                            | REQUIRES DRYI                                                                               | G TO                                  | FRAC FRACTURED, FRA<br>FRAGS FRAGMENTS                                           | CTURES    | TCR - TRICONE REFUSAL<br>W - MOISTURE CONTENT                                                                      | RT -                              | RECOMPACTED TRIAXIAL<br>- CALIFORNIA BEARING                  |                                                           |                                      | TURE SPI                                              |                                                                               | BEDDING                                                                                                                                  |
| (PI) PL                                |                                        | IC LIMIT                                    |                                                |                                          | ATTAIN UP                                  | TIMUM MOISTURE                                                                              |                                       | HI HIGHLY                                                                        |           | V - VERY                                                                                                           | CON                               | RATIO                                                         | TERM                                                      |                                      |                                                       | SPACING                                                                       |                                                                                                                                          |
| ОМ                                     |                                        | JM MOISTURE<br>(AGE LIMIT                   | - MOIST                                        | - (M)                                    | SOLID; AT                                  | OR NEAR OPTIMU                                                                              | M MOISTURE                            | DRILL UNITS:                                                                     |           | ENT USED ON SUBJEC<br>ANCING TOOLS:                                                                                | HAMMER                            | TYPE:                                                         | VERY WIDE<br>WIDE<br>MODERATE                             |                                      | ISE SE                                                | E THAN 10 FEET<br>8 TO 10 FEET<br>1 TO 3 FEET                                 | VERY THICKLY BEDDED<br>THICKLY BEDDED 1<br>THINLY BEDDED 0.                                                                              |
|                                        |                                        |                                             | - DRY -                                        | (D)                                      |                                            | ADDITIONAL WAT<br>TIMUM MOISTURE                                                            |                                       | X CME-45C                                                                        |           | CLAY BITS<br>6"CONTINUOUS FLIGHT AUGER                                                                             | CORE SIZ                          |                                                               | CLOSE<br>VERY CLO                                         | SE                                   |                                                       | .16 TO 1 FOOT<br>THAN 0.16 FEET                                               | VERY THINLY BEDDED 0.0<br>THICKLY LAMINATED 0.0<br>THINLY LAMINATED 4                                                                    |
|                                        |                                        |                                             | PLA                                            | STICITY                                  | /                                          |                                                                                             |                                       |                                                                                  |           |                                                                                                                    | □-в_                              | н                                                             |                                                           |                                      |                                                       |                                                                               | RATION                                                                                                                                   |
|                                        |                                        |                                             | PLAST                                          | CITY INDEX                               | (PI)                                       |                                                                                             | RENGTH                                | CME-550                                                                          |           | HARD FACED FINGER BITS                                                                                             | X-N X                             | WL                                                            | FOR SEDIMEN                                               | TARY R                               | OCKS, INDUR                                           |                                                                               | NING OF MATERIAL BY CEMENTING, HE                                                                                                        |
| SLIC                                   | PLASTIC<br>GHTLY PLA<br>ERATELY P      |                                             |                                                | 0-5<br>6-15<br>16-25                     |                                            | SL                                                                                          | LOW<br>GHT<br>NUM                     | VANE SHEAR TEST                                                                  |           | TUNGCARBIDE INSERTS<br>CASING X W/ ADVANCER                                                                        | HAND TO                           |                                                               | - FRIABL                                                  |                                      |                                                       | GENTLE BLOW                                                                   | FINGER FREES NUMEROUS GRAINS;<br>BY HAMMER DISINTEGRATES SAMPLE.<br>E SEPARATED FROM SAMPLE WITH ST                                      |
|                                        | HLY PLAST                              |                                             |                                                | S OR MORE                                |                                            |                                                                                             | GH                                    | PORTABLE HOIST                                                                   |           | TRICONE STEEL TEETH                                                                                                |                                   | ID AUGER                                                      | MODER                                                     | ATELY !                              | INDURATED                                             |                                                                               | Y WHEN HIT WITH HAMMER.                                                                                                                  |
| DESCRIPT                               | IONS MAY                               |                                             |                                                |                                          | INS (TAN. RFI                              | , YELLOW-BROWN                                                                              | BLUE-GRAY)                            |                                                                                  |           | TRICONE TUNGCARB.                                                                                                  | SOL                               | INDING ROD                                                    | INDURA                                                    | 4TED                                 |                                                       | DIFFICULT TO                                                                  | IFFICULT TO SEPARATE WITH STEEL<br>BREAK WITH HAMMER.                                                                                    |
|                                        |                                        |                                             |                                                |                                          |                                            | DESCRIBE APPEA                                                                              |                                       |                                                                                  |           |                                                                                                                    | .   🗖 _                           |                                                               | EXTRE                                                     | MELY IN                              | NDURATED                                              |                                                                               | R BLOWS REQUIRED TO BREAK SAMPLI<br>(S ACROSS GRAINS.                                                                                    |

## PROJECT REFERENCE NO. **BR-0002**



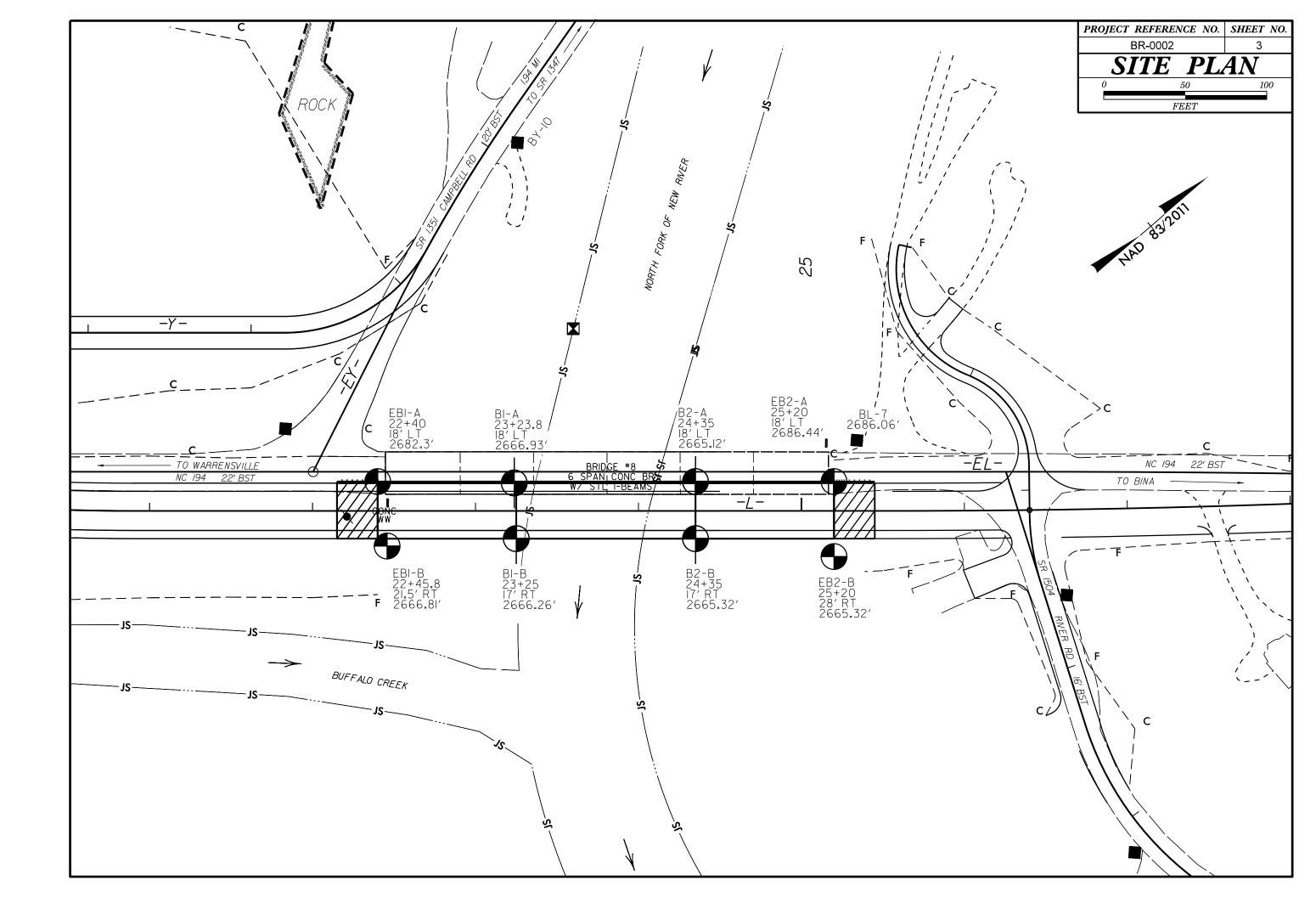

| 2 |
|---|
| L |

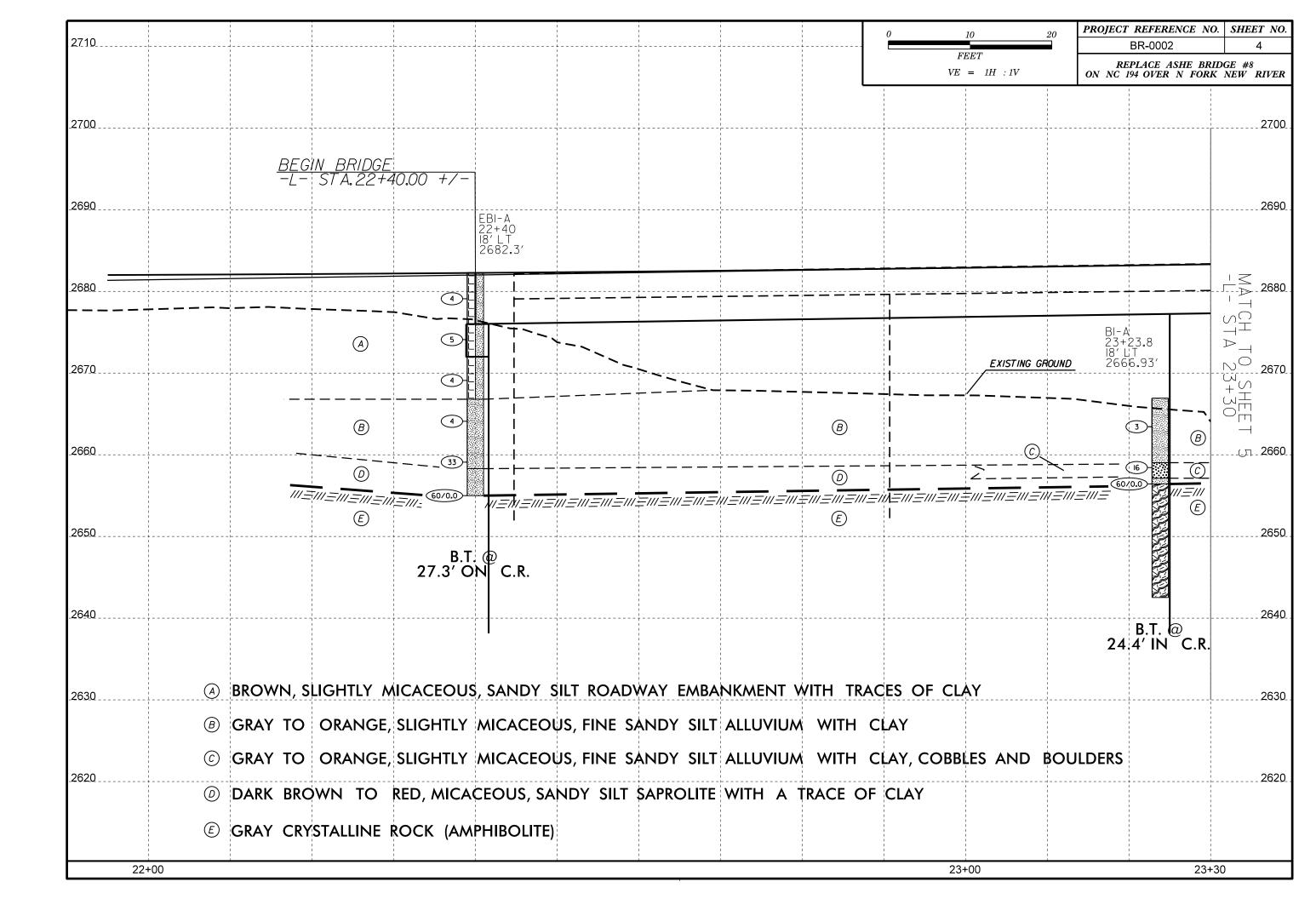
TERMS AND DEFINITIONS ED. AN INFERRED ) SPT REFUSAL. 1 FOOT PER 60 IS OFTEN ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. AQUIFER - A WATER BEARING FORMATION OR STRATA. ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND. ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC. N VALUES > ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND CK THAT SURFACE. CLUDES GRANITE, CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE. AL PLAIN IF TESTED. COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE. MAY NOT YIELD STONE, CEMENTED CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.  $\underline{\text{DIKE}}$  - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK. RINGS UNDER DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL. NATINGS IF OPEN. DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH. AMMER BLOWS IF FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE СК ИР ТО SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE. FELDSPAR FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES. BLOWS.  $\underline{\mathsf{FLOAT}}$  - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL. . IN Y. ROCK HAS AS COMPARED FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM. FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD. ELDSPARS DULL OSS OF STRENGTH WHEN STRUCK. JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED. LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO VIDENT BUT ITS LATERAL EXTENT. ARE KAOLINIZED LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. MOTTLED (MOT.)- IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE. RE DISCERNIBLE PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE STRONG ROCK ONLY MINOR OF AN INTERVENING IMPERVIOUS STRATUM. ALUES < 100 BPF RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK. IN SMALL AND ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF SAPROLITE IS ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK. S REQUIRES SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO LOWS REQUIRED THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. <u>SLICKENSIDE</u> - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. EEP CAN BE ETACHED STANDARD PENETRATION TEST (PENETRATION RESISTANCE)(SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL OR PICK POINT WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL BLOWS OF THE TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.  $\underline{STRATA CORE RECOVERY (SREC.)}$ - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. FRAGMENTS IT. SMALL. THIN STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. PIECES 1 INCH ED READILY BY TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BL-7 THICKNESS 4 FEET 1.5 - 4 FEET ELEVATION: 2686.06 FEET 16 - 1.5 FEET NOTES: 3 - 0.16 FEET 08 - 0.03 FEET 0.008 FEET AT, PRESSURE, ETC. TEEL PROBE: PROBE:

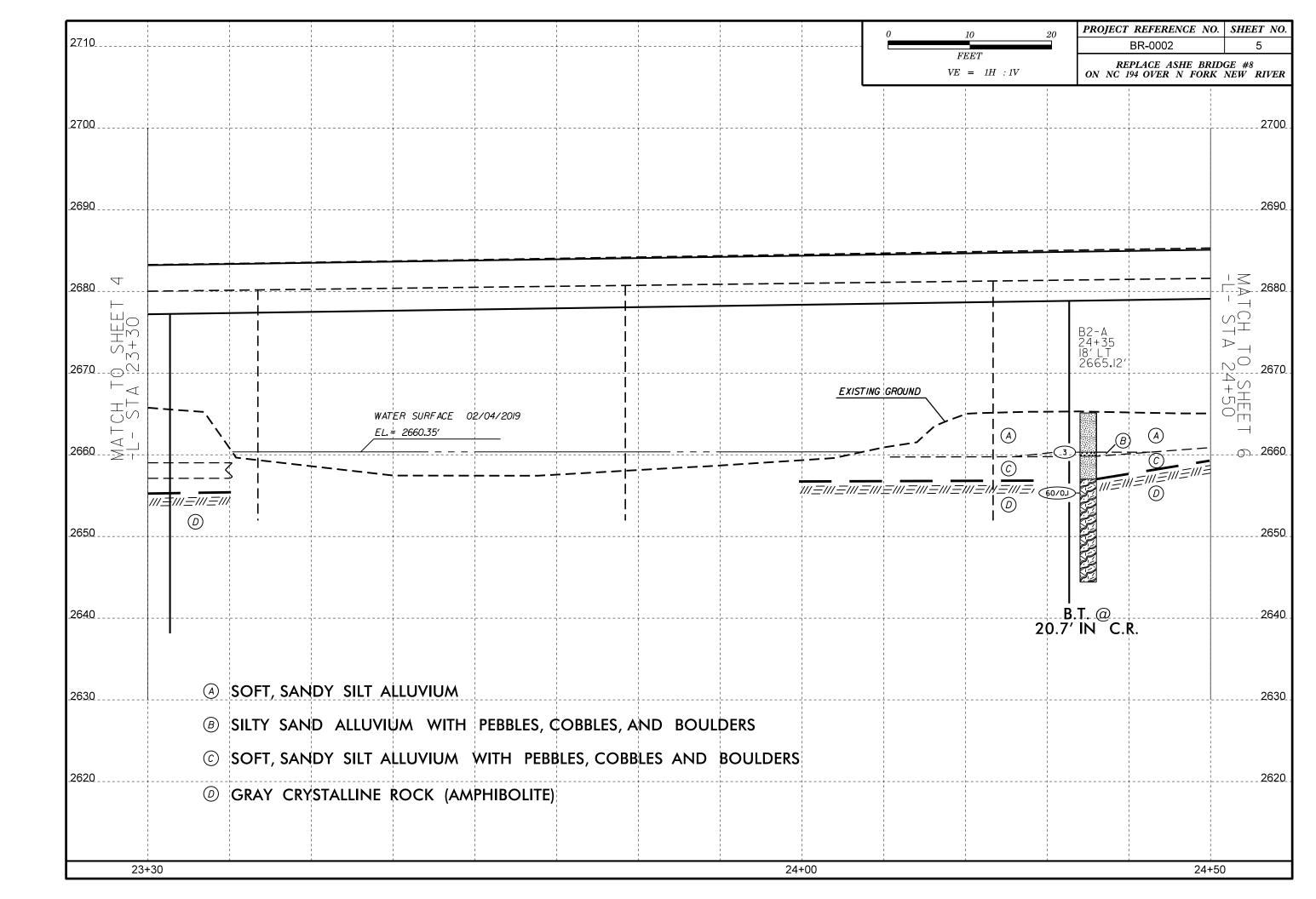
## NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT SUBSURFACE INVESTIGATION

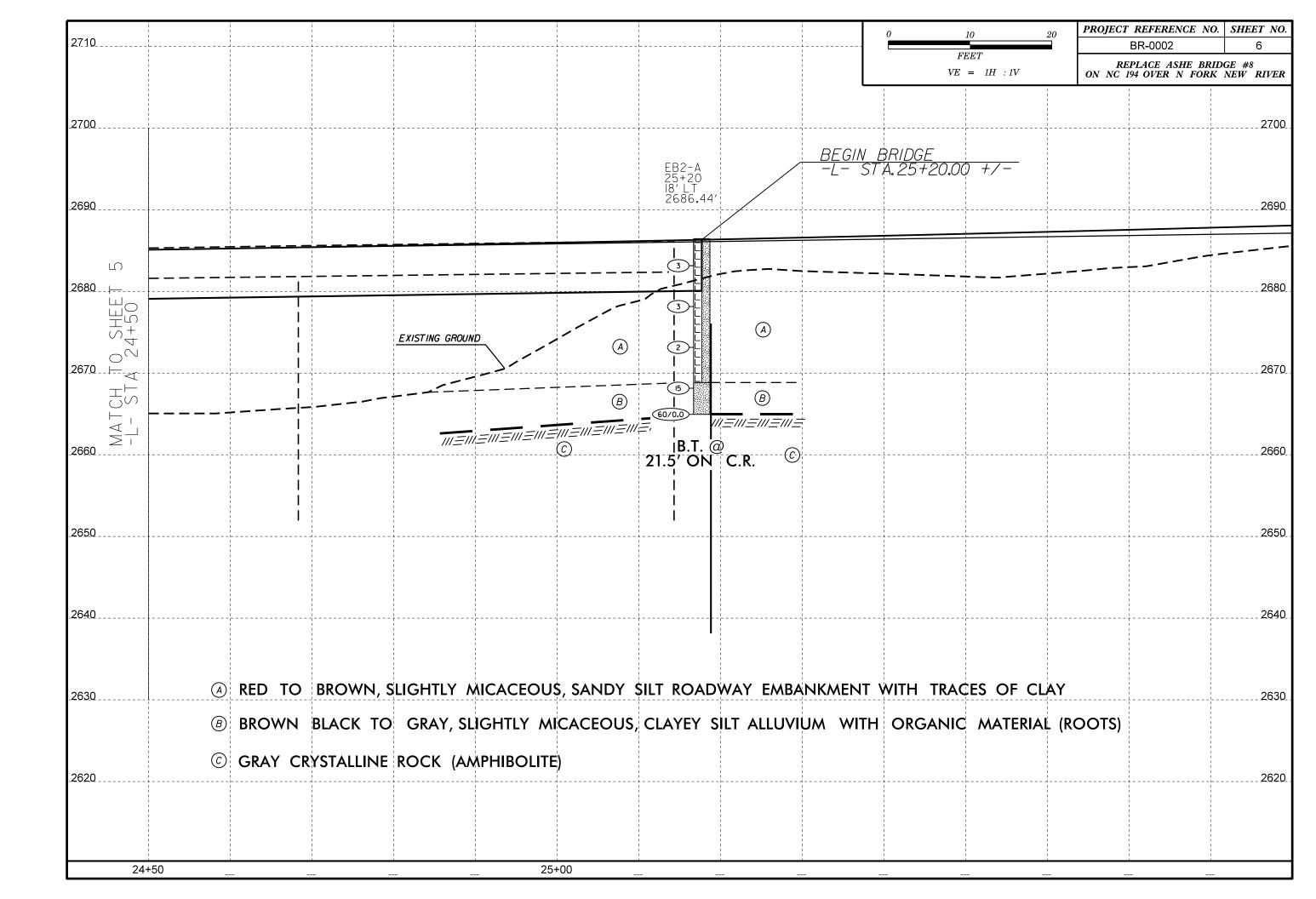
SUPPLEMENTAL LEGEND, GEOLOGICAL STRENGTH INDEX (GSI) TABLES FROM AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS

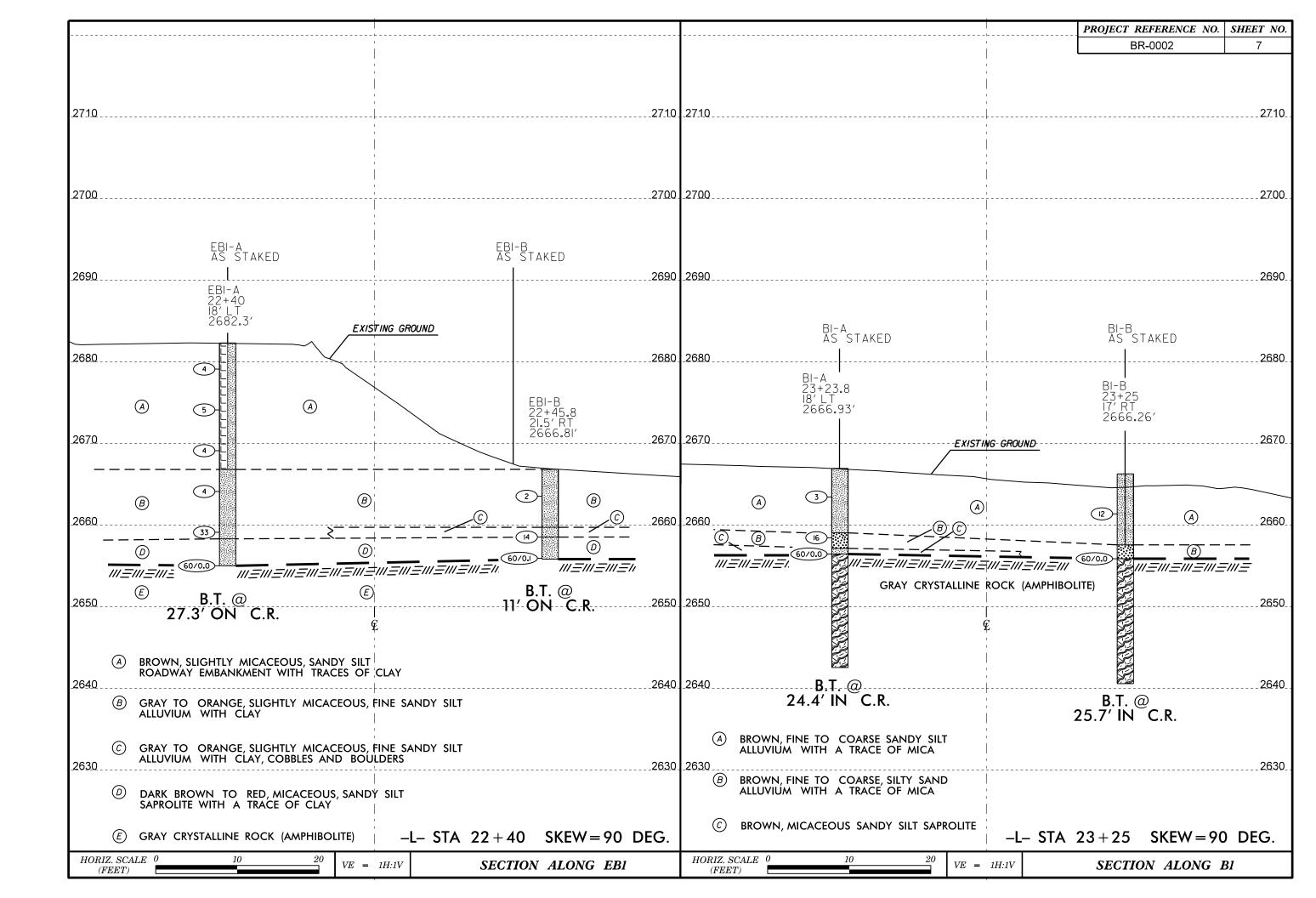
| AASHTO LRFD Figure 10.4.6.4–1 — Determination of GSI for Jointed F                                                                                                                                                                                                                                                                                                                                                                                                                            | Rock Mass (Marı                | nos and Hoek,2                                 | 2000)                                                 |                                                                                   |                                                          | AASHTO LRFD Figure 10.4.6.4-2 — Determination of GSI for T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GEOLOGICAL STRENGTH INDEX (GSI) FOR<br>JOINTED ROCKS (Hoek and Marinos, 2000)<br>From the lithology, structure and surface<br>conditions of the discontinuities, estimate<br>the average value of GSI. Do not try to<br>be too precise. Quoting a range from 33<br>to 37 is more realistic than stating that<br>GSI = 35. Note that the table does not<br>apply to structurally controlled failures.<br>Where weak planar structural planes are                                               | unweathered surfaces           | ıron staıned                                   | weathered and                                         | eathered surfaces<br>s or fillings                                                | weathered surfaces<br>ings or fillings                   | GSI FOR HETEROGENEOUS ROCK MASSES SUCH<br>AS FLYSCH (Marinos. P and Hoek E., 2000)<br>From a description of the lithology, structure and<br>surface conditions (particularly of the bedding<br>planes), choose a box in the chart. Locate the<br>position in the box that corresponds to the condition<br>of the discontinuities and estimate the average valu<br>of GSI from the contours. Do not attempt to be too<br>precise. Quoting a range from 33 to 37 is more<br>realistic than giving GSI = 35. Note that the                      |
| present in an unfavorable orientation<br>with respect to the excavation face,<br>these will dominate the rock mass<br>behaviour. The shear strength of surfaces<br>in rocks that are prone to deterioration<br>as a result of changes in moisture<br>content will be reduced if water is<br>present. When working with rocks in the<br>fair to very poor categories, a shift to<br>the right may be made for wet conditions.<br>Water pressure is dealt with by effective<br>stress analysis. | VERY GOOD<br>Very rough, fresh | 600D<br>Rough, slightly weathered,<br>surfaces | <b>FAIR</b><br>Smooth, moderately<br>altered surfaces | POOR<br>Slickensided, highly wea<br>with compact coatings<br>or angular fragments | VERY POOR<br>Slickensided, highly<br>with soft clay coat | Hoek-Brown criterion does not apply to structurally<br>controlled failures. Where unfavourably oriented<br>continuous weak planar discontinuities are present,<br>these will dominate the behaviour of the rock mass.<br>The strength of some rock masses is reduced by the<br>presence of groundwater and this can be allowed for<br>by a slight shift to the right in the columns for fai<br>poor and very poor conditions. Water pressure does<br>not change the value of GSI and it is dealt with by<br>using effective stress analysis. |
| STRUCTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | REASING SU                                     |                                                       | ALIIY                                                                             | <b>↓</b>                                                 | COMPOSITION AND STRUCTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| INTACT OR MASSIVE - intact<br>rock specimens or massive in<br>situ rock with few widely spaced<br>discontinuities                                                                                                                                                                                                                                                                                                                                                                             | 90                             |                                                |                                                       | N/A                                                                               | N/A                                                      | A. Thick bedded, very blocky sandstone<br>The effect of pelitic coatings on the bedding<br>planes is minimized by the confinement of<br>the rock mass. In shallow tunnels or slopes<br>these bedding planes may cause structurally<br>controlled instability.                                                                                                                                                                                                                                                                                |
| BLOCKY - well interlocked un-<br>disturbed rock mass consisting<br>of cubical blocks formed by three<br>intersecting discontinuity sets                                                                                                                                                                                                                                                                                                                                                       |                                | 70<br>60                                       |                                                       |                                                                                   |                                                          | B. Sand-<br>stone with<br>thin inter-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| VERY BLOCKY - interlocked,<br>partially disturbed mass with<br>multi-faceted angular blocks<br>formed by 4 or more joint sets                                                                                                                                                                                                                                                                                                                                                                 |                                | 5                                              | 0                                                     |                                                                                   |                                                          | layers of siltstone amounts stone layers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BLOCKY/DISTURBED/SEAMY -<br>folded with angular blocks<br>formed by many intersecting<br>discontinuity sets. Persistence<br>of bedding planes or schistosity<br>DISINTEGRATED - poorly inter-<br>locked, heavily broken rock mass                                                                                                                                                                                                                                                             |                                |                                                | 40                                                    | 30                                                                                |                                                          | <b>C. D. E.</b> and <b>G</b> - may be more or<br>less folded than illustrated but<br>this does not change the strength.<br>Tectonic deformation, faulting and<br>loss of continuity moves these<br>categories to <b>F</b> and <b>H</b> .                                                                                                                                                                                                                                                                                                     |
| DISINTEGRATED - poorly inter-<br>locked, heavily broken rock mass<br>with mixture of angular and<br>rounded rock pieces                                                                                                                                                                                                                                                                                                                                                                       |                                |                                                |                                                       | 20                                                                                |                                                          | G. Undisturbed silty<br>or clayey shale with<br>or without a few very<br>thin sandstone layers                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LAMINATED/SHEARED - Lack of<br>blockiness due to close spacing<br>of weak schistosity or shear planes                                                                                                                                                                                                                                                                                                                                                                                         | N/A                            | N/A                                            |                                                       |                                                                                   | 10                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

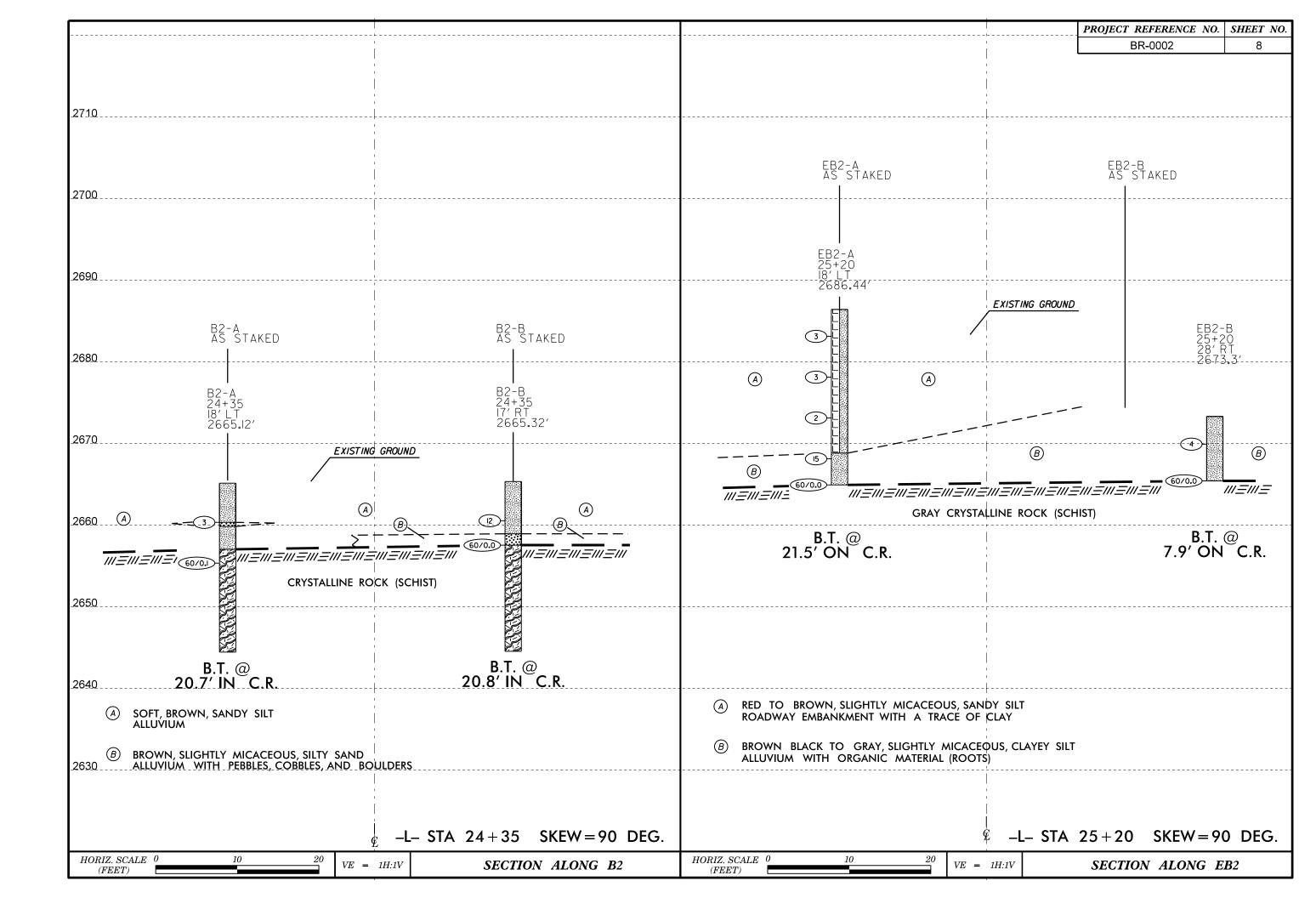




PROJECT REFERENCE NO.

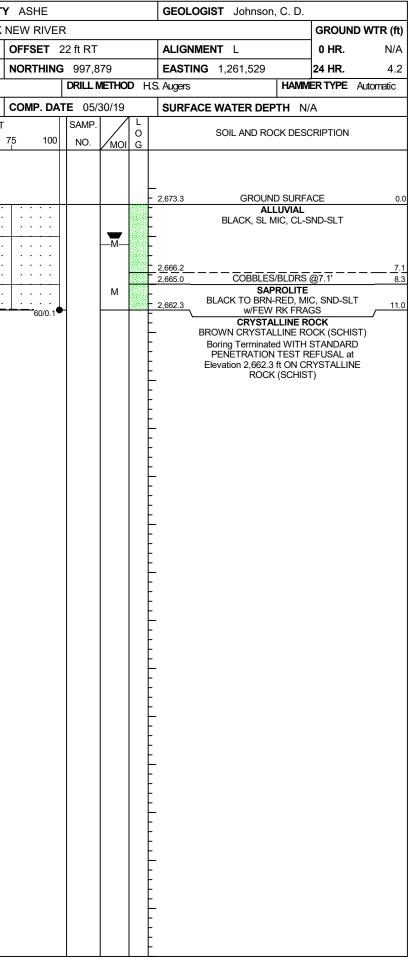

**BR-0002** 


SHEET NO.


