

December 14, 2018

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: **Preliminary Site Assessment Report**

NCDOT Project I-5986B, WBS Element 47532.1.3

Parcel 13-Speedy Auto & Alignment

691 Long Branch Road

Dunn, Harnett County, North Carolina

S&ME Project 4305-18-175

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1800583 REV-02 dated August 16, 2018, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its August 20, 2018 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's July 30, 2018, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
13	Barbara Bass	(Speedy Auto & Alignment)
		691 Long Branch Road, Dunn, NC

The PSA included a geophysical survey, subsequent limited soil sampling (ten soil borings up to 10 feet below ground surface (ft.-bgs.) and limited groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil and groundwater sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (Troxler Geologic, Inc.) was also used to locate and mark underground utilities.

Geophysical Survey

On September 11, 2018, S&ME personnel performed a geophysical survey within accessible areas of the proposed ROW/easement at Parcel 13. S&ME used a combination of the Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) methods to explore for buried subsurface features at the site such as underground storage tanks (USTs) and other possible buried obstructions. Brief descriptions of the proposed complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820-02 (2007) "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The presence of vehicles, ditches, dense agricultural crops, and other surficial obstructions within the requested survey area however prevented TDEM data collection in several locations. The approximate TDEM data collection paths are presented in **Figure 4**. Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 3000 GPR system equipped with a 400 MHz antenna in general accordance with ASTM D6432-11 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of eleven GPR profiles (Lines 1 through 11) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan[®] 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential petroleum UST were not identified in the geophysical data sets collected at the site. However, two anomalous features were identified in the geophysical data sets (Anomalies A and B; **Figures 5 through 7**). Anomaly A is an approximate seven feet by seven feet feature characterized by TDEM response value greater than about 500 mV and high amplitude GPR responses at about one to two ft-bgs. Anomaly A is consistent with a possible buried septic tank. Anomaly B is characterized by relatively high TDEM values (greater than about 200 mV) and high amplitude GPR responses located within the upper two feet. Anomaly B is approximately three feet by three feet in size and likely related to a buried isolated metallic target or debris. Anomalies were also marked in the field using white spray paint. Example GPR profiles are presented in **Figures 8 and 9**.

Soil Sampling

On October 2, 2018, S&ME's drill crew utilized a track mounted Geoprobe® rig to advance ten soil borings (B-1 through B-10) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 13. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I.** S&ME's drill crew advanced the Geoprobe® borings to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately four to 7.2 ft.-bgs. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II.**

Petroleum odors and elevated PID readings were noted within the collected soil samples. The highest concentration of elevated PID readings and petroleum odors were noted within soil borings B-2, near the former pump island in front of the building. Therefore, various soil samples at varying depth intervals were selected from each boring and provided to RED Lab, LLC (Red Lab) for on-site analysis. A total of 20 soil samples were analyzed by RED Lab for Total Petroleum Hydrocarbons (TPH)-Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH were reported at concentrations exceeding the North Carolina TPH Action Levels at soil boring B-2 (near the former pump island) at the zero to four foot depth intervals and eight to ten foot depth interval and soil borings B-7 (southeast side of

the building) and B-8 through B-10 (west side of the building) at the four to six foot depth intervals. Groundwater at B-2 was encountered at a depth of 7.2 ft.-bgs. The highest concentration of TPH GRO was reported at soil boring B-2 (near the former pump island) at the two to four foot depth interval at a concentration of 342 milligrams per kilograms (mg/kg), which exceeds its North Carolina TPH Action Level of 50 mg/kg. The highest concentration of TPH-DRO was reported at soil boring B-8 (west side of building) at the four to six foot depth interval at a concentration of 1,010 mg/kg, which exceeds it North Carolina TPH Action Level of 100 mg/kg. Groundwater was encountered at B-8 at a depth of six ft.-bgs.

TPH-GRO and TPH-DRO were reported at the remaining soil borings at concentrations below the North Carolina TPH Action Levels. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately four to 7.2 ft.-bgs. Therefore, the Geoprobe® was used to advance one of the soil borings into the groundwater table for the collection of a groundwater sample. Based on the analytical results of soil samples (elevated GRO and DRO detections), soil boring B-2 located near the former pump island was selected for collection of a groundwater sample. A temporary monitor well (TW-1) was installed at soil boring B-2 to a depth of approximately ten ft.-bgs using a five foot section of one-inch diameter, Schedule 40 PVC well riser attached to a 10 foot section of 0.01-inch slotted screen that intersected the groundwater table. Groundwater within the temporary monitor well at soil boring B-2 was measured at 7.2 ft.-bgs. Groundwater from the temporary well was purged until relatively clear using disposable tubing attached to a peristaltic pump. A slight petroleum sheen was noted on the surface of the water. The flow rate was reduced and laboratory supplied containers were filled directly from the tubing, labeled as TW-1 Parcel 13, and placed in an insulated cooler with ice for transport to Con-Test Laboratories for analysis of VOCs by EPA Method 8260 and polycyclic aromatic compounds (PAHs) by EPA Method 8270.

Upon completion of the soil and groundwater sampling, the well materials were removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by North Carolina Department of Environmental Quality (NCDEQ). Used gloves and tubing were bagged and disposed off-site.

Groundwater Analytical Results

Based upon analytical results of groundwater samples analyzed by Con-Test Laboratories, numerous petroleum related target constituents were reported at concentrations exceeding their 15A NCAC 2L Groundwater Quality Standard (2L Standard). Benzene was reported at a concentration of 4,000 micrograms per liter (μ g/L), which is near its Gross Contamination Level of 5,000 μ g/L. A summary of the groundwater analytical results is presented in **Table 2** and shown on **Figure 3**. A copy of the laboratory analytical report provided by Con-Test Laboratories is presented in **Appendix III**.

Conclusion and Recommendations

The geophysical survey identified two anomalous features (Anomaly A and B). Anomaly A is a possible buried septic tank located at the northwest corner of the building. Anomaly B is likely related to a buried isolated metallic target or debris located west of the building. Responses indicative of a potential petroleum UST were not identified in the geophysical data sets collected at the site.

S&ME advanced ten soil borings (B-1 through B-10) to a depth of approximately 10 ft.-bgs at the site. Petroleum odors and elevated PID readings were noted within the collected soil samples, particularly near the former pump island in front of the building. Selected soil samples from the soil borings were analyzed onsite for TPH-GRO and TPH-DRO using UVF spectroscopy. TPH-GRO and TPH-DRO were reported in the soil samples at concentrations exceeding the North Carolina TPH Action Levels. During the soil boring advancement, groundwater was encountered at depths ranging from approximately four to 7.2 ft.-bgs. One temporary well (TW-1) was installed at soil boring B-2 located near the former pump island in front of the building. Groundwater at TW-1 was measured at 7.2 ft.-bgs and analyzed by Con-Test Laboratories for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. A slight petroleum sheen was noted on the surface of the water. Several petroleum related target constituents were reported at concentrations exceeding their 2L Standards. Benzene was reported at a concentration near its GCL.

Based on the findings of the geophysical survey and analytical results of soil and groundwater samples, it is likely that during construction, NCDOT may encounter soil and groundwater impacted with petroleum at the site. Petroleum impacted soil may be encountered within the vicinity of soil borings B-2, B-7 and B-8 through B-10. Assuming that a section of petroleum impacted soil approximately four feet thick, 40 feet wide and 40 feet long at a depth of zero to four ft.-bgs may be impacted; up to 240 cubic yards of soil near boring B-2 may be impacted. Assuming that a section of petroleum impacted soil approximately two feet thick, twenty feet in diameter at a depth of four to six ft.-bgs, which is near the groundwater table, may be impacted within the vicinity of soil boring B-7; up to 30 cubic yards of soil near boring B-7 may be impacted. Assuming that a section of petroleum impacted soil approximately two feet thick, 50 feet wide and 60 feet long at a depth of four to six ft.-bgs, which is near the groundwater table, may be impacted within the vicinity of soil borings B-8 through B-10; up to 225 cubic yards of soil near borings b-8 through B-10 may be impacted. Therefore, a total of approximately 500 cubic yards of petroleum impacted soil may be encountered during construction to depths of approximately four to six ft.-bgs below ground surface; it should also be assumed that saturated petroleum impacted soil will be encountered if construction excavations extend deeper than four to six ft.-bgs. If construction dewatering is required, petroleum impacted groundwater must be properly disposed or treated at a licensed facility.

S&ME recommends maintaining an awareness level for the presence of petroleum in the soil and groundwater at the site for the safety of workers and the public.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and

recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., buildings, reinforced concrete, vehicles, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific, and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of approximately about five feet below ground surface.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

Docusigned by: Damie Honeyoutt

Jamie T Honeycutt

Environmental Professional

ihonevcutt@smeinc.com

Michael W. Pfeifer Senior Project Manager mpfeifer@smeinc.com

861E52DDEFAF4C7.

DocuSigned by:

Thomas P. Raymond, P.E., P.M.P. Senior Consultant

traymond@smeinc.com

Docusigned by:

Tom Raymond

D4B9FB5F636F4BB...

1/22/2019

Attachments:

Table 1: Summary of Soil Sampling Results

Table 2: Summary of Groundwater Sampling Results

Figure 1: Vicinity Map
Figure 2: Site Map

Figure 3: Soil and Groundwater Constituent Map

Figure 4: TDEM Path Location Plan

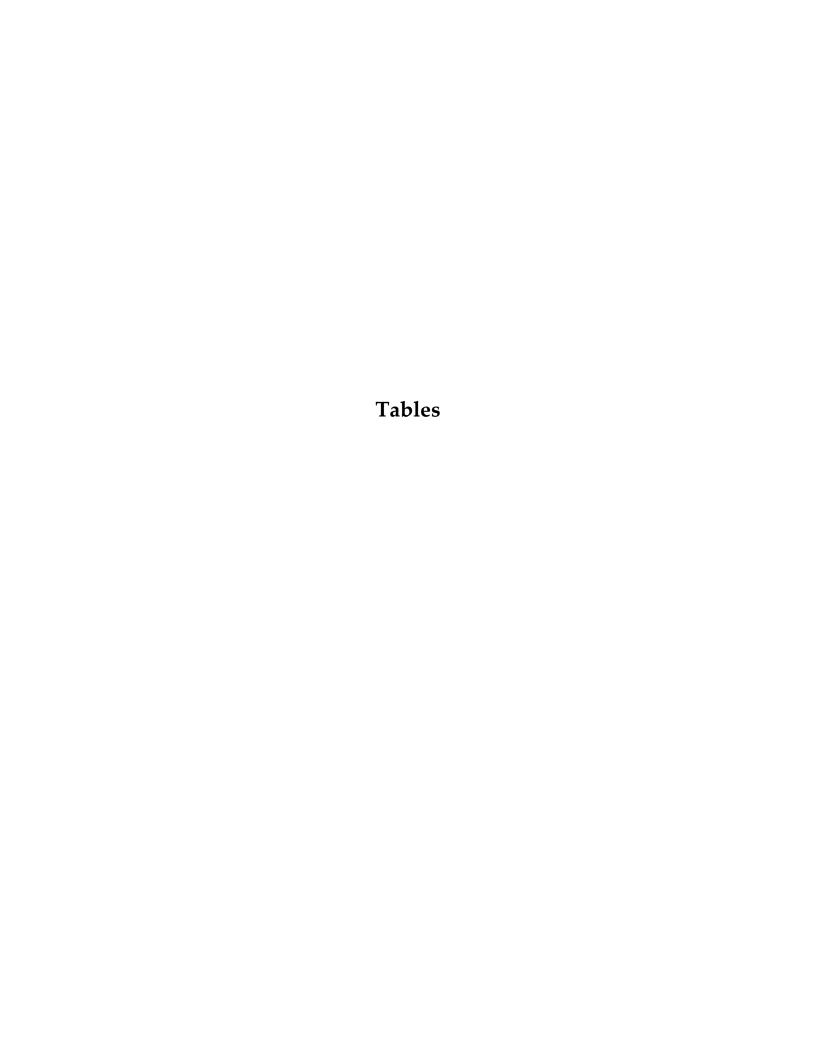

Figure 5: TDEM Data Plot A Figure 6: TDEM Data Plot B

Figure 7: Geophysical Anomaly Location Plan **Figure 8:** Example GPR Data – Lines 1, 2 and 3 **Figure 9:** Example GPR Data – Lines 4 and 5

Appendix I: Photographs **Appendix II:** Boring Logs

Appendix III: Laboratory Analytical Reports and Chain of Custody

SEAL 18760

TABLE 1

SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5986B

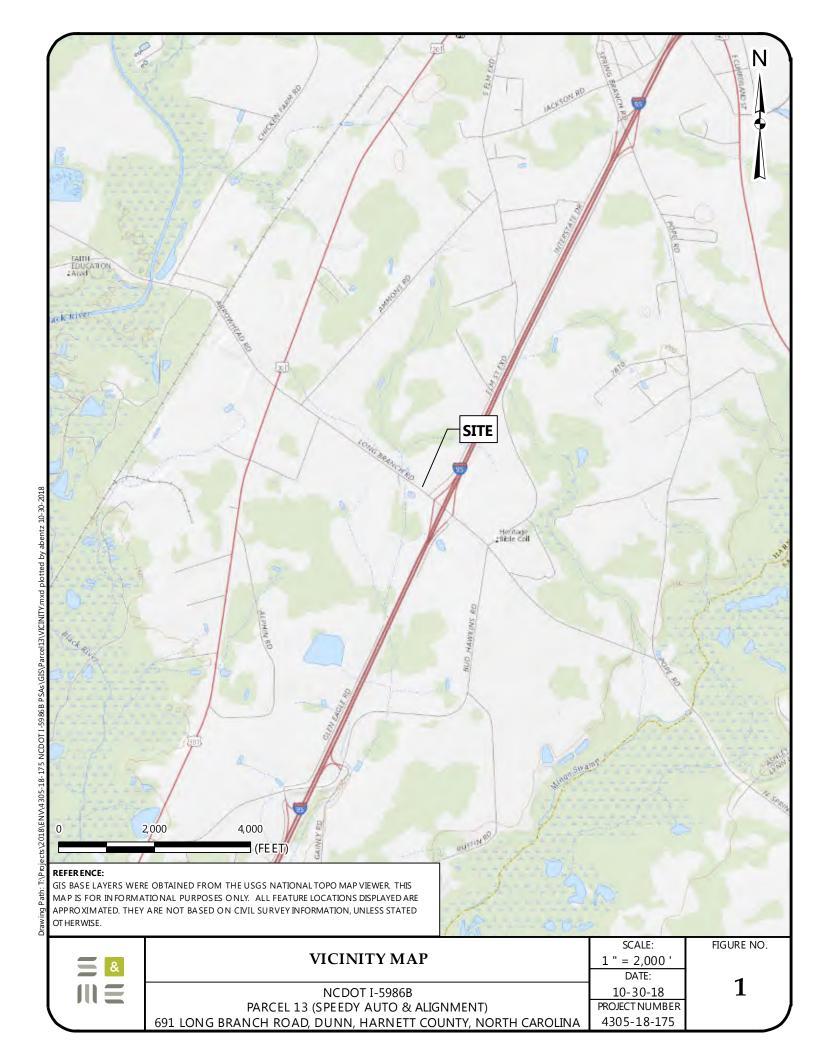
Parcel 13 - (Speedy Auto & Alignment) 691 Long Branch Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175

