

PROJECT LENGTH	Prepared in th DIVISION OF STRUCTURES MAN 1000 BIRCH RALEIGH,	he Office of: HIGHWAYS NAGEMENT UNIT RIDGE DR. N.C. 27610
	2018 STANDARD SPECIFICATIONS	
LENGTH OF ROADWAY TIP PROJECT BR-0002 = 0.269 MI		
LENGTH OF STRUCTURE TIP PROJECT BR-0002 = 0.053 MI	LETTING DATE : SEPTEMBER 21, 2021	A. NEITH FASCHAL, F.E. PROJECT ENGINEER
TOTAL LENGTH OF TIP PROJECT BR-0002 = 0.330 MI		AMBER M. LEE, P.E. PROJECT DESIGN ENGINEER

STATE	STAT		SHEET NO.	TOTAL SHEETS		
N.C.	E	SR-0002		1		
STAT	e proj. No.	F. A. PROJ. NO.		DESCRIPT	10N	
49	071.1.1	_		P.E.		
49	071.2.1	_	R	ROW/UTILITIES		
49	071.3.1	_		CONST.		

DRAWN BY :	M.G.SHAIKH	DATE : 06/2020
CHECKED BY :	H.LOCKLEAR	DATE :06/2020
DESIGN ENGINE	ER OF RECORD: <u>K.PUROHIT</u>	DATE : 11/2019

D SPECIFICATIONS.	THE SCOUR CRITICAL ELEVATION FOR BENT 1 IS ELEVATION 2654.5 FT. SCOUR CRITICAL ELEVATIONS ARE USED TO MONITOR POSSIBLE
IRED DRIVING	THE SCOUR CRITICAL ELEVATION FOR BENT 2 IS ELEVATION 2655.5 FT. THE SCOUR CRITICAL ELEVATIONS ARE USED TO MONITOR POSSIBLE
STANDARD SPECIFICATION.	SCOUR PROBLEMS DURING THE LIFE OF THE STRUCTURE. CSL TUBES ARE REQUIRED AND CSL TESTING MAY BE REQUIRED FOR
E DESIGNED FOR A .CHECK FIELD CONDITIONS	TESTING.FOR CSL TESTING, SEE SECTION 411 OF THE STANDARD SPECIFICATIONS.
ELEVATION NO HIGHER STANCE AND A AS DEFINED BY ARTICLE	STEEL H-PILE POINTS ARE REQUIRED FOR STEEL H-PILES AT END BENT 1 AND END BENT 2.FOR STEEL PILE POINTS, SEE SECTION 450 OF THE STANDARD SPECIFICATIONS.
P ELEVATION NO HIGHER STANCE AND A AS DEFINED BY ARTICLE	

DF N	IATERIA					
CSL STING	UNCLASSIFIED STRUCTURE EXCAVATION	NCLASSIFIED REINFORCED GROO STRUCTURE CONCRETE BRI EXCAVATION DECK SLAB FLO		CLASS A CONCRETE	BRIDGE APPROACH SLABS	REINFORCING STEEL
EA.	LUMP SUM	SQ.FT.	SQ.FT.	CU.YDS.	LUMP SUM	LBS.
		10,627	9722		LUMP SUM	
				46.5		6372
1				23.4		8733
1				24.5		8852
				46.7		6372
2	LUMP SUM	10,627	9722	141.1	LUMP SUM	30,329

AL BILL	_ C)F MA	TERI	AL				
PILE DRIVING EQUIPMENT SETUP FOR HP 12 X 53 STEEL PILES	HP STEI	12 X 53 EL PILES	STEEL PILE POINTS	CONCRETE BARRIER RAIL	RIP RAP CLASS II (2'-O" THICK)	GEOTEXTILE FOR DRAINAGE	ELASTOMERIC BEARINGS	FOAM JOINT SEALS
EA.	NO.	LIN.FT.	EA.	LIN.FT.	TONS	SQ. YDS.	LUMP SUM	LUMP SUM
				555.7			LUMP SUM	LUMP SUM
9	9	160	9		387	430		
9	9	135	9		181	201		
18	18	295	18	555.7	568	631	LUMP SUM	LUMP SUM

ASSUMED LIVE LOAD = HL-93 OR ALTERNATE LOADING.

THIS BRIDGE HAS BEEN DESIGNED IN ACCORDANCE WITH THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS.

FOR OTHER DESIGN DATA AND GENERAL NOTES, SEE SHEET SN.

FOR EROSION CONTROL MEASURES. SEE EROSION CONTROL PLANS.

AFTER SERVING AS A TEMPORARY STRUCTURE, THE EXISTING STRUCTURE CONSISTING OF 1 @ 45'-3", 4 SPANS @ 45'-0" AND 1 @ 45'-3" WITH RC SLAB ON I-BEAM AND A CLEAR ROADWAY WIDTH OF 26'-O" ON A SUBSTRUCTURE, END BENT CONSISTING OF RC CAPS ON STEEL H PILES, AND BENT CONSISTING OF RC CAPS ON COLUMN ON SPREAD FOOTINGS AT THE PROPOSED STRUCTURE LOCATION SHALL BE REMOVED. THE EXISTING BRIDGE IS PRESENTLY (NOT) POSTED FOR LOAD LIMIT. SHOULD THE STRUCTURAL INTEGRITY OF THE BRIDGE DETERIORATE DURING CONSTRUCTION OF THE PROPOSED BRIDGE, A LOAD LIMIT MAY BE POSTED AND MAY BE REDUCED AS FOUND NECESSARY DURING THE LIFE OF THE PROJECT.

FOR REMOVAL OF EXISTING STRUCTURE, SEE SPECIAL PROVISIONS.

REMOVAL OF THE EXISTING BRIDGE SHALL BE PERFORMED IN A MANNER THAT PREVENTS DEBRIS FROM FALLING INTO THE WATER. THE CONTRACTOR SHALL SUBMIT DEMOLITION PLANS FOR REVIEW AND REMOVE THE BRIDGE IN ACCORDANCE WITH ARTICLE 402-2 OF THE STANDARD SPECIFICATIONS.

THE SUBSTRUCTURE OF THE EXISTING BRIDGE INDICATED ON THE PLANS IS FROM THE BEST INFORMATION AVAILABLE. SINCE THIS INFORMATION IS SHOWN FOR THE CONVENIENCE OF THE CONTRACTOR, THE CONTRACTOR SHALL HAVE NO CLAIM WHATSOEVER AGAINST THE DEPARTMENT OF TRANSPORTATION FOR ANY DELAYS OR ADDITIONAL COST INCURRED BASED ON DIFFERENCES BETWEEN THE EXISTING BRIDGE SUBSTRUCTURE SHOWN ON THE PLANS AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

THIS STRUCTURE HAS BEEN DESIGNED IN ACCORDANCE WITH "HEC 18-EVALUATING SCOUR AT BRIDGES."

THIS BRIDGE IS LOCATED IN SEISMIC ZONE 1. FOR SUBMITTAL OF WORKING DRAWINGS, SEE

SPECIAL PROVISIONS.

FOR FALSEWORK AND FORMWORK. SEE SPECIAL PROVISIONS.

FOR CRANE SAFETY, SEE SPECIAL PROVISIONS.

NOTES

FOR GROUT FOR STRUCTURES, SEE SPECIAL PROVISIONS.

THE MATERIAL SHOWN IN THE CROSS-HATCHED AREA SHALL BE EXCAVATED FOR A DISTANCE OF 25' LT. AND 24' RT, EACH SIDE OF CENTERLINE ROADWAY AS DIRECTED BY THE ENGINEER. THIS WORK WILL BE PAID FOR AT THE CONTRACT LUMP SUM PRICE FOR

UNCLASSIFIED STRUCTURE EXCAVATION. SEE SECTION 412 OF THE STANDARD SPECIFICATIONS.

FOR CONSTRUCTION, MAINTENANCE, AND REMOVAL OF TEMPORARY ACCESS, SEE SPECIAL PROVISIONS.

FOR ASBESTOS ASSESSMENT FOR BRIDGE DEMOLITION AND RENOVATION ACTIVITIES, SEE SPECIAL PROVISIONS.

REMOVABLE FORMS MAY BE USED IN LIEU OF METAL STAY-IN-PLACE FORMS IN ACCORDANCE WITH ARTICLE 420-3 OF THE STANDARD SPECIFICATIONS.

FOR LIMITS OF TEMPORARY SHORING FOR MAINTENANCE OF TRAFFIC, SEE TRAFFIC CONTROL PLANS. FOR PAY ITEM FOR TEMPORARY SHORING FOR MAINTENANCE OF TRAFFIC, SEE ROADWAY PLANS.

THE CONTRACTOR'S ATTENTION IS CALLED TO THE CLOSE PROXIMITY OF TEMPORARY SHORING TO THE PROPOSED END BENTS. SHORING MUST BE INSTALLED ACCURATELY IN ACCORDANCE WITH TRAFFIC CONTROL PLANS.

NEEDLE BEAMS WILL NOT BE ALLOWED UNLESS OTHERWISE CALLED FOR ON THE PLANS OR APPROVED BY THE ENGINEER.

THE CLASS AA CONCRETE IN THE BRIDGE DECK SHALL CONTAIN FLY ASH OR GROUND GRANULATED BLAST FURNACE SLAG AT THE SUBSTITUTION RATE SPECIFIED IN ARTICLE 1024-1 AND IN ACCORDANCE WITH ARTICLES 1024-5 AND 1024-6 OF THE STANDARD SPECIFICATIONS. NO PAYMENT WILL BE MADE FOR THIS SUBSTITUTION AS IT IS CONSIDERED INCIDENTAL TO THE COST OF THE REINFORCED CONCRETE DECK SLAB.

AT THE CONTRACTOR'S OPTION, AND UPON REMOVAL OF THE CAUSEWAY, THE CLASS II RIP RAP USED IN THE CAUSEWAY MAY BE PLACED AS RIP RAP SLOPE PROTECTION. SEE SPECIAL PROVISIONS FOR CONSTRUCTION, MAINTENANCE AND REMOVAL OF TEMPORARY ACCESS AT STATION 23+80.00 -L-.

INASMUCH AS THE PAINT SYSTEM ON THE EXISTING STRUCTURAL STEEL CONTAINS LEAD. THE CONTRACTOR'S ATTENTION IS DIRECTED TO ARTICLE 107-1 OF THE STANDARD SPECIFICATIONS. ANY COSTS RESULTING FROM COMPLIANCE WITH APPLICABLE STATE OR FEDERAL REGULATIONS PERTAINING TO HANDLING OF MATERIALS CONTAINING LEAD BASED PAINT SHALL BE INCLUDED IN THE BID PRICE FOR "REMOVAL OF EXISTING STRUCTURE" AT STATION 23+80.00 -L-.

	PROJEC	T NO. <u>ASH</u> DN: 2	BF 5 3+80	<u>000-</u> 00 -	2 UNTY L-
BOUEEAEDEDU	DEPA G NOR	STATE RTMENT ENERA FOR B TH FOR ON NC NC 88	OF NORTH CAR OF TRAN RALEIGH AL DF RIDGE K OF 194 BE AND SI	NSPORTA NSPORTA OVER NEW RI TWEEN R 1349	TION NG EVER
8/3/2021		REVISI	[ONS		SHEET NO.
DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED	NO. BY: 1 2	DATE: N	ю. вү: 3 а.	DATE:	S-3 TOTAL SHEETS 40

