

April 29, 2019

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: **Preliminary Site Assessment Report**

NCDOT Project I-5986B, WBS Element 47532.1.3

Parcel 148-PJ's Truck Bodies 1560 George Perry Lee Road

Dunn, Harnett County, North Carolina

S&ME Project 4305-18-175A

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 4305-18-175 CO-01 REV-01 dated January 2, 2019, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its January 8, 2019 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's November 2, 2018, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
148	JFP Properties, LLC	(PJ's Truck Bodies)
		1560 George Perry Lee Road, Dunn, NC

The property is developed with a truck body manufacturing facility identified as PJ's Truck Bodies. The property is not listed with registered petroleum underground storage tanks (USTs) (active or closed). The property is also not listed with North Carolina Department of Environmental Quality (NCDEQ) Incidents associated with petroleum releases from USTs or aboveground storage tanks.

The PSA included a geophysical survey, subsequent limited soil sampling (three soil borings up to 10 feet below ground surface (ft.-bgs.) and limited groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site

location, and **Figure 2** shows the site and boring locations. Soil and groundwater sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (Troxler Geologic, Inc.) was also used to locate and mark underground utilities.

Geophysical Survey

On February 6, 2019, S&ME personnel performed a geophysical survey within accessible areas of the proposed ROW/easement at Parcel 148. S&ME used a combination of the Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) methods to explore for buried subsurface features at the site such as underground storage tanks (USTs) and other possible buried obstructions. Brief descriptions of these complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820-02 (2007) "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The presence of vehicles, thick vegetation and other surficial obstructions within the requested survey area however prevented TDEM data collection in several locations. The approximate TDEM data collection paths are presented in **Figure 4**. Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 3000 GPR system equipped with a 400 MHz antenna in general accordance with ASTM D6432-11 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of seven GPR profiles (Lines 1 through 7) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. However, one anomaly was identified by the GPR survey (Anomaly I; **Figure 7**). Anomaly I is characterized by high amplitude GPR responses within the upper one ft.-bgs and likely related to an isolated buried target/debris. Anomaly A was also marked in the field using white spray paint. Example GPR profiles are presented in **Figure 8**.

Soil Sampling

On February 25, 2019, Troxler Geologic, Inc. (Troxler's) drill crew utilized a track mounted Geoprobe® rig to advance three soil borings (B-1 through B-3) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 148. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I.** Troxler's drill crew advanced the Geoprobe® borings up to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately 2.5 to four ft.-bgs. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II.**

No petroleum odors, staining or elevated PID readings were noted within the collected soil samples. Therefore, one soil sample was selected from each boring. The soil sample from the two to four foot depth interval was selected from boring B-1 and the soil sample from the zero to two foot depth interval was selected from borings B-2 and B-3. The soil samples were provided to RED Lab, LLC (Red Lab) for on-site analysis. A total of three soil samples (one per boring) were analyzed by RED Lab for Total Petroleum Hydrocarbons (TPH)-Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

TPH-GRO and TPH-DRO were not reported at concentrations exceeding the North Carolina TPH Action Levels. TPH-DRO was reported at borings B-1, B-2 and B-3 at concentrations ranging from 0.05 milligrams per kilograms

(mg/kg) to 9.2 mg/kg, which are below its North Carolina TPH Action Level of 100 mg/kg. TPH-GRO was not reported at concentrations exceeding the laboratory method reporting limits. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered within approximately 10 ft.-bgs. Therefore, the Geoprobe® was used to advance one of the soil borings into the groundwater table for the collection of a groundwater sample. Based on analytical results of soil samples and apparent downgradient location from the PJ's Truck Bodies facility, soil boring B-3 was selected for the collection of a groundwater sample. A temporary monitor well (TW-1) was installed at soil boring B-3 to a depth of approximately five ft.-bgs using a five foot section of one-inch diameter, Schedule 40 PVC 0.01-inch slotted screen that intersected the groundwater table. Groundwater within the temporary monitor well at soil boring B-3 was measured at 2.5 ft.-bgs. Groundwater from the temporary well was purged until relatively clear using disposable tubing attached to a peristaltic pump. The flow rate was reduced and laboratory supplied containers were filled directly from the tubing, labeled as B-3/TW-1 and placed in an insulated cooler with ice for transport to Con-Test Laboratories for analysis of VOCs by EPA Method 8260 and polycyclic aromatic compounds (PAHs) by EPA Method 8270.

Upon completion of the soil and groundwater sampling, the well materials were removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as additional soil cuttings generated during the soil boring advancement, purge water and decontamination water, were spread on the ground in accordance with the procedures specified by North Carolina Department of Environmental Quality (NCDEQ). Used gloves, tubing, re-sealable bags and acetate sleeves were bagged and disposed off-site.

Groundwater Analytical Results

Based upon analytical results of groundwater samples analyzed by Con-Test Laboratories, no target constituents were reported at concentrations exceeding the laboratory method reporting limits. A summary of the groundwater analytical results is presented in **Table 2** and shown on **Figure 3**. A copy of the laboratory analytical report provided by Con-Test Laboratories is presented in **Appendix III**.

Conclusion and Recommendations

The geophysical survey identified one anomaly (Anomaly I) which is likely related to an isolated buried target/debris. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced three soil borings (B-1 through B-3) to a depth of up to approximately 10 ft.-bgs at the site. No petroleum odors, staining or elevated PID readings were noted within soil samples collected from the soil borings. Selected soil samples from the soil borings were analyzed onsite for TPH-GRO and TPH-DRO using UVF spectroscopy. TPH-DRO were reported in the zero to two foot depth interval at two soil borings and the two to four foot depth interval at one soil boring at concentrations slightly above the laboratory method reporting limits, but well below the North Carolina TPH Action Level. During the soil boring advancement, groundwater was encountered at depths ranging from 2.5 ft-bgs to four ft.-bgs. One temporary well (TW-1) was installed at soil

boring B-3. Groundwater at TW-1 was measured at 2.5 ft.-bgs and analyzed by Con-Test Laboratories for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. No target constituents were reported in the groundwater sample at concentrations exceeding the laboratory method reporting limits.

S&ME recommends maintaining an awareness level for the presence of marginally impacted petroleum in soil (below TPH Action Levels) at the site for the safety of workers and the public. If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., buildings, reinforced concrete, vehicles, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific, and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of approximately about five ft.-bgs.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

Danie Honercutt Jamie T Honeycutt

Environmental Professional

jhoneycutt@smeinc.com

Thomas P. Raymond, P.E., P.M.P. 5/6/2019 **Senior Consultant**

traymond@smeinc.com

Attachments:

Table 1: Summary of Soil Sampling Results

Table 2: Summary of Groundwater Sampling Results

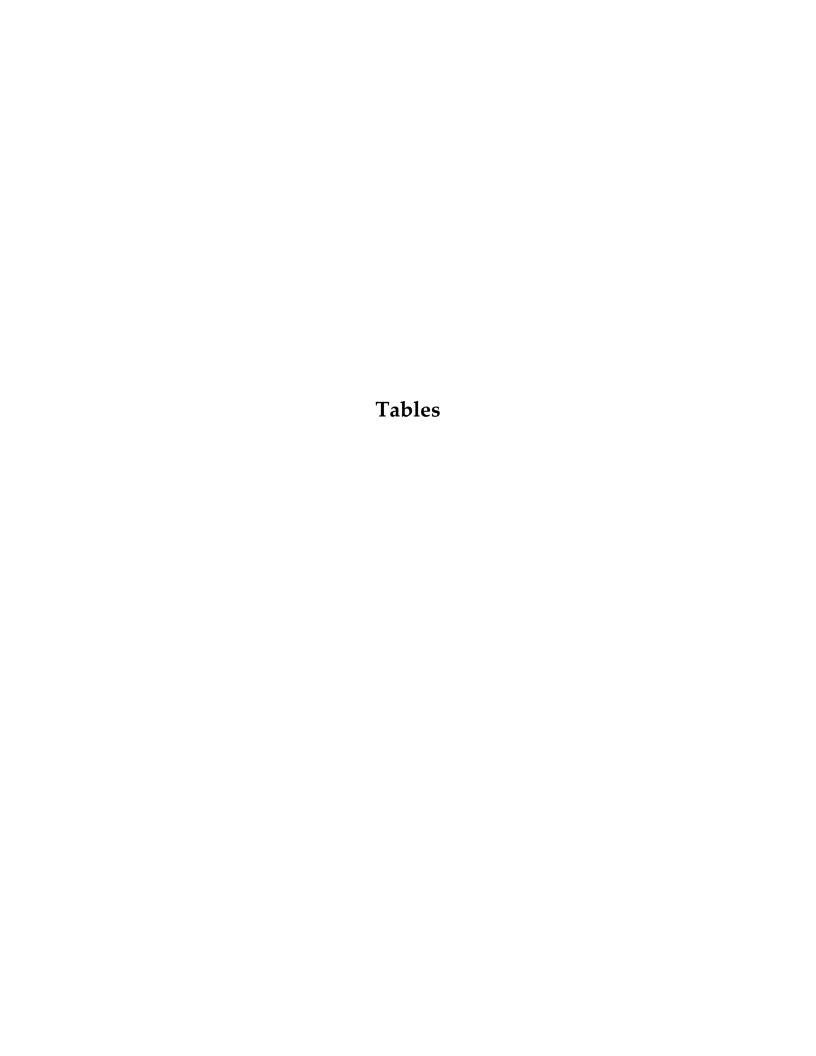
Figure 1: Vicinity Map Figure 2: Site Map

Figure 3: Soil and Groundwater Constituent Map

Figure 4: TDEM Path Location Plan

Figure 5: TDEM Data Plot A Figure 6: TDEM Data Plot B

Figure 7: Geophysical Anomaly Location Plan Figure 8: Example GPR Data – Lines 1 and 2


Appendix I: **Photographs** Appendix II: Boring Logs

Appendix III: Laboratory Analytical Reports and Chain of Custody

Michael W. Pfeifer Senior Project Manager mpfeifer@smeinc.com

Michael Pfi 861E52DDEFAF4C7.

April 29, 2019

E & **(1) E**

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5986B

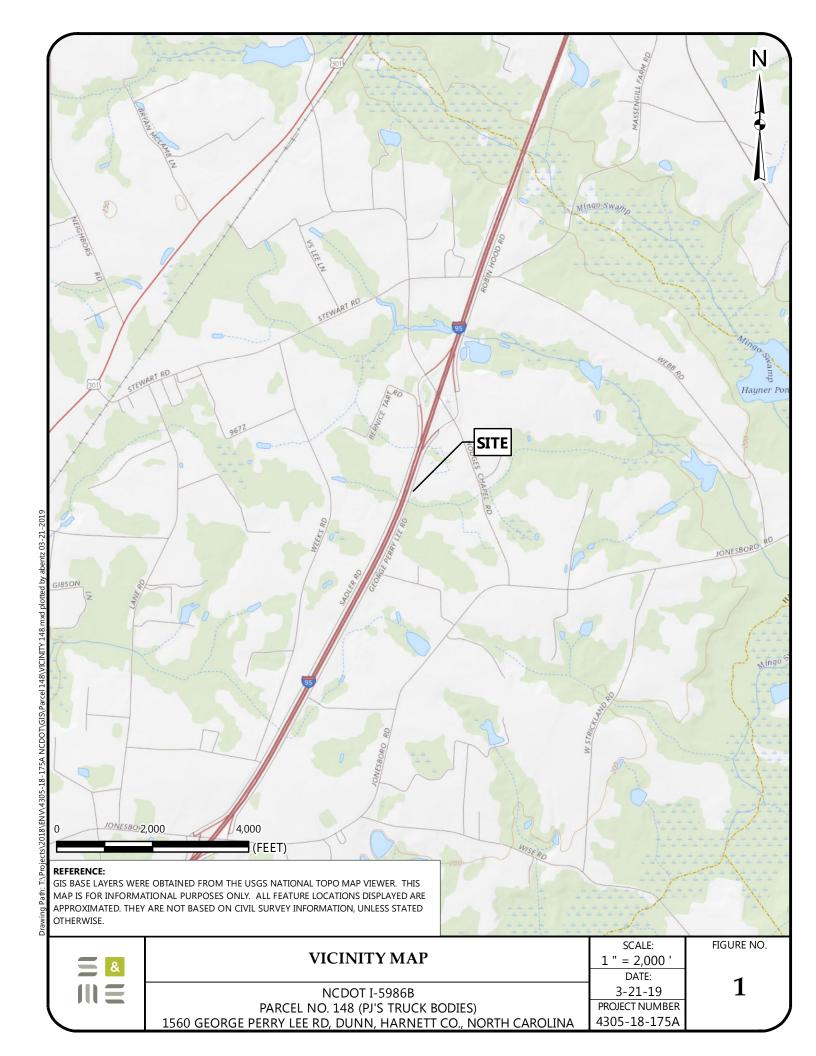
Parcel 148 - (PJ's Truck Bodies) 1560 George Perry Lee Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175A

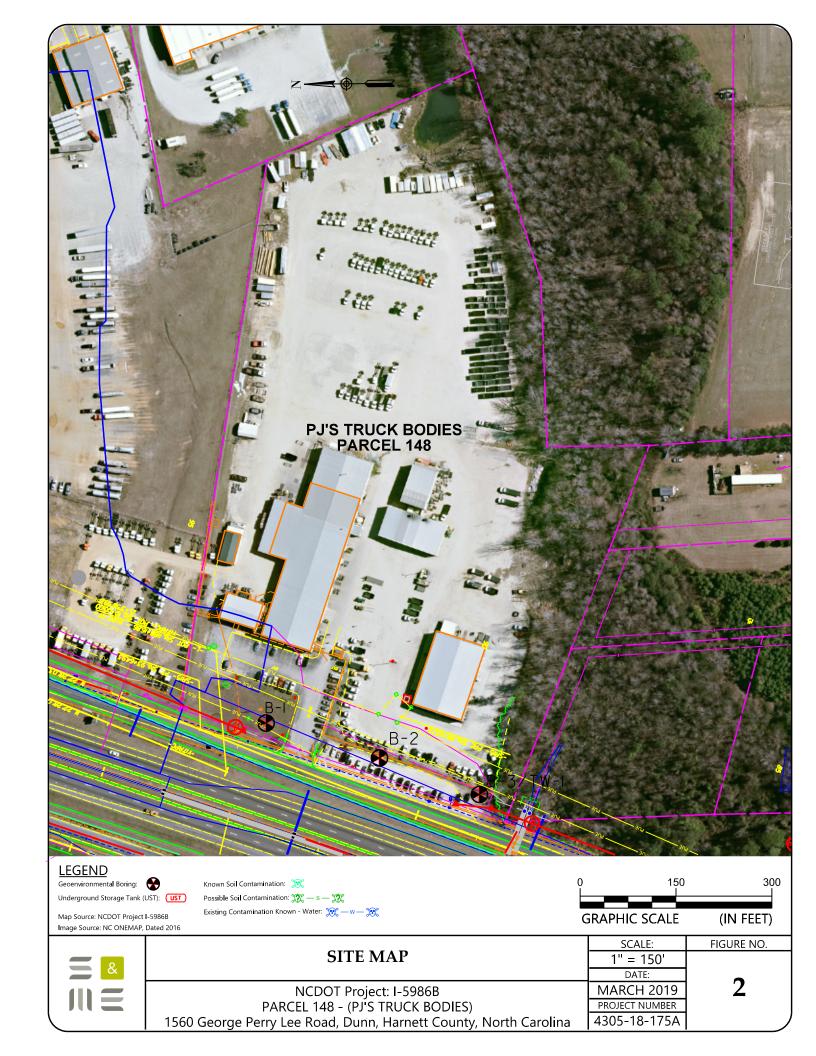
Ar	nalytical Metho	d→	Total Petroleum Hydrocarbons (TPH) Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) by Ultraviolet Fluorescence (UVF) Spectrometry									
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO								
B-1	2/25/2019	2 to 4	<0.44	0.05								
B-2	2/25/2019	0 to 2	0 to 2	0 to 2	0 to 2	0 to 2	0 to 2	0 to 2	0 to 2	0 to 2	<0.28	0.38
B-3	2/25/2019	0 to 2	<0.47	9.2								
No	orth Carolina T	PH Action Levels	50	100								

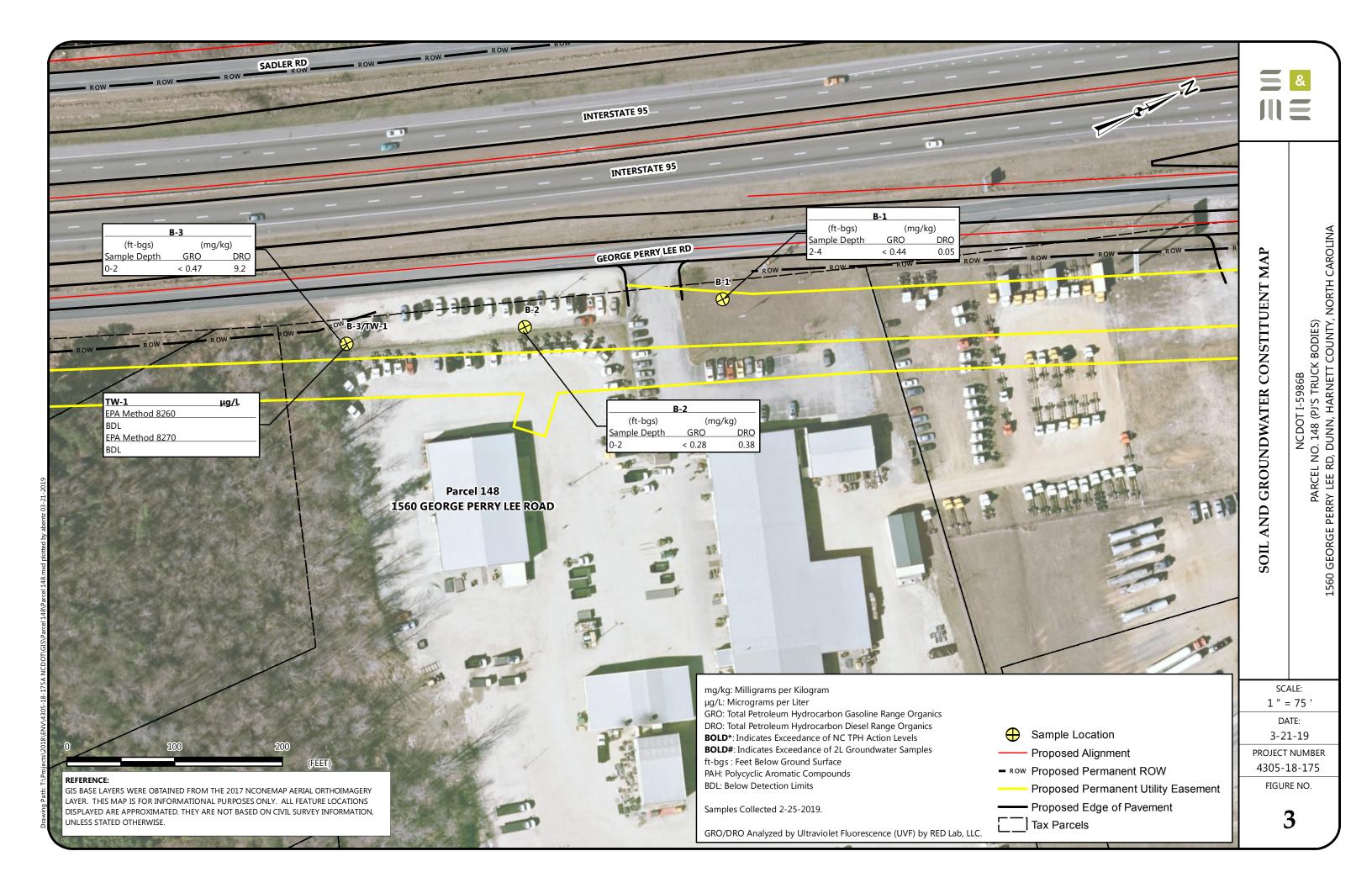
Notes:

- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and BOLD fields.

TABLE 2 SUMMARY OF GROUNDWATER SAMPLING RESULTS NCDOT Project I-5986B


Parcel 148 - (PJ's Truck Bodies) 1560 George Perry Lee Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175A


Analytica	al Method→	Volatile Organic Compounds by EPA Method 8260	Polycyclic Aromatic Compounds (PAHs) by EPA Method 8270
Sample ID	Contaminant of Concern→	Constituent Specific	Constituent Specific
	Date		
B-3/TW-1	2/25/2019	Below laboratory method reporting limits	Below laboratory method reporting limits
2	L Standard (µg/L)	Not Applicable	Not Applicable


Notes:

- 1. Analytes that are not shown for the method were not detected.
- 2. Concentrations are reported in micrograms per liter (µg/L).
- 3. 2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- 5. Concentrations exceeding the 2L Standards are shown in Shaded and **BOLD** fields.

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

0 98 P888 December of the EN PERO ED 8 0 0 0 8 8 Google Earth

LEGEND

Approximate TDEM Path

Approximate Requested Survey Area

TDEM PATH LOCATION PLAN

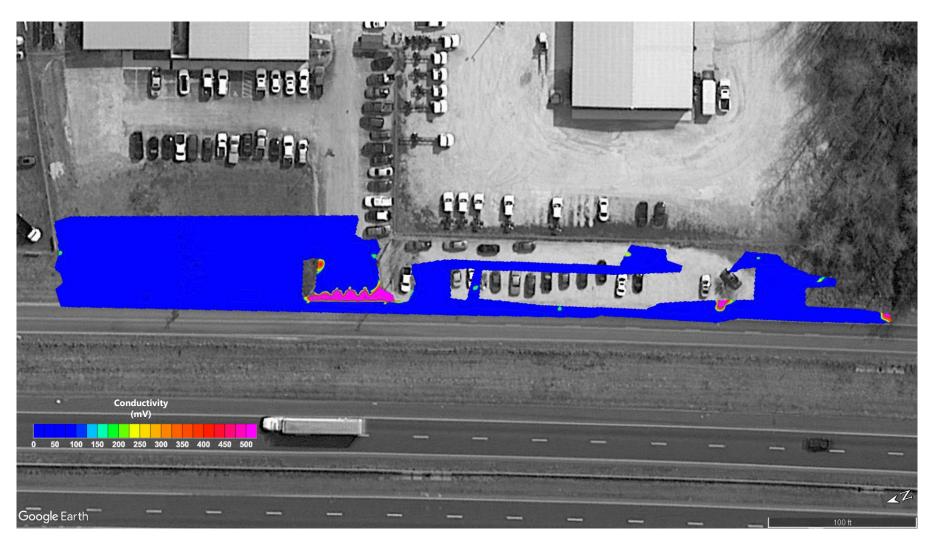
NCDOT PROJECT: I-5986B PARCEL 148 – (PJ'S TRUCK BODIES) 1560 GEORGE PERRY LEE ROAD, DUNNI, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 3/22/2019

PROJECT NUMBER 4305-18-175A

FIGURE NO.


4

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

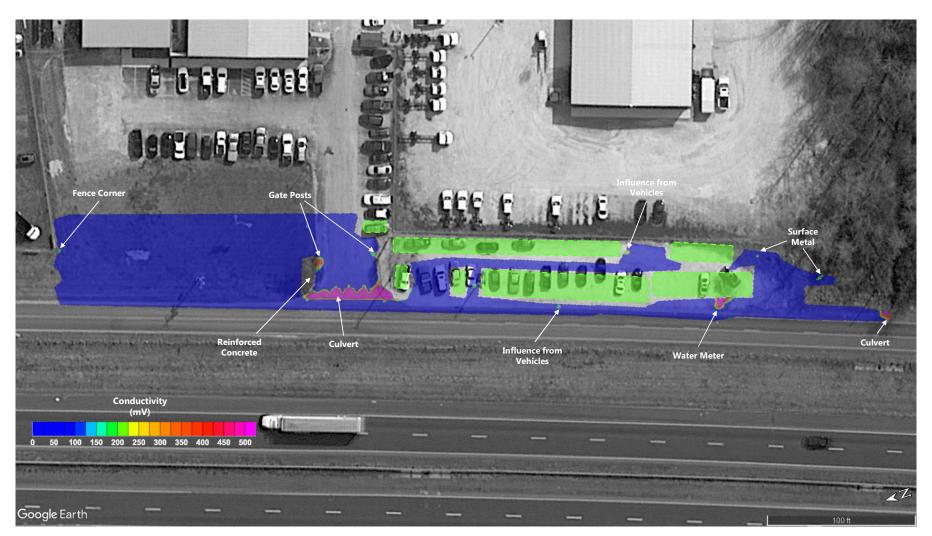
TDEM DATA PLOT A

NCDOT PROJECT: 1-5986B PARCEL 148 – (PJ'S TRUCK BODIES) 1560 GEORGE PERRY LEE ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 3/22/2019

PROJECT NUMBER 4305-18-175A


FIGURE NO.

5

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

<u>LEGEND</u>

Approximate Location of Vehicles

TDEM DATA PLOT B

NCDOT PROJECT: I-5986B

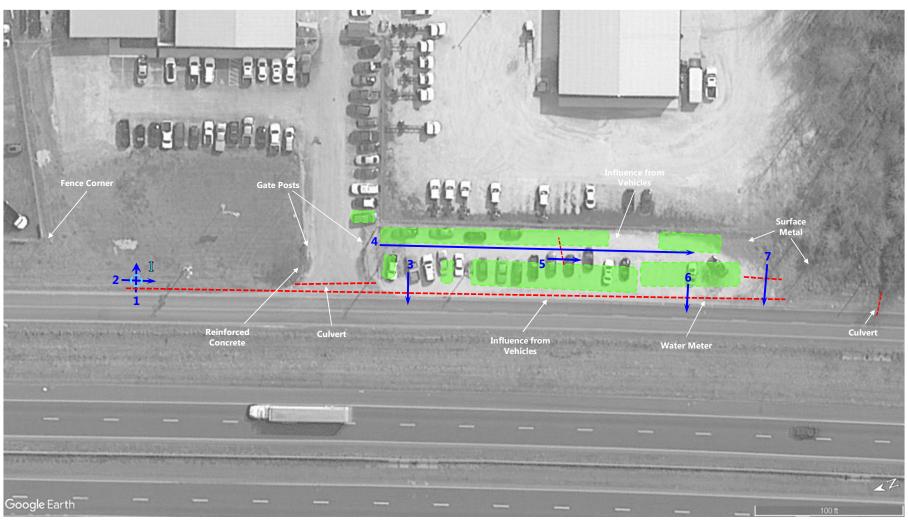
PARCEL 148 – (PJ'S TRUCK BODIES)

1560 GEORGE PERRY LEE ROAD, DUNNI, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 3/22/2019

PROJECT NUMBER 4305-18-175A


FIGURE NO.

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

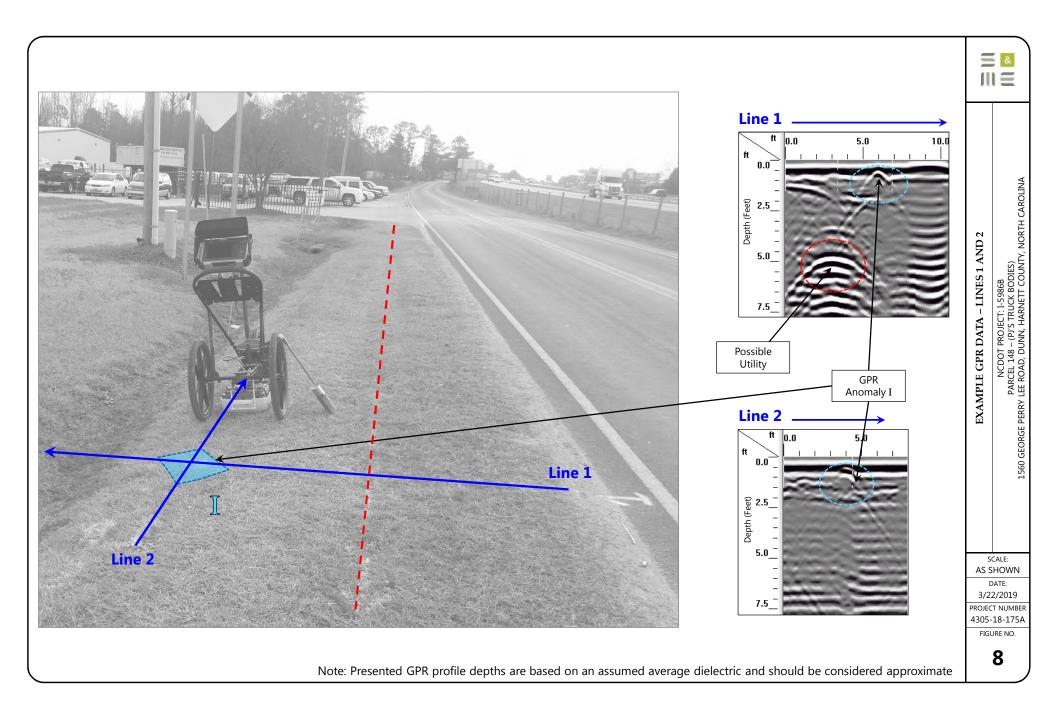
Approximate Location of GPR AnomalyApproximate Location of GPR Profile

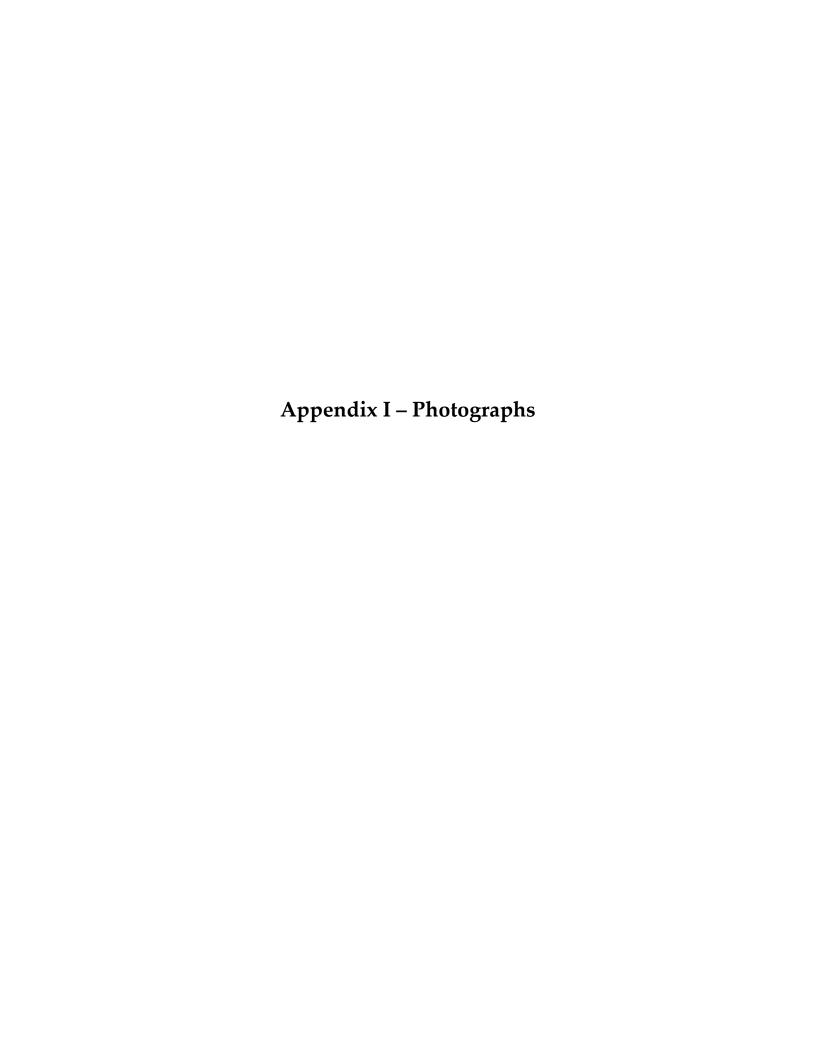
Approximate Location of Vehicles

Approximate Location of Possible Utility

GEOPHYSICAL ANOMALY LOCATION PLAN

NCDOT PROJECT: I-5986B PARCEL 148 – (PJ'S TRUCK BODIES) 1560 GEORGE PERRY LEE ROAD, DUNNI, HARNETT COUNTY, NORTH CAROLINA

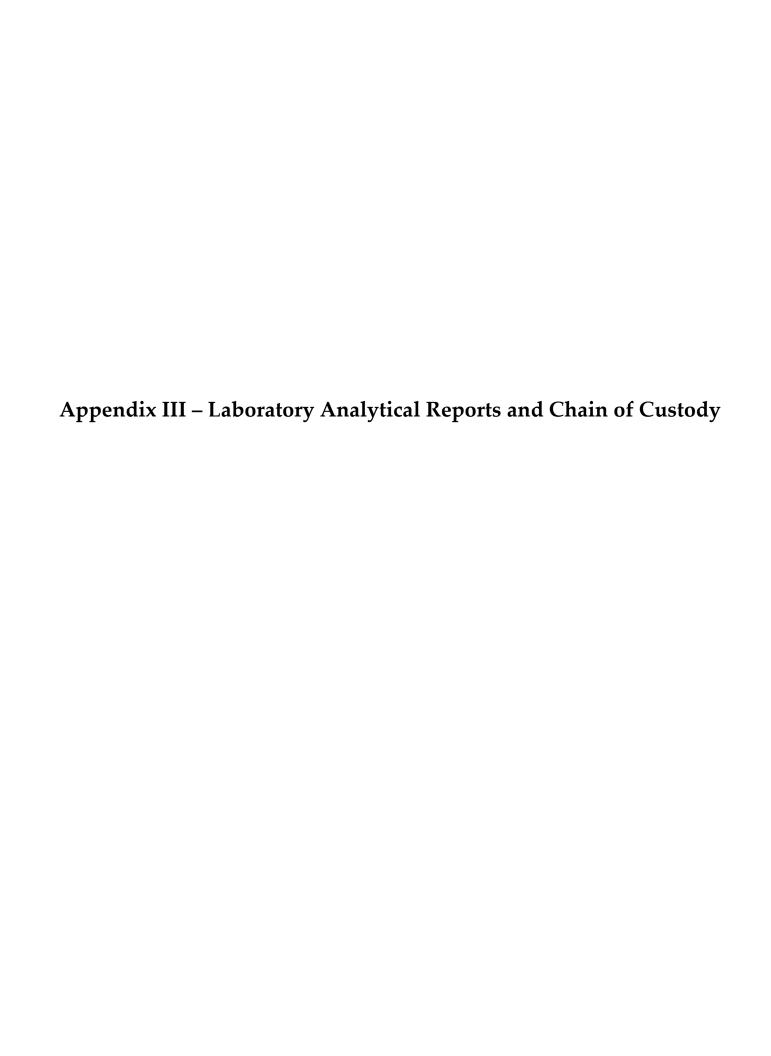

SCALE: AS SHOWN


DATE: 3/22/2019

PROJECT NUMBER 4305-18-175A

FIGURE NO.