2A












|      | 67002         |                  |          |       |       | <b>P</b> BR-000 |                  |          | Y ASHE    |               |        |       | GEOLO      | GIST Johnson, C. D.                                                                                                           | 1                                          |            |      | 67002         |                  |          |       |         | • BR-00              |                  | COUNTY    |
|------|---------------|------------------|----------|-------|-------|-----------------|------------------|----------|-----------|---------------|--------|-------|------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------|------|---------------|------------------|----------|-------|---------|----------------------|------------------|-----------|
|      |               |                  |          | DGE # |       |                 |                  | H FORK   | NEW RIVE  |               |        |       |            |                                                                                                                               | GROUND                                     | WTR (ft)   |      |               |                  |          | DGE # |         |                      |                  | TH FORK N |
| BOR  | ING NO.       | . EB1-           | A        |       | -     | TATION 2        | -                |          | OFFSET    | 18 ft LT      |        |       | ALIGN      | IENT L                                                                                                                        | 0 HR.                                      | 15.0       | BOR  | ING NO.       | EB1-             | В        |       | ST      | ATION                | 22+46            |           |
|      | LAR ELI       | ,                |          |       |       | OTAL DEPT       |                  |          | NORTHING  |               |        |       |            | <b>G</b> 1,261,495                                                                                                            | 24 HR.                                     | FIAD       |      | LAR ELI       |                  |          |       |         |                      | <b>PTH</b> 11.0  |           |
| DRIL | L RIG/HA      | MMER E           | FF./DA   | TE AF | 06744 | CME - 45C 9     | 2%07/31/20       | 17       |           | DRILL         | METHOD | р Н.  | S. Augers  | HAM                                                                                                                           | MER TYPE A                                 | utomatic   | DRIL | l Rig/Ha      | MMER E           | FF./DA1  | TE AF | 06744 ( | CME - 45C            | ;92%07/31/2      | 2017      |
| DRIL | LER C         | heek, D          | D. O.    |       | S     | TART DATE       | <b>E</b> 05/29/1 | 9        | COMP. DA  | <b>TE</b> 05/ | /29/19 |       | SURFA      | CE WATER DEPTH                                                                                                                | I/A                                        |            | DRIL | LER C         | heek, D          | 0. 0.    |       | ST      | ART DAT              | <b>TE</b> 05/30/ | /19       |
| ELEV | DRIVE<br>ELEV | DEPTH            | <u> </u> | W COL |       |                 | BLOWS F          | PER FOOT |           | SAMP.         |        | LO    |            | SOIL AND ROCK DES                                                                                                             | CRIPTION                                   |            | ELEV | DRIVE<br>ELEV | DEPTH            | <u> </u> | W COL |         |                      | BLOWS            | PER FOOT  |
| (ft) | (ft)          | (ft)             | 0.5ft    | 0.5ft | 0.5ft | 0 2             | 25 5             | 50<br>I  | 75 100    | NO.           |        |       | ELEV. (ft) |                                                                                                                               |                                            | DEPTH (ft) | (ft) | (ft)          | (ft)             | 0.5ft    | 0.5ft | 0.5ft   | 0                    | 25               | 50 7      |
|      |               |                  |          |       |       |                 |                  |          |           |               |        |       |            |                                                                                                                               |                                            |            |      |               |                  |          |       |         |                      |                  |           |
| 2685 |               | Ļ                |          |       |       |                 |                  |          |           |               |        | Ļ     | _          |                                                                                                                               |                                            |            | 2675 |               | Ļ                |          |       |         |                      |                  |           |
|      | -             | ŧ                |          |       |       |                 |                  |          |           |               |        | E     | 2,682.3    | GROUND SURF                                                                                                                   | ACE                                        | 0.0        |      | -             | -                |          |       |         | <br>   · · ·         | · · · · · ·      |           |
|      | -             | 1                |          |       |       |                 |                  |          |           |               |        | -101  | 2,002.0    | ROADWAY EMBAN                                                                                                                 | NKMENT                                     | 0.0        |      | -             | Ļ                |          |       |         |                      | ·   · · · ·      | .         |
| 2680 | 2,679.1       | 3.2              |          |       |       |                 |                  | <u> </u> | · · · · · |               |        | -01   | -          | BROWN, SL MIC, SND-S<br>PIECES OF ASPHAL                                                                                      |                                            |            | 2670 | 2,670.0       | 3.3              | 1        | 1     | 1       |                      |                  |           |
|      | -             | ŧ                | 2        | 2     | 2     | ↓ ↓4 · · · ·    | · · · ·          |          |           |               | M      | -01   |            |                                                                                                                               |                                            |            |      | -             | L                |          |       |         | $\overline{\lambda}$ |                  |           |
| 2675 |               | Ł                |          |       |       | <u>.</u>        |                  |          |           |               |        | - E   | _          |                                                                                                                               |                                            |            | 2665 | 2,665.0       | 8.3              |          |       |         | · .                  |                  |           |
|      | 2,674.1       | 8.2              | 1        | 2     | 3     | 5               |                  |          |           |               | M      | -10E  |            |                                                                                                                               |                                            |            |      | -             | ŀ                | 12       | 7     | 7       | · · • • 14           | 4                |           |
|      |               | ł                |          |       |       | <b>I</b>        |                  |          |           |               |        | =  }- |            |                                                                                                                               |                                            |            |      | 2.662.4       | 10.9             | 60/0.1   |       |         |                      |                  |           |
| 2670 | 2.669.1       | T<br>13.2        |          |       |       |                 |                  |          |           |               |        | =   F | _          |                                                                                                                               |                                            |            |      | -             | F                |          |       |         |                      |                  |           |
|      | -             | Ŧ                | 1        | 2     | 2     |                 |                  |          |           |               | M      | =   F | 2,666.8    |                                                                                                                               |                                            | 15.5       |      | -             | F                |          |       |         |                      |                  |           |
| 2665 | -             | Ŧ                |          |       |       |                 |                  |          |           |               |        | F     |            | ALLUVIAL<br>GREY TO ORANGE, SL MI                                                                                             |                                            |            |      | -             | F                |          |       |         |                      |                  |           |
|      | 2,664.1       | 18.2             | 2        | 2     | 2     |                 |                  |          |           | SS-SS-        | 1 M    | F     |            | w/CL                                                                                                                          | C, TN SND-SI                               | -1         |      | -             | F                |          |       |         |                      |                  |           |
|      | -             | ŧ                |          |       |       |                 | · · · · ·        |          |           | 00-00-        | -      | F     |            |                                                                                                                               |                                            |            |      | -             | ŧ                |          |       |         |                      |                  |           |
| 2660 | 2,659.1       | +<br>- 23.2      |          |       |       |                 |                  | · · · ·  |           |               |        | F     | _          |                                                                                                                               |                                            |            |      | -             | F                |          |       |         |                      |                  |           |
|      |               |                  | 4        | 13    | 20    |                 | • <u>3</u> 3.    |          |           |               | м      | -     | 2,658.3    | SAPROLITE                                                                                                                     | E                                          | 24.0       |      | -             | ŧ                |          |       |         |                      |                  |           |
| 2655 | 2,655.0       | 27.3             |          |       |       |                 |                  |          | 1         |               |        | ļ     | 2.655.0    | K BROWN-RED, MIC, SN<br>SAPROLITIC TEX                                                                                        |                                            | L,<br>27.3 |      | -             | ŧ.               |          |       |         |                      |                  |           |
|      |               | +<br>+<br>+<br>+ |          |       |       |                 |                  |          |           |               |        |       |            | GREY CRYSTALLIN<br>(AMPHIBOLIT)<br>Boring Terminated WITH<br>PENETRATION TEST I<br>Elevation 2,655.0 ft ON C<br>ROCK (AMPHIBC | E)<br>STANDARD<br>REFUSAL at<br>RYSTALLINE |            |      |               | +<br>-<br>-<br>- |          |       |         |                      |                  |           |
|      |               | +<br>+<br>+<br>+ |          |       |       |                 |                  |          |           |               |        | -     |            |                                                                                                                               |                                            |            |      |               | -                |          |       |         |                      |                  |           |
|      |               | +                |          |       |       |                 |                  |          |           |               |        | -     |            |                                                                                                                               |                                            |            |      |               |                  |          |       |         |                      |                  |           |
|      |               | +<br>+<br>+<br>+ |          |       |       |                 |                  |          |           |               |        | -     | —          |                                                                                                                               |                                            |            |      |               | -                |          |       |         |                      |                  |           |
| 1    | -             | +<br>+<br>+<br>+ |          |       |       |                 |                  |          |           |               |        |       |            |                                                                                                                               |                                            |            |      |               |                  |          |       |         |                      |                  |           |
|      | -             | +                |          |       |       |                 |                  |          |           |               |        |       | —          |                                                                                                                               |                                            |            |      |               | -                |          |       |         |                      |                  |           |
|      | -             | +                |          |       |       |                 |                  |          |           |               |        |       |            |                                                                                                                               |                                            |            |      |               |                  |          |       |         |                      |                  |           |
|      |               | -<br>-<br>-<br>- |          |       |       |                 |                  |          |           |               |        |       |            |                                                                                                                               |                                            |            |      |               | -                |          |       |         |                      |                  |           |
|      | -             | +<br>+<br>+      |          |       |       |                 |                  |          |           |               |        | -     |            |                                                                                                                               |                                            |            |      | -             |                  |          |       |         |                      |                  |           |



# GEOTECHNICAL BORING REPORT

|      |                 |         |          |        |       | 02                          | 0.20                         | В         | ORE     | LO           | G     |       | `_  |                            |                                            |                |            |              |                     |                    |               |                           |                   | -                      | •               | ••••              | C                       | OR          | :E   |
|------|-----------------|---------|----------|--------|-------|-----------------------------|------------------------------|-----------|---------|--------------|-------|-------|-----|----------------------------|--------------------------------------------|----------------|------------|--------------|---------------------|--------------------|---------------|---------------------------|-------------------|------------------------|-----------------|-------------------|-------------------------|-------------|------|
| WB   | <b>S</b> 67002  | 2.1.1   |          |        | ТІ    | P BR-00                     | 02                           | COUNT     | Y ASHE  |              |       |       |     | GEOLOGIST Johnso           | n, C. D.                                   |                |            | WB           | <b>S</b> 6700       | 2.1.1              |               |                           | TIP               | BR-00                  | 002             | C                 | OUNT                    | <b>/</b> AS | SHE  |
| SITE | E DESCR         | IPTION  | BRI      | DGE #8 | 8 ON  | NC194 O                     | VER NOR                      | TH FORK   | NEW RIV | ER           |       |       |     | 1                          |                                            | GROUN          | D WTR (ft) | SIT          | E DESCR             | RIPTION            | BRI           | IDGE #8                   | ON NO             | C194 C                 | OVER NC         | ORTH F            | ORK                     | NEW         | RI   |
| BOF  | RING NO.        | B1-A    |          |        | ST    | TATION                      | 23+24                        | -         | OFFSET  | 18 ft        | LT    |       |     | ALIGNMENT L                |                                            | 0 HR.          | N/A        | BO           | ring no             | . B1-A             | 4             |                           | STA               | TION                   | 23+24           |                   |                         | OFF         | SET  |
|      | LAR ELI         | ,       |          |        |       |                             | <b>TH</b> 24.4               |           | NORTHI  | <b>NG</b> 99 | 97,96 | 3     |     | EASTING 1,261,551          |                                            | 24 HR.         | 6.0 Caved  | COI          | LAR EL              | <b>EV.</b> 2,      | 666.9         | ft                        | тоти              | AL DEI                 | <b>PTH</b> 24   | .4 ft             |                         | NOR         | ۲H   |
| DRIL | l rig/ha        | MMER E  | FF./DA1  | TE AFO | 06744 | CME - 45C                   | 92%07/31/20                  | )17       |         | DRI          | ll Me | ethod | ) N | W Casing W/SPT & Core      | HAMM                                       | ER TYPE        | Automatic  | DRIL         | L RIG/HA            | MMER E             | eff./da       | TE AFO                    | 6744 CIV          | /IE - 45C              | C 92% 07/3      | 1/2017            |                         |             |      |
| DRI  | LLER C          | heek, [ | 0. 0.    |        | ST    |                             | <b>E</b> 05/30/ <sup>-</sup> | 19        | COMP. D | ATE          | 05/30 | 0/19  |     | SURFACE WATER DE           | PTH N/                                     | /A             |            |              | LLER                |                    | D. O.         |                           | STA               | rt da                  | <b>TE</b> 05/3  | 0/19              |                         | CON         | /IP. |
| ELEV | , DRIVE<br>ELEV | DEPTH   | <u> </u> | W COU  |       |                             |                              | PER FOOT  |         |              | MP.   |       |     | SOIL AND R                 | OCK DESC                                   | CRIPTION       |            | CO           | RE SIZE             | nxwl               | 1             | 1                         |                   |                        | <b>N</b> 13.9 f |                   | AT A                    | <u> </u>    |      |
| (ft) | (ft)            | (ft)    | 0.5ft    | 0.5ft  | 0.5ft | 0                           | 25                           | 50        | 75 10   | 0 N          | 0.    | MOI   | G   | ELEV. (ft)                 |                                            |                | DEPTH (ft) | ELE\<br>(ft) | RUN<br>ELEV<br>(ft) | DEPTH<br>(ft)      | I RUN<br>(ft) | DRILL<br>RATE<br>(Min/ft) | REC.<br>(ft)<br>% | JN<br>RQD<br>(ft)<br>% | SAMP.<br>NO.    | REC.<br>(ft)<br>% | ATA<br>RQD<br>(ft)<br>% | L<br>O<br>G | ELE  |
| 2670 |                 |         |          |        |       |                             |                              |           |         |              |       |       |     |                            |                                            |                |            | 2656.4       |                     |                    |               |                           |                   |                        |                 |                   |                         |             |      |
|      | -               | ł       |          |        |       |                             |                              |           |         |              |       |       |     | -<br>- 2,666.9 GROU        | ND SURFA                                   | ACE            | 0.0        | 2655         |                     | + 10.5<br>+<br>+   | 3.9           | N=60/0.0                  | (3.6)<br>92%      | (3.0)<br>77%           |                 |                   |                         |             | 2,65 |
| 2665 | -               |         |          |        |       |                             |                              |           |         |              |       |       |     | A<br>Brown, fine to coa    | LLUVIAL                                    | silt with a tr | race       |              | 2,652.5             | <u>+ 14.4</u><br>+ | 5.0           |                           | (5.0)             | (4.7)                  |                 |                   |                         |             |      |
|      | 2,663.4         | 3.5     | 2        | 2      | 1     |                             |                              |           |         |              |       |       |     |                            | of mica                                    |                |            | 2650         |                     | ŧ                  |               |                           | 100%              | 94%                    |                 |                   |                         | ĻÈ          | -    |
| 0000 | -               | Ļ       |          | 2      | ·     | <b>9</b> <sup>3</sup> · · · |                              |           |         |              |       | ▼     |     | -                          |                                            |                |            |              | 2,647.5             | 19.4               | 5.0           |                           | (5.0)             | (47)                   | -               |                   |                         | Ē           |      |
| 2660 | 2,658.4         | - 85    |          |        |       | <u> </u>                    |                              | · · · · · |         |              |       |       |     | 2,659.0                    |                                            |                | 7.9        | 2645         |                     | Ŧ                  | 5.0           |                           | (5.0)<br>100%     | (4.7)<br>94%           |                 |                   |                         | , E         | _    |
|      | 2,656.4         | t       | 8        | 9      | 7     |                             | 6                            | · · · ·   |         |              |       |       |     | 2,657.1 Brown, fine to coa | L <b>LUVIAL</b><br>rse silty sa<br>of mica | and with a tr  | race 9.8   |              | 2.642.5             | - 24.4             |               |                           |                   |                        |                 |                   |                         |             |      |
| 2655 |                 | +       | 60/0.0   |        |       |                             |                              |           |         |              |       |       |     | - SA                       | PROLITE                                    |                | []         |              |                     | +                  |               |                           |                   |                        |                 |                   |                         |             |      |
|      | -               | F       |          |        |       |                             |                              |           |         |              |       |       | F   | Brown, mic<br>CRYST        | ALLINE R                                   |                |            |              | -                   | ŧ                  |               |                           |                   |                        |                 |                   |                         | ,           | •    |
| 2650 | -               | Ē       |          |        |       |                             |                              |           |         |              |       |       | E   | -                          |                                            |                |            |              |                     | +                  |               |                           |                   |                        |                 |                   |                         | ļ           |      |
|      | -               | L       |          |        |       |                             |                              |           |         |              |       |       | ł   | -                          |                                            |                |            |              |                     | ŧ                  |               |                           |                   |                        |                 |                   |                         | Ē           | -    |
| 0045 | -               | Ļ       |          |        |       |                             |                              |           |         |              |       |       | ł   | -                          |                                            |                |            |              |                     | Ī                  |               |                           |                   |                        |                 |                   |                         | Ē           |      |
| 2645 | -               | +       |          |        |       |                             |                              |           |         |              |       |       | þ   | -                          |                                            |                |            |              |                     | Ŧ                  |               |                           |                   |                        |                 |                   |                         | Ē           | _    |
|      |                 | +       |          |        |       |                             |                              |           |         | -4           | ┢     |       | ł   | - Boring Terminated        | at Elevatio                                | on 2,642.5     | ft IN      |              |                     | ŧ                  |               |                           |                   |                        |                 |                   |                         |             |      |
|      | -               | ÷       |          |        |       |                             |                              |           |         |              |       |       | ļ   | - CRYSTALLII               | NE ROCK                                    | (SCHIST)       |            |              |                     | ŧ                  |               |                           |                   |                        |                 |                   |                         |             |      |
|      | -               | F       |          |        |       |                             |                              |           |         |              |       |       | F   | -                          |                                            |                |            |              | -                   | ŧ                  |               |                           |                   |                        |                 |                   |                         |             | •    |
|      |                 | E       |          |        |       |                             |                              |           |         |              |       |       | E   | -                          |                                            |                |            |              |                     | ŧ                  |               |                           |                   |                        |                 |                   |                         | ļ           |      |
|      | -               | Ļ       |          |        |       |                             |                              |           |         |              |       |       | ł   | -                          |                                            |                |            |              | -                   | Ŧ                  |               |                           |                   |                        |                 |                   |                         | Ē           | -    |
|      | -               | ł       |          |        |       |                             |                              |           |         |              |       |       | ł   | -                          |                                            |                |            |              |                     | I                  |               |                           |                   |                        |                 |                   |                         | E           |      |
|      | -               | ł       |          |        |       |                             |                              |           |         |              |       |       | ļ   |                            |                                            |                |            |              |                     | ŧ                  |               |                           |                   |                        |                 |                   |                         | Ŀ           | _    |
| n    | -               | ŧ       |          |        |       |                             |                              |           |         |              |       |       | ŀ   | F<br>F                     |                                            |                |            | 6            |                     | ‡                  |               |                           |                   |                        |                 |                   |                         | ŀ           |      |
| 1.01 | -               | Ē       |          |        |       |                             |                              |           |         |              |       |       | ŀ   |                            |                                            |                |            | 7/19/19      |                     | ‡                  |               |                           |                   |                        |                 |                   |                         | ļ           |      |

CDOT BORE DOUBLE BR0002\_BRDG0008\_ASHE\_BOREHOLES.GPJ NC\_DOT.GDT 7/19/19

2665 2,663.4 3.5 2660 2,658.4 8.5 2,656.4 10.5 2655 2650 2645

## **GEOTECHNICAL BORING REPORT** LOG

| _ |          | RE L     | <u>.</u> | <u> </u>         |                                          |           |          |            |
|---|----------|----------|----------|------------------|------------------------------------------|-----------|----------|------------|
| Ľ | Y A      | ASHE     |          |                  | GEOLOGIST Johnso                         | on, C. D. |          |            |
| < | NE\      | N RIVE   | R        |                  |                                          |           | GROUN    | D WTR (ft) |
|   | OF       | FSET     | 18 f     | ft LT            | ALIGNMENT L                              |           | 0 HR.    | N/A        |
|   |          | RTHIN    |          | 997,963          | EASTING 1,261,551                        |           | 24 HR.   | 6.0 Caved  |
|   |          |          |          |                  | Casing W/SPT & Core                      |           |          | Automatic  |
|   | <u> </u> |          |          | 05/30/19         |                                          |           |          |            |
| _ | 00       |          |          | 03/30/19         | SURFACE WATER D                          |           | A        |            |
| _ | L        |          |          |                  |                                          |           |          |            |
|   | 0        |          |          | D                | ESCRIPTION AND REMAR                     | RKS       |          |            |
| _ | G        | ELEV.    | (ft)     |                  |                                          |           |          | DEPTH (ft) |
| _ |          | 2,656.4  |          |                  | Begin Coring @ 10.5<br>CRYSTALLINE ROCK  | ft<br>C   |          | 10.5       |
|   |          |          |          |                  |                                          | •         |          | 10.0       |
|   |          | -        |          |                  |                                          |           |          |            |
|   |          | F        |          |                  |                                          |           |          |            |
|   |          | F        |          | GSI 80 - 90      |                                          |           |          |            |
|   |          | Ę        |          |                  |                                          |           |          |            |
|   |          | È.       |          |                  |                                          |           |          |            |
|   |          | L        |          |                  |                                          |           |          |            |
|   |          | L        |          | Boring Terminate | d at Elevation 2,642.5 ft IN<br>(SCHIST) | CRYSTALL  | INE ROCH | K          |
|   |          | -        |          |                  | (0011101)                                |           |          |            |
|   |          | F        |          |                  |                                          |           |          |            |
|   |          | F        |          |                  |                                          |           |          |            |
|   |          | -        |          |                  |                                          |           |          |            |
|   |          | -        |          |                  |                                          |           |          |            |
|   |          | L        |          |                  |                                          |           |          |            |
|   |          | -        |          |                  |                                          |           |          |            |
|   |          | F        |          |                  |                                          |           |          |            |
|   |          | <b>-</b> |          |                  |                                          |           |          |            |
|   |          | F        |          |                  |                                          |           |          |            |
|   |          | F        |          |                  |                                          |           |          |            |
|   |          | -        |          |                  |                                          |           |          |            |
|   |          | _        |          |                  |                                          |           |          |            |
|   |          | F        |          |                  |                                          |           |          |            |
|   |          | -        |          |                  |                                          |           |          |            |
|   |          | F        |          |                  |                                          |           |          |            |
|   |          | -        |          |                  |                                          |           |          |            |
|   |          | F        |          |                  |                                          |           |          |            |
|   |          | -        |          |                  |                                          |           |          |            |
|   |          | -        |          |                  |                                          |           |          |            |
|   |          | L        |          |                  |                                          |           |          |            |
|   |          | -        |          |                  |                                          |           |          |            |
|   |          | F        |          |                  |                                          |           |          |            |
|   |          | F        |          |                  |                                          |           |          |            |
|   |          | -        |          |                  |                                          |           |          |            |
|   |          | ‡        |          |                  |                                          |           |          |            |
|   |          | È        |          |                  |                                          |           |          |            |
|   |          | -        |          |                  |                                          |           |          |            |
|   |          | E        |          |                  |                                          |           |          |            |
|   |          | F        |          |                  |                                          |           |          |            |
|   |          | F        |          |                  |                                          |           |          |            |
|   |          | È        |          |                  |                                          |           |          |            |
|   |          | F        |          |                  |                                          |           |          |            |
|   |          | E        |          |                  |                                          |           |          |            |
|   |          | F        |          |                  |                                          |           |          |            |

ELEV

(ft)

2670

2665

2660

2655

2650

2645

WBS 67002.1.1 **TIP** BR-0002 COUNTY ASHE GEOLOGIST Johnson, C. D. **WBS** 67002.1.1 SITE DESCRIPTION BRIDGE #8 ON NC194 OVER NORTH FORK NEW RIVER **GROUND WTR (ft)** BORING NO. B1-B **STATION** 23+25 OFFSET 17 ft RT ALIGNMENT L 0 HR. N/A BORING NO. B1-B **COLLAR ELEV.** 2,666.3 ft TOTAL DEPTH 25.7 ft **NORTHING** 997,942 **EASTING** 1,261,577 **COLLAR ELEV.** 2,666.3 ft 24 HR. 6.5 DRILL RIG/HAMMER EFF./DATE AF06744 CME - 45C 92% 07/31/2017 DRILL METHOD NW Casing W/SPT & Core HAMMER TYPE Automatic DRILLER Cheek, D. O. **DRILLER** Cheek, D. O. **START DATE** 05/30/19 COMP. DATE 05/30/19 SURFACE WATER DEPTH N/A DRIVE DEPTH BLOW COUNT SAMP CORE SIZE nxwl BLOWS PER FOOT SOIL AND ROCK DESCRIPTION ELEV 0 (ft) 0.5ft 0.5ft 0.5ft 25 50 75 100 NO. RUN ELEV (ft) MOI G ELEV (ft) (ft) 2655.86 2655 2,655.9 10.4 GROUND SURFACE 2,666.3 0.0 2,650.6 15.7 ALLUVIAL Brown, slightly micaceous sandy silt with . . . . . . . . . . . pebbles and rock fragments . . . . . . . . . . 2,661.4 4.9 . . . . . . . . . 2 2 . . . . . . 10 2645 2,645.6 20.7 . . . . . . . . . . . . 2,657.6 . . . • • . . . . . . . . ALLUVIAL 2,655.9 10.4 2,655.9 10.4 Brown, slightly micaceous silty sand with . . . . . . \_ \_ \_ ----60/0.0 2,640.6 25.7 pebbles, cobbles, boulders . . . . . . . . . . CRYSTALLINE ROCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boring Terminated at Elevation 2,640.6 ft IN CRYSTALLINE ROCK (SCHIST)

COUNTY ASHE **TIP** BR-0002 SITE DESCRIPTION BRIDGE #8 ON NC194 OVER NORTH FORK N **STATION** 23+25 TOTAL DEPTH 25.7 ft DRILL RIG/HAMMER EFF./DATE AF06744 CME - 45C 92% 07/31/2017 **START DATE** 05/30/19 TOTAL RUN 15.3 ft DRILL RATE STRATA REC. RQD (ft) (ft) % % RUN SAMP. REC. (ft) % RQD (ft) % NO. (Min/ft) 5.3 N=60/0.0 (4.8) (4.2) 91% 79% (5.0) (4.7) 100% 94% (5.0) (4.9) 100% 98%

DEPTH RUN

(ft)

5.0

5.0

(ft)

## **GEOTECHNICAL BORING REPORT** CORE LOG

| r P      | SHE              |                   | GEOLOGIST Jonnson                          | , C. D. |         |            |
|----------|------------------|-------------------|--------------------------------------------|---------|---------|------------|
| NEV      | <b>W RIVER</b>   |                   |                                            |         | GROUN   | D WTR (ft) |
|          | <b>FSET</b> 17 f | + PT              | ALIGNMENT L                                |         | 0 HR.   | N/A        |
|          |                  |                   |                                            |         | 4       |            |
| NO       | RTHING 9         | 97,942            | EASTING 1,261,577                          |         | 24 HR.  | 6.5        |
|          |                  | RILL METHOD NM    | Casing W/SPT & Core                        | HAMM    | ER TYPE | Automatic  |
| <u> </u> | MP. DATE         | 05/30/10          | SURFACE WATER DEF                          |         | ٨       |            |
| 00       |                  | 00/00/19          | SURFACE WATER DEP                          | IT N/   | ~       |            |
|          |                  |                   |                                            |         |         |            |
| L        |                  |                   |                                            | •       |         |            |
| O<br>G   |                  | D                 | ESCRIPTION AND REMARK                      | S       |         |            |
|          |                  |                   |                                            |         |         |            |
|          | 2,655.9          |                   | Begin Coring @ 10.4 ft<br>CRYSTALLINE ROCK |         |         | 10.4       |
|          | _ 2,033.9        |                   | ONTOTALEINE NOON                           |         |         | 10.4       |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | _                | GSI 80 - 90       |                                            |         |         | 1          |
|          | -<br>            |                   |                                            |         |         | 1          |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                | Boring Terminator | d at Elevation 2,640.6 ft IN CF            | YSTALL  |         |            |
|          | -                | Donny renninale   | (SCHIST)                                   | ALL     |         |            |
|          | _                |                   | · · ·                                      |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | <b>-</b>         |                   |                                            |         |         |            |
|          | F                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | L                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | <u>-</u>         |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | F                |                   |                                            |         |         |            |
|          |                  |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -<br>            |                   |                                            |         |         |            |
|          | F                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         | 1          |
|          | -                |                   |                                            |         |         |            |
|          | L                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -<br>            |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | F                |                   |                                            |         |         |            |
|          | L                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          | _                |                   |                                            |         |         |            |
|          | -                |                   |                                            |         |         |            |
|          |                  |                   |                                            |         |         |            |
|          |                  |                   |                                            |         |         |            |

GEOLOGIST Johnson, C. D.

|                                                                         |               |              |        |       |        |             |         |          |      |         |          |          |         |                                                      |                  |            |                          |                                 |             |                 | I                     |                       |                |                              |
|-------------------------------------------------------------------------|---------------|--------------|--------|-------|--------|-------------|---------|----------|------|---------|----------|----------|---------|------------------------------------------------------|------------------|------------|--------------------------|---------------------------------|-------------|-----------------|-----------------------|-----------------------|----------------|------------------------------|
|                                                                         | 6700          |              |        |       |        | IP BR-00    |         |          | JNTY |         |          |          | GE      | <b>DLOGIST</b> Johnson, C. D.                        | 1                |            |                          | <b>S</b> 67002.1.1              |             |                 |                       | BR-00                 |                | COU                          |
|                                                                         |               |              |        | DGE # |        | NC194 O     |         | RTH FC   |      |         |          |          |         |                                                      | GROUND WT        | R (ft)     |                          | E DESCRIPTION                   |             | IDGE #8 (       | r                     |                       |                | ORTH FO                      |
| BOR                                                                     | RING NO       | ). B2-A      |        |       |        | TATION      |         |          |      | FFSET   |          |          |         | GNMENT L                                             | 0 HR.            | N/A        |                          | RING NO. B2-A                   |             |                 |                       |                       | 24+35          |                              |
|                                                                         | LAR EL        |              |        |       |        | OTAL DEF    |         |          | NC   | ORTHING |          |          |         |                                                      | 24 HR. 4.0 C     |            |                          | LAR ELEV. 2,                    |             |                 |                       |                       | <b>PTH</b> 20  |                              |
| DRIL                                                                    | L RIG/HA      | MMER E       | FF./DA | TE AF | -06744 | 1 CME - 45C | 92%07/3 | 1/2017   |      |         | DRILL    | METHOD   | NW Casi | g W/SPT & Core HAMM                                  | ER TYPE Autom    | natic      |                          | l Rig/Hammer e                  |             | ATE AFO6        |                       |                       |                |                              |
| DRIL                                                                    | LER (         |              |        |       |        | TART DAT    |         |          |      | omp. Da |          | <b>—</b> |         | RFACE WATER DEPTH N/                                 | Ά                |            |                          | LLER Cheek, [                   | D. O.       |                 |                       |                       | <b>TE</b> 05/3 |                              |
| ELEV                                                                    | DRIVE<br>ELEV | DEPTH        |        | W COL |        |             |         | VS PER F |      | 100     | SAMP.    |          |         | SOIL AND ROCK DESC                                   | CRIPTION         |            | COF                      | RE SIZE nxwl                    |             |                 |                       |                       | <b>N</b> 11.41 |                              |
| (ft)                                                                    | (ft)          | (ft)         | 0.5ft  | 0.5ft | 0.5ft  | 0           | 25      | 50       | 75   | 100     | NO.      | MOI G    | ELEV    | (ft)                                                 | DEI              | PTH (ft)   | ELEV<br>(ft)             |                                 | RUN<br>(ft) | DRILL<br>RATE   | REC.<br>(ft)<br>%     | RQD<br>(ff)           | SAMP.<br>NO.   | STRATA<br>REC. RC<br>(ft) (f |
|                                                                         |               |              |        |       |        |             |         |          |      |         |          |          |         |                                                      |                  |            |                          | (11)                            |             | (Min/ft)        | %                     | %                     | 110.           | <u>%</u>                     |
| 2670                                                                    |               | +            |        |       |        |             |         |          |      |         |          |          | +       |                                                      |                  |            | 2655.8<br>2655           | 2<br>2,655.8<br>2,654.4<br>10.7 | 1.4         | N-00/0 4        | (1.2)                 | (1.2)                 |                |                              |
|                                                                         |               | Ŧ            |        |       |        |             |         |          |      |         |          |          | F       |                                                      |                  |            |                          | 2,654.4 10.7                    | 5.0         | <u>N=60/0.1</u> | (1.2)<br>86%<br>(5.0) | (1.2)<br>86%<br>(4.5) |                |                              |
| 2665                                                                    |               | Ŧ            |        |       |        |             |         |          |      |         |          |          | 2,665   | GROUND SURFA                                         | ACE              | 0.0        |                          | +                               |             |                 | 100%                  | 90%                   |                |                              |
|                                                                         |               | -            |        |       |        |             |         |          |      |         |          |          | -       | ALLUVIAL<br>Soft sandy silt                          | t                |            | 2650                     | 2,649.4 15.7                    | 5.0         |                 | (1.0)                 | (4.9)                 |                |                              |
|                                                                         |               | Ŧ            |        |       |        | i: : : :    |         |          |      |         |          |          | F       | -                                                    |                  |            |                          |                                 | 5.0         |                 | (4.9)<br>98%          | (4.9)<br>98%          |                |                              |
| 2660                                                                    | 2,660.3       | <u>† 4.8</u> | 50     | 2     | 1      |             | ===     |          |      | · · · · |          |          | 2,660   |                                                      |                  | 4.8<br>5.3 | 2645                     | 2,644.4 20.7                    |             |                 |                       |                       |                |                              |
|                                                                         |               | ŧ            |        |       |        |             |         |          |      |         |          |          | 2,657   | boulder<br>ALLUVIAL                                  |                  | 8.1        |                          | 2,044.4 20.7                    |             |                 |                       |                       |                |                              |
| 2655                                                                    | 2,655.3       | + 98         |        |       |        |             |         |          | ·    |         |          |          | -       | Brown, slightly micaceous, s<br>pebbles, cobbles, bo | sandy silt with  | 0.1        |                          | +                               |             |                 |                       |                       |                |                              |
| 2000                                                                    | 1             | Ŧ            | 60/0.1 |       |        |             |         |          |      |         | <u> </u> |          | F       | CRYSTALLINE R                                        |                  |            |                          |                                 |             |                 |                       |                       |                |                              |
|                                                                         |               | ‡            |        |       |        |             |         |          |      |         |          |          | F       |                                                      |                  |            |                          | +                               |             |                 |                       |                       |                |                              |
| 2650                                                                    |               | ‡            |        |       |        |             |         |          |      |         |          |          | F       |                                                      |                  |            |                          | +                               |             |                 |                       |                       |                |                              |
|                                                                         |               | ŧ            |        |       |        |             |         |          |      |         |          |          | F       |                                                      |                  |            |                          |                                 |             |                 |                       |                       |                |                              |
| 2645                                                                    |               | ‡            |        |       |        |             |         |          |      |         |          |          | È.      |                                                      |                  |            |                          | l Ŧ                             |             |                 |                       |                       |                |                              |
| 2045                                                                    |               | <u>+</u>     |        |       |        |             |         |          |      |         | _        | <u> </u> | F       | Boring Terminated at Elevation                       | on 2 644 4 ft IN |            |                          | 1 4                             |             |                 |                       |                       |                |                              |
|                                                                         |               | ‡            |        |       |        |             |         |          |      |         |          |          | È.      | CRYSTALLINE ROCK                                     | (SCHIST)         |            |                          |                                 |             |                 |                       |                       |                |                              |
|                                                                         | -             | ‡            |        |       |        |             |         |          |      |         |          |          | Ł       |                                                      |                  |            |                          |                                 |             |                 |                       |                       |                |                              |
|                                                                         |               | ŧ            |        |       |        |             |         |          |      |         |          |          | Ł       |                                                      |                  |            |                          |                                 |             |                 |                       |                       |                |                              |
|                                                                         |               | ŧ            |        |       |        |             |         |          |      |         |          |          | Ł       |                                                      |                  |            |                          |                                 |             |                 |                       |                       |                |                              |
|                                                                         | -             | ŧ            |        |       |        |             |         |          |      |         |          |          | F       |                                                      |                  |            |                          |                                 |             |                 |                       |                       |                |                              |
|                                                                         |               | ŧ            |        |       |        |             |         |          |      |         |          |          | Ł       |                                                      |                  |            |                          |                                 |             |                 |                       |                       |                |                              |
|                                                                         | _             | Ŧ            |        |       |        |             |         |          |      |         |          |          | Ł       |                                                      |                  |            |                          | 1 1                             |             |                 |                       |                       |                |                              |
|                                                                         |               | ł            |        |       |        |             |         |          |      |         |          |          | Ł       |                                                      |                  |            |                          |                                 |             |                 |                       |                       |                |                              |
| ה                                                                       |               | Ŧ            |        |       |        |             |         |          |      |         |          |          | F       |                                                      |                  |            | 6                        |                                 |             |                 |                       |                       |                |                              |
| 1917                                                                    | -             | Ŧ            |        |       |        |             |         |          |      |         |          |          | F       |                                                      |                  |            | //19/19                  |                                 |             |                 |                       |                       |                |                              |
|                                                                         |               | Ŧ            |        |       |        |             |         |          |      |         |          |          | F       |                                                      |                  |            |                          |                                 |             |                 |                       |                       |                |                              |
| 0.10                                                                    |               | ŧ            |        |       |        |             |         |          |      |         |          |          | F       |                                                      |                  |            |                          | -                               |             |                 |                       |                       |                |                              |
|                                                                         | -             | ŧ            |        |       |        |             |         |          |      |         |          |          | F       |                                                      |                  | 0          |                          | <del> </del>                    |             |                 |                       |                       |                |                              |
| L L L                                                                   |               | ŧ            |        |       |        |             |         |          |      |         |          |          | F       |                                                      |                  |            | BOREHOLES.GPJ NC_DOI.GDI | I I                             |             |                 |                       |                       |                |                              |
| EX.                                                                     |               | ‡            |        |       |        |             |         |          |      |         |          |          | È.      |                                                      |                  | Î          | EX.                      |                                 |             |                 |                       |                       |                |                              |
| I HOL                                                                   |               | ‡            |        |       |        |             |         |          |      |         |          |          | ţ.      |                                                      |                  |            |                          |                                 |             |                 |                       |                       |                |                              |
|                                                                         |               | t            |        |       |        |             |         |          |      |         |          |          | Ł       |                                                      |                  |            | ROH                      |                                 |             |                 |                       |                       |                |                              |
| щ<br>Щ                                                                  | -             | ŧ            |        |       |        |             |         |          |      |         |          |          | F       |                                                      |                  | 1          | ASHE                     |                                 |             |                 |                       |                       |                |                              |
| A A                                                                     |               | ŧ            |        |       |        |             |         |          |      |         |          |          | Ł       |                                                      |                  |            |                          |                                 |             |                 |                       |                       |                |                              |
| 0005                                                                    | _             | Ŧ            |        |       |        |             |         |          |      |         |          |          | Ł       |                                                      |                  |            | 2000                     |                                 |             |                 |                       |                       |                |                              |
| BKD                                                                     | -             | f            |        |       |        |             |         |          |      |         | 1        |          | E       |                                                      |                  |            | HK .                     | +                               |             |                 |                       |                       |                |                              |
| 2000                                                                    |               | Ŧ            |        |       |        |             |         |          |      |         | 1        |          | F       |                                                      |                  |            | BK0002_BKDG0008          |                                 |             |                 |                       |                       |                |                              |
| BK                                                                      | -             | Ŧ            |        |       |        |             |         |          |      |         | 1        |          | F       |                                                      |                  |            | ХA<br>N                  |                                 |             |                 |                       |                       |                |                              |
| JBLE                                                                    |               | ŧ            |        |       |        |             |         |          |      |         |          |          | F       |                                                      |                  |            |                          |                                 |             |                 |                       |                       |                |                              |
| nor                                                                     |               | ‡            |        |       |        |             |         |          |      |         | 1        |          | ļ.      |                                                      |                  |            | Ď                        | ‡                               |             |                 |                       |                       |                |                              |
| SORE                                                                    | -             | ‡            |        |       |        |             |         |          |      |         | 1        |          | F       |                                                      |                  |            |                          | ‡                               |             |                 |                       |                       |                |                              |
| NCDOT BORE DOUBLE_BR0002_BRDG0008_ASHE_BOREHOLES.GPJ_NC_DOT.GDT_7/19/19 |               | ‡            |        |       |        |             |         |          |      |         | 1        |          | Ę       |                                                      |                  |            |                          | ‡                               |             |                 |                       |                       |                |                              |
| NCE                                                                     |               | +            |        |       |        |             |         |          |      |         |          |          | F       |                                                      |                  |            |                          | <u> </u>                        |             |                 |                       |                       |                |                              |