	LOAD AND RESISTANCE FACTOR RATING (LRFD) SUMMARY FOR PRESTRESSED CONCRETE GIRDERS																							
										STRE	ENGTH	I LIN	AIT ST	ΓΑΤΕ				SE	RVICE	III	LIMI	T STA	TE	
										MOMENT					SHEAR						MOMENT			
LEVEL		VEHICLE	WEIGHT (W) (TONS)	CONTROLLING (#) LOAD RATING	MINIMUM RATING FACTORS (RF)	TONS = W X RF	L I VELOAD F AC TORS	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (ft)	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (ft)	LIVELOAD FACTORS	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (f†)	COMMENT NUMBER
		HL-93(Inv)	N/A	$\left\langle 1 \right\rangle$	1.085		1.75	0.832	1.235	А	ER	40.90	0.832	1.249	А	ER	65.70	0.80	0.832	1.085	А	ER	40.90	
DESIGN		HL-93(0pr)	N/A		1.085		1.35	0.832	1.600	А	ER	40.90	0.832	1.619	А	ER	65.70	N/A						
		HS-20(Inv)	36.000	2	1.452	52.282	1.75	0.832	1.653	А	ER	40.90	0.832	1.560	А	ER	49.28	0.80	0.832	1.452	А	ER	40.90	
		HS-20(0pr)	36.000		1.452	52.282	1.35	0.832	2.142	А	ER	40.90	0.832	2.022	А	ER	49.28	N/A						<u> </u>
		SNSH	13.500		3.351	45.235	1.40	0.832	4.766	А	ER	40.90	0.832	4.449	А	ER	49.28	0.80	0.832	3.351	Α	ER	40.90	
		SNGARBS2	20.000		2.466	49.315	1.40	0.832	3.507	А	ER	40.90	0.832	3.223	А	ER	49.28	0.80	0.832	2.466	А	ER	40.90	
		SNAGRIS2	22.000		2.322	51.088	1.40	0.832	3.303	А	ER	40.90	0.832	3.015	А	ER	49.28	0.80	0.832	2.322	А	ER	40.90	
		SNCOTTS3	27.250		1.667	45.413	1.40	0.832	2.371	А	ER	40.90	0.832	2.227	А	ER	49.28	0.80	0.832	1.667	А	ER	40.90	
	^S	SNAGGRS4	34.925		1.381	48.219	1.40	0.832	1.964	А	ER	40.90	0.832	1.890	А	ER	49.28	0.80	0.832	1.381	А	ER	40.90	
		SNS5A	35.550		1.351	48.026	1.40	0.832	1.922	А	ER	40.90	0.832	1.937	А	ER	49.28	0.80	0.832	1.351	А	ER	40.90	L
		SNS6A	39.950		1.235	49.319	1.40	0.832	1.756	А	ER	40.90	0.832	1.778	А	ER	65.70	0.80	0.832	1.235	А	ER	40.90	
LEGAL		SNS7B	42.000		1.175	49.370	1.40	0.832	1.672	А	ER	40.90	0.832	1.747	А	ER	65.70	0.80	0.832	1.175	Α	ER	40.90	<u> </u>
		TNAGRIT3	33.000		1.504	49.631	1.40	0.832	2.139	А	ER	40.90	0.832	2.110	А	ER	49.28	0.80	0.832	1.504	А	ER	40.90	<u> </u>
		TNT4A	33.075		1.509	49.918	1.40	0.832	2.147	А	ER	40.90	0.832	2.037	А	ER	49.28	0.80	0.832	1.509	А	ER	40.90	
		TNT6A	41.600		1.229	51.139	1.40	0.832	1.749	А	ER	40.90	0.832	1.860	А	ER	65.70	0.80	0.832	1.229	А	ER	40.90	
	ST	TNT7A	42.000		1.233	51.783	1.40	0.832	1.754	А	ER	40.90	0.832	1.823	А	ER	65.70	0.80	0.832	1.233	А	ER	40.90	
		TNT7B	42.000		1.269	53.313	1.40	0.832	1.806	А	ER	40.90	0.832	1.706	А	ER	65.70	0.80	0.832	1.269	А	ER	40.90	<u> </u>
		TNAGRIT4	43.000		1.212	52.120	1.40	0.832	1.724	А	ER	40.90	0.832	1.652	А	ER	65.70	0.80	0.832	1.212	А	ER	40.90	
		TNAGRT5A	45.000		1.145	51.525	1.40	0.832	1.629	А	ER	40.90	0.832	1.641	А	ER	65.70	0.80	0.832	1.145	А	ER	40.90	
		TNAGRT5B	45.000	$\langle 3 \rangle$	1.133	50.988	1.40	0.832	1.612	А	ER	40.90	0.832	1.571	А	ER	65.70	0.80	0.832	1.133	А	ER	40.90	

<u>LRFR</u>	SUMMAR

ASSEMBLED BY :	M.G.SH	AIKH	DATE :	06/2020
CHECKED BY :		KLEAR	DATE :	06/2020
DRAWN BY : MAA	1/08	REV.I	1/12/08RR	MAA/GM
CHECKED BY : GM/	DI 2/08	REV.I	0/1/11	MAA/GM

LOAD FACTORS:

DESIGN	LIMIT STATE	γ_{DC}	$\gamma_{D\mathbf{W}}$
LOAD RATING	STRENGTH I	1.25	1.50
FACTORS	SERVICE III	1.00	1.00

NOTES:

MINIMUM RATING FACTORS ARE BASED ON THE STRENGTH I AND SERVICE III LIMIT STATES. ALLOWABLE STRESSES FOR SERVICE III LIMIT STATE ARE AS REQUIRED FOR DESIGN.

COMMENTS:

1.

2.

CONTROLLING LOAD RATING

 $\left< 1 \right>$ DESIGN LOAD RATING (HL-93)

 $\left< 2 \right>$ DESIGN LOAD RATING (HS-20)

3 LEGAL LOAD RATING **

** SEE CHART FOR VEHICLE TYPE

GIRDER LOCATION

I - INTERIOR GIRDER EL - EXTERIOR LEFT GIRDER ER - EXTERIOR RIGHT GIRDER

PROJECT NO. BR-0002 <u>ASHE</u> COUNTY STATION: 23+80.00 -L-

DEPARTMENT OF TRANSPORTATION RALEIGH STANDARD FESSION ² SEAL 031021 LRFR SUMMARY FOR PRESTRESSED CONCRETE GIRDERS ACINEE? ocuSigned by: (NON-INTERSTATE TRAFFIC) Amber Male B04B5A4F2FAD484... 8/3/2021 SHEET NO. REVISIONS S-4 DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED 2 DATE: DATE: NO. BY: TOTAL SHEETS 40 STD. NO. LRFR1

DRAWN BY :	M. G. S	НАІКН	DATE : <u>06/2020</u>
CHECKED BY :	H.LO(DATE : <u>06/2020</u>	
DESIGN ENGINEER	OF RECORD:	K.PUROHIT	DATE : <u>11/2019</u>

+

FINAL SECTION

NOTES

SEE TRAFFIC CONTROL PLANS FOR LOCATION AND PAY LIMITS OF THE ANCHORED PORTABLE CONCRETE BARRIER RAIL. FOR TRAFFIC PHASING, SEE TRAFFIC CONTROL PLANS.

PROJECT NO. BR-0002

<u>ASHE</u> COUNTY STATION: <u>23+80.00</u> -L-

STATE OF NORTH CAROLINA
DEPARTMENT OF TRANSPORTATION
RALEIGH

CONSTRUCTION STAGING SEQUENCE

B04B5A4F2FAD484							
8/3/2021			REVI	ISION	IS		SHEET NO.
OCLIMENT NOT CONSTDERED	NO.	BY:	DATE:	NO.	BY:	DATE:	S-5
FINAL UNLESS ALL	1			3			TOTAL SHEETS
SIGNATURES COMPLETED	2			4			40

ESSION

² SEAL 031021

NCINEE?

DocuSigned by:

TYPICAL SECTION @ END BENT DIAPHRAGMS

(STAGE I)

DRAWN BY : M. G. SHAIKH DATE : 06/2020 CHECKED BY : A. LEE DATE : 06/2020			
CHECKED BY : A.LEE DATE : 06/2020	DRAWN BY :	M. G. SHAIKH	DATE : <u>06/2020</u>
	CHECKED BY :	A. LEE	DATE : <u>06/2020</u>
DESIGN ENGINEER OF RECORD: <u>K.PUROHIT</u> DATE : <u>11/2019</u>	DESIGN ENGINEER	OF RECORD: K. PUROHIT	DATE : <u>11/2019</u>

+

+

NOTES

PROVIDE 11/4" HIGH BEAM BOLSTERS UPPER AT 4'-0"CTS.ATOP THE METAL STAY-IN-PLACE FORMS TO SUPPORT THE BOTTOM MAT OF 'A' BARS. WHEN USING REMOVABLE FORMS, PROVIDE CONTINUOUS HIGH CHAIRS FOR METAL DECK (C.H.C.M.) @ 4'-O"CTS. WITH A HEIGHT TO SUPPORT THE BOTTOM MAT OF 'A' BARS A CLEAR DISTANCE OF 21/2" ABOVE THE TOP OF THE REMOVABLE FORM.

LONGITUDINAL STEEL MAY BE SHIFTED SLIGHTLY, AS NECESSARY, TO AVOID INTERFERENCE WITH STIRRUPS IN PRESTRESSED CONCRETE GIRDERS.

PREVIOUSLY CAST CONCRETE IN A CONTINUOUS UNIT SHALL HAVE ATTAINED A MINIMUM COMPRESSIVE STRENGTH OF 3,000 PSI BEFORE ADDITIONAL CONCRETE IS CAST IN THE UNIT.

BARRIER RAIL IN A CONTINUOUS UNIT SHALL NOT BE CAST UNTIL ALL SLAB CONCRETE IN THE UNIT HAS BEEN CAST AND HAS REACHED A MINIMUM COMPRESSIVE STRENGTH OF 3,000 PSI.

DOWELS SHALL BE PLACED IN THE SAME HORIZONTAL PLANE AS THE TOP SLAB

SEE TRAFFIC CONTROL PLANS FOR LOCATION AND PAY ITEM OF ANCHORED PORTABLE CONCRETE

DRAWN BY :	M. G. S	SHAIKH	DATE : <u>06/2020</u>
CHECKED BY :	Α.	LEE	DATE : <u>06/2020</u>
DESIGN ENGINEER	R OF RECORD:_	K.PUROHIT	DATE : <u>11/2019</u>

+

TYPICAL SECTION @ END BENT DIAPHRAGMS (STAGE II)

* FOR CLOSURE POUR DETAILS, SEE SHEET S-9. ** SIP METAL FORMS IN THE CLOSURE BAY SHALL BE INSTALLED AFTER STAGE II DECK HAS BEEN CAST.

	A	SHE	CO	UNTY
	STATION:_	23+80	.00 -	<u>L-</u>
	SHEET 2 OF 5			
NORTH CAROLINA	DEPARTME	STATE OF NORTH CAR NT OF TRAI RALEIGH	OLINA NSPORTA	TION
SEAL 031021	sl TYP]	perstruc ICAL SE	CTURE ECTIC)N
B04B5A4F2FAD484 8/3/2021		REVISIONS		SHEET NO.
DOCUMENT NOT CONSTDERED	NO. BY: DAT	: NO. BY:	DATE:	S-7
FINAL UNLESS ALL SIGNATURES COMPLETED	1	3 4		TOTAL SHEETS 40

PROJECT NO.

BR-0002

28-JUL-2021 15:48 R:\Structures\Final Plans\400_017_BR-0002_SMU_ TS_008_040008.dgn amlee

+

DRAWN BY :	M. G. S	НАІКН	DATE : <u>06/2020</u>
CHECKED BY :	A. L	EE	DATE : <u>06/2020</u>
DESIGN ENGINEER	OF RECORD:	K.PUROHIT	DATE : <u>11/2019</u>

28-JUL-2021 15:48 R:\Structures\FinalPlans\400_021_BR-0002_SMU_ TS_0010_040008.dgn amlee

amlee

+

amlee

DRAWN BY :	M. G. SH	НАІКН	DATE :	06/2020
CHECKED BY :	H.LOC	KLEAR	DATE :	06/2020
DESIGN ENGINEER	OF RECORD:	K. PUROHIT	DATE :	10/2019