7



PROJECT:	NCDOT I-5986B Parcel 148-1560 George Perry Lee Road, Du	nn, NC			BORIN	NG LOG:	B-1								
DATE DRILLED:	S&ME Project No. 4305-18-175A Monday, February 25, 2019	BORING DEPTH (FT):	10												
DRILL RIG:	Geoprobe 6620 DT	WATER LEVEL:													
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable											
HAMMER TYPE:	Not Applicable	LOGGED BY:													
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:													
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:													
	,	2.0.010			U	≿ ;	_								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE					
	Sand, Brown,				0.1	No									
5 Clay	ey Sand, Red, Orange,		•	ł	0.1	Yes									
	Sand, Red, Orange,			ŧ	0.2	No									
				**	0.3	No									
10 Boriu	ng Terminated at 10 Ft-BGS														
15 —															
_															
20 —															
25 —															
30															

PROJECT:	NCDOT I-5986B				_		_							
	Parcel 148-1560 George Perry Lee Road, Dur S&ME Project No. 4305-18-175A			BORIN	NG LOG	B-2								
DATE DRILLED:	Monday, February 25, 2019	BORING DEPTH (FT):	8											
DRILL RIG:	Geoprobe 6620 DT	: 3												
DRILLER:	Troxler Geologic, Inc.	TH: Not Applicable												
HAMMER TYPE:	Not Applicable	D BY: J. Honeycutt												
SAMPLING METHOD:	Macro-Core Sampler	NG:												
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	NG: NG:												
I I	macro core sumpler (5 mil cs)						1							
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION	WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE					
Grave				ш										
Claye	Sand, Black, Brown, y Sand, Red, Orange, y Sand, Orange, Tan,	▼	1	0.2	Yes									
	g Terminated at 8 Ft-BGS													
10 —														
15														
20 —														
-														
_														
25 —														
30								1						

PROJECT	Т:		NCDOT I-5986B													
			Parcel 148-1560 George Perry Lee Road, Dunr	n, NC			BORIN	NG LOG	: B-3/	TW-1	L					
D. A. T. F. D. D. V.			S&ME Project No. 4305-18-175A													
DATE DRIL DRILL RIG:			Monday, February 25, 2019	BORING DEPTH (FT):												
DRILLER:			Geoprobe 6620 DT	WATER LEVEL:	H: Not Applicable											
	TVDE:		Troxler Geologic, Inc.													
HAMMER SAMPLING		OD:	Not Applicable	LOGGED BY:	J. Honey	cutt										
DRILLING I			Macro-Core Sampler	NORTHING:												
DRILLING	IVIETHO		Macro-Core Sampler (3-in. OD)	EASTING:				1				l				
DEPTH (feet)	GRAPHIC		MATERIAL DESCRIPTION	WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE					
5 —		S S	Elayey Sand, Red, Orange, Soring Terminated at 8 Ft-BGS				0.2	Yes	Sai							
_																
30 —	1	ı				1	l	l	1	i	i	l				

Hydrocarbon Analysis Results

Client: S&ME

Address:

Samples taken Samples extracted Monday, February 25, 2019

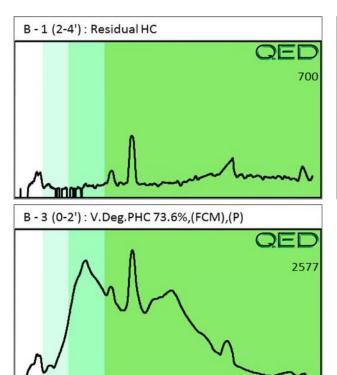
Monday, February 25, 2019

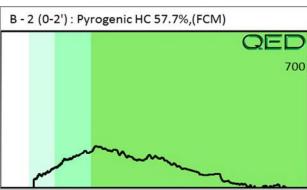
Samples analysed

Monday, February 25, 2019

Contact: JAMIE HONEYCUTT Operator JENN RYAN

Project: 4305-18-175A; PARCEL 148


													H09382
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	Q	% Ratios	5	HC Fingerprint Match
										C10 C18		C18	
Soil	B - 1 (2-4')	17.7	<0.44	<0.44	0.05	0.05	0.05	0.004	< 0.005	0	44.8	55.2	Residual HC
Soil	B - 2 (0-2')	11.4	<0.28	<0.28	0.38	0.38	0.16	0.008	< 0.003	0	88.4	11.6	Pyrogenic HC 57.7%,(FCM)
Soil	B - 3 (0-2')	19.0	<0.47	<0.47	9.2	9.2	4.2	0.23	0.002	0	93.8	6.2	V.Deg.PHC 73.6%,(FCM),(P)
	Initia	l Calibrator	QC check	OK					Final FC	CM QC	Check	OK	95.4%


Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only. Data generated by HC-1 Analyser Project: 4305-18-175A; PARCEL 148

March 7, 2019

Jamie Honeycutt S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: 1560 George Perry Lee Road

Client Job Number:

Project Number: 4305-18-175A

Laboratory Work Order Number: 19B1125

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on February 26, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	6
19B1125-01	6
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B224607	10
Semivolatile Organic Compounds by GC/MS	15
B224945	15
Flag/Qualifier Summary	17
Certifications	18
Chain of Custody/Sample Receipt	2.1

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616 ATTN: Jamie Honeycutt

REPORT DATE: 3/7/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-18-175A

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19B1125

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: 1560 George Perry Lee Road

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB

B-3/ TW-1 19B1125-01 Ground Water SW-846 8260D

SW-846 8270D

EXECUTIVE SUMMARY

Client ID: B-3/TW-1 Lab ID: 19B1125-01

No Results Detected

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 8260D, elevated reporting limits for sample(s) 19B1125-01 due to a foaming sample matrix.

For method 8270, only PAHs were requested and reported.

SW-846 8260D

Qualifications:

DL-01

Elevated reporting limits for all volatile compounds due to foaming sample matrix.

Analyte & Samples(s) Qualified:

19B1125-01[B-3/TW-1]

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

2-Butanone (MEK)

19B1125-01[B-3/TW-1], B224607-BLK1, B224607-BS1, B224607-BSD1, S033110-CCV1

Acetone

 $19B1125\text{-}01[B\text{-}3/\,TW\text{-}1], B224607\text{-}BLK1, B224607\text{-}BS1, B224607\text{-}BSD1, S033110\text{-}CCV1$

Acrylonitrile

19B1125-01[B-3/TW-1], B224607-BLK1, B224607-BS1, B224607-BSD1, S033110-CCV1

Chloromethane

19B1125-01[B-3/TW-1], B224607-BLK1, B224607-BS1, B224607-BSD1, S033110-CCV1

Methylene Chloride

19B1125-01[B-3/TW-1], B224607-BLK1, B224607-BS1, B224607-BSD1, S033110-CCV1

tert-Butyl Alcohol (TBA)

19B1125-01[B-3/TW-1], B224607-BLK1, B224607-BS1, B224607-BSD1, S033110-CCV1

Tetrahydrofuran

19B1125-01[B-3/TW-1], B224607-BLK1, B224607-BS1, B224607-BSD1, S033110-CCV1

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.

Analyte & Samples(s) Qualified:

1,4-Dioxane

19B1125-01[B-3/TW-1]

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Jua Watshington

Project Location: 1560 George Perry Lee Road Sample Description: Work Order: 19B1125

Date Received: 2/26/2019
Field Sample #: B-3/ TW-1

Sampled: 2/25/2019 12:45

Sample ID: 19B1125-01
Sample Matrix: Ground Water

Sample Flags: DL-01			Volatile	e Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	500	97	μg/L	10	V-05	SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Acrylonitrile	ND	50	5.8	$\mu g/L$	10	V-05	SW-846 8260D	2/28/19	3/1/19 18:04	LBD
tert-Amyl Methyl Ether (TAME)	ND	5.0	1.1	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Benzene	ND	10	1.2	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Bromobenzene	ND	10	1.5	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Bromochloromethane	ND	10	2.2	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Bromodichloromethane	ND	5.0	3.0	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Bromoform	ND	10	2.1	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Bromomethane	ND	20	9.4	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
2-Butanone (MEK)	ND	200	24	$\mu g/L$	10	V-05	SW-846 8260D	2/28/19	3/1/19 18:04	LBD
tert-Butyl Alcohol (TBA)	ND	200	22	$\mu g/L$	10	V-05	SW-846 8260D	2/28/19	3/1/19 18:04	LBD
n-Butylbenzene	ND	10	1.5	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
sec-Butylbenzene	ND	10	1.3	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
tert-Butylbenzene	ND	10	1.2	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
tert-Butyl Ethyl Ether (TBEE)	ND	5.0	0.95	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Carbon Disulfide	ND	40	10	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Carbon Tetrachloride	ND	50	2.5	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Chlorobenzene	ND	10	1.6	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Chlorodibromomethane	ND	5.0	1.0	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Chloroethane	ND	20	2.8	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Chloroform	ND	20	2.2	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Chloromethane	ND	20	5.5	$\mu g/L$	10	V-05	SW-846 8260D	2/28/19	3/1/19 18:04	LBD
2-Chlorotoluene	ND	10	1.2	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
4-Chlorotoluene	ND	10	1.4	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,2-Dibromo-3-chloropropane (DBCP)	ND	50	3.7	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,2-Dibromoethane (EDB)	ND	5.0	1.5	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Dibromomethane	ND	10	1.6	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,2-Dichlorobenzene	ND	10	1.7	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,3-Dichlorobenzene	ND	10	1.7	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,4-Dichlorobenzene	ND	10	1.5	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
trans-1,4-Dichloro-2-butene	ND	20	3.1	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Dichlorodifluoromethane (Freon 12)	ND	20	2.8	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,1-Dichloroethane	ND	10	1.6	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,2-Dichloroethane	ND	10	1.9	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,1-Dichloroethylene	ND	10	2.1	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
cis-1,2-Dichloroethylene	ND	10	1.5	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
trans-1,2-Dichloroethylene	ND	10	1.5	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,2-Dichloropropane	ND	10	1.3	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,3-Dichloropropane	ND	5.0	1.3	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
2,2-Dichloropropane	ND	10	2.1	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,1-Dichloropropene	ND	20	1.3	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
cis-1,3-Dichloropropene	ND	5.0	1.2	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
trans-1,3-Dichloropropene	ND	5.0	1.1	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Diethyl Ether	ND	20	2.2	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD

Page 6 of 23

Project Location: 1560 George Perry Lee Road Work Order: 19B1125 Sample Description:

Date Received: 2/26/2019 Field Sample #: B-3/ TW-1

Sampled: 2/25/2019 12:45

Sample ID: 19B1125-01 Sample Matrix: Ground Water

Sample Flags: DL-01			Vola	atile Organic Comp	pounds by C	C/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	5.0	1.8	μg/L	10	0 -	SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,4-Dioxane	ND	500	260	μg/L	10	V-16	SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Ethylbenzene	ND	10	1.3	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Hexachlorobutadiene	ND	10	5.9	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
2-Hexanone (MBK)	ND	100	15	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Isopropylbenzene (Cumene)	ND	10	1.2	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
p-Isopropyltoluene (p-Cymene)	ND	10	1.5	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Methyl tert-Butyl Ether (MTBE)	ND	10	0.90	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Methylene Chloride	ND	50	32	μg/L	10	V-05	SW-846 8260D	2/28/19	3/1/19 18:04	LBD
4-Methyl-2-pentanone (MIBK)	ND	100	15	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Naphthalene	ND	50	1.2	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
n-Propylbenzene	ND	10	1.3	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Styrene	ND	10	1.5	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,1,1,2-Tetrachloroethane	ND	10	1.2	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,1,2,2-Tetrachloroethane	ND	5.0	1.6	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Tetrachloroethylene	ND	10	2.7	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Tetrahydrofuran	ND	100	11	μg/L	10	V-05	SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Toluene	ND	10	1.7	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,2,3-Trichlorobenzene	ND	50	1.4	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,2,4-Trichlorobenzene	ND	10	1.9	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,3,5-Trichlorobenzene	ND	10	1.7	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,1,1-Trichloroethane	ND	10	1.3	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,1,2-Trichloroethane	ND	10	2.4	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Trichloroethylene	ND	10	2.0	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Trichlorofluoromethane (Freon 11)	ND	20	1.5	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,2,3-Trichloropropane	ND	20	2.2	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	10	2.0	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,2,4-Trimethylbenzene	ND	10	1.8	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,3,5-Trimethylbenzene	ND	10	1.3	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Vinyl Chloride	ND	20	1.3	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
m+p Xylene	ND	20	2.6	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
o-Xylene	ND	10	1.3	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		91.0		70-130					3/1/19 18:04	
Toluene-d8		97.0		70-130					3/1/19 18:04	
4-Bromofluorobenzene		99.6		70-130					3/1/19 18:04	

Project Location: 1560 George Perry Lee Road Work Order: 19B1125 Sample Description:

Date Received: 2/26/2019

Sampled: 2/25/2019 12:45 Field Sample #: B-3/ TW-1

Sample ID: 19B1125-01 Sample Matrix: Ground Water

				8						
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene (SIM)	ND	0.30	0.033	μg/L	1	r rag/Quar	SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Acenaphthylene (SIM)	ND	0.20	0.035	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Anthracene (SIM)	ND	0.20	0.032	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Benzo(a)anthracene (SIM)	ND	0.050	0.016	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Benzo(a)pyrene (SIM)	ND	0.10	0.012	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Benzo(b)fluoranthene (SIM)	ND	0.050	0.015	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Benzo(g,h,i)perylene (SIM)	ND	0.50	0.018	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Benzo(k)fluoranthene (SIM)	ND	0.20	0.012	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Chrysene (SIM)	ND	0.20	0.015	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Dibenz(a,h)anthracene (SIM)	ND	0.10	0.017	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Fluoranthene (SIM)	ND	0.50	0.025	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Fluorene (SIM)	ND	1.0	0.034	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.10	0.018	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
2-Methylnaphthalene (SIM)	ND	1.0	0.062	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Naphthalene (SIM)	ND	1.0	0.26	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Phenanthrene (SIM)	ND	0.050	0.030	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Pyrene (SIM)	ND	1.0	0.023	$\mu g/L$	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Surrogates		% Reco	very	Recovery Limits	i	Flag/Qual				
Nitrobenzene-d5 (SIM)		72.4		30-130					3/6/19 16:45	
2-Fluorobiphenyl		51.4		30-130					3/6/19 16:45	
p-Terphenyl-d14		62.0		30-130					3/6/19 16:45	

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260D

19B1125-01 [B-3/TW-1]

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19B1125-01 [B-3/ TW-1]	B224607	0.5	5.00	02/28/19
Prep Method: SW-846 3510C-SW-846 8270D				
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date

1.00

03/04/19

1000

B224945

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B224607 - SW-846 5030B										
Blank (B224607-BLK1)				Prepared: 02	/28/19 Analy	yzed: 03/01/1	9			
Acetone	ND	50	μg/L							V-05
Acrylonitrile	ND	5.0	$\mu g/L$							V-05
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu \text{g/L}$							
Benzene	ND	1.0	$\mu \text{g/L}$							
Bromobenzene	ND	1.0	μg/L							
Bromochloromethane	ND	1.0	μg/L							
Bromodichloromethane	ND	0.50	μg/L							
Bromoform	ND	1.0	μg/L							
Bromomethane	ND	2.0	μg/L							. .
2-Butanone (MEK)	ND	20	μg/L							V-05
tert-Butyl Alcohol (TBA)	ND	20	μg/L							V-05
n-Butylbenzene	ND	1.0	μg/L							
sec-Butylbenzene tert-Butylbenzene	ND	1.0	μg/L μg/I							
tert-Butylbenzene	ND	1.0	μg/L μg/I							
tert-Butyl Ethyl Ether (TBEE) Carbon Disulfide	ND ND	0.50 4.0	μg/L ug/L							
Carbon Disulfide Carbon Tetrachloride	ND ND	4.0 5.0	μg/L ug/L							
Carbon Tetrachioride Chlorobenzene	ND ND	5.0 1.0	μg/L μg/L							
Chlorodibromomethane	ND ND	0.50	μg/L μg/L							
Chloroethane	ND ND	2.0	μg/L μg/L							
Chloroform	ND ND	2.0	μg/L μg/L							
Chloromethane	ND ND	2.0	μg/L μg/L							V-05
2-Chlorotoluene	ND ND	1.0	μg/L μg/L							. 03
4-Chlorotoluene	ND ND	1.0	μg/L μg/L							
1,2-Dibromo-3-chloropropane (DBCP)	ND ND	5.0	μg/L μg/L							
1,2-Dibromoethane (EDB)	ND ND	0.50	μg/L μg/L							
Dibromomethane	ND	1.0	μg/L							
1,2-Dichlorobenzene	ND	1.0	μg/L							
1,3-Dichlorobenzene	ND	1.0	μg/L							
1,4-Dichlorobenzene	ND	1.0	μg/L							
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	$\mu g/L$							
1,1-Dichloroethane	ND	1.0	$\mu \text{g/L}$							
1,2-Dichloroethane	ND	1.0	$\mu \text{g/L}$							
1,1-Dichloroethylene	ND	1.0	$\mu \text{g}/L$							
cis-1,2-Dichloroethylene	ND	1.0	μg/L							
trans-1,2-Dichloroethylene	ND	1.0	μg/L							
1,2-Dichloropropane	ND	1.0	μg/L							
1,3-Dichloropropane	ND	0.50	μg/L							
2,2-Dichloropropane	ND	1.0	μg/L							
1,1-Dichloropropene	ND	2.0	μg/L							
cis-1,3-Dichloropropene	ND	0.50	μg/L							
trans-1,3-Dichloropropene	ND	0.50	μg/L							
Diethyl Ether	ND	2.0	μg/L μα/Ι							
Diisopropyl Ether (DIPE)	ND	0.50	μg/L μα/Ι							
1,4-Dioxane Ethylbenzene	ND	50 1.0	μg/L μg/I							
Ethylbenzene Hexachlorobutadiene	ND	1.0	μg/L μg/I							
Hexachlorobutadiene 2-Hexanone (MBK)	ND ND	0.60 10	μg/L ug/L							
2-Hexanone (MBK) Isopropylbenzene (Cumene)	ND ND	1.0	μg/L μg/L							
p-Isopropyltoluene (p-Cymene)	ND ND	1.0	μg/L μg/L							
A CONTRACTOR OF THE CONTRACTOR	ND	1.0	μg/L							

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
satch B224607 - SW-846 5030B										
lank (B224607-BLK1)				Prepared: 02	/28/19 Analy	yzed: 03/01/1	9			
Methylene Chloride	ND	5.0	μg/L							V-05
-Methyl-2-pentanone (MIBK)	ND	10	$\mu \text{g}/L$							
aphthalene	ND	2.0	$\mu \text{g/L}$							
Propylbenzene	ND	1.0	$\mu g\!/\!L$							
yrene	ND	1.0	$\mu g \! / \! L$							
1,1,2-Tetrachloroethane	ND	1.0	$\mu g/L$							
1,2,2-Tetrachloroethane	ND	0.50	$\mu g/L$							
etrachloroethylene	ND	1.0	$\mu g/L$							
etrahydrofuran	ND	10	μg/L							V-05
bluene	ND	1.0	μg/L							
2,3-Trichlorobenzene	ND	5.0	μg/L							
2,4-Trichlorobenzene	ND	1.0	μg/L							
3,5-Trichlorobenzene	ND	1.0	μg/L							
1,1-Trichloroethane	ND ND	1.0	μg/L							
1,2-Trichloroethane	ND ND	1.0	μg/L μg/L							
richloroethylene		1.0	μg/L μg/L							
richlorofluoromethane (Freon 11)	ND	2.0								
· · · · · · · · · · · · · · · · · · ·	ND		μg/L μg/I							
2,3-Trichloropropane	ND	2.0	μg/L							
1,2-Trichloro-1,2,2-trifluoroethane (Freon 3)	ND	1.0	μg/L							
2,4-Trimethylbenzene	ND	1.0	μg/L							
3,5-Trimethylbenzene	ND	1.0	μg/L							
nyl Chloride	ND	2.0	μg/L							
+p Xylene	ND	2.0	μg/L							
Xylene	ND	1.0	μg/L							
ırrogate: 1,2-Dichloroethane-d4	22.7		μg/L	25.0		90.7	70-130			
urrogate: Toluene-d8	24.2		$\mu g/L$	25.0		97.0	70-130			
						99.9	70-130			
urrogate: 4-Bromofluorobenzene	25.0		μg/L	25.0		33.3	/0-130			
_			μg/L	25.0 Prepared: 02	/28/19 Analy					
CS (B224607-BS1)		50	μg/L μg/L		/28/19 Analy					V-05
CS (B224607-BS1) cetone	25.0	50 5.0		Prepared: 02	/28/19 Analy	yzed: 03/01/1	9			V-05 V-05
CS (B224607-BS1) cetone crylonitrile	25.0		μg/L	Prepared: 02	/28/19 Analy	yzed: 03/01/1 80.7	70-160			
cetone crylonitrile rt-Amyl Methyl Ether (TAME)	25.0 80.7 8.08	5.0	μg/L μg/L	Prepared: 02.	/28/19 Analy	yzed: 03/01/1 80.7 80.8	9 70-160 70-130			
cetone crylonitrile rt-Amyl Methyl Ether (TAME) enzene	80.7 8.08 9.02	5.0 0.50	μg/L μg/L μg/L	Prepared: 02. 100 10.0 10.0	/28/19 Analy	80.7 80.8 90.2	9 70-160 70-130 70-130			
cetone erylonitrile rt-Amyl Methyl Ether (TAME) enzene eromobenzene	80.7 8.08 9.02 8.84 10.2	5.0 0.50 1.0	μg/L μg/L μg/L μg/L μg/L	Prepared: 02 100 10.0 10.0 10.0 10.0	/28/19 Analy	80.7 80.8 90.2 88.4 102	70-160 70-130 70-130 70-130 70-130			
cetone crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane	80.7 8.08 9.02 8.84 10.2 10.0	5.0 0.50 1.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 02. 100 10.0 10.0 10.0 10.0 10.0 10.0	/28/19 Analy	80.7 80.8 90.2 88.4	70-160 70-130 70-130 70-130 70-130 70-130			
cetone crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane	80.7 8.08 9.02 8.84 10.2 10.0 9.96	5.0 0.50 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L	Prepared: 02 100 10.0 10.0 10.0 10.0	/28/19 Analy	80.7 80.8 90.2 88.4 102 100	70-160 70-130 70-130 70-130 70-130			
cetone crylonitrile rt-Amyl Methyl Ether (TAME) enzene comobenzene comochloromethane comodichloromethane comoform	80.7 8.08 9.02 8.84 10.2 10.0 9.96 10.3	5.0 0.50 1.0 1.0 1.0 0.50	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	Prepared: 02 100 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	/28/19 Analy	yzed: 03/01/1 80.7 80.8 90.2 88.4 102 100 99.6 103	9 70-160 70-130 70-130 70-130 70-130 70-130 70-130			
cetone crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane	80.7 8.08 9.02 8.84 10.2 10.0 9.96 10.3 4.30	5.0 0.50 1.0 1.0 1.0 0.50 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 02 100 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	/28/19 Analy	yzed: 03/01/1 80.7 80.8 90.2 88.4 102 100 99.6 103 43.0	9 70-160 70-130 70-130 70-130 70-130 70-130 70-130 40-160			V-05
cetone crylonitrile rt-Amyl Methyl Ether (TAME) cenzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK)	80.7 8.08 9.02 8.84 10.2 10.0 9.96 10.3 4.30 75.3	5.0 0.50 1.0 1.0 0.50 1.0 2.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	Prepared: 02 100 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	/28/19 Analy	yzed: 03/01/1 80.7 80.8 90.2 88.4 102 100 99.6 103 43.0 75.3	9 70-160 70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160			V-05
cetone crylonitrile rt-Amyl Methyl Ether (TAME) cetone crylonitrile rt-Amyl Methyl Ether (TAME) cetone crylonitrile rt-Amyl Methyl Ether (TAME) cetone comobenzene	80.7 8.08 9.02 8.84 10.2 10.0 9.96 10.3 4.30 75.3 75.6	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 02 100 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	/28/19 Analy	yzed: 03/01/1 80.7 80.8 90.2 88.4 102 100 99.6 103 43.0 75.3 75.6	9 70-160 70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160			V-05
cetone crylonitrile rt-Amyl Methyl Ether (TAME) cetone crylonitrile rt-Amyl Methyl Ether (TAME) cetone crylonitrile rt-Amyl Methyl Ether (TAME) cetone comobenzene comobenzene comobenzene comochloromethane comoform comomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene	80.7 8.08 9.02 8.84 10.2 10.0 9.96 10.3 4.30 75.3 75.6 9.08	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 20 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 02 100 10.0 10.0 10.0 10.0 10.0 10.0 10.	/28/19 Analy	yzed: 03/01/1 80.7 80.8 90.2 88.4 102 100 99.6 103 43.0 75.3 75.6 90.8	9 70-160 70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130			V-05
cetone crylonitrile rt-Amyl Methyl Ether (TAME) cetone comobenzene comobloromethane comodichloromethane comoform comomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene	80.7 8.08 9.02 8.84 10.2 10.0 9.96 10.3 4.30 75.3 75.6 9.08 9.69	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	Prepared: 02 100 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	/28/19 Analy	yzed: 03/01/1 80.7 80.8 90.2 88.4 102 100 99.6 103 43.0 75.3 75.6 90.8 96.9	9 70-160 70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130			V-05
cetone crylonitrile rt-Amyl Methyl Ether (TAME) cetone comobenzene comochloromethane comodichloromethane comoform comomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butylbenzene c-Butylbenzene	80.7 8.08 9.02 8.84 10.2 10.0 9.96 10.3 4.30 75.3 75.6 9.08 9.69 9.61	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	Prepared: 02 100 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	/28/19 Analy	yzed: 03/01/1 80.7 80.8 90.2 88.4 102 100 99.6 103 43.0 75.3 75.6 90.8 96.9 96.1	9 70-160 70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130			V-05
cetone crylonitrile rt-Amyl Methyl Ether (TAME) ceromobenzene comobenzene comochloromethane comodichloromethane comomothane co	80.7 8.08 9.02 8.84 10.2 10.0 9.96 10.3 4.30 75.3 75.6 9.08 9.69 9.61 8.31	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 02 100 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	/28/19 Analy	yzed: 03/01/1 80.7 80.8 90.2 88.4 102 100 99.6 103 43.0 75.3 75.6 90.8 96.9 96.1 83.1	9 70-160 70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130			V-05
cetone crylonitrile rt-Amyl Methyl Ether (TAME) enzene comobenzene comochloromethane comodichloromethane comomothane comomothane comomothane comomothane comomothane comomothane comomothane comothane comotha	80.7 8.08 9.02 8.84 10.2 10.0 9.96 10.3 4.30 75.3 75.6 9.08 9.69 9.61 8.31 9.39	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 4.0	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	Prepared: 02 100 10.0	/28/19 Analy	yzed: 03/01/1 80.7 80.8 90.2 88.4 102 100 99.6 103 43.0 75.3 75.6 90.8 96.9 96.1 83.1 93.9	9 70-160 70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130			V-05
cetone crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride	80.7 8.08 9.02 8.84 10.2 10.0 9.96 10.3 4.30 75.3 75.6 9.08 9.69 9.61 8.31 9.39 9.38	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 20 1.0 1.0 0.55 4.0 5.0	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	Prepared: 02 100 10.0	/28/19 Analy	yzed: 03/01/1 80.7 80.8 90.2 88.4 102 100 99.6 103 43.0 75.3 75.6 90.8 96.9 96.1 83.1 93.9 93.8	9 70-160 70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130			V-05
cetone erylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romomothane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride inlorobenzene	25.0 80.7 8.08 9.02 8.84 10.2 10.0 9.96 10.3 4.30 75.3 75.6 9.08 9.69 9.61 8.31 9.39 9.38 10.3	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 0.50 4.0 5.0 1.0	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	Prepared: 02 100 10.0	/28/19 Analy	yzed: 03/01/1 80.7 80.8 90.2 88.4 102 100 99.6 103 43.0 75.3 75.6 90.8 96.9 96.1 83.1 93.9 93.8 103	9 70-160 70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130			V-05
cetone crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorobenzene hlorodibromomethane	25.0 80.7 8.08 9.02 8.84 10.2 10.0 9.96 10.3 4.30 75.3 75.6 9.08 9.69 9.61 8.31 9.39 9.38 10.3 10.4	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 5.0 4.0 5.0 1.0	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	Prepared: 02 100 10.0	/28/19 Analy	yzed: 03/01/1 80.7 80.8 90.2 88.4 102 100 99.6 103 43.0 75.3 75.6 90.8 96.9 96.1 83.1 93.9 93.8 103	9 70-160 70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			V-05
CS (B224607-BS1) cetone crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorodenzene hlorodibromomethane	25.0 80.7 8.08 9.02 8.84 10.2 10.0 9.96 10.3 4.30 75.3 75.6 9.08 9.69 9.61 8.31 9.39 9.38 10.3 10.4 7.99	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 5.0 4.0 5.0 1.0 0.50	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	Prepared: 02 100 10.0	/28/19 Analy	yzed: 03/01/1 80.7 80.8 90.2 88.4 102 100 99.6 103 43.0 75.3 75.6 90.8 96.9 96.1 83.1 93.9 93.8 103	9 70-160 70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			V-05
cetone crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romomethane romomethane romomethane -Butanone (MEK) rt-Butyl Alcohol (TBA) -Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorodethane hlorodethane	25.0 80.7 8.08 9.02 8.84 10.2 10.0 9.96 10.3 4.30 75.3 75.6 9.08 9.69 9.61 8.31 9.39 9.38 10.3 10.4	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 5.0 4.0 5.0 1.0	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	Prepared: 02 100 10.0	/28/19 Analy	yzed: 03/01/1 80.7 80.8 90.2 88.4 102 100 99.6 103 43.0 75.3 75.6 90.8 96.9 96.1 83.1 93.9 93.8 103	9 70-160 70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			V-05
cetone crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene ct-Butylbenzene rt-Butyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorobenzene hlorodibromomethane	25.0 80.7 8.08 9.02 8.84 10.2 10.0 9.96 10.3 4.30 75.3 75.6 9.08 9.69 9.61 8.31 9.39 9.38 10.3 10.4 7.99	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 5.0 4.0 5.0 1.0 0.50	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	Prepared: 02 100 10.0	/28/19 Analy	yzed: 03/01/1 80.7 80.8 90.2 88.4 102 100 99.6 103 43.0 75.3 75.6 90.8 96.9 96.1 83.1 93.9 93.8 103 104 79.9	9 70-160 70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			V-05

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B224607 - SW-846 5030B										_
LCS (B224607-BS1)				Prepared: 02	2/28/19 Analyzed: 03/01/	19				
4-Chlorotoluene	10.2	1.0	μg/L	10.0	102	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	8.40	5.0	μg/L	10.0	84.0	70-130				
1,2-Dibromoethane (EDB)	10.0	0.50	μg/L	10.0	100	70-130				
Dibromomethane	10.4	1.0	μg/L	10.0	104	70-130				
1,2-Dichlorobenzene	10.1	1.0	μg/L	10.0	101	70-130				
1,3-Dichlorobenzene	10.2	1.0	μg/L	10.0	102	70-130				
1,4-Dichlorobenzene	9.94	1.0	μg/L	10.0	99.4	70-130				
trans-1,4-Dichloro-2-butene	9.29	2.0	μg/L	10.0	92.9	70-130				
Dichlorodifluoromethane (Freon 12)	6.39	2.0	μg/L	10.0	63.9	40-160				+
1,1-Dichloroethane	8.86	1.0	μg/L	10.0	88.6	70-130				
1,2-Dichloroethane	9.33	1.0	μg/L	10.0	93.3	70-130				
1,1-Dichloroethylene	8.72	1.0	μg/L	10.0	87.2	70-130				
cis-1,2-Dichloroethylene	9.06	1.0	μg/L	10.0	90.6	70-130				
trans-1,2-Dichloroethylene	9.25	1.0	μg/L	10.0	92.5	70-130				
1,2-Dichloropropane	9.03	1.0	μg/L	10.0	90.3	70-130				
1,3-Dichloropropane	9.41	0.50	μg/L	10.0	94.1	70-130				
2,2-Dichloropropane	9.26	1.0	μg/L	10.0	92.6	40-130				1
1,1-Dichloropropene	9.26	2.0	μg/L	10.0	92.6	70-130				
cis-1,3-Dichloropropene	9.48	0.50	μg/L	10.0	94.8	70-130				
trans-1,3-Dichloropropene	9.14	0.50	μg/L	10.0	91.4	70-130				
Diethyl Ether	8.59	2.0	μg/L	10.0	85.9	70-130				
Diisopropyl Ether (DIPE)	7.87	0.50	μg/L	10.0	78.7	70-130				
1,4-Dioxane	79.6	50	μg/L	100	79.6	40-130				İ
Ethylbenzene	10.1	1.0	μg/L	10.0	101	70-130				
Hexachlorobutadiene	9.52	0.60	μg/L	10.0	95.2	70-130				
2-Hexanone (MBK)	81.6	10	μg/L	100	81.6	70-160				İ
Isopropylbenzene (Cumene)	10.4	1.0	μg/L	10.0	104	70-130				
p-Isopropyltoluene (p-Cymene)	9.57	1.0	μg/L	10.0	95.7	70-130				
Methyl tert-Butyl Ether (MTBE)	9.12	1.0	μg/L	10.0	91.2	70-130			17.05	
Methylene Chloride	7.84	5.0	μg/L	10.0	78.4	70-130			V-05	
4-Methyl-2-pentanone (MIBK)	80.4	10	μg/L	100	80.4	70-160				1
Naphthalene n-Propylbenzene	9.64	2.0	μg/L	10.0	96.4	40-130				†
• •	10.4	1.0	μg/L	10.0	104	70-130				
Styrene 1,1,2-Tetrachloroethane	10.5	1.0 1.0	μg/L	10.0	105	70-130				
1,1,2,2-Tetrachloroethane	10.7	0.50	μg/L μg/L	10.0 10.0	107	70-130 70-130				
Tetrachloroethylene	10.5	1.0	μg/L μg/L		105 107	70-130				
Tetrahydrofuran	10.7	1.0	μg/L μg/L	10.0 10.0		70-130			V-05, J	
Toluene	7.01	1.0			70.1				V-05, J	
1,2,3-Trichlorobenzene	9.76	5.0	μg/L	10.0	97.6	70-130				
1,2,4-Trichlorobenzene	10.4	1.0	μg/L μg/L	10.0 10.0	104 103	70-130 70-130				
1,3,5-Trichlorobenzene	10.3	1.0	μg/L μg/L	10.0	103	70-130				
1,1,1-Trichloroethane	10.2	1.0	μg/L μg/L	10.0	95.5	70-130 70-130				
1,1,2-Trichloroethane	9.55	1.0	μg/L μg/L	10.0	103	70-130				
Trichloroethylene	10.3 9.56	1.0	μg/L μg/L	10.0	95.6	70-130				
Trichlorofluoromethane (Freon 11)		2.0	μg/L μg/L	10.0	78.6	70-130				
1,2,3-Trichloropropane	7.86 10.2	2.0	μg/L μg/L	10.0	102	70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	8.80	1.0	μg/L μg/L	10.0	88.0	70-130				
1,2,4-Trimethylbenzene	9.24	1.0	$\mu g/L$	10.0	92.4	70-130				
1,3,5-Trimethylbenzene	10.2	1.0	μg/L	10.0	102	70-130				
Vinyl Chloride	7.24	2.0	μg/L	10.0	72.4	40-160				†

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B224607 - SW-846 5030B											
LCS (B224607-BS1)				Prepared: 02	2/28/19 Analy	zed: 03/01/1	9				
m+p Xylene	20.5	2.0	μg/L	20.0		102	70-130				
o-Xylene	10.4	1.0	$\mu g/L$	10.0		104	70-130				
Surrogate: 1,2-Dichloroethane-d4	22.2		μg/L	25.0		88.7	70-130				
Surrogate: Toluene-d8	24.3		μg/L	25.0		97.3	70-130				
Surrogate: 4-Bromofluorobenzene	25.0		μg/L	25.0		100	70-130				
LCS Dup (B224607-BSD1)				Prepared: 02	2/28/19 Analy	zed: 03/01/1	9				
Acetone	88.3	50	μg/L	100		88.3	70-160	8.92	25	V-05	
Acrylonitrile	8.01	5.0	$\mu g/L$	10.0		80.1	70-130	0.870	25	V-05	
tert-Amyl Methyl Ether (TAME)	9.06	0.50	$\mu g/L$	10.0		90.6	70-130	0.442	25		
Benzene	8.85	1.0	$\mu g/L$	10.0		88.5	70-130	0.113	25		
Bromobenzene	10.1	1.0	$\mu g/L$	10.0		101	70-130	1.08	25		
Bromochloromethane	10.5	1.0	$\mu g \! / \! L$	10.0		105	70-130	4.20	25		
Bromodichloromethane	9.69	0.50	$\mu g/L$	10.0		96.9	70-130	2.75	25		
Bromoform	10.0	1.0	$\mu g/L$	10.0		100	70-130	2.76	25		
Bromomethane	5.33	2.0	$\mu g/L$	10.0		53.3	40-160	21.4	25		
2-Butanone (MEK)	77.0	20	$\mu \text{g/L}$	100		77.0	40-160	2.34	25	V-05	
tert-Butyl Alcohol (TBA)	76.4	20	$\mu \text{g/L}$	100		76.4	40-160	1.05	25	V-05	
n-Butylbenzene	9.01	1.0	$\mu g \! / \! L$	10.0		90.1	70-130	0.774	25		
sec-Butylbenzene	9.51	1.0	$\mu g/L$	10.0		95.1	70-130	1.87	25		
tert-Butylbenzene	9.39	1.0	$\mu g/L$	10.0		93.9	70-130	2.32	25		
tert-Butyl Ethyl Ether (TBEE)	8.31	0.50	$\mu g/L$	10.0		83.1	70-130	0.00	25		
Carbon Disulfide	9.11	4.0	μg/L	10.0		91.1	70-130	3.03	25		
Carbon Tetrachloride	9.12	5.0	μg/L	10.0		91.2	70-130	2.81	25		
Chlorobenzene	10.2	1.0	μg/L	10.0		102	70-130	1.07	25		
Chlorodibromomethane	10.3	0.50	μg/L	10.0		103	70-130	1.06	25		
Chloroethane	8.33	2.0	μg/L	10.0		83.3	70-130	4.17	25		
Chloroform	9.00	2.0	μg/L	10.0		90.0	70-130	0.669	25		
Chloromethane	6.10	2.0	μg/L	10.0		61.0	40-160	1.65	25	V-05	
2-Chlorotoluene	10.3	1.0	μg/L	10.0		103	70-130	1.16	25		
4-Chlorotoluene	10.2	1.0	μg/L	10.0		102	70-130	0.00	25		
1,2-Dibromo-3-chloropropane (DBCP)	8.73	5.0	μg/L	10.0		87.3	70-130	3.85	25		
1,2-Dibromoethane (EDB)	9.90	0.50	μg/L	10.0		99.0	70-130	1.50	25		
Dibromomethane	10.1	1.0	μg/L	10.0		101	70-130	2.44	25		
1,2-Dichlorobenzene	10.2	1.0	μg/L	10.0		102	70-130	0.493	25		
1,3-Dichlorobenzene	10.2	1.0	μg/L	10.0		102	70-130	0.295	25		
1,4-Dichlorobenzene	9.86	1.0	μg/L	10.0		98.6	70-130	0.808	25		
trans-1,4-Dichloro-2-butene	9.01	2.0	μg/L	10.0		90.1	70-130	3.06	25		
Dichlorodifluoromethane (Freon 12)	6.35	2.0	μg/L	10.0		63.5	40-160	0.628	25		
1,1-Dichloroethane	8.90	1.0	μg/L	10.0		89.0	70-130	0.450	25		
1,2-Dichloroethane	9.09	1.0	μg/L	10.0		90.9	70-130	2.61	25		
1,1-Dichloroethylene	8.58	1.0	μg/L	10.0		85.8	70-130	1.62	25		
cis-1,2-Dichloroethylene	8.85	1.0	μg/L	10.0		88.5	70-130	2.35	25		
trans-1,2-Dichloroethylene	8.90	1.0	μg/L	10.0		89.0	70-130	3.86	25		
1,2-Dichloropropane	8.88	1.0	μg/L	10.0		88.8	70-130	1.68	25		
1,3-Dichloropropane	9.30	0.50	μg/L	10.0		93.0	70-130	1.18	25		
2,2-Dichloropropane	9.10	1.0	μg/L	10.0		91.0	40-130	1.74	25		
1,1-Dichloropropene	9.09	2.0	μg/L	10.0		90.9	70-130	1.85	25		
cis-1,3-Dichloropropene	9.39	0.50	μg/L	10.0		93.9	70-130	0.954	25		
trans-1,3-Dichloropropene	9.27	0.50	μg/L	10.0		92.7	70-130	1.41	25		
Diethyl Ether	8.58	2.0	μg/L	10.0		85.8	70-130	0.116	25		
Diisopropyl Ether (DIPE)	7.87	0.50	μg/L	10.0		78.7	70-130	0.00	25		