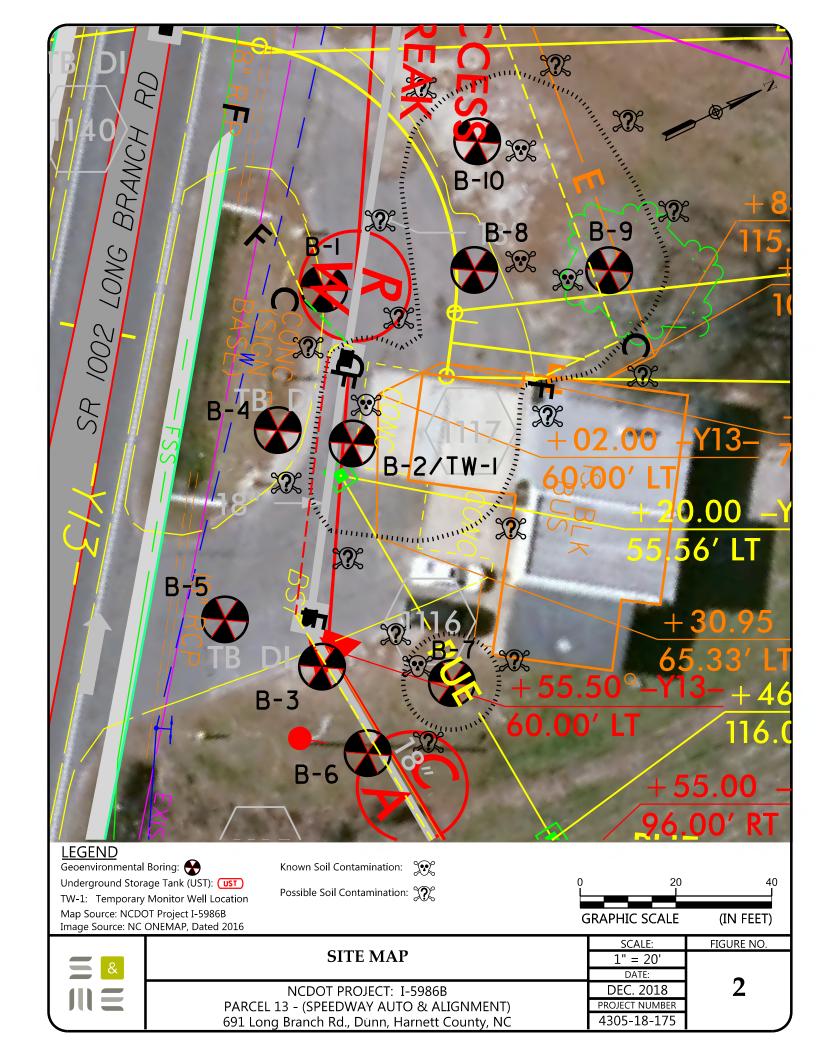
An	alytical Metho	d→	Range Organics (GR Organics (DRO) by Ul	carbons (TPH) Gasoline (O) and Diesel Range traviolet Fluorescence ectrometry
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO
DI 40 D 4	40/0/0040	0 to 2	<0.22	0.82
Parcel 13 B-1	10/2/2018	2 to 4	4	0.6
		0 to 2	61.1	3.2
Demont 40 D 0	40/0/0040	2 to 4	342	515.6
Parcel 13 B-2	10/2/2018	4 to 6	17.7	37.8
		8 to10	99.7	162.6
Parcel 13 B-3	10/2/2018	2 to 4	1.7	0.72
		0 to 2	<0.54	0.91
Parcel 13 B-4	10/2/2018	2 to 4	<0.46	<0.46
		4 to 6	39.6	5.5
		0 to 2	5.6	11.3
Parcel 13 B-5	10/2/2018	2 to 4	<0.5	1.2
		4 to 6	<0.46	6
Parcel 13 B-6	10/2/2018	0 to 2	<0.59	2.1
Taicel 13 B-0	10/2/2010	2 to 4	<0.44	0.54
Parcel 13 B-7	10/2/2018	4 to 6	120.1	27.4
Parcel 13 B-8	10/2/2018	2 to 4	<0.56	13.6
i alcei io b-o	10/2/2010	4 to 6	331.8	1,010
Parcel 13 B-9	10/2/2018	4 to 6	29.8	330.5
Parcel 13 B-10	10/2/2018	4 to 6	29.3	211.6
No	orth Carolina T	PH Action Levels	50	100

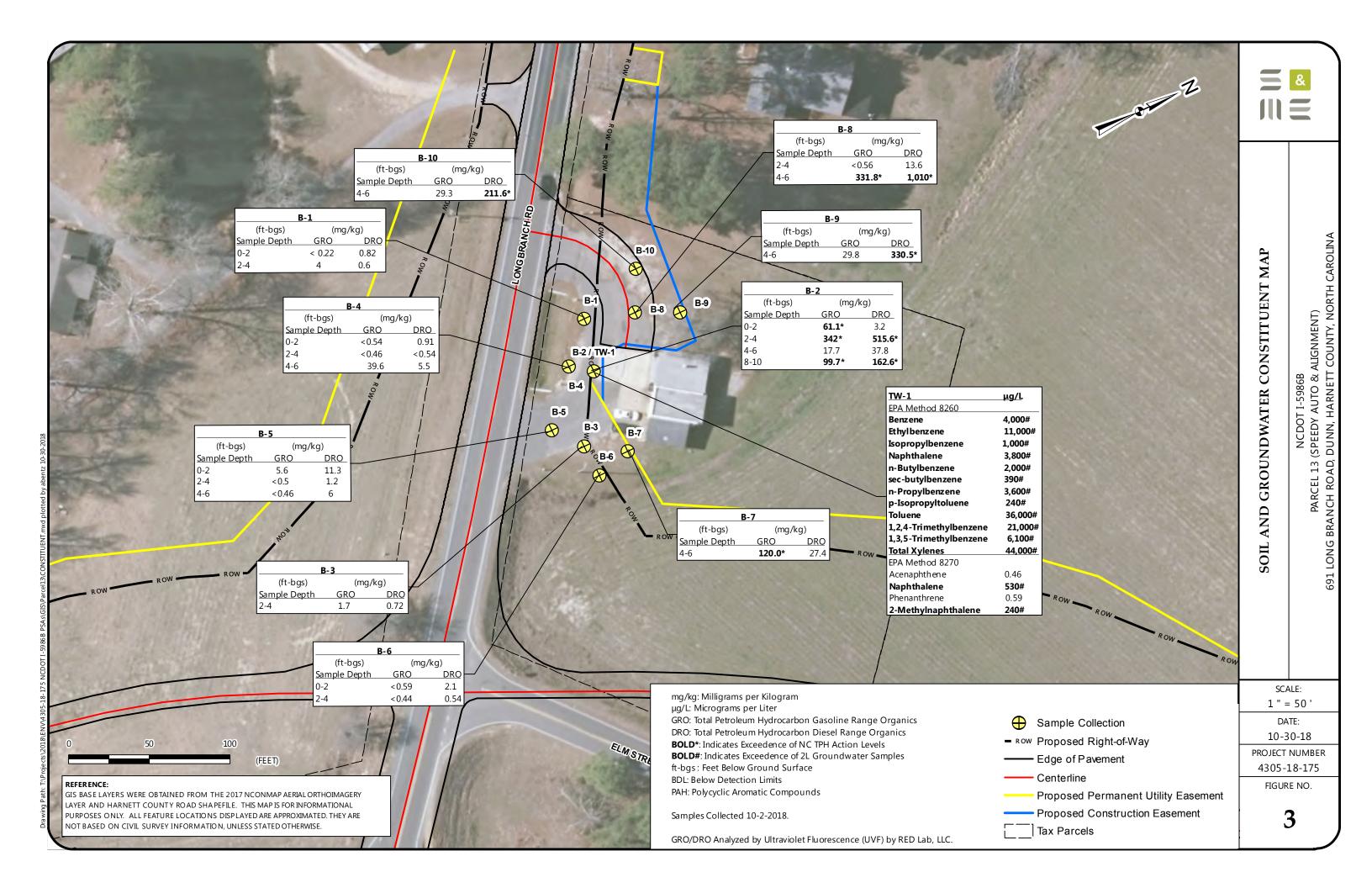
Notes:

- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and BOLD fields.

TABLE 2 SUMMARY OF GROUNDWATER SAMPLING RESULTS


NCDOT Project I-5986B
Parcel 13 - (Speedy Auto & Alignment)
691 Long Branch Road
Dunn, Harnett County, North Carolina
S&ME Project No. 4305-18-175


Analytical I	Method→			V	olatile	Organi	c Com _l	oounds l	by EPA	Method 8	260			Con	olycyclio npound PA Met	s (PAF	ls) by
Contaminar Sample ID of Concern-			Ethylbenzene	Isopropylbenzene	Naphthalene	n-Butylbenzene	sec-Butylbenzene	n-Propylbenzene	p-Isopropyltoluene	Toluene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Total Xylenes	Acenaphthene	Naphthalene	Phenanthrene	2- Methylnaphthalene
TW-1 Parcel 13	10/2/2018	4,000	11,000	1,000	3,800	2,000	390	3,600	240	36,000	21,000	6,100	44,000	0.46	530	0.59	240
2L S	tandard (µg/L)	1	600	70	6	70	70	70	25	600	400	400	500	80	6	200	30
	GCL (µg/L)	5,000	84,500	25,000	6,000	6,900	8,500	30,000	11,700	260,000	28,500	25,000	85,500	2,120	6,000	410	12,500


Notes:

- 1. Analytes that are not shown for the method were not detected.
- 2. Concentrations are reported in micrograms per liter (µg/L).
- 3. 2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- 5. Concentrations exceeding the 2L Standards are shown in Shaded and BOLD fields.
- 6. GCL: Gross Contamination Level.

Approximate TDEM Path

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

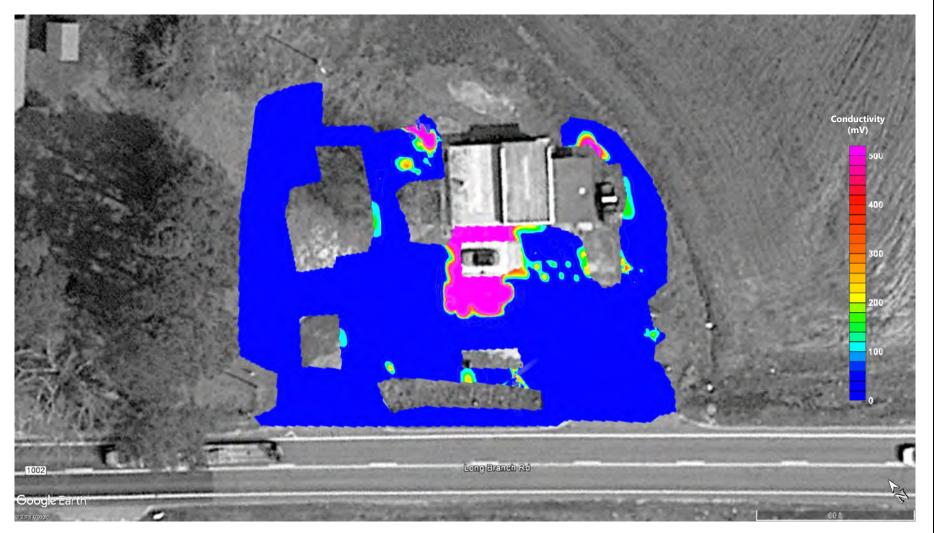
Approximate Requested Survey Area

SCALE: AS SHOWN

NCDOT PROJECT: 1-5986B PARCEL 13 – (SPEEDY AUTO & ALIGNMENT) 691 LONG BRANCH ROAD,DUNN, HARNETT COUNTY, NORTH CAROLINA

TDEM PATH LOCATION PLAN

DATE: 10/31/2018


PROJECT NUMBER 4305-18-175 FIGURE NO.

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

TDEM DATA PLOT A

NCDOT PROJECT: 1-5986B PARCEL 13 – (SPEEDY AUTO & ALIGNMENT) 691 LONG BRANCH ROAD,DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN DATE:

10/31/2018

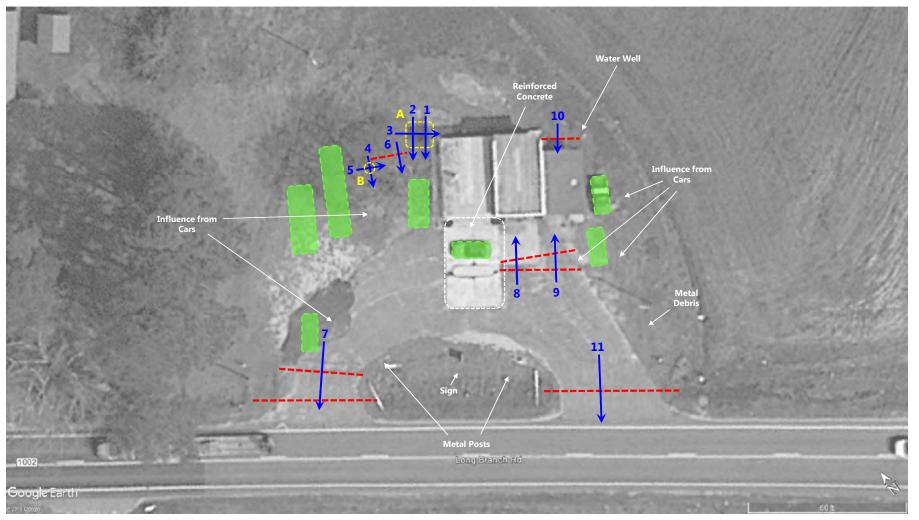

PROJECT NUMBER 4305-18-175

FIGURE NO.

