

January 9, 2020

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: Preliminary Site Assessment Report

NCDOT Project I-5878, WBS Element 53078.1.1

Parcel 90 – Shell Food and Tobacco Mart

1009 E. Cumberland Street

Dunn, Harnett County, North Carolina

S&ME Project 4305-19-161

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1900576 REV-01 dated August 9, 2019, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its September 5,2019 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's July 24, 2019, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
90	Dahir Properties, LLC	(Shell Food and Tobacco Mart)
		1009 E. Cumberland Street, Dunn, NC

The property is developed with an active gasoline/convenience store identified as Shell Food and Tobacco Mart, which utilizes several petroleum underground storage tanks (USTs). The USTs are located on the northeastern portion of the site, away from the ROW. Information regarding the UST systems listed for this site is provided in the following table:

UST Facility ID No. 0-00-000034814

Number of Tanks	Contents	Capacity (gallons)	Date Installed	Date Removed
1	Gasoline	10,000	4/25/1989	Active USTs
2	Gasoline	6,000	4/25/1989	Active USTs
3	Gasoline	6,000	4/25/1989	Active USTs

The Shell Food and Tobacco Mart property is listed with a North Carolina Department of Environmental Quality (NCDEQ) Incident (Incident # 29133-Smokers Friendly Texaco) associated with a petroleum release from USTs which was discovered in May 2004. In May 2004, soil and groundwater samples were collected at the site from temporary monitor wells. Analytical results of soil samples collected at the site were reported to be below the Soilto-Groundwater Maximum Soil Contaminant Concentrations (MSCCs). Groundwater at the site was reported to have been encountered at a depth of approximately seven feet below ground surface (ft.-bgs) and flowing to the southeast. Several petroleum related target constituents were reported in the groundwater at concentrations exceeding their 15A NCAC 2L Groundwater Quality Standards (2L Standards). Benzene was reported in temporary well P-1, which was located on the western side of the property near E. Cumberland Street, at a concentration of 4,600 micrograms per liter (µg/L) which exceeds its 2L Standard of 1 µg/L (*Limited Soil and Groundwater Sampling Report* prepared by S&ME dated May 13, 2004).

The PSA included a geophysical survey, subsequent limited soil sampling (seven soil borings up to 10 feet below ground surface (ft.-bgs)) and limited groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil and groundwater sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (East Coast Underground, LLC) was also used to locate and mark underground utilities.

Geophysical Survey

On July 25, 2019, S&ME completed Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) surveys within accessible areas of the proposed ROW/easement at Parcel 90. Brief descriptions of these complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820 "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The approximate TDEM data collection paths are presented in **Figure 4.** Golden Software's Surfer® program was used to grid and plot the data **(Figures 5 and 6).** The TDEM data has been presented as Plots A and B in order to provide both opaque and semi-transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 4000 GPR system equipped with a 350 MHz antenna in general accordance with ASTM D6432 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of five GPR profiles (Lines 1 through 5) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. One anomalous feature unrelated to known surficial targets was identified in the geophysical data sets (Anomaly A; **Figures 6 and 7).** Anomaly A is characterized by high amplitude GPR responses located about one foot below ground surface (bgs) and may be related to a relatively small isolated buried metallic object. The anomaly was marked in the field using white spray paint. Example GPR profiles are presented in **Figure 8.**

♦ Soil Sampling

On October 31, 2019, Troxler Geologic, Inc. (Troxler's) drill crew utilized a track mounted Geoprobe® rig to advance seven soil borings (B-1 through B-7) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 90. The approximate location of the soil borings are shown in **Figure 2**. A photographic

log is included in **Appendix I.** Troxler's drill crew advanced the Geoprobe® borings up to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at a depth of approximately 7.5 ft.-bgs. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II.**

Petroleum odors and elevated PID readings were noted at borings B-2, B-3, B-4 and B-6 starting at depths ranging from three to four ft.-bgs and extending to boring termination at eight ft-bgs. Groundwater was encountered at a depth of approximately 7.5 ft.-bgs. Therefore, soil samples were selected from borings B-2, B-3, and B-6 at the four to six foot depth interval. A soil sample was selected from boring B-4 at the two to four foot depth interval. Various soil samples at varying depth intervals were selected from the remaining borings. The soil samples were placed into laboratory supplied containers and transported to RED Lab, LLC (Red Lab) in an insulated cooler with ice for analysis. A total of seven soil samples (one soil sample per boring) were analyzed by RED Lab for TPH-GRO and TPH-DRO using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH-GRO and TPH-DRO were reported at concentrations exceeding their respective North Carolina TPH Action Levels. TPH-GRO and TPH-DRO were reported in boring B-4 at the two to four foot depth interval, at concentrations of 178.7 mg/kg and 107.4 mg/kg, respectively, which exceed their North Carolina TPH Action Levels of 50 mg/kg and 100 mg/kg, respectively. TPH-DRO was also reported in borings B-3 (208 mg/kg) and B-6 (108 mg/kg) at the four to six foot depth interval, at concentrations above its North Carolina TPH Action Level. TPH-DRO was reported in borings B-1, B-2, B-5 and B-7 at the two to four or four to six foot depth interval at concentrations below its North Carolina TPH Action Level. TPH-GRO was reported in borings B-2, B-3, B-6 and B-7 at the four to six foot depth interval at concentrations below its North Carolina TPH Action Level. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3.** A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III.**

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered at a depth of approximately 7.5 ft.-bgs. Therefore, the Geoprobe® was used to advance one of the soil borings into the groundwater table for the collection of a groundwater sample. Based on petroleum odors, elevated PID readings and apparent location near former temporary well P-1, boring B-4 was selected for collection of a groundwater sample. A temporary monitor well (TW-1) was installed at boring B-4 to a depth of approximately 12 ft.-bgs using a ten foot section of one-inch

diameter, Schedule 40 PVC well riser attached to a five foot section of 0.01-inch slotted screen that intersected the groundwater table. Groundwater within the temporary monitor well at boring B-4 was measured at 7.5 ft.-bgs. Groundwater was purged from the temporary well using disposable tubing attached to a peristaltic pump. The temporary well purged dry and was allowed to recharge to fill the laboratory supplied containers. Due to a slow recharge and lack of sufficient water, only the containers for VOC analysis were filled. The containers (three-40 milliliters) were filled directly from the tubing, labeled as TW-1 and placed in an insulated cooler with ice for transport to Con-Test Laboratories (Con-Test) for analysis of VOCs by EPA Method 8260. The larger containers (two-one liter) for analysis of polycyclic aromatic compounds (PAHs) by EPA Method 8270 were not filled.

Upon completion of the soil and groundwater sampling, the well materials were removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by NCDEQ. Used gloves and tubing were bagged and disposed offsite.

Groundwater Analytical Results

Based upon analytical results of the groundwater sample analyzed by Con-Test, several petroleum related target constituents were reported at concentrations exceeding their 2L Standards. A summary of the groundwater analytical results is presented in **Table 2** and shown on **Figure 3**. A copy of the laboratory analytical report provided by Con-Test is presented in **Appendix III**.

Conclusion and Recommendations

The geophysical survey identified one anomalous feature (Anomaly A) which may be related to a relatively small isolated buried metallic object. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced seven soil borings (B-1 through B-7) to a depth of up to approximately 10 ft.-bgs at the site. Petroleum odors and elevated PID readings were noted at borings B-2, B-3, B-4 and B-6 starting at depths ranging from two to four ft.-bgs and extending to boring termination at eight ft-bgs. Selected soil samples from the soil borings were analyzed for TPH-GRO and TPH-DRO using UVF spectroscopy.

TPH-GRO and TPH-DRO were reported at concentrations exceeding their respective North Carolina TPH Action Levels. TPH-GRO and TPH-DRO were reported in boring B-4 at the two to four foot depth interval, at concentrations of 178.7 mg/kg and 107.4 mg/kg, respectively, which exceed their North Carolina TPH Action Levels. TPH-DRO was also reported in borings B-3 (208 mg/kg) and B-6 (108 mg/kg) at the four to six foot depth interval, at concentrations above its North Carolina TPH Action Level. TPH-DRO was reported in borings B-1, B-2, B-5 and B-7 at the two to four or four to six foot depth interval at concentrations below its North Carolina TPH Action Level. TPH-GRO was reported in borings B-2, B-3, B-6 and B-7 at the four to six foot depth interval at concentrations below its North Carolina TPH Action Level. TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples.

During the soil boring advancement, groundwater was encountered at a depth of approximately 7.5 ft.-bgs. One temporary well (TW-1) was installed at soil boring B-4. Groundwater at TW-1 was measured at 7.5 ft.-bgs and analyzed by Con-Test for VOCs by EPA Method 8260. Due to slow recharge and lack of sufficient water, the sample containers for PAHs analysis by EPA Method 8270 were not filled and therefore not analyzed Several petroleum related target constituents were reported at concentrations exceeding their 2L Standards.

Based on the findings of the geophysical survey and analytical results of soil and groundwater samples, it is likely that during construction, NCDOT may encounter impacted soil and groundwater impacted with petroleum at the site. Petroleum impacted soil at concentrations exceeding the North Carolina TPH Action Levels may be encountered within the vicinity of borings B-3, B-4 and B-6. Assuming that a section of petroleum impacted soil approximately 5.5 feet thick, 65 feet long and 33 feet wide at a depth of two to 7.5 ft.-bgs (groundwater was encountered at a depth of 7.5 ft.-bgs); up to 440 cubic yards of soil may be impacted. It should also be assumed that saturated petroleum impacted soil will be encountered if construction excavations extend deeper than 7.5 ft.-bgs.

If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility. If construction dewatering is required, petroleum impacted groundwater must be properly disposed or treated at a licensed facility.

S&ME recommends maintaining an awareness level for the presence of petroleum in the soil and groundwater at the site for the safety of workers and the public

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., reinforced concrete, utilities, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of about seven ft.-bgs.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods,

resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing


S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

—Docusigned by: Damie Honeyoutt

Jamie T Honeycutt
Environmental Professional
jhoneycutt@smeinc.com

Thomas P. Raymond, P.E., P.M.P. Senior Consultant traymond@smeinc.com

Attachments:

Table 1: Summary of Soil Sampling Results

Table 2: Summary of Groundwater Sampling Results

Figure 1: Vicinity Map
Figure 2: Site Map

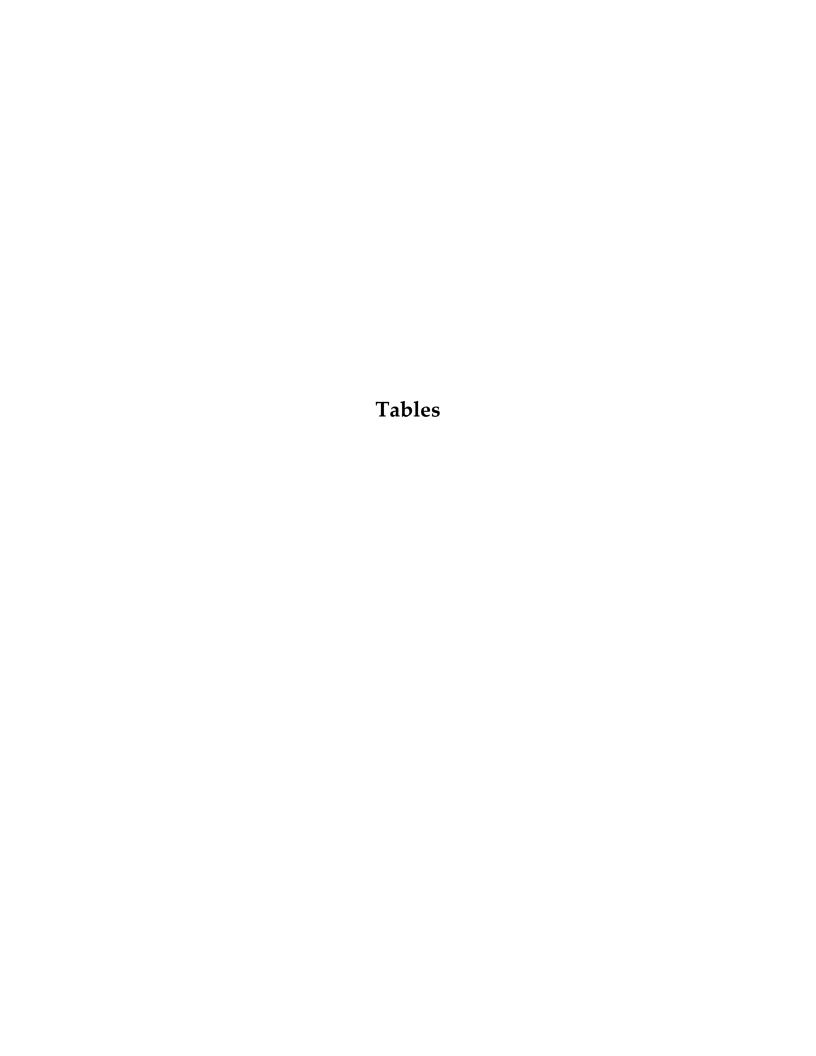
Figure 3: Soil and Groundwater Constituent Map

Figure 4: TDEM Path Location Plan

Figure 5: TDEM Data Plot A Figure 6: TDEM Data Plot B

Figure 7: Geophysical Anomaly Location Plan **Figure 8:** Example GPR Data – Lines 3 and 5

Appendix I: Photographs **Appendix II:** Boring Logs


Appendix III: Laboratory Analytical Reports and Chain of Custody

Docusigned by:

Michael Pfrifer

861 F 52 DD F F A F 4 C 7

Michael W. Pfeifer Senior Project Manager mpfeifer@smeinc.com

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5878

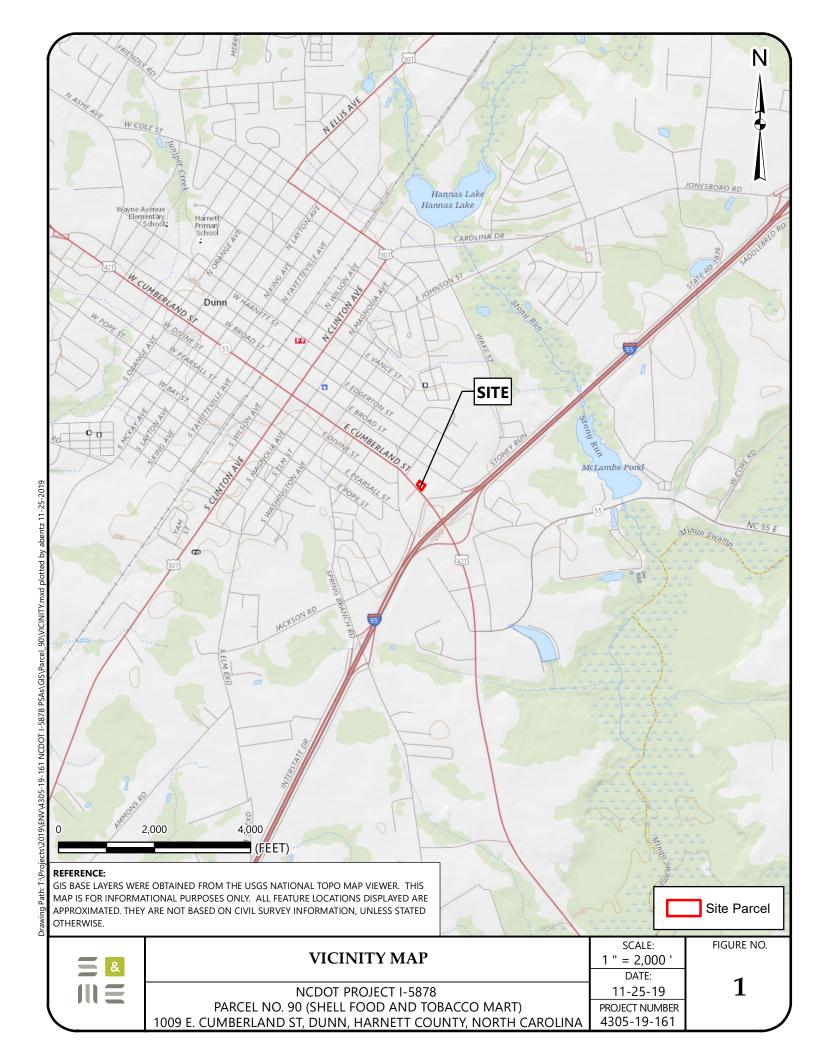
Parcel 90 - (Shell Food and Tobacco Mart) 1009 E. Cumberland Street Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161

Ar	nalytical Metho	d→	Range Organics (GR Organics (DRO) by Ul	carbons (TPH) Gasoline (O) and Diesel Range traviolet Fluorescence ectrometry
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO
B-1	10/31/2019	2 to 4	<0.3	1.2
B-2	10/31/2019	4 to 6	5.7	21.5
B-3	10/31/2019	4 to 6	208	
B-4	10/31/2019	2 to 4	178.7	107.4
B-5	10/31/2019	4 to 6	<0.61	2.2
B-6	10/31/2019	4 to 6	35.4	108
B-7	10/31/2019	4 to 6	2.4	22.9
No	orth Carolina T	PH Action Levels	50	100

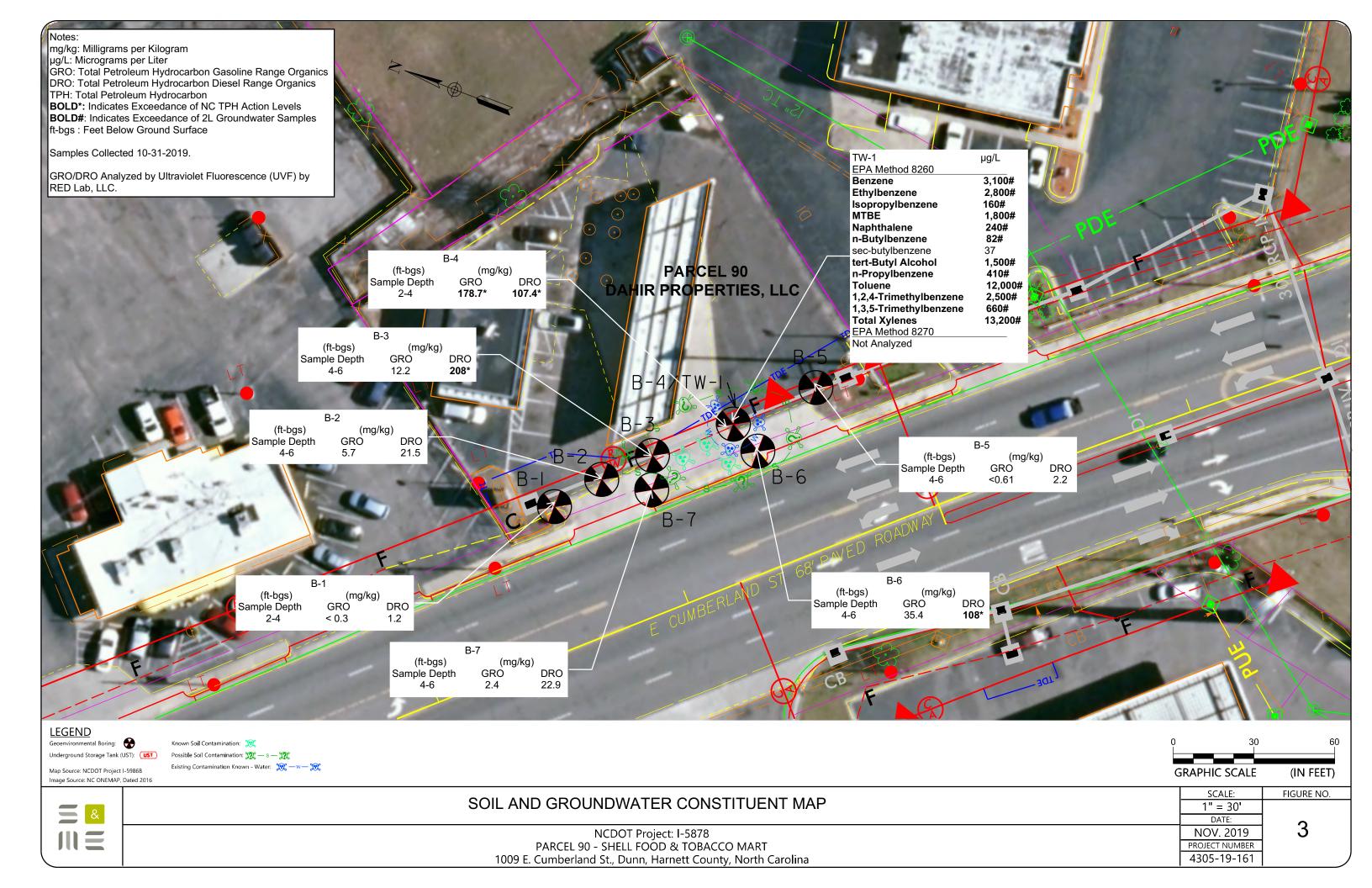
Notes:

- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and BOLD fields.

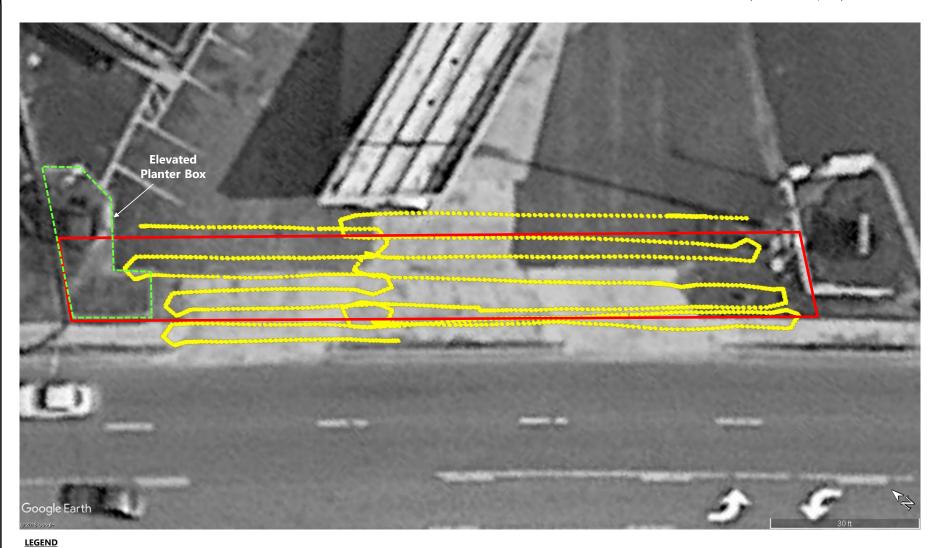
TABLE 2 SUMMARY OF GROUNDWATER SAMPLING RESULTS NCDOT Project I-5878


Parcel 90 - (Shell Food and Tobacco Mart) 1009 E. Cumberland Street Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161

Analytical	Method→				Vol	atile Or	ganic Co	mpound	s by EP	A Metho	d 8260				Polycyclic Aromatic Compounds (PAHs) by EPA Method 8270
Sample ID	Contaminant of Concern→		Ethylbenzene	Isopropylbenzene	МТВЕ	Naphthalene	n-Butylbenzene	sec-Butylbenzene	tert-Butyl Alcohol	n-Propylbenzene	Toluene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Total Xylenes	Constituent Specific
B-4/TW-1	10/31/2019	3,100	2,800	160	1,800	240	82 J	37 J	1,500 J	410	12,000	2,500	660	13,200	Not Analyzed *
2L S	Standard (µg/L)	1	600	70	20	6	70	70	10	70	600	400	400	500	Not Applicable
	GCL (µg/L)	5,000	84,500	25,000	20,000	6,000	6,900	8,500	10,000	30,000	260,000	28,500	25,000	85,500	Not Applicable


Notes:

- 1. Analytes that are not shown for the method were not detected.
- 2. Concentrations are reported in micrograms per liter (µg/L).
- 3. 2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- 5. Concentrations exceeding the 2L Standards are shown in Shaded and **BOLD** fields.
- 6. GCL: Gross Contamination Level.
- 7. J: Estimated concentration detected below the reporting limit.
- 8. * Temporary well purged dry and did not recover. Therefore, EPA Method 8270 analysis not performed



REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

SCALE: AS SHOWN

NCDOT PROJECT: I-5878 PARCEL #90 – (SHELL FOOD AND TOBACCO MART) 1009 E. CUMBERLAND STREET, DUNN, HARNETT COUNTY, NORTH CAROLINA

TDEM PATH LOCATION PLAN

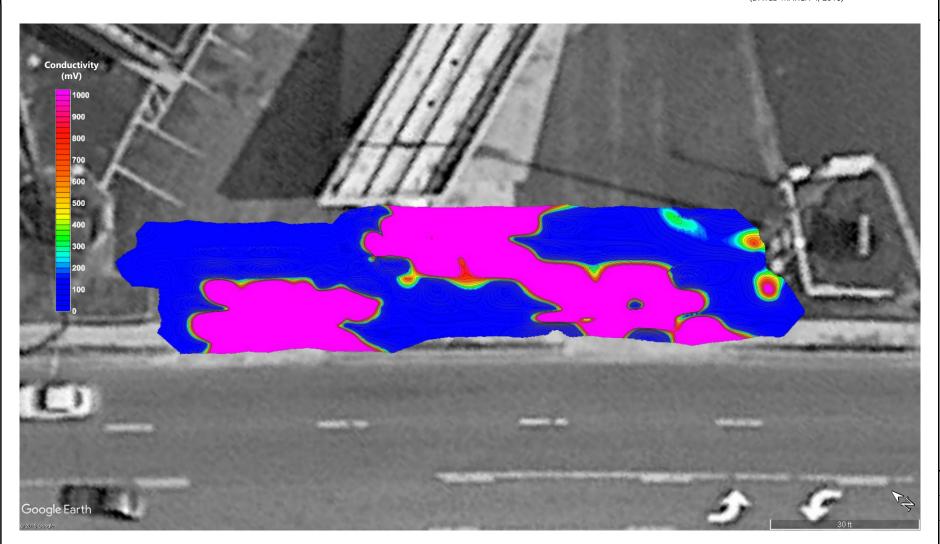
DATE: 11/26/2019

PROJECT NUMBER 4305-19-161

FIGURE NO.