## **GEOTECHNICAL BORING REPORT** CORE LOG

12

|     |         |          | -    | <u> </u> |    | 1                  |            |       |          |             |
|-----|---------|----------|------|----------|----|--------------------|------------|-------|----------|-------------|
| IT) | ΥA      | SHE      |      |          |    | GEOLOGIST          | Johnson,   | C. D. |          |             |
| K   | NEV     | N RIVE   | २    |          |    |                    |            |       | GROUN    | ID WTR (ft) |
|     | OF      | FSET     | 18 f | 't LT    |    | ALIGNMENT          | L          |       | 0 HR.    | N/A         |
|     |         | RTHING   |      |          |    | EASTING 1,2        |            |       |          | 4.0 Caved   |
|     |         |          |      |          | NW | / Casing W/SPT & ( |            |       |          | Automatic   |
|     | <u></u> |          |      | 05/30/19 |    | SURFACE WA         |            |       |          |             |
|     | 50      |          |      | 00/00/10 |    | JUNFAUE WA         |            | IN//  | <b>`</b> |             |
|     | L       |          |      |          |    |                    |            |       |          |             |
| D   | 0       |          |      |          | D  | ESCRIPTION AND     | REMARKS    | ;     |          |             |
|     | G       | ELEV. (f | t)   |          |    |                    |            |       |          | DEPTH (ft)  |
|     |         |          |      |          | Co | ntinued from pr    | evious pag | je    |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | <u>-</u> |      |          |    |                    |            |       |          |             |
|     |         | -        |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | -        |      | GSI 80 - | 90 |                    |            |       |          |             |
|     |         | F        |      |          | 00 |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | È        |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         |          |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | -        |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | _        |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | <br> -   |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | -<br>    |      |          |    |                    |            |       |          |             |
|     |         | È i      |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         |          |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | -        |      |          |    |                    |            |       |          |             |
|     |         | ļ.       |      |          |    |                    |            |       |          |             |
|     |         | <u>-</u> |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | E        |      |          |    |                    |            |       |          |             |
|     |         | F-       |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | È        |      |          |    |                    |            |       |          |             |
|     |         | -        |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | <br> -   |      |          |    |                    |            |       |          |             |
|     |         | F        |      |          |    |                    |            |       |          |             |
|     |         | L        |      |          |    |                    |            |       |          |             |

|       |               |                |        |       |         |              |             |           | -        |               |       |     | 1                                                    |                        |            |        |               |             |         |               |              |              |                | -                         |            | - |
|-------|---------------|----------------|--------|-------|---------|--------------|-------------|-----------|----------|---------------|-------|-----|------------------------------------------------------|------------------------|------------|--------|---------------|-------------|---------|---------------|--------------|--------------|----------------|---------------------------|------------|---|
| WBS   | 67002         | 2.1.1          |        |       | TIF     | BR-0002      | 2           | COUNT     | Y ASHE   |               |       |     | GEOLOGIST Johnson, C. D.                             |                        |            |        | <b>6</b> 7002 |             |         |               |              | BR-00        |                |                           | OUNT       |   |
| SITE  | DESCR         | RIPTION        | BRI    | DGE # | 8 ON I  | NC194 OVE    | ER NORT     | H FORK    | NEW RIVE | २             |       |     |                                                      | GROUN                  | D WTR (ft) | SITE   | DESCR         | IPTION      | BRID    | DGE #8 (      |              | :194 O       | VER NO         | RTH F                     | ORK        | Ν |
| BOR   | ING NO        | . B2-B         |        |       | ST      | ATION 24     | +35         |           | OFFSET   | 17 ft RT      |       |     | ALIGNMENT L                                          | 0 HR.                  | N/A        | BOF    | Ring No.      | B2-B        |         |               | STAT         | TION 2       | 24+35          |                           |            | _ |
| COLI  | AR EL         | <b>EV.</b> 2,6 | 665.3  | ft    | то      | TAL DEPT     | H 20.8 ft   |           | NORTHING | <b>9</b> 98,0 | )25   |     | EASTING 1,261,649                                    | 24 HR.                 | 5.3        |        | LAR ELI       |             |         |               |              |              | <b>TH</b> 20.  |                           |            | 1 |
| DRILL | . RIG/HA      | MMER E         | FF./DA | TE AF | 06744 ( | CME - 45C 92 | % 07/31/201 | 7         |          | DRILL         | METHO | N D | W Casing W/SPT & Core HAMN                           | ER TYPE                | Automatic  | DRIL   | l rig/ha      | MMER E      | FF./DAT | E AFO6        | 744 CM       | E-45C        | 92% 07/31      | /2017                     |            |   |
|       |               | cheek, D       | ). O.  |       | ST      | ART DATE     | 05/30/19    | 9         | COMP. DA | <b>TE</b> 05/ | 30/19 |     | SURFACE WATER DEPTH N                                | A                      |            | DRI    | LER C         | heek, D     | ). O.   |               | STAF         | rt dat       | <b>E</b> 05/30 | )/19                      |            | ( |
| ELEV  | DRIVE<br>ELEV | DEPTH          | BLC    | w col | JNT     |              | BLOWS P     | ER FOOT   |          | SAMP.         |       | L   | SOIL AND ROCK DES                                    | RIPTION                |            | COF    | RE SIZE       | nxwl        |         |               |              |              | l 13.0 ft      |                           |            | 1 |
| (ft)  | (ft)          | (ft)           | 0.5ft  | 0.5ft | 0.5ft   | 0 2          | 5 5         | 0         | 75 100   | NO.           | Имо   |     |                                                      |                        |            | ELEV   | RUN<br>ELEV   | DEPTH       | RUN     | DRILL<br>RATE | REC.         | JN<br>RQD    | SAMP.          | STRA<br>REC.<br>(ft)<br>% | ATA<br>RQD |   |
|       |               |                |        |       |         |              |             |           |          |               |       |     |                                                      |                        |            | (ft)   | (ft)          | (ft)        | (ft)    | (Min/ft)      | (ft)<br>%    | (ft)<br>%    | NO.            | (ft)<br>%                 | (ft)<br>%  | ( |
| 2670  |               | Ļ              |        |       |         |              |             |           |          |               |       |     | _                                                    |                        |            | 2657.5 | 2             | 79          |         |               |              | (0.0)        |                |                           |            |   |
|       |               | ŧ              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            | 2655   | -             | + I         | 3.0     |               | (2.9)<br>97% | (2.9)<br>97% |                |                           |            |   |
|       |               | ŧ              |        |       |         |              |             |           |          |               |       |     | -<br>- 2,665.3 GROUND SURF.                          | CE                     | 0.0        |        | 2,654.5       | - 10.8      | 5.0     |               | (4.9)        | (4.7)        |                |                           |            |   |
| 2665  | -             | -              |        |       |         |              |             |           |          |               |       |     | ALLUVIAL                                             |                        |            |        | -             | ŧ           |         |               | 98%          | 94%          |                |                           |            |   |
|       |               | t              |        |       |         |              |             |           |          |               |       |     | Brown, sandy silt with mica<br>clay                  | and a trace            | e of       | 2650   | 2,649.5       | - 15.8      |         |               |              |              |                |                           |            |   |
| 2660  | 2,660.5       | 4.8            | 4      | 6     | 9       |              |             |           |          |               |       |     |                                                      |                        |            |        |               | ŧ           | 5.0     |               | (4.5)<br>90% | (4.1)<br>82% |                |                           |            |   |
|       | 0.057.5       | $\overline{1}$ | 4      |       | 5       | <u>•</u> 15  |             |           |          |               |       |     | 2,658.9<br>- 2,657.5 _ ALLUVIAL                      |                        | 6.4        | 2645   |               | +           |         |               |              |              |                |                           |            |   |
|       | 2,657.5       | T 7.8          | 60/0.0 |       |         |              |             |           |          | 2             |       |     | Brown, silty sand with cobble                        |                        | ders / /.o | 2043   | 2,644.5       | - 20.8<br>- |         |               |              |              |                |                           |            |   |
| 2655  | -             | Ŧ              |        |       |         |              |             |           |          |               |       |     |                                                      | JUK                    |            |        | -             | ŧ           |         |               |              |              |                |                           |            |   |
|       |               | Ŧ              |        |       |         |              | · · · ·     | · · · · · |          |               |       |     | -                                                    |                        |            |        |               | +           |         |               |              |              |                |                           |            |   |
| 2650  |               | Ŧ              |        |       |         |              | · · · ·     | · · · · · |          |               |       |     | -                                                    |                        |            |        | -             | ŧ           |         |               |              |              |                |                           |            |   |
|       | -             | Ŧ              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        | -             | ŧ           |         |               |              |              |                |                           |            |   |
|       |               | ŧ              |        |       |         | · · · ·      | · · · ·     | · · · · · |          |               |       |     | -                                                    |                        |            |        |               | ŧ.          |         |               |              |              |                |                           |            |   |
| 2645  |               | <u>+</u>       |        |       |         |              |             | · · · ·   |          |               |       |     | -                                                    |                        |            |        | -             | ŧ –         |         |               |              |              |                |                           |            |   |
|       |               | ŧ              |        |       |         |              |             |           |          |               |       |     | - Boring Terminated at Elevati<br>- CRYSTALLINE ROCK | on 2,644.5<br>(SCHIST) | ft IN      |        | -             | Ł           |         |               |              |              |                |                           |            |   |
|       |               | ŧ              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        | -             | ŧ           |         |               |              |              |                |                           |            |   |
|       | -             | ŧ              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        | -             | Ł           |         |               |              |              |                |                           |            |   |
|       |               | +              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        | -             | Ł           |         |               |              |              |                |                           |            |   |
|       | -             | ‡              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        | -             | Ł           |         |               |              |              |                |                           |            |   |
|       |               | ‡              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        |               | E           |         |               |              |              |                |                           |            |   |
|       |               | ‡              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        |               | F           |         |               |              |              |                |                           |            |   |
|       | -             | ŧ              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        | -             | F           |         |               |              |              |                |                           |            |   |
|       |               | t              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        |               | F           |         |               |              |              |                |                           |            |   |
|       |               | <u>t</u>       |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        |               | Ŧ           |         |               |              |              |                |                           |            |   |
|       |               | ŧ              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        | -             | ŧ           |         |               |              |              |                |                           |            |   |
|       |               | t              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        | -             | ŧ           |         |               |              |              |                |                           |            |   |
|       | -             | Ŧ              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        | -             | +           |         |               |              |              |                |                           |            |   |
|       |               | Ŧ              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        | -             | +           |         |               |              |              |                |                           |            |   |
|       |               | Ŧ              |        |       |         |              |             |           |          |               |       | F   | -                                                    |                        |            |        | -             | +           |         |               |              |              |                |                           |            |   |
|       | -             | Ŧ              |        |       |         |              |             |           |          |               |       | F   | -                                                    |                        |            |        | -             | +           |         |               |              |              |                |                           |            |   |
|       |               | Ŧ              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        | -             | +           |         |               |              |              |                |                           |            |   |
|       | -             | ŧ              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        | -             | ŧ.          |         |               |              |              |                |                           |            |   |
|       |               | ŧ              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        |               | Ł           |         |               |              |              |                |                           |            |   |
|       |               | ‡              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        | -             | Ł           |         |               |              |              |                |                           |            |   |
|       | -             | ŧ              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        | -             | Ł           |         |               |              |              |                |                           |            |   |
|       |               | +              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        | -             | F           |         |               |              |              |                |                           |            |   |
|       | _             | ±              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        |               | F           |         |               |              |              |                |                           |            |   |
|       |               | ±              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        | -             | ŧ.          |         |               |              |              |                |                           |            |   |
|       |               | t              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        | -             | ŧ.          |         |               |              |              |                |                           |            |   |
|       | -             | Ł              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        |               | ŧ           |         |               |              |              |                |                           |            |   |
|       |               | Ŧ              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        | -             | ‡           |         |               |              |              |                |                           |            |   |
|       |               | 1              |        |       |         |              |             |           |          |               |       |     | -                                                    |                        |            |        |               | ł           |         |               |              |              |                |                           |            |   |

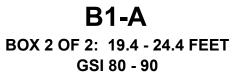
## **GEOTECHNICAL BORING REPORT** CORE LOG

| OFFSET     17 ft RT     ALIGNMENT     0 Hi       t     NORTHING     998,025     EASTING     1,261,649     24 Hi       17     DRILL METHOD     NW Casing WSPT & Core     HAMMER TYL       9     COMP. DATE     05/30/19     SURFACE WATER DEPTH     N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| OFFSET       17 ft RT       ALIGNMENT       0 Hi         t       NORTHING       998,025       EASTING       1,261,649       24 Hi         17       DRILL METHOD       NW Casing WSPT & Core       HAMMER TYPE         9       COMP. DATE       05/30/19       SURFACE WATER DEPTH       N/A         STRATA<br>C. RQD<br>0<br>6         10       U       DESCRIPTION AND REMARKS         Continued from previous page         GSI 80 - 90         GSI 80 - 90         Boring Terminated at Elevation 2,644.5 ft IN CRYSTALLINE ROCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| Image: Northing 998,025     EASTING 1,261,649     24 Hi       17     DRILL METHOD     NWCasing WSPT & Core     HAMMER TYI       9     COMP. DATE     05/30/19     SURFACE WATER DEPTH     N/A       STRATA       10     DESCRIPTION AND REMARKS       11     0     DESCRIPTION AND REMARKS       12     Continued from previous page       13     2,657.5     CRYSTALLINE ROCK       14     0     0       15     0     0       16     0     0       17     0     0       18     0     0       19     0     0       10     0     0       10     0     0       10     0     0       10     0     0       10     0     0       11     0     0       12     0     0       13     0     0       14     0     0       15     0     0       16     0     0       17     0     0       14     0     0       15     0     0       16     0     0       17     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OUND WTR (ft) |
| 17       DRILL METHOD       NW Casing W/SPT & Core       HAMMER TYL         9       COMP. DATE       05/30/19       SURFACE WATER DEPTH       N/A         STRATA<br>CC. ROD<br>0<br>(1)<br>(1)<br>(2)<br>(3)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7)<br>(7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
| 9 COMP. DATE 05/30/19 SURFACE WATER DEPTH N/A<br>STRATA CC. ROD 0 0 G COntinued from previous page 2.657.5 CRYSTALLINE ROCK GSI 80 - 90 Boring Terminated at Elevation 2,644.5 ft IN CRYSTALLINE RO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
| STRATA<br>C. RQD<br>0<br>0<br>6<br>%<br>6<br>6<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PE Automatic  |
| Continued from previous page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| Continued from previous page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| Continued from previous page  2,657.5 CRYSTALLINE ROCK  GSI 80 - 90  G   |               |
| GSI 80 - 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| Boring Terminated at Elevation 2,644.5 ft IN CRYSTALLINE R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.8           |
| Boring Terminated at Elevation 2,644.5 ft IN CRYSTALLINE R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
| Boring Terminated at Elevation 2,644.5 ft IN CRYSTALLINE R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
| Boring Terminated at Elevation 2,644.5 ft IN CRYSTALLINE R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
| Boring Terminated at Elevation 2,644.5 ft IN CRYSTALLINE RC<br>Graduate (SCHIST)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
| Boring Terminated at Elevation 2,644.5 ft IN CRYSTALLINE R(<br>Gradient Content of Content |               |
| (SCHIST)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ск            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |

|       |               |         |            |        |        |                            |                          |              |            |         |             |                                       | .00           |        |     |          |            |                        |                        |             | 1               |       |               |          |            |        |         |             |                |              | -       |       |
|-------|---------------|---------|------------|--------|--------|----------------------------|--------------------------|--------------|------------|---------|-------------|---------------------------------------|---------------|--------|-----|----------|------------|------------------------|------------------------|-------------|-----------------|-------|---------------|----------|------------|--------|---------|-------------|----------------|--------------|---------|-------|
| WBS   | 67002         | 2.1.1   |            |        | T      | I <b>P</b> B               | R-000                    | 2            |            | COUN    | <b>ΤΥ</b> Α | SHE                                   |               |        |     |          | GEOLO      | DGIST Johr             | son, C. D              |             |                 |       | 6700          |          |            |        |         |             | 3R-0002        |              |         | JNTY  |
|       | DESCR         |         |            | IDGE ‡ | #8 ON  | NC1                        | 94 OV                    | ER N         | IORTI      | H FOR   |             |                                       |               |        |     |          |            |                        |                        |             | OUND WTR (ft)   |       |               |          |            | RIDGE  |         |             |                | ER NOF       | RTH FC  |       |
| BOR   | NG NO.        | EB2     | -A         |        | S      | TATIO                      | <b>DN</b> 2              | 5+20         |            |         | OF          | SET                                   | 18 ft LT      | •      |     |          | ALIGN      | MENT L                 |                        | 0 H         | <b>IR.</b> 15.0 | BOR   | ING NO        | . EB2    | 2-B        |        | 5       | STATI       | <b>ON</b> 25   | 5+20         |         | OF    |
|       | AR ELE        |         |            |        |        |                            | DEPT                     |              |            |         | NO          | RTHIN                                 | <b>G</b> 998, |        |     |          |            | <b>NG</b> 1,261,6      |                        | 24 <b>⊦</b> |                 |       | LAR EL        |          |            |        |         |             |                | <b>H</b> 7.9 |         | NC    |
| DRILL | RIG/HAI       | VIMER E | EFF./DA    | TE A   | FO6744 | CME                        | 45C 9                    | 2%07/        | /31/201    | 17      |             |                                       | DRILL         | METH   | IOD | H.S.     | Augers     |                        | HAN                    | MMER T      | PE Automatic    | DRIL  | L RIG/HA      | MMER     | EFF./D     | ATE /  | AF0674  | 4 CME       | - 45C 92       | 2% 07/31/    | 2017    |       |
| DRIL  | LER C         | heek, l | D. O.      |        | S      | TART                       | DATE                     | <b>E</b> 05/ | /29/19     | 9       | со          | MP. DA                                | <b>TE</b> 05  | /29/19 | 9   |          | SURFA      | CE WATER               | DEPTH                  | N/A         |                 | DRIL  | LER (         | Cheek,   | D. O.      |        | 5       | STAR        | ۲ DATE         | 05/30        | /19     | CC    |
| ELEV  | DRIVE<br>ELEV | DEPTH   | ' <u> </u> | ow co  |        |                            |                          | BLC          | OWS P      | ER FOC  | т           |                                       | SAMP          |        |     |          |            | SOIL AND               | ROCK DE                | SCRIPT      | ION             | ELEV  | DRIVE<br>ELEV |          | ' <b>'</b> | OW CO  |         |             |                | BLOW         | S PER F |       |
| (ft)  | (ft)          | (ft)    | 0.5ft      | 0.5ft  | 0.5ft  | 0                          | 2                        | 25           | 5          | 0       | 75          | 100                                   | NO.           | Им     |     |          | ELEV. (ft) | 00127812               |                        |             | DEPTH (ft)      | (ft)  | (ft)          | (ft)     | 0.5ft      | t 0.5f | t 0.5ft | 0           | 2              | 25           | 50      | 75    |
|       |               |         |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     |          |            |                        |                        |             |                 |       |               |          |            |        |         |             |                |              |         |       |
| 2690  |               | _       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | L        |            |                        |                        |             |                 | 2675  |               | Ļ        |            |        |         |             |                |              |         |       |
|       | -             |         |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | Ę        |            |                        |                        |             |                 |       |               | <u>‡</u> | _          |        |         | <u> </u>    | <del></del>    |              | ·   · · | · · 丁 |
|       | -             | -       |            |        |        | <u>  </u> .                |                          | · · ·        |            |         | • • •       |                                       |               |        | _   | - 2      | 2,686.4    |                        | OUND SUF               |             | 0.0<br>IT       | 0.070 |               | ŧ        |            |        |         | <u>i</u>    | · · ·<br>· · · | · · ·        | ·   · · | •••   |
| 2685  | -             | -       |            |        |        | <del>  i -</del>           |                          | 1            |            |         |             |                                       |               |        |     |          |            | RED-BROV               |                        |             |                 | 2670  | 2,669.9       | 3.4      | 3          | 1      | 3       | ┤┟╁         | 4 • • •        |              |         |       |
|       | 2,683.1       | 3.3     | 1          | 1      | 2      | -   <mark> </mark> .<br>●3 | · · ·                    | · ·          |            | · · ·   | : :         | · · ·                                 |               | м      |     | E        |            |                        |                        |             |                 |       |               | ŧ        |            |        |         |             |                | <br><u></u>  | · · ·   |       |
| 2680  | -             | _       |            |        |        |                            |                          |              | •••        |         | • •         |                                       |               |        | Ľ   | <u>-</u> |            |                        |                        |             |                 |       | 2,665.4       | 7.9      | 60/0.      | 0      | _       | <u>   -</u> |                |              |         | • •   |
|       | 2,678.1       | 8.3     |            |        |        | lli:                       |                          | · ·          | •••        |         | : :         | · · ·                                 |               |        | Ľ   | Ŀ        |            |                        |                        |             |                 |       |               | ŧ        | 00/0.      |        |         |             |                |              |         |       |
| 1     | -             |         | 1          | 1      | 2      | ●3                         |                          | · ·          |            |         |             |                                       |               | M      | Ľ   | -        |            |                        |                        |             |                 |       |               | Ŧ        |            |        |         |             |                |              |         |       |
| 2675  | -             | F       |            |        |        |                            |                          |              |            | · · · · |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       | -             | £        |            |        |         |             |                |              |         |       |
|       | 2,673.1       | 13.3    | 1          | 1      | 1      |                            |                          |              |            |         |             | · · · ·                               |               | М      | Ľ   | F        |            |                        |                        |             |                 |       |               | Ŧ        |            |        |         |             |                |              |         |       |
| 2670  | -             | F       |            |        |        |                            | ••••                     |              | •••        |         |             |                                       |               |        | Ľ   | F        |            |                        |                        |             |                 |       |               | Ŧ        |            |        |         |             |                |              |         |       |
|       | 2,668.1       | 18.3    |            |        |        |                            | $\overline{\cdot \cdot}$ |              | <br>       |         |             |                                       |               |        |     | <u> </u> | 2,668.8    |                        | ALLUVIA                |             | 17.6            |       | -             | Ŧ        |            |        |         |             |                |              |         |       |
| 1     | -             | F       | 4          | 7      | 8      |                            | . •15                    |              | · ·<br>· · | · · · · |             | · · · · · · · · · · · · · · · · · · · |               | М      |     | F        |            | BRN-BLACK              |                        | SL MIC,     | CL-SLT          |       |               | Ŧ        |            |        |         |             |                |              |         |       |
| 2665  | 2,664.9       | 21.5    | 60/0.0     |        |        |                            |                          |              | · · ·      |         |             | <br>                                  |               |        |     | <u> </u> | 2,664.9    |                        |                        |             | 21.5            |       | -             | Ŧ        |            |        |         |             |                |              |         |       |
|       | -             | F       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            | BROWN CRY              | STALLINE               | ROCK (S     | ,               |       |               | Ŧ        |            |        |         |             |                |              |         |       |
|       | -             | Ē       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            | Boring Term<br>PENETRA | FION TEST              | r refus     | AL at           |       |               | ŧ        |            |        |         |             |                |              |         |       |
| 1     | -             | -       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            | Elevation 2,6<br>R     | 64.9 ft ON<br>OCK (SCH |             | ALLINE          |       | -             | ŧ        |            |        |         |             |                |              |         |       |
|       | -             | -       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | Ę        |            |                        |                        |             |                 |       |               | ‡        |            |        |         |             |                |              |         |       |
|       | -             | -       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       | -             | ‡        |            |        |         |             |                |              |         |       |
|       | -             |         |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | Ę        |            |                        |                        |             |                 |       |               | ŧ        |            |        |         |             |                |              |         |       |
|       | -             |         |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | E        |            |                        |                        |             |                 |       |               | ŧ        |            |        |         |             |                |              |         |       |
|       | -             | -       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       | -             | ŧ        |            |        |         |             |                |              |         |       |
|       | -             |         |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       |               | Ŧ        |            |        |         |             |                |              |         |       |
|       | -             | F       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       |               | Ŧ        |            |        |         |             |                |              |         |       |
|       | -             | F       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       | -             | Ŧ        |            |        |         |             |                |              |         |       |
|       | -             | -       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       |               | Ŧ        |            |        |         |             |                |              |         |       |
| 1     | _             | F       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       | -             | Ŧ        |            |        |         |             |                |              |         |       |
|       | -             | F       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       |               | ŧ        |            |        |         |             |                |              |         |       |
| 1     | -             | -       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       |               | ŧ        |            |        |         |             |                |              |         |       |
|       | -             | -       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       | -             | ŧ        |            |        |         |             |                |              |         |       |
|       | -             | -       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | Ę        |            |                        |                        |             |                 |       |               | ‡        |            |        |         |             |                |              |         |       |
|       | -             | -       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       | -             | ‡        |            |        |         |             |                |              |         |       |
|       | -             | -       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | Ę        |            |                        |                        |             |                 |       |               | ŧ        |            |        |         |             |                |              |         |       |
|       | -             |         |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | E        |            |                        |                        |             |                 |       |               | ŧ        |            |        |         |             |                |              |         |       |
|       | -             | -       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       | -             | ŧ        |            |        |         |             |                |              |         |       |
| 1     | -             |         |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       |               | ŧ        |            |        |         |             |                |              |         |       |
|       | -             | L       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | E        |            |                        |                        |             |                 |       |               | Ŧ        |            |        |         |             |                |              |         |       |
|       | -             | F       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       | -             | Ŧ        |            |        |         |             |                |              |         |       |
|       | -             | -       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       |               | Ŧ        |            |        |         |             |                |              |         |       |
|       | -             | F       | 1          |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       |               | ŧ        |            |        |         |             |                |              |         |       |
|       | -             | F       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       |               | ŧ        |            |        |         |             |                |              |         |       |
|       | -             | Ē       |            |        |        |                            |                          |              |            |         |             |                                       |               |        |     | F        |            |                        |                        |             |                 |       |               | ŧ        |            |        |         |             |                |              |         |       |
| L     |               |         | 1          | I      | I      | I                          |                          |              |            |         |             |                                       |               | 1      |     |          |            |                        |                        |             |                 | L     | -             | 1        |            |        |         |             |                |              |         |       |

| T١ | ASH      | E     |    |        |       |        |      | GEOLOG   | SIST         | Johnson,               | C. D.               |          |            |
|----|----------|-------|----|--------|-------|--------|------|----------|--------------|------------------------|---------------------|----------|------------|
| K  | NEW R    | IVEF  | २  |        |       |        |      |          |              |                        |                     | GROUN    | D WTR (ft) |
| ٦  | OFFSE    | T 2   | 28 | ft RT  |       |        |      | ALIGNM   | ENT          | L                      |                     | 0 HR.    | Dry        |
|    | NORTH    | IING  | ;  | 998,0  | 82    |        |      | EASTING  | <b>3</b> 1,2 | 261,713                |                     | 24 HR.   | FIAD       |
|    |          |       |    | RILL   | IETHO | D⊢     | I.S. | . Augers |              |                        | HAMM                | ER TYPE  | Automatic  |
|    | COMP.    | DA    | TE | 05/3   | 30/19 |        |      | SURFAC   | E WA         | ATER DEP               | TH N/               | Ą        |            |
| т  |          |       | 5  | SAMP.  |       | L      |      |          |              |                        |                     |          |            |
|    | 75       | 100   |    | NO.    | моі   | O<br>G |      |          | 30           | IL AND ROC             | K DESC              |          |            |
|    |          |       |    |        |       |        |      |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        |      |          |              |                        |                     |          |            |
|    | <u> </u> |       |    |        |       |        | - :  | 2,673.3  |              | GROUNE                 |                     | CE       | 0.0        |
| •  |          |       |    |        |       |        | E    |          | LT E         | BROWN, SL              |                     |          |            |
| -  | +        | _     | 6  | S-SS-2 | м     |        | _    |          |              | HARDER B               | EGIN 6.6            | 5'-7.7'  |            |
| •  |          | •     | F  | 0002   |       |        | E    |          |              |                        |                     |          |            |
|    | <u> </u> | .0.0  | ┥  |        |       |        |      | 2,665.4  |              | COVETAL                |                     |          | 7.9        |
|    |          | , 0.0 |    |        |       |        | F    | В        |              | CRYSTAL<br>N CRYSTAL   | LINE RC             | CK (SCHI |            |
|    |          |       |    |        |       |        | E    |          | Borin<br>PEN | g Terminated           | d WITH S<br>TEST RI | STANDAR  | D          |
|    |          |       |    |        |       |        | -    |          | Elevat       | tion 2,665.4 1<br>ROCK | t ON CR             |          | IE         |
|    |          |       |    |        |       |        | -    |          |              | neen                   | (001.001            | ,        |            |
|    |          |       |    |        |       |        | Ē    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | F    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | -    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | -    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | F    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | F    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | F    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | -    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | L    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | F    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | -    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | -    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | E    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | L    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | E    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | L    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | F    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | F    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | F    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | E    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | E    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | Ē    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | F    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | F    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | F    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | F    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | F    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | þ    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | þ    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | F    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | þ    |          |              |                        |                     |          |            |
|    |          |       |    |        |       |        | -    |          |              |                        |                     |          |            |

**B1-A** 


BOX 1 OF 2: 10.5 - 19.4 FEET GSI 80 - 90







SHEET 15 BR-0002 / ASHE BRIDGE NO. 008



B1-B

BOX 1 OF 2: 10.4 - 20.2 FEET GSI 80 - 90

BOX 2 OF 2: 20.2 - 25.7 FEET



**20.2** 

SHEET 16 BR-0002 / ASHE BRIDGE NO. 008

B1-B

GSI 80 - 90



**B2-A** 

BOX 1 OF 2: 9.3 - 17.5 FEET GSI 80 - 90

BOX 2 OF 2: 17.5 - 20.7 FEET





SHEET 17

BR-0002 / ASHE BRIDGE NO. 008

**B2-A** GSI 80 - 90

**B2-B** 

BOX 1 OF 2: 7.8 - 15.8 FEET GSI 80 - 90 **B2-B** BOX 2 OF 2: 15.8 - 20.8 FEET GSI 80 - 90



**15.8** 





SHEET 18

BR-0002 / ASHE BRIDGE NO. 008

## **CONTENTS**

BR-0002

REFERENCE

| <u>SHEET NO.</u> | <b>DESCRIPTION</b>   |
|------------------|----------------------|
| I                | TITLE SHEET          |
| 2                | LEGEND (SOIL & ROCK) |
| 3                | SITE PLAN            |
| 4-7              | PROFILES             |
| 8-12             | CROSS SECTIONS       |
| 13-15            | BORE LOGS            |

## STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

## **STRUCTURE** SUBSURFACE INVESTIGATION

COUNTY ASHE

PROJECT DESCRIPTION REPLACE ASHE BRIDGE #8 ON NC 194 OVER NORTH FORK OF NEW RIVER

SITE DESCRIPTION **RETAINING WALL** #1 -L- STA 15+00 - 20+00 OFFSET 26.5'RT

| STATE | STATE PROJECT REFERENCE NO. | SHEET<br>NO. | TOTAL<br>SHEETS |
|-------|-----------------------------|--------------|-----------------|
| N.C.  | 67002.1.1                   | 1            | 15              |

#### CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOLI TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEICH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1991 707-6805. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

GENERAL SOL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORNICS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU UN-FLACED TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OSESURFACE MATER AND THE SUBSURFACE RONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THES WASTER LEVELS OR SOL MOISTURE CONDITIONS MAY VARY. CONSIDERABLY WITH THE ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

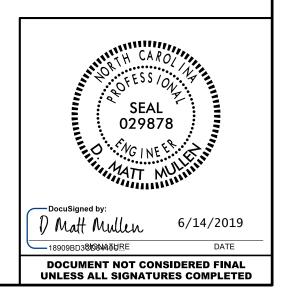
THE BIDDER OF CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY THINSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FOM THE ACUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES: I. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT. 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE. 2.

PERSONNEL

C.D. JOHNSON

D.O. CHEEK


C.J. COFFEY

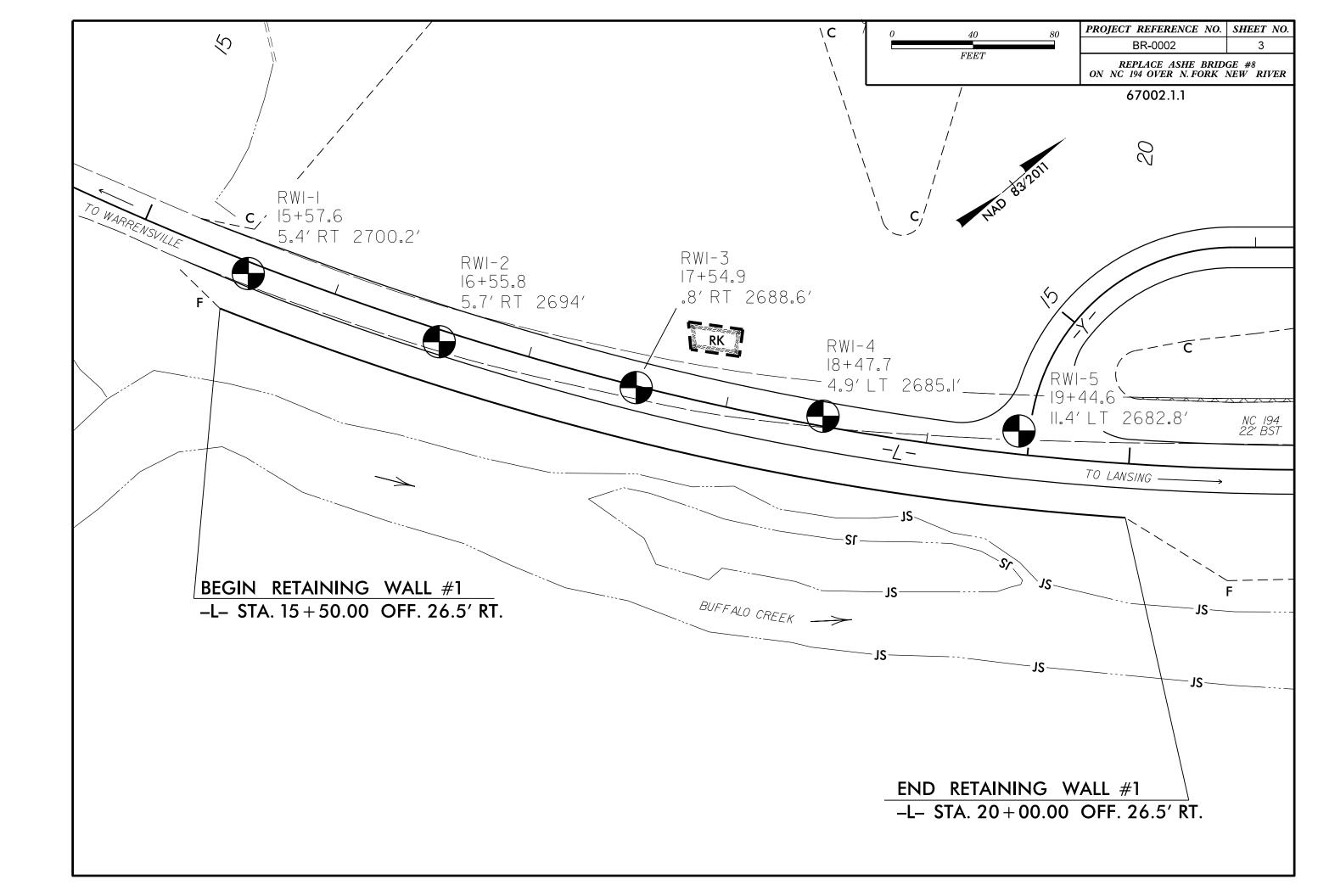
INVESTIGATED BY \_\_\_\_\_. MULLEN

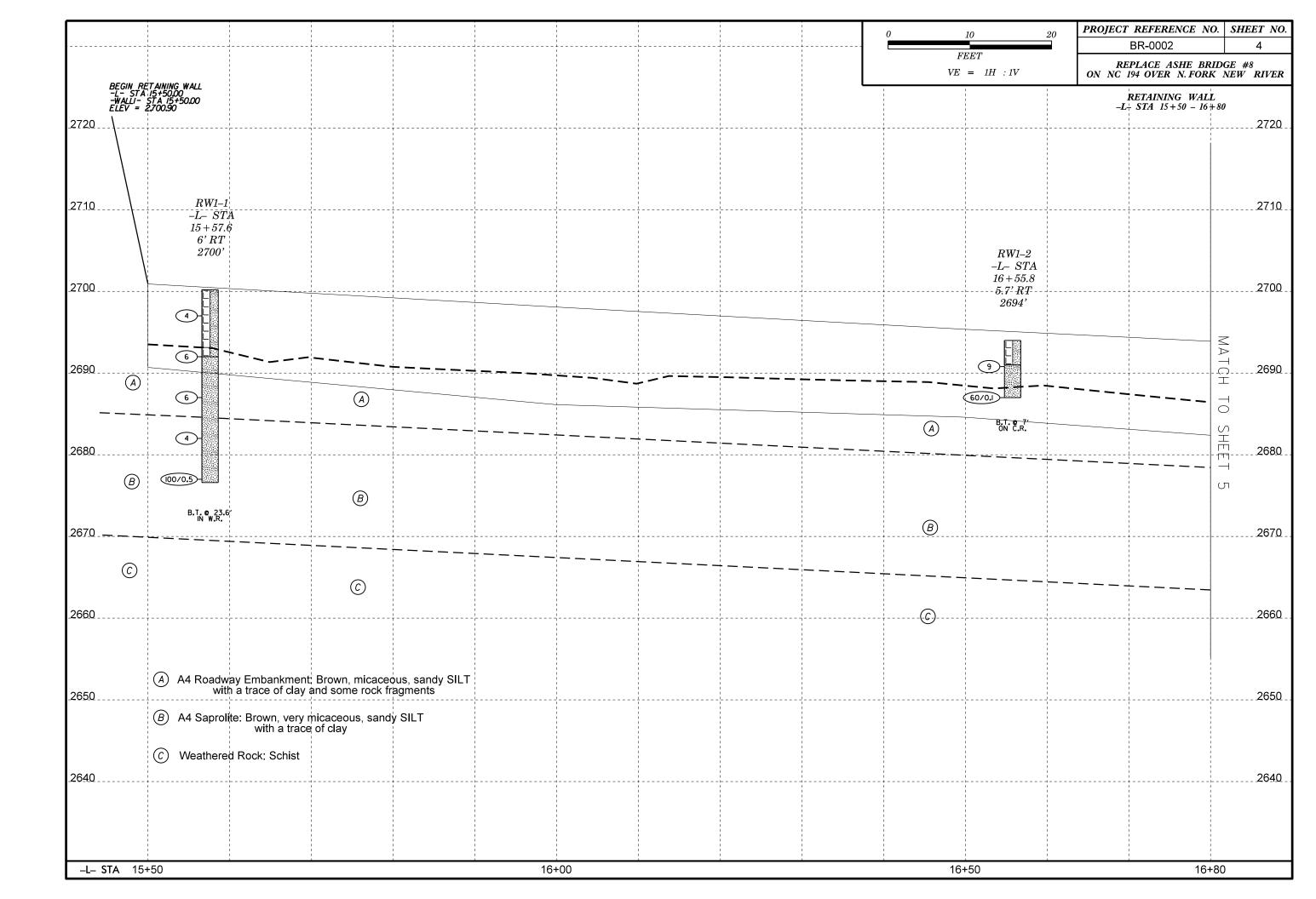
DRAWN BY \_ **D.M.M**.