5

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

GEOPHYSICAL ANOMALY LOCATION PLAN

PARCEL 13 – (SPEEDY AUTO & ALIGNMENT) 691 LONG BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

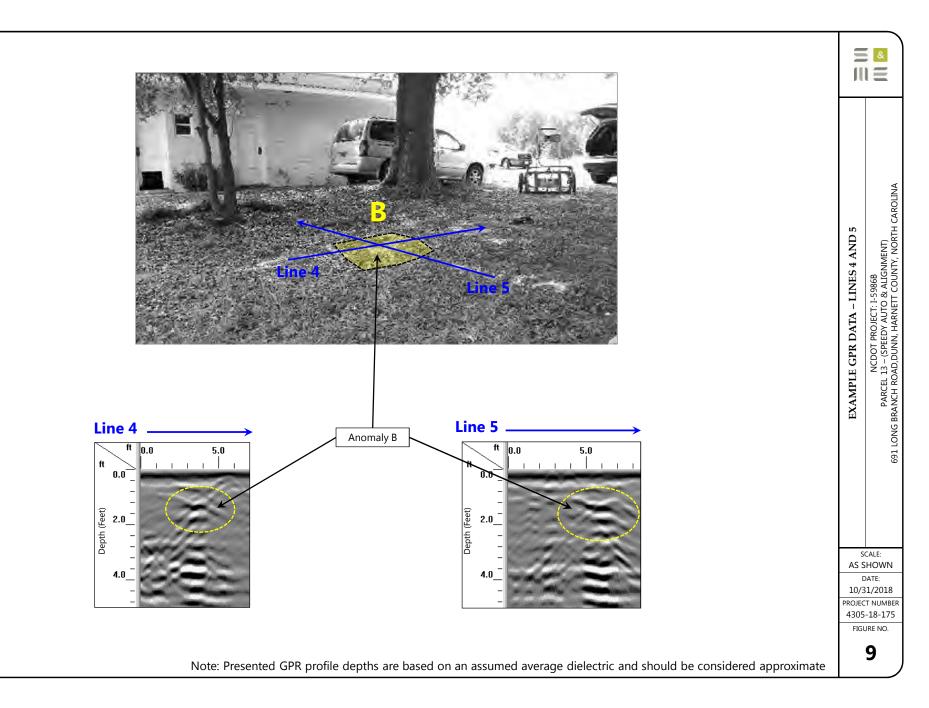
SCALE: AS SHOWN

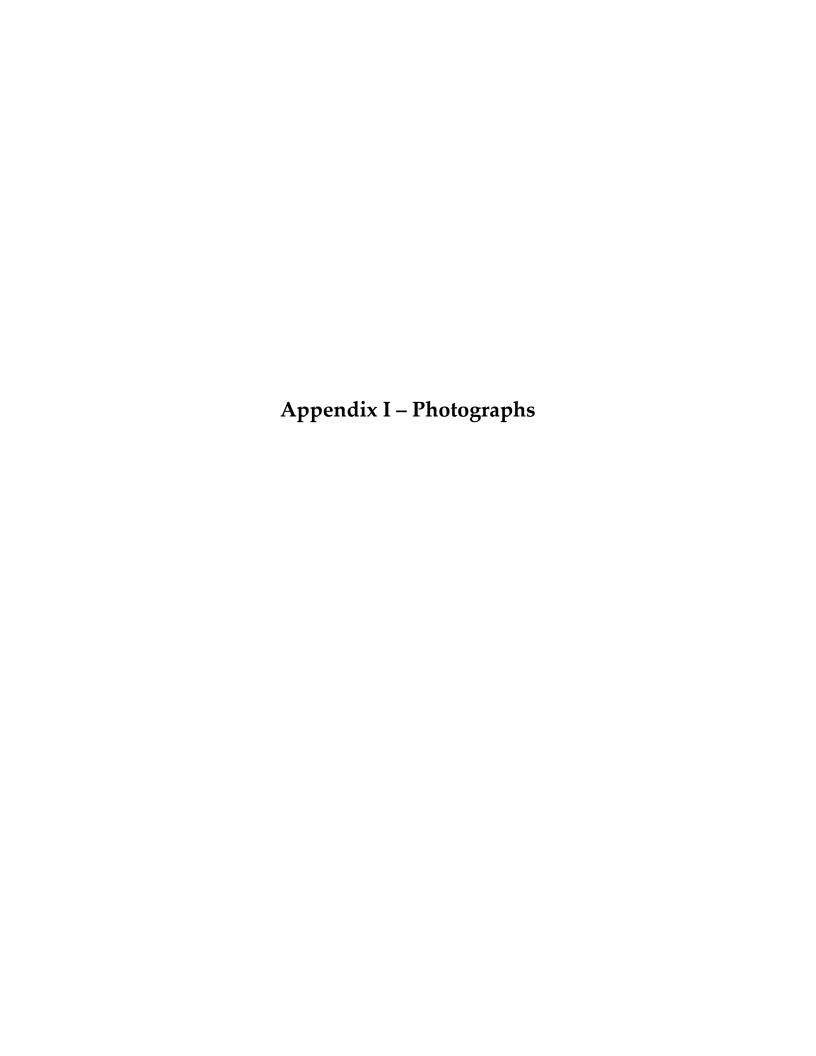
DATE: 10/31/2018

PROJECT NUMBER 4305-18-175

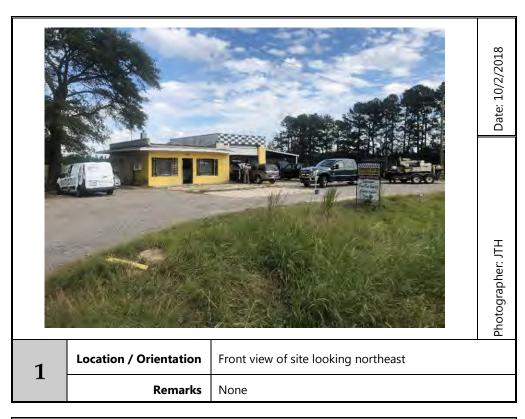
FIGURE NO.

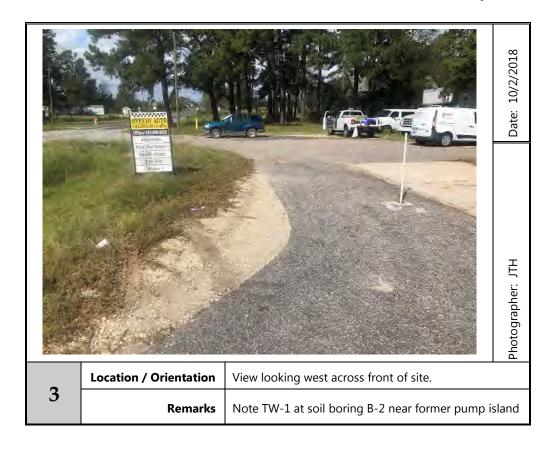

LEGEND


Approximate Location of TDEM Anomaly Approximate Location of GPR Profile



Approximate Location of Vehicle


Approximate Location of Possible Utility



December 14, 2018

December 14, 2018

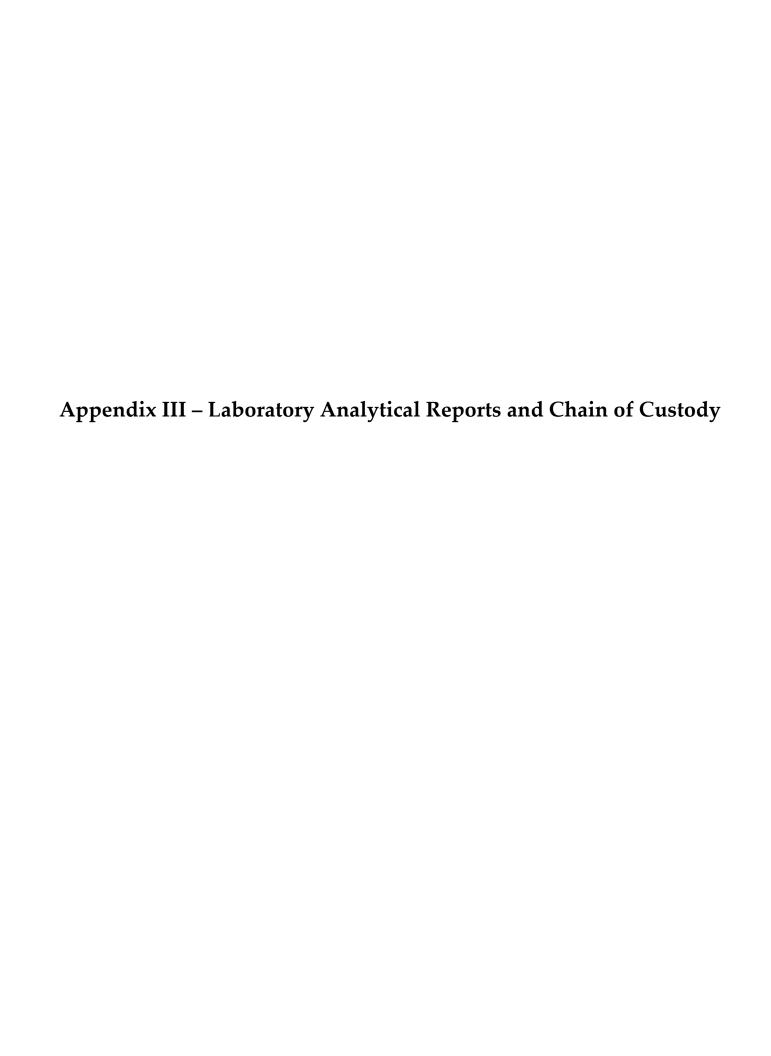
PROJECT:	NCDOT I-5986B									
	Parcel 13-691 Long Branch Rd, Dunn, N	С			BORIN	IG LOG:	B-1			
	S&ME Project No. 4305-18-175									
DATE DRILLED:	Tuesday, October 02, 2018	BORING DEPTH (FT):								
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	utt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		l			l	ı		ı
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Sanc	oil, Black, I, Brown, Black, Fine,				39.0 601.0	Yes				
5 —	ly Clay, Tan, Orange, ey Sand, Tan, Orange,		•							
10 Borir	ng Terminated at 10 Ft-BGS									
15 —										
20 —										
25 — — —										
30										

PROJECT	:		NCDOT I-5986B									
			Parcel 13-691 Long Branch Rd, Dunn,	NC			BORIN	IG LOG	B-2/	TW-1	L	
DATE DRILL	I ED:		S&ME Project No. 4305-18-175	DODING DEDTIL (FT).	10							
DRILL RIG:			Tuesday, October 02, 2018 Geoprobe 54DT	BORING DEPTH (FT): WATER LEVEL:								
DRILLER:			Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
HAMMER T	TVDE-		Not Applicable	LOGGED BY:								
SAMPLING			Macro-Core Sampler	NORTHING:	J. Honey	cutt						
DRILLING N			Macro-Core Sampler (3-in. OD)	EASTING:								
	1			2.01.170.		1			I.			
DEPTH (feet)	GRAPHIC LOG		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Asph	ialt, Gravel, I, Black, Fine, Petroleum Odors			88						
	-					ł	483.0	Yes				
5 —	-	Sand	ly Clay, Tan, Orange, Petroleum Odors			ł	2282	Yes				
	-				•	Ĭ	1796	Yes				
	-	Claye	ey Sand, Tan, Orange, Petroleum Odors			ł	1103	No				
10 —			ng Terminated at 10 Ft-BGS			Ш	999.0	Yes				
15 —												
						1	i		•			

PROJECT	·:	NCDOT I-5986B									
		Parcel 13-691 Long Branch Rd, Dunn, NC				BORIN	NG LOG	B-3			
		S&ME Project No. 4305-18-175									
DATE DRILI	LED:	Tuesday, October 02, 2018	BORING DEPTH (FT):								
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:								
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER 1		Not Applicable	LOGGED BY:		cutt						
SAMPLING		Macro-Core Sampler	NORTHING:								
DRILLING N	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:			1	1				
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
5 —		Gravel, Sand, Tan, Brown, Fine, Slight Petroleum Odors Boring Terminated at 10 Ft-BGS		•		1.1	No Yes				
15 —											
25 —											

PROJECT:	NCDOT I-5986B									
	Parcel 13-691 Long Branch Rd, Dunn, N	С			BORIN	IG LOG:	B-4			
	S&ME Project No. 4305-18-175									
DATE DRILLED:	Tuesday, October 02, 2018	BORING DEPTH (FT):								
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:		P 1 1						
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		1			1	l	1	
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Top Sand	soil, d, Brown, Tan, Fine,			ł		V				
Sand	dy Clay, Tan, Orange,			ł	1.3	Yes				
				X	2.0	Yes				
5 — Clay	ey Sand, Red, Orange, Slight Petroleum Odors		•	Ť	400.0	Yes				
10 Bori	ng Terminated at 10 Ft-BGS									
15 —										
20 —										
25 —										
30				1]			<u> </u>		