+

FRAMING PLAN

+

Ē	OF	GIRDER
AN[) L	AYOUT

	0.6	5″ØL.	R. GRA	DE 270	STRAN	NDS									
			ULTI	ΜΑΤΕ	APP	LIED									
		ĽА	STRĒ	NGTH	PRES	TRESS									
	(SQUARE	INCHES)	(LBS. PER	STRAND)	(LBS. PER	STRAND)									
	0.2	217	58,6	00	43,	950									
	(IBS. PER STRAND) (IBS. PER STRAND) 0.217 58,600 43,950 REINFORCING STEEL FOR ONE GDR BAR NUMBER SIZE TYPE LENGTH WEIGHT S1 140 *4 1 6'-1" 569 S2 12 *5 1 6'-1" 76 S3 12 *4 2 8'-5" 67 S4 72 *4 3 3'-0" 144 S5 2 *5 2 9'-10" 21 S6 152 *5 4 4'-4" 689 S8 2 *5 2 9'-0" 19 S9 15 *5 STR 3'-3" 51 S11 4 *5 5 10'-0" 43 S13 6 *5 5 10'-0" 27 BAR TYPES (1) ************************************														
	U.B. ØL. K. GRADE 270 STRANDS AREA ULTIMATE STRENGTH APPLIED PRESTRESS (SOUARE INCHES) (LBS. PER STRAND) (LBS. PER STRAND) 0.217 58,600 43,950 REINFORCING STEEL FOR ONE GDR BAR NUMBER SIZE TYPE 140 #4 1 6'-1" 76 51 140 #4 1 6'-1" 76 52 12 #5 1 6'-1" 76 53 12 #4 2 8'-5" 67 54 72 #4 3 3'-0" 144 55 2 9'-10" 21 16 144 55 5 10'-0" 42 152 14 4"-4" 513 6 #5 5 10'-0" 42 16 10'-0" 27 BAR TYPES 1 1'-8" 4 51 10'-0" 4'-4" 5 1 1'-8" 4 51 10'-0" 5 5 12														
	AREA ULTIMATE STRENGTH APPLIED PRESTRESS (SOUARE INCHES) (LBS. PER STRAND) (LBS. PER STRAND) (LBS. PER STRAND) 0.217 58,600 43,950 REINFORCING STEEL FOR ONE GDR BAR NUMBER SIZE BAR NUMBER SIZE TYPE LENGTH WEIGHT S1 140 *4 1 6'-1" 76 S3 12 *4 2 8'-5" 67 S4 72 *4 3 3'-0" 121 S5 2 *5 2 9'-10" 121 S6 152 *5 4 4'-4" 689 S8 2 *5 2 9'-0" 19 S9 15 *5 10'-0" 43 S11 4 *5 10'-0" 43 S13 6 *5 5 10'-0" 5 1 - - - - - - S12 8 - - <td< td=""></td<>														
	AREA ULTIMATE STRENGTH APPLIED PRESTRESS (SOUARE INCHES) (LBS. PER STRAND) (LBS. PER STRAND) (LBS. PER STRAND) 0.217 58,600 43,950 REINFORCING STEEL FOR ONE GDR BAR NUMBER SIZE TYPE LENGTH WEIGHT S1 140 #4 1 6'-1'' 76 S3 12 #4 2 8'-5'' 67 S4 72 #4 3 3'-0'' 144 S5 2 #5 2 9'-10'' 21 S6 152 #5 STR 3'-3''' 51 S11 4 #5 5 10'-0''' 42 S12 8 #4 STR 8'-0''' 43 S13 6 #5 5 10'-0''' 6'''' 1 4 #4 5 10'-0''' 5'''''' 3														
	AREA ULTIMATE STRENGTH APPLIED PRESTRESS (SOUARE INCHES) (LBS. PER STRAND) (LBS. PER STRAND) (LBS. PER STRAND) 0.217 58,600 43,950 REINFORCING STEEL FOR ONE GDR BAR NUMBER SIZE TYPE LENGTH WEIGHT 51 140 #4 1 6'-1" 569 52 12 #5 1 6'-1" 76 53 12 #4 2 8'-5" 67 54 72 #4 3 3'-0" 144 55 2 9'-0" 19 9 14 58 2 #5 5 10'-0" 42 511 4 #5 5 10'-0" 42 512 8 #4 STR 8'-0" 43 513 6 #5 5 10'-0" 27 BAR TYPES OUANTITIES FOR ONE GIRDER 1'-8" -4" 5 0'/-1" 5 ALL BAR DIMENSIONS ARE OUT-TO-OUT														
	AREA ULTIMATE APPLIED ISOUARE INCHESI UBS. PER STRAND PRESTRESS 0.217 58,600 43,950 REINFORCING STEEL FOR ONE GDR BAR NUMBER SIZE 140 *4 1 4 2 8'-5" 51 140 *4 52 12 *5 12 *4 2 87 72 *4 3 3'-0" 144 55 2 9'-10" 56 152 *5 4 4 *5 5 10'-0" 51 4 *4 1 4 *5 5 10'-0" 51 14 *4 5 14 *5 5 10'-0" 51 10'-0" 63 514 4 *4 5 10'-0" 5 5 10'-0" 6 *5 5 10'-0" 11 4 *4 5 10'-0"<														
	AREA UL TIMATE STRENGTH APPLIED PRESTRESS (LBS. PER STRAND) 0.217 58,600 43,950 REINFORCING STEEL FOR ONE GDR BAR NUMBER SIZE 140 *4 1 6'-1" 76 53 12 *4 140 *4 1 51 140 *4'-7" 52 12 *5 72 *4 3 55 2 9'-10" 56 152 *5 72 *4 3 51 14 *5 51 10'-0" 42 51 14 *4 4 *5 5 51 10'-0" 43 513 6 *5 6 *5 5 11 4 *4 5 10'-0" 21 5 10'-0" 27 6 *5 5 10'-0" 5 50 10'-0" 5														
	AREA UL TIMATE APPLIED STRENGTH UBS. PER STRAND PRESTRESS 0.217 58,600 43,950 REINFORCING STEEL FOR ONE GDR BAR NUMBER SIZE TYPE LENGTH WEIGHT S1 140 *4 1 6'-1" 569 S2 12 *5 1 6'-1" 76 S3 12 *4 2 8'-5" 64 S5 2 *5 2 9'-0" 14 S5 2 *5 2 9'-0" 14 S5 2 *5 5 10'-0" 42 S11 4 *5 5 10'-0" 43 S13 6 *5 5 10'-0" 43 S14 4 *4 5 10'-0" 43 S14 4 *4 5 10'-0" 43 S14 4 *4 5 10'-0" 5 ALL BAR DIMENSIONS ARE OUT-TO-OUT 4 4														
	STRENGTH PRESTRESS ISQUARE INCHESI LBS. PER STRAND LBS. PER STRAND 0.217 58,600 43,950 REINFORCING STEEL FOR ONE GDR BAR NUMBER SIZE TYPE S1 140 =4 1 6'-1" S2 12 =5 1 6'-1" 76 S3 12 =4 2 8'-5" 67 S4 72 =4 3 3'-0" 14 S5 2 9'-10" 21 56 152 =5 2 9'-10" 21 S6 152 =5 5 10'-0" 42 SI 3 SII 4 =5 5 10'-0" 43 SII 6 =5 5 10'-0" 63 SI4 4 =4 5 10'-0" 27 BAR TYPES OUANTITIES FOR ONE CIRDER 10														
	RE INFORCING STEEL FOR ONE GDR BAR NUMBER SIZE TYPE LENGTH WEIGHT S1 140 #4 1 $6'-1''$ 569 S2 12 #5 1 $6'-1''$ 76 S3 12 #4 2 $8'-5''$ 67 S4 72 #4 3 $3'-0''$ 144 S5 2 9'-10'' 21 56 152 57 $4''-4''$ 689 S8 2 #5 2 $9'-0''$ 19 99 15 $510'-0''$ 42 S11 4 #5 5 $10'-0''$ 43 513 6 55 $10'-0''$ 43 S13 6 #5 5 $10'-0''$ 27 84 $7/2''$ $6'''$ $7/2''''''''''''''''''''''''''''''''''''$														
	S2 12 #5 1 6'-1" 76 S3 12 #4 2 8'-5" 67 S4 72 #4 3 3'-0" 144 S5 2 #5 2 9'-10" 21 S6 152 #5 4 4'-4" 689 S8 2 #5 2 9'-0" 19 S9 15 #5 STR 3'-3" 51 S11 4 #5 5 10'-0" 42 S12 8 #4 STR 8'-0" 43 S13 6 #5 5 10'-0" 63 S14 4 #4 5 10'-0" 27 BAR TYPES 9<														
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
	BAR NUMBER SIZE TYPE LENGTH WEIGHT S1 140 #4 1 6'-1" 569 S2 12 #5 1 6'-1" 76 S3 12 #4 2 8'-5" 67 S4 72 #4 3 3'-0" 144 S5 2 #5 2 9'-10" 21 S6 152 #5 4 4'-4" 689 S8 2 #5 2 9'-0" 19 S9 15 #5 STR 3'-3" 51 S11 4 #5 5 10'-0" 42 S12 8 #4 STR 8'-0" 43 S13 6 #5 5 10'-0" 27 BAR TYPES 10'-0" 27 8" 4" Mutual 1'-8" 4 *4 5 10'-0" 5 1 1'-8" 4 *4 5 10'-0" 5 5 <tr< td=""></tr<>														
	RE INFORCING STEEL FOR ONE GDR BAR NUMBER SIZE TYPE LENGTH WEIGHT S1 140 #4 1 6'-1" 569 S2 12 #5 1 6'-1" 76 S3 12 #4 2 8'-5" 67 S4 72 #4 3 3'-0" 1144 S5 2 #5 2 9'-10" 21 S6 152 #5 4 4'-4" 689 S9 15 #5 STR 3'-3" 51 S11 4 #5 5 10'-0" 42 S12 8 #4 STR 8'-0" 43 S13 6 #5 5 10'-0" 27 BAR TYPES 1 1'-8" 4 -1'-8" -1'-8" 1 1'-8" 4 -1'-0'/2" -1'-6" -1'-6" 1 1'-8" -1'-8" -1'-8" -1'-6" -1'-6" 1 1'-8" -1'-8"														
	$\frac{50}{59} + \frac{2}{15} + \frac{5}{5} + \frac{3}{51R} + \frac{3}{3'-3''} + \frac{51}{51} + \frac{3}{51} + 5$														
	BAR TYPES BAR TYPES														
	$\frac{8''}{1}$ $\frac{53}{55}$ $\frac{55}{1'-10^{1}/2''}$ $\frac{55}{58}$ $\frac{55}{10'-2}$ $\frac{5}{50}$ $\frac{5}{50}$ $\frac{5}{50}$ $\frac{5}{50}$ $\frac{5}{50}$ $\frac{5}{50}$ $\frac{5}{50}$ $\frac{1'-8''}{5}$ $\frac{1'-8''}{4}$ $\frac{1'-8''}{4}$ $\frac{1'-8''}{4}$ $\frac{1'-8''}{5}$ $\frac{1'-8''}{4}$ $\frac{1'-8''}{5}$ $\frac{1'-8''}{4}$ $\frac{1'-8''}{5}$ $\frac{1'-10^{1}/2''}{5}$ $\frac{1'-10^{1}/2''}{5}$ $\frac{1'-10^{1}/2''}{5}$ $\frac{1}{5}$ $\frac{1'-10^{1}/2''}{5}$ $\frac{1}{5}$ $\frac{1'-10^{1}/2''}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1'-10^{1}/2''}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1'-10^{1}/2''}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1'-10^{1}/2''}{5}$ $\frac{1}{5}$														
1	S12 8 #4 STR 8'-0" 43 S13 6 #5 5 10'-0" 63 S14 4 #4 5 10'-0" 27 BAR TYPES 8" $\frac{53}{55}$ $\frac{5'}{10'-0''}$ $\frac{5'}{21'}$ $\frac{5'}{10'-0''}$ $\frac{5'}{21'}$ 10 $\frac{5'}{1'-10'/2"}$ $\frac{5'}{10'}$ $\frac{5'}{1'-10'/2"}$ $\frac{5'}{1'-10'/2"}$ $\frac{5'}{1'-10'/2"}$ 10 $\frac{5'}{1'-10'/2"}$ $\frac{5'}{1'-10'/2"}$ $\frac{5'}{1'-10'/2"}$ $\frac{5'}{1'-10'/2"}$ $\frac{5'}{1'-10'/2"}$ 10 $\frac{5'}{1'-8''}$ $\frac{5'}{1'-10'/2"}$ $\frac{5'}{1'-10'/2"}$ $\frac{5'}{1'-10'/2"}$ $\frac{5'}{1'-10'/2"}$ $\frac{1'}{1'-8''}$ $\frac{7'/2"}{4'}$ $\frac{6''}{1'-8''}$ $\frac{6''}{1'-8''}$ $\frac{5'}{1'-8''}$ $\frac{6''}{1'-8''}$ $\frac{1'-8''}{5}$ $\frac{4''}{4}$ $\frac{5'}{5}$ $\frac{6''}{1'-8''}$ $\frac{6''}{5}$ $\frac{6''}{5}$ ALL BAR DIMENSIONS ARE OUT-TO-OUT $0.6'' @$ $0.6'' @$ $0.6'' @$ $0.6'' @$ $1.8!''''''''''''''''''''''''''''''''''''$														
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
	REINFO	ORCING	5,500	PSI	0.6	″Ø									
	ST	EEL	CONC	RETE	L.R. ST	RANDS									
	L	Β.	С.	Υ.	No	D.									
	18	11	16	.5	2	4									
		GIR	DERS	REQUI	RED										
	NUM	IBER	LEN	GTH	TOTAL	LENGTH									
		5	83′-	$-2^{1}/2^{"}$	416′	-0 ^l /2"									
Ρ	ROJE		0[<u> 3R-C</u>	002										
		1CA				ΝΓΥ									
C	ΤΔΤΙ	Γ <u></u> ΟΝ•	23+	80.0	- 0(L-									
J															
-16	EET 1 OF	- 4													
	DEPAF 63" F N CONT	SPREST MODIF INUOL	TANDA RESSE JS FO	ARD BULB R LI	RTATIO NCRE ⁻ TEE VE LO	DN TE DAD									
		135	AIN A	α L.	/										
		REV	ISIONS		S	HEET NO.									
).	BY:	DATE:	NO. BY	: DA	TE:	S-15									

TOTAL SHEETS 40

28-JUL-2021 15:48 R:\Structures\Final Plans\400_033_BR-0002_SMU_ G*_0016_040008.dgn

+

+

APPLIED PRESTRESS ULTIMATE AREA STRENGTH (SQUARE INCHES) (LBS.PER STRAND) (LBS. PER STRAND) 43,950 0.217 58,600 REINFORCING STEEL FOR ONE GDR BAR NUMBER SIZE | TYPE LENGTH WEIGH S1 642 158 #4 6'-1" 8′-5″ 67 S3 12 #4 2 S4 3'-0" 152 76 #4 3 **#**5 S5 2 9′-10″ 21 #5 4'-4" 714 S6 158 4 S8 **#**5 9'-0" 19 2 S9 STR 3'-3" 149 44 **#**5 S11 **#**5 10'-0" 83 8 S12 STR 8'-0" 86 #4 S13 10'-0" 125 12 #5 5 S14 16 #4 10'-0" 107 5 BAR TYPES 8″ <u>S3 5″</u> S5 1'-10¹/2" S8 10¹/2" S5 S5 S8 (1)4'-0" 3'-11¾ 4'-0¾ 2 7¹/2″ RAD. (4)1'-8" 4″ 5 ALL BAR DIMENSIONS ARE OUT-TO-OUT QUANTITIES FOR ONE GIRDER REINFORCING 8,500 PSI 0.6″Ø L.R. STRANDS STEEL CONCRETE LB. C.Y. No. 2165 42 21.6 GIRDERS REQUIRED TOTAL LENGTH NUMBER LENGTH 545′-10″ 109'-2" PROJECT NO. BR-0002 ASHE COUNTY STATION: 23+80.00 -L-SHEET 2 OF 4 STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH STANDARD 63" PRESTRESSED CONCRETE MODIFIED BULB TEE CONTINUOUS FOR LIVE LOAD (SPAN B) SHEET NO. REVISIONS S-16 DATE: DATE: BY: TOTAL SHEETS

