

January 9, 2020

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden

email: <u>cehaden@ncdot.gov</u>

Reference: Preliminary Site Assessment Report NCDOT Project I-5878, WBS Element 53078.1.1 Parcel 71-Former Phillips 66 Vacant Lot SE Corner E. Cumberland St and I-95 Dunn, Harnett County, North Carolina S&ME Project 4305-19-161

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1900576 REV-01 dated August 9, 2019, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its September 5,2019 Notice to Proceed Letter.

Background/Project Information

Based on NCDOT's July 24, 2019, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
71	Susan E. Tart	(Former Phillips 66),
		Vacant Lot SE Corner of E. Cumberland St and I-95
		Dunn, NC

The property was previously developed with a gasoline/service station identified as Phillips 66. At the time of our field activities, the majority of the property was a grassy vacant lot. A small, open, metal shed, which is used for the sale of produce, is located on the property. The former gasoline/service station building had been razed. The petroleum underground storage tanks (USTs) that the Phillips 66 operated were previously removed. Information regarding the former UST system is provided in the following table:

Number of Tanks	Contents	Capacity (gallons)	Date Installed	Date Removed
1	Gasoline	8,000	Not Provided	March 1988
2	Gasoline	8,000		
3	Gasoline	3,000		
4	Diesel	2,000		
5	Kerosene	1,000		
6	Heating Oil	1,000		

UST Facility ID No. Not Provided

The property is listed with one North Carolina Department of Environmental Quality (NCDEQ) Incident (Incident #3626- Susan Tart Property-Former Phillips 66) associated with petroleum releases discovered during the removal of USTs in 1988. A groundwater treatment system was previously operated at the site. Numerous monitor wells, which have been abandoned, were located on the property. Groundwater at the site is reported to flow primarily to the south-southeast (*Fourth Quarter 1997 Groundwater Sampling Report* prepared by RUST dated January 27,1998 and *Site Closure Request* prepared by RUST dated March 1998). Copies of pertinent information obtained from the above referenced reports are included in **Appendix I.**

The PSA included a geophysical survey, subsequent limited soil sampling (18 soil borings up to 10 feet below ground surface (ft.-bgs)) and limited groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil and groundwater sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (East Coast Underground, LLC) was also used to locate and mark underground utilities.

Geophysical Survey

On July 25, 2019, S&ME completed Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) surveys within accessible areas of the proposed ROW/easement at Parcel 71. Brief descriptions of these complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820 "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper[®] Systems GeodeTM sub-meter GPS as positioning support. The presence of heavy vegetation within the survey area, however, prevented TDEM data collection north of an existing fence. The approximate TDEM data collection paths are presented in **Figure 4.** Golden Software's Surfer[®] program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and semi-transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR[®] 4000 GPR system equipped with a 350 MHz antenna in general accordance with ASTM D6432 "*Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation*" to further characterize anomalies/features identified during the TDEM survey.

A total of 19 GPR profiles (Lines 1 through 19) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan[®] 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. Four anomalous features unrelated to known surficial targets were identified in the geophysical data sets (Anomalies A through D; **Figures 6 and 7**). Each of the identified anomalies are characterized by high amplitude GPR responses located within the upper one ft.-bgs and may be related to relatively small, isolated buried metallic objects. Anomalies were marked in the field using white spray paint. Example GPR profiles are presented in **Figures 8 through 11.**

Soil Sampling

On October 17, 2019, Troxler Geologic, Inc. (Troxler's) drill crew utilized a track mounted Geoprobe® rig to advance 18 soil borings (B-1 through B-18) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 71. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix II.** Troxler's drill crew advanced the Geoprobe® borings up to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at depths ranging from five to 6.7 ft.-bgs. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix III.**

Petroleum odors and elevated PID readings were noted at borings B-1, B-2, B-5, B-14, B-15 and B-16 starting at a depth of approximately three ft.-bgs at borings B-15 and B-16, four ft.-bgs at borings B-1, B-2 and B-5 and six ft.bgs at boring B-14 and extending to boring termination at eight to 10 ft-bgs. Petroleum staining was noted at boring B-1. Groundwater was encountered within these borings at a depth of approximately six ft.-bgs. Groundwater was encountered across the site at depths ranging from five to 6.7 ft.-bgs. Therefore, a soil sample was selected from borings B-1, B-2, B-5 and B-14 at the four to six foot depth interval and the two to four foot depth interval at boings B-15 and B-16. Various soil samples at varying depth intervals were selected from the remaining borings. The soil samples were placed into laboratory supplied containers and transported to RED Lab, LLC (Red Lab) in an insulated cooler with ice for analysis. A total of 18 soil samples (one soil sample per boring) were analyzed by RED Lab for TPH-GRO and TPH-DRO using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH-GRO and TPH-DRO were reported at concentrations exceeding their respective North Carolina TPH Action Levels in borings B-1, B-2 and B-15. TPH-GRO was reported at a concentration exceeding its North Carolina TPH Action Level in boring B-5. The highest concentrations were reported in boring B-2 at the four to six foot depth interval. TPH-GRO was reported in boring B-2 at a concentration of 212.2 milligrams per kilograms (mg/kg) which exceeds its North Carolina TPH Action Level of 50 mg/kg. TPH DRO was reported in boring B-2 at a concentration of 737.9 mg/kg which exceeds its North Carolina TPH Action Level of 100 mg/kg. TPH-DRO was also reported in each of the additional borings, at concentrations above the laboratory reporting limits but below its North Carolina TPH Action Level. TPH-GRO was also reported in borings B-3, B-4 and B-8 at concentrations above the laboratory reporting limits but below its North Carolina TPH Action Level. TPH-GRO was not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3.** A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix IV**.

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately five to 6.7 ft.-bgs. On October 18, 2019, the Geoprobe® was used to advance one of the soil borings into the groundwater table for the collection of a groundwater sample. Based on the elevated PID readings and observed staining, soil boring B-1 was selected for collection of a groundwater sample. A temporary monitor well (TW-1) was installed at soil boring B-1 to a depth of approximately ten ft.-bgs using a ten foot section of one-inch diameter, Schedule 40 PVC, 0.01-inch slotted screen that intersected the groundwater table. Groundwater within the temporary monitor well at soil boring B-1 was measured at 6.7 ft.-bgs. Groundwater from the temporary well was purged until relatively clear using disposable tubing attached to a peristaltic pump. A petroleum odor was noted during purging. The flow rate was reduced and laboratory supplied containers were filled directly from the tubing, labeled as TW-1, and placed in an insulated cooler with ice for transport to Con-Test Laboratories (Con-Test) for analysis of VOCs by EPA Method 8260 and polycyclic aromatic compounds (PAHs) by EPA Method 8270.

Upon completion of the soil and groundwater sampling, the well materials were removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by NCDEQ. Used gloves and tubing were bagged and disposed off-site.

Groundwater Sampling Results

Based upon analytical results of the groundwater sample analyzed by Con-Test, several petroleum related target constituents were reported at concentrations exceeding their 15A NCAC 2L Groundwater Quality Standards (2L Standards). Benzene was the highest constituent reported above its 2L Standard at a concentration of 510 micrograms per liter (μ g/L), which exceeds its 2L Standard of 1 μ g/L. A summary of the groundwater analytical results is presented in **Table 2** and shown on **Figure 3**. A copy of the laboratory analytical report provided by Con-Test is presented in **Appendix IV**.

Conclusion and Recommendations

The geophysical survey identified four anomalies (Anomalies A through D) which may be related to relatively small, isolated buried metallic objects. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced 18 soil borings (B-1 through B-18) to a depth of up to approximately 10 ft.-bgs at the site. Petroleum odors and elevated PID readings were noted at borings B-1, B-2, B-5, B-14, B-15 and B-16 starting at a depth of approximately three ft.-bgs at borings B-15 and B-16, four ft.-bgs at borings B-1, B-2 and B-5 and six ft.bgs at boring B-14 and extending to boring termination at eight to ten ft-bgs. Petroleum staining was noted at boring B-1. Selected soil samples from the soil borings were analyzed for TPH-GRO and TPH-DRO using UVF spectroscopy.

TPH-GRO and TPH-DRO were reported at concentrations exceeding their respective North Carolina TPH Action Levels in borings B-1, B-2 and B-15. TPH-GRO was reported at a concentration exceeding its North Carolina TPH Action Level in boring B-5. The highest concentrations were reported in boring B-2 at the four to six foot depth

interval. TPH-GRO was reported in boring B-2 at a concentration of 212.2 mg/kg which exceeds its North Carolina TPH Action Level of 50 mg/kg. TPH DRO was reported in boring B-2 at a concentration of 737.9 mg/kg which exceeds its North Carolina TPH Action Level of 100 mg/kg. TPH-DRO was also reported in each of the additional borings, at concentrations above the laboratory reporting limits but below its North Carolina TPH Action Level. TPH-GRO was also reported in borings B-3, B-4 and B-8 at concentrations above the laboratory reporting limits but below its North Carolina TPH Action Level. TPH-GRO was not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples.

During the soil boring advancement, groundwater was encountered across the site at depth ranging from approximately five to 6.7 ft.-bgs. One temporary well (TW-1) was installed at soil boring B-1. Groundwater at TW-1 was measured at 6.7 ft.-bgs and analyzed by Con-Test for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. Several petroleum related target constituents were reported at concentrations exceeding their 2L Standards.

Based on the findings of the geophysical survey and the analytical results of soil and groundwater samples, it is likely that during construction, NCDOT may encounter soil and groundwater impacted with petroleum at the site. Petroleum impacted soil at concentrations exceeding the North Carolina TPH Action Levels may be encountered within the vicinity of borings B-1, B-2, B-5 and B-15. Assuming that a section of petroleum impacted soil approximately two feet thick, 30 feet in diameter at a depth of four to six ft.-bgs (groundwater was encountered at a depth of six ft.-bgs at boring B-5); up to 53 cubic yards of soil at boring B-5 may be impacted. Assuming that another section of petroleum impacted soil approximately three feet thick, 60 feet wide and 100 feet long at a depth of three to six ft.-bgs; up to 670 cubic yards of soil may be impacted within the vicinity of borings B-1, B-2 and B-15. Therefore, a total of approximately 725 cubic yards of petroleum impacted soil may be encountered during construction to depths of approximately three to six ft.-bgs.

It should also be assumed that saturated petroleum impacted soil will be encountered if construction excavations extend deeper than five to six ft.-bgs on the site. If construction dewatering is required, petroleum impacted groundwater must be properly disposed or treated at a licensed facility.

If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility. If construction dewatering is required, petroleum impacted groundwater must be properly disposed or treated at a licensed facility.

S&ME recommends maintaining an awareness level for the presence of petroleum in the soil and groundwater at the site for the safety of workers and the public.

Limitations

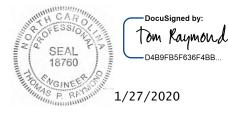
The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., reinforced concrete, utilities, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of about 7.5 ft.-bgs.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

	&


Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc. DocuSigned by: Damie Honeycutt

—4C890EAEC25F488... Jamie T Honeycutt Environmental Professional jhoneycutt@smeinc.com

Thomas P. Raymond, P.E., P.M.P. Senior Consultant traymond@smeinc.com

DocuSigned by: Michael Phifer . 861E52DDEFAF4C

Michael W. Pfeifer Senior Project Manager mpfeifer@smeinc.com

Attachments:

Table 1: Summary of Soil Sampling ResultsTable 2: Summary of Groundwater Sampling ResultsFigure 1: Vicinity MapFigure 2: Site MapFigure 3: Soil and Groundwater Constituent MapFigure 4: TDEM Path Location PlanFigure 5: TDEM Data Plot AFigure 6: TDEM Data Plot BFigure 7: Geophysical Anomaly Location PlanFigure 8: Example GPR Data – Lines 5 and 6Figure 9: Example GPR Data – Lines 16 and 17Figure 11: Example GPR Data – Lines 9 and 10

Appendix I: NCDEQ File Review

Appendix II: Photographs

Appendix III: Boring Logs

Appendix IV: Laboratory Analytical Reports and Chain of Custody

Tables

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5878 Parcel 71 - (Former Phillips 66) Vacant Lot SE Corner E. Cumberland St. and I-95 Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161

Ar	nalytical Metho	d→	Total Petroleum Hydrocarbons (TPH) Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) by Ultraviolet Fluorescence (UVF) Spectrometry					
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO				
B-1	10/17/2019	4 to 6	84.8	137.9				
B-2	10/17/2019	4 to 6	212.2	737.9				
B-3	10/17/2019	4 to 6	21	8.4				
B-4	10/17/2019	4 to 6	6	21.6				
B-5	10/17/2019	4 to 6	90.1	29.7				
B-6	10/17/2019	2 to 4	<0.48	1.5				
B-7	10/17/2019	4 to 6	<0.52	2.3				
B-8	10/17/2019	4 to 6	2.7	0.71				
B-9	10/17/2019	4 to 6	<0.55	0.69				
B-10	10/17/2019	4 to 6	<0.54	1.4				
B-11	10/17/2019	2 to 4	<0.51	5.8				
B-12	10/17/2019	2 to 4	<0.51	3.1				
B-13	10/17/2019	4 to 6	<0.54	4.5				
B-14	10/17/2019	4 to 6	17.4	4.5				
B-15	10/17/2019	2 to 4	156.1	544.9				
B-16	10/17/2019	2 to 4	17.2	8				
B-17	10/17/2019	2 to 4	<0.25	0.5				
B-18	10/17/2019	4 to 6	<0.52	1.2				
No	orth Carolina T	PH Action Levels	50	100				

Notes:

1. UVF analysis performed by RED Lab, LLC

2. Concentrations are reported in milligrams per kilogram (mg/Kg).

3. ft.-bgs:- feet below ground surface.

4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.

5. Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and **BOLD** fields.

TABLE 2 SUMMARY OF GROUNDWATER SAMPLING RESULTS NCDOT Project I-5878 Parcel 71 - (Former Phillips 66) Vacant Lot SE Corner E. Cumberland St. and I-95 Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161

Analytica	Il Method→		Volatile Organic Compounds by EPA Method 8260 Polycyclic A								yclic Arc	romatic Compounds (PAHs) by EPA Method 8270											
Sample ID	Contaminant of Concern→ Date		Diisopropyl Ether	Ethylbenzene	Isopropylbenzene	MTBE	Naphthalene	n-Butylbenzene	sec-Butylbenzene	tert-Butyl Alcohol	n-Propylbenzene	p-lsopropyltoluene	Toluene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Total Xylenes	Acenaphthene	Anthracene	Acenaphthylene	Fluorene	Naphthalene	Phenanthrene	2-Methylnaphthalene
B-1/TW-1	10/18/2019	510	6	360	38	100	110	12	6.8	3,200	94	7.9	140	470	150	1,150	0.50	0.036 J	0.12 J	0.93 J	120	0.57	64
2L	Standard (µg/L)	1	70	600	70	20	6	70	70	10	70	25	600	400	400	500	80	2,000	200	300	6	200	30
Nataa	GCL (µg/L)	5,000	70,000	84,500	25,000	20,000	6,000	6,900	8,500	10,000	30,000	11,700	260,000	28,500	25,000	85,500	2,120	2,000	1,965	990	6,000	410	12,500

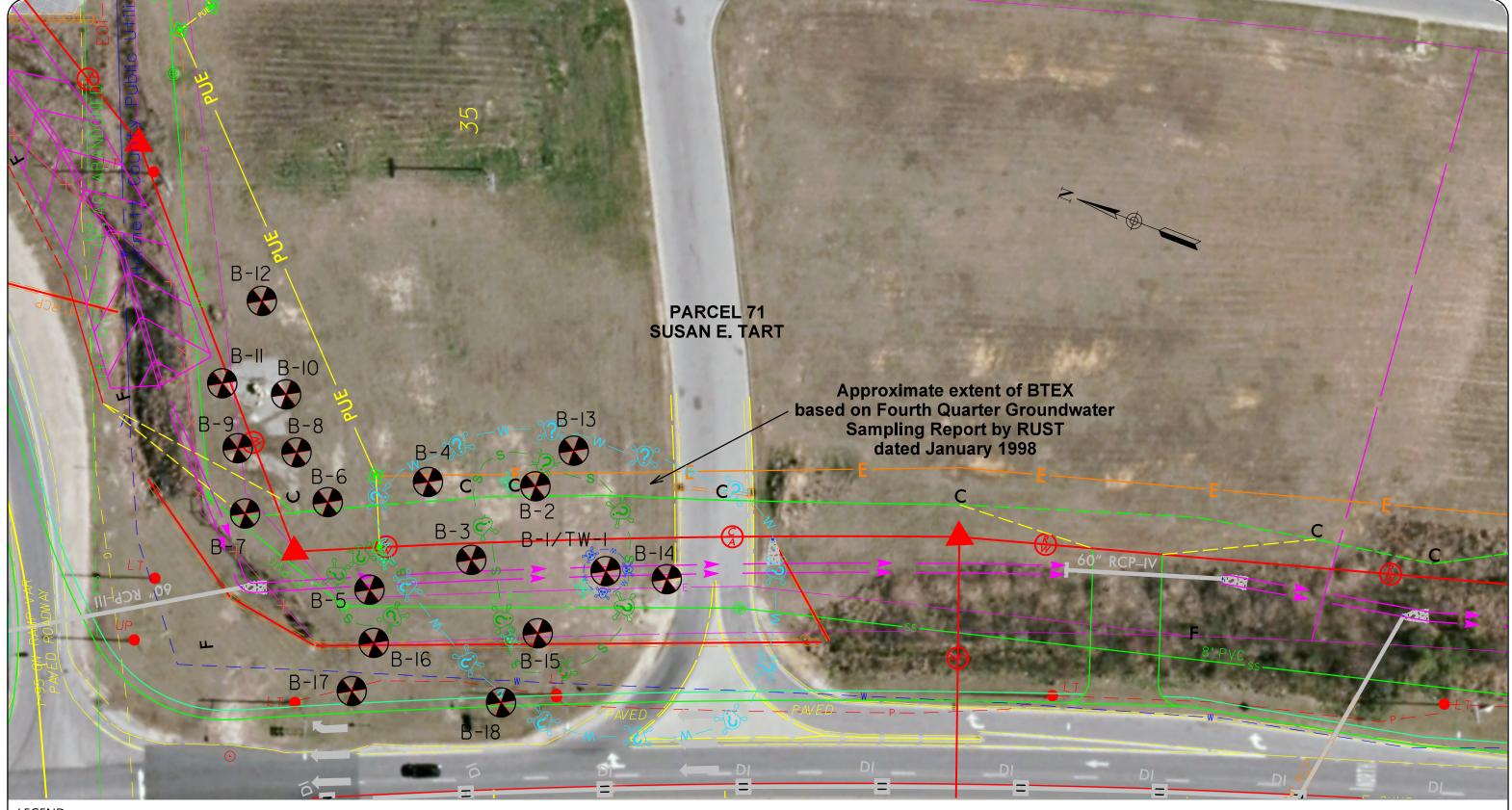
Notes:

1. Analytes that are not shown for the method were not detected.

2. Concentrations are reported in micrograms per liter (μ g/L).

3. 2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202

4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.


5. Concentrations exceeding the 2L Standards are shown in Shaded and **BOLD** fields.

6. GCL: Gross Contamination Level.

7. J: Estimated concentration detected below the reporting limit.

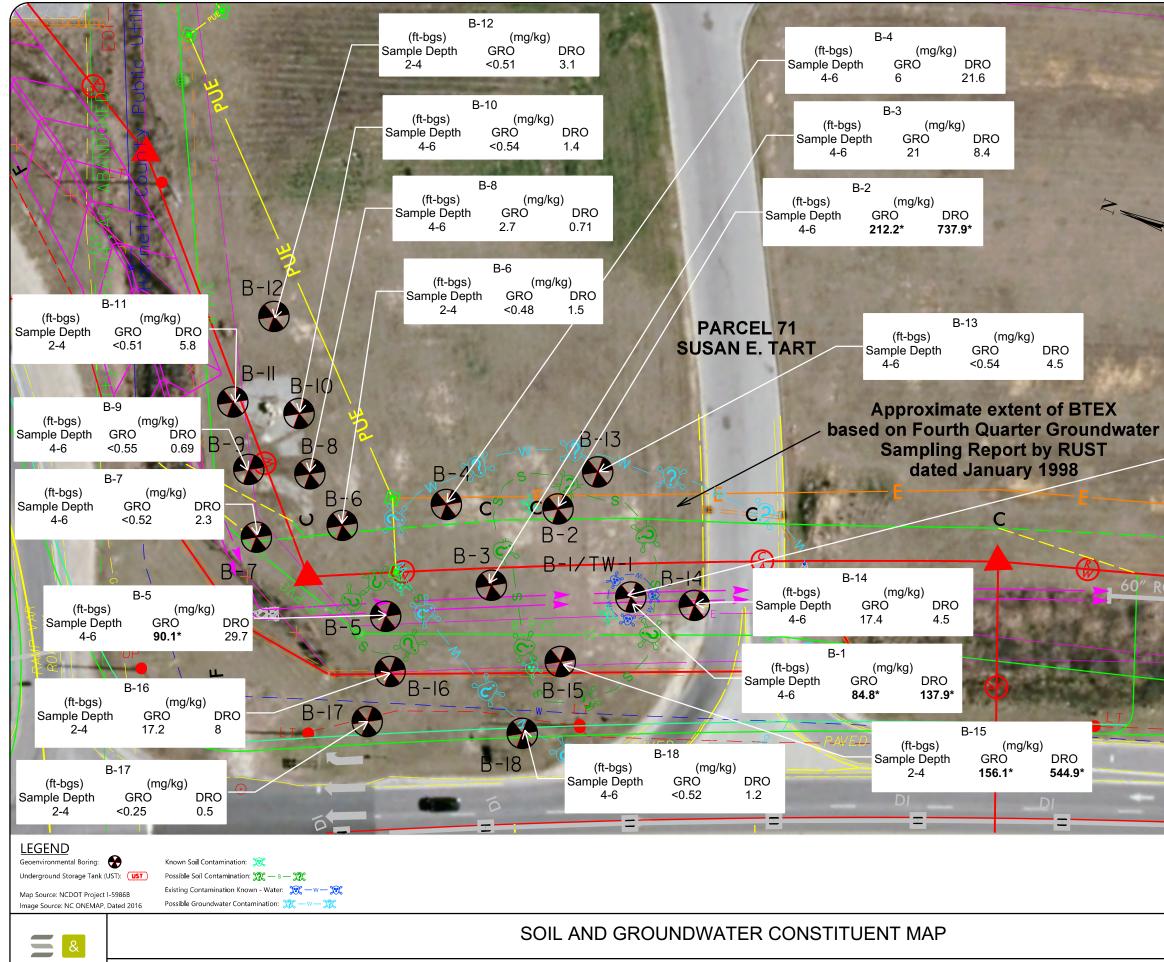
Figures

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
WCOLEST	- Faust		Ň
1 DET			
		TIM	
1 /al		JONESBORO RD	4
1 / 5-	Hannas Lake Hannas Lake	A A A A A A A A A A A A A A A A A A A	
School: Prir Sch	nett nary col state stat		BRED RC
XXX		all a	DOLLARD RD
M CUMBERLAND ST		518180 9	
UNBER	Sunn the second se		
AND ST	Dunn to the state of the state		WORK
St have the			A REAL
and the state of t			O O
and the start			\sim / \sim
1 Maarson	X X V X X X Y Y Y Y Y Y Y Y Y Y Y Y Y Y		@ /
Hat at the			- the
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			S C Star
5/5/0/-/	1 9 State Contraction of the Con	The	0
1 × V			
1 A	Jan 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AL #	
15.	STE		and and
1 miles		Ninon	NC 55 F
and the		Ningo Swadyo	
/ 50		Xara 3	
	Stall Contraction of the stall	after to	
$\sim D$	ACKSON RD PANET	1	
	JACKSON RD T		1
		1	
		1	
		and the second	
		2-2-	1
- /			JERNIGA
1 la			
1			100).
e 0			
amont		Cape C	
* J J		2	9
12 5		inge	1
and the second		- May	And the second
0	4,000 4,000	Big Juni	per Run
	(FEET)	/	18
Present and		2-1	
REFERENCE: GIS BASE LAYERS WER	E OBTAINED FROM THE USGS NATIONAL TOPO MAP VIEWER. THIS		
MAP IS FOR INFORMA	TIONAL PURPOSES ONLY. ALL FEATURE LOCATIONS DISPLAYED ARE		Site Parcel
APPROXIMATED. THEY OTHERWISE.	ARE NOT BASED ON CIVIL SURVEY INFORMATION, UNLESS STATED	- 50	
		SCALE:	FIGURE NO.
	VICINITY MAP	1 " = 2,000 '	
	NCDOT PROJECT I-5878	DATE:	1
mΞ	PARCEL NO. 71 (FORMER PHILLIPS 66) VACANT LOT SE CORNER E. CUMBERLAND ST AND I-95	11-22-19	L L
	DUNN, HARNETT COUNTY, NORTH CAROLINA	PROJECT NUMBER 4305-19-161	

<u>LEGEND</u>

Geoenvironmental Boring: Underground Storage Tank (UST): Map Source: NCDOT Project I-5986B

ΞM


Image Source: NC ONEMAP, Dated 2016

Known Soil Contamination: 😿 Possible Soil Contamination: 淤 — s — 💥 Existing Contamination Known - Water: 😿 — w — 😿 Possible Groundwater Contamination: 💢 — w — 💥

SITE MAP

NCDOT Project: I-5878 PARCEL 71 - FORMER PHILLIPS 66 Vacant Lot SE Corner E. Cumberland St. & I-95, Dunn, Harnett County, North Carolina

0	40	80
(GRAPHIC SCALE	(IN FEET)
	SCALE:	FIGURE NO.
	1" = 40'	
	DATE:	•
	JAN. 2020	2
	PROJECT NUMBER	
	4305-19-161	

ΞM

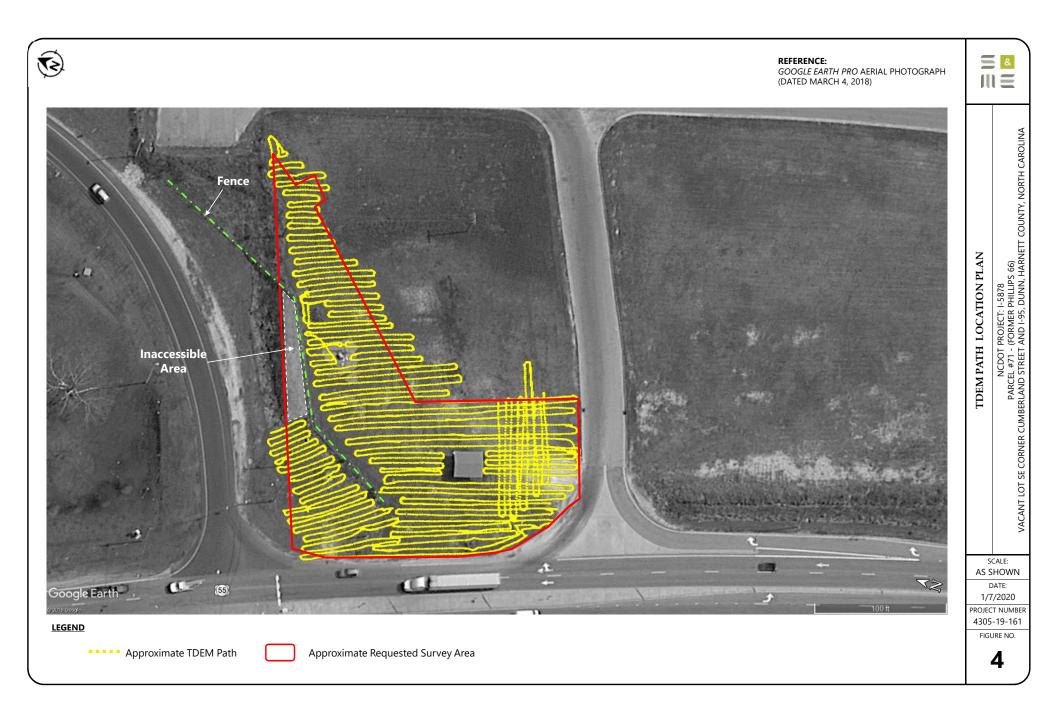
NCDOT Project: I-5878 PARCEL 71 - FORMER PHILLIPS 66 Vacant Lot SE Corner E. Cumberland St. & I-95, Dunn, Harnett County, North Carolina

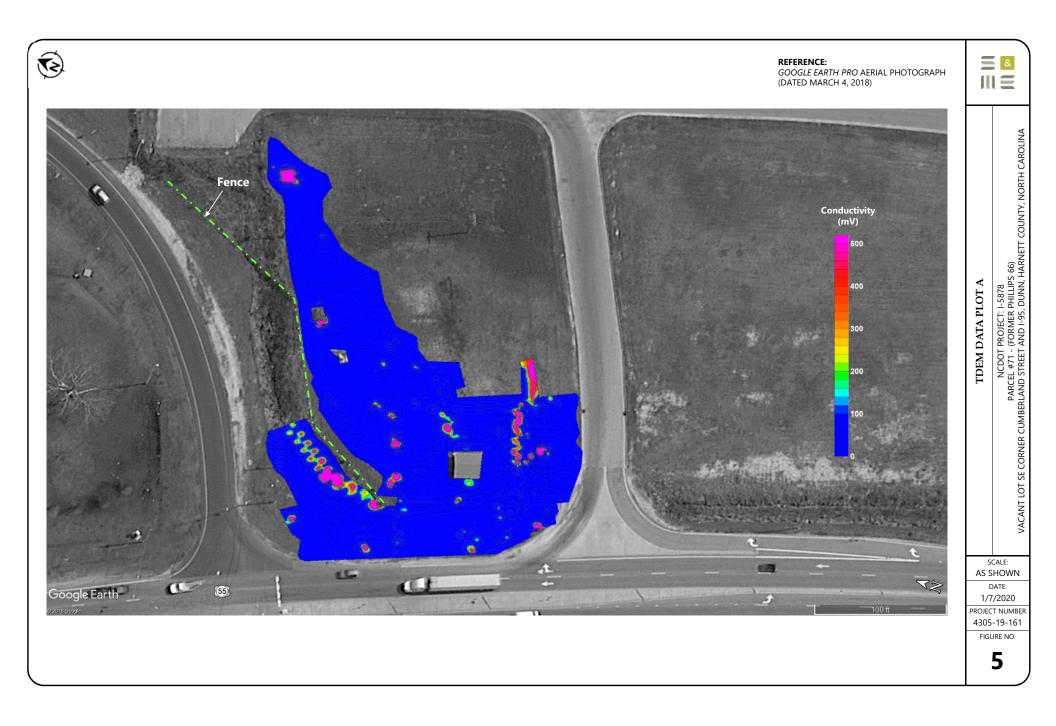
Notes:

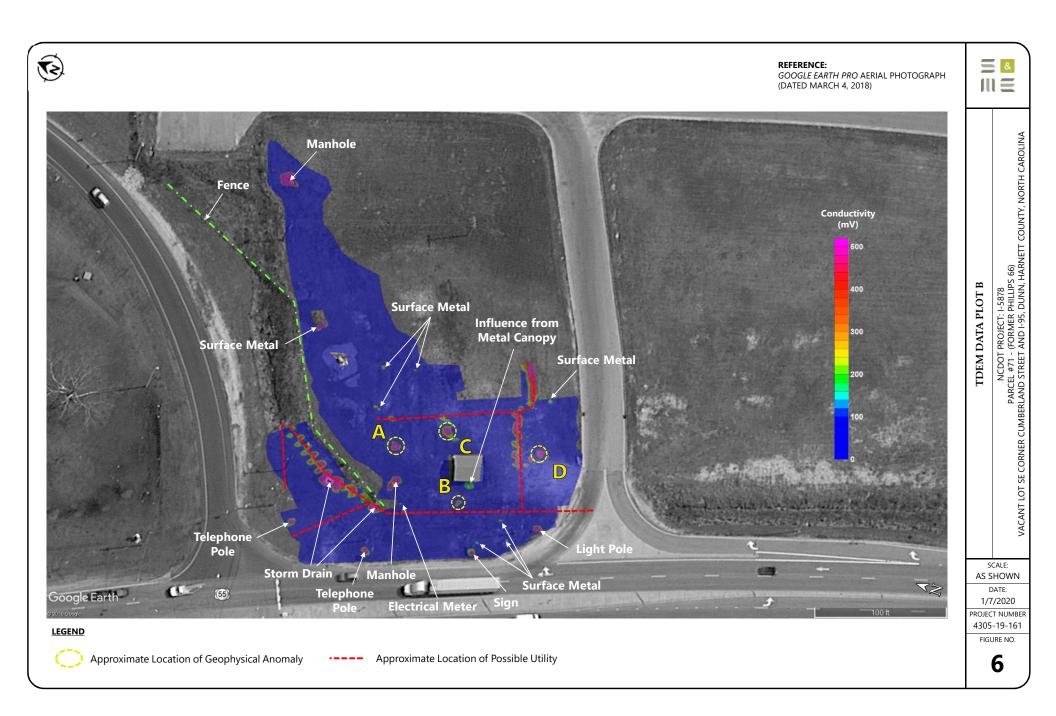
mg/kg: Milligrams per Kilogram μg/L: Micrograms per Liter

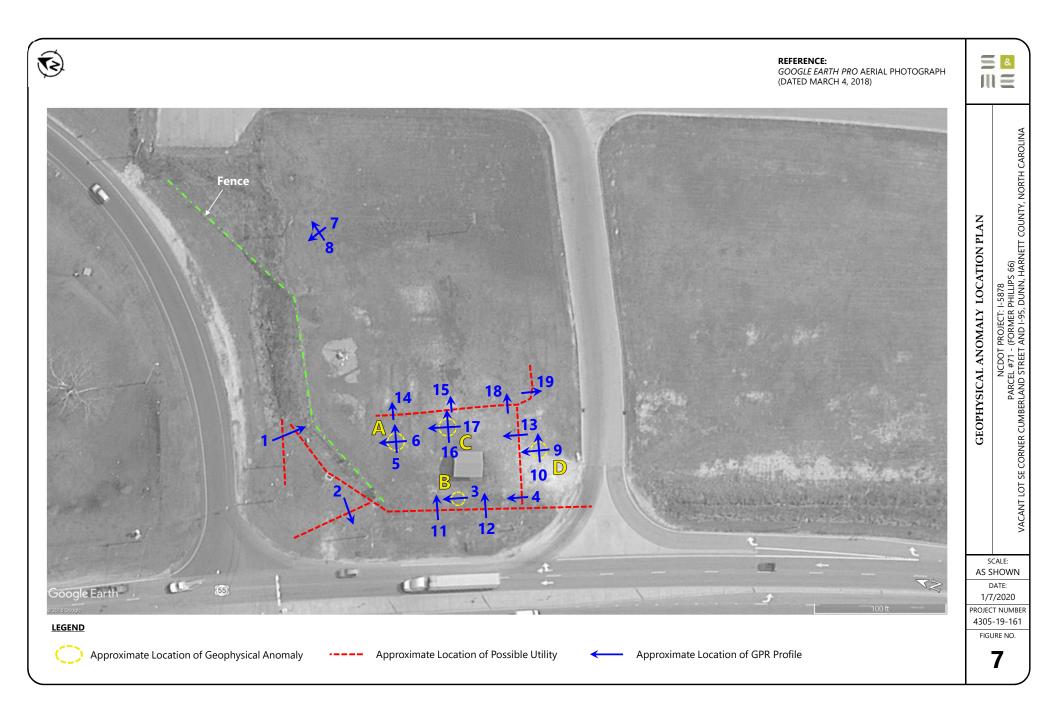
GRO: Total Petroleum Hydrocarbon Gasoline Range Organics DRO: Total Petroleum Hydrocarbon Diesel Range Organics TPH: Total Petroleum Hydrocarbon

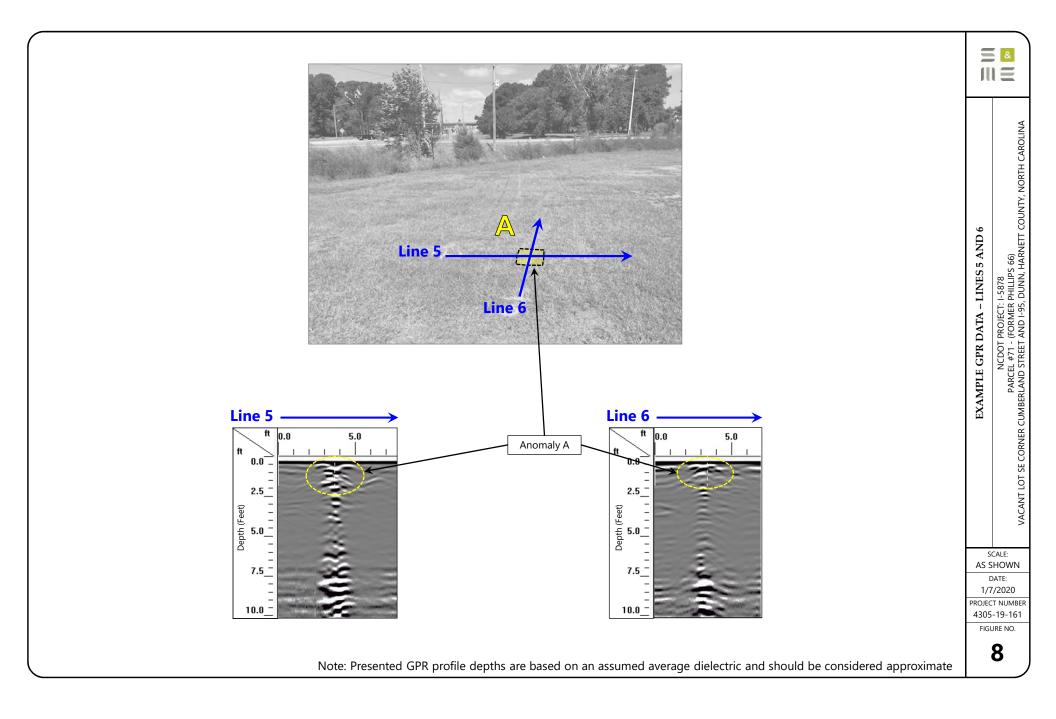
BOLD*: Indicates Exceedance of NC TPH Action Levels **BOLD#**: Indicates Exceedance of 2L Groundwater Samples ft-bgs : Feet Below Ground Surface

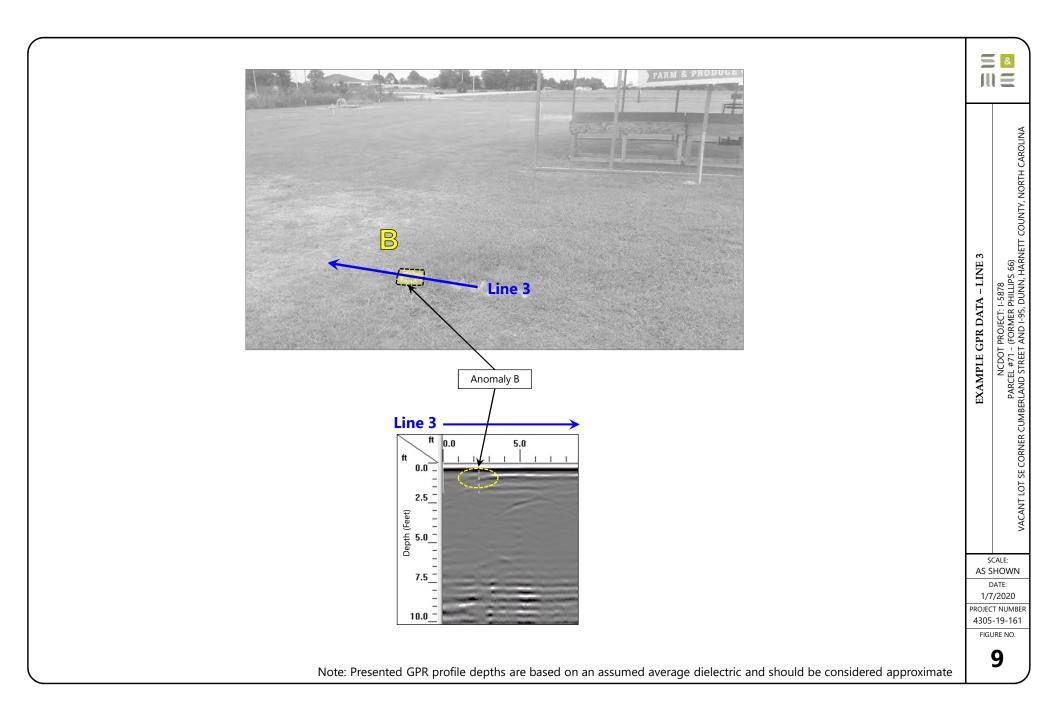

Samples Collected 10-17-2019 and 10-18-2019.

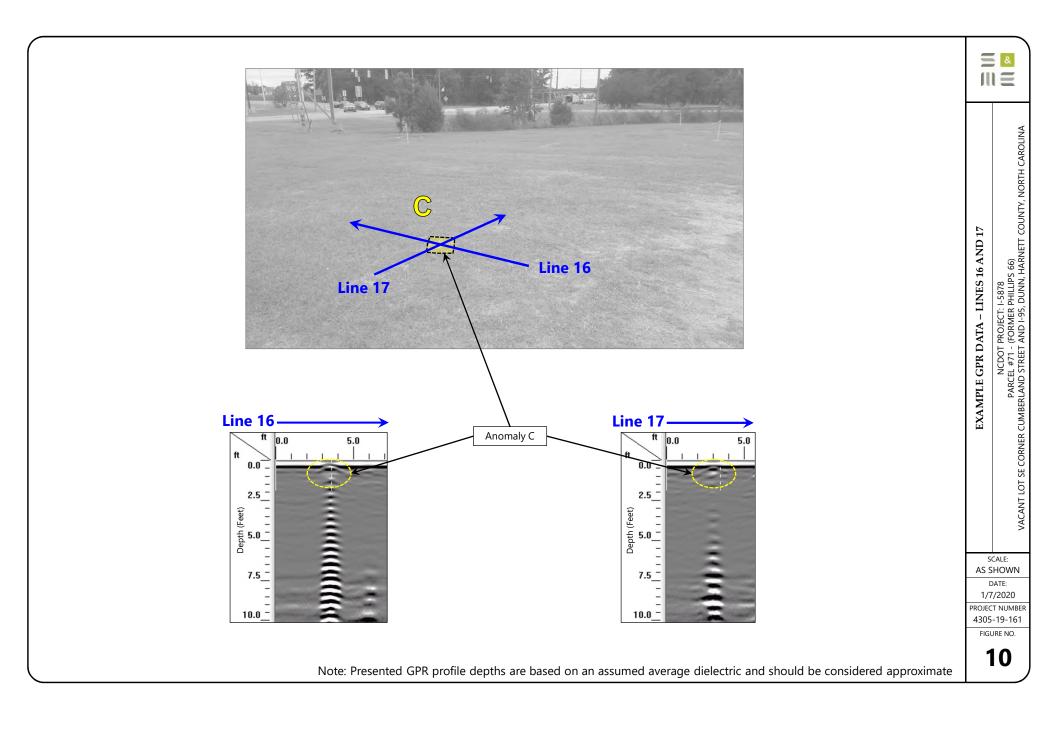

GRO/DRO Analyzed by Ultraviolet Fluorescence (UVF) by RED Lab, LLC.