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B224607 - SW-846 5030B											
LCS Dup (B224607-BSD1)				Prepared: 02	2/28/19 Analy	yzed: 03/01/	19				
1,4-Dioxane	68.0	50	μg/L	100		68.0	40-130	15.7	50		 † ‡
Ethylbenzene	9.73	1.0	μg/L	10.0		97.3	70-130	4.03	25		
Hexachlorobutadiene	9.55	0.60	μg/L	10.0		95.5	70-130	0.315	25		
2-Hexanone (MBK)	80.8	10	μg/L	100		80.8	70-160	1.03	25		†
Isopropylbenzene (Cumene)	10.2	1.0	μg/L	10.0		102	70-130	2.14	25		
p-Isopropyltoluene (p-Cymene)	9.48	1.0	μg/L	10.0		94.8	70-130	0.945	25		
Methyl tert-Butyl Ether (MTBE)	9.03	1.0	μg/L	10.0		90.3	70-130	0.992	25		
Methylene Chloride	7.76	5.0	μg/L	10.0		77.6	70-130	1.03	25	V-05	
4-Methyl-2-pentanone (MIBK)	79.3	10	μg/L	100		79.3	70-160	1.40	25		†
Naphthalene	9.17	2.0	μg/L	10.0		91.7	40-130	5.00	25		†
n-Propylbenzene	10.1	1.0	μg/L	10.0		101	70-130	2.73	25		
Styrene	10.3	1.0	μg/L	10.0		103	70-130	2.30	25		
1,1,1,2-Tetrachloroethane	10.5	1.0	μg/L	10.0		105	70-130	2.36	25		
1,1,2,2-Tetrachloroethane	10.4	0.50	μg/L	10.0		104	70-130	0.764	25		
Tetrachloroethylene	10.8	1.0	μg/L	10.0		108	70-130	1.02	25		
Tetrahydrofuran	7.47	10	μg/L	10.0		74.7	70-130	6.35	25	V-05, J	
Toluene	9.46	1.0	μg/L	10.0		94.6	70-130	3.12	25		
1,2,3-Trichlorobenzene	10.3	5.0	μg/L	10.0		103	70-130	1.74	25		
1,2,4-Trichlorobenzene	10.1	1.0	$\mu g/L$	10.0		101	70-130	2.75	25		
1,3,5-Trichlorobenzene	10.3	1.0	$\mu g/L$	10.0		103	70-130	1.08	25		
1,1,1-Trichloroethane	9.32	1.0	$\mu g/L$	10.0		93.2	70-130	2.44	25		
1,1,2-Trichloroethane	10.0	1.0	μg/L	10.0		100	70-130	2.36	25		
Trichloroethylene	9.69	1.0	$\mu g/L$	10.0		96.9	70-130	1.35	25		
Trichlorofluoromethane (Freon 11)	8.20	2.0	$\mu g/L$	10.0		82.0	70-130	4.23	25		
1,2,3-Trichloropropane	10.0	2.0	$\mu g/L$	10.0		100	70-130	1.09	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	8.76	1.0	μg/L	10.0		87.6	70-130	0.456	25		
1,2,4-Trimethylbenzene	9.12	1.0	$\mu g\!/\!L$	10.0		91.2	70-130	1.31	25		
1,3,5-Trimethylbenzene	9.95	1.0	μg/L	10.0		99.5	70-130	2.09	25		
Vinyl Chloride	7.35	2.0	μg/L	10.0		73.5	40-160	1.51	25		†
m+p Xylene	20.1	2.0	μg/L	20.0		100	70-130	2.12	25		
o-Xylene	10.1	1.0	$\mu g/L$	10.0		101	70-130	3.12	25		
Surrogate: 1,2-Dichloroethane-d4	22.7		μg/L	25.0		90.8	70-130				
Surrogate: Toluene-d8	24.2		μg/L	25.0		96.6	70-130				
Surrogate: 4-Bromofluorobenzene	24.8		μg/L	25.0		99.2	70-130				

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B224945 - SW-846 3510C										
Blank (B224945-BLK1)				Prepared: 03	3/04/19 Analy	yzed: 03/05/	19			
Acenaphthene (SIM)	ND	0.30	μg/L							
Acenaphthylene (SIM)	ND	0.20	μg/L							
Anthracene (SIM)	ND	0.20	μg/L							
Benzo(a)anthracene (SIM)	ND	0.050	μg/L							
Benzo(a)pyrene (SIM)	ND	0.10	μg/L							
Benzo(b)fluoranthene (SIM)	ND	0.050	μg/L							
Benzo(g,h,i)perylene (SIM)	ND	0.50	μg/L							
Benzo(k)fluoranthene (SIM)	ND	0.20	μg/L							
Chrysene (SIM)	ND	0.20	$\mu g/L$							
Dibenz(a,h)anthracene (SIM)	ND	0.10	$\mu g/L$							
luoranthene (SIM)	ND	0.50	$\mu g/L$							
Fluorene (SIM)	ND	1.0	$\mu g/L$							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.10	$\mu g/L$							
-Methylnaphthalene (SIM)	ND	1.0	μg/L							
Japhthalene (SIM)	ND	1.0	μg/L							
Phenanthrene (SIM)	ND	0.050	μg/L							
yrene (SIM)	0.023	1.0	μg/L							J
urrogate: Nitrobenzene-d5 (SIM)	76.7		$\mu g/L$	100		76.7	30-130			
urrogate: 2-Fluorobiphenyl	55.4		$\mu g/L$	100		55.4	30-130			
urrogate: p-Terphenyl-d14	72.2		$\mu g/L$	100		72.2	30-130			
.CS (B224945-BS1)				Prepared: 03	3/04/19 Analy	zed: 03/05/	19			
Acenaphthene (SIM)	35.8	7.5	$\mu g \! / \! L$	50.0		71.6	40-140			
Acenaphthylene (SIM)	35.1	5.0	$\mu g/L$	50.0		70.2	40-140			
Anthracene (SIM)	38.6	5.0	$\mu g\!/\!L$	50.0		77.1	40-140			
Benzo(a)anthracene (SIM)	35.0	1.2	$\mu g\!/\!L$	50.0		70.0	40-140			
enzo(a)pyrene (SIM)	39.5	2.5	$\mu g/L$	50.0		79.0	40-140			
Benzo(b)fluoranthene (SIM)	40.0	1.2	$\mu \text{g/L}$	50.0		80.1	40-140			
Benzo(g,h,i)perylene (SIM)	37.3	12	$\mu g/L$	50.0		74.6	40-140			
Benzo(k)fluoranthene (SIM)	38.7	5.0	$\mu \text{g/L}$	50.0		77.4	40-140			
Chrysene (SIM)	34.9	5.0	$\mu \text{g/L}$	50.0		69.8	40-140			
Dibenz(a,h)anthracene (SIM)	38.6	2.5	$\mu \text{g/L}$	50.0		77.3	40-140			
luoranthene (SIM)	37.4	12	$\mu \text{g/L}$	50.0		74.8	40-140			
luorene (SIM)	36.2	25	$\mu \text{g/L}$	50.0		72.4	40-140			
ndeno(1,2,3-cd)pyrene (SIM)	39.6	2.5	$\mu g/L$	50.0		79.1	40-140			
-Methylnaphthalene (SIM)	37.7	25	$\mu \text{g/L}$	50.0		75.4	40-140			
Japhthalene (SIM)	34.6	25	$\mu \text{g/L}$	50.0		69.2	40-140			
Phenanthrene (SIM)	37.5	1.2	$\mu g \! / \! L$	50.0		75.0	40-140			
yrene (SIM)	33.6	25	μg/L	50.0		67.2	40-140			
Surrogate: Nitrobenzene-d5 (SIM)	72.2		μg/L	100		72.2	30-130			
urrogate: 2-Fluorobiphenyl	54.2		$\mu g/L$	100		54.2	30-130			
Surrogate: p-Terphenyl-d14	49.0		μg/L	100		49.0	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B224945 - SW-846 3510C									·	
LCS Dup (B224945-BSD1)				Prepared: 03	3/04/19 Anal	yzed: 03/05/	19			
Acenaphthene (SIM)	31.9	7.5	μg/L	50.0		63.8	40-140	11.5	20	
Acenaphthylene (SIM)	31.9	5.0	$\mu g/L$	50.0		63.8	40-140	9.55	20	
Anthracene (SIM)	34.1	5.0	$\mu g/L$	50.0		68.2	40-140	12.3	20	
Benzo(a)anthracene (SIM)	31.8	1.2	$\mu g/L$	50.0		63.6	40-140	9.65	20	
Benzo(a)pyrene (SIM)	35.8	2.5	$\mu g/L$	50.0		71.5	40-140	9.97	20	
Benzo(b)fluoranthene (SIM)	36.3	1.2	$\mu g/L$	50.0		72.6	40-140	9.89	20	
Benzo(g,h,i)perylene (SIM)	34.0	12	μg/L	50.0		68.0	40-140	9.33	20	
Benzo(k)fluoranthene (SIM)	35.4	5.0	μg/L	50.0		70.8	40-140	8.77	20	
Chrysene (SIM)	31.6	5.0	μg/L	50.0		63.3	40-140	9.70	20	
Dibenz(a,h)anthracene (SIM)	36.1	2.5	μg/L	50.0		72.2	40-140	6.82	20	
Fluoranthene (SIM)	31.9	12	μg/L	50.0		63.8	40-140	16.0	20	
Fluorene (SIM)	30.6	25	μg/L	50.0		61.3	40-140	16.6	20	
Indeno(1,2,3-cd)pyrene (SIM)	36.5	2.5	μg/L	50.0		73.0	40-140	8.09	20	
2-Methylnaphthalene (SIM)	33.4	25	$\mu g/L$	50.0		66.8	40-140	12.1	20	
Naphthalene (SIM)	31.3	25	$\mu g/L$	50.0		62.6	40-140	10.0	20	
Phenanthrene (SIM)	33.9	1.2	μg/L	50.0		67.8	40-140	10.2	20	
Pyrene (SIM)	31.0	25	$\mu g/L$	50.0		62.0	40-140	8.13	20	
Surrogate: Nitrobenzene-d5 (SIM)	64.2		μg/L	100		64.2	30-130			
Surrogate: 2-Fluorobiphenyl	50.4		$\mu g/L$	100		50.4	30-130			
Surrogate: p-Terphenyl-d14	44.0		μg/L	100		44.0	30-130			

FLAG/QUALIFIER SUMMARY

†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
DL-01	Elevated reporting limits for all volatile compounds due to foaming sample matrix.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.

QC result is outside of established limits.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	_
SW-846 8260D in Water		
Acetone	NC	
Acrylonitrile	NC	
tert-Amyl Methyl Ether (TAME)	NC	
Benzene	NC	
Bromobenzene	NC	
Bromochloromethane	NC	
Bromodichloromethane	NC	
Bromoform	NC	
Bromomethane	NC	
2-Butanone (MEK)	NC	
tert-Butyl Alcohol (TBA)	NC	
n-Butylbenzene	NC	
sec-Butylbenzene	NC	
tert-Butylbenzene	NC	
tert-Butyl Ethyl Ether (TBEE)	NC	
Carbon Disulfide	NC	
Carbon Tetrachloride	NC	
Chlorobenzene	NC	
Chlorodibromomethane	NC	
Chloroethane	NC	
Chloroform	NC	
Chloromethane	NC	
2-Chlorotoluene	NC	
4-Chlorotoluene	NC	
1,2-Dibromo-3-chloropropane (DBCP)	NC	
1,2-Dibromoethane (EDB)	NC	
Dibromomethane	NC	
1,2-Dichlorobenzene	NC	
1,3-Dichlorobenzene	NC	
1,4-Dichlorobenzene	NC	
trans-1,4-Dichloro-2-butene	NC	
Dichlorodifluoromethane (Freon 12)	NC	
1,1-Dichloroethane	NC	
1,2-Dichloroethane	NC	
1,1-Dichloroethylene	NC	
cis-1,2-Dichloroethylene	NC	
trans-1,2-Dichloroethylene	NC	
1,2-Dichloropropane	NC	
1,3-Dichloropropane	NC	
2,2-Dichloropropane	NC	
1,1-Dichloropropene	NC	
cis-1,3-Dichloropropene	NC	
trans-1,3-Dichloropropene	NC	
Diethyl Ether	NC	
Diisopropyl Ether (DIPE)	NC	
1,4-Dioxane	NC	
Ethylbenzene	NC	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260D in Water	
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

19111125

CON-ESE


http://www.contestlabs.com

Doc # 379 Rev 1_03242017

CHAIN OF CUSTODY RECORD (North Carolina)

11028 Page of /	# of Containare	2 Preservation Code	3 Containor Codo	Plysolysed Metals, Samples	Field Filtered	Lab to Filter		Orthyphoyohate Samples	Field Filtered	Lab to Hitter	Matrix Codes:	WW = Waste Water	DW = Drinking Water A = Air	S = Soil SL = Sludge	SOL = Solid O = Other (please	define)	2 Preservation Codes:	P= Iced	M = Methanol N = Nitric Acid	S = Sulfuric Acid B = Sodium Bisulfate	X = Sodium Hydroxide T = Sodium	T		own 3 Container Codes:	A = Amber Glass G = Glass	rust. Fund	REC V = VIAI	ār,		The state of the s	A INC COU	
39 Spruce Street East Longmeadow, MA 01028				ANALYSIS REQUESTED			\$\frac{\sqrt{1}}{\sqrt{1}}	U		つ つ つ つ つ つ												THE PARTY OF THE P	Please use the following codes to indicate possible sample concentration within the Conc Code column above:	H - High; M - Medium; L - Low; C - Clean; U - Unknown	Program Information	BSCA DSCA UST,	SWS Landfill	H38 Urphaned Landfill State Lead		NELAC and AIHA-LAP LIC Acondition	Other	
CHAIN OF CUSTODY RECORD (North Carolina) Records Representation (North Carolina)	-01	ite:	Rubh-Approval Required	3 ₽	2-Day 4-Day	Date L	Format: PDF EXCEL	Other:	Email To: The second of the se	A TOWER STATES	Ending Composite Grab Matrix Conc	ShB											Flease use the for	H . High; P	Posth Carolina Detection Limit Requirements	2L	SWSI		MSCC		Entity	
Phone: 413-525-2332 Fax: 413-525-6405	Email: info@contestlabs.com	15	Spring Fount Poller Rolling NC	0	C Sh	Perry Lec RB.		e Fancional	James Hewein MI	B 3	Client Sample ID / Description Beginning Bate/Time	3 /-W-1 335-19										TOTAL TOTAL				3/32/13/500gla	Date/Ilme:	ان ئ	Date/Time:		Date/Time: Project Entity	_
MALYTICAL LABORATORY	(Strip) (Stript-ball-ball stript) (Stript)	ompany Name. StMs	Address: 3201 Spruss			7	Project Number: 사소65·(중·(15)	Con-Test Quote Name/Number:		Jame	Con-Test Work Order#	2 1										Jomments:			kelinguished by / (signature)	from Mangette	(L) (Signature)	quished by: (signature)	ad by: (signature)		o quished by: (signature)	-11

Delivered Tuesday 2/26/2019 at 10:02 am

DELIVERED

Signed for by: B.BECCA

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

RALEIGH, NC US

TO

EAST LONGMEADOW, MA US

Shipment Facts

TRACKING NUMBER

785691220555

SERVICE

FedEx Priority Overnight

WEIGHT

51 lbs / 23.13 kgs

DIMENSIONS

24x14x14 in.

DELIVERED TO

Shipping/Receiving

TOTAL PIECES

1

TOTAL SHIPMENT WEIGHT

51 lbs / 23.13 kgs

TERMS

Third Party

PACKAGING

Your Packaging

SHIP DATE

SPECIAL HANDLING SECTION

Deliver Weekday

STANDARD TRANSIT

2/26/2019 by 10:30 am

(2)

Mon 2/25/2019

ACTUAL DELIVERY

Tue 2/26/2019 10:02 am

Travel History

Local Scan Time

Tuesday , 2/26/2019

10:02 am

EAST LONGMEADOW, MA

Delivered

7:56 am

WINDSOR LOCKS, CT

On FedEx vehicle for delivery

7:46 am

WINDSOR LOCKS, CT

At local FedEx facility

6:16 am

EAST GRANBY, CT

At destination sort facility

Page 22 of 23

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples

Doc# 277 Rev 5 2017

Login Samp	le Receipt Checklist	: - (Rejection Criteri	a Listing - Using	Acceptance Pol	icy) Any False
S	tatement will be bro	ought to the attention	on of the Client -	State True or Fa	lse

Client	5+1	7F	-						
Receiv	ed By	RAP		Date	22	6/19	Time	10:02	
How were th	•	In Cooler	T	No Cooler		On Ice	T	No Ice	
receiv	/ed?	Direct from Samp	 oling	•		- Ambient		Melted Ice	
Were samp	oloc within		By Gun#			Actual Tem	p- 4.0	-	
Temperatu			By Blank #			Actual Tem	n -		_
-	Custody Se	eal Intact?	. NA		re Sample	s Tampered		ΛΑ	
	COC Relin			•		ree With Sa		-/	
		eaking/loose caps	on any sam	•	F	,			
Is COC in in		A Marin	•	*	ples rece	ived within h	olding time?	T	
Did COC is	nclude all	Client	·	Analysis	ī		er Name	T	***
pertinent Inf	ormation?	Project	T	ID's	7	Collection	Dates/Times	3	_
Are Sample	labels filled	d out and legible?	T	_				-	
Are there La	b to Filters?	•	P	_	Who wa	s notified?			_
Are there Ru	shes?		F		Who wa	s notified?			_
Are there Sh	ort Holds?		<u> </u>	•	Who wa	s notified?			-
Is there enou	_		<u> </u>						
	•	ere applicable?	<u> </u>	•	MS/MSD?		. /	`	
Proper Media						samples red	quired? +	<u>-</u>	_
Were trip bla				•	On COC?	<u>+</u>	_		
Do all sampl	es have the	proper pH?	NA	Acid _		_	Base		***
Vials	#	Containers:	#			#			#
Unp-		1 Liter Amb.	2	1 Liter I				z Amb.	
HCL-	3	500 mL Amb.		500 mL				nb/Clear	
Meoh- Bisulfate-		250 mL Amb.		250 mL)	nb/Clear	
DI-	······································	Flashpoint Other Glass		Col./Ba Other F			· · · · · · · · · · · · · · · · · · ·	nb/Clear core	
Thiosulfate-		SOC Kit		Plastic			Frozen:	COLE	
Sulfuric-		Perchlorate		Ziplo			1 102011.		
				Unused N			I		
Vials	#	Containers:	#	Oliusea n	legia	#			# #
Unp-		1 Liter Amb.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 Liter F	Plastic		16.0	z Amb.	•
HCL-		500 mL Amb.		500 mL	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			nb/Clear	
Meoh-		250 mL Amb.		250 mL				nb/Clear	
Bisulfate-		Col./Bacteria		Flash	-			nb/Clear	†
DI-		Other Plastic		Other (core	
Thiosulfate-		SOC Kit		Plastic	Bag		Frozen:		
Sulfuric-		Perchlorate		Ziplo	ock				
Comments:									

April 29, 2019

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: Preliminary Site Assessment Report

NCDOT Project I-5986B, WBS Element 47532.1.3

Parcel 216-Lucky's Storage Lot

Sadler Drive

Dunn, Harnett County, North Carolina

S&ME Project 4305-18-175A

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 4305-18-175 CO-01 REV-01 dated January 2, 2019, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its January 8, 2019 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's November 2, 2018, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
216	RSL, LLC	(Lucky's Storage Lot)
		Sadler Drive, Dunn, NC

The property is a vacant lot used for the storage of trailers, metal bleachers and chairs by the nearby Lucky's Truck and Trailer Sales facility. The property is not listed with registered petroleum underground storage tanks (USTs) (active or closed). The property is also not listed with North Carolina Department of Environmental Quality (NCDEQ) Incidents associated with petroleum releases from USTs or aboveground storage tanks.

The PSA included a geophysical survey and subsequent limited soil sampling (two soil borings up to 10 feet below ground surface (ft.-bgs.), within accessible areas of the proposed ROW/easement in preparation for construction activities. Groundwater was not encountered during the advancement of soil borings at the site. Therefore,

groundwater sampling was not performed. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (Troxler Geologic, Inc.) was also used to locate and mark underground utilities.

Geophysical Survey

On February 7, 2019, S&ME personnel performed a geophysical survey within accessible areas of the proposed ROW/easement at Parcel 216. S&ME used a combination of the Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) methods to explore for buried subsurface features at the site such as underground storage tanks (USTs) and other possible buried obstructions. Brief descriptions of these complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820-02 (2007) "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The presence of storage equipment, fences, and other surficial obstructions within the requested survey area however prevented TDEM data collection in several locations. The approximate TDEM data collection paths are presented in **Figure 4**. Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 3000 GPR system equipped with a 400 MHz antenna in general accordance with ASTM D6432-11 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of eight GPR profiles (Lines 1 through 8) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. Anomalous features unrelated to known surficial targets were not identified in the geophysical data sets collected at the site. However, a culvert was identified under the paved entrance (**Figures 5 through 7**).

Soil Sampling

On February 19, 2019, Troxler Geologic, Inc. (Troxler's) drill crew utilized a track mounted Geoprobe® rig to advance two soil borings (B-1 and B-2) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 216. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I.** Troxler's drill crew advanced the Geoprobe® borings to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was not encountered. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II.**

No petroleum odors, staining or elevated PID readings were noted within the collected soil samples. Therefore, two soil samples (two to four foot depth interval and eight to ten foot depth interval) were selected from each boring and provided to RED Lab, LLC (Red Lab) for on-site analysis. A total of four soil samples (two per boring) were analyzed by RED Lab for Total Petroleum Hydrocarbons (TPH)-Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Upon completion of the soil sampling, the soil borings were backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as additional soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by North Carolina Department of Environmental Quality (NCDEQ). Used gloves, re-sealable bags and acetate sleeves were bagged and disposed off-site.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Conclusion and Recommendations

Anomalous features unrelated to known surficial targets were not identified in the geophysical data sets collected at the site. However, a culvert was identified under the paved entrance. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced two soil borings (B-1 and B-2) to a depth of approximately 10 ft.-bgs at the site. No petroleum odors, staining or elevated PID readings were noted within soil samples collected from the soil borings. Selected soil samples from the soil borings were analyzed onsite for TPH-GRO and TPH-DRO using UVF spectroscopy. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits. During the soil boring advancement, groundwater was not encountered. Therefore, groundwater sampling was not performed.

Based on the findings of the geophysical survey and analytical results of soil samples, no recommendations are provided.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., buildings, reinforced concrete, vehicles, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific, and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of approximately about five ft.-bgs.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a

project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

Jamie T Honeycutt
Environmental Professional

4C890EAEC25F488.

jhoneycutt@smeinc.com

Thomas P. Raymond, P.E., P.M.P.

Senior Consultant traymond@smeinc.com

Attachments:

Table 1: Summary of Soil Sampling Results

Figure 1: Vicinity Map **Figure 2:** Site Map

Figure 3: Soil Constituent Map **Figure 4:** TDEM Path Location Plan

Figure 5: TDEM Data Plot A

Michael W. Pfeifer
Senior Project Manager
mpfeifer@smeinc.com

Michael Phi

861E52DDEFAF4C7.

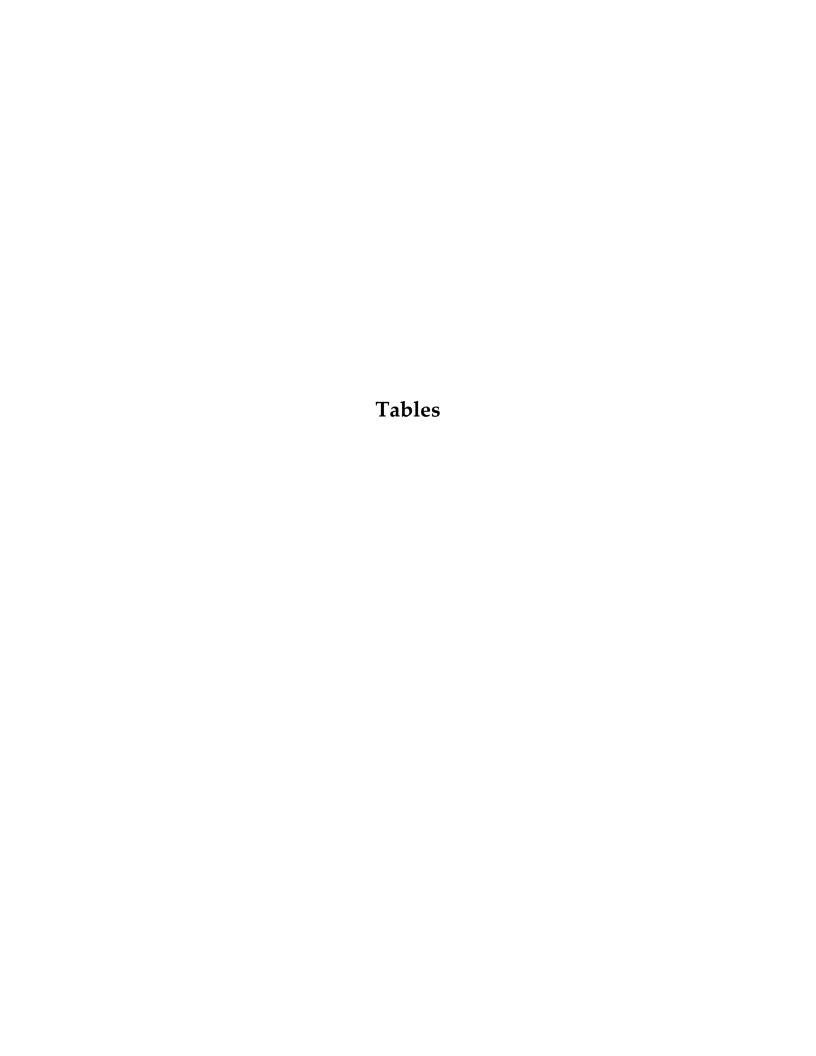


Figure 6: TDEM Data Plot B

Figure 7: Geophysical Anomaly Location Plan

Appendix I: Photographs **Appendix II:** Boring Logs

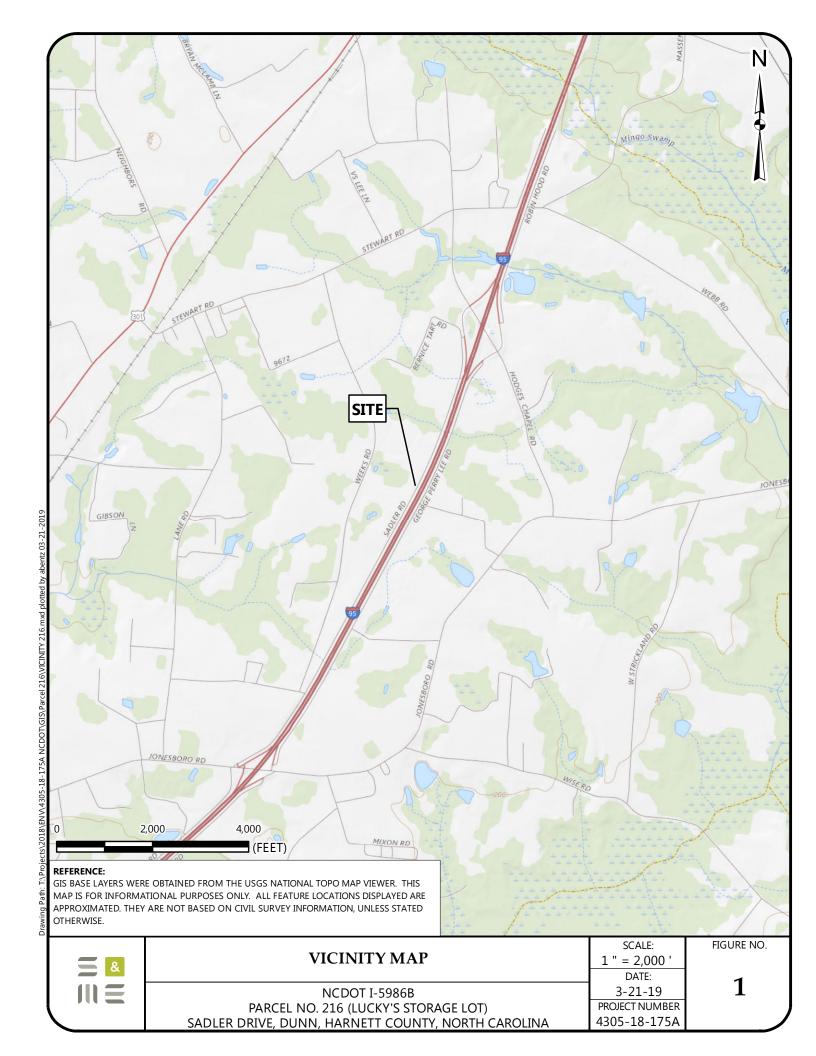
Appendix III: Laboratory Analytical Reports and Chain of Custody

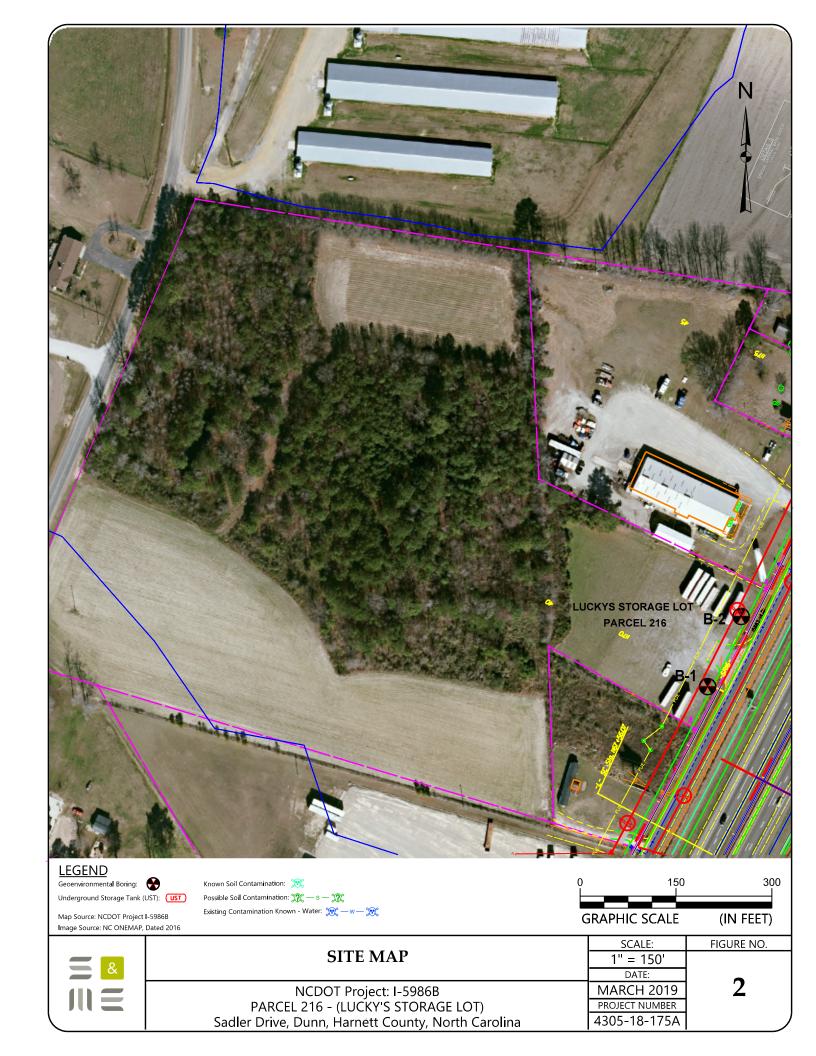
E & **M E**

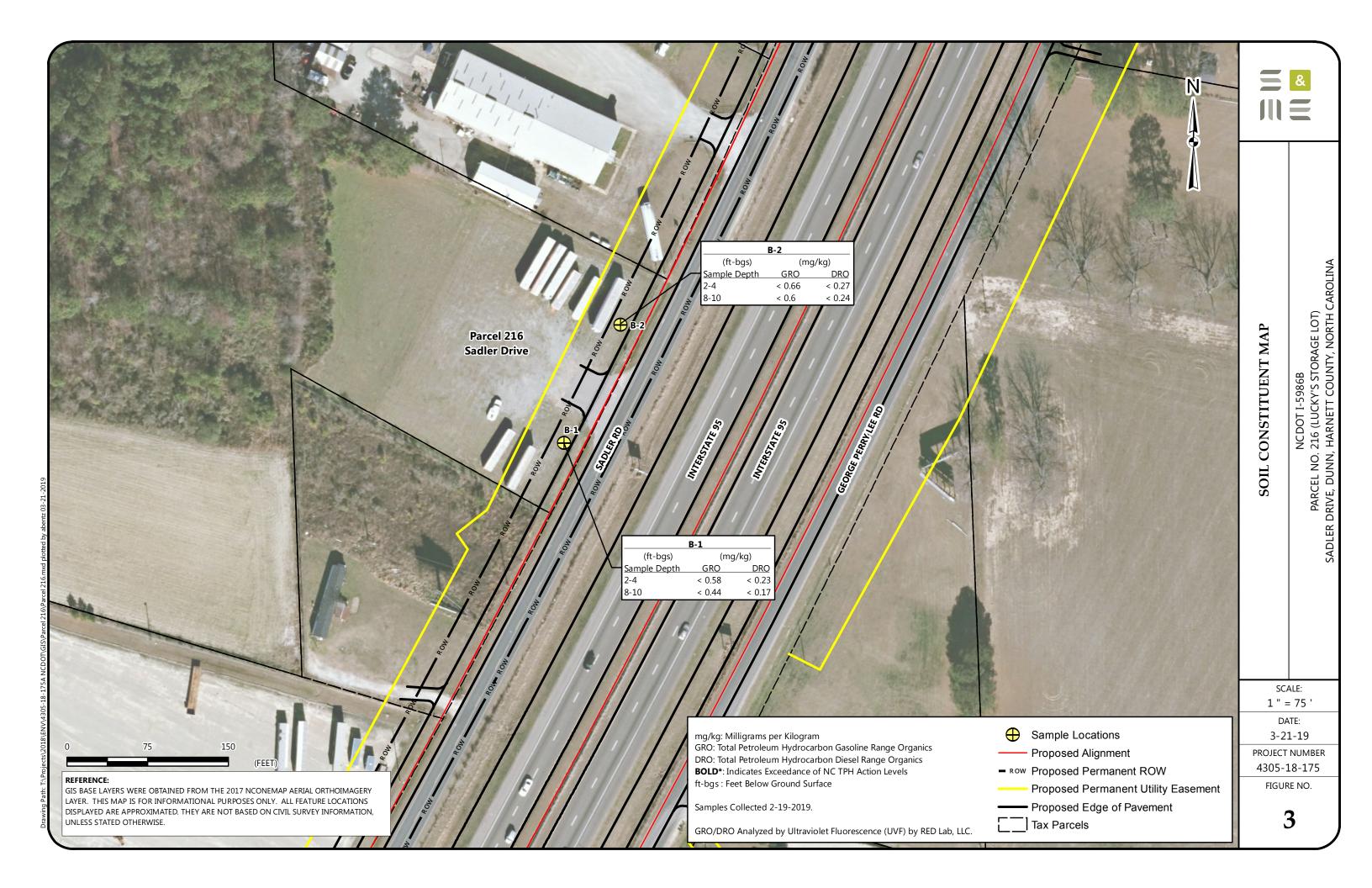
TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS

NCDOT Project I-5986B

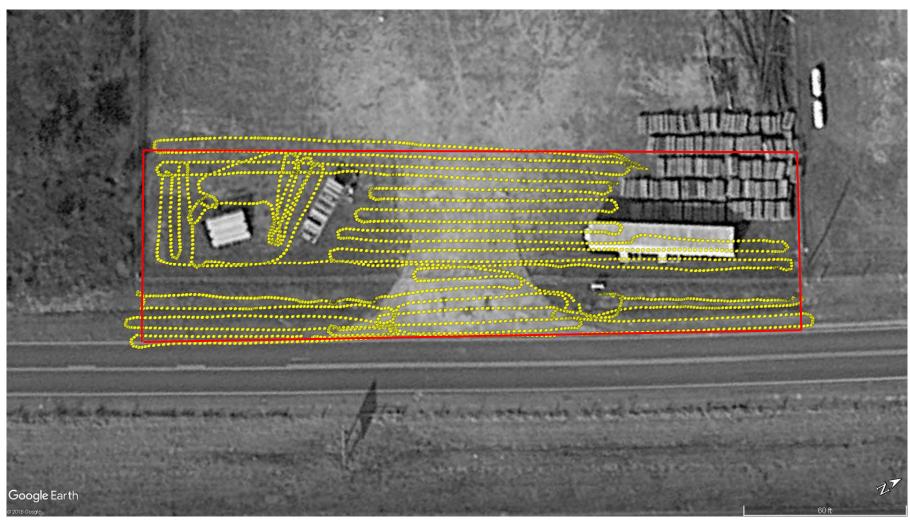
Parcel 216 - (Lucky's Storage Lot)
Sadler Drive


Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175A


Ar	nalytical Metho	d→	Total Petroleum Hydrocarbons (TPH) Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) by Ultraviolet Fluorescence (UVF) Spectrometry					
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO				
B-1	2/19/2019	2 to 4	<0.58	<0.23				
D-1	2/19/2019	8 to 10	<0.44	<0.17				
B-2	2/19/2019	2 to 4	<0.66	<0.27				
D-Z	2/19/2019	8 to 10	<0.6	<0.24				
No	orth Carolina Ti	PH Action Levels	50	100				


Notes:

- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- 5. Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and **BOLD** fields.



REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

Approximate TDEM Path

Approximate Requested Survey Area

TDEM PATH LOCATION PLAN

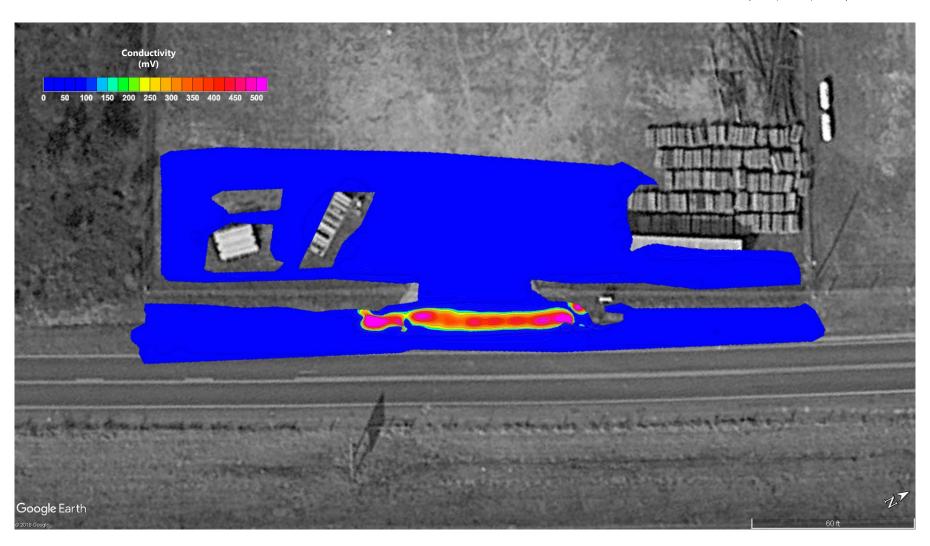
NCDOT PROJECT: 1-5986B PARCEL 216 – (LUCKY'S STORAGE LOT) SADLER DRIVE, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 3/22/2019

PROJECT NUMBER 4305-18-175A

FIGURE NO.


4

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

TDEM DATA PLOT A

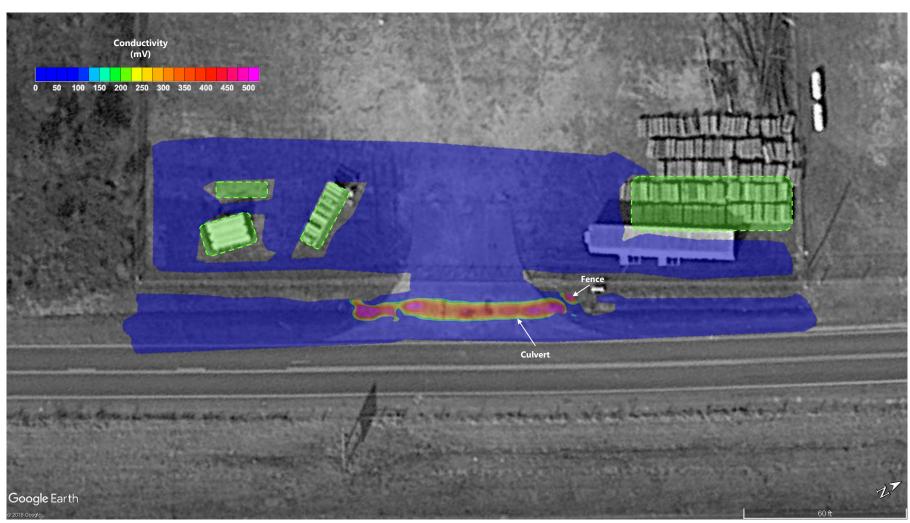
NCDOT PROJECT: I-5986B PARCEL 216 – (LUCKY'S STORAGE LOT) SADLER DRIVE, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 3/22/2019

PROJECT NUMBER 4305-18-175A

FIGURE NO.


5

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

Approximate Location of Stored Equipment

TDEM DATA PLOT B

NCDOT PROJECT: 1-5986B
PARCEL 216 – (LUCKY'S STORAGE LOT)
SADLER DRIVE, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 3/22/2019

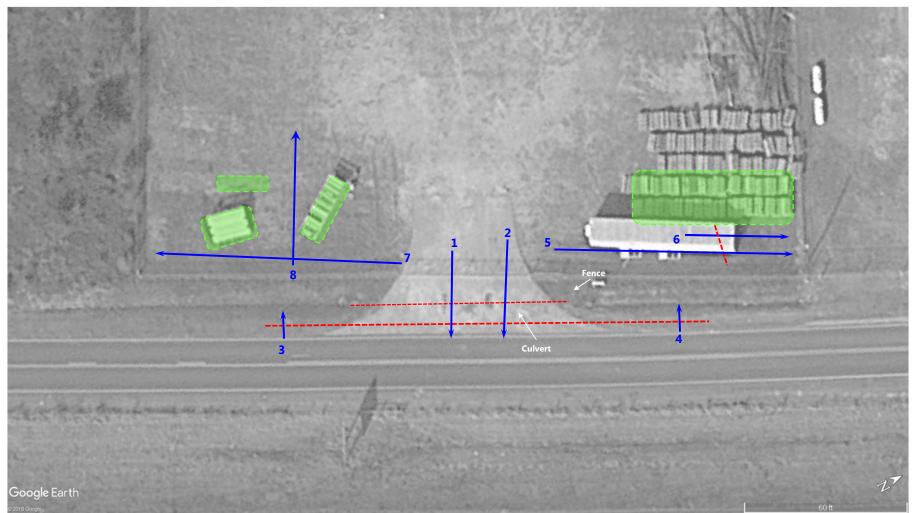
PROJECT NUMBER 4305-18-175A

FIGURE NO.

LEGEND

Approximate Location of GPR Profile

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)


NCDOT PROJECT: 1-5986B PARCEL 216 – (LUCKY'S STORAGE LOT) SADLER DRIVE, DUNN, HARNETT COUNTY, NORTH CAROLINA GEOPHYSICAL ANOMALY LOCATION PLAN

SCALE: AS SHOWN

DATE: 3/22/2019

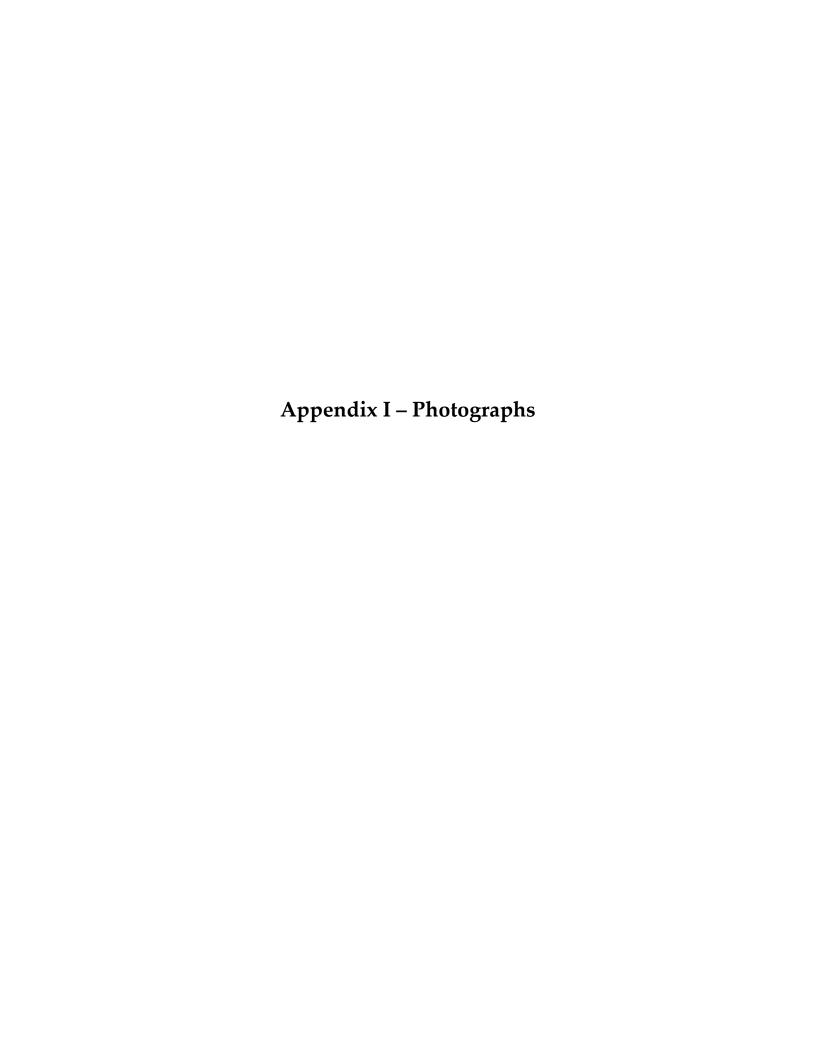
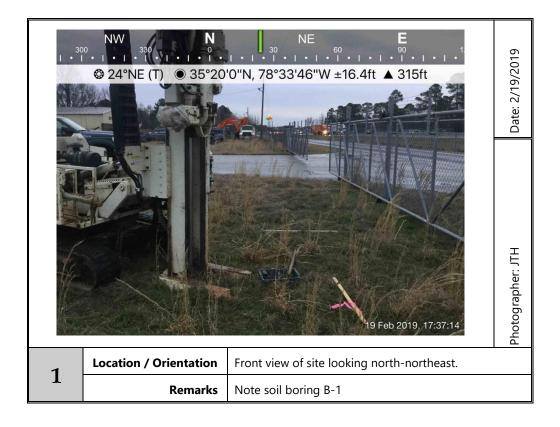
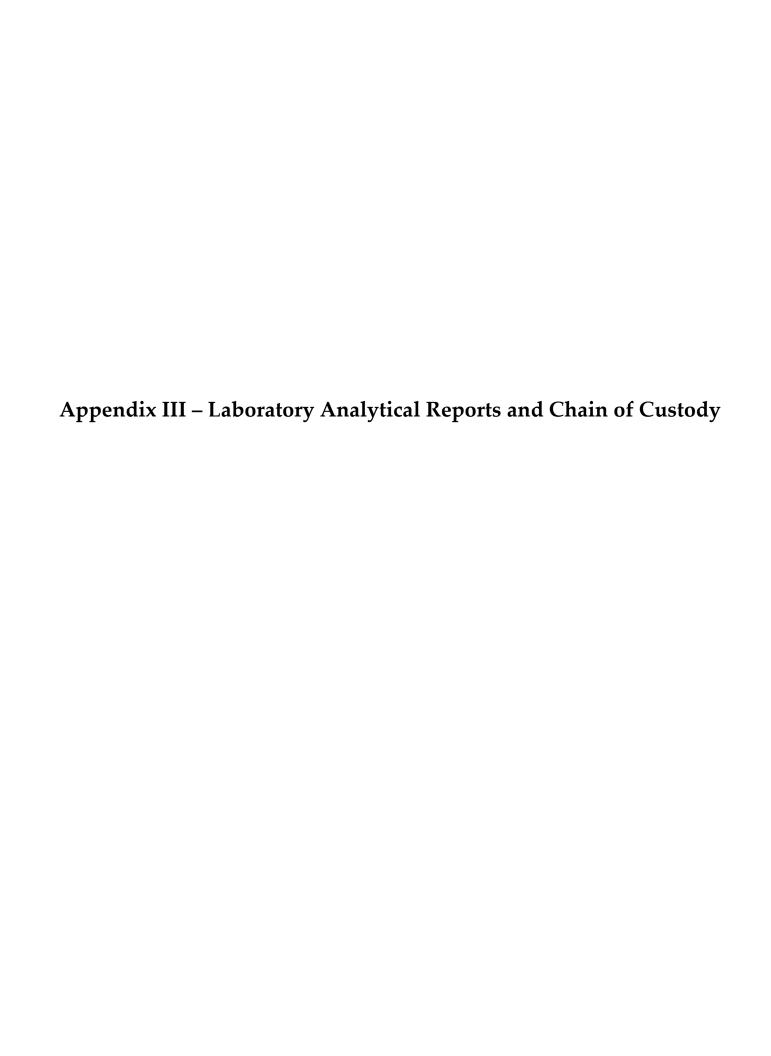

PROJECT NUMBER 4305-18-175A

FIGURE NO.



Approximate Location of Stored Equipment

--- Approximate Location of Possible Utility



PROJECT:	NCDOT I-5986B									
	Parcel 216-Lot Near 1185 Sadler Drive, Dunr S&ME Project No. 4305-18-175A	n, NC			BORIN	IG LOG	B-1			
DATE DRILLED:	Tuesday, February 19, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 6620 DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
(feet) (feet) (feet) CARAPHIC			WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
5 — San	d, Brown, rey Sand, Red, Orange, Tan,			I	0.6 0.8 0.7 0.9	No Yes No				
10 — Bori — 15 — 20 — 25 — 30	ng Terminated at 10 Ft-BGS				1.4	Yes				

SMILE PRINCE SECRETARY 19, 2029 SOME PROJECT NO. 41905-18-175, 128 SMILE PROJECT NO. 41905-18-175,	PROJECT:	NCDOT I-5986B Parcel 216-Lot Near 1185 Sadler Drive, Duni	n. NC			BORIN	IG LOG:	B-2			
SAST DELIADE Note Note Sample			, :-			141					
MALTER Service CADE CA	DATE DRILLED:		BORING DEPTH (FT):	10							
DRILLING Provide celebracy No. Provide celebracy No. Provide celebracy No. Provide No. Pro	DRILL RIG:										
MANAGENETIC Not Applicable MOSTATE Not Service MOSTATE Most Core Service SACTING	DRILLER:			Not Appl	icable						
MANTENIA DESCRIPTION More Core Sampler MATERIA DESCRIPTION											
### DEFINITION OF CASTING Control											
MATERIAL DESCRIPTION 1											
Sovid Grown		made core sampler (5 mil 65)	27.571146.								
Clayery Sand. Red. Crange. Ten. 1.0 No 1.0 Yes 1.0 Y				WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
10 Boring Terminated at 10 Ft-BGS 15 — 20 — 25 — 25 — 26 — 26 — 26 — 26 — 26 — 27 — 27 — 28 — 29 — 29 — 29 — 29 — 29 — 29 — 29	Clay	d, Brown,				0.9	Yes No				
Boring Terminated at 10 Ft-BGS 15 —					ł	0.8	No				
		ng Terminated at 10 Ft-BGS				1.0	res				
	20 —										
	25 —										
30											
	30										

Hydrocarbon Analysis Results

Client: S&ME Address: Samples takenTuesday, February 19, 2019Samples extractedTuesday, February 19, 2019

Samples analysed Tuesday, February 19, 2019

Contact: JAMIE HONEYCUTT Operator MAX MOYER

Project: 4305-18-175A; PARCEL 216

													F03640																																
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP	Ratios		Ratios		Ratios		Ratios		Ratios		Ratios		Ratios		Ratios		Ratios		Ratios		Ratios		Ratios		Ratios		Ratios		Ratios		Ratios		Ratios			HC Fingerprint Match
										% light	% mid	% heavy																																	
Soil	B-1 (2-4')	23.2	<0.58	<0.58	<0.23	<0.58	<0.01	<0.01	<0.007	0	0	0	PHC ND,(FCM)																																
Soil	B-1 (8-10')	17.4	<0.44	<0.44	<0.17	< 0.44	< 0.009	<0.009	<0.005	0	0	0	PHC ND,(FCM)																																
Soil	B-2 (2-4')	26.5	<0.66	<0.66	<0.27	<0.66	< 0.01	<0.01	<0.008	0	0	0	PHC ND,(FCM)																																
Soil	B-2 (8-10')	24.1	<0.6	<0.6	<0.24	<0.6	<0.01	<0.01	<0.007	0	0	0	PHC ND,(FCM)																																
	1 11 10	1.1	00 1 1	OIZ					E1 L E4		OL 1	01/	07.00/																																

Initial Calibrator QC check OK

Final FCM QC Check OK

97.9%

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content

Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate present

Project: 4305-18-175A; PARCEL 216

B-1 (2-4'): PHC ND,(FCM)

B-1 (8-10'): PHC ND,(FCM)

B-2 (2-4'): PHC ND,(FCM)

B-2 (8-10'): PHC ND,(FCM)

B-2 (8-10'): PHC ND,(FCM)

April 29, 2019

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: Preliminary Site Assessment Report

NCDOT Project I-5986B, WBS Element 47532.1.3

Parcel 230-Exxon Slip In

427 Jonesboro Road

Dunn, Harnett County, North Carolina

S&ME Project 4305-18-175A

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 4305-18-175 CO-01 REV-01 dated January 2, 2019, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its January 8, 2019 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's November 2, 2018, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
230	Marion Sadler	(Exxon Slip In)
		427 Jonesboro Road, Dunn, NC

The property is developed with an active gasoline/convenience store and restaurant identified as Exxon Slip In, which utilizes one petroleum underground storage tank (UST) with two compartments. Information regarding the UST system listed for this site is provided in the following table:

UST Facility ID No. 0-00-000034851

Number of Tanks	Contents	Capacity (gallons)	Date Installed	Date Removed
1	Gasoline	12,000	1994	Active
1	Gasoline	8,000	1994	Active

The property is not listed with North Carolina Department of Environmental Quality (NCDEQ) Incidents associated with petroleum releases from underground or aboveground storage tanks.

The PSA included a geophysical survey and subsequent limited soil sampling (three soil borings up to 10 feet below ground surface (ft.-bgs.), within accessible areas of the proposed ROW/easement in preparation for construction activities. Groundwater was not encountered during the advancement of soil borings at the site. Therefore, groundwater sampling was not performed. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (Troxler Geologic, Inc.) was also used to locate and mark underground utilities.

Geophysical Survey

On February 7, 2019, S&ME personnel performed a geophysical survey within accessible areas of the proposed ROW/easement at Parcel 230. S&ME used a combination of the Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) methods to explore for buried subsurface features at the site such as underground storage tanks (USTs) and other possible buried obstructions. Brief descriptions of these complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820-02 (2007) "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems Geode™ sub-meter GPS as positioning support. The presence of existing pumps and other surficial obstructions, and other surficial obstructions within the requested survey area however prevented TDEM data collection in several locations. The approximate TDEM data collection paths are presented in **Figure 4**. Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 3000 GPR system equipped with a 400 MHz antenna in general accordance with ASTM D6432-11 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of nine GPR profiles (Lines 1 through 9) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

The site is an operating gasoline/convenience store. Based on preliminary plan sheets provided by NCDOT, it appears that the proposed Right-of-Way extends near but not across an existing UST and pump island located on the site. The existing UST was identified during the geophysical survey, north of boring B-3 and is shown in **Figure 2** and **Figure 7**.

Two anomalous features unrelated to known surficial targets were identified in the geophysical data sets (Anomalies A and B; **Figures 5 through 7**). Anomaly A is characterized by high amplitude GPR responses located in the upper one ft.-bgs and likely related to an isolated buried metallic target/debris. Anomaly B is characterized by an isolated TDEM response located within the eastern portion of the site adjacent to existing bollards. This feature was only identified in the TDEM data during post-processing and not in the field, and as such, GPR data was not collected over this feature so interpretations regarding possible size and depth cannot not be determined. Possible influence from the nearby bollards may have masked our ability to identify it while in the field. Anomaly A was also marked in the field using white spray paint. Example GPR profiles are presented in **Figures 8 and 9**.

Soil Sampling

On February 22, 2019, Troxler Geologic, Inc. (Troxler's) drill crew utilized a track mounted Geoprobe® rig to advance three soil borings (B-1 through B-3) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 230. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I.** Troxler's drill crew advanced the Geoprobe® borings to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was not encountered. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with

ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II.**

No petroleum odors, staining or elevated PID readings were noted within the collected soil samples. Therefore, two soil samples (two to four foot depth interval and eight to ten foot depth interval) were selected from each boring and provided to RED Lab, LLC (Red Lab) for on-site analysis. A total of six soil samples (two per boring) were analyzed by RED Lab for Total Petroleum Hydrocarbons (TPH)-Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Upon completion of the soil sampling, the soil borings were backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as additional soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by North Carolina Department of Environmental Quality (NCDEQ). Used gloves, re-sealable bags and acetate sleeves were bagged and disposed off-site.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH-GRO and TPH-DRO were not reported at concentrations exceeding the North Carolina TPH Action Levels. TPH-DRO was reported at borings B-1 and B-2 at the two to four foot depth intervals at concentrations of 4.2 milligrams per kilograms (mg/kg) and 3.4 mg/kg, respectively, which are below its North Carolina TPH Action Level of 100 mg/kg. TPH DRO was also reported at borings B-1 through B-3 at the eight to ten foot depth interval at concentrations ranging from 0.09 mg/kg to 3.6 mg/kg. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits for the remaining soil samples. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Conclusion and Recommendations

The site is an operating gasoline/convenience store. The geophysical survey identified an existing known UST, which appears to be located near but not across the proposed Right-of-Way along with an existing pump island. The UST and pump island are located east of soil boring B-3.

The geophysical survey also identified two anomalous features unrelated to known surficial targets in the geophysical data sets (Anomalies A and B). Anomaly A is likely related to an isolated buried metallic target/debris. However, Anomaly B is characterized by an isolated TDEM response located within the eastern portion of the site adjacent to existing bollards. This feature was only identified in the TDEM data during post-processing and not in the field, and as such, GPR data was not collected over this feature so interpretations regarding possible size and depth cannot not be determined. Possible influence from the nearby bollards may have masked our ability to identify it while in the field. Although its TDEM response is relatively smaller and weaker than a typical response from a UST, it is uncertain if Anomaly B is associated with a potential UST, due to the lack of GPR data. Workers in the area of Anomaly B should be aware of the possibility of a UST or buried metallic objects or debris.

S&ME advanced three soil borings (B-1 through B-3) to a depth of approximately 10 ft.-bgs at the site. No petroleum odors, staining or elevated PID readings were noted within soil samples collected from the soil borings. Selected soil samples from the soil borings were analyzed onsite for TPH-GRO and TPH-DRO using UVF spectroscopy. TPH-DRO was reported in the two to four foot and eight to ten foot depth intervals at borings B-1 and B-2 and the eight to ten foot depth interval at boring B-3 at concentrations slightly above the laboratory method reporting limits, but well below the North Carolina TPH Action Levels. During the soil boring advancement, groundwater was not encountered. Therefore, groundwater sampling was not performed.

S&ME recommends maintaining an awareness level for the presence of marginally impacted petroleum in soil (below TPH Action Levels) at the site for the safety of workers and the public. If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., buildings, reinforced concrete, vehicles, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific, and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of approximately about five ft.-bgs.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations

presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Panie Honercutt

4C890EAEC25F488.

5/6/2019

Sincerely,

S&ME, Inc.

Jamie T Honeycutt

Environmental Professional jhoneycutt@smeinc.com

Thomas P. Raymond, P.E., P.M.P.

Senior Consultant traymond@smeinc.com

Attachments:

Table 1: Summary of Soil Sampling Results

Figure 1: Vicinity Map Figure 2: Site Map

Figure 3: Soil Constituent Map

Figure 4: TDEM Path Location Plan **Figure 5:** TDEM Data Plot A

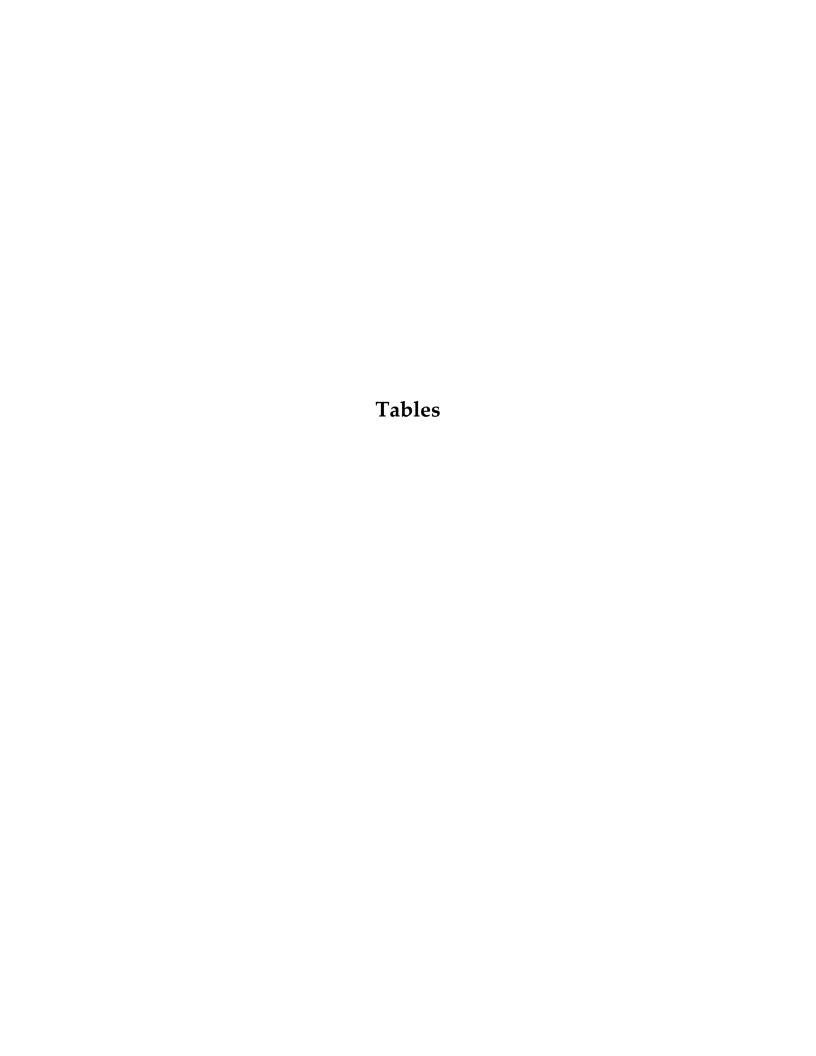
Figure 6: TDEM Data Plot B

Figure 7: Geophysical Anomaly Location Plan **Figure 8:** Example GPR Data – Lines 1 and 2

Figure 9: Example GPR Data-Lines 5 and 7

Michael W. Pfeifer Senior Project Manager

mpfeifer@smeinc.com


Michael Phifer

861E52DDEFAF4C7.

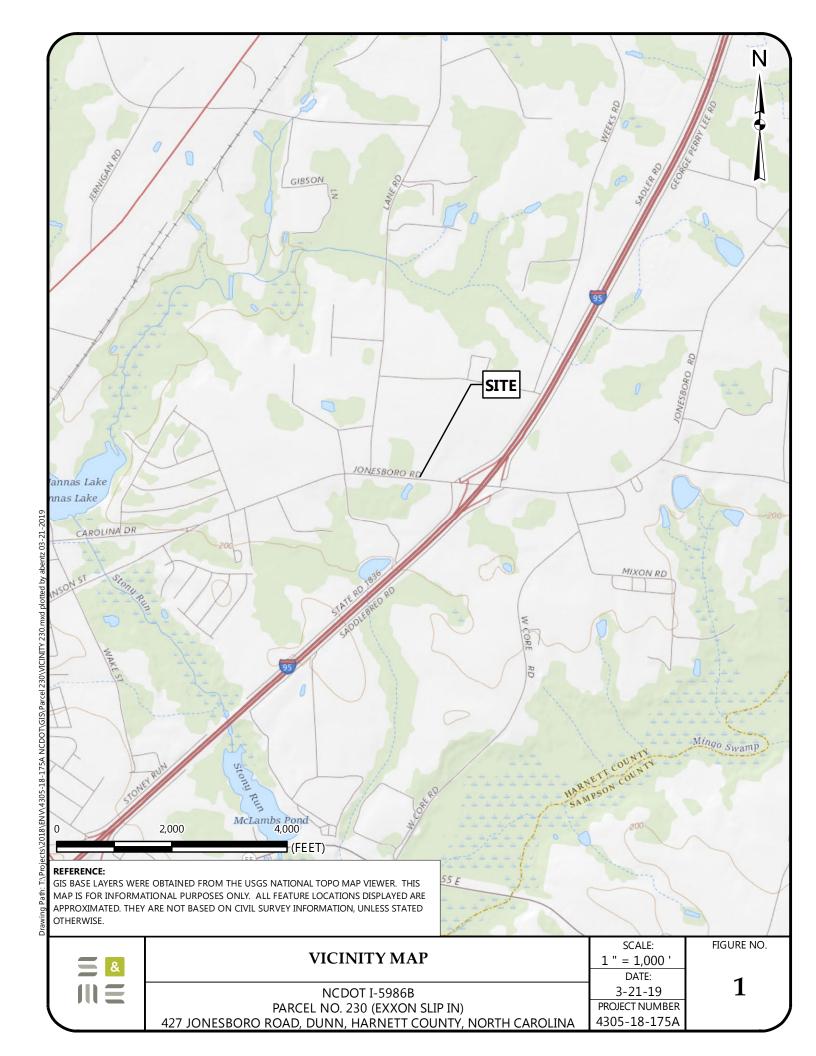
Appendix I: Photographs **Appendix II:** Boring Logs

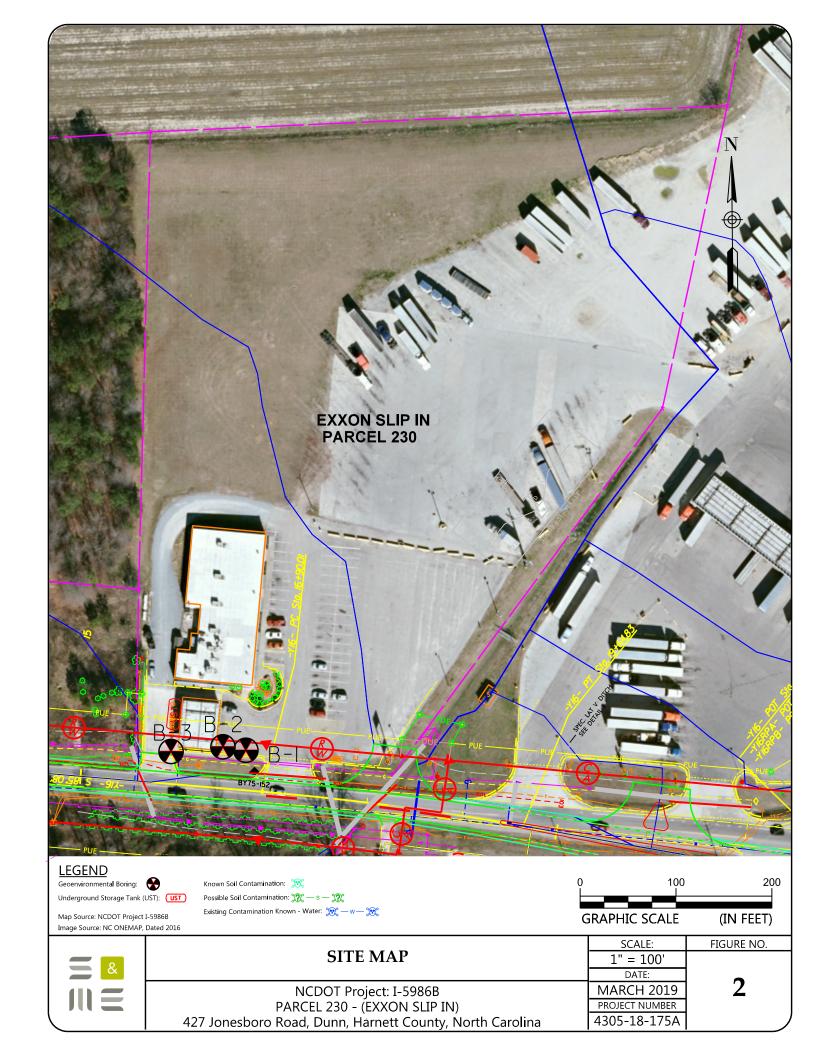
Appendix III: Laboratory Analytical Reports and Chain of Custody

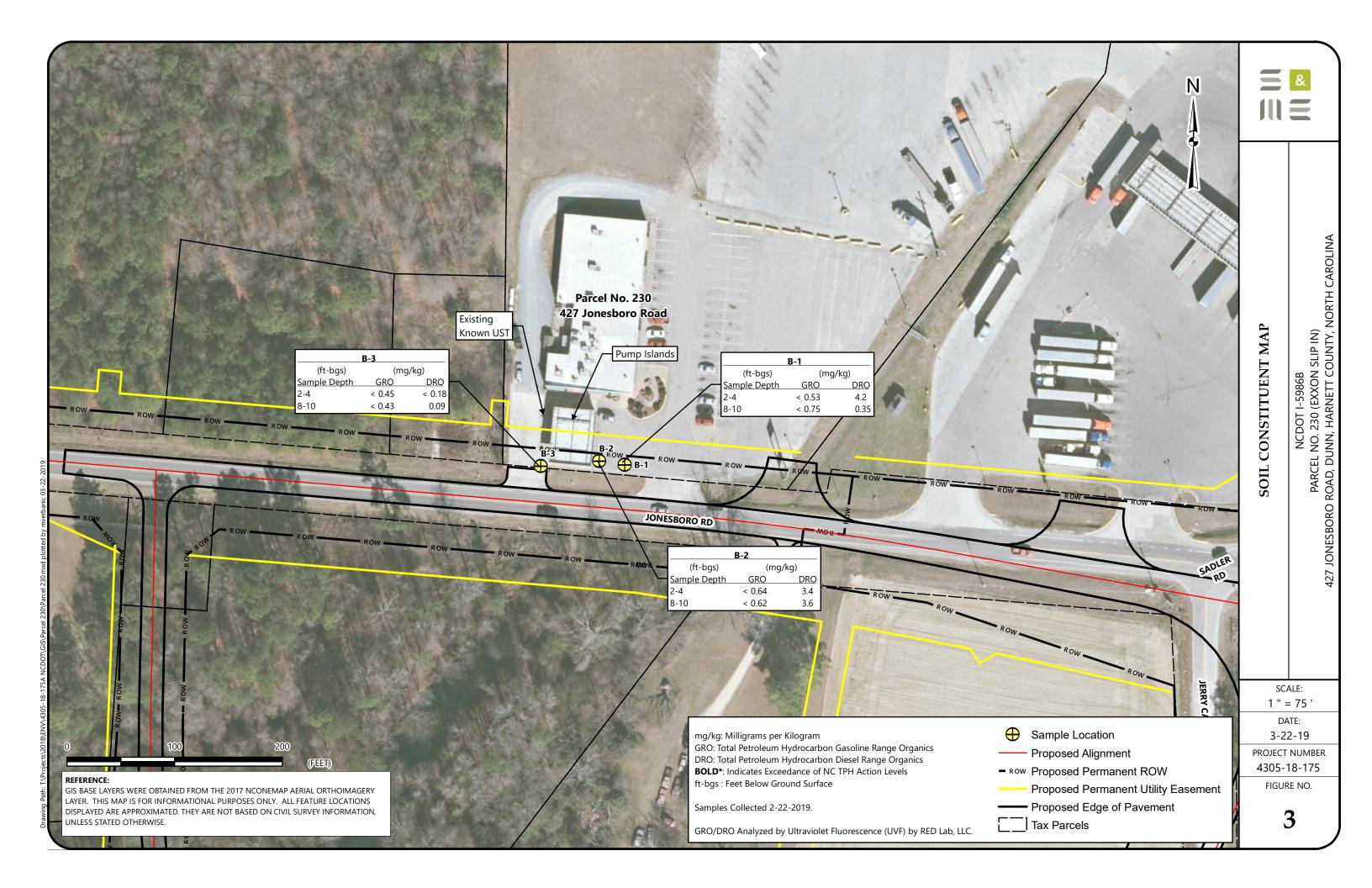
TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS

NCDOT Project I-5986B

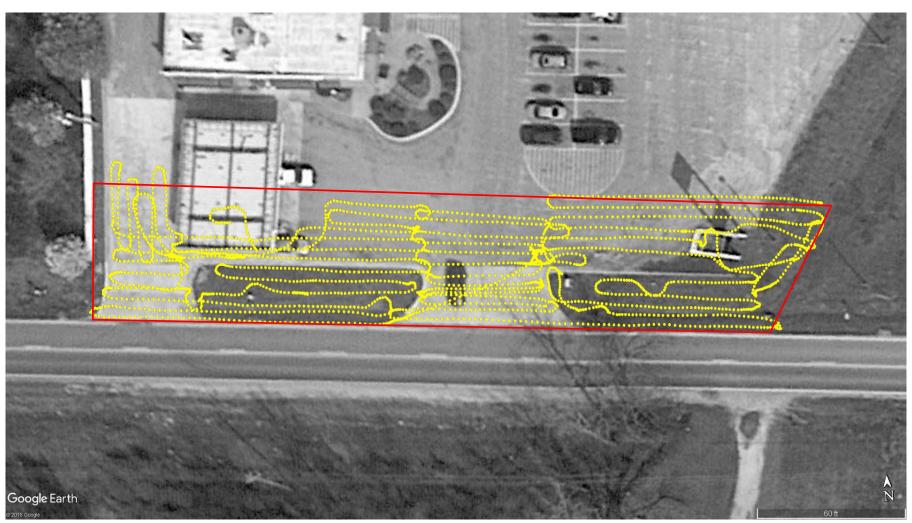
Parcel 230 - (Exxon Slip In) 427 Jonesboro Road


Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175A


Aı	nalytical Metho	d→	Total Petroleum Hydrocarbons (TPH) Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) by Ultraviolet Fluorescence (UVF) Spectrometry					
Sample ID	Sample ID Date Con		TPH-GRO	TPH-DRO				
		Sample Depth (ftbgs)						
B-1	2/22/2019	2 to 4	<0.53	4.2				
D-1	2/22/2019	8 to 10	<0.75	0.35				
B-2	2/22/2019	2 to 4	<0.64	3.4				
D-2	2/22/2019	8 to 10	<0.62	3.6				
B-3	2/22/2019	2 to 4	<0.45	<0.18				
D-3	2/22/2019	8 to 10	<0.43	0.09				
No	orth Carolina T	PH Action Levels	50	100				


Notes:

- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and BOLD fields.



REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

Approximate TDEM Path

Approximate Requested Survey Area

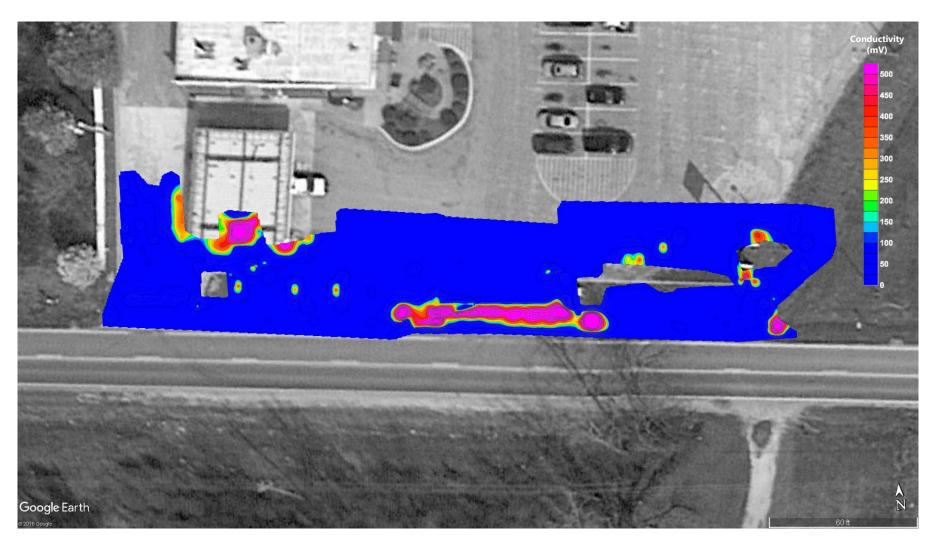
TDEM PATH LOCATION PLAN NCDOT PROJECT: 1-5986B PARCEL 230 – (EXXON SLIP IN) 427 JONESBORO ROAD, DUINN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 3/22/2019

PROJECT NUMBER 4305-18-175A

FIGURE NO.


4

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

TDEM DATA PLOT A

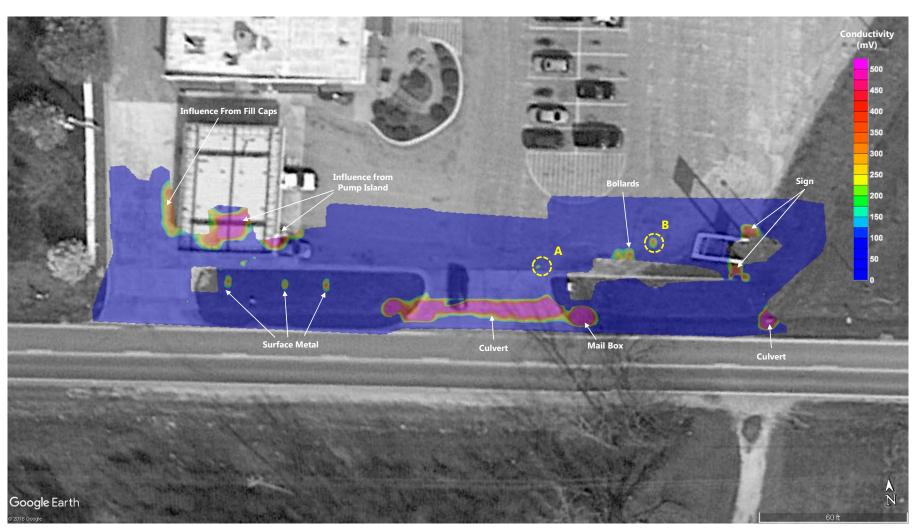
NCDOT PROJECT: 1-5986B PARCEL 230 – (EXXON SLIP IN) 427 JONESBORO ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 3/22/2019

PROJECT NUMBER 4305-18-175A

FIGURE NO.


5

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

 \bigcirc

Approximate Location of TDEM Anomaly

NCDOT PROJECT: I-59868
PARCEL 230 – (EXXON SLIP IN)
427 JONESBORO ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

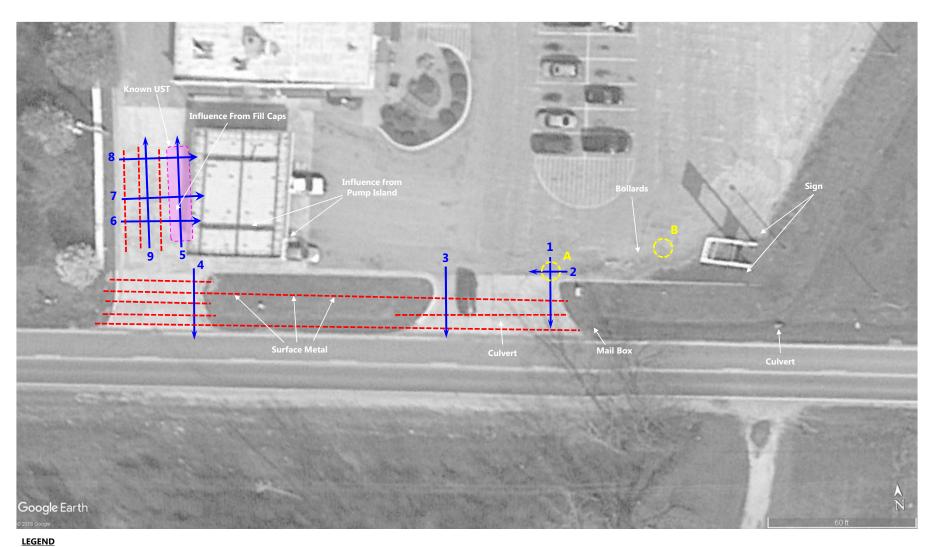
TDEM DATA PLOT B

SCALE: AS SHOWN

DATE: 3/22/2019

PROJECT NUMBER 4305-18-175A

FIGURE NO.


Approximate Location of TDEM Anomaly

REFERENCE:

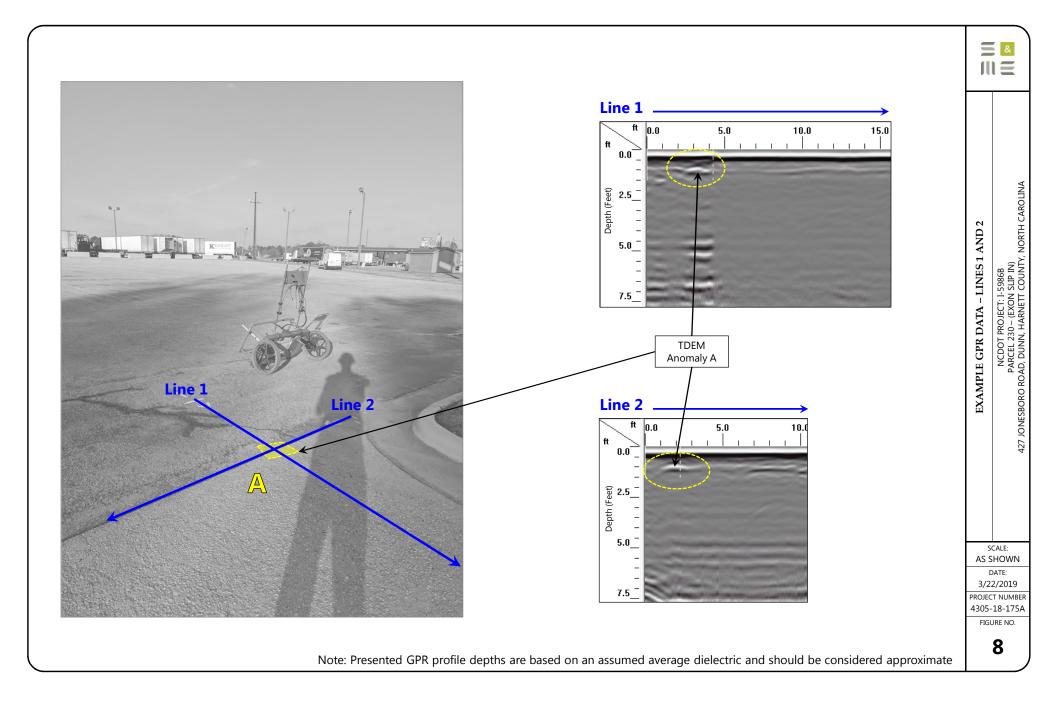
Approximate Location of Possible Utility

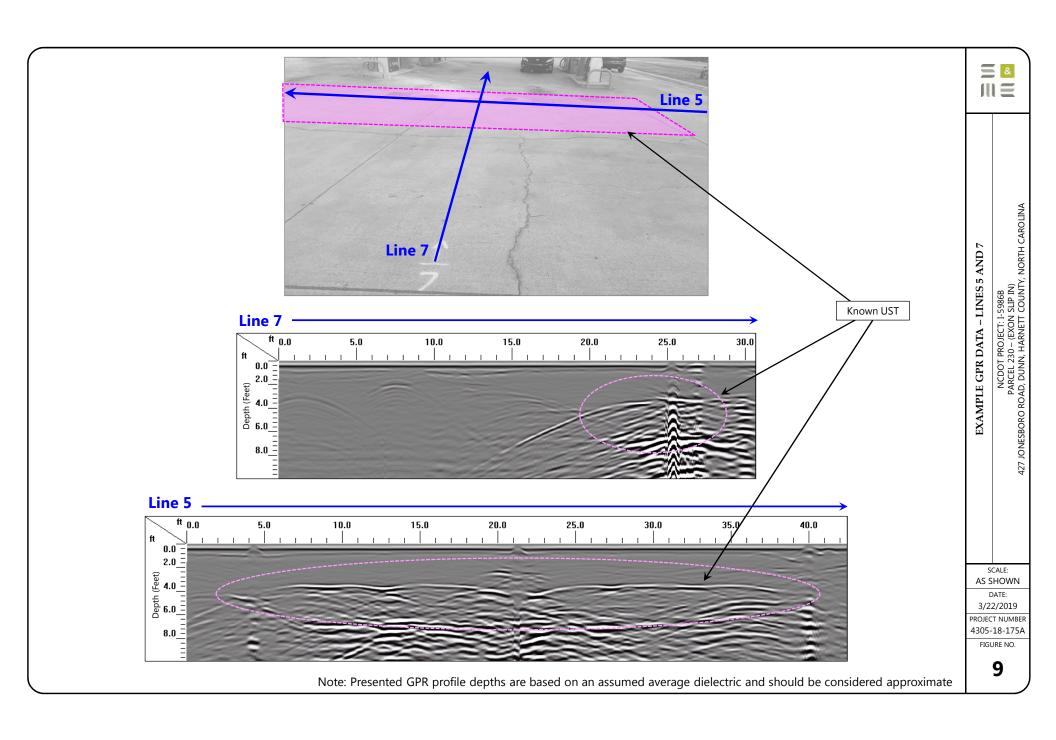
(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

Approximate Location of GPR Profile

SCALE: AS SHOWN

NCDOT PROJECT: I-5986B PARCEL 230 – (EXXON SLIP IN) 427 JONESBORO ROAD, DUNNI, HARNETT COUNTY, NORTH CAROLINA


GEOPHYSICAL ANOMALY LOCATION PLAN


DATE: 3/22/2019

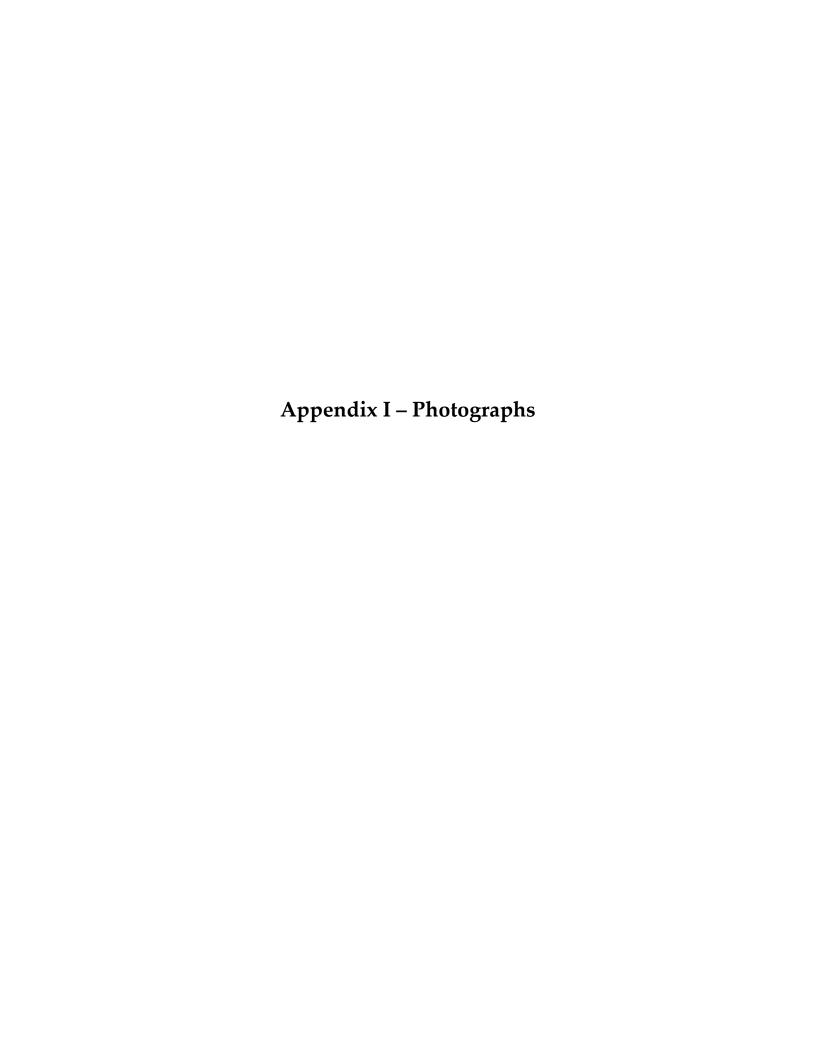
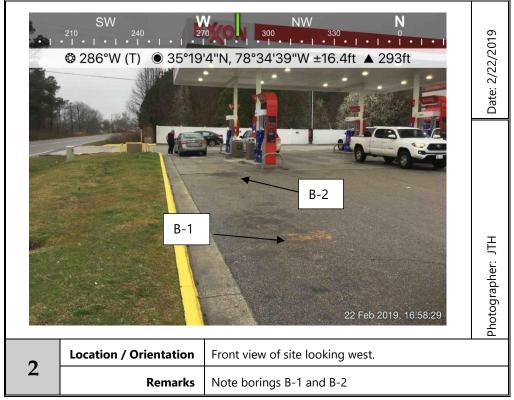
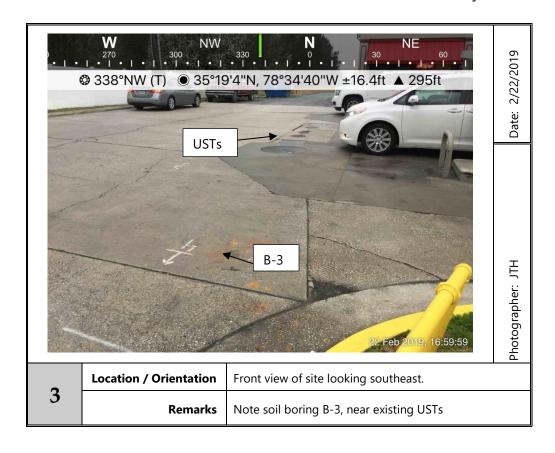
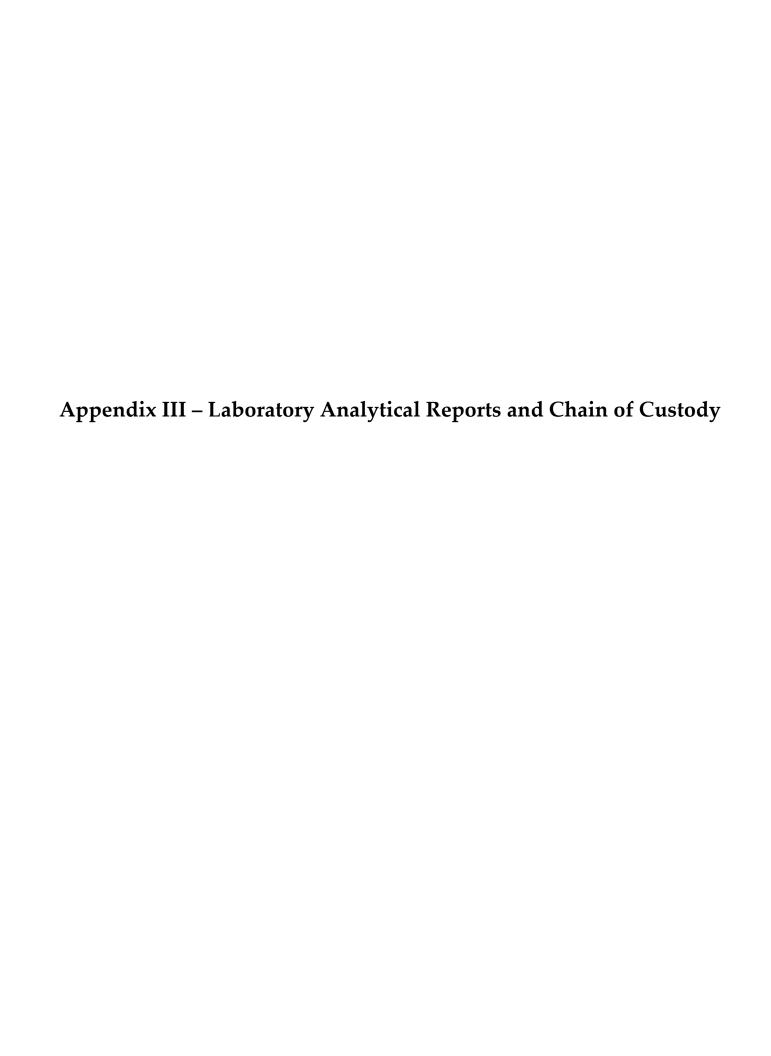

PROJECT NUMBER 4305-18-175A

FIGURE NO.

7







PROJECT:	NCDOT I-5986B									
	Parcel 230-427 Jonesboro Road, Dunn, I	NC			BORIN	IG LOG:	B-1			
DATE DRILLED:	S&ME Project No. 4305-18-175A Friday, February 22, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 6620 DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Annli	cable						
HAMMER TYPE:										
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:	J. T. Grieyee							
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
		27.01.110.								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	nalt, Gravel, Sand, Brown,			ł						
Clay	ey Sand, Orange, Red, Gray,			ł	0.7	No				
				ŧ	1.5	Yes				
5 —				I	1.6	No				
				ł	0.9	No				
///				ł	0.3	Yes				
10 Borii	ng Terminated at 10 Ft-BGS									
15 —										
20 —										
25 —										
30							l			

PROJECT:										
	Parcel 230-427 Jonesboro Road, Dunn, N	NC			BORIN	IG LOG	B-2			
DATE DRIVES	S&ME Project No. 4305-18-175A	B023110 5	10							
DATE DRILLED:	Friday, February 22, 2019	BORING DEPTH (FT):	10							
DRILL RIG: DRILLER:	Geoprobe 6620 DT	WATER LEVEL:	Not Appli	cable						
DRILLER: Troxler Geologic, Inc. CAVE-IN DEPTH: Not Applicable HAMMER TYPE: Not Applicable LOGGED BY: J. Honeycutt										
HAMMER TYPE: Not Applicable LOGGED BY: J. Honeycutt SAMPLING METHOD: Macro-Core Sampler NORTHING:										
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
(feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Silty	ohalt, Gravel, y Sand, Brown, yey Sand, Orange, Red, Gray,				0.0	No Yes				
5				ł	1.2	No				
				ŧ	1.2	No				
10	ing Terminated at 10 Ft-BGS			ľ	1.8	Yes				
15 —										

PROJECT:	NCDOT I-5986B									
	Parcel 230-427 Jonesboro Road, Dunn, N	IC			BORIN	NG LOG	B-3			
	S&ME Project No. 4305-18-175A									
DATE DRILLED:	Friday, February 22, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 6620 DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.		EPTH: Not Applicable							
HAMMER TYPE:	Not Applicable	J. Honeycu	itt							
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		-		1	1	1		
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	crete, Gravel,			H						
	Sand, Brown,			H	1.5	No				
Clays	ey Sand, Orange, Red, Gray,		ı	ľ	1.2	Yes				
5				ľ	1.2	163				
			ı	ł	1.3	No				
				H	1.2	No				
10	ng Terminated at 10 Ft-BGS			ľ	1.3	Yes				
15 —										
30										

Hydrocarbon Analysis Results

Client: S&ME

Address:

Samples taken Samples extracted Friday, February 22, 2019

Friday, February 22, 2019

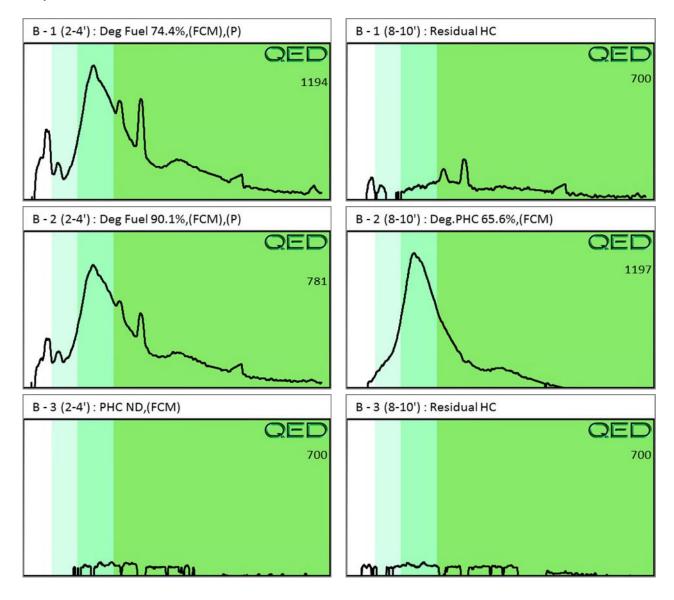
Samples analysed Friday, February 22, 2019

Contact: JAMIE HONEYCUTT Operator JENN RYAN

Project: 4305-18-175A; PARCEL 230

													H09382																																								
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	% Ratios			% Ratios			% Ratios			% Ratios			% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		5	HC Fingerprint Match
										C5 - C10	C10 - C18 C18																																										
Soil	B - 1 (2-4')	21.3	<0.53	<0.53	4.2	4.2	2.1	0.15	0.001	0	96.5	3.5	Deg Fuel 74.4%,(FCM),(P)																																								
Soil	B - 1 (8-10')	29.9	< 0.75	< 0.75	0.35	0.35	0.16	0.01	0.001	0	100	0	Residual HC																																								
Soil	B - 2 (2-4')	25.5	<0.64	< 0.64	3.4	3.4	1.7	0.12	0.001	0	96.3	3.7	Deg Fuel 90.1%,(FCM),(P)																																								
Soil	B - 2 (8-10')	24.8	<0.62	<0.62	3.6	3.6	1	0.18	< 0.007	0	0 98.2 1.8		Deg.PHC 65.6%,(FCM)																																								
Soil	B - 3 (2-4')	18.1	<0.45	< 0.45	<0.18	< 0.45	< 0.009	<0.009	< 0.005	0	0	0	PHC ND,(FCM)																																								
Soil	B - 3 (8-10')	17.3	< 0.43	< 0.43	0.09	0.09	0.09	0.009	< 0.005	0 100 0			Residual HC																																								

Initial Calibrator QC check OK Final FCM QC Check OK


97.8%

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only. Data generated by HC-1 Analyser Project: 4305-18-175A; PARCEL 230

December 14, 2018

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: **Preliminary Site Assessment Report**

NCDOT Project I-5986B, WBS Element 47532.1.3

Parcel 10-Copart 310 Copart Lane

Dunn, Harnett County, North Carolina

S&ME Project 4305-18-175

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1800583 REV-02 dated August 16, 2018, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its August 20, 2018 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's July 30, 2018, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
10	Larry and Billy Stripling,Trustee	(Copart)
		310 Copart Lane, Dunn, NC

The PSA included a geophysical survey, subsequent limited soil sampling (six soil borings up to 10 feet below ground surface (ft.-bgs.) and attempted groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (East Coast Underground, LLC.) was also used to locate and mark underground utilities.

Geophysical Survey

On October 15, 2018, S&ME personnel performed a geophysical survey within accessible areas of the proposed ROW/easement at Parcel 10. S&ME used a combination of the Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) methods to explore for buried subsurface features at the site such as underground storage tanks (USTs) and other possible buried obstructions. Brief descriptions of the proposed complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820-02 (2007) "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The presence of vehicles, metal equipment, thickly wooded areas, ditches, and other surficial obstructions within the requested survey area however prevented TDEM data collection in several locations. The approximate TDEM data collection paths are presented in **Figure 4**. Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 3000 GPR system equipped with a 400 MHz antenna in general accordance with ASTM D6432-11 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

December 14, 2018 2

A total of nine GPR profiles (Lines 1 through 9) were collected for documentation (**Figures 8 and 9**). The data were post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. However, two anomalous features were identified in the geophysical data sets (Anomalies A and B; **Figures 6 through 9**). Anomaly A is an approximate 25 foot linear feature characterized by high amplitude GPR responses at about four ft.-bgs that terminates at a steel water valve to the south. TDEM responses were not identified over Anomaly A which indicates it may be related to a non-metallic feature such as a utility likely associated with the nearby water valve. Anomaly B is characterized by relatively high TDEM values (greater than about 200 mV) and high amplitude GPR responses located within the upper one foot. Anomaly B is about 10 feet by 10 feet in size and likely related to buried isolated metallic targets/debris. Anomalies were also marked in the field using white spray paint. Example GPR profiles are presented in **Figures 10**.

Soil Sampling

On October 22, 2018, S&ME's drill crew utilized a track mounted Geoprobe® rig to advance six soil borings (B-1 through B-6) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 10. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I**. S&ME's drill crew advanced the Geoprobe® borings to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately two to six ft.-bgs. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II.**

No petroleum odors, staining or elevated PID readings were noted within the collected soil samples. Therefore, soil samples from varying depth intervals were selected from each boring and provided to RED Lab, LLC (Red Lab) for on-site analysis. A total of nine soil samples were analyzed by RED Lab for Total Petroleum Hydrocarbons (TPH)-Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification. Due to the site's use as an automotive salvage yard, one soil sample was also selected from each boring, placed in an insulated cooler with ice for transport to Con-Test Analytical for analysis of total lead, arsenic and chromium by EPA Method 6020.

Soil Analytical Results

TPH-GRO and TPH-DRO were not reported at concentrations exceeding the North Carolina TPH Action Levels. TPH-DRO was reported at borings B-3 (two to four foot depth interval and four to six foot depth interval), B-4

December 14, 2018 3

(one to two foot depth interval and two to four foot depth interval) and B-5 and B-6 (zero to two foot depth interval) at concentrations ranging from 1.1 milligrams per kilograms (mg/kg) to 22.3 mg/kg, which are below its North Carolina TPH Action Level of 100 mg/kg. Boring B-3 contained the highest concentration of TPH-DRO. TPH-GRO was reported at boring B-3 at the four to six foot depth interval at a concentration of 1.6 mg/kg, which is below its North Carolina TPH Action Level of 50 mg/kg. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits for the remaining soil samples.

Total chromium was reported in each of the soil samples at concentrations ranging from 5.6 mg/kg to 10 mg/kg.

For chromium, there are screening levels for three different valent states of chromium. Total chromium, chromium III, and chromium VI. North Carolina conservatively considers laboratory results for total chromium, which is a combination of chromium III (most common isotopic state) and chromium VI, only as chromium VI. The NCDEQ, Inactive Hazardous Sites Branch (IHSB) has established Preliminary Soil Remediation Goals (PRSG) of Residential Health Based (0.31 milligrams per kilograms (mg/kg)), Industrial/Commercial Health Based (6.5 mg/kg) and Protection of Groundwater (3.8 mg/kg) for total chromium and chromium VI. Chromium III has a Residential Health Based PSRG of 23,000 mg/kg, an Industrial/Commercial Health Based PSRG of 350,000 mg/kg and Protection of Groundwater PSRG of 360,000 mg/kg. Chromium concentrations in the six soil samples are comparable, suggesting that chromium is naturally occurring and not indicative of a release of chromium. S&ME assumes that total chromium as reported by the laboratory is in the trivalent state (chromium III). Therefore, the total chromium results are considered to be well below the PSRGs. If required, speciated laboratory analysis and calculations will confirm whether the total chromium is comprised of trivalent and/or hexavalent chromium.

Total arsenic and total lead were also reported in each of the soil samples at concentrations below the PSRGs and at comparable concentrations suggesting that they are naturally occurring and not indicative of a release. Total arsenic was reported at concentrations ranging from 0.43 mg/kg to 0.67 mg/kg. Total lead was reported at concentrations ranging from 3.9 mg/kg to 17 mg/kg.

A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered at depths ranging from two to six ft.-bgs. Therefore, the Geoprobe® was used to advance one of the soil borings into the groundwater table for the collection of a groundwater sample. Due to the concentration of TPH-DRO in the soil, boring B-3 was selected for the collection of a groundwater sample. A temporary monitor well (TW-1) was installed at soil boring B-3 using a five foot section of one-inch diameter, Schedule 40 PVC well riser attached to a ten foot section of 0.01-inch slotted screen. Due to the sandy soil condition, the temporary well was unable to be installed deeper than 10 ft.-bgs. Groundwater within the temporary monitor well at soil boring B-3 was measured at five ft.-bgs. The temporary well was purged until dry and did not recover. Therefore, a groundwater sample was not obtained.

Upon completion of the soil and attempted groundwater sampling, the well materials were removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in

December 14, 2018 4

accordance with the procedures specified by North Carolina Department of Environmental Quality (NCDEQ). Used gloves and tubing were bagged and disposed off-site.

Conclusion and Recommendations

The geophysical survey identified two anomalous features (Anomalies A and B). Anomaly A is likely related to a non-metallic feature such as a utility likely associated with the nearby water valve. Anomaly B is likely related to buried isolated metallic targets/debris. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced six soil borings (B-1 through B-6) to a depth of approximately 10 ft.-bgs at the site. No petroleum odors, staining or elevated PID readings were noted within soil samples collected from the soil borings. Selected soil samples from the soil borings were analyzed onsite for TPH-GRO and TPH-DRO using UVF spectroscopy. One soil sample from each boring was also analyzed for total chromium, total lead and total arsenic by Con-Test Laboratories.

TPH-GRO was reported at one soil boring at the four to six foot depth interval. TPH-DRO was reported at four soil borings at depths ranging from zero to six ft.-bgs. However, TPH-GRO and TPH-DRO were not reported at concentrations exceeding the North Carolina TPH Action Levels.

Total chromium, lead and arsenic detections in soil were reported at levels below the PSRGs and are likely naturally occurring. The chromium detections in soil are likely naturally occurring and in the trivalent state. The reported chromium detections in soil are well below the PSRGs for trivalent chromium. If required, speciated laboratory analysis and calculations will confirm whether the total chromium is comprised of trivalent and/or hexavalent chromium.

During the soil boring advancement, groundwater was encountered at depths ranging from approximately two to six ft.-bgs. One temporary well (TW-1) was installed at soil boring B-3. Groundwater at TW-1 was measured at 5.0 ft.-bgs. However, the well purged dry and did not recover. Therefore, a groundwater sample was not collected.

S&ME recommends maintaining an awareness level for the presence of marginally impacted petroleum in soil (below TPH Action Levels) at the site for the safety of workers and the public. If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

December 14, 2018 5

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., buildings, reinforced concrete, vehicles, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific, and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of approximately about five feet below ground surface.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

December 14, 2018 6

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

Jamie T Honeycutt

Jamie Honeyoutt

DocuSigned by:

Environmental Professional 4C890EAEC25F488.

ihoneycutt@smeinc.com

Michael W. Pfeifer Senior Project Manager

DocuSianed by:

861E52DDEFAF4C7

mpfeifer@smeinc.com

Thomas P. Raymond, P.E., P.M.P.