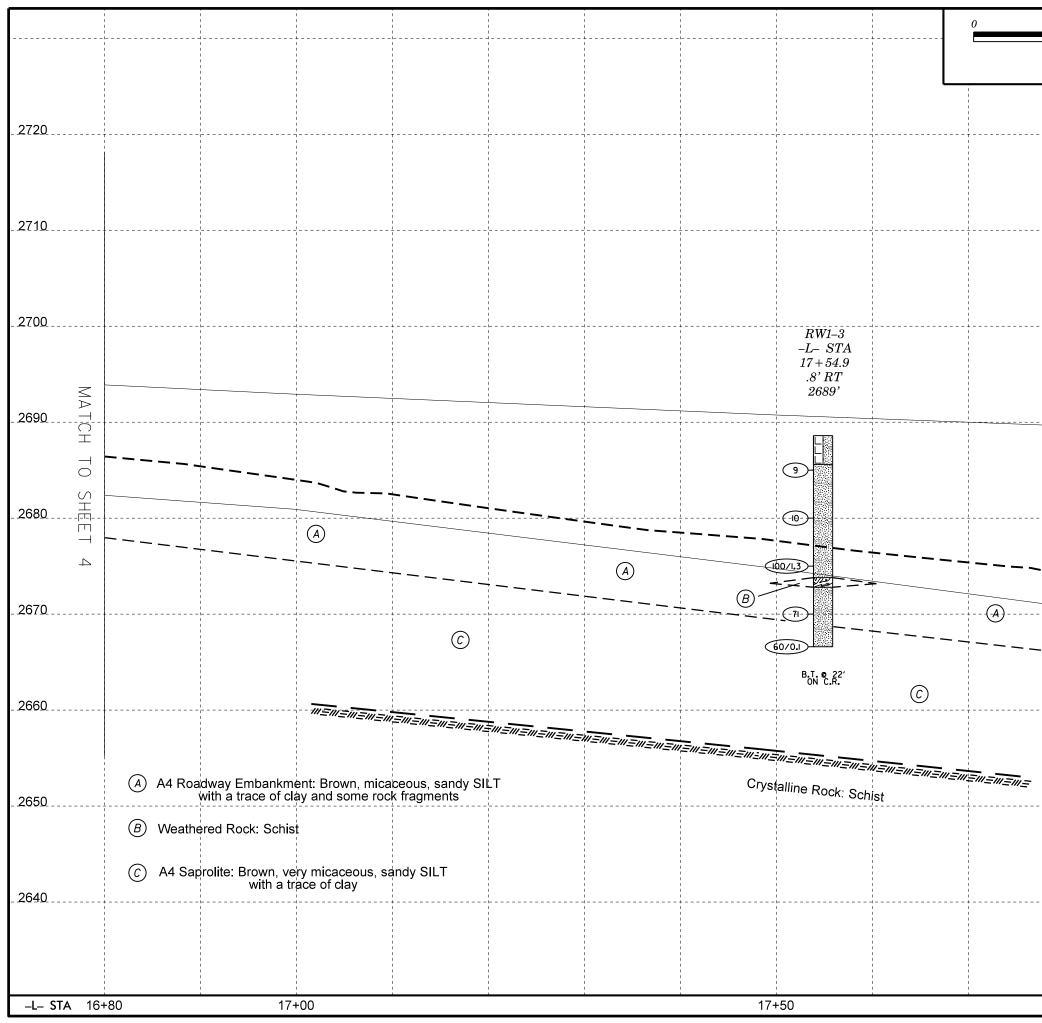
CHECKED BY \_\_\_\_\_. KUHNE

SUBMITTED BY J.C. KUHNE



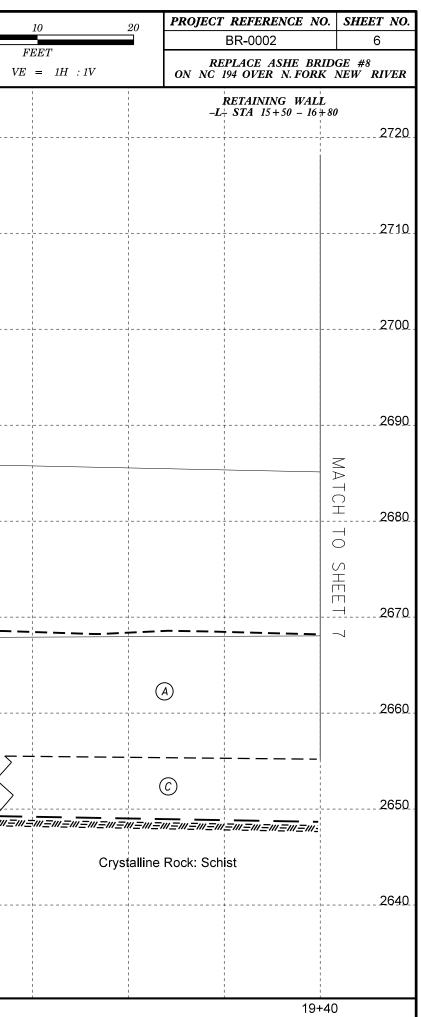

## NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT SUBSURFACE INVESTIGATION

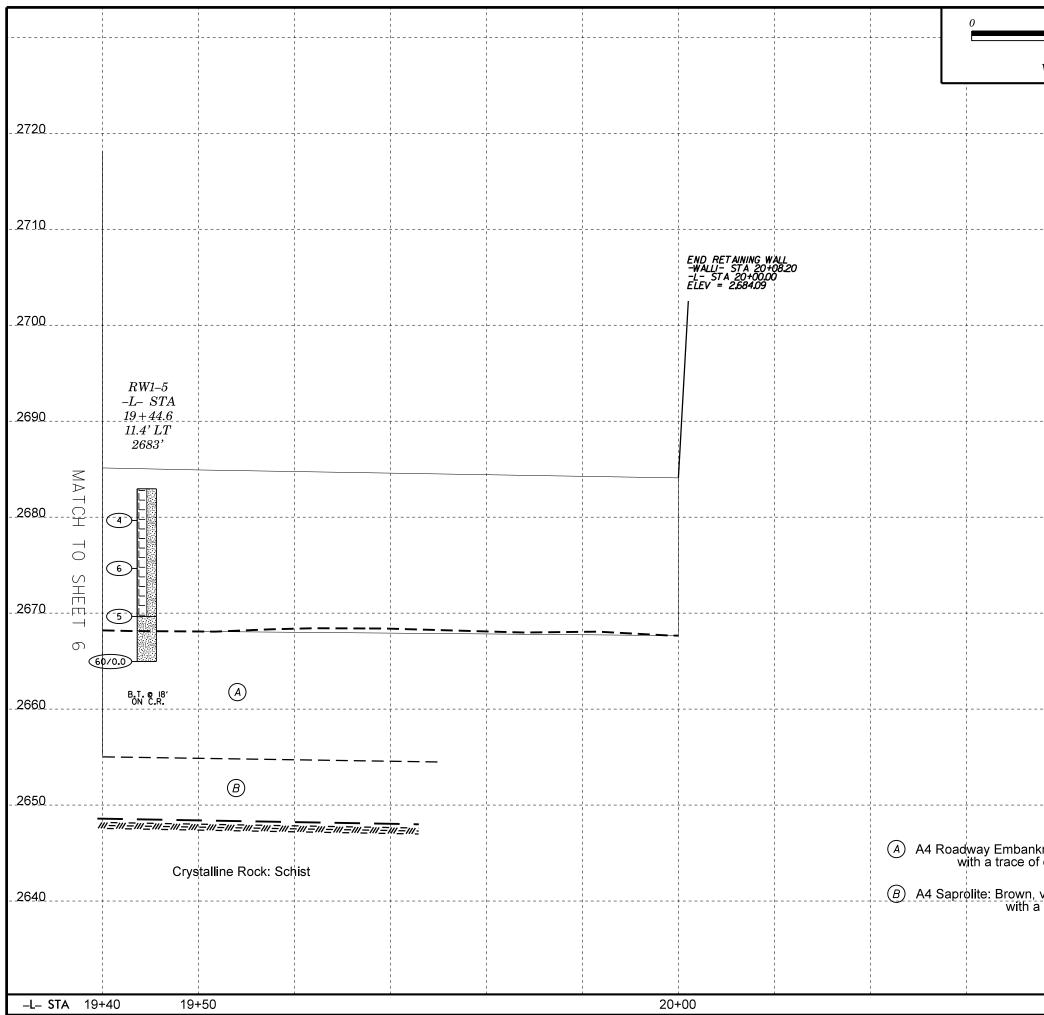

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS


|                                                                                                                                                                                                                                                                  | CRADATION                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                  |                                                                                                                                                                                   | ROCK DESCRIPTION<br>HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED                                                                                | TERMS AND DEFINITIONS                                                                                                                                                                 |
| SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN<br>BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT                                                                         | WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE.<br>UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE.     | ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD TIELD SPT REFUSAL IF TESTED. AN INFERRED                                                                               | ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.                                                                                                                        |
| ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM D1586). SOIL CLASSIFICATION                                                                                                                                                                       | GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.                                                                                                  | SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60                                                                                                      | AQUIFER - A WATER BEARING FORMATION OR STRATA.                                                                                                                                        |
| IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING:<br>CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH                                                                             | ANGULARITY OF GRAINS                                                                                                                                                              | BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN<br>REPRESENTED BY A ZONE OF WEATHERED ROCK.                                                                 | ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.                                                                                                  |
| AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE,                                                                                                                                                                               | THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:                                                                                                            | ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:                                                                                                                                               | ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING                                                                                                |
| VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6                                                                                                                                                                     | ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.                                                                                                                                      | WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES >                                                                                                                           | A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.                                                                                                         |
| SOIL LEGEND AND AASHTO CLASSIFICATION                                                                                                                                                                                                                            | MINERALOGICAL COMPOSITION                                                                                                                                                         | ROCK (WR) 100 BLOWS PER FOOT IF TESTED.                                                                                                                                                        | ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT                                                                                                  |
| GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS ORGANIC MATERIALS                                                                                                                                                                                                 | MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.                                                                                                                  | CRYSTALLINE FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT                                                                                                                             | WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.                                                                                          |
| CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200)                                                                                                                                                                                                                 | ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.                                                                                                                | ROCK (CR) GNEISS, GABBRO, SCHIST, ETC.                                                                                                                                                         | CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.                                                                                                     |
| GROUP         A-1         A-3         A-2         A-4         A-5         A-6         A-7         A-1, A-2         A-4, A-5           CLASS.         A-1-a         A-1-b         A-2-4         A-2-5         A-2-7         A-7         A-1, A-2         A-4, A-5 | COMPRESSIBILITY                                                                                                                                                                   | NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN                                                                                                                         | COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM                                                                                                 |
|                                                                                                                                                                                                                                                                  | SLIGHTLY COMPRESSIBLE LL < 31                                                                                                                                                     | ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED.                                                                                                                            | OF SLOPE.                                                                                                                                                                             |
| SYMBOL DOODOODOOO                                                                                                                                                                                                                                                | MODERATELY COMPRESSIBLE LL = 31 - 50                                                                                                                                              | COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD                                                                                                                    | CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED                                                                                              |
| % PASSING SII T-                                                                                                                                                                                                                                                 | HIGHLY COMPRESSIBLE LL > 50                                                                                                                                                       | SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED                                                                                                                | BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.                                                                                                                            |
| ■10 50 MX<br>■40 30 MX 50 MX 51 MN S01LS CLAY PEAT                                                                                                                                                                                                               | PERCENTAGE OF MATERIAL                                                                                                                                                            | WEATHERING                                                                                                                                                                                     | DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT                                                                                                      |
| *200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN                                                                                                                                                                                           | GRANULAR SILT - CLAY<br>ORGANIC MATERIAL <u>SOILS</u> OTHER MATERIAL                                                                                                              | FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING. ROCK RINGS UNDER                                                                                                       | ROCKS OR CUTS MASSIVE ROCK.                                                                                                                                                           |
| MATERIAL                                                                                                                                                                                                                                                         | TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%                                                                                                                               | HAMMER IF CRYSTALLINE.                                                                                                                                                                         | DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.                                                                                             |
| PASSING #40 SOILS WITH                                                                                                                                                                                                                                           | LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20%                                                                                                                              | VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,                                                                                             |                                                                                                                                                                                       |
| LL – – 40 MX 41 MN 50 L2 M H                                                                                                                                                                                     | MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%<br>HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE                                                                              | (V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY, ROCK RINGS UNDER HAMMER BLOWS IF                                                                                                   | DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE<br>LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.                                                  |
| MUDERALE OPCONIC                                                                                                                                                                                                                                                 |                                                                                                                                                                                   | OF A CRYSTALLINE NATURE.                                                                                                                                                                       | FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE                                                                                                    |
| GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF SOILS                                                                                                                                                                                                   |                                                                                                                                                                                   | SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO<br>(SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR              | SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.                                                                                                                               |
| USUAL TYPES STONE FRAUS. FINE STITY OF CLAYEY STITY CLAYEY MATTER                                                                                                                                                                                                | ✓ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING                                                                                                                             | CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.                                                                                                                   | FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.                                                                                                               |
| OF MAJOR GRAVEL, AND SAND GRAVEL AND SAND SOILS SOILS                                                                                                                                                                                                            | STATIC WATER LEVEL AFTER <u>24</u> HOURS                                                                                                                                          | MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN                                                                                                            | FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM                                                                                                     |
|                                                                                                                                                                                                                                                                  | $\nabla PW$ PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA                                                                                                                | (MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS                                                                                                       | PARENT MATERIAL.                                                                                                                                                                      |
| AS SUBGRADE EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE                                                                                                                                                                                                       |                                                                                                                                                                                   | DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.                                                                                              | FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.                                                                                               |
| PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30                                                                                                                                                                                            | - OM- Spring or seep                                                                                                                                                              |                                                                                                                                                                                                | FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE                                                                                                   |
| CONSISTENCY OR DENSENESS                                                                                                                                                                                                                                         | MISCELLANEOUS SYMBOLS                                                                                                                                                             | MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL<br>SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH | FIELD.                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                  |                                                                                                                                                                                   | (MOD.SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES CLUNK SOUND WHEN STRUCK.                                                                                                   | JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.                                                                                                            |
| PRIMARY SOIL TYPE COMPACINESS OF PENETRATION RESISTENCE COMPRESSIVE STRENGTH                                                                                                                                                                                     | ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION                                                                                                                                | <u>IF TESTED, WOULD YIELD SPT REFUSAL</u>                                                                                                                                                      | LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO                                                                                                 |
|                                                                                                                                                                                                                                                                  |                                                                                                                                                                                   | SEVERE ALL ROCK EXCEPT OUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT<br>(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED           | ITS LATERAL EXTENT.                                                                                                                                                                   |
| GENERALLY VERY LOOSE < 4<br>CONVERTING LOOSE 4 TO 10                                                                                                                                                                                                             | SOIL SYMBOL                                                                                                                                                                       | (SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED<br>TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.                                    | LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.                                                                                                               |
| GRANULAR MEDIUM DENSE 10 TO 30 N/A                                                                                                                                                                                                                               |                                                                                                                                                                                   | IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF                                                                                                                                                  | MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS                                                                                                 |
| (NON-COHESIVE) DENSE 30 10 50                                                                                                                                                                                                                                    | ARTIFICIAL FILL (AF) OTHER<br>THAN ROADWAY EMBANKMENT HAUGER BORING CONE PENETROMETER                                                                                             | VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE                                                                                                        | USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.                                                                                                                            |
| VERT DENSE > 50                                                                                                                                                                                                                                                  |                                                                                                                                                                                   | SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK<br>(V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR         | PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE<br>OF AN INTERVENING IMPERVIOUS STRATUM.                                                         |
| VERY SOFT         < 2         < 0.25           GENERALLY         SOFT         2 TO 4         0.25 TO 0.5                                                                                                                                                         | INFERRED SOIL BOUNDARY                                                                                                                                                            | VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF                                                                                                         |                                                                                                                                                                                       |
| SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0                                                                                                                                                                                                                         |                                                                                                                                                                                   | COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND                                                                                                   | RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.                                                                                                                |
| MATERIAL STIFF 8 TO 15 1 TO 2                                                                                                                                                                                                                                    |                                                                                                                                                                                   | SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS                                                                                                            | ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE           |
| (COHESIVE)         VERY STIFF         15 TO 30         2 TO 4           HARD         > 30         > 4                                                                                                                                                            | TTTTT ALLUVIAL SOIL BOUNDARY A FIELDMETER OF SPT N-VALUE                                                                                                                          | ALSO AN EXAMPLE.                                                                                                                                                                               | RUN AND EXPRESSED AS A PERCENTAGE.                                                                                                                                                    |
| TEXTURE OR GRAIN SIZE                                                                                                                                                                                                                                            | RECOMMENDATION SYMBOLS                                                                                                                                                            | ROCK HARDNESS                                                                                                                                                                                  | SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT                                                                                             |
|                                                                                                                                                                                                                                                                  |                                                                                                                                                                                   | VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES                                                                                                      | ROCK.                                                                                                                                                                                 |
| U.S. STD. SIEVE SIZE 4 10 40 60 200 270                                                                                                                                                                                                                          | UNDERCUT UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - UNSUITABLE WASTE ACCEPTABLE, BUT NOT TO BE                                                                           | SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.                                                                                                                                                    | SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND                                                                                                       |
| OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053                                                                                                                                                                                                                     | USED IN THE TOP 3 FEET OF                                                                                                                                                         | HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED<br>TO DETACH HAND SPECIMEN.                                                                            | RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO<br>THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.                                             |
| BOULDER COBBLE GRAVEL COARSE FINE SILT CLAY                                                                                                                                                                                                                      | UNDERCUT ACCEPTABLE DEGRADABLE ROCK EMBANKMENT OR BACKFILL                                                                                                                        | MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE                                                                                                     | SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT                                                                                                  |
| (BLDR.) (COB.) (GR.) (GR.) (CSE. SD.) (F SD.) (SL.) (CL.)                                                                                                                                                                                                        | ABBREVIATIONS                                                                                                                                                                     | HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED                                                                                                              | OR SLIP PLANE.                                                                                                                                                                        |
| GRAIN MM 305 75 2.0 0.25 0.05 0.005                                                                                                                                                                                                                              | AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST                                                                                                                               | BY MODERATE BLOWS.                                                                                                                                                                             | STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF                                                                                              |
| SIZE IN. 12 3                                                                                                                                                                                                                                                    | BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED                                                                                                                               | MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.                                                                                                      | A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL                                                                                              |
| SOIL MOISTURE - CORRELATION OF TERMS                                                                                                                                                                                                                             | CLCLAY MODMODERATELY $\gamma$ -UNIT WEIGHT<br>CPT - CONE PENETRATION TEST NP - NON PLASTIC $\chi$ -DRY UNIT WEIGHT                                                                | HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.                                                                        | WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL<br>TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.                                                        |
| SOIL MOISTURE SCALE FIELD MOISTURE CHIDE FOR FIELD MOISTURE DESCRIPTION                                                                                                                                                                                          | CSE COARSE ORG ORGANIC                                                                                                                                                            | SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS                                                                                                           | STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY                                                                                                   |
| (ATTERBERG LIMITS) DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION                                                                                                                                                                                              | DMT - DILATOMETER TEST PMT - PRESSOREMETER TEST <u>SHOULE HODREVIA TONS</u>                                                                                                       | FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN                                                                                                            | TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.                                                                                                                                |
| - SATURATED - USUALLY LIQUID; VERY WET, USUALLY                                                                                                                                                                                                                  | DPT - DYNAMIC PENETRATION TEST         SAP SAPROLITIC         S - BULK           e - VOID RATIO         SD SAND, SANDY         SS - SPLIT SPOON                                   | PIECES CAN BE BROKEN BY FINGER PRESSURE.                                                                                                                                                       | <u>STRATA ROCK QUALITY DESIGNATION (SROD)</u> - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL<br>LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY |
| (SAT.) FROM BELOW THE GROUND WATER TABLE                                                                                                                                                                                                                         | F - FINE SL SILT, SILTY ST - SHELBY TUBE                                                                                                                                          | VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH                                                                                                      | THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.                                                                                                                             |
|                                                                                                                                                                                                                                                                  | FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK                                                                                                                                         | SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL.                                                                                            | TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.                                                                                                                      |
| BANGE - WET - (W) SEMISULID; REQUIRES DRYING TO                                                                                                                                                                                                                  | FRAC FRACTURED, FRACTURES         TCR - TRICONE REFUSAL         RT - RECOMPACTED TRIAXIAL           FRAGS FRAGMENTS         w - MOISTURE CONTENT         CBR - CALIFORNIA BEARING | FRACTURE SPACING BEDDING                                                                                                                                                                       |                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                  | HI HIGHLY V - VERY RATIO                                                                                                                                                          | TERM         SPACING         TERM         THICKNESS                                                                                                                                            | BENCH MARK: N/A ELEVATION DERIVED FROM DTM                                                                                                                                            |
|                                                                                                                                                                                                                                                                  | EQUIPMENT USED ON SUBJECT PROJECT                                                                                                                                                 | VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET                                                                                                                                         | ELEVATION: FEET                                                                                                                                                                       |
| OM _ OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE                                                                                                                                                                                           | DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:                                                                                                                                        | WIDE         3 TO 10 FEET         THICKLY BEDDED         1.5 - 4 FEET           MODERATELY CLOSE         1 TO 3 FEET         THINLY BEDDED         0.16 - 1.5 FEET                             |                                                                                                                                                                                       |
| SL SHRINKAGE LIMIT                                                                                                                                                                                                                                               | X CME-45C CLAY BITS AUTOMATIC MANUAL                                                                                                                                              | CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET                                                                                                                                       | NOTES:                                                                                                                                                                                |
| - DRY - (D) REQUIRES ADDITIONAL WATER TO<br>ATTAIN OPTIMUM MOISTURE                                                                                                                                                                                              |                                                                                                                                                                                   | VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET                                                                                                                             |                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                  | CME-55                                                                                                                                                                            | THINLY LAMINATED < 0.008 FEET                                                                                                                                                                  |                                                                                                                                                                                       |
| PLASTICITY                                                                                                                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                                       |
| PLASTICITY INDEX (PI) DRY STRENGTH                                                                                                                                                                                                                               | CME-550 HARD FACED FINGER BITS                                                                                                                                                    | FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.                                                                                              |                                                                                                                                                                                       |
| NON PLASTIC 0-5 VERY LOW                                                                                                                                                                                                                                         | TUNGCARBIDE INSERTS                                                                                                                                                               | FRIABLE RUBBING WITH FINGER FREES NUMEROUS GRAINS:<br>GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.                                                                                              |                                                                                                                                                                                       |
| SLIGHTLY PLASTIC 6-15 SLIGHT<br>MODERATELY PLASTIC 16-25 MEDIUM                                                                                                                                                                                                  |                                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                                                                       |
| HIGHLY PLASTIC 26 OR MORE HIGH                                                                                                                                                                                                                                   |                                                                                                                                                                                   | MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE;<br>BREAKS EASILY WHEN HIT WITH HAMMER.                                                                              |                                                                                                                                                                                       |
| COLOR                                                                                                                                                                                                                                                            |                                                                                                                                                                                   | CRAINS ARE DISCIPLET TO SERARATE WITH STEEL PROPE.                                                                                                                                             |                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                  |                                                                                                                                                                                   | INDURATED DIFFICULT TO BREAK WITH HAMMER.                                                                                                                                                      |                                                                                                                                                                                       |
| DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).                                                                                                                                                                        | CORE BIT                                                                                                                                                                          | SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE:                                                                                                                                                   |                                                                                                                                                                                       |
| MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.                                                                                                                                                                                   |                                                                                                                                                                                   | EXTREMELY INDURATED SAMPLE BREAKS ACROSS GRAINS.                                                                                                                                               | DATE: 8-15-14                                                                                                                                                                         |

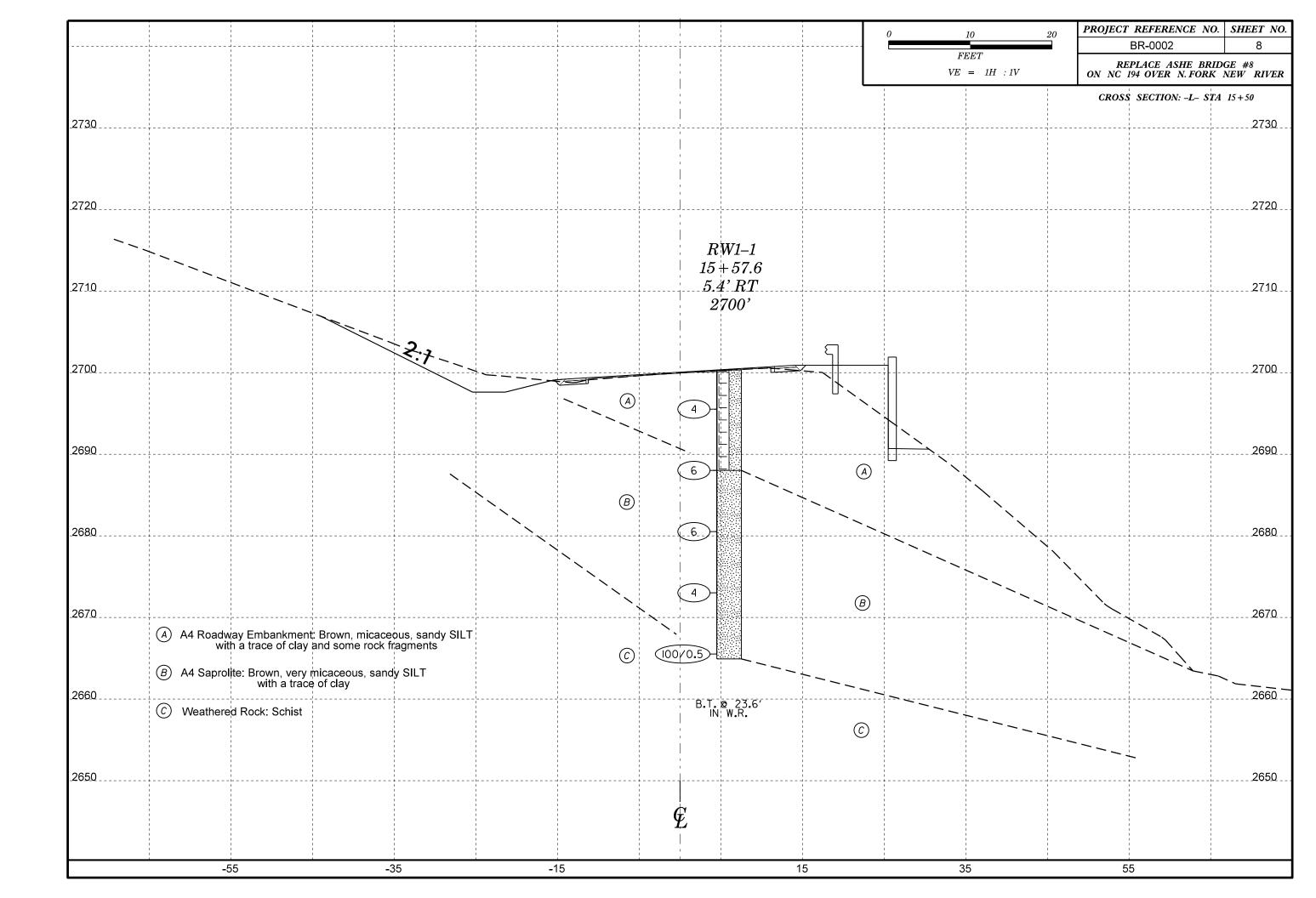
## PROJECT REFERENCE NO.

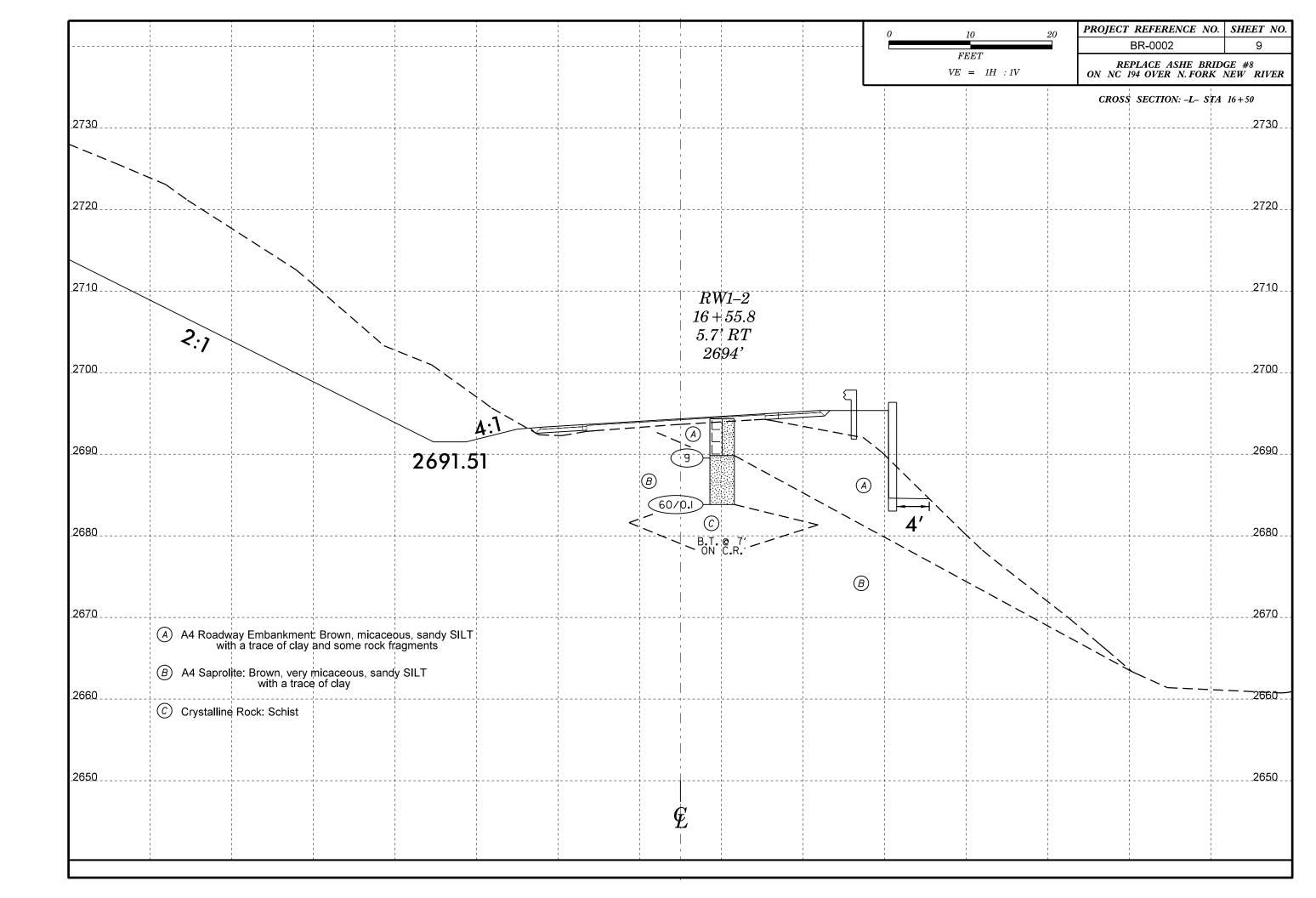
. I

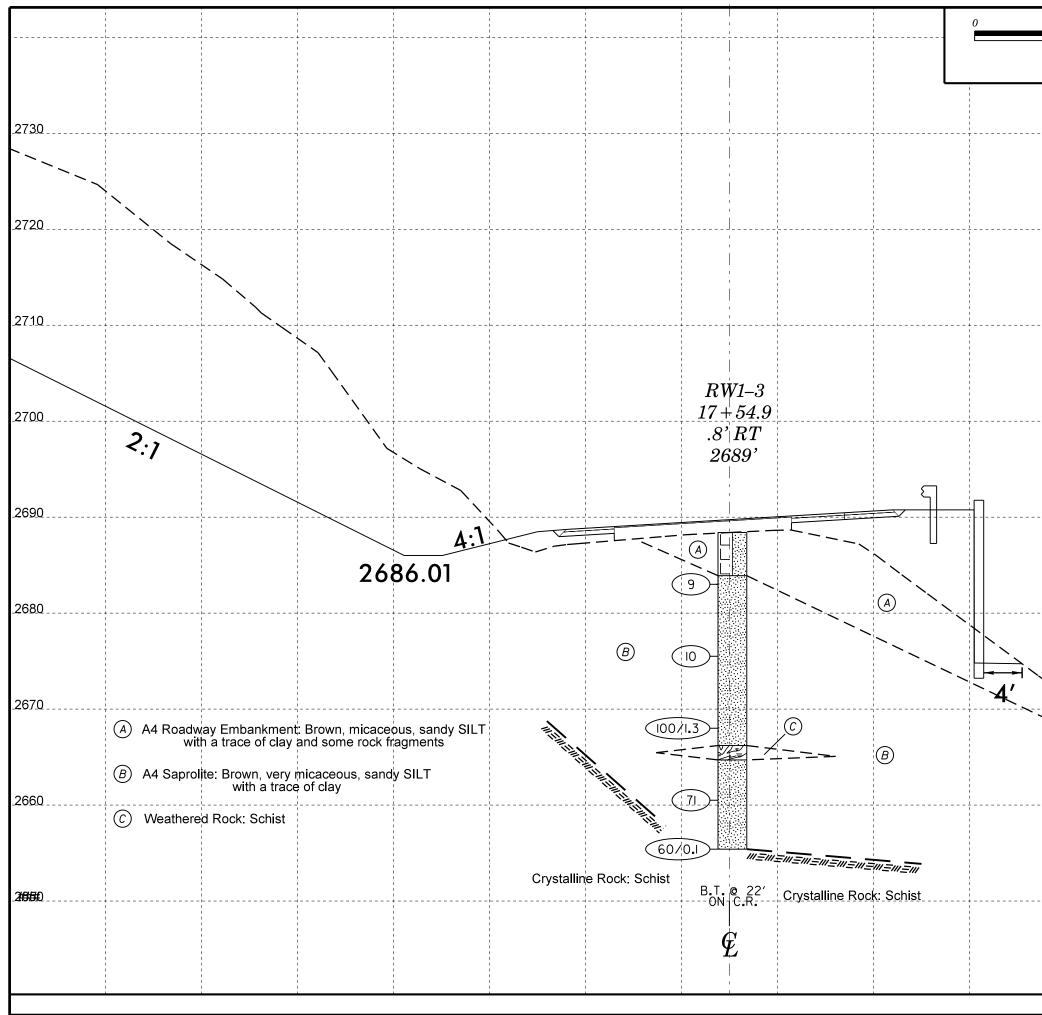


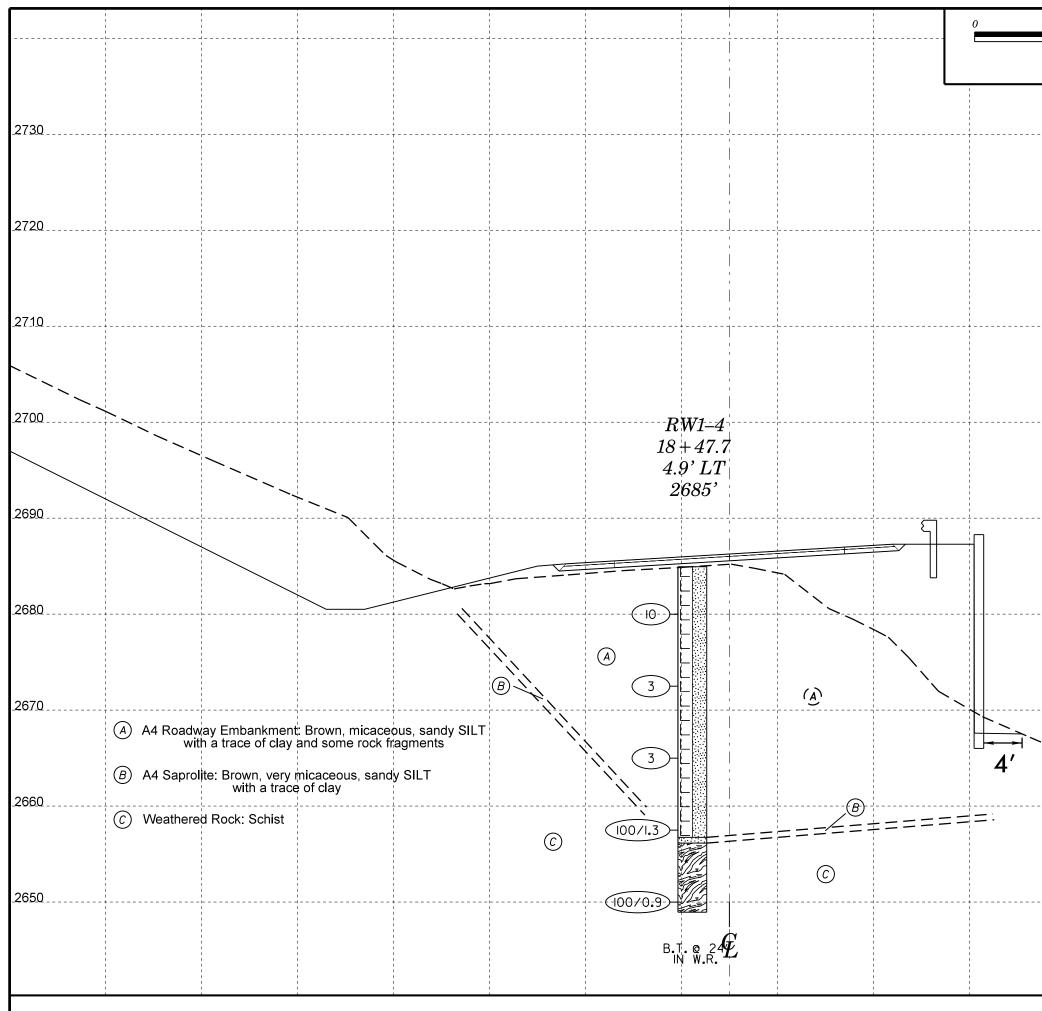




| PEET         BR-0002         5 $VE = 1H : IV$ REPLACE ASHE BRIDGE ##<br>ON NC 194 OVER N.FOK NEW RIVER         RETAINING WALL<br>L; STA 15+50 - 16+80         2720.           2710.         2710.         2710.         2700.           2690.         2690.         2690.         2690.           2710.         2680.         2690.         2690.           2690. $\Box$ 2680. $\Box$ 2680.           2690. $\Box$ $\Box$ 2680. $\Box$ 2680. $\Box$ $\Box$ 2680. $\Box$ 2680. $\Box$ $\Box$ 2680. $\Box$ 2680. $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ 2680. $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ 2680. $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 10                  | 20               | PROJECT        | REFERENCE                      | NO.                | SHEET NO.          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------|------------------|----------------|--------------------------------|--------------------|--------------------|
| VE     IN     REPLACE ASHE BRIDGE #8<br>ON NC 194 OVER N.FORK NEW RIVER       L-STA IS+50 - 16#80     2720       2710     2710       2700     2700       2700     2690       Image: Comparison of the state                                                                                                                 |   |                     |                  |                | BR-0002                        |                    | 5                  |
| RETAINING WALL       2720         -L+ SIA 15+50 - 16+80       2720         2710       2710         2700       2700         2690       2690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                     |                  | RE.<br>ON NC I | PLACE ASHE .<br>194 OVER N. FO | BRID<br>DRK        | GE #8<br>NEW RIVER |
| 2720.<br>2710.<br>2710.<br>2700.<br>2690.<br>MATCH<br>1.2680.<br>SHEET<br>2680.<br>CONSTRUCT<br>2670.<br>2670.<br>2670.<br>2660.<br>2660.<br>2660.<br>2660.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | <br> <br>           | 1                | 1              | RETAINING WA                   |                    | 1                  |
| 2710.<br>2700.<br>2690.<br>4<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | <br> <br> <br>      |                  | -L-            | - 31A 13+30 -                  | 10 <del>+</del> 80 |                    |
| 2700<br>2690<br>MATCH<br>70<br>2680<br>90<br>70<br>2680<br>90<br>70<br>2680<br>91<br>97<br>2670<br>2660<br>2660<br>2650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |                     | <br>'            |                |                                |                    | £L <b>29</b>       |
| 2700<br>2690<br>MATCH<br>70<br>2680<br>90<br>70<br>2680<br>90<br>70<br>2680<br>91<br>97<br>2670<br>2660<br>2660<br>2650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | ,<br>1<br>1         |                  | 1              |                                |                    |                    |
| 2700<br>2690<br>MATCH<br>70<br>2680<br>90<br>70<br>2680<br>90<br>70<br>2680<br>91<br>97<br>2670<br>2660<br>2660<br>2650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 1<br>1<br>1         | <br> <br> <br>   | 1              |                                |                    |                    |
| 2700<br>2690<br>MATCH<br>70<br>2680<br>90<br>70<br>2680<br>90<br>70<br>2680<br>91<br>97<br>2670<br>2660<br>2660<br>2650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 1<br> <br> <br>     | <br> <br> <br>   |                |                                |                    |                    |
| 2690.<br>MATCH<br>1.2680.<br>9<br>1.2680.<br>9<br>1.2680.<br>0<br>2670.<br>2660.<br>2650.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | <br> <br>           | <br>             | <br>           | <br>                           |                    |                    |
| 2690.<br>MATCH<br>1.2680.<br>9<br>1.2680.<br>9<br>1.2680.<br>0<br>2670.<br>2660.<br>2650.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | <br> <br>           | 1<br>1<br>1      | 1              |                                |                    |                    |
| 2690.<br>MATCH<br>1.2680.<br>9<br>1.2680.<br>9<br>1.2680.<br>0<br>2670.<br>2660.<br>2650.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | <br> <br>           |                  |                |                                |                    |                    |
| 2690.<br>MATCH<br>1.2680.<br>9<br>1.2680.<br>9<br>1.2680.<br>0<br>2670.<br>2660.<br>2650.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | <br> <br>           |                  |                |                                |                    |                    |
| A TCH<br>T 2680.<br>C HEFT<br>T 2670.<br>C HEFTT<br>T 2670.<br>C HEFTT<br>T 2670.<br>C HEFTTT<br>T 2670.<br>C HEFTTTT<br>T 2670.<br>C HEFTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT |   | <br> <br>           | ;<br> <br>       |                |                                |                    |                    |
| A TCH<br>T 2680.<br>C HEFT<br>T 2670.<br>C HEFTT<br>T 2670.<br>C HEFTT<br>T 2670.<br>C HEFTTT<br>T 2670.<br>C HEFTTTT<br>T 2670.<br>C HEFTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT |   |                     | <br> <br> <br>   |                |                                |                    |                    |
| A TCH<br>T 2680.<br>C HEFT<br>T 2670.<br>C HEFTT<br>T 2670.<br>C HEFTT<br>T 2670.<br>C HEFTTT<br>T 2670.<br>C HEFTTTT<br>T 2670.<br>C HEFTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT |   |                     |                  |                |                                |                    |                    |
| A TCH<br>T 2680.<br>C HEFT<br>T 2670.<br>C HEFTT<br>T 2670.<br>C HEFTT<br>T 2670.<br>C HEFTTT<br>T 2670.<br>C HEFTTTT<br>T 2670.<br>C HEFTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT |   |                     | <br> <br>        |                |                                |                    |                    |
| A TCH<br>T 2680.<br>C HEFT<br>T 2670.<br>C HEFTT<br>T 2670.<br>C HEFTT<br>T 2670.<br>C HEFTTT<br>T 2670.<br>C HEFTTTT<br>T 2670.<br>C HEFTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT |   | ,<br> <br> <br>     | ,<br>,<br>,<br>, | <br> <br> <br> |                                |                    | 2690               |
| 2650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                     |                  |                |                                |                    |                    |
| 2650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 1<br>1<br>1<br>1    |                  |                |                                |                    | $\land \land$      |
| 2650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | <br> <br> <br>      | 1<br>1<br>1      |                |                                |                    |                    |
| С УНЕ<br>С УНЕ<br>С О<br>С О<br>С О<br>С О<br>С О<br>С О<br>С О<br>С О                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | <br> <br>           | 1<br>1<br>1      | 1              |                                |                    |                    |
| (A)<br>(A)<br>(A)<br>2660<br>2650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 1<br>1<br>1<br>1    |                  |                | L                              |                    | ת <b>אט⊻_</b><br>⊃ |
| 2650.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 1<br>1<br>1         |                  |                |                                |                    |                    |
| (A)<br>2650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                     |                  |                |                                | Ī                  | τī                 |
| 2660.<br>2650.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                     | +                |                |                                | -                  |                    |
| 2660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                     |                  |                | /                              |                    | 2670               |
| 2660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _ | 1<br>1<br>1         | <br> <br>        |                |                                |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                     | ÷ — _            |                | (A)                            |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                     |                  |                |                                |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | <br> <br>           |                  |                |                                |                    | 2660               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                     |                  |                |                                |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 1<br>1<br>1         |                  |                |                                |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                     |                  |                |                                |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | <br> <br>           |                  |                |                                |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | <br> <br>           |                  |                |                                |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                     | <br> <br> <br>   |                |                                |                    |                    |
| 2640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                     | -<br>            | 1              |                                |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                     |                  | 1              |                                |                    | 2640               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | <br> <br> <br> <br> |                  | +              |                                | <br> <br> <br>     |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 1<br>1<br>1<br>1    |                  |                |                                |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | <br> <br> <br>      | 1<br>1<br>1      |                |                                |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | <br> <br>           | 1<br>1<br>1      |                |                                |                    |                    |
| 18+00 18+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 1                   | 1                | 18+            | -00 1                          | 8+10               | )                  |