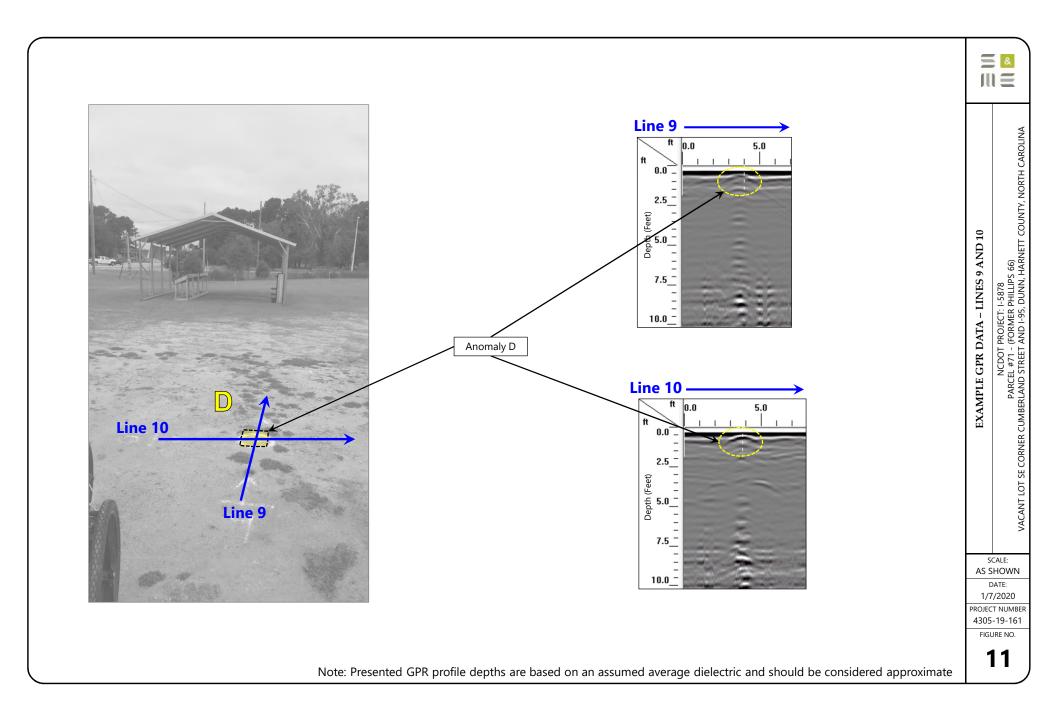

TW-1	µg/L
EPA Method 8260	
Benzene	510#
Disopropyl Ether	6
Ethylbenzene	360
Isopropylbenzene	38
MTBE	100#
Naphthalene	110#
n-Butylbenzene	12
sec-butylbenzene	6.8
tert-Butyl Alcohol	3,200#
n-Propylbenzene	94#
p-Isopropyltoluene	7.9
Toluene	140
1,2,4-Trimethylbenzene	470#
1,3,5-Trimethylbenzene	150
Total Xylenes	1,150#
EPA Method 8270	
Acenaphthene	0.50
Anthracene	0.036
Acenaphthylene	0.12
Fluorene	0.93
Naphthalene	120#
Phenanthrene	0.57
2-Methylnaphthalene	64#




o E	40	80
G	RAPHIC SCALE	(IN FEET)
	SCALE:	FIGURE NO.
	1" = 40'	
	DATE:	•
	JAN. 2020	3
	PROJECT NUMBER	
	4305-19-161	







Appendix I – NCDEQ File Review

RECEIVED

JAN 3 0 1998

FAYETTEVILLE REG. OFFICE

FOURTH QUARTER 1997 GROUNDWATER SAMPLING REPORT FORMER PHILLIPS 66 STATION #25485 HIGHWAY 421 AND 55 DUNN, NORTH CAROLINA INCIDENT NO. 3626 RUST PROJECT NO. 40599

Prepared for:

Phillips Petroleum Company 13 Phillips Building Post Office Box 2400 Bartlesville, Oklahoma 74004

Prepared By:

Rust Environment & Infrastructure 5510 Six Forks Road, Suite 200 Raleigh, North Carolina 27609

Michon W. SEAL Michael W. Branson, L.G 467

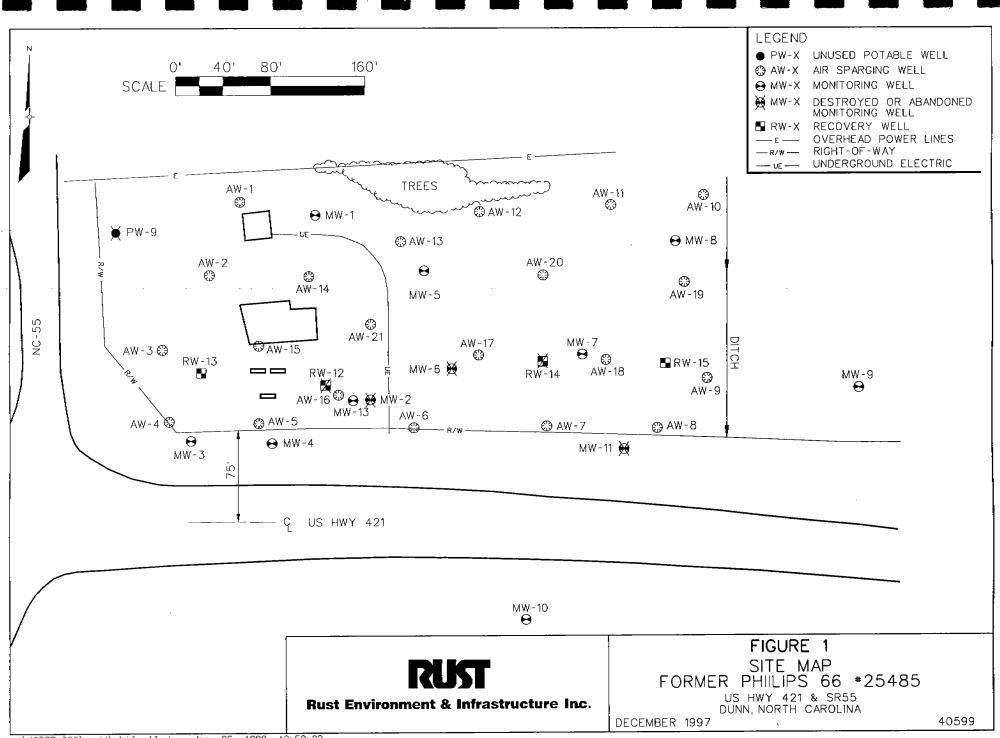
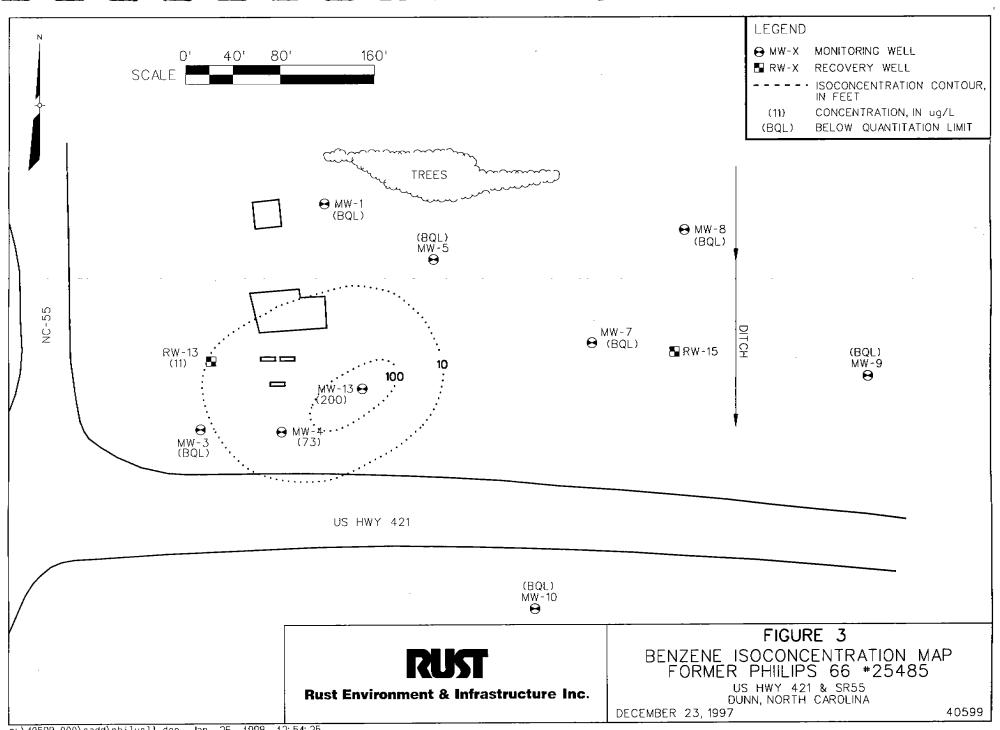

January 1998

TABLE 2 GROUNDWATER QUALITY DATA (1) FORMER PHILLIPS 66 STATION # 25485 HIGHWAY 421 & HIGHWAY 55, DUNN, NORTH CAROLINA


PARAMETERS	NCAC 15A 2L GROUNDWATER STANDARD	Date	MW-1	MW-2	MW-3	MW-4	MW-5	MW-7	MW-8	MW-9	MW-10	MW-13	RW-12	RW-13	RW-14	RW-15
BENZENE	1	12/7/94 5/11/95 9/29/95 12/20/95 3/14/96 6/27/96 10/16/96 12/27/96 3/21/97 6/12/97 9/4/97 12/23/97	17.2 17.2 9.0 BDL BDL BDL BQL BQL BQL BQL BQL BQL	1160 104 310 200 2 BDL 9 50 NS NS NS NS NS NS	<0.5 <0.5 BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL	435 472 NS 600 BDL NS 315 520 NS NS NS NS NS 73	412 864 3 2 8 0 4 8 8 4 8 7 8 4 8 7 8 7 8 7 8 7 8 8 8 8	91.1 591 21 15 71 8 9 NS NS NS NS NS BQL	23.9 10.2 9,0 BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL	<0.5 <0.5 BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL	<0.5 <0.5 BDL BDL BDL BDL BQL BQL BQL BQL BQL		NS 3330 NS 2 770 30 800 NS NS NS NS NS NS	110 19.6 NS 1800 720 472 390 2 NS NS NS NS NS	8399 55 838 839 10 4 85 85 85 85 85 85	237 NS NS 220 230 57 1 NS NS NS NS
	1000	12/7/94 6/11/95 9/29/95 12/20/95 3/14/96 6/27/96 10/16/96 12/27/96 3/21/97 6/12/97 9/4/97 12/23/97	<0.5 0.776 BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL	3340 163 450 450 3 BDL 11 90 NS NS NS NS	<0.5 0.75 BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL	2.12 2.79 NS 10 BDL NS 10 14 NS NS S 5	<0.5 0.794 BDL BDL BDL BDL BQL NS NS NS BQL	2.84 56.4 4 1 21 BDL BDL BQL NS NS NS BQL	<0.5 0.78 BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL	<0.5 0.805 BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL	<0.5 0.742 BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL BQL	 1480 NS NS NS 450	NS 6310 NS 5 3 260 57 360 NS NS NS NS NS	153 11.5 NS 5400 630 420 4 NS NS NS 4	41 44.3 NS 60 4 1 BDL BQL NS NS NS NS	1.75 NS S BDL 2 BDL BQL NS NS NS NS
THYLBENZENE	29	12/07//94 5/11/95 9/29/95 12/20/95 3/14/96 6/27/96 10/16/96 12/27/96 3/21/97 6/12/97 9/4/97 9/4/97	<0.5 <0.5 BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL	387 21.2 10 20 BDL BDL 2 12 NS NS NS NS	<0.5 <0.5 BDL BDL BDL BDL BQL BQL BQL BQL BQL	24.7 45.7 NS 70 BDL NS 25 130 NS NS NS BOL	<0.5 <0.5 BDL BDL BDL BDL BDL NS NS BQL	23.8 4 4 66 BDL BDL BDL NS NS NS BQL	<0.5 <0.5 BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL	<0.5 <0.5 BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL	<0.5 <0.5 BDL BDL BDL BDL BQL BQL BQL BQL BQL	135 260 NS NS NS NS	NS 688 NS 1 BDL 10 4 50 NS NS NS NS	26.2 3.15 NS 450 90 158 BDL BDL NS NS NS BQL	111 40.8 NS 5 14 BDL BOL NS NS NS NS	1.77 NS NS 12 BDL 15 4 BQL NS NS NS NS
TOTAL XYLENE	530	12/7/94 5/11/96 9/29/95 12/20/95 3/14/96 6/27/96 10/16/96 12/27/96 3/21/97 6/12/97 9/4/97 12/23/97	<0.5 <0.5 BDL BDL BDL BDL BDL BQL BQL BQL BQL	1850 144 110 250 15 BDL 13 152 NS NS NS NS	<0.5 <0.5 BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL	9.12 22.8 NS 90 BDL BDL 30 120 NS NS NS 10	<0.5 <0.5 BDL BDL BDL BDL BDL BDL NS NS NS BQL	6.28 269 8 3 74 BDL BDL BQL NS NS NS BQL	<0.5 <0.5 BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL	<0.5 <0.5 BDL BDL BDL BDL BDL BQL BQL BQL BQL	<0.5 <0.5 BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL	2160 4100 NS NS NS NS	NS 3980 NS 16 3 490 123 298 NS NS NS NS NS	202 29.8 NS 11700 2120 765 240 5 NS NS NS NS 19	69.9 258 NS 120 7 6 BDL BDL NS NS NS NS	19.2 NS NS 12 BDL 4 BDL BQL NS NS NS NS
TOTAL BTEX		12/7/94 5/11/95 9/29/95 12/20/95 3/14/96 6/27/96 10/16/96 12/27/96 3/21/97 6/12/97 9/4/97 12/23/97	17.2 18 9 BDL BDL BDL BDL BQL BQL BQL BQL	6730 431 88 1020 20 BDL 35 304 NS NS NS NS	<0.5 0.75 BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL	470 543 NS 770 BDL NS 380 784 NS NS NS 88	41.2 87.2 3.0 2 BDL 48 18 5 NS NS NS BQL	124 1050 37 23 232 25 8 9 NS NS NS BQL	23.9 10.9 9.0 BDL BDL BDL BDL BQL BQL BQL BQL BQL	<0.5 0.805 BDL BDL BDL BDL BQL BQL BQL BQL BQL	<0.5 0.742 BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL	 4630 7710 NS NS NS 1630	NS 14300 NS 24 8 930 214 1308 NS NS NS NS	492 64.1 NS 19350 4150 2025 1050 11 NS NS NS 36	925 763 NS 980 36 64 10 4 NS NS NS NS	260 NS NS 121 BDL 251 61 1 NS NS NS NS
МТВЕ	200	12/7/94 5/11/95 9/29/95 12/20/95 3/14/96 6/27/96 10/16/96 12/27/96 3/21/97 6/12/97 9/4/97 12/23/97	53.2 50.6 65 61 46 35 70 29 11 21 21 83	<.5.00 3.41 BDL BDL BDL 1 BQL NS NS NS NS	1.98 <0.5 BDL BDL BDL BDL BQL BQL BQL BQL BQL	<0.5 2.92 NS BDL BDL NS 7 5QL NS NS BOL	69.5 111 80 85 81 243 138 57 NS NS NS NS 17	101 470 108 420 1000 450 160 260 NS NS NS NS 32	252 172 143 49 46 42 34 20 20 12 12 12 12 19	11.2 13.7 12 BDL 2 BDL 3 BQL BQL BQL BQL	1.61 3.87 BDL BDL BDL BDL BQL BQL BQL BQL BQL	BOL NS NS BQL	NS <5.00 NS BDL 200 BDL BDL BQL NS NS NS NS	43.4 35.6 NS BDL 585 BDL 10 12 NS NS NS 13	526 514 NS 860 44 270 90 100 NS NS NS NS	371 NS NS 136 11 240 105 36 NS NS NS NS NS

NS- Not Sampled L - Below Quantitation Limits L - Below Detection Limits

aded areas denote concentration above NCAC 15A 2L groundwater quality standard All concentrations reported in ug/L (1) All data prior to 12/27/96 was obtained from Handex of the Carolinas Third Quarterly Report 1996

p:\40599.000\cadd\philwell.don_Jan. 26, 1998 12:58:23

p:\40599.000\cadd\philwell.dgn Jan. 26, 1998 12:54:25

PHILLIPS PETROLEUM COMPANY BARTLESVILLE, OKLAHOMA 74004

t <u>T</u>

918 661-6600

HEALTH, ENVIRONMENT AND SAFETY

March 31, 1998

APR 0 0 1998

Mr. Stephen A. Barnhardt **Fayetteville Regional Office** NC DEHNR 225 West Green Street Fayetteville, NC 28301

RE: Soil Cleanup Report with Site Closure Request Former Phillips 66 Station #25485 0-017649 Highway 421 and 55 Dunn, Harnett County, North Carolina Groundwater Incident No. 3626

Dear Mr. Barnhardt:

We are submitting the above referenced report for your review.

The site specific criteria indicates that this is a low-risk site and we are requesting a letter of no further action.

At this time we are not scheduling any groundwater sampling; however, the remediation system will continue to operate until we hear from you.

If you have any questions, please feel free to call me at (918) 661-0185.

Sincerely

Cindy L. Smith **Environmental Scientist** Property Risk Management Division 13 B1 PB Bartlesville, OK 74004 Phone (918) 661-0185 Fax (918) 661-5664

Enclosure CLS:ceh

Michael Branson (w/o enclosure) cc: Gale Tart (w/enclosure)

EXECUTIVE SUMMARY

The former Phillips Petroleum Company Station #25485 is located at the intersection of Highway 421 and Highway 55 in Dunn, Harnett County, North Carolina. Six underground storage tanks were removed from the site. The tanks included two 8,000-gallon gasoline, one 3,000-gallon gasoline, one 2,000-gallon diesel, one 1,000-gallon kerosene, and one 1,000-gallon heating fuel tank. Contamination was confirmed by the presence of free product in the excavation and was reported to the on-site Division of Environmental Management representative. Only the gasoline tanks appear to have contributed to the release. No quantities of released product were estimated at the time of the discovery in 1988. Based on soil analyses performed from June 1992 to October 1993, an estimated 2,500 cubic yards of soil contained petroleum contamination above the State action level for gasoline range organics.

Two remediation systems have been in place for the site during the course of the soil and groundwater cleanup. From 1991 to 1995, the remediation consisted of groundwater removal, treatment, and disposal on-site through recharge trenches. The groundwater treatment also included addition of microorganisms to enhance degradation. The recharge trenches were placed such that the treated and enhanced water would be in contact with, and percolate through, the petroleum contaminated soil. Soil sampling and analysis in 1995, following a period of remediation, indicated that soil contamination ranged from less than 1 milligram per kilogram (mg/kg) to 8,200 mg/kg. The second remedial technology, implemented from 1995 to present, included air sparging the contaminated groundwater. No soil vapor extraction system was constructed in conjunction with this system. However, air injected into the groundwater was anticipated to provide enhanced microbial growth and assist with clean up the soil. No confirmatory soil samples were collected for the air sparging treatment to determine changes in the petroleum concentrations during the course of sparging.

Based on a review of site specific criteria, the site is a low-risk site with respect to groundwater and should be classified as commercial/industrial with respect to soil. As a low-risk site, no additional

ii

groundwater cleanup is warranted. As a commercial/industrial site, the Maximum Soil Contaminant Concentration (MSCC) for total petroleum hydrocarbons is 12,264 mg/kg. None of the soil analyses performed on soil at the Phillips site contained concentrations above this maximum acceptable concentration. Although the last soil analyses were performed in 1993, the continued remediation effort would likely result in lower soil TPH concentrations. As a result, Phillips requests that the Division of Water Quality issue a No Further Action letter and close the site.

Because the soil concentrations are above the soil-to-groundwater MSCC and the residential MSCC, public notice will be issued. Public notice will be sent by certified mail within 30 days of receipt of the No Further Action Letter. Proof of notification will be submitted to the DWQ within 60 days of the receipt of the notice for no further action.

Appendix II – Photographs

Appendix III – Boring Logs

PROJECT:	:			NCDOT I-5878									
			Parcel 71-Vacant Lot S	Corner E.Cumberland St/I-95 (F S&ME Project No. 4305-19-1				BORIN	IG LOG:	: B-1/	TW-1		
DATE DRILL	.ED:		Thursday, October 17, 2019		BORING DEPTH (FT):	10							
DRILL RIG:			Geoprobe 54DT		WATER LEVEL:								
DRILLER:			Troxler Geologic, Inc.		CAVE-IN DEPTH:	Not App	licable						
HAMMER T			Not Applicable		LOGGED BY:	J. Honey	cutt						
SAMPLING	METH	OD:	Macro-Core Sampler		NORTHING:								
DRILLING M	1etho	D:	Macro-Core Sampler (3-in. C	D)	EASTING:								
DEPTH (feet)	GRAPHIC	POG		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	n value
			Ity Sand, Orange, Tan,					₽15.030.05743	No No Yes	1000		m	
30 —													

PROJ	ECT			NCDOT I-5878									
				Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former Phi S&ME Project No. 4305-19-161	illips 66), Dunn, NC			BORIN	IG LOG:	B-2			
DATE D	ORILL	ED:		Thursday, October 17, 2019	BORING DEPTH (FT):	8							
DRILL I				Geoprobe 54DT	WATER LEVEL:								
DRILLE				Troxler Geologic, Inc.	CAVE-IN DEPTH:		cable						
HAMM		YPE:		Not Applicable	LOGGED BY:								
SAMPL			IOD:		NORTHING:	,							
DRILLI				Macro-Core Sampler (3-in. OD)	EASTING:								
									~	 			
DEPTH	(feet)	GRAPHIC		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
			Ш	Silty Sand, Orange, Tan,									
-			Ш				11						
_			Ш					9.0	No				
			Ш										
			Ш				111						
-			Ш					13.0	No				
			Ш	Silty Sand, Tan, Gray, Petroleum Odors									
5 -			Ш				11						
-			Ш			-		573.0	Yes	1015			
			Ш			▼							
-			Ш										
-													
				Boring Terminated at 8 Ft-BGS									
-													
10 -													
-													
-													
_													
15 -													
-													
-													
-													
1 -													
20 -													
1													
1 -													
-													
1													
-													
25 -													
20													
-													
-													
1													
-													
30 -													

PROJECT	:		NCDOT I-5878 Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former Phil	llips 66), Dunn, NC			BORIN	IG LOG:	B-3			
			S&ME Project No. 4305-19-161									
DATE DRILI	ED:		Thursday, October 17, 2019	BORING DEPTH (FT):								
DRILL RIG:			Geoprobe 54DT	WATER LEVEL:								
DRILLER:			Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER T SAMPLING			Not Applicable	LOGGED BY:	J. Honeyo	utt						
DRILLING			Macro-Core Sampler Macro-Core Sampler (3-in. OD)	NORTHING: EASTING:								
DIVIDENT		50.		LASTING.								
DEPTH (feet)	GRAPHIC	DOJ	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
			Silty Sand, Orange, Tan,				0.6	No				
5 —			Silty Sand, Tan, Gray,				0.5	No				
					▼		46.0	Yes	1030			
		11	Boring Terminated at 8 Ft-BGS									
10 —												
15 —												
20 —												
25 —												
30 —	I		1		I				1			1

PROJECT:	NCDOT I-5878 Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Forme	r Phillips 66), Dunn, NC		BORI	NG LOG:	B-4			
	S&ME Project No. 4305-19-161	Ι							
DATE DRILLED:	Thursday, October 17, 2019	BORING DEPTH (FT):							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:							
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:							
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeycutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:							
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:			1	1			r –
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	ilty Sand, Orange, Tan, ilty Sand, Tan, Gray,			0.9	No				
			•	42.0	Yes	1045			
	oring Terminated at 8 Ft-BGS								

PROJECT				NCDOT I-5878 Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former Phill	ips 66), Dunn, NC			BORIN	IG LOG:	B-5			
				S&ME Project No. 4305-19-161									
DATE DRILL	ED:			Thursday, October 17, 2019	BORING DEPTH (FT):	8							
DRILL RIG:				Geoprobe 54DT	WATER LEVEL:								
DRILLER:				Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER T				Not Applicable	LOGGED BY:	J. Honeyo	utt						
SAMPLING				Macro-Core Sampler	NORTHING:								
DRILLING N	/ETH	OD:	<u> </u>	Macro-Core Sampler (3-in. OD)	EASTING:					1			1
DEPTH (feet)	GRAPHIC	DOJ		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
				Sand, Orange, Tan,				45.0 1661	No				
5 —			Silty	Sand, Tan, Gray, Petroleum Odors		▼		4485	Yes	1100			
			Borin	ng Terminated at 8 Ft-BGS									
10													
15 ——													
20													
 25													
30 —													

PRO.	JECT	:		NCDOT I-5878 Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former Phillips	66), Dunn, NC			BORIN	IG LOG:	B-6			
				S&ME Project No. 4305-19-161									
DATE		ED:			RING DEPTH (FT):	8							
DRILL				Geoprobe 54DT	WATER LEVEL:								
DRILL					CAVE-IN DEPTH:								
HAM				Not Applicable	LOGGED BY:		cutt						
SAMP				Macro-Core Sampler	NORTHING:								
DRILL	ING N	1ETHO	OD:	Macro-Core Sampler (3-in. OD)	EASTING:		1				1		1
DEPTH	(feet)	GRAPHIC	DOJ	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
				Silty Sand, Orange, Tan,				1.7 6.0	No Yes	1145			
5				Silty Sand, Tan, Gray,				4.9	No				
						•							
				Boring Terminated at 8 Ft-BGS		-							
10													
15													
1													
20													
25													
30													

PROJECT	:			NCDOT I-5878 Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Forme	r Phillips 66), Dunn, NC			BORIN	IG LOG:	B-7			
				S&ME Project No. 4305-19-161	•								
DATE DRILL	ED:			Thursday, October 17, 2019	BORING DEPTH (FT):								
DRILL RIG:				Geoprobe 54DT	WATER LEVEL:								
DRILLER:				Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER T				Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING				Macro-Core Sampler	NORTHING:								
DRILLING N	1ETH	OD:		Macro-Core Sampler (3-in. OD)	EASTING:					1			
DEPTH (feet)	GRAPHIC	DOJ		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
 5				Sand, Orange, Tan, Sand, Tan, Gray,				0.0 0.0	No No				
			Borir	ig Terminated at 8 Ft-BGS		•		0.9	Yes	1150			
10 —— —— ——													
15 — — — 20 —													
20 — — — 25 — —													
30 —													

PROJECT	Γ:			NCDOT I-5878 Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Forme	er Phillips 66), Dunn, NC			BORIN	IG LOG:	B-8			
				S&ME Project No. 4305-19-161	1								
DATE DRIL				Thursday, October 17, 2019	BORING DEPTH (FT):								
DRILL RIG:				Geoprobe 54DT	WATER LEVEL:								
DRILLER:				Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER				Not Applicable	LOGGED BY:	J. Honey	cutt						
DRILLING				Macro-Core Sampler Macro-Core Sampler (3-in. OD)	NORTHING: EASTING:								
DRILLING		100.			LASTING.								
DEPTH (feet)	GRAPHIC			MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	-		Silty	Sand, Orange, Tan,				0.0	No				
5 —			Silty	Sand, Tan, Gray,				0.0	No				
						•		3.9	Yes	1155			
			Bori	ng Terminated at 8 Ft-BGS									
10 —	_												
	_												
15 —	_												
	_												
20 —													
25 —	_												
	-												
 30													

	NCDOT I-5878 Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former	r Phillips 66), Dunn, NC			BORIN	IG LOG:	B-9			
	S&ME Project No. 4305-19-161									
DATE DRILLED:	Thursday, October 17, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeycutt	1						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	Sand, Orange, Tan, Sand, Tan, Gray,				0.0 0.0 0.2	No No Yes	1200			
10	ng Terminated at 8 Ft-BGS									

PROJ	ECT:			NCDOT I-5878 Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former Phillips	s 66), Dunn, NC	-		BORIN	IG LOG:	B-10			
				S&ME Project No. 4305-19-161									
DATE I		ED:			ORING DEPTH (FT):								
DRILL				Geoprobe 54DT	WATER LEVEL:								
DRILLE				Troxler Geologic, Inc.	CAVE-IN DEPTH:								
				Not Applicable	LOGGED BY:		cutt						
SAMPI DRILLI				Macro-Core Sampler	NORTHING:								
DRILLI			JD.	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH	(feet)	GRAPHIC	DOJ	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
-				Silty Sand, Orange, Tan, Silty Sand, Tan, Gray,				0.0	No				
5 -				Silly Salid, Tali, Gray,				0.5	Yes	1215			
-						•		0.5	103	1213			
-			11	Boring Terminated at 8 Ft-BGS		-							
10 -													
-													
-													
-													
15 -													
-													
-													
-													
20 -													
-													
-													
25 -													
-													
-													
-													
30 -													

PROJECT	:			NCDOT I-5878 Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former	Phillips 66), Dunn, NC			BORIN	IG LOG:	B-11			
				S&ME Project No. 4305-19-161									
DATE DRILL	ED:			Thursday, October 17, 2019	BORING DEPTH (FT):								
DRILL RIG:				Geoprobe 54DT	WATER LEVEL:								
DRILLER:				Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER T				Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING DRILLING N				Macro-Core Sampler Macro-Core Sampler (3-in. OD)	NORTHING: EASTING:								
		JD.			EASTING:								1
DEPTH (feet)	GRAPHIC	DOJ		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
5 —				Sand, Orange, Tan, Sand, Tan, Gray,		¥		0.0	No Yes	1230			
			Borin	ng Terminated at 8 Ft-BGS									
30 —													

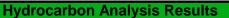
PROJECT:	:		NCDOT I-5878									
			Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former Phillips 6 S&ME Project No. 4305-19-161	6), Dunn, NC			BORIN	NG LOG:	B-12			
DATE DRILL	ED:		Thursday, October 17, 2019 BORI	NG DEPTH (FT):	8							
DRILL RIG:			Geoprobe 54DT	WATER LEVEL:	5							
DRILLER:			Troxler Geologic, Inc. C	AVE-IN DEPTH:	Not App	licable						
HAMMER T	YPE:		Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING	METH	IOD:	Macro-Core Sampler	NORTHING:								
DRILLING M	1ETHC	DD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
			Silty Sand, Orange, Tan, Silty Sand, Tan, Gray, Boring Terminated at 8 Ft-BGS		▼		0.0 0.1	No Yes	1240			
30 —												

PROJECT	:		NCDOT I-5878 Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (For	mer Phillips 66), Dunn, NC			BORIN	IG LOG:	B-13			
			S&ME Project No. 4305-19-161									
DATE DRILI	ED:		Thursday, October 17, 2019	BORING DEPTH (FT):	8							
DRILL RIG:			Geoprobe 54DT	WATER LEVEL:								
DRILLER:			Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER T			Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING			Macro-Core Sampler	NORTHING:								
DRILLING N		OD:	Macro-Core Sampler (3-in. OD)	EASTING:								1
DEPTH (feet)	GRAPHIC	DOJ	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
			Silty Sand, Orange, Tan,				21.0	No				
5 —			Silty Sand, Tan, Gray,				3.0	Yes	1500			
					•		5.0	105	1500			
			Boring Terminated at 8 Ft-BGS									
10 —												
15												
20 —												
_												
25 —												
30 —					I	1	l					1

PROJECT	Γ:		NCDOT I-5878									
			Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former S&ME Project No. 4305-19-161	Phillips 66), Dunn, NC			BORIN	IG LOG:	B-14			
DATE DRIL	LED:		Thursday, October 17, 2019	BORING DEPTH (FT):	8							
DRILL RIG:			Geoprobe 54DT	WATER LEVEL:	6							
DRILLER:			Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not App	licable						
HAMMER	TYPE:		Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING	i METH	IOD:	Macro-Core Sampler	NORTHING:								
DRILLING N	METHO	DD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC	DOJ	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
			Silty Sand, Orange, Tan, Silty Sand, Tan, Gray, Silty Sand, Tan, Gray, Slight Petroleum Odors Boring Terminated at 8 Ft-BGS				4.6 10.4 403.0	K No No Yes	1515			
20 — 20 — 25 — 30 —												

PROJECT	:			NCDOT I-5878 Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former	Phillips 66), Dunn, NC			BORIN	IG LOG:	B-15			
				S&ME Project No. 4305-19-161	F · · · // · · // ·								
DATE DRILI	LED:			Thursday, October 17, 2019	BORING DEPTH (FT):	8							
DRILL RIG:				Geoprobe 54DT	WATER LEVEL:	6							
DRILLER:				Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER 1				Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING				Macro-Core Sampler	NORTHING:								
DRILLING N	METH	OD:		Macro-Core Sampler (3-in. OD)	EASTING:					r			r —
DEPTH (feet)	GRAPHIC	DOJ		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
				Sand, Orange, Tan,				17.9	No				
5 —			Silty	Sand, Tan, Gray, Strong Petroleum Odors				1452	Yes	1530			
						▼		603.0	No				
			Borir	ng Terminated at 8 Ft-BGS									
10 —													
15 —													
_													
20 —													
I —	-												
	1												
	-												
25 —													
	1												
	-												
_													
30 —	I		I				<u> </u>			I			<u> </u>

PROJECT	Γ:			NCDOT I-5878 Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Forme	r Phillips 66), Dunn, NC			BORIN	IG LOG:	B-16			
				S&ME Project No. 4305-19-161	•								
DATE DRIL				Thursday, October 17, 2019	BORING DEPTH (FT):								
DRILL RIG:				Geoprobe 54DT	WATER LEVEL:								
DRILLER:				Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER				Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING DRILLING I				Macro-Core Sampler Macro-Core Sampler (3-in. OD)	NORTHING: EASTING:								
DRILLING		100.	1		EASTING.					Γ.			<u> </u>
DEPTH (feet)	GRAPHIC	LOG		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
				Sand, Orange, Tan,				2.6	No				
5 —			Siity	Sand, Tan, Gray, Strong Petroleum Odors				908.0 546.0	Yes	1600			
						▼		540.0	NU				
			Bori	ng Terminated at 8 Ft-BGS									
10 —													
15 —	_												
	1												
20 —	-												
	1												
— —	1												
—	-												
	1												
25 —	-												
	1												
I —	-												
_													
30 —	1		1					I		1			


PROJECT	:			NCDOT I-5878									
				Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former S&ME Project No. 4305-19-161	Phillips 66), Dunn, NC			BORIN	IG LOG:	B-17			
DATE DRILI	LED:			Thursday, October 17, 2019	BORING DEPTH (FT):	8							
DRILL RIG:				Geoprobe 54DT	WATER LEVEL:	5							
DRILLER:				Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER 1	YPE:			Not Applicable	LOGGED BY:								
SAMPLING		HOD:		Macro-Core Sampler	NORTHING:								
DRILLING N				Macro-Core Sampler (3-in. OD)	EASTING:								
									~	 			
DEPTH (feet)	GRAPHIC	DOJ		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Ш	Silty	Sand, Orange, Tan,									
		Ш						5.1	No				
		Ш											
	╟	╢	Silty	Sand, Tan, Gray,				6.4	Yes	1615			
5 —		Ш				▼							
		Ш											
		Ш											
			Borin	ng Terminated at 8 Ft-BGS									
10 —													
15 —													
_													
20 —													
	-												
25 —													
-													
-	1												
-													
30 —			•				هــــــــــــــــــــــــــــــــــــ			۰	· · · · · ·		

PROJE	ECT:			NCDOT 1-5878 Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former Phillips 6)	ნ), Dunn, NC	-		BORIN	IG LOG:	B-18	1		
				S&ME Project No. 4305-19-161									
DATE D		ED:			NG DEPTH (FT):								
DRILL F				Geoprobe 54DT	WATER LEVEL								
DRILLEI					AVE-IN DEPTH								
HAMM				Not Applicable	LOGGED BY		cutt						
SAMPL DRILLIN				Macro-Core Sampler	NORTHING								
DRILLIN			<i>.</i>	Macro-Core Sampler (3-in. OD)	EASTING								
DEPTH	haal	GRAPHIC		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
-				Silty Sand, Orange, Tan,				4.3 5.3	No				
5 -				Silty Sand, Tan, Gray,									
_						•		5.4	No	1630			
_				Boring Terminated at 8 Ft-BGS		-							
10 -													
_													
_													
- 15 -													
_													
_													
-													
20 -													
_													
_													
25 -													
-													
-													
30 -													

Appendix IV – Laboratory Analytical Reports and Chain of Custody

Client: S&ME Address: 3201 SPRING FOREST RD RALEIGH NC

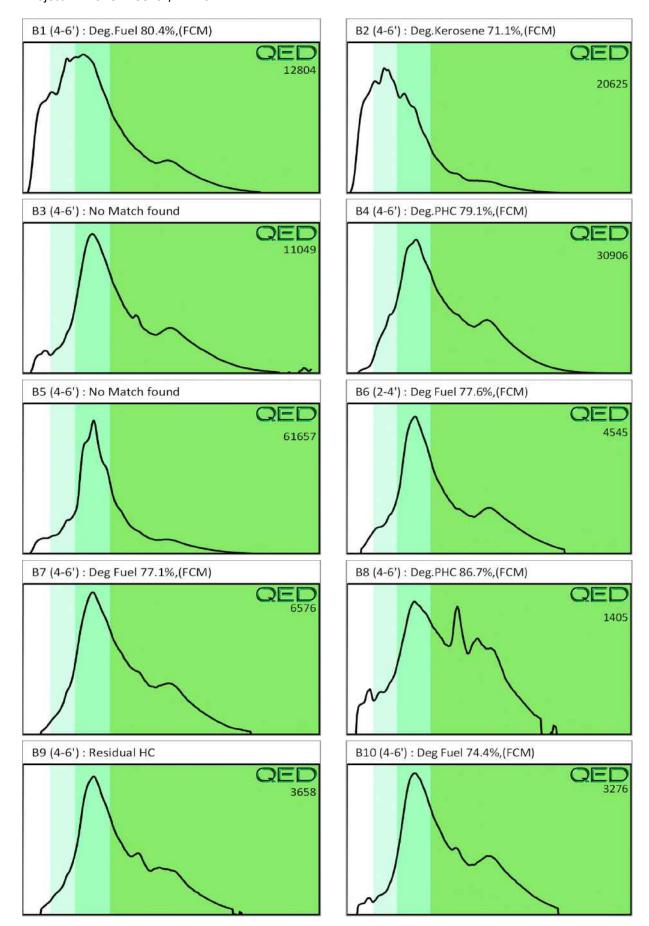
Samples extractedThursday, October 17, 2019Samples analysedWednesday, October 23, 2019

Contact: JAMIE HONEYCUTT

Operator

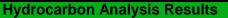
Samples taken

CAROLINE STEVENS


Thursday, October 17, 2019

Project: NCDOT I-5878 / PARCEL 71

													F03640
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP		Ratios		HC Fingerprint Match
										% light	% mid	% heavy	
S	B1 (4-6')	17.8	<0.45	84.8	137.9	222.7	15.8	0.62	<0.018	97.7	2	0.3	Deg.Fuel 80.4%,(FCM)
S	B2 (4-6')	19.4	<0.49	212.2	737.9	950.1	41.2	1.5	<0.019	98.9	1	0.1	Deg.Kerosene 71.1%,(FCM)
S	B3 (4-6')	20.6	<0.52	21	8.4	29.4	4.3	0.21	<0.021	90.2	8	1.8	No Match found
S	B4 (4-6')	19.8	<0.5	6	21.6	27.6	11	0.53	<0.02	40.6	49.7	9.7	Deg.PHC 79.1%,(FCM)
S	B5 (4-6')	18.2	<0.45	90.1	29.7	119.8	20.5	0.98	<0.018	86.2	12.6	1.1	No Match found
S	B6 (2-4')	19.3	<0.48	<0.48	1.5	1.5	1.3	<0.15	<0.019	0	80.1	19.9	Deg Fuel 77.6%,(FCM)
S	B7 (4-6')	20.8	<0.52	<0.52	2.3	2.3	2.2	<0.17	<0.021	0	81	19	Deg Fuel 77.1%,(FCM)
S	B8 (4-6')	21.0	<0.52	2.7	0.71	3.41	0.35	<0.17	<0.021	91	6.4	2.5	Deg.PHC 86.7%,(FCM)
S	B9 (4-6')	22.0	<0.55	<0.55	0.69	0.69	0.68	<0.18	<0.022	0	81.9	18.1	Residual HC
S	B10 (4-6')	21.7	<0.54	<0.54	1.4	1.4	1	<0.17	<0.022	3.3	75.5	21.2	Deg Fuel 74.4%,(FCM)
	Initial C	alibrator (QC check	OK					Final FC	CM QC	Check	OK	107.8 %
Results gen	sults generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content												


Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present

Client: S&ME Address: 3201 SPRING FOREST RD RALEIGH NC

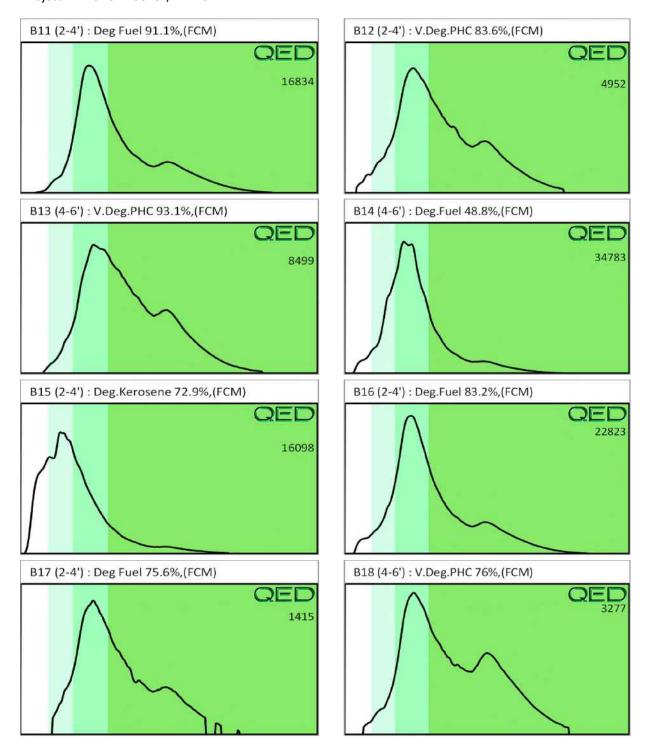
Samples extractedThursday, October 17, 2019Samples analysedWednesday, October 23, 2019

Thursday, October 17, 2019

Contact: JAMIE HONEYCUTT

Operator

Samples taken


CAROLINE STEVENS

Project: NCDOT I-5878 / PARCEL 71

													F03640	
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP		Ratios		HC Fingerprint Match	
										% light	% mid	% heavy		
S	B11 (2-4')	20.5	<0.51	<0.51	5.8	5.8	5.2	0.26	<0.02	0	86	14	Deg Fuel 91.1%,(FCM)	
S	B12 (2-4')	20.3	<0.51	<0.51	3.1	3.1	1.3	<0.16	<0.02	29.1	55.1	15.9	V.Deg.PHC 83.6%,(FCM)	
S	B13 (4-6')	21.7	<0.54	<0.54	4.5	4.5	2.2	<0.17	<0.022	0	75.9	24.1	V.Deg.PHC 93.1%,(FCM)	
S	B14 (4-6')	11.7	<0.29	17.4	4.5	21.9	4.2	0.26	<0.012	81.3	17.6	1.1	Deg.Fuel 48.8%,(FCM)	
S	B15 (2-4')	19.3	23.3	156.1	544.9	701	27.1	1	<0.019	99.5	0.5	0	Deg.Kerosene 72.9%,(FCM)	
S	B16 (2-4')	18.8	<0.47	17.2	8	25.2	7	0.35	<0.019	80	17.5	2.5	Deg.Fuel 83.2%,(FCM)	
S	B17 (2-4')	10.1	<0.25	<0.25	0.5	0.5	0.21	<0.08	<0.01	0	82.3	17.7	Deg Fuel 75.6%,(FCM)	
S	B18 (4-6')	21.0	<0.52	<0.52	1.2	1.2	0.72	<0.17	<0.021	0	72.2	27.8	V.Deg.PHC 76%,(FCM)	
	Initial (Calibrator (QC check	ОК					Final F	CM QC	Check	OK		99.6 %
Results gen	erated by a QED HC-1 analyser. Conce	ntration value	s in mg/kg f	or soil sample	es and mg/L fe	or water samp	oles. Soil valu	ies are not	corrected fo	r moistu	re or stor	ne conte	nt	

Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present

Client Name: 5	INE		-		NCD	OT-I5878	David TI	RED Lab, L	LC.	
Address: 3.	201 Sprin	sq Faces	4120			01- I 5878 DUNN NC	Parcole 71	5598 Mary		1
I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Zaleigh,	34	Ĩ.		and the second second			MARBION		1
Contact:	Jamie H	LOURYCL	5 7				AK	Wilmingto		
Project Ref.: N	codi-T	5878-	Parcel 71							analyzed for PH, PAH total
	hore-part		cim	DADU		ONMENTAL DI	ACNOSTICS	1	nd BaP. Stand	
	10 97-7			RAPI	DENVIR	ONMENTAL DI	AGNOSTICS			d Chlorinated
Collected by:	Tamie Hi	oneycott								2 cis DCE, 1,2 Specify target
		-	CHAIN	OF CU	STODY	AND ANALYT	ICAL REQUEST FORM			vided below.
Sample Collection	TAT Requ	ested	Analys	s Type	Initials		Sample ID	Total W/t		Sample Wt.
Date/Time 2	4 Hour 4	18 Hour	UVF	GC	mittais				Idle W.	Sample with
10-17-19/1000			\checkmark		:JTH	DOLLAD.BI	4.6'	58.4	43.8	14.6
1 11015		4	Ĩ		1	1 32	4.61	57.9	44.5	13.4
1030						33	4-6-	57,5	449	12.6
104	5		- 1			B.y	4.61	56.9	43.8	13.1
11100					- 0	3-5	4.6-	59.0	44.7	143
11145						B.6	2-4'	57.7	44.2	13.5
1 1150						3.7	4:-6	57.5	45.0	12.5
(1\55						3.8	4-10-	57.Z	44.8	12.4
11200				90 1			4-6-	567	44.9	11.8
1215		_				3-10	4'-6'	56.6	44.6	12.0
1230						B-11	2:4-	56.8	44.1	12.7
11240						3-12	2:41	57.8	450	12.8
1 1500						B-13	4-6-	55.9	43,9	12.0
1515						3.14	4-6-	57.0	45.0	12,0
1530						3.15	2:4-	58.1	44.6	13,5
[1600]						Billo	2-4-	58.5	44.7	13.8
165						3-17	2-4-	58.8	45.0	3.8
1630					5	B 18	4-6	57.6	45.2	124
• e						-				
								-		
COMMENTS/REQUES	STS:					TARGET GC/UVF A	NALYTES: 6'RO/ DRO			
Relinquish	ned by				Accep	ited by	Date/Time	RE	D Lab USE	ONLY
Jamo Henry Cost			1021-19/	1900	MM	1220	10/22/19	1	1	$\langle \rangle$
Relinquish	ned by		1	v 60-		ted by	Date/Time	1	(l)	0
		10000						Ref. No	- Is	5/40

October 30, 2019

Jamie Honeycutt S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: Cumberland St/I-95; SE Corner Client Job Number: Project Number: 4305-19-161 Laboratory Work Order Number: 19J1316

Enclosed are results of analyses for samples received by the laboratory on October 21, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Beny K. Millee

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	7
19J1316-01	7
Sample Preparation Information	10
QC Data	11
Volatile Organic Compounds by GC/MS	11
B244182	11
Semivolatile Organic Compounds by GC/MS	16
B244108	16
Flag/Qualifier Summary	18
Certifications	19
Chain of Custody/Sample Receipt	22

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616 ATTN: Jamie Honeycutt

REPORT DATE: 10/30/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-19-161

ANALYTICAL SUMMARY

SAMPLE DESCRIPTION

WORK ORDER NUMBER: 19J1316

TEST

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

MATRIX

PROJECT LOCATION: Cumberland St/I-95; SE Corner

FIELD SAMPLE #

TW-1

19J1316-01 Ground Water

LAB ID:

SUB LAB

SW-846 8260D SW-846 8270E

EXECUTIVE SUMMARY

Client II	D٠	TW-1
спені п	υ.	1 // -1

Lab ID: 19J1316-01

Analyte	Results/Qua	I	DL	RL	Units	Method
1,2,4-Trimethylbenzene	470		0.90	5.0	μg/L	SW-846 8260D
1,3,5-Trimethylbenzene	150		0.70	5.0	$\mu g/L$	SW-846 8260D
Benzene	510		0.90	5.0	μg/L	SW-846 8260D
Diisopropyl Ether (DIPE)	6.0	V-05	0.85	2.5	μg/L	SW-846 8260D
Ethylbenzene	360		0.65	5.0	μg/L	SW-846 8260D
Isopropylbenzene (Cumene)	38		0.85	5.0	μg/L	SW-846 8260D
m+p Xylene	870		1.5	10	μg/L	SW-846 8260D
Methyl tert-Butyl Ether (MTBE)	100		1.2	5.0	$\mu g/L$	SW-846 8260D
Naphthalene	110		1.6	25	$\mu g/L$	SW-846 8260D
n-Butylbenzene	12		1.0	5.0	$\mu g/L$	SW-846 8260D
n-Propylbenzene	94		0.65	5.0	$\mu g/L$	SW-846 8260D
o-Xylene	280		0.85	5.0	$\mu g/L$	SW-846 8260D
p-Isopropyltoluene (p-Cymene)	7.9		1.0	5.0	$\mu g/L$	SW-846 8260D
sec-Butylbenzene	6.8		0.80	5.0	μg/L	SW-846 8260D
tert-Butyl Alcohol (TBA)	3200		21	100	μg/L	SW-846 8260D
Toluene	140		0.70	5.0	$\mu g/L$	SW-846 8260D
2-Methylnaphthalene (SIM)	64		1.2	20	$\mu g/L$	SW-846 8270E
Acenaphthene (SIM)	0.50		0.032	0.29	$\mu g/L$	SW-846 8270E
Acenaphthylene (SIM)	0.12	J	0.034	0.20	$\mu g/L$	SW-846 8270E
Anthracene (SIM)	0.036	J	0.031	0.20	$\mu g/L$	SW-846 8270E
Fluorene (SIM)	0.93	J	0.033	0.98	$\mu g/L$	SW-846 8270E
Naphthalene (SIM)	120		5.0	20	μg/L	SW-846 8270E
Phenanthrene (SIM)	0.57		0.029	0.049	μg/L	SW-846 8270E

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 8260D, Sample 19J1316-01 was run at a dilution as concentration of target compounds exceeded calibration curve limits. For method 8270, only PAHs were requested and reported.

SW-846 8260D

Qualifications:

L-02

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.

Analyte & Samples(s) Qualified:

trans-1,4-Dichloro-2-butene

19J1316-01[TW-1], B244182-BS1, B244182-BSD1

Vinyl Chloride

19J1316-01[TW-1], B244182-BS1, B244182-BSD1

RL-11

Elevated reporting limit due to high concentration of target compounds.

Analyte & Samples(s) Qualified:

19J1316-01[TW-1]

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

2-Butanone (MEK)

19J1316-01[TW-1], B244182-BLK1, B244182-BS1, B244182-BSD1, S041864-CCV1

Diisopropyl Ether (DIPE)

19J1316-01[TW-1], B244182-BLK1, B244182-BS1, B244182-BSD1, S041864-CCV1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

trans-1,4-Dichloro-2-butene

19J1316-01[TW-1], B244182-BS1, B244182-BSD1, S041864-CCV1

Trichlorofluoromethane (Freon 11)

19J1316-01[TW-1], B244182-BS1, B244182-BSD1, S041864-CCV1

Vinyl Chloride

19J1316-01[TW-1], B244182-BS1, B244182-BSD1, S041864-CCV1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lua Watthington

Lisa A. Worthington Technical Representative

Analyte

39 Spruce Street * East Long

Volatile Organic Compounds by GC/MS

Dilution

5

5

Flag/Qual

Units

μg/L

μg/L

Project Location: Cumberland St/I-95; SE Corner

Date Received: 10/21/2019

Field Sample #: TW-1

Sample ID: 19J1316-01

Sample Matrix: Ground Water

Sample Flags: RL-11

Acetone

cis-1,3-Dichloropropene

Diethyl Ether

trans-1,3-Dichloropropene

Acrylonitrile

Sampled: 10/18/2019 10:20

DL

19

2.6

Sample Description:

RL

250

25

Results

ND

ND

ND

ND

ND

2.5

2.5

10

0.65

1.2

1.7

μg/L

μg/L

μg/L

5

5

5

gmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332		
	Work Order:	19J1316

Method

SW-846 8260D

SW-846 8260D

SW-846 8260D

SW-846 8260D

SW-846 8260D

10/25/19

10/25/19

10/25/19

Date/Time

Analyzed

10/25/19 19:50

10/25/19 19:50

Analyst

EEH

EEH

Date

Prepared

10/25/19

10/25/19

Acrylonitrite	ND	25	2.6	µg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
tert-Amyl Methyl Ether (TAME)	ND	5.0	0.70	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Benzene	510	5.0	0.90	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Bromobenzene	ND	5.0	0.75	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Bromochloromethane	ND	5.0	1.6	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Bromodichloromethane	ND	2.5	0.80	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Bromoform	ND	5.0	2.3	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Bromomethane	ND	10	3.9	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
2-Butanone (MEK)	ND	100	9.7	μg/L	5	V-05	SW-846 8260D	10/25/19	10/25/19 19:50	EEH
tert-Butyl Alcohol (TBA)	3200	100	21	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
n-Butylbenzene	12	5.0	1.0	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
sec-Butylbenzene	6.8	5.0	0.80	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
tert-Butylbenzene	ND	5.0	0.85	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	2.5	0.80	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Carbon Disulfide	ND	25	22	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Carbon Tetrachloride	ND	5.0	0.55	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Chlorobenzene	ND	5.0	0.75	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Chlorodibromomethane	ND	2.5	1.0	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Chloroethane	ND	10	1.8	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Chloroform	ND	10	0.85	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Chloromethane	ND	10	2.2	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
2-Chlorotoluene	ND	5.0	0.60	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
4-Chlorotoluene	ND	5.0	0.70	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	25	2.6	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,2-Dibromoethane (EDB)	ND	2.5	0.95	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Dibromomethane	ND	5.0	1.8	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,2-Dichlorobenzene	ND	5.0	0.80	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,3-Dichlorobenzene	ND	5.0	0.60	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,4-Dichlorobenzene	ND	5.0	0.65	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
trans-1,4-Dichloro-2-butene	ND	10	1.6	μg/L	5	L-02, V-20	SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Dichlorodifluoromethane (Freon 12)	ND	10	1.3	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,1-Dichloroethane	ND	5.0	0.80	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,2-Dichloroethane	ND	5.0	2.0	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,1-Dichloroethylene	ND	5.0	1.6	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
cis-1,2-Dichloroethylene	ND	5.0	0.65	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
trans-1,2-Dichloroethylene	ND	5.0	1.6	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,2-Dichloropropane	ND	5.0	1.0	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,3-Dichloropropane	ND	2.5	0.55	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
2,2-Dichloropropane	ND	5.0	1.0	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,1-Dichloropropene	ND	10	0.80	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH

Page 7 of 24

EEH

EEH

EEH

10/25/19 19:50

10/25/19 19:50

10/25/19 19:50

Project Location: Cumberland St/I-95; SE Corner

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Table of Contents

Work Order: 19J1316

Date Received: 10/21/2019

Field Sample #: TW-1

4-Bromofluorobenzene

Sample ID: 19J1316-01

Sample Matrix: Ground Water

Sampled: 10/18/2019 10:20

Sample Description:

103

70-130

Sample Flags: RL-11			Vola							
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	6.0	2.5	0.85	μg/L	5	V-05	SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,4-Dioxane	ND	250	110	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Ethylbenzene	360	5.0	0.65	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Hexachlorobutadiene	ND	3.0	2.4	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
2-Hexanone (MBK)	ND	50	7.6	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Isopropylbenzene (Cumene)	38	5.0	0.85	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
p-Isopropyltoluene (p-Cymene)	7.9	5.0	1.0	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Methyl tert-Butyl Ether (MTBE)	100	5.0	1.2	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Methylene Chloride	ND	25	1.7	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
4-Methyl-2-pentanone (MIBK)	ND	50	8.4	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Naphthalene	110	25	1.6	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
n-Propylbenzene	94	5.0	0.65	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Styrene	ND	5.0	0.55	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,1,1,2-Tetrachloroethane	ND	5.0	1.4	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,1,2,2-Tetrachloroethane	ND	2.5	1.1	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Tetrachloroethylene	ND	5.0	0.90	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Tetrahydrofuran	ND	50	2.6	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Toluene	140	5.0	0.70	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,2,3-Trichlorobenzene	ND	25	2.8	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,2,4-Trichlorobenzene	ND	5.0	2.0	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,3,5-Trichlorobenzene	ND	5.0	1.5	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,1,1-Trichloroethane	ND	5.0	1.0	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,1,2-Trichloroethane	ND	5.0	0.80	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Trichloroethylene	ND	5.0	1.2	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Trichlorofluoromethane (Freon 11)	ND	10	1.6	μg/L	5	V-20	SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,2,3-Trichloropropane	ND	10	1.2	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	1.6	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,2,4-Trimethylbenzene	470	5.0	0.90	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,3,5-Trimethylbenzene	150	5.0	0.70	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Vinyl Chloride	ND	10	2.2	μg/L	5	L-02, V-20	SW-846 8260D	10/25/19	10/25/19 19:50	EEH
m+p Xylene	870	10	1.5	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
o-Xylene	280	5.0	0.85	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Surrogates		% Reco	overy	Recovery Limits	;	Flag/Qual				
1,2-Dichloroethane-d4		90.3		70-130					10/25/19 19:50	
Toluene-d8		96.9		70-130					10/25/19 19:50	

10/25/19 19:50 10/25/19 19:50

Project Location: Cumberland St/I-95; SE Corner

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Table of Contents

Date Received: 10/21/2019

Field Sample #: TW-1

2-Fluorobiphenyl

p-Terphenyl-d14

p-Terphenyl-d14

Sample ID: 19J1316-01

Samula Matrix: Cround Wa

Sampled: 10/18/2019 10:20

Sample Description:

56.1

62.1

56.8

Work Order: 19J1316

			Semivo	olatile Organic Co	ompounds by	GC/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Acenaphthene (SIM)	0.50	0.29	0.032	μg/L	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Acenaphthylene (SIM)	0.12	0.20	0.034	μg/L	1	J	SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Anthracene (SIM)	0.036	0.20	0.031	μg/L	1	J	SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Benzo(a)anthracene (SIM)	ND	0.049	0.016	μg/L	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Benzo(a)pyrene (SIM)	ND	0.098	0.012	μg/L	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Benzo(b)fluoranthene (SIM)	ND	0.049	0.015	μg/L	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Benzo(g,h,i)perylene (SIM)	ND	0.49	0.018	μg/L	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Benzo(k)fluoranthene (SIM)	ND	0.20	0.012	μg/L	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Chrysene (SIM)	ND	0.20	0.015	μg/L	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Dibenz(a,h)anthracene (SIM)	ND	0.098	0.017	μg/L	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Fluoranthene (SIM)	ND	0.49	0.025	μg/L	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Fluorene (SIM)	0.93	0.98	0.033	μg/L	1	J	SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.098	0.018	μg/L	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
2-Methylnaphthalene (SIM)	64	20	1.2	μg/L	20		SW-846 8270E	10/24/19	10/29/19 10:27	CLA
Naphthalene (SIM)	120	20	5.0	μg/L	20		SW-846 8270E	10/24/19	10/29/19 10:27	CLA
Phenanthrene (SIM)	0.57	0.049	0.029	μg/L	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Pyrene (SIM)	ND	0.98	0.023	μg/L	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Surrogates		% Reco	very	Recovery Limits	8	Flag/Qual				
Nitrobenzene-d5		75.6		30-130					10/28/19 21:26	
Nitrobenzene-d5		74.6		30-130					10/29/19 10:27	
2-Fluorobiphenyl		45.7		30-130					10/28/19 21:26	

30-130

30-130

30-130

10/29/19 10:27

10/28/19 21:26

10/29/19 10:27

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19J1316-01 [TW-1]	B244182	1	5.00	10/25/19	
Prep Method: SW-846 3510C-SW-846 8270E					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
	D2111 00	1000	1.00	10/04/10	
19J1316-01 [TW-1]	B244108	1020	1.00	10/24/19	

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	nesun	Linit	Units	LUVEI	ixesuit	JUNEC	Linits	ΛID	Linit	TIOLES
Batch B244182 - SW-846 5030B										
Blank (B244182-BLK1)		50	1	Prepared &	Analyzed: 10	/25/19				
Acetone	ND	50	μg/L							
Acrylonitrile	ND	5.0	μg/L							
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L							
Benzene Bromobenzene	ND	1.0	μg/L							
	ND	1.0	μg/L							
Bromochloromethane Bromodichloromethane	ND	1.0	μg/L							
Bromodicniorometnane	ND	0.50 1.0	μg/L μα/Ι							
Bromomethane	ND	2.0	μg/L μα/Ι							
	ND		μg/L μα/Ι							N/ 05
-Butanone (MEK) ert-Butyl Alcohol (TBA)	ND	20 20	μg/L μg/I							V-05
n-Butylbenzene	ND	20 1.0	μg/L μg/I							
ec-Butylbenzene	ND	1.0	μg/L μg/L							
ert-Butylbenzene	ND	1.0	μg/L μg/L							
ert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L μg/L							
Carbon Disulfide	ND	5.0	μg/L μg/L							
Carbon Tetrachloride	ND ND	1.0	μg/L μg/L							
Chlorobenzene	ND ND	1.0	μg/L μg/L							
Chlorodibromomethane	ND	0.50	μg/L							
Chloroethane	ND	2.0	μg/L							
Chloroform	ND	2.0	μg/L							
Chloromethane	ND	2.0	μg/L							
-Chlorotoluene	ND	1.0	μg/L							
-Chlorotoluene	ND	1.0	μg/L							
,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L							
,2-Dibromoethane (EDB)	ND	0.50	μg/L							
Dibromomethane	ND	1.0	μg/L							
,2-Dichlorobenzene	ND	1.0	μg/L							
,3-Dichlorobenzene	ND	1.0	μg/L							
,4-Dichlorobenzene	ND	1.0	μg/L							
rans-1,4-Dichloro-2-butene	ND	2.0	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
,1-Dichloroethane	ND	1.0	μg/L							
,2-Dichloroethane	ND	1.0	μg/L							
,1-Dichloroethylene	ND	1.0	μg/L							
sis-1,2-Dichloroethylene	ND	1.0	μg/L							
rans-1,2-Dichloroethylene	ND	1.0	μg/L							
,2-Dichloropropane	ND	1.0	μg/L							
,3-Dichloropropane	ND	0.50	μg/L							
2,2-Dichloropropane	ND	1.0	μg/L							
,1-Dichloropropene	ND	2.0	μg/L							
is-1,3-Dichloropropene	ND	0.50	μg/L							
rans-1,3-Dichloropropene	ND	0.50	μg/L							
Diethyl Ether	ND	2.0	μg/L							
Diisopropyl Ether (DIPE)	ND	0.50	μg/L							V-05
,4-Dioxane	ND	50	μg/L							
thylbenzene	ND	1.0	μg/L							
Iexachlorobutadiene	ND	0.60	μg/L							
e-Hexanone (MBK)	ND	10	μg/L							
sopropylbenzene (Cumene)	ND	1.0	μg/L							
o-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L							
Aethyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L							

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244182 - SW-846 5030B										
Blank (B244182-BLK1)				Prepared & A	Analyzed: 10	/25/19				
Aethylene Chloride	ND	5.0	μg/L							
-Methyl-2-pentanone (MIBK)	ND	10	μg/L							
Japhthalene	ND	2.0	μg/L							
-Propylbenzene	ND	1.0	μg/L							
tyrene	ND	1.0	μg/L							
,1,1,2-Tetrachloroethane	ND	1.0	μg/L							
,1,2,2-Tetrachloroethane	ND	0.50	μg/L							
etrachloroethylene	ND	1.0	μg/L							
etrahydrofuran	ND	10	μg/L							
oluene	ND	1.0	μg/L							
2,3-Trichlorobenzene	ND	5.0	μg/L							
2,4-Trichlorobenzene	ND	1.0	μg/L							
,3,5-Trichlorobenzene	ND	1.0	μg/L							
1,1-Trichloroethane	ND	1.0	μg/L							
1,2-Trichloroethane	ND	1.0	μg/L							
richloroethylene	ND	1.0	μg/L							
richlorofluoromethane (Freon 11)	ND	2.0	μg/L							
2,3-Trichloropropane	ND	2.0	μg/L							
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	1.0	μg/L							
13)										
2,4-Trimethylbenzene	ND	1.0	μg/L							
3,5-Trimethylbenzene	ND	1.0	μg/L							
inyl Chloride	ND	2.0	μg/L							
+p Xylene	ND	2.0	μg/L							
Xylene	ND	1.0	μg/L							
urrogate: 1,2-Dichloroethane-d4	21.9		$\mu g/L$	25.0		87.7	70-130			
urrogate: Toluene-d8	24.0		μg/L	25.0		95.9	70-130			
urrogate: 4-Bromofluorobenzene	24.3		μg/L	25.0		97.2	70-130			
CS (B244182-BS1)				Prepared & A	Analyzed: 10	/25/19				
cetone	135	50	μg/L	100		135	70-160			
crylonitrile	10.8	5.0	μg/L	10.0		108	70-130			
rt-Amyl Methyl Ether (TAME)	7.10	0.50	μg/L	10.0		71.0	70-130			
enzene	7.21	1.0	μg/L	10.0		72.1	70-130			
romobenzene	9.60	1.0	μg/L	10.0		96.0	70-130			
romochloromethane	7.25	1.0	μg/L	10.0		72.5	70-130			
romodichloromethane	9.33	0.50	μg/L	10.0		93.3	70-130			
romoform	12.1	1.0	μg/L	10.0		121	70-130			
romomethane	6.47	2.0	μg/L	10.0		64.7	40-160			
Butanone (MEK)	76.8	20	μg/L	100		76.8	40-160			V-05
rt-Butyl Alcohol (TBA)	86.2	20	μg/L	100		86.2	40-160			
Butylbenzene	10.4	1.0	μg/L	10.0		104	70-130			
c-Butylbenzene	10.5	1.0	μg/L	10.0		105	70-130			
rt-Butylbenzene	10.5	1.0	μg/L	10.0		105	70-130			
rt-Butyl Ethyl Ether (TBEE)	7.22	0.50	μg/L	10.0		72.2	70-130			
arbon Disulfide	10.3	5.0	μg/L	10.0		103	70-130			
arbon Tetrachloride	9.65	1.0	μg/L	10.0		96.5	70-130			
hlorobenzene	10.4	1.0	μg/L	10.0		104	70-130			
hlorodibromomethane	10.1	0.50	μg/L	10.0		101	70-130			
hloroethane	9.64	2.0	μg/L	10.0		96.4	70-130			
hloroform	7.80	2.0	μg/L	10.0		78.0	70-130			
hloromethane	6.51	2.0	μg/L	10.0		65.1	40-160			
Chlorotoluene	9.61	1.0	μg/L	10.0		96.1	70-130			
	2.01		~o -	0						age 12 c

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B244182 - SW-846 5030B											
LCS (B244182-BS1)				Prepared &	Analyzed: 10	/25/19					
4-Chlorotoluene	10.7	1.0	μg/L	10.0		107	70-130				_
1,2-Dibromo-3-chloropropane (DBCP)	9.89	5.0	μg/L	10.0		98.9	70-130				
1,2-Dibromoethane (EDB)	10.0	0.50	μg/L	10.0		100	70-130				
Dibromomethane	9.46	1.0	μg/L	10.0		94.6	70-130				
1,2-Dichlorobenzene	10.8	1.0	μg/L	10.0		108	70-130				
1,3-Dichlorobenzene	10.9	1.0	μg/L	10.0		109	70-130				
1,4-Dichlorobenzene	10.6	1.0	μg/L	10.0		106	70-130				
trans-1,4-Dichloro-2-butene	13.2	2.0	μg/L	10.0		132 *	70-130			L-02, V-20	
Dichlorodifluoromethane (Freon 12)	7.01	2.0	μg/L	10.0		70.1	40-160				•
1,1-Dichloroethane	7.80	1.0	μg/L	10.0		78.0	70-130				
1,2-Dichloroethane	9.64	1.0	μg/L	10.0		96.4	70-130				
1,1-Dichloroethylene	11.0	1.0	μg/L	10.0		110	70-130				
cis-1,2-Dichloroethylene	7.73	1.0	μg/L	10.0		77.3	70-130				
trans-1,2-Dichloroethylene	7.93	1.0	μg/L	10.0		79.3	70-130				
1,2-Dichloropropane	7.94	1.0	μg/L	10.0		79.4	70-130				
1,3-Dichloropropane	8.59	0.50	μg/L	10.0		85.9	70-130				
2,2-Dichloropropane	8.94	1.0	μg/L	10.0		89.4	40-130				
1,1-Dichloropropene	8.09	2.0	μg/L	10.0		80.9	70-130				
cis-1,3-Dichloropropene	8.68	0.50	μg/L	10.0		86.8	70-130				
trans-1,3-Dichloropropene	9.09	0.50	μg/L	10.0		90.9	70-130				
Diethyl Ether	9.88	2.0	μg/L	10.0		98.8	70-130				
Diisopropyl Ether (DIPE)	7.51	0.50	μg/L	10.0		75.1	70-130			V-05	
1,4-Dioxane	103	50	μg/L	100		103	40-130				1
Ethylbenzene	10.4	1.0	μg/L	10.0		104	70-130				
Hexachlorobutadiene	11.1	0.60	μg/L	10.0		111	70-130				
2-Hexanone (MBK)	96.7	10	μg/L	100		96.7	70-160				1
Isopropylbenzene (Cumene)	11.2	1.0	μg/L	10.0		112	70-130				
p-Isopropyltoluene (p-Cymene)	10.6	1.0	μg/L	10.0		106	70-130				
Methyl tert-Butyl Ether (MTBE)	8.67	1.0	μg/L	10.0		86.7	70-130				
Methylene Chloride	9.78	5.0	μg/L	10.0		97.8	70-130				
4-Methyl-2-pentanone (MIBK)	97.6	10	μg/L	100		97.6	70-160				i
Naphthalene	10.0	2.0	μg/L	10.0		100	40-130				1
n-Propylbenzene	10.0	1.0	μg/L	10.0		100	70-130				
Styrene		1.0	μg/L μg/L	10.0		103	70-130				
1,1,1,2-Tetrachloroethane	10.3	1.0	μg/L μg/L	10.0		103	70-130				
1,1,2,2-Tetrachloroethane	11.8 10.9	0.50	μg/L μg/L	10.0		109	70-130				
Tetrachloroethylene	10.9	1.0	μg/L μg/L	10.0		109	70-130				
Tetrahydrofuran		10	μg/L μg/L	10.0		80.1	70-130			J	
Toluene	8.01	1.0	μg/L μg/L	10.0		93.2	70-130			J	
1,2,3-Trichlorobenzene	9.32	5.0	μg/L μg/L	10.0		93.2 93.6	70-130				
1,2,4-Trichlorobenzene	9.36										
1,2,4-Trichlorobenzene	10.6	1.0	μg/L μg/Ι	10.0		106	70-130				
1,1,1-Trichloroethane	10.5	1.0	μg/L μg/I	10.0		105	70-130				
1,1,2-Trichloroethane	9.23	1.0	μg/L μg/I	10.0		92.3 94.9	70-130				
	9.49	1.0	μg/L μg/I	10.0		94.9	70-130				
Trichloroethylene Trichlorofluoromethane (Freon 11)	9.17	1.0	μg/L μg/I	10.0		91.7	70-130			V 20	
	10.8	2.0	μg/L μg/I	10.0		108	70-130			V-20	
1,2,3-Trichloropropane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	10.5 11.3	2.0 1.0	μg/L μg/L	10.0 10.0		105 113	70-130 70-130				
113) 1,2,4-Trimethylbenzene	0.07	1.0	ug/I	10.0		00.6	70 120				
	9.96	1.0	μg/L μg/I	10.0		99.6	70-130				
1,3,5-Trimethylbenzene	11.1	1.0	μg/L	10.0		111	70-130				

Page 13 of 24

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B244182 - SW-846 5030B											_
LCS (B244182-BS1)				Prepared &	Analyzed: 10	/25/19					
m+p Xylene	21.5	2.0	$\mu g/L$	20.0		108	70-130				
o-Xylene	10.9	1.0	$\mu g/L$	10.0		109	70-130				
Surrogate: 1,2-Dichloroethane-d4	22.1		μg/L	25.0		88.4	70-130				
Surrogate: Toluene-d8	23.8		μg/L	25.0		95.3	70-130				
Surrogate: 4-Bromofluorobenzene	25.0		μg/L	25.0		100	70-130				
LCS Dup (B244182-BSD1)				Prepared &	Analyzed: 10	/25/19					
Acetone	126	50	μg/L	100		126	70-160	7.24	25		1
Acrylonitrile	10.6	5.0	μg/L	10.0		106	70-130	2.34	25		
tert-Amyl Methyl Ether (TAME)	7.05	0.50	μg/L	10.0		70.5	70-130	0.707	25		
Benzene	7.31	1.0	μg/L	10.0		73.1	70-130	1.38	25		
Bromobenzene	9.86	1.0	μg/L	10.0		98.6	70-130	2.67	25		
Bromochloromethane	7.34	1.0	μg/L	10.0		73.4	70-130	1.23	25		
Bromodichloromethane	9.91	0.50	μg/L	10.0		99.1	70-130	6.03	25		
Bromoform	12.3	1.0	μg/L	10.0		123	70-130	1.48	25		
Bromomethane	7.35	2.0	μg/L	10.0		73.5	40-160	12.7	25		i
2-Butanone (MEK)	72.8	20	μg/L	100		72.8	40-160	5.37	25	V-05	i
tert-Butyl Alcohol (TBA)	81.5	20	μg/L	100		81.5	40-160	5.54	25		i
n-Butylbenzene	10.1	1.0	μg/L	10.0		101	70-130	2.63	25		
sec-Butylbenzene	10.2	1.0	μg/L	10.0		102	70-130	3.47	25		
tert-Butylbenzene	10.1	1.0	μg/L	10.0		101	70-130	3.97	25		
tert-Butyl Ethyl Ether (TBEE)	7.04	0.50	μg/L	10.0		70.4	70-130	2.52	25		
Carbon Disulfide	9.70	5.0	μg/L	10.0		97.0	70-130	5.90	25		
Carbon Tetrachloride	9.23	1.0	μg/L	10.0		92.3	70-130	4.45	25		
Chlorobenzene	10.7	1.0	μg/L	10.0		107	70-130	2.93	25		
Chlorodibromomethane	10.2	0.50	μg/L	10.0		102	70-130	0.394	25		
Chloroethane	9.59	2.0	μg/L	10.0		95.9	70-130	0.520	25		
Chloroform	7.73	2.0	μg/L	10.0		77.3	70-130	0.901	25		
Chloromethane	6.18	2.0	μg/L	10.0		61.8	40-160	5.20	25		i
2-Chlorotoluene	9.90	1.0	μg/L	10.0		99.0	70-130	2.97	25		
4-Chlorotoluene	10.8	1.0	μg/L	10.0		108	70-130	0.838	25		
1,2-Dibromo-3-chloropropane (DBCP)	10.0	5.0	μg/L	10.0		100	70-130	1.21	25		
1,2-Dibromoethane (EDB)	10.0	0.50	μg/L	10.0		100	70-130	0.399	25		
Dibromomethane	9.13	1.0	μg/L	10.0		91.3	70-130	3.55	25		
1,2-Dichlorobenzene	10.6	1.0	μg/L	10.0		106	70-130	1.31	25		
1,3-Dichlorobenzene	10.9	1.0	μg/L	10.0		109	70-130	0.00	25		
1,4-Dichlorobenzene	10.4	1.0	μg/L	10.0		104	70-130	1.81	25		
trans-1,4-Dichloro-2-butene	13.3	2.0	$\mu g/L$	10.0		133 *	70-130	1.06	25	L-02, V-20	
Dichlorodifluoromethane (Freon 12)	6.72	2.0	$\mu g/L$	10.0		67.2	40-160	4.22	25		t
1,1-Dichloroethane	7.57	1.0	$\mu g/L$	10.0		75.7	70-130	2.99	25		
1,2-Dichloroethane	9.78	1.0	μg/L	10.0		97.8	70-130	1.44	25		
1,1-Dichloroethylene	10.7	1.0	μg/L	10.0		107	70-130	3.22	25		
cis-1,2-Dichloroethylene	7.73	1.0	μg/L	10.0		77.3	70-130	0.00	25		
trans-1,2-Dichloroethylene	7.77	1.0	μg/L	10.0		77.7	70-130	2.04	25		
1,2-Dichloropropane	7.81	1.0	μg/L	10.0		78.1	70-130	1.65	25		
1,3-Dichloropropane	8.59	0.50	μg/L	10.0		85.9	70-130	0.00	25		
2,2-Dichloropropane	8.89	1.0	μg/L	10.0		88.9	40-130	0.561	25		i
1,1-Dichloropropene	7.79	2.0	μg/L	10.0		77.9	70-130	3.78	25		
cis-1,3-Dichloropropene	8.97	0.50	μg/L	10.0		89.7	70-130	3.29	25		
trans-1,3-Dichloropropene	9.24	0.50	μg/L	10.0		92.4	70-130	1.64	25		
Diethyl Ether	9.56	2.0	μg/L	10.0		95.6	70-130	3.29	25		
Diisopropyl Ether (DIPE)	7.19	0.50	μg/L	10.0		71.9	70-130	4.35	25	V-05	

Page 14 of 24

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B244182 - SW-846 5030B											
LCS Dup (B244182-BSD1)				Prepared & A	Analyzed: 10	/25/19					
1,4-Dioxane	99.1	50	μg/L	100		99.1	40-130	3.74	50		†
Ethylbenzene	10.4	1.0	μg/L	10.0		104	70-130	0.288	25		
Hexachlorobutadiene	10.4	0.60	μg/L	10.0		104	70-130	6.13	25		
2-Hexanone (MBK)	92.4	10	μg/L	100		92.4	70-160	4.50	25		t
Isopropylbenzene (Cumene)	11.0	1.0	μg/L	10.0		110	70-130	1.53	25		
p-Isopropyltoluene (p-Cymene)	10.2	1.0	μg/L	10.0		102	70-130	4.24	25		
Methyl tert-Butyl Ether (MTBE)	8.57	1.0	μg/L	10.0		85.7	70-130	1.16	25		
Methylene Chloride	9.48	5.0	μg/L	10.0		94.8	70-130	3.12	25		
4-Methyl-2-pentanone (MIBK)	96.5	10	μg/L	100		96.5	70-160	1.07	25		Ť
Naphthalene	9.94	2.0	μg/L	10.0		99.4	40-130	0.602	25		t
n-Propylbenzene	10.6	1.0	μg/L	10.0		106	70-130	2.79	25		
Styrene	10.3	1.0	μg/L	10.0		103	70-130	0.292	25		
1,1,1,2-Tetrachloroethane	11.7	1.0	μg/L	10.0		117	70-130	1.02	25		
1,1,2,2-Tetrachloroethane	11.0	0.50	μg/L	10.0		110	70-130	0.548	25		
Tetrachloroethylene	10.4	1.0	μg/L	10.0		104	70-130	2.83	25		
Tetrahydrofuran	8.09	10	μg/L	10.0		80.9	70-130	0.994	25	J	
Toluene	9.20	1.0	μg/L	10.0		92.0	70-130	1.30	25		
1,2,3-Trichlorobenzene	9.47	5.0	μg/L	10.0		94.7	70-130	1.17	25		
1,2,4-Trichlorobenzene	10.7	1.0	μg/L	10.0		107	70-130	0.846	25		
1,3,5-Trichlorobenzene	10.5	1.0	μg/L	10.0		105	70-130	0.477	25		
1,1,1-Trichloroethane	9.00	1.0	μg/L	10.0		90.0	70-130	2.52	25		
1,1,2-Trichloroethane	9.52	1.0	μg/L	10.0		95.2	70-130	0.316	25		
Trichloroethylene	9.36	1.0	μg/L	10.0		93.6	70-130	2.05	25		
Trichlorofluoromethane (Freon 11)	10.2	2.0	μg/L	10.0		102	70-130	6.39	25	V-20	
1,2,3-Trichloropropane	10.5	2.0	μg/L	10.0		105	70-130	0.191	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.6	1.0	$\mu g/L$	10.0		106	70-130	6.66	25		
1,2,4-Trimethylbenzene	9.78	1.0	μg/L	10.0		97.8	70-130	1.82	25		
1,3,5-Trimethylbenzene	11.0	1.0	$\mu g/L$	10.0		110	70-130	0.994	25		
Vinyl Chloride	37.6	2.0	μg/L	10.0		376 *	40-160	4.82	25	L-02, V-20	Ť
m+p Xylene	21.5	2.0	μg/L	20.0		107	70-130	0.0931	25		
o-Xylene	10.9	1.0	μg/L	10.0		109	70-130	0.275	25		
Surrogate: 1,2-Dichloroethane-d4	22.4		μg/L	25.0		89.5	70-130				
Surrogate: Toluene-d8	24.3		μg/L	25.0		97.1	70-130				
Surrogate: 4-Bromofluorobenzene	25.3		μg/L	25.0		101	70-130				