Senior Consultant traymond@smeinc.com

Attachments:

1/22/2019

DocuSigned by: lom Kaymond

D4B9FB5F636F4BB

Table 1: Summary of Soil Sampling Results

Figure 1: Vicinity Map Figure 2: Site Map

Figure 3: Soil Constituent Map Figure 4: TDEM Path Location Plan

Figure 5: TDEM Data Plot A Figure 6: TDEM Data Plot B

Figure 7: TDEM Data Plot B-Detail

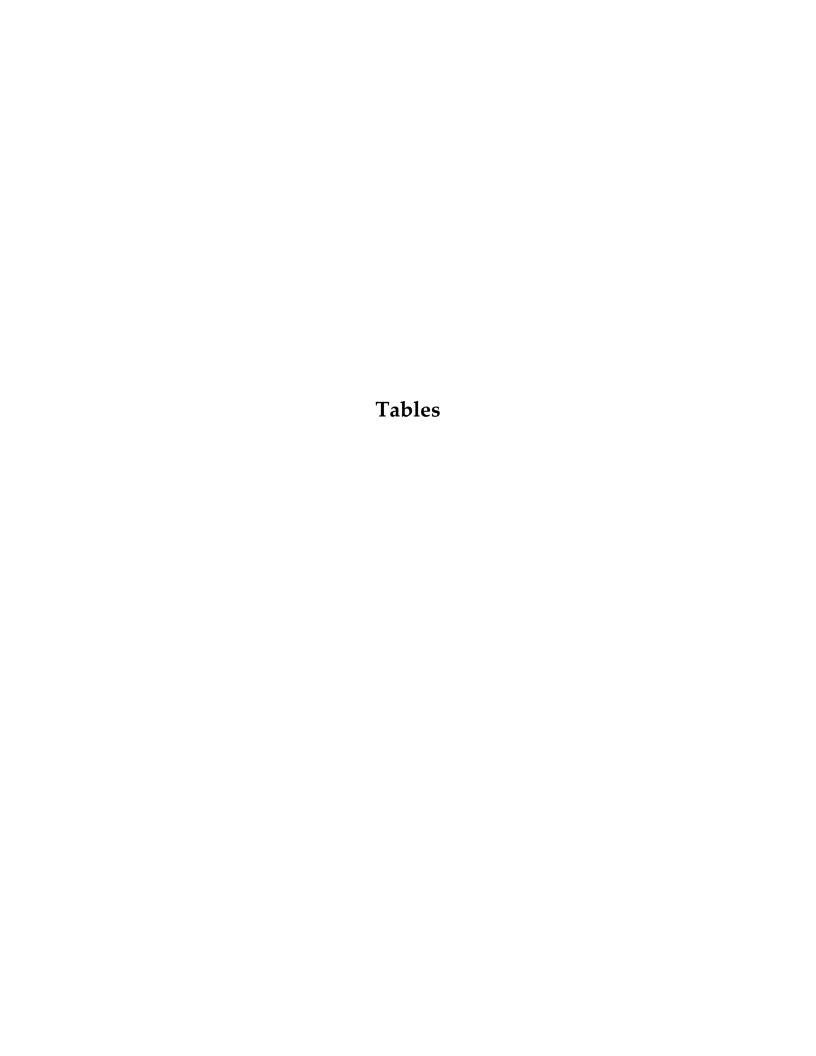

Figure 8: Geophysical Anomaly Location Plan

Figure 9: Geophysical Anomaly Location Plan-Detail Figure 10: Example GPR Data – Lines 7, 8 and 9

Appendix I: **Photographs**

Appendix II: **Boring Logs Appendix III:** Laboratory Analytical Reports and Chain of Custody

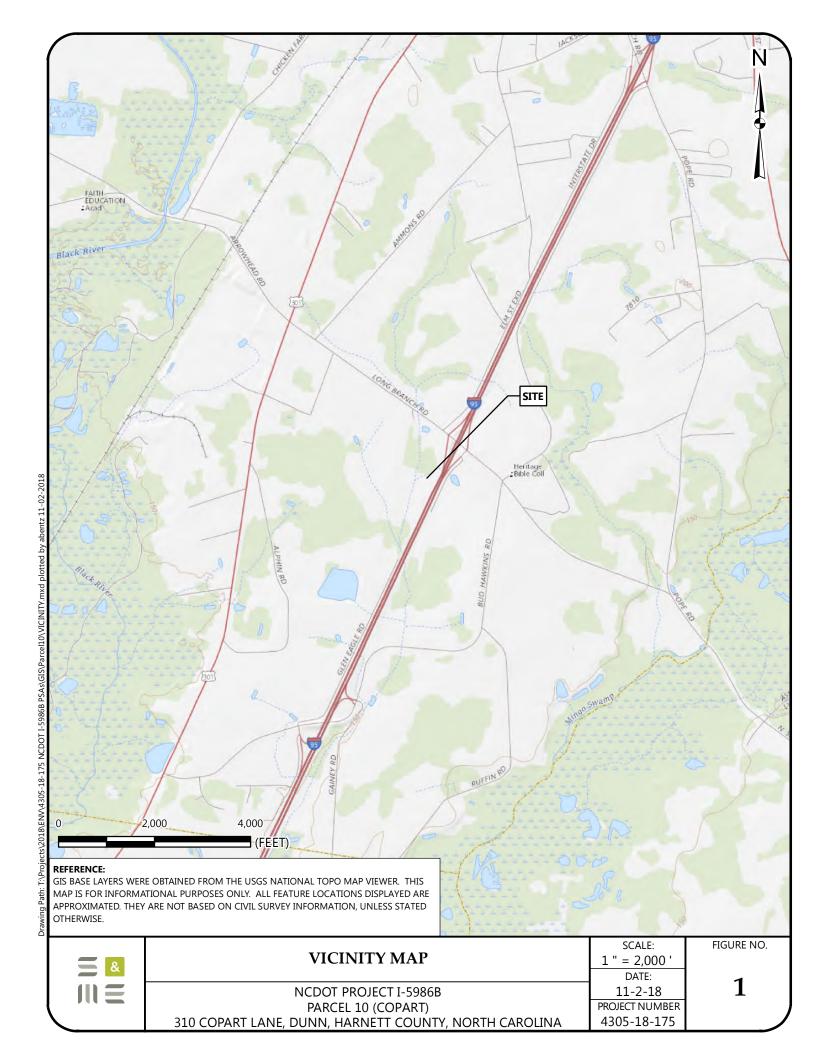
SEAL 18760

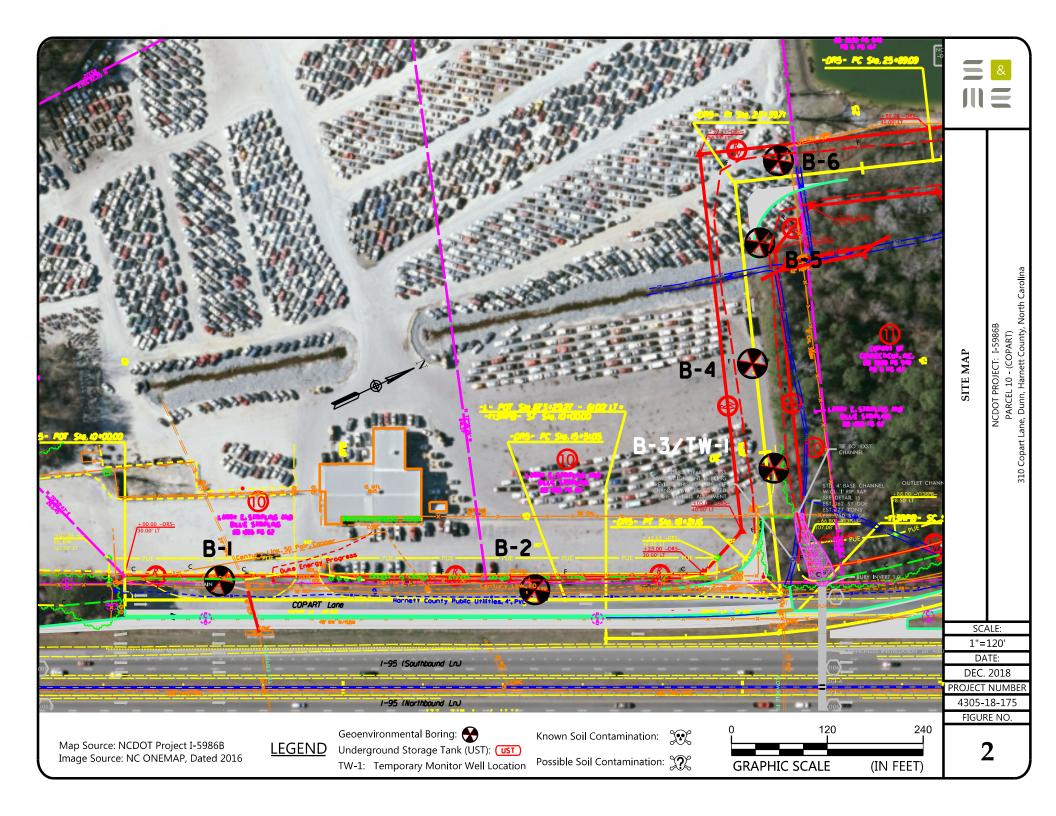
TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS

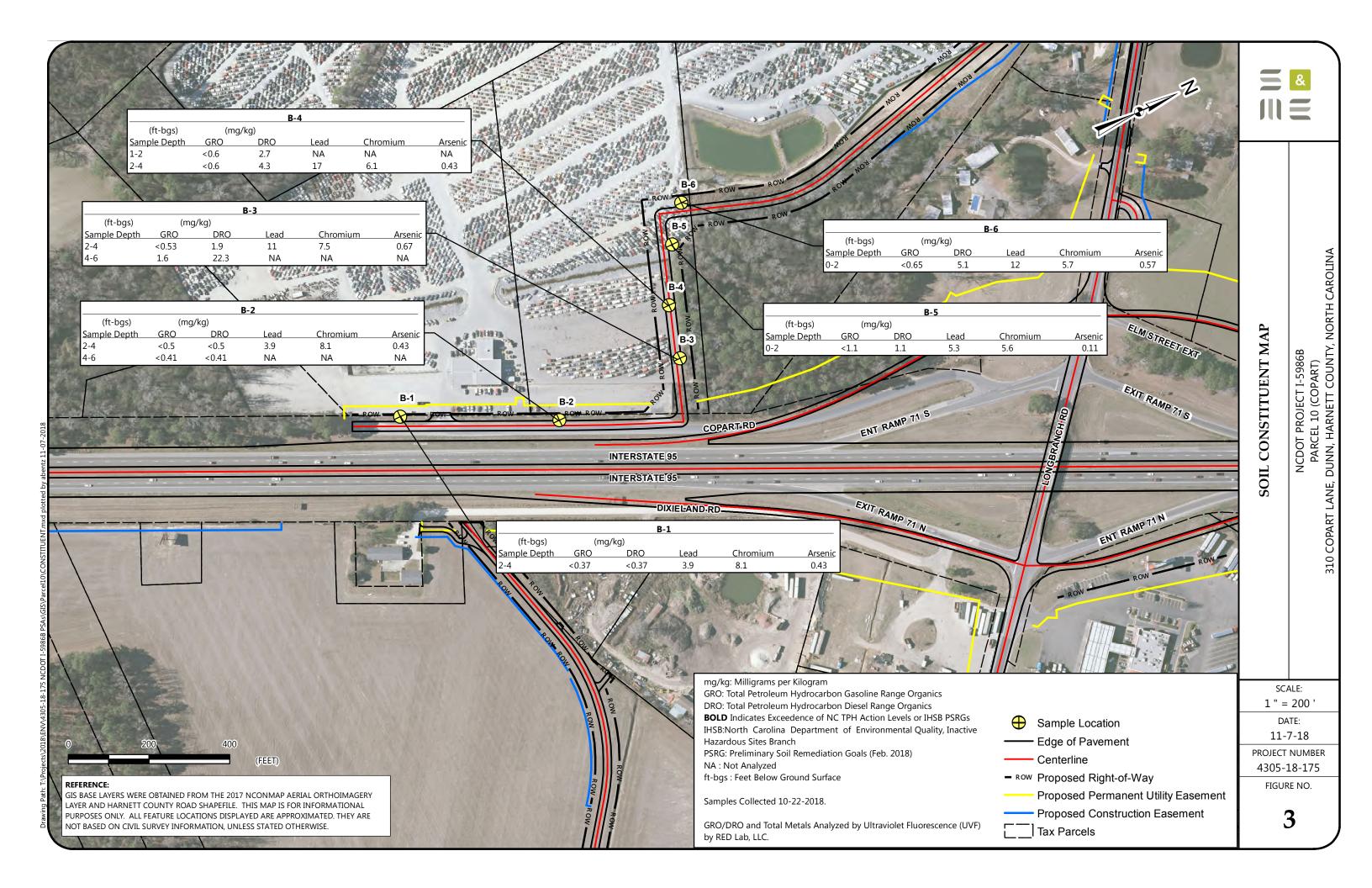
NCDOT Project I-5986B

Parcel 10 - (Copart) 310 Copart Lane

Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175




Ana	alytical Meth	od→	Range Organics (GR	carbons (TPH) Gasoline O) and Diesel Range traviolet Fluorescence ectrometry	Total Me	tals by EPA Met	hod 6020
		Contaminant of Concern→					
Sample ID	Date	Sample Depth (ftbgs)	TPH-GRO	TPH-DRO	Lead	Chromium*	Arsenic
Parcel 10 B-1	10/22/2018	2 to 4	<0.37	<0.37	3.9	8.1	0.43
Parcel 10 B-2	10/22/2018	2 to 4	<0.5	<0.5	4.5	10	0.53
Paicei 10 B-2	10/22/2016	4 to 6	<0.41	<0.41	NA	NA	NA
Parcel 10 B-3	10/22/2018	2 to 4	<0.53	1.9	11	7.5	0.67
Faicei 10 B-3	10/22/2016	4 to 6	1.6	22.3	NA	NA	NA
Parcel 10 B-4	10/22/2018	1 to 2	<0.6	2.7	NA	NA	NA
Paicei 10 b-4	10/22/2016	2 to 4	<0.6	4.3	17	6.1	0.43
Parcel 10 B-5	10/22/2018	0 to 2	<1.1	1.1	5.3	5.6	0.11J
Parcel 10 B-6	10/22/2018	0 to 2	<0.65	5.1	12	5.7	0.57
North Car	olina TPH Ad	ction Levels	50	100		Not Applicable	
IHSB Reside	ential Health	Based PSRG	Not App	olicable	400	23,000	0.68
	ndustrial/Cor alth Based P		Not App	blicable	800	350,000	3.0
IHSB Prot	tection of Gr	oundwater PSRG	Not App	olicable	270	360,000	5.8


Notes:

- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- 5. NA: Not Analyzed
- 6. Total Metals analyzed by Con-Test Laboratories.
- 7. J: Estimated concentration detected below the laboratory method reporting limit.
- 8. IHSB: North Carolina Department of Environmental Quality, Inactive Hazardous Sites Branch
- 9. PSRG: Preliminary Soil Remediation Goals (Feb. 2018)
- 10. Concentrations exceeding the North Carolina TPH Action Levels or IHSB PSRGs are shown in Shaded and BOLD fields.
- 11. *: Assumes chromium in the trivalent state (chromium III):

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

- CHIO Section 1 Google Earth

<u>LEGEND</u>

Approximate TDEM Path

Approximate Requested Survey Area

TDEM PATH LOCATION PLAN NCDOT PROJECT: 1-5986B PARCEL 10 – (COPART) 310 COPART LANE, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 11/1/2018

PROJECT NUMBER 4305-18-175

FIGURE NO.

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

TDEM DATA PLOT A

NCDOT PROJECT: I-5986B
PARCEL 10 – (COPART)
310 COPART LANE, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 11/1/2018

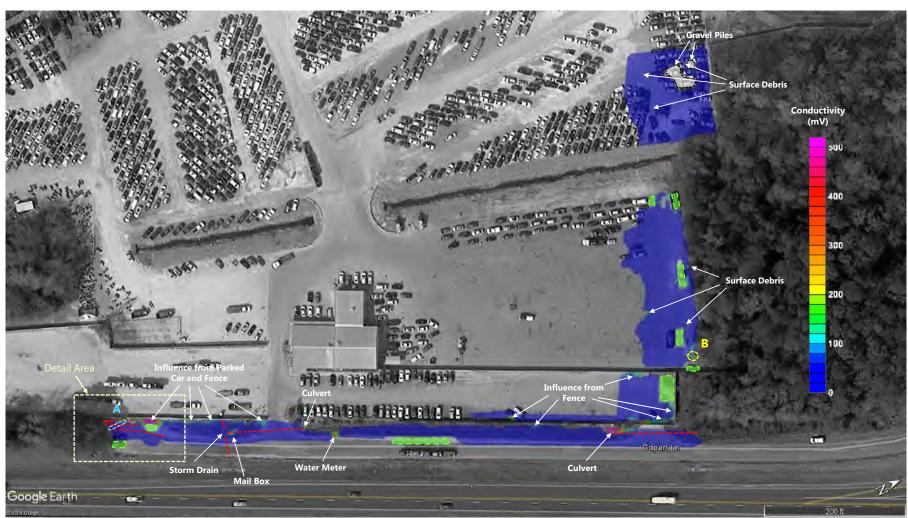

PROJECT NUMBER 4305-18-175

FIGURE NO.

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

 \bigcirc

Approximate Location of TDEM Anomaly

Approximate Location of Possible Utility

Approximate Location of GPR Anomaly

Approximate Location of Vehicle/Equipment

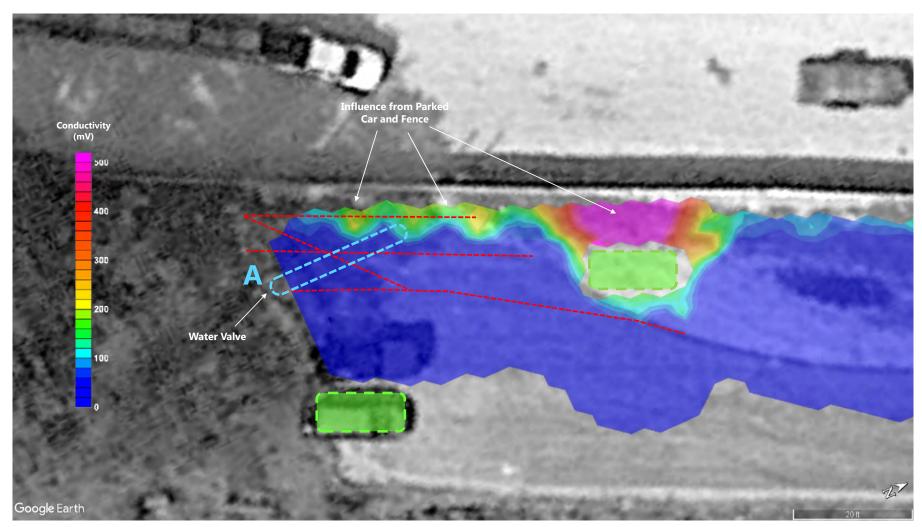
TDEM DATA PLOT B

NCDOT PROJECT: 1-5986B PARCEL 10 – (COPART) 310 COPART LANE, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN DATE:

DATE: 11/1/2018 PROJECT NUMBER

4305-18-175


FIGURE NO.

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

Approximate Location of TDEM Anomaly
Approximate Location of Possible Utility

()

Approximate Location of GPR Anomaly

Approximate Location of Vehicle/Equipment

TDEM DATA PLOT B - DETAIL

NCDOT PROJECT: 1-5986B PARCEL 10 – (COPART) 310 COPART LANE, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 11/1/2018

PROJECT NUMBER 4305-18-175

FIGURE NO.

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

Approximate Location of TDEM Anomaly
Approximate Location of Possible Utility

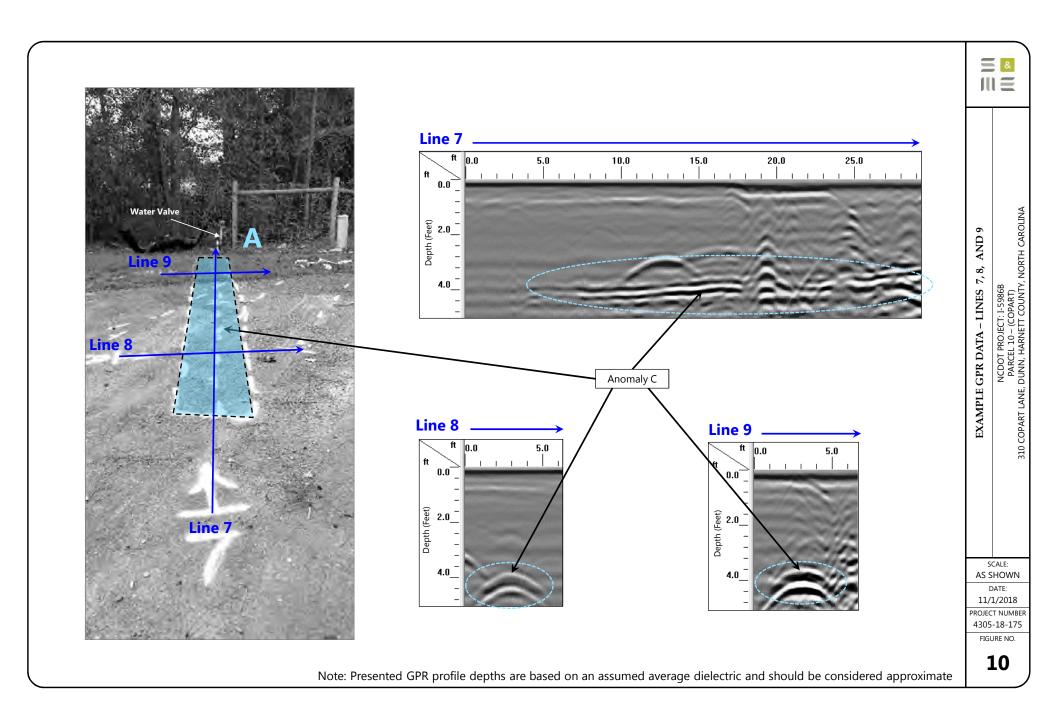
Approximate Location of GPR Anomaly

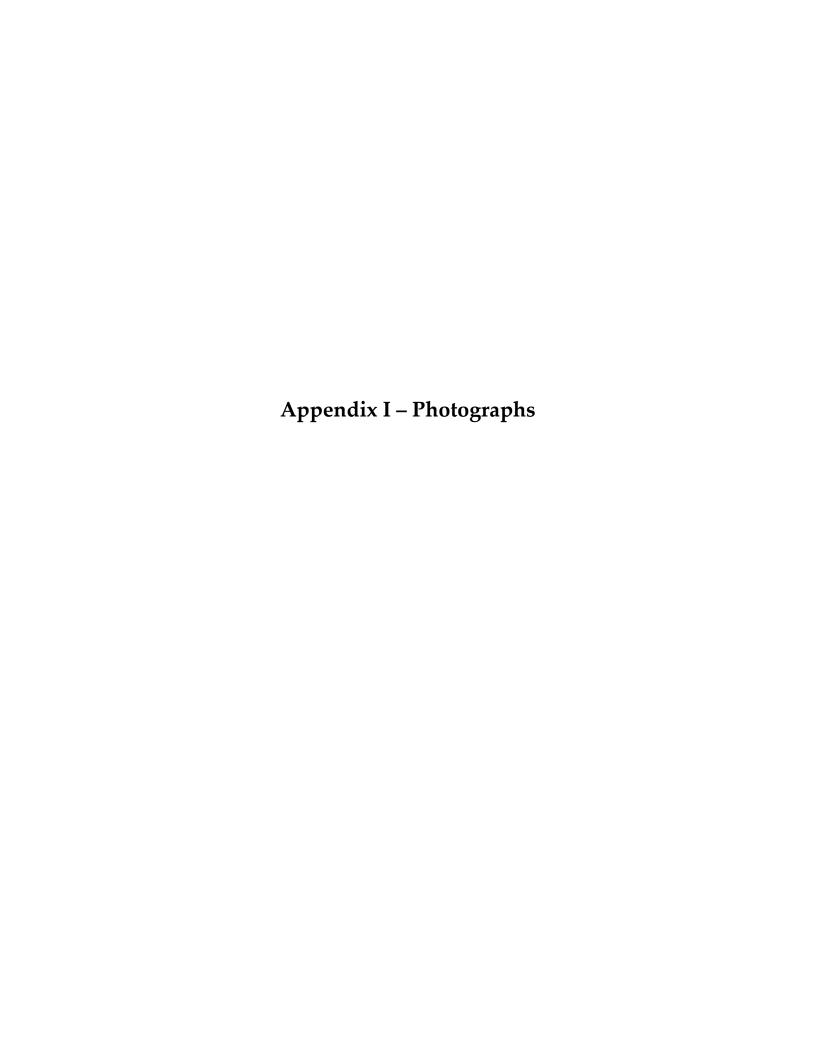
Approximate Location of GPR Profile

Approximate Location of Vehicle/Equipment

GEOPHYSICAL ANOMALY LOCATION PLAN

310 COPART LANE, DUNN, HARNETT COUNTY, NORTH CAROLINA


SCALE: AS SHOWN


DATE: 11/1/2018

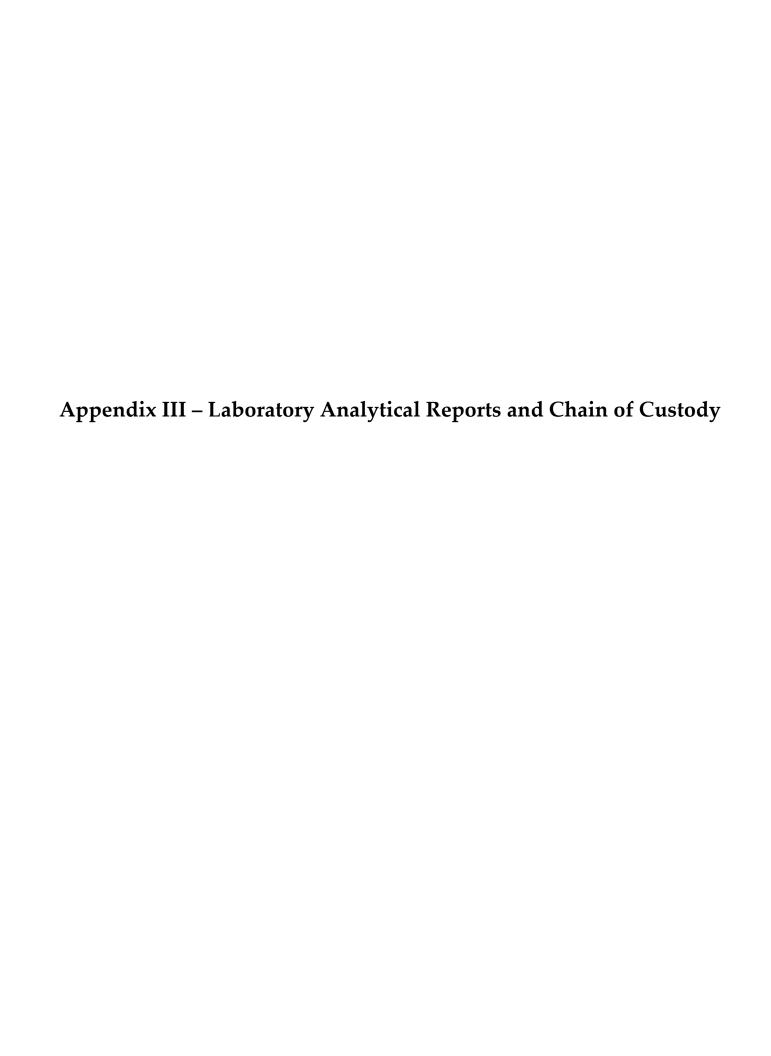
PROJECT NUMBER 4305-18-175

FIGURE NO.

December 14, 2018 i

December 14, 2018

Maria Grana Monday, Cerciser 22, 2018 Montay, Cercis	PROJECT:	NCDOT I-5986B									
Mart Paul December 2015 Montage 2015 Mart Paul Paul Paul Paul Paul Paul Paul Paul		Parcel 10-310 Copart Lane, Dunn, NC				BORIN	IG LOG:	B-1			
Description Description	DATE DRILLED:		BORING DEPTH (FT):	10							
SOME SOME											
MAMURIA PINESCE No. Applicable No.					licable						
SAMPLING METHOD Moure-Care Sampler (C-n.OD)											
Description Description											
MATHRIAL DESCRIPTION 19											
Toproit, Black. Silty Sand, Brown, Tan. Clayey Sand, Tan. Orange. 5 — Sand, Tan. Orange. Sand, Tan. Orange. Sand, Tan. Orange. Soring Terminated at 10 Pt-BGS 15 — 20 — 25 — 25 — 25 — 25 — 26 — 26 — 26 — 26											
Silhy Sand, Brown, Tan, Clayey Sand, Tan, Orange, Sand, Tan, Orange, Boring Terminated at 10 Pt-BGS	DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		Water Level	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time , 1st 6in	2nd 6in	3rd 6in	N VALUE
Clayey Sand, Tan, Orange. 5	Tops	oil, Black,			Ш						
Clayey Sand, Tan, Orange. Sand, Tan, Orange. Boring Terminated at 10 Ft-BGS 15	Silty	Sand, Brown, Tan,			l						
Boring Terminated at 10 Ft-BGS 16 —		ey Sand, Tan, Orange,		•		0.5	103				
Boring Terminated at 10 Ft-BGS 15 —											
	10 Sanc Borii	d, Tan, Orange, ng Terminated at 10 Ft-BGS									
	20 —										
	25 —										
	30										


PROJECT:	NCDOT I-5986B									
	Parcel 10-310 Copart Lane, Dunn, NC S&ME Project No. 4305-18-175				BORIN	NG LOG	B-2			
DATE DRILLED:	Monday, October 22, 2018	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 7730 DT	WATER LEVEL:								
DRILLER:	S&ME, Inc.	CAVE-IN DEPTH:		icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Tops	oil, Black,			Н						
Silty	Sand, Brown, Tan,			I	0.0	NO				
Claye	ey Sand, Tan, Orange,			I	0.0	Yes				
			•	111	0.0	Yes				
10 Sanc Borir	, Tan, Orange, ng Terminated at 10 Ft-BGS									
15 —										
20 —										
25 —										

PROJECT	Γ:	NCDOT I-5986B									
		Parcel 10-310 Copart Lane, Dunn, NC				BORIN	NG LOG	B-3/	TW-1	•	
		S&ME Project No. 4305-18-175									
DATE DRILI	LED:	Monday, October 22, 2018	BORING DEPTH (FT):	10							
DRILL RIG:		Geoprobe 7730 DT	WATER LEVEL:	5		-					
DRILLER:		S&ME, Inc.	CAVE-IN DEPTH:	Not App	licable						
HAMMER 1	TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING	METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING N	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Asphalt, Gravel,		*		Id	3 `	Sa			
		Sand, Tan,				0.1	No				
		Silty Sand, Black,			ш	0.1	140				
	-	Sity Suite, State,			ł	0.9	Yes				
5 —				•	ŧ	1.6	Yes				
						1.0	. 65				
	-										
10 —		Clayey Sand, Gray,									
10		Boring Terminated at 10 Ft-BGS									
	1										
	_										
15 —											
	_										
20 —	_										
	1										
	4										
I —	1										
	_										
25 —	1										
<u> </u>	-										
	1										
	_										
30 —	1	<u> </u>			1	1	1	<u> </u>	<u> </u>	·	

PROJECT	:	NCDOT I-5986B									
		Parcel 10-310 Copart Lane, Dunn, NC				BORIN	NG LOG	B-4			
		S&ME Project No. 4305-18-175									
DATE DRIL		Monday, October 22, 2018	BORING DEPTH (FT):								
DRILL RIG:		Geoprobe 7730 DT	WATER LEVEL:								
DRILLER:		S&ME, Inc.	CAVE-IN DEPTH:	Not App	licable						
HAMMER 1	TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING	METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING N	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
TH et)	HIC			LEVEL	PLE	ADING M)	ATORY YSES	Time /	6in	6in	LUE
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Asphalt, Gravel,									
		Silty Sand, Black,			ł	0.4	Yes				
	_				Н		.,				
5 —	-			•		2.8	Yes				
_		Sand, Gray,									
-	-										
10 —	-										
		Boring Terminated at 10 Ft-BGS									
15 —											
	-										
20 —											
	_										
	1										
25 —											
	_										
_	-										
	1										
30 —	1				1	ı		1		1	

## DATE OF SULF Move May Counter 22 2018 SOUR Project No. 4205-18-175 Move May 19 10 PROJECT	:		NCDOT I-5986B										
SART DRILLIUS				Parcel 10-310 Copart Lane, Dunn, NC S&ME Project No. 4305-18-175				BORIN	NG LOG:	B-5			
DRILL RIC Service Transport DRILL RIC Service DRILL RI	DATE DRILL	LED:			BORING DEPTH (FT):	10							
SOURCE SOURCE CAVE IN DEPTH Pro-particular	DRILL RIG:												
MARINE NO METRICAL Materia Const Source	DRILLER:			S&ME, Inc.			licable						
Marco Core Sangler (3-In Office Marc	HAMMER T	ГҮРЕ:		Not Applicable									
Hard Bar Hard Description	SAMPLING	METHOD:		Macro-Core Sampler									
Siny Sand Black Sily Sand Black O.2 YES O.2 YES O.2 YES O.2 YES O.2 YES O.2 YES O.3	DRILLING N	METHOD:		Macro-Core Sampler (3-in. OD)	EASTING:								
Siny Sand Black Sily Sand Black O.2 YES O.2 YES O.2 YES O.2 YES O.2 YES O.2 YES O.3	E ¢	HIC		-		LEVEL	,rE	DING 1)	TORY SES	Fime /	ii	in	.UE
Silvy Sand, Black, Sand, Tan, Orange, Boring Terminated at 10 Ft-BGS 16	DEP"	GRAP	Grave			WATER	SAME	PID REA (PPN	LABORA	Sample 1st 6	2nd (3rd (N VAI
Sand, Tan, Orange. Boring Terminated at 10 Ft-8GS 20 — 25 — 25 — 26 — 26 — 26 — 27 — 27 — 28 — 29 — 29 — 29 — 29 — 29 — 29 — 29						•		0.2	YES				
10	5 —		Sand	Black,									
10	<u> </u>												
20 —			Sand	Tan, Orange,									
	10 —		Borin	g Terminated at 10 Ft-BGS									
	15 —	_											
		-											
	20 —												
		-											
	25 —												
		-											
		-											
	30 —												

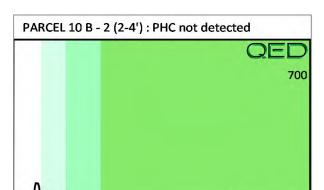
PROJECT	·		NCDOT I-5986B									
			Parcel 10-310 Copart Lane, Dunn, NC				BORIN	NG LOG	B-6			
			S&ME Project No. 4305-18-175									
DATE DRILL	LED:		Monday, October 22, 2018	BORING DEPTH (FT):								
DRILL RIG:			Geoprobe 7730 DT	WATER LEVEL:								
DRILLER:			S&ME, Inc.	CAVE-IN DEPTH:								
HAMMER T			Not Applicable	LOGGED BY:	J. Honeyo	cutt						
SAMPLING			Macro-Core Sampler	NORTHING:								
DRILLING N	METHOD:	ı	Macro-Core Sampler (3-in. OD)	EASTING:		1	1	1	1	1		1
DEPTH (feet)	GRAPHIC LOG		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
<u> </u>		Grave Sand	n, Black,			I	0.5	YES				
5 —		Silty	Sand, Black,		•							
_		Sand	, Tan, Orange, Gray,									
10 —		Davis	g Terminated at 10 Ft-BGS									
15												
20 — — —												
25 —— ——												
	-											
30 —												

Hydrocarbon Analysis Results

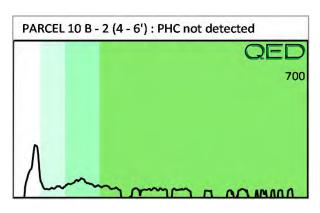
Client: S&ME Samples taken Monday, October 22, 2018 Address: 310 COPART RD Samples extracted Monday, October 22, 2018 Samples analysed Monday, October 22, 2018 **DUNN NC 28334**

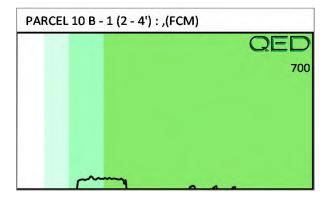
Contact: JAMIE HONEYCUTT Operator JENN RYAN

Project: 4305-18-175


													U00904
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	% Ratios		3	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
S	PARCEL 10 B - 2 (2-4')	20.2	<0.5	<0.5	<0.5	<0.5	<0.1	<0.16	< 0.02	0	0	0	PHC not detected
S	PARCEL 10 B - 2 (4 - 6')	16.5	< 0.41	<0.41	< 0.41	< 0.41	<0.08	< 0.13	< 0.016	0	0	0	PHC not detected
S	PARCEL 10 B - 1 (2 - 4')	14.9	< 0.37	<0.37	<0.37	< 0.37	< 0.07	<0.12	< 0.015	0	100	0	,(FCM)
	Initial C	alibrator (QC check	OK					Final FC	CM QC	Check	OK	95.6 %

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected


B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only. Data generated by HC-1 Analyser

Project: 4305-18-175

Hydrocarbon Analysis Results

Client: S&ME

Address: 310 COPART RD

Samples extracted

Monday, October 22, 2018

Samples extracted

Monday, October 22, 2018

Samples analysed

Monday, October 22, 2018

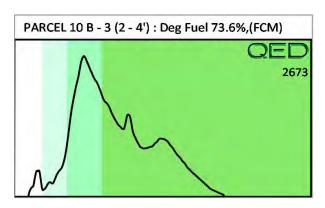
DUNN NC 28334 Samples analysed Monday, October 22, 2018

Contact: JAMIE HONEYCUTT Derator JENN RYAN

Project: 4305-18-175

													U00904
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP	% Ratios		3	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
S	PARCEL 10 B - 3 (2 - 4')	21.3	<0.53	<0.53	1.9	1.9	1.3	<0.17	<0.021	0	82.4	17.6	Deg Fuel 73.6%,(FCM)
	Initial Ca	alibrator	QC check	OK					Final F0	CM QC	Check	OK	102.9 %

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations: FCM = Results calculated using Fundamental Calibration Mode: % = confidence of hydrocarbon identification: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate detected

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only.