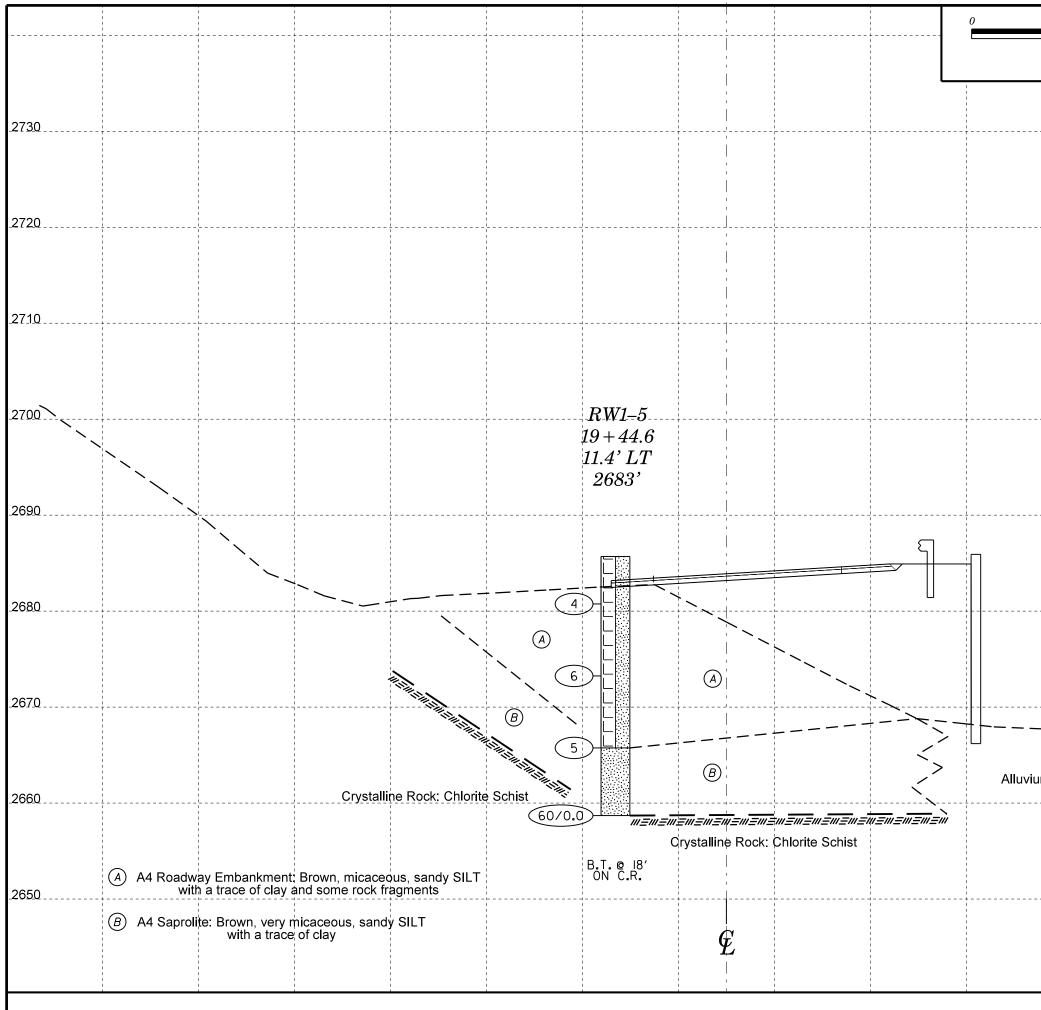

|         |                  |                       |                                                    |                                                                                             | '<br> <br> <br>↓                |            | ,<br>,<br>,<br>,<br>,<br>,           |                | 0                       |   |
|---------|------------------|-----------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------|------------|--------------------------------------|----------------|-------------------------|---|
|         |                  |                       |                                                    | 1<br>1<br>1<br>1                                                                            |                                 |            |                                      |                |                         |   |
|         |                  |                       |                                                    | 1<br>1<br>1<br>1<br>1                                                                       |                                 |            |                                      | L              |                         |   |
| 2720    |                  |                       |                                                    | <br> <br>                                                                                   | <br> <br>                       |            | <br> <br>                            |                | , <del> </del> <u> </u> |   |
|         |                  |                       |                                                    | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | •<br>1<br>1<br>1<br>1           |            | ,<br>1<br>1<br>1<br>1                |                |                         |   |
|         |                  |                       |                                                    | 1<br>1<br>1<br>1                                                                            |                                 |            |                                      |                |                         |   |
| 2710    |                  |                       |                                                    | <br> <br> <br> <br>                                                                         | <br> <br> <br> <br> <br>        |            | <br> <br> <br> <br> <br>             |                | ·                       | · |
|         |                  |                       |                                                    | -<br>-<br>-<br>-<br>-<br>-                                                                  | •<br>1<br>1<br>1<br>1           |            | •<br> <br> <br> <br> <br>            |                |                         |   |
|         |                  |                       |                                                    | 1<br>1<br>1<br>1                                                                            |                                 |            |                                      |                |                         |   |
| 2700    |                  |                       |                                                    | <br> <br>                                                                                   | <br> <br> <br> <br> <br>        |            | <br> <br>                            | <br>           | · +                     |   |
|         |                  |                       | <i>RW1–4</i>                                       |                                                                                             |                                 |            |                                      |                |                         |   |
|         |                  |                       | -L- ST<br>18+47.<br>4.9' LT                        | 7                                                                                           | <br> <br> <br> <br> <br>        |            | <br> <br> <br> <br> <br>             |                |                         |   |
| 2690    | M A T            |                       | 2685'                                              | ,<br>,<br>,<br>,<br>,<br>,<br>,                                                             | ,<br>,<br>, .<br>,              |            | ,<br>,                               |                |                         |   |
|         | ТСН              |                       |                                                    | <br> <br> <br> <br>                                                                         | 1<br>1<br>1<br>1<br>1           |            | <br>                                 |                |                         |   |
| 2680    |                  |                       |                                                    | 1<br>1<br>1<br>1                                                                            | 1<br>1<br>1<br>1<br>1           |            |                                      |                |                         |   |
|         |                  |                       |                                                    | I<br>I<br>I<br>I<br>I                                                                       | /<br>/<br>/<br>/<br>/           |            | I                                    |                |                         |   |
|         | SHEE             |                       | 3 L<br>L<br>L                                      |                                                                                             |                                 |            |                                      |                |                         |   |
| 2670    |                  |                       | 3-L                                                | 1<br>1<br>1<br>1<br>1                                                                       | 1<br>1<br>1<br>1<br>1           |            | 1<br>1<br>1<br>1<br>1                |                |                         |   |
| . 2010  |                  |                       |                                                    |                                                                                             |                                 |            | <br>                                 | , <sup></sup>  | <u> </u>                |   |
|         |                  | A                     |                                                    |                                                                                             |                                 |            | ーー                                   | )              |                         |   |
| 2660    |                  |                       | 00/0.9                                             |                                                                                             | -<br>-<br>-<br>-<br>-<br>-<br>- |            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                |                         |   |
|         |                  |                       | B.T. © 24<br>IN W.R.                               | <br> <br> /<br>                                                                             | 1<br>1<br>1<br>1<br>1<br>1      | A          | 1<br>1<br>1<br>1<br>1                |                |                         |   |
|         |                  |                       |                                                    | 1<br>1<br>1<br>1<br>1                                                                       |                                 |            |                                      |                |                         | > |
| 2650    |                  | =====                 | =========                                          |                                                                                             |                                 | ©<br>===== |                                      |                |                         |   |
|         |                  |                       | В                                                  | 1<br>1<br>1<br>1<br>1                                                                       |                                 |            |                                      |                |                         |   |
|         |                  |                       |                                                    |                                                                                             | •<br> <br> <br> <br> <br>       |            | Weathered                            | d Rock: Schis  | st                      | 7 |
| 2640    | A4 Roadw<br>with | h a trace of clay and | own, micaceous, sandy SIL<br>I some rock fragments | ₹                                                                                           | <br> <br> <br> <br>             |            | <br> <br> <br>                       | <br> <br> <br> | · +                     |   |
|         | B Weathered      | d Rock: Schist        |                                                    |                                                                                             |                                 |            |                                      |                |                         |   |
|         | C A4 Saprol      | ite: Brown, very mic  | aceous, sandy SILT<br>clay                         | <br> <br> <br> <br> <br>                                                                    |                                 |            |                                      |                |                         |   |
| I CT 4  | A 18+10          | with a trace of       |                                                    | +50                                                                                         | 1                               |            |                                      |                | 19+00                   |   |
| _L- 31A |                  |                       | 18                                                 | · JU                                                                                        |                                 |            |                                      |                | ເອ≁ບ∪                   |   |







| 10                         | 20                           | PROJECT                               | REFERENCE NO                       | SHEET NO.           |
|----------------------------|------------------------------|---------------------------------------|------------------------------------|---------------------|
| 10<br>EEE#                 |                              |                                       | BR-0002                            | 7                   |
| FEET $VE = 1H$             | : 1V                         | RE<br>ON NC                           | PLACE ASHE BRI<br>194 OVER N. FORK | DGE #8<br>NEW RIVER |
|                            |                              |                                       | RETAINING WALL<br>STA 15+50 - 16+  | 80                  |
|                            | <br> <br> <br>               | -L-                                   |                                    |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    |                     |
| <br>                       |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       | L                                  |                     |
|                            |                              |                                       |                                    |                     |
| <br> <br> <br>             |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       | ,<br>,<br>,                        | 2660                |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       | .  <br>     <br>     <br>          |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    | 2650                |
|                            |                              |                                       |                                    |                     |
| kment: Bro<br>f clav and s | wn, micaceo<br>some rock fra | us, sandy SIL <sup>-</sup><br>agments | Ť                                  |                     |
|                            |                              |                                       |                                    | _                   |
| very micad<br>a trace of c | ceous, sandy<br>lay          | SILI                                  | <br>                               | 2640                |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       |                                    |                     |
|                            |                              |                                       | .  <br>     <br>   <br>     <br>   |                     |
| 1                          |                              |                                       |                                    |                     |








|    | 10                    | 20 | PROJECT        | REFERENCE                    | N <b>O</b> .                | SHEET NO.          |
|----|-----------------------|----|----------------|------------------------------|-----------------------------|--------------------|
|    |                       | 20 |                | BR-0002                      |                             | 10                 |
|    | EET<br>= 1H : 1V      |    | RE.<br>ON NC 1 | PLACE ASHE E<br>94 OVER N.FO | RID<br>RK                   | GE #8<br>NEW RIVER |
|    |                       |    | CROSS          | SECTION: -L-                 | STA                         | 17 + 50            |
|    | <br>                  |    |                |                              |                             | 27.30              |
|    |                       |    |                |                              |                             |                    |
|    |                       |    |                |                              |                             |                    |
|    |                       |    |                |                              |                             | 2720               |
|    |                       |    |                |                              |                             |                    |
|    |                       |    |                |                              |                             | 2710               |
|    |                       |    | +              |                              | -  <br> <br> <br> <br> <br> |                    |
|    | 1<br>1<br>1<br>1<br>1 |    |                |                              | <br> <br> <br>              |                    |
|    |                       |    |                |                              |                             | 27_00              |
|    |                       |    |                |                              |                             |                    |
|    |                       |    |                |                              |                             |                    |
|    | <br>                  |    |                |                              |                             |                    |
|    | 1<br>1<br>1<br>1<br>1 |    |                |                              |                             |                    |
|    |                       |    |                |                              |                             | 2000               |
|    |                       |    |                |                              | · -                         | 2680               |
|    |                       |    |                |                              |                             |                    |
| `` |                       |    |                |                              |                             | 2670               |
|    |                       |    |                |                              |                             |                    |
|    |                       |    |                |                              |                             |                    |
|    | <br> <br> <br> <br>   |    | <br>           |                              | <br> -<br> -<br> -<br> <br> | 2660               |
|    |                       |    |                |                              |                             |                    |
|    |                       |    |                |                              |                             | 0050               |
|    | ,<br>                 |    |                |                              | · -  <br> <br> <br> <br>    | 2650               |
|    | <br> <br> <br> <br>   |    |                |                              | <br> <br> <br>              |                    |
|    | <br> <br> <br>        |    |                |                              |                             |                    |
|    |                       |    |                |                              |                             |                    |



|       | 10                                                          | 20            | PROJECT        | REFERENCE NO.                      | SHEET NO.           |
|-------|-------------------------------------------------------------|---------------|----------------|------------------------------------|---------------------|
|       |                                                             |               |                | BR-0002                            | 11                  |
|       | EET<br>= 1H : 1V                                            |               | RE.<br>ON NC 1 | PLACE ASHE BRIL<br>94 OVER N. FORK | DGE #8<br>NEW RIVER |
|       | <br> <br> <br> <br>                                         |               | CROSS          | SECTION: -L- STA                   | 18 + 50             |
|       | ;<br>;<br>;                                                 |               |                |                                    | 27 <u>3</u> 0       |
|       |                                                             |               |                |                                    | 2720                |
|       | ,<br>1<br>1<br>1<br>1<br>1<br>1<br>1                        |               |                |                                    | 27 <u>1</u> 0       |
|       |                                                             |               |                |                                    |                     |
|       |                                                             |               |                |                                    |                     |
|       | ;<br>;<br>                                                  |               |                |                                    | 2690                |
|       |                                                             |               |                |                                    | 2680                |
|       |                                                             |               |                |                                    | 2670                |
| · ~ . |                                                             | $\overline{}$ |                | /                                  | ———~                |
|       | <br> | ·             | /              |                                    |                     |
|       | <br> <br> <br> <br> <br> <br> <br> <br> <br>                |               |                |                                    | 2650                |
|       |                                                             |               |                |                                    |                     |
|       |                                                             |               |                |                                    |                     |



|    | 10                   | 20  | PROJECT      | REFERENCE N                      | O. SHEET NO.           |
|----|----------------------|-----|--------------|----------------------------------|------------------------|
|    | 10                   | 20  |              | BR-0002                          | 12                     |
|    | EET<br>= 1H : 1V     |     | RE<br>ON NC  | PLACE ASHE BR<br>194 OVER N. FOR | NDGE #8<br>K NEW RIVER |
|    | -<br> <br> <br> <br> |     | CROSS        | SECTION: -L- S                   | TA 19+50               |
|    | <br> <br>            |     |              | <br> <br> <br>                   |                        |
|    | <br> <br> <br>       |     |              | <br> <br> <br>                   |                        |
|    | <br> <br> <br>       |     |              | <br> <br> <br>                   |                        |
|    | -<br> <br> <br> <br> |     |              |                                  | 2720                   |
|    | '<br> <br> <br>      |     |              |                                  | £ ( <del>6</del>       |
|    |                      |     |              | -<br>                            |                        |
|    |                      |     |              | 1<br>1<br>1<br>1<br>1            |                        |
|    | ,<br>                |     |              |                                  |                        |
|    | -<br> <br> <br> <br> |     |              |                                  |                        |
|    |                      |     |              |                                  |                        |
|    |                      |     |              |                                  |                        |
|    | -<br> <br> <br> <br> |     |              |                                  |                        |
|    | -<br> <br> <br> <br> |     |              |                                  |                        |
|    | -<br> <br> <br> <br> |     |              |                                  | 2690                   |
|    | <br> <br> <br> <br>  |     |              | <br> <br> <br> <br>              | 2000                   |
|    | 1<br>1<br>1<br>1     |     |              | <br> <br> <br>                   |                        |
|    |                      |     |              |                                  |                        |
|    | <br> <br>            |     |              | <br> <br> <br> <br> <br>         |                        |
|    | 1<br>1<br>1<br>1     |     |              |                                  |                        |
|    | 1<br>1<br>1<br>1     |     |              | 1<br> <br> <br> <br>             |                        |
|    |                      |     |              | <br> <br> <br> <br>              |                        |
|    |                      | -   |              |                                  |                        |
|    |                      | ·\\ | <b>`</b>     |                                  |                        |
| um |                      |     | $\mathbf{x}$ |                                  | 2 <u>66</u> 0          |
|    | !<br>!<br>!<br>!     |     |              | >                                |                        |
|    |                      |     |              |                                  |                        |
|    | <br> <br> <br> <br>  |     |              | <br> <br> <br>                   |                        |
|    | <br> <br>            |     |              | <br> <br><del> </del>            |                        |
|    | 1<br>1<br>1<br>1     |     |              | 1<br>1<br>1<br>1                 |                        |
|    | <br> <br> <br>       |     |              |                                  |                        |
|    | <br> <br> <br>       |     |              | <br> <br> <br>                   |                        |
|    |                      |     |              |                                  |                        |

| 14/20                                                        | 0700         | 244                |        |                |   |              |          |          |          |           |         |          |       |     |          |             |                                                   |                            |       | 14/200       | 07000                 | 4.4           |        |        |       | <b>D</b> DD 1 | 0000 | I                  |                | v     |
|--------------------------------------------------------------|--------------|--------------------|--------|----------------|---|--------------|----------|----------|----------|-----------|---------|----------|-------|-----|----------|-------------|---------------------------------------------------|----------------------------|-------|--------------|-----------------------|---------------|--------|--------|-------|---------------|------|--------------------|----------------|-------|
|                                                              | 67002        |                    | POF    |                |   |              |          |          |          |           |         |          |       |     |          | GEC         | DLOGIST Johnson, C. D.                            | GROUND WTR                 | (#)   |              | 67002                 |               |        |        |       | P BR-C        |      | INT NC1            |                |       |
|                                                              | ING NO.      |                    |        |                |   |              |          |          | NCTS     | 94 FUR    |         | SET (    |       |     |          |             | SNMENT L                                          | -                          | 6.0   |              | ING NO.               |               |        | ang ir |       |               |      |                    | 94 FUR         |       |
|                                                              | LAR EL       |                    |        | <del>f</del> + |   |              |          | H 23.    | 7 #      |           |         |          | 997,4 | 40  |          |             | TING 1,260,993                                    | -                          | AD    |              | LAR ELI               |               |        | F4     |       |               |      |                    |                |       |
|                                                              |              |                    |        |                |   |              |          |          |          |           | NOR     |          |       |     |          |             | 1                                                 | _                          |       |              |                       |               |        |        |       |               |      |                    |                |       |
|                                                              | RIG/HAN      |                    |        | E AFC          |   |              |          |          |          |           |         |          |       |     |          | H.S. Auger  |                                                   | IER TYPE Automation        | C     |              | RIG/HAN               |               |        | E AFC  |       |               |      |                    |                | c     |
|                                                              |              |                    |        | ow co          |   |              | DATE     | BL OV    |          | R FOOT    |         | IP. DA   | SAMP  |     |          |             | FACE WATER DEPTH N                                | /A                         |       | -            |                       |               | 1      | W CO   |       |               |      | )5/29/19<br>LOWS P |                |       |
| ELEV<br>(ft)                                                 | ELEV<br>(ft) | DEPTH<br>(ft)      | 0.5ft  | 0.5ft          |   | 0            | 2        | 25       | 50       |           | 75      | 100      | NO.   | 1.7 | 0<br>I G |             | SOIL AND ROCK DES                                 | CRIPTION<br>DEPT           |       | ELEV<br>(ft) | DRIVE<br>ELEV<br>(ft) | DEPT⊦<br>(ft) | ·      | -      | 0.5ft | 0             | 25   | 50                 |                | 75    |
|                                                              | ()           |                    |        |                |   |              |          |          | I        |           |         |          | -     |     |          |             | (it)                                              | DEFI                       | п (ц) |              | (14)                  |               |        |        |       |               | I    |                    |                |       |
| 2705                                                         |              |                    |        |                |   |              |          |          |          |           |         |          |       |     |          |             |                                                   |                            |       | 2695         |                       |               |        |        |       |               |      |                    |                |       |
| 2705                                                         |              | ‡                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       | 2095         | -                     | -             |        |        |       |               |      |                    |                |       |
|                                                              |              | ‡                  |        |                |   |              |          |          |          |           |         |          |       |     |          | È.          |                                                   |                            |       |              |                       | -             |        |        |       |               |      | · · · ·            | · · ·<br>· · · | •   • |
| 2700                                                         | -            | <u>†</u>           |        |                |   | ╎┤┲╼╸        |          |          |          |           |         |          |       |     |          | 2,700.:     | 2 GROUND SURF<br>ROADWAY EMBAN                    |                            | 0.0   | 2690         | 2,690.8               | - 3.2         | 2      | 3      | 6     | · · ·         |      |                    |                | ·     |
|                                                              | 0.007.0      | ‡                  |        |                |   | ::           | · · ·    | <br>     |          |           | .       |          |       |     | Ľ        | ¢.          | Brown, micaceous sandy S<br>of clay and some rock | II T with a trace          |       |              | 2.687.0               | -             |        |        |       |               |      | · · · ·            | · · ·<br>· · · |       |
| 2695                                                         | 2,697.0      | <u> </u>           | 3      | 2              | 2 | .            |          | · · ·    |          | · · · · · |         |          |       |     | Ľ        | F           | of clay and some fock                             | liagments                  |       |              | 2.687.0               | - 7.0         | 60/0.1 |        |       |               |      |                    |                | -     |
| 2095                                                         | -            | ‡                  |        |                |   |              |          |          |          |           |         |          |       |     | Ľ        | F           |                                                   |                            |       |              |                       | -             |        |        |       |               |      |                    |                |       |
|                                                              | 2,692.0      | 8.2                |        | 2              | 4 | <u>i</u> :   | · · ·    |          |          |           |         |          |       |     |          | 2,692.      |                                                   | <u> </u>                   | 8.2   |              |                       | _             |        |        |       |               |      |                    |                |       |
| 2690                                                         |              | ‡                  |        |                | 4 |              | · · ·    |          |          |           |         |          |       |     |          | L           | SAPROLITE<br>Brown, very micaceous SIL            |                            |       |              | · -                   | -             |        |        |       |               |      |                    |                |       |
|                                                              | 0.007.0      | ‡                  |        |                |   | ·<br>      · | · · ·    | · · ·    |          | · · · · · | ·   - · |          |       |     |          | F           | clay                                              |                            |       |              | · ·                   |               |        |        |       |               |      |                    |                |       |
| 2685                                                         | 2,687.0      | $\frac{13.2}{1}$   | 2      | 3              | 3 | <b> </b> 6   | · · ·    | · · ·    |          | · · · · · |         |          |       |     |          | F           |                                                   |                            |       |              |                       | -             |        |        |       |               |      |                    |                |       |
| 2005                                                         | -            | ‡                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              |                       | -             |        |        |       |               |      |                    |                |       |
|                                                              | 2,682.0      | 18.2               | 1      | 2              | 2 |              | · · ·    | · · ·    |          | · · · · · |         |          |       |     |          | F           |                                                   |                            |       |              |                       | -             |        |        |       |               |      |                    |                |       |
| 2680                                                         |              | ŧ                  | '      |                | 2 |              |          |          |          |           |         |          |       |     |          | È.          |                                                   |                            |       |              | -                     | -             |        |        |       |               |      |                    |                |       |
|                                                              | 0.077.0      | ‡                  |        |                |   |              | · · ·    | <br>     |          | · · · · · | .       |          |       |     |          | F           |                                                   |                            |       |              |                       | -             |        |        |       |               |      |                    |                |       |
|                                                              | 2,677.0      | + <u>23.2</u><br>+ | 100/0. | 5              |   | ╎╘∶          | <u> </u> | <u> </u> | <u> </u> | <u></u>   |         | <u> </u> | -     |     | 1942     | 2,676.<br>- | WEATHERED R                                       | OCK                        | 23.6  |              |                       | -             |        |        |       |               |      |                    |                |       |
|                                                              | -            | ‡                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           | Weathered scl<br>Boring Terminated at Eleva       | nist<br>tion 2,676.5 ft IN |       |              | -                     | -             |        |        |       |               |      |                    |                |       |
|                                                              |              | ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           | WR                                                |                            |       |              |                       | -             |        |        |       |               |      |                    |                |       |
|                                                              | -            | ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              | -                     | -             |        |        |       |               |      |                    |                |       |
|                                                              |              | ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              |                       | -             |        |        |       |               |      |                    |                |       |
|                                                              |              | ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              |                       | -             |        |        |       |               |      |                    |                |       |
|                                                              | -            | ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              | -                     | F             |        |        |       |               |      |                    |                |       |
|                                                              |              | ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              |                       | -             |        |        |       |               |      |                    |                |       |
|                                                              | -            | Ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              | -                     | F             |        |        |       |               |      |                    |                |       |
|                                                              |              | Ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              |                       | -             |        |        |       |               |      |                    |                |       |
| 1                                                            |              | Ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              |                       | F             |        |        |       |               |      |                    |                |       |
| אסטטן מטור מסמרד מאטער איין דאזור בטורוטרנט, טר אי אין מטו ש | -            | Ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              | -                     | F             |        |        |       |               |      |                    |                |       |
| 2                                                            |              | Ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              |                       | -             |        |        |       |               |      |                    |                |       |
| ż                                                            | -            | Ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              | -                     | -             |        |        |       |               |      |                    |                |       |
| , <br>                                                       |              | Ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              |                       | -             |        |        |       |               |      |                    |                |       |
| i                                                            |              | Ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              |                       | F             |        |        |       |               |      |                    |                |       |
| 1                                                            | -            | Ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              |                       | F             |        |        |       |               |      |                    |                |       |
| 5                                                            |              | Ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              |                       | F             |        |        |       |               |      |                    |                |       |
| 1                                                            | -            | ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              | -                     | -             |        |        |       |               |      |                    |                |       |
| 1                                                            |              | ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              |                       | -             |        |        |       |               |      |                    |                |       |
|                                                              |              | ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              | -                     | -             |        |        |       |               |      |                    |                |       |
| 1                                                            | -            | ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              | -                     | -             |        |        |       |               |      |                    |                |       |
|                                                              |              | ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              |                       | -             |        |        |       |               |      |                    |                |       |
| !                                                            | -            | ‡                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       | 1            | -                     | F             |        |        |       |               |      |                    |                |       |
|                                                              |              | ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              |                       | F             |        |        |       |               |      |                    |                |       |
| ļ                                                            |              | ŧ                  |        |                |   |              |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |              | .                     | F             |        |        |       |               |      |                    |                |       |
| - L                                                          | -            | <u> </u>           | i      |                |   |              |          |          |          |           |         |          |       |     | _        |             |                                                   |                            |       | ۱ <u> </u>   |                       | L             |        |        |       |               |      |                    |                |       |

| ASHE                |             | GEOLOGIST Johnson, C                             | . D.             |             |           |
|---------------------|-------------|--------------------------------------------------|------------------|-------------|-----------|
| PROPOSED RWAL       |             |                                                  |                  | GROUNE      | OWTR (ft) |
| OFFSET 5 ft RT      |             |                                                  |                  | 0 HR.       | 4.4       |
| NORTHING 997,489    |             | EASTING 1,261,077                                |                  | 24 HR.      | FIAD      |
| DRILL METHO         | ) H.S.      | Augers                                           | HAMME            | R TYPE      | Automatic |
| COMP. DATE 05/29/19 |             | SURFACE WATER DEPT                               | H N/A            | \           |           |
| 75 100 NO. MOI      | L<br>O<br>G | SOIL AND ROCH                                    | < DESC           | RIPTION     |           |
|                     |             |                                                  |                  |             |           |
|                     | L           | 2,694.0 GROUND<br>ROADWAY EI<br>Roadway ei       | MBANK            | MENT        | 0.0       |
| · · · · ·           |             | 2,691.0<br>SAPR<br>Brown, micaceous s            | OLITE<br>andy SI | LT with lar | 3.0<br>ge |
| ····                |             | 2,687.0                                          |                  |             | 7.0       |
|                     |             | CRYSTALL<br>Crystalline r<br>Boring Terminated a | rock (sc         | hist)       |           |
|                     |             |                                                  |                  |             |           |

|       |               |               |        |        |         |         |              |               |      |           | URE           |            |               |       |          |                |        |                      |                          |                     |            |       |               |              |         |        |         |             |                |                 | -        |         |
|-------|---------------|---------------|--------|--------|---------|---------|--------------|---------------|------|-----------|---------------|------------|---------------|-------|----------|----------------|--------|----------------------|--------------------------|---------------------|------------|-------|---------------|--------------|---------|--------|---------|-------------|----------------|-----------------|----------|---------|
|       | 67002         |               |        |        |         |         | R-0002       |               |      |           | Y ASH         |            |               |       |          | GEO            | LOGIST | Johnso               | n, C. D.                 | 1                   |            |       | 67002         |              |         |        |         |             | 8R-0002        |                 | COUNT    |         |
| SITE  | DESCR         | IPTION        | BOF    | RING I | N EXIS  | STING   | PAVE         | MENT          | NC19 | 4 FOR     | PROPC         | SED        | RWAL          |       |          |                |        |                      |                          | GROUND              | WTR (ft)   | SITE  | DESCR         | RIPTION      | BOF     | ring i |         |             |                |                 | 2194 FOF |         |
| BORI  | NG NO.        | RW1           | -3     |        | S       | TATIC   | <b>DN</b> 17 | 7+47          |      |           | OFFSI         | <b>T</b> 0 | ft RT         |       |          | ALIG           | NMENT  | Ĺ                    |                          | 0 HR.               | 18.8       | BOR   | ing no.       | RW1          | -4      |        | S       | ITAT        | <b>ON</b> 18   | +44             |          | OFI     |
| COLL  | AR ELI        | <b>EV.</b> 2, | 688.6  | ft     | Т       | OTAL    | DEPT         | <b>H</b> 22.  | 0 ft |           | NORT          | HING       | 997,54        | 45    |          | EAS            | TING 1 | ,261,157             |                          | 24 HR.              | FIAD       | COL   | LAR EL        | <b>EV.</b> 2 | ,685.1  | ft     | Т       | OTAI        | _ DEPT         | <b>H</b> 24.0 f | t        | NO      |
| DRILL | RIG/HAN       | IMER EF       | F./DAT | E AFC  | 06744 ( | CME - 4 | 5C 92%       | 6 07/31/2     | 017  |           |               |            | DRILL M       | IETHO | DN/      | A              |        |                      | HAMM                     | E <b>R TYPE</b> Au  | utomatic   | DRILL | RIG/HAN       | MMER E       | FF./DAT | E AF   | 06744 ( | CME -       | 45C 92%        | 07/31/201       | 7        |         |
| DRIL  | L <b>ER</b> C |               |        |        | S       | TART    | DATE         | 05/29         | 9/19 |           | COMP          | . DAT      | <b>E</b> 05/2 | 29/19 |          | SURF           | FACE W | ATER DE              | EPTH N//                 | 4                   |            | DRIL  | LER C         |              | D. O.   |        | s       | TAR         | T DATE         | 05/29/          |          | co      |
| ELEV  | DRIVE<br>ELEV | DEPTH         | BLC    |        | 1       |         |              |               |      | R F001    |               |            | SAMP.         | '/    |          |                | SC     | DIL AND R            | OCK DES                  | CRIPTION            |            | ELEV  | DRIVE<br>ELEV | DEPTH        | ·       |        | -       |             |                |                 | PER FOO  |         |
| (ft)  | (ft)          | (ft)          | 0.5ft  | 0.5ft  | 0.5ft   | 0       | 2            | 25            | 50   |           | 75            | 100        | NO.           | /мо   | I G      | ELEV. (        |        |                      |                          |                     | DEPTH (ft) | (ft)  | (ft)          | (ft)         | 0.5ft   | 0.5ft  | 0.5ft   | 0           | 2              | 5               | 50       | 75      |
|       |               |               |        |        |         |         |              |               |      |           |               |            |               |       |          |                |        |                      |                          |                     |            |       |               |              |         |        |         |             |                |                 |          |         |
| 2690  | _             | Ļ             |        |        |         |         |              |               |      |           |               |            |               |       |          | _              |        |                      |                          |                     |            | 2690  |               | Ļ            |         |        |         |             |                |                 |          |         |
|       | -             |               |        |        |         | ++ - 1  |              |               | -    |           |               |            |               |       |          | _ 2,688.6<br>_ |        |                      | IND SURF                 |                     | 0.0        |       |               | ŧ            |         |        |         |             |                |                 |          |         |
| 0005  | -             | <u> </u>      |        |        |         |         | <br>         |               |      | <br>      |               |            |               |       | L        | -<br>2,685.6   |        | Roadw                | ay embank                | ment                | 3.0        | 0005  |               | ŧ            |         |        |         |             |                |                 |          |         |
| 2685  | 2,685.0       | 3.6           | 2      | 3      | 6       |         | <br>9        |               | -    |           |               |            |               |       |          | _              |        |                      | APROLITE                 | us sandy SIL        |            | 2685  | -             | <u>+</u>     |         |        |         | <u>   -</u> | 1              |                 |          |         |
|       | -             | Ł             |        |        |         | . ]     | [°           | · · ·         |      | <br>      |               |            |               |       |          |                | 2.0111 | with r               | ock fragme               | ents                |            |       | 2,681.8       | - 3.3        |         |        |         | :           |                | · · · ·         |          |         |
| 2680  | 2.680.0       | 8.6           |        |        |         |         | • • •        |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            | 2680  |               | ł            | 7       | 6      | 4       | 11:         | <b>●</b> 10    |                 |          |         |
|       | -             | Ł             | 3      | 4      | 6       |         | 10 -         |               |      |           |               |            |               |       |          |                |        |                      |                          |                     |            |       |               | Ŧ            |         |        |         | 1           |                | · · · ·         |          |         |
|       | -             | F             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       | 2,676.8       | 8.3          | + 1     | 1      | 2       |             | • • •          |                 |          | .   .   |
| 2675  | 2,675.0       | 13.6          | 8      | 11     | 89/0.3  | 3       |              |               | -    |           |               |            |               |       |          | 2,673.8        |        |                      |                          |                     | 14.8       | 2675  | -             | Ŧ            |         | ·      | _       |             |                |                 |          | .   .   |
|       | -             | F             |        |        |         |         |              | $\frac{1}{2}$ |      | · · · · · |               |            |               |       | <u>I</u> | 2,672.8        |        |                      | HERED RO                 |                     | 15.8       |       | 2,671.8       | Ŧ            |         |        |         |             | •••            |                 |          |         |
| 2670  | 2,670.0       | 186           |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        | S                    | red rock (s<br>APROLITE  |                     |            | 2670  | 2,071.0       | + 13.3       | 1       | 2      | 1       | -<br>-      |                | · · · · ·       |          | :   :   |
|       | -2,070.0      | - 10.0        | 17     | 24     | 47      |         |              |               |      |           | 71 • •        |            |               |       |          |                | Brown  | -white-gra<br>with r | y, micaceo<br>ock fragme | us sandy SIL<br>nts | T          | 2010  | -             | ŧ            |         |        |         |             |                |                 |          |         |
|       | 2.666.7       | 21.9          | 00/0 4 |        |         |         | · · ·        | · · ·         |      | <br>      | <br>  <u></u> |            |               |       |          | - 2,666.6      |        |                      |                          |                     | 22.0       |       | 2,666.8       | +<br>18.3    | 5       | 41     | 59/0.3  |             | · · ·          | · · · · ·       |          |         |
|       | -             | ŧ             | 60/0.1 | 1      |         |         |              |               |      |           |               | •          |               |       |          | -              |        |                      | ALLINE R                 |                     |            | 2665  |               | ŧ            |         | 41     | 59/0.   | "  <u>├</u> |                |                 | •        | <u></u> |
|       | -             | ÷             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              | Boring |                      | ed at Eleva<br>ON CR     | ition 2,666.6       | ft         |       |               | ŧ            |         |        |         |             | · · ·<br>· · · | · · · · ·       |          |         |
|       | -             | ł             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       | 2,661.8       | 23.3         | 39      | 61/0.4 | ī       | ļļ ·        | • • •          |                 |          | • •     |
|       | -             | F.            |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       | -             | ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | ł             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       |               | ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | F.            |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       | _             | ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | <u> </u>      |        |        |         |         |              |               |      |           |               |            |               |       |          | _              |        |                      |                          |                     |            |       |               | ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | Ł             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       |               | ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | F             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       | -             | ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | F             |        |        |         |         |              |               |      |           |               |            |               |       |          | _              |        |                      |                          |                     |            |       |               | Ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | F             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       |               | Ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | F             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       | -             | Ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | ŧ             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       |               | ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | ŧ.            |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       | -             | ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | ÷             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       |               | ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | ł             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       |               | ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | F             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       | -             | ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | Ł             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       |               | ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | Ł             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       | _             | ŧ            |         |        |         |             |                |                 |          |         |
|       |               | F             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       |               | Ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | F             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       |               | Ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | F             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       | -             | Ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | F             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       |               | Ŧ            |         |        |         |             |                |                 |          |         |
| 1     | -             | ł             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       |               | ‡            |         |        |         |             |                |                 |          |         |
|       | -             | F             |        |        |         |         |              |               |      |           |               |            |               |       |          | -              |        |                      |                          |                     |            |       | -             | ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | <u> </u>      |        |        |         |         |              |               |      |           |               |            |               |       |          | _              |        |                      |                          |                     |            |       |               | ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | Ł             | 1      |        |         |         |              |               |      |           |               |            |               |       |          |                |        |                      |                          |                     |            |       | _             | ŧ            |         |        |         |             |                |                 |          |         |
| i     | -             | ŧ             | 1      |        |         |         |              |               |      |           |               |            |               |       |          |                |        |                      |                          |                     |            |       |               | ŧ            |         |        |         |             |                |                 |          |         |
|       | -             | Ł             | 1      |        |         |         |              |               |      |           |               |            |               |       |          | L              |        |                      |                          |                     |            |       |               | ŧ            |         |        |         |             |                |                 |          |         |
|       |               | Γ             |        |        |         | 1       |              |               |      |           |               |            |               |       |          | [              |        |                      |                          |                     |            |       |               | I            |         |        |         |             |                |                 |          |         |

| T١ | <b>r</b> ASH | E    |     |         |       |        | GEOL                                                                                        | OGIS | <b>T</b> Johr | nson, (        | C. D.                                   |           |               |
|----|--------------|------|-----|---------|-------|--------|---------------------------------------------------------------------------------------------|------|---------------|----------------|-----------------------------------------|-----------|---------------|
| R  | PROPC        | SED  | ) F | RWAL    |       |        |                                                                                             |      |               |                |                                         | GROUN     | ID WTR (ft)   |
|    | OFFSE        | ET 4 | 4 f | ft LT   |       |        | ALIG                                                                                        | MEN  | ΤL            |                |                                         | 0 HR.     | 19.2          |
|    | NORTI        | HING | i   | 997,60  | )8    |        | EAST                                                                                        | ING  | 1,261,2       | 32             |                                         | 24 HR.    | FIAD          |
|    |              |      |     | ORILL M | ethod | N//    | ۰.<br>۹                                                                                     |      |               |                | HAMME                                   | RTYPE     | Automatic     |
|    | COMP         | . DA | TE  | E 05/2  | 9/19  |        | SURF                                                                                        |      | NATER         | DEPT           | TH N/A                                  | 4         |               |
| т  |              |      |     | SAMP.   |       | L<br>O |                                                                                             |      |               |                |                                         | RIPTION   |               |
|    | 75           | 100  |     | NO.     | моі   | G      |                                                                                             |      |               |                |                                         |           |               |
| -  |              |      |     |         |       |        | 2,685.1                                                                                     | Red  | ROAD          | WAY E          | SURFA<br>SMBANK<br>ightly mi<br>ments a |           | 0.0<br>SILT   |
|    |              |      |     |         |       |        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |      | with foc      |                |                                         |           | 18.8<br>0 192 |
| -  |              |      |     |         |       | 10     |                                                                                             |      | Brown r       | SAPF<br>micace | ROLITE                                  | ey SILT   | <u> </u>      |
| •  |              | <br> |     |         |       |        | -                                                                                           | `    | WE            | EATHE          | RED RC                                  | nO seam   | '<br>s        |
| •  |              | • •  | H   |         |       | 977    | 2,661.1                                                                                     |      |               |                |                                         | on 2,661. | 24.0          |
|    |              |      |     |         |       |        |                                                                                             |      |               |                |                                         |           |               |

|               |                       |                                                          |         |        |       |      |             |               |         |       | RE L    |         |    |        | 1                                      |                 |        |
|---------------|-----------------------|----------------------------------------------------------|---------|--------|-------|------|-------------|---------------|---------|-------|---------|---------|----|--------|----------------------------------------|-----------------|--------|
| WBS           | 67002                 | .1.1                                                     |         |        | T     | ΓIP  | BR-0002     | 2             | COUN    | ITY , | ASHE    |         |    |        | GEOLOGIST Johnson, C. D.               |                 |        |
| SITE          | DESCR                 | IPTION                                                   | BOR     | ING IN | I EXI | STIN | NG PAVE     | MENT N        | C194 FC | R PR  | OPOSE   | RWAL    |    |        |                                        | GROUND W        | TR (ft |
| BORI          | NG NO.                | RW1                                                      | 5       |        | S     | STA  | TION 19     | )+35          |         | 0     | FFSET   | 4 ft LT |    |        |                                        | 0 HR.           | 15.    |
| OLL           | AR ELE                | <b>EV.</b> 2,0                                           | 582.8 f | ť      | -   т | гот  | AL DEPT     | <b>H</b> 18.0 | ft      | N     | ORTHING | 997,6   | 72 |        | EASTING 1,261,295                      | 24 HR.          | FIAD   |
|               |                       |                                                          |         |        |       |      | E - 45C 92% |               |         |       |         |         |    | D N//  |                                        | ER TYPE Auton   | natic  |
|               | LER C                 |                                                          |         |        |       |      | RT DATE     |               |         | C     | omp. Da |         | -  |        | SURFACE WATER DEPTH N/A                |                 |        |
| LEV           |                       | DEPTH                                                    |         | W CO   |       |      |             |               | PER FO  |       |         | SAMP.   |    | 1 L T  |                                        |                 |        |
| LEV<br>(ft)   | DRIVE<br>ELEV<br>(ft) | DEPTH<br>(ft)                                            | 0.5ft   | 0.5ft  |       |      | 0 2         | 25            | 50      | 75    | 100     | NO.     | мо | O<br>G | SOIL AND ROCK DESC                     |                 |        |
| $\rightarrow$ | (11)                  |                                                          |         |        |       | ++-  |             | 1             |         | I     |         |         |    |        | ELEV. (ft)                             | Di              | EPTH   |
|               |                       |                                                          |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
| 685           |                       | Ł                                                        |         |        |       |      |             |               |         |       |         |         |    |        | -                                      |                 |        |
|               | -                     |                                                          |         |        |       |      | T           |               |         |       |         |         |    | 1 155  | 2,682.8 GROUND SURFA                   |                 | (      |
| 680           | -                     | Ŧ                                                        |         |        |       |      | <br>        |               |         |       |         |         |    |        | Brown micaceous sandy SIL              | T with a trace  |        |
|               | 2,679.5               | - <u>3.3</u>                                             | 2       | 2      | 2     | -11  | <u> </u>    |               |         |       |         |         |    |        | - of clay, roots, and a fev            | w graveis       |        |
|               | -                     | ŧ                                                        |         |        |       |      | Ţ : : :     |               |         |       |         |         |    | L      |                                        |                 |        |
| 675           | -<br>2.674.5          | L .,                                                     |         |        |       |      | 1           |               |         |       |         |         |    | L      | _                                      |                 |        |
| F             | 2,0/4.5               | 0.3                                                      | 1       | 2      | 4     | 11   | •<br>•      |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | Ŧ                                                        |         |        |       |      | ]:::        |               |         |       |         |         |    |        |                                        |                 |        |
| 70            | -<br>2,669.5          | 13.3                                                     |         |        |       | 」⊢   | +           |               |         |       | • • • • |         |    |        | -2,669.5                               |                 | 1      |
|               | -                     | +                                                        | 1       | 2      | 3     |      | <b>•</b> 5  |               |         |       | · · · · |         |    |        | SAPROLITE<br>Brown gray, micaceous cla | avev silt with  |        |
|               | -                     | ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        | some rock fragme                       | ents            |        |
| 65            | 2,664.8-              | 18.0                                                     | 60/0.0  |        |       | ┼⊢   |             |               |         |       |         | H       |    |        | _2,664.8<br>CRYSTALLINE RO             | OCK             | 1      |
|               | -                     | F                                                        |         |        |       |      |             |               |         |       |         |         |    |        | Crystalline chlorite                   | schist          |        |
|               | -                     | Ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        | Boring Terminated at Eleva<br>ON CR    | tion 2,664.8 ft |        |
|               | -                     | ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        | <u> </u>                               |                 |        |
|               | -                     | ł                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | F                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        | -                                      |                 |        |
|               | -                     | ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | Ł                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | F                                                        |         |        |       |      |             |               |         |       |         |         |    |        | -                                      |                 |        |
|               | -                     | ‡                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | ŧ.                                                       |         |        |       |      |             |               |         |       |         |         |    |        | -                                      |                 |        |
|               | -                     | ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | ł                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | Ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        | -                                      |                 |        |
|               | -                     | ‡                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | t                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | ╞                                                        |         |        |       |      |             |               |         |       |         |         |    |        | -                                      |                 |        |
|               | -                     | ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | ╞                                                        |         |        |       |      |             |               |         |       |         |         |    |        | -                                      |                 |        |
|               | -                     | ļ.                                                       |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               |                       | Ł                                                        |         |        |       |      |             |               |         |       |         |         |    |        | -                                      |                 |        |
|               | -                     |                                                          |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | ł                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               |                       | +<br>+                                                   |         |        |       |      |             |               |         |       |         |         |    |        | -                                      |                 |        |
|               |                       | +<br>+<br>+<br>+                                         |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               |                       | +<br>+<br>+<br>+                                         |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               |                       | +<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               |                       | + + + + + + + + + + + + + + + + + + + +                  |         |        |       |      |             |               |         |       |         |         |    |        | -<br>-<br>-                            |                 |        |
|               |                       |                                                          |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               |                       |                                                          |         |        |       |      |             |               |         |       |         |         |    |        | _                                      |                 |        |
|               |                       |                                                          |         |        |       |      |             |               |         |       |         |         |    |        | -<br>-<br>-<br>-<br>-                  |                 |        |
|               |                       |                                                          |         |        |       |      |             |               |         |       |         |         |    |        | ·<br>·<br>·<br>·<br>·                  |                 |        |

March 24, 2020

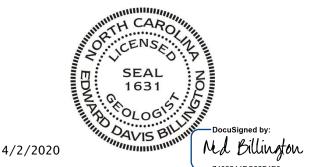


Mr. John Pilipchuk, LG, PE and Ms. Christina Bruinsma, PG Geotechnical Engineering Unit North Carolina Department of Transportation 1020 Birch Ridge Drive Raleigh, NC 27610

## RE: REPORT ON GEOPHYSICAL STUDY Proposed Retaining Wall Location by Buffalo Creek, Warrensville, NC ESP Project No. GR22.323

| WBS Number:       | 67002.1.1                                                    |
|-------------------|--------------------------------------------------------------|
| TIP Number:       | BR-0002                                                      |
| Project ID:       | 35254                                                        |
| County:           | ASHE                                                         |
| Description:      | Replace Bridge No. 040008 over North Fork New River on NC194 |
| Site Description: | Retaining Wall, -L- Sta. 15+00 to 20+00                      |

Dear Mr. Pilipchuk and Ms. Bruinsma:


ESP Associates, Inc. (ESP) is pleased to submit this report on our geophysical study of the subject site. This work was performed in accordance with your Request for Proposal dated February 12, 2020 and our cost proposal dated February 21, 2020. The Notice to Proceed (NTP) was received on February 27, 2020.