4

•••• Approximate TDEM Path


Approximate Requested Survey Area

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

TDEM DATA PLOT A

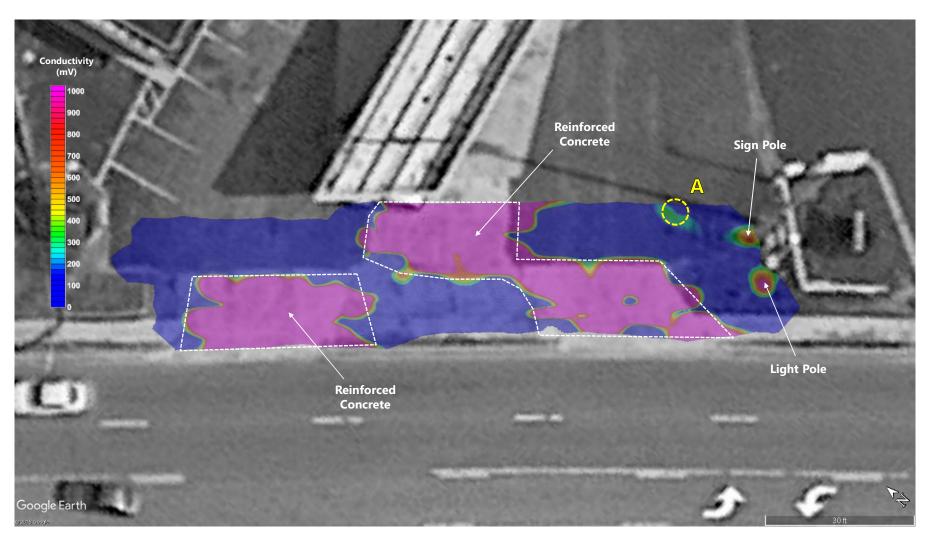
NCDOT PROJECT: I-5878 PARCEL #90 – (SHELL FOOD AND TOBACCO MART) 1009 E. CUMBERLAND STREET, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 11/26/2019

PROJECT NUMBER 4305-19-161

FIGURE NO.


5

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

LEGEND

 \bigcirc

Approximate Location of Geophysical Anomaly

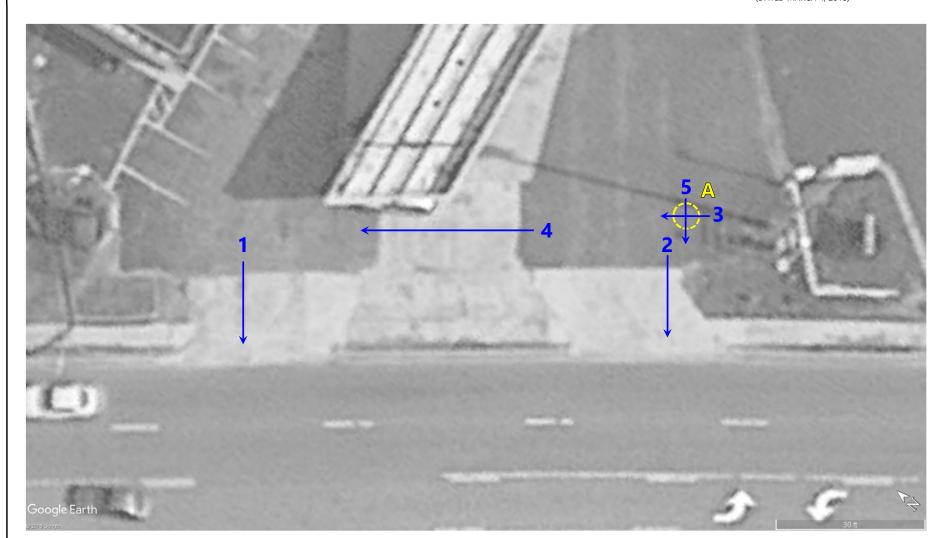
NCDOT PROJECT: I-5878 PARCEL #90 – (SHELL FOOD AND TOBACCO MART) 1009 E. CUMBERLAND STREET, DUNN, HARNETT COUNTY, NORTH CAROLINA

TDEM DATA PLOT B

SCALE: AS SHOWN

DATE: 11/26/2019

PROJECT NUMBER 4305-19-161


FIGURE NO.

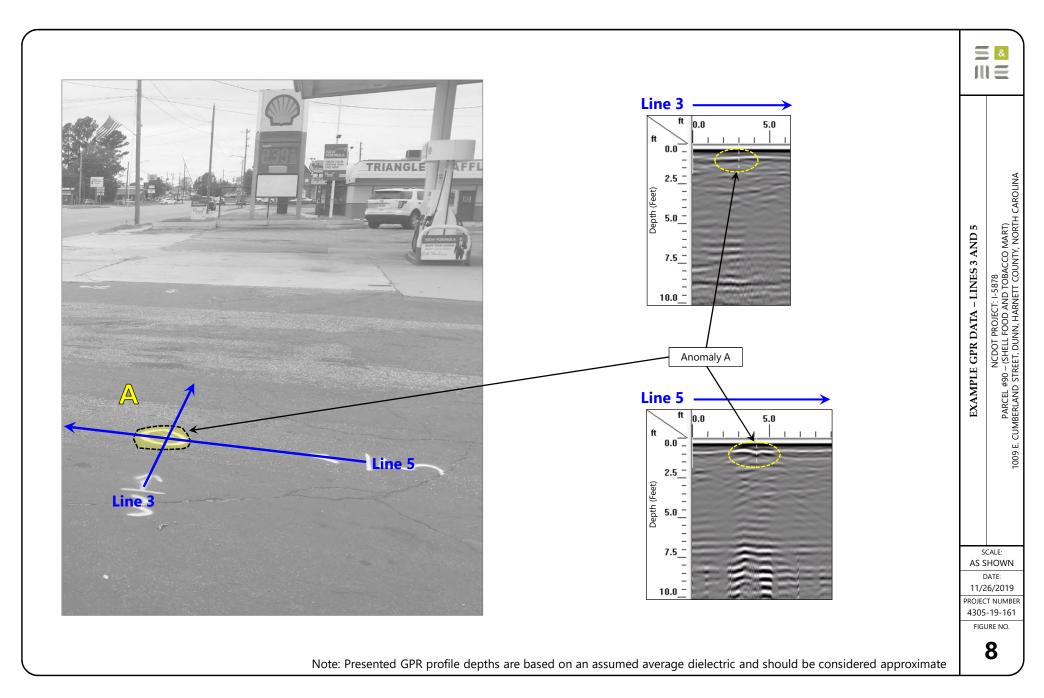
GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

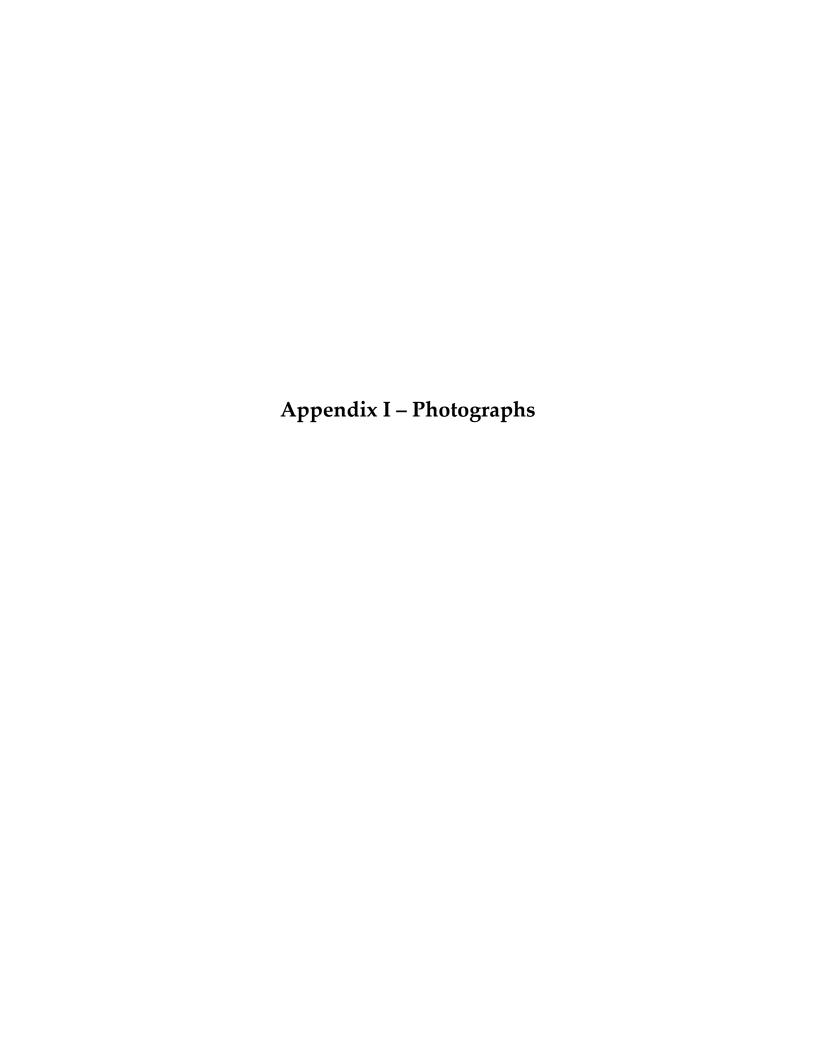
GEOPHYSICAL ANOMALY LOCATION PLAN

NCDOT PROJECT: I-5878 PARCEL #90 – (SHELL FOOD AND TOBACCO MART) 1009 E. CUMBERLAND STREET, DUNN, HARNETT COUNTY, NORTH CAROLINA

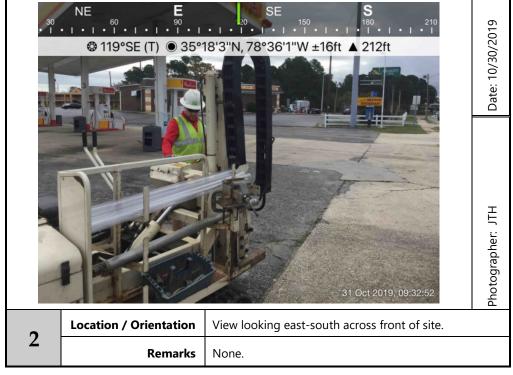
SCALE: AS SHOWN DATE:

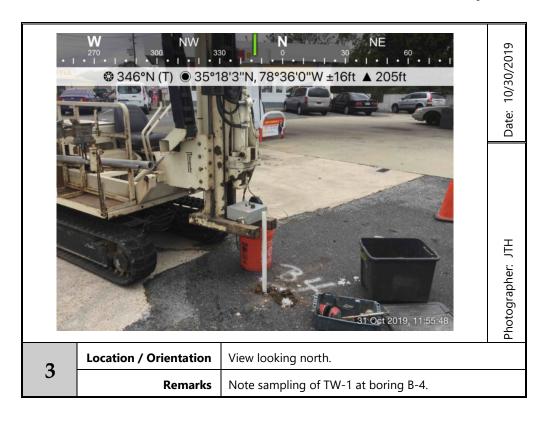
11/26/2019 PROJECT NUMBER 4305-19-161


FIGURE NO.


LEGEND

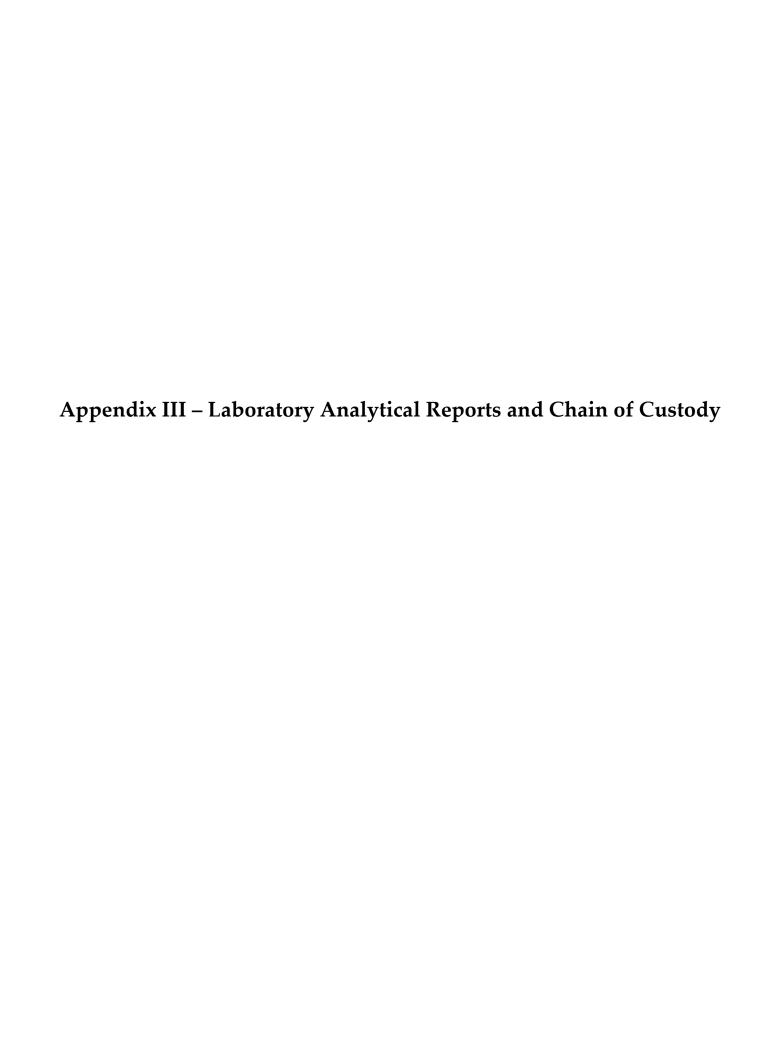
Approximate Location of Geophysical Anomaly


Approximate Location of GPR Profile



PROJECT: NCDOT I-5878 Parcel 90-1009 E. Cumberland St. (Shell Food & Tobacco Mart), Dunn, NC BORING LOG: B-1										
	Parcel 90-1009 E. Cumberland St. (Shell Food & Tobacc S&ME Project No. 4305-19-161	o Mart), Dunn, NC			BORIN	NG LOG:	B-1			
DATE DRILLED:	Thursday, October 31, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:	,							
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
		2.01.110.					1.			
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	soil, /ey Sand, Orange,				4.2	No				
San	vey Sand, Gray, dy Clay, Orange, Gray,			I	8.0	Yes	930			
5				ł	7.7	No				
Clay Bor	r, Gray, ing Terminated at 8 Ft-BGS		•	Н	6.3	No				
10 —										
15 —										
20 —										
25 —										
30										

PROJECT:	NCDOT I-5878 Parcel 90-1009 E. Cumberland St. (Shell Food & Toba S&ME Project No. 4305-19-161	acco Mart), Dunn, NC			BORIN	IG LOG:	: B-2			
DATE DRILLED:	Thursday, October 31, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
		E ISTITUTE.					I.			
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Asph Clayo	ialt, Gravel, ey Sand, Orange,			ŧ	8.4	No				
I (///	ey Sand, Gray,			ŧ	11.6	No				
L	ey Sand, Gray, Slight Petroleum Odors Gray, Slight Petroleum Odors			ł	15.1	Yes	945			
			_	I			7-7			
Borir	ng Terminated at 8 Ft-BGS		•		131.3	No				
10 —										
15 —										
20 —										
25 —										
30										


PROJECT:	NCDOT I-5878	M 0 5 NG	unn, NC BORING LOG: B-3							
	Parcel 90-1009 E. Cumberland St. (Shell Food & Tobaco S&ME Project No. 4305-19-161	co Mart), Dunn, NC			BOKIN	NG LOG	В-3			
DATE DRILLED:	Thursday, October 31, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:		icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Sa	phalt, Gravel, nd, Orange, Tan, ay, Gray, Petroleum Odors				12.9	No No				
5 —					117.0	Yes	1000			
- Sa Bo	nd, Gray, Orange, Petroleum Odors ring Terminated at 8 Ft-BGS		•		45.0	No				
10 —										
15 —										
20 —										
25 —										

PROJECT:	NCDOT I-5878									
	Parcel 90-1009 E. Cumberland St. (Shell Food & Tobacc S&ME Project No. 4305-19-161	o Mart), Dunn, NC			BORIN	IG LOG:	B-4/	TW-1		
DATE DRILLED:	Thursday, October 31, 2019	BORING DEPTH (FT):	16							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:	7.5							
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	cutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
						_	_			
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Asp	halt, Gravel,									
	d, Orange, Tan,			I	7.0	No				
5 — Clay	r, Gray, Petroleum Odors			Ĭ	372.0	Yes	1015			
- San	d, Gray, Orange, Petroleum Odors		•		213.0	No No				
Clay	r, Gray, Petroleum Odors		·		240.0	NO				
	d, Gray, Petroleum Odors ing Terminated at 16 Ft-BGS									
20 —										
25 —										
30			l	1	İ.		1	1	l	<u> </u>

PROJECT:	NCDOT I-5878 Parcel 90-1009 E. Cumberland St. (Shell Food & Tobar S&ME Project No. 4305-19-161	cco Mart), Dunn, NC			BORIN	NG LOG	B-5			
DATE DRILLED:	Thursday, October 31, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:			л. попеу	cutt						
DRILLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		1		Ι			ı	
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Sand	nalt, Gravel, d, Orange, Tan,			İ	2.6	No				
Clay	, Gray,			ł	6.6	No				
				ł	7.2	Yes	1020			
- · · · Sano Bori	d, Gray, Orange, ng Terminated at 8 Ft-BGS		▼		4.3	No				
10 —										
15 —										
20 —										
25 —										
30										

ROJECT: NCDOT I-5878 Parcel 90-1009 E. Cumberland St. (Shell Food & Tobacco Mart), Dunn, NC BORING LOG: B-6										
	S&ME Project No. 4305-19-161	o Mart), Dunn, NC			BOKIN	NG LOG	В-6			
DATE DRILLED:	Thursday, October 31, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
5 — Cla	phalt, Gravel, ayey Sand, Orange, Tan, ty Sand, Black, ay, Gray, Petroleum Odors		•		1.0 6.0 115.0	No No Yes	1115			
10 — 15 — 20 — 25 — 30	ring Terminated at 8 Ft-BGS									

PROJECT:	NCDOT I-5878 Parcel 90-1009 E. Cumberland St. (Shell Food & Tobacco	o Mart) Dunn NC	nn, NC BORING LOG: B-7							
	S&ME Project No. 4305-19-161	o Mart), Durin, NC			DOKII	NG LOG	D-1			
DATE DRILLED:	Thursday, October 31, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DIVIDENTO INICITIOD.	Macro core sumper (5 m. ob)	LASTING.					1			
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
— Asp Cla	ohalt, Gravel, yey Sand, Orange, Tan,			H	2.5	No				
				Н	2.5	No				
5 Cla	yey Sand, Gray,			H	4.5	No				
Ĭ <i>=</i>					10.6	Yes	1130			
Roy	ring Terminated at 8 Ft-BGS		•	Н	27.4	No				
10 —										
15 —										
20 —										
25 —										
30										

Hydrocarbon Analysis Results

Client: S&ME Address: 3201 Spring Forest Rd

Raleigh, NC

Samples taken Samples extracted Samples analysed

Thursday, October 31, 2019 Thursday, October 31, 2019

Friday, November 1, 2019

Harry Wooten Contact: Jamie T Honeycutt Operator

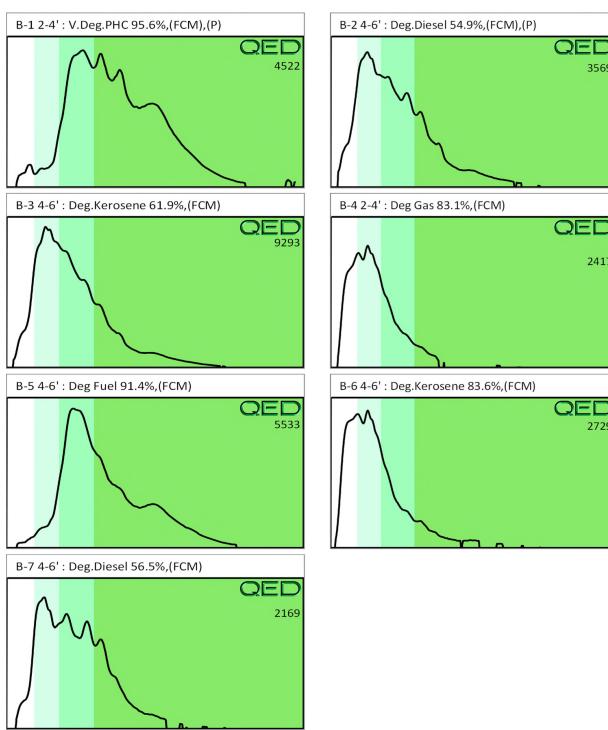
Project: NCDOT I-5878 Parcel 90

													F03640						
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР		Ratios		Ratios		Ratios		Ratios		HC Fingerprint Match
										% light	% light % mid % heavy		% light % mid % heavy						
S	B-1 2-4'	11.8	<0.3	<0.3	1.2	1.2	0.64	<0.09	<0.012	0 69.8 30.2		30.2	V.Deg.PHC 95.6%,(FCM),(P)						
s	B-2 4-6'	13.9	< 0.35	5.7	21.5	27.2	1.8	<0.11	<0.014	96.1			96.1 3 0.9		96.1 3 0.9		3 0.9		Deg.Diesel 54.9%,(FCM),(P)
S	B-3 4-6'	13.5	<0.34	12.2	208	220.2	8.8	0.33	<0.013	95.4	3.7	0.8	Deg.Kerosene 61.9%,(FCM)						
S	B-4 2-4'	211.0	<5.3	178.7	107.4	286.1	26.3	<1.7	<0.21	99.5	0.5	0	Deg Gas 83.1%,(FCM)						
s	B-5 4-6'	24.2	< 0.61	< 0.61	2.2	2.2	1.9	<0.19	<0.024	12.1	72.6	15.2	Deg Fuel 91.4%,(FCM)						
S	B-6 4-6'	24.4	<0.61	35.4	108	143.4	3.4	<0.2	<0.024	99.7	0.3	0	Deg.Kerosene 83.6%,(FCM)						
S	B-7 4-6'	24.6	<0.62	2.4	22.9	25.3	1.9	<0.2	<0.025	90.7	7.3	2.1	Deg.Diesel 56.5%,(FCM)						
	1.305.1.0	- 1:1	00 11 11	OK					Final F	20400	Clara ala	OK	400 C 0/						