Data generated by HC-1 Analyser

QED Hydrocarbon Fingerprints

Hydrocarbon Analysis Results

Client: S&ME Address: 310 COPART ROAD

DUNN NC 28334

Samples taken Samples extracted Samples analysed Monday, October 22, 2018 Monday, October 22, 2018

Monday, October 22, 2018

Contact: JAMIE HONEYCUTT Operator JENN RYAN

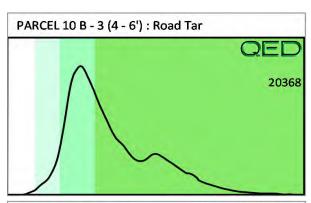
Project: 4305-18-175

													U00904
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	ġ,	% Ratios		HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
S	PARCEL 10 B - 3 (4 - 6')	20.8	<0.52	1.6	22.3	23.9	10.7	1.2	0.029	15.2	73.2	11.6	Road Tar 95.1%,(FCM),(BO)
S	PARCEL 10 B - 4 (1 - 2')	23.9	<0.6	<0.6	2.7	2.7	1.8	<0.19	< 0.024	0	84.5	15.5	Deg Fuel 76.6%,(FCM)
S	PARCEL 10 B - 4 (2 - 4')	23.9	<0.6	<0.6	4.3	4.3	2.7	<0.19	< 0.024	0	72.1	27.9	V.Deg.PHC 75.6%,(FCM)
S	PARCEL 10 B - 5 (0 - 2')	45.6	<1.1	<1.1	1.1	1.1	1	< 0.36	<0.046	0	71.3	28.7	V.Deg.PHC 72.5%,(FCM)
S	PARCEL 10 B - 6 (0 - 2')	26.0	<0.65	< 0.65	5.1	5.1	2.5	<0.21	<0.026	0	80.2	19.8	Deg.PHC 82.9%,(FCM)

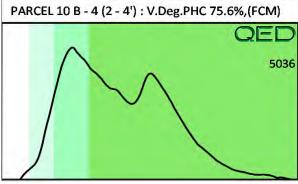
Initial Calibrator QC check

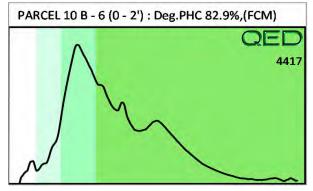
OK

Final FCM QC Check OK

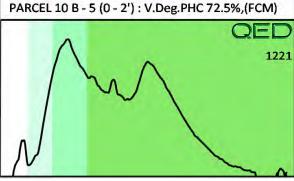

101.8 %

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected


B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only. Data generated by HC-1 Analyser



Project: 4305-18-175

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

November 1, 2018

Michael Pfeifer S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: Parcel 10 Client Job Number:

Project Number: 4305-18-175

Laboratory Work Order Number: 18J1179

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on October 23, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	6
18J1179-01	6
18J1179-02	8
18J1179-03	10
18J1179-04	12
18J1179-05	14
18J1179-06	16
Sample Preparation Information	18
QC Data	19
Metals Analyses (Total)	19
B216002	19
Flag/Qualifier Summary	20
Certifications	21
Chain of Custody/Sample Receipt	22

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

ATTN: Michael Pfeifer

REPORT DATE: 11/1/2018

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-18-175

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18J1179

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Parcel 10

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
Parcel 10-B-2 2-4'	18J1179-01	Soil		SM 2540G	
				SW-846 6020B	
Parcel 10 B-1 2-4'	18J1179-02	Soil		SM 2540G	
				SW-846 6020B	
Parcel 10 B-3 2-4'	18J1179-03	Soil		SM 2540G	
				SW-846 6020B	
Parcel 10 B-4 2-4'	18J1179-04	Soil		SM 2540G	
				SW-846 6020B	
Parcel 10 B-5 0-2'	18J1179-05	Soil		SM 2540G	
				SW-846 6020B	
Parcel 10 B-6 0-2'	18J1179-06	Soil		SM 2540G	
				SW-846 6020B	

% Solids

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

EXECUTIVE SUMMARY

Client ID:	Parcel 10-B-2 2-4'	Lab ID:	18J1179-01

Analyte	e Results/Qu	al	DL	RL	Units	Method
Arsenic	0.53		0.033	0.20	mg/Kg dry	SW-846 6020B
Chromium	10		0.18	5.0	mg/Kg dry	SW-846 6020B
Lead	4.5		0.066	2.0	mg/Kg dry	SW-846 6020B
% Solids	83.2				% Wt	SM 2540G
Client ID: Parcel 10 B-1 2-4	,	Lab ID:	18J1179-02			
Analyto	Results/Qu	al	DL	RL	Units	Method
Arsenic	0.43		0.032	0.19	mg/Kg dry	SW-846 6020B
Chromium	8.1		0.17	4.9	mg/Kg dry	SW-846 6020B
Lead	3.9		0.064	1.9	mg/Kg dry	SW-846 6020B
% Solids	86.5				% Wt	SM 2540G
Client ID: Parcel 10 B-3 2-4	,	Lab ID:	18J1179-03			
Analyto	e Results/Qu	al	DL	RL	Units	Method
Arsenic	0.67		0.032	0.20	mg/Kg dry	SW-846 6020B
Chromium	7.5		0.17	4.9	mg/Kg dry	SW-846 6020B
Lead	11		0.064	2.0	mg/Kg dry	SW-846 6020B
% Solids	84.9				% Wt	SM 2540G
Client ID: Parcel 10 B-4 2-4	,	Lab ID:	18J1179-04			
Analyto	e Results/Qu	al	DL	RL	Units	Method
Arsenic	0.43		0.035	0.21	mg/Kg dry	SW-846 6020B
Chromium	6.1		0.19	5.3	mg/Kg dry	SW-846 6020B
Lead	17		0.069	2.1	mg/Kg dry	SW-846 6020B
% Solids	77.9				% Wt	SM 2540G
Client ID: Parcel 10 B-5 0-2	,	Lab ID:	18J1179-05			
Analyto	e Results/Qu	al	DL	RL	Units	Method
Arsenic	0.11	J	0.033	0.20	mg/Kg dry	SW-846 6020B
Chromium	5.6	J	0.18	5.0	mg/Kg dry	SW-846 6020B
Lead	5.3		0.065	2.0	mg/Kg dry	SW-846 6020B
% Solids	82.2		0.002	2.0	% Wt	SM 2540G
70 50Hd5	02.2				,,,,,,,	5W 2540G
Client ID: Parcel 10 B-6 0-2	•	Lab ID:	18J1179-06			
Analyte	Results/Qu	al	DL	RL	Units	Method
Arsenic	0.57		0.031	0.19	mg/Kg dry	SW-846 6020B
Chromium	5.7		0.17	4.7	mg/Kg dry	SW-846 6020B
Lead	12		0.061	1.9	mg/Kg dry	SW-846 6020B
					0 / 337	~~

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

88.8

% Wt

SM 2540G

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 6020, all dilutions were performed as per standard operating procedure.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Parcel 10 Work Order: 18J1179 Sample Description:

mg/Kg dry

mg/Kg dry

5

Date Received: 10/23/2018

Field Sample #: Parcel 10-B-2 2-4'

Sampled: 10/22/2018 11:00

0.18

0.066

Results

0.53

10

4.5

0.20

5.0

2.0

Sample ID: 18J1179-01 Sample Matrix: Soil

Arsenic

Lead

Chromium

	Metals Analy	ses (1 otai)					
					Date	Date/Time	
DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
0.033	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 12:55	MJH

SW-846 6020B

SW-846 6020B

10/30/18

10/30/18

10/31/18 12:55

10/31/18 12:55

MJH

MJH

Project Location: Parcel 10 Sample Description: Work Order: 18J1179

Date Received: 10/23/2018

Field Sample #: Parcel 10-B-2 2-4'

Sample ID: 18J1179-01
Sample Matrix: Soil

Sampled: 10/22/2018 11:00

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		83.2		% Wt	1		SM 2540G	10/29/18	10/30/18 10:42	JFC

Project Location: Parcel 10 Sample Description: Work Order: 18J1179

Date Received: 10/23/2018

Field Sample #: Parcel 10 B-1 2-4'

Sampled: 10/22/2018 11:30

Sample ID: 18J1179-02
Sample Matrix: Soil

Matale	Analya	ses (Total)	

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		0.43	0.19	0.032	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 11:52	МЈН
Chromium		8.1	4.9	0.17	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 11:52	MJH
Lead		3.9	1.9	0.064	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 11:52	MJH

Project Location: Parcel 10 Sample Description: Work Order: 18J1179

Date Received: 10/23/2018

Field Sample #: Parcel 10 B-1 2-4'

Sample ID: 18J1179-02
Sample Matrix: Soil

Sampled: 10/22/2018 11:30

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		86.5		% Wt	1		SM 2540G	10/29/18	10/30/18 10:42	JFC

Project Location: Parcel 10 Sample Description: Work Order: 18J1179

Date Received: 10/23/2018

Field Sample #: Parcel 10 B-3 2-4'

Sampled: 10/22/2018 13:30

Sample ID: 18J1179-03
Sample Matrix: Soil

Metals Analyses	(Total)
-----------------	---------

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		0.67	0.20	0.032	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 12:58	МЈН
Chromium		7.5	4.9	0.17	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 12:58	MJH
Lead		11	2.0	0.064	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 12:58	MJH

Project Location: Parcel 10 Sample Description: Work Order: 18J1179

Date Received: 10/23/2018

Field Sample #: Parcel 10 B-3 2-4'

Sample ID: 18J1179-03
Sample Matrix: Soil

Sampled: 10/22/2018 13:30

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		84.9		% Wt	1		SM 2540G	10/29/18	10/30/18 10:42	JFC

Project Location: Parcel 10 Sample Description: Work Order: 18J1179

Date Received: 10/23/2018

Field Sample #: Parcel 10 B-4 2-4'

Sampled: 10/22/2018 14:00

Sample ID: 18J1179-04
Sample Matrix: Soil

Metals	Analyses	(Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		0.43	0.21	0.035	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 13:02	МЈН
Chromium		6.1	5.3	0.19	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 13:02	MJH
Lead		17	2.1	0.069	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 13:02	MIH

Project Location: Parcel 10 Sample Description: Work Order: 18J1179

Date Received: 10/23/2018

Field Sample #: Parcel 10 B-4 2-4'

Sample ID: 18J1179-04
Sample Matrix: Soil

Sampled: 10/22/2018 14:00

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		77.9		% Wt	1		SM 2540G	10/29/18	10/30/18 10:42	JFC

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Parcel 10 Sample Description: Work Order: 18J1179

5

Date Received: 10/23/2018

Field Sample #: Parcel 10 B-5 0-2'

Sampled: 10/22/2018 15:00

Results

0.11

5.6

5.3

0.20

5.0

2.0

0.18

0.065

mg/Kg dry

mg/Kg dry

Sample ID: 18J1179-05
Sample Matrix: Soil

Arsenic

Lead

Chromium

	Metals Analy	ses (Total)					
					Date	Date/Time	
DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
0.033	mg/Kg dry	5	J	SW-846 6020B	10/30/18	10/31/18 13:05	МЈН

SW-846 6020B

SW-846 6020B

10/30/18

10/30/18

10/31/18 13:05

10/31/18 13:05

MJH

MJH

Project Location: Parcel 10 Sample Description: Work Order: 18J1179

Date Received: 10/23/2018

Field Sample #: Parcel 10 B-5 0-2'

Sampled: 10/22/2018 15:00

Sample ID: 18J1179-05
Sample Matrix: Soil

	C	I EDAMANTA CONTRACTOR A I A	700 (II)
Conventional	l Chemistry Parameters	s by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		82.2		% Wt	1		SM 2540G	10/29/18	10/30/18 10:42	JFC

Project Location: Parcel 10 Work Order: 18J1179 Sample Description:

Date Received: 10/23/2018

Field Sample #: Parcel 10 B-6 0-2'

Sampled: 10/22/2018 15:15

Sample ID: 18J1179-06 Sample Matrix: Soil

	Metals Analy	ses (Total)					
					Date	Date/Time	
,	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 13:09	МЈН

Project Location: Parcel 10 Sample Description: Work Order: 18J1179

Date Received: 10/23/2018

Field Sample #: Parcel 10 B-6 0-2'

Sample ID: 18J1179-06
Sample Matrix: Soil

Sampled: 10/22/2018 15:15

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		88.8		% Wt	1		SM 2540G	10/29/18	10/30/18 10:42	JFC

Sample Extraction Data

Prep Method: % Solids-SM 2540G

Lab Number [Field ID]	Batch	Date
18J1179-01 [Parcel 10-B-2 2-4']	B215886	10/29/18
18J1179-02 [Parcel 10 B-1 2-4']	B215886	10/29/18
18J1179-03 [Parcel 10 B-3 2-4']	B215886	10/29/18
18J1179-04 [Parcel 10 B-4 2-4']	B215886	10/29/18
18J1179-05 [Parcel 10 B-5 0-2']	B215886	10/29/18
18J1179-06 [Parcel 10 B-6 0-2']	B215886	10/29/18

Prep Method: SW-846 3050B-SW-846 6020B

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
18J1179-01 [Parcel 10-B-2 2-4']	B216002	1.49	50.0	10/30/18	
18J1179-02 [Parcel 10 B-1 2-4']	B216002	1.49	50.0	10/30/18	
18J1179-03 [Parcel 10 B-3 2-4']	B216002	1.51	50.0	10/30/18	
18J1179-04 [Parcel 10 B-4 2-4']	B216002	1.52	50.0	10/30/18	
18J1179-05 [Parcel 10 B-5 0-2']	B216002	1.53	50.0	10/30/18	
18J1179-06 [Parcel 10 B-6 0-2']	B216002	1.51	50.0	10/30/18	

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B216002 - SW-846 3050B										
Blank (B216002-BLK1)				Prepared: 10	0/30/18 Analy	zed: 10/31	18			
Arsenic	ND	0.17	mg/Kg wet							
Chromium	ND	4.2	mg/Kg wet							
Lead	ND	1.7	mg/Kg wet							
LCS (B216002-BS1)				Prepared: 10	0/30/18 Analy	zed: 10/31	18			
Arsenic	166	2.0	mg/Kg wet	161		103	83.2-116.8			
Chromium	146	50	mg/Kg wet	136		107	82.4-117.6			
Lead	110	20	mg/Kg wet	111		99.1	83-117.1			
LCS Dup (B216002-BSD1)				Prepared: 10	0/30/18 Analy	zed: 10/31	18			
Arsenic	177	2.0	mg/Kg wet	161		110	83.2-116.8	6.55	30	
Chromium	152	49	mg/Kg wet	136		111	82.4-117.6	3.76	30	
Lead	119	20	mg/Kg wet	111		108	83-117.1	8.23	30	
Duplicate (B216002-DUP1)	Source	e: 18J1179-	-02	Prepared: 10	0/30/18 Analy	zed: 10/31	18			
Arsenic	0.396	0.19	mg/Kg dry		0.426			7.28	35	
Chromium	7.88	4.8	mg/Kg dry		8.11			2.84	35	
Lead	3.87	1.9	mg/Kg dry		3.87			0.0646	35	
Matrix Spike (B216002-MS1)	Source	e: 18J1179-	-02	Prepared: 10	0/30/18 Analy	zed: 10/31	18			
Arsenic	15.1	0.77	mg/Kg dry	19.3	0.426	75.9	75-125			
Chromium	31.7	19	mg/Kg dry	19.3	8.11	122	75-125			
Lead	25.9	7.7	mg/Kg dry	19.3	3.87	114	75-125			

FLAG/QUALIFIER SUMMARY

- * QC result is outside of established limits.
- † Wide recovery limits established for difficult compound.
- ‡ Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).

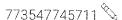
CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SW-846 6020B in Soil

Arsenic NY,VA,NH,NC,ME


Chromium NY,NC,ME Lead NY,NC,ME

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019
RI	Rhode Island Department of Health	LAO00112	12/30/2018
NC	North Carolina Div. of Water Quality	652	12/31/2018
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2018
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

V.	Г	Т	_			2.4	Qran)	s. je c			Ges			20.00		<u>,</u>	12 I N	100 g 1		V2 (53)	N () ()	A17	, s. 184.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					y de la	i Springer	a je	V. V. V	T	abl	le of	Conte	ents
Page of		# of Containers	² Preservation Code	³ Container Code	Selicitites, slesield beautossis	Field Filtered	Lab to Filter			Field Ciffered				1 Matrix Codes: GW - Ground Water	WW = Waste Water	A = Air	S = Solf	O = Other (please	define)	2 Preservation Codes:		M = Methanol	B = Sodium Bisulfate	X = Sodium Hydroxide T = Sodium	Thiosulfate O = Other (please	define)		G = Glass	J P = Plastic	V = Vial	S = Summa Canister	0 = Other (please	define)		PCB ONLY	Non Soxhlet	TAXABAN TAXABA
Doc # 379 Rev 1_03242017 39 Spruce Street East Lorenzoodow, MA 01000	Last Luigineatow, MA 01028				ANALYSIS REQUESTED					Q26		P		70												Please use the following codes to indicate possible sample concentration within the Conc Code column above:	H - High; M - Medium; L - Low; C - Clean; U - Unknown	Program Information	DSCA UST/Trust Fund	SWS Landfill REC	IMSB Orphaned Landfill	state Lead Other:	The state of the s	NELAC and ANIA LAP, LLC Accredited	Other Chromatogram	AIHA-LAP, LLC	Africa
:# 379 Rev	-	$\frac{1}{4}$					*		~/ 'CO2	רַק	wo	प्र यप् राज्य	75 75	70	7	2	2	7	/	5						lowing code within the (4 - Medium				I						
arotina)	irrialcounc Time	10-Day		oval Regulned	3-Day	4-Day	Wreiny /	EXCEL 7					The same of	Grab marrix cont.	\ S \ \\						A 44 60					Please use the foll	H - High; A	Mignic Respectives and the				ANDERS CAROLINA			Municipality	Brownfield School	A CONTRACTOR OF THE CONTRACTOR
http://www.contestlabs.com chain of custody record (north G	Paglitaston (U		uue bate:	Rush-Appr	1-Day 🔲 3-	2-Day 🗍 4-	ied saka	Format: PDF 🖊 EX		CLP Like Data Pkg Required:		Fax To #;		e Composite	0011	1130	1330	00/1	2	, 1218								and barollya Determin	21.	GWPC	HSR	MSCC	MANUAL TO THE PARTY OF THE PART		wernment		
) 2									Reminning	Date/Ilme	22.01					>								3					Officer		Project Entity		
$\begin{array}{c c} & & & \& J & & \nearrow \mathcal{G} \\ \hline \text{Phone: 413-525-2332} \end{array}$	Fax: 413-525-6405	Enian, mioecontestiabs,com		FORCET (SE VOLCET	•	1					- Andrews			Client Sample ID / Description	10-3-3 2-41		74.8 5.8 O	10 24 2.41	١, _	3-6	A			7 - 1244				. ~	OB 1/27-21	Mate/ Ime:	Date/Time:	10/23/12/1630	Date/Time:	27.2	Date/Time:	Date/Time:	Section 1997
CON-test		A Section of the sect		5. 5201 SDEWE			Project Location: Parcel 10 of	Project Number: 4305-18-175	Project Manager: M.Kr. 15-6-	1 🚾	Invoice Recipient:	Sampled By: Jamie Howery	Con-Test		1 Parcel	2 Bra)		4 Parce	Janos 8	O Runa 10					Comments:			Relingqished by: Signature	Permo l'Ement	Received by Signature	Relinguished by:/(signature)	Wint Tadi	eived by: (signature)		nquisneg by: (signature)	eived by: (signature)	

Delivered Wednesday 10/24/2018 at 9:24 am

DELIVERED

Signed for by: P.BLAKE

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Raleigh, NC US

то

EAST LONGMEADOW, MA US

Shipment Facts

TRACKING NUMBER

773547745711

SERVICE

FedEx Priority Overnight

WEIGHT

45.3 lbs / 20.55 kgs

DIMENSIONS

24x14x13 in.

DELIVERED TO

Shipping/Receiving

TOTAL PIECES

1

TOTAL SHIPMENT WEIGHT

45.3 lbs / 20.55 kgs

TERMS
Third Party

SHIPPER REFERENCE

PACKAGING Your Packaging SPECIAL HANDLING SECTION

Deliver Weekday, Additional Handling

Arrived at FedEx location

Surcharge

STANDARD TRANSIT

10/24/2018 by 10:30 am

SHIP DATE

①

Tue 10/23/2018

ACTUAL DELIVERY

Wed 10/24/2018 9:24 am

Travel History

12:19 am

Local Scan Time

Nednesday , 10/24/2018

Wednesday, 10/24/2010		
9:24 am	EAST LONGMEADOW, MA	Delivered
8:03 am	WINDSOR LOCKS, CT	On FedEx vehicle for delivery
7:52 am	WINDSOR LOCKS, CT	At local FedEx facility
6:58 am	EAST GRANBY, CT	At destination sort facility
5:13 am	INDIANAPOLIS, IN	Departed FedEx location

INDIANAPOLIS, IN

Page 23 of 24

I Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples_____

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any Fals	е
Statement will be brought to the attention of the Client - State True or False	

Client S+ME						1			
Received By	PAP		Date	10	24	118	. Time	924	
How were the samples	In Cooler	T	No Cooler			On Ice	T	No Ice	**************************************
received?	Direct from Sampli	ng				Ambient		Melted Ice	
Were samples within		By Gun #	537		÷	Actual Tem	p- 7.2		_
Temperature? 2-6°C	T	By Blank #				Actual Tem	p -		_
Was Custody Se	eal Intact?	NA	We	re Sar	mple	s Tampered	with?	NΑ	-
Was COC Relin	iquished?	<u> </u>	Does	Chair	n Agı	ree With Sa	mples?	T	•
Are there broken/l	eaking/loose caps o	n any sam	ples?	£		_			-
Is COC in ink/ Legible?	(Were san	nples r	ecei	ved within h	olding time?	T	
Did COC include all	Client	T	Analysis		τ	Sample	er Name	T	
pertinent Information?	Project _	<u> </u>	ID's		T	Collection	Dates/Times		
Are Sample labels filled	d out and legible? _	T						·	
Are there Lab to Filters?	?	F		Who	o was	s notified?			
Are there Rushes?		£		Who	o was	s notified?			•
Are there Short Holds?				Who	o was	s notified?			•
Is there enough Volume	? v ⁴	7	_			r			-
Is there Headspace who	ere applicable?	-		MS/M	SD?	-			
Proper Media/Container		7		ls split	tting	samples rec	uired?		
Were trip blanks receive		+		On CO	•	<i>r</i> .	•		•
Do all samples have the	_	ΛιΛ	Acid		•		Base		
Vials #	Containers:	NA #	-		7	#			# 1
Unp-	1 Liter Amb.	π	1 Liter I	Plactic		,	16.07	: Amb.	7
HCL-	500 mL Amb.		500 mL					nb/Clear	
Meoh-	250 mL Amb.		250 mL	·				⊅/Clear	6
Bisulfate-	Col./Bacteria		Flash					nb/Clear	
DI-	Other Plastic		Other					core	
Thiosulfate-	SOC Kit		Plastic	····			Frozen:		
Sulfuric-	Perchlorate		Ziplo						
			Unused N	/ledia					
Vials #	Containers:	#				#			#
Unp-	1 Liter Amb.		1 Liter I					: Amb.	
HCL-	500 mL Amb.		500 mL					nb/Clear	
Meoh-	250 mL Amb.		250 mL		<u> </u>			nb/Clear	
Bisulfate-	Col./Bacteria		Flash					nb/Clear	
DI-	Other Plastic		Other					core	
Thiosulfate-	SOC Kit		Plastic				Frozen:		
Sulfuric-	Perchlorate		Ziplo	ock					
Comments:									
									ĺ
									Į

December 14, 2018

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: **Preliminary Site Assessment Report**

NCDOT Project I-5986B, WBS Element 47532.1.3

Parcel 11-Copart

Copart Lane

Dunn, Harnett County, North Carolina

S&ME Project 4305-18-175

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1800583 REV-02 dated August 16, 2018, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its August 20, 2018 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's July 30, 2018, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address		
11	Copart of Connecticut	(Copart)		
		Copart Lane, Dunn, NC		

The PSA included a geophysical survey, subsequent limited soil sampling (three soil borings up to 10 feet below ground surface (ft.-bgs.) and attempted groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (East Coast Underground, LLC.) was also used to locate and mark underground utilities.

Geophysical Survey

On October 16, 2018, S&ME personnel performed a geophysical survey within accessible areas of the proposed ROW/easement at Parcel 11. S&ME used a combination of the Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) methods to explore for buried subsurface features at the site such as underground storage tanks (USTs) and other possible buried obstructions. Brief descriptions of the proposed complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820-02 (2007) "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The presence of vehicles, metal equipment, thickly wooded areas, ditches, and other surficial obstructions within the requested survey area however prevented TDEM data collection in several locations. The approximate TDEM data collection paths are presented in **Figure 4**. Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 3000 GPR system equipped with a 400 MHz antenna in general accordance with ASTM D6432-11 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of six (6) GPR profiles (Lines 1 through 6) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan[®] 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. However, one anomalous feature (Anomaly A) was identified in both the TDEM and GPR data sets (**Figures 5 through 7**). Anomaly A is characterized by relatively high TDEM values (greater than about 200 mV) and an isolated high amplitude GPR response located within the upper one foot. As such, Anomaly A is likely related to a small buried isolated metallic target. The identified anomaly was also marked in the field using white spray paint. Example GPR profiles are presented in **Figure 8**.

Soil Sampling

On October 22, 2018, S&ME's drill crew utilized a track mounted Geoprobe® rig to advance three soil borings (B-1 through B-3) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 11. Soil boring B-1 was located on top of a soil berm outside the automotive salvage yard, east of two existing onsite stormwater ponds. Soil borings B-2 and B-3 were located within the northeastern portion of the automotive salvage yard. An attempt was made to advance an additional soil boring (B-4) located east of the stormwater ponds. However, due to existing fencing, thick wooded area and a steep slope, S&ME was unable to access the area of soil boring B-4. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I.** S&ME's drill crew advanced the Geoprobe® borings to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at soil boring B-3 at a depth of 6.5 ft.-bgs. Groundwater was not encountered within ten feet at soil borings B-1 or B-2. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II**.

No petroleum odors, staining or elevated PID readings were noted within the collected soil samples. Therefore, soil samples from varying depth intervals were selected from each boring and provided to RED Lab, LLC (Red Lab) for on-site analysis. A total of five soil samples were analyzed by RED Lab for Total Petroleum Hydrocarbons (TPH)-Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification. Due to the site's use as an automotive salvage yard, one soil sample was also selected from each boring, placed in an insulated cooler with ice for transport to Con-Test Analytical for analysis of total lead, arsenic and chromium by EPA Method 6020.

Soil Analytical Results

TPH-GRO and TPH-DRO were not reported at concentrations exceeding the North Carolina TPH Action Levels. TPH-DRO was reported at borings B-3 (two to four foot depth interval) at a concentration of 0.24 milligrams per kilograms (mg/kg), which is below its North Carolina TPH Action Level of 100 mg/kg. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits for the remaining soil samples.

Total chromium was reported in each of the soil samples at concentrations ranging from 7.2 mg/kg to 21 mg/kg.

For chromium, there are screening levels for three different valent states of chromium. Total chromium, chromium III, and chromium VI. North Carolina conservatively considers laboratory results for total chromium, which is a combination of chromium III (most common isotopic state) and chromium VI, only as chromium VI. The NCDEQ, Inactive Hazardous Sites Branch (IHSB) has established Preliminary Soil Remediation Goals (PSRG) of Residential Health Based (0.31 milligrams per kilograms (mg/kg)), Industrial/Commercial Health Based (6.5 mg/kg) and Protection of Groundwater (3.8 mg/kg) for total chromium and chromium VI. Chromium III has a Residential Health Based PSRG of 23,000 mg/kg, an Industrial/Commercial Health Based PSRG of 350,000 mg/kg and Protection of Groundwater PSRG of 360,000 mg/kg. Chromium concentrations in the three soil samples are comparable, suggesting that chromium is naturally occurring and not indicative of a release of chromium. S&ME assumes that total chromium as reported by the laboratory is in the trivalent state (chromium III). Therefore, the total chromium results are considered to be well below the PSRGs. If required, speciated laboratory analysis and calculations will confirm whether the total chromium is comprised of trivalent and/or hexavalent chromium.

Total lead was reported in each of the soil samples at concentrations below the PSRGs and at comparable concentrations suggesting that they are naturally occurring and not indicative of a release. Total lead was reported at concentrations ranging from 3.2 mg/kg to 7.7 mg/kg.

Total arsenic was reported at boring B-2 (zero to two foot depth interval) at a concentration of 0.95 mg/kg, which marginally exceeds its Residential PSRG of 0.68 mg/kg but not its Industrial/Commercial or Protection of Groundwater PSRGs. Total arsenic was also reported in the soil samples from borings B-1 and B-3 at concentrations of 0.19 mg/kg and 0.4 mg/kg, respectively, which are below the PSRGs. The arsenic concentrations are comparable and most likely naturally occurring and not indicative of a release.

A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered at boring B-3 at a depth of approximately 6.5 ft.-bgs. Groundwater was not encountered at borings B-1 or B-2 within 10 ft.bgs. Therefore, the Geoprobe® was used to advance boring B-3 into the groundwater table for the collection of a groundwater sample. A temporary monitor well (TW-1) was installed at soil boring B-3 using a five foot section of one-inch diameter, Schedule 40 PVC well riser attached to a ten foot section of 0.01-inch slotted screen. Due to the sandy soil condition, the temporary well was unable to be installed deeper than 10 ft.-bgs. Groundwater within the

temporary monitor well at soil boring B-3 was measured at 6.5 ft.-bgs. The temporary well was purged until dry and did not recover. Therefore, a groundwater sample was not obtained.

Upon completion of the soil and attempted groundwater sampling, the well materials were removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by North Carolina Department of Environmental Quality (NCDEQ). Used gloves and tubing were bagged and disposed off-site.

Conclusion and Recommendations

The geophysical survey identified one anomalous feature (Anomaly A). Anomaly A is likely related to a small buried isolated metallic target Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced three soil borings (B-1 through B-3) to a depth of approximately 10 ft.-bgs at the site. An attempt was made to advance an additional soil boring (B-4). However, due to existing fencing, thick wooded area and a steep slope, S&ME was unable to access the area of soil boring B-4. No petroleum odors, staining or elevated PID readings were noted within soil samples collected from the soil borings. Selected soil samples from the soil borings were analyzed onsite for TPH-GRO and TPH-DRO using UVF spectroscopy. One soil sample from each boring was also analyzed for total chromium, total lead and total arsenic by Con-Test Laboratories.

TPH-DRO was reported at one soil boring at a depth of approximately two to four ft.-bgs at a concentration below its North Carolina TPH Action Level.

The chromium detections in soil are likely naturally occurring and in the trivalent state. The reported chromium detections in soil are well below the PSRGs for trivalent chromium. If required, speciated laboratory analysis and calculations will confirm whether the total chromium is comprised of trivalent and/or hexavalent chromium. Total lead detections in the soil were reported at levels below the PSRGs and are likely naturally occurring. Total arsenic was detected in one soil sample at a concentration marginally above the Residential PSRG. However, the total arsenic detections in soil are likely naturally occurring.

During the soil boring advancement, groundwater was encountered at one soil boring (B-3) at a depth of approximately 6.5 ft.-bgs. Groundwater was not encountered at borings B-1 or B-2. One temporary well (TW-1) was installed at soil boring B-3. However, the well purged dry and did not recover. Therefore, a groundwater sample was not collected.

S&ME recommends maintaining an awareness level for the presence of marginally impacted petroleum in soil (below TPH Action Levels) at the site for the safety of workers and the public. If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire

property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., buildings, reinforced concrete, vehicles, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific, and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of approximately about five feet below ground surface.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

DocuSigned by:

Jamie Honeycutt 4C890EAEC25F488...

Jamie T Honeycutt

Environmental Professional

jhoneycutt@smeinc.com

Michael W. Pfeifer Senior Project Manager

mpfeifer@smeinc.com

— Bocusigned by:

Michael Pfeifer

861E52DDEFAF4C7...

Thomas P. Raymond, P.E., P.M.P.

Senior Consultant

traymond@smeinc.com

1/22/2019

Docusigned by:

Attachments:

Table 1: Summary of Soil Sampling Results

Figure 1: Vicinity Map

Figure 2: Site Map

Figure 3: Soil Constituent Map

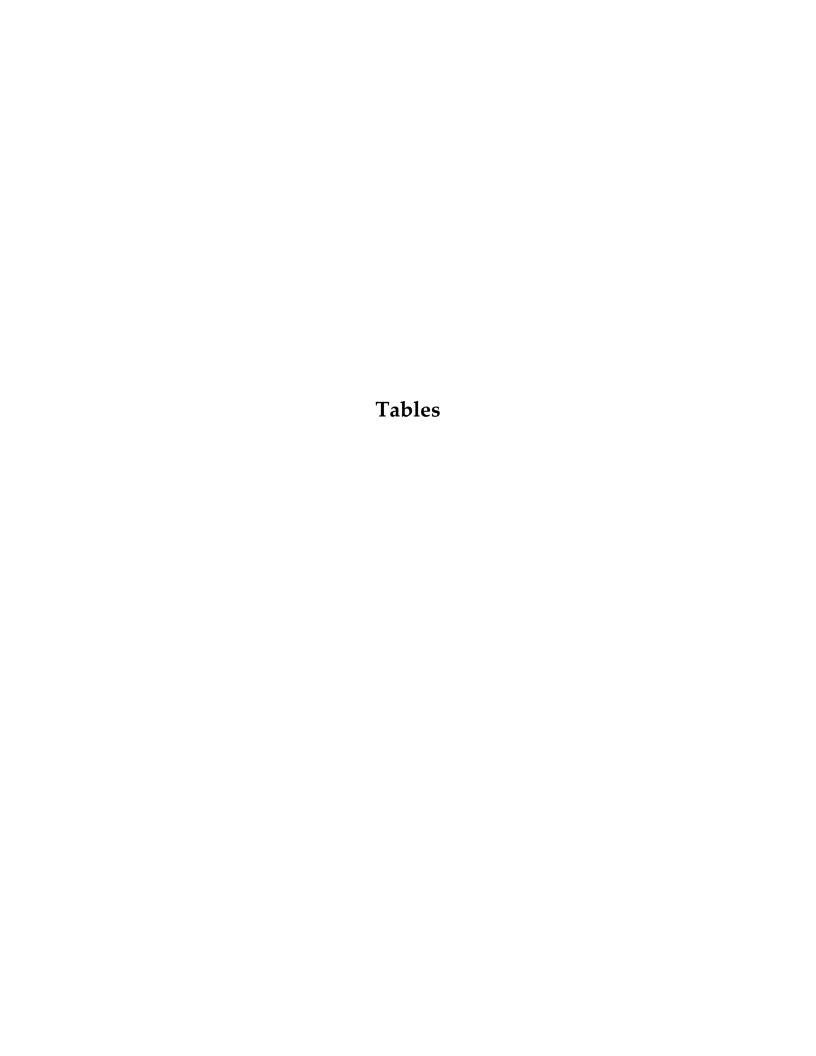
Figure 4: TDEM Path Location Plan **Figure 5:** TDEM Data Plot A

Figure 6: TDEM Data Plot B

Figure 7: TDEM Data Plot B-Detail

Figure 8: Geophysical Anomaly Location Plan

Figure 9: Geophysical Anomaly Location Plan-Detail


Figure 10: Example GPR Data – Lines 7, 8 and 9

Appendix I: Photographs **Appendix II:** Boring Logs

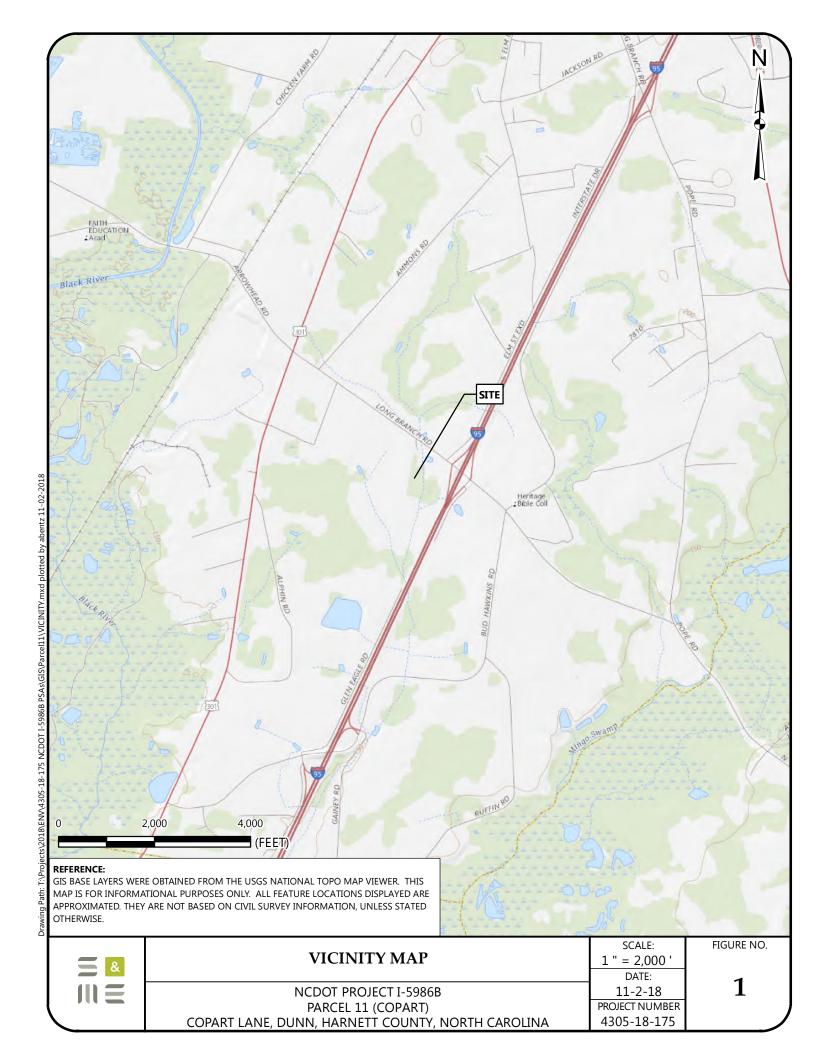
Appendix III: Laboratory Analytical Reports and Chain of Custody