STD. NO. PCG7 (Sht. 1)

40

EMBEDDED PLATE ``B-1" DETAILS FOR AASHTO TYPE IV GIRDER AND 63" & 72" MODIFIED BULB TEES

(2 REQ'D PER GIRDER)

								- D	EAD	LUI	AD DI				IAE	3LE	FUR	61KL	JER	_																
0.6″ØLOW RELAXATION																SPAN	B (GE	RDER	1 & !	5)																
FOURIETH POINTS	0	0.025 0.0	050 0.0	0.100	0.125	0.150	0.175	0.200	0.225 0	.250 0.	.275 0.30	0.325	0.350	0.375	0.400	0.425 0	.450 0.47	75 0.500	0.525	0.550	0.575	0.600	0.625 0	.650 0.6	575 0.700	0.725	0.750	0.775	0.800	0.825 0.8	350 0.87	5 0.900	0.925	0.950	0.975	0
CAMBER (GIRDER ALONE IN PLACE) 🛉	0	0.017 0.0	035 0.0	52 0.069	0.085	0.101	0.115	0.130	0.143 0	.156 0.	.167 0.178	0.186	0.195	0.202	0.208	0.212 0	.216 0.21	7 0.219	0.217	0.216	0.212	0.208	0.202 C	0.195 0.3	86 0.17	3 0.167	0.156	0.143	0.130	0.115 0.	101 0.08	5 0.069	0.052	0.035	0.017	0
* DEFLECTION DUE TO SUPERIMPOSED D.L.	0	0.013 0.0	025 0.0	38 0.050	0.062	0.073	0.084	0.095	0.104 0	.114 0.	.122 0.130	0.136	0.143	0.147	0.152	0.155 0	.158 0.15	9 0.160	0.159	0.158	0.155	0.152	0.147 C	0.143 0.3	36 0.130	0.122	0.114	0.104	0.095	0.084 0.0	0.06	2 0.050	0.038	0.025	0.013	0
FINAL CAMBER	0	1/16″ 1/	/8" 3/	/6″ /4″	¹ /4″	5⁄16″	3⁄8"	7/16″	7⁄16″	1/2"	9/16" 9/16"	5⁄8″	5⁄8″	5⁄8″	11/16″	¹¹ /16″ ¹	1/16″ 11/16	5″ ^{II} ⁄ı6″	¹¹ /16″	11/16″	11/16″	11/16″	5⁄8″	⁵ ⁄8″ ⁵ ⁄	8″ 9/16″	9/16″	1/2"	7/16″	7⁄16″	³ ⁄8″ ⁵ ⁄	6″ 1⁄4″	¹ /4″	3/16″	1/8"	1/16″	0

									- [) L	ΟΑΕ) De	EFLI	ECT	ION	ΤA	ABL	ΕF	FOR	GI	RDE	ER																				
0.6″Ø LOW RELAXATION		SPAN B (GORDER 2, 3, & 4)																																									
FOURIETH POINTS	0	0.025	0.050	0.075	0.100	0 . 125	0.150	0.175	0.200	0.225	0.250	0.275	5 0.300	0.32	5 0.350	0.375	5 0.40	0 0.4	25 0.4	450 0.	.475 0	.500 C	.525	0.550	0 . 575	0.600	0.625	0.650	0.675	0.700	0.725	0.750	0.775	5 0.800	0.82	25 0.85	0 0.87	5 0.90	0.92	5 0.950	0 0.9	75 (С
CAMBER (GIRDER ALONE IN PLACE)	0	0.017	0.035	0.052	0.069	0.085	0.101	0.115	0.130	0.143	0.156	0.167	0.178	0.186	6 0.195	0.202	2 0.20	8 0.2	12 0.3	216 0.	.217 0	.219 (0.217	0.216	0.212	0.208	0.202	0.195	0.186	0.178	0.167	0.156	0.143	0.130	0.11	0.10	0.08	5 0.06	9 0.05	2 0.03	5 0.0)17	0
* DEFLECTION DUE TO SUPERIMPOSED D.L.	0	0.011	0.023	0.034	0.045	0.055	0.065	0.075	0.084	0.093	0.101	0.108	0.116	0.121	0.127	0.131	0.13	5 0.13	38 0.3	140 0.	.141 0	.142	0.141	0.140	0.138	0.135	0.131	0.127	0.121	0.116	0.108	0.101	0.093	3 0.084	0.07	75 0.06	5 0.05	5 0.04	5 0.03	0.02	3 0.0	J11	0
FINAL CAMBER	0	1/16"	1/8"	3/16″	5⁄16″	3⁄8″	7⁄16″	1/2"	9/16″	5⁄8″	5⁄8″	1/16″	, 3/4"	¹³ /16	" ¹³ /16	" 7/8"	7⁄8"	7/8	3″ 15	5/16"	5/16"	15/16″	15/16″	15/16″	7⁄8"	7⁄8″	7⁄8″	13/16″	¹³ /16″	3⁄4″	¹¹ ⁄16″	5⁄8"	5⁄8″	9/16"	1/2"	7/16"	3⁄8″	5/16"	3/16″	1/8"	1/16	"	0

***** INCLUDES FUTURE WEARING SURFACE ALL VALUES ARE SHOWN IN FEET (DECIMAL FORM), 🗗 EXPECT "FINAL CAMBER", WHICH IS GIVEN IN INCHES (FRACTION FORM).

+

+

		D	EAD) LC)AD	DEF	FLE	CTI	ON	TAE	BLE	FOF	r G	IRD	ER							
0.6″ØLOW RELAXATION										SPAN	A A	& C	(GERI	DER	185	5)						
TWENTIETH POINTS		0	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0 . 55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	0
CAMBER (GIRDER ALONE IN PLACE)	t	0	0.017	0.034	0.049	0.064	0.076	0.088	0.096	0.103	0.106	0.108	0.106	0.103	0.096	0.088	0.076	0.064	0.049	0.034	0.017	0
* DEFLECTION DUE TO SUPERIMPOSED D.L.	ł	0	0.009	0.018	0.026	0.035	0.041	0.047	0.051	0.055	0.057	0.058	0.057	0.055	0.051	0.047	0.041	0.035	0.026	0.018	0.009	0
FINAL CAMBER	t	0	1/8″	3/16"	1/4″	3⁄8″	7/16″	1/2"	9/16″	9/16″	9/16″	5⁄8″	%6″	⁹ ∕i6″	9/16″	1/2″	7/16″	3⁄8″	1/4″	3/16"	1/8"	0

		D)EAD	LC)AD	DEF	ELE(CTI	ON	TAE	BLE	FOF	r G	IRD	ER							
0.6″ØLOW RELAXATION										SPAN	A &	С (GORD	ER 2	, 3, 8	4)						
TWENTIETH POINTS		0	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	0
CAMBER (GIRDER ALONE IN PLACE)	t	0	0.017	0.034	0.049	0.064	0.076	0.088	0.095	0.103	0.105	0.108	0.105	0.103	0.095	0.088	0.076	0.064	0.049	0.034	0.017	0
* DEFLECTION DUE TO SUPERIMPOSED D.L.	ţ	0	0.008	0.017	0.025	0.032	0.038	0.044	0.048	0.051	0.053	0.054	0.053	0.051	0.048	0.044	0.038	0.032	0.025	0.017	0.008	0
FINAL CAMBER	t	0	۱⁄ ₈ "	3/16″	5/16″	3⁄8″	7/16″	1/2"	9/16"	5⁄8″	⁵ ⁄8″	5⁄8″	⁵ ⁄8″	⁵ ⁄8″	⁹ /16″	1/2"	7⁄16″	³ ⁄8″	5⁄16″	3⁄16"	/8″	0

ASSEMBLED BY : CHECKED BY :	M. G. SHA A. LEE	ІКН	DATE : DATE :	06/2020 06/2020
DRAWN BY : ELR CHECKED BY : GRP	11/91 11/91	REV. REV. REV.	1/15 2/15 12/17	MAA/TMG MAA/TMG MAA/THC

28-JUL-2021 15:48 R:\Structures\FinalPlans\400_035_BR-0002_SMU_ DL_0017_040008.dgn amlee

ALL PRESTRESSING STRANDS SHALL BE 7-WIRE LOW-RELAXATION GRADE 270 STRANDS AND SHALL CONFORM TO AASHTO M203 EXCEPT FOR SAMPLING REQUIREMENTS WHICH SHALL BE IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

ALL REINFORCING STEEL SHALL BE GRADE 60.

EMBEDDED PLATE ``B-1'' SHALL BE GALVANIZED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

ANCHOR STUDS SHALL CONFORM TO AASHTO M169 GRADES 1010 THROUGH 1020 OR APPROVED EQUAL, AND SHALL MEET THE TYPE ``B'' REQUIREMENTS OF SUBSECTION 7.3 OF THE ANSI/AASHTO/AWS D1.5 BRIDGE WELDING CODE.

AT ENDS OF GIRDERS TO BE EMBEDDED IN CONCRETE DIAPHRAGMS OR END WALLS, PRESTRESSING STRANDS MAY EXTEND A MAXIMUM OF 2"BEYOND THE GIRDER ENDS. OTHERWISE, PRESTRESSING STRANDS SHALL BE CUT FLUSH WITH THE GIRDER ENDS.

THE TRANSFER OF LOAD FROM THE ANCHORAGES TO THE GIRDER SHALL BE DONE WHEN CONCRETE HAS REACHED A COMPRESSIVE STRENGTH OF NOT LESS THAN 4000 PSI. FOR SPAN A & C AND 6600 PSI.FOR SPAN B.

DEPENDING ON THE TYPE OF SYSTEM USED TO SUPPORT THE DECK SLAB FORMS, PRESET ANCHORS MAY BE NECESSARY IN THE PRESTRESSED CONCRETE GIRDER.

DEPTH OF 1/4".

A 2" × 2" CHAMFER IS ALLOWED AT THE INTERSECTION OF THE WEB AND THE BOTTOM FLANGE OF THE 63" AND 72" MODIFIED BULB TEES ONLY.

THE CONTRACTOR HAS THE OPTION TO PROVIDE, AT NO ADDITIONAL COST TO THE DEPARTMENT, 2 ADDITIONAL STRANDS AT THE TOP OF THE GIRDER TO FACILITATE TYING OF THE REINFORCING STEEL. THESE STRANDS SHALL BE PULLED TO A LOAD OF 4500 lbs.

	\square	
 	¾″ BEVEL	EDGE

SECTION "F"

(SEE NOTES)

THE TOP SURFACE OF THE GIRDER, EXCLUDING THE OUTSIDE 4", SHALL BE RAKED TO A

	PROJECT	NO	BR	-000	2
		ASHE	-	CO	UNTY
	STATION	N: 23	3+80.	.00 -	<u> </u>
	SHEET 3 OF	4			
ARTH CAROLINA	DEPAR	state C	OF NORTH CARC DF TRAN RALEIGH	ISPORTA	TION
SEAL 031021 Docusigned by: MWD MLC B04B5A4F2FAD484	PRESTRE CONTI	ESSED NUOUS DE	CONC FOR ETAILS	RETE G LIVE I S	IRDER _OAD
8/3/2021	REVISIONS SHEET NO.				
DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED	NO. BY: 1 2	DATE: NO	BY:	DATE:	S-1 (TOTAL SHEETS 40
		S	TD. NO	D.PCG9	

28-JUL-2021 15:48 R:\Structures\FinalPlans\400_037_BR-0002_SMU_ DIA_0018_040008.dgn amlee

+

CONNECTOR PLATE DETAIL

STRUCTURAL STEEL NOTES

ALL INTERMEDIATE DIAPHRAGM STEEL AND CONNECTOR PLATES SHALL BE AASHTO M270 GRADE 50 OR APPROVED EQUAL.

TENSION ON THE ASTM A325 BOLTS THROUGH THE ANGLE MEMBER SHALL BE CALIBRATED USING DIRECT TENSION INDICATOR WASHERS IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

TENSION ON THE ASTM A449 BOLTS THROUGH THE GIRDER WEB SHALL BE SNUG TIGHTENED FOLLOWED BY AN ADDITIONAL $\frac{1}{4}$ TURN.

THE PLATES, BENT PLATES, AND ANGLES SHALL BE GALVANIZED OR METALLIZED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS. FOR THERMAL SPRAYED COATINGS (METALLIZATION), SEE SPECIAL PROVISIONS.