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244108 - SW-846 3510C										
Blank (B244108-BLK1)				Prepared: 10)/24/19 Analy	yzed: 10/28/1	19			
Acenaphthene (SIM)	ND	0.30	μg/L							
Acenaphthylene (SIM)	ND	0.20	$\mu g/L$							
Anthracene (SIM)	ND	0.20	μg/L							
Benzo(a)anthracene (SIM)	ND	0.050	μg/L							
Benzo(a)pyrene (SIM)	ND	0.10	μg/L							
Benzo(b)fluoranthene (SIM)	ND	0.050	μg/L							
Benzo(g,h,i)perylene (SIM)	ND	0.50	μg/L							
Benzo(k)fluoranthene (SIM)	ND	0.20	μg/L							
Chrysene (SIM)	ND	0.20	μg/L							
Dibenz(a,h)anthracene (SIM)	ND	0.10	$\mu g/L$							
Fluoranthene (SIM)	ND	0.50	$\mu g/L$							
Fluorene (SIM)	ND	1.0	μg/L							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.10	μg/L							
-Methylnaphthalene (SIM)	ND	1.0	μg/L							
Japhthalene (SIM)	ND	1.0	μg/L							
henanthrene (SIM)	ND	0.050	μg/L							
yrene (SIM)	ND	1.0	$\mu g/L$							
Surrogate: Nitrobenzene-d5	77.3		μg/L	100		77.3	30-130			
urrogate: 2-Fluorobiphenyl	46.9		μg/L	100		46.9	30-130			
urrogate: p-Terphenyl-d14	64.5		μg/L	100		64.5	30-130			
LCS (B244108-BS1)				Prepared: 10)/24/19 Analy	yzed: 10/28/1	19			
Acenaphthene (SIM)	33.9	6.0	μg/L	50.0		67.8	40-140			
Acenaphthylene (SIM)	34.9	4.0	μg/L	50.0		69.7	40-140			
Anthracene (SIM)	38.0	4.0	μg/L	50.0		76.0	40-140			
Benzo(a)anthracene (SIM)	40.4	1.0	μg/L	50.0		80.8	40-140			
Benzo(a)pyrene (SIM)	37.1	2.0	μg/L	50.0		74.2	40-140			
Benzo(b)fluoranthene (SIM)	39.9	1.0	μg/L	50.0		79.8	40-140			
Benzo(g,h,i)perylene (SIM)	39.2	10	$\mu g/L$	50.0		78.3	40-140			
Benzo(k)fluoranthene (SIM)	40.1	4.0	μg/L	50.0		80.2	40-140			
Chrysene (SIM)	32.2	4.0	μg/L	50.0		64.3	40-140			
Dibenz(a,h)anthracene (SIM)	44.1	2.0	μg/L	50.0		88.2	40-140			
Fluoranthene (SIM)	35.1	10	μg/L	50.0		70.2	40-140			
Fluorene (SIM)	34.6	20	μg/L	50.0		69.3	40-140			
ndeno(1,2,3-cd)pyrene (SIM)	49.6	2.0	μg/L	50.0		99.2	40-140			
-Methylnaphthalene (SIM)	34.7	20	μg/L	50.0		69.3	40-140			
Naphthalene (SIM)	32.5	20	μg/L	50.0		65.0	40-140			
Phenanthrene (SIM)	34.7	1.0	μg/L	50.0		69.4	40-140			
Pyrene (SIM)	34.2	20	$\mu g/L$	50.0		68.4	40-140			
Surrogate: Nitrobenzene-d5	74.0		μg/L	100		74.0	30-130			
Surrogate: 2-Fluorobiphenyl	50.1		μg/L	100		50.1	30-130			
Surrogate: p-Terphenyl-d14	51.0		μg/L	100		51.0	30-130			

‡

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244108 - SW-846 3510C										
LCS Dup (B244108-BSD1)				Prepared: 10)/24/19 Anal	yzed: 10/28/	19			
Acenaphthene (SIM)	34.2	6.0	μg/L	50.0		68.4	40-140	0.940	20	
Acenaphthylene (SIM)	35.2	4.0	μg/L	50.0		70.3	40-140	0.857	20	
Anthracene (SIM)	39.3	4.0	μg/L	50.0		78.7	40-140	3.47	20	
Benzo(a)anthracene (SIM)	41.2	1.0	μg/L	50.0		82.5	40-140	2.01	20	
Benzo(a)pyrene (SIM)	37.6	2.0	μg/L	50.0		75.2	40-140	1.34	20	
Benzo(b)fluoranthene (SIM)	41.8	1.0	μg/L	50.0		83.6	40-140	4.60	20	
Benzo(g,h,i)perylene (SIM)	39.3	10	μg/L	50.0		78.5	40-140	0.255	20	
Benzo(k)fluoranthene (SIM)	42.0	4.0	μg/L	50.0		84.0	40-140	4.63	20	
Chrysene (SIM)	32.8	4.0	μg/L	50.0		65.5	40-140	1.85	20	
Dibenz(a,h)anthracene (SIM)	44.4	2.0	μg/L	50.0		88.7	40-140	0.588	20	
Fluoranthene (SIM)	37.7	10	μg/L	50.0		75.5	40-140	7.25	20	
Fluorene (SIM)	35.7	20	μg/L	50.0		71.4	40-140	2.96	20	
Indeno(1,2,3-cd)pyrene (SIM)	49.9	2.0	μg/L	50.0		99.8	40-140	0.563	20	
2-Methylnaphthalene (SIM)	35.1	20	μg/L	50.0		70.3	40-140	1.38	20	
Naphthalene (SIM)	32.5	20	μg/L	50.0		65.0	40-140	0.123	20	
Phenanthrene (SIM)	36.0	1.0	μg/L	50.0		72.1	40-140	3.73	20	
Pyrene (SIM)	33.5	20	$\mu g/L$	50.0		67.0	40-140	2.01	20	
Surrogate: Nitrobenzene-d5	73.2		μg/L	100		73.2	30-130			
Surrogate: 2-Fluorobiphenyl	51.8		μg/L	100		51.8	30-130			
Surrogate: p-Terphenyl-d14	51.2		μg/L	100		51.2	30-130			

FLAG/QUALIFIER SUMMARY

- QC result is outside of established limits.
- † Wide recovery limits established for difficult compound.
- ‡ Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

- J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
- L-02 Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.
- RL-11 Elevated reporting limit due to high concentration of target compounds.
- V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
- V-20 Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260D in Water	
Acetone	NC
Acrylonitrile	NC
tert-Amyl Methyl Ether (TAME)	NC
Benzene	NC
Bromobenzene	NC
Bromochloromethane	NC
Bromodichloromethane	NC
Bromoform	NC
Bromomethane	NC
2-Butanone (MEK)	NC
tert-Butyl Alcohol (TBA)	NC
n-Butylbenzene	NC
sec-Butylbenzene	NC
tert-Butylbenzene	NC
tert-Butyl Ethyl Ether (TBEE)	NC
Carbon Disulfide	NC
Carbon Tetrachloride	NC
Chlorobenzene	NC
Chlorodibromomethane	NC
Chloroethane	NC
Chloroform	NC
Chloromethane	NC
2-Chlorotoluene	NC
4-Chlorotoluene	NC
1,2-Dibromo-3-chloropropane (DBCP)	NC
1,2-Dibromoethane (EDB)	NC
Dibromomethane	NC
1,2-Dichlorobenzene	NC
1,3-Dichlorobenzene	NC
1,4-Dichlorobenzene	NC
trans-1,4-Dichloro-2-butene	NC
Dichlorodifluoromethane (Freon 12)	NC
1,1-Dichloroethane	NC
1,2-Dichloroethane	NC
1,1-Dichloroethylene	NC
cis-1,2-Dichloroethylene	NC
trans-1,2-Dichloroethylene	NC
1,2-Dichloropropane	NC
1,3-Dichloropropane	NC
2,2-Dichloropropane	NC
1,1-Dichloropropene	NC
cis-1,3-Dichloropropene	NC
trans-1,3-Dichloropropene	NC
D. 4 1D4	NC
Diethyl Ether	
Diisopropyl Ether (DIPE)	NC

CERTIFICATIONS

Certified Analyses included in this Report

Certified Analyses included in this Report	
Analyte	Certifications
SW-846 8260D in Water	
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2020
СТ	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

ŝ	RATCIRY
n-te	TICAL LABOR
0	ANALYTI

11316	3-525-2332	413-525-6405	info@contestlabs.com
	-52	25-(@C0
)=	3-5	ufo
0	ue:	41	ailt

Doc # 379 Rev 1_03242017

http://www.contestlabs.com

		Ì
		1

1	<u>f</u> of <u>f</u>
	Page
	128

	0/12/10	http://www.contestlabs.com	ntestlabs.com	Doc # 379	Doc # 379 Rev 1_03242017		
CON-test	32	CHAIN UF CUSTODY RECORD (North Carolina)	ORD (North Caroli	(et	39 Spri Fast I o	39 Spruce Street Fast Lonomeadow, MA 01028	Page / of /
	Fax: 413-525-6405	1 elancialmente	umatioupd Time			2	
	Email: info@contestlabs.com	7-Day	10-Day				# of Containers
Company Name: SeeME		Due Date:					² Preservation Code
Address: 3301 SOMWG FORCAL RO	Ro Robert NC	ddy-usna	roval Required				³ Container Code
947-July		1-Day	3-Day		ANALYSIS REQUESTED	COVESTED	Dissolved therease Samples
	- Pariat 71		4-Day				Field Filtered
ation: Consultant	1	Data D	Delivery				Lab to Filter
		Format: PDF	EXCEL				
コレ	J.	Other:		28			Orthophosphare Samples
Con-Test Quote Name/Number:		CLP Like Data Pkg Required:	lired:	, 			Field Filtered
Invoice Recipient: Jamie 7 Hundry	R	Email To: A Maria	SIL	9			Lab to Filter
Sampled By: Tennie T Hannewst		Fax To #:	way	זי פה נו			
Con-Test	Ciant Samola ID / Danajasian Beginning		Matrix				
Work Order#		(composite	Grad Code Code	s			• <u>Matrix Codes:</u> GW = Ground Water
Contraction of the second se			/ 191 /	<u> </u>			WW = Waste Water
		}	+				A = Air
							S = Soil
							SL = Sludge
							- SUL = Solid O - Other (please
				_			define)
							² Preservation Codes:
							M = Methanol
							N = Nitric Acid
							B = Sodium Bisulfate
							T = Sodium
Commonte			_				Thiosulfate
			Please use	the followinc	ondes to indicate o	Please use the following codes to indicate possible sample concentration	0 = Other (please
				within	within the Conc Code column above	mn above:	
			Í	High; M - Me	dium; L - Low; C -	H - High; M - Medium; L - Low; C - Clean; U - Unknown	³ Container Codes:
Relinguished by: (signature)	Date/Time:	A CONTRACTOR OF CONTRACTOR	interior de la constante La destructura de la constante	ints.	Program	Program Information	A = Amber Glass G = Glass
		21	18 18				P = Plastic
		GWPC		7.80	SWS Landfill	L REC	ST = Sterile V - Viat
5	<u>`</u>	SWSL			HSB Orohaned Landfill		s = Summa Canister
Relinquisted by: (signature)	Date/Time:	IHSB		(<i>P</i> .4	State Lead	3	T = Tedlar Bag
		MSCC	A NORIH C	AFDINA	Other:		0 = Other (please define)
teived by: (signature)	Date/Time: (00)181						
Pag					NELAC and P	NELAN and AHA-LAP, LLU Accredited	
a inquished by: (signature)	Date/Time: Project Entity	ernment	Municipality		<u>o</u>	Other Chromatogram	PCB ONLY Soxhlet
5 Discrete by: (signature)	Date/Time:	Federal City	Brownfield School			AIHA-LAP,LLC	Non Soxhlet
4					-		

Table of Contents

411359783335 🏷

☆ ⑦

Delivered Tuesday 10/22/2019 at 8:54 am

DELIVERED Signed for by: B.BECCA

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Autryville, NC US

TO East Longmeadow, MA US

Shipment Facts

TRACKING NUMBER SERVICE WEIGHT 411359783335 FedEx Priority Overnight 30.1 lbs / 13.65 kgs DIMENSIONS DELIVERED TO TOTAL PIECES 23x14x14 in. Shipping/Receiving 1 TOTAL SHIPMENT WEIGHT RETURN REASON TERMS Third Party 30.1 lbs / 13.65 kgs PACKAGING SPECIAL HANDLING SECTION **STANDARD TRANSIT** Your Packaging Deliver Weekday, Additional Handling (?)10/22/2019 by 10:30 am - . 21 - 102 - 10 Surcharge

SHIP DATE (?) Mon 10/21/2019 ACTUAL DELIVERY Tue 10/22/2019 8:54 am

Travel History		-	Local Scan Time	\sim
Tuesday, 10/22/2019				
8:54 am	East Longmeadow, MA	Delivered		
7:41 am	WINDSOR LOCKS, CT	On FedEx vehicle for delivery		
7:31 am	WINDSOR LOCKS, CT	At local FedEx facility		

https://www.fedex.com/apps/fedextrack/?action=track&tracknumbers=411359783335&locale=en_US&cntry_code=us

Numbers		med Sample Co Staff Before Relir es						CAL L		SC [®]
Login S	Sample Red	ceipt Checklist -	(Rejection	Criteria List	ting - Us	sing Accer	otance l	Policy) A	ny False	
Ũ		nent will be brou			-			• •	-	
Client	S t									
Receiv		han .		Date	16	22/19		Time	85-4	
How were th										
receiv		In Cooler	, 	No Cooler		On lo		-1-	_ No Ice	
recen		Direct from Samp	oling			Ambi	ent		_ Melted Ice	
Were samp	oles within		By Gun #	5		Actual	Tem <u>p -</u>	29		
Temperatu		T	By Blank #			Actual [*]	Temp -			
•	Custody Se	eal Intact?	MA		re Sam	oles Tampe		n?	 	
	COC Relin		T	-		Agree With			7	
Are the	ere broken/le	eaking/loose caps	on any sam	-	F	•				
Is COC in in	k/ Legible?		-	Were san	nples re	ceived with	in holdii	ng time?		
Did COC in	nclude all	Client	· · · ·	Analysis	T	Sa	mpler N	lame		
pertinent Inf	formation?	Project	<u> </u>	ID's		Collec	tion Dat	tes/Times	s	
Are Sample	labels filled	l out and legible?	1	_						
Are there La	b to Filters?		Ŧ		Whow	was notifie	d?			_
Are there Ru	_	Who	was notified	d?						
Are there Sh	Who was notified?									
Is there enou	ugh Volume	?		_						_
Is there Hea	dspace whe	re applicable?	E	_	MS/MS	D?			0	
Proper Media	a/Container	s Used?		-	ls splitti	ng samples	s require	ed?	4	_
Were trip bla	inks receive	ed?	F	-	On CO	c? <u> </u>				
Do all sample	es have the	proper pH?	M	Acid _				Base		
Vials	#	Containers:	#			#				#
Unp-		1 Liter Amb.	2	1 Liter	Plastic			16 o	z Amb.	
HCL-	3	500 mL Amb.		500 mL	Plastic				nb/Clear	
Meoh-		250 mL Amb.		250 mL					nb/Clear	
Bisulfate-		Flashpoint		Col./Ba					nb/Clear	
DI-		Other Glass		Other F					lcore	
Thiosulfate-		SOC Kit		Plastic				zen:		
Sulfuric-		Perchlorate	and the second	Ziple						
				Unused N	ledia			South Service		
Vials	#	Containers:	#			#				#
Unp-		1 Liter Amb.		1 Liter	****				z Amb.	<u> </u>
HCL-		500 mL Amb.		500 mL					mb/Clear	
Meoh- Bisulfate-		250 mL Amb. Col./Bacteria		250 mL					nb/Clear	
DIsultate-		Other Plastic		Flash Other					mb/Clear	
Di- Thiosulfate-		SOC Kit		Plastic			Fre	zen:	10016	<u> </u>
Sulfuric-		Perchlorate		Ziple			-1	a		
Comments:					<u></u>		ł			

January 9, 2020

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden

email: <u>cehaden@ncdot.gov</u>

Reference: Preliminary Site Assessment Report NCDOT Project I-5878, WBS Element 53078.1.1 Parcel 78 - BP I Mart 501-503 Spring Branch Road Dunn, Harnett County, North Carolina S&ME Project 4305-19-161

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1900576 REV-01 dated August 9, 2019, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its September 5,2019 Notice to Proceed Letter.

Background/Project Information

Based on NCDOT's July 24, 2019, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
78	I – Mart, LLC	(BP I-Mart)
		501-503 Spring Branch (aka Pope Road), Dunn, NC

The property is developed with an active gasoline/convenience store identified as BP I-Mart. The petroleum underground storage tanks (USTs) that the BP I-Mart operate are located on the southern end of the property adjoining Parcel 200 (Former T-Mart). The western end of the USTs extend across the ROW. The BP I-Mart and the former T-Mart are both listed with the same UST Facility ID No. of 0-00-000017633. Information regarding the UST system listed for the BP I-Mart is provided in the following table:

UST Facility ID No. 0-00-000017633

Number of Tanks	Contents	Capacity (gallons)	Date Installed	Date Removed
1	Gasoline	10,000	8/15/1999	Active USTs
2	Gasoline	10,000	8/15/1999	Active USTs
3	Gasoline	8,000	8/15/1999	Active USTs

The BP I-Mart property is not listed with a North Carolina Department of Environmental Quality (NCDEQ) Incident associated with petroleum releases from USTs or aboveground storage tanks. However, the location of the existing USTs for the BP I-Mart are located near the former UST area for the adjoining Former T-Mart. In addition, a well identified as RW-2 (previously MW-4) associated with the Former T-Mart release is located on the BP I-Mart property within the ROW. The BP I-Mart site is located downgradient of the Former T-Mart. However, free product has previously been measured in RW-2. In 2017, several petroleum constituents were reported in RW-2 at concentrations exceeding their respective15A NCAC 2L Groundwater Quality Standards (2L Standards) *AFVR and Groundwater Monitoring Report* prepared by Geologic Resources, Inc dated May 25, 2017).

The PSA included a geophysical survey and subsequent limited soil sampling (11 soil borings up to 10 feet below ground surface (ft.-bgs)) and limited groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil and groundwater sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (East Coast Underground, LLC) was also used to locate and mark underground utilities.

Geophysical Survey

On July 25, 2019, S&ME completed Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) surveys within accessible areas of the proposed ROW/easement at Parcel 78. Brief descriptions of these complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820 "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper[®] Systems Geode[™] sub-meter GPS as positioning support. The presence of landscaping/vegetations within the survey area, however, prevented TDEM data collection in a small area at the northeastern corner of the site. The approximate TDEM data collection paths are presented in **Figure 4.** Golden Software's Surfer[®] program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and semi-transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR[®] 4000 GPR system equipped with a 350 MHz antenna in general accordance with ASTM D6432 "*Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation*" to further characterize anomalies/features identified during the TDEM survey.

A total of three GPR profiles (Lines 1 through 3) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan[®] 7 GPR software program for additional analysis.

Geophysical Findings

Anomalous features unrelated to known surficial targets were not identified in the geophysical data sets. However, the locations of the current three existing USTs, extending into the survey area, were confirmed by the GPR survey **(Figures 6 and 7).** The identified USTs are characterized by high amplitude GPR responses located about 2.5 ft.-bgs. An example GPR profile is presented in **Figure 8.**

Soil Sampling

On October 28, 2019, Troxler Geologic, Inc. (Troxler's) drill crew utilized a track mounted Geoprobe® rig to advance 11 soil borings (B-1 through B-11) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 78. The approximate location of the soil borings are shown in **Figure 2**. A photographic

log is included in **Appendix I.** Troxler's drill crew advanced the Geoprobe® borings up to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at a depth of approximately seven ft.-bgs. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II**.

Petroleum odors and slightly elevated PID readings were noted at borings B-5 through B-10, which were located near the existing USTs and former UST basin areas. Petroleum odors were noted at borings B-5 and B-6 starting at a depth of approximately two ft.-bgs and extending to approximately four ft.-bgs. Petroleum odors were noted at a depth of approximately 0.5 ft.-bgs at borings B-7 and B-8 and extending to approximately four ft.-bgs to seven ft.-bgs, respectively. Petroleum odors were noted at borings B-9 from approximately two ft.-bgs to seven ft.-bgs. Petroleum odors were noted at boring B-10 from approximately 4 ft.-bgs to eight ft.-bgs. Groundwater was encountered at a depth of approximately seven ft.-bgs. Therefore, a soil sample was selected from these borings at the two to four foot depth interval or the four to six foot depth. Various soil samples at varying depth intervals were selected from the remaining borings. The soil samples were placed into laboratory supplied containers and transported to RED Lab, LLC (Red Lab) in an insulated cooler with ice for analysis. A total of 11 soil samples (one soil sample per boring) were analyzed by RED Lab for TPH-GRO and TPH-DRO using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH-GRO and TPH-DRO were not reported at concentrations exceeding their respective North Carolina TPH Action Levels. TPH-GRO and TPH-DRO were reported in borings B-2 and B-3 at the two to four foot depth interval at concentrations above the laboratory reporting limits but well below their North Carolina TPH Action Levels. TPH-DRO was also reported in borings B-1, B-4, B-5, and B-8 at the two to four foot depth interval and borings B-9 and B-11 at the four to six foot depth interval at concentrations well below its North Carolina TPH Action Level. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered at a depth of approximately seven ft.bgs. The vault for the existing well identified as RW-2 located within the ROW on the property was filled with rain water and was not gauged or sampled. Therefore, the Geoprobe® was used to advance one of the soil borings into the groundwater table for the collection of a groundwater sample. Based on petroleum odors, apparent downgradient location from the existing USTs and location near the former USTs, boring B-7, was selected for

collection of a groundwater sample. A temporary monitor well (TW-1) was installed at boring B-7 to a depth of approximately 11.5 ft.-bgs using a ten foot section of one-inch diameter, Schedule 40 PVC well riser attached to a five foot section of 0.01-inch slotted screen that intersected the groundwater table. Groundwater within the temporary monitor well at boring B-7 was measured at 6.78 ft.-bgs. Groundwater was purged from the temporary well until relatively clear using disposable tubing attached to a peristaltic pump. The flow rate was reduced and laboratory supplied containers were filled directly from the tubing, labeled as TW-1 and placed in an insulated cooler with ice for transport to Con-Test Laboratories (Con-Test) for analysis of VOCs by EPA Method 8260 and polycyclic aromatic compounds (PAHs) by EPA Method 8270.

Upon completion of the soil and groundwater sampling, the well materials were removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by NCDEQ. Used gloves and tubing were bagged and disposed offsite.

Groundwater Analytical Results

Based upon analytical results of the groundwater sample analyzed by Con-Test, numerous petroleum related target constituents were reported at concentrations exceeding their 2L Standards. Benzene was the highest constituent reported above its 2L Standard at a concentration of 330 micrograms per liter (μ g/L), which exceeds its 2L Standard of 1 μ g/L. A summary of the groundwater analytical results is presented in **Table 2** and shown on **Figure 3**. A copy of the laboratory analytical report provided by Con-Test is presented in **Appendix III**.

Conclusion and Recommendations

Existing groundwater monitoring well identified as RW-2 (previously MW-4) is located on the property within the ROW. The well is associated with a UST release from the Former T-Mart (NCDEQ Incident # 18955), which adjoins the property to the south. Free product has previously been measured in RW-2. In 2017, several petroleum constituents were reported in RW-2 at concentrations exceeding their respective 2L Standards.

The geophysical survey confirmed the locations of the current three existing, active, USTs associated with the BP I-Mart. The western ends of the two 10,000-gallon gasoline and one 8,000-gallon gasoline USTs extend across the ROW. The location of the existing USTs for the BP I-Mart are located near the former UST area for the adjoining Former T-Mart.

S&ME advanced 11 soil borings (B-1 through B-11) to a depth of up to approximately 10 ft.-bgs at the site. Petroleum odors and elevated PID readings were noted at borings B-5 through B-10, which were located near the existing USTs and former UST basin areas. Petroleum odors were noted starting at depths ranging from 0.5 ft.bgs and extending to up to boring termination at eight ft.-bgs. Groundwater was encountered at a depth of approximately seven ft.-bgs. Selected soil samples from the soil borings were analyzed for TPH-GRO and TPH-DRO using UVF spectroscopy.

TPH-GRO and TPH-DRO were not reported at concentrations exceeding their respective North Carolina TPH Action Levels. TPH-GRO and TPH-DRO were reported in borings B-2 and B-3 at the two to four foot depth interval. TPH-DRO was also reported in borings B-1, B-4, B-5, and B-8 at the two to four foot depth interval.

However, TPH-GRO and TPH-DRO were reported in these borings at concentrations well below their North Carolina TPH Action Levels. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples.

During the soil boring advancement, groundwater was encountered at a depth of approximately seven ft.-bgs. One temporary well (TW-1) was installed at soil boring B-7 located at an apparent downgradient location from the existing USTs and near the former UST area. Groundwater at TW-1 was measured at 6.78 ft.-bgs and analyzed by Con-Test for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. Several petroleum related target constituents were reported at concentrations exceeding their 2L Standards.

Based on the findings of the geophysical survey, the western end of three existing, active, USTs extend across the ROW. Based on the analytical results of soil and groundwater samples, it is likely that during construction, NCDOT may encounter marginally impacted soil (below TPH Action Levels) and groundwater impacted with petroleum at the site. Petroleum odors were noted in soil samples at depths ranging from 0.5 ft.-bgs to boring termination at eight ft.-bgs, which extends into the groundwater encountered at approximately seven ft.-bgs. However, TPH-GRO and TPH-DRO were not reported at concentration exceeding their TPH Action Levels.

It should also be assumed that saturated petroleum impacted soil will be encountered if construction excavations extend deeper than seven ft.-bgs on the site. If construction dewatering is required, petroleum impacted groundwater must be properly disposed or treated at a licensed facility. If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility.

S&ME recommends maintaining an awareness level for the presence of marginally impacted petroleum in the soil (below TPH Action Levels) and groundwater at the site for the safety of workers and the public.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., reinforced concrete, utilities, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of about six ft.-bgs.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods

used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing ٠

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc. DocuSigned by: Amie Honeycutt 4C890EAEC25F488. Jamie T Honeycutt **Environmental Professional** ihoneycutt@smeinc.com

DocuSigned by: Iom Kaymond D4B9FB5F636F4BB

DocuSigned by: Michael Phi 861E52DDEFAF4C7

Michael W. Pfeifer Senior Project Manager mpfeifer@smeinc.com

Thomas P. Raymond, P.E., P.M.P. Senior Consultant traymond@smeinc.com

Attachments:

Table 1: Summary of Soil Sampling Results**Table 2**: Summary of Groundwater Sampling Results

Figure 1: Vicinity Map
Figure 2: Site Map
Figure 3: Soil and Groundwater Constituent Map
Figure 4: TDEM Path Location Plan
Figure 5: TDEM Data Plot A
Figure 6: TDEM Data Plot B
Figure 7: Geophysical Anomaly Location Plan
Figure 8: Example GPR Data – Line 3

Appendix I:PhotographsAppendix II:Boring LogsAppendix III:Laboratory Analytical Reports and Chain of Custody

Tables

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5878 Parcel 78 - (BP I-Mart) 501 - 503 Spring Branch Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161

Ar	nalytical Metho	d→	Range Organics (GR Organics (DRO) by UI	carbons (TPH) Gasoline RO) and Diesel Range traviolet Fluorescence ectrometry
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO
B-1	10/28/2019	2 to 4	<0.52	1.2
B-2	10/28/2019	2 to 4	2.6	25
B-3	10/28/2019	2 to 4	3.7	27.6
B-4	10/28/2019	2 to 4	<0.49	1.4
B-5	10/28/2019	2 to 4	<0.53	3.8
B-6	10/28/2019	2 to 4	<0.27	<0.27
B-7	10/28/2019	2 to 4	<0.5	<0.5
B-8	10/28/2019	2 to 4	<0.26	0.26
B-9	10/28/2019	4 to 6	<0.29	11
B-10	10/28/2019	4 to 6	<0.29	<0.29
B-11	10/28/2019	4 to 6	<0.28	5.7
Notos:	orth Carolina T	PH Action Levels	50	100

Notes:

1. UVF analysis performed by RED Lab, LLC

2. Concentrations are reported in milligrams per kilogram (mg/Kg).

3. ft.-bgs:- feet below ground surface.

4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.

5. Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and **BOLD** fields.

TABLE 2SUMMARY OF GROUNDWATER SAMPLING RESULTSNCDOT Project I-5878Parcel 78 - (BP I-Mart)501 - 503 Spring Branch RoadDunn, Harnett County, North CarolinaS&ME Project No. 4305-19-161

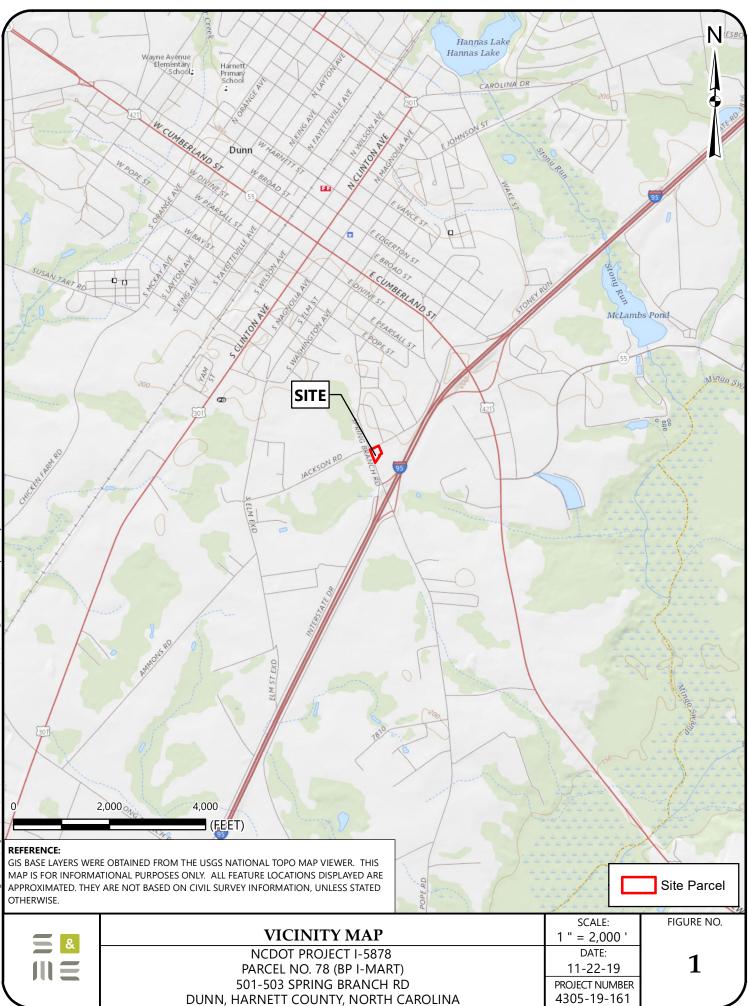
Analytical	Method→				Vo	latile Or	ganic	Compo	ounds b	by EPA N	lethod 8	260				Polyc	yclic Aro	omatic (Compou 827		AHs) by	y EPA M	lethod
Sample ID	Contaminant of Concern→ Date	Benzene	Diisopropyl Ether	Ethylbenzene	lsopropylbenzene	MTBE	Naphthalene	n-Butylbenzene	sec-Butylbenzene	tert-Butyl Alcohol	n-Propylbenzene	Toluene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Total Xylenes	Acenaphthene	Acenaphthylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	2-Methylnaphthalene
B-7/TW-1	10/28/2019	330	2.0 J	19	3.2 J	11	37	3.8 J	1.2 J	480	3.9 J	12	8.3	1.0 J	43	0.13 J	0.079 J	0.052 J	0.14 J	25	0.13	0.049 J	21
2L S	Standard (µg/L)	1	70	600	70	20	6	70	70	10	70	600	400	400	500	80	200	300	300	6	200	200	30
	GCL (µg/L)	5,000	70,000	84,500	25,000	20,000	6,000	6,900	8,500	10,000	30,000	260,000	28,500	25,000	85,500	2,120	1,965	300	990	6,000	410	200	12,500

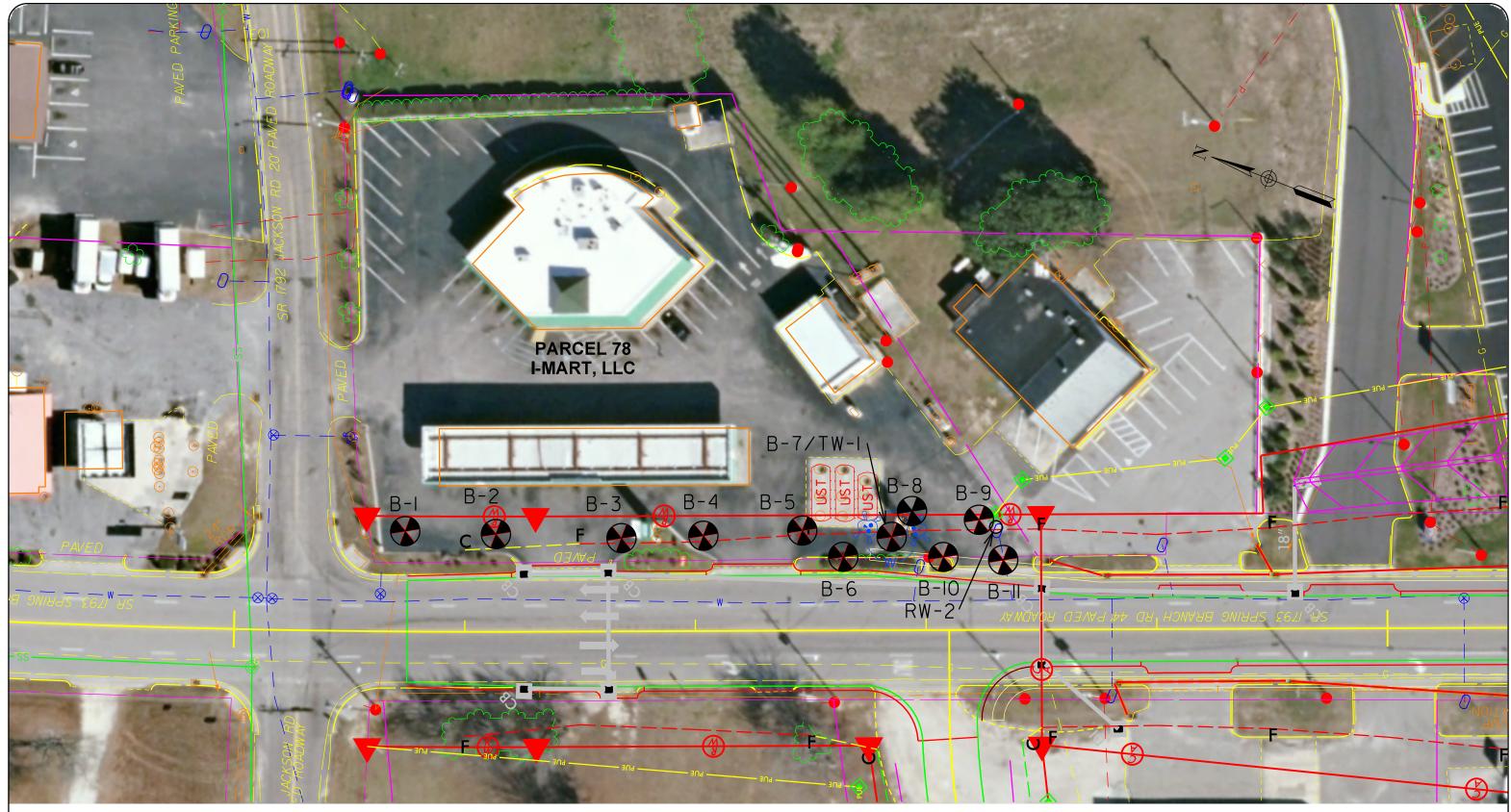
Notes:

1. Analytes that are not shown for the method were not detected.

2. Concentrations are reported in micrograms per liter (µg/L).

3. 2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202


4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.


5. Concentrations exceeding the 2L Standards are shown in Shaded and BOLD fields.

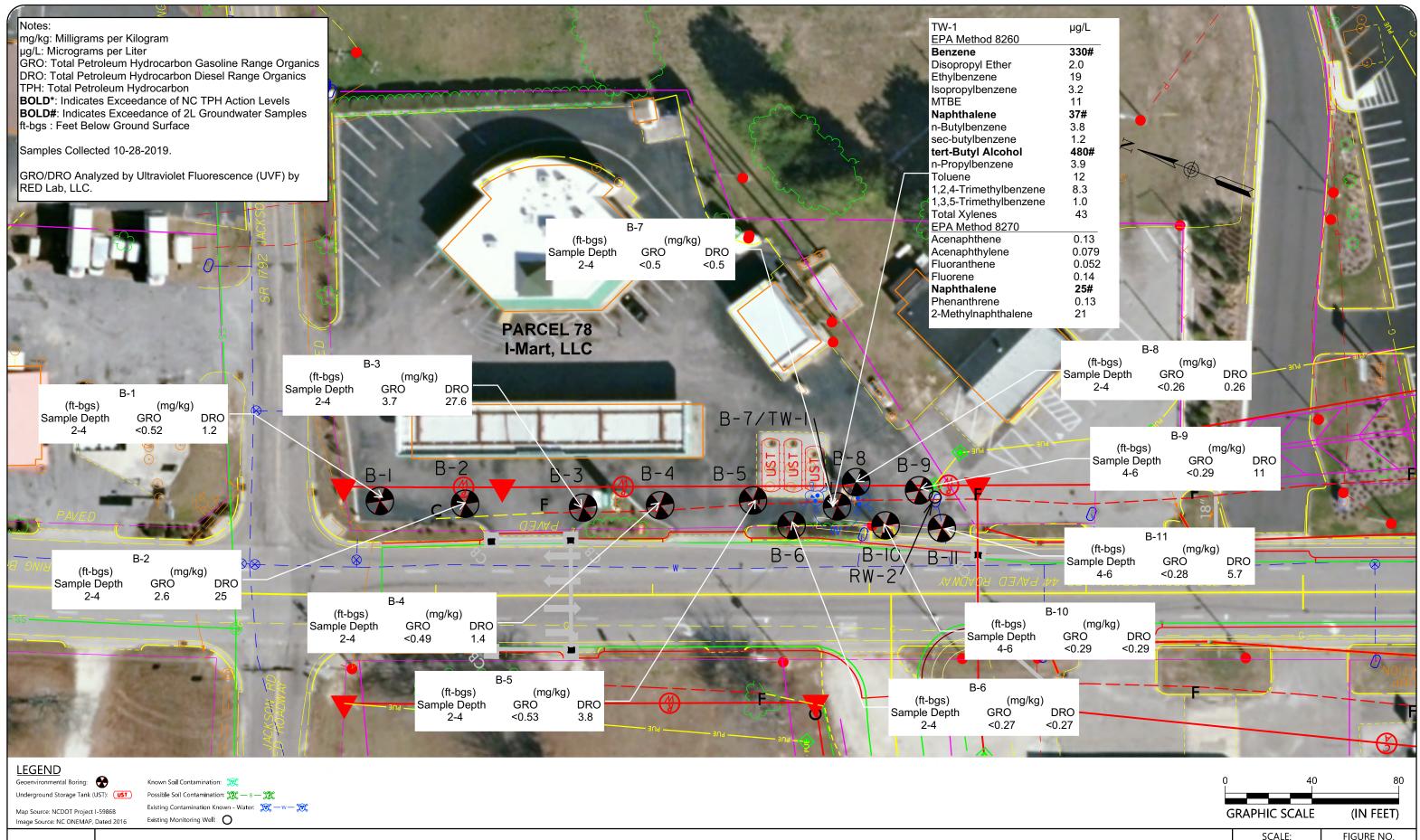
6. GCL: Gross Contamination Level.