PROJECT	:		NCDOT I-5986B									
			Parcel 13-691 Long Branch Rd, Dunn, N	IC			BORIN	IG LOG:	B-5			
			S&ME Project No. 4305-18-175	ı								
DATE DRILI	LED:		Tuesday, October 02, 2018	BORING DEPTH (FT):								
DRILL RIG:			Geoprobe 54DT	WATER LEVEL:								
DRILLER:			Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER T			Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING			Macro-Core Sampler	NORTHING:								
DRILLING N	METHOD:	1	Macro-Core Sampler (3-in. OD)	EASTING:		1	1		l	ı		ı
DEРТН (feet)	GRAPHIC LOG		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Asph	alt, Gravel, Black, Brown, Fine,									
		Sand	Black, Brown, Fine,			l	62.0	Yes Yes				
5 —		Claye	y Sand, Tan, Orange,			Ŧ						
		Sand	y Clay, Red, Orange,		•		6.0	Yes				
10 —		Borin	g Terminated at 10 Ft-BGS									
	 - -											
15 —												
20 —												
25 —	-											
30 —						1]					<u> </u>


PROJECT:	NCDOT I-5986B									
	Parcel 13-691 Long Branch Rd, Dunn, N	NC			BORIN	NG LOG	B-6			
DATE DRILLED:	S&ME Project No. 4305-18-175	DODING DEDTH (ET).	10							
DATE DRILLED: DRILL RIG:	Tuesday, October 02, 2018 Geoprobe 54DT	BORING DEPTH (FT):								
DRILLER:		WATER LEVEL:		li aalala						
	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE: SAMPLING METHOD:	Not Applicable	LOGGED BY:	J. Honey	cutt						
DRILLING METHOD:	Macro-Core Sampler Macro-Core Sampler (3-in. OD)	NORTHING: EASTING:								
DRILLING WETHOD.	Macro-Core Sampler (5-III. Ob)	EASTING:		1	l	I	1	l		
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	oll, I, Orange, Brown, Fine,		•	Ì	1.9	Yes Yes				
Claye	ey Sand, Orange, Brown, Medium,									
10 Borir	ng Terminated at 10 Ft-BGS									
15 —										
20 —										
25 —										

PROJECT:	:		NCDOT I-5986B									
			Parcel 13-691 Long Branch Rd, Dunn,	NC			BORIN	NG LOG	B-7			
D. 4.T.E. D. D. W. L.			S&ME Project No. 4305-18-175		40							
DATE DRILLI	.ED:		Tuesday, October 02, 2018	BORING DEPTH (FT):								
DRILL RIG: DRILLER:			Geoprobe 54DT Troylor Geologic Inc.	WATER LEVEL:		licabl-						
	VDE.		Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TY			Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING N			Macro-Core Sampler	NORTHING:								
DRILLING M	METHOD:	1	Macro-Core Sampler (3-in. OD)	EASTING:		1	1	I		l		
DEPTH (feet)	GRAPHIC LOG	T	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
5 —			ly Clay, Orange, Brown,			İ	1.2 2.4 280.0	No No Yes				
10 —			ly Clay, Orange, Red, ng Terminated at 10 Ft-BGS		•							
20 —												
25 —												

PROJECT:			NCDOT I-5986B									
			Parcel 13-691 Long Branch Rd, Dunn, i	NC			BORIN	IG LOG:	B-8			
	_		S&ME Project No. 4305-18-175	1								
DATE DRILLE	D:		Tuesday, October 02, 2018	BORING DEPTH (FT):								
DRILL RIG:			Geoprobe 54DT	WATER LEVEL:								
DRILLER:			Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYP			Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING M			Macro-Core Sampler	NORTHING:								
DRILLING ME	THOD:		Macro-Core Sampler (3-in. OD)	EASTING:		1	1		1			ı
DEPTH (feet)	GRAPHIC LOG		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Asph Clave	alt, Gravel, y Sand, Orange,									
						ł	8.3	No				
5 —			y Sand, Brown, y Sand, Orange,			ł	20.0	Yes				
					•	H	860.0	Yes				
10		Borin	g Terminated at 10 Ft-BGS									
15 —												
20 —												
25 —												
30												

PROJECT:	NCDOT I-5986B									
	Parcel 13-691 Long Branch Rd, Dunn, N	IC .			BORIN	NG LOG	B-9			
DATE DOULED	S&ME Project No. 4305-18-175	DODANG DEDTIL (ST	10							
DATE DRILLED: DRILL RIG:	Tuesday, October 02, 2018	BORING DEPTH (FT):								
DRILLER:	Geoprobe 54DT	WATER LEVEL:		licable						
HAMMER TYPE:	Troxler Geologic, Inc. Not Applicable	CAVE-IN DEPTH:								
SAMPLING METHOD:		LOGGED BY:	J. Honey	cutt						
DRILLING METHOD:	Macro-Core Sampler Macro-Core Sampler (3-in. OD)	NORTHING: EASTING:								
DRILLING WETHOD.	Macro-Core Sampler (5-III. OD)	EASTING:		1		I		l	1	
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		Water Level	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Тор	soil,			Н						
San	d, Brown, Tan,			ł	1.7	No				
Clay	rey Sand, Tan, Orange,			ŧ	1.0	No				
5 — San	dy Clay, Orange, Red,		•	ł	80.0	Yes				
			•							
10 Bori	ng Terminated at 10 Ft-BGS									
15 —										
20 —										
25 —										
30										

PROJECT:	NCDOT I-5986B													
	Parcel 13-691 Long Branch Rd, Dunn, N	BORING LOG: B-10												
	S&ME Project No. 4305-18-175													
DATE DRILLED:	Tuesday, October 02, 2018	BORING DEPTH (FT):												
DRILL RIG:	Geoprobe 54DT		WATER LEVEL: 6											
DRILLER:	Troxler Geologic, Inc.		CAVE-IN DEPTH: Not Applicable											
HAMMER TYPE:	Not Applicable	LOGGED BY: J. Honeycutt												
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:	NORTHING: EASTING:											
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		1	1	I	l	ı		ı				
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE				
	nd, Brown, ndy Clay, Tan, ndy Clay, Red, Orange,		•		5.9 1.5 394.0	No No Yes								
10 — Bo	ring Terminated at 10 Ft-BGS													
20 —														
25 —														

Hydrocarbon Analysis Results

Client: S&ME

Address:

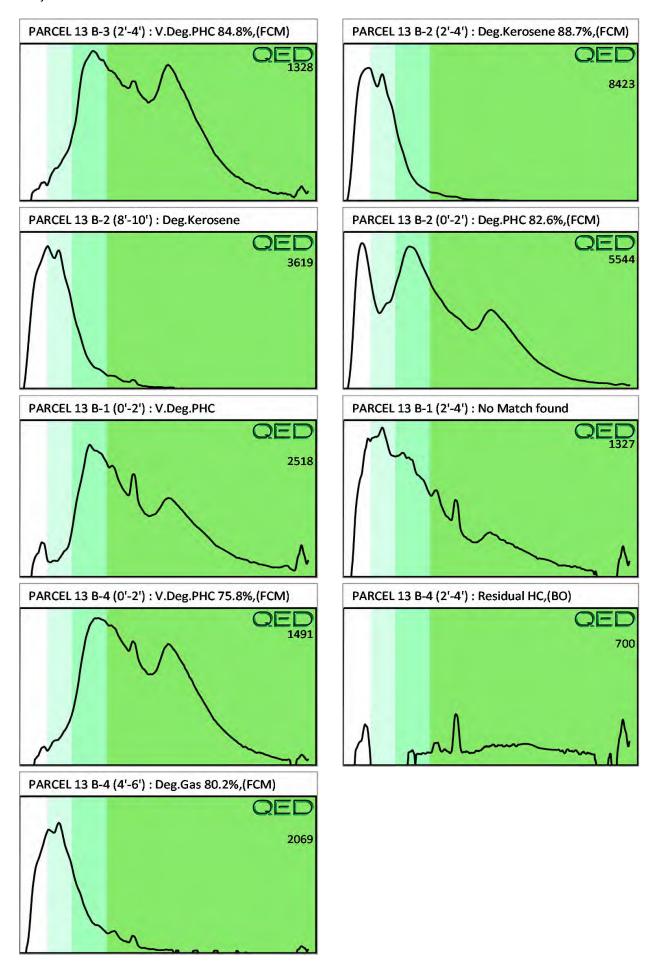
Samples taken Samples extracted Tuesday, October 02, 2018 Tuesday, October 02, 2018

Samples analysed

Tuesday, October 02, 2018

Contact: JAMIE HONEYCUTT Operator MAX MOYER

Project: PARCEL 13 - PROJ 4305-18-175


												U00904		
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	% Ratios		3	HC Fingerprint Match	
										C5 - C10	C10 - C18	C18		
S	PARCEL 13 B-3 (2'-4')	19.7	<0.49	1.7	0.72	2.42	0.54	<0.16	< 0.02	78.8	14.2	7	V.Deg.PHC 84.8%,(FCM)	
S	PARCEL 13 B-2 (2'-4')	63.6	<1.6	342	515.6	857.6	43	1.7	< 0.064	99.8	0.2	0	Deg.Kerosene 88.7%,(FCM)	
S	PARCEL 13 B-2 (8'-10')	49.1	<1.2	99.7	162.6	262.3	11.5	< 0.39	< 0.049	99.7	0.3	0	Deg.Kerosene 90.6%,(FCM)	
S	PARCEL 13 B-2 (0'-2')	17.2	< 0.43	61.1	3.2	64.3	1.8	<0.14	< 0.017	97.4	2	0.6	Deg.PHC 82.6%,(FCM)	
S	PARCEL 13 B-1 (0'-2')	8.6	<0.22	<0.22	0.82	0.82	0.43	<0.07	<0.009	0	74.4	25.6	V.Deg.PHC 90.7%,(FCM),(BO)	
S	PARCEL 13 B-1 (2'-4')	6.3	<0.16	4	0.6	4.6	0.58	< 0.05	<0.006	98	1.6	0.4	No Match found	
S	PARCEL 13 B-4 (0'-2')	21.7	<0.54	<0.54	0.91	0.91	0.65	<0.17	<0.022	0	66.6	33.4	V.Deg.PHC 75.8%,(FCM)	
S	PARCEL 13 B-4 (2'-4')	18.3	<0.46	<0.46	<0.46	<0.46	<0.09	<0.15	<0.018	0	0	100	Residual HC,(BO)	
S	PARCEL 13 B-4 (4'-6')	25.0	6.8	39.6	5.5	45.1	3.7	<0.2	<0.025	99.3	0.6	0.1	Deg.Gas 80.2%,(FCM)	
	Initial C	alibrator (QC check	OK					Final FO	CM QC	Check	OK		93.7 %

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only. Data generated by HC-1 Analyser Project: PARCEL 13 - PROJ 4305-18-175

106.8 %

Hydrocarbon Analysis Results

Client:S&MESamples takenTuesday, October 02, 2018Address:Samples extractedTuesday, October 02, 2018

Samples analysed Tuesday, October 02, 2018

Final FCM QC Check OK

Contact: JAMIE HONEYCUTT Operator MAX MOYER

Project: PARCEL 13 - PROJ 4305-18-175

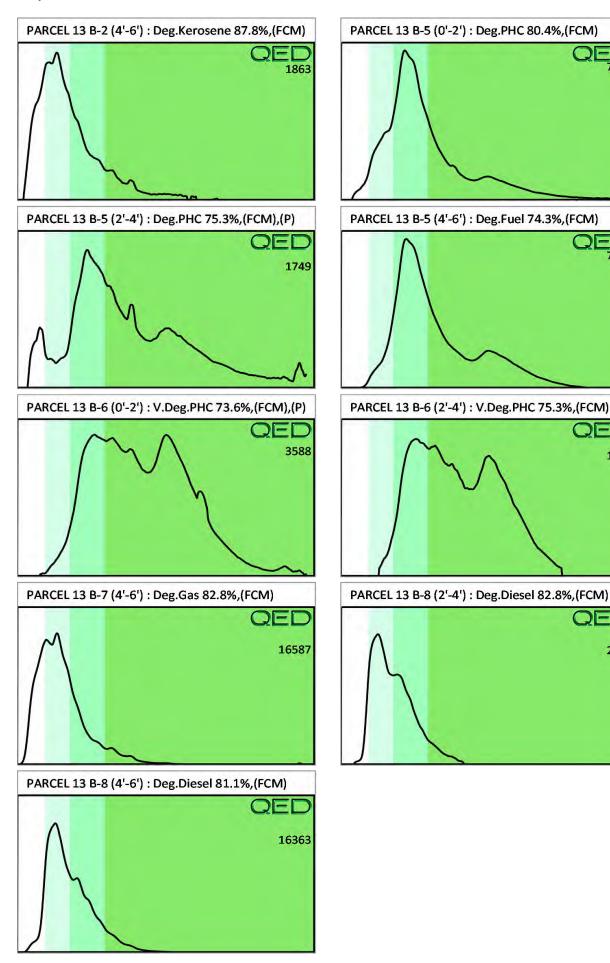
													U00904						
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP	% Ratios		% Ratios		% Ratios		% Ratios		3	HC Fingerprint Match
										C5 - C10	C10 - C18	C18							
S	PARCEL 13 B-2 (4'-6')	20.6	<0.52	17.7	37.8	55.5	2.9	<0.17	<0.021	99.2	0.7	0.1	Deg.Kerosene 87.8%,(FCM)						
S	PARCEL 13 B-5 (0'-2')	19.5	< 0.49	5.6	11.3	16.9	4.1	0.26	< 0.02	70.9	26.4	2.8	Deg.PHC 80.4%,(FCM)						
S	PARCEL 13 B-5 (2'-4')	20.2	<0.5	<0.5	1.2	1.2	0.61	<0.16	<0.02	94.5	4.3	1.2	Deg.PHC 75.3%,(FCM),(P)						
S	PARCEL 13 B-5 (4'-6')	18.4	<0.46	< 0.46	6	6	3.6	0.2	<0.018	0	88.4	11.6	Deg.Fuel 74.3%,(FCM)						
S	PARCEL 13 B-6 (0'-2')	23.6	<0.59	<0.59	2.1	2.1	2	<0.19	<0.024	0	64.3	35.7	V.Deg.PHC 73.6%,(FCM),(P)						
S	PARCEL 13 B-6 (2'-4')	17.6	<0.44	< 0.44	0.54	0.54	0.37	<0.14	<0.018	0	68.2	31.8	V.Deg.PHC 75.3%,(FCM)						
S	PARCEL 13 B-7 (4'-6')	15.3	42.6	120.1	27.4	147.5	20.1	0.79	<0.015	99.3	0.6	0.1	Deg.Gas 82.8%,(FCM)						
S	PARCEL 13 B-8 (2'-4')	22.2	<0.56	<0.56	13.6	13.6	4.3	<0.18	<0.022	60.1	39.3	0.7	Deg.Diesel 82.8%,(FCM)						
S	PARCEL 13 B-8 (4'-6')	331.0	118.1	331.8	1010	1342	376.7	13.9	<0.33	90	9.7	0.3	Deg.Diesel 81.1%,(FCM)						
					_				_				_						
	1.33.10	- I:I	00 11 11	OK					Final F	20.4.00	Clara ala	OK	400.0.0/						

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Abbreviations: FCM = Results calculated using Fundamental Calibration Mode: % = confidence of hydrocarbon identification: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate detected

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only.