FOR METALLIZATION, APPLY A THERMAL SPRAYED COATING WITH A SEAL COAT TO ALL STEEL DIAPHRAGM SURFACES IN ACCORDANCE WITH THE DEPARTMENTS THERMAL SPRAYED COATINGS (METALLIZATION) PROGRAM, THERMAL SPRAYED COATINGS SPECIAL PROVISION AND SECTION 442 OF THE STANDARD SPECIFICATIONS.

GALVANIZE THE HIGH STRENGTH BOLTS, NUTS, WASHERS AND DIRECT TENSION INDICATORS IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

USE AN ASTM F436 HARDENED WASHER WITH STANDARD AND SLOTTED HOLES UNDER EACH BOLT HEAD AND NUT.

FOR BOLTS THROUGH THE GIRDER WEB, PROVIDE SUFFICIENT LENGTH OF THREADS ON ALL BOLTS TO ACCOMMODATE WASHERS AND THE THICKNESS OF CONNECTING MEMBER PLUS AT LEAST 1/4" PROJECTION BEYOND THE NUT.

INTERMEDIATE DIAPHRAGM ASSEMBLY SHALL COMPLY WITH SECTION 1072 OF THE STANDARD SPECIFICATIONS.

SUBMIT TWO SETS OF WORKING DRAWINGS FOR THE INTERMEDIATE DIAPHRAGM ASSEMBLY FOR REVIEW, COMMENTS AND ACCEPTANCE. AFTER REVIEW, COMMENTS, AND ACCEPTANCE, SUBMIT SEVEN SETS FOR DISTRIBUTION.

IN THE EXTERIOR BAYS, PLACE TEMPORARY STRUTS BETWEEN PRESTRESSED GIRDERS ADJACENT TO THE STEEL DIAPHRAGMS. STRUTS SHALL REMAIN IN PLACE 3 DAYS AFTER CONCRETE IS PLACED.

THE COST OF THE STEEL DIAPHRAGMS AND ASSEMBLIES SHALL BE INCLUDED IN THE UNIT PRICE BID FOR PRESTRESSED CONCRETE GIRDERS.

TABLE

GIRDER TYPE	DIM ``A''	DIM ``B''	DIM ``C''	DIM ``L''
63'' BULB TEE	1′-6¾″	1'-6''	1'-1"	3'-5''

	PROJEC	<u>8R-000</u> co 0.00 -	2 UNTY L-		
	SHEET 4 0	F 4			
ACTION OF THE CAROLUMENT OF THE CAROLUMENT OF THE SSOUTHER SEAL 031021 THE SEAL 031021 THE SEAL 031021 THE STATES OF THE	DEPA	RTMENT STEEL MODIF RESTRE	E OF NORTH OF TR RALEIGH FANDA ERMEI DIAF OR 6 IED E SSED GIRDE	ANSPORTA ANSPORTA DIATE PHRAGMS 3'' BULB TEE CONCRE	TION TE
	REVISIONS SHEET NO.				
OCUMENT NOT CONSIDERED	NU. BY:	DATE:	NO. BY:	DATE:	S-18 TOTAL
FINAL UNLESS ALL SIGNATURES COMPLETED	2		୬ 4		SHEETS 40

STD. NO. PCG11

TYPICAL SECTION OF ELASTOMERIC BEARINGS

E4 (30 REQ'D) PLAN VIEW OF ELASTOMERIC BEARING

<u>TYPE V</u>

ASSEMBLED BY : M.G.SHA CHECKED BY : H.LOCKLEA	AR DATE :	06/2020 06/2020
DRAWN BY : EEM 2/97 CHECKED BY : VAP 2/97	REV. 6/13 REV. 1/15 REV. 12/17	AAC/MAA MAA/TMG MAA/THC

+

+

NOTES

AT ALL FIXED POINTS OF SUPPORT, NUTS FOR ANCHOR BOLTS ARE TO BE TIGHTENED FINGER TIGHT AND THEN BACKED OFF 1/2 TURN. THE THREAD OF THE NUT AND BOLT SHALL THEN BE BURRED WITH A SHARP POINTED TOOL.

THE 2" Ø PIPE SLEEVE SHALL BE CUT FROM SCHEDULE 40 PVC PLASTIC PIPE. THE PVC PLASTIC PIPE SHALL MEET THE REQUIREMENTS OF ASTM D1785.

STEEL SOLE PLATES, ANCHOR BOLTS, NUTS, AND WASHERS SHALL BE GALVANIZED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

PRIOR TO WELDING, GRIND THE GALVANIZED SURFACE OF THE PORTION OF THE EMBEDDED PLATE AND SOLE PLATE THAT ARE TO BE WELDED. AFTER WELDING, DAMAGED GALVANIZED SURFACES SHALL BE REPAIRED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

WHEN WELDING THE SOLE PLATE TO THE EMBEDDED PLATE IN THE GIRDER, USE TEMPERATURE INDICATING WAX PENS, OR OTHER SUITABLE MEANS, TO ENSURE THAT THE TEMPERATURE OF THE SOLE PLATE DOES NOT EXCEED 300°F. TEMPERATURES ABOVE THIS MAY DAMAGE THE ELASTOMER.

SOLE PLATE "P", BOLTS, NUTS, WASHERS, AND PIPE SLEEVE SHALL BE INCLUDED IN THE PAY ITEM FOR PRESTRESSED CONCRETE GIRDERS.

ANCHOR BOLTS SHALL MEET THE REQUIREMENTS OF ASTM A449. NUTS SHALL MEET THE REQUIREMENTS OF AASHTO M291-DH OR AASHTO M292-2H. WASHERS SHALL MEET THE REQUIREMENTS OF AASHTO M293. NO SHOP DRAWINGS ARE REQUIRED FOR ANCHOR BOLTS, NUTS AND WASHERS. SHOP INSPECTION IS REQUIRED.

ALL SURFACES OF BEARING PLATES SHALL BE SMOOTH AND STRAIGHT.

THE ELASTOMER IN THE STEEL REINFORCED BEARINGS SHALL HAVE A SHEAR MODULUS OF 0.160 KSI, IN ACCORDANCE WITH AASHTO M251.

FOR STEEL REINFORCED ELASTOMERIC BEARINGS, SEE SPECIAL PROVISIONS.

ALL SOLE PLATES SHALL BE AASHTO M270 GRADE 36.

MAXIMUM ALLOWABLE SERVICE LOADS					
D.L.+L.L. (NO IMPACT)					
TYPE V	365 K				

STD. NO. EB4 (SHT 1)

+

STD. NO. CBR1 (SHT 2)

THE HOLD-DOWN PLATE SHALL CONFORM TO AASHTO M270 GRADE 36.AFTER FABRICATION, THE HOLD-DOWN PLATE SHALL BE HOT-DIP GALVANIZED IN ACCORDANCE WITH AASHTO M111.

BOLTS SHALL CONFORM TO THE REQUIREMENTS OF ASTM A307 AND NUTS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M291. BOLTS, NUTS AND WASHERS SHALL BE GALVANIZED. (AT THE CONTRACTOR'S OPTION, STAINLESS STEEL BOLTS, NUTS AND WASHERS MAY BE USED AS AN ALTERNATE FOR THE 1810 GALVANIZED BOLTS, NUTS AND WASHERS. THEY SHALL CONFORM TO OR EXCEED THE MECHANICAL REQUIREMENTS OF ASTM A307. THE USE OF THIS ALTERNATE SHALL BE APPROVED BY THE ENGINEER.)

THE GUARDRAIL ANCHOR ASSEMBLY IS REQUIRED AT ALL POINTS WHERE APPROACH GUARDRAIL IS TO BE ATTACHED TO THE END OF BARRIER RAIL.FOR POINTS OF ATTACHMENT. SEE SKETCH.

AFTER INSTALLATION, THE EXPOSED THREAD OF THE BOLT SHALL BE BURRED WITH A SHARP POINTED TOOL.

THE COST OF THE GUARDRAIL ANCHOR ASSEMBLY SHALL BE INCLUDED IN THE UNIT CONTRACT PRICE BID FOR CONCRETE BARRIER RAIL.

THE 1 1/4" Ø HOLES SHALL BE FORMED OR DRILLED WITH A CORE BIT. IMPACT TOOLS WILL NOT BE PERMITTED. ANY CONCRETE DAMAGED BY THIS WORK SHALL BE REPAIRED TO THE SATISFACTION OF THE ENGINEER.

NOTES

THE GUARDRAIL ANCHOR ASSEMBLY SHALL CONSIST OF A $\frac{1}{4}$ " HOLD-DOWN PLATE AND 4 - $\frac{7}{8}$ " Ø BOLTS WITH NUTS AND WASHERS, RUBRAIL, AND ADHESIVELY ANCHORED BOLTS.

THE C6 X 8.2 RUBRAIL IS TO BE ADHESIVELY ANCHORED TO THE RAIL USING THREE $\frac{3}{4}$ " Ø X 6"BOLTS WITH WASHERS. LEVEL ONE FIELD TESTING IS REQUIRED, AND THE YIELD LOAD OF THE $\frac{3}{4}$ " Ø BOLT IS 12 KIPS. FOR ADHESIVELY ANCHORED ANCHOR BOLTS OR DOWELS, SEE STANDARD SPECIFICATIONS. SEE ROADWAY STANDARD 862.03 FOR DETAILS AND LOCATION OF THE RUBRAIL.

SKETCH SHOWING POINTS OF ATTACHMENTS

* DENOTES GUARDRAIL ANCHOR ASSEMBLY

DRAWN BY :	M. G. S	SHAIKH	DATE : <u>06/2020</u>
CHECKED BY :	H.LO	CKLEAR	DATE : <u>06/2020</u>
DESIGN ENGINEER	OF RECORD: _	K.PUROHIT	DATE : <u>11/2019</u>

+

POUR SEQUENCE

POUR 2 CAN NOT BE STARTED UNTIL BOTH ADJACENT 1 POURS REACH A MINIMUM OF 3,000 PSI.

SUP L FOLL	SUPERSTRUCTURE REINFORCING STEEL LENGTHS ARE BASED ON THE FOLLOWING MINIMUM SPLICE LENGTHS						
BAR SIZE	SUPERST EXCEPT A SLABS, PA AND BARRI	RUCTURE PPROACH RAPETS, ER RAILS	APPROACH SLABS		PARAPETS AND BARRIER		
	EPOXY COATED	UNCOATED	EPOXY COATED UNCOATED		RAILS		
# 4	1'-11"	1'-7"	1'-11"	1'-7"	2′-6″		
* 5	2'-5"	2'-0"	2'-5″	2'-0"	3'-1"		
*6	2'-10"	2'-5"	3'-7"	2'-5"	3'-8"		
# 7	4'-2"	2'-9"					
# 8	4'-9"	3'-2"					

+

		STAC	GE I			
BAR	NO.	SIZE	TYPE	LENGTH	WEI	
* A1	512	# 5	STR	19′-5″	10,	
A2	512	# 5	STR	19′-5″	10,	
米 B1	56	#4	STR	29'-1"	108	
* B2	104	# 5	STR	35′-0″	379	
₩ B3	52	* 5	STR	28′-9″	155	
* B4	14	# 4	STR	39'-10"	373	
B5	70	# 5	STR	57′-3″	418	
B6	30	# 5	STR	14'-8"	459	
米 D1	512	# 5	STR	6'-9"	360	
D2	512	# 5	STR	6'-9"	360	
∗ G1	2	# 5	STR	19′-5″	4	
* K1	4	#8	1	13′-6″	14	
₩ K2	4	#8	2	18'-9"	20	
* K3	4	#8	1	9'-2"	98	
* S1	16	#4	3	5'-10"	62	
REINFORCING STEEL 18,613 L						
* EPOXY COATED REINF.STEEL 21,336 L						

GROOVING BRIDGE FLOORS					
STAGE	Ι				
APPROACH SLABS	454	SQ.FT.			
BRIDGE DECK	4597	SQ.FT.			
TOTAL	5051	SQ.FT.			
STAGE II					
APPROACH SLABS	420	SQ.FT.			
BRIDGE DECK	4251	SQ.FT.			
TOTAL	4671	SQ.FT.			
TOTAL					
APPROACH SLABS	874	SQ.FT.			
BRIDGE DECK	8848	SQ.FT.			
TOTAL	9722	SQ.FT.			