7. J: Estimated concentration detected below the reporting limit.

Figures

LEGEND Geoenvironmental Boring: Underground Storage Tank (UST): UST Map Source: NCDOT Project I-5986B Image Source: NC ONEMAP, Dated 2016

8

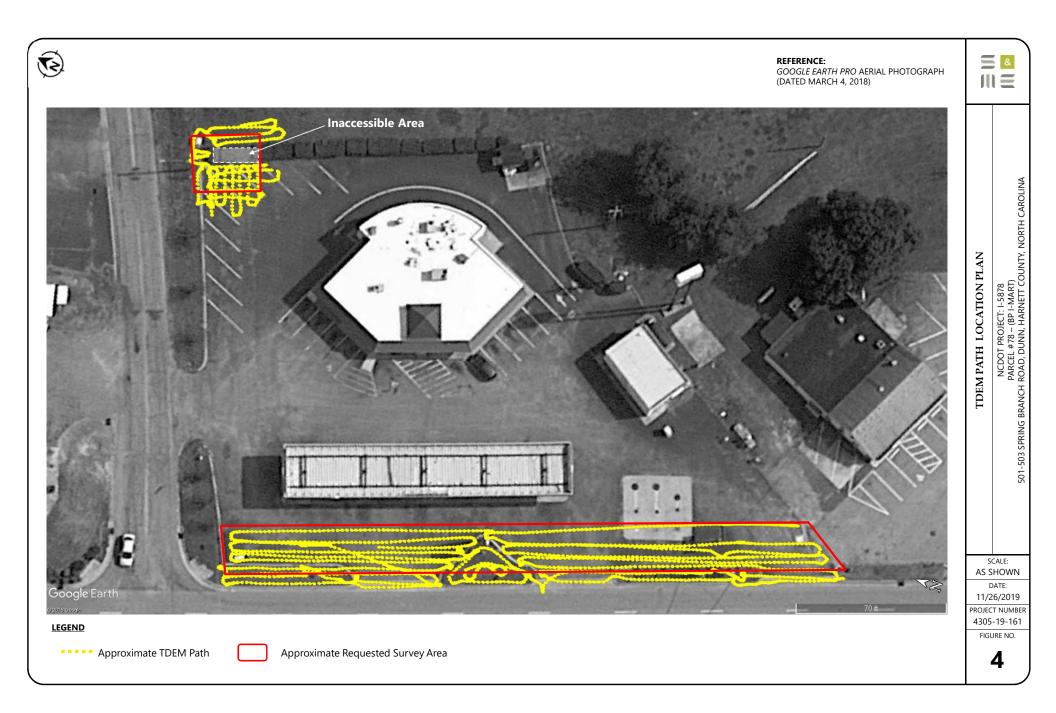

ΞM

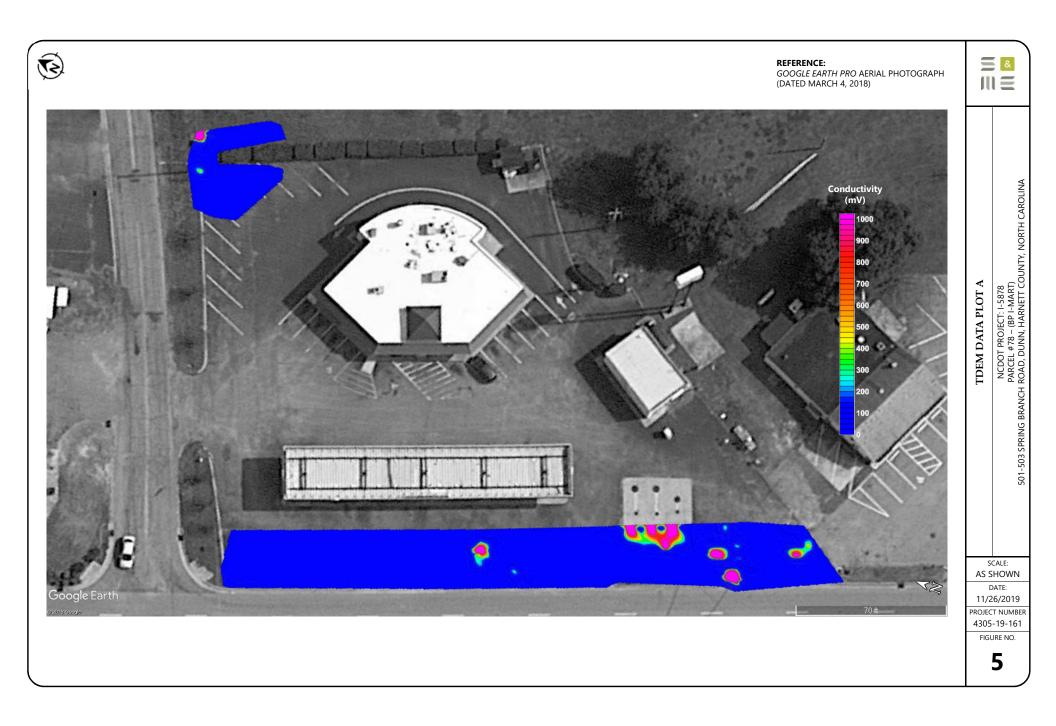
Known Soil Contamination: 淡 Possible Soil Contamination: 淡ーsー ぷ Existing Contamination Known - Water: 涼 ーwー 淡 Existing Monitoring Well: O

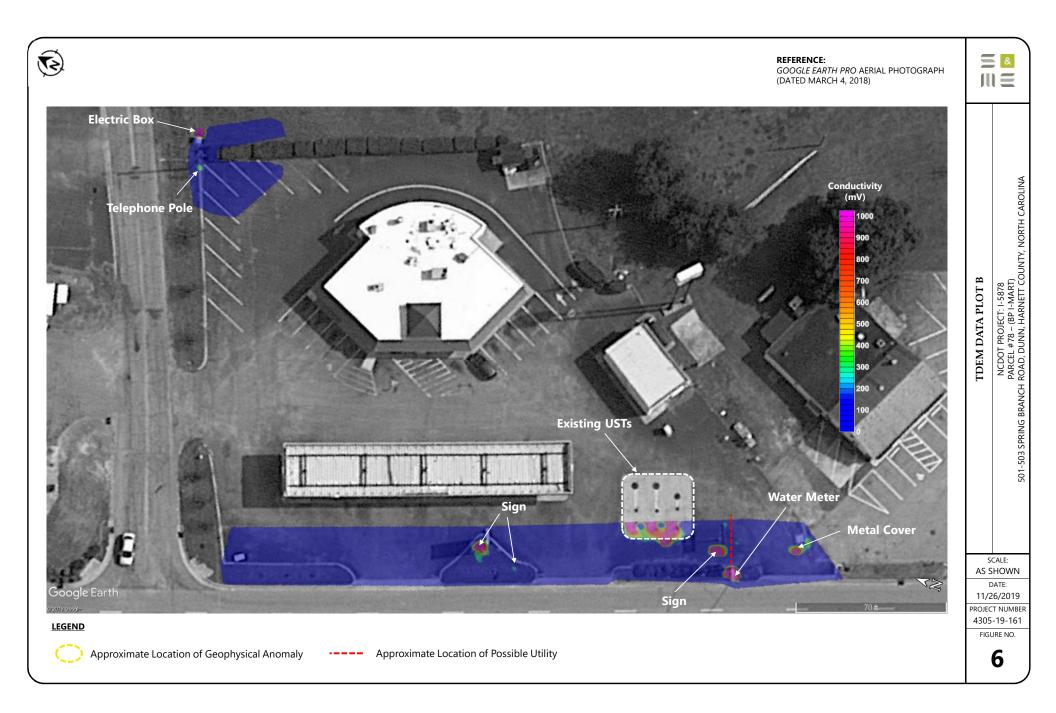
SITE MAP

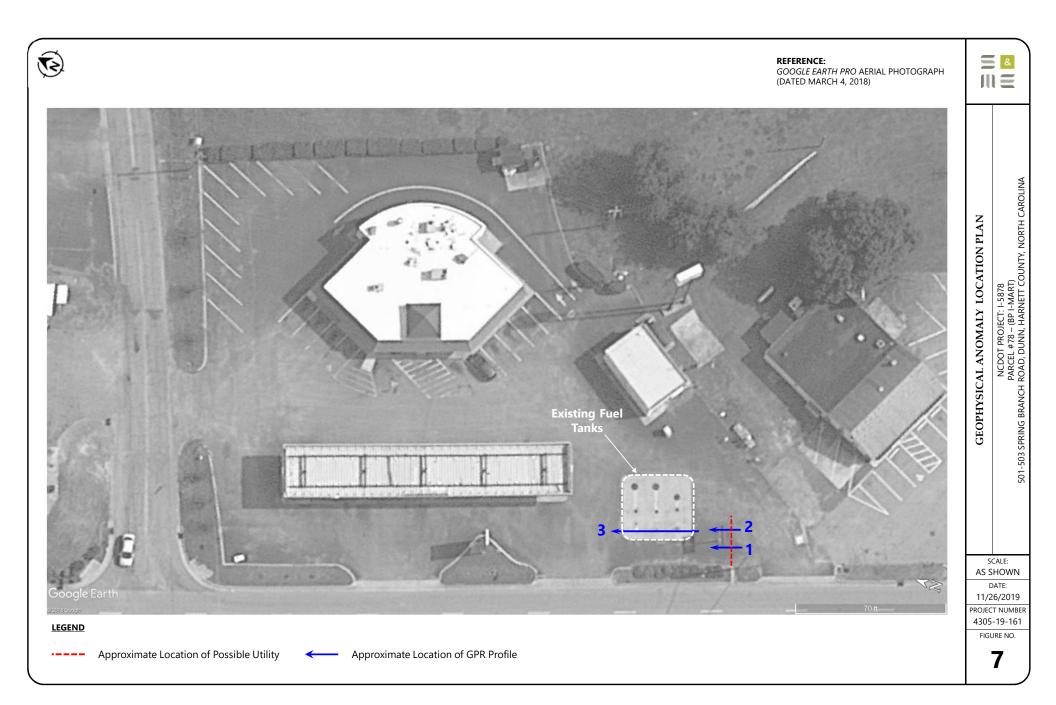
NCDOT Project: I-5878 PARCEL 78 - BP I-MART 501-503 Spring Branch Road, Dunn, Harnett County, North Carolina

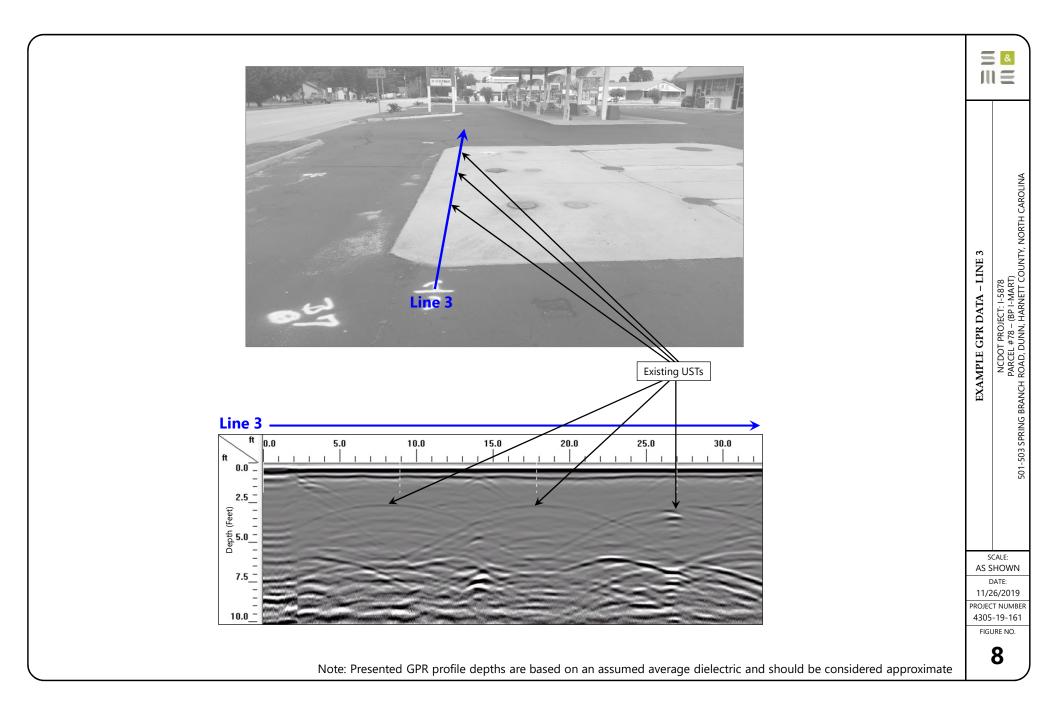
0	40	80
G	GRAPHIC SCALE	(IN FEET)
	SCALE:	FIGURE NO.
	1" = 40'	
	DATE:	
	JAN. 2020	2
	PROJECT NUMBER	
	4305-19-161	

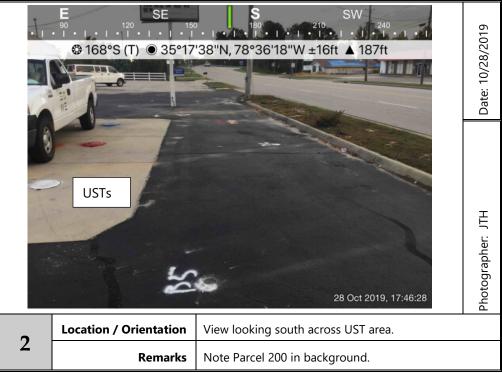



ΞM

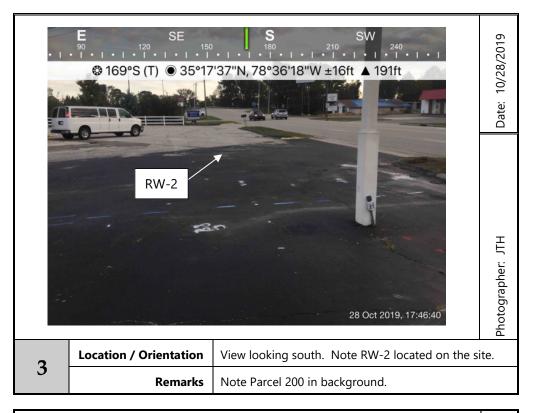

SOIL AND GROUNDWATER CONSTITUENT MAP


NCDOT Project: I-5878 PARCEL 78 - BP I-MART 501-503 Spring Branch Road, Dunn, Harnett County, North Carolina


SCALE:	FIGURE NO.
1" = 40'	
DATE:	
NOV. 2019	3
PROJECT NUMBER	
4305-19-161	ノノ
	1" = 40' DATE: NOV. 2019 PROJECT NUMBER



Appendix I – Photographs



i

Appendix II – Boring Logs

PROJECT:	NCDOT I-5878									
	Parcel 78-501-503 Spring Branch Rd (BP - I-Mart S&ME Project No. 4305-19-161	:), Dunn, NC			BORIN	IG LOG:	B-1			
DATE DRILLED:	Monday, October 28, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:	7							
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appli	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:	-							
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
5	alt, Gravel, ly Clay, Orange, Sand, Orange, Red, ng Terminated at 8 Ft-BGS		•		0.0 0.2 0.5	No Yes No	1210			

PROJECT:	NCDOT I-5878									
	Parcel 78-501-503 Spring Branch Rd (BP - I-Mart S&ME Project No. 4305-19-161), Dunn, NC			BORIN	IG LOG:	B-2			
DATE DRILLED:	Monday, October 28, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:	7							
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyc	cutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Asph	alt, Gravel, y Clay, Orange,				0.0 0.6	No Yes	1220			
5 Silty	Sand, Orange, Red,				0.7	No				
Borir	ig Terminated at 8 Ft-BGS		▼							
10										
 15										
20 —										
25 —										
30				1					I	

PROJECT: NCDOT I-5878 Parcel 78-501-503 Spring Branch Rd (BP - I-Mart), Dunn, NC BORING LOG: B-3					PODIA		D 2			
	S&ME Project No. 4305-19-161	i), Dunn, NC			DUKI		D-2			
DATE DRILLED:	Monday, October 28, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:		icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Aspt Sanc	alt, Gravel, y Clay, Orange,				1.3	No Yes	1230			
5					0.6	No				
	Sand, Orange, Red, ng Terminated at 8 Ft-BGS		•							
10										
 15										
20										
 25										
30										

PROJECT:	NCDOT I-5878									
	Parcel 78-501-503 Spring Branch Rd (BP - I-Ma S&ME Project No. 4305-19-161	art), Dunn, NC			BORIN	IG LOG:	B-4			
DATE DRILLED:	Monday, October 28, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:	7							
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:	,							
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
	···· · · · · · · · · · · · · · · · · ·									
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
San	halt, Gravel, dy Clay, Orange,				0.9 2.3	No Yes	1245			
5	dy Clay, Red, Orange, Gray,				3.4	No				
Bor	ing Terminated at 8 Ft-BGS		▼							
10										
 15										
20 —										
 25										
30										

PROJECT:	NCDOT I-5878									
	Parcel 78-501-503 Spring Branch Rd (BP - I-Ma S&ME Project No. 4305-19-161	art), Dunn, NC			BORIN	IG LOG:	B-5			
DATE DRILLED:	Monday, October 28, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:	7							
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appli	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyc	utt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	n value
Aspl	halt, Gravel, dy Clay, Orange, Red, Gray,									
					39.7	No				
Sand	dy Clay, Orange, Red, Gray, Slight Petroleum Odors									
and the second sec	dy Clay, Orange, Red, Gray,				66.9	Yes	1430			
5					23.8	No				
	Sand, Red, Orange,		▼							
	ng Terminated at 8 Ft-BGS									
10 —										
15 —										
20 —										
25 —										
							1		I	1

PROJECT:	NCDOT I-5878									
	Parcel 78-501-503 Spring Branch Rd (BP - I-Maı S&ME Project No. 4305-19-161	rt), Dunn, NC			BORIN	IG LOG:	B-6			
DATE DRILLED:	Monday, October 28, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:	7							
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appli	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyc	utt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	ioil, ly Clay, Orange, ly Clay, Orange, Slight Petroleum Odors				0.0	No				
	iy Clay, Orange, Red, Gray,				13.8	Yes	1445			
5	Sand, Red, Orange,				13.1	No				
	ng Terminated at 8 Ft-BGS		▼							
 10										
15										
20										
 25										
30										

PROJECT:	NCDOT I-5878									
	Parcel 78-501-503 Spring Branch Rd (BP - I-I S&ME Project No. 4305-19-16				BORIN	ig log:	: B-7 /	TW-1		
DATE DRILLED:	Monday, October 28, 2019	BORING DEPTH (FT):	12							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:	6.78							
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	cutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
				1		~	<u> </u>			
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Asp San	halt, Gravel, dy Clay, Orange, Slight Petroleum Odors				2.1	No				
	dy Clay, Orange,				9.4	Yes	1500			
5					2.3	No				
San	d, Tan, Orange,		▼							
10										
Bori	ing Terminated at 12 Ft-BGS									
15 —										
20 —										
25 —										

PROJECT:	NCDOT I-5878	t) Dupp NC			PODIA		ро			
	Parcel 78-501-503 Spring Branch Rd (BP - I-Mar S&ME Project No. 4305-19-161	u, dunn, NC			DUKIN	IG LOG	D-Q			
DATE DRILLED:	Monday, October 28, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:	7							
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	cutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		-	-					
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Clay	nalt, Gravel, ey Sand, Tan, Slight Petroleum Odors				21.5	No				
5					10.3	Yes	1530			
Silty	Sand, Orange, Red, Slight Petroleum Odors		-		8.2	No				
Bori	ng Terminated at 8 Ft-BGS		▼							
10										
15 —										
_										
20 —										
25 —										
30										

PROJECT:	NCDOT I-5878 Parcel 78-501-503 Spring Branch Rd (BP - I-Mart	t), Dunn, NC			BORIN	IG LOG:	B-9			
	S&ME Project No. 4305-19-161	,, Dunn, NC			Donai	10 200.				
DATE DRILLED:	Monday, October 28, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) LOG LOG VabHIC	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Clay	rey Sand, Tan, Red, rey Sand, Tan, Red, Petroleum Odors				15.4	No				
5					21.2	No				
Silty	Sand, Tan, Red,		▼		28.4	Yes	1545			
Bori	ng Terminated at 8 Ft-BGS									
15										
20 —										
25 —										
30				1			1		1	

PROJECT:	NCDOT I-5878									
	Parcel 78-501-503 Spring Branch Rd (BP - I-Ma S&ME Project No. 4305-19-161	art), Dunn, NC			BORIN	IG LOG:	B-10			
DATE DRILLED:	Monday, October 28, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:	7							
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Clay Clay	ey Sand, Tan, Red, ey Sand, Tan, Red,				1.3 4.0	No				
5 — Clay	ey Sand, Tan, Red, Petroleum Odors				6.2	Yes	1600			
	Sand, Tan, Red, Petroleum Odors ng Terminated at 8 Ft-BGS		▼							
10										
15										
20										
 25										
30										

PROJECT:	NCDOT I-5878 Parcel 78-501-503 Spring Branch Rd (BP - I-Mart) Dunn NC			BODIN		R-11			
	S&ME Project No. 4305-19-161	, Dunn, NC			DOKI		D-11			
DATE DRILLED:	Monday, October 28, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:	7							
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appli	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyc	utt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) (feet) CAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	shalt, Gravel, yey Sand, Orange,		T		1.4 1.2 2.7	No No Yes	1615			
10 — Bor 10 — 15 — 20 — 20 — 10 — 10 — 10 — 10 — 10 — 10	ing Terminated at 8 Ft-BGS									
25										

Appendix III – Laboratory Analytical Reports and Chain of Custody

	REDLAB
--	---------------

Hydrocarbon Analysis Results

Client: S&ME Address: 3201 SPRING FOREST RD RALEIGH NC

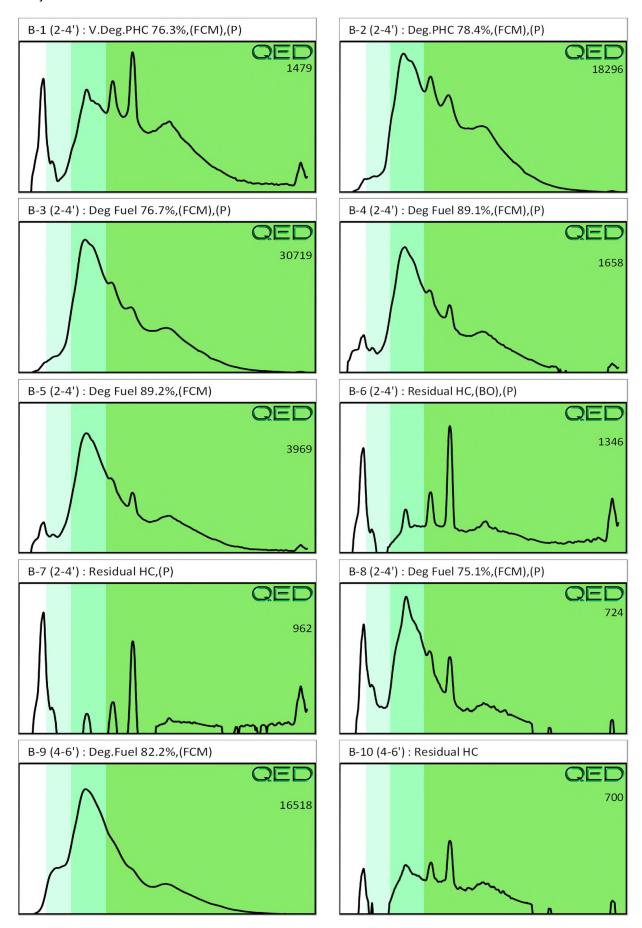
Samples taken Samples extracted Samples analysed

Monday, October 28, 2019 Monday, October 28, 2019 Tuesday, October 29, 2019

Operator

MAX MOYER

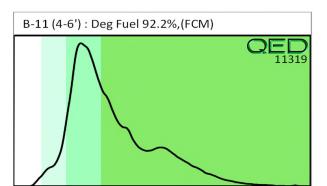
Contact: JAMIE HONEYCUTT


Project: NCDOT I-5878 PARCEL 78

														U00902
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP	%	% Ratios		HC Fingerprint Match	I
										C5 - C10	C10 - C18	C18		
S	B-1 (2-4')	20.6	<0.52	<0.52	1.2	1.2	0.83	<0.17	<0.021	0	62.8	37.2	V.Deg.PHC 76.3%,(FCM),(P)	
S	B-2 (2-4')	22.8	<0.57	2.6	25	27.6	9.5	0.42	<0.023	31.5	45.9	22.7	Deg.PHC 78.4%,(FCM),(P)	
S	B-3 (2-4')	19.5	<0.49	3.7	27.6	31.3	22.9	0.77	<0.02	30.1	52.8	17.1	Deg Fuel 76.7%,(FCM),(P)	
s	B-4 (2-4')	19.4	<0.49	<0.49	1.4	1.4	0.66	<0.16	<0.019	89	8.3	2.7	Deg Fuel 89.1%,(FCM),(P)	
S	B-5 (2-4')	21.1	<0.53	<0.53	3.8	3.8	1.7	<0.17	<0.021	0	73.9	26.1	Deg Fuel 89.2%,(FCM)	
S	B-6 (2-4')	10.8	<0.27	<0.27	<0.27	0.2	0.2	<0.09	<0.011	0	67.3	32.7	Residual HC,(BO),(P)	
S	B-7 (2-4')	20.0	<0.5	<0.5	<0.5	<0.5	<0.1	<0.16	<0.02	0	0	0	Residual HC,(P)	
S	B-8 (2-4')	10.3	<0.26	<0.26	0.26	0.26	0.16	<0.08	<0.01	0	75.4	24.6	Deg Fuel 75.1%,(FCM),(P)	
S	B-9 (4-6')	11.8	<0.29	<0.29	11	11	10.5	0.41	<0.012	0	80.9	19.1	Deg.Fuel 82.2%,(FCM)	
S	B-10 (4-6')	11.8	<0.29	<0.29	<0.29	0.14	0.14	<0.09	<0.012	0	58.9	41.1	Residual HC	
	Initial C	alibrator	QC check	OK					Final FC	CM QC	Check	OK		100.8 %

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected


B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result. % Ratios estimated aromatic carbon number proportions : HC = Hydrocarbon : PHC = Petroleum HC : FP = Fingerprint only. Data generated by HC-1 Analyser

Q	ED			E	RAPI			B TICS			_	\int	<u>QROS</u>
				Hydroca	arbon An	alysis R	esults						
Address:	S&ME 3201 SPRING FOREST RD RALEIGH NC								Sa Sample Sampl		acted		Monday, October 28, 2019 Monday, October 28, 2019 Tuesday, October 29, 2019
Contact:	JAMIE HONEYCUTT									Ор	erator		MAX MOYER
Project:	NCDOT I-5878 PARCEL 78												
													U00902
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP	a	% Ratios	;	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
S	B-11 (4-6')	11.0	<0.28	<0.28	5.7	5.7	3.3	0.12	<0.011	0	78.3	21.7	Deg Fuel 92.2%,(FCM)
	Initial C	alibrator	QC check	OK					Final F	CM QC	Check	OK	99.3 %
Concentratio	on values in mg/kg for soil samples and mg	/L for water	samples So	il values unco	prrected for m	oisture or sto	ne content. Fin	gernrints pr	ovide a tent	ative hvd	rocarbor	identifi	cation
	is :- FCM = Results calculated using Funda												
B = Blank D	rift : (SBS)/(LBS) = Site Specific or Library	Background	Subtraction	applied to res	sult : (BO) = B	ackground O	rganics detecte	ed : (OCR) =	= Outside ca	I range :	(M) = M		
70 Ratios es	timated aromatic carbon number proportion	IS : HC = HY	ulocarbon :	Pric = Petrol		= Fingerprint	only. Data	a generated	d by HC-1 A	maiyser			

QED Hydrocarbon Fingerprints

Project: NCDOT I-5878 PARCEL 78

NODOT I JETS POLLED 78	Ferende R.B. Dumme, NC	I and a second and	RAPID ENVIRONMENTAL DIAGNOSTICS	CHAIN OF CUSTODY AND ANALYTICAL		┝	Jr Initials Sample ID Sample ID	ATU R.1 1.41	202	56.2 44.8 11	53.2 43.9	57.7 UU.3	7 44.4	5.4.1 S.7.5 HH.5	27.6 44.6 1	574 43.8 (1 26 July 11 6	56.7 UL.S	1 4-10 J.						1 by	5	
StMF.S	NON NO	Harry with 7	1/20101 - I-5878 1 Parce 0-18	3	Tomie 7 Honer 21	equested	1											*							128/19 10/28/18	Date/	
Client Name:	Address:	Contact: Proiect Ref ·	Email:	Phone #:	Collected by:	Sample Collection	Date/Time	10 28-10 1210	1 hado	1 1230	Iarr	02111	i luus	1500	Č 1530	1545	(leno	1 I Rece				ш.	Comments:	Relinauished hv	and have	/ Relinquished by	

November 11, 2019

Jamie Honeycutt S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: Dunn, NC Client Job Number: Project Number: 4305-19-161 Laboratory Work Order Number: 19J1775

Enclosed are results of analyses for samples received by the laboratory on October 28, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Beny K. Millee

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	7
19J1775-01	7
Sample Preparation Information	10
QC Data	11
Volatile Organic Compounds by GC/MS	11
B244975	11
Semivolatile Organic Compounds by GC/MS	16
B244837	16
Flag/Qualifier Summary	18
Certifications	19
Chain of Custody/Sample Receipt	22

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. REPORT DATE: 11/11/2019 Raleigh, NC 27616 PURCHASE ORDER NUMBER: ATTN: Jamie Honeycutt PROJECT NUMBER: 4305-19-161 ANALYTICAL SUMMARY 19J1775 WORK ORDER NUMBER: The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report. PROJECT LOCATION: Dunn, NC FIELD SAMPLE # LAB ID: MATRIX TEST SUB LAB SAMPLE DESCRIPTION TW-1 19J1775-01 Ground Water SW-846 8260D

SW-846 8270E

EXECUTIVE SUMMARY

Client	ID.	TW-1
Chent	112.	1 22-1

Lab ID: 19J1775-01

Analyte	Results/Qua	1	DL	RL	Units	Method
1,2,4-Trimethylbenzene	8.3		0.90	5.0	μg/L	SW-846 8260D
1,3,5-Trimethylbenzene	1.0	J	0.70	5.0	μg/L	SW-846 8260D
Benzene	330		0.90	5.0	μg/L	SW-846 8260D
Diisopropyl Ether (DIPE)	2.0	J	0.85	2.5	μg/L	SW-846 8260D
Ethylbenzene	19		0.65	5.0	μg/L	SW-846 8260D
Isopropylbenzene (Cumene)	3.2	J	0.85	5.0	μg/L	SW-846 8260D
m+p Xylene	33		1.5	10	μg/L	SW-846 8260D
Methyl tert-Butyl Ether (MTBE)	11		1.2	5.0	μg/L	SW-846 8260D
Naphthalene	37		1.6	25	μg/L	SW-846 8260D
n-Butylbenzene	3.8	J	1.0	5.0	μg/L	SW-846 8260D
n-Propylbenzene	3.9	J	0.65	5.0	μg/L	SW-846 8260D
o-Xylene	10		0.85	5.0	μg/L	SW-846 8260D
sec-Butylbenzene	1.2	J	0.80	5.0	μg/L	SW-846 8260D
tert-Butyl Alcohol (TBA)	480		21	100	μg/L	SW-846 8260D
Toluene	12		0.70	5.0	μg/L	SW-846 8260D
2-Methylnaphthalene (SIM)	21		0.65	10	μg/L	SW-846 8270E
Acenaphthene (SIM)	0.13	J	0.034	0.31	μg/L	SW-846 8270E
Acenaphthylene (SIM)	0.079	J	0.036	0.21	μg/L	SW-846 8270E
Fluoranthene (SIM)	0.052	J	0.026	0.52	μg/L	SW-846 8270E
Fluorene (SIM)	0.14	J	0.035	1.0	μg/L	SW-846 8270E
Naphthalene (SIM)	25		2.7	10	μg/L	SW-846 8270E
Phenanthrene (SIM)	0.13		0.031	0.052	μg/L	SW-846 8270E
Pyrene (SIM)	0.049	J	0.024	1.0	$\mu g/L$	SW-846 8270E

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 8270, only PAHs were requested and reported.

SW-846 8260D

Qualifications:

L-02

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side. Analyte & Samples(s) Qualified:

trans-1,4-Dichloro-2-butene

B244975-BS1, B244975-BSD1, S042201-CCV1

Vinyl Chloride

B244975-BS1, B244975-BSD1, S042201-CCV1

RL-11

Elevated reporting limit due to high concentration of target compounds.

Analyte & Samples(s) Qualified:

19J1775-01[TW-1]

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

tert-Amyl Methyl Ether (TAME)

19J1775-01[TW-1], B244975-BLK1, B244975-BS1, B244975-BSD1, S042201-CCV1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

2-Hexanone (MBK)

B244975-BS1, B244975-BSD1, S042201-CCV1

4-Methyl-2-pentanone (MIBK)

B244975-BS1, B244975-BSD1, S042201-CCV1

Acetone

B244975-BS1, B244975-BSD1, S042201-CCV1

trans-1,4-Dichloro-2-butene

B244975-BS1, B244975-BSD1, S042201-CCV1

Vinyl Chloride

B244975-BS1, B244975-BSD1, S042201-CCV1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

fra Watshington

Lisa A. Worthington Technical Representative

Volatile Organic Compounds by GC/MS

Sample Description:

Sampled: 10/28/2019 17:00

Project Location: Dunn, NC Date Received: 10/28/2019

Field Sample #: TW-1

Sample ID: 19J1775-01 Sample Matrix: Ground Water

Sample Flags: RL-11

Sample Flags: RL-11 Analyte	Results	RL	DL	Units	mpounds by G Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	250	19	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Acrylonitrile	ND	25	2.6	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
tert-Amyl Methyl Ether (TAME)	ND	5.0	0.70	μg/L	5	V-05	SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Benzene	330	5.0	0.90	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Bromobenzene	ND	5.0	0.75	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Bromochloromethane	ND	5.0	1.6	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Bromodichloromethane	ND	2.5	0.80	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Bromoform	ND	5.0	2.3	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Bromomethane	ND	10	3.9	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
2-Butanone (MEK)	ND	100	9.7	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
tert-Butyl Alcohol (TBA)	480	100	21	μg/L μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
n-Butylbenzene	3.8	5.0	1.0	μg/L	5	J	SW-846 8260D	11/4/19	11/4/19 15:46	EEH
sec-Butylbenzene	1.2	5.0	0.80		5	J	SW-846 8260D	11/4/19	11/4/19 15:46	EEH
tert-Butylbenzene	ND			μg/L ug/I	5	J				EEH
tert-Butyl Ethyl Ether (TBEE)		5.0	0.85	μg/L ug/I	5		SW-846 8260D	11/4/19	11/4/19 15:46	
Carbon Disulfide	ND	2.5	0.80	μg/L			SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Carbon Tetrachloride	ND	25	22	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Chlorobenzene	ND	5.0	0.55	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Chlorodibromomethane	ND	5.0	0.75	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
	ND	2.5	1.0	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Chloroethane	ND	10	1.8	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Chloroform	ND	10	0.85	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Chloromethane	ND	10	2.2	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
2-Chlorotoluene	ND	5.0	0.60	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
4-Chlorotoluene	ND	5.0	0.70	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	25	2.6	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,2-Dibromoethane (EDB)	ND	2.5	0.95	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Dibromomethane	ND	5.0	1.8	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,2-Dichlorobenzene	ND	5.0	0.80	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,3-Dichlorobenzene	ND	5.0	0.60	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,4-Dichlorobenzene	ND	5.0	0.65	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
trans-1,4-Dichloro-2-butene	ND	10	1.6	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Dichlorodifluoromethane (Freon 12)	ND	10	1.3	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,1-Dichloroethane	ND	5.0	0.80	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,2-Dichloroethane	ND	5.0	2.0	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,1-Dichloroethylene	ND	5.0	1.6	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
cis-1,2-Dichloroethylene	ND	5.0	0.65	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
trans-1,2-Dichloroethylene	ND	5.0	1.6	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,2-Dichloropropane	ND	5.0	1.0	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,3-Dichloropropane	ND	2.5	0.55	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
2,2-Dichloropropane	ND	5.0	1.0	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,1-Dichloropropene	ND	10	0.80	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
cis-1,3-Dichloropropene	ND	2.5	0.65	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
trans-1,3-Dichloropropene	ND	2.5	1.2	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Diethyl Ether	ND	10	1.7	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH

Work Order: 19J1775

Page 7 of 24

Sample Description:

Sampled: 10/28/2019 17:00

Table of Contents

Work Order: 19J1775

Date Received: 10/28/2019

Project Location: Dunn, NC

Field Sample #: TW-1

Sample ID: 19J1775-01

Sample Matrix: Ground Water

Sample Flags: RL-11			Vola	tile Organic Com	pounds by G	C/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	2.0	2.5	0.85	μg/L	5	J	SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,4-Dioxane	ND	250	110	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Ethylbenzene	19	5.0	0.65	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Hexachlorobutadiene	ND	3.0	2.4	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
2-Hexanone (MBK)	ND	50	7.6	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Isopropylbenzene (Cumene)	3.2	5.0	0.85	μg/L	5	J	SW-846 8260D	11/4/19	11/4/19 15:46	EEH
p-Isopropyltoluene (p-Cymene)	ND	5.0	1.0	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Methyl tert-Butyl Ether (MTBE)	11	5.0	1.2	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Methylene Chloride	ND	25	1.7	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
4-Methyl-2-pentanone (MIBK)	ND	50	8.4	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Naphthalene	37	25	1.6	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
n-Propylbenzene	3.9	5.0	0.65	μg/L	5	J	SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Styrene	ND	5.0	0.55	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,1,1,2-Tetrachloroethane	ND	5.0	1.4	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,1,2,2-Tetrachloroethane	ND	2.5	1.1	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Tetrachloroethylene	ND	5.0	0.90	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Tetrahydrofuran	ND	50	2.6	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Toluene	12	5.0	0.70	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,2,3-Trichlorobenzene	ND	25	2.8	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,2,4-Trichlorobenzene	ND	5.0	2.0	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,3,5-Trichlorobenzene	ND	5.0	1.5	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,1,1-Trichloroethane	ND	5.0	1.0	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,1,2-Trichloroethane	ND	5.0	0.80	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Trichloroethylene	ND	5.0	1.2	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Trichlorofluoromethane (Freon 11)	ND	10	1.6	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,2,3-Trichloropropane	ND	10	1.2	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	1.6	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,2,4-Trimethylbenzene	8.3	5.0	0.90	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
1,3,5-Trimethylbenzene	1.0	5.0	0.70	μg/L	5	J	SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Vinyl Chloride	ND	10	2.2	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
m+p Xylene	33	10	1.5	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
o-Xylene	10	5.0	0.85	μg/L	5		SW-846 8260D	11/4/19	11/4/19 15:46	EEH
Surrogates		% Reco	very	Recovery Limits	\$	Flag/Qual				
1,2-Dichloroethane-d4		104		70-130					11/4/19 15:46	
Toluene-d8 4-Bromofluorobenzene		100 102		70-130 70-130					11/4/19 15:46 11/4/19 15:46	

Work Order: 19J1775

Project Location: Dunn, NC Date Received: 10/28/2019

Field Sample #: TW-1

p-Terphenyl-d14

Sample ID: 19J1775-01

Sample Matrix: Ground Water

Sampled: 10/28/2019 17:00

Sample Description:

			Semivo	olatile Organic Co	ompounds by	GC/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene (SIM)	0.13	0.31	0.034	μg/L	1	J	SW-846 8270E	10/30/19	11/1/19 20:51	IMR
Acenaphthylene (SIM)	0.079	0.21	0.036	μg/L	1	J	SW-846 8270E	10/30/19	11/1/19 20:51	IMR
Anthracene (SIM)	ND	0.21	0.033	μg/L	1		SW-846 8270E	10/30/19	11/1/19 20:51	IMR
Benzo(a)anthracene (SIM)	ND	0.052	0.017	μg/L	1		SW-846 8270E	10/30/19	11/1/19 20:51	IMR
Benzo(a)pyrene (SIM)	ND	0.10	0.012	μg/L	1		SW-846 8270E	10/30/19	11/1/19 20:51	IMR
Benzo(b)fluoranthene (SIM)	ND	0.052	0.016	μg/L	1		SW-846 8270E	10/30/19	11/1/19 20:51	IMR
Benzo(g,h,i)perylene (SIM)	ND	0.52	0.019	μg/L	1		SW-846 8270E	10/30/19	11/1/19 20:51	IMR
Benzo(k)fluoranthene (SIM)	ND	0.21	0.012	μg/L	1		SW-846 8270E	10/30/19	11/1/19 20:51	IMR
Chrysene (SIM)	ND	0.21	0.016	μg/L	1		SW-846 8270E	10/30/19	11/1/19 20:51	IMR
Dibenz(a,h)anthracene (SIM)	ND	0.10	0.018	μg/L	1		SW-846 8270E	10/30/19	11/1/19 20:51	IMR
Fluoranthene (SIM)	0.052	0.52	0.026	μg/L	1	J	SW-846 8270E	10/30/19	11/1/19 20:51	IMR
Fluorene (SIM)	0.14	1.0	0.035	μg/L	1	J	SW-846 8270E	10/30/19	11/1/19 20:51	IMR
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.10	0.019	μg/L	1		SW-846 8270E	10/30/19	11/1/19 20:51	IMR
2-Methylnaphthalene (SIM)	21	10	0.65	μg/L	10		SW-846 8270E	10/30/19	11/4/19 10:34	IMR
Naphthalene (SIM)	25	10	2.7	μg/L	10		SW-846 8270E	10/30/19	11/4/19 10:34	IMR
Phenanthrene (SIM)	0.13	0.052	0.031	μg/L	1		SW-846 8270E	10/30/19	11/1/19 20:51	IMR
Pyrene (SIM)	0.049	1.0	0.024	μg/L	1	J	SW-846 8270E	10/30/19	11/1/19 20:51	IMR
Surrogates		% Reco	very	Recovery Limit	s	Flag/Qual				
Nitrobenzene-d5		72.6		30-130					11/1/19 20:51	
Nitrobenzene-d5		73.1		30-130					11/4/19 10:34	
2-Fluorobiphenyl		47.7		30-130					11/1/19 20:51	
2-Fluorobiphenyl		53.5		30-130					11/4/19 10:34	
p-Terphenyl-d14		54.6		30-130					11/1/19 20:51	

30-130

49.6

11/4/19 10:34

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19J1775-01 [TW-1]	B244975	1	5.00	11/04/19	
Prep Method: SW-846 3510C-SW-846 8270	١F				
rrep Method: 5 w-640 5510C-5 w-640 6270	JE.				
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19J1775-01 [TW-1]	B244837	960	1.00	10/30/19	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244975 - SW-846 5030B	roour	Linit	50	20101	-cosurt					
Blank (B244975-BLK1)				Prenared &	Analyzed: 11	/04/19				
Acetone	ND	50	μg/L	riepaieu &	Allalyzeu. 11	/04/19				
Acrylonitrile	ND ND	5.0	μg/L μg/L							
ert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L							V-05
Benzene	ND	1.0	μg/L							¥-05
Bromobenzene	ND	1.0	μg/L							
romochloromethane	ND	1.0	μg/L							
romodichloromethane	ND	0.50	μg/L							
romoform	ND	1.0	μg/L							
romomethane	ND	2.0	μg/L							
Butanone (MEK)	ND	20	μg/L							
rt-Butyl Alcohol (TBA)	ND	20	μg/L							
Butylbenzene	ND	1.0	μg/L							
cc-Butylbenzene	ND	1.0	μg/L							
rt-Butylbenzene	ND	1.0	μg/L							
rt-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L							
arbon Disulfide	ND	5.0	μg/L							
arbon Tetrachloride	ND	1.0	μg/L							
hlorobenzene	ND	1.0	μg/L							
hlorodibromomethane	ND	0.50	μg/L							
hloroethane	ND	2.0	μg/L							
hloroform	ND	2.0	μg/L							
hloromethane	ND	2.0	μg/L							
Chlorotoluene	ND	1.0	μg/L							
Chlorotoluene	ND	1.0	μg/L							
2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L							
2-Dibromoethane (EDB)	ND	0.50	μg/L							
ibromomethane	ND	1.0	μg/L							
2-Dichlorobenzene	ND	1.0	μg/L							
3-Dichlorobenzene	ND	1.0	μg/L							
,4-Dichlorobenzene	ND	1.0	μg/L							
ans-1,4-Dichloro-2-butene	ND	2.0	μg/L							
ichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
1-Dichloroethane	ND	1.0	$\mu g/L$							
2-Dichloroethane	ND	1.0	$\mu g/L$							
1-Dichloroethylene	ND	1.0	$\mu g/L$							
is-1,2-Dichloroethylene	ND	1.0	$\mu g/L$							
ans-1,2-Dichloroethylene	ND	1.0	μg/L							
2-Dichloropropane	ND	1.0	μg/L							
3-Dichloropropane	ND	0.50	μg/L							
2-Dichloropropane	ND	1.0	μg/L							
1-Dichloropropene	ND	2.0	μg/L							
s-1,3-Dichloropropene	ND	0.50	μg/L							
ans-1,3-Dichloropropene	ND	0.50	μg/L							
iethyl Ether	ND	2.0	μg/L							
iisopropyl Ether (DIPE)	ND	0.50	μg/L							
4-Dioxane	ND	50	μg/L							
hylbenzene	ND	1.0	μg/L							
exachlorobutadiene	ND	0.60	μg/L							
Hexanone (MBK)	ND	10	μg/L							
opropylbenzene (Cumene)	ND	1.0	μg/L							
Isopropyltoluene (p-Cymene)	ND	1.0	μg/L							
lethyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L							