Data generated by HC-1 Analyser

Initial Calibrator QC check

1043

2884

Project: PARCEL 13 - PROJ 4305-18-175

Hydrocarbon Analysis Results

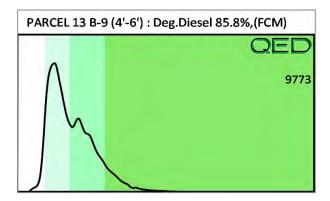
Client:S&MESamples takenTuesday, October 02, 2018Address:Samples extractedTuesday, October 02, 2018Samples analysedTuesday, October 02, 2018

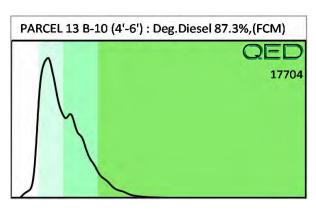
Contact: JAMIE HONEYCUTT Operator MAX MOYER

Project: PARCEL 13 - PROJ 4305-18-175

													U00904
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP	% Ratios		3	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
S	PARCEL 13 B-9 (4'-6')	202.0	<5.1	29.8	330.5	360.3	134.4	5	<0.2	70.6	28.3	1.1	Deg.Diesel 85.8%,(FCM)
S	PARCEL 13 B-10 (4'-6')	66.7	<1.7	29.3	211.6	240.9	76.5	2.8	<0.067	78.4	21	0.6	Deg.Diesel 87.3%,(FCM)
	Initial (Calibrator	QC check	OK					Final FC	CM QC	Check	OK	92.8 %

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected


B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only.

Data generated by HC-1 Analyser

Project: PARCEL 13 - PROJ 4305-18-175

October 15, 2018

Michael Pfeifer S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: NC DOT I-5986B Parcel 13

Client Job Number:

Project Number: 4305-18-175

Laboratory Work Order Number: 18J0293

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on October 4, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	6
18J0293-01	6
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B214429	10
Semivolatile Organic Compounds by GC/MS	15
B214244	15
Flag/Qualifier Summary	17
Certifications	18
Chain of Custody/Sample Receipt	21

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616 ATTN: Michael Pfeifer

REPORT DATE: 10/15/2018

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-18-175

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18J0293

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: NC DOT I-5986B Parcel 13

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB

TW-1- Parcel 13 18J0293-01 Ground Water SW-846 8260B

SW-846 8270D

EXECUTIVE SUMMARY

Client ID: TW-1- Parcel 13 Lab ID: 18J0293-01

Analyte	Results/Qual	DL	RL	Units	Method
1,2,4-Trimethylbenzene	21000	36	200	$\mu g/L$	SW-846 8260B
1,3,5-Trimethylbenzene	6100	26	200	$\mu g/L$	SW-846 8260B
Benzene	4000	24	200	$\mu g/L$	SW-846 8260B
Ethylbenzene	11000	26	200	$\mu g/L$	SW-846 8260B
Isopropylbenzene (Cumene)	1000	24	200	$\mu g/L$	SW-846 8260B
m+p Xylene	32000	51	400	$\mu g/L$	SW-846 8260B
Naphthalene	3800	24	400	$\mu g/L$	SW-846 8260B
n-Butylbenzene	2000	30	200	$\mu g/L$	SW-846 8260B
n-Propylbenzene	3600	26	200	$\mu g/L$	SW-846 8260B
o-Xylene	12000	26	200	$\mu g/L$	SW-846 8260B
p-Isopropyltoluene (p-Cymene)	240	30	200	μg/L	SW-846 8260B
sec-Butylbenzene	390	26	200	$\mu g/L$	SW-846 8260B
Toluene	36000	34	200	$\mu g/L$	SW-846 8260B
2-Methylnaphthalene (SIM)	240	11	140	$\mu g/L$	SW-846 8270D
Acenaphthene (SIM)	0.46	0.086	0.43	$\mu g/L$	SW-846 8270D
Naphthalene (SIM)	530	10	140	$\mu g/L$	SW-846 8270D
Phenanthrene (SIM)	0.59	0.057	0.071	$\mu g/L$	SW-846 8270D

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 8270, only PAHs were requested and reported.

For method 8270 PAH(SIM), sample 18J0293-01 was run at a dilution due to high concentration target compounds

For method 8260B elevated reporting limit for sample 18J0293-01 due to high concentrations of target compounds.

SW-846 8260B

Qualifications:

RL-11

Elevated reporting limit due to high concentration of target compounds.

Analyte & Samples(s) Qualified:

18J0293-01[TW-1- Parcel 13]

SW-846 8270D

Qualifications:

I-02

Result not attainable due to sample matrix interferences (a chemical or physical interference which could not be eliminated).

Analyte & Samples(s) Qualified:

Naphthalene-d8

18J0293-01[TW-1- Parcel 13]

Naphthalene-d8 (SIM)

18J0293-01[TW-1- Parcel 13]

S-02

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract

sample extract. Analyte & Samples(s) Qualified:

Nitrobenzene-d5

18J0293-01[TW-1- Parcel 13]

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

Legrify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction.

Kappennel

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director

Project Location: NC DOT I-5986B Parcel 13 Sample Description: Work Order: 18J0293

Date Received: 10/4/2018

Field Sample #: TW-1- Parcel 13 Sampled: 10/2/2018 12:45

Sample ID: 18J0293-01
Sample Matrix: Ground Water

Sample Flags: RL-11			Volatile	Organic Co	mpounds by G	GC/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	10000	1900	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Acrylonitrile	ND	1000	120	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
tert-Amyl Methyl Ether (TAME)	ND	100	21	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Benzene	4000	200	24	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Bromobenzene	ND	200	30	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Bromochloromethane	ND	200	45	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Bromodichloromethane	ND	100	59	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Bromoform	ND	400	42	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Bromomethane	ND	400	190	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
2-Butanone (MEK)	ND	4000	470	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
tert-Butyl Alcohol (TBA)	ND	4000	430	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
n-Butylbenzene	2000	200	30	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
sec-Butylbenzene	390	200	26	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
tert-Butylbenzene	ND	200	24	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	100	19	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Carbon Disulfide	ND	800	200	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Carbon Tetrachloride	ND	1000	49	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Chlorobenzene	ND	200	32	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Chlorodibromomethane	ND	100	21	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Chloroethane	ND	400	56	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Chloroform	ND	400	44	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Chloromethane	ND	400	110	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
2-Chlorotoluene	ND	200	24	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
4-Chlorotoluene	ND	200	28	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	1000	74	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,2-Dibromoethane (EDB)	ND	100	30	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Dibromomethane	ND	200	32	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,2-Dichlorobenzene	ND	200	34	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,3-Dichlorobenzene	ND	200	34	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,4-Dichlorobenzene	ND	200	30	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
trans-1,4-Dichloro-2-butene	ND	400	62	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Dichlorodifluoromethane (Freon 12)	ND	400	57	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,1-Dichloroethane	ND	200	32	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,2-Dichloroethane	ND	200	39	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,1-Dichloroethylene	ND	200	42	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
cis-1,2-Dichloroethylene	ND	200	29	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
trans-1,2-Dichloroethylene	ND	200	30	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,2-Dichloropropane	ND	200	26	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,3-Dichloropropane	ND	100	26	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
2,2-Dichloropropane	ND	200	43	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,1-Dichloropropene	ND	400	26	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
cis-1,3-Dichloropropene	ND	100	24	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
trans-1,3-Dichloropropene	ND	100	22	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Diethyl Ether	ND	400	44	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH

Page 6 of 23

Project Location: NC DOT I-5986B Parcel 13 Sample Description: Work Order: 18J0293

Date Received: 10/4/2018

Field Sample #: TW-1- Parcel 13 Sampled: 10/2/2018 12:45

Sample ID: 18J0293-01
Sample Matrix: Ground Water

Sample Flags: RL-11

Volatile Organic Compounds by GC/MS

Results ND	RL	DL	TI	D.11			Date	Date/Time	
ND			Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
	100	36	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	10000	5300	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
11000	200	26	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	120	120	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	2000	300	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1000	200	24	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
240	200	30	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	200	18	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	1000	640	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	2000	290	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
3800	400	24	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
3600	200	26	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	200	30	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	200	24	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	100	32	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	200	54	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	2000	210	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
36000	200	34	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	1000	28	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	200	38	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	200	34	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	200	26	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	200	47	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	200	40	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	400	29	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	400	43	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	200	39	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
21000	200	36	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
6100	200	26	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
ND	400	27	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
32000	400	51	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
12000	200	26	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
	% Recov	very	Recovery Limits		Flag/Qual				
	79.2		70-130					10/11/18 12:23	
	ND ND 1000 240 ND	ND 120 ND 2000 1000 200 240 200 ND 200 ND 1000 ND 2000 3800 400 3600 200 ND 200 ND 2000 ND 400 ND	ND 120 120 ND 2000 300 1000 200 24 240 200 30 ND 200 18 ND 1000 640 ND 2000 290 3800 400 24 3600 200 26 ND 200 30 ND 200 34 ND 100 32 ND 200 34 ND 200 34 ND 200 38 ND 200 34 ND 200 38 ND 200 36 ND 200 36 ND 200 37 ND 200 38 ND 200 38 ND 200 39 ND 200 36 ND 200 40 ND 200 39 2100 200 36 6100 200 36 6100 200 26 ND 400 51 12000 200 26 **Recovery**	ND 120 120 μg/L ND 2000 300 μg/L 1000 200 24 μg/L 240 200 30 μg/L ND 200 18 μg/L ND 1000 640 μg/L ND 2000 290 μg/L 3800 400 24 μg/L ND 200 30 μg/L ND 200 34 μg/L ND 200 54 μg/L ND 200 54 μg/L ND 200 34 μg/L ND 200 34 μg/L ND 200 34 μg/L ND 200 34 μg/L ND 1000 28 μg/L ND 1000 28 μg/L ND 200 34 μg/L ND 200 34 μg/L ND 200 34 μg/L ND 200 34 μg/L ND 200 37 μg/L ND 200 38 μg/L ND 200 39 μg/L ND 200 39 μg/L ND 200 30 μg/L ND 200 40 μg/L ND 400 29 μg/L ND 400 29 μg/L ND 400 43 μg/L ND 400 43 μg/L ND 400 29 μg/L ND 400 43 μg/L ND 400 29 μg/L ND 400 43 μg/L ND 400 27 μg/L 32000 400 51 μg/L 32000 400 51 μg/L 12000 200 26 μg/L ND 400 51 μg/L 12000 200 26 μg/L	ND 120 120 μg/L 200 ND 2000 300 μg/L 200 1000 200 24 μg/L 200 240 200 30 μg/L 200 ND 200 18 μg/L 200 ND 1000 640 μg/L 200 ND 1000 640 μg/L 200 3800 400 24 μg/L 200 ND 200 30 μg/L 200 3800 400 24 μg/L 200 ND 200 30 μg/L 200 ND 200 34 μg/L 200 ND 200 54 μg/L 200 ND 200 54 μg/L 200 ND 200 34 μg/L 200 ND 200 34 μg/L 200 ND 1000 28 μg/L 200 ND 1000 28 μg/L 200 ND 200 34 μg/L 200 ND 200 36 μg/L 200 ND 200 40 μg/L 200 ND 400 29 μg/L 200 ND 400 27 μg/L 200	ND 120 120	ND	ND 120 120 μg/L 200 SW-846 8260B 10/10/18 ND 2000 300 μg/L 200 SW-846 8260B 10/10/18 1000 200 24 μg/L 200 SW-846 8260B 10/10/18 240 200 30 μg/L 200 SW-846 8260B 10/10/18 ND 200 18 μg/L 200 SW-846 8260B 10/10/18 ND 1000 640 μg/L 200 SW-846 8260B 10/10/18 ND 2000 290 μg/L 200 SW-846 8260B 10/10/18 ND 2000 26 μg/L 200 SW-846 8260B 10/10/18 ND 200 26 μg/L 200 SW-846 8260B 10/10/18 ND 200 30 μg/L 200 SW-846 8260B 10/10/18 ND 200 54 μg/L 200 SW-846 8260B 10/10/18 ND 200	ND

Project Location: NC DOT I-5986B Parcel 13 Work Order: 18J0293 Sample Description:

Date Received: 10/4/2018

Sampled: 10/2/2018 12:45 Field Sample #: TW-1- Parcel 13

Sample ID: 18J0293-01 Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene (SIM)	0.46	0.43	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Acenaphthylene (SIM)	ND	0.29	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Anthracene (SIM)	ND	0.29	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Benzo(a)anthracene (SIM)	ND	0.071	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Benzo(a)pyrene (SIM)	ND	0.14	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Benzo(b)fluoranthene (SIM)	ND	0.071	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Benzo(g,h,i)perylene (SIM)	ND	0.71	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Benzo(k)fluoranthene (SIM)	ND	0.29	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Chrysene (SIM)	ND	0.29	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Dibenz(a,h)anthracene (SIM)	ND	0.14	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Fluoranthene (SIM)	ND	0.71	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Fluorene (SIM)	ND	1.4	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.14	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
2-Methylnaphthalene (SIM)	240	140	μg/L	100		SW-846 8270D	10/6/18	10/10/18 8:47	IMR
Naphthalene (SIM)	530	140	μg/L	100		SW-846 8270D	10/6/18	10/10/18 8:47	IMR
Phenanthrene (SIM)	0.59	0.071	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Pyrene (SIM)	ND	1.4	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
Nitrobenzene-d5		*	30-130		S-02			10/9/18 17:18	
Nitrobenzene-d5		50.4	30-130					10/10/18 8:47	
2-Fluorobiphenyl		62.0	30-130					10/9/18 17:18	