Initial Calibrator QC check OK

Final FCM QC Check OK

108.6 %


Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present

3569

2417

2729

Project: NCDOT I-5878 Parcel 90

Address: 32.01 Sport Finguish Address: 32.01 Sport Finguish Address: 32.01 Sport Finguish Address: 32.01 Sport Finguish Address: 32.01 Sport Finguish Address: 32.01 Sport Finguish Address: 32.01 Addr	Client Name:	3W		3			Shias		
Comparison of the part Comparison of the p	Address:	Sprang	part 69	1 10000	1	3	RED Lab, LLC		
Milling Mill		Releigh, NC			טמינים בל		5598 Marvin	K Moss La	ine
September Sept	Contact:	1-					MARBIONC B	ldg, Suite	2003
Accepted by Accepted by	Project Ref.:	Der z-5878 Pre	90			Y	Wilmington, I	NC 28409	1
Chair Chai	Email:	I honere all & sine	1				Each UVF sample	will be and	lyzed for
Chair OF CUSTODY AND ANALYTICAL REQUEST FORM Solvens: VC, 11 DEC, 21 DEC,	Phone #:	वाक वर्ग ग्रहाप		APID ENVI	RONMENTAL DIAG	NOSTICE	aromatics and Ba	DRO, TPH, aP. Standard	PAH total
CHAIN OF CUSTODY AND ANALYTICAL REQUEST FORM Sample ID Total Wt. Tare Wt.	Collected by:	Jamie T. Hungas					Analyses are for	BTEX and CI	nlorinated
Hour 48 Hour UVF GC			CHAIN OF	CUSTODY	AND ANALYTICA	AI REOLIECT CODA	trans DCE, TCE, a	uce, 1,2 cis nd PCE. Spe	ouce, 1,2 cify target
Hour 48 Hour UVF GC Initials Sample ID Total Wr. Tare Wr.	Sample Collection	TAT Requested	Analysis Type			וואסט וכשסטיי זיי	analytes in the sp	ace provide	ed below.
1		-	UVF GC	Τ	Sa	mple ID			mple Wt.
1	-	\	\.	J.H.	1-8	340	\top	_	77 77
B.3 H-6 57.7 15.7 12.1	(6445)				l'a	7.5	+	4-8	
12.0 12.0	(1000)			,	10,8	4-6	1.5	13	2.2
1	1615				7.5	12	4.4	こしょ	2.6
195 4-6 58 58 5-1 4-6 58 57 58 57 58 59 59 59 59 59 59 59 59 59 59 59 59 59	(1030				200	J. H.	-	1.3	29
P.G. W.C. SS SS SS SS SS SS SS	SIII			+	5.5	4-6		5.0	13.2
P-1 P-2 S-3	7				36	Who	-	19	2-1
by Accepted by Date/Time (150) Accepted by Date/Time (150) Ref. No	2007	-	Ť	>	1-8	4-6	1	, X.	. 6
by Accepted by Date/Time (1.5.0) Accepted by Date/Time (1.5.0) Accepted by Accepted by Bate/Time (1.5.0) Accepted by Accepted by Accepted by Accepted by Bate/Time (1.5.0)				3			+-)
by Accepted by Accepted by Accepted by Accepted by Accepted by Bate/Time Bat								-	
by Accepted by Date/Time Date/Time Street by Accepted by Date/Time									
by TARGET GC/UVF ANALYTES: TARGET GC/UVF ANALYTES: TARGET GC/UVF ANALYTES:									
by Accepted by Date/Time									
by Accepted by Date/Time (150) Accepted by Accepted by Bate/Time (150) Accepted by Accepted by Bate/Time (150)									
by Accepted by Date/Time Accepted by Accepted by Date/Time Ref. No									
by TARGET GC/UVF ANALYTES: TARGET GC/UVF ANALYTES: Date/Time Ref. No									
by									
by Accepted by Date/Time Accepted by									
by Accepted by Date/Time Accepted by									
by Accepted by Date/Time 1031-49 1500 M.M.									
uished by Accepted by Date/Time Accepted by (150) uished by Accepted by Date/Time Ref. No	COMMENTS/REQUE	STS:			TARGET GC/UVF ANALY	TES:		-	
wished by Date/Time Accepted by Date/Time If 3rd MM II/1/19 (150 Accepted by Date/Time Ref. No	Relinguis	had by					×.		
uished by Accepted by Date/Time Ref. No	1) - 1			Accepte	yd by	Date/Time	RED Lab	TICE ONLY	
Accepted by Date/Time	gan Herend			MW	W///19		NED LAD	ONE	
	Relinquis	hed by		Accepte		Date/Time			
Net. NO									
					,	N N	er. No	١	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

November 7, 2019

Jamie Honeycutt S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: Dunn, NC

Client Job Number:

Project Number: 4305-19-161

Laboratory Work Order Number: 19K0022

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on October 31, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	6
19K0022-01	6
Sample Preparation Information	8
QC Data	9
Volatile Organic Compounds by GC/MS	9
B245122	9
Flag/Qualifier Summary	14
Certifications	15
Chain of Custody/Sample Receipt	18

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616 ATTN: Jamie Honeycutt

REPORT DATE: 11/7/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-19-161

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19K0022

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Dunn, NC

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB

TW-1 19K0022-01 Ground Water SW-846 8260D

EXECUTIVE SUMMARY

Client ID: TW-1 Lab ID: 19K0022-01

Analyte	Results/Qua	l	DL	RL	Units	Method
1,2,4-Trimethylbenzene	2500		18	100	$\mu g/L$	SW-846 8260D
1,3,5-Trimethylbenzene	660		14	100	$\mu g/L$	SW-846 8260D
Benzene	3100		18	100	$\mu g/L$	SW-846 8260D
Ethylbenzene	2800		13	100	$\mu g/L$	SW-846 8260D
Isopropylbenzene (Cumene)	160		17	100	$\mu g/L$	SW-846 8260D
m+p Xylene	9000		30	200	$\mu g/L$	SW-846 8260D
Methyl tert-Butyl Ether (MTBE)	1800		25	100	$\mu g/L$	SW-846 8260D
Naphthalene	240		31	200	$\mu g/L$	SW-846 8260D
n-Butylbenzene	82	J	21	100	$\mu g/L$	SW-846 8260D
n-Propylbenzene	410		13	100	$\mu g/L$	SW-846 8260D
o-Xylene	4200		17	100	$\mu g/L$	SW-846 8260D
sec-Butylbenzene	37	J	16	100	$\mu g/L$	SW-846 8260D
tert-Butyl Alcohol (TBA)	1500	J	420	2000	$\mu g/L$	SW-846 8260D
Toluene	12000		14	100	$\mu g/L$	SW-846 8260D

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 8260D elevated reporting limits for sample 19K0022-01 due to high concentrations of target compounds.

SW-846 8260D

Qualifications:

RL-11

Elevated reporting limit due to high concentration of target compounds.

Analyte & Samples(s) Qualified:

19K0022-01[TW-1]

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

Bromomethane

B245122-BS1, B245122-BSD1, S042311-CCV1

Chloromethane

B245122-BS1, B245122-BSD1, S042311-CCV1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Technical Representative

Lua Warrengton

Project Location: Dunn, NC Sample Description: Work Order: 19K0022

Date Received: 10/31/2019 Field Sample #: TW-1

Sampled: 10/31/2019 12:10

Sample ID: 19K0022-01 Sample Matrix: Ground Water

Sample Flags: RL-11			Volatile	e Organic Co	mpounds by G	C/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	ND	5000	380	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Acrylonitrile	ND	500	52	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
tert-Amyl Methyl Ether (TAME)	ND	50	14	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Benzene	3100	100	18	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Bromobenzene	ND	100	15	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Bromochloromethane	ND	100	32	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Bromodichloromethane	ND	50	16	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Bromoform	ND	100	46	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Bromomethane	ND	200	78	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
2-Butanone (MEK)	ND	2000	190	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
tert-Butyl Alcohol (TBA)	1500	2000	420	$\mu g/L$	100	J	SW-846 8260D	11/5/19	11/6/19 11:38	EEH
n-Butylbenzene	82	100	21	$\mu g/L$	100	J	SW-846 8260D	11/5/19	11/6/19 11:38	EEH
sec-Butylbenzene	37	100	16	$\mu g/L$	100	J	SW-846 8260D	11/5/19	11/6/19 11:38	EEH
tert-Butylbenzene	ND	100	17	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	50	16	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Carbon Disulfide	ND	500	440	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Carbon Tetrachloride	ND	100	11	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Chlorobenzene	ND	100	15	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Chlorodibromomethane	ND	50	21	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Chloroethane	ND	200	35	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Chloroform	ND	200	17	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Chloromethane	ND	200	45	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
2-Chlorotoluene	ND	100	12	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
4-Chlorotoluene	ND	100	14	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	500	53	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,2-Dibromoethane (EDB)	ND	50	19	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Dibromomethane	ND	100	37	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,2-Dichlorobenzene	ND	100	16	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,3-Dichlorobenzene	ND	100	12	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,4-Dichlorobenzene	ND	100	13	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
trans-1,4-Dichloro-2-butene	ND	200	31	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Dichlorodifluoromethane (Freon 12)	ND	200	26	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,1-Dichloroethane	ND	100	16	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,2-Dichloroethane	ND	100	41	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,1-Dichloroethylene	ND	100	32	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
cis-1,2-Dichloroethylene	ND	100	13	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
trans-1,2-Dichloroethylene	ND	100	31	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,2-Dichloropropane	ND	100	20	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,3-Dichloropropane	ND	50	11	μg/L μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
2,2-Dichloropropane	ND	100	20	μg/L μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,1-Dichloropropene	ND	200	16	μg/L μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
cis-1,3-Dichloropropene	ND	50	13	μg/L μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
trans-1,3-Dichloropropene	ND	50	23	μg/L μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Diethyl Ether	ND	200	34		100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Dieniji Dulei	ND	200	J +	μg/L	100		5 W-0+0 0200D	11/3/17	Page 6	

Page 6 of 20

Project Location: Dunn, NC Sample Description: Work Order: 19K0022

Date Received: 10/31/2019 Field Sample #: TW-1

Sampled: 10/31/2019 12:10

Sample ID: 19K0022-01 Sample Matrix: Ground Water

Sample Flags: RL-11

	D 14	Dī	DI	TT */	Dil	FI/C 1	M.a. 1	Date	Date/Time	A 1
Analyte Diisopropyl Ether (DIPE)	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analys
1,4-Dioxane	ND	50	17	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
	ND	5000	2200	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Ethylbenzene	2800	100	13	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Hexachlorobutadiene	ND	60	47	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
2-Hexanone (MBK)	ND	1000	150	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Isopropylbenzene (Cumene)	160	100	17	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
p-Isopropyltoluene (p-Cymene)	ND	100	20	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Methyl tert-Butyl Ether (MTBE)	1800	100	25	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Methylene Chloride	ND	500	34	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
4-Methyl-2-pentanone (MIBK)	ND	1000	170	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Naphthalene	240	200	31	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
n-Propylbenzene	410	100	13	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Styrene	ND	100	11	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,1,1,2-Tetrachloroethane	ND	100	27	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,1,2,2-Tetrachloroethane	ND	50	22	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Tetrachloroethylene	ND	100	18	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Tetrahydrofuran	ND	1000	51	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Toluene	12000	100	14	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,2,3-Trichlorobenzene	ND	500	57	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,2,4-Trichlorobenzene	ND	100	40	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,3,5-Trichlorobenzene	ND	100	30	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,1,1-Trichloroethane	ND	100	20	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,1,2-Trichloroethane	ND	100	16	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Trichloroethylene	ND	100	24	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Trichlorofluoromethane (Freon 11)	ND	200	33	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,2,3-Trichloropropane	ND	200	25	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	100	32	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,2,4-Trimethylbenzene	2500	100	18	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
1,3,5-Trimethylbenzene	660	100	14	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Vinyl Chloride	ND	200	45	$\mu g/L$	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
m+p Xylene	9000	200	30	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
o-Xylene	4200	100	17	μg/L	100		SW-846 8260D	11/5/19	11/6/19 11:38	EEH
Surrogates		% Reco	very	Recovery Limi	ts	Flag/Qual				
1,2-Dichloroethane-d4		93.2		70-130					11/6/19 11:38	
Toluene-d8		100		70-130					11/6/19 11:38	

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19K0022-01 [TW-1]	B245122	0.05	5.00	11/05/19

Ethylbenzene

Hexachlorobutadiene

2-Hexanone (MBK)

Isopropylbenzene (Cumene)

p-Isopropyltoluene (p-Cymene)

Methyl tert-Butyl Ether (MTBE)

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B245122 - SW-846 5030B										
Blank (B245122-BLK1)				Prepared: 11	/05/19 Anal	yzed: 11/06/1	.9			
Acetone	ND	50	μg/L							
Acrylonitrile	ND	5.0	$\mu g/L$							
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$							
Benzene	ND	1.0	$\mu g/L$							
Bromobenzene	ND	1.0	$\mu g/L$							
Bromochloromethane	ND	1.0	$\mu g/L$							
Bromodichloromethane	ND	0.50	$\mu g/L$							
Bromoform	ND	1.0	$\mu \text{g/L}$							
Bromomethane	ND	2.0	$\mu \text{g/L}$							
-Butanone (MEK)	ND	20	$\mu \text{g/L}$							
ert-Butyl Alcohol (TBA)	ND	20	$\mu \text{g/L}$							
-Butylbenzene	ND	1.0	$\mu g \! / \! L$							
ec-Butylbenzene	ND	1.0	$\mu \text{g/L}$							
ert-Butylbenzene	ND	1.0	$\mu \text{g/L}$							
ert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$							
Carbon Disulfide	ND	5.0	$\mu g \! / \! L$							
Carbon Tetrachloride	ND	1.0	μg/L							
Chlorobenzene	ND	1.0	$\mu g/L$							
Chlorodibromomethane	ND	0.50	$\mu g/L$							
hloroethane	ND	2.0	$\mu g/L$							
hloroform	ND	2.0	$\mu g/L$							
hloromethane	ND	2.0	$\mu g/L$							
-Chlorotoluene	ND	1.0	$\mu g/L$							
-Chlorotoluene	ND	1.0	μg/L							
,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L							
,2-Dibromoethane (EDB)	ND	0.50	μg/L							
Dibromomethane	ND	1.0	μg/L							
,2-Dichlorobenzene	ND	1.0	μg/L							
,3-Dichlorobenzene	ND	1.0	μg/L							
,4-Dichlorobenzene	ND	1.0	μg/L							
rans-1,4-Dichloro-2-butene	ND	2.0	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
,1-Dichloroethane	ND	1.0	μg/L							
,2-Dichloroethane	ND	1.0	μg/L							
,1-Dichloroethylene	ND	1.0	μg/L							
is-1,2-Dichloroethylene	ND	1.0	μg/L							
rans-1,2-Dichloroethylene	ND	1.0	μg/L							
,2-Dichloropropane	ND	1.0	μg/L							
,3-Dichloropropane	ND	0.50	μg/L							
,2-Dichloropropane	ND	1.0	μg/L							
1-Dichloropropene	ND ND	2.0	μg/L							
is-1,3-Dichloropropene	ND ND	0.50	μg/L							
rans-1,3-Dichloropropene	ND ND	0.50	μg/L							
Diethyl Ether	ND ND	2.0	μg/L μg/L							
Diisopropyl Ether (DIPE)	ND ND	0.50	μg/L μg/L							
,4-Dioxane	ND ND	50	μg/L μg/L							
Zdadkana	ND	30	μg/L							

1.0

0.60

10

1.0

1.0

1.0

ND

ND

ND

ND

ND

ND

 $\mu g \! / \! L$

 $\mu g \! / \! L$

 $\mu g \! / \! L$

 $\mu \text{g/L}$

 $\mu g \! / \! L$

 $\mu g/L$

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
			-			-			•	
atch B245122 - SW-846 5030B				Prepared: 11	/05/10 Analy	zad: 11/06/1	0			
lank (B245122-BLK1) Methylene Chloride	ND	5.0	μg/L	riepaieu. 11/	103/19 Allaly	/zeu. 11/00/1	9			
-Methyl-2-pentanone (MIBK)	ND ND	10	μg/L μg/L							
aphthalene	ND ND	2.0	μg/L μg/L							
Propylbenzene		1.0	μg/L μg/L							
tyrene	ND	1.0	μg/L μg/L							
1,1,2-Tetrachloroethane	ND	1.0	μg/L μg/L							
1,2,2-Tetrachloroethane	ND	0.50	μg/L μg/L							
etrachloroethylene	ND	1.0	μg/L μg/L							
etrahydrofuran	ND	1.0								
bluene	ND		μg/L							
	ND	1.0	μg/L							
2,3-Trichlorobenzene	ND	5.0	μg/L							
2,4-Trichlorobenzene	ND	1.0	μg/L							
3,5-Trichlorobenzene	ND	1.0	μg/L							
1,1-Trichloroethane	ND	1.0	μg/L							
1,2-Trichloroethane	ND	1.0	μg/L							
richloroethylene	ND	1.0	μg/L							
richlorofluoromethane (Freon 11)	ND	2.0	μg/L							
2,3-Trichloropropane	ND	2.0	μg/L							
1,2-Trichloro-1,2,2-trifluoroethane (Freon 3)	ND	1.0	μg/L							
2,4-Trimethylbenzene	ND	1.0	μg/L							
3,5-Trimethylbenzene	ND	1.0	μg/L							
inyl Chloride	ND	2.0	μg/L							
+p Xylene	ND	2.0	μg/L							
Xylene	ND	1.0	μg/L							
nrrogate: 1,2-Dichloroethane-d4	23.6		μg/L	25.0		94.4	70-130			
nrogate: Toluene-d8	24.4		$\mu g/L$	25.0		97.4	70-130			
rrogate: 4-Bromofluorobenzene	24.4		$\mu g/L$	25.0		97.4	70-130			
CS (B245122-BS1)				Prepared: 11	/05/19 Analy	zed: 11/06/1	9			
						00.7	=0.460			
cetone	88.7	50	μg/L	100		88.7	70-160			
	88.7 8.30	50 5.0	μg/L μg/L	100 10.0		83.0	70-160 70-130			
crylonitrile										
crylonitrile rt-Amyl Methyl Ether (TAME)	8.30	5.0	$\mu g/L$	10.0		83.0	70-130			
crylonitrile rt-Amyl Methyl Ether (TAME) enzene	8.30 9.48	5.0 0.50	μg/L μg/L	10.0 10.0		83.0 94.8	70-130 70-130			
crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene	8.30 9.48 10.7	5.0 0.50 1.0	μg/L μg/L μg/L	10.0 10.0 10.0		83.0 94.8 107	70-130 70-130 70-130			
crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane	8.30 9.48 10.7 10.4	5.0 0.50 1.0 1.0	μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0		83.0 94.8 107 104	70-130 70-130 70-130 70-130			
crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane	8.30 9.48 10.7 10.4 10.4	5.0 0.50 1.0 1.0	μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0		83.0 94.8 107 104 104	70-130 70-130 70-130 70-130 70-130			
crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform	8.30 9.48 10.7 10.4 10.4	5.0 0.50 1.0 1.0 1.0 0.50	μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0		83.0 94.8 107 104 104	70-130 70-130 70-130 70-130 70-130 70-130			V-20
crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane	8.30 9.48 10.7 10.4 10.4 10.5 9.77	5.0 0.50 1.0 1.0 1.0 0.50	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0		83.0 94.8 107 104 104 105 97.7	70-130 70-130 70-130 70-130 70-130 70-130			V-20
crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK)	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0		83.0 94.8 107 104 104 105 97.7 98.8	70-130 70-130 70-130 70-130 70-130 70-130 40-160			V-20
crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA)	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		83.0 94.8 107 104 104 105 97.7 98.8 87.5	70-130 70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160			V-20
crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA)	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		83.0 94.8 107 104 104 105 97.7 98.8 87.5 80.3	70-130 70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160			V-20
crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 20 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		83.0 94.8 107 104 105 97.7 98.8 87.5 80.3 98.1	70-130 70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130			V-20
crylonitrile rt-Amyl Methyl Ether (TAME) crzene romobenzene romochloromethane romodichloromethane romomethane romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butylbenzene rt-Butylbenzene	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		83.0 94.8 107 104 105 97.7 98.8 87.5 80.3 98.1 111 109	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130			V-20
crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romomothane romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butyl Ethyl Ether (TBEE)	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		83.0 94.8 107 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130			V-20
crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24 11.8	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		83.0 94.8 107 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4 118	70-130 70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130			V-20
crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butyl Ether (TBEE) arbon Disulfide arbon Tetrachloride	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24 11.8 10.3	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 20 1.0 1.0 0.50 5.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		83.0 94.8 107 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4 118 103	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130			V-20
crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene cc-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorobenzene	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24 11.8 10.3 11.4	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 0.50 5.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		83.0 94.8 107 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4 118 103 114	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130			V-20
crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romomethane romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene rc-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorobenzene hlorodibromomethane	8.30 9.48 10.7 10.4 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24 11.8 10.3 11.4 10.0	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 0.50 5.0 1.0 0.50	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		83.0 94.8 107 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4 118 103 114 100	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			V-20
cectone crylonitrile crt-Amyl Methyl Ether (TAME) cenzene cromobenzene cromochloromethane cromodichloromethane cro	8.30 9.48 10.7 10.4 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24 11.8 10.3 11.4 10.0 11.6	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 0.50 5.0 1.0 0.50	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		83.0 94.8 107 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4 118 103 114 100 116	70-130 70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			V-20
crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romomethane -Butanone (MEK) rt-Butyl Alcohol (TBA) -Butylbenzene ex-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorobenzene hlorodibromomethane	8.30 9.48 10.7 10.4 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24 11.8 10.3 11.4 10.0	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 0.50 5.0 1.0 0.50	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		83.0 94.8 107 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4 118 103 114 100	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			V-20

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B245122 - SW-846 5030B											
LCS (B245122-BS1)				Prepared: 11	/05/19 Analyze	ed: 11/06/1	9				
4-Chlorotoluene	10.5	1.0	μg/L	10.0		105	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	9.08	5.0	$\mu g/L$	10.0		90.8	70-130				
1,2-Dibromoethane (EDB)	10.8	0.50	$\mu \text{g/L}$	10.0		108	70-130				
Dibromomethane	10.4	1.0	$\mu g/L$	10.0		104	70-130				
1,2-Dichlorobenzene	11.0	1.0	$\mu \text{g/L}$	10.0		110	70-130				
1,3-Dichlorobenzene	11.5	1.0	$\mu g/L$	10.0		115	70-130				
1,4-Dichlorobenzene	11.2	1.0	$\mu g/L$	10.0		112	70-130				
trans-1,4-Dichloro-2-butene	7.67	2.0	$\mu g/L$	10.0		76.7	70-130				
Dichlorodifluoromethane (Freon 12)	8.34	2.0	μg/L	10.0		83.4	40-160				
1,1-Dichloroethane	10.7	1.0	μg/L	10.0		107	70-130				
1,2-Dichloroethane	9.98	1.0	μg/L	10.0		99.8	70-130				
1,1-Dichloroethylene	11.0	1.0	μg/L	10.0		110	70-130				
cis-1,2-Dichloroethylene	10.6	1.0	μg/L	10.0		106	70-130				
trans-1,2-Dichloroethylene	10.5	1.0	μg/L	10.0		105	70-130				
1,2-Dichloropropane	10.8	1.0	μg/L	10.0		108	70-130				
1,3-Dichloropropane	10.3	0.50	μg/L	10.0		103	70-130				
2,2-Dichloropropane	8.49	1.0	μg/L	10.0		84.9	40-130				
1,1-Dichloropropene	10.5	2.0	μg/L	10.0		105	70-130				
cis-1,3-Dichloropropene	10.0	0.50	μg/L	10.0		100	70-130				
rans-1,3-Dichloropropene	9.41	0.50	μg/L	10.0		94.1	70-130				
Diethyl Ether	10.8	2.0	μg/L	10.0		108	70-130				
Diisopropyl Ether (DIPE)	10.1	0.50	μg/L	10.0		101	70-130				
I,4-Dioxane	86.6	50	μg/L	100		86.6	40-130				
Ethylbenzene	11.0	1.0	μg/L	10.0		110	70-130				
Hexachlorobutadiene	9.83	0.60	μg/L	10.0		98.3	70-130				
2-Hexanone (MBK)	84.3	10	μg/L	100		84.3	70-160				
(Sopropylbenzene (Cumene)	11.1	1.0	μg/L	10.0		111	70-130				
p-Isopropyltoluene (p-Cymene)	10.7	1.0	μg/L	10.0		107	70-130				
Methyl tert-Butyl Ether (MTBE)	10.3	1.0	μg/L	10.0		103	70-130				
Methylene Chloride	11.0	5.0	μg/L	10.0		110	70-130				
4-Methyl-2-pentanone (MIBK)	86.6	10	μg/L	100		86.6	70-160				
Naphthalene	7.64	2.0	μg/L	10.0		76.4	40-130				
n-Propylbenzene	10.6	1.0	μg/L	10.0		106	70-130				
Styrene	10.9	1.0	μg/L	10.0		109	70-130				
1,1,2-Tetrachloroethane	11.3	1.0	μg/L	10.0		113	70-130				
1,1,2,2-Tetrachloroethane	10.8	0.50	μg/L	10.0		108	70-130				
Tetrachloroethylene	11.5	1.0	μg/L	10.0		115	70-130				
Tetrahydrofuran Toluene	9.60	10	μg/L	10.0		96.0	70-130			J	
	10.9	1.0	μg/L	10.0		109	70-130				
1,2,3-Trichlorobenzene	8.06	5.0	μg/L μg/I	10.0		80.6	70-130				
1,2,4-Trichlorobenzene	8.70	1.0	μg/L μg/I	10.0		87.0	70-130				
1,3,5-Trichlorobenzene	9.18	1.0	μg/L μg/I	10.0		91.8	70-130				
1,1,1-Trichloroethane 1,1,2-Trichloroethane	10.4	1.0 1.0	μg/L μg/L	10.0 10.0		104 110	70-130 70-130				
Trichloroethylene	11.0	1.0	μg/L μg/L	10.0		111	70-130				
Trichlorofluoromethane (Freon 11)	11.1	2.0	μg/L μg/L	10.0			70-130				
1,2,3-Trichloropropane	9.61	2.0	μg/L μg/L	10.0		96.1	70-130 70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.3 11.5	1.0	μg/L μg/L	10.0		103 115	70-130				
1,2,4-Trimethylbenzene	10.8	1.0	$\mu g/L$	10.0		108	70-130				
1,3,5-Trimethylbenzene	10.4	1.0	μg/L	10.0		104	70-130				
Vinyl Chloride	9.58	2.0	μg/L	10.0		95.8	40-160				