CLASS AA	CONCRETE						
(CU .	YDS.)						
STAGE I	STAGE II						
162.1	95.2						
24.9	14.6						
	65.9						
187.0	175.7						
	ETE BREAN CLASS AA (CU. STAGE I 162.1 24.9 						

* * QUANTITIES FOR BARRIER RAIL IS NOT INCLUDED

DRAWN BY :	M. G. S	БНАІКН	DATE :	06/2020
CHECKED BY :	Α.	DATE :	06/2020	
DESIGN ENGINEER	OF RECORD: _	K.PUROHIT	DATE :	11/2019

REINFORCING BAR SCHEDULE					REI	NFORC	ING	BAR	SCHE	DULE		
STAGE I							(STAG	E I]	Γ		
BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT		BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT
* A1	512	# 5	STR	19′-5″	10,369		₩ A3	512	# 5	STR	18'-2"	9701
Α2	512	# 5	STR	19′-5″	10,369		Δ4	512	# 5	STR	18'-2"	9701
* B1	56	# 4	STR	29'-1"	1088		米 B1	32	#4	STR	29'-1″	622
* B2	104	# 5	STR	35′-0″	3797		* B2	60	# 5	STR	35'-0"	2190
* B3	52	# 5	STR	28′-9″	1559		₩ B3	30	# 5	STR	28'-9″	900
* B4	14	# 4	STR	39'-10"	373		* B4	8	#4	STR	39'-10″	213
B5	70	# 5	STR	57′-3″	4180		B5	55	# 5	STR	57′-3″	3284
B6	30	# 5	STR	14'-8"	459		B6	18	# 5	STR	14'-8"	275
* D1	512	# 5	STR	6'-9″	3605		* D1	512	# 5	STR	6′-9″	3605
D2	512	# 5	STR	6'-9″	3605		D2	512	# 5	STR	6′-9″	3605
* G1	2	# 5	STR	19′-5″	41		* G2	2	# 5	STR	18'-2"	38
* K1	4	# 8	1	13′-6″	144		₩ K5	4	#8	1	8′-6″	91
₩ K2	4	# 8	2	18′-9″	200		* K6	4	# 8	1	12'-10"	137
₩ K3	4	# 8	1	9′-2″	98							
							* S1	8	#4	3	5'-10"	31
* S1	16	#4	3	5′-10″	62							
							REIN	FORCIN	S STEE	_	16,8	365 LBS.
REINFORCING STEEL 18,613 LBS.												
<u></u>	* EPOXY COATED REINF. STEEL 17,528 LBS.											
	LUAIE	יח עבדו	NE.JIE	.∟∟ ∠1,3	NO LOS.							

REINFORCING BAR SCHEDULE									
	CLOSURE POUR								
BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT				
* B1	20	#4	STR	29'-1"	389				
* B2	36	# 5	STR	35′-0″	1314				
* B3	20	# 5	STR	28'-9"	600				
* B4	5	#4	STR	39'-10"	133				
B5	35	# 5	STR	57′-3″	2090				
B6	12	# 5	STR	14'-8"	184				
₩ K4	8	# 8	1	8'-6"	182				
* S1	8	#4	3	5'-10"	31				
REIN	REINFORCING STEEL 2274 LBS.								
₩ EPOX	Y COATE	D REIN	NF.STE	EL 264	9 LBS.				

—— TOTAI	_ BILL OF MA	TERIAL ——
	REINFORCING STEEL	*EPOXY COATED REINFORCING STEEL
	(LBS.)	(LBS.)
STAGE I	18,613	21,336
STAGE II	16,865	17,528
CLOSURE POUR	2,274	2649
TOTAL **	37,752	41,513

²⁸⁻JUL-2021 15:49 R:\Structures\FinalPlans\400_049_BR-0002_SMU_ E1_0024_040008.dgn amlee

+

DETAIL ``B"

NOTES:

2"ØX2'-01/2" - BOLTS TO PROJECT 61/2" ABOVE TOP OF CAP (TYP.)

STIRRUPS IN CAP MAY BE SHIFTED AS NECESSARY TO CLEAR #5 "V" BARS.

THE CONTRACTOR SHALL BE RESPONSIBLE FOR TEMPORARY DRAINAGE AND EROSION CONTROL AT THE END BENT.

THE TOP SURFACE AREAS OF THE END BENT CAPS SHALL BE CURED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS EXCEPT THE MEMBRANE CURING COMPOUND METHOD SHALL NOT BE USED.

BACKWALL SHALL BE PLACED BEFORE APPLYING THE EPOXY PROTECTIVE COATING.

BR-0002 PROJECT NO._ ASHE COUNTY STATION: 23+80.00 -L-SHEET 1 OF 4 STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH H CAR FESSION SEAL SUBSTRUCTURE 031021 , AGINEE END BENT 1 (STAGE I) cuSigned b Amber Male B04B5A4F2FAD484... 8/3/2021 SHEET NO. REVISIONS S-24 DATE: DATE: BY: DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED BY: TOTAL SHEETS

40

28-JUL-2021 15:49 R:\Structures\FinalPlans\400_051_BR-0002_SMU_ E1_0025_040008.dgn amlee

+

28-JUL-2021 15:49 R:\Structures\Final Plans\400_053_BR-0002_SMU_ E1_0026_040008.dgn amlee

+

BILL OF MATER							_			
STAGE I							ST	AGE	II	
	SIZE	TYPE	LENGTH	WEIGHT	BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT
	# 9	1	26′-7″	723	B1	8	# 9	1	19''-8"	535
	#4	STR	27'-0″	180	B2	10	#4	STR	19′-6″	130
	#4	STR	3'-2"	13	B3	5	#4	STR	3'-2"	11
	#4	STR	7′-5″	20	B4	4	#4	STR	3'-4"	9
	#4	STR	16'-5"	44						
					H1	44	# 6	2	14'-4"	947
	# 6	2	14'-4"	990						
					К1	12	#4	STR	19′-6″	156
	#4	STR	27'-0"	216	K2	28	#4	STR	3'-6"	65
	#4	STR	3'-6"	65						
					S1	19	#4	3	11'-2"	142
	#4	3	11'-2"	172	S2	19	#4	4	3'-11"	50
	#4	4	3'-11"	60	S3	16	#4	5	6'-6"	69
	#4	5	6′-6″	87						
					U1	16	#4	6	3'-8"	39
	#4	6	3'-8"	51	U2	3	#4	STR	6'-2"	12
	#4	6	6'-2"	70						
			• • • • •		V1	32	# 5	STR	8'-10"	295
	#5 =	STR	9'-1"	398	V3	36	# 5	STR	10'-7"	397
	#5	SIR	11'-4"	426						
٢١	NG STE	EL	3	515 LBS.	REINF	ORCIN	NG STE	EL	2	857 LBS.
20	DNCRET	E BREA	KDOWN		CLASS A CONCRETE BREAKDOWN					
C 0	AP,LOW F WING	VER PA	RT)LLARS	17.4 C.Y.	POUR	#1 C 0	AP,LOV F WINC	VER PA G & C(RT DLLARS	13.1 C.Y.
BACKWALL & UPPER 8.5 C.Y.					POUR #2 BACKWALL & UPPER 7.5 C.Y.				7.5 C.Y.	
ASS A CONCRETE 25.9 C.Y.					τοτα	L CLA	SSA (CONCRE	ΤE	20.6 C.Y.
3 STEEL PILES					HP 12	2 X 53	STEEL	. PILE	S	
No.5LIN FT. 80								No.	4LIN	N FI. 80
L	E POIN	NTS		NO.5	STEE	L PIL	E POIN	NTS		NO. 4
V 2	ING EC X 53	DUPMEN STEEL	NT SETUP PILES	5 EA.	PILE FOR	E DRIV HP 12	VING E 2 X 53	QUPME STEEL	NT SETUP PILES	4 EA.

28-JUL-2021 15:49 R:\Structures\FinalPlans\400_057_BR-0002_SMU_ B1_0028_040008.dgn

amlee

+

+

DRAWN BY :

28-JUL-2021 15:49 R:\Structures\FinalPlans\400_061_BR-0002_SMU_ B1_0030_040008.dgn

amlee

+

-	~ · · · ·	
-5″	V1	2'-3"
	-1	
H	3'-2"	
	3'-10"	U2
	3'-0"	U3
		114

3'-2"	U1
3′-10″	U2
3'-0"	U3
3'-3"	U4

3'-2"		
3'-10"	U2	
3′-0″		

3'-2"	U1	
'-10"	U2	
8'-0"	U3	

				BILL	OF MA	TERIA	AL-BE	NT	1		
		ST	AGE	I				ST	٩GE	II	
BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT	BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT
B1 B2	3	#11 #11	SIR	21'-6"	343 239	B8 B9	2	#11 #11	SIR	11'-1"	118 193
B2 B3	3	#11	1	23'-1"	368	B10	2	#11	1	12'-8"	135
B4	2	#11	1	24'-1"	256	B11	3	#11	1	13'-8"	218
B5	6	#4	STR	21'-11"	88	B12	6	#4	STR	14'-0"	56
B6 B7	5	#4 #⊿	STR	15'-6" 3'-10"	52	M1	10	#11	STR	22'-7"	1200
			511	5 10	15	1411	10	11	511		1200
M1	20	#11	STR	22'-7"	2400	S1	38	# 5	2	10'-5"	413
<u> </u>	10	#5	2	10/ 5/	500	1.11	10	# 1	7	C/ 2"	7 /
51	46	- T O	2	10-5	500	U3	3	#4	3	<u> </u>	11
U1	25	#4	3	6′-2″	103	U4	3	#4	3	5'-9"	12
U2	3	#4	3	6'-4"	13	\/1	10	#11	1	10/ 0//	670
03	4	#4	5	5'-6"	15	V1	10	#11		12"-0"	638
V1	20	#11	1	12'-0"	1275						
		0.7.5.5									
REINFO	ORCING	STEEL		5	665 LBS.	REINF	ORCING	STEEL		3	068 LBS.
SPIRA	L REIN	FORCIN	IG STE	EL		SPIRA	L REIN	FORCI	NG STE	EL	
SP-1	2	*	4	243'-0"	507	SP-1	1	*	4	243'-0"	253
SP-2	2	**	5	240'-9″	321	SP-2	1	**	5	240'-7"	161
SATKY	L KEIN	- OKCIN	IU SIE	LL VZV	LDJ.	2LTKU	L KEIN	- OKC IN	NG SIE	.CL 414	LDJ.
CLASS	S A CON				C Y	CLASS	A CON	CRETE			CV
	POU	R 3 (C -	AP))	<u> </u>			POUF	₹ 3 (C)	AP)	(.6	<u>L.Y.</u>
	POU	R 2 (C	OLUMN) <u> </u>	<u>C.Y.</u>		POUR	2 (CC	LUMN)	1.5	<u>C.Y.</u>
			τοτα	L <u>14.3</u>	<u>C.Y.</u>				ΤΟΤΑ	L <u>9.1</u>	<u>C.Y.</u>
	DRI	[LLE	D PI	ERS			DR.	ILLE	D P]	[ER	
DRILL	ED PIEF	R CONC	RETE			DRILLE	ED PIER	CONC	RETE		
POUR	1 (DRIL	LED PI	(ERS)	7.9	C.Y.	POUR 1 (DRILLED PIER) <u>3.9 C.Y.</u>					
3'-0" Ø	Ø DRILLE	ED PIE	RS IN	SOIL		3'-0"Ø DRILLED PIER IN SOIL					
		-0 075		16 LI	N.FI.	71 04 0				8 LI	N.FI.
5'-0" Ø	DRILLE	D PIE	RS NU	14 LI	L IN.FT.	3'-0" Ø DRILLED PIER NOT IN SOIL 7 LIN.FT.					
				17							
USL II	JRE2			15,	<u> </u>	USL I	UBE 2			66	SFI.
CSL T	ESTING			1	ЕАСН						
			51	IMMARY	' RTLL		MATE	R Τ ΔΙ			
RETNE		STEEL	50	= 873		3'-0" 0					
SPTRAI	RETNE	ORCIN	G STEF	= 01.	2 I BS.	IN SOIL = 24 LIN.FT.					
CLASS	A CONC	RETE		= 23.	4 C.Y.	3'-O"Ø DRILLED PIERS NOT IN SOIL = 21 LIN.FT.					
DRILLE	ED PIER	CONC	RETE	= 11.8	B C.Y.						
CSL TE	STING			= 1 E	ACH						
)R											
R.											
					PR	O.IFC	Τ ΝΟ	_ E	BR-	0002	
						UULU		• `\\Г			
							<u>A:</u>	HE		COL	JNTY
					ST	ΔΤΤΟ	N•	23+	80.	00 -1	
					51						
					SHE	et 3 of	3				
							ST	ATE OF NO	RTH CAROL		
				WILL CARO	<i>.</i>	DEPAF	IMENI		IRAN: EIGH	SPORIAI	ION
			A. S.	OF ESSION			SU	RSTF		IIRF	
			11111	SEAL			50			∟ 1	
				WCINFER					ч I т ^	1 + + 、	
				BER M.	IT IN		(21)	AGE	T &	ΤT)	
				- DocuSigned by:							
				//////////////////////////////////////							
			8/	3/2021			REV	ISIONS			SHEET NO.
	Γ		INT NC	T CONSID		BY:	DATE:	NO. ବ୍ଲ	BY:	DATE:	TOTAL
		⊦⊥ SIGN	NAL UI	NLESS ALL S COMPLE				4 4			sheets 40

	B3 B4	(2)	- 7 ¹ /2"
	B10	2	3,
-	B11		
	V1	2'-3"	S1
	1		

28-JUL-2021 15:49 R:\Structures\Final Plans\400_063_BR-0002_SMU_ B2_0031_040008.dgn amlee

+

28-JUL-2021 15:49 | R:\Structures\Final Plans\400_065_BR-0002_SMU_ B2_0032_040008.dgn amlee