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18J0293-01 [TW-1- Parcel 13]	B214429	0.025	5.00	10/10/18

Prep Method: SW-846 3510C-SW-846 8270D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18J0293-01 [TW-1- Parcel 13]	B214244	700	1.00	10/06/18
18J0293-01RE1 [TW-1- Parcel 13]	B214244	700	1.00	10/06/18

Isopropylbenzene (Cumene)

p-Isopropyltoluene (p-Cymene)

Methyl tert-Butyl Ether (MTBE)

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B214429 - SW-846 5030B										
Blank (B214429-BLK1)				Prepared: 10	0/10/18 Anal	yzed: 10/11/1	8			
Acetone	ND	50	μg/L							
Acrylonitrile	ND	5.0	$\mu g/L$							
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$							
Benzene	ND	1.0	$\mu g/L$							
Bromobenzene	ND	1.0	$\mu g/L$							
Bromochloromethane	ND	1.0	$\mu g/L$							
Bromodichloromethane	ND	0.50	$\mu g/L$							
Bromoform	ND	1.0	$\mu g/L$							
Bromomethane	ND	2.0	$\mu g/L$							
2-Butanone (MEK)	ND	20	$\mu g/L$							
tert-Butyl Alcohol (TBA)	ND	20	$\mu g/L$							
n-Butylbenzene	ND	1.0	$\mu g/L$							
sec-Butylbenzene	ND	1.0	$\mu g/L$							
tert-Butylbenzene	ND	1.0	$\mu g/L$							
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$							
Carbon Disulfide	ND	4.0	$\mu g/L$							
Carbon Tetrachloride	ND	5.0	μg/L							
Chlorobenzene	ND	1.0	μg/L							
Chlorodibromomethane	ND	0.50	μg/L							
Chloroethane	ND	2.0	μg/L							
Chloroform	ND	2.0	μg/L							
Chloromethane	ND	2.0	μg/L							
2-Chlorotoluene	ND	1.0	μg/L							
1-Chlorotoluene	ND	1.0	μg/L							
,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L							
1,2-Dibromoethane (EDB)	ND	0.50	μg/L							
Dibromomethane	ND	1.0	μg/L							
1,2-Dichlorobenzene	ND	1.0	μg/L							
1,3-Dichlorobenzene	ND	1.0	μg/L							
1,4-Dichlorobenzene	ND	1.0	μg/L							
rans-1,4-Dichloro-2-butene	ND	2.0	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
,1-Dichloroethane	ND	1.0	μg/L							
1,2-Dichloroethane	ND	1.0	μg/L							
1,1-Dichloroethylene	ND	1.0	μg/L							
cis-1,2-Dichloroethylene	ND	1.0	μg/L							
rans-1,2-Dichloroethylene	ND	1.0	μg/L							
,2-Dichloropropane	ND	1.0	μg/L							
,3-Dichloropropane	ND	0.50	μg/L							
2,2-Dichloropropane	ND	1.0	μg/L							
,1-Dichloropropene	ND	2.0	μg/L							
is-1,3-Dichloropropene	ND	0.50	μg/L							
rans-1,3-Dichloropropene	ND	0.50	μg/L							
Diethyl Ether	ND	2.0	μg/L							
Diisopropyl Ether (DIPE)	ND	0.50	μg/L							
,4-Dioxane	ND	50	μg/L							
Ethylbenzene	ND	1.0	μg/L							
Hexachlorobutadiene	ND	0.60	μg/L							
2-Hexanone (MBK)	ND	10	μg/L μg/L							

1.0

1.0

1.0

ND

ND

ND

 $\mu \text{g/L}$

 $\mu g \! / \! L$

 $\mu g \! / \! L$

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B214429 - SW-846 5030B										
lank (B214429-BLK1)				Prepared: 10	/10/18 Anal	yzed: 10/11/1	8			
Methylene Chloride	ND	5.0	μg/L		· · · · · · · ·	,				
-Methyl-2-pentanone (MIBK)	ND	10	μg/L							
Iaphthalene	ND	2.0	μg/L							
-Propylbenzene	ND	1.0	μg/L							
tyrene	ND	1.0	μg/L							
1,1,2-Tetrachloroethane	ND	1.0	μg/L							
1,2,2-Tetrachloroethane	ND	0.50	μg/L							
etrachloroethylene	ND	1.0	μg/L							
etrahydrofuran	ND	10	μg/L							
bluene	ND ND	1.0	μg/L μg/L							
2,3-Trichlorobenzene	ND ND	5.0	μg/L μg/L							
2,4-Trichlorobenzene		1.0	μg/L μg/L							
3,5-Trichlorobenzene	ND	1.0								
1,1-Trichloroethane	ND ND	1.0	μg/L μg/L							
1,2-Trichloroethane	ND ND	1.0	μg/L μg/L							
richloroethylene	ND	1.0								
richlorofluoromethane (Freon 11)	ND		μg/L μα/Ι							
	ND	2.0	μg/L							
2,3-Trichloropropane	ND	2.0	μg/L							
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	1.0	μg/L							
2,4-Trimethylbenzene	ND	1.0	μg/L							
3,5-Trimethylbenzene	ND	1.0	μg/L							
inyl Chloride	ND	2.0	μg/L							
+p Xylene	ND ND	2.0	μg/L							
Xylene	ND	1.0	μg/L							
·				25.0		91.0	70.120			
arrogate: 1,2-Dichloroethane-d4	20.2		μg/L	25.0		81.0	70-130			
ırrogate: Toluene-d8 ırrogate: 4-Bromofluorobenzene	25.3 24.5		μg/L μg/L	25.0 25.0		101 98.1	70-130 70-130			
_	24.3		μ <u>g</u> / L		1/10/10 4 1					
CS (B214429-BS1)		50	, /r	Prepared: 10.	v10/18 Analy					
cetone	110	50	μg/L	100		110	70-160			
crylonitrile	10.0	5.0	μg/L	10.0		100	70-130			
rt-Amyl Methyl Ether (TAME)	9.69	0.50	μg/L	10.0		96.9	70-130			
enzene	9.91	1.0	μg/L	10.0		99.1	70-130			
romobenzene	10.7	1.0	μg/L	10.0		107	70-130			
romochloromethane	11.1	1.0	μg/L	10.0		111	70-130			
romodichloromethane	9.68	0.50	μg/L	10.0		96.8	70-130			
romoform	11.2	1.0	μg/L	10.0		112	70-130			
romomethane	8.79	2.0	μg/L	10.0		87.9	40-160			
Butanone (MEK)	101	20	μg/L	100		101	40-160			
rt-Butyl Alcohol (TBA)	98.5	20	$\mu g/L$	100		98.5	40-160			
-Butylbenzene	11.3	1.0	$\mu g/L$	10.0		113	70-130			
c-Butylbenzene	11.5	1.0	$\mu g/L$	10.0		115	70-130			
rt-Butylbenzene	11.5	1.0	$\mu g/L$	10.0		115	70-130			
rt-Butyl Ethyl Ether (TBEE)	9.65	0.50	μg/L	10.0		96.5	70-130			
arbon Disulfide	10.8	4.0	$\mu g/L$	10.0		108	70-130			
arbon Tetrachloride	8.57	5.0	$\mu g/L$	10.0		85.7	70-130			
hlorobenzene	11.0	1.0	$\mu \text{g/L}$	10.0		110	70-130			
hlorodibromomethane	10.7	0.50	$\mu g/L$	10.0		107	70-130			
hloroethane	8.75	2.0	μg/L	10.0		87.5	70-130			
hloroform	9.29	2.0	$\mu g/L$	10.0		92.9	70-130			
Chloromethane	9.26	2.0	$\mu g/L$	10.0		92.6	40-160			
-Chlorotoluene	11.1	1.0	$\mu g/L$	10.0		111	70-130			
									Р	age 11 c

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
Batch B214429 - SW-846 5030B									
LCS (B214429-BS1)				Prepared: 10	0/10/18 Analyzed: 10/11	18			
4-Chlorotoluene	10.6	1.0	μg/L	10.0	106	70-130			
1,2-Dibromo-3-chloropropane (DBCP)	10.4	5.0	μg/L	10.0	104	70-130			
1,2-Dibromoethane (EDB)	10.2	0.50	$\mu g/L$	10.0	102	70-130			
Dibromomethane	10.1	1.0	μg/L	10.0	101	70-130			
1,2-Dichlorobenzene	11.0	1.0	μg/L	10.0	110	70-130			
1,3-Dichlorobenzene	11.3	1.0	$\mu g/L$	10.0	113	70-130			
1,4-Dichlorobenzene	10.5	1.0	μg/L	10.0	105	70-130			
trans-1,4-Dichloro-2-butene	10.8	2.0	$\mu g/L$	10.0	108	70-130			
Dichlorodifluoromethane (Freon 12)	7.09	2.0	$\mu g/L$	10.0	70.9	40-160			
1,1-Dichloroethane	10.1	1.0	$\mu g/L$	10.0	101	70-130			
1,2-Dichloroethane	8.69	1.0	$\mu g/L$	10.0	86.9	70-130			
1,1-Dichloroethylene	9.28	1.0	$\mu g/L$	10.0	92.8	70-130			
cis-1,2-Dichloroethylene	9.56	1.0	$\mu g/L$	10.0	95.6	70-130			
trans-1,2-Dichloroethylene	10.0	1.0	$\mu g/L$	10.0	100	70-130			
1,2-Dichloropropane	11.5	1.0	$\mu g/L$	10.0	115	70-130			
1,3-Dichloropropane	9.78	0.50	$\mu g/L$	10.0	97.8	70-130			
2,2-Dichloropropane	10.4	1.0	$\mu g/L$	10.0	104	40-130			
1,1-Dichloropropene	9.29	2.0	$\mu g/L$	10.0	92.9	70-130			
cis-1,3-Dichloropropene	10.6	0.50	μg/L	10.0	106	70-130			
trans-1,3-Dichloropropene	10.8	0.50	μg/L	10.0	108	70-130			
Diethyl Ether	10.4	2.0	μg/L	10.0	104	70-130			
Diisopropyl Ether (DIPE)	9.93	0.50	μg/L	10.0	99.3	70-130			
1,4-Dioxane	108	50	μg/L	100	108	40-130			
Ethylbenzene	11.4	1.0	μg/L	10.0	114	70-130			
Hexachlorobutadiene	13.0	0.60	μg/L	10.0	130	70-130			
2-Hexanone (MBK)	102	10	μg/L	100	102	70-160			
Isopropylbenzene (Cumene)	11.7	1.0	μg/L	10.0	117	70-130			
p-Isopropyltoluene (p-Cymene)	11.4	1.0	μg/L	10.0	114	70-130			
Methyl tert-Butyl Ether (MTBE)	9.84	1.0	μg/L	10.0	98.4	70-130			
Methylene Chloride	9.01	5.0	μg/L	10.0	90.1	70-130			
4-Methyl-2-pentanone (MIBK)	100	10	μg/L	100	100	70-160			
Naphthalene	10.7	2.0	μg/L	10.0	107	40-130			
n-Propylbenzene	10.8	1.0	μg/L	10.0	108	70-130			
Styrene	11.4	1.0	μg/L	10.0	114	70-130			
1,1,2-Tetrachloroethane	11.4	1.0	μg/L	10.0	114	70-130			
1,1,2,2-Tetrachloroethane	11.1	0.50	μg/L	10.0	111	70-130			
Tetrachloroethylene	11.6	1.0	μg/L	10.0	116	70-130			
Tetrahydrofuran	9.64	10	μg/L	10.0	96.4	70-130			J
Toluene	10.7	1.0	μg/L	10.0	107	70-130			J
1,2,3-Trichlorobenzene	10.7	5.0	μg/L	10.0	109	70-130			
1,2,4-Trichlorobenzene		1.0	μg/L	10.0	110	70-130			
1,3,5-Trichlorobenzene	11.0 11.4	1.0	μg/L μg/L	10.0	114	70-130			
1,1,1-Trichloroethane	9.39	1.0	μg/L μg/L	10.0	93.9	70-130			
1,1,2-Trichloroethane	9.39 10.9	1.0	μg/L μg/L	10.0	109	70-130			
Trichloroethylene	10.9	1.0	μg/L μg/L	10.0	107	70-130			
Trichlorofluoromethane (Freon 11)		2.0	μg/L μg/L	10.0	80.3	70-130			
1,2,3-Trichloropropane	8.03	2.0	μg/L μg/L	10.0	102	70-130			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.2 10.4	1.0	μg/L μg/L	10.0	102	70-130 70-130			
1,2,4-Trimethylbenzene	10.6	1.0	μg/L	10.0	106	70-130			
1,3,5-Trimethylbenzene	10.7	1.0	μg/L	10.0	107	70-130			
Vinyl Chloride	9.45	2.0	μg/L	10.0	94.5	40-160			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B214429 - SW-846 5030B										
LCS (B214429-BS1)				Prepared: 10	0/10/18 Analy	zed: 10/11/1	8			
m+p Xylene	21.9	2.0	$\mu g/L$	20.0		109	70-130			
o-Xylene	10.8	1.0	$\mu g/L$	10.0		108	70-130			
Surrogate: 1,2-Dichloroethane-d4	19.8		μg/L	25.0		79.0	70-130			
Surrogate: Toluene-d8	25.2		μg/L	25.0		101	70-130			
Surrogate: 4-Bromofluorobenzene	25.2		μg/L	25.0		101	70-130			
LCS Dup (B214429-BSD1)				Prepared: 10	0/10/18 Analy	zed: 10/11/1	8			
Acetone	106	50	μg/L	100		106	70-160	3.55	25	
Acrylonitrile	9.63	5.0	$\mu g/L$	10.0		96.3	70-130	4.07	25	
tert-Amyl Methyl Ether (TAME)	9.83	0.50	$\mu g/L$	10.0		98.3	70-130	1.43	25	
Benzene	9.76	1.0	μg/L	10.0		97.6	70-130	1.53	25	
Bromobenzene	10.4	1.0	$\mu g/L$	10.0		104	70-130	3.04	25	
Bromochloromethane	11.0	1.0	μg/L	10.0		110	70-130	0.816	25	
Bromodichloromethane	9.46	0.50	μg/L	10.0		94.6	70-130	2.30	25	
Bromoform	10.6	1.0	μg/L	10.0		106	70-130	5.40	25	
Bromomethane	9.56	2.0	μg/L	10.0		95.6	40-160	8.39	25	
2-Butanone (MEK)	98.3	20	μg/L	100		98.3	40-160	3.17	25	
tert-Butyl Alcohol (TBA)	93.1	20	μg/L	100		93.1	40-160	5.67	25	
n-Butylbenzene	11.0	1.0	μg/L	10.0		110	70-130	2.77	25	
sec-Butylbenzene	11.3	1.0	μg/L	10.0		113	70-130	1.32	25	
tert-Butylbenzene	11.1	1.0	μg/L	10.0		111	70-130	3.28	25	
tert-Butyl Ethyl Ether (TBEE)	9.70	0.50	μg/L	10.0		97.0	70-130	0.517	25	
Carbon Disulfide	10.3	4.0	μg/L	10.0		103	70-130	4.63	25	
Carbon Tetrachloride	8.13	5.0	μg/L	10.0		81.3	70-130	5.27	25	
Chlorobenzene		1.0	μg/L μg/L	10.0		108	70-130	1.92	25	
Chlorodibromomethane	10.8	0.50	μg/L μg/L	10.0		106	70-130	0.842	25	
Chloroethane	10.6	2.0	μg/L μg/L	10.0		84.9	70-130	3.02	25	
Chloroform	8.49	2.0	μg/L μg/L	10.0		92.5	70-130	0.431	25	
Chloromethane	9.25	2.0	μg/L μg/L			91.5				
2-Chlorotoluene	9.15	1.0		10.0			40-160	1.20	25 25	
4-Chlorotoluene	10.3	1.0	μg/L	10.0		103	70-130	7.39	25	
	10.1		μg/L	10.0		101	70-130	5.10	25	
1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB)	9.59	5.0	μg/L	10.0		95.9	70-130	8.49	25	
, ,	10.2	0.50	μg/L	10.0		102	70-130	0.195	25	
Dibromomethane	10.1	1.0	μg/L	10.0		101	70-130	0.0993	25	
1,2-Dichlorobenzene	10.9	1.0	μg/L	10.0		109	70-130	1.10	25	
1,3-Dichlorobenzene	11.1	1.0	μg/L	10.0		111	70-130	1.61	25	
1,4-Dichlorobenzene	10.4	1.0	μg/L	10.0		104	70-130	1.34	25	
trans-1,4-Dichloro-2-butene	10.3	2.0	μg/L	10.0		103	70-130	5.03	25	
Dichlorodifluoromethane (Freon 12)	6.71	2.0	μg/L	10.0		67.1	40-160	5.51	25	
1,1-Dichloroethane	10.0	1.0	μg/L	10.0		100	70-130	1.39	25	
1,2-Dichloroethane	8.70	1.0	μg/L	10.0		87.0	70-130	0.115	25	
1,1-Dichloroethylene	8.94	1.0	μg/L	10.0		89.4	70-130	3.73	25	
cis-1,2-Dichloroethylene	9.55	1.0	μg/L	10.0		95.5	70-130	0.105	25	
trans-1,2-Dichloroethylene	9.94	1.0	μg/L	10.0		99.4	70-130	0.802	25	
1,2-Dichloropropane	11.4	1.0	μg/L	10.0		114	70-130	0.523	25	
1,3-Dichloropropane	9.88	0.50	$\mu g/L$	10.0		98.8	70-130	1.02	25	
2,2-Dichloropropane	10.0	1.0	μg/L	10.0		100	40-130	3.91	25	
1,1-Dichloropropene	9.40	2.0	$\mu \text{g/L}$	10.0		94.0	70-130	1.18	25	
cis-1,3-Dichloropropene	10.5	0.50	μg/L	10.0		105	70-130	1.23	25	
trans-1,3-Dichloropropene	10.7	0.50	$\mu \text{g/L}$	10.0		107	70-130	0.927	25	
Diethyl Ether	9.97	2.0	$\mu g/L$	10.0		99.7	70-130	3.74	25	
Diisopropyl Ether (DIPE)	9.84	0.50	$\mu g/L$	10.0		98.4	70-130	0.910	25	