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B245122 - SW-846 5030B											
LCS (B245122-BS1)				Prepared: 11	1/05/19 Analy	yzed: 11/06/1	9				
m+p Xylene	21.3	2.0	μg/L	20.0		106	70-130				
o-Xylene	11.1	1.0	$\mu g/L$	10.0		111	70-130				
Surrogate: 1,2-Dichloroethane-d4	23.4		μg/L	25.0		93.6	70-130				
Surrogate: Toluene-d8	25.0		μg/L	25.0		99.9	70-130				
Surrogate: 4-Bromofluorobenzene	24.6		μg/L	25.0		98.4	70-130				
LCS Dup (B245122-BSD1)				Prepared: 11	1/05/19 Analy	yzed: 11/06/1	9				
Acetone	91.2	50	μg/L	100		91.2	70-160	2.72	25		 †
Acrylonitrile	9.01	5.0	μg/L	10.0		90.1	70-130	8.20	25		
tert-Amyl Methyl Ether (TAME)	9.41	0.50	μg/L	10.0		94.1	70-130	0.741	25		
Benzene	10.4	1.0	μg/L	10.0		104	70-130	3.23	25		
Bromobenzene	10.0	1.0	μg/L	10.0		100	70-130	4.00	25		
Bromochloromethane	10.4	1.0	μg/L	10.0		104	70-130	0.865	25		
Bromodichloromethane	10.2	0.50	μg/L	10.0		102	70-130	3.68	25		
Bromoform	10.2	1.0	μg/L	10.0		102	70-130	3.91	25		
Bromomethane	9.76	2.0	μg/L	10.0		97.6	40-160	1.22	25	V-20	†
2-Butanone (MEK)	89.8	20	μg/L	100		89.8	40-160	2.63	25	V-20	†
tert-Butyl Alcohol (TBA)	83.6	20	μg/L μg/L	100		83.6	40-160	4.00	25		†
n-Butylbenzene	9.65	1.0	μg/L μg/L	10.0		96.5	70-130	1.64	25		1
sec-Butylbenzene	9.63	1.0	μg/L μg/L	10.0		110	70-130	1.18	25		
tert-Butylbenzene		1.0	μg/L μg/L	10.0		108	70-130	1.11	25		
tert-Butylochizene tert-Butyl Ethyl Ether (TBEE)	10.8	0.50	μg/L μg/L								
Carbon Disulfide	9.17	5.0		10.0		91.7	70-130	0.760	25 25		
Carbon Tetrachloride	10.8	1.0	μg/L	10.0		108	70-130	8.59	25 25		
Chlorobenzene	10.2		μg/L	10.0		102	70-130	1.46	25		
Chlorodibromomethane	11.5	1.0	μg/L	10.0		115	70-130	0.610	25		
Chloroethane	9.73	0.50	μg/L	10.0		97.3	70-130	2.84	25		
Chloroform	10.8	2.0	μg/L	10.0		108	70-130	7.24	25		
	10.1	2.0	μg/L	10.0		101	70-130	2.53	25	11.20	
Chloromethane	8.77	2.0	μg/L	10.0		87.7	40-160	2.81	25	V-20	†
2-Chlorotoluene	10.7	1.0	μg/L	10.0		107	70-130	0.845	25		
4-Chlorotoluene	10.4	1.0	μg/L	10.0		104	70-130	1.34	25		
1,2-Dibromo-3-chloropropane (DBCP)	8.90	5.0	μg/L	10.0		89.0	70-130	2.00	25		
1,2-Dibromoethane (EDB)	10.7	0.50	μg/L	10.0		107	70-130	1.58	25		
Dibromomethane	10.2	1.0	μg/L	10.0		102	70-130	2.33	25		
1,2-Dichlorobenzene	11.0	1.0	μg/L	10.0		110	70-130	0.181	25		
1,3-Dichlorobenzene	11.4	1.0	μg/L	10.0		114	70-130	0.872	25		
1,4-Dichlorobenzene	10.9	1.0	μg/L	10.0		109	70-130	3.07	25		
trans-1,4-Dichloro-2-butene	8.71	2.0	μg/L	10.0		87.1	70-130	12.7	25		
Dichlorodifluoromethane (Freon 12)	8.23	2.0	μg/L	10.0		82.3	40-160	1.33	25		†
1,1-Dichloroethane	10.2	1.0	μg/L	10.0		102	70-130	4.40	25		
1,2-Dichloroethane	9.91	1.0	μg/L	10.0		99.1	70-130	0.704	25		
1,1-Dichloroethylene	10.6	1.0	μg/L	10.0		106	70-130	3.90	25		
cis-1,2-Dichloroethylene	10.1	1.0	μg/L	10.0		101	70-130	5.01	25		
trans-1,2-Dichloroethylene	10.3	1.0	μg/L	10.0		103	70-130	2.50	25		
1,2-Dichloropropane	10.8	1.0	μg/L	10.0		108	70-130	0.649	25		
1,3-Dichloropropane	10.4	0.50	μg/L	10.0		104	70-130	0.870	25		
2,2-Dichloropropane	8.15	1.0	μg/L	10.0		81.5	40-130	4.09	25		†
1,1-Dichloropropene	10.4	2.0	μg/L	10.0		104	70-130	1.06	25		
cis-1,3-Dichloropropene	9.73	0.50	μg/L	10.0		97.3	70-130	3.14	25		
trans-1,3-Dichloropropene	9.66	0.50	$\mu g/L$	10.0		96.6	70-130	2.62	25		
Diethyl Ether	10.3	2.0	$\mu g/L$	10.0		103	70-130	4.65	25		
Diisopropyl Ether (DIPE)	9.94	0.50	$\mu g/L$	10.0		99.4	70-130	1.99	25		

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B245122 - SW-846 5030B											
LCS Dup (B245122-BSD1)				Prepared: 11	/05/19 Anal	yzed: 11/06/1	.9				
1,4-Dioxane	92.6	50	μg/L	100		92.6	40-130	6.72	50		†‡
Ethylbenzene	10.7	1.0	μg/L	10.0		107	70-130	2.12	25		
Hexachlorobutadiene	10.1	0.60	μg/L	10.0		101	70-130	2.41	25		
2-Hexanone (MBK)	84.4	10	μg/L	100		84.4	70-160	0.0712	25		†
Isopropylbenzene (Cumene)	10.6	1.0	μg/L	10.0		106	70-130	3.96	25		
p-Isopropyltoluene (p-Cymene)	10.5	1.0	μg/L	10.0		105	70-130	2.36	25		
Methyl tert-Butyl Ether (MTBE)	10.2	1.0	μg/L	10.0		102	70-130	0.585	25		
Methylene Chloride	10.6	5.0	μg/L	10.0		106	70-130	3.60	25		
4-Methyl-2-pentanone (MIBK)	90.1	10	μg/L	100		90.1	70-160	4.02	25		†
Naphthalene	8.02	2.0	μg/L	10.0		80.2	40-130	4.85	25		†
n-Propylbenzene	10.3	1.0	μg/L	10.0		103	70-130	2.11	25		
Styrene	10.4	1.0	$\mu g/L$	10.0		104	70-130	4.90	25		
1,1,1,2-Tetrachloroethane	11.3	1.0	μg/L	10.0		113	70-130	0.265	25		
1,1,2,2-Tetrachloroethane	11.1	0.50	μg/L	10.0		111	70-130	3.01	25		
Tetrachloroethylene	11.5	1.0	μg/L	10.0		115	70-130	0.348	25		
Tetrahydrofuran	10.0	10	μg/L	10.0		100	70-130	4.28	25		
Toluene	10.5	1.0	μg/L	10.0		105	70-130	3.82	25		
1,2,3-Trichlorobenzene	7.86	5.0	$\mu g/L$	10.0		78.6	70-130	2.51	25		
1,2,4-Trichlorobenzene	8.34	1.0	$\mu g/L$	10.0		83.4	70-130	4.23	25		
1,3,5-Trichlorobenzene	8.42	1.0	$\mu g/L$	10.0		84.2	70-130	8.64	25		
1,1,1-Trichloroethane	9.84	1.0	$\mu g/L$	10.0		98.4	70-130	5.24	25		
1,1,2-Trichloroethane	11.0	1.0	$\mu g/L$	10.0		110	70-130	0.364	25		
Trichloroethylene	11.1	1.0	$\mu g/L$	10.0		111	70-130	0.180	25		
Trichlorofluoromethane (Freon 11)	9.30	2.0	$\mu g/L$	10.0		93.0	70-130	3.28	25		
1,2,3-Trichloropropane	10.0	2.0	$\mu g/L$	10.0		100	70-130	2.85	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	11.1	1.0	μg/L	10.0		111	70-130	4.07	25		
1,2,4-Trimethylbenzene	10.7	1.0	$\mu \text{g/L}$	10.0		107	70-130	0.650	25		
1,3,5-Trimethylbenzene	9.97	1.0	μg/L	10.0		99.7	70-130	3.93	25		
Vinyl Chloride	9.25	2.0	$\mu g/L$	10.0		92.5	40-160	3.51	25		†
m+p Xylene	21.3	2.0	μg/L	20.0		106	70-130	0.0470	25		
o-Xylene	11.1	1.0	μg/L	10.0		111	70-130	0.541	25		
Surrogate: 1,2-Dichloroethane-d4	22.9		μg/L	25.0		91.5	70-130				
Surrogate: Toluene-d8	25.2		$\mu g/L$	25.0		101	70-130				
Surrogate: 4-Bromofluorobenzene	24.6		$\mu g/L$	25.0		98.5	70-130				

V-20

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
RL-11	Elevated reporting limit due to high concentration of target compounds.

Data validation is not affected since sample result was "not detected" for this compound.

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260D in Water		
Acetone	NC	
Acrylonitrile	NC	
tert-Amyl Methyl Ether (TAME)	NC	
Benzene	NC	
Bromobenzene	NC	
Bromochloromethane	NC	
Bromodichloromethane	NC	
Bromoform	NC	
Bromomethane	NC	
2-Butanone (MEK)	NC	
tert-Butyl Alcohol (TBA)	NC	
n-Butylbenzene	NC	
sec-Butylbenzene	NC	
tert-Butylbenzene	NC	
tert-Butyl Ethyl Ether (TBEE)	NC	
Carbon Disulfide	NC	
Carbon Tetrachloride	NC	
Chlorobenzene	NC	
Chlorodibromomethane	NC	
Chloroethane	NC	
Chloroform	NC	
Chloromethane	NC	
2-Chlorotoluene	NC	
4-Chlorotoluene	NC	
1,2-Dibromo-3-chloropropane (DBCP)	NC	
1,2-Dibromoethane (EDB)	NC	
Dibromomethane	NC	
1,2-Dichlorobenzene	NC	
1,3-Dichlorobenzene	NC	
1,4-Dichlorobenzene	NC	
trans-1,4-Dichloro-2-butene	NC	
Dichlorodifluoromethane (Freon 12)	NC	
1,1-Dichloroethane	NC	
1,2-Dichloroethane	NC	
1,1-Dichloroethylene	NC	
cis-1,2-Dichloroethylene	NC	
trans-1,2-Dichloroethylene	NC	
1,2-Dichloropropane	NC	
1,3-Dichloropropane	NC	
2,2-Dichloropropane	NC	
1,1-Dichloropropene	NC	
cis-1,3-Dichloropropene	NC	
trans-1,3-Dichloropropene	NC	
Diethyl Ether	NC	
Diisopropyl Ether (DIPE)	NC	
1,4-Dioxane	NC	
Ethylbenzene	NC	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260D in Water	
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publile Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

	Γ	-			111	R Y K V	1	144	8 (T			na k	akin				en e	NI NE	N. S.	QVI.	egis, Neve Nikolog		NASA.			V.S.	Björ	Vije		Tak	ole o	f Cont	tents
Pageof	# of Containers	² Preservation Code	³ Container Code	Dissolved Metals Samples	Field Filtered	Lab to Filter	selfentes stericiscopologo	Field Filtered	Lab to Filter		1 Matrix Codes: GW = Ground Water	WW = Waste Water DW = Drinking Water	A = Air	SL = Sludge	0 = Other (please	(2)	² Preservation Codes: I = Iced	H = HCL M = Methanol	N = Nitric Acid S = Sulfuric Acid	B = Sodium Bisulfate X = Sodium Hydroxide	T = Sodium Thiosuffate	0 = Other (please	define)	3 <u>Container Codes:</u> 4 = Amber Glass	G = Glass	ST = Sterile	V = Vial S = Summa Canister	T = Tedlar Bag O = Other (please	define)		PCB ONLY Soxhlet	Non Soxhlet	
Doc # 379 Rev 1_03242017 39 Spruce Street East Longmeadow, MA 01028				ANALYSIS REQUESTED																		-	Please use the following codes to indicate possible sample concentration within the Conc Code column above:	H - High; M - Medium; L - Łow; C - Clean; U - Unknown	gram Informa		SWS Landfill IHSB Orphaned Landfill	State Lead	Outer:	WELAC and AllHA-LAP, LLC Accredited	Other	AIHA-LAP, LLC	
com th Carolina)	Requested throatount time.	je J	Rush-Approval/Required	1-Day 🔲 3-Day	2-Day 4-Day	Format: PDF EXCEL		CLP Like Data Pkg Required:		Fax To #:	Ending Composite Grab Watmix Conc.	1210 H J &											Please use the following within I	H . High; M - Med	North Garolina Detection Limit Requirements		SWSL SWSL		Walter		tity Government Municipality		
7770(Fax: 413-525-5405 Email: info@contestlabs.com		FORDOR PO JOSEN NC		1-5878 Pare o 90	7			James T. Honospitt	A STATE OF THE STA	Client Sample ID / Description Bata/Time	6-1E-9/																Date/Time:	Date/Time: Officer		Date/Time: Project Entity	Date/Time:	- The state of the
CON-KEST		Soulyany Names CMC	Some	१ अध्यापि	NCOC	Project Location: むいいい	15	1 5	Invoice Recipient: Lame		Con-Test Work Order#											Comments:			Reliptuished W: (signature)		Received by: (signature)	Relinquished by: (signature)	ceived by: (signature)		inquished by: (signature)	o ceived by: (signature)	20

IMPORTANT!

The wildfires are causing hazardous conditions in California. Learn More

Delivered Friday 11/01/2019 at 9:02 am

DELIVERED

Signed for by: R.PETRIAS

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Autryville, NC US

TO

East Longmeadow, MA US

Shipment Facts

TRACKING NUMBER

411359783302

SERVICE

FedEx Priority Overnight

WEIGHT

53.4 lbs / 24.22 kgs

DELIVERED TO

Shipping/Receiving

TOTAL PIECES

7

TOTAL SHIPMENT WEIGHT

53.4 lbs / 24.22 kgs

RETURN REASON

TERMS

Third Party

PACKAGING
Your Packaging

SPECIAL HANDLING SECTION

Deliver Weekday

STANDARD TRANSIT

(7)

11/01/2019 by 10:30 am

SHIP DATE

(P)

Thu 10/31/2019

ACTUAL DELIVERY Fri 11/01/2019 9:02 am

Travel History

Local Scan Time

Friday, 11/01/2019

9:02 am

East Longmeadow, MA

Delivered

7:45 am

WINDSOR LOCKS, CT

On FedEx vehicle for delivery

6:27 am

EAST GRANBY, CT

At destination sort facility

Page 19 of 20

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Over dampies		Doc# 277 Rev 5 201	7
Login Sample Receipt Checklist - (Rejec	ction Criteria Listing - Usir	ig Acceptance Policy) A	ny False
Statement will be brought to	the attention of the Client	- State True or False	
Client $S + D E$	1 (
Received By NAC	Date 11 ((<u>f)</u> Time	902
How were the samples In Cooler	No Cooler	On Ice	No Ice
received? Direct from Sampling		Ambient	Melted Ice
P. C	Sun# 2	Actual Temp - 4. (
were samples within	ank #	Actual Temp -	
Was Custody Seal Intact?		es Tampered with?	
Was COC Relinquished?		gree With Samples?	
Are there broken/leaking/loose caps on an		nee wiiii oampies:	!
Is COC in ink/ Legible?	ry samples:	- ived within holding time?	
Did COC in this Legible!	Analysis T	Sampler Name	
pertinent Information? Project	ID's +	Collection Dates/Times	
Are Sample labels filled out and legible?		_	
Are there Lab to Filters?		s notified?	
Are there Rushes?		s notified?	
Are there Short Holds?		s notified?	**************************************
s there enough Volume?			
	MS/MSD?	· (-	^
Proper Media/Containers Used?		samples required?	<u>C</u>
Were trip blanks received?	© On COC?		
Do all samples have the proper pH?	Acid	Base	
Vials # Containers: i	#	#	#
Jnp- 1 Liter Amb.	1 Liter Plastic	16 oz	: Amb.
HCL- 3 500 mL Amb.	500 mL Plastic		nb/Clear
Meoh- 250 mL Amb.	250 mL Plastic		nb/Clear
Bisulfate- Flashpoint Flashpoint	Col./Bacteria		nb/Clear
Ol- Other Glass	Other Plastic		core
Thiosulfate- SOC Kit	Plastic Bag	Frozen:	
Sulfuric- Perchlorate	Ziplock		
	Unused Media		
	#	#	#
Unp- 1 Liter Amb.	1 Liter Plastic		: Amb.
HCL- 500 mL Amb.	500 mL Plastic		nb/Clear
Meoh- 250 mL Amb.	250 mL Plastic		nb/Clear
Bisulfate- Col./Bacteria	Flashpoint Other Glass		nb/Clear
OI- Other Plastic	Other Glass	Frozen:	core
Thiosulfate- SOC Kit Sulfuric- Perchlorate	Plastic Bag Ziplock	FIOZEII.	
Comments:	ZIDIUCK		
Johnne Ha.	1.1100.01.0100.01		

Page 20 of 20

January 9, 2020

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: Preliminary Site Assessment Report

NCDOT Project I-5878, WBS Element 53078.1.1

Parcel 93 – Exxon Short Stop

1008 Cumberland Street

Dunn, Harnett County, North Carolina

S&ME Project 4305-19-161

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1900576 REV-01 dated August 9, 2019, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its September 5,2019 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's July 24, 2019, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
93	Circle Enterprises	(Exxon Short Stop)
		1008 E. Cumberland Street, Dunn, NC

The property is developed with an active gasoline/convenience store identified as Exxon Short Stop, which utilizes several petroleum underground storage tanks (USTs). The USTs are located on the northwestern portion of the site, away from the ROW. Information regarding the UST systems listed for this site is provided in the following table:

UST Facility ID No. 0-00-000035486

Number of Tanks	Contents	Capacity (gallons)	Date Installed	Date Removed
1	Gasoline	12,000	5/5/1997	Active USTs
2	Gasoline	10,000	5/5/1997	Active USTs
3	Gasoline	10,000	5/5/1997	Active USTs
4	Diesel	6,000	5/5/1997	Active USTs

The Exxon Short Stop property is not listed with a North Carolina Department of Environmental Quality (NCDEQ) Incident associated with petroleum releases from USTs or aboveground storage tanks. However, the site is located across E. Cumberland Street from Parcel 90 (Shell Food and Tobacco Mart), which is listed with one NCDEQ Incident (Incident #29133-Smokers Friendly Texaco), which includes petroleum impacts to the groundwater above the 15A NCAC 2L Groundwater Quality Standards (2L Standards).

The PSA included a geophysical survey, subsequent limited soil sampling (eight soil borings up to 10 feet below ground surface (ft.-bgs)) and limited groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil and groundwater sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (East Coast Underground, LLC) was also used to locate and mark underground utilities.

Geophysical Survey

On July 25, 2019, S&ME completed Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) surveys within accessible areas of the proposed ROW/easement at Parcel 93. Brief descriptions of these complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired

continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820 "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The presence of vehicles within the requested survey area, however, prevented TDEM data collection in the northwestern corner of the site. The approximate TDEM data collection paths are presented in **Figure 4.** Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and semi-transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 4000 GPR system equipped with a 350 MHz antenna in general accordance with ASTM D6432 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of three GPR profiles (Lines 1 through 3) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. One anomalous area unrelated to known surficial targets was identified in the geophysical data sets (Anomaly A; **Figures 6 and 7).** Anomaly A is characterized by two high amplitude GPR responses spaced approximately eight feet apart and located about 1.5 ft-bgs. These anomalous features may be related to relatively small isolated buried metallic objects. The anomalous features were marked in the field using white spray paint. Example GPR profiles are presented in **Figure 8.**

Soil Sampling

On October 30, 2019, Troxler Geologic, Inc. (Troxler's) drill crew utilized a track mounted Geoprobe® rig to advance eight soil borings (B-1 through B-8) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 93. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I.** Troxler's drill crew advanced the Geoprobe® borings up to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at a depth ranging from approximately five to six ft.-bgs. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the

sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II**.

Petroleum odors and elevated PID readings were not noted in the collected soil samples. Therefore, a soil sample was selected from each boring at varying depth intervals. The soil samples were placed into laboratory supplied containers and transported to RED Lab, LLC (Red Lab) in an insulated cooler with ice for analysis. A total of eight soil samples (one soil sample per boring) were analyzed by RED Lab for TPH-GRO and TPH-DRO using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH-GRO and TPH-DRO were not reported at concentrations exceeding their respective North Carolina TPH Action Levels. TPH-GRO was reported in boring B-4 at the two to four foot depth interval at a concentration of two milligrams per kilograms (mg/kg) which is well below its North Carolina TPH Action Level of 50 mg/kg. TPH-DRO was reported in borings B-1, B-4, B-5, B-6 and B-8 at the two to four foot depth interval at concentrations ranging from 0.82mg/kg to 16.6 mg/kg, which is well below its North Carolina TPH Action Level of 100 mg/kg. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered at a depth ranging from approximately five to six ft.-bgs. Therefore, the Geoprobe® was used to advance one of the soil borings into the groundwater table for the collection of a groundwater sample. Due to the lack of petroleum odors or elevated PID readings, boring B-3 was selected at random for collection of a groundwater sample. A temporary monitor well (TW-1) was installed at boring B-3 to a depth of approximately 6.5 ft.-bgs using a five foot section of one-inch diameter, Schedule 40 PVC well riser attached to a five foot section of 0.01-inch slotted screen that intersected the groundwater table. Groundwater within the temporary monitor well at boring B-3 was measured at 5.2 ft.-bgs. Groundwater was purged from the temporary well until relatively clear using disposable tubing attached to a peristaltic pump. The flow rate was reduced and laboratory supplied containers were filled directly from the tubing, labeled as TW-1 and placed in an insulated cooler with ice for transport to Con-Test Laboratories (Con-Test) for analysis of VOCs by EPA Method 8260 and polycyclic aromatic compounds (PAHs) by EPA Method 8270.

Upon completion of the soil and groundwater sampling, the well materials were removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in

accordance with the procedures specified by NCDEQ. Used gloves and tubing were bagged and disposed offsite.

Groundwater Analytical Results

Based upon analytical results of the groundwater sample analyzed by Con-Test, several petroleum related target constituents were reported at concentrations exceeding their 2L Standards. Benzene was the highest constituent reported above its 2L Standard at a concentration of 62 micrograms per liter (μ g/L), which exceeds its 2L Standard of 1 μ g/L. A summary of the groundwater analytical results is presented in **Table 2** and shown on **Figure 3**. A copy of the laboratory analytical report provided by Con-Test is presented in **Appendix III**.

Conclusion and Recommendations

The geophysical survey identified one anomalous area (Anomaly A) which may be related to relatively small isolated buried metallic objects. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced eight soil borings (B-1 through B-8) to a depth of up to approximately 10 ft.-bgs at the site. Petroleum odors and elevated PID readings were not noted in soil samples collected at the borings. Selected soil samples from the soil borings were analyzed for TPH-GRO and TPH-DRO using UVF spectroscopy.

TPH-GRO and TPH-DRO were not reported at concentrations exceeding their respective North Carolina TPH Action Levels. TPH-GRO was reported in borings B-2 and B-3 at the four to six foot depth interval at concentrations slightly above the laboratory method reporting limits but well below its North Carolina TPH Action Level. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples.

TPH-GRO was reported in boring B-4 and TPH-DRO was reported in borings B-1, B-4, B-5, B-6 and B-8 at the two to four foot depth interval at concentrations above the laboratory method reporting limit but well below the TPH Action Levels.

During the soil boring advancement, groundwater was encountered at a depth ranging from approximately five to six ft.-bgs. One temporary well (TW-1) was installed at soil boring B-3. Groundwater at TW-1 was measured at 5.2 ft.-bgs and analyzed by Con-Test for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. Several petroleum related target constituents were reported at concentrations exceeding their 2L Standards.

Based on the findings of the geophysical survey and analytical results of soil and groundwater samples, it is likely that during construction, NCDOT may encounter marginally impacted soil (below TPH Action Levels) and groundwater impacted with petroleum at the site.

It should also be assumed that saturated petroleum impacted soil will be encountered if construction excavations extend deeper than five ft.-bgs on the site. If construction dewatering is required, petroleum impacted groundwater must be properly disposed or treated at a licensed facility. If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility.

S&ME recommends maintaining an awareness level for the presence of marginally impacted petroleum in the soil (below TPH Action Levels) and impacted groundwater at the site for the safety of workers and the public.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., reinforced concrete, utilities, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of about seven ft.-bgs.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

Docusigned by:

Jamie Honeyeutt

4C890EAEC25F488...

Jamie T Honeycutt Environmental Professional jhoneycutt@smeinc.com

Thomas P. Raymond, P.E., P.M.P. Senior Consultant traymond@smeinc.com

Attachments:

Table 1: Summary of Soil Sampling Results

Table 2: Summary of Groundwater Sampling Results

Figure 1: Vicinity Map **Figure 2:** Site Map

Figure 3: Soil and Groundwater Constituent Map

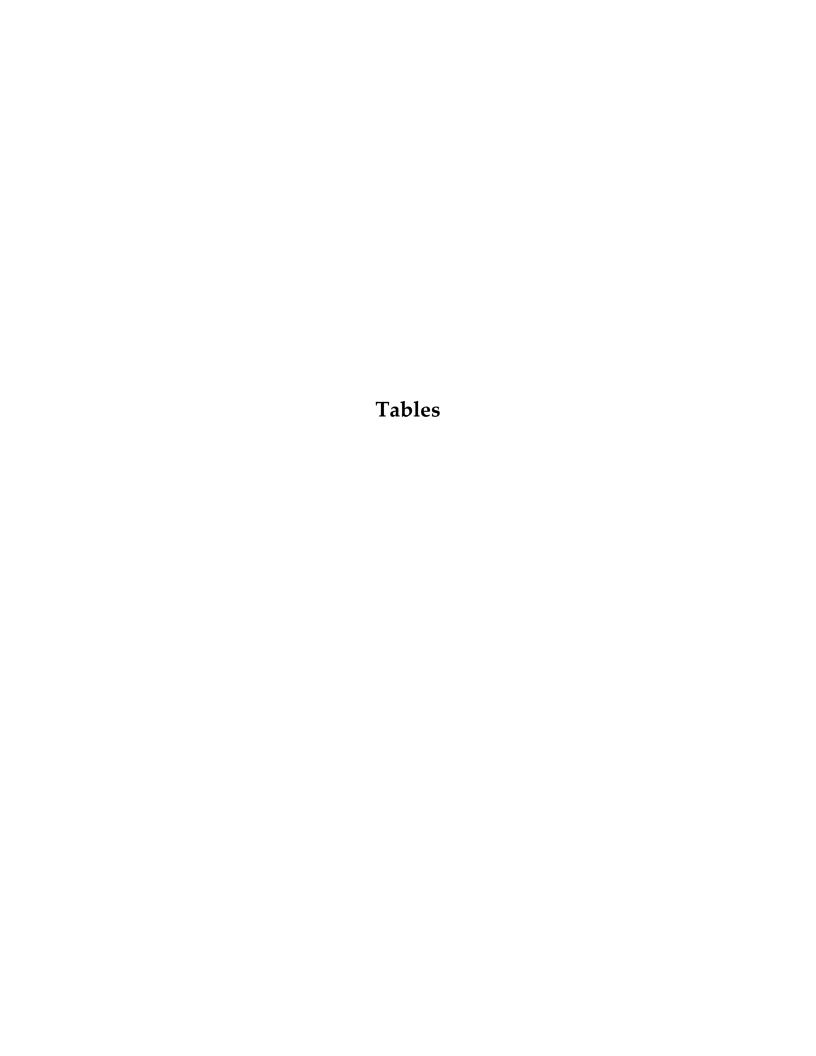
Figure 4: TDEM Path Location Plan

Figure 5: TDEM Data Plot A Figure 6: TDEM Data Plot B

Figure 7: Geophysical Anomaly Location Plan

Figure 8: Example GPR Data – Line 3

Appendix I: Photographs **Appendix II:** Boring Logs


Appendix III: Laboratory Analytical Reports and Chain of Custody

Docusigned by:

Michael Pfaifer

861E52DDEFAE4C7

Michael W. Pfeifer Senior Project Manager mpfeifer@smeinc.com

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5878

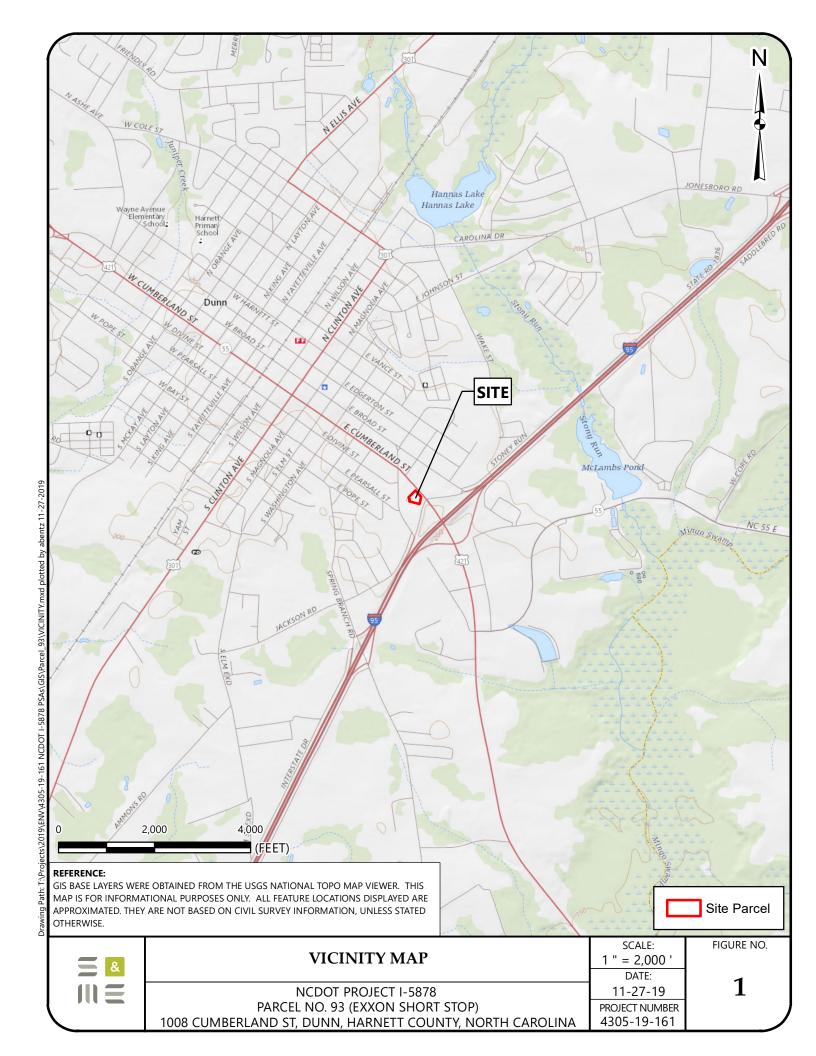
Parcel 93 - (Exxon Short Stop) 1008 Cumberland Street Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161

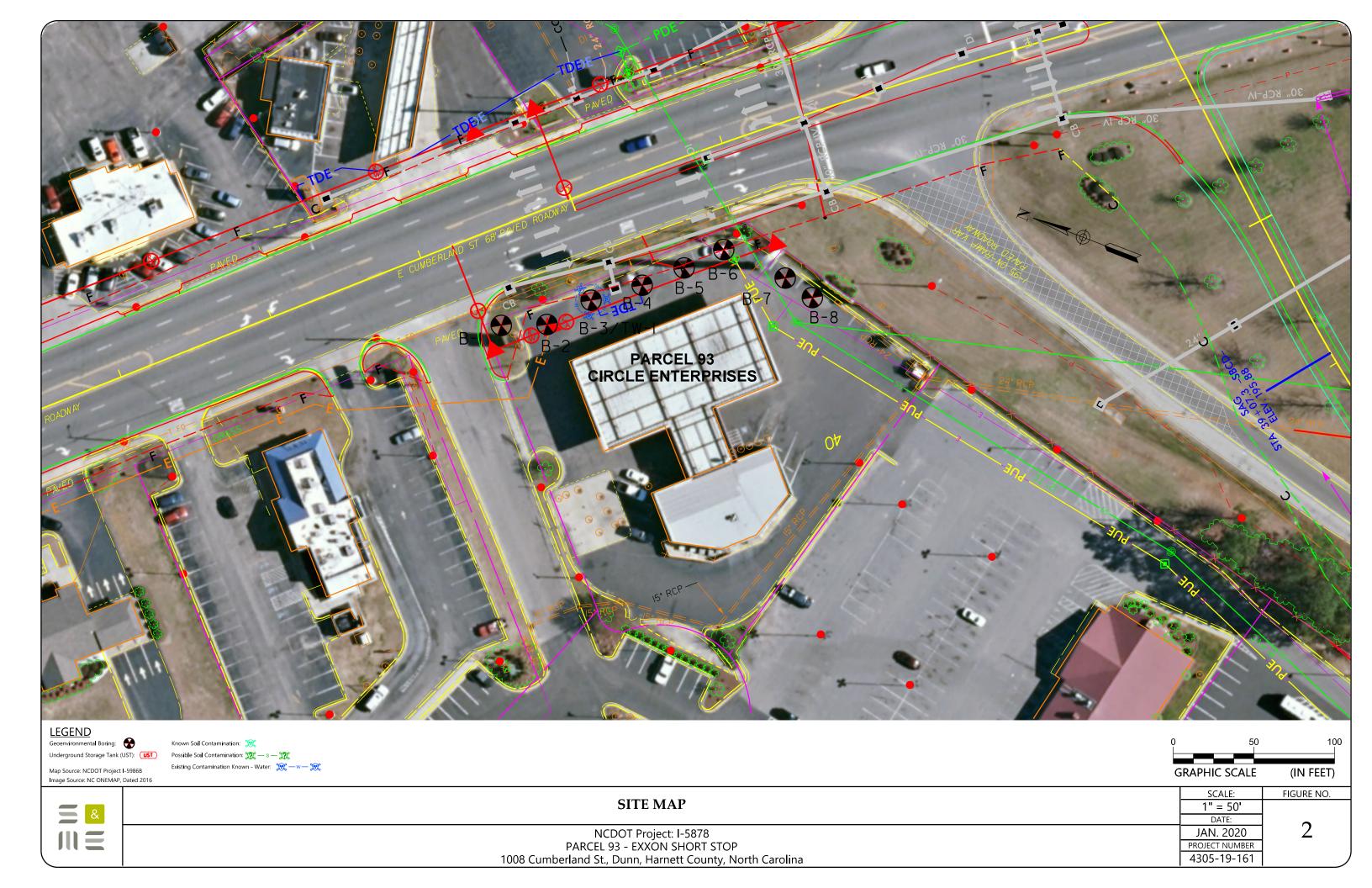
Aı	nalytical Metho	d→	Total Petroleum Hydrocarbons (TPH) Gasolin Range Organics (GRO) and Diesel Range Organics (DRO) by Ultraviolet Fluorescence (UVF) Spectrometry							
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO						
B-1	10/30/2019	2 to 4	<0.61	0.82						
B-2	10/30/2019	2 to 4	<0.35	<0.35						
B-3	10/30/2019	2 to 4	<0.34	<0.34						
B-4	10/30/2019	2 to 4	2	4.1						
B-5	10/30/2019	2 to 4	<0.37	9.1						
B-6	10/30/2019	2 to 4	<0.36	0.97						
B-7	10/30/2019	2 to 4	<0.36	<0.36						
B-8	10/30/2019	2 to 4	<0.38	16.6						
No	orth Carolina T	PH Action Levels	50	100						

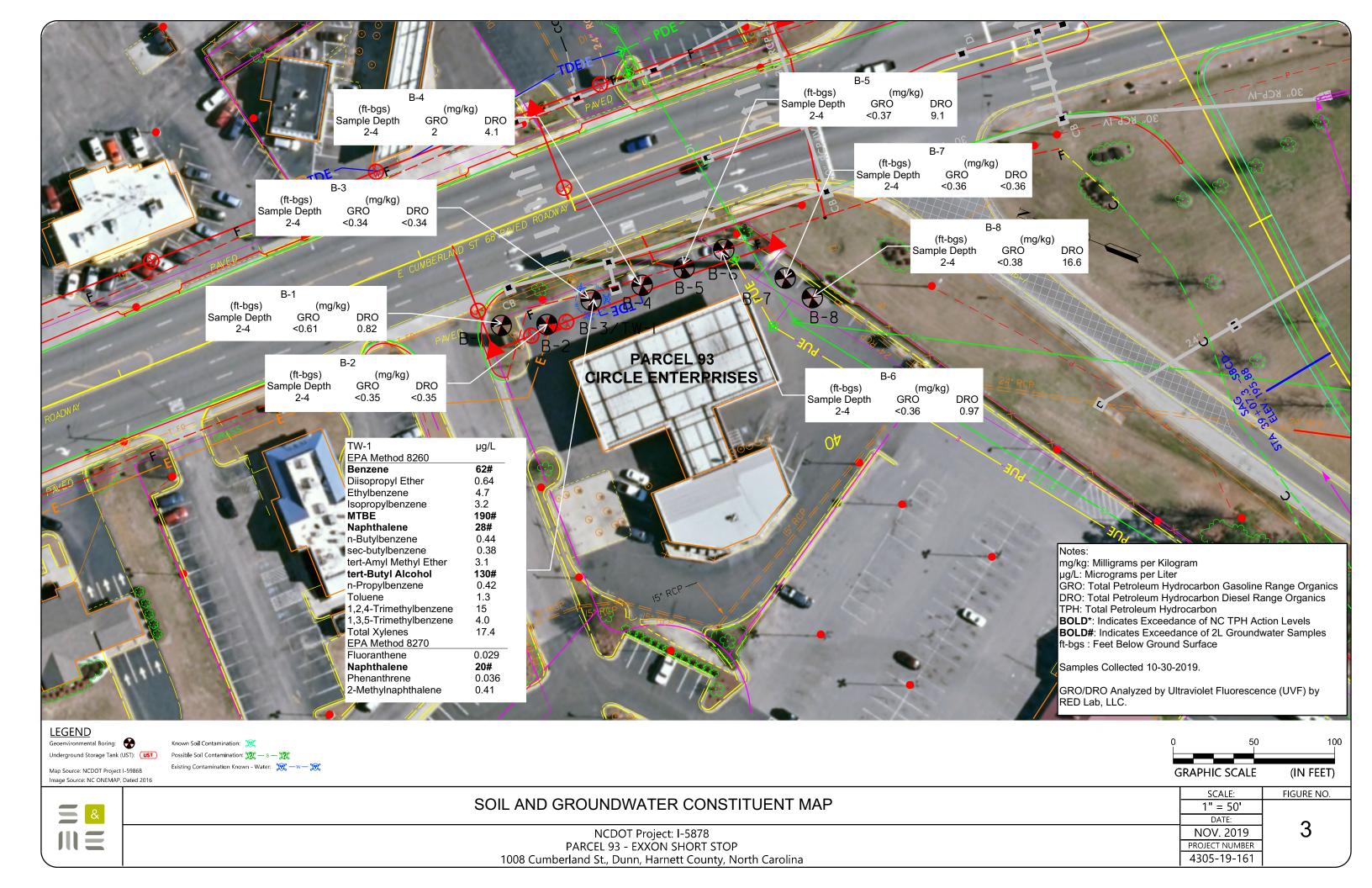
Notes:

- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and BOLD fields.

TABLE 2 SUMMARY OF GROUNDWATER SAMPLING RESULTS


NCDOT Project I-5878
Parcel 93 - (Exxon Short Stop)
1008 Cumberland Street
Dunn, Harnett County, North Carolina
S&ME Project No. 4305-19-161


Analytical	Method→		Volatile Organic Compounds by EPA Method 8260															Polycyclic Aromatic Compounds (PAHs) by EPA Method 8270			
Sample ID	Contaminant of Concern→	Benzene	Diisopropyl Ether	Ethylbenzene	Isopropylbenzene	мтве	Naphthalene	n-Butylbenzene	sec-Butylbenzene	tert-Amyl Methyl Ether	tert-Butyl Alcohol	n-Propylbenzene	Toluene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Total Xylenes	Fluoranthene	Naphthalene	Phenanthrene	2-Methylnaphthalene	
B-3/TW-1	10/30/2019	62	0.64 J	4.7	3.2	190	28	0.44 J	0.38 J	3.1	130	0.42 J	1.3 J	15	4.0	17.4	0.029 J	20	0.036 J	0.41 J	
2L S	2L Standard (μg/L)		70	600	70	20	6	70	70	128	10	70	600	400	400	500	300	6	200	30	
	5,000	70,000	84,500	25,000	20,000	6,000	6,900	8,500	128,000	10,000	30,000	260,000	28,500	25,000	85,500	300	6,000	410	12,500		


Notes:

- 1. Analytes that are not shown for the method were not detected.
- 2. Concentrations are reported in micrograms per liter (µg/L).
- 3. 2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- 5. Concentrations exceeding the 2L Standards are shown in Shaded and **BOLD** fields.
- 6. GCL: Gross Contamination Level.
- 7. J: Estimated concentration detected below the reporting limit.

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

LEGEND

--- Approximate TDEM Path

Approximate Requested Survey Area

Location of Vehicles

TDEM PATH LOCATION PLAN

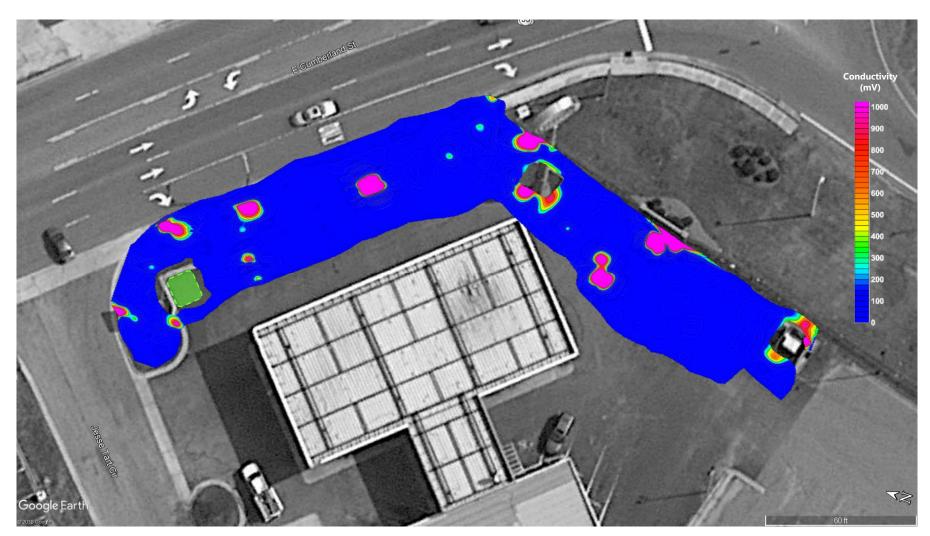
NCDOT PROJECT: I-5878
PARCEL #93 – (EXXON SHORT STOP)
1008 CUMBERLAND STREET, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 1/7/2020

PROJECT NUMBER 4305-19-161

FIGURE NO.


4

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

TDEM DATA PLOT A

NCDOT PROJECT: I-5878
PARCEL #93 – (EXXON SHORT STOP)
1008 CUMBERLAND STREET, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

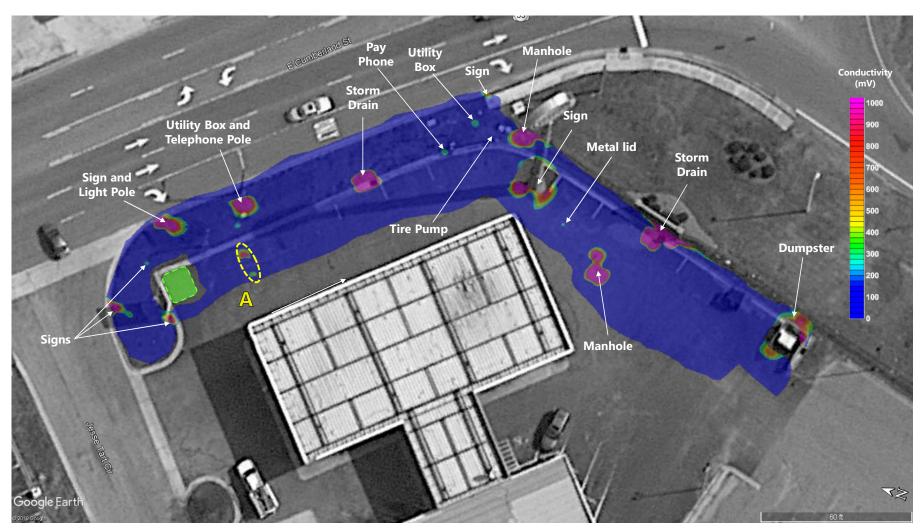
DATE: 1/7/2020

PROJECT NUMBER 4305-19-161

FIGURE NO.

5

LEGEND



Location of Vehicles

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

LEGEND

 \bigcirc

Approximate Location of Geophysical Anomaly

Location of Vehicles

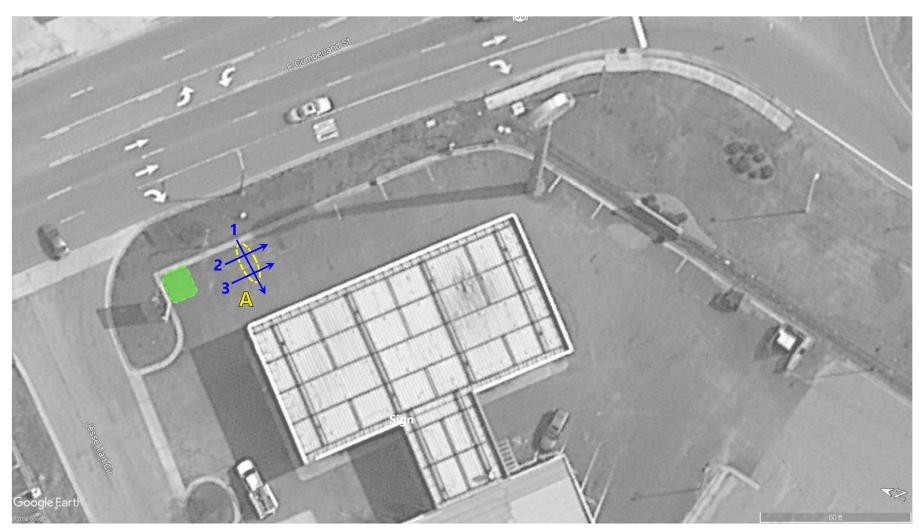
TDEM DATA PLOT B

NCDOT PROJECT: I-5878
PARCEL #93 – (EXXON SHORT STOP)
1008 CUMBERLAND STREET, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 1/7/2020

PROJECT NUMBER 4305-19-161


FIGURE NO.

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

<u>LEGEND</u>

 \bigcirc

Approximate Location of Geophysical Anomaly

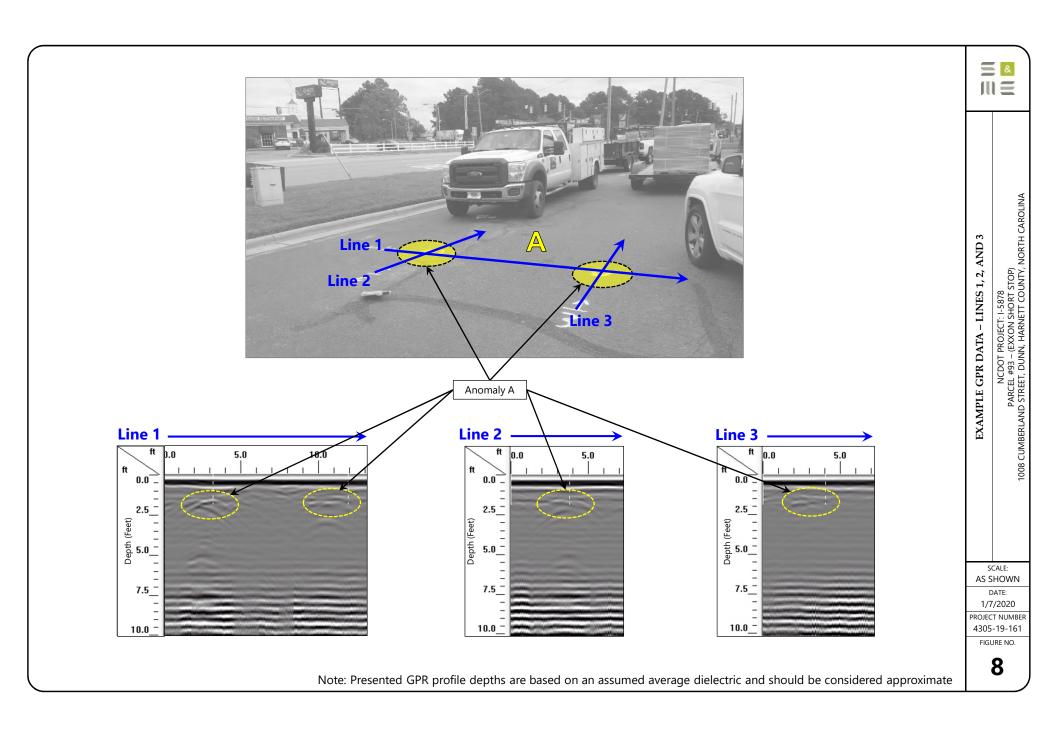
 \leftarrow

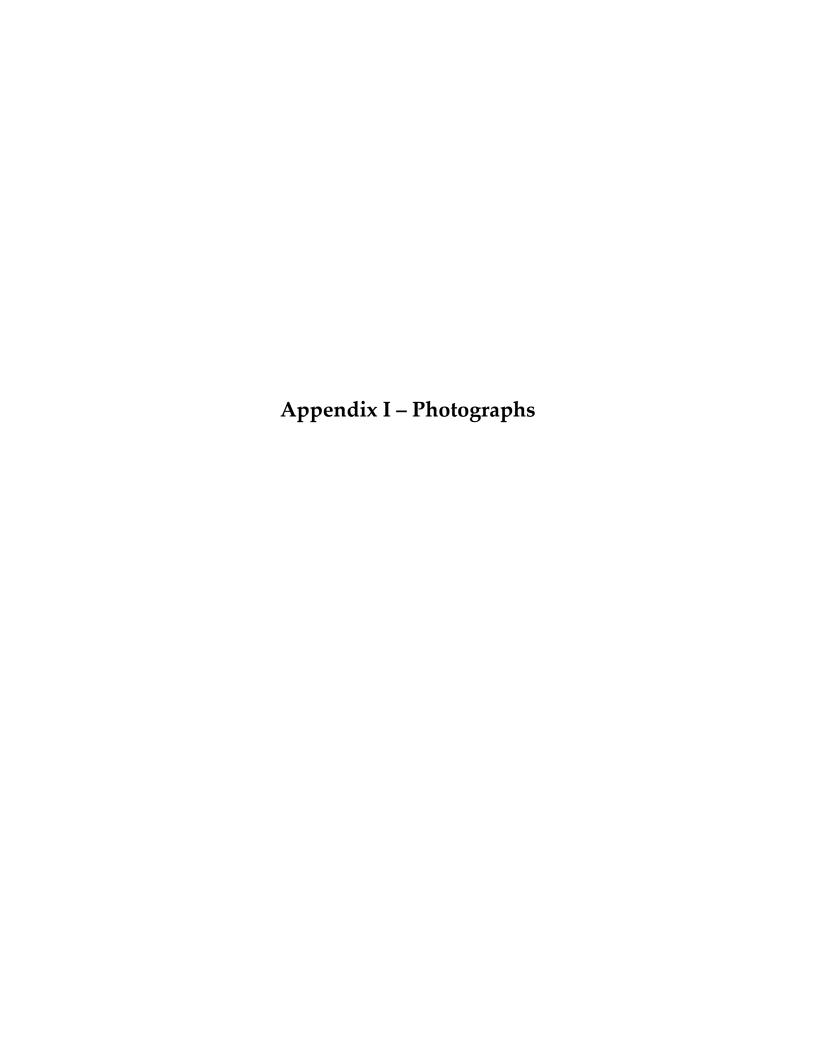
Approximate Location of GPR Profile

Location of Vehicles

GEOPHYSICAL ANOMALY LOCATION PLAN

NCDOT PROJECT: I-5878
PARCEL #93 – (EXXON SHORT STOP)
1008 CUMBERLAND STREET, DUNN, HARNETT COUNTY, NORTH CAROLINA


SCALE: AS SHOWN

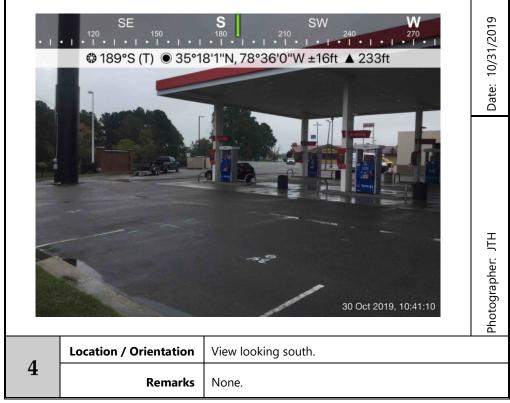

DATE: 1/7/2020

PROJECT NUMBER 4305-19-161

FIGURE NO.

7

Preliminary Site Assessment Report NCDOT Project I-5878, WBS Element 53078.1.1 Parcel 93-Exxon Short Stop Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161



January 9, 2020 i

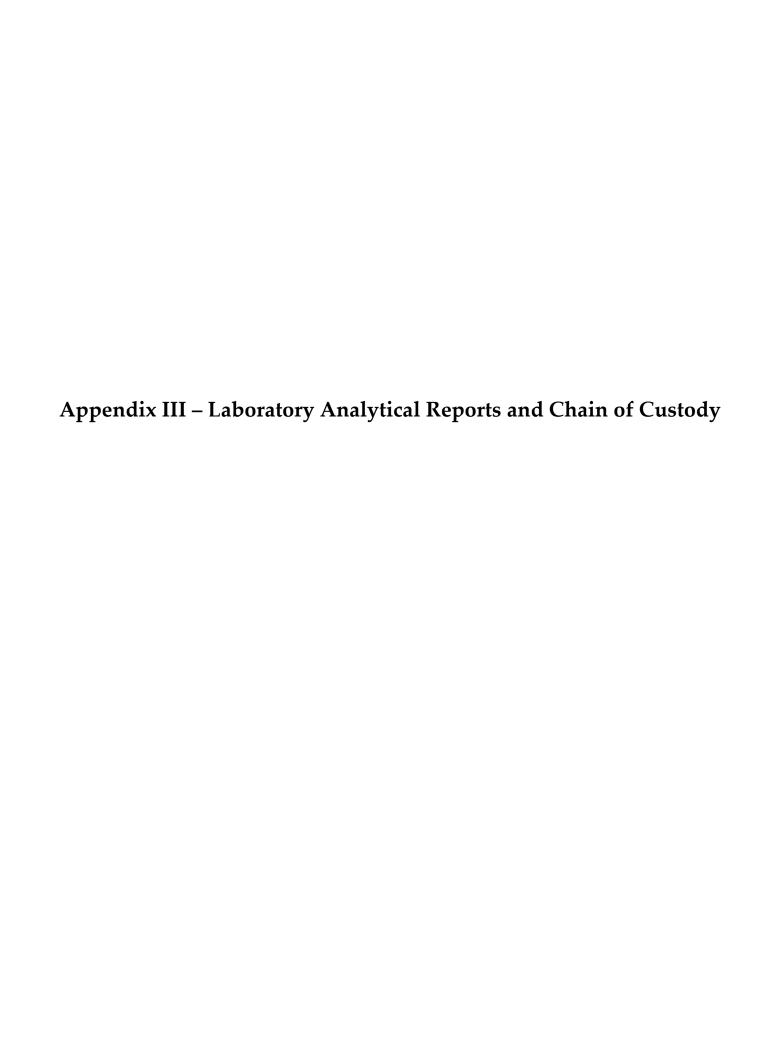
Preliminary Site Assessment Report NCDOT Project I-5878, WBS Element 53078.1.1 Parcel 93-Exxon Short Stop Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161

January 9, 2020 ii

PROJECT:	NCDOT I-5878 Parcel 93-1008 Cumberland St. (Exxon Short Sto	n) Dunn NC			RODIN	NG LOG:	R_1			
	S&ME Project No. 4305-19-161	p), Dullii, NC			DUKII	NG LOG	D-1			
DATE DRILLED:	Wednesday, October 30, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:	J. Honey	cutt						
DRILLING METHOD:										
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:			Ι	Ι	1			
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	, Gray, Red,			I	0.6	No				
5 Silty	Sand, Gray,			I	1.0	Yes	1030			
			▼		0.9	No				
10	ng Terminated at 10 Ft-BGS									
15 —										
20 —										
25 —										
30										

PROJECT	T:	NCDOT I-5878 Parcel 93-1008 Cumberland St. (Exxon Short Sto	p), Dunn, NC			BORII	NG LOG:	B-2			
DATE DRIL	LED:	S&ME Project No. 4305-19-161 Wednesday, October 30, 2019	PODING DEPTH (FT).	0							
			BORING DEPTH (FT):	0							
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:								
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER		Not Applicable	LOGGED BY:	J. Honeyo	cutt						
SAMPLING	METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Asphalt, Gravel, Sand, Tan, Orange,									
		Sandy Clay, Tan, Orange,			I	1.5	No				
		Sandy Clay, Gray,			I	2.3	Yes	1045			
<u>-</u>	Ш	Silty Sand, Gray, Moist,			111	2.4	No				
<u> </u>	////	Clay, Gray, Moist, Boring Terminated at 8 Ft-BGS									
10 —											
	_										
15 —											
_	_										
20 —											
<u>-</u>											
 25	_										
_ _											
— —											
30 —	1										

PROJECT:	NCDOT I-5878									
	Parcel 93-1008 Cumberland St. (Exxon Short Stop S&ME Project No. 4305-19-161	o), Dunn, NC			BORIN	NG LOG	: B-3/	TW-1		
DATE DRILLED:	Wednesday, October 30, 2019	BORING DEPTH (FT):	12							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:	,							
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DIGEERING METITOD.	made core sampler (5 m. 65)	LASTING.								ı
(feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Sand	nalt, Gravel, d, Tan, Orange, dy Clay, Tan, Orange,			ŧ	11.1	No				
Sand	dy Clay, Gray,			ł	10.2	Yes	1100			
5 — Silty	Sand, Gray, Moist,		•	ł	6.5	No				
Clay	, Gray, Moist,									
	Sand, Gray, Moist,									
Bori	ng Terminated at 12 Ft-BGS									
15 —										
20 —										
25 —										
30										


PROJECT:		NCDC Parcel 93-1008 Cumberland)T I-5878 St. (Exxon Short Stop), Du	nn, NC			BORIN	IG LOG:	B-4			
			No. 4305-19-161									
DATE DRILLED:		Wednesday, October 30, 2019		BORING DEPTH (FT):	8							
DRILL RIG:		Geoprobe 54DT		WATER LEVEL:								
DRILLER:		Troxler Geologic, Inc.		CAVE-IN DEPTH:	Not Appli	icable						
HAMMER TYPE:	:	Not Applicable		LOGGED BY:								
SAMPLING METI		Macro-Core Sampler		NORTHING:								
DRILLING METH		Macro-Core Sampler (3-in. OD)		EASTING:								
DRILLING WETT	100.	Macro-Core Sampler (3-III. OD)		EASTING.								
DEPTH (feet)	POJ POJ	MATERIAL DE	SCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	Aspl	nalt, Gravel,										
I — `'	Sand	l, Tan, Orange,				20						
l ::-	Sand	ly Clay, Tan, Orange,				11	0.2	No				
I	.1.1	, , , , , , , , , , , , , , , , , , ,										
						ŧ	6.5	Yes	1130			
5 —						1	2.4	No				
							۷.4	140				
	Dari	ng Terminated at 9 Et BCC										
<u> </u>	DOIL	ng Terminated at 8 Ft-BGS										
10 —												
15 —												
20 —												
25 —												
30	<u> </u>					1			1			

PROJECT:	NCDOT I-5878) Duran MC			DODIA	16.106	D. F.			
	Parcel 93-1008 Cumberland St. (Exxon Short Stop)), Dunn, NC			BOKI	NG LOG	B-2			
DATE DRILLED:	S&ME Project No. 4305-19-161 Wednesday, October 30, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:	-							
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:	J. Honeyo	Jutt						
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DRILLING WETTOD.	Macro-core Sampler (5-III. OD)	EASTING.		1		I	1		l	I
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Clay	nalt, Gravel, ey Sand, Black, Gray,				0.6	No				
5 — Clay	, Gray,			ŧ	1.0	Yes	1145			
					2.2	No				
Borii	ng Terminated at 8 Ft-BGS									
10 —										
15 —										
20 —										
25 —										
30										

PROJECT	Γ:	NCDOT I-5878 Parcel 93-1008 Cumberland St. (Exxon Short Stop)), Dunn, NC			BORIN	NG LOG:	В-6			
DATE DRILL	I ED:	S&ME Project No. 4305-19-161 Wednesday, October 30, 2019	BORING DEPTH (FT):	0							
				0							
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:								
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	licable						
HAMMER T	TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING	METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING N	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION halt, Gravel, dy Clay, Tan, Gray,		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		r, Gray,				0.7	No Yes	1200			
5 —					*	1.2	No				
10	Bori	ng Terminated at 8 Ft-BGS									
15 — —											
20 —											
25 —											
30 —											

Parcel 93 - 1008 Cumberhand St. (Excent Short Stop), Dunn, NC SAME Project No. 4305-19-161	PROJECT:	NCDOT I-5878	\ D								
MONTE Monte Mont), Dunn, NC			BORIN	NG LOG:	B-7			
SOUTH STREET SOUT	DATE DRILLED:		BORING DEPTH (FT):	8							
SMILLER Tree (secogle for the company of the compan											
MAMTERIAL DESCRIPTION				Not Appl	icable						
SAMPLING METHOD: Macro-Core Sampler (3 in OD) EASTING											
Deliting Methods				J. 1.101.1cy							
The state of the											
15 Asphalt, Gravel			27.07.1140.								
Sandy Clay, Tan, Orange, Gray, 1.0 Yes 1300 5				WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Boring Terminated at 8 Ft-BGS 10 —	San	halt, Gravel, dy Clay, Tan, Orange, Gray,						1300			
	5				ł	2.1	No				
	Bor	ing Terminated at 8 Ft-BGS									
	10 —										
	45										
	15 —										
	 										
	20 —										
	25 —										
	-										
30	30						<u> </u>				

PROJECT:	NCDOT I-5878									
	Parcel 93-1008 Cumberland St. (Exxon Short Sto	p), Dunn, NC			BORIN	NG LOG	B-8			
DATE DRILLED:	S&ME Project No. 4305-19-161 Wednesday, October 30, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:	-							
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Ann	licable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:	J. Honey	cutt						
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DIGEEING METHOD.	wacro core sampler (5 iii. ob)	LASTING.			1	1				
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
A	sphalt, Gravel, layey Sand, Tan, Orange, Gray,			ш						
- <i> </i>				ŧ	1.5	No				
				ŧ	5.4	Yes	1315			
5 —				ł						
					5.2	No				
	oring Terminated at 8 Ft-BGS									
10 —										
15 —										
20 —										
25 —										
30				1	l	İ	1		1	l

Hydrocarbon Analysis Results

Client: S&ME

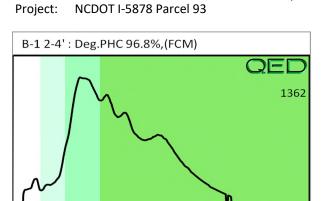
Address: 3201 Spring Forest Rd

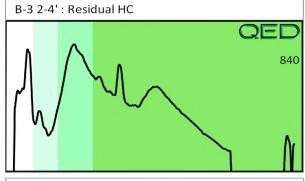
Raleigh, NC

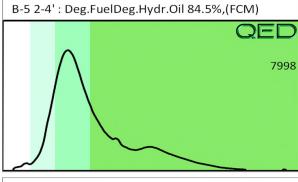
Samples taken Samples extracted Samples analysed Wednesday, October 30, 2019 Wednesday, October 30, 2019 Friday, November 1, 2019

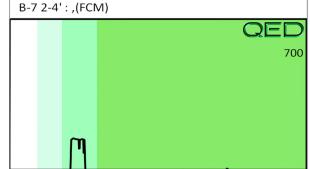
Contact: Jamie T Honeycutt Operator Harry Wooten

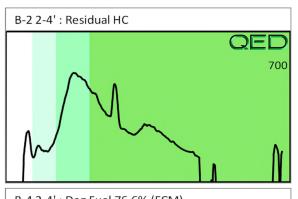
Project: NCDOT I-5878 Parcel 93

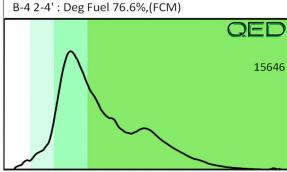

													F03640
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР		Ratios		HC Fingerprint Match
										% light	% mid	% heavy	
S	B-1 2-4'	24.2	<0.61	<0.61	0.82	0.82	0.36	<0.19	<0.024	62.7	27.9	9.4	Deg.PHC 96.8%,(FCM)
S	B-2 2-4'	14.0	< 0.35	< 0.35	< 0.35	< 0.35	< 0.07	<0.11	< 0.014	0	75.3	24.7	Residual HC
S	B-3 2-4'	13.5	<0.34	<0.34	< 0.34	0.24	0.24	<0.11	<0.013	0	69.5	30.5	Residual HC
S	B-4 2-4'	14.3	<0.36	2	4.1	6.1	3.6	0.18	<0.014	46.6	43.7	9.7	Deg Fuel 76.6%,(FCM)
S	B-5 2-4'	14.9	<0.37	< 0.37	9.1	9.1	2.8	<0.12	<0.015	7.4	82.2	10.4	Deg.FuelDeg.Hydr.Oil 84.5%,(FCM)
S	B-6 2-4'	14.4	<0.36	<0.36	0.97	0.97	0.79	<0.12	<0.014	31.7	60.3	8	Deg Fuel 82.1%,(FCM)
S	B-7 2-4'	14.5	<0.36	<0.36	<0.36	<0.36	< 0.07	<0.12	<0.015	0	0	0	,(FCM)
S	B-8 2-4'	15.0	<0.38	<0.38	16.6	16.6	8.9	0.42	<0.015	0	73.3	26.7	V.Deg.PHC 94%,(FCM),(BO),(P)
	Initial Ca	alibrator (QC check	OK					Final F	CM QC	Check	OK	107.9 %

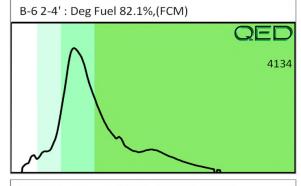

Initial Calibrator QC check OK Final FCM QC Check OK

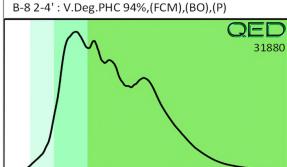

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content


Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library


(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present







NC007 I-5878 Hancey 43			PADID ENVIRONMENTAL DIAGNOSTICS		CHAIN OF CUSTODY AND ANALYTICAL	REQUEST FORM
SKMS	3201 Spring Forest RD	Trump T Honorent	NCDOT I-5878 Person 93	thouse will smeine, com	910 917-71-14	TantieTHomogent
Client Name:	Address:	Contact:	Project Ref.:	Email:	Phone #:	Collected by:

M.	
	CS
Hancel 43	STI
Ses	Ö
₹ ≪	AGI
	0
T-5878	AL
H	Z
5	RAPID ENVIRONMENTAL DIAGNOSTICS
3	õ
	2
	EN
A	OIC
	A

MARBIONC Bldg, Suite 2003 5598 Marvin K Moss Lane Wilmington, NC 28409 RED Lab, LLC

Each sample will be analyzed for BTEX, GRO, DRO, TPH, PAH total aromatics and BaP

Sample Collection	TAT Re	TAT Requested							
Date/Time	24 Hour	48 Hour	Initials		Sample ID		Total Wt.	Tare Wt.	Sample Wt.
10-30-19/ 1030			エド	7-6			57.1	43.9	13.2
1 1045		6					56.6	44.5	1.21
1100				B-3 d-4			57.)	44.5	12.6
1130							8.95	6. HH	11.9
SHII							56.3	6.14	۶, ۱
1200						×	56.5	た。ユ	8.11
1300				8.7 24			56.5	44.8	411
1315		>	>	12.8 2-41			55.8	44.5	11.3
									A.
								•	
					Tes.				
Comments:							RE	RED Lab USE ONLY	NLY
Reling	Relinquished by		Date/Time		Accepted by	Date/Time		0	
Journ Marconal	16-37-19/	1500	7	MM	1/1/19	(50		Ì	
Reling	Relinquished by <i>l</i>		Date/Time		Accepted by	Date/Time			
							3		

November 7, 2019

Jamie Honeycutt S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: Dunn, NC

Client Job Number:

Project Number: 4305-19-161

Laboratory Work Order Number: 19K0025

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on October 31, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	6
19K0025-01	6
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B245122	10
Semivolatile Organic Compounds by GC/MS	15
B245268	15
Flag/Qualifier Summary	17
Certifications	18
Chain of Custody/Sample Receipt	21

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616 ATTN: Jamie Honeycutt

REPORT DATE: 11/7/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-19-161

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19K0025

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Dunn, NC

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB

TW-1 19K0025-01 Ground Water SW-846 8260D

SW-846 8270E

EXECUTIVE SUMMARY

Client ID: TW-1 Lab ID: 19K0025-01

Analyte	Results/Qua	l	\mathbf{DL}	RL	Units	Method
1,2,4-Trimethylbenzene	15		0.36	2.0	$\mu g/L$	SW-846 8260D
1,3,5-Trimethylbenzene	4.0		0.28	2.0	$\mu g/L$	SW-846 8260D
Benzene	62		0.36	2.0	$\mu g/L$	SW-846 8260D
Diisopropyl Ether (DIPE)	0.64	J	0.34	1.0	$\mu g/L$	SW-846 8260D
Ethylbenzene	4.7		0.26	2.0	$\mu g/L$	SW-846 8260D
Isopropylbenzene (Cumene)	3.2		0.34	2.0	$\mu g/L$	SW-846 8260D
m+p Xylene	1.4	J	0.60	4.0	$\mu g/L$	SW-846 8260D
Methyl tert-Butyl Ether (MTBE)	190		0.50	2.0	$\mu g/L$	SW-846 8260D
Naphthalene	28		0.62	4.0	$\mu g/L$	SW-846 8260D
n-Butylbenzene	0.44	J	0.42	2.0	$\mu g/L$	SW-846 8260D
n-Propylbenzene	0.42	J	0.26	2.0	$\mu g/L$	SW-846 8260D
o-Xylene	16		0.34	2.0	$\mu g/L$	SW-846 8260D
sec-Butylbenzene	0.38	J	0.32	2.0	$\mu g/L$	SW-846 8260D
tert-Amyl Methyl Ether (TAME)	3.1		0.28	1.0	$\mu g/L$	SW-846 8260D
tert-Butyl Alcohol (TBA)	130		8.3	40	$\mu g/L$	SW-846 8260D
Toluene	1.3	J	0.28	2.0	$\mu g/L$	SW-846 8260D
2-Methylnaphthalene (SIM)	0.41	J	0.062	1.0	$\mu g/L$	SW-846 8270E
Fluoranthene (SIM)	0.029	J	0.025	0.50	$\mu g/L$	SW-846 8270E
Naphthalene (SIM)	20		1.3	5.0	$\mu g/L$	SW-846 8270E
Phenanthrene (SIM)	0.036	J	0.030	0.050	$\mu g/L$	SW-846 8270E

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 8260D elevated reporting limits for sample 19K0025-01 due to high concentrations of target compounds. For method 8270, only PAHs were requested and reported.

SW-846 8260D

Qualifications:

RL-11

Elevated reporting limit due to high concentration of target compounds.

Analyte & Samples(s) Qualified:

19K0025-01[TW-1]

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

Bromomethane

B245122-BS1, B245122-BSD1, S042311-CCV1

Chloromethane

B245122-BS1, B245122-BSD1, S042311-CCV1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Technical Representative

Lua Warrengton

Project Location: Dunn, NC Work Order: 19K0025 Sample Description:

Date Received: 10/31/2019 Field Sample #: TW-1

Sampled: 10/30/2019 14:45

Sample ID: 19K0025-01 Sample Matrix: Ground Water

Sample Matrix: Ground Water Sample Flags: RL-11			Volatile	e Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	100	7.6	μg/L	2	1 mg/ Qum	SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Acrylonitrile	ND	10	1.0	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
tert-Amyl Methyl Ether (TAME)	3.1	1.0	0.28	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Benzene	62	2.0	0.36	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Bromobenzene	ND	2.0	0.30	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Bromochloromethane	ND	2.0	0.64	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Bromodichloromethane	ND	1.0	0.32	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Bromoform	ND	2.0	0.92	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Bromomethane	ND	4.0	1.6	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
2-Butanone (MEK)	ND	40	3.9	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
tert-Butyl Alcohol (TBA)	130	40	8.3	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
n-Butylbenzene	0.44	2.0	0.42	$\mu g/L$	2	J	SW-846 8260D	11/5/19	11/6/19 12:31	EEH
sec-Butylbenzene	0.38	2.0	0.32	$\mu g/L$	2	J	SW-846 8260D	11/5/19	11/6/19 12:31	EEH
tert-Butylbenzene	ND	2.0	0.34	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	1.0	0.32	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Carbon Disulfide	ND	10	8.9	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Carbon Tetrachloride	ND	2.0	0.22	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Chlorobenzene	ND	2.0	0.30	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Chlorodibromomethane	ND	1.0	0.42	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Chloroethane	ND	4.0	0.70	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Chloroform	ND	4.0	0.34	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Chloromethane	ND	4.0	0.90	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
2-Chlorotoluene	ND	2.0	0.24	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
4-Chlorotoluene	ND	2.0	0.28	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	10	1.1	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,2-Dibromoethane (EDB)	ND	1.0	0.38	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Dibromomethane	ND	2.0	0.74	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,2-Dichlorobenzene	ND	2.0	0.32	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,3-Dichlorobenzene	ND	2.0	0.24	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,4-Dichlorobenzene	ND	2.0	0.26	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
trans-1,4-Dichloro-2-butene	ND	4.0	0.62	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Dichlorodifluoromethane (Freon 12)	ND	4.0	0.52	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,1-Dichloroethane	ND	2.0	0.32	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,2-Dichloroethane	ND	2.0	0.82	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,1-Dichloroethylene	ND	2.0	0.64	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
cis-1,2-Dichloroethylene	ND	2.0	0.26	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
trans-1,2-Dichloroethylene	ND	2.0	0.62	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,2-Dichloropropane	ND	2.0	0.40	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,3-Dichloropropane	ND	1.0	0.22	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
2,2-Dichloropropane	ND	2.0	0.40	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,1-Dichloropropene	ND	4.0	0.32	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
cis-1,3-Dichloropropene	ND	1.0	0.26	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
trans-1,3-Dichloropropene	ND	1.0	0.46	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Diethyl Ether	ND	4.0	0.68	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH

Page 6 of 23

Sample Description: Work Order: 19K0025

Project Location: Dunn, NC
Date Received: 10/31/2019
Field Sample #: TW-1

Sampled: 10/30/2019 14:45

Sample ID: 19K0025-01
Sample Matrix: Ground Water

Sample Flags: RL-11

Volatile Organic Compounds by GC/MS

						77. (6.)		Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analys
Diisopropyl Ether (DIPE)	0.64	1.0	0.34	μg/L	2	J	SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,4-Dioxane	ND	100	45	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Ethylbenzene	4.7	2.0	0.26	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Hexachlorobutadiene	ND	1.2	0.94	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
2-Hexanone (MBK)	ND	20	3.0	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Isopropylbenzene (Cumene)	3.2	2.0	0.34	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
p-Isopropyltoluene (p-Cymene)	ND	2.0	0.40	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Methyl tert-Butyl Ether (MTBE)	190	2.0	0.50	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Methylene Chloride	ND	10	0.68	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
4-Methyl-2-pentanone (MIBK)	ND	20	3.3	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Naphthalene	28	4.0	0.62	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
n-Propylbenzene	0.42	2.0	0.26	$\mu g/L$	2	J	SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Styrene	ND	2.0	0.22	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,1,1,2-Tetrachloroethane	ND	2.0	0.54	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
,1,2,2-Tetrachloroethane	ND	1.0	0.44	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Tetrachloroethylene	ND	2.0	0.36	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Tetrahydrofuran	ND	20	1.0	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Toluene	1.3	2.0	0.28	μg/L	2	J	SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,2,3-Trichlorobenzene	ND	10	1.1	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
,2,4-Trichlorobenzene	ND	2.0	0.80	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,3,5-Trichlorobenzene	ND	2.0	0.60	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
,1,1-Trichloroethane	ND	2.0	0.40	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,1,2-Trichloroethane	ND	2.0	0.32	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Trichloroethylene	ND	2.0	0.48	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Trichlorofluoromethane (Freon 11)	ND	4.0	0.66	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,2,3-Trichloropropane	ND	4.0	0.50	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane Freon 113)	ND	2.0	0.64	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
1,2,4-Trimethylbenzene	15	2.0	0.36	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
,3,5-Trimethylbenzene	4.0	2.0	0.28	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Vinyl Chloride	ND	4.0	0.90	μg/L	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
n+p Xylene	1.4	4.0	0.60	μg/L	2	J	SW-846 8260D	11/5/19	11/6/19 12:31	EEH
o-Xylene	16	2.0	0.34	$\mu g/L$	2		SW-846 8260D	11/5/19	11/6/19 12:31	EEH
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
,2-Dichloroethane-d4		95.2		70-130					11/6/19 12:31	
Toluene-d8		98.4		70-130					11/6/19 12:31	
4-Bromofluorobenzene		97.1		70-130					11/6/19 12:31	

Project Location: Dunn, NC Sample Description: Work Order: 19K0025

Date Received: 10/31/2019
Field Sample #: TW-1

Sampled: 10/30/2019 14:45

Sample ID: 19K0025-01
Sample Matrix: Ground Water

Semivolatile Organic	Compounds by	GC/MS
----------------------	--------------	-------

			Semivo	olatile Organic Co	mpounds by	GC/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene (SIM)	ND	0.30	0.033	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:44	CLA
Acenaphthylene (SIM)	ND	0.20	0.035	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:44	CLA
Anthracene (SIM)	ND	0.20	0.032	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:44	CLA
Benzo(a)anthracene (SIM)	ND	0.050	0.016	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:44	CLA
Benzo(a)pyrene (SIM)	ND	0.10	0.012	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:44	CLA
Benzo(b)fluoranthene (SIM)	ND	0.050	0.015	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:44	CLA
Benzo(g,h,i)perylene (SIM)	ND	0.50	0.018	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:44	CLA
Benzo(k)fluoranthene (SIM)	ND	0.20	0.012	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:44	CLA
Chrysene (SIM)	ND	0.20	0.015	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:44	CLA
Dibenz(a,h)anthracene (SIM)	ND	0.10	0.017	μg/L	1		SW-846 8270E	11/5/19	11/6/19 19:44	CLA
Fluoranthene (SIM)	0.029	0.50	0.025	$\mu g/L$	1	J	SW-846 8270E	11/5/19	11/6/19 19:44	CLA
Fluorene (SIM)	ND	1.0	0.034	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:44	CLA
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.10	0.018	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:44	CLA
2-Methylnaphthalene (SIM)	0.41	1.0	0.062	$\mu g/L$	1	J	SW-846 8270E	11/5/19	11/6/19 19:44	CLA
Naphthalene (SIM)	20	5.0	1.3	μg/L	5		SW-846 8270E	11/5/19	11/7/19 8:59	CLA
Phenanthrene (SIM)	0.036	0.050	0.030	μg/L	1	J	SW-846 8270E	11/5/19	11/6/19 19:44	CLA
Pyrene (SIM)	ND	1.0	0.023	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:44	CLA
Surrogates		% Reco	very	Recovery Limits	1	Flag/Qual				
Nitrobenzene-d5		79.3		30-130					11/6/19 19:44	
Nitrobenzene-d5		85.9		30-130					11/7/19 8:59	
2-Fluorobiphenyl		52.9		30-130					11/6/19 19:44	
2-Fluorobiphenyl		60.7		30-130					11/7/19 8:59	
p-Terphenyl-d14		58.9		30-130					11/6/19 19:44	
p-Terphenyl-d14		63.3		30-130					11/7/19 8:59	

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19K0025-01 [TW-1]	B245122	2.5	5.00	11/05/19

Prep Method: SW-846 3510C-SW-846 8270E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19K0025-01 [TW-1]	B245268	1000	1.00	11/05/19
19K0025-01RE1 [TW-1]	B245268	1000	1.00	11/05/19

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B245122 - SW-846 5030B				
Blank (B245122-BLK1)				Prepared: 11/05/19 Analyzed: 11/06/19
Acetone	ND	50	$\mu g/L$	
Acrylonitrile	ND	5.0	$\mu \text{g/L}$	
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu \text{g/L}$	
Benzene	ND	1.0	$\mu \text{g/L}$	
Bromobenzene	ND	1.0	$\mu \text{g}/L$	
Bromochloromethane	ND	1.0	$\mu \text{g}/L$	
Bromodichloromethane	ND	0.50	$\mu \text{g}/L$	
Bromoform	ND	1.0	$\mu \text{g}/L$	
Bromomethane	ND	2.0	$\mu \text{g}/L$	
-Butanone (MEK)	ND	20	$\mu \text{g}/L$	
ert-Butyl Alcohol (TBA)	ND	20	$\mu \text{g/L}$	
-Butylbenzene	ND	1.0	$\mu \text{g/L}$	
ec-Butylbenzene	ND	1.0	$\mu \text{g/L}$	
ert-Butylbenzene	ND	1.0	$\mu \text{g/L}$	
ert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu \text{g/L}$	
Carbon Disulfide	ND	5.0	$\mu \text{g}/L$	
Carbon Tetrachloride	ND	1.0	μg/L	
Chlorobenzene	ND	1.0	μg/L	
Chlorodibromomethane	ND	0.50	μg/L	
Chloroethane	ND	2.0	μg/L	
Chloroform	ND	2.0	μg/L	
Chloromethane	ND	2.0	μg/L	
Chlorotoluene	ND	1.0	μg/L	
Chlorotoluene	ND	1.0	μg/L	
2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	
2-Dibromoethane (EDB)	ND	0.50	μg/L	
ibromomethane	ND	1.0	μg/L	
,2-Dichlorobenzene	ND	1.0	μg/L	
3-Dichlorobenzene	ND	1.0	μg/L	
4-Dichlorobenzene	ND	1.0	μg/L	
ans-1,4-Dichloro-2-butene	ND	2.0	μg/L	
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	
,1-Dichloroethane	ND ND	1.0	μg/L	
,2-Dichloroethane	ND ND	1.0	μg/L	
,1-Dichloroethylene	ND ND	1.0	μg/L	
is-1,2-Dichloroethylene	ND ND	1.0	μg/L μg/L	
rans-1,2-Dichloroethylene	ND ND	1.0	μg/L μg/L	
,2-Dichloropropane	ND ND	1.0	μg/L μg/L	
,3-Dichloropropane		0.50	μg/L μg/L	
2,2-Dichloropropane	ND ND	1.0	μg/L μg/L	
,1-Dichloropropane	ND	2.0	μg/L μg/L	
cis-1,3-Dichloropropene	ND	0.50	μg/L μg/L	
trans-1,3-Dichloropropene	ND	0.50	μg/L μg/L	
Diethyl Ether	ND	2.0		
Disopropyl Ether (DIPE)	ND	0.50	μg/L μg/I	
,4-Dioxane	ND		μg/L μg/I	
	ND	50	μg/L	
Ethylbenzene Usyaahlasahutadiana	ND	1.0	μg/L	
Hexachlorobutadiene	ND	0.60	μg/L	
2-Hexanone (MBK)	ND	10	μg/L	
sopropylbenzene (Cumene)	ND	1.0	μg/L	
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Satch B245122 - SW-846 5030B										
lank (B245122-BLK1)				Prepared: 11	/05/19 Analy	/zed: 11/06/1	9			
lethylene Chloride	ND	5.0	μg/L							
Methyl-2-pentanone (MIBK)	ND	10	μg/L							
aphthalene	ND	2.0	μg/L							
Propylbenzene	ND	1.0	$\mu g/L$							
yrene	ND	1.0	μg/L							
1,1,2-Tetrachloroethane	ND	1.0	μg/L							
1,2,2-Tetrachloroethane	ND	0.50	μg/L							
trachloroethylene	ND	1.0	μg/L							
trahydrofuran	ND	10	μg/L							
luene	ND	1.0	μg/L							
2,3-Trichlorobenzene		5.0	μg/L							
2,4-Trichlorobenzene	ND	1.0	μg/L μg/L							
3,5-Trichlorobenzene	ND									
•	ND	1.0	μg/L							
1,1-Trichloroethane	ND	1.0	μg/L							
1,2-Trichloroethane	ND	1.0	μg/L							
ichloroethylene	ND	1.0	μg/L							
ichlorofluoromethane (Freon 11)	ND	2.0	μg/L							
2,3-Trichloropropane	ND	2.0	μg/L							
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	1.0	μg/L							
2,4-Trimethylbenzene	ND	1.0	μg/L							
3,5-Trimethylbenzene	ND	1.0	μg/L							
nyl Chloride	ND	2.0	μg/L							
+p Xylene	ND	2.0	$\mu g/L$							
Xylene	ND	1.0	$\mu g \! / \! L$							
rrogate: 1,2-Dichloroethane-d4	23.6		μg/L	25.0		94.4	70-130			
rrogate: Toluene-d8	24.4		$\mu g/L$	25.0		97.4	70-130			
rrogate: 4-Bromofluorobenzene	24.4		$\mu g/L$	25.0		97.4	70-130			
CS (B245122-BS1)				Prepared: 11	/05/19 Analy	zed: 11/06/1	9			
	88.7	50	μg/L	100		88.7	70-160			
eetone										
		5.0	μg/L	10.0		83.0	70-130			
erylonitrile	8.30		$\mu g/L$	10.0 10.0		83.0 94.8	70-130 70-130			
erylonitrile t-Amyl Methyl Ether (TAME)	8.30 9.48	5.0	μg/L μg/L			94.8	70-130			
erylonitrile rt-Amyl Methyl Ether (TAME) enzene	8.30 9.48 10.7	5.0 0.50	μg/L μg/L μg/L	10.0						
erylonitrile rt-Amyl Methyl Ether (TAME) enzene omobenzene	8.30 9.48 10.7 10.4	5.0 0.50 1.0 1.0	μg/L μg/L μg/L μg/L	10.0 10.0 10.0		94.8 107 104	70-130 70-130 70-130			
erylonitrile et-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane	8.30 9.48 10.7 10.4	5.0 0.50 1.0 1.0	μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0		94.8 107 104 104	70-130 70-130 70-130 70-130			
erylonitrile et-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane omodichloromethane	8.30 9.48 10.7 10.4 10.4	5.0 0.50 1.0 1.0 1.0 0.50	μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105	70-130 70-130 70-130 70-130 70-130			
erylonitrile t-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane omodichloromethane omoform	8.30 9.48 10.7 10.4 10.4 10.5 9.77	5.0 0.50 1.0 1.0 1.0 0.50	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7	70-130 70-130 70-130 70-130 70-130 70-130			V-20
erylonitrile t-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane omodichloromethane omoform omomethane	8.30 9.48 10.7 10.4 10.5 9.77 9.88	5.0 0.50 1.0 1.0 1.0 0.50 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8	70-130 70-130 70-130 70-130 70-130 70-130 40-160			V-20
erylonitrile tt-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK)	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5	5.0 0.50 1.0 1.0 0.50 1.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160			V-20
erylonitrile rt-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK) rt-Butyl Alcohol (TBA)	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3	5.0 0.50 1.0 1.0 0.50 1.0 2.0 20	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160			V-20
erylonitrile tt-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK) tt-Butyl Alcohol (TBA) Butylbenzene	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81	5.0 0.50 1.0 1.0 0.50 1.0 2.0 20 20	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130			V-20
rylonitrile t-Amyl Methyl Ether (TAME) nzene omobenzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK) t-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1	5.0 0.50 1.0 1.0 0.50 1.0 2.0 20 20 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 100 10		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130			V-20
rylonitrile t-Amyl Methyl Ether (TAME) nzene omobenzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK) t-Butyl Alcohol (TBA) Butylbenzene t-Butylbenzene t-Butylbenzene	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1 111	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130			V-20
erylonitrile t-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK) t-Butyl Alcohol (TBA) Butylbenzene e-Butylbenzene t-Butylbenzene t-Butylbenzene t-Butyl Ether (TBEE)	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-130 70-130 70-130 70-130			V-20
erylonitrile t-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK) t-Butyl Alcohol (TBA) Butylbenzene e-Butylbenzene t-Butylbenzene t-Butyl Ethyl Ether (TBEE) rbon Disulfide	8.30 9.48 10.7 10.4 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24 11.8	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 5.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4 118	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130			V-20
erylonitrile tt-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK) tt-Butyl Alcohol (TBA) Butylbenzene tt-Butylbenzene tt-Butyl Ethyl Ether (TBEE) rbon Disulfide rbon Tetrachloride	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 20 1.0 1.0 0.50 5.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130			V-20
erylonitrile tt-Amyl Methyl Ether (TAME) enzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK) tt-Butyl Alcohol (TBA) Butylbenzene tt-Butylbenzene tt-Butyl Ethyl Ether (TBEE) rbon Disulfide rbon Tetrachloride allorobenzene	8.30 9.48 10.7 10.4 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24 11.8	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 20 1.0 1.0 0.50 5.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4 118	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130			V-20
erylonitrile tt-Amyl Methyl Ether (TAME) enzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK) tt-Butyl Alcohol (TBA) Butylbenzene tt-Butylbenzene tt-Butyl Ethyl Ether (TBEE) rbon Disulfide rbon Tetrachloride allorobenzene	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24 11.8 10.3	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 20 1.0 1.0 0.50 5.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4 118 103	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130			V-20
erylonitrile tt-Amyl Methyl Ether (TAME) enzene comobenzene comochloromethane comodichloromethane comodichloromethane comomethane Butanone (MEK) tt-Butyl Alcohol (TBA) Butylbenzene ct-Butylbenzene tt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride allorobenzene thlorodibromomethane	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24 11.8 10.3 11.4	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 20 1.0 1.0 0.50 5.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4 118 103 114	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130			V-20
cetone crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene rc-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorodibromomethane hloroethane	8.30 9.48 10.7 10.4 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24 11.8 10.3 11.4 10.0	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 20 1.0 1.0 0.50 5.0 1.0 0.50	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4 118 103 114 100	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130			V-20
crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene ec-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorobenzene hlorodibromomethane	8.30 9.48 10.7 10.4 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24 11.8 10.3 11.4 10.0 11.6	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 0.50 5.0 1.0 0.50	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4 118 103 114 100 116	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			V-20 V-20

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
Batch B245122 - SW-846 5030B									
LCS (B245122-BS1)				Prepared: 11	/05/19 Analyzed: 11/06/	19			
4-Chlorotoluene	10.5	1.0	μg/L	10.0	105	70-130			
1,2-Dibromo-3-chloropropane (DBCP)	9.08	5.0	μg/L	10.0	90.8	70-130			
1,2-Dibromoethane (EDB)	10.8	0.50	μg/L	10.0	108	70-130			
Dibromomethane	10.4	1.0	μg/L	10.0	104	70-130			
1,2-Dichlorobenzene	11.0	1.0	μg/L	10.0	110	70-130			
1,3-Dichlorobenzene	11.5	1.0	$\mu g/L$	10.0	115	70-130			
1,4-Dichlorobenzene	11.2	1.0	μg/L	10.0	112	70-130			
trans-1,4-Dichloro-2-butene	7.67	2.0	$\mu g/L$	10.0	76.7	70-130			
Dichlorodifluoromethane (Freon 12)	8.34	2.0	$\mu g/L$	10.0	83.4	40-160			
1,1-Dichloroethane	10.7	1.0	$\mu g/L$	10.0	107	70-130			
1,2-Dichloroethane	9.98	1.0	$\mu g/L$	10.0	99.8	70-130			
1,1-Dichloroethylene	11.0	1.0	$\mu g/L$	10.0	110	70-130			
cis-1,2-Dichloroethylene	10.6	1.0	$\mu g/L$	10.0	106	70-130			
trans-1,2-Dichloroethylene	10.5	1.0	$\mu g/L$	10.0	105	70-130			
1,2-Dichloropropane	10.8	1.0	$\mu g/L$	10.0	108	70-130			
1,3-Dichloropropane	10.3	0.50	$\mu g/L$	10.0	103	70-130			
2,2-Dichloropropane	8.49	1.0	$\mu g/L$	10.0	84.9	40-130			
1,1-Dichloropropene	10.5	2.0	$\mu g/L$	10.0	105	70-130			
cis-1,3-Dichloropropene	10.0	0.50	μg/L	10.0	100	70-130			
trans-1,3-Dichloropropene	9.41	0.50	μg/L	10.0	94.1	70-130			
Diethyl Ether	10.8	2.0	μg/L	10.0	108	70-130			
Diisopropyl Ether (DIPE)	10.1	0.50	μg/L	10.0	101	70-130			
1,4-Dioxane	86.6	50	μg/L	100	86.6	40-130			
Ethylbenzene	11.0	1.0	μg/L	10.0	110	70-130			
Hexachlorobutadiene	9.83	0.60	μg/L	10.0	98.3	70-130			
2-Hexanone (MBK)	84.3	10	μg/L	100	84.3	70-160			
Isopropylbenzene (Cumene)	11.1	1.0	μg/L	10.0	111	70-130			
p-Isopropyltoluene (p-Cymene)	10.7	1.0	μg/L	10.0	107	70-130			
Methyl tert-Butyl Ether (MTBE)	10.3	1.0	μg/L	10.0	103	70-130			
Methylene Chloride	11.0	5.0	μg/L	10.0	110	70-130			
4-Methyl-2-pentanone (MIBK)	86.6	10	μg/L	100	86.6	70-160			
Naphthalene	7.64	2.0	μg/L	10.0	76.4	40-130			
n-Propylbenzene	10.6	1.0	μg/L	10.0	106	70-130			
Styrene	10.9	1.0	μg/L	10.0	109	70-130			
1,1,1,2-Tetrachloroethane	11.3	1.0	μg/L	10.0	113	70-130			
1,1,2,2-Tetrachloroethane	10.8	0.50	μg/L	10.0	108	70-130			
Tetrachloroethylene	11.5	1.0	μg/L μg/L	10.0	115	70-130			
Tetrahydrofuran	9.60	10	μg/L	10.0	96.0	70-130			J
Toluene	10.9	1.0	μg/L	10.0	109	70-130			3
1,2,3-Trichlorobenzene	8.06	5.0	μg/L μg/L	10.0	80.6	70-130			
1,2,4-Trichlorobenzene	8.70	1.0	μg/L μg/L	10.0	87.0	70-130			
1,3,5-Trichlorobenzene	9.18	1.0	μg/L μg/L	10.0	91.8	70-130			
1,1,1-Trichloroethane		1.0	μg/L μg/L	10.0	104	70-130			
1,1,2-Trichloroethane	10.4	1.0	μg/L μg/L	10.0	110	70-130			
Trichloroethylene	11.0 11.1	1.0	μg/L μg/L	10.0	111	70-130			
Trichlorofluoromethane (Freon 11)		2.0	μg/L μg/L	10.0	96.1	70-130			
1,2,3-Trichloropropane	9.61	2.0	μg/L μg/L	10.0	103	70-130			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.3 11.5	1.0	μg/L μg/L	10.0	103	70-130 70-130			
1,2,4-Trimethylbenzene	10.8	1.0	μg/L	10.0	108	70-130			
1,3,5-Trimethylbenzene	10.4	1.0	μg/L	10.0	104	70-130			
Vinyl Chloride	9.58	2.0	μg/L	10.0	95.8	40-160			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B245122 - SW-846 5030B											
LCS (B245122-BS1)				Prepared: 11	/05/19 Anal	yzed: 11/06/1	9				
m+p Xylene	21.3	2.0	μg/L	20.0		106	70-130				
o-Xylene	11.1	1.0	$\mu g/L$	10.0		111	70-130				
Surrogate: 1,2-Dichloroethane-d4	23.4		μg/L	25.0		93.6	70-130				
Surrogate: Toluene-d8	25.0		μg/L	25.0		99.9	70-130				
Surrogate: 4-Bromofluorobenzene	24.6		μg/L	25.0		98.4	70-130				
LCS Dup (B245122-BSD1)				Prepared: 11	/05/19 Anal	vzed: 11/06/1	9				
Acetone	91.2	50	μg/L	100		91.2	70-160	2.72	25		
Acrylonitrile	9.01	5.0	μg/L	10.0		90.1	70-130	8.20	25		
tert-Amyl Methyl Ether (TAME)	9.41	0.50	μg/L	10.0		94.1	70-130	0.741	25		
Benzene	10.4	1.0	μg/L	10.0		104	70-130	3.23	25		
Bromobenzene	10.4	1.0	μg/L	10.0		100	70-130	4.00	25		
Bromochloromethane	10.0	1.0	μg/L μg/L	10.0		100	70-130	0.865	25		
Bromodichloromethane	10.4	0.50	μg/L μg/L	10.0		104	70-130	3.68	25		
Bromoform		1.0	μg/L μg/L	10.0		102	70-130	3.91	25		
Bromomethane	10.2	2.0	μg/L μg/L	10.0		97.6	40-160	1.22	25 25	V-20	
2-Butanone (MEK)	9.76	2.0	μg/L μg/L	10.0		97.6 89.8	40-160	2.63	25 25	V-2U	
tert-Butyl Alcohol (TBA)	89.8	20	μg/L μg/L	100		89.8 83.6	40-160	4.00	25 25		
n-Butylbenzene	83.6	1.0	μg/L μg/L	10.0		96.5	70-130	1.64	25 25		
sec-Butylbenzene	9.65	1.0	μg/L μg/L	10.0		110	70-130	1.18	25		
tert-Butylbenzene	11.0	1.0					70-130				
•	10.8		μg/L ug/I	10.0		108		1.11	25		
tert-Butyl Ethyl Ether (TBEE) Carbon Disulfide	9.17	0.50	μg/L	10.0		91.7	70-130	0.760	25		
Carbon Tetrachloride	10.8	5.0	μg/L	10.0		108	70-130	8.59	25		
	10.2	1.0	μg/L	10.0		102	70-130	1.46	25		
Chlorobenzene	11.5	1.0	μg/L	10.0		115	70-130	0.610	25		
Chlorodibromomethane	9.73	0.50	μg/L	10.0		97.3	70-130	2.84	25		
Chloroethane	10.8	2.0	μg/L	10.0		108	70-130	7.24	25		
Chloroform	10.1	2.0	μg/L	10.0		101	70-130	2.53	25		
Chloromethane	8.77	2.0	μg/L	10.0		87.7	40-160	2.81	25	V-20	
2-Chlorotoluene	10.7	1.0	μg/L	10.0		107	70-130	0.845	25		
4-Chlorotoluene	10.4	1.0	μg/L	10.0		104	70-130	1.34	25		
1,2-Dibromo-3-chloropropane (DBCP)	8.90	5.0	μg/L	10.0		89.0	70-130	2.00	25		
1,2-Dibromoethane (EDB)	10.7	0.50	μg/L	10.0		107	70-130	1.58	25		
Dibromomethane	10.2	1.0	μg/L	10.0		102	70-130	2.33	25		
1,2-Dichlorobenzene	11.0	1.0	μg/L	10.0		110	70-130	0.181	25		
1,3-Dichlorobenzene	11.4	1.0	μg/L	10.0		114	70-130	0.872	25		
1,4-Dichlorobenzene	10.9	1.0	μg/L	10.0		109	70-130	3.07	25		
trans-1,4-Dichloro-2-butene	8.71	2.0	μg/L	10.0		87.1	70-130	12.7	25		
Dichlorodifluoromethane (Freon 12)	8.23	2.0	μg/L	10.0		82.3	40-160	1.33	25		
1,1-Dichloroethane	10.2	1.0	μg/L	10.0		102	70-130	4.40	25		
1,2-Dichloroethane	9.91	1.0	μg/L	10.0		99.1	70-130	0.704	25		
1,1-Dichloroethylene	10.6	1.0	μg/L	10.0		106	70-130	3.90	25		
cis-1,2-Dichloroethylene	10.1	1.0	μg/L	10.0		101	70-130	5.01	25		
trans-1,2-Dichloroethylene	10.3	1.0	μg/L	10.0		103	70-130	2.50	25		
1,2-Dichloropropane	10.8	1.0	μg/L	10.0		108	70-130	0.649	25		
1,3-Dichloropropane	10.4	0.50	μg/L	10.0		104	70-130	0.870	25		
2,2-Dichloropropane	8.15	1.0	$\mu g/L$	10.0		81.5	40-130	4.09	25		
1,1-Dichloropropene	10.4	2.0	$\mu g/L$	10.0		104	70-130	1.06	25		
cis-1,3-Dichloropropene	9.73	0.50	$\mu g\!/\!L$	10.0		97.3	70-130	3.14	25		
trans-1,3-Dichloropropene	9.66	0.50	$\mu g \! / \! L$	10.0		96.6	70-130	2.62	25		
Diethyl Ether	10.3	2.0	μg/L	10.0		103	70-130	4.65	25		
Diisopropyl Ether (DIPE)	9.94	0.50	μg/L	10.0		99.4	70-130	1.99	25		

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B245122 - SW-846 5030B											
LCS Dup (B245122-BSD1)				Prepared: 11	1/05/19 Analy	yzed: 11/06/	19				
1,4-Dioxane	92.6	50	μg/L	100		92.6	40-130	6.72	50		 † ‡
Ethylbenzene	10.7	1.0	$\mu g\!/\!L$	10.0		107	70-130	2.12	25		
Hexachlorobutadiene	10.1	0.60	$\mu g\!/\!L$	10.0		101	70-130	2.41	25		
2-Hexanone (MBK)	84.4	10	$\mu g\!/\!L$	100		84.4	70-160	0.0712	25		†
Isopropylbenzene (Cumene)	10.6	1.0	$\mu g\!/\!L$	10.0		106	70-130	3.96	25		
p-Isopropyltoluene (p-Cymene)	10.5	1.0	$\mu g \! / \! L$	10.0		105	70-130	2.36	25		
Methyl tert-Butyl Ether (MTBE)	10.2	1.0	$\mu g\!/\!L$	10.0		102	70-130	0.585	25		
Methylene Chloride	10.6	5.0	$\mu \text{g/L}$	10.0		106	70-130	3.60	25		
4-Methyl-2-pentanone (MIBK)	90.1	10	$\mu \text{g/L}$	100		90.1	70-160	4.02	25		†
Naphthalene	8.02	2.0	$\mu g/L$	10.0		80.2	40-130	4.85	25		†
n-Propylbenzene	10.3	1.0	$\mu g/L$	10.0		103	70-130	2.11	25		
Styrene	10.4	1.0	$\mu g/L$	10.0		104	70-130	4.90	25		
1,1,1,2-Tetrachloroethane	11.3	1.0	$\mu g/L$	10.0		113	70-130	0.265	25		
1,1,2,2-Tetrachloroethane	11.1	0.50	$\mu g/L$	10.0		111	70-130	3.01	25		
Tetrachloroethylene	11.5	1.0	$\mu g/L$	10.0		115	70-130	0.348	25		
Tetrahydrofuran	10.0	10	$\mu g/L$	10.0		100	70-130	4.28	25		
Toluene	10.5	1.0	$\mu g/L$	10.0		105	70-130	3.82	25		
1,2,3-Trichlorobenzene	7.86	5.0	$\mu g/L$	10.0		78.6	70-130	2.51	25		
1,2,4-Trichlorobenzene	8.34	1.0	$\mu g/L$	10.0		83.4	70-130	4.23	25		
1,3,5-Trichlorobenzene	8.42	1.0	$\mu g/L$	10.0		84.2	70-130	8.64	25		
1,1,1-Trichloroethane	9.84	1.0	$\mu g/L$	10.0		98.4	70-130	5.24	25		
1,1,2-Trichloroethane	11.0	1.0	$\mu g/L$	10.0		110	70-130	0.364	25		
Trichloroethylene	11.1	1.0	$\mu g/L$	10.0		111	70-130	0.180	25		
Trichlorofluoromethane (Freon 11)	9.30	2.0	$\mu g/L$	10.0		93.0	70-130	3.28	25		
1,2,3-Trichloropropane	10.0	2.0	$\mu g/L$	10.0		100	70-130	2.85	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	11.1	1.0	μg/L	10.0		111	70-130	4.07	25		
1,2,4-Trimethylbenzene	10.7	1.0	$\mu g/L$	10.0		107	70-130	0.650	25		
1,3,5-Trimethylbenzene	9.97	1.0	$\mu g \! / \! L$	10.0		99.7	70-130	3.93	25		
Vinyl Chloride	9.25	2.0	$\mu g\!/\!L$	10.0		92.5	40-160	3.51	25		†
m+p Xylene	21.3	2.0	$\mu g\!/\!L$	20.0		106	70-130	0.0470	25		
o-Xylene	11.1	1.0	$\mu g/L$	10.0		111	70-130	0.541	25		
Surrogate: 1,2-Dichloroethane-d4	22.9		μg/L	25.0		91.5	70-130				
Surrogate: Toluene-d8	25.2		μg/L	25.0		101	70-130				
Surrogate: 4-Bromofluorobenzene	24.6		μg/L	25.0		98.5	70-130				

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B245268 - SW-846 3510C										
Blank (B245268-BLK1)	Prepared & Analyzed: 11/06/19									
Acenaphthene (SIM)	ND	0.30	μg/L							
Acenaphthylene (SIM)	ND	0.20	$\mu g/L$							
Anthracene (SIM)	ND	0.20	$\mu g/L$							
Benzo(a)anthracene (SIM)	ND	0.050	$\mu g/L$							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
Benzo(g,h,i)perylene (SIM)	ND	0.50	$\mu g/L$							
Benzo(k)fluoranthene (SIM)	ND	0.20	$\mu g/L$							
Chrysene (SIM)	ND	0.20	$\mu g/L$							
Dibenz(a,h)anthracene (SIM)	ND	0.10	$\mu g/L$							
Fluoranthene (SIM)	ND	0.50	$\mu g \! / \! L$							
Fluorene (SIM)	ND	1.0	$\mu g/L$							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.10	$\mu g/L$							
-Methylnaphthalene (SIM)	ND	1.0	$\mu g/L$							
Taphthalene (SIM)	ND	1.0	$\mu g/L$							
Phenanthrene (SIM)	ND	0.050	$\mu g/L$							
yrene (SIM)	ND	1.0	$\mu \text{g/L}$							
Surrogate: Nitrobenzene-d5	73.7		μg/L	100		73.7	30-130			
urrogate: 2-Fluorobiphenyl	51.1		μg/L	100		51.1	30-130			
urrogate: p-Terphenyl-d14	65.3		$\mu g/L$	100		65.3	30-130			
LCS (B245268-BS1)				Prepared & A	Analyzed: 11	/06/19				
Acenaphthene (SIM)	35.2	6.0	μg/L	50.0		70.4	40-140			
Acenaphthylene (SIM)	35.7	4.0	$\mu g/L$	50.0		71.4	40-140			
Anthracene (SIM)	38.2	4.0	$\mu g/L$	50.0		76.3	40-140			
Benzo(a)anthracene (SIM)	37.0	1.0	$\mu g/L$	50.0		74.1	40-140			
Benzo(a)pyrene (SIM)	37.4	2.0	$\mu g/L$	50.0		74.8	40-140			
Benzo(b)fluoranthene (SIM)	39.6	1.0	$\mu g/L$	50.0		79.2	40-140			
Benzo(g,h,i)perylene (SIM)	40.1	10	μg/L	50.0		80.2	40-140			
Benzo(k)fluoranthene (SIM)	39.8	4.0	$\mu g/L$	50.0		79.6	40-140			
Chrysene (SIM)	35.8	4.0	$\mu g/L$	50.0		71.7	40-140			
Dibenz(a,h)anthracene (SIM)	42.6	2.0	$\mu g/L$	50.0		85.2	40-140			
luoranthene (SIM)	37.3	10	$\mu g/L$	50.0		74.7	40-140			
Fluorene (SIM)	36.3	20	$\mu g/L$	50.0		72.6	40-140			
ndeno(1,2,3-cd)pyrene (SIM)	42.8	2.0	$\mu g/L$	50.0		85.6	40-140			
-Methylnaphthalene (SIM)	34.3	20	$\mu g/L$	50.0		68.7	40-140			
Naphthalene (SIM)	32.7	20	$\mu g/L$	50.0		65.4	40-140			
Phenanthrene (SIM)	35.9	1.0	μg/L	50.0		71.8	40-140			
Pyrene (SIM)	36.4	20	$\mu g/L$	50.0		72.7	40-140			
Surrogate: Nitrobenzene-d5	74.9		μg/L	100		74.9	30-130			
Surrogate: 2-Fluorobiphenyl	56.8		μg/L	100		56.8	30-130			
Surrogate: p-Terphenyl-d14	59.6		μg/L	100		59.6	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B245268 - SW-846 3510C										
LCS Dup (B245268-BSD1)				Prepared &	Analyzed: 11	/06/19				
Acenaphthene (SIM)	36.1	6.0	μg/L	50.0		72.2	40-140	2.47	20	
Acenaphthylene (SIM)	36.5	4.0	$\mu g/L$	50.0		73.0	40-140	2.22	20	
Anthracene (SIM)	39.5	4.0	$\mu g/L$	50.0		79.0	40-140	3.40	20	
Benzo(a)anthracene (SIM)	38.1	1.0	$\mu g/L$	50.0		76.2	40-140	2.82	20	
Benzo(a)pyrene (SIM)	38.7	2.0	$\mu g/L$	50.0		77.4	40-140	3.47	20	
Benzo(b)fluoranthene (SIM)	41.0	1.0	$\mu g/L$	50.0		82.0	40-140	3.43	20	
Benzo(g,h,i)perylene (SIM)	41.6	10	$\mu g/L$	50.0		83.3	40-140	3.82	20	
Benzo(k)fluoranthene (SIM)	41.8	4.0	$\mu g/L$	50.0		83.6	40-140	4.80	20	
Chrysene (SIM)	37.1	4.0	$\mu g/L$	50.0		74.1	40-140	3.35	20	
Dibenz(a,h)anthracene (SIM)	44.3	2.0	$\mu g/L$	50.0		88.5	40-140	3.78	20	
Fluoranthene (SIM)	38.4	10	$\mu g/L$	50.0		76.8	40-140	2.80	20	
Fluorene (SIM)	37.1	20	$\mu g/L$	50.0		74.2	40-140	2.23	20	
Indeno(1,2,3-cd)pyrene (SIM)	44.5	2.0	$\mu g/L$	50.0		88.9	40-140	3.76	20	
2-Methylnaphthalene (SIM)	35.8	20	$\mu g/L$	50.0		71.7	40-140	4.27	20	
Naphthalene (SIM)	33.0	20	$\mu g/L$	50.0		66.0	40-140	1.04	20	
Phenanthrene (SIM)	37.1	1.0	$\mu g/L$	50.0		74.2	40-140	3.18	20	
Pyrene (SIM)	37.4	20	$\mu g/L$	50.0		74.7	40-140	2.71	20	
Surrogate: Nitrobenzene-d5	77.8		μg/L	100		77.8	30-130			
Surrogate: 2-Fluorobiphenyl	59.4		$\mu g/L$	100		59.4	30-130			
Surrogate: p-Terphenyl-d14	60.7		μg/L	100		60.7	30-130			

V-20

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
RL-11	Elevated reporting limit due to high concentration of target compounds.

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260D in Water		
Acetone	NC	
Acrylonitrile	NC	
tert-Amyl Methyl Ether (TAME)	NC	
Benzene	NC	
Bromobenzene	NC	
Bromochloromethane	NC	
Bromodichloromethane	NC	
Bromoform	NC	
Bromomethane	NC	
2-Butanone (MEK)	NC	
tert-Butyl Alcohol (TBA)	NC	
n-Butylbenzene	NC	
sec-Butylbenzene	NC	
tert-Butylbenzene	NC	
tert-Butyl Ethyl Ether (TBEE)	NC	
Carbon Disulfide	NC	
Carbon Tetrachloride	NC	
Chlorobenzene	NC	
Chlorodibromomethane	NC	
Chloroethane	NC	
Chloroform	NC	
Chloromethane	NC	
2-Chlorotoluene	NC	
4-Chlorotoluene	NC	
1,2-Dibromo-3-chloropropane (DBCP)	NC	
1,2-Dibromoethane (EDB)	NC	
Dibromomethane	NC	
1,2-Dichlorobenzene	NC	
1,3-Dichlorobenzene	NC	
1,4-Dichlorobenzene	NC	
trans-1,4-Dichloro-2-butene	NC	
Dichlorodifluoromethane (Freon 12)	NC	
1,1-Dichloroethane	NC	
1,2-Dichloroethane	NC	
1,1-Dichloroethylene	NC	
cis-1,2-Dichloroethylene	NC	
trans-1,2-Dichloroethylene	NC	
1,2-Dichloropropane	NC	
1,3-Dichloropropane	NC	
2,2-Dichloropropane	NC	
1,1-Dichloropropene	NC	
cis-1,3-Dichloropropene	NC	
trans-1,3-Dichloropropene	NC	
Diethyl Ether	NC	
Diisopropyl Ether (DIPE)	NC	
1,4-Dioxane	NC	
Ethylbenzene	NC	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260D in Water	
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

Table of Contents ² Preservation Codes: X = Sodium Hydroxide DW = Drinking Water B = Sodium Bisulfate GW = Ground Water WW = Waste Water S = Summa Canister Container Codes: 0 = Other (please 0 = Other (please 0 = Other (please Non Soxhlet S = Sulfuric Acid A = Amber Glass PCB ONLY Matrix Codes = Tedlar Bag Soxhlet ² Preservation Code N = Nitric Acid | Field Filtered Field Filtered M = Methanol Lab to Filter Lab to Filter Container Code SL = Sludge ST = Sterile Page L of SOL = Solid **Thiosulfate** = Sodium P = Plastic # of Containers G = Glass V = Via S = Soil H # HCL define) define) peol = A = Air define) UST/Trust Fund Please use the following codes to indicate possible sample concentration WELACISING ANNALIAP. CLUMESTRATION REC Chromatogram AIHA-LAP, LLC East Longmeadow, MA 01028 H - High; M - Medium; L - Low; C - Clean; U - Unknown Program Information ANALYSIS REQUESTED 39 Spruce Street within the Conc Code column above IHSB Orphaned Landfill SWS Landfill State Lead DSCA Other: SHUd DLES 0988 CHAIN OF CUSTODY RECORD (North Carolina) Email TO: Thousages the Sincinc, con 9 8 Marrix Z Municipality Brownfield 10-Day School 3-Day 4-Day EXCEL CLP Like Data Pkg Required: GBD Composite PDF Government 1445 Due Date: ormat: -ax To #: Ending Federal Other: 7-Day 1-Day 2-Day GWPC SWSL MSCC ESE ESE City 굯 Project Entity 10.30-19 Beginning Date/Firme ンユ Email: info@contestlabs.com 3 Raheigh J M QUL Date/Time: Client Sample 10 / Description Phone: 413-525-2332 Fax: 413-525-6405 10/31/18 Date/Time: Date/Time: Date/Time: Date/Time 一つの Forest 20 Jamie T Honey H NCDUT 1-5878 Invoice Recipient: Janie T Hoverest 4305-19-161 1 5mus Project Location: Dun NC 5 Con-Test Quote Name/Number: Company Maries COP-KSK Relinquished by: (signature) (signature) nquished by: (signature) Received by: (signature) seived by: (signature) eived by: (signature) Work Order# Con-Test 3201 200 Project Manager: Project Number: Refinduished by comments: Address: Phone: Page 21 of 23

Doc # 379 Rev 1_03242017

http://www.contestlabs.com

700 751

IMPORTANT!

The wildfires are causing hazardous conditions in California. Learn More

Delivered Friday 11/01/2019 at 9:02 am

DELIVERED

Signed for by: R.PETRIAS

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM
Autryville, NC US

TO

East Longmeadow, MA US

Shipment Facts

TRACKING NUMBER 411359783302

DELIVERED TOShipping/Receiving

RETURN REASON

PEASON TEN

SPECIAL HANDLING SECTION

Deliver Weekday

SERVICE FedEx Pric

FedEx Priority Overnight

TOTAL PIECES

1

TERMS

Third Party

rimar arty

STANDARD TRANSIT

3

11/01/2019 by 10:30 am

WEIGHT

53.4 lbs / 24.22 kgs

TOTAL SHIPMENT WEIGHT

53.4 lbs / 24.22 kgs

PACKAGING

Your Packaging

SHIP DATE

(2)

Thu 10/31/2019

ACTUAL DELIVERY Fri 11/01/2019 9:02 am

Travel History

Friday , 11/01/2019

East Longmeadow, MA

Delivered

7:45 am WINDSOR LOCKS, CT

On FedEx vehicle for delivery

6:27 am

9:02 am

EAST GRANBY, CT

At destination sort facility

Page 22 of 23

Local Scan Time

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login	Sample Ro	eceipt Checklist	(Rejection	Criteria Lis	ting - Usir	ng Acceptar	nce Policy) A	ny False	
Client	Str	ment will be brou	igni to the a	ttention of	the Client	- State Tru	e or False		
	ved By	MAP		Date	(1)	69	Time	902	
How were	the samples			- No Cooler		On Ice			
rece	ived?	Direct from Sam	nlina			Ambient		_ No Ice	
		Direct Home Guill	By Gun #	7	•			_ Melted Ice	
	ples within		•		•	Actual Tem			-
•	ure? 2-6°C		By Blank #			Actual Tem			
	s Custody S s COC Relir		-(V)			s Tampered		Δ	<u></u>
		iquisned ? leaking/loose caps	00 000 000	Doe:	s Chain Ag ✓	ree With Sa	mples?		•
Is COC in it	nk/ Legible?	-7	on any sam		nnlog roosi		aldim - tim - O		
	include all	Client		Analysis	inples recei		olding time? er Name		•
pertinent In	nformation?	Project		ID's	<u>-</u>	•	Dates/Times	- 3	-
Are Sample	e labels fille	d out and legible?					Dates/Times		•
Are there La			F		Who was	s notified?			
Are there Ru	 -		F			s notified?		····	•
Are there St	nort Holds?		$-\epsilon$			s notified?	***************************************		•
Is there eno	-								
		ere applicable?	<u> </u>		MS/MSD?	_E		•	
Proper Medi			<u> </u>		ls splitting	samples req	uired?	F	
Were trip bla			<u> </u>		On COC?	<u> </u>	·		
	les have the	proper pH?	M	Acid _			Base		
Vials	#	Containers	#			#			#
Unp- HCL-		1 Liter Amb.	_ し _	1 Liter I			16 oz	Amb.	
Meoh-	<u> </u>	500 mL Amb.		500 mL			8oz Am		
Bisulfate-		250 mL Amb. Flashpoint		250 mL			4oz Am		
DI-		Other Glass		Col./Ba Other F			2oz Am		
Thiosulfate-		SOC Kit		Plastic			Enc Frozen:	ore	
Sulfuric-		Perchlorate		Ziplo			riozen.		
1000									
Vials ====	# 1	Containers:	-# 1	Unused N	IPOIE -	# 1			
Unp- — -		1 Liter Amb.		1 Liter F	Plastic		16 oz	Amb	t t
HCL-		500 mL Amb.		500 mL			8oz Ami		··· -
Meoh-		250 mL Amb.		250 mL			4oz Ami		
Bisulfate-		Col./Bacteria		Flashp	oint		2oz Ami	<u>-</u>	
DI-		Other Plastic		Other (Slass		Enc		
hiosulfate-		SOC Kit		Plastic	Bag		Frozen:		
Sulfuric-		Perchlorate		Ziplo	ck				
Johnnenis:									