	·										
				BILL (DF MA	TERIA	L-BE	NT 2	2		
		ST	AGE	I				STA	AGE	II	
BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT	BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT
B1	3	#11	STR	21'-6"	343	B8	2	#11	STR	11'-1"	118
B2	2	#11 #11	STR 1	22'-6"	239	B9	3	#11 #11	STR 1	12'-1"	193
B3 B4	2	#11 #11	1	23 -1	<u>368</u> 256	B10 B11	<u>ک</u> ۲	#11 #11	1	12 -0	218
B5	6	#4	STR	21'-11"	88	B12	6	#4	STR	14'-0"	56
B6	5	#4	STR	15′-6″	52				_		
B7	5	#4	STR	3'-10"	13	M1	10	#11	STR	21'-7"	1147
			C T D	01/ 7/		<u> </u>	7.0	+-			417
M1	20	#11	SIR	21'-("	2293	51	38	*5	Ζ	102.	415
<u>S1</u>	46	#5	2	10'-5"	500	U1	18	#4	3	6'-2"	74
				10 3		U3	3	#4	3	5'-6"	11
U1	25	#4	3	6'-2"	103	U4	3	#4	3	5′-9″	12
U2	3	#4	3	6'-4"	13		1.0			474.04	
U3	4	#4	3	5'-6"	15	V1	10	#11	1	13'-9"	731
V1	20	#11	1	13'-9"	1461						
• 1	20		1	15 5	1,01						
R	EINFOR	CING S	STEEL	5	5744 LBS	R	EINFOR	CING S	STEEL		3108
SPTRA			IC STE	FI		SPTRA		FORCT	NC STE	FI	
JI INA											0.7.0
SP-1	2	*	4	226'-4"	472	SP-1	1	*	4	226'-4"	236
58-2	2	**	5	287-4	284	58-2	1	* *	5	287-4	192
CDTO ·										L 400	
SP1RA	L KEIN	URCIN	NG STE	EL 856 l	_D).	SHTKY	L KEINF	URCIN	NG SIE	LL 428	LDJ.
CLASS	A CONC	CRETE	•			CLASS	A CONC	RETE	•		
	POU	R 3 (C	AP))	11.3	C.Y.		POUF	R 3 (C/	AP)	7.6	<u>C.Y.</u>
	POU	R 2 (C	OLUMN) <u>3.7</u>	C.Y.		POUR	2 (CC	LUMN)	1.9	C.Y.
			τοτα	L 15 (C.Y.	TOTAL 9.5 C.Y.				C.Y.	
										FR	
URILLI			,REIE	7 7		DNILL		CONC			0.14
POUR	1 (DRIL	LED PI	[ERS)	1.5	C.Y.	POUR 1 (DRILLED PIER) <u>3.7 C.Y.</u>				C.Y.	
3'-0"Ø	DRILLE	ED PIE	RS IN	SOIL		3'-0" Ø	DRILLE	ED PIE	RIN	SOIL	
					N.FI.	7, 0, 0					N.FI.
3'-0" Ø	DRILLE	D PIE	RS NU	I IN SUIT		3'-0" Ø	DRILLE	U PIE	RNUI	IN SOIL 7 LI	N.FT.
CSL TL	JBES			124	IFT.	CSL T	UBES			62	2 FT.
				1							
USL I	ESTING			1	LACH						
			Sl	JMMARY	BILL	OF I	ΜΑΤΕΙ	RIAL			
REINFO	ORCING	STEEL		= 885	2 LBS.	3'-0" @	Ø DRILL	ED PI	ERS		
SPIRAL	REINF	ORCIN	G STEE	EL = 128	4 LBS.	IN SO	IL			= 20 l	_IN.FT.
CLASS	A CONC	RETE		= 24.	5 C.Y.	3'-0"@ NOT I	Ø DRILL N SOIL	ED PI	ERS	= 22 L	IN.FT.
DRILLE	D PIER	CONC	RETE	= 11.0	D C.Y.						
CSL TE	STING			= 1 E	АСН						
D											
к R.											
								г	רו ר	0000	
					PR	OJEC	Τ ΝΟ	•	3R-1	0002	
							<u>ک</u> ۸	HF			
							<u> </u>				
					ST	ΔΤΤΟ	N:	23+	80.	00 -l	
					5.		• • • •				
					SHE	ET 3 OF	3				
							ST	ATE OF NO	RTH CAROL	INA	
						DEPAF	RTMENT	OF	TRANS	SPORTAT	ION
			ATT IN COLUMN	ORTH CAROLIN					EIGH		
			inn.	CEAL F			SU	BSTE	VUCT	URE	
				031021				BEN	IT 2	2	
			Inner	A CINEER	IIIII		(S T.)		Т Я.	T T 1	
			****	MER M.	II.				т ОХ	¥ ¥/	
				DocuSigned by:							
				//////////////////////////////////////							
			8/	3/2021			REV	ISIONS			SHEET NO.
	נ	DOCUME	ENT NC	T_CONSID	ERED NO.	BY:	DATE:	NO.	BY:	DATE:	5-22
		FI SIGN	NAL UI ATURE:	NLESS ALL S COMPLET	ED 2			<u>৩</u> ব্র			SHEETS 40

28-JUL-2021 15:49 R:\Structures\FinalPlans\400_069_BR-0002_SMU_ E2_0034_040008.dgn amlee

+

NOTES:

STIRRUPS IN CAP MAY BE SHIFTED AS NECESSARY TO CLEAR #5 "V" BARS.

THE CONTRACTOR SHALL BE RESPONSIBLE FOR TEMPORARY DRAINAGE AND EROSION CONTROL AT THE END BENT.

THE TOP SURFACE AREAS OF THE END BENT CAPS SHALL BE CURED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS EXCEPT THE MEMBRANE CURING COMPOUND METHOD SHALL NOT BE USED.

BACKWALL SHALL BE PLACED BEFORE APPLYING THE EPOXY PROTECTIVE COATING.

	PROJE	CT NO.		BF	2-000	2
		ASH	E		CO	UNTY
	STATION: 23+80.00 -L-					
SHEET 1 OF 4						
NUMBERSION	STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH					
SEAL 031021	SUBSTRUCTURE END BENT 2 (STAGE T)					
MMWD Male B04B5A4F2FAD484 8/3/2021				16		
	NO. BY:	DATE:	NO'	IS BY:	DATE:	SHEET NO. S-34
JMENT NOT CONSIDERED	1		3			TOTAL SHEETS
GNATURES COMPLETED	2		4			40

PLAN

28-JUL-2021 15:49 R:\Structures\FinalPlans\400_071_BR-0002_SMU_ E2_0035_040008.dgn amlee

+

+

DRAWN BY :

DETAIL ``B"

amlee

2 X 53 STEEL PILES 5 EA.	FO	R HP 12 X	53 STEEL	_ PILES _	4 EA.
CONCRETE COLLAR COLLAR CHP 12 X 53 STEEL PILE C'-O"		ΒΟΤΤΟΜ Ο	F CAP		
DN <u>IL</u> ST SHE	OJEC	CT NO. ASH ON: 2	<u>BF</u> <u>5</u> 3+80	<u>000-</u> 	<u>2</u> UNTY L-
BO4B5A4F2FAD484 8/3/2021	DEPA	SUB END	OF NORTH CAR OF TRAI RALEIGH STUCTI BEN	NSPORTA	
DOCUMENT NOT CONSTDERED NO.	BY:	DATE:	NO. BY:	DATE:	SHEET NU. S-37
FINAL UNLESS ALL 1			3		TOTAL SHEETS 40
			שא <u>ו</u>		

	S	TAG	ΕI		STAGE II					
	SIZE	TYPE	LENGTH	WEIGHT	BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT
	#9	1	26'-7"	723	B1	8	#9	1	19'-8"	535
	#4	STR	27'-0"	180	B2	10	#4	STR	19′-6″	130
	#4	STR	3'-2"	13	B3	5	#4	STR	3'-2"	11
	#4	STR	7'-5"	20	B4	4	#4	STR	3'-4"	9
	#4	STR	16'-5"	44						
					H1	44	*6	2	14'-4"	947
	*6	2	14'-4"	990						
					K1	12	#4	STR	19'-6"	156
	#4	STR	27'-0"	216	K2	28	#4	STR	3'-6"	65
	#4	STR	3'-6"	65						
					S1	19	#4	3	11'-2"	142
	#4	3	11'-2"	1/2	S2	19	#4	4	3'-11"	50
	#4	4	3'-11"	60	53	16	#4	5	6'-6"	69
	#4	5	6'-6"	87	4				74 04	70
			71 04	5 4	U1	16	#4	6	3'-8"	39
	#4	6	3'-8"	51	U2	3	#4	SIR	6'-2"	12
	#4	6	6'-2"	70		70		C T D	0/ 10/	0.05
	+ -		0/ 1/	700		32	#5 #5	SIR	8'-10"	295
	#5 #5	SIR	9'-I"	398	٧3	36	#5	SIR	10'-1"	397
	*5	SIR	11'-4"	426						
[]	NG STE	EL	۲. ۲	515 LBS.	REINF	ORCIN	NG STE	EL	2	857 LBS.
20	DNCRET	E BREA	AKDOWN		CLASS	5 A C(ONCRET	E BREA	AKDOWN	
C 0	AP,LOV F WINC	VER PA G & CO	.RT)LLARS	17.4 C.Y.	POUR	#1 C 0	AP,LOW F WING	VER PA G & CO	RT DLLARS	13.1 C.Y.
B P	ACKWAL ART OF	L & L WING	JPPER	8.6 C.Y.	POUR	#2 B P	ACKWAL ART OF	L & L WINC	JPPER	7.6 C.Y.
73	SS A C	ONCRE	TE 2	26.0 C.Y.	τοτα	L CLA	SSA (CONCRE	TE	20.7 C.Y.
3	STEEL	PILE No.	S 5LIN	IFT. 75	HP 12	2 X 53	3 STEEL	PILE No.	S 4LIN	N FT. 60
L	E POIN	NTS		NO.5	STEE	L PIL	E POIN	NTS		NO. 4
V 2	ING ECX 53	DUPMEN STEEL	NT SETUP PILES	_ 5 EA.	PILE FOR	E DRIV HP 12	VING E 2 X 53	QUPME STEEL	NT SETUP PILES _	4 EA.

BILL OF MATERIAL

NOTES : FOR BERM WIDTH DIMENSIONS, SEE GENERAL DRAWING.

ESTIMATED QUANTITIES						
IDGE @ A.23+80.00 -L-	RIP CLAS (2'-0"	RIP RAP CLASS II (2'-0" THICK)		GEOTEXTILE FOR DRAINAGE		
	Τ(ONS	SC	UARE YARI	DS	
END BENT 1	3	387		430		
END BENT 2	1	81		201		
	PROJE	CT NO ASHE ON: 23	BF +80	<u>-000</u> CO <u>.00 -</u>	2 UNTY L -	
Bocusigned by:	depa R	ARTMENT C	PD[NSPORTA	TION _S	
8/3/2021		REVISIO	DNS		SHEET NO.	
DOCUMENT NOT CONSIDERE) NO. BY: 1	DATE: NO	BY:	DATE:	S-38 TOTAL	
FINAL UNLESS ALL			′ 		SHEEIS	

28-JUL-2021 15:49 R:\Structures\Final Plans\400_079_BR-0002_SMU_ AS_0039_040008.dgn amlee

+

ILL	OF	MATERIAL	FOR	ONE	APPROACH	SLAB
		(2	REQ	'D)		

4(JE I	(2	REQ'D)			STAC	E I.	<u>[</u> (2	REQ'D)		
	SIZE	TYPE	LENGTH	WEIGHT	BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT	
	#4	STR	20'-9"	222	* A3	16	#4	STR	17'-2"	183	
	#4	STR	20'-5"	218	Δ4	16	#4	STR	17'-2"	183	
	·′										
	#5	STR	14'-2"	547	* B3	35	# 5	STR	14'-2"	517	
	#6	STR	14'-8"	815	B4	35	#6	STR	14'-8"	771	
	·′										
NG	, STEE	L	LB	S. 1033	REINFO	REINFORCING STEEL LBS. 954					
OATED CING STEEL IBS. 769					* EPOXY COATED REINFORCING STEEL LBS. 700						
C0	NCRET	E	С.	Y. 12.3	CLASS	AA CC	JNCRET	E	С	.Y. 11.5	

NOTES

FOR BRIDGE APPROACH FILL INCLUDING GEOTEXTILE, 4"Ø DRAINAGE PIPE, AND SELECT MATERIAL BACKFILL, SEE ROADWAY PLANS. GEOTEXTILE SHALL BE TYPE 1 IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS SECTION 1056. SELECT MATERIAL BACKFILL (CLASS V OR CLASS VI) SHALL BE IN ACCORDANCE WITH STANDARD SPECIFICATIONS SECTION 1016. SELECT MATERIAL BACKFILL IS TO BE CONTINUOUS ALONG FILL FACE OF BACKWALL FROM OUTSIDE EDGE TO OUTSIDE EDGE OF APPROACH SLAB. APPROACH SLAB SHALL NOT BE CONSTRUCTED PRIOR TO COMPLETION OF THE BRIDGE DECK. THE JOINT SHALL BE SAWED PRIOR TO THE CASTING OF THE BARRIER RAIL OR PARAPET AND END POST. FOR THE 4" Ø DRAINAGE PIPE OUTLET(S), SEE ROADWAY STANDARD DRAWINGS. AREA BETWEEN THE WINGWALL AND APPROACH SLAB SHALL BE GRADED TO DRAIN THE WATER AWAY FROM THE FILL FACE OF THE BRIDGE AND SHALL BE PAVED. SEE ROADWAY PLANS. WITH FOAM JOINT SEAL

FOR FOAM JOINT SEALS, SEE SPECIAL PROVISIONS. THE NOMINAL UNCOMPRESSED SEAL WIDTH OF THE FOAM JOINT SEAL SHALL BE 2''. EAR ELASTAMERTO CONCRETE SEE SPECTAL PROVISIONS

r UR	ELASIUMERIC	CUNCRETE, SEE	SFECTAL	FRUVISIUNS.	