We appreciate the opportunity to assist you during this phase of the project. If you should have any questions concerning this report, or if we may be of further assistance, please contact us.

Sincerely,

ESP Associates, Inc.

Edward D. Billington, PG Senior Geologist/Geophysicist EDB/PMW/JS



not considered Final unless all signatures are completed

## TABLE OF CONTENTS

| 1.0        | INTRODUCTION                       | l           |
|------------|------------------------------------|-------------|
| 2.0        | SITE OBSERVATIONS                  | l           |
| 3.0        | FIELD METHODS                      | l           |
| 3.1        | Seismic Refraction                 | l           |
| 3.2        | Bridge Rods                        | 2           |
| 3.3        | Location Surveys                   | 2           |
|            |                                    |             |
| 4.0        | DATA ANALYSIS                      | 2           |
| 4.0<br>4.1 | DATA ANALYSIS                      |             |
|            |                                    | 2           |
| 4.1        | Seismic Refraction Velocity Models | 2           |
| 4.1<br>4.2 | Seismic Refraction Velocity Models | 2<br>2<br>2 |

#### TABLES

| Table 1 | Bridge Rod and Boring Information |
|---------|-----------------------------------|
|---------|-----------------------------------|

#### FIGURES

- Figure 1 Site Vicinity Map
- Figure 2 Data Collection Photographs
- Figure 3 Site Plan with Seismic Line Locations
- Figure 4 Seismic Line 1 Velocity Model
- Figure 5 Seismic Lines 2 through 6 Velocity Models
- Figure 6 NCDOT GEU Soil and Rock Legend

#### ATTACHMENTS

Attachment A Soil Test Boring Logs Provided by the NCDOT Attachment B Final Survey Report

#### 1.0 INTRODUCTION

The North Carolina Department of Transportation (NCDOT) is planning to replace Bridge No. 040008 over the North Fork New River on NC194 (Figure 1). The project will require realignment of the two-lane highway from NW School Road to the bridge, and the construction of a retaining wall next to Buffalo Creek. The retaining wall is planned to be approximately 500 feet long, extending from -L- Sta. 15+00 to 20+00. Since the planned location of the retaining wall was too steep to allow drilling to explore for bedrock depths, the NCDOT requested that ESP perform a geophysical investigation to assess the approximate depth to bedrock. Based on the 1985 Geologic Map of North Carolina, the bedrock at the site is identified as an amphibolite (Zata), described as equigranular, massive to well foliated, interlayered, rarely discordant, metamorphosed intrusive to extrusive mafic rock; may include metasedimentary rock.

#### 2.0 SITE OBSERVATIONS

ESP performed a site visit with NCDOT personnel on February 5, 2020 to assess the feasibility of performing work on the slope. The slope distance from the guard rail to the creek appeared to range from about 40 to 75 feet. In some places, the slope appeared to be approximately 1H:1V. There was a narrow strip of grass between the edge of pavement and the guard rail and occasionally a narrow soil bench on the slope side of the guard rail. The upper part of the slope was fairly open with tall grass and briars while the lower part of the slope was lightly wooded with briars. Boulders and some apparent rock outcrops were visible on the lower slope and at the creek level.

#### 3.0 FIELD METHODS

ESP performed field work at the planned retaining wall location on March 3 through 6, and on March 9, 2020. The work consisted of seismic refraction data collection on March 3 through 5, driving "bridge rods" on March 6, and surveying the location of stakes for the seismic lines and bridge rod locations on March 9. Photographs of the site and of the seismic data collection are shown on Figure 2.

#### 3.1 Seismic Refraction

ESP collected seismic refraction data along 6 lines: Line 1 was located along the approximate planned retaining wall location, and Lines 2 through 6 were oriented down the slope starting at the edge of pavement (Figure 3). The work was performed by Edward Billington, PG, Ryan Pastrana, GIT, and Chase Hallenbeck of ESP.

The seismic data were collected using a 24-channel system consisting of a Geode seismograph, 8Hz geophones spaced 5 feet apart, and a 16-pound sledgehammer striking a steel plate on the ground as the energy source. Four 115-foot long arrays using 24 geophones were employed for Line 1. Due to the length of the slope, 9 to 10 geophones were used for the slope lines with array lengths of 40 to 45 feet. Some lines or portion of lines required hand clearing. Noise from passing

vehicles affected the data although we tried to not collect data when cars and trucks were passing. Due to the steepness of the slope, the personnel working on the slope used a safety rope to help prevent falls. Wooden stakes were placed at 50-foot intervals along Line 1, and at the top, bottom, and significant slope changes on Lines 2, 3, 4, 5, and 6.

#### 3.2 Bridge Rods

ESP drove bridge rods at the intersections of Line 1 with Lines 2, 3, 5, and 6 on March 6 (Figure 3). The slope at Line 4 was too steep for driving rods. The work consisted of driving 5-foot long half-inch steel rods with a 16-pound slide hammer approximately vertically down into the ground until refusal. Couplers were used when more than one rod was needed. Refusal was defined as 100 blows with less than an inch penetration. Notes were recorded as to the relative softness or hardness of the materials that were driven through with the rods. Wooden stakes were placed to mark the location of the rod drives.

#### 3.3 Location Surveys

On March 9, ESP surveyed the locations and elevations of the wooden stakes placed to mark the seismic line locations and rod drives. The work was performed by a 3-person survey crew utilizing conventional survey equipment. The surveyed points were added to the MicroStation site plan and used to draw the approximate location of the seismic lines and rod drives (Figure 3). More information regarding the survey task is provided in the final survey report (Attachment B).

#### 4.0 DATA ANALYSIS

#### 4.1 Seismic Refraction Velocity Models

The processing steps for the seismic refraction data analysis consisted of assigning geometry, picking the arrival times of refracted energy at each geophone (first breaks), creating an elevation model from the survey point data, then performing a tomographic inversion of the arrival time data to develop a compressional wave velocity model for each line (Figures 4 and 5). The velocities are presented in feet per second (ft/s).

#### 4.2 Bridge Rods and Soil Test Borings Data

The bridge rod and soil test boring data are listed in Table 1 and are superimposed on the velocity models on Figures 4 and 5. The soil test borings were performed by the NCDOT prior to ESP's work on this project (Attachment A).

#### 4.3 Location Survey Data

The results of the location surveys were added to the MicroStation site plan on Figure 3.

#### 5.0 DISCUSSION OF RESULTS

The velocity models were correlated with the rod drives to assess the approximate depth to weathered rock and to crystalline rock. Based on this evaluation, we made the following generalized definitions.

| Compressional Wave Velocity (ft/s) | Corresponding Material Type <sup>1</sup> |
|------------------------------------|------------------------------------------|
| Less than 3500                     | Fill and Residual Soil                   |
| 3500 to 7500                       | Weathered Rock, WR                       |
| 7500 or more <sup>2</sup>          | Crystalline Rock, CR                     |

<sup>1</sup>Material type as categorized by the NCDOT GEU; see Figure 6.

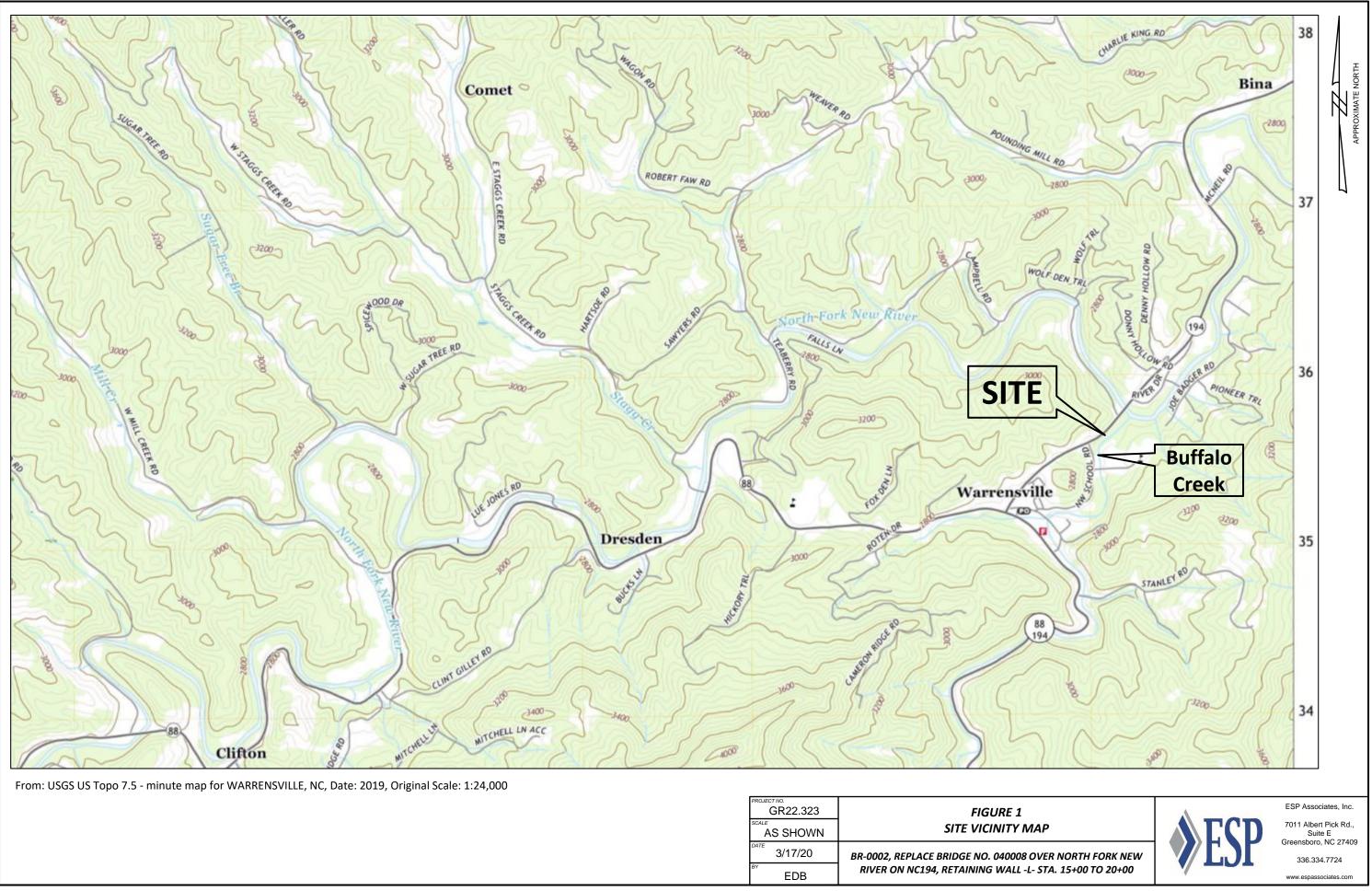
<sup>2</sup>7500 ft/s is the approximate limit of rippability for metamorphic rock (Handbook of Ripping, February 2000, 12th Edition, Caterpillar Inc., Peoria, IL).

The velocity model for Line 1 indicates that the depth to weathered rock is approximately 20 feet from STA 15+00 to 17+00. After STA 17+00, the depth to weathered rock decreases to 10 feet or less. At rod drive BR-01 on the alluvial bench, the material was soft until almost refusal at 4.7 feet below ground surface (bgs). Based on the seismic velocities, it appears that BR-01 refused on crystalline rock, so there appears to be little to no weathered rock in the vicinity of BR-01; this would be expected for an alluvial stream bank where the stream had previously scoured down to bedrock.

Due to the slope distance from the guard rail to the creek, the length of the arrays for Lines 2 through 6 were too short to obtain sufficient refracted arrivals from crystalline rock, resulting in velocity models that probably do not represent the true velocity structure of the subsurface. Although there is not a satisfactory match between the velocity model for Line 1 and the models for Lines 2 through 6 where they intersect, the models for Lines 2 through 6 do indicate that the depth to weathered rock decreases from STA 15+00 to STA 20+00, supporting the interpretation of Line 1, and they show a reasonable correlation with the adjacent RW1 soil test borings.

#### 6.0 LIMITATIONS

These services have been provided to the NCDOT in accordance with generally accepted guidelines for performing geophysical surveys. It is recognized that the results of geophysical surveys are non-unique and subject to interpretation. Further, the seismic refraction method is an averaging technique; it is likely that there are bedrock highs and lows that are not imaged by this method.


**TABLES** 

| Bridge<br>Rod or<br>Boring* | Station &<br>Offset<br>(-WALL1-) | Location on Seismic Line<br>(Line, Station)           | Refusal Depth<br>(feet bgs) | Comments                                                                                              |
|-----------------------------|----------------------------------|-------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------|
| BR-01                       | 19+55<br>1' LT                   | Intersection of Line 1<br>and Line 2;<br>Line 1 458'  | 4.7                         | 0.0' – 4.5' - Soft<br>4.5' – 4.7' - Firm                                                              |
| BR-02                       | 18+51<br>1' RT                   | Intersection of Line 1<br>and Line 3;<br>Line 1, 353' | 8.3                         | 0.0' – 6.1' - Soft<br>6.1' – 8.3' - Firm                                                              |
| BR-03                       | 18+50<br>8' RT                   | Line 3, 40'                                           | 6.7                         | 0.0' – 5.5' - Soft<br>5.5' – 6.7' - Firm                                                              |
| BR-04                       | 16+59<br>3' LT                   | Line 5, 15'                                           | 16.7                        | 0.0' – 13.2' - Soft<br>13.2' – 16.7' - Firm                                                           |
| BR-05                       | 15+51<br>7' LT                   | Line 6, 10'                                           | 21.8                        | 0.0' – 11.9' - Soft<br>11.9' – 16.3' - Firm<br>16.3' – 21.8' - Hard                                   |
| RW1-1*                      | 15+56<br>21' LT                  | Near start of Line 6                                  | -                           | Weathered Rock from 23.2' - 23.7'<br>Boring Terminated in Weathered Rock                              |
| RW1-2*                      | 16+58<br>21' LT                  | Near start of Line 5                                  | 7.1                         | Boring Terminated on Crystalline<br>Rock (probable boulder, not bedrock)                              |
| RW1-3*                      | 17+58<br>26' LT                  | Near start of Line 4                                  | 22.0                        | Weathered Rock and Hard Silt (N=71)<br>from 14.8' - 22.0'<br>Boring Terminated on Crystalline<br>Rock |
| RW1-4*                      | 18+53<br>31' LT                  | Near start of Line 3                                  | -                           | Weathered Rock from 19.2' - 24.0'<br>Boring Terminated in Weathered Rock                              |
| RW1-5*                      | 19+52<br>38' LT                  | Near start of Line 2                                  | 18.0                        | Boring Terminated on Crystalline<br>Rock                                                              |

TABLE 1BRIDGE ROD AND BORING INFORMATION

\*Borings completed prior to ESP's work. Boring data provided by NCDOT.

### FIGURES



| GR22.323<br>SCALE<br>AS SHOWN | FIGURE 1<br>SITE VICINITY         |
|-------------------------------|-----------------------------------|
| DATE 3/17/20                  | BR-0002, REPLACE BRIDGE NO. 04000 |
| EDB                           | RIVER ON NC194, RETAINING WALL    |



A. Photograph of site, looking downstream (northeast).



C. Photograph of seismic line being set up on slope.



B. Photograph of site, looking upstream (southwest).

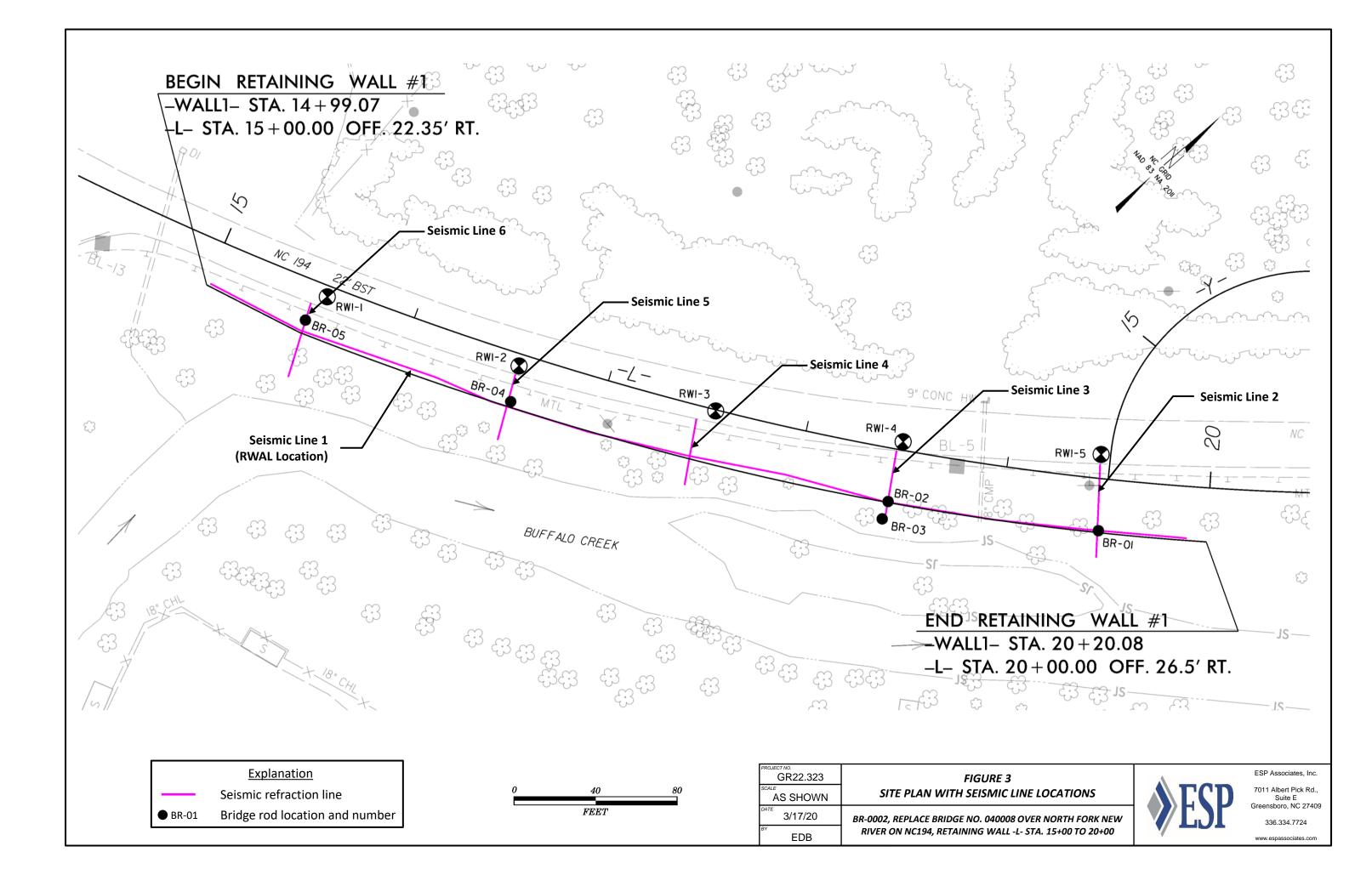


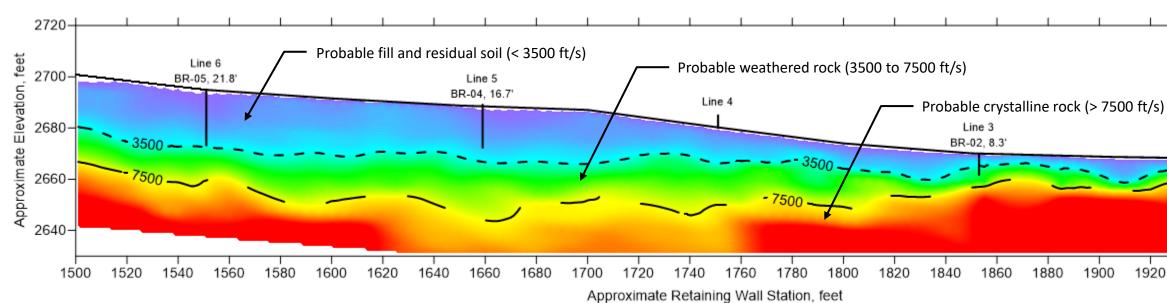
D. Photograph of seismic refraction data collection with sledgehammer source.

| GR22.323                | FIGURE 2                          |
|-------------------------|-----------------------------------|
| scale<br>N/A            | DATA COLLECTION PH                |
| <sup>DATE</sup> 3/17/20 | BR-0002, REPLACE BRIDGE NO. 04000 |
| EDB                     | RIVER ON NC194, RETAINING WALL    |

2 PHOTOGRAPHS

008 OVER NORTH FORK NEW LL -L- STA. 15+00 TO 20+00



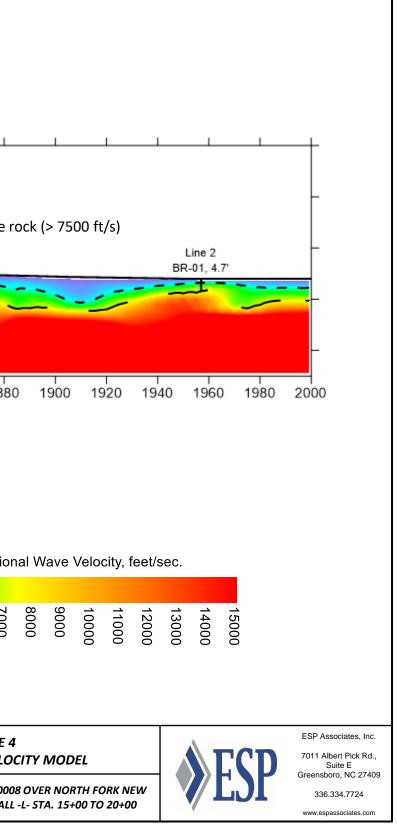


ESP Associates, Inc.

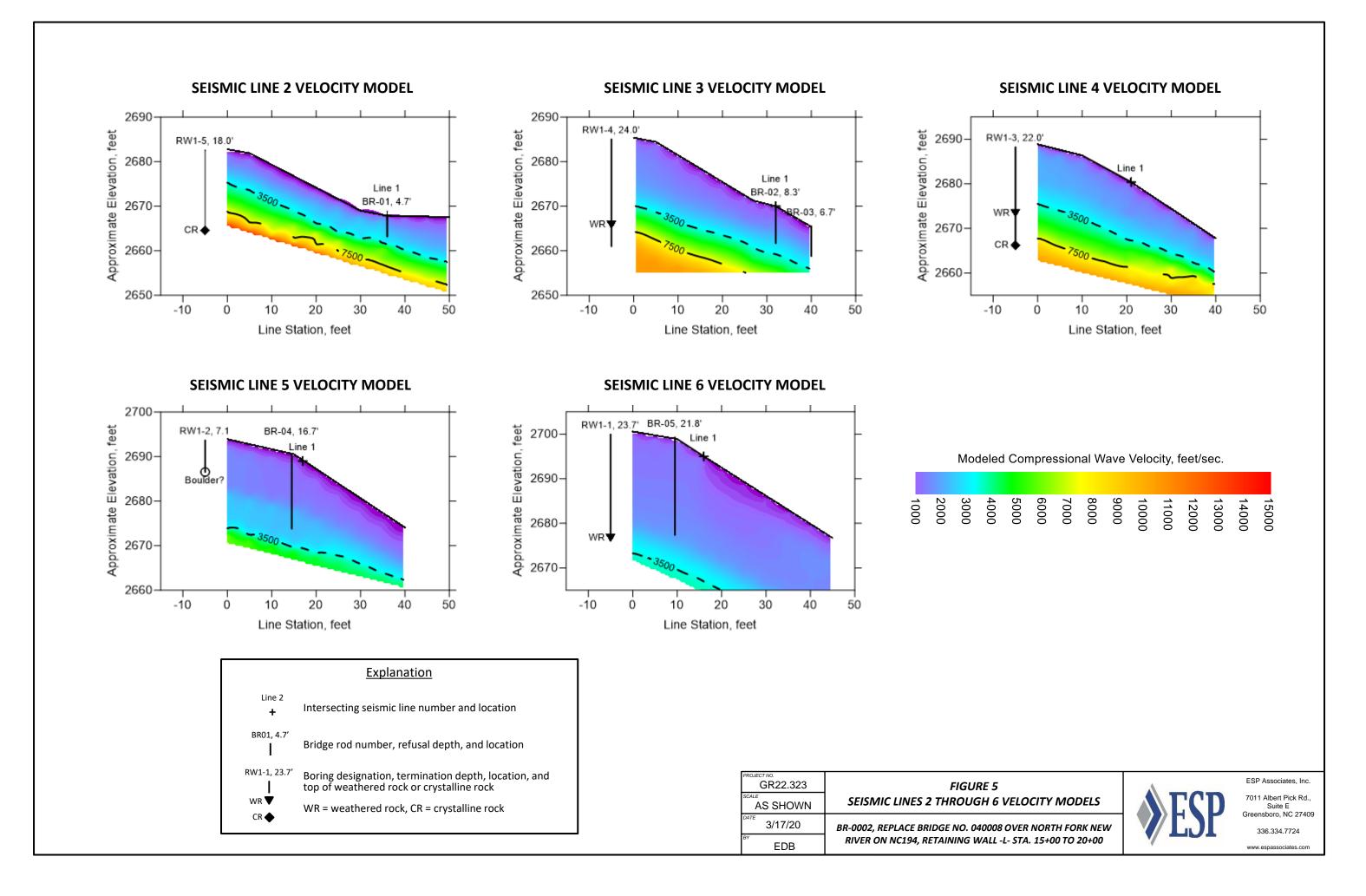
7011 Albert Pick Rd., Suite E Greensboro, NC 27409

336.334.7724

www.espassociates.con







**SEISMIC LINE 1 VELOCITY MODEL** 

|                | Explanation                                    |
|----------------|------------------------------------------------|
| Line 2<br>+    | Intersecting seismic line number and location  |
| BR01, 4.7'<br> | Bridge rod number, refusal depth, and location |

|      |      | Мос  | deled | l Cor | npre | ssio |
|------|------|------|-------|-------|------|------|
|      |      |      |       |       |      |      |
| 1000 | 2000 | 3000 | 4000  | 5000  | 6000 | 7000 |

| FIGURE 4                          | PROJECT NO.<br>GR22.323 |  |  |  |  |  |  |
|-----------------------------------|-------------------------|--|--|--|--|--|--|
| SEISMIC LINE 1 VELO               | AS SHOWN                |  |  |  |  |  |  |
| BR-0002, REPLACE BRIDGE NO. 04000 | <sup>DATE</sup> 3/17/20 |  |  |  |  |  |  |
| RIVER ON NC194, RETAINING WALL    | EDB                     |  |  |  |  |  |  |





# NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

| SOIL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GRADATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TERMS AND DEFINITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CA<br>BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE.<br>UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED<br>ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM D1586), SOIL CLASSIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ADUIFER - A WATER BEARING FORMATION OR STRATA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING:<br>CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN<br>REPRESENTED BY A ZONE OF WEATHERED ROCK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SOIL LEGEND AND AASHTO CLASSIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MINERALOGICAL COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ROCK (WR) 100 BLOWS PER FOOT IF TESTED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS ORGANIC MATERIALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRYSTALLINE FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CLASS.         (≤ 35%, PASSING *2009)         (> 35%, PASSING *2009) <th< td=""><td>ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.</td><td>ROCK (CR) GNEISS, GABBRO, SCHIST, ETC.</td><td>CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.</td></th<> | ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ROCK (CR) GNEISS, GABBRO, SCHIST, ETC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| GROUP         A-1         A-3         A-2         A-4         A-5         A-6         A-7         A-1, A-2         A-4, A-5           CLASS.         A-1-a         A-1-b         A-2-4         A-2-5         A-2-7         A-4         A-5         A-6         A-7         A-1, A-2         A-4, A-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COMPRESSIBILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>Colluvium</u> - Rock fragments mixed with soil deposited by gravity on slope or at bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SLIGHTLY COMPRESSIBLE LL < 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OF SLOPE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SYMBOL DOCODOCOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MODERATELY COMPRESSIBLE LL = 31 - 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| % PASSING SILT-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HIGHLY COMPRESSIBLE LL > 50<br>PERCENTAGE OF MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SEDIMENTARY ROCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10 50 MX<br>40 30 MX 50 MX 51 MN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WEATHERING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GRANULAR SILT - CLAY<br>ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING. ROCK RINGS UNDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ROCKS OR CUTS MASSIVE ROCK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TRACE OF ORGANIC MATTER         2         -         3/         3         -         5/         TRACE         1         -         10%           LITTLE ORGANIC MATTER         3         -         5/         5         -         12%         LITTLE         10         -         20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HAMMER IF CRYSTALLINE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE<br>HORIZONTAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PASSING #40 SOILS WITH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LL – – 48 MX 41 MN LITTLE OR<br>PI 6 MX NP 18 MX 18 MX 11 MN 11 MN 18 MX 18 MX 11 MN 11 MN LITTLE OR HIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (V SLI,) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF<br>OF A CRYSTALLINE NATURE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| OF MAJOR GRAVEL, AND SAND CRAVEL AND SAND SOULS SOULS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MATERIALS SAND SHIND UNHALL HIND SHIND SUILS SUILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STATIC WATER LEVEL AFTER <u>24</u> HOURS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| GEN. RATING EXCELLENT TO GOOD FAIR TO POOR UNSUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (MOD,) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS<br>DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PARENT MATERIAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AS SUBURAUE YUUK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WITH FRESH ROCK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ;PI OF A-7-6 SUBGROUP IS > LL - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CONSISTENCY OR DENSENESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MISCELLANEOUS SYMBOLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH (MOD, SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES "CLUNK" SOUND WHEN STRUCK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J <u>OINT</u> - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PRIMARY SOIL TYPE COMPACTNESS OR PENETRATION RESISTENCE COMPRESSIVE STREND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IF TESTED, WOULD YIELD SPT REFUSAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CONSISTENCY (N-VALUE) (TONS/FT <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WITH SOIL DESCRIPTION - OF ROCK STRUCTURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ITS LATERAL EXTENT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| GENERALLY VERY LOOSE < 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL SYMBOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED<br>TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| GRANULAR LOOSE 4 TO 10<br>GRANULAR MEDIUM DENSE 10 TO 30 N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IE TESTER WOULD YIELD SPT N VALUES > 100 BPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MATERIAL DENSE 30 TO 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ARTIFICIAL FILL (AF) OTHER OUGER BORING CONE PENETROMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VERY DENSE > 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK<br>(V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE<br>OF AN INTERVENING IMPERVIOUS STRATUM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| VERY SOFT         < 2         < 0.25           GENERALLY         SOFT         2 TO 4         0.25 TO 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INFERRED SOIL BOUNDARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VEX. VEX. VEX. VEX. VEX. VEX. VEX. VEX.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TIST INFERRED ROCK LINE MONITORING WELL TEST BORING WITH CORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MATERIAL         STIFF         8 TO 15         1 TO 2           (COHESIVE)         VERY STIFF         15 TO 30         2 TO 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS<br>ALSO AN EXAMPLE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HARD > 30 > 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TTTTT ALLUVIAL SOIL BOUNDARY A INSTALLATION - SPT N-VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RUN AND EXPRESSED AS A PERCENTAGE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TEXTURE OR GRAIN SIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RECOMMENDATION SYMBOLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ROCK HARDNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U.S. STD. SIEVE SIZE 4 10 40 60 200 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | XX UNDERCUT VICLASSIFIED EXCAVATION - TT UNCLASSIFIED EXCAVATION -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES<br>SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAV | HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BOULDER COBBLE GRAVEL COARSE FINE SILT CLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SHALLOW UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 FEEL OF ACCEPTABLE DEGRADABLE ROCK EMBANKMENT OR BACKFILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TO DETACH HAND SPECIMEN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (BLDR.) (COB.) (GR.) (CSE, SD.) (F SD.) (SL.) (CL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ABBREVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, COUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ABBREVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE<br>HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OR SLIP PLANE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GRAIN MM 305 75 2.0 0.25 0.005 0.005<br>SIZE IN. 12 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST<br>BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OR SLIP PLANE.<br><u>Standard Penetration test (Penetration Resistance) (SPT)</u> - Number of Blows (N or BPF) of<br>A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GRAIN MM 305 75 2.0 0.25 0.05 0.005<br>SIZE IN. 12 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST<br>BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED<br>CL CLAY MOD MODERATELY $\gamma$ - UNIT WEIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HARD         EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.           MEDIUM         CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.<br>HARD           CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OR SLIP PLANE.<br><u>STANDARD PENETRATION TEST (PENETRATION RESISTANCE)(SPT)</u> - NUMBER OF BLOWS (N OR BPF)OF<br>A 140 LB, HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL<br>WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| GRAIN         MM         305         75         2.0         0.25         0.05         0.005           SIZE         IN.         12         3         3         SOIL         MOISTURE         - CORRELATION OF TERMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HARD         EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.           MEDIUM         CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.<br>CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OR SLIP PLANE.<br><u>STANDARD PENETRATION TEST (PENETRATION RESISTANCE)(SPT)</u> - NUMBER OF BLOWS (N OR BPF)OF<br>A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL<br>WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL<br>TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GRAIN MM 305 75 2.0 0.25 0.05 0.005<br>SIZE IN. 12 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HARD         EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.           MEDIUM         CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.<br>HARD           CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OR SLIP PLANE.<br><u>STANDARD PENETRATION TEST (PENETRATION RESISTANCE)(SPT)</u> - NUMBER OF BLOWS (N OR BPF)OF<br>A 140 LB, HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL<br>WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| GRAIN MM 305 75 2.0 0.25 0.05 0.005<br>SIZE IN. 12 3<br>SOIL MOISTURE - CORRELATION OF TERMS<br>SOIL MOISTURE SCALE FIELD MOISTURE<br>(ATTERBERG LIMITS) DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HARD         EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.           MEDIUM         CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.           HARD         CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.           SOFT         CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS<br>FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN<br>PIECES CAN BE BROKEN BY FINGER PRESSURE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OR SLIP PLANE.<br>STANDARD PENETRATION TEST (PENETRATION RESISTANCE)(SPT) - NUMBER OF BLOWS (N OR BPF) OF<br>A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL<br>WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL<br>TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.<br>STRATA CORE RECOVERY (SREC). TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY<br>TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GRAIN<br>SIZE         MM         305         75         2.0         0.25         0.05         0.005           SIZE         IN.         12         3         SOIL         MOISTURE         - CORRELATION OF TERMS           SOIL MOISTURE SCALE<br>(ATTERBERG LIMITS)         FIELD MOISTURE<br>DESCRIPTION         GUIDE FOR FIELD MOISTURE DESCRIPT<br>GUIDE FOR FIELD MOISTURE DESCRIPT<br>GUIDE FOR FIELD MOISTURE DESCRIPT<br>- SATURATED -<br>USUALLY LIQUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HARD         EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.           MEDIUM         CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.<br>HARD           CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.           SOFT         CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS<br>FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN<br>PIECES CAN BE BROKEN BY FINGER PRESSURE.           VERY         CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OR SLIP PLANE.<br><u>STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT)</u> - NUMBER OF BLOWS (N OR BPF) OF<br>A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL<br>WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL<br>TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.<br><u>STRATA CORE RECOVERY (SREC.)</u> - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GRAIN MM 305 75 2.0 0.25 0.05 0.005<br>SIZE IN. 12 3<br>SOIL MOISTURE - CORRELATION OF TERMS<br>SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION<br>GATTERBERG LIMITS) CORRELATION OF TERMS<br>SOIL MOISTURE SCALE FIELD MOISTURE DESCRIPTION<br>CASTREBERG LIMITS) CORRELATION OF TERMS<br>SOIL MOISTURE SCALE FIELD MOISTURE DESCRIPTION<br>CASTREBERG LIMITS - USUALLY LIQUID: VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HARD         EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.           MEDIUM         CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.           HARD         CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.           SOFT         CAN BE GROUVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS<br>FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN<br>PIECES CAN BE BROKEN BY FINGER PRESSURE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OR SLIP PLANE.<br>STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF<br>A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL<br>WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL<br>TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.<br>STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY<br>TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.<br><u>STRATA ROCK QUALITY DESIGNATION (SROD)</u> - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL<br>LENGTH OF ROCK SECHENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY                                                                                                                                                                                                                                                                                                                                                                                  |
| GRAIN<br>SIZE     MM     305     75     2.0     0.25     0.05     0.005       SOIL     MOISTURE     -     CORRELATION OF TERMS       SOIL     MOISTURE SCALE<br>(ATTERBERG LIMITS)     FIELD MOISTURE<br>DESCRIPTION     GUIDE FOR FIELD MOISTURE DESCRIPT       LL     LIDUID LIMIT     -     SATURATED -<br>(SAT.)     USUALLY LIQUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB       LL     LIDUID LIMIT     -     VET - (W)     SEMISOLID; REQUIRES DRYING TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HARD         EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.           MEDIUM         CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.           HARD         CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.           HARD         CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.           SOFT         CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS<br>FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN<br>PIECES CAN BE BROKEN BY FINGER PRESSURE.           VERY         CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH<br>SOFT           OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY<br>FINGERNAIL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OR SLIP PLANE.<br>STANDARD PENETRATION TEST (PENETRATION RESISTANCE)(SPT) - NUMBER OF BLOWS (N OR BPF) OF<br>A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL<br>WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL<br>TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.<br>STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY<br>TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.<br>STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL<br>LENGTH OF ROCK SECHNIS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY<br>THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.<br><u>TOPSOIL (TS.)</u> - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.                                                                                                                                                                                                                                                   |
| GRAIN<br>SIZE     MM     305     75     2.0     0.25     0.05     0.005       SOIL     MOISTURE     -     CORRELATION OF TERMS       SOIL     MOISTURE SCALE<br>(ATTERBERG LIMITS)     FIELD MOISTURE<br>DESCRIPTION     GUIDE FOR FIELD MOISTURE DESCRIPT       LL     LIDUID LIMIT     -     SATURATED -<br>(SAT.)     USUALLY LIQUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB       LL     LIDUID LIMIT     -     VET - (W)     SEMISOLID; REQUIRES DRYING TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HARD         EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.           MEDIUM         CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.<br>CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.           SOFT         CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS<br>FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN<br>PIECES CAN BE BROKEN BY FINGER PRESSURE.           VERY         CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH<br>OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY<br>FINGERNAIL.           FRACTURE SPACING         BEDDING           IERM         SPACING         IERM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OR SLIP PLANE.<br>STANDARD PENETRATION TEST (PENETRATION RESISTANCE)(SPT) - NUMBER OF BLOWS (N OR BPF) OF<br>A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL<br>WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL<br>TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.<br>STRATA CORE RECOVERY (SREC.) - TOTAL LENOTH OF STRATA MATERIAL RECOVERED DIVIDED BY<br>TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.<br>STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL<br>LENGTH OF ROCK SECHNIS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY<br>THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.                                                                                                                                                                                                                                                                                                                              |
| GRAIN     MM     305     75     2.0     0.25     0.05     0.005       SIZE     IN.     12     3     SOIL     MOISTURE     - CORRELATION OF TERMS       SOIL     MOISTURE SCALE<br>(ATTERBERG LIMITS)     FIELD MOISTURE<br>DESCRIPTION     GUIDE FOR FIELD MOISTURE DESCRIPT       LL<br>PLASTIC     LIQUID LIMIT     - SATURATED -<br>(SAT.)     USUALLY LIQUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB       PLASTIC     - WET - (W)     SEMISOLID; REQUIRES DRYING TO<br>ATTAIN OPTIMUM MOISTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AR - AUGER REFUSAL     MED MEDIUM     VST - VANE SHEAR TEST       BT - BORING TERMINATED     MICA MICACEOUS     WEA WEATHERED       CL CLAY     MOD MODERATELY     - UNIT WEIGHT       CPT - CONE PENETRATION TEST     NP - NON PLASTIC     - ORY UNIT WEIGHT       DN     OHT - DILATIOMETER TEST     PMT - PRESSUREMETER TEST     SAMPLE ABBREVIATIONS       DVT - DILATIOMETER TEST     SP SAPROLITIC     S - BULK       e - VOID RATIO     SD SAND, SANDY     SS - SPLIT SPOON       E F - FINE     SL SILT, SILTY     ST - SHELBY TUBE       FORS FOSSLIFEROUS     SLI SLICT, TY     RS - ROCK       FRAGS FRAGMENTS     W - MOISTURE CONTENT     CBR - CALIFORNIA BEARING       HI HICHLY     V - VERY     RATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HARD         EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.           MEDIUM         CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.           HARD         CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.           HARD         CAN BE CROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.           SOFT         CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.           SOFT         CAN BE CROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS<br>FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN<br>PIECES CAN BE BROKEN BY FINGER PRESSURE.           VERY         CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH<br>SOFT         OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY<br>FINGERNAIL.           FRACTURE SPACING         BEDDING         FINGERNAIL           VERY         WORE         MORE THAN 100 FEET         VERY THICKLY BEDDED         4 FEET                                                                                                                                                                                                                                                                                                | OR SLIP PLANE.         STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF<br>A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL<br>WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL<br>TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.         STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY<br>TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL<br>LENGTH OF ROCK SECMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY<br>THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.         STRATA LORGE NO STRATA MORE DESTRATA MATERIAL         STRATA CORE SECOVERY SUITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY<br>THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.         TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.         BENCH MARK: |
| GRAIN       MM       305       75       2.0       0.25       0.05       0.005         SIZE       IN.       12       3       SOIL       MOISTURE       - CORRELATION OF TERMS         SOIL       MOISTURE SCALE<br>(ATTERBERG LIMITS)       FIELD MOISTURE<br>DESCRIPTION       GUIDE FOR FIELD MOISTURE DESCRIPT         LL<br>PLASTIC       LIUID LIMIT       - SATURATED -<br>(SAT.)       USUALLY LIQUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB         (PI)       PLASTIC LIMIT       - WET - (W)       SEMISOLID; REQUIRES DRYING TO<br>ATTAIN OPTIMUM MOISTURE         0M       OPTIMUM MOISTURE       - MOIST - (M)       SOLID; AT OR NEAR OPTIMUM MOISTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AR - AUGER REFUSAL     MED MEDIUM     VST - VANE SHEAR TEST       BT - BORING TERMINATED     MICA MICACEOUS     WEA WEATHERED       CL CLAY     MOD MODERATELY     - UNIT WEIGHT       CPT - CONE PENETRATION TEST     NP - NON PLASTIC     - ORGANIC       DM - DILATOMETER TEST     ORG ORGANIC     SAMPLE ABBREVIATIONS       DMT - DILATOMETER TEST     PMT - PRESSUREMETER TEST     SAMPLE ABBREVIATIONS       E - VOID RATIO     SL SAND, SANDY     SS - SPLIT SPOON       F - FINE     SL SLI, SLITY     ST - SHELBY TUBE       FRAC, - FRACTURED, FRACTURES     TCR - TRICONE REFUSAL     RT - RECOMPACTED TRIAXIAL       FRAGS, - FRAGENTS     W - WOISTURE CONTENT     CBR - CALIFORNIA BEARING       HI HIGHLY     V - VERY     RATIO       EOUIPMENT     USED ON     SUBJECT       DRIL UNITS:     ADVANCING TOOLS:     HAMMER TYPE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HARD         EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.           MEDIUM         CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.<br>CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.           SOFT         CAN BE EXCAVATED IN GRADILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS<br>FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN<br>PIECES CAN BE BROKEN BY FINGER PRESSURE.           VERY         CAN BE CARVED UTIN KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH<br>SOFT           VERY         CAN BE DETACHED           VERY         CAN BE BROKEN BY FINGER PRESSURE.           VERY         CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY<br>FINGERNAIL.           FRACTURE         SPACING           VERY WIDE         MORE THAN 10 FEET           VERY WIDE         MORE THAN 10 FEET           WIDE         3 TO 10 FEET           WIDE         3 TO 10 SFEET           WIDE         3 TO 10 SFEET           WIDE DOED         0.16 - 1.5 FEET                                                                                                                                                                                                                                                                                                                         | OR SLIP PLANE.         STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF         A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL         WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL         TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.         STRATA CORE RECOVERY (SREC). TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY         TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. <u>STOPSOLL (TS.)</u> - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.         BENCH MARK:       ELEVATION: FEET                                                                                                                |
| GRAIN       MM       305       75       2.0       0.25       0.05       0.005         SIZE       IN.       12       3       SOIL       MOISTURE       - CORRELATION OF TERMS         SOIL       MOISTURE SCALE<br>(ATTERBERG LIMITS)       FIELD MOISTURE<br>DESCRIPTION       GUIDE FOR FIELD MOISTURE DESCRIPT         LL<br>PLASTIC       LIQUID LIMIT       - SATURATED -<br>(SAT.)       USUALLY LIQUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB         (P1)<br>PL       PLASTIC LIMIT       - WET - (W)       SEMISOLID; REQUIRES DRYING TO<br>ATTAIN OPTIMUM MOISTURE         OM       OPTIMUM MOISTURE<br>SHRINKAGE LIMIT       - MOIST - (M)       SOLID; AT OR NEAR OPTIMUM MOISTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AR - AUGER REFUSAL     MED MEDIUM     VST - VANE SHEAR TEST       BT - BORING TERMINATED     MICA MICACEOUS     WEA WEATHERED       CL CLAY     MOD MODERATELY     - UNIT WEIGHT       CPT - CONE PENETRATION TEST     NP - NON PLASTIC     - ORY UNIT WEIGHT       DN     CSE COARSE     ORG ORGANIC     S- BULK       DHT - DILATOMETER TEST     PM - PRESSUREMETER TEST     SAMPLE ABBREVIATIONS       DF - DYNAMIC PENETRATION TEST     SAP SAPROLITIC     S - BULK       E     - VIDI RATIO     SL SLIT, SLITY     ST - SHELBY TUBE       FOSS FOSSILIFEROUS     SLI SLIGHTLY     RS - ROCK       FRAC FRACTURED, FRACTURES     TCR - TRICONTE REFUSAL     RT - RECOMPACTED TRIAXIAL       FRACS FRAGMENTS     W - VERY     RATIO       E     EQUIPMENT     USED ON     SUBJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HARD     EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.       MEDIUM     CAN BE CORDOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.       HARD     CAN BE CORDOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.       SOFT     CAN BE COLOGIST'S PICK.       SOFT     CAN BE COLOGIST'S PICK.       SOFT     CAN BE GROVED OR GOUGED READLLY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS<br>FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN<br>PIECES CAN BE BROKEN BY FINGER PRESSURE.       VERY     CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH<br>SOFT       OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE.     CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH<br>SOFT       OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE.     BEDDING       FRACTURE SPACING     BEDDING       IERM     SPACING       VERY WIDE     MORE THAN 100 FEET       WIDE     SPACING       VERY THICKLY BEDDED     4 FEET       WIDE     3 TO 10 FEET       WIDE     3 TO 10 FEET       MODERATELY CLOSE     1 TO 3 FEET       MODERATELY CLOSE     1 TO 3 FEET       MODERATELY CLOSE     1 TO 3 FEET       THINKLY BEDDED     0.6 - 1.5 FEET       CLOSE     0.16 TO 1 FOOT                                                                                                                          | OR SLIP PLANE.         STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF<br>A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL<br>WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL<br>TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.         STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY<br>TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL<br>LENGTH OF ROCK SECMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY<br>THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.         STRATA LORGE NO STRATA MORE DESTRATA MATERIAL         STRATA CORE SECOVERY SUITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY<br>THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.         TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.         BENCH MARK: |
| GRAIN       MM       305       75       2.0       0.25       0.05       0.005         SIZE       IN.       12       3       SOIL       MOISTURE       - CORRELATION OF TERMS         SOIL       MOISTURE SCALE<br>(ATTERBERG LIMITS)       FIELD MOISTURE<br>DESCRIPTION       GUIDE FOR FIELD MOISTURE DESCRIPT         LL<br>PLASTIC       LIUID LIMIT       - SATURATED -<br>(SAT.)       USUALLY LIQUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB         (PI)       PLASTIC LIMIT       - WET - (W)       SEMISOLID; REQUIRES DRYING TO<br>ATTAIN OPTIMUM MOISTURE         0M       OPTIMUM MOISTURE       - MOIST - (M)       SOLID; AT OR NEAR OPTIMUM MOISTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AR - AUGER REFUSAL     MED MEDIUM     VST - VANE SHEAR TEST       BT - BORING TERMINATED     MICA MICACEOUS     WEA WEATHERED       CL - CLAY     MOD MODERATELY     Y - UNIT WEIGHT       CPT - CONE PENETRATION TEST     NP - NON PLASTIC     Y - UNIT WEIGHT       DMT - DILATOMETER TEST     PMF - PRESSUREMETER TEST     SAMPLE ABBREVIATIONS       DPT - DIVAMIC PENETRATION TEST     SAP SAPROLITIC     S - BULK       PF - VID RATIO     SL - SILT, SLICY     ST - SHELBY TUBE       F - FINE     SL - SILT, SLICHTLY     RS - ROCK       FRAC FRACTURED, FRACTURES     TC - TRICONE REFUSAL     RT - RECOMPACTED TRIAXIAL       FRAC FRACTURED, FRACTURES     W - MOISTUBE CONTENT     CBR - CALIFORNIA BEARING       HI HIGHLY     V - VERY     RATIO       DRIL UNITS:     ADVANCING TOOLS:     HAMMER TYPE:       CME - 45C     CLAY BITS     AUTOMATIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HARD         EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.           MEDIUM         CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.<br>CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.           SOFT         CAN BE EXCAVATED IN GRADILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS<br>FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN<br>PIECES CAN BE BROKEN BY FINGER PRESSURE.           VERY         CAN BE CARVED UTIN KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH<br>SOFT           VERY         CAN BE DETACHED           VERY         CAN BE BROKEN BY FINGER PRESSURE.           VERY         CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY<br>FINGERNAIL.           FRACTURE         SPACING           VERY WIDE         MORE THAN 10 FEET           VERY WIDE         MORE THAN 10 FEET           WIDE         3 TO 10 FEET           WIDE         3 TO 10 SFEET           WIDE         3 TO 10 SFEET           WIDE DOED         0.16 - 1.5 FEET                                                                                                                                                                                                                                                                                                                         | OR SLIP PLANE.         STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF         A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL         WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL         TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.         STRATA CORE RECOVERY (SREC). TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY         TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. <u>STOPSOLL (TS.)</u> - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.         BENCH MARK:       ELEVATION: FEET                                                                                                                |
| GRAIN       MM       305       75       2.0       0.25       0.05       0.005         SIZE       IN.       12       3       SOIL       MOISTURE       - CORRELATION OF TERMS         SOIL       MOISTURE SCALE<br>(ATTERBERG LIMITS)       FIELD MOISTURE<br>DESCRIPTION       GUIDE FOR FIELD MOISTURE DESCRIPT         LL<br>PLASTIC       LIOUID LIMIT       - SATURATED -<br>(SAT.)       USUALLY LIQUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB         (P1)       PL       PLASTIC LIMIT       - WET - (W)       SEMISOLID; REQUIRES DRYING TO<br>ATTAIN OPTIMUM MOISTURE         OM       OPTIMUM MOISTURE<br>SL       SHRINKAGE LIMIT       - MOIST - (M)       SOLID; AT OR NEAR OPTIMUM MOISTURE         - DRY - (D)       REQUIRES ADDITIONAL WATER TO<br>ATTAIN OPTIMUM MOISTURE       - DRY - (D)       REQUIRES ADDITIONAL WATER TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AR - AUGER REFUSAL     MED MEDIUM     VST - VANE SHEAR TEST       BT - BORING TERMINATED     MICA MICACEOUS     WEA WEATHERED       CL CLAY     MOD MODERATELY     - UNIT WEIGHT       CPT - CONE PENETRATION TEST     NP - NON PLASTIC     - ORY UNIT WEIGHT       DN     ORG ORGANIC     SAP SAPROLITIC     S - BULK       DT - DILATOMETER TEST     PMT - PRESSUREMETER TEST     SAMPLE ABBREVIATIONS       DF - DYNAMIC PENETRATION TEST     SAP SAPROLITIC     S - BULK       P - VID RATIO     SL SLI, SILTY     ST - SHELBY TUBE       F - FINE     SL SLI, SILTY     ST - SHELBY TUBE       FRAC, - FRACTURED, FRACTURES     TCR - TRICONE REFUSAL     RT - RECOMPACTED TRIAXIAL       FRAGS FRAGMENTS     W - WOISTURE CONTENT     CBR - CALIFORNIA BEARING       HI HIGHLY     V - VERY     RATIO       DRILL UNITS:     ADVANCING TOOLS:     HAMMER TYPE:       CME-45C     CLAY BITS     AUTOMATIC       MANUAL     G* CONTINUOUS FLIGHT AUGER     CORE SIZE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HARD     EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.       MEDIUM     CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.       HARD     CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.       SOFT     CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS<br>FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN<br>PIECES CAN BE BROKEN BY FINGER PRESSURE.       VERY     CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH<br>SOFT       OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY<br>FINGERNAIL.       FRACTURE SPACING     THICKNESS<br>VERY WIDE       VERY WIDE     MORE THAN 10 FEET       VERY WIDE     1TO 3 FEET       THICKNY BEDDED     0.16 - 1.5 FEET       WIDE     3 TO 19 FEET       THICKNY BEDDED     0.616 - 1.5 FEET       VERY CLOSE     0.16 TO 1 FOOT       VERY CLOSE     LESS THAN 0.16 FEET                                                                                                                                                                                                                                                                                     | OR SLIP PLANE.         STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF         A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL         WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL         TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.         STRATA CORE RECOVERY (SREC). TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY         TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. <u>STOPSOLL (TS.)</u> - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.         BENCH MARK:       ELEVATION: FEET                                                                                                                |
| GRAIN     MM     305     75     2.0     0.25     0.05     0.005       SIZE     IN.     12     3     SOIL     MOISTURE     - CORRELATION OF TERMS       SOIL     MOISTURE SCALE<br>(ATTERBERG LIMITS)     FIELD MOISTURE<br>DESCRIPTION     GUIDE FOR FIELD MOISTURE DESCRIPT       LL<br>PLASTIC     LIOUID LIMIT     - SATURATED -<br>(SAT.)     USUALLY LIQUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB       PLASTIC     PLASTIC LIMIT     - WET - (W)     SEMISOLID; REQUIRES DRYING TO<br>ATTAIN OPTIMUM MOISTURE       OM     OPTIMUM MOISTURE<br>SHRINKAGE LIMIT     - MOIST - (M)     SOLID; AT OR NEAR OPTIMUM MOISTURE       - DRY - (D)     REDUIRES ADDITIONAL WATER TO<br>ATTAIN OPTIMUM MOISTURE     - DRY - (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AR - AUGER REFUSAL     MED MEDIUM     VST - VANE SHEAR TEST       BT - BORING TERMINATED     MICA MICACEOUS     WEA WEATHERED       CL CLAY     MOD MODERATELY     - UNIT WEIGHT       CPT - CONE PENETRATION TEST     NP - NON PLASTIC     VG ORGANIC       DM - OILATOMETER TEST     PM - NON PLASTIC     VG ORGANIC       DM - OILATOMETER TEST     PM - PRESSUREMETER TEST     SAMPLE ABBREVIATIONS       DP - DYNAMIC PENETRATION TEST     SAP SAPROLITIC     S - BULK       e - VOID RATIO     SL SILT, SILTY     ST - SHELBY TUBE       F - FINE     SL SILT, SILTY     RS - ROCK       FRAC FRACTURED, FRACTURES     TCR - TRICONE REFUSAL     RT - RECOMPACTED TRIAXIAL       FRACS FRAGMENTS     W - VERY     RATIO       HI HIGHLY     V - VERY     RATIO       E     CME-45C     CLAY BITS       MODAVALING TOOLS:     HAMMER TYPE:       MOVANCING TOOLS:     HAMMER TYPE:       CME-45C     CLAY BITS       G' CONTINUOUS FLIGHT AUGER     CORE SIZE:       B' HOLLOW AUGERS     -BH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HARD     EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.       MEDIUM     CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.<br>CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.       SOFT     CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.       SOFT     CAN BE EXCAVATED IN SMALL CHIPS TO YEICES I NCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.       SOFT     CAN BE EXCAVATED IN STALL CHIPS TO YEICES IN FRAGMENTS<br>FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL. THIN<br>PIECES CAN BE BROKEN BY FINGER PRESSURE.       VERY     CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH<br>SOFT       OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY<br>FINGERNAIL.       FRACTURE SPACING     BEDDINC       VERY WIDE     MORE THAN 10 FEET       VERY WIDE     MORE THAN 10 FEET       WIDE     3 TO 10 FEET       THINLY BEDDED     1.5 - 4 FEET       WIDE     3 TO 10 FEET       THINLY BEDDED     0.16 - 1.5 FEET       CLOSE     0.16 TO 1 FOOT       VERY THINLY BEDDED     0.08 - 0.03 FEET       THICKLY LAMINATED     0.008 FEET                                                                                                                    | OR SLIP PLANE.         STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF         A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL         WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL         TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.         STRATA CORE RECOVERY (SREC). TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY         TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. <u>STOPSOLL (TS.)</u> - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.         BENCH MARK:       ELEVATION: FEET                                                                                                                |
| GRAIN       MM       305       75       2.0       0.25       0.05       0.005         SIZE       IN.       12       3       SOIL       MOISTURE       - CORRELATION OF TERMS         SOIL       MOISTURE SCALE<br>(ATTERBERG LIMITS)       FIELD MOISTURE<br>DESCRIPTION       GUIDE FOR FIELD MOISTURE DESCRIPT         LL<br>PLASTIC       LIOUID LIMIT       - SATURATED -<br>(SAT.)       USUALLY LIQUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB         (P1)       PL       PLASTIC LIMIT       - WET - (W)       SEMISOLID; REQUIRES DRYING TO<br>ATTAIN OPTIMUM MOISTURE         OM       OPTIMUM MOISTURE<br>SL       SHRINKAGE LIMIT       - MOIST - (M)       SOLID; AT OR NEAR OPTIMUM MOISTURE         - DRY - (D)       REQUIRES ADDITIONAL WATER TO<br>ATTAIN OPTIMUM MOISTURE       - DRY - (D)       REQUIRES ADDITIONAL WATER TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AR - AUGER REFUSAL     MED MEDIUM     VST - VANE SHEAR TEST       BT - BORING TERMINATED     MICA MICACEOUS     WEA WEATHERED       CL CLAY     MOD MODERATELY     7 - UNIT WEIGHT       CPT - CONE PENETRATION TEST     ORG ORGANIC     7 - UNIT WEIGHT       DMT - DILATOMETER TEST     PM - NON PLASTIC     7 - UNIT WEIGHT       DMT - DILATOMETER TEST     PM - PRESSUREMETER TEST     SAMPLE ABBREVIATIONS       DPT - DINAMIC PENETRATION TEST     SAP SARDLITIC     S - BULK       e - VOID RATIO     SL - SILT, SILTY     ST - SHULENY TUBE       F - FINE     SL SILIGHTLY     RS - ROCK       FRAC FRACTURED, FRACTURES     TCR - TRICONE REFUSAL     RT - RECOMPACTED TRIAIAL       FRAGS FRAGENTS     W - NOISTUBE CONTENT     CBR - CALIFORNIA BEARING       HI HIGHLY     V - VERY     RATIO       DRILL UNITS:     ADVANCING TOOLS:     HAMMER TYPE:       CME-55     B*HOLLOW AUGERS     -B       MARD FACED FINGURE BITS     CORE SIZE:       MARD FACED FINGER BITS     -N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HARD       EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.         MEDIUM       CAN BE GOROVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.         HARD       CAN BE CORDOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.         SOFT       CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.         SOFT       CAN BE GROVED OR GOUGED READLLY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS<br>FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN<br>PIECES CAN BE BROKEN BY FINGER PRESSURE.         VERY       CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH<br>SOFT       OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY<br>FINGERNAIL.         FRACTURE       SPACING       BEDDING         IERM       SPACING       BEDDING         VERY WIDE       MORE THAN 10 FEET       THICKLY BEDDED       4 FEET         WIDE       3 TO 10 FEET       THICKLY BEDDED       0.15 - 4 FEET         WIDE       3 TO 10 FEET       THICKLY BEDDED       0.16 - 1.5 FEET         VERY THICLY CLOSE       1 TO 3 FEET       THICKLY LAMINATED       0.008 - 0.03 FEET         WIDE       TO 10 FEET       THICKLY LAMINATED       0.008 FEET       THICKLY LAMINATED         VERY CLOSE       LESS THAN 0.16 FEET                                   | OR SLIP PLANE.         STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF         A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL         WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL         TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.         STRATA CORE RECOVERY (SREC). TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY         TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. <u>STOPSOLL (TS.)</u> - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.         BENCH MARK:       ELEVATION: FEET                                                                                                                |
| CRAIN     MM     305     75     2.0     0.25     0.05     0.005       SIZE     IN.     12     3     SOIL MOISTURE     - CORRELATION OF TERMS       SOIL     MOISTURE SCALE<br>(ATTERBERG LIMITS)     FIELD MOISTURE<br>DESCRIPTION     GUIDE FOR FIELD MOISTURE DESCRIPT       LLL<br>PLASTIC     LIOUID LIMIT     - SATURATED -<br>(SAT,)     USUALLY LIQUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB       PLASTIC     PLASTIC LIMIT     - WET - (W)     SEMISOLID; REQUIRES DRYING TO<br>ATTAIN OPTIMUM MOISTURE       OM     OPTIMUM MOISTURE<br>SL     - MOIST - (M)     SOLID; AT OR NEAR OPTIMUM MOISTURE       - DRY - (D)     REQUIRES ADDITIONAL WATER TO<br>ATTAIN OPTIMUM MOISTURE       - DRY - (D)     REQUIRES ADDITIONAL WATER TO<br>ATTAIN OPTIMUM MOISTURE       - DRY - (D)     REQUIRES ADDITIONAL WATER TO<br>ATTAIN OPTIMUM MOISTURE       - DRY - (D)     REQUIRES ADDITIONAL WATER TO<br>ATTAIN OPTIMUM MOISTURE       NON PLASTIC     0-5     SLIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AR - AUGER REFUSAL     MED MEDIUM     VST - VANE SHEAR TEST       BT - BORING TERMINATED     MICA MICACEOUS     WEA WEATHERED       CL CLAY     MOD MODERATELY     V UNIT WEIGHT       CPT - CONE PENETRATION TEST     NP - NON PLASTIC     V UNIT WEIGHT       DN     ORG ORGANIC     ORG ORGANIC     SAMPLE ABBREVIATIONS       DN     DHT - DILATOMETER TEST     PMT - PRESSUREMETER TEST     SAMPLE ABBREVIATIONS       DF - DYNAMIC PENETRATION TEST     SAP SAAROLITIC     S - BULK       e - VOID RATIO     SL SALT, SLITY     ST - SHELBY TUBE       F - FINE     SL SLIT, SLITY     ST - SHELBY TUBE       FRAC FRACTURED, FRACTURES     TCR - TRICONE REFUSAL     RT - RECOMPACTED TRIAXIAL       FRAGS FRAGMENTS     W - VERY     RS - ROCK       HI HIGHLY     V - VERY     RATIO       CME - 45C     CLAY BITS     AUYANCING TOOLS:       CME - 45C     CLAY BITS     AUYANCING TOOLS:       MAMMER TYPE:     BANG FACED FINGER BITS     -N       CME - 550     HARD FACED FINGER BITS     -N       VANE SHEAR TEST     TUNGCARBIDE INSERTS     HAND TOOL S:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HARD       EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.         MEDIUM       CAN BE CROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.         HARD       CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.         SOFT       CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.         SOFT       CAN BE CROVED OR GOUGED READLY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS<br>FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN<br>PIECES CAN BE BROKEN BY FINGER PRESSURE.         VERY       CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH<br>SOFT         OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY<br>FINGERNAIL.         FRACTURE SPACING       BEDDING         YERY WIDE       MORE THAN 106 FEET         VERY WIDE       MORE THAN 106 FEET         WIDE       3 TO 19 FEET         WIDE       3 TO 19 FEET         WIDE       0.16 TO 1 FOOT         VERY THINLY BEDDED       0.16 - 15 FEET         VERY CLOSE       LESS THAN 0.16 FEET         VERY CLOSE       LESS THAN 0.16 FEET         THINLY BEDDED       0.08 - 0.03 FEET         THINLY LAMINATED       0.008 FEET         VERY CLOSE       LESS                                                                   | OR SLIP PLANE.         STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF         A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL         WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL         TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.         STRATA CORE RECOVERY (SREC). TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY         TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. <u>STOPSOLL (TS.)</u> - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.         BENCH MARK:       ELEVATION: FEET                                                                                                                |
| CRAIN         MM         305         75         2.0         0.25         0.05         0.005           SIZE         IN.         12         3         SOIL         MOISTURE         CORRELATION         OF TERMS           SOIL         MOISTURE SCALE<br>(ATTERBERG LIMITS)         FIELD         MOISTURE<br>DESCRIPTION         GUIDE         FOR FIELD         MOISTURE DESCRIPT           LL<br>PLASTIC         LIDUID         LIMIT         - SATURATED         USUALLY         LIDUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB           PLASTIC         PLASTIC         - SATURATED         USUALLY         LIDUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB           OM         OPTIMUM MOISTURE<br>SL         - WET - (W)         SEMISOLID; REQUIRES DRYING TO<br>ATTAIN OPTIMUM MOISTURE           OM         OPTIMUM MOISTURE<br>SL         SHRINKAGE LIMIT         - MOIST - (M)         SOLID; AT OR NEAR OPTIMUM MOISTURE           ORY - (D)         REQUIRES ADDITIONAL WATER TO<br>ATTAIN OPTIMUM MOISTURE         - DRY - (D)         REQUIRES ADDITIONAL WATER TO<br>ATTAIN OPTIMUM MOISTURE           PLASTIC         0-5         VERY LOW         SLIGHT         VERY LOW           SLIGHTLY PLASTIC         6-15         SLIGHT         VERY LOW           SLIGHTLY PLASTIC         6-15         MOIDUM         VERY LOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AR - AUGER REFUSAL     MED MEDIUM     VST - VANE SHEAR TEST       BT - BORING TERMINATED     MICA MICACEOUS     WEA WEATHERED       CL CLAY     MOD MODERATELY     // - OPY UNIT WEIGHT       CPT - CONE PENETRATION TEST     NP - NON PLASTIC     // - OPY UNIT WEIGHT       DN     CSE COARSE     ORG ORGANIC     // - OPY UNIT WEIGHT       DT - DINAMIC PENETRATION TEST     SAP SAPROLITIC     S - BULK       DT - DYNAMIC PENETRATION TEST     SAP SAPROLITIC     S - SHILT SPOON       E - VOID RATIO     SL SILT, SILTY     ST - SHELBY TUBE       FAGS FRACTURED, FRACTURES     TCR - TRICONE REFUSAL     RT - RECOMPACTED TRIAXIAL       FRAGS FRAGMENTS     // - WOISTURE CONTENT     RS - ROCK       HI HIGHLY     V - VERY     RS - COLFORNIA BEARING       HI HIGHLY     V - VERY     RATIO       EOUIPMENT USED ON SUBJECT PROJECT       DRILL UNITS:     ADVANCING TOOLS:     AUTOMATIC       MANUAL     G* CONTINUOUS FLIGHT AUGER     -N     -N       CME-550     HARD FACED FINGER BITS     -N     -N       VANE SHEAR TEST     CASING     W/ ADVANCER     POST HOLE DIGGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HARD       EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.         MEDIUM       CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.<br>CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.         SOFT       CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.         SOFT       CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.         SOFT       CAN BE EXCAVATED IN STALL CHIPS TO SEVERAL<br>INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN<br>PIECES CAN BE BROKEN BY FINGER PRESSURE.         VERY       CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH<br>SOFT         OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY<br>FINGERNAIL.         FRACTURE SPACING       THICKLY BEDDED         VERY WIDE       MORE THAN 10 FEET         VERY WIDE       MORE THAN 10 FEET         VERY WIDE       3 TO 10 FEET         VERY THINLY BEDDED       1.15 - 4 FEET         VERY CLOSE       1 TO 3 FEET         VERY THINLY BEDDED       0.36 - 1.5 FEET         VERY CLOSE       LESS THAN 0.16 FEET         VERY THINLY BEDDED       0.39 FEET         VERY CLOSE       LESS THAN 0.16 FEET         VERY CLOSE                                 | OR SLIP PLANE.         STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF         A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL         WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL         TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.         STRATA CORE RECOVERY (SREC). TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY         TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. <u>STOPSOLL (TS.)</u> - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.         BENCH MARK:       ELEVATION: FEET                                                                                                                |
| CRAIN     MM     305     75     2.0     0.25     0.05     0.005       SIZE     IN.     12     3     SOIL MOISTURE     CORRELATION OF TERMS       SOIL     MOISTURE SCALE<br>(ATTERBERG LIMITS)     FIELD MOISTURE<br>DESCRIPTION     GUIDE FOR FIELD MOISTURE DESCRIPT<br>GUIDE FOR FIELD MOISTURE DESCRIPTION       LL<br>PLASTIC     LIDUID LIMIT     - SATURATED -<br>(SAT.)     USUALLY LIQUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB       PLASTIC     PLASTIC LIMIT     - WET - (W)     SEMISOLID; REQUIRES DRYING TO<br>ATTAIN OPTIMUM MOISTURE       OM     OPTIMUM MOISTURE<br>SHRINKAGE LIMIT     - MOIST - (M)     SOLID; AT OR NEAR OPTIMUM MOISTURE       OM     OPTIMUM MOISTURE<br>SHRINKAGE LIMIT     - MOIST - (M)     SOLID; AT OR NEAR OPTIMUM MOISTURE       OM     OPTIMUM MOISTURE<br>SHRINKAGE LIMIT     - DRY - (D)     REQUIRES ADDITIONAL WATER TO<br>ATTAIN OPTIMUM MOISTURE       NON PLASTIC     0-5     VERY LOW     SLIGHT       NON PLASTIC     6-15     SLIGHT       MODERATELY PLASTIC     6-55     VERY LOW       HIGHLY PLASTIC     26 OR MORE     HIGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AR - AUGER REFUSAL     MED MEDIUM     VST - VANE SHEAR TEST       BT - BORING TERMINATED     MICA MICACEOUS     WEA WEATHERED       CL CLAY     MOD MODERATELY     - UNIT WEIGHT       CPT - CONE PENETRATION TEST     DR ORGANIC     ORG ORGANIC       DMT - DILATOMETER TEST     PM - NON PLASTIC     - SAMPLE ABBREVIATIONS       DMT - DILATOMETER TEST     PM - PRESSUREMETER TEST     SAMPLE ABBREVIATIONS       DPT - DYNAMIC PENETRATION TEST     SAP SAPROLITIC     S - BULK       e - VOID RATIO     SL SILT, SILTY     ST - SHELBY TUBE       F - FINE     SL SLICHTLY     RS - ROCK       FRAC FRACTURED, FRACTURES     TCR - TRICONE REFUSAL     RT - RECOMPACTED TRIAXIAL       FRACS, - FRAGMENTS     /// V - VERY     RS - ROCK       HI HIGHLY     V - VERY     RATIO       CME - 45C     CLAY BITS     AUVANCING TOOLS:       MILL UNITS:     ADVANCING TOOLS:     HAMMER TYPE:       CME - 550     B HOLLOW AUGERS     -N       WANE SHEAR TEST     CASING     // ADVANCER       VANE SHEAR TEST     CASING     // ADVANCER       MAND TOOLS:     HAND AUGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HARD       EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.         MEDIUM       CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.<br>CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.         SOFT       CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.         SOFT       CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.         SOFT       CAN BE EXCAVATED IN STALL CHIPS TO YENGEN PRESSURE.         VERY       CAN BE BROKEN BY FINGER PRESSURE.         VERY       CAN BE BROKEN BY FINGER PRESSURE.         VERY       CAN BE CARVED WITH NUFE: CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH<br>SOFT         OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY<br>FINGERNAIL.         FRACTURE       SPACING         YERY WIDE       MORE THAN 10 FEET         VERY WIDE       MORE THAN 10 FEET         VERY WIDE       A TO 19 FEET         MODERATELY CLOSE       1 TO 3 FEET         VERY THINLY BEDDED       1.16 - 4 FEET         VERY CLOSE       LESS THAN 0.16 FEET         VERY THINLY BEDDED       0.308 - 0.03 FEET         THICKLY LAMINATED       0.008 FEET         THINLY LAMINATED                                                                          | OR SLIP PLANE.         STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF         A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL         WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL         TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.         STRATA CORE RECOVERY (SREC). TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY         TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. <u>STOPSOLL (TS.)</u> - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.         BENCH MARK:       ELEVATION: FEET                                                                                                                |
| CRAIN         MM         305         75         2.0         0.25         0.05         0.005           SIZE         IN.         12         3         SOIL         MOISTURE         CORRELATION         OF TERMS           SOIL         MOISTURE SCALE<br>(ATTERBERG LIMITS)         FIELD         MOISTURE<br>DESCRIPTION         GUIDE         FOR FIELD         MOISTURE DESCRIPT           LL<br>PLASTIC         LIDUID         LIMIT         - SATURATED         USUALLY         LIDUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB           PLASTIC         PLASTIC         - SATURATED         USUALLY         LIDUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB           OM         OPTIMUM MOISTURE<br>SL         - WET - (W)         SEMISOLID; REQUIRES DRYING TO<br>ATTAIN OPTIMUM MOISTURE           OM         OPTIMUM MOISTURE<br>SL         SHRINKAGE LIMIT         - MOIST - (M)         SOLID; AT OR NEAR OPTIMUM MOISTURE           ORY - (D)         REQUIRES ADDITIONAL WATER TO<br>ATTAIN OPTIMUM MOISTURE         - DRY - (D)         REQUIRES ADDITIONAL WATER TO<br>ATTAIN OPTIMUM MOISTURE           PLASTIC         0-5         VERY LOW         SLIGHT         VERY LOW           SLIGHTLY PLASTIC         6-15         SLIGHT         VERY LOW           SLIGHTLY PLASTIC         6-15         MOIDUM         VERY LOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AR - AUGER REFUSAL     MED MEDIUM     VST - VANE SHEAR TEST       BT - BORING TERMINATED     MICA MICACEOUS     WEA WEATHERED       CL CLAY     MOD MODERATELY     V. ONT - VINE VEIGHT       CPT - CONE PENETRATION TEST     NP - NON PLASTIC     V. ONT - VINT WEIGHT       DM - OILATOMETER TEST     PM - NON PLASTIC     V. ONT - VINT WEIGHT       DM - OILATOMETER TEST     PM - PRESSUREMETER TEST     SAMPLE ABBREVIATIONS       DP - DYNAMIC PENETRATION TEST     SAP SAPROLITIC     S - BULK       e - VOID RATIO     SL SILT, SILTY     ST - SHELBY TUBE       F - FINE     SL SLICHTLY     RS - ROCK       FRAC FRACTURED, FRACTURES     TCR - TRICONE REFUSAL     RT - RECOMPACTED TRIAXIAL       FRACS, - FRAGMENTS     W - VERY     RS - ROCK       HI HIGHLY     V - VERY     RATIO       EOUIPMENT     USED ON     SUBJECT       DRILL UNITS:     ADVANCING TOOLS:     HAMMER TYPE:       CME-550     G CONTINUOUS FLIGHT AUGER     -N       MARD FACED FINGER BITS     -N     -N       VANE SHEAR TEST     CASING     W/ ADVANCER       PORTABLE HOIST     TRICONE     'STEEL TEETH       MAND AUGER     SOUNDING ROD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HARD       EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.         MEDIUM       CAN BE CORDOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.<br>HARD       CAN BE CORDOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.<br>CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.         SOFT       CAN BE CROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS<br>FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN<br>PIECES CAN BE BROKEN BY FINGER PRESSURE.         VERY       CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES I INCH<br>SOFT         OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY<br>FINGERNAIL.         FRACTURE SPACING       BEDDING         VERY WIDE       MORE THAN 10 FEET         VIDE       MORE THAN 10 FEET         WIDE       3 TO 10 FEET         MODERATELY CLOSE       1 TO 3 FEET         VERY VILOS       LESS THAN 0.16 FEET         VERY CLOSE       LESS THAN 0.16 FEET         VERY LOSE       LESS THAN 0.16 FEET         VERY CLOSE       LESS THAN 0.16 FEET         VERY CLOSE       LESS THAN 0.16 FEET                                           | OR SLIP PLANE.         STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF         A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL         WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL         TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.         STRATA CORE RECOVERY (SREC). TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY         TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. <u>STOPSOLL (TS.)</u> - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.         BENCH MARK:       ELEVATION: FEET                                                                                                                |
| CRAIN     MM     305     75     2.0     0.25     0.05     0.005       SIZE     IN.     12     3     SOIL MOISTURE     CORRELATION OF TERMS       SOIL     MOISTURE SCALE<br>(ATTERBERG LIMITS)     FIELD MOISTURE<br>DESCRIPTION     GUIDE FOR FIELD MOISTURE DESCRIPT<br>GUIDE FOR FIELD MOISTURE DESCRIPTION       LL<br>PLASTIC     LIDUID LIMIT     - SATURATED -<br>(SAT.)     USUALLY LIQUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB       PLASTIC     PLASTIC LIMIT     - WET - (W)     SEMISOLID; REQUIRES DRYING TO<br>ATTAIN OPTIMUM MOISTURE       OM     OPTIMUM MOISTURE<br>SL     - MOIST - (M)     SOLID; AT OR NEAR OPTIMUM MOISTURE       OM     OPTIMUM MOISTURE<br>SL     - MOIST - (M)     SOLID; AT OR NEAR OPTIMUM MOISTURE       OM     OPTIMUM MOISTURE<br>SLIGHTLY PLASTIC     0-5     VERY LOW<br>ATTAIN OPTIMUM MOISTURE       NON PLASTIC     0-5     VERY LOW<br>SLIGHTLY PLASTIC     0-5     SLIGHT       MODERATELY PLASTIC     0-5     MEDIUM<br>HIGHLY PLASTIC     0-5     MEDIUM<br>HIGH       DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AR - AUGER REFUSAL     MED MEDIUM     VST - VANE SHEAR TEST       BT - BORING TERMINATED     MICA MICACEOUS     WEA WEATHERED       CL CLAY     MOD MODERATELY     - UNIT WEIGHT       CPT - CONE PENETRATION TEST     DR ORGANIC     ORG ORGANIC       DMT - DILATOMETER TEST     PM - NON PLASTIC     - SAPROLITIC       DMT - DILATOMETER TEST     PM - PRESSUREMETER TEST     SAMPLE ABBREVIATIONS       DPT - DYNAMIC PENETRATION TEST     SAP SAPROLITIC     S - BULK       e - VOID RATIO     SL SILT, SILTY     ST - SHELBY TUBE       F - FINE     SL SLICHLY     RS - ROCK       FRAC FRACTURED, FRACTURES     TCR - TRICONE REFUSAL     RT - RECOMPACTED TRIAXIAL       FRACS, - FRAGMENTS     /// OVANCER     CBR - CALIFORNIA BEARING       HI HIGHLY     V - VERY     RS - ROCK       RATIO     EOUIPMENT     USED ON     SUBJECT       DRILL UNITS:     ADVANCING TOOLS:     HAMMER TYPE:       CME-550     G CONTINUOUS FLIGHT AUGER     CORE SIZE:       MARD FACED FINGER BITS     -N    N       VANE SHEAR TEST     CASING     // ADVANCER       MAND AUGER     SOUNDING ROD     SOUNDING ROD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HARD       EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.         MEDIUM       CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.<br>CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.         SOFT       CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.         SOFT       CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.         SOFT       CAN BE CROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS<br>FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN<br>PIECES CAN BE BROKEN BY FINGER PRESSURE.         VERY       CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH<br>SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY<br>FINGERNAIL.         FRACTURE SPACING       THERM         SPACING       TERM         VERY WIDE       MORE THAN 10 FEET         VERY WIDE       MORE THAN 10 FEET         VERY VIDE       MORE THAN 0.16 FEET         VERY VIDE       JI O 19 FEET         VERY CLOSE       LESS THAN 0.16 FEET         VERY THINLY BEDDED       0.40 FEET         MODERATELY CLOSE       LESS THAN 0.16 FEET         VERY THINLY MEDOED       0.40 FEET         THINLY BEDDED | OR SLIP PLANE.         STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF         A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL         WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL         TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.         STRATA CORE RECOVERY (SREC). TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY         TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. <u>STOPSOLL (TS.)</u> - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.         BENCH MARK:       ELEVATION: FEET                                                                                                                |
| CRAIN     MM     305     75     2.0     0.25     0.05     0.005       SIZE     IN.     12     3     SOIL MOISTURE     CORRELATION OF TERMS       SOIL     MOISTURE SCALE<br>(ATTERBERG LIMITS)     FIELD MOISTURE<br>DESCRIPTION     GUIDE FOR FIELD MOISTURE DESCRIPT<br>(ATTERBERG LIMITS)     FIELD MOISTURE<br>DESCRIPTION     GUIDE FOR FIELD MOISTURE DESCRIPT<br>(SAT,)       PLASTIC     LIU<br>(PLASTIC     FIELD MOISTURE<br>DESCRIPTION     USUALLY LIQUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB<br>(PI)       OM     OPTIMUM MOISTURE<br>SL     SHRINKAGE LIMIT     - SATURATED -<br>(W)     USUALLY LIQUID; VERY WET, USUALLY<br>FROM BELOW THE GROUND WATER TAB<br>WET - (W)       OM     OPTIMUM MOISTURE<br>SL     - WET - (W)     SEMISOLID; REQUIRES DRYING TO<br>ATTAIN OPTIMUM MOISTURE       OM     OPTIMUM MOISTURE<br>SLIGHT     - MOIST - (M)     SOLID; AT OR NEAR OPTIMUM MOISTURE       ORY - (D)     REQUIRES ADDITIONAL WATER TO<br>ATTAIN OPTIMUM MOISTURE     - DRY - (D)     REQUIRES ADDITIONAL WATER TO<br>ATTAIN OPTIMUM MOISTURE       NON PLASTIC     0-5     SLIGHT     0-5     SLIGHT       NON PLASTIC     0-5     SLIGHT       MODERATELY PLASTIC     6-15     SLIGHT       HIGH     26 OR MORE     HIGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AR - AUGER REFUSAL     MED MEDIUM     VST - VANE SHEAR TEST       BT - BORING TERMINATED     MICA MICACEOUS     WEA WEATHERED       CL CLAY     MOD MODERATELY     - UNIT WEIGHT       CPT - CONE PENETRATION TEST     DR ORGANIC     ORG ORGANIC       DMT - DILATOMETER TEST     PM - NON PLASTIC     - SAMPLE ABBREVIATIONS       DMT - DILATOMETER TEST     PM - PRESSUREMETER TEST     SAMPLE ABBREVIATIONS       DPT - DYNAMIC PENETRATION TEST     SAP SAPROLITIC     S - BULK       e - VOID RATIO     SL SILT, SILTY     ST - SHELBY TUBE       F - FINE     SL SLICHLY     RS - ROCK       FRAC FRACTURED, FRACTURES     TCR - TRICONE REFUSAL     RT - RECOMPACTED TRIAXIAL       FRACS, - FRAGMENTS     /// OVINT WEIGHT     USED ON       VANE SHEAR TEST     DVANCING TOOLS:     HAMMER TYPE:       CME-550     B' HOLLOW AUGERS     -N       MARD FACED FINGER BITS     -N     -N       VANE SHEAR TEST     CASING     // ADVANCER       MAND AUGER     SOUNDING ROD     SOUNDING ROD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HARD       EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED<br>BY MODERATE BLOWS.         MEDIUM       CAN BE CORDOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.<br>HARD       CAN BE CORDOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.<br>CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE<br>POINT OF A GEOLOGIST'S PICK.         SOFT       CAN BE CROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS<br>FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN<br>PIECES CAN BE BROKEN BY FINGER PRESSURE.         VERY       CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES I INCH<br>SOFT         OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY<br>FINGERNAIL.         FRACTURE SPACING       BEDDING         VERY WIDE       MORE THAN 10 FEET         VIDE       MORE THAN 10 FEET         WIDE       3 TO 10 FEET         MODERATELY CLOSE       1 TO 3 FEET         VERY VILOS       LESS THAN 0.16 FEET         VERY CLOSE       LESS THAN 0.16 FEET         VERY LOSE       LESS THAN 0.16 FEET         VERY CLOSE       LESS THAN 0.16 FEET         VERY CLOSE       LESS THAN 0.16 FEET                                           | OR SLIP PLANE.         STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF         A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL         WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL         TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.         STRATA CORE RECOVERY (SREC). TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY         TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.         STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL         LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. <u>STOPSOLL (TS.)</u> - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.         BENCH MARK:       ELEVATION: FEET                                                                                                                |