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244975 - SW-846 5030B										
Blank (B244975-BLK1)				Prepared & A	Analyzed: 11/	/04/19				
1ethylene Chloride	ND	5.0	μg/L							
-Methyl-2-pentanone (MIBK)	ND	10	μg/L							
aphthalene	ND	2.0	μg/L							
Propylbenzene	ND	1.0	μg/L							
tyrene	ND	1.0	μg/L							
1,1,2-Tetrachloroethane	ND	1.0	μg/L							
1,2,2-Tetrachloroethane	ND	0.50	μg/L							
etrachloroethylene	ND	1.0	μg/L							
trahydrofuran	ND	10	μg/L							
bluene	ND	1.0	μg/L							
2,3-Trichlorobenzene	ND	5.0	μg/L							
2,4-Trichlorobenzene	ND	1.0	μg/L							
3,5-Trichlorobenzene	ND	1.0	μg/L							
1,1-Trichloroethane	ND	1.0	μg/L							
1,2-Trichloroethane	ND	1.0	μg/L							
richloroethylene	ND	1.0	μg/L							
ichlorofluoromethane (Freon 11)	ND	2.0	μg/L							
2,3-Trichloropropane	ND	2.0	μg/L							
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND ND	1.0	μg/L μg/L							
3)	ND	1.0	μg/L							
2,4-Trimethylbenzene	ND	1.0	μg/L							
3,5-Trimethylbenzene	ND	1.0	μg/L							
nyl Chloride	ND	2.0	μg/L							
+p Xylene	ND	2.0	μg/L							
Xylene	ND	1.0	μg/L							
urrogate: 1,2-Dichloroethane-d4	25.8		μg/L	25.0		103	70-130			
irrogate: Toluene-d8	25.2		μg/L	25.0		101	70-130			
irrogate: 4-Bromofluorobenzene	24.3		μg/L	25.0		97.4	70-130			
CS (B244975-BS1)			10		Analyzed: 11/					
cetone	140	50	μg/L	100	Anaryzea. 11/	140	70-160			V-20
crylonitrile	140	5.0	μg/L	10.0		123	70-130			V-20
rt-Amyl Methyl Ether (TAME)	7.90	0.50	μg/L	10.0		79.0	70-130			V-05
enzene		1.0	μg/L	10.0		96.0				v- 05
romobenzene	9.60	1.0	μg/L μg/L			96.0 110	70-130 70-130			
romochloromethane	11.0	1.0		10.0						
romotichloromethane	11.3	0.50	μg/L μg/L	10.0		113	70-130			
romoform	11.2			10.0		112	70-130			
	10.0	1.0	μg/L ug/I	10.0		100	70-130			
romomethane	5.87	2.0	μg/L	10.0		58.7	40-160			
Butanone (MEK)	114	20	μg/L ug/I	100		114	40-160			
rt-Butyl Alcohol (TBA)	96.7	20	μg/L	100		96.7	40-160			
Butylbenzene	11.6	1.0	μg/L	10.0		116	70-130			
c-Butylbenzene	11.3	1.0	μg/L	10.0		113	70-130			
t-Butylbenzene	10.8	1.0	μg/L	10.0		108	70-130			
rt-Butyl Ethyl Ether (TBEE)	7.42	0.50	μg/L	10.0		74.2	70-130			
arbon Disulfide	11.2	5.0	μg/L	10.0		112	70-130			
rbon Tetrachloride	11.2	1.0	μg/L	10.0		112	70-130			
hlorobenzene	10.6	1.0	μg/L	10.0		106	70-130			
nlorodibromomethane	10.8	0.50	μg/L	10.0		108	70-130			
nloroethane	9.65	2.0	μg/L	10.0		96.5	70-130			
hloroform	9.93	2.0	μg/L	10.0		99.3	70-130			
hloromethane	7.98	2.0	μg/L	10.0		79.8	40-160			
Chlorotoluene	10.4	1.0	μg/L	10.0		104	70-130			
									P	age 12 of

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B244975 - SW-846 5030B											
LCS (B244975-BS1)				Prepared &	Analyzed: 11	/04/19					
4-Chlorotoluene	11.3	1.0	μg/L	10.0		113	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	10.4	5.0	μg/L	10.0		104	70-130				
1,2-Dibromoethane (EDB)	10.7	0.50	μg/L	10.0		107	70-130				
Dibromomethane	10.5	1.0	μg/L	10.0		105	70-130				
1,2-Dichlorobenzene	10.8	1.0	μg/L	10.0		108	70-130				
1,3-Dichlorobenzene	11.0	1.0	μg/L	10.0		110	70-130				
1,4-Dichlorobenzene	10.7	1.0	μg/L	10.0		107	70-130				
trans-1,4-Dichloro-2-butene	13.2	2.0	μg/L	10.0		132 *	70-130			L-02, V-20	
Dichlorodifluoromethane (Freon 12)	6.19	2.0	μg/L	10.0		61.9	40-160				•
1,1-Dichloroethane	10.6	1.0	μg/L	10.0		106	70-130				
1,2-Dichloroethane	11.7	1.0	μg/L	10.0		117	70-130				
1,1-Dichloroethylene	11.7	1.0	μg/L	10.0		117	70-130				
cis-1,2-Dichloroethylene	10.8	1.0	μg/L	10.0		108	70-130				
trans-1,2-Dichloroethylene	11.4	1.0	μg/L	10.0		114	70-130				
1,2-Dichloropropane	10.9	1.0	μg/L	10.0		109	70-130				
1,3-Dichloropropane	10.5	0.50	μg/L	10.0		105	70-130				
2,2-Dichloropropane	11.8	1.0	μg/L	10.0		118	40-130				1
1,1-Dichloropropene	10.5	2.0	μg/L	10.0		105	70-130				
cis-1,3-Dichloropropene	11.3	0.50	μg/L	10.0		113	70-130				
trans-1,3-Dichloropropene	10.9	0.50	μg/L	10.0		109	70-130				
Diethyl Ether	10.8	2.0	μg/L	10.0		108	70-130				
Diisopropyl Ether (DIPE)	12.1	0.50	μg/L	10.0		121	70-130				
1,4-Dioxane	116	50	μg/L	100		116	40-130				i
Ethylbenzene	10.7	1.0	μg/L	10.0		107	70-130				
Hexachlorobutadiene	11.8	0.60	μg/L	10.0		118	70-130				
2-Hexanone (MBK)	132	10	μg/L	100		132	70-160			V-20	1
Isopropylbenzene (Cumene)	11.0	1.0	μg/L	10.0		110	70-130				
p-Isopropyltoluene (p-Cymene)	10.5	1.0	μg/L	10.0		105	70-130				
Methyl tert-Butyl Ether (MTBE)	9.41	1.0	μg/L	10.0		94.1	70-130				
Methylene Chloride	11.6	5.0	μg/L	10.0		116	70-130				
4-Methyl-2-pentanone (MIBK)	137	10	μg/L	100		137	70-160			V-20	i
Naphthalene	9.20	2.0	μg/L	10.0		92.0	40-130				Ť
n-Propylbenzene	11.3	1.0	μg/L	10.0		113	70-130				
Styrene	9.10	1.0	μg/L	10.0		91.0	70-130				
1,1,1,2-Tetrachloroethane	11.2	1.0	μg/L	10.0		112	70-130				
1,1,2,2-Tetrachloroethane	11.4	0.50	μg/L	10.0		114	70-130				
Tetrachloroethylene	11.4	1.0	μg/L	10.0		114	70-130				
Tetrahydrofuran	10.3	10	μg/L	10.0		103	70-130				
Toluene	10.7	1.0	μg/L	10.0		107	70-130				
1,2,3-Trichlorobenzene	8.52	5.0	μg/L	10.0		85.2	70-130				
1,2,4-Trichlorobenzene	10.4	1.0	μg/L	10.0		104	70-130				
1,3,5-Trichlorobenzene	10.5	1.0	μg/L	10.0		105	70-130				
1,1,1-Trichloroethane	11.1	1.0	μg/L	10.0		111	70-130				
1,1,2-Trichloroethane	10.6	1.0	μg/L	10.0		106	70-130				
Trichloroethylene	10.7	1.0	μg/L	10.0		107	70-130				
Trichlorofluoromethane (Freon 11)	10.0	2.0	μg/L	10.0		100	70-130				
1,2,3-Trichloropropane	11.1	2.0	μg/L	10.0		111	70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.9	1.0	μg/L	10.0		109	70-130				
1,2,4-Trimethylbenzene	9.65	1.0	μg/L	10.0		96.5	70-130				
1,3,5-Trimethylbenzene	10.7	1.0	μg/L	10.0		107	70-130				
Vinyl Chloride	26.4	2.0	μg/L	10.0		264 *	40-160			L-02, V-20	İ

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B244975 - SW-846 5030B											
LCS (B244975-BS1)				Prepared &	Analyzed: 11	/04/19					
m+p Xylene	21.6	2.0	μg/L	20.0		108	70-130				
o-Xylene	11.1	1.0	μg/L	10.0		111	70-130				
Surrogate: 1,2-Dichloroethane-d4	26.2		μg/L	25.0		105	70-130				
Surrogate: Toluene-d8	24.7		μg/L	25.0		98.8	70-130				
Surrogate: 4-Bromofluorobenzene	25.5		$\mu g/L$	25.0		102	70-130				
LCS Dup (B244975-BSD1)				Prepared &	Analyzed: 11	/04/19					
Acetone	145	50	μg/L	100		145	70-160	3.73	25	V-20	†
Acrylonitrile	12.0	5.0	μg/L	10.0		120	70-130	3.21	25		
tert-Amyl Methyl Ether (TAME)	7.77	0.50	μg/L	10.0		77.7	70-130	1.66	25	V-05	
Benzene	9.68	1.0	μg/L	10.0		96.8	70-130	0.830	25		
Bromobenzene	10.6	1.0	μg/L	10.0		106	70-130	3.90	25		
Bromochloromethane	11.1	1.0	μg/L	10.0		111	70-130	1.43	25		
Bromodichloromethane	10.6	0.50	μg/L	10.0		106	70-130	4.86	25		
Bromoform	10.3	1.0	μg/L	10.0		103	70-130	2.46	25		
Bromomethane	6.68	2.0	μg/L	10.0		66.8	40-160	12.9	25		Ť
2-Butanone (MEK)	117	20	μg/L	100		117	40-160	2.32	25		†
tert-Butyl Alcohol (TBA)	90.2	20	μg/L	100		90.2	40-160	7.03	25		Ť
n-Butylbenzene	11.6	1.0	μg/L	10.0		116	70-130	0.172	25		
sec-Butylbenzene	11.4	1.0	μg/L	10.0		114	70-130	0.440	25		
tert-Butylbenzene	10.9	1.0	μg/L	10.0		109	70-130	0.368	25		
tert-Butyl Ethyl Ether (TBEE)	7.38	0.50	μg/L	10.0		73.8	70-130	0.541	25		
Carbon Disulfide	10.4	5.0	μg/L	10.0		104	70-130	6.66	25		
Carbon Tetrachloride	11.1	1.0	μg/L	10.0		111	70-130	0.809	25		
Chlorobenzene	10.1	1.0	μg/L	10.0		101	70-130	5.02	25		
Chlorodibromomethane	10.5	0.50	μg/L α	10.0		105	70-130	2.73	25		
Chloroethane	9.87	2.0	μg/L α	10.0		98.7	70-130	2.25	25		
Chloroform	9.64	2.0	μg/L α	10.0		96.4	70-130	2.96	25		
Chloromethane	7.89	2.0	μg/L π	10.0		78.9	40-160	1.13	25		Ť
2-Chlorotoluene	10.2	1.0	μg/L	10.0		102	70-130	1.17	25		
4-Chlorotoluene	10.8	1.0	μg/L ug/I	10.0		108	70-130	4.70	25		
1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB)	10.5	5.0 0.50	μg/L ug/I	10.0		105	70-130	0.573	25 25		
Dibromomethane	10.6	1.0	μg/L μg/L	10.0 10.0		106 107	70-130 70-130	1.31 1.60	25 25		
1,2-Dichlorobenzene	10.7	1.0	μg/L μg/L	10.0		107	70-130	2.54	23 25		
1,3-Dichlorobenzene	10.5 11.1	1.0	μg/L	10.0		105	70-130	0.542	25 25		
1,4-Dichlorobenzene	10.5	1.0	μg/L μg/L	10.0		105	70-130	1.60	25 25		
trans-1,4-Dichloro-2-butene	10.5	2.0	μg/L μg/L	10.0		105 134 *	70-130	1.13	25	L-02, V-20	
Dichlorodifluoromethane (Freon 12)	6.16	2.0	μg/L	10.0		61.6	40-160	0.486	25	L-02, V-20	†
1,1-Dichloroethane	10.6	1.0	μg/L	10.0		106	70-130	0.00	25		
1,2-Dichloroethane	10.0	1.0	μg/L	10.0		117	70-130	0.0856	25		
1,1-Dichloroethylene	11.7	1.0	μg/L	10.0		117	70-130	0.428	25		
cis-1,2-Dichloroethylene	10.6	1.0	μg/L	10.0		106	70-130	1.68	25		
trans-1,2-Dichloroethylene	11.2	1.0	μg/L	10.0		112	70-130	1.95	25		
1,2-Dichloropropane	11.2	1.0	μg/L	10.0		110	70-130	0.183	25		
1,3-Dichloropropane	10.7	0.50	μg/L	10.0		107	70-130	1.70	25		
2,2-Dichloropropane	11.3	1.0	μg/L	10.0		113	40-130	4.17	25		Ť
1,1-Dichloropropene	10.4	2.0	μg/L	10.0		104	70-130	1.24	25		1
cis-1,3-Dichloropropene	10.1	0.50	μg/L	10.0		108	70-130	4.34	25		
trans-1,3-Dichloropropene	11.0	0.50	μg/L	10.0		110	70-130	0.915	25		
Diethyl Ether	10.7	2.0	μg/L	10.0		107	70-130	1.39	25		
Diisopropyl Ether (DIPE)	11.6	0.50	μg/L	10.0		116	70-130	3.96	25		

Page 14 of 24

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B244975 - SW-846 5030B											_
LCS Dup (B244975-BSD1)				Prepared & A	Analyzed: 11	/04/19					
1,4-Dioxane	122	50	μg/L	100		122	40-130	4.65	50		† :
Ethylbenzene	10.7	1.0	μg/L	10.0		107	70-130	0.561	25		
Hexachlorobutadiene	11.8	0.60	μg/L	10.0		118	70-130	0.508	25		
2-Hexanone (MBK)	132	10	μg/L	100		132	70-160	0.137	25	V-20	Ť
Isopropylbenzene (Cumene)	10.8	1.0	μg/L	10.0		108	70-130	2.57	25		
p-Isopropyltoluene (p-Cymene)	10.6	1.0	μg/L	10.0		106	70-130	0.190	25		
Methyl tert-Butyl Ether (MTBE)	9.24	1.0	μg/L	10.0		92.4	70-130	1.82	25		
Methylene Chloride	11.1	5.0	μg/L	10.0		111	70-130	4.22	25		
4-Methyl-2-pentanone (MIBK)	140	10	μg/L	100		140	70-160	2.14	25	V-20	Ť
Naphthalene	9.12	2.0	μg/L	10.0		91.2	40-130	0.873	25		†
n-Propylbenzene	10.8	1.0	μg/L	10.0		108	70-130	4.24	25		
Styrene	9.13	1.0	μg/L	10.0		91.3	70-130	0.329	25		
1,1,1,2-Tetrachloroethane	11.2	1.0	μg/L	10.0		112	70-130	0.0890	25		
1,1,2,2-Tetrachloroethane	11.2	0.50	μg/L	10.0		112	70-130	1.41	25		
Tetrachloroethylene	10.9	1.0	μg/L	10.0		109	70-130	3.94	25		
Tetrahydrofuran	10.7	10	μg/L	10.0		107	70-130	4.28	25		
Toluene	10.5	1.0	μg/L	10.0		105	70-130	2.45	25		
1,2,3-Trichlorobenzene	8.47	5.0	μg/L	10.0		84.7	70-130	0.589	25		
1,2,4-Trichlorobenzene	10.1	1.0	μg/L	10.0		101	70-130	3.42	25		
1,3,5-Trichlorobenzene	10.5	1.0	μg/L	10.0		105	70-130	0.0954	25		
1,1,1-Trichloroethane	11.0	1.0	μg/L	10.0		110	70-130	1.63	25		
1,1,2-Trichloroethane	10.6	1.0	μg/L	10.0		106	70-130	0.661	25		
Trichloroethylene	10.3	1.0	μg/L	10.0		103	70-130	4.29	25		
Trichlorofluoromethane (Freon 11)	10.0	2.0	μg/L	10.0		100	70-130	0.399	25		
1,2,3-Trichloropropane	11.3	2.0	μg/L	10.0		113	70-130	1.16	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.7	1.0	μg/L	10.0		107	70-130	1.86	25		
1,2,4-Trimethylbenzene	9.50	1.0	μg/L	10.0		95.0	70-130	1.57	25		
1,3,5-Trimethylbenzene	10.4	1.0	μg/L	10.0		104	70-130	2.93	25		
Vinyl Chloride	25.0	2.0	μg/L	10.0		250 *	40-160	5.64	25	L-02, V-20	t
m+p Xylene	23.0	2.0	μg/L	20.0		107	70-130	1.44	25	, . 20	'
o-Xylene	10.9	1.0	μg/L	10.0		109	70-130	1.82	25		
Surrogate: 1,2-Dichloroethane-d4	25.2		μg/L	25.0		101	70-130				
Surrogate: Toluene-d8	25.1		μg/L	25.0		100	70-130				
Surrogate: 4-Bromofluorobenzene	25.1		μg/L	25.0		100	70-130				

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244837 - SW-846 3510C										
Blank (B244837-BLK1)				Prepared: 10)/30/19 Anal	yzed: 11/01/1	9			
Acenaphthene (SIM)	ND	0.30	μg/L							
Acenaphthylene (SIM)	ND	0.20	μg/L							
Anthracene (SIM)	ND	0.20	μg/L							
Benzo(a)anthracene (SIM)	ND	0.050	μg/L							
Benzo(a)pyrene (SIM)	ND	0.10	μg/L							
Benzo(b)fluoranthene (SIM)	ND	0.050	μg/L							
Benzo(g,h,i)perylene (SIM)	ND	0.50	μg/L							
Benzo(k)fluoranthene (SIM)	ND	0.20	μg/L							
Chrysene (SIM)	ND	0.20	μg/L							
Dibenz(a,h)anthracene (SIM)	ND	0.10	μg/L							
Fluoranthene (SIM)	ND	0.50	μg/L							
Fluorene (SIM)	ND	1.0	μg/L							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.10	μg/L							
2-Methylnaphthalene (SIM)	ND	1.0	μg/L							
Japhthalene (SIM)	ND	1.0	μg/L							
Phenanthrene (SIM)	ND	0.050	μg/L							
Pyrene (SIM)	ND	1.0	μg/L							
Surrogate: Nitrobenzene-d5	83.8		μg/L	100		83.8	30-130			
Surrogate: 2-Fluorobiphenyl	54.8		μg/L	100		54.8	30-130			
Surrogate: p-Terphenyl-d14	73.4		μg/L	100		73.4	30-130			
LCS (B244837-BS1)				Prepared: 10)/30/19 Anal	zed: 11/01/1	9			
Acenaphthene (SIM)	37.1	6.0	μg/L	50.0		74.1	40-140			
Acenaphthylene (SIM)	38.1	4.0	μg/L	50.0		76.2	40-140			
Anthracene (SIM)	41.5	4.0	μg/L	50.0		83.1	40-140			
Benzo(a)anthracene (SIM)	42.4	1.0	μg/L	50.0		84.9	40-140			
Benzo(a)pyrene (SIM)	40.2	2.0	μg/L	50.0		80.4	40-140			
Benzo(b)fluoranthene (SIM)	44.2	1.0	μg/L	50.0		88.4	40-140			
Benzo(g,h,i)perylene (SIM)	41.9	10	μg/L	50.0		83.9	40-140			
Benzo(k)fluoranthene (SIM)	43.5	4.0	μg/L	50.0		87.0	40-140			
Chrysene (SIM)	32.8	4.0	μg/L	50.0		65.5	40-140			
Dibenz(a,h)anthracene (SIM)	46.1	2.0	μg/L	50.0		92.1	40-140			
Fluoranthene (SIM)	40.0	10	μg/L	50.0		80.0	40-140			
Fluorene (SIM)	38.6	20	μg/L	50.0		77.3	40-140			
ndeno(1,2,3-cd)pyrene (SIM)	52.7	2.0	μg/L	50.0		105	40-140			
2-Methylnaphthalene (SIM)	37.6	20	μg/L	50.0		75.2	40-140			
Naphthalene (SIM)	34.8	20	μg/L	50.0		69.6	40-140			
Phenanthrene (SIM)	38.1	1.0	μg/L	50.0		76.2	40-140			
Pyrene (SIM)	35.8	20	μg/L	50.0		71.6	40-140			
Surrogate: Nitrobenzene-d5	84.0		μg/L	100		84.0	30-130			
Surrogate: 2-Fluorobiphenyl	58.3		μg/L	100		58.3	30-130			
Surrogate: p-Terphenyl-d14	56.1		μg/L	100		56.1	30-130			

‡

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244837 - SW-846 3510C										
LCS Dup (B244837-BSD1)				Prepared: 10)/30/19 Anal	yzed: 11/01/1	19			
Acenaphthene (SIM)	36.6	6.0	μg/L	50.0		73.3	40-140	1.14	20	
Acenaphthylene (SIM)	37.7	4.0	μg/L	50.0		75.4	40-140	1.16	20	
Anthracene (SIM)	40.8	4.0	μg/L	50.0		81.6	40-140	1.85	20	
Benzo(a)anthracene (SIM)	41.9	1.0	μg/L	50.0		83.7	40-140	1.38	20	
Benzo(a)pyrene (SIM)	38.8	2.0	μg/L	50.0		77.5	40-140	3.65	20	
Benzo(b)fluoranthene (SIM)	43.3	1.0	μg/L	50.0		86.5	40-140	2.15	20	
Benzo(g,h,i)perylene (SIM)	41.4	10	μg/L	50.0		82.8	40-140	1.34	20	
Benzo(k)fluoranthene (SIM)	43.9	4.0	μg/L	50.0		87.9	40-140	1.05	20	
Chrysene (SIM)	32.3	4.0	μg/L	50.0		64.5	40-140	1.54	20	
Dibenz(a,h)anthracene (SIM)	45.7	2.0	μg/L	50.0		91.3	40-140	0.872	20	
Fluoranthene (SIM)	38.8	10	μg/L	50.0		77.6	40-140	3.04	20	
Fluorene (SIM)	38.3	20	μg/L	50.0		76.6	40-140	0.884	20	
Indeno(1,2,3-cd)pyrene (SIM)	51.0	2.0	μg/L	50.0		102	40-140	3.28	20	
2-Methylnaphthalene (SIM)	37.3	20	μg/L	50.0		74.6	40-140	0.854	20	
Naphthalene (SIM)	34.4	20	μg/L	50.0		68.8	40-140	1.21	20	
Phenanthrene (SIM)	37.5	1.0	μg/L	50.0		74.9	40-140	1.69	20	
Pyrene (SIM)	34.9	20	$\mu g/L$	50.0		69.8	40-140	2.55	20	
Surrogate: Nitrobenzene-d5	78.5		μg/L	100		78.5	30-130			
Surrogate: 2-Fluorobiphenyl	55.7		μg/L	100		55.7	30-130			
Surrogate: p-Terphenyl-d14	58.0		μg/L	100		58.0	30-130			

FLAG/QUALIFIER SUMMARY

- * QC result is outside of established limits.
- † Wide recovery limits established for difficult compound.
- ‡ Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

- J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
- L-02 Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.
- RL-11 Elevated reporting limit due to high concentration of target compounds.
- V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
- V-20 Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260D in Water		
Acetone	NC	
Acrylonitrile	NC	
tert-Amyl Methyl Ether (TAME)	NC	
Benzene	NC	
Bromobenzene	NC	
Bromochloromethane	NC	
Bromodichloromethane	NC	
Bromoform	NC	
Bromomethane	NC	
2-Butanone (MEK)	NC	
tert-Butyl Alcohol (TBA)	NC	
n-Butylbenzene	NC	
sec-Butylbenzene	NC	
tert-Butylbenzene	NC	
tert-Butyl Ethyl Ether (TBEE)	NC	
Carbon Disulfide	NC	
Carbon Tetrachloride	NC	
Chlorobenzene	NC	
Chlorodibromomethane	NC	
Chloroethane	NC	
Chloroform	NC	
Chloromethane	NC	
2-Chlorotoluene	NC	
4-Chlorotoluene	NC	
1,2-Dibromo-3-chloropropane (DBCP)	NC	
1,2-Dibromoethane (EDB)	NC	
Dibromomethane	NC	
1,2-Dichlorobenzene	NC	
1,3-Dichlorobenzene	NC	
1,4-Dichlorobenzene	NC	
trans-1,4-Dichloro-2-butene	NC	
Dichlorodifluoromethane (Freon 12)	NC	
1,1-Dichloroethane	NC	
1,2-Dichloroethane	NC	
1,1-Dichloroethylene	NC	
cis-1,2-Dichloroethylene	NC	
trans-1,2-Dichloroethylene	NC	
1,2-Dichloropropane	NC	
1,3-Dichloropropane	NC	
2,2-Dichloropropane	NC	
1,1-Dichloropropene	NC	
cis-1,3-Dichloropropene	NC	
trans-1,3-Dichloropropene	NC	
Diethyl Ether	NC	
Diisopropyl Ether (DIPE)	NC	
1,4-Dioxane	NC	
Ethylbenzene	NC	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CERTIFICATIONS

Certified Analyses included in this Report

certifica rinaryses included in this report	
Analyte	Certifications
SW-846 8260D in Water	
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2020
СТ	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

Table Table <thtable< th=""> <thtable< th=""> <thta< th=""><th>IIIII COn-test</th><th>1011++S</th><th><u>ettan of cus</u></th><th>http://www.contestiabs.com (AIAIN.0)F_CLISTODY_RFCORD_(North_Carolina)</th><th><u>bs.com</u> Vorth Carolina)</th><th>Doc # 379</th><th>Doc # 379 Rev 1_03242017 39 5</th><th>t2017 39 Spruce Street</th><th>Street</th><th>-</th><th></th><th></th></thta<></thtable<></thtable<>	IIIII COn-test	1011++S	<u>ettan of cus</u>	http://www.contestiabs.com (AIAIN.0)F_CLISTODY_RFCORD_(North_Carolina)	<u>bs.com</u> Vorth Carolina)	Doc # 379	Doc # 379 Rev 1_03242017 39 5	t2017 39 Spruce Street	Street	-		
Tentil inference (105, cm) Totals	ANALYTICAL LARORATORY	Prone: 413-525-232 Fax: 413-525-6405	Requi	n concount pesse	ol time			East Long	meadow, MA 0		Page of	
Reference Due Data Due		Email: info@contestlabs.com									# of Containers	
The Terch 780 Zabri 4 Day Day <thday< th=""> <thday< th=""> Day</thday<></thday<>	SAAS		Due Date:								² Preservation Code	—
Mill (M, M) Total Total Total Total MM-VSS REQUESTED P M M Anti- T-Law Dom: Pf Exx1 Dom: Pf Exx1 Anti- T-Law Dim<	3301 Sprike	لمنغلمة	Rus	ih Approval Reg	Jired						³ Container Code	1
2.20% 2.20% 4.0% 4.0% Ant: Hell Format: Part Hell Format: Part Hell Format: Part Hell Ant: Hell Format: Part Hell Format: Part Hell Format: Part Hell Ant: Hell Format: Part Hell Format: Part Hell Format: Part Hell Ant: Hell Format: Part Hell Format: Part Hell Format: Part Hell Ant: Hell Format: Part Hell Format: Part Hell Format: Part Hell Ant: Hell Format: Part Hell Format: Part Hell Format: Part Hell Ant: Hell Format: Part Hell Format: Part Hell Format: Part Hell Ant: Hell Format: Part Hell Format: Part Hell Format: Part Hell Ant: Hell Format: Part Hell Format: Part Hell Format: Part Hell Ant: Hell Format: Part Hell Format: Part Hell Format: Part Hell Ant: Hell Format: Part Hell Format: Part Hell Format: Part Hell Ant: Hell Format: Part Hell Format: Part Hell Format: Part Hell Ant: Hell Format: Part Hell Format: Part Hell Format: Part Hell Ant: Hell Format: Part Hell <	વૃંહ વનુ ગુ		1-Day] 3-Day			ANA	YSIS REQ	UESTED		Dissolved Wetals Samples	84878
Line Contract. File Contract. File Contract. File Contract. File Contract. File	TUCON m	-5878 DUNN BUCh] 4-Day							Field Filtered	10,000
And C - (2-1da) Homat: Def Exc. And C - (2-1da) Other Constrained Constrained And C - (2-1da) Constrained Constrained Constrained And (1-1da) Constra	B			Data Delivery		, 					Lab to Filter	(14) (14)
Other Other Other Other Other Other Ref The construction of the c		1-161				2						Second
Other Current of the totate hay flaquents: Current of the totate hay flaquents: Current of the totate hay flaquents: Current of the totate has have to the totate have totate have to the totate have totate have to the totate have h	t Manager: Tome	THOUSE AT	Other:			28					səjdineş ənendsandanın:O	1966-1979
Miltor T Hanse, M Interline Tirthene, e.M. Sayinth Jack lot. Tirthene, e.M. Sayinth Jack lot. Interline, e.M. Sayinth Jack lot. Interline, e.M. Sayinth Jack lot. Interline, e.M. Jack lot. H Interline, e.M. Jack lot. Jack lot. Interetail Jatk lot. Jack lot.	st Quote Name/Number:		CLP Like Data	Pkg Required:		ہ ج					Field Filtered	<u> </u>
The Hardweight H		Honered	Email To:			9 78					Lab to Filter	(24) X
Construction Description Description Description Description Description Description Description Description 1 T.UT Idi/36/01 Idi/3	15	- Kina	Fax To #:									
TU-1 Luterine Laterine Costs Costs <thcosts< th=""> Costs Costs</thcosts<>		ent Samole (0 / Description	Ending								1 Matrix Codoc.	100
TU-T leitzikal (rt.coc 66u/ H 1 1 1 1 </td <td>Work Order#</td> <td></td> <td>DaterTime</td> <td></td> <td></td> <td>, ,</td> <td></td> <td></td> <td></td> <td></td> <td>GW = Ground Water</td> <td>202</td>	Work Order#		DaterTime			, ,					GW = Ground Water	202
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td></td> <td>WW = Waste Water</td> <td></td>											WW = Waste Water	
Image: state of the state o					 						A = Air	segme.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		×									S = Soil SL = Sludge	5.1.1
0 Date/Time: 0 Date/Time: 0											SOL = Solid	s je
e Image: Section and the state of the st					_						u = Uuner (prease define)	10.1
Image: Second control of the second control of th												
e) Date/Time: Prease use the following codes to indicate possible sample concentration e) Date/Time: Prease use the following codes to indicate possible sample concentration e) Date/Time: Prease use the following codes to indicate possible sample concentration e) Date/Time: Program Information c) Date/Time: Program Information bate/Time: Program Information Program Information c) Date/Time: Program Information c) <td></td> <td>² Preservation Codes:</td> <td></td>											² Preservation Codes:	
Please use the following codes to indicate possible sample concentration within the Conc Code oclum above: Program Information Please use the following codes to indicate possible sample concentration Program Information Please use the following codes to indicate possible sample concentration Program Information Please use the following codes to indicate possible sample concentration Program Information Please use the following codes to indicate possible sample concentration Program Information Please use the following codes to indicate possible sample concentration Program Information Please use the following codes to indicate possible sample concentration Program Information Please use the following codes to indicate possible sample concentration Program Information Please use the following codes to indicate possible sample concentration Program Information Please use the following codes to indicate possible sample concentration Program Information Please use the following codes to indicate possible sample concentration Program Information Plate/Time: Program Information Program Information											H = HCL	
0 Please use the following codes to indicate possible sample concentration within the Cone Code column above: nithin the Cone Code column above: nithies above: n											M = Methanol	
Program Program Information Program Program Information Program Program Information Program Program Information Program Information State Lead Profile Information State Lead Profile Information State Lead Profile Information State Lead Date/Time: Project Entry Other: Date/Time: Onter: Other:											N = Nitric Acid S = Sulfuric Acid	
e) Please use the following codes to indicate possible sample concentration within the Conc Code column above: h - High; M - Medium: L - Low; C - Clean: U - Unknown within the Conc Code column above: h - High; M - Medium: L - Low; C - Clean: U - Unknown apple/Time: e) Date/Time: A L[J][V][V] A Bate/Time: A L[J][V][V] Bate/Time: L Bate/Time: Date/Time: Bate/Time: L Bate/Time: L Bate/Time: L Bate/Time: Date/Time: Program Information Siste Lead Bate/Time: Date/Time: Date/Time: Date/Time: Date/Time: Program Information Bate/Time: Date/Time: Date/Time: Program Information Bate/Time: Date/Time: Date/Time: Date/Time:											B = Sodium Bisulfate V = Codium Hudrooldo	11 M N
Please use the following codes to indicate possible sample concentration within the Conc Code column above: H - High; M - Medium; L - Low; C - Clean; U - Uhknown Program Information Date/Time: Program Information INFXTrust Fund Date/Time: No surf Careforn Intercenterates Program Information Date/Time: Program Information INFXTrust Fund Date/Time: Cup/C Date/Time: Cup/C Date/Time: Cup/C Date/Time: Onter Date/Time: Project Entity											T = Sodium	<u>.</u>
Please use the following codes to indicate possible sample concentration within the Conc Code column above: H - High; M - Medium; L - Low; C - Clean; U - Uhknown Month Carolina Iberection Imit Requirements H - High; M - Medium; L - Low; C - Clean; U - Uhknown M - A2C/19 M - A2C/19 M - Month Carolina Iberection Imit Requirements M - Month Carolina Iberection M - Monthed Iberection M - Month Carolina Iberection M - Monthed Ibe	nts:									-	0 = Other (please	<u>-</u>
e) Date/Time: H - High; M - Medium; L - Low; C - Clean; U - Unknown 2) Ul/3%/19/15% 21 3) Date/Time: No rst carolina besention time Requirements 2) Ul/2%/19/15% 21 3) Date/Time: Low; C - Clean; U - Unknown 3) Date/Time: No rst carolina besention time Requirements 3) Date/Time: Componing to the requirements 3) Date/Time: Componing to the requirements 3) Date/Time: Componing to the requirements 4) Date/Time: Componing to the requirements 1) Date/Time: Other: 1) Date/Time: 1) Dat					Please use the	e following within	codes to it the Conc (dicate poss	ible sample cor 1 above:	ncentration	define)	N (
(e) Date/Time: No of the Constituent of the Automation 7.4 (u) (u) <th< td=""><td></td><td></td><td></td><td></td><td>Ξ́, Η</td><td>gh; M - Mec</td><td>dium; L - L</td><td>ow; C - Cle</td><td>ean; U - Unkno</td><td>um</td><td>³ Container Codes:</td><td></td></th<>					Ξ́, Η	gh; M - Mec	dium; L - L	ow; C - Cle	ean; U - Unkno	um	³ Container Codes:	
$ \begin{array}{ c c c c c } \hline	iished by (signature)	Date/Time;		Bestsearer himi	aReguirement		4	ogram I	nformatio	c	A = Amber Glass G = Glass	
Junction Mate/Time: Gwpc Sws Landfill REC e) Date/Time: Insurance Insurance Insurance Insurance e) Date/Time: Other: Insurance Insurance Insurance e) Date/Time: Other: Insurance Insurance Insurance footer Insurance Insurance Insurance Insurance footer Insurance Insurance Insurance Insurance footer Insurance Insurance Insurance Insurance	Zllon	9	🗌 2L		1	8		, ,		/Trust Fund	P = Plastic	d je s
e) total times integration e) bate/Times integration bate/Times integration bate/Times 0ther bate/Times 0ther bate/Times 0ther bate/Times 0ther bate/Times 0ther constraint integration bate/Times 0ther constraint integration bate/Times federal bate/Times federal constraint intra-LaP_LLC	(fure)		GWPC			28,028	SW I	Landfill		REC	V = Vial	5 N. 2 S
e) Date/Time: Other: Other Other: Oth	·	U U U Date/Time:	- SWSL	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				. Urphaned	Landtil		5 = Summa Canister T = Tedlar Bao	
Date/Time: Other e) Date/Time: Project Entity bate/Time: Project Entity Date/Time: Chromatogram Date/Time: Date/Time:			MSCC		NORTH CARO	IX T		a rean			0 = Other (please	en e
e) Date/Time: Project Entity Other O	ed by: (signature)	Date/Time:	(D'Unair:				NEL	AC MAR AR	ALAR, LLC AC	nedited		Iat
Date/Time: Federal Brownfield City School	uished by: (signature)		1.00		slitu			Othe	r Chromat	aran Miran	PCB ONLY Souther	ble of
	ed by: (signature)	Date/Time:	Federal City		ield				AIHA-LA	5777'd	Non Soxhlet	Conte

IMPORTANT! The wildfires are causing hazardous conditions in California. Learn More

411359783313 🖄

Delivered Tuesday 10/29/2019 at 9:06 am

©-----

DELIVERED Signed for by: B.BECCA

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

TO EAST LONGMEADOW, MA US

Shipment Facts

TRACKING NUMBER 411359783313

DELIVERED TO Shipping/Receiving

PACKAGING

Your Packaging

SHIP DATE (?) Mon 10/28/2019 SERVICE FedEx Priority Overnight

TOTAL PIECES

ACTUAL DELIVERY Tue 10/29/2019 9:06 am

 SPECIAL HANDLING SECTION
 STANDARD TRANSIT

 Deliver Weekday
 (?)

WEIGHT

34.8 lbs / 15.79 kgs

34.8 lbs / 15.79 kgs

TOTAL SHIPMENT WEIGHT

⑦ 10/29/2019 by 10:30 am

Travel History			Local Scan Time	\sim
Tuesday, 10/29/2019		the second dy so		
9:06 am		Delivered		
7:46 am	WINDSOR LOCKS, CT	On FedEx vehicle for delivery		
7:35 am	WINDSOR LOCKS, CT	At local FedEx facility		
6:23 am	EAST GRANBY, CT	At destination sort facility		

	onfirmed Sample Co Lab Staff Before Reli Imples				ANALY Doc# 2	YTICAL L		SC ® TORY
	e Receipt Checklist						ny False	
Client S+	tatement will be broເ ທີ£	ight to the a	ttention of	the Client	- State Tru	e or False		
Received By	140		Date	10/20	10	Time	906	
How were the sam	ples In Cooler	T	No Cooler	T	On Ice	T	No Ice	
received?	Direct from Sam	pling			- Ambient		Melted Ice	,
Were samples wit	thin	By Gun #	2	-	Actual Terr	np- 3.4		
Temperature? 2-6		By Blank #			Actual Terr			
Was Custo	dy Seal Intact?	M	We	ere Sample	s Tampered	with?	$\Lambda 4$	
	Relinquished ?	T	-	s Chain Ag	ree With Sa	imples?	<u> </u>	
	ken/leaking/loose cap	s on any sam	•	F	-		,	
Is COC in ink/ Legi		-		-		olding time?		
Did COC include			Analysis ID's		- '	ler Name Dates/Times	<u> </u>	-
pertinent Informati	on? Project filled out and legible?		. 108		- Conection	Dates/ Times		
Are there Lab to Fil	-	 	-	M/bo wa	s notified?			
Are there Rushes?	(613 :	<u> </u>	-		s notified?			
Are there Short Hol	ds?	F	-		s notified?			
Is there enough Vol			-		-			_
Is there Headspace		F	-	MS/MSD?	F		C	
Proper Media/Conta	••	+	-	Is splitting	samples red	- quired?	4	
Were trip blanks re	ceived?	F		On COC?	F	_		_
Do all samples have	e the proper pH?	N-	Acid		-	Base		
Vials #	Containers:	#			#			#
Unp-	1 Liter Amb.	2	1 Liter			16 oz		
HCL- 3	500 mL Amb.		500 mL			8oz Am		
Meoh-	250 mL Amb.		250 mL			4oz Am		
Bisulfate-	Flashpoint		Col./Ba			2oz Am		
DI- Thiosulfate-	Other Glass		Other I Plasti			Enc Frozen:	ore	
Sulfuric-	Perchlorate			ock		1102.011.		
			Unused I	a an				Contraction of the second second
Vials #	Containera:	Constant Providence	Gilused	megia	#	and second and second		
Unp-	1 Liter Amb.		1 Liter	Plastic		16 oz	Amb.	
HCL-	500 mL Amb.		500 mL		1 a m 1	8oz Am		
Meoh-	250 mL Amb.		250 mL		····· ··· · · · · · · · · · · · · · ·	4oz Am		
Bisulfate-	Col./Bacteria		Flash	point		2oz Am		
DI-	Other Plastic		Other			Enc	ore	
Thiosulfate-	SOC Kit		Plastic			Frozen:		
Sulfuric-	Perchlorate		Zipl	ock				
Comments:	·							

January 9, 2020

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden

email: <u>cehaden@ncdot.gov</u>

Reference: Preliminary Site Assessment Report NCDOT Project I-5878, WBS Element 53078.1.1 Parcel 83-Throw Back Thursday 608 Spring Branch Road Dunn, Harnett County, North Carolina S&ME Project 4305-19-161

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1900576 REV-01 dated August 9, 2019, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its September 5,2019 Notice to Proceed Letter.