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B214429 - SW-846 5030B											
LCS Dup (B214429-BSD1)				Prepared: 10	0/10/18 Analy	yzed: 10/11/1	18				
1,4-Dioxane	101	50	μg/L	100		101	40-130	6.81	50		 † ‡
Ethylbenzene	10.8	1.0	$\mu g \! / \! L$	10.0		108	70-130	5.23	25		
Hexachlorobutadiene	12.8	0.60	μg/L	10.0		128	70-130	2.17	25		
2-Hexanone (MBK)	98.3	10	μg/L	100		98.3	70-160	3.51	25		†
Isopropylbenzene (Cumene)	11.5	1.0	μg/L	10.0		115	70-130	2.41	25		
p-Isopropyltoluene (p-Cymene)	11.3	1.0	μg/L	10.0		113	70-130	0.791	25		
Methyl tert-Butyl Ether (MTBE)	9.80	1.0	μg/L	10.0		98.0	70-130	0.407	25		
Methylene Chloride	8.97	5.0	μg/L	10.0		89.7	70-130	0.445	25		
4-Methyl-2-pentanone (MIBK)	97.6	10	μg/L	100		97.6	70-160	2.93	25		†
Naphthalene	10.2	2.0	μg/L	10.0		102	40-130	4.11	25		†
n-Propylbenzene	10.3	1.0	μg/L	10.0		103	70-130	4.73	25		
Styrene	10.8	1.0	μg/L	10.0		108	70-130	5.39	25		
1,1,1,2-Tetrachloroethane	11.2	1.0	μg/L	10.0		112	70-130	2.21	25		
1,1,2,2-Tetrachloroethane	10.7	0.50	μg/L	10.0		107	70-130	3.03	25		
Tetrachloroethylene	11.3	1.0	μg/L	10.0		113	70-130	3.14	25		
Tetrahydrofuran	9.82	10	μg/L	10.0		98.2	70-130	1.85	25	J	
Toluene	10.6	1.0	μg/L	10.0		106	70-130	0.470	25		
1,2,3-Trichlorobenzene	10.8	5.0	μg/L	10.0		108	70-130	0.368	25		
1,2,4-Trichlorobenzene	10.6	1.0	μg/L	10.0		106	70-130	3.42	25		
1,3,5-Trichlorobenzene	11.4	1.0	μg/L	10.0		114	70-130	0.00	25		
1,1,1-Trichloroethane	9.16	1.0	μg/L	10.0		91.6	70-130	2.48	25		
1,1,2-Trichloroethane	10.6	1.0	μg/L	10.0		106	70-130	3.45	25		
Trichloroethylene	10.3	1.0	μg/L	10.0		103	70-130	3.81	25		
Trichlorofluoromethane (Freon 11)	7.89	2.0	$\mu g/L$	10.0		78.9	70-130	1.76	25		
1,2,3-Trichloropropane	8.56	2.0	μg/L	10.0		85.6	70-130	17.8	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.85	1.0	μg/L	10.0		98.5	70-130	5.91	25		
1,2,4-Trimethylbenzene	10.5	1.0	$\mu \text{g/L}$	10.0		105	70-130	0.951	25		
1,3,5-Trimethylbenzene	10.4	1.0	$\mu g \! / \! L$	10.0		104	70-130	3.04	25		
Vinyl Chloride	8.87	2.0	$\mu g/L$	10.0		88.7	40-160	6.33	25		†
m+p Xylene	21.2	2.0	$\mu g/L$	20.0		106	70-130	3.25	25		
o-Xylene	10.6	1.0	μg/L	10.0		106	70-130	2.52	25		
Surrogate: 1,2-Dichloroethane-d4	20.2		μg/L	25.0		80.9	70-130				_
Surrogate: Toluene-d8	25.2		$\mu g/L$	25.0		101	70-130				
Surrogate: 4-Bromofluorobenzene	24.2		$\mu g/L$	25.0		96.9	70-130				

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B214244 - SW-846 3510C										
Blank (B214244-BLK1)				Prepared: 10	0/06/18 Analy	yzed: 10/08/	18			
Acenaphthene (SIM)	ND	0.30	$\mu g/L$							
Acenaphthylene (SIM)	ND	0.20	$\mu g/L$							
Anthracene (SIM)	ND	0.20	$\mu g/L$							
Benzo(a)anthracene (SIM)	ND	0.050	$\mu g/L$							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
Benzo(g,h,i)perylene (SIM)	ND	0.50	μg/L							
Benzo(k)fluoranthene (SIM)	ND	0.20	μg/L							
Chrysene (SIM)	ND	0.20	$\mu g/L$							
Dibenz(a,h)anthracene (SIM)	ND	0.10	$\mu g/L$							
Fluoranthene (SIM)	ND	0.50	$\mu g/L$							
Fluorene (SIM)	ND	1.0	$\mu g/L$							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.10	$\mu g/L$							
2-Methylnaphthalene (SIM)	ND	1.0	$\mu g/L$							
Naphthalene (SIM)	ND	1.0	$\mu g/L$							
Phenanthrene (SIM)	ND	0.050	$\mu g/L$							
Pyrene (SIM)	ND	1.0	$\mu \text{g/L}$							
Surrogate: Nitrobenzene-d5	74.2		μg/L	100		74.2	30-130			
Surrogate: 2-Fluorobiphenyl	78.7		$\mu g/L$	100		78.7	30-130			
Surrogate: p-Terphenyl-d14	80.5		$\mu g/L$	100		80.5	30-130			
LCS (B214244-BS1)				Prepared: 10	0/06/18 Analy	yzed: 10/08/	18			
Acenaphthene (SIM)	39.6	7.5	$\mu g/L$	50.0		79.1	40-140			
Acenaphthylene (SIM)	41.0	5.0	$\mu g/L$	50.0		82.0	40-140			
Anthracene (SIM)	42.4	5.0	$\mu g/L$	50.0		84.9	40-140			
Benzo(a)anthracene (SIM)	40.9	1.2	$\mu g/L$	50.0		81.8	40-140			
Benzo(a)pyrene (SIM)	43.4	2.5	$\mu g/L$	50.0		86.9	40-140			
Benzo(b)fluoranthene (SIM)	44.4	1.2	$\mu g/L$	50.0		88.7	40-140			
Benzo(g,h,i)perylene (SIM)	41.4	12	$\mu g/L$	50.0		82.8	40-140			
Benzo(k)fluoranthene (SIM)	42.2	5.0	$\mu g/L$	50.0		84.3	40-140			
Chrysene (SIM)	40.3	5.0	$\mu g/L$	50.0		80.6	40-140			
Dibenz(a,h)anthracene (SIM)	42.4	2.5	$\mu g/L$	50.0		84.9	40-140			
Fluoranthene (SIM)	41.9	12	$\mu \text{g/L}$	50.0		83.8	40-140			
Fluorene (SIM)	41.0	25	$\mu g/L$	50.0		82.1	40-140			
ndeno(1,2,3-cd)pyrene (SIM)	43.0	2.5	$\mu g/L$	50.0		86.0	40-140			
2-Methylnaphthalene (SIM)	39.7	25	$\mu g/L$	50.0		79.4	40-140			
Naphthalene (SIM)	36.6	25	$\mu \text{g/L}$	50.0		73.3	40-140			
Phenanthrene (SIM)	40.2	1.2	$\mu g/L$	50.0		80.5	40-140			
Pyrene (SIM)	38.7	25	$\mu g/L$	50.0		77.4	40-140			
Surrogate: Nitrobenzene-d5	54.6		μg/L	100		54.6	30-130			
Surrogate: 2-Fluorobiphenyl	71.5		μg/L	100		71.5	30-130			
Surrogate: p-Terphenyl-d14	57.2		μg/L	100		57.2	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B214244 - SW-846 3510C										
LCS Dup (B214244-BSD1)				Prepared: 10	0/06/18 Anal	yzed: 10/08/	18			
Acenaphthene (SIM)	40.4	7.5	μg/L	50.0		80.8	40-140	2.13	20	
Acenaphthylene (SIM)	41.8	5.0	$\mu g \! / \! L$	50.0		83.5	40-140	1.81	20	
Anthracene (SIM)	44.0	5.0	$\mu g \! / \! L$	50.0		88.1	40-140	3.70	20	
Benzo(a)anthracene (SIM)	44.4	1.2	$\mu g/L$	50.0		88.8	40-140	8.09	20	
Benzo(a)pyrene (SIM)	45.6	2.5	$\mu g/L$	50.0		91.2	40-140	4.88	20	
Benzo(b)fluoranthene (SIM)	46.8	1.2	$\mu g/L$	50.0		93.6	40-140	5.43	20	
Benzo(g,h,i)perylene (SIM)	43.6	12	$\mu g \! / \! L$	50.0		87.3	40-140	5.29	20	
Benzo(k)fluoranthene (SIM)	44.6	5.0	$\mu g \! / \! L$	50.0		89.2	40-140	5.59	20	
Chrysene (SIM)	42.6	5.0	$\mu g/L$	50.0		85.3	40-140	5.73	20	
Dibenz(a,h)anthracene (SIM)	44.9	2.5	$\mu g/L$	50.0		89.8	40-140	5.61	20	
Fluoranthene (SIM)	43.3	12	$\mu g/L$	50.0		86.6	40-140	3.34	20	
Fluorene (SIM)	41.8	25	$\mu g/L$	50.0		83.6	40-140	1.81	20	
Indeno(1,2,3-cd)pyrene (SIM)	45.4	2.5	$\mu g/L$	50.0		90.8	40-140	5.37	20	
2-Methylnaphthalene (SIM)	40.2	25	$\mu g \! / \! L$	50.0		80.4	40-140	1.38	20	
Naphthalene (SIM)	37.1	25	$\mu g/L$	50.0		74.2	40-140	1.29	20	
Phenanthrene (SIM)	41.8	1.2	$\mu g/L$	50.0		83.6	40-140	3.84	20	
Pyrene (SIM)	40.8	25	$\mu g/L$	50.0		81.5	40-140	5.10	20	
Surrogate: Nitrobenzene-d5	54.9		μg/L	100		54.9	30-130			
Surrogate: 2-Fluorobiphenyl	71.1		$\mu g/L$	100		71.1	30-130			
Surrogate: p-Terphenyl-d14	57.9		$\mu g/L$	100		57.9	30-130			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
I-02	Result not attainable due to sample matrix interferences (a chemical or physical interference which could not be eliminated).
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
RL-11	Elevated reporting limit due to high concentration of target compounds.
S-02	The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260B in Water		
Acetone	NC	
Acrylonitrile	NC	
tert-Amyl Methyl Ether (TAME)	NC	
Benzene	NC	
Bromobenzene	NC	
Bromochloromethane	NC	
Bromodichloromethane	NC	
Bromoform	NC	
Bromomethane	NC	
2-Butanone (MEK)	NC	
tert-Butyl Alcohol (TBA)	NC	
n-Butylbenzene	NC	
sec-Butylbenzene	NC	
tert-Butylbenzene	NC	
tert-Butyl Ethyl Ether (TBEE)	NC	
Carbon Disulfide	NC	
Carbon Tetrachloride	NC	
Chlorobenzene	NC	
Chlorodibromomethane	NC	
Chloroethane	NC	
Chloroform	NC	
Chloromethane	NC	
2-Chlorotoluene	NC	
4-Chlorotoluene	NC	
1,2-Dibromo-3-chloropropane (DBCP)	NC	
1,2-Dibromoethane (EDB)	NC	
Dibromomethane	NC	
1,2-Dichlorobenzene	NC	
1,3-Dichlorobenzene	NC	
1,4-Dichlorobenzene	NC	
trans-1,4-Dichloro-2-butene	NC	
Dichlorodifluoromethane (Freon 12)	NC	
1,1-Dichloroethane	NC	
1,2-Dichloroethane	NC	
1,1-Dichloroethylene	NC	
cis-1,2-Dichloroethylene	NC	
trans-1,2-Dichloroethylene	NC	
1,2-Dichloropropane	NC	
1,3-Dichloropropane	NC	
2,2-Dichloropropane	NC	
1,1-Dichloropropene	NC	
cis-1,3-Dichloropropene	NC	
trans-1,3-Dichloropropene	NC	
Diethyl Ether	NC	
Diisopropyl Ether (DIPE)	NC	
1,4-Dioxane	NC	
Ethylbenzene	NC	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260B in Water	
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC

 $The \ CON-TEST\ Environmental\ Laboratory\ operates\ under\ the\ following\ certifications\ and\ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019
RI	Rhode Island Department of Health	LAO00112	12/30/2018
NC	North Carolina Div. of Water Quality	652	12/31/2018
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2018
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

	Γ	Ϊ									Ī				* * 4			11.	Ų.			v (*)	11.5	* () .							Y.		T	ab	le of	Conte	ents I
Page of	# of Containers	² Preservation Code	³ Container Code	Dissolved Metalistics	Field Filtered	Lab to Filter		Field Filtered	Lab to Filter			GW = Ground Water	WW = Waste Water	A = Air	SL = Sludge	SOL = Solid	U = Other (please define)		2 Preservation Codes:	H = HCL	# H	S = Sulfuric Acid B = Sodium Bisulfate	X = Sodium Hydroxide T = Sodium	Thiosulfate	O = Other (please define)	**************************************	3 Container Codes:	G = Glass	P = Plastic	V = Vial	T = Tedlar Rad	0 = Other (please			PCB ONLY Soxhlet	Non Soxhlet	
71_03242017 39 Spruce Street East Longmeadow, MA 01028				ANALYSIS REQUESTED																					Please use the following codes to indicate possible sample concentration	within the Conc Code column above:	n - rign, M - Medium; t Low; t Clean; t Orknown	Program Information	DSCA UST/Trust Fund	SWS Landfill TEC	HSB Urphaned Landfill	Other:		WELAC and Alkia.LAP, LLC Accredited	Other Chromatogram	☐ AHA-LAP,LLC	
http://www.contestlabs.com Doc # 379 Rev 1_03242017 CHAIN OF CUSTODY RECORD (North Carolina) 39 \$ East	7-Day 10-Day	Due Date:	Rush Approval Reguired		2-Day 4-Day		Foliati. Fur al Excel.	CI P Like Data Pko Recuired:	Constant and modern co.	Com Com	Warrie .	8	NA NA / NA												to Pechang	·····	r - righ, w - media	anth Sarolina Beteution umit Requirements	21	GWPC		William Sandarian Sandaria			ity Government Municipality		
$\begin{array}{c} & & & & & & & & & & & & & \\ & & & & & $	tlabs.com		Spring Forget Rd Roleigh MC			59865 IUTCELE 13		mber:	Mir Do-Co.	200	Beginning	Client Sample ID / Description Date/#me	81-C. D. El 13 10-1-111T												Wife The of I than collected for 8270 PAH, well show				10/4/18 /3×00gm	(br) Date/Time:			Date/Time: Output		Date/Time: Project Entity	Date/Time:	
CON-TEST		Pring pietry Validities	1065 3201	9 4 8 13- 366c		Project Location: NCDQ1	3	ame/N	Invoice Recipient:	ALC FLO	Con-Test	Work Order#													My July 16			Relinquished by: (signature)	$\ \ $	Received by: (signature) 3	Dolingiichof fur (cionaturo)	herinquestay, (signature)	ceived by: (signature)	Pa	b linquished by: (signature) 5	ceived by: (signature)	3

Sign In

TRACK ANOTHER SHIPMENT

Delivered Friday 10/05/2018 at 8:58 am

DELIVERED

Signed for by: P.BLAKE

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

RALEIGH, NC US

TO

EAST LONGMEADOW, MA US

Travel History Shipment Facts Delivered 10/05/2018 - Friday 8:58 am EAST LONGMEADOW, MA Expand History V 1:52 pm Shipment information sent to FedEx 10/04/2018 - Thursday ASK Feder MORE FROM FEDEX LANGUAGE OUR COMPANY About FedEx FedEx Blog FedEx Compatible Change Country Our Portfolio Corporate Responsibility Developer Resource Center English FedEx Cross Border Investor Relations Newsroom Contact Us

FOLLOW FEDEX

I Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples___

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False

Client Receive	ST ME	RAP		Date	10/5/18	Time	82.8	
low were th	•	In Cooler		No Cooler	On Ice	T	No Ice	
receiv	242	,	1:	. 110 000101	Ambient		— Melted Ice	
		Direct from Samp	=			np - 3,9		
Were samp	les within		By Gun #	557	Actual Ten	·		
Temperatu		T	By Blank #		Actual Ten	n <u>p -</u>		
	Custody Se	al Intact?	NA	We	re Samples Tampere	d with?	<u>va</u>	
	COC Relin		·T-	Does	s Chain Agree With Sa	amples?	+	
		eaking/loose caps	on any sam	ples?	<u> </u>			
	k/ Legible?			Were sam	nples received within I		7	
Did COC ir		Client	T	Analysis	· · · · · · · · · · · · · · · · · · ·	ler Name		
ertinent Inf		Project	+	ID's	Collection	n Dates/Time	⊋s_ <u>⊤</u>	<u>.</u>
		l out and legible?	T	_				
	b to Filters?		F		Who was notified?			
re there Ru			F	•••	Who was notified?			,
re there Sh			F	-	Who was notified?			i
	igh Volume	?						
		ere applicable?	F	•••	MS/MSD? F		\sim	
	a/Container		7	-	Is splitting samples re	equired?		
	anks receive		E	-	On COC? F			
		proper pH?	\// ₁	Acid		Base		=
/ials	#	Containers:	#		#			#
Jnp-	π	1 Liter Amb.	1	1 Liter	Plastic	16	oz Amb.	
ICL-	3	500 mL Amb.		500 mL	Plastic	8oz	Amb/Clear	
/leoh-		250 mL Amb.		250 mL	Plastic		Amb/Clear	
Bisulfate-		Col./Bacteria		Flash	npoint		Amb/Clear	
) -		Other Plastic		Other	Glass		Encore	
hiosulfate-		SOC Kit		Plasti	c Bag	Frozen:		
Sulfuric-		Perchlorate		Zip	lock			
				Unused	Media			
/ials	#	Containers:	#		#			#
Jnp-		1 Liter Amb.		1 Liter	Plastic		oz Amb.	
HCL-		500 mL Amb.		500 mL	Plastic		Amb/Clear	
vleoh-		250 mL Amb.			_ Plastic		Amb/Clear	ļ
3isulfate-		Col./Bacteria			npoint		Amb/Clear	
DI-		Other Plastic			Glass		Encore	
		SOC Kit			ic Bag	Frozen:		
		Perchlorate		Zip	lock			
Thiosulfate-								
Thiosulfate- Sulfuric- Comments	:							
Thiosulfate- Sulfuric-								

December 14, 2018

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: Preliminary Site Assessment Report

NCDOT Project I-5986B, WBS Element 47532.1.3

Parcel 21-Paul Williams Trucking

2981 Bud Hawkins Road

Dunn, Harnett County, North Carolina

S&ME Project 4305-18-175

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1800583 REV-02 dated August 16, 2018, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its August 20, 2018 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's July 30, 2018, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
21	Paul and Tammy Williams	(Paul Williams Trucking)
		2981 Bud Hawkins Road, Dunn, NC

The PSA included a geophysical survey, subsequent limited soil sampling (four soil borings up to 10 feet below ground surface (ft.-bgs.) and limited groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil and groundwater sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (Troxler Geologic, Inc.) was also used to locate and mark underground utilities.

Geophysical Survey

On September 11, 2018, S&ME personnel performed a geophysical survey within accessible areas of the proposed ROW/easement at Parcel 21. S&ME used a combination of the Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) methods to explore for buried subsurface features at the site such as underground storage tanks (USTs) and other possible buried obstructions. Brief descriptions of the proposed complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820-02 (2007) "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The presence of vehicles, ditches, and other surficial obstructions within the requested survey area however prevented TDEM data collection in several locations. The approximate TDEM data collection paths are presented in **Figure 4**. Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 3000 GPR system equipped with a 400 MHz antenna in general accordance with ASTM D6432-11 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of three (3) GPR profiles (Lines 1 through 3) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. However, one anomalous feature (Anomaly A) was identified in both the TDEM and GPR data sets (**Figures 5 through 7**). Anomaly A is characterized by relatively higher TDEM values (greater than about 100 mV) and a high amplitude GPR response at about three feet below ground surface (bgs). Anomaly A is likely related to a buried isolated metallic target. The identified anomaly was also marked in the field using white spray paint. Example GPR profiles are presented in **Figure 8**.

Soil Sampling

On October 2, 2018, S&ME's drill crew utilized a track mounted Geoprobe® rig to advance four soil borings (B-1 through B-4) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 21. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I**. S&ME's drill crew advanced the Geoprobe® borings to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at a depth of approximately six ft.-bgs. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II.**

No petroleum odors, staining or elevated PID readings were noted within the collected soil samples. Therefore, two soil samples (two to four foot depth interval and four to six foot depth interval) were selected from each boring and provided to RED Lab, LLC (Red Lab) for on-site analysis. A total of eight soil samples (two per boring) were analyzed by RED Lab for Total Petroleum Hydrocarbons (TPH)-Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered within approximately 10 ft.-bgs. Therefore, the Geoprobe® was used to advance one of the soil borings into the groundwater table for the collection of a groundwater sample. Due to the lack of evidence of a release, soil boring B-2 was selected at random for the collection of a groundwater sample. A temporary monitor well (TW-1) was installed at soil boring B-2 to a depth of approximately eight ft.-bgs using a five foot section of one-inch diameter, Schedule 40 PVC well riser attached to a five foot section of 0.01-inch slotted screen that intersected the groundwater table. Groundwater within the temporary monitor well at soil boring B-2 was measured at 4.9 ft.-bgs. Groundwater from the temporary well was purged until relatively clear using disposable tubing attached to a peristaltic pump. The flow rate was reduced and laboratory supplied containers were filled directly from the tubing, labeled as TW-1 Parcel 21, and placed in an insulated cooler with ice for transport to Con-Test Laboratories for analysis of VOCs by EPA Method 8260 and polycyclic aromatic compounds (PAHs) by EPA Method 8270.

Upon completion of the soil and groundwater sampling, the well materials were removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by North Carolina Department of Environmental Quality (NCDEQ). Used gloves and tubing were bagged and disposed off-site.

Groundwater Analytical Results

Based upon analytical results of groundwater samples analyzed by Con-Test Laboratories, no target constituents were reported at concentrations exceeding the laboratory method reporting limits. A summary of the groundwater analytical results is presented in **Table 2** and shown on **Figure 3**. A copy of the laboratory analytical report provided by Con-Test Laboratories is presented in **Appendix III**.

Conclusion and Recommendations

The geophysical survey identified one anomaly (Anomaly A) which is likely related to a buried isolated metallic target. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced four soil borings (B-1 through B-4) to a depth of approximately 10 ft.-bgs at the site. No petroleum odors, staining or elevated PID readings were noted within soil samples collected from the soil borings. Selected soil samples from the soil borings were analyzed onsite for TPH-GRO and TPH-DRO using UVF spectroscopy. TPH-GRO and TPH-DRO were not reported in the soil samples at concentrations exceeding the laboratory method reporting limits. During the soil boring advancement, groundwater was encountered at a depth of approximately six ft.-bgs. One temporary well (TW-1) was installed at soil boring B-2. Groundwater at TW-1 was measured at 4.9 ft.-bgs and analyzed by Con-Test Laboratories for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. No target constituents were reported in the groundwater sample at concentrations exceeding the laboratory method