| PROJECT | REFERENCE NO. |
|---------|---------------|
| BR-     | -0002         |

6

## ATTACHMENT A SOIL TEST BORING LOGS PROVIDED BY THE NCDOT

## GEOTECHNICAL BORING REPORT BORE LOG

| 14/20                                                        | 0700         | 244                |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          |             |                                                   |                            |       | 14/200                                                                                                                                         | 07000                 | 4.4           |        |      |        | <b>D</b> DD 1 | 0000 | I       |                | v     |  |
|--------------------------------------------------------------|--------------|--------------------|--------|----------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|-----------|---------|----------|-------|-----|----------|-------------|---------------------------------------------------|----------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|--------|------|--------|---------------|------|---------|----------------|-------|--|
|                                                              | 67002        |                    | POF    |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | GEC         | DLOGIST Johnson, C. D.                            | GROUND WTR                 | (#)   |                                                                                                                                                | 67002                 |               |        |      |        | P BR-C        |      | INT NC1 |                |       |  |
|                                                              | ING NO.      |                    |        |                | G IN EXISTING PAVEMENT NC194 FOR PROPOSED RWAL STATION 15+52 OFFSET 6 ft RT |                                                                                                                            |          |          |          |           |         |          |       | -   |          |             | ING NO.                                           |                            |       | ang ir                                                                                                                                         |                       |               |        |      | 94 FUR |               |      |         |                |       |  |
|                                                              | LAR EL       |                    |        | <del>f</del> + |                                                                             |                                                                                                                            |          | H 23.    | 7 #      |           |         |          | 997,4 | 40  |          |             |                                                   |                            |       |                                                                                                                                                | LAR ELI               |               |        | F4   |        |               |      |         |                |       |  |
|                                                              |              |                    |        |                |                                                                             |                                                                                                                            |          |          |          |           | NOR     |          |       |     |          |             | 1                                                 |                            |       |                                                                                                                                                |                       |               |        |      |        |               |      |         |                |       |  |
|                                                              |              |                    |        | E AFC          |                                                                             | I4 CME - 45C 92% 07/31/2017         DRILL METHOD           START DATE         05/29/19         COMP. DATE         05/29/19 |          |          |          |           |         |          |       |     |          |             |                                                   | IER TYPE Automation        | C     | DRILL RIG/HAMMER EFF./DATE         AFO6744 CME - 45C 92% 07/31/2017           DRILLER         Cheek, D. O.         START DATE         05/29/19 |                       |               |        |      |        |               |      |         |                |       |  |
|                                                              |              |                    |        | ow co          |                                                                             |                                                                                                                            | DATE     |          |          | R FOOT    |         | IP. DA   | SAMP  |     |          |             | FACE WATER DEPTH N                                | /A                         |       | -                                                                                                                                              |                       |               | 1      | W CO |        |               |      | LOWS P  |                |       |  |
| ELEV<br>(ft)                                                 | ELEV<br>(ft) | DEPTH<br>(ft)      | 0.5ft  | 0.5ft          |                                                                             | 0                                                                                                                          | 2        | 25       | 50       |           | 75      | 100      | NO.   | 1.7 | 0<br>I G |             | SOIL AND ROCK DES                                 | CRIPTION<br>DEPT           |       | ELEV<br>(ft)                                                                                                                                   | DRIVE<br>ELEV<br>(ft) | DEPT⊦<br>(ft) | ·      | -    | 0.5ft  | 0             | 25   | 50      |                | 75    |  |
|                                                              | ()           |                    |        |                |                                                                             |                                                                                                                            |          |          | I        |           |         |          | -     |     |          |             | (it)                                              | DEFI                       | п (ц) |                                                                                                                                                | (14)                  |               |        |      |        |               | I    |         |                |       |  |
| 2705                                                         |              |                    |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          |             |                                                   |                            |       | 2695                                                                                                                                           |                       |               |        |      |        |               |      |         |                |       |  |
| 2705                                                         |              | ‡                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       | 2095                                                                                                                                           | -                     | -             |        |      |        |               |      |         |                |       |  |
|                                                              |              | ‡                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | È.          |                                                   |                            |       |                                                                                                                                                |                       | -             |        |      |        |               |      | · · · · | · · ·<br>· · · | •   • |  |
| 2700                                                         | -            | <u>†</u>           |        |                |                                                                             | ╎┤┲╼╸                                                                                                                      |          |          |          |           |         |          |       |     |          | 2,700.:     | 2 GROUND SURF<br>ROADWAY EMBAN                    |                            | 0.0   | 2690                                                                                                                                           | 2,690.8               | - 3.2         | 2      | 3    | 6      | · · ·         |      |         |                | ·     |  |
|                                                              | 0.007.0      | ‡                  |        |                |                                                                             | ::                                                                                                                         | · · ·    | <br>     |          |           | .       |          |       |     | Ľ        | ¢.          | Brown, micaceous sandy S<br>of clay and some rock | II T with a trace          |       |                                                                                                                                                | 2.687.0               | -             |        |      |        |               |      | · · · · | · · ·<br>· · · |       |  |
| 2695                                                         | 2,697.0      | <u> </u>           | 3      | 2              | 2                                                                           | .                                                                                                                          | · · ·    | · · ·    |          | · · · · · |         |          |       |     | Ľ        | F           | of clay and some fock                             | liagments                  |       |                                                                                                                                                | 2.687.0               | - 7.0         | 60/0.1 |      |        |               |      |         |                | -     |  |
| 2095                                                         | -            | ‡                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     | Ľ        | F           |                                                   |                            |       |                                                                                                                                                |                       | -             |        |      |        |               |      |         |                |       |  |
|                                                              | 2,692.0      | 8.2                |        | 2              | 4                                                                           | <u>i</u> :                                                                                                                 | · · ·    |          |          |           |         |          |       |     |          | 2,692.      |                                                   | <u> </u>                   | 8.2   |                                                                                                                                                |                       | _             |        |      |        |               |      |         |                |       |  |
| 2690                                                         |              | ‡                  |        |                | 4                                                                           |                                                                                                                            | · · ·    |          |          |           |         |          |       |     |          | L           | SAPROLITE<br>Brown, very micaceous SIL            |                            |       |                                                                                                                                                | · -                   | -             |        |      |        |               |      |         |                |       |  |
|                                                              | 0.007.0      | ‡                  |        |                |                                                                             | ·<br>      ·                                                                                                               | · · ·    | · · ·    |          | · · · · · | ·   - · |          |       |     |          | F           | clay                                              |                            |       |                                                                                                                                                | · ·                   |               |        |      |        |               |      |         |                |       |  |
| 2685                                                         | 2,687.0      | $\frac{13.2}{1}$   | 2      | 3              | 3                                                                           | <b> </b> 6                                                                                                                 | · · ·    | · · ·    |          | · · · · · |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                |                       | -             |        |      |        |               |      |         |                |       |  |
| 2005                                                         | -            | ‡                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                |                       | -             |        |      |        |               |      |         |                |       |  |
|                                                              | 2,682.0      | 18.2               | 1      | 2              | 2                                                                           |                                                                                                                            | · · ·    | · · ·    |          | · · · · · |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                |                       | -             |        |      |        |               |      |         |                |       |  |
| 2680                                                         |              | ŧ                  | '      |                | 2                                                                           |                                                                                                                            |          |          |          |           |         |          |       |     |          | È.          |                                                   |                            |       |                                                                                                                                                | -                     | -             |        |      |        |               |      |         |                |       |  |
|                                                              | 0.077.0      | ‡                  |        |                |                                                                             |                                                                                                                            | · · ·    | <br>     |          | · · · · · | .       |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                |                       | -             |        |      |        |               |      |         |                |       |  |
|                                                              | 2,677.0      | + <u>23.2</u><br>+ | 100/0. | 5              |                                                                             | ╎╘∶                                                                                                                        | <u> </u> | <u> </u> | <u> </u> | <u></u>   |         | <u> </u> | -     |     | 1942     | 2,676.<br>- | WEATHERED R                                       | OCK                        | 23.6  |                                                                                                                                                |                       | -             |        |      |        |               |      |         |                |       |  |
|                                                              | -            | ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           | Weathered scl<br>Boring Terminated at Eleva       | nist<br>tion 2,676.5 ft IN |       |                                                                                                                                                | -                     | -             |        |      |        |               |      |         |                |       |  |
|                                                              |              | ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           | WR                                                |                            |       |                                                                                                                                                |                       | -             |        |      |        |               |      |         |                |       |  |
|                                                              | -            | ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                | -                     | -             |        |      |        |               |      |         |                |       |  |
|                                                              |              | ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                |                       | -             |        |      |        |               |      |         |                |       |  |
|                                                              |              | ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                |                       | -             |        |      |        |               |      |         |                |       |  |
|                                                              | -            | ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                | -                     | F             |        |      |        |               |      |         |                |       |  |
|                                                              |              | ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                |                       | -             |        |      |        |               |      |         |                |       |  |
|                                                              | -            | Ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                | -                     | F             |        |      |        |               |      |         |                |       |  |
|                                                              |              | Ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                |                       | -             |        |      |        |               |      |         |                |       |  |
| 1                                                            |              | Ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                |                       | F             |        |      |        |               |      |         |                |       |  |
| אסטטן מטור מסמרד מאטער איין דאזור בטורוטרנט, טר אי אין מטו ש | -            | Ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                |                       | F             |        |      |        |               |      |         |                |       |  |
| 2                                                            |              | Ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                |                       | -             |        |      |        |               |      |         |                |       |  |
| ż                                                            | -            | Ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                | -                     | -             |        |      |        |               |      |         |                |       |  |
| , <br>                                                       |              | Ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                |                       | F             |        |      |        |               |      |         |                |       |  |
| i                                                            |              | Ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                |                       | F             |        |      |        |               |      |         |                |       |  |
| 1                                                            | -            | Ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                |                       | F             |        |      |        |               |      |         |                |       |  |
| 5                                                            |              | Ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                |                       | F             |        |      |        |               |      |         |                |       |  |
| 1                                                            | -            | ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                | -                     | -             |        |      |        |               |      |         |                |       |  |
| 1                                                            |              | ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                |                       | -             |        |      |        |               |      |         |                |       |  |
|                                                              |              | ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                | -                     | -             |        |      |        |               |      |         |                |       |  |
| 1                                                            | -            | ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                | -                     | -             |        |      |        |               |      |         |                |       |  |
|                                                              |              | ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                |                       | -             |        |      |        |               |      |         |                |       |  |
| !                                                            | -            | ‡                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       | 1                                                                                                                                              | -                     | F             |        |      |        |               |      |         |                |       |  |
|                                                              |              | ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                |                       | F             |        |      |        |               |      |         |                |       |  |
| ļ                                                            |              | ŧ                  |        |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     |          | F           |                                                   |                            |       |                                                                                                                                                | .                     | F             |        |      |        |               |      |         |                |       |  |
| - L                                                          | -            | <u> </u>           | i      |                |                                                                             |                                                                                                                            |          |          |          |           |         |          |       |     | _        |             |                                                   |                            |       | ۱ <u> </u>                                                                                                                                     |                       | L             |        |      |        |               |      |         |                |       |  |

#### SHEET 13

| ASHE       |             |               | GEOLOGIST Johnson, (                          | C. D.             |              |           |
|------------|-------------|---------------|-----------------------------------------------|-------------------|--------------|-----------|
| PROPOSED R | WAL         |               |                                               |                   | GROUNE       | OWTR (ft) |
| OFFSET 5 f | t RT        |               |                                               |                   | 0 HR.        | 4.4       |
| NORTHING   | 997,489     |               | EASTING 1,261,077                             |                   | 24 HR.       | FIAD      |
| 0          | RILL METHOD | H.S.          | Augers                                        | HAMME             | R TYPE       | Automatic |
| COMP. DATE | 05/29/19    |               | SURFACE WATER DEPT                            | H N/A             | 4            |           |
| 75 100     | NO. MOI     | L<br>O<br>G   | SOIL AND ROC                                  | K DESC            | RIPTION      |           |
|            | Z MOT       |               |                                               |                   |              |           |
|            |             |               | 2,694.0 GROUND<br>ROADWAY E<br>Roadway e      | MBANK             | MENT         | 0.0       |
| · · · · ·  |             |               | 2,691.0<br>SAPF<br>Brown, micaceous s         | ROLITE<br>sandy S | ILT with lar | 3.0<br>ge |
| · · · ·    |             |               | 2,687.0                                       |                   |              | 7.0       |
|            |             |               | CRYSTAL<br>Crystalline<br>Boring Terminated a | rock (sc          | chist)       |           |
|            |             | -<br> -<br> - |                                               |                   |              |           |

## GEOTECHNICAL BORING REPORT BORE LOG

|       | 67002         |                        |         |        |         |                          | R-0002       |              |         |        | Y ASH          |        |        |             |            | GEO                             | LOGIST | Johnso               | n, C. D.                 | 1                   |            |                                | WBS 67002.1.1<br>SITE DESCRIPTION BORING IN E |           |       |        |          |                 | 8R-0002        |           |         |         |
|-------|---------------|------------------------|---------|--------|---------|--------------------------|--------------|--------------|---------|--------|----------------|--------|--------|-------------|------------|---------------------------------|--------|----------------------|--------------------------|---------------------|------------|--------------------------------|-----------------------------------------------|-----------|-------|--------|----------|-----------------|----------------|-----------|---------|---------|
| SITE  | DESCR         | IPTION                 | BOF     | RING I | N EXIS  | STING                    | PAVE         | MENT         | NC19    | 94 FOR | PROP           | OSED   | RWAL   |             |            |                                 |        |                      |                          | SITE                | DESCR      | RIPTION                        | BOF                                           | ring i    |       |        | 2194 FOF |                 |                |           |         |         |
| BORI  | NG NO.        | RW1                    | -3      |        | S       | TATIC                    | <b>DN</b> 17 | 7+47         |         |        | OFFS           | SET C  | ft RT  |             |            | ALIG                            | NMENT  | Ĺ                    |                          | 0 HR.               | 18.8       | BOR                            | ing no.                                       | RW1       | -4    |        | S        | TATI            | <b>ON</b> 18   | +44       |         | OFI     |
| COLI  | AR ELI        | <b>EV.</b> 2,          | 688.6   | ft     | Т       | OTAL                     | DEPT         | <b>H</b> 22. | 0 ft    |        | NORT           | HING   | 997,54 | 45          |            | EAS                             | TING 1 | ,261,157             |                          | 24 HR.              | FIAD       | <b>COLLAR ELEV.</b> 2,685.1 ft |                                               |           |       | Т      | OTA      | t               | NO             |           |         |         |
| DRILL | RIG/HAN       | IMER EF                | FF./DAT | E AFC  | 06744 ( | CME - 45C 92% 07/31/2017 |              |              |         |        |                |        |        |             | ER TYPE Au | utomatic                        | DRILL  | RIG/HAN              | MMER E                   | FF./DAT             | E AF       | 06744 (                        | 6744 CME - 45C 92% 07/31/2017                 |           |       |        |          |                 |                |           |         |         |
| DRIL  | L <b>ER</b> C |                        |         |        | S       | TART                     | DATE         | 05/2         | 9/19    |        | СОМ            | P. DAT | E 05/2 | 29/19       |            | SURF                            | FACE W | ATER DE              | EPTH N/                  | 4                   |            | DRIL                           | LER C                                         |           | D. O. |        | S        | TAR             | T DATE         | 05/29/    | 9       | CO      |
| ELEV  | DRIVE<br>ELEV | DEPTH                  | H BLC   | w co   | 1       |                          |              |              |         | R FOO  |                |        | SAMP.  | ▼∕          |            |                                 | SC     | DIL AND R            | OCK DES                  | CRIPTION            |            | ELEV                           | DRIVE<br>ELEV                                 | DEPTH     | ·     | ow co  | -        |                 |                |           | PER FOO |         |
| (ft)  | (ft)          | (ft)                   | 0.5ft   | 0.5ft  | 0.5ft   | 0                        | 2            | 25           | 50      |        | 75             | 100    | NO.    | мо          | I G        | ELEV. (                         |        | -                    |                          |                     | DEPTH (ft) | (ft)                           | (ft)                                          | (ft)      | 0.5ft | 0.5ft  | 0.5ft    | 0               | 2              | 5         | 50      | 75<br>I |
|       |               |                        |         |        |         |                          |              |              |         |        |                |        |        |             |            |                                 |        |                      |                          |                     |            |                                |                                               |           |       |        |          |                 |                |           |         |         |
| 2690  | _             | Ļ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | _                               |        |                      |                          |                     |            | 2690                           |                                               | Ļ         |       |        |          |                 |                |           |         |         |
| 1     | -             | <u> </u>               |         |        |         | ++ - 1                   |              | · · ·        |         |        |                |        |        |             |            | _ 2,688.6<br>_                  |        |                      | IND SURF                 |                     | 0.0        |                                |                                               | ŧ         |       |        |          |                 |                |           |         |         |
| 0005  | -             | ŧ                      |         |        |         |                          | <br>         |              |         |        |                |        |        |             | L          | -<br>2,685.6                    |        | Roadw                | ay embank                | ment                | 3.0        | 0005                           |                                               | ŧ         |       |        |          |                 |                |           |         |         |
| 2685  | 2,685.0       | 3.6                    | 2       | 3      | 6       |                          |              |              |         |        |                |        |        |             |            | _                               |        |                      | APROLITE                 | us sandy SIL        |            | 2685                           | -                                             | <u>+</u>  |       |        |          | <del>   .</del> | 1              |           |         |         |
|       | -             | ŧ                      |         |        |         | .]                       | [°           |              |         |        |                | : :    |        |             |            |                                 | 2.0    | with r               | ock fragme               | nts                 |            |                                | 2,681.8                                       | - 3.3     |       |        |          | :               |                | · · · ·   |         |         |
| 2680  | 2.680.0       | 8.6                    |         |        |         | ·                        |              |              |         |        |                |        |        |             |            | _                               |        |                      |                          |                     |            | 2680                           |                                               | t         | 7     | 6      | 4        | 1Ŀ              | ●10 ·          |           |         |         |
|       | -             | ł                      | 3       | 4      | 6       |                          | 10 -         |              |         |        |                |        |        |             |            |                                 |        |                      |                          |                     |            |                                |                                               | Ŧ         |       |        |          | 1 1             |                | · · · ·   |         |         |
|       | -             | Ŧ                      |         |        |         |                          |              |              |         |        | .              |        |        |             |            | -                               |        |                      |                          |                     |            |                                | 2,676.8                                       | 8.3       | + 1   | 1      | 2        | -  /            | • • •          |           |         | .   .   |
| 2675  | 2,675.0       | 675.0 13.6 8 11 89/0.3 |         |        |         |                          |              |              |         |        |                |        |        | 2,673.8     |            |                                 |        |                      | 14.8                     | 2675                | -          | Ŧ                              |                                               | ·         |       |        |          |                 |                | .   .     |         |         |
|       | -             |                        |         |        |         |                          |              |              | · · · · |        |                |        |        | <b>9</b> 77 | 2,672.8    |                                 |        | HERED RO             |                          | 15.8                |            | 2,671.8                        | Ŧ                                             |           |       |        |          | •••             |                |           |         |         |
| 2670  | 2 670 0       |                        |         |        |         |                          |              |              |         |        |                |        |        |             | -          | Weathered rock (sc<br>SAPROLITE |        |                      |                          | 2670                | 2,071.0    | + 13.3                         | 1                                             | 2         | 1     | -      |          | · · · · ·       |                | :   :     |         |         |
|       | -2,070.0      | + 10.0                 | 17      | 24     | 47      |                          |              |              |         | (      | •<br>•71 · ·   |        |        |             |            |                                 | Brown  | -white-gra<br>with r | y, micaceo<br>ock fragme | us sandy SIL<br>nts | T          | 2010                           | -                                             | ŧ         |       |        |          |                 |                |           |         |         |
|       | 2.666.7       | 21.9                   |         |        |         |                          |              |              |         |        | ↓<br>↓ <u></u> |        |        |             |            | - 2,666.6                       |        |                      |                          |                     | 22.0       |                                | 2,666.8                                       | +<br>18.3 | 5     | 41     | 59/0.3   |                 | · · ·          | · · · · · |         |         |
|       | -             | ŧ                      | 60/0.1  | 1      |         |                          |              |              |         |        |                | •      |        |             |            | -                               |        |                      | TALLINE R                |                     |            | 2665                           | -                                             | ŧ         |       | 41     | 59/0.3   | °               |                |           |         | <u></u> |
|       | -             | ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               | Boring |                      | ed at Eleva<br>ON CR     | tion 2,666.6        | ft         |                                |                                               | ŧ         |       |        |          |                 | · · ·<br>· · · | · · · · · |         |         |
|       | -             | ţ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                | 2,661.8                                       | 23.3      | 39    | 61/0.4 | 1        | ļļ ·            | • • •          |           |         | • •     |
|       | -             | ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                | -                                             | ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                |                                               | ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                | _                                             | ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | t                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                |                                               | ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                |                                               | ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | ł                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                | -                                             | ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | Ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | _                               |        |                      |                          |                     |            |                                |                                               | Ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | Ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                |                                               | Ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | Ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                | -                                             | Ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | Ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                |                                               | Ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                | -                                             | ŧ         |       |        |          |                 |                |           |         |         |
| I     | -             | ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                |                                               | ŧ         |       |        |          |                 |                |           |         |         |
| ,     | -             | ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                |                                               | ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                | -                                             | ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                |                                               | ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | t                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                | _                                             | ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                |                                               | ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | ł                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | _                               |        |                      |                          |                     |            |                                |                                               | Ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | Ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | _                               |        |                      |                          |                     |            |                                | -                                             | Ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | Ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                |                                               | Ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                |                                               | ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                | -                                             | ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                |                                               | ŧ         |       |        |          |                 |                |           |         |         |
|       | -             | t                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | _                               |        |                      |                          |                     |            |                                | -                                             | ŧ         |       |        |          |                 |                |           |         |         |
|       |               | ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | -                               |        |                      |                          |                     |            |                                |                                               | ‡         |       |        |          |                 |                |           |         |         |
|       | -             | ŧ                      |         |        |         |                          |              |              |         |        |                |        |        |             |            | F                               |        |                      |                          |                     |            |                                |                                               | ŧ         |       |        |          |                 |                |           |         |         |
|       | -             |                        |         |        |         | 1                        |              |              |         |        |                |        |        |             |            |                                 |        |                      |                          |                     |            |                                |                                               |           |       |        |          |                 |                |           |         |         |

#### SHEET 14

| T١ | <b>r</b> ASH | E                |     |         |       |        | GEOL                                                                                        | OGIS    | <b>T</b> Johr | nson, (        | C. D.                                   |           |               |
|----|--------------|------------------|-----|---------|-------|--------|---------------------------------------------------------------------------------------------|---------|---------------|----------------|-----------------------------------------|-----------|---------------|
| R  | PROPC        | SED              | ) F | RWAL    |       |        |                                                                                             |         |               |                |                                         | GROUN     | ID WTR (ft)   |
|    | OFFSE        | NORTHING 997,608 |     |         |       |        |                                                                                             |         | ΤL            |                |                                         | 0 HR.     | 19.2          |
|    | NORTI        | HING             | i   | 997,60  | )8    |        | EAST                                                                                        | ING     | 1,261,2       | 32             |                                         | 24 HR.    | FIAD          |
|    |              |                  |     | ORILL M | ethod | N//    | ۰.<br>۹                                                                                     |         |               |                | HAMME                                   | RTYPE     | Automatic     |
|    | COMP         | . DA             | TE  | E 05/2  | 9/19  |        | SURF                                                                                        |         | NATER         | DEPT           | TH N/A                                  | 4         |               |
| т  |              |                  |     | SAMP.   |       | L<br>O | •                                                                                           |         |               |                |                                         | RIPTION   |               |
|    | 75           | 100              |     | NO.     | моі   | G      |                                                                                             |         |               |                |                                         |           |               |
| -  |              |                  |     |         |       |        | 2,685.1                                                                                     | Red     | ROAD          | WAY E          | SURFA<br>SMBANK<br>ightly mi<br>ments a |           | 0.0<br>SILT   |
|    |              |                  |     |         |       |        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |         | with foc      |                |                                         |           | 18.8<br>0 192 |
| -  |              |                  |     |         |       | 10     |                                                                                             |         | Brown r       | SAPF<br>micace | ROLITE                                  | ey SILT   | <u> </u>      |
| •  |              | <br>             |     |         |       |        | -                                                                                           | <u></u> | WE            | EATHE          | RED RC                                  | nO seam   | '<br>s        |
| •  |              | • •              | H   |         |       | 977    | 2,661.1                                                                                     |         |               |                |                                         | on 2,661. | 24.0          |
|    |              |                  |     |         |       |        |                                                                                             |         |               |                |                                         |           |               |

## GEOTECHNICAL BORING REPORT BORE LOG

|               |                       |                                                          |         |        |       |      |             |               |         |       | RE L    |         |    |        | 1                                      |                 |        |
|---------------|-----------------------|----------------------------------------------------------|---------|--------|-------|------|-------------|---------------|---------|-------|---------|---------|----|--------|----------------------------------------|-----------------|--------|
| WBS           | 67002                 | .1.1                                                     |         |        | T     | ΓIP  | BR-0002     | 2             | COUN    | ITY , | ASHE    |         |    |        | GEOLOGIST Johnson, C. D.               |                 |        |
| SITE          | DESCR                 | IPTION                                                   | BOR     | ING IN | I EXI | STIN | NG PAVE     | MENT N        | C194 FC | R PR  | OPOSE   | RWAL    |    |        |                                        | GROUND W        | TR (ft |
| BORI          | NG NO.                | RW1                                                      | 5       |        | S     | STA  | TION 19     | )+35          |         | 0     | FFSET   | 4 ft LT |    |        |                                        | 0 HR.           | 15.    |
| OLL           | AR ELE                | <b>EV.</b> 2,0                                           | 582.8 f | ť      | -   т | гот  | AL DEPT     | <b>H</b> 18.0 | ft      | N     | ORTHING | 997,6   | 72 |        | EASTING 1,261,295                      | 24 HR.          | FIAD   |
|               |                       |                                                          |         |        |       |      | E - 45C 92% |               |         |       |         |         |    | D N//  |                                        | ER TYPE Auton   | natic  |
|               | LER C                 |                                                          |         |        |       |      | RT DATE     |               |         | C     | omp. Da |         | -  |        | SURFACE WATER DEPTH N/A                |                 |        |
| LEV           |                       | DEPTH                                                    |         | W CO   |       |      |             |               | PER FO  |       |         | SAMP.   |    | 1 L T  |                                        |                 |        |
| LEV<br>(ft)   | DRIVE<br>ELEV<br>(ft) | DEPTH<br>(ft)                                            | 0.5ft   | 0.5ft  |       |      | 0 2         | 25            | 50      | 75    | 100     | NO.     | мо | O<br>G | SOIL AND ROCK DESC                     |                 |        |
| $\rightarrow$ | (11)                  |                                                          |         |        |       | ++-  |             | 1             |         | I     |         |         |    |        | ELEV. (ft)                             | Di              | EPTH   |
|               |                       |                                                          |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
| 685           |                       | Ł                                                        |         |        |       |      |             |               |         |       |         |         |    |        | -                                      |                 |        |
|               | -                     |                                                          |         |        |       |      | T           |               |         |       |         |         |    | 1 155  | 2,682.8 GROUND SURFA                   |                 | (      |
| 680           | -                     | Ŧ                                                        |         |        |       |      | <br>        |               |         |       |         |         |    |        | Brown micaceous sandy SIL              | T with a trace  |        |
|               | 2,679.5               | - <u>3.3</u>                                             | 2       | 2      | 2     | -11  | <u> </u>    |               |         |       |         |         |    |        | - of clay, roots, and a fev            | w graveis       |        |
|               | -                     | ŧ                                                        |         |        |       |      | Ţ : : :     |               |         |       |         |         |    | L      |                                        |                 |        |
| 675           | -<br>2.674.5          | L .,                                                     |         |        |       |      | 1           |               |         |       |         |         |    | L      | _                                      |                 |        |
| F             | 2,0/4.5               | 0.3                                                      | 1       | 2      | 4     | 11   | •<br>•      |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | Ŧ                                                        |         |        |       |      | ]:::        |               |         |       |         |         |    |        |                                        |                 |        |
| 70            | -<br>2,669.5          | 13.3                                                     |         |        |       | 」⊢   | +           |               |         |       | • • • • |         |    |        | -2,669.5                               |                 | 1      |
|               | -                     | +                                                        | 1       | 2      | 3     |      | <b>•</b> 5  |               |         |       | · · · · |         |    |        | SAPROLITE<br>Brown gray, micaceous cla | avev silt with  |        |
|               | -                     | ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        | some rock fragme                       | ents            |        |
| 65            | 2,664.8-              | 18.0                                                     | 60/0.0  |        |       | ┼⊢   |             |               |         |       |         | H       |    |        | _2,664.8<br>CRYSTALLINE RO             | OCK             | 1      |
|               | -                     | F                                                        |         |        |       |      |             |               |         |       |         |         |    |        | Crystalline chlorite                   | schist          |        |
|               | -                     | Ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        | Boring Terminated at Eleva<br>ON CR    | tion 2,664.8 ft |        |
|               | -                     | ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        | <u> </u>                               |                 |        |
|               | -                     | ł                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | F                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        | -                                      |                 |        |
|               | -                     | ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | Ł                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | F                                                        |         |        |       |      |             |               |         |       |         |         |    |        | -                                      |                 |        |
|               | -                     | ‡                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | ŧ.                                                       |         |        |       |      |             |               |         |       |         |         |    |        | -                                      |                 |        |
|               | -                     | ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | ł                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | Ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        | -                                      |                 |        |
|               | -                     | ‡                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | t                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | ╞                                                        |         |        |       |      |             |               |         |       |         |         |    |        | -                                      |                 |        |
|               | -                     | ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | ╞                                                        |         |        |       |      |             |               |         |       |         |         |    |        | -                                      |                 |        |
|               | -                     | Į.                                                       |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | ŧ                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               |                       | Ł                                                        |         |        |       |      |             |               |         |       |         |         |    |        | -                                      |                 |        |
|               | -                     |                                                          |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               | -                     | ł                                                        |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               |                       | +<br>+                                                   |         |        |       |      |             |               |         |       |         |         |    |        | -                                      |                 |        |
|               |                       | +<br>+<br>+<br>+                                         |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               |                       | +<br>+<br>+<br>+                                         |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               |                       | +<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               |                       | + + + + + + + + + + + + + + + + + + + +                  |         |        |       |      |             |               |         |       |         |         |    |        | -<br>-<br>-                            |                 |        |
|               |                       |                                                          |         |        |       |      |             |               |         |       |         |         |    |        |                                        |                 |        |
|               |                       |                                                          |         |        |       |      |             |               |         |       |         |         |    |        | _                                      |                 |        |
|               |                       |                                                          |         |        |       |      |             |               |         |       |         |         |    |        | -<br>-<br>-<br>-<br>-                  |                 |        |
|               |                       |                                                          |         |        |       |      |             |               |         |       |         |         |    |        | ·<br>·<br>·<br>·<br>·                  |                 |        |

SHEET 15

## ATTACHMENT B

FINAL SURVEY REPORT (ESP)



March 17, 2020

ESP Associates, Inc. 7011 Albert Pick Road, Suite E Greensboro, NC 27409

# FINAL SURVEY REPORT March 17<sup>th</sup>, 2020

TIP# BR-0002

#### **PROJECT DESCRIPTION:**

Replace Bridge 040008 over North Fork New River on NC 194 Retaining Wall -L- Sta. 15+00 to 20+00- Retaining Wall Geophysical Survey

PROJECT NUMBER: 35254

COUNTY: Ashe

L&S #: 67002.1.1

CONSULTANT: ESP Associates, Inc. 7011 Albert Pick Road Suite E, Greensboro, N.C. 27409 Contact: John P. Scoville III, PLS, CFS

DATE OF SURVEY: 3-9-2020 through 3-10-2020

#### **DATUM DESCRIPTION:**

#### The following Datum Description was supplied by the NCDOT as developed by others.

THE LOCALIZED COORDINATE SYSTEM DEVELOPED FOR THIS PROJECT IS BASED ON THE NAD 83 NSRS (2011) NORTH CAROLINA STATE PLANE GRID COORDINATES ESTABLISHED BY NCDOT FOR MONUMENT "R5832-BL 43" WITH GRID COORDINATES OF:

NORTHING: 996047.666 (s FT) EASTING: 1259229.395 (s FT)

THE AVERAGE COMBINED FACTOR USED ON THIS PROJECT (GROUND TO GRID) IS: 0.99997244

ALL LINEAR DISTANCES ARE LOCALIZED HORIZONTAL DISTANCES. THE VERTICAL DATUM FOR THIS PROJECT IS NAVD 88

> ESP Associates, Inc. 7011Albert Pick Road, Suite E Greensboro, NC 27409

#### **PROJECT LIMITS:**

• The limits for this project were supplied by NCDOT to ESP geophysical group and defined as the extents of the proposed retaining wall from -L- Sta. 15+00 to Sta. 20+00 26.5' right to include the existing roadway and down existing slope to Buffalo creek.

#### **BASELINE FILE:**

• Project Control for Baselines was supplied by NCDOT in filename BR0002 ncdot fs.dgn.

#### SAFETY:

- ESP survey personnel conducted a PRE JOB Briefing to go over safety concerns at a location outside of traffic concerns adjacent to the project. Signing positions were determined as well as a discussion of proposed procedures and project objectives.
- ESP set signs out at both ends of the work area along highway 194 as well at intersecting New School Road and Cambell Road
- ESP utilized a 3 man crew to accomplish the work along the existing guardrail while one man acted as flagger/lookout for the operation.
- The work plan went well and the work was accomplished accordingly.

#### DTM DATA:

The project was laid out by the ESP Geophysical group as part of their work in collecting geophysical data in the area of the proposed retaining wall.

ESP's survey group identified several baseline monuments in the vicinity of the project and verified the relationship of the baseline monuments with each other both horizontally and vertically to ensure the data being utilized was correct. Utilizing conventional survey equipment, ESP verified the points being utilized, established additional control points along the existing guardrail and located the following items to aid the geophysical survey for the project.

- Existing borings in the pavement RW1-1 through RW 1-5
- Bridge Rods- BR-01 through BR-05
- EP points at assumed zero station of cross section lines 1 through 5 as established by the geophysical layout.
- Downslope locations of slope breaks and other points as established by the geophysical layout.

Baseline monuments and additional control points were surveyed to a horizontal and vertical accuracy of +/-0.01'. Borings, rod locations, slope breaks and other points were surveyed to a horizontal and vertical accuracy of +/-0.10'

#### THE FOLLOWING FILES WERE TRANSMITTED TO ESP GEOPHYSICAL GROUP:

GR22.323 TASK 2 ALL.CSV

This csv file contains all of the coordinates established from the survey of the above listed items and including the NCDOT baseline monuments utilized and verified in the survey process.

Completed by: John P. Scoville III, PLS March 17<sup>th</sup>, 2020

Sincerely, *ESP Associates, Inc.* 

John P. Scoville III, PLS, CFS Survey Manager