	PROJEC STATIC	T NO ASHE DN:_23	Bl <u>-</u> 3+80	<u></u>	<u>)2</u> UNTY ·L -
RESSIONER SEAL 031021	DEPA BR FOI	STATE OF RTMENT O STA STA STA STA STA STA STA STA STA STA	F NORTH CARG	DINA NSPORTA D ACH SLA PAVEME	TION AB NT
MMWD 91/Acc B04B5A4F2FAD484 8/3/2021		REVISIO)NS		SHEET NO.
OCUMENT NOT CONSTREED	NO. BY:	DATE: NO	BY:	DATE:	S-39
FINAL UNLESS ALL	1	3 4	<u> </u>		total sheets 40
		S	TD.NO	D. BAS2	(SHT 1)

	ELAST	OMERIC CONCRETE	
	END BENT NO.	ELASTOMERIC CONCRETE * (CU.FT.)	
	1	6.02	
E	1 2	6.02 6.02	
E	1 2 TOTAL	6.02 6.02 12.04	

ASSEMBLED BY :	KOUCHEKI	DATE :	06/2020
CHECKED BY :	H.LOCKLEAR	DATE :	06/2020
DRAWN BY : FCJ	11/88 REV. 6	/13	MAA/GM
CHECKED BY : ARB	11/88 REV. 12 REV. 5	/18	MAA/THC MAA/THC

28-JUL-2021 15:49 R:\Structures\Final Plans\400_081_BR-0002_SMU_ AS_0040_040008.dgn amlee

DESIGN DATA:

SPECIFICATIONS	A.A.S.H.T.O. (CURRENT)
LIVE LOAD	SEE PLANS
IMPACT ALLOWANCE	SEE A.A.S.H.T.O.
STRESS IN EXTREME FIBER OF STRUCTURAL STEEL - AASHTO M270 GRADE 36	20,000 LBS.PER SQ.IN.
- AASHTO M270 GRADE 50W	27,000 LBS.PER SO.IN.
- AASHTO M270 GRADE 50	27,000 LBS.PER SQ.IN.
REINFORCING STEEL IN TENSION - GRADE 60	24,000 LBS.PER SO.IN.
CONCRETE IN COMPRESSION	1,200 LBS.PER SO.IN.
CONCRETE IN SHEAR	SEE A.A.S.H.T.O.
STRUCTURAL TIMBER - TREATED OR UNTREATED EXTREME FIBER STRESS	1,800 LBS.PER SQ.IN.
COMPRESSION PERPENDICULAR TO GRAIN OF TIMBER	375 LBS.PER SQ.IN.
EQUIVALENT FLUID PRESSURE OF EARTH	30 LBS.PER CU.FT. (MINIMUM)

MATERIAL AND WORKMANSHIP:

EXCEPT AS MAY OTHERWISE BE SPECIFIED ON PLANS OR IN THE SPECIAL PROVISIONS, ALL MATERIAL AND WORKMANSHIP SHALL BE IN ACCORDANCE WITH THE 2018 "STANDARD SPECIFICATIONS FOR ROADS AND STRUCTURES" OF THE N. C. DEPARTMENT OF TRANSPORTATION.

STEEL SHEET PILING FOR PERMANENT OR TEMPORARY APPLICATIONS SHALL BE HOT ROLLED.

CONCRETE:

UNLESS OTHERWISE REQUIRED ON PLANS, CLASS A CONCRETE SHALL BE USED FOR ALL PORTIONS OF ALL STRUCTURES WITH THE EXCEPTION THAT: CLASS AA CONCRETE SHALL BE USED IN BRIDGE SUPERSTRUCTURES, ABUTMENT BACKWALLS, AND APPROACH SLABS; AND CLASS B CONCRETE SHALL BE USED FOR SLOPE PROTECTION AND RIP RAP.

CONCRETE CHAMFERS:

UNLESS OTHERWISE NOTED ON THE PLANS, ALL EXPOSED CORNERS ON STRUCTURES SHALL BE CHAMFERED 3/4" WITH THE FOLLOWING EXCEPTIONS: TOP CORNERS OF CURBS MAY BE ROUNDED TO 11/2" RADIUS WHICH IS BUILT INTO CURB FORMS; CORNERS OF TRANSVERSE FLOOR EXPANSION JOINTS SHALL BE ROUNDED WITH A 1/4" FINISHING TOOL UNLESS OTHERWISE REQUIRED ON PLANS; AND CORNERS OF EXPANSION JOINTS IN THE ROADWAY FACES AND TOPS OF CURBS AND SIDEWALKS SHALL BE ROUNDED TO A 1/4" RADIUS WITH A FINISHING STONE OR TOOL UNLESS OTHERWISE REQUIRED ON PLANS.

DOWELS:

DOWELS WHEN INDICATED ON PLANS AS FOR CULVERT EXTENSIONS, SHALL BE EMBEDDED AT LEAST 12" INTO THE OLD CONCRETE AND GROUTED INTO PLACE WITH 1:2 CEMENT MORTAR.

ALL DIMENSIONS WHICH ARE GIVEN IN SECTION AND ARE AFFECTED BY DEAD LOAD DEFLECTIONS ARE DIMENSIONS AT CENTER LINE OF BEARING UNLESS OTHERWISE NOTED ON PLANS. IN SETTING FORMS FOR STEEL BEAM BRIDGES AND PRESTRESSED CONCRETE GIRDER BRIDGES, ADJUSTMENTS SHALL BE MADE DUE TO THE DEAD LOAD DEFLECTIONS FOR THE ELEVATIONS SHOWN. WHERE BLOCKS ARE SHOWN OVER BEAMS FOR BUILDING UP TO THE SLAB, THE VERTICAL DIMENSIONS OF THE BLOCKS SHALL BE ADJUSTED BETWEEN BEARINGS TO COMPENSATE FOR DEAD LOAD DEFLECTIONS, VERTICAL CURVE ORDINATE, AND ACTUAL BEAM CAMBER. WHERE BOTTOM OF SLAB IS IN LINE WITH BOTTOM OF TOP FLANGES, DEPTH OF SLAB BETWEEN BEARINGS SHALL BE ADJUSTED TO COMPENSATE FOR DEAD LOAD DEFLECTION, VERTICAL CURVE ORDINATE, AND ACTUAL BEAM CAMBER.

STANDARD NOTES

ALLOWANCE FOR DEAD LOAD DEFLECTION, SETTLEMENT, ETC. IN CASTING SUPERSTRUCTURES:

BRIDGES SHALL BE BUILT ON THE GRADE OR VERTICAL CURVE SHOWN ON PLANS. SLABS, CURBS AND PARAPETS SHALL CONFORM TO THE GRADE OR CURVE.

IN SETTING FALSEWORK AND FORMS FOR REINFORCED CONCRETE SPANS. AN ALLOWANCE SHALL BE MADE FOR DEAD LOAD DEFLECTIONS, SETTLEMENT OF FALSEWORK, AND PERMANENT CAMBER WHICH SHALL BE PROVIDED FOR IN ADDITION TO THE ELEVATIONS SHOWN. AFTER REMOVAL OF THE FALSEWORK, THE FINISHED STRUCTURES SHALL CONFORM TO THE PROFILE AND ELEVATIONS SHOWN ON THE PLANS AND CONSTRUCTION ELEVATIONS FURNISHED BY THE ENGINEER.

DETAILED DRAWINGS FOR FALSEWORK OR FORMS FOR BRIDGE SUPERSTRUCTURE AND ANY STRUCTURE OR PARTS OF A STRUCTURE AS NOTED ON THE PLANS SHALL BE SUBMITTED TO THE ENGINEER FOR APPROVAL BEFORE CONSTRUCTION OF THE FALSEWORK OR FORMS IS STARTED.

REINFORCING STEEL:

ALL REINFORCING STEEL SHALL BE DEFORMED. DIMENSIONS RELATIVE TO PLACEMENT OF REINFORCING ARE TO CENTERS OF BARS UNLESS OTHERWISE INDICATED IN THE PLANS. DIMENSIONS ON BAR DETAILS ARE TO CENTERS OF BARS OR ARE OUT TO OUT AS INDICATED ON PLANS.

WIRE BAR SUPPORTS SHALL BE PROVIDED FOR REINFORCING STEEL WHERE INDICATED ON THE PLANS. WHEN BAR SUPPORT PIECES ARE PLACED IN CONTINUOUS LINES, THEY SHALL BE SO PLACED THAT THE ENDS OF THE SUPPORTING WIRES SHALL BE LAPPED TO LOCK LEGS ON ADJOINING PIECES.

STRUCTURAL STEEL:

AT THE CONTRACTOR'S OPTION, HE MAY SUBSTITUTE $\frac{7}{8}$ " Ø SHEAR STUDS FOR THE $\frac{3}{4}$ " Ø STUDS SPECIFIED ON THE PLANS. THIS SUBSTITUTION SHALL BE MADE AT THE RATE OF 3 - 7/8" Ø STUDS FOR 4 - 3/4" Ø STUDS, AND STUD SPACING CHANGES SHALL BE MADE AS NECESSARY TO PROVIDE THE SAME EQUIVALENT NUMBER OF $\frac{7}{8}$ " Ø STUDS ALONG THE BEAM, AS SHOWN FOR $\frac{3}{4}$ " Ø STUDS BASED ON THE RATIO OF 3 - $\frac{7}{8}$ " Ø STUDS FOR 4 - 🔏 Ø STUDS. STUDS OF THE LENGTH SPECIFIED ON THE PLANS MUST BE PROVIDED. THE MAXIMUM SPACING SHALL BE 2'-O".

EXCEPT AT THE INTERIOR SUPPORTS OF CONTINUOUS BEAMS WHERE THE COVER PLATE IS IN CONTACT WITH BEARING PLATE, THE CONTRACTOR MAY, AT HIS OPTION, SUBSTITUTE FOR THE COVER PLATES DESIGNATED ON THE PLANS COVER PLATES OF THE EQUIVALENT AREA PROVIDED THESE PLATES ARE AT LEAST 5/16" IN THICKNESS AND DO NOT EXCEED A WIDTH EQUAL TO THE FLANGE WIDTH LESS 2"OR A THICKNESS EQUAL TO 2 TIMES THE FLANGE THICKNESS. THE SIZE OF FILLET WELDS SHALL CONFORM TO THE REQUIREMENTS OF THE CURRENT ANSI/AASHTO/AWS "BRIDGE WELDING CODE". ELECTROSLAG WELDING WILL NOT BE PERMITTED.

WITH THE SOLE EXCEPTION OF EDGES AT SURFACES WHICH BEAR ON OTHER SURFACES, ALL SHARP EDGES AND ENDS OF SHAPES AND PLATES SHALL BE SLIGHTLY ROUNDED BY SUITABLE MEANS TO A RADIUS OF APPROXIMATELY V_{16} INCH OR EQUIVALENT FLAT SURFACE AT A SUITABLE ANGLE PRIOR TO PAINTING, GALVANIZING, OR METALLIZING.

HANDRAILS AND POSTS:

METAL STANDARDS AND FACES OF THE CONCRETE END POSTS FOR THE METAL RAIL SHALL BE SET NORMAL TO THE GRADE OF THE CURB, UNLESS OTHERWISE SHOWN ON PLANS. THE METAL RAIL AND TOPS OF CONCRETE POSTS USED WITH THE ALUMINUM RAIL SHALL BE BUILT PARALLEL TO THE GRADE OF THE CURB.

METAL HANDRAILS SHALL BE IN ACCORDANCE WITH THE PLANS. RAILS SHALL BE AS MANUFACTURED FOR BRIDGE RAILING. CASTINGS SHALL BE OF A UNIFORM APPEARANCE. FINS AND OTHER DEFORMATIONS RESULTING FROM CASTING OR OTHERWISE SHALL BE REMOVED IN A MANNER SO THAT A UNIFORM COLORING OF THE COMPLETED CASTING SHALL BE OBTAINED. CASTINGS WITH DISCOLORATIONS OR OF NON-UNIFORM COLORING WILL NOT BE ACCEPTED. CERTIFIED MILL REPORTS ARE REQUIRED FOR METAL RAILS AND POSTS.

SPECIAL NOTES:

GENERALLY, IN CASE OF DISCREPANCY, THIS STANDARD SHEET OF NOTES SHALL GOVERN OVER THE SPECIFICATIONS, BUT THE REMAINDER OF THE PLANS SHALL GOVERN OVER NOTES HEREON, AND SPECIAL PROVISIONS SHALL GOVERN OVER ALL. SEE SPECIFICATIONS ARTICLE 105-4.

ENGLISH JANUARY, 1990

STD. NO. SN