Background/Project Information

Based on NCDOT's July 24, 2019, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
83	Randy Emanuel Sr	(Throw Back Thursday)
		608 Spring Branch (aka Pope Road), Dunn, NC

The property is developed with a commercial building that is currently occupied by a bar named Throw Back Thursday. The building is reported to have previously been occupied by a gasoline/convenience store. According to a 1993 aerial photograph of the site, what appears to be a pump island canopy is shown in front of the building. Information regarding the location of USTs were not provided or observed from the aerial photograph. The property is not listed with registered petroleum underground storage tanks (USTs) (active or closed). The property is not listed with North Carolina Department of Environmental Quality (NCDEQ) Incidents associated with petroleum releases from USTs or aboveground storage tanks.

The PSA included a geophysical survey, subsequent limited soil sampling (five soil borings up to 10 feet below ground surface (ft.-bgs)) and limited groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil and groundwater sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (East Coast Underground, LLC) was also used to locate and mark underground utilities.

Geophysical Survey

On July 25, 2019, S&ME completed Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) surveys within accessible areas of the proposed ROW/easement at Parcel 83. Brief descriptions of these complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820 "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper[®] Systems Geode[™] sub-meter GPS as positioning support. The approximate TDEM data collection paths are presented in **Figure 4.** Golden Software's Surfer[®] program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and semi-transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR[®] 4000 GPR system equipped with a 350 MHz antenna in general accordance with ASTM D6432 "*Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation*" to further characterize anomalies/features identified during the TDEM survey.

A total of seven GPR profiles (Lines 1 through 7) were collected for documentation (**Figure 7**). The data was postprocessed using the GSSI Radan[®] 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. Two anomalous features unrelated to known surficial targets were identified in the geophysical data sets (Anomalies A and B; **Figures 6 and 7**). Anomaly A is characterized by high amplitude GPR responses located within the upper one foot below ground surface (bgs) and may be related to an isolated buried metallic object **(Figure 8)**. Anomaly B was characterized by a low TDEM response that was unable to be identified in the GPR data sets, which suggests the potential metallic target is either relatively small or deeper than the maximum penetration depth of the GPR signal. The anomalies were marked in the field using white spray paint. Example GPR profiles are presented in **Figures 8 and 9**.

Soil Sampling

On October 29, 2019, Troxler Geologic, Inc. (Troxler's) drill crew utilized a track mounted Geoprobe® rig to advance five soil borings (B-1 through B-5) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 83. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I.** Troxler's drill crew advanced the Geoprobe® borings up to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately six to 9.3 ft.-bgs. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II**.

Petroleum odors and elevated PID readings were not noted in the collected soil samples. Therefore, a soil sample was selected from each boring at varying depth intervals. The soil samples were placed into laboratory supplied containers and transported to RED Lab, LLC (Red Lab) in an insulated cooler with ice for analysis. A total of five soil samples (one soil sample per boring) were analyzed by RED Lab for TPH-GRO and TPH-DRO using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH-GRO and TPH-DRO were not reported at concentrations exceeding their respective North Carolina TPH Action Levels. TPH-DRO was reported in borings B-1, B-3 and B-4 at the six to eight foot depth interval, at concentrations ranging from one milligram per kilograms (mg/kg) to 1.3 mg/kg, which is slightly above the laboratory method reporting limits but well below its North Carolina TPH Action Level of 100 mg/kg. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately six to 9.3 ft.-bgs. Therefore, the Geoprobe® was used to advance one of the soil borings into the groundwater table for the collection of a groundwater sample. Due to the lack of petroleum odors or elevated PID readings, boring B-2 was selected for collection of a groundwater sample, due to its reported location at the former pump island. A temporary monitor well (TW-1) was installed at boring B-2 to a depth of approximately 10.5 ft.-bgs using a five foot section of one-inch diameter, Schedule 40 PVC well riser attached to a ten foot section of 0.01-inch slotted screen that intersected the groundwater was purged from the temporary well until relatively clear using disposable tubing attached to a peristaltic pump. The flow rate was reduced and laboratory supplied containers were filled directly from the tubing, labeled as TW-1 and placed in an insulated cooler with ice for transport to Con-Test Laboratories (Con-Test) for analysis of VOCs by EPA Method 8260 and polycyclic aromatic compounds (PAHs) by EPA Method 8270.

Upon completion of the soil and groundwater sampling, the well materials were removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by NCDEQ. Used gloves and tubing were bagged and disposed offsite.

Groundwater Analytical Results

Based upon analytical results of the groundwater sample analyzed by Con-Test, several petroleum related target constituents were reported at concentrations above the laboratory method reporting limits but below their 15A NCAC 2L Groundwater Quality Standards (2L Standards). A summary of the groundwater analytical results is presented in **Table 2** and shown on **Figure 3**. A copy of the laboratory analytical report provided by Con-Test is presented in **Appendix III**.

	&

Conclusion and Recommendations

The geophysical survey identified two anomalies (Anomalies A and B) which may be related to isolated buried metallic objects. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced five soil borings (B-1 through B-5) to a depth of up to approximately 10 ft.-bgs at the site. Petroleum odors and elevated PID readings were not noted in soil samples collected at the borings. Selected soil samples from the soil borings were analyzed for TPH-GRO and TPH-DRO using UVF spectroscopy.

TPH-GRO and TPH-DRO were not reported at concentrations exceeding their respective North Carolina TPH Action Levels. TPH-DRO was reported in borings B-1, B-3 and B-4 at the six to eight foot depth interval at concentrations slightly above the laboratory method reporting limits but well below its North Carolina TPH Action Level. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples.

During the soil boring advancement, groundwater was encountered at depths ranging from six to 9.3 ft.-bgs. One temporary well (TW-1) was installed at soil boring B-2 located at the former pump island. Groundwater at TW-1 was measured at six ft.-bgs and analyzed by Con-Test for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. Several petroleum related target constituents were reported at concentrations above the laboratory reporting limits but below their respective 2L Standards.

Based on the findings of the geophysical survey and analytical results of soil and groundwater samples, it is likely that during construction, NCDOT may encounter marginally impacted soil (below TPH Action Levels) and groundwater marginally impacted with petroleum (below 2L Standards) at the site.

It should also be assumed that saturated petroleum impacted soil will be encountered if construction excavations extend deeper than six ft.-bgs on the site. If construction dewatering is required, petroleum impacted groundwater must be properly disposed or treated at a licensed facility. If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility.

S&ME recommends maintaining an awareness level for the presence of marginally impacted petroleum in the soil (below TPH Action Levels) and marginally impacted groundwater (below 2L Standards) at the site for the safety of workers and the public.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., surficial debris, reinforced concrete, utilities, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of about five ft.-bgs.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

	&

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely, S&ME, Inc. DocuSigned by: Damie Honeycutt 4C890EAEC25F488.

Jamie T Honeycutt **Environmental Professional** jhoneycutt@smeinc.com

Tom Kaymond D4B9FB5F636F4BB.

Thomas P. Raymond, P.E., P.M.P. Senior Consultant traymond@smeinc.com

Attachments:

Table 1: Summary of Soil Sampling Results
 Table 2: Summary of Groundwater Sampling Results

Figure 1: Vicinity Map Figure 2: Site Map Figure 3: Soil and Groundwater Constituent Map Figure 4: TDEM Path Location Plan Figure 5: TDEM Data Plot A Figure 6: TDEM Data Plot B Figure 7: Geophysical Anomaly Location Plan Figure 8: Example GPR Data – Lines 2 and 3 Figure 9: Example GPR Data – Lines 4 and 7

Photographs Appendix I: **Appendix II:** Boring Logs Appendix III: Laboratory Analytical Reports and Chain of Custody

DocuSigned by: Michael Phikr 861E52DDEFAF4C

Michael W. Pfeifer Senior Project Manager mpfeifer@smeinc.com

Tables

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5878 Parcel 83 - (Throw Back Thursday) 608 Spring Branch Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161

Ar	nalytical Metho	d→	Range Organics (GR Organics (DRO) by Uli	carbons (TPH) Gasoline O) and Diesel Range traviolet Fluorescence ectrometry
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO
B-1	10/29/2019	6 to 8	<0.45	1.1
B-2	10/29/2019	2 to 4	<0.29	<0.29
B-3	10/29/2019	6 to 8	<0.5	1
B-4	10/29/2019	6 to 8	<0.51	1.3
B-5	10/29/2019	6 to 8	<0.52	<0.52
No	orth Carolina T	PH Action Levels	50	100

Notes:

1. UVF analysis performed by RED Lab, LLC

2. Concentrations are reported in milligrams per kilogram (mg/Kg).

3. ft.-bgs:- feet below ground surface.

4. Concentrations exceeding the laboratory's reporting limits are shown in BOLD fields.

5. Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and **BOLD** fields.

TABLE 2 SUMMARY OF GROUNDWATER SAMPLING RESULTS NCDOT Project I-5878 Parcel 83 - (Throw Back Thursday) 608 Spring Branch Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161

Analytical	Method→				١	/olatile	Organ	ic Comp	ounds b	y EPA N	lethod 8	260				Polycy	clic Arom	atic Com	pounds	(PAHs)) by EP	A Metho	od 8270
Sample ID	Contaminant of Concern→ Date		Ethylbenzene	Isopropylbenzene	Naphthalene	n-Butylbenzene	sec-Butylbenzene	Styrene	tert-Butyl Alcohol	n-Propylbenzene	p-lsopropyltoluene	Toluene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Total Xylenes	Acenaphthene	Acenaphthylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	2-Methylnaphthalene
B-2/TW-1	10/29/2019	0.66 J	4.9	43	3.9	3.5	15	0.28 J	0.24 J	1.8	0.92 J	0.25 J	4.4	2.2	1.9	0.30	0.095 J	0.027 J	0.38 J	3.2	0.42	0.025J	4.9
2L S	Standard (µg/L)	1	600	70	6	70	70	70	10	70	25	600	400	400	500	80	200	300	300	6	200	200	30
	GCL (µg/L)	5,000	84,500	25,000	6,000	6,900	8,500	70,000	10,000	30,000	11,700	260,000	28,500	25,000	85,500	2,120	1,965	300	990	6,000	410	200	12,500

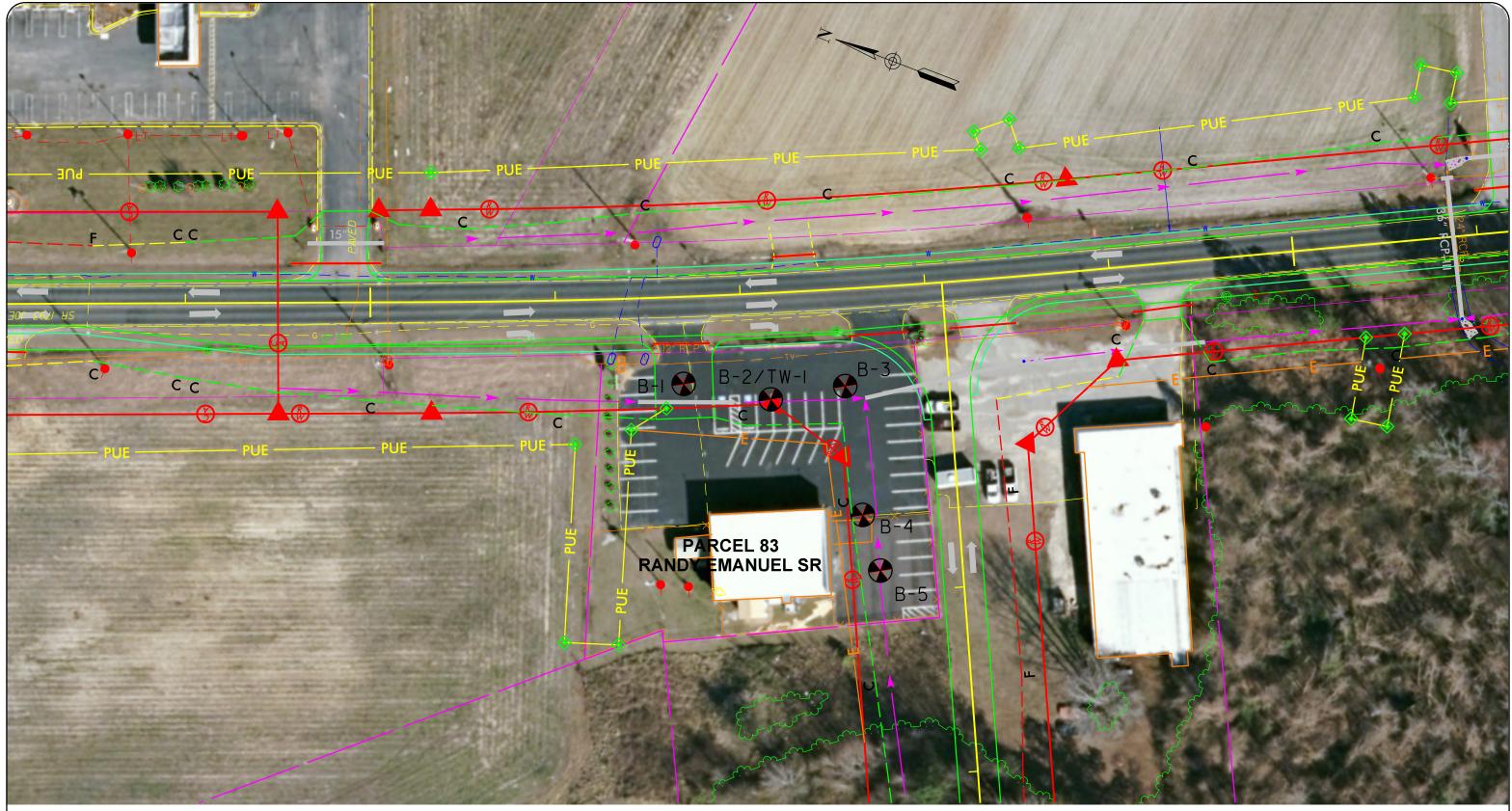
Notes:

1. Analytes that are not shown for the method were not detected.

2. Concentrations are reported in micrograms per liter (µg/L).

3. 2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202

4. Concentrations exceeding the laboratory's reporting limits are shown in BOLD fields.


5. Concentrations exceeding the 2L Standards are shown in Shaded and BOLD fields.

6. GCL: Gross Contamination Level.

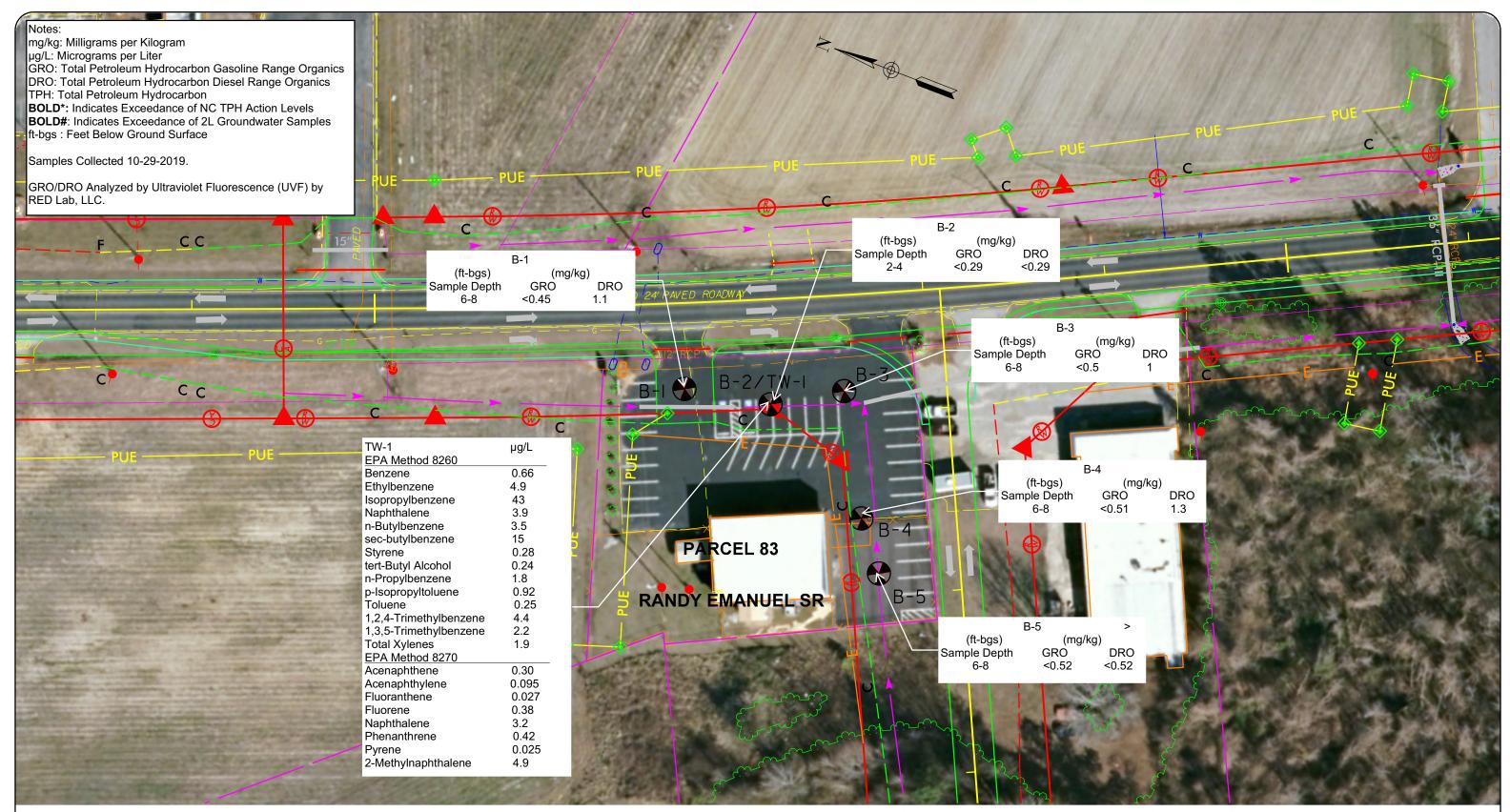
7. J: Estimated concentration detected below the reporting limit.

Figures

	The contact and the provide state of the provide st	121 MB	STREE N
Mr. Co	the second states and the se		
A	the state of the s		
P			
USAN TART RO	st st st + 9 - st	Stony Run McLambs Pond	The
		55	A A
		T S	Ningo Swallp
2		C ° °	
Reference -			
2/ /	C THE C		
AK	A A A A A A A A A A A A A A A A A A A		
10	AMOUSTER O OLIVE		
E C			nao sina
	22 R Stall	450 S -	Big Juni
- ton			
2 may		pl X	
	000 4,000 Heritage Bible (FEET) ^{sge}		RIAIN VIEW HWY
MAP IS FOR INFORMA	OBTAINED FROM THE USGS NATIONAL TOPO MAP VIEWER. THIS IONAL PURPOSES ONLY. ALL FEATURE LOCATIONS DISPLAYED ARE ARE NOT BASED ON CIVIL SURVEY INFORMATION, UNLESS STATED		Site Parcel
8	VICINITY MAP	SCALE: 1 " = 2,000 ' DATE:	FIGURE NO.
m≡	NCDOT PROJECT I-5878 PARCEL NO. 83 (THROW BACK THURSDAY)	11-22-19 PROJECT NUMBER	1
	608 SPRING BRANCH RD, DUNN, HARNETT COUNTY, NORTH CAROLINA	4305-19-161	

LEGEND Geoenvironmental Boring: Underground Storage Tank (UST): UST

Known Soil Contamination: 🕱 Possible Soil Contamination: $\mathfrak{M} - s - \mathfrak{M}$ Existing Contamination Known - Water: $\mathfrak{M} - w - \mathfrak{M}$


SITE MAP

NCDOT Project: I-5878 PARCEL 83 - THROW BACK THURSDAY 608 Spring Branch Rd., Dunn, Harnett County, North Carolina

Map Source: NCDOT Project I-5986B Image Source: NC ONEMAP, Dated 2016

0	50	100
C	GRAPHIC SCALE	(IN FEET)
	SCALE:	FIGURE NO.
	1" = 50'	
	DATE:	•
	JAN. 2020	2
	PROJECT NUMBER	
	4305-19-161	

<u>LEGEND</u>

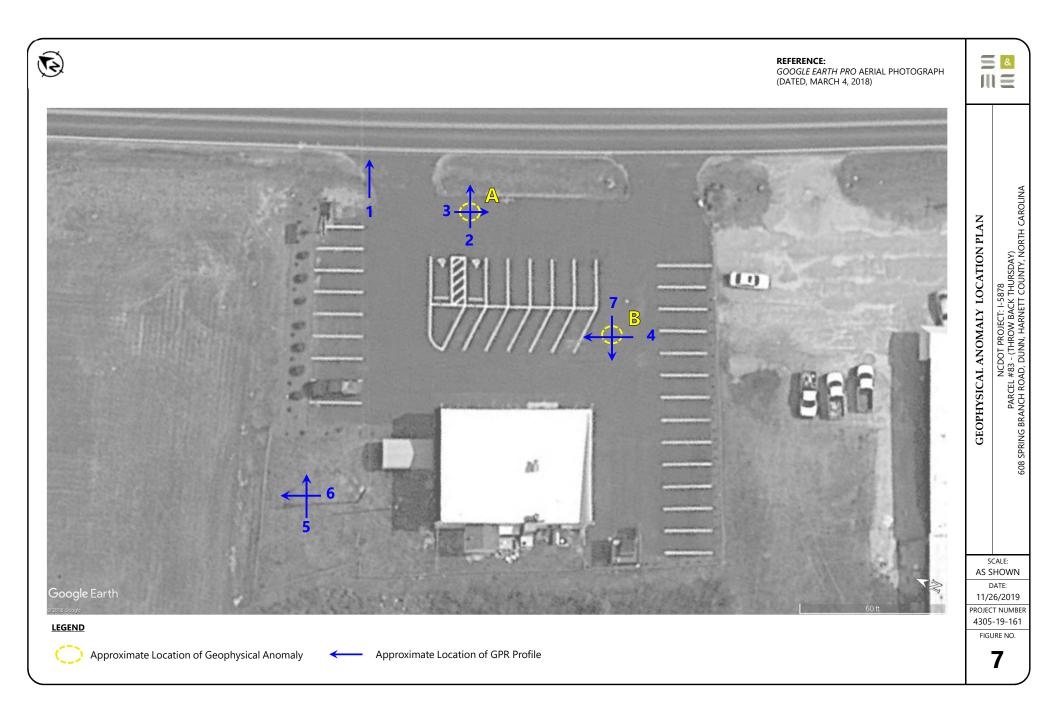
ΞM

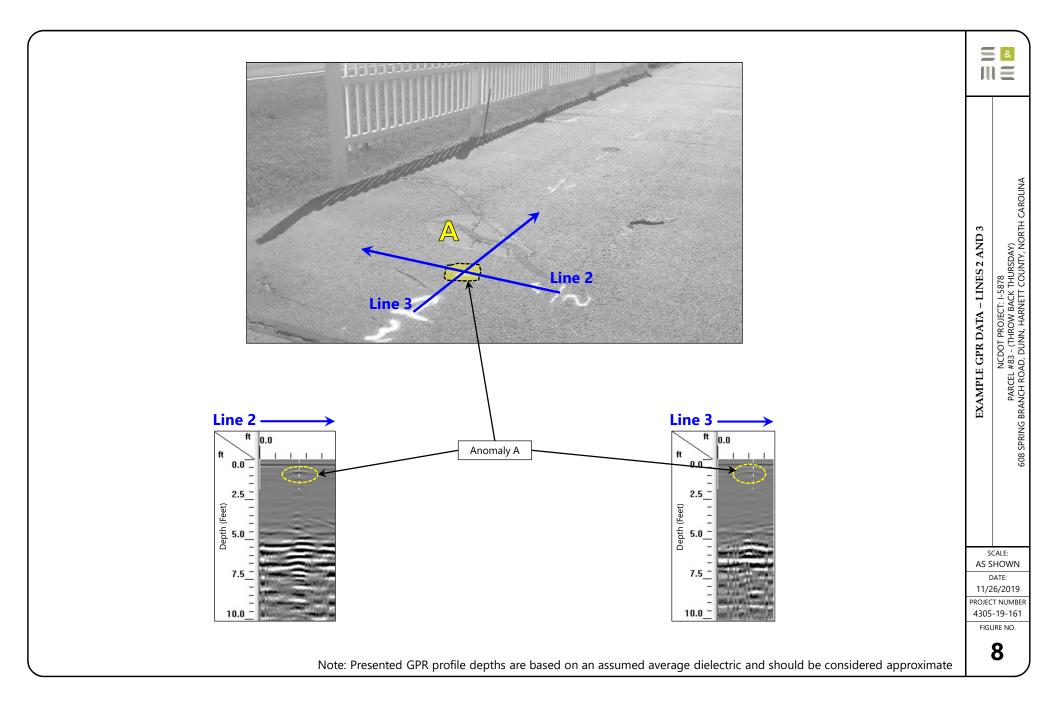
Geoenvironmental Boring: 🛛 🚷 Underground Storage Tank (UST): UST

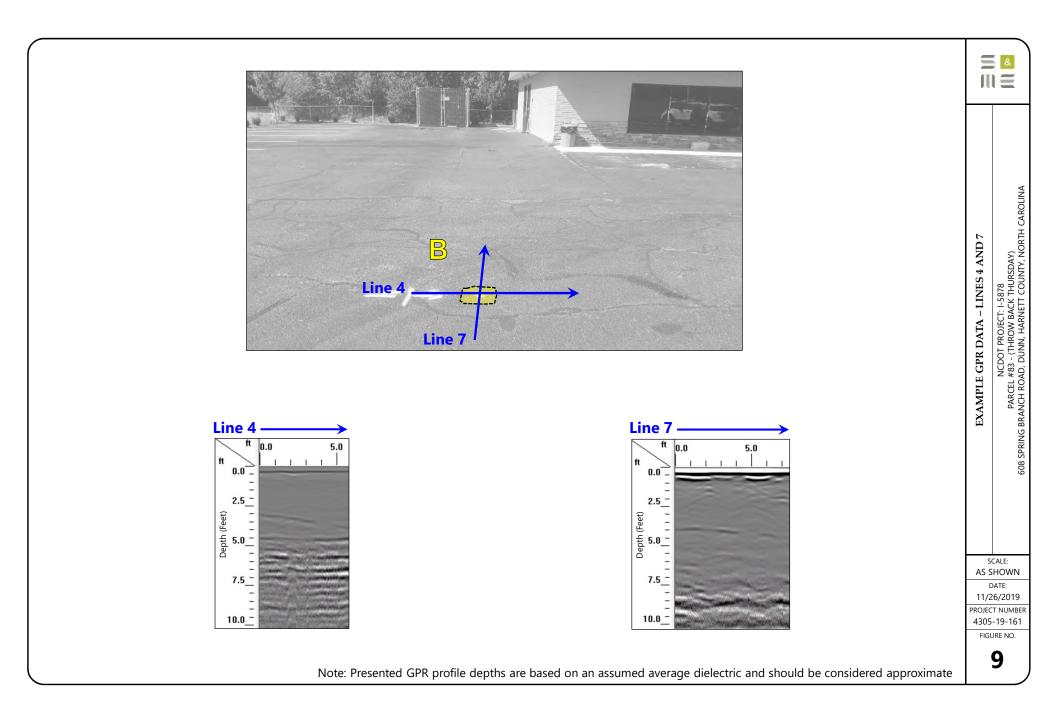
Known Soil Contamination: 😿 Possible Soil Contamination: 🎢 — s — 🎢 Existing Contamination Known - Water: 🧝 — w — 🕱

Map Source: NCDOT Project I-5986B Image Source: NC ONEMAP, Dated 2016

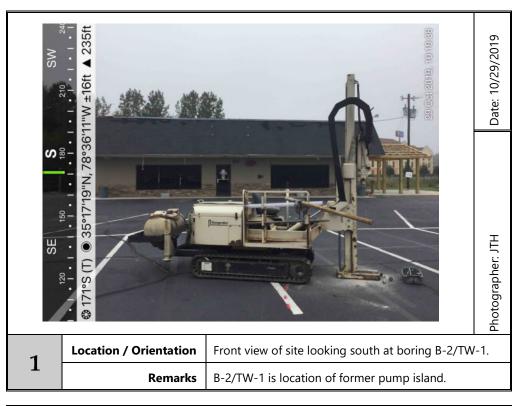
SOIL AND GROUNDWATER CONSTITUENT MAP


NCDOT Project: I-5878 PARCEL 83 - THROW BACK THURSDAY 608 Spring Branch Rd., Dunn, Harnett County, North Carolina


0 -	50	100
(GRAPHIC SCALE	(IN FEET)
	SCALE:	FIGURE NO.
	1" = 50'	
	DATE:	
	NOV. 2019	3
	PROJECT NUMBER	
	4305-19-161	



I 8 **REFERENCE:** GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED, MARCH 4, 2018) IIIΞ Water Meter Manhole Culvert Culvert **Surface Metal** NCDOT PROJECT: I-5878 PARCEL #83 - (THROW BACK THURSDAY) 608 SPRING BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA Sign Conductivity (mV) 1000 110 TDEM DATA PLOT B 900 800 B 700 $\overline{}$ 600 Influence from **Metal Container** 500 400 300 200 - 14 100 **Surface Metal** SCALE: AS SHOWN Dumpster DATE: Google Earth 11/26/2019 PROJECT NUMBER 4305-19-161 **LEGEND** FIGURE NO. Approximate Location of Geophysical Anomaly 6





Appendix I – Photographs

Appendix II – Boring Logs

PROJECT:	NCDOT I-5878									
	Parcel 83-608 Spring Branch Rd (Throw Back Thurso S&ME Project No. 4305-19-161	day), Dunn, NC			BORIN	IG LOG:	B-1			
DATE DRILLED:	Tuesday, October 29, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appli	cable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyc	utt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
			ÆL		U V	RY S	le /			
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Asp	ıhalt, Gravel, dy Clay, Tan, Orange, Red,				2.3	No				
					2.0	No				
5					1.3	No				
	yey Sand, Tan, White,				4.2	Yes	1000			
	ing Terminated at 10 Ft-BGS				3.5	No				

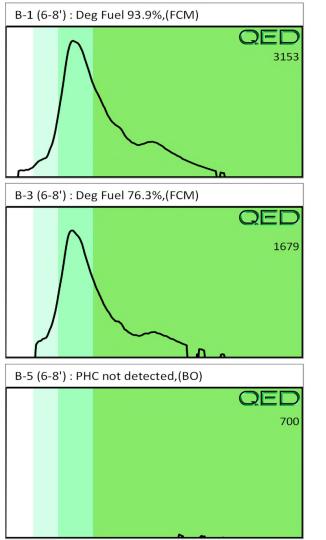
PROJECT:	NCDOT I-5878 Parcel 83-608 Spring Branch Rd (Throw Back Thursd	ay), Dunn, NC			BORIN	NG LOG:	: B-2/	TW-1			
	S&ME Project No. 4305-19-161										
DATE DRILLED:	Tuesday, October 29, 2019	BORING DEPTH (FT):									
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:									
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:									
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyc	utt							
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:									
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:									
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE	
5	rete, Gravel, y Clay, Tan, Orange, Red, ey Sand, Tan, White, Sand, Red, g Terminated at 13 Ft-BGS		WATE		2.9 3.5 4.2 5.2 11.5	No Yes No No	1020	2n	30		
25											

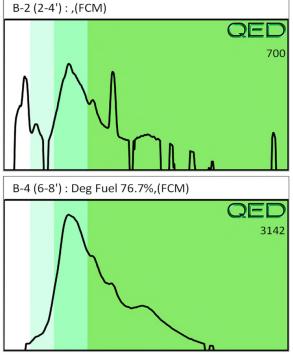
PROJECT:	NCDOT I-5878 Parcel 83-608 Spring Branch Rd (Throw Back Thursc	lay), Dunn, NC	BORING LOG: B-3								
	S&ME Project No. 4305-19-161	1									
DATE DRILLED:	Tuesday, October 29, 2019	BORING DEPTH (FT):									
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:									
DRILLER:	Troxler Geologic, Inc.		H: Not Applicable								
HAMMER TYPE:	Not Applicable	LOGGED BY:	/: J. Honeycutt								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:									
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:									
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE	
Aspt Sanc	alt, Gravel, y Clay, Tan, Orange, Red,				1.5 4.5	No					
5Clay	ey Sand, Tan, Orange, Red,				4.9	No					
					4.7	Yes	1020				
10 <u>Borir</u>	ig Terminated at 10 Ft-BGS		•		4.1	No					
15											
20 —											
25 —											
30											


PROJECT:	NCDOT I-5878									
	Parcel 83-608 Spring Branch Rd (Throw Back Thurso S&ME Project No. 4305-19-161	day), Dunn, NC			BORIN	IG LOG:	B-4			
DATE DRILLED:	Tuesday, October 29, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:	9							
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
San	halt, Gravel, dy Clay, Tan, Orange, Red,				2.8	No				
5					4.3	No				
					4.1	No				
			•		5.2	Yes	1130			
10 Bori	ng Terminated at 10 Ft-BGS				3.2	No				
_										
15 —— ——										
20 —										
 25										
30			i	I	i	I	I	i	1	1

PROJECT:		NCDOT I-5878 Parcel 83-608 Spring Branch Rd (Throw Ba	ack Thursday), Dunn, NC	BORING LOG: B-5							
DATE DRILLED:		S&ME Project No. 4305- Tuesday, October 29, 2019	BORING DEPTH (FT):	10							
DATE DRILLED. DRILL RIG:		Geoprobe 54DT	WATER LEVEL:								
DRILLER:			CAVE-IN DEPTH:		icabla						
		Troxler Geologic, Inc.									
HAMMER TYPE:		Not Applicable	LOGGED BY:	J. Honeyo	cutt						
SAMPLING METH		Macro-Core Sampler	NORTHING:								
DRILLING METHO	DD:	Macro-Core Sampler (3-in. OD)	EASTING:		1		1			r	
DEPTH (feet) GRAPHIC		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	Asph Sand	g Terminated at 10 Ft-BGS		WATER		1.7 1.9 1.8 3.0 4.2	No No Yes No	11120 Sample		ad a second seco	
30											

Appendix III – Laboratory Analytical Reports and Chain of Custody





Client: S&ME Samples taken Tuesday, October 29, 2019 Address: 3201 SPRING FOREST ROAD Samples extracted Tuesday, October 29, 2019 Samples analysed Friday, November 1, 2019 Contact: JAMIE HONEYCUTT Operator MAX MOYER Project: NCDOT I-5878 PARCEL 83 F03640 Total Dilution BTEX GRO DRO TPH 16 EPA BaP Ratios **HC Fingerprint Match** Matrix Sample ID Aromatics used (C6 - C9) (C5 - C10) (C10 - C35) (C5 - C35) PAHs (C10-C35) % % light % mid heavy <0.15 B-1 (6-8') 18.2 < 0.45 < 0.45 1.1 1.1 0.75 < 0.018 0 84.9 15.1 Deg Fuel 93.9%,(FCM) s <0.29 <0.29 <0.29 < 0.29 < 0.06 < 0.09 0 100 B-2 (2-4') 11.8 < 0.012 (FCM) s 0 0 B-3 (6-8') 20.2 < 0.5 < 0.5 1 1 0.44 < 0.16 < 0.02 89 11 Deg Fuel 76.3%,(FCM) s B-4 (6-8') 20.5 <0.51 <0.51 1.3 1.3 0.82 < 0.16 < 0.02 0 81.3 18.7 Deg Fuel 76.7%,(FCM) s <0.52 B-5 (6-8') 20.6 <0.52 <0.52 <0.52 <0.1 <0.17 < 0.021 0 0 0 PHC not detected,(BO) s Initial Calibrator QC check OK Final FCM QC Check OK 99.5 % Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present

Client Name:	SAMS		Dirice Line Line		2		
Address: Contact:	Smill	Forest 129 JC		M	RED Lab, LLC 5598 Marvin K Moss Lane MARBIONC Bldg, Suite 2003	< Moss Lai dg, Suite 2	ле 2003
Project Ref.:	HEDDT J-5878	To Din Parel			Wilmington, NC 28409	IC 28409	
Email: Phone #:	Uhonerer to esimetuc		CHAIN OF CUSTODY AND ANALYTICAL	ICAL	Each sample will be analyzed for BTEX, GRO, DRO, TPH, PAH total	e will be ar DRO. TPH	PAH total
Collected by:	Itamie T. Hanarca	B	REQUEST FORM		arom	aromatics and BaP	BaP
Sample Collection Date/Time	TAT Requested 24 Hour 48 Hour	Initials	Sample ID		Total Wt. Ta	Tare Wt.	Sample Wt.
10-39-19 1000		HID					14.3
1 1640			3-3 lo-8'		56.3 4	44.4	11.9
11.50					+-	1.2.1	t (1
0011	+	>	3-5 6-81		2.F.S (Hit. Ce	12.6
	秦 (1)						
the.							
						•	
Comments:					RED La	RED Lab USE ONLY	۲
Relinqui	Relinquished by	Date/Time	Accepted by	Date/Time		Ĺ	
Relinquished by	ished by	Date/Time	Accepted by	Date/Time		γ	
				1			

November 7, 2019

Jamie Honeycutt S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: Dunn, NC Client Job Number: Project Number: 4305-19-161 Laboratory Work Order Number: 19K0021

Enclosed are results of analyses for samples received by the laboratory on October 31, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Beny K. Millee

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	6
19K0021-01	6
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B245122	10
Semivolatile Organic Compounds by GC/MS	15
B245268	15
Flag/Qualifier Summary	17
Certifications	18
Chain of Custody/Sample Receipt	21

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. REPORT DATE: 11/7/2019 Raleigh, NC 27616 PURCHASE ORDER NUMBER: ATTN: Jamie Honeycutt PROJECT NUMBER: 4305-19-161 ANALYTICAL SUMMARY 19K0021 WORK ORDER NUMBER: The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report. PROJECT LOCATION: Dunn, NC FIELD SAMPLE # LAB ID: MATRIX TEST SUB LAB SAMPLE DESCRIPTION TW-1 19K0021-01 Ground Water SW-846 8260D SW-846 8270E

EXECUTIVE SUMMARY

Client ID: TW	1

Lab ID: 19K0021-01

Analyte	Results/Qua	1	DL	RL	Units	Method
1,2,4-Trimethylbenzene	4.4		0.18	1.0	μg/L	SW-846 8260D
1,3,5-Trimethylbenzene	2.2		0.14	1.0	μg/L	SW-846 8260D
Benzene	0.66	J	0.18	1.0	μg/L	SW-846 8260D
Ethylbenzene	4.9		0.13	1.0	μg/L	SW-846 8260D
Isopropylbenzene (Cumene)	43		0.17	1.0	μg/L	SW-846 8260D
m+p Xylene	1.5	J	0.30	2.0	μg/L	SW-846 8260D
Naphthalene	3.9		0.31	2.0	μg/L	SW-846 8260D
n-Butylbenzene	3.5		0.21	1.0	μg/L	SW-846 8260D
n-Propylbenzene	1.8		0.13	1.0	μg/L	SW-846 8260D
o-Xylene	0.40	J	0.17	1.0	μg/L	SW-846 8260D
p-Isopropyltoluene (p-Cymene)	0.92	J	0.20	1.0	μg/L	SW-846 8260D
sec-Butylbenzene	15		0.16	1.0	μg/L	SW-846 8260D
Styrene	0.28	J	0.11	1.0	μg/L	SW-846 8260D
tert-Butylbenzene	0.24	J	0.17	1.0	μg/L	SW-846 8260D
Toluene	0.25	J	0.14	1.0	μg/L	SW-846 8260D
2-Methylnaphthalene (SIM)	4.9		0.062	1.0	μg/L	SW-846 8270E
Acenaphthene (SIM)	0.30		0.033	0.30	μg/L	SW-846 8270E
Acenaphthylene (SIM)	0.095	J	0.035	0.20	μg/L	SW-846 8270E
Fluoranthene (SIM)	0.027	J	0.025	0.50	μg/L	SW-846 8270E
Fluorene (SIM)	0.38	J	0.034	1.0	μg/L	SW-846 8270E
Naphthalene (SIM)	3.2		0.26	1.0	μg/L	SW-846 8270E
Phenanthrene (SIM)	0.42		0.030	0.050	μg/L	SW-846 8270E
Pyrene (SIM)	0.025	J	0.023	1.0	$\mu g/L$	SW-846 8270E

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 8270, only PAHs were requested and reported.