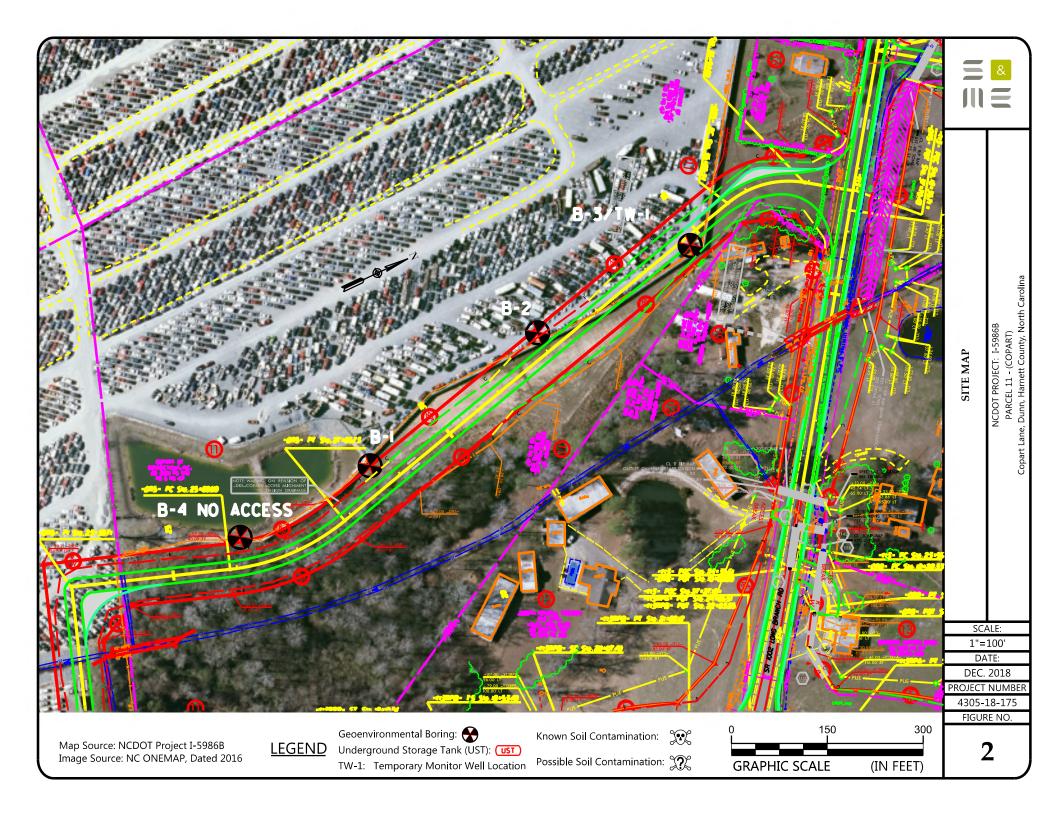
December 14, 2018

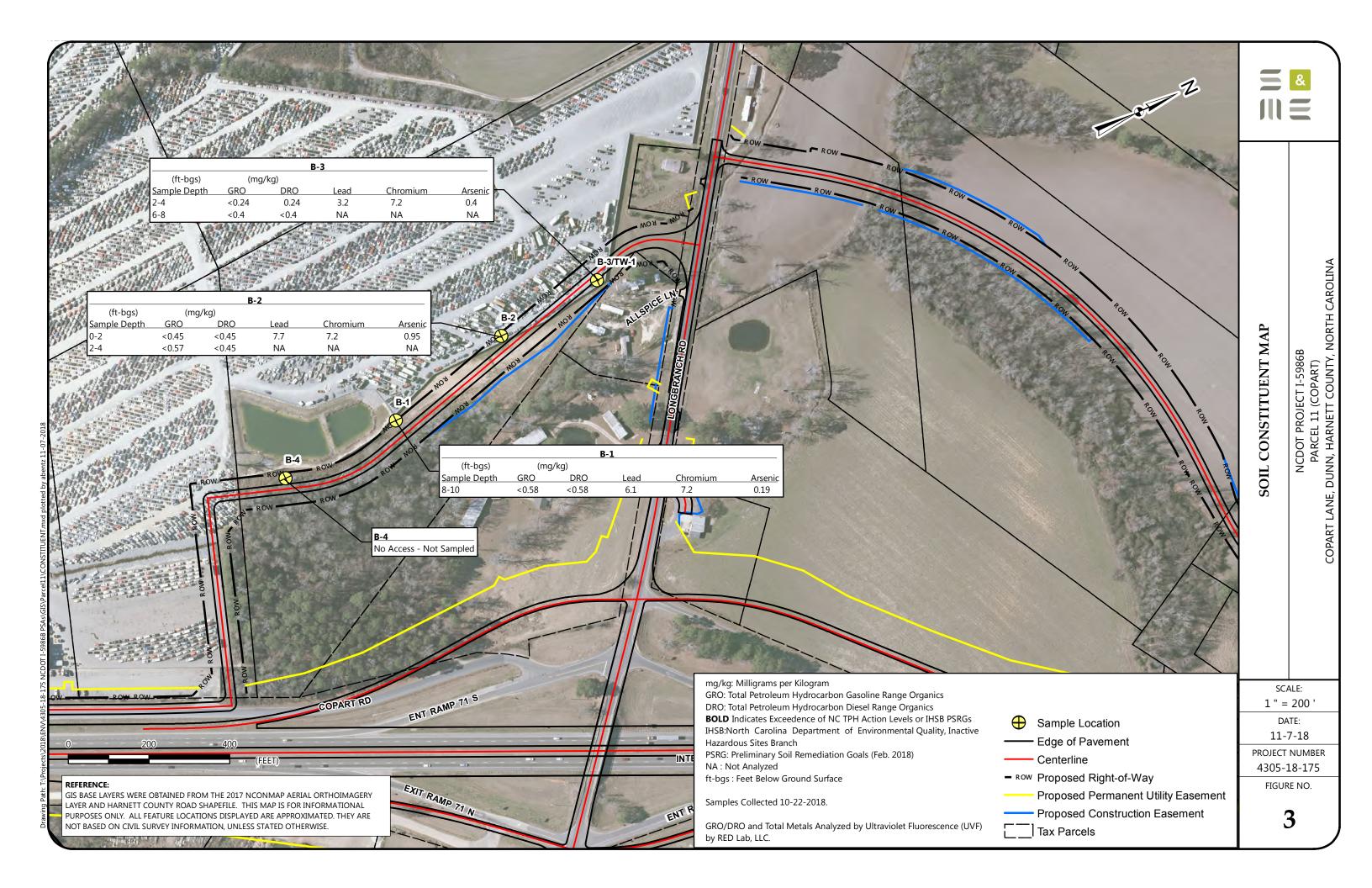
7

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5986B

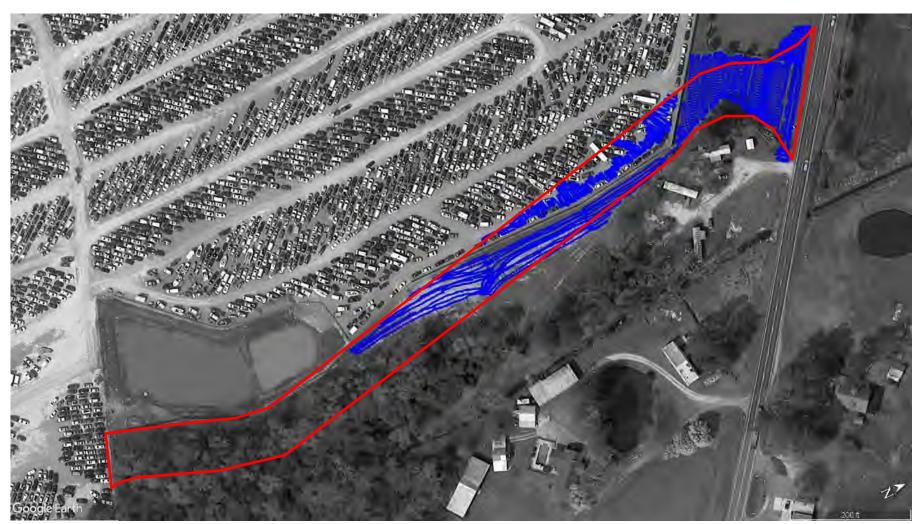
Parcel 11 - (Copart) Copart Lane


Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175


Analytical Method→		Total Petroleum Hydrod Range Organics (GR Organics (DRO) by Ult (UVF) Spe	Total Metals by EPA Method 6020				
Sample ID Date		Contaminant of Concern→			Lead	Chromium*	Arsenic
	Date	Sample Depth (ftbgs)	TPH-GRO	TPH-DRO			
Parcel 11 B-1	10/22/2018	8 to 10	<0.58	<0.58	6.1	7.2	0.19 J
Parcel 11 B-2 10/22/2	10/22/2018	0 to 2	<0.45	<0.45	7.7	21	0.95**
	10/22/2016	2 to 4	<0.57	<0.57	NA	NA	NA
Parcel 11 B-3 10/22/2018		2 to 4	<0.24	0.24	3.2	7.2	0.4
Parcel 11 B-3 10/2	10/22/2010	6 to 8	<0.4	<0.4	NA	NA	NA
North Carolina TPH Action Levels		50	100				
IHSB Residential Health Based PSRG		Not App	400	23,000	0.68		
IHSB Industrial/Commercial Health Based PSRG		Not App	800	350,000	3.0		
IHSB Protection of Groundwater PSRG		Not App	270	360,000	5.8		


Notes:

- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in BOLD fields.
- 5. NA: Not Analyzed
- 6. Total Metals analyzed by Con-Test Laboratories.
- 7. J: Estimated concentration detected below the laboratory method reporting limit.
- 8. IHSB: North Carolina Department of Environmental Quality, Inactive Hazardous Sites Branch
- 9. PSRG: Preliminary Soil Remediation Goals (Feb. 2018)
- 10. Concentrations exceeding the North Carolina TPH Action Levels or IHSB PSRGs are shown in Shaded and BOLD fields.
- 11. *: Assumes chromium in the trivalent state (chromium III)
- 12. **: Arsenic was reported at a concentration exceeding the PSRG. However, arsenic appears to be naturally occurring.



REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

•••• Approximate TDEM Path

Approximate Requested Survey Area

TDEM PATH LOCATION PLAN

NCDOT PROJECT: 1-59868 PARCEL 11 – (COPART) COPART LANE, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 11/1/2018

PROJECT NUMBER 4305-18-175

FIGURE NO.

4

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

Approximate Location of Fence

NCDOT PROJECT: I-5986B PARCEL 11 – (COPART) COPART LANE, DUNN, HARNETT COUNTY, NORTH CAROLINA

TDEM DATA PLOT A

SCALE: AS SHOWN

DATE: 11/1/2018

PROJECT NUMBER 4305-18-175

FIGURE NO.

5

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

NCDOT PROJECT: 1-5986B PARCEL 11 – (COPART) COPART LANE, DUNN, HARNETT COUNTY, NORTH CAROLINA

TDEM DATA PLOT B

DATE: 11/1/2018 PROJECT NUMBER

SCALE: AS SHOWN

4305-18-175 FIGURE NO.

6

Approximate Location of Fence

LEGEND

Approximate Location of TDEM Anomaly

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

--- Approximate Location of Fence

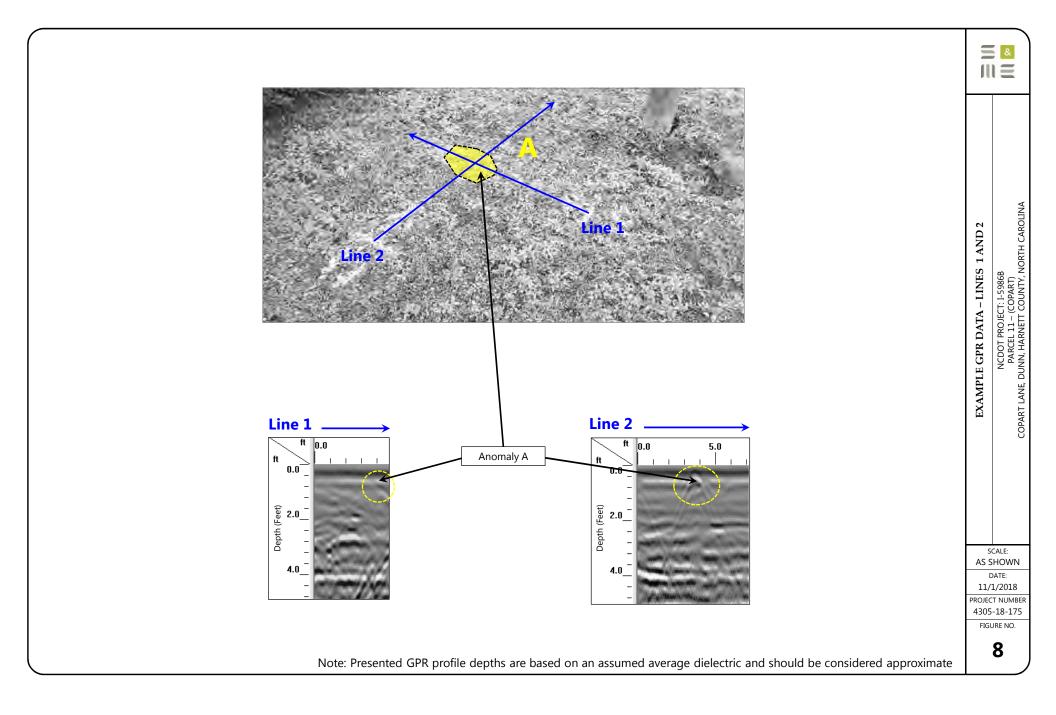
Approximate Location of TDEM Anomaly

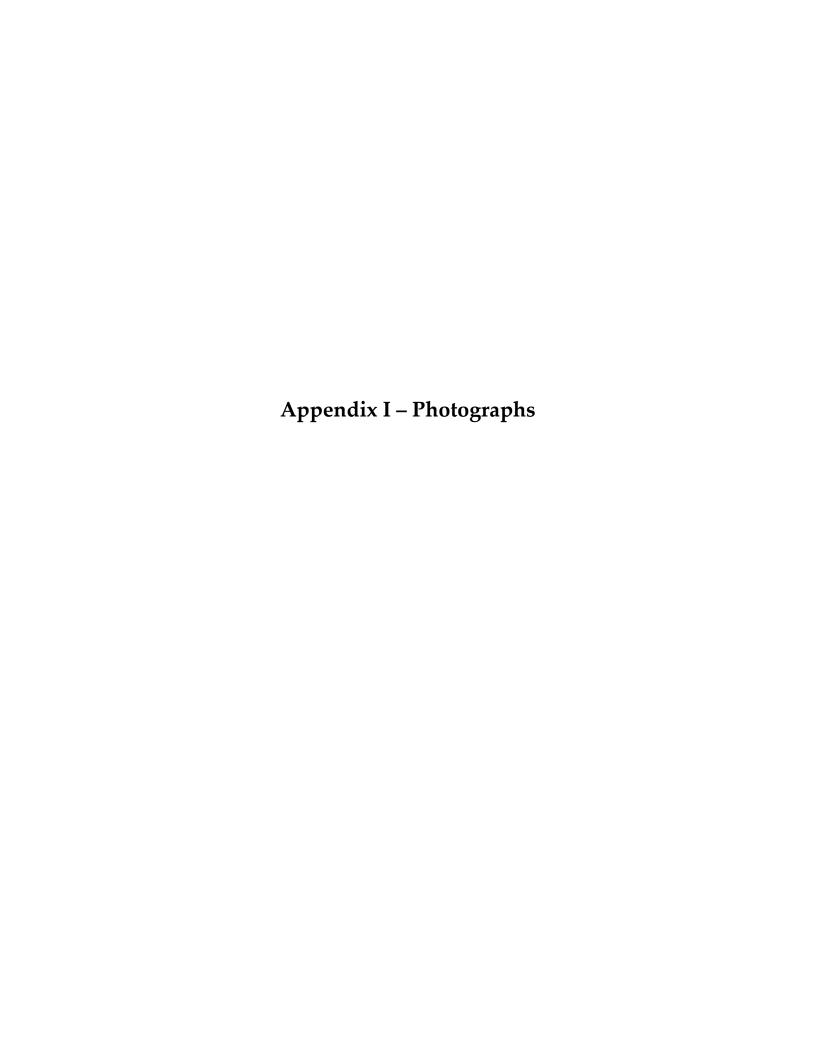
Approximate Location of GPR Profile

GEOPHYSICAL ANOMALY LOCATION PLAN

COUNTY, NORTH CAROLINA

NCDOT PROJEC PARCEL 11 – (COPART LANE, DUNN, HARNETT


SCALE: AS SHOWN

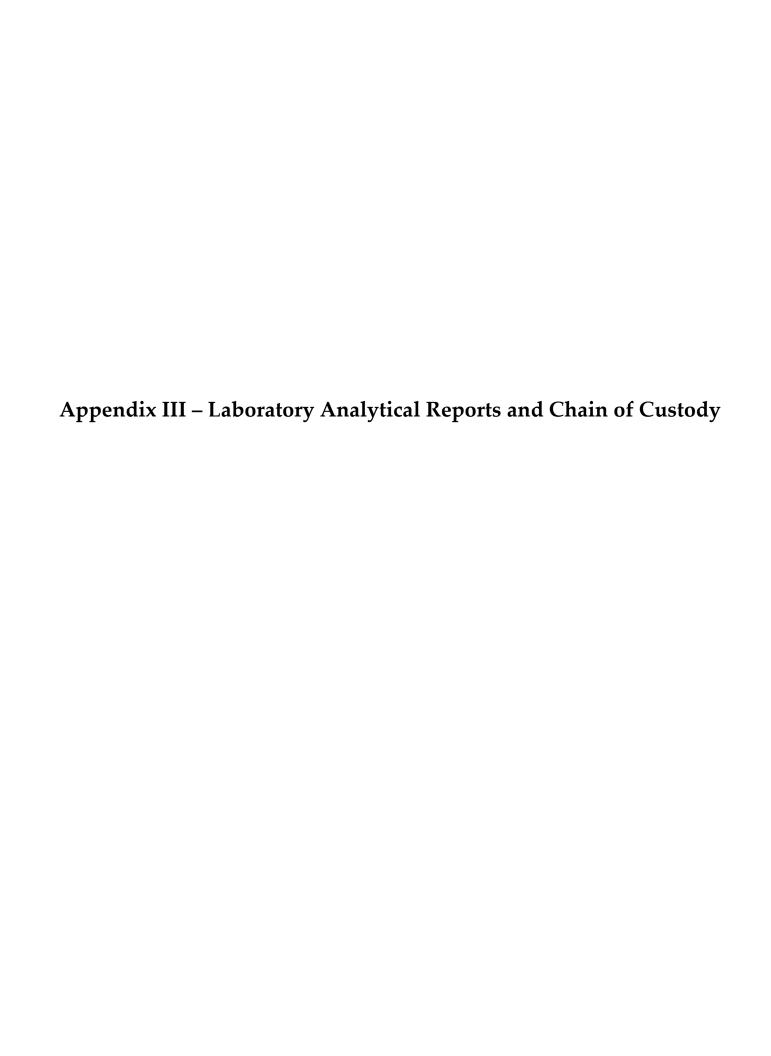

DATE: 11/1/2018

PROJECT NUMBER 4305-18-175

FIGURE NO.

7

Preliminary Site Assessment Report NCDOT Project I-5986B, WBS Element 47532.1.3 Parcel 11-Copart Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175


December 14, 2018 i

PROJECT	:	NCDOT I-5986B												
		Parcel 11-Copart Lane, Dunn, NC		BORING LOG: B-1										
		S&ME Project No. 4305-18-175												
DATE DRILL	LED:	Monday, October 22, 2018	BORING DEPTH (FT):											
DRILL RIG:		Geoprobe 7730 DT	WATER LEVEL:											
DRILLER:		S&ME, Inc.	CAVE-IN DEPTH:											
HAMMER T		Not Applicable	LOGGED BY:	J. Honeyo	utt									
SAMPLING		Macro-Core Sampler	NORTHING:											
DRILLING N	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:				1							
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE			
		Sand, Tan, Brown,				0.8	No							
		Clayey Sand, Tan, Orange,			ł									
5 —					ŧ	0.5	No							
		Sile Seed Dec			I	0.6	No							
		Silty Sand, Brown,			ł	1.1	No							
10 —		Boring Terminated at 10 Ft-BGS			Н	2.0	Yes							
	-													
	_													
15 —														
	-													
20 —	•													
25 —														
_														
	-													
30 —														

PROJECT	:	NCDOT I-5986B									
		Parcel 11-Copart Lane, Dunn, NC				BORIN	NG LOG	B-2			
		S&ME Project No. 4305-18-175									
DATE DRILL	LED:	Monday, October 22, 2018	BORING DEPTH (FT):								
DRILL RIG:		Geoprobe 7730 DT	WATER LEVEL:								
DRILLER:		S&ME, Inc.	CAVE-IN DEPTH:								
HAMMER T		Not Applicable		D BY: J. Honeycutt							
SAMPLING		Macro-Core Sampler	NORTHING:								
DRILLING N	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		1	1	1			1	
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Gravel, Sandy Clay, Tan,									
		Sandy Clay, Red, Tan,			ł	0.8	Yes				
 5					ł	1.2	Yes				
					ł	1.8	No				
_					ł	1.4	No				
10 —— —— ——		Boring Terminated at 10 Ft-BGS				2.0	No				
15											
20											
25 —											

PROJECT	:	NCDOT I-5986B									
		Parcel 11-Copart Lane, Dunn, NC				BORI	NG LOG	B-3/	TW-1	L	
		S&ME Project No. 4305-18-175									
DATE DRILL	LED:		ORING DEPTH (FT):								
DRILL RIG:		Geoprobe 7730 DT	WATER LEVEL:								
DRILLER:		S&ME, Inc.	CAVE-IN DEPTH:								
HAMMER T		Not Applicable	LOGGED BY:		cutt						
SAMPLING		Macro-Core Sampler	NORTHING:	1							
DRILLING N	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		1	1	1	1			
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Gravel, Silty Sand, Tan,			İ	0.4	Yes				
5 —		Sand, Tan,		-	I	0.5	Yes				
_				•	ł	0.3	No				
						0.8	No				
10 —— —— ——		Boring Terminated at 10 Ft-BGS									
15 —											
20											
25 —— ——											
30 —											

Monday, October 22, 2018

Monday, October 22, 2018

Monday, October 22, 2018

Hydrocarbon Analysis Results

 Client:
 S&ME
 Samples taken

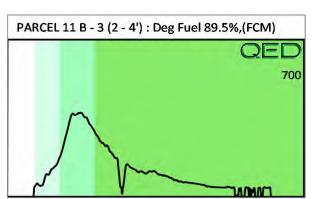
 Address:
 310 COPART ROAD
 Samples extracted

DUNN NC 28334 Samples analysed

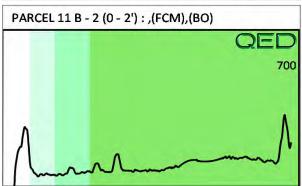
Contact: JAMIE HONEYCUTT Derator JENN RYAN

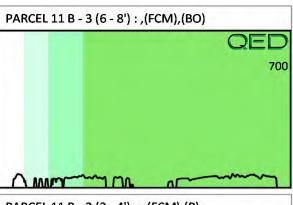
Project: 4305-18-175

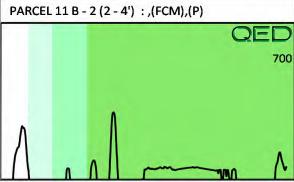
													U00904								
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	% Ratios		% Ratios		% Ratios		% Ratios		% Ratios			HC Fingerprint Match
										C5 - C10	C10 - C18	C18									
S	PARCEL 11 B - 3 (2 - 4')	9.8	<0.24	<0.24	0.24	0.24	<0.05	<0.08	<0.01	0	95.3	4.7	Deg Fuel 89.5%,(FCM)								
S	PARCEL 11 B - 3 (6 - 8')	16.0	< 0.4	<0.4	<0.4	< 0.4	<0.08	<0.13	<0.016	0	0	0	PHC not detected,(BO)								
S	PARCEL 11 B - 2 (0 - 2')	17.9	<0.45	<0.45	<0.45	< 0.45	<0.09	<0.14	<0.018	0	100	0	Residual HC,(BO)								
S	PARCEL 11 B - 2 (2 - 4')	22.6	<0.57	<0.57	<0.57	<0.57	<0.11	<0.18	< 0.023	0	0	0	PHC not detected,(P)								
	Initial Ca	QC check	OK					Final FO	CM QC	Check	OK	96 %									


Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Abbreviations: FCM = Results calculated using Fundamental Calibration Mode: % = confidence of hydrocarbon identification: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate detected


B = Blank Drift: (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result: (BO) = Background Organics detected: (OCR) = Outside cal range: (M) = Modifed Result.


% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only.


Data generated by HC-1 Analyser

Project: 4305-18-175

November 1, 2018

Michael Pfeifer S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: Parcel 11 Client Job Number:

Project Number: 4305-18-175

Laboratory Work Order Number: 18J1181

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on October 23, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	6
18J1181-01	6
18J1181-02	8
18J1181-03	10
Sample Preparation Information	12
QC Data	13
Metals Analyses (Total)	13
B216002	13
Flag/Qualifier Summary	14
Certifications	15
Chain of Custody/Sample Receipt	16

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

ATTN: Michael Pfeifer

REPORT DATE: 11/1/2018

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-18-175

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18J1181

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Parcel 11

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
Parcel 11 B-3 2-4'	18J1181-01	Soil		SM 2540G	
				SW-846 6020B	
Parcel 11 B-2 0-2'	18J1181-02	Soil		SM 2540G	
				SW-846 6020B	
Parcel 11 B-1 8-10'	18J1181-03	Soil		SM 2540G	
				SW-846 6020B	

EXECUTIVE SUMMARY

Client ID: Parcel 11 B-3 2-4' Lab ID: 18J1181-01

Analyte	Results/Qual	DL	RL	Units	Method
Arsenic	0.40	0.030	0.18	mg/Kg dry	SW-846 6020B
Chromium	7.2	0.16	4.6	mg/Kg dry	SW-846 6020B
Lead	3.2	0.060	1.8	mg/Kg dry	SW-846 6020B
% Solids	88.5			% Wt	SM 2540G
Client ID: Parcel 11 B-2 0-2'	Lab ID:	18J1181-02			
Analyte	Results/Qual	DL	RL	Units	Method
Arsenic	0.95	0.035	0.21	mg/Kg dry	SW-846 6020B
Chromium	21	0.19	5.3	mg/Kg dry	SW-846 6020B
Lead	7.7	0.069	2.1	mg/Kg dry	SW-846 6020B
% Solids	78.1			% Wt	SM 2540G
Client ID: Parcel 11 B-1 8-10'	Lab ID:	18J1181-03			
Analyte	Results/Qual	DL	RL	Units	Method
Arsenic	0.19 J	0.032	0.19	mg/Kg dry	SW-846 6020B
Chromium	7.2	0.17	4.8	mg/Kg dry	SW-846 6020B
Lead	6.1	0.064	1.9	mg/Kg dry	SW-846 6020B
% Solids	83.5			% Wt	SM 2540G

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

 $All\ reported\ results\ are\ within\ defined\ laboratory\ quality\ control\ objectives\ unless\ listed\ below\ or\ otherwise\ qualified\ in\ this\ report.$

For method 6020, all dilutions were performed as per standard operating procedure.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Project Location: Parcel 11 Sample Description: Work Order: 18J1181

Date Received: 10/23/2018

Field Sample #: Parcel 11 B-3 2-4'

Sampled: 10/22/2018 16:30

Sample ID: 18J1181-01
Sample Matrix: Soil

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		0.40	0.18	0.030	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 13:12	МЈН
Chromium		7.2	4.6	0.16	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 13:12	MJH
Lead		3.2	1.8	0.060	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 13:12	MJH

Project Location: Parcel 11 Sample Description: Work Order: 18J1181

Date Received: 10/23/2018

Field Sample #: Parcel 11 B-3 2-4'

Sample ID: 18J1181-01
Sample Matrix: Soil

Sampled: 10/22/2018 16:30

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		88.5		% Wt	1		SM 2540G	10/29/18	10/30/18 10:43	JFC

10/30/18 10/31/18 13:16 MJH

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Parcel 11 Sample Description: Work Order: 18J1181

Date Received: 10/23/2018

Field Sample #: Parcel 11 B-2 0-2'

Sampled: 10/22/2018 17:00

Results

0.95

21

7.7

2.1

0.069

mg/Kg dry

Sample ID: 18J1181-02
Sample Matrix: Soil

Arsenic

Lead

Chromium

		Metals Analy	ses (Total)					
						Date	Date/Time	
RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
0.21	0.035	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 13:16	MJH
5.3	0.19	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 13:16	MJH

SW-846 6020B

Project Location: Parcel 11 Sample Description: Work Order: 18J1181

Date Received: 10/23/2018

Field Sample #: Parcel 11 B-2 0-2'

Sample ID: 18J1181-02
Sample Matrix: Soil

Sampled: 10/22/2018 17:00

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		78.1		% Wt	1		SM 2540G	10/29/18	10/30/18 10:43	JFC

Project Location: Parcel 11 Sample Description: Work Order: 18J1181

Date Received: 10/23/2018

Field Sample #: Parcel 11 B-1 8-10'

Sampled: 10/22/2018 18:45

Sample ID: 18J1181-03
Sample Matrix: Soil

Metals	Analyses	(Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		0.19	0.19	0.032	mg/Kg dry	5	J	SW-846 6020B	10/30/18	10/31/18 13:26	MJH
Chromium		7.2	4.8	0.17	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 13:26	MJH
Lead		6.1	1.9	0.064	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 13:26	MJH

Project Location: Parcel 11 Sample Description: Work Order: 18J1181

Date Received: 10/23/2018

Field Sample #: Parcel 11 B-1 8-10'

Sample ID: 18J1181-03
Sample Matrix: Soil

Sampled: 10/22/2018 18:45

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		83.5		% Wt	1		SM 2540G	10/29/18	10/30/18 10:43	JFC

Sample Extraction Data

Prep Method: % Solids-SM 2540G

Lab Number [Field ID]	Batch	Date
18J1181-01 [Parcel 11 B-3 2-4']	B215886	10/29/18
18J1181-02 [Parcel 11 B-2 0-2']	B215886	10/29/18
18J1181-03 [Parcel 11 B-1 8-10']	B215886	10/29/18

Prep Method: SW-846 3050B-SW-846 6020B

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
18J1181-01 [Parcel 11 B-3 2-4']	B216002	1.54	50.0	10/30/18	
18J1181-02 [Parcel 11 B-2 0-2']	B216002	1.52	50.0	10/30/18	
18J1181-03 [Parcel 11 B-1 8-10']	B216002	1.54	50.0	10/30/18	

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B216002 - SW-846 3050B										
Blank (B216002-BLK1)				Prepared: 10	0/30/18 Anal	yzed: 10/31	/18			
Arsenic	ND	0.17	mg/Kg wet							
Chromium	ND	4.2	mg/Kg wet							
Lead	ND	1.7	mg/Kg wet							
LCS (B216002-BS1)				Prepared: 10	0/30/18 Anal	yzed: 10/31	/18			
Arsenic	166	2.0	mg/Kg wet	161		103	83.2-116.8			
Chromium	146	50	mg/Kg wet	136		107	82.4-117.6			
Lead	110	20	mg/Kg wet	111		99.1	83-117.1			
LCS Dup (B216002-BSD1)				Prepared: 10	0/30/18 Anal	yzed: 10/31	/18			
Arsenic	177	2.0	mg/Kg wet	161		110	83.2-116.8	6.55	30	
Chromium	152	49	mg/Kg wet	136		111	82.4-117.6	3.76	30	
Lead	119	20	mg/Kg wet	111		108	83-117.1	8.23	30	

FLAG/QUALIFIER SUMMARY

- * QC result is outside of established limits.
- † Wide recovery limits established for difficult compound.
- ‡ Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SW-846 6020B in Soil

Arsenic NY,VA,NH,NC,ME


Chromium NY,NC,ME Lead NY,NC,ME

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019
RI	Rhode Island Department of Health	LAO00112	12/30/2018
NC	North Carolina Div. of Water Quality	652	12/31/2018
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2018
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

	Γ	Т-	Т				4.54				য়েন্ড	4407	3 8 14 6 2 4 2	(KUN)	14357	and gr	- 1 <u>1</u> N		V 14-1	14.15.1	YN, 1951	jesti			શ્રુપ્ય	1,				٦ .	abl	e of	Conte	nts
Page of	# of Containers	² Preservation Code	³ Container Code	selfames, stereight bestieren	Field Filtered	Lab to Filter		ealigness extension from the	Field Filtered	Lab to Filter		Matrix Codes:	WW = Ground Water	Dw = Urinking water A = Air	SL = Sludge	SOL = Solid 0 = Other (please	define)	2 Preservation Codes:	D= Iced	= Methano = Nitric Acid		X = Sodium Hydroxide T = Sodium	Thiosulfate 0 = Other (please	define)	3 Container Codes:	·	F = Plastic ST = Sterile	V = Vial S = Summa Canister		define)		PCB ONLY	Soxnet Non Soxhlet	THE PROPERTY OF THE PROPERTY O
Doc # 379 Rev 1_03242017 39 Spruce Street East Longmeadow, MA 01028				ANALYSIS REQUESTED		1.7		TA -	# H															Please use the following codes to indicate possible sample concentration within the Conc Code column above:	H - High; M - Medium; L - Low; C - Clean; U - Unknown	gram Informa		SWS Landfill REC	State Lead	Uther:	WELAC and AIHA-LAP, LLC Accredited	Other	AIHA-LAP,LLC	THE PROPERTY AND ADDRESS OF THE PROPERTY OF TH
http://www.contestlabs.com Doc#3: CHAIN OF CUSTODY RECORD (North Carolina) Recilicated Authority firms	7-Day 10-Day	Due Date:	Rush-Approval Required	1-Day 3-Day	2-Day	Date Daliveny	Format: PDF Z EXCEL Z	Other:		Email To: Marck Sto SMCINC. CM	Fax To #:	Ending Composite Grab Wetrix Conc Code	1,630 / 5 11 / 5	1700	Sept 18 18 18 18 18 18 18 18 18 18 18 18 18	18 /2 / S / S / S / S / S / S / S / S / S								Please use the followin withi	H - High; M - M	North Carolina Detection Limit Requirements	21.	SWSL	IHSB MCCC	DOCAL CONTRACTOR OF THE PROPERTY OF THE PROPER	The state of the s	tity Government Municipality		
	Email: info@contestlabs.com	1	FORCET DD ROLETIC NC	3,60	NCOOT	1	<u>ال</u>	Psister			اللاريم علما	Client Sample ID / Description Beginning Date/Lime	Exect 1 3 3 3-4 10.72	B-2 0.21	地	Queed 113-1 8-10/ V		THE STATE OF THE S	TO THE PARTY OF TH								10 - 12 1400	10/23/8 (336)	Date/Fime: 12.13 1/2 3/3	` ,	<u>-</u> - 2	Date/ lime: Project Entity	Date/Time:	
CON-KESK®		Composity Mentics	S. 3201 Spring	916, W		Poved	205H	Project Manager:	Con-Test Quote Name/Number:	pient:	という	Con-Test Work Order#	g.	2 Pa	*	3 m							Comments:			Relinquished by: (signature)	Bereined by (signification)	Bury Karly	Relinguished by: (signature)	eived by: (signature)	J	ge 1	eived by: (signature)	3

Delivered Wednesday 10/24/2018 at 9:24 am

DELIVERED

Signed for by: P.BLAKE

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM	то
Raleigh, NC US	EAST LONGMEADOW, MA US

Shipment Facts

TRACKING NUMBER	SERVICE	WEIGHT
773547745711	FedEx Priority Overnight	45.3 lbs / 20.55 kgs
DIMENSIONS	DELIVERED TO	TOTAL PIECES
24x14x13 in.	Shipping/Receiving	1
TOTAL SHIPMENT WEIGHT	TERMS	SHIPPER REFERENCE
45.3 lbs / 20 55 kgs	Third Party	80
PACKAGING	SPECIAL HANDLING SECTION	STANDARD TRANSIT
Your Packaging	Deliver Weekday, Additional Handling	(?)
	Surcharge	10/24/2018 by 10:30 am
SHIP DATE	ACTUAL DELIVERY	
(?)	Wed 10/24/2018 9:24 am	
Tue 10/23/2018		

Travel History			Local Scan Time
Wednesday , 10/24/2018			
9:24 am	EAST LONGMEADOW, MA	Delivered	
8:03 am	WINDSOR LOCKS, CT	On FedEx vehicle for delivery	
7:52 am	WINDSOR LOCKS, CT	At local FedEx facility	

6:58 am EAST GRANBY, CT At destination sort facility
5:13 am INDIANAPOLIS, IN Departed FedEx location
12:19 am INDIANAPOLIS, IN Arrived at FedEx location

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client S+ M						****	 		
Received By	12AP		Date	101	5011	8	Time	921	1
How were the samples	In Cooler	T	No Cooler		On	lce _	<u> </u>	_ No Ice	
received?	Direct from Samp	oling			Amb	ient _		Melted Ice	
Were samples within		By Gun #	557		Actual	Temp	- 7.2		
Temperature? 2-6°C	7	By Blank #				Temp		***************************************	-
Was Custody S	eal Intact?	NA		re Sampl		******		NA	_
Was COC Relin		<u> </u>	•	Chain A				7	_
Are there broken/	•	on any sam	-	F	.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-
Is COC in ink/ Legible?			•	ples rece	_ eived wit	hin hold	ding time?	1	
Did COC include all	Client	T	Analysis	T		ampler	•	7	•
pertinent Information?	Project	τ	ID's	-	_ Colle	ction D	ates/Times	- 	-
Are Sample labels filled	d out and legible?	T	_		_				-
Are there Lab to Filters?	·	-		Who wa	as notifie	ed?			
Are there Rushes?				Who wa	as notifie	ed?			-
Are there Short Holds?		\leftarrow		Who wa	as notifie	ed?			
Is there enough Volume	?	+			_	<u> </u>			-
Is there Headspace who	ere applicable?	-		MS/MSD	?			\cap	
Proper Media/Container	s Used?	T		ls splitting	sample	s requi	red?		_
Were trip blanks receive	ed?	<u> </u>		On COC	> 				-
Do all samples have the	proper pH?	MA	Acid		_		Base	****	
Vials #	Containers:	#			#				#
Unp-	1 Liter Amb.		1 Liter F					z Amb.	
HCL-	500 mL Amb.		500 mL					nb/Clear	
Meoh-	250 mL Amb.		250 mL					nb/Clear	3
Bisulfate-	Col./Bacteria		Flash					nb/Clear	
DI-	Other Plastic		Other (······				core	
Thiosulfate- Sulfuric-	SOC Kit Perchlorate		Plastic	-	-	—— ^r	rozen:		
Sulunc-	Ferchiorate		Ziplo						
Vials #		4	Unused N	ledia	1 4				
Unp-	Containers: 1 Liter Amb.	#	1 Liter F	Diontio	#		16.5-	. And	#
HCL-	500 mL Amb.		500 mL		 			z Amb. nb/Clear	
Meoh-	250 mL Amb.		250 mL					nb/Clear	
Bisulfate-	Col./Bacteria		Flash	·····				nb/Clear	
DI-	Other Plastic		Other (core	
Thiosulfate-	SOC Kit		Plastic		<u> </u>	F	rozen:		
Sulfuric-	Perchlorate		Ziplo		***************************************				
Comments:									······