SW-846 8260D

Qualifications:

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

Bromomethane

B245122-BS1, B245122-BSD1, S042311-CCV1

Chloromethane

B245122-BS1, B245122-BSD1, S042311-CCV1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lua Watthington

Lisa A. Worthington Technical Representative

Page 5 of 23

Volatile Organic Compounds by GC/MS

Sample Description:

Sampled: 10/29/2019 12:30

Project Location: Dunn, NC Date Received: 10/31/2019

Field Sample #: TW-1

Sample ID: 19K0021-01

Sample Matrix: Ground Water

			volatile	e Organic Co	inpounds by O	enns				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	3.8	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Acrylonitrile	ND	5.0	0.52	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	0.14	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Benzene	0.66	1.0	0.18	μg/L	1	J	SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Bromobenzene	ND	1.0	0.15	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Bromochloromethane	ND	1.0	0.32	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Bromodichloromethane	ND	0.50	0.16	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Bromoform	ND	1.0	0.46	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Bromomethane	ND	2.0	0.78	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
2-Butanone (MEK)	ND	20	1.9	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
tert-Butyl Alcohol (TBA)	ND	20	4.2	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
n-Butylbenzene	3.5	1.0	0.21	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
sec-Butylbenzene	15	1.0	0.16	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
tert-Butylbenzene	0.24	1.0	0.17	μg/L	1	J	SW-846 8260D	11/5/19	11/6/19 10:45	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	0.16	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Carbon Disulfide	ND	5.0	4.4	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Carbon Tetrachloride	ND	1.0	0.11	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Chlorobenzene	ND	1.0	0.15	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Chlorodibromomethane	ND	0.50	0.21	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Chloroethane	ND	2.0	0.35	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Chloroform	ND	2.0	0.17	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Chloromethane	ND	2.0	0.45	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
2-Chlorotoluene	ND	1.0	0.12	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
4-Chlorotoluene	ND	1.0	0.14	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	0.53	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,2-Dibromoethane (EDB)	ND	0.50	0.19	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Dibromomethane	ND	1.0	0.37	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,2-Dichlorobenzene	ND	1.0	0.16	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,3-Dichlorobenzene	ND	1.0	0.12	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,4-Dichlorobenzene	ND	1.0	0.13	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
trans-1,4-Dichloro-2-butene	ND	2.0	0.31	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	0.26	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,1-Dichloroethane	ND	1.0	0.16	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,2-Dichloroethane	ND	1.0	0.41	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,1-Dichloroethylene	ND	1.0	0.32	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
cis-1,2-Dichloroethylene	ND	1.0	0.13	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
trans-1,2-Dichloroethylene	ND	1.0	0.31	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,2-Dichloropropane	ND	1.0	0.20	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,3-Dichloropropane	ND	0.50	0.11	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
2,2-Dichloropropane	ND	1.0	0.20	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,1-Dichloropropene	ND	2.0	0.20	μg/L μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
cis-1,3-Dichloropropene	ND	0.50	0.13	μg/L μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
trans-1,3-Dichloropropene	ND	0.50	0.23	μg/L μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Diethyl Ether	ND	2.0	0.23	μg/L μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Steary Date	IND	2.0	0.54	μg/L	1		5 W-040 0200D	11/3/19	Degre 6	

Work Order: 19K0021

Page 6 of 23

Work Order: 19K0021

Project Location: Dunn, NC Date Received: 10/31/2019

Field Sample #: TW-1

Sample ID: 19K0021-01

Sample Matrix: Ground Water

Sampled: 10/29/2019 12:30

Sample Description:

102

70-130

			Vola	tile Organic Com	pounds by G	C/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	0.17	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,4-Dioxane	ND	50	22	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Ethylbenzene	4.9	1.0	0.13	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Hexachlorobutadiene	ND	0.60	0.47	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
2-Hexanone (MBK)	ND	10	1.5	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Isopropylbenzene (Cumene)	43	1.0	0.17	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
p-Isopropyltoluene (p-Cymene)	0.92	1.0	0.20	μg/L	1	J	SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	0.25	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Methylene Chloride	ND	5.0	0.34	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	1.7	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Naphthalene	3.9	2.0	0.31	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
n-Propylbenzene	1.8	1.0	0.13	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Styrene	0.28	1.0	0.11	μg/L	1	J	SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	0.27	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	0.22	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Tetrachloroethylene	ND	1.0	0.18	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Tetrahydrofuran	ND	10	0.51	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Toluene	0.25	1.0	0.14	μg/L	1	J	SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,2,3-Trichlorobenzene	ND	5.0	0.57	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,2,4-Trichlorobenzene	ND	1.0	0.40	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,3,5-Trichlorobenzene	ND	1.0	0.30	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,1,1-Trichloroethane	ND	1.0	0.20	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,1,2-Trichloroethane	ND	1.0	0.16	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Trichloroethylene	ND	1.0	0.24	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.33	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,2,3-Trichloropropane	ND	2.0	0.25	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	0.32	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,2,4-Trimethylbenzene	4.4	1.0	0.18	$\mu g/L$	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
1,3,5-Trimethylbenzene	2.2	1.0	0.14	μg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Vinyl Chloride	ND	2.0	0.45	µg/L	1		SW-846 8260D	11/5/19	11/6/19 10:45	EEH
m+p Xylene	1.5	2.0	0.30	μg/L	1	J	SW-846 8260D	11/5/19	11/6/19 10:45	EEH
o-Xylene	0.40	1.0	0.17	µg/L	1	J	SW-846 8260D	11/5/19	11/6/19 10:45	EEH
Surrogates		% Reco	very	Recovery Limits	1	Flag/Qual				
1,2-Dichloroethane-d4		94.7		70-130					11/6/19 10:45	
Toluene-d8		99.0		70-130					11/6/19 10:45	

4-Bromofluorobenzene

11/6/19 10:45

Sample Description:

Sampled: 10/29/2019 12:30

Project Location: Dunn, NC Date Received: 10/31/2019

Field Sample #: TW-1

Sample ID: 19K0021-01

Sample Matrix: Ground Water

Sample Matrix. Ground Water			Semivo	latile Organic Co	mpounds by	GC/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene (SIM)	0.30	0.30	0.033	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:18	CLA
Acenaphthylene (SIM)	0.095	0.20	0.035	μg/L	1	J	SW-846 8270E	11/5/19	11/6/19 18:18	CLA
Anthracene (SIM)	ND	0.20	0.032	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:18	CLA
Benzo(a)anthracene (SIM)	ND	0.050	0.016	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:18	CLA
Benzo(a)pyrene (SIM)	ND	0.10	0.012	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:18	CLA
Benzo(b)fluoranthene (SIM)	ND	0.050	0.015	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:18	CLA
Benzo(g,h,i)perylene (SIM)	ND	0.50	0.018	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:18	CLA
Benzo(k)fluoranthene (SIM)	ND	0.20	0.012	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:18	CLA
Chrysene (SIM)	ND	0.20	0.015	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:18	CLA
Dibenz(a,h)anthracene (SIM)	ND	0.10	0.017	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:18	CLA
Fluoranthene (SIM)	0.027	0.50	0.025	μg/L	1	J	SW-846 8270E	11/5/19	11/6/19 18:18	CLA
Fluorene (SIM)	0.38	1.0	0.034	μg/L	1	J	SW-846 8270E	11/5/19	11/6/19 18:18	CLA
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.10	0.018	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:18	CLA
2-Methylnaphthalene (SIM)	4.9	1.0	0.062	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:18	CLA
Naphthalene (SIM)	3.2	1.0	0.26	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:18	CLA
Phenanthrene (SIM)	0.42	0.050	0.030	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:18	CLA
Pyrene (SIM)	0.025	1.0	0.023	μg/L	1	J	SW-846 8270E	11/5/19	11/6/19 18:18	CLA
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
Nitrobenzene-d5		65.4		30-130					11/6/19 18:18	
2-Fluorobiphenyl		48.5		30-130					11/6/19 18:18	
p-Terphenyl-d14		63.0		30-130					11/6/19 18:18	

Work Order: 19K0021

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19K0021-01 [TW-1]	B245122	5	5.00	11/05/19	
Prep Method: SW-846 3510C-SW-846 8270E					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-	Result	Limit	UIIIIS	Level	result	70KEU	Limits	κrD	LIIIII	notes
Batch B245122 - SW-846 5030B				-	10.5.1					
Blank (B245122-BLK1)			-	Prepared: 11	/05/19 Anal	yzed: 11/06/1	9			
Acetone	ND	50 5 0	μg/L ug/I							
Acrylonitrile	ND	5.0	μg/L							
ert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L							
Benzene	ND	1.0	μg/L							
Bromobenzene	ND	1.0	μg/L							
Bromochloromethane	ND	1.0	μg/L							
romodichloromethane	ND	0.50	μg/L							
romoform	ND	1.0	μg/L							
romomethane	ND	2.0	μg/L							
Butanone (MEK)	ND	20	μg/L							
rt-Butyl Alcohol (TBA)	ND	20	μg/L							
Butylbenzene	ND	1.0	μg/L							
ec-Butylbenzene	ND	1.0	μg/L							
rt-Butylbenzene	ND	1.0	μg/L							
rt-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L							
arbon Disulfide	ND	5.0	μg/L							
arbon Tetrachloride	ND	1.0	μg/L							
hlorobenzene	ND	1.0	$\mu g/L$							
hlorodibromomethane	ND	0.50	μg/L							
hloroethane	ND	2.0	μg/L							
hloroform	ND	2.0	μg/L							
hloromethane	ND	2.0	μg/L							
Chlorotoluene	ND	1.0	μg/L							
Chlorotoluene	ND	1.0	μg/L							
2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L							
2-Dibromoethane (EDB)	ND	0.50	μg/L							
ibromomethane	ND	1.0	μg/L							
2-Dichlorobenzene	ND	1.0	μg/L							
3-Dichlorobenzene	ND	1.0	μg/L							
4-Dichlorobenzene	ND	1.0	μg/L							
ans-1,4-Dichloro-2-butene	ND	2.0	μg/L							
ichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
1-Dichloroethane	ND	1.0	μg/L							
2-Dichloroethane	ND	1.0	μg/L							
1-Dichloroethylene	ND	1.0	μg/L							
s-1,2-Dichloroethylene	ND	1.0	μg/L							
ans-1,2-Dichloroethylene	ND	1.0	μg/L							
2-Dichloropropane	ND	1.0	μg/L							
3-Dichloropropane	ND	0.50	μg/L							
2-Dichloropropane	ND	1.0	μg/L							
1-Dichloropropene	ND	2.0	μg/L							
s-1,3-Dichloropropene	ND	0.50	μg/L							
ans-1,3-Dichloropropene	ND ND	0.50	μg/L							
iethyl Ether	ND ND	2.0	μg/L							
iisopropyl Ether (DIPE)	ND ND	0.50	μg/L							
4-Dioxane		50	μg/L μg/L							
hylbenzene	ND	1.0	μg/L μg/L							
exachlorobutadiene	ND									
Hexanone (MBK)	ND	0.60	μg/L μg/I							
	ND	10	μg/L ug/I							
opropylbenzene (Cumene)	ND	1.0	μg/L							
Isopropyltoluene (p-Cymene) lethyl tert-Butyl Ether (MTBE)	ND ND	1.0 1.0	μg/L μg/L							

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
atch B245122 - SW-846 5030B										
Blank (B245122-BLK1)				Prepared: 11	/05/19 Analy	zed: 11/06/1	9			
1ethylene Chloride	ND	5.0	μg/L							
-Methyl-2-pentanone (MIBK)	ND	10	μg/L							
aphthalene	ND	2.0	μg/L							
Propylbenzene	ND	1.0	μg/L							
yrene	ND	1.0	μg/L							
1,1,2-Tetrachloroethane	ND	1.0	μg/L							
1,2,2-Tetrachloroethane	ND	0.50	μg/L							
etrachloroethylene	ND	1.0	μg/L							
etrahydrofuran	ND	10	μg/L							
bluene	ND	1.0	μg/L							
2,3-Trichlorobenzene	ND	5.0	μg/L							
2,4-Trichlorobenzene	ND	1.0	μg/L							
3,5-Trichlorobenzene	ND	1.0	μg/L							
1,1-Trichloroethane	ND	1.0	μg/L							
1,2-Trichloroethane	ND	1.0	μg/L							
richloroethylene	ND	1.0	μg/L							
ichlorofluoromethane (Freon 11)	ND	2.0	μg/L							
2,3-Trichloropropane	ND	2.0	μg/L							
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	1.0	μg/L							
3)	ND		10							
2,4-Trimethylbenzene	ND	1.0	μg/L							
3,5-Trimethylbenzene	ND	1.0	μg/L							
inyl Chloride	ND	2.0	μg/L							
+p Xylene	ND	2.0	μg/L							
Xylene	ND	1.0	μg/L							
rrogate: 1,2-Dichloroethane-d4	23.6		μg/L	25.0		94.4	70-130			
irrogate: Toluene-d8	24.4		μg/L	25.0		97.4	70-130			
irrogate: 4-Bromofluorobenzene	24.4		μg/L	25.0		97.4	70-130			
CS (B245122-BS1)				Prepared: 11	/05/19 Analy	zed: 11/06/1	9			
cetone	88.7	50	μg/L	100		88.7	70-160			
crylonitrile	8.30	5.0	μg/L	10.0		83.0	70-130			
rt-Amyl Methyl Ether (TAME)	9.48	0.50	μg/L	10.0		94.8	70-130			
enzene	10.7	1.0	μg/L	10.0		107	70-130			
romobenzene	10.4	1.0	μg/L	10.0		104	70-130			
romochloromethane	10.4	1.0	μg/L	10.0		104	70-130			
romodichloromethane	10.5	0.50	μg/L	10.0		105	70-130			
romoform	9.77	1.0	μg/L	10.0		97.7	70-130			
romomethane	9.88	2.0	μg/L	10.0		98.8	40-160			V-20
Butanone (MEK)	87.5	20	μg/L	100		87.5	40-160			
rt-Butyl Alcohol (TBA)	80.3	20	μg/L	100		80.3	40-160			
Butylbenzene	9.81	1.0	μg/L	10.0		98.1	70-130			
c-Butylbenzene	11.1	1.0	μg/L	10.0		111	70-130			
t-Butylbenzene	10.9	1.0	μg/L	10.0		109	70-130			
rt-Butyl Ethyl Ether (TBEE)	9.24	0.50	μg/L	10.0		92.4	70-130			
arbon Disulfide	9.24	5.0	μg/L	10.0		118	70-130			
arbon Tetrachloride	10.3	1.0	μg/L	10.0		103	70-130			
hlorobenzene	10.3	1.0	μg/L	10.0		114	70-130			
hlorodibromomethane	11.4	0.50	μg/L μg/L	10.0		100	70-130			
hloroethane		2.0	μg/L μg/L	10.0		116	70-130			
hloroform	11.6	2.0								
hloromethane	10.4		μg/L ug/I	10.0		104	70-130			V 20
	9.02	2.0 1.0	μg/L μg/L	10.0 10.0		90.2	40-160 70-130			V-20
Chlorotoluene	10.6					106				

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
atch B245122 - SW-846 5030B										
.CS (B245122-BS1)				Prepared: 11	/05/19 Analy	yzed: 11/06/1	9			
-Chlorotoluene	10.5	1.0	μg/L	10.0		105	70-130			
,2-Dibromo-3-chloropropane (DBCP)	9.08	5.0	μg/L	10.0		90.8	70-130			
,2-Dibromoethane (EDB)	10.8	0.50	μg/L	10.0		108	70-130			
Dibromomethane	10.4	1.0	μg/L	10.0		104	70-130			
,2-Dichlorobenzene	11.0	1.0	μg/L	10.0		110	70-130			
,3-Dichlorobenzene	11.5	1.0	μg/L	10.0		115	70-130			
,4-Dichlorobenzene	11.2	1.0	μg/L	10.0		112	70-130			
ans-1,4-Dichloro-2-butene	7.67	2.0	μg/L	10.0		76.7	70-130			
Dichlorodifluoromethane (Freon 12)	8.34	2.0	μg/L	10.0		83.4	40-160			
1-Dichloroethane	10.7	1.0	μg/L	10.0		107	70-130			
2-Dichloroethane	9.98	1.0	μg/L	10.0		99.8	70-130			
1-Dichloroethylene	11.0	1.0	μg/L	10.0		110	70-130			
is-1,2-Dichloroethylene	10.6	1.0	μg/L	10.0		106	70-130			
ans-1,2-Dichloroethylene	10.5	1.0	μg/L	10.0		105	70-130			
2-Dichloropropane	10.8	1.0	μg/L	10.0		108	70-130			
3-Dichloropropane	10.3	0.50	μg/L	10.0		103	70-130			
2-Dichloropropane	8.49	1.0	μg/L	10.0		84.9	40-130			
1-Dichloropropene	10.5	2.0	μg/L	10.0		105	70-130			
s-1,3-Dichloropropene	10.0	0.50	μg/L	10.0		100	70-130			
ans-1,3-Dichloropropene	9.41	0.50	μg/L	10.0		94.1	70-130			
iethyl Ether	10.8	2.0	μg/L	10.0		108	70-130			
iisopropyl Ether (DIPE)	10.1	0.50	μg/L	10.0		101	70-130			
4-Dioxane	86.6	50	μg/L	100		86.6	40-130			
hylbenzene	11.0	1.0	μg/L	10.0		110	70-130			
exachlorobutadiene	9.83	0.60	μg/L	10.0		98.3	70-130			
Hexanone (MBK)	84.3	10	μg/L	100		84.3	70-160			
opropylbenzene (Cumene)	11.1	1.0	μg/L	10.0		111	70-130			
Isopropyltoluene (p-Cymene)	10.7	1.0	μg/L	10.0		107	70-130			
(ethyl tert-Butyl Ether (MTBE)	10.7	1.0	μg/L	10.0		103	70-130			
lethylene Chloride	11.0	5.0	μg/L	10.0		110	70-130			
Methyl-2-pentanone (MIBK)	86.6	10	μg/L	100		86.6	70-160			
aphthalene	7.64	2.0	μg/L	10.0		76.4	40-130			
Propylbenzene	10.6	1.0	μg/L	10.0		106	70-130			
yrene	10.8	1.0	μg/L	10.0		100	70-130			
1,1,2-Tetrachloroethane		1.0	μg/L	10.0		113	70-130			
1.2.2-Tetrachloroethane	11.3	0.50	μg/L	10.0		108	70-130			
etrachloroethylene	10.8	1.0	μg/L μg/L	10.0		115	70-130			
etrahydrofuran	11.5	10	μg/L	10.0		96.0	70-130			J
bluene	9.60	1.0	μg/L μg/L	10.0		109	70-130			J
2,3-Trichlorobenzene	10.9									
2,3-Trichlorobenzene	8.06	5.0	μg/L μg/I	10.0		80.6 87.0	70-130			
2,4-Trichlorobenzene	8.70	1.0	μg/L ug/I	10.0		87.0	70-130			
	9.18	1.0	μg/L uα/I	10.0		91.8	70-130			
1,1-Trichloroethane	10.4	1.0	μg/L ug/I	10.0		104	70-130			
1,2-Trichloroethane	11.0	1.0	μg/L ug/I	10.0		110	70-130			
ichlere freuene (Freuer 11)	11.1	1.0	μg/L	10.0		111	70-130			
richlorofluoromethane (Freon 11)	9.61	2.0	μg/L	10.0		96.1	70-130			
2,3-Trichloropropane	10.3	2.0	μg/L	10.0		103	70-130			
1,2-Trichloro-1,2,2-trifluoroethane (Freon 3)	11.5	1.0	μg/L	10.0		115	70-130			
2,4-Trimethylbenzene	10.8	1.0	μg/L	10.0		108	70-130			
3,5-Trimethylbenzene	10.4	1.0	μg/L	10.0		104	70-130			
/inyl Chloride	9.58	2.0	μg/L	10.0		95.8	40-160			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B245122 - SW-846 5030B											
LCS (B245122-BS1)				Prepared: 1	1/05/19 Anal	yzed: 11/06/1	9				
m+p Xylene	21.3	2.0	μg/L	20.0		106	70-130				
o-Xylene	11.1	1.0	μg/L	10.0		111	70-130				
Surrogate: 1,2-Dichloroethane-d4	23.4		μg/L	25.0		93.6	70-130				
Surrogate: Toluene-d8	25.0		μg/L	25.0		99.9	70-130				
Surrogate: 4-Bromofluorobenzene	24.6		$\mu g/L$	25.0		98.4	70-130				
LCS Dup (B245122-BSD1)				Prepared: 1	1/05/19 Anal	yzed: 11/06/1	9				
Acetone	91.2	50	μg/L	100		91.2	70-160	2.72	25		i
Acrylonitrile	9.01	5.0	μg/L	10.0		90.1	70-130	8.20	25		
tert-Amyl Methyl Ether (TAME)	9.41	0.50	μg/L	10.0		94.1	70-130	0.741	25		
Benzene	10.4	1.0	μg/L	10.0		104	70-130	3.23	25		
Bromobenzene	10.0	1.0	μg/L	10.0		100	70-130	4.00	25		
Bromochloromethane	10.4	1.0	μg/L	10.0		104	70-130	0.865	25		
Bromodichloromethane	10.2	0.50	μg/L	10.0		102	70-130	3.68	25		
Bromoform	10.2	1.0	μg/L	10.0		102	70-130	3.91	25		
Bromomethane	9.76	2.0	μg/L	10.0		97.6	40-160	1.22	25	V-20	Ť
2-Butanone (MEK)	89.8	20	μg/L	100		89.8	40-160	2.63	25		Ť
tert-Butyl Alcohol (TBA)	83.6	20	μg/L	100		83.6	40-160	4.00	25		Ť
n-Butylbenzene	9.65	1.0	μg/L	10.0		96.5	70-130	1.64	25		
sec-Butylbenzene	11.0	1.0	μg/L	10.0		110	70-130	1.18	25		
tert-Butylbenzene	10.8	1.0	μg/L	10.0		108	70-130	1.11	25		
tert-Butyl Ethyl Ether (TBEE)	9.17	0.50	μg/L	10.0		91.7	70-130	0.760	25		
Carbon Disulfide	10.8	5.0	μg/L	10.0		108	70-130	8.59	25		
Carbon Tetrachloride	10.2	1.0	μg/L	10.0		102	70-130	1.46	25		
Chlorobenzene	11.5	1.0	μg/L	10.0		115	70-130	0.610	25		
Chlorodibromomethane	9.73	0.50	μg/L	10.0		97.3	70-130	2.84	25		
Chloroethane	10.8	2.0	μg/L	10.0		108	70-130	7.24	25		
Chloroform	10.1	2.0	μg/L	10.0		101	70-130	2.53	25		
Chloromethane	8.77	2.0	μg/L	10.0		87.7	40-160	2.81	25	V-20	Ť
2-Chlorotoluene	10.7	1.0	μg/L	10.0		107	70-130	0.845	25		
4-Chlorotoluene	10.4	1.0	μg/L	10.0		104	70-130	1.34	25		
1,2-Dibromo-3-chloropropane (DBCP)	8.90	5.0	μg/L	10.0		89.0	70-130	2.00	25		
1,2-Dibromoethane (EDB)	10.7	0.50	μg/L	10.0		107	70-130	1.58	25		
Dibromomethane	10.7	1.0	μg/L	10.0		102	70-130	2.33	25		
1,2-Dichlorobenzene	11.0	1.0	μg/L	10.0		110	70-130	0.181	25		
1,3-Dichlorobenzene	11.0	1.0	μg/L	10.0		114	70-130	0.872	25		
1,4-Dichlorobenzene	10.9	1.0	μg/L	10.0		109	70-130	3.07	25		
trans-1,4-Dichloro-2-butene	8.71	2.0	μg/L	10.0		87.1	70-130	12.7	25		
Dichlorodifluoromethane (Freon 12)	8.23	2.0	μg/L	10.0		82.3	40-160	1.33	25		Ť
1,1-Dichloroethane	10.2	1.0	μg/L	10.0		102	70-130	4.40	25		1
1,2-Dichloroethane	9.91	1.0	μg/L μg/L	10.0		99.1	70-130	0.704	25		
1,1-Dichloroethylene		1.0	μg/L μg/L	10.0		106	70-130	3.90	25		
cis-1,2-Dichloroethylene	10.6	1.0	μg/L μg/L	10.0		100	70-130	5.01	23 25		
trans-1,2-Dichloroethylene	10.1	1.0	μg/L μg/L	10.0		101	70-130	2.50	23 25		
1,2-Dichloropropane	10.3	1.0	μg/L μg/L	10.0		103	70-130	0.649	23 25		
1,3-Dichloropropane	10.8	0.50	μg/L μg/L	10.0		108	70-130	0.870	23 25		
2,2-Dichloropropane	10.4	1.0	μg/L μg/L								Ť
1,1-Dichloropropene	8.15	2.0		10.0 10.0		81.5 104	40-130	4.09	25 25		I
cis-1,3-Dichloropropene	10.4	2.0 0.50	μg/L μg/L	10.0		104 97.3	70-130	1.06	25 25		
trans-1,3-Dichloropropene	9.73	0.50	μg/L μg/L				70-130	3.14			
Diethyl Ether	9.66			10.0		96.6	70-130	2.62	25		
-	10.3	2.0	μg/L μg/I	10.0		103	70-130	4.65	25		
Diisopropyl Ether (DIPE)	9.94	0.50	μg/L	10.0		99.4	70-130	1.99	25		

Page 13 of 23

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B245122 - SW-846 5030B											
LCS Dup (B245122-BSD1)				Prepared: 11	/05/19 Anal	yzed: 11/06/1	9				
1,4-Dioxane	92.6	50	μg/L	100		92.6	40-130	6.72	50		†
Ethylbenzene	10.7	1.0	μg/L	10.0		107	70-130	2.12	25		
Hexachlorobutadiene	10.1	0.60	μg/L	10.0		101	70-130	2.41	25		
2-Hexanone (MBK)	84.4	10	μg/L	100		84.4	70-160	0.0712	25		1
Isopropylbenzene (Cumene)	10.6	1.0	μg/L	10.0		106	70-130	3.96	25		
p-Isopropyltoluene (p-Cymene)	10.5	1.0	μg/L	10.0		105	70-130	2.36	25		
Methyl tert-Butyl Ether (MTBE)	10.2	1.0	μg/L	10.0		102	70-130	0.585	25		
Methylene Chloride	10.6	5.0	μg/L	10.0		106	70-130	3.60	25		
4-Methyl-2-pentanone (MIBK)	90.1	10	μg/L	100		90.1	70-160	4.02	25		Ť
Naphthalene	8.02	2.0	μg/L	10.0		80.2	40-130	4.85	25		Ť
n-Propylbenzene	10.3	1.0	μg/L	10.0		103	70-130	2.11	25		
Styrene	10.4	1.0	μg/L	10.0		104	70-130	4.90	25		
,1,1,2-Tetrachloroethane	11.3	1.0	μg/L	10.0		113	70-130	0.265	25		
1,1,2,2-Tetrachloroethane	11.1	0.50	μg/L	10.0		111	70-130	3.01	25		
Tetrachloroethylene	11.5	1.0	μg/L	10.0		115	70-130	0.348	25		
Tetrahydrofuran	10.0	10	μg/L	10.0		100	70-130	4.28	25		
Toluene	10.5	1.0	μg/L	10.0		105	70-130	3.82	25		
1,2,3-Trichlorobenzene	7.86	5.0	μg/L	10.0		78.6	70-130	2.51	25		
1,2,4-Trichlorobenzene	8.34	1.0	μg/L	10.0		83.4	70-130	4.23	25		
1,3,5-Trichlorobenzene	8.42	1.0	μg/L	10.0		84.2	70-130	8.64	25		
1,1,1-Trichloroethane	9.84	1.0	μg/L	10.0		98.4	70-130	5.24	25		
1,1,2-Trichloroethane	11.0	1.0	μg/L	10.0		110	70-130	0.364	25		
Trichloroethylene	11.1	1.0	μg/L	10.0		111	70-130	0.180	25		
Trichlorofluoromethane (Freon 11)	9.30	2.0	μg/L	10.0		93.0	70-130	3.28	25		
1,2,3-Trichloropropane	10.0	2.0	μg/L	10.0		100	70-130	2.85	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	11.1	1.0	μg/L	10.0		111	70-130	4.07	25		
1,2,4-Trimethylbenzene	10.7	1.0	μg/L	10.0		107	70-130	0.650	25		
1,3,5-Trimethylbenzene	9.97	1.0	μg/L	10.0		99.7	70-130	3.93	25		
Vinyl Chloride	9.25	2.0	μg/L	10.0		92.5	40-160	3.51	25		İ
m+p Xylene	21.3	2.0	μg/L	20.0		106	70-130	0.0470	25		
p-Xylene	11.1	1.0	μg/L	10.0		111	70-130	0.541	25		
Surrogate: 1,2-Dichloroethane-d4	22.9		μg/L	25.0		91.5	70-130				_
Surrogate: Toluene-d8	25.2		μg/L	25.0		101	70-130				
Surrogate: 4-Bromofluorobenzene	24.6		μg/L	25.0		98.5	70-130				

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B245268 - SW-846 3510C										
Blank (B245268-BLK1)				Prepared &	Analyzed: 11	/06/19				
Acenaphthene (SIM)	ND	0.30	μg/L							
Acenaphthylene (SIM)	ND	0.20	μg/L							
Anthracene (SIM)	ND	0.20	μg/L							
Benzo(a)anthracene (SIM)	ND	0.050	μg/L							
Benzo(a)pyrene (SIM)	ND	0.10	μg/L							
Benzo(b)fluoranthene (SIM)	ND	0.050	μg/L							
Benzo(g,h,i)perylene (SIM)	ND	0.50	μg/L							
Benzo(k)fluoranthene (SIM)	ND	0.20	μg/L							
Chrysene (SIM)	ND	0.20	μg/L							
Dibenz(a,h)anthracene (SIM)	ND	0.10	μg/L							
luoranthene (SIM)	ND	0.50	μg/L							
luorene (SIM)	ND	1.0	μg/L							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.10	μg/L							
-Methylnaphthalene (SIM)	ND	1.0	μg/L							
Japhthalene (SIM)	ND	1.0	μg/L							
henanthrene (SIM)	ND	0.050	μg/L							
yrene (SIM)	ND	1.0	μg/L							
Surrogate: Nitrobenzene-d5	73.7		μg/L	100		73.7	30-130			
urrogate: 2-Fluorobiphenyl	51.1		μg/L	100		51.1	30-130			
urrogate: p-Terphenyl-d14	65.3		μg/L	100		65.3	30-130			
LCS (B245268-BS1)				Prepared &	Analyzed: 11	/06/19				
Acenaphthene (SIM)	35.2	6.0	μg/L	50.0		70.4	40-140			
Acenaphthylene (SIM)	35.7	4.0	μg/L	50.0		71.4	40-140			
Anthracene (SIM)	38.2	4.0	μg/L	50.0		76.3	40-140			
Benzo(a)anthracene (SIM)	37.0	1.0	μg/L	50.0		74.1	40-140			
Benzo(a)pyrene (SIM)	37.4	2.0	μg/L	50.0		74.8	40-140			
Benzo(b)fluoranthene (SIM)	39.6	1.0	μg/L	50.0		79.2	40-140			
Benzo(g,h,i)perylene (SIM)	40.1	10	μg/L	50.0		80.2	40-140			
Benzo(k)fluoranthene (SIM)	39.8	4.0	μg/L	50.0		79.6	40-140			
Chrysene (SIM)	35.8	4.0	μg/L	50.0		71.7	40-140			
Dibenz(a,h)anthracene (SIM)	42.6	2.0	μg/L	50.0		85.2	40-140			
luoranthene (SIM)	37.3	10	μg/L	50.0		74.7	40-140			
luorene (SIM)	36.3	20	μg/L	50.0		72.6	40-140			
ndeno(1,2,3-cd)pyrene (SIM)	42.8	2.0	μg/L	50.0		85.6	40-140			
-Methylnaphthalene (SIM)	34.3	20	μg/L	50.0		68.7	40-140			
Naphthalene (SIM)	32.7	20	μg/L	50.0		65.4	40-140			
Phenanthrene (SIM)	35.9	1.0	μg/L	50.0		71.8	40-140			
Pyrene (SIM)	36.4	20	μg/L	50.0		72.7	40-140			
Surrogate: Nitrobenzene-d5	74.9		μg/L	100		74.9	30-130			
urrogate: 2-Fluorobiphenyl	56.8		μg/L	100		56.8	30-130			
Surrogate: p-Terphenyl-d14	59.6		μg/L	100		59.6	30-130			

‡

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B245268 - SW-846 3510C										
LCS Dup (B245268-BSD1)				Prepared &	Analyzed: 11	/06/19				
Acenaphthene (SIM)	36.1	6.0	μg/L	50.0		72.2	40-140	2.47	20	
Acenaphthylene (SIM)	36.5	4.0	μg/L	50.0		73.0	40-140	2.22	20	
Anthracene (SIM)	39.5	4.0	μg/L	50.0		79.0	40-140	3.40	20	
Benzo(a)anthracene (SIM)	38.1	1.0	μg/L	50.0		76.2	40-140	2.82	20	
Benzo(a)pyrene (SIM)	38.7	2.0	μg/L	50.0		77.4	40-140	3.47	20	
Benzo(b)fluoranthene (SIM)	41.0	1.0	μg/L	50.0		82.0	40-140	3.43	20	
Benzo(g,h,i)perylene (SIM)	41.6	10	μg/L	50.0		83.3	40-140	3.82	20	
Benzo(k)fluoranthene (SIM)	41.8	4.0	μg/L	50.0		83.6	40-140	4.80	20	
Chrysene (SIM)	37.1	4.0	μg/L	50.0		74.1	40-140	3.35	20	
Dibenz(a,h)anthracene (SIM)	44.3	2.0	μg/L	50.0		88.5	40-140	3.78	20	
Fluoranthene (SIM)	38.4	10	μg/L	50.0		76.8	40-140	2.80	20	
Fluorene (SIM)	37.1	20	μg/L	50.0		74.2	40-140	2.23	20	
Indeno(1,2,3-cd)pyrene (SIM)	44.5	2.0	μg/L	50.0		88.9	40-140	3.76	20	
2-Methylnaphthalene (SIM)	35.8	20	μg/L	50.0		71.7	40-140	4.27	20	
Naphthalene (SIM)	33.0	20	μg/L	50.0		66.0	40-140	1.04	20	
Phenanthrene (SIM)	37.1	1.0	μg/L	50.0		74.2	40-140	3.18	20	
Pyrene (SIM)	37.4	20	μg/L	50.0		74.7	40-140	2.71	20	
Surrogate: Nitrobenzene-d5	77.8		μg/L	100		77.8	30-130			
Surrogate: 2-Fluorobiphenyl	59.4		μg/L	100		59.4	30-130			
Surrogate: p-Terphenyl-d14	60.7		μg/L	100		60.7	30-130			

FLAG/QUALIFIER SUMMARY

- * QC result is outside of established limits.
- † Wide recovery limits established for difficult compound.
- ‡ Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

- J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
- V-20 Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260D in Water		
Acetone	NC	
Acrylonitrile	NC	
tert-Amyl Methyl Ether (TAME)	NC	
Benzene	NC	
Bromobenzene	NC	
Bromochloromethane	NC	
Bromodichloromethane	NC	
Bromoform	NC	
Bromomethane	NC	
2-Butanone (MEK)	NC	
tert-Butyl Alcohol (TBA)	NC	
n-Butylbenzene	NC	
sec-Butylbenzene	NC	
tert-Butylbenzene	NC	
tert-Butyl Ethyl Ether (TBEE)	NC	
Carbon Disulfide	NC	
Carbon Tetrachloride	NC	
Chlorobenzene	NC	
Chlorodibromomethane	NC	
Chloroethane	NC	
Chloroform	NC	
Chloromethane	NC	
2-Chlorotoluene	NC	
4-Chlorotoluene	NC	
1,2-Dibromo-3-chloropropane (DBCP)	NC	
1,2-Dibromoethane (EDB)	NC	
Dibromomethane	NC	
1,2-Dichlorobenzene	NC	
1,3-Dichlorobenzene	NC	
1,4-Dichlorobenzene	NC	
trans-1,4-Dichloro-2-butene	NC	
Dichlorodifluoromethane (Freon 12)	NC	
1,1-Dichloroethane	NC	
1,2-Dichloroethane	NC	
1,1-Dichloroethylene	NC	
cis-1,2-Dichloroethylene	NC	
trans-1,2-Dichloroethylene	NC	
1,2-Dichloropropane	NC	
1,3-Dichloropropane	NC	
2,2-Dichloropropane	NC	
1,1-Dichloropropene	NC	
cis-1,3-Dichloropropene	NC	
trans-1,3-Dichloropropene	NC	
Diethyl Ether	NC	
Diisopropyl Ether (DIPE)	NC	
1,4-Dioxane	NC	
Ethylbenzene	NC	

CERTIFICATIONS

Certified Analyses included in this Report

Certified Analyses included in this Report	
Analyte	Certifications
SW-846 8260D in Water	
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2020
СТ	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

e And And And And And And And And And And
On-tes

1×0021	le: 413-525-2332	413-525-6405	1: info@contestlabs.com
5	Phone: 4	Fax: 413	Email: ir

Doc # 379 Rev 1_03242017 http://www.contestlabs.com

ſ	Page_

Phone: 413-525-2332	CHAIN OF CUSTODY RECORD (North Carolina) 39 Spruce Street East Longmeadow, MA 01028	w, MA 01028 Page 1 of 1	
	Requested Turnaround Time		Ĩ
Email: info@contestlabs.com	0m 7-Day [] 10-Day [] [] [] [] []	# of Containers	
company Name S+ME	Due Date:	2 Preservation Code	
Forest Rd Paleich	NC Rush-Approval Required		
. r	1-Day 3-Day 3-Day ANALYSIS REQUESTED		seles
Project Name: NCOOT I-5878 Porcel 83	2 2-Day _ 4-Day _	Field Fittered	
	Data Delivery	Lab to Filter	
Project Number: 4305-19-161	Format: PDF CECEL		
Project Manager: Tame T Have well	Other:	Outhophosphake Samples	vles
Con-Test Quote Name/Number:	CLP Like Data Pkg Required:	L Field Filtered	
Invoice Recipient: Jamie T Haverut	Email To: I have of G Sine inc. (Den 3	Lab to Filter	
Sampled By: Jamie T Noviey. H	Fax To #:		
Con-Test Vient Semple () / Description	Beginning Ending Francestra Crass Matrix Conc &		
Work Order#	Dubles/Time composition Control Control	GW = Ground Water	
1 Tul-1		WW = Waste Water	
		S = Soil	
		SAI - Solid	
		0 = Other (please	
		define)	
		² Preservation Codes:	÷.
		M = Methanol	
		N = Nitric Acid	NA NA
		B = Sodium Bisulfate	
		X = Sodium Hydroxide T = Sodium	
		Thiosulfate	· · ·
comments:	Diasco uso tha fallonuina codas ta indirata arecitia s		• • •
	risease use use use university bures to manate possible sample contrema along		
	H - High; M - Medium; L - Low; C - Clean; U - Unknown	- Unknown	
			N
ed by: (signature) Date/Time:	Worth Carolina Detection Limit Requirements		
		Fund	
Received by: (signature) (. Date/fime:	Contract Con	REC	
Relinniichidd bro (cinnatrire)		$\mathbf{x} = Summa Camara	
-		0 = Other (please	111)
Ceived by: (signature) Date/Time:		define)	
,	WELAC and AMALLAP, LLC Accredited	LLC Accretified	Та
D linquished by: (signature) [Date/Time:	Project Entity	PCB ONI Y	ble
-	vernment Municipality	Chromatogram Soxhlet	e of
ceived by: (signature) Date/Time:		ž	Co
of 2	City School]	ont
			ent
			s

IMPORTANT! The wildfires are causing hazardous conditions in California. Learn More

411359783302 📎

Delivered Friday 11/01/2019 at 9:02 am

DELIVERED Signed for by: R.PETRIAS

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Autryville, NC US

TO East Longmeadow, MA US

Shipment Facts

TRACKING NUMBER SERVICE WEIGHT 411359783302 FedEx Priority Overnight 53.4 lbs / 24.22 kgs DELIVERED TO TOTAL PIECES **TOTAL SHIPMENT WEIGHT** Shipping/Receiving 1 53.4 lbs / 24.22 kgs **RETURN REASON** TERMS PACKAGING Third Party Your Packaging SHIP DATE SPECIAL HANDLING SECTION STANDARD TRANSIT Deliver Weekday (?) (\mathcal{I}) 11/01/2019 by 10:30 am Thu 10/31/2019

ACTUAL DELIVERY Fri 11/01/2019 9:02 am

Travel History			Local Scan Time	\checkmark
Friday , 11/01/2019				
9:02 am	East Longmeadow, MA	Delivered		
7:45 am	WINDSOR LOCKS, CT	On FedEx vehicle for delivery		
6:27 am	EAST GRANBY, CT	At destination sort facility		

https://www.fedex.com/apps/fedextrack/?action=track&tracknumbers=411359783302&locale=en_US&cntry_code=us

I Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples					ninginginginginginginginginginginginging	7 Rev 5 201	ABORAT	ORY	
Login	Sample Re	ceipt Checklist -	(Rejection	Criteria List	ting - Us	ing Acceptan	ce Policy) A	ny False	
-	•	nent will be brou	• •		-			-	
Client	S+M	E			• •	l l			
Receiv	red By	NA-P		Date	illi	119	Time	902	
How were th	-		+	- No Cooler		On Ice		No Ice	······································
recei	•]					- Melted Ice	
		Direct from Sam	v	2		Ambient	<u> </u>		
Were sam	ples within		By Gun #			Actual Tem	p		-
Temperatu	ire? 2-6°C		By Blank #			Actual Tem			
Was	Custody S	eal Intact?	<u>AA</u>		•	les Tampered		<u></u>	
	s COC Relir	•		-	s Chain A	gree With Sa	mples?		_
		eaking/loose caps	on any sam		F	_			
Is COC in in	÷	****	-		nples rec	eived within h	•		
Did COC i		Client		Analysis	<u> </u>		er Name		-
pertinent In		Project	T	ID's			Dates/Times		-
•		d out and legible?		-	Mhau	ing motified?			
Are there La		ſ	<u> </u>	-		/as notified? /as notified?			_
Are there Ru Are there Sh			<u> </u>	-		as notified?			-
Is there eno		2	<u> </u>	-	WHO W	as notineu ?			
	•	ere applicable?		-	MS/MSD	12 F			
Proper Medi	-		F			g samples rec	wired?	ŕ	
Were trip bla					On COC	- /	funce.		**
•		e proper pH?	NA	Acid		·	Base		
	#	Containers:				#	1	·····	- #]
Vials Unp-	#	1 Liter Amb.	# Z	1 Liter	Plastic	#	16.0	z Amb.	#
HCL-	3	500 mL Amb.		500 mL				nb/Clear	
Meoh-		250 mL Amb.		250 mL				nb/Clear	
Bisulfate-		Flashpoint		Col./Ba				nb/Clear	1
DI-		Other Glass		Other	Plastic		En	core	
Thiosulfate-		SOC Kit		Plasti			Frozen:		
Sulfuric-		Perchlorate	··· · · .	Zipl	ock				
				Unused I	Media				
Vials		Containers:	#			#			#
Unp-		1 Liter Amb.	n an trainn an trainn an trainn an trainn an trainn an	Plastic		4	z Amb.		
HCL-		500 mL Amb.			Plastic			nb/Clear	<u>_</u>
Meoh-		250 mL Amb.		250 mL				nb/Clear	
Bisulfate-		Col./Bacteria	 		point			nb/Clear	1
DI- Thiosulfate-	·	Other Plastic SOC Kit			Glass		En Frozen:	core	
Sulfuric-		Perchlorate			c Bag ock		1102011.		
Comments:	l		I		UUR	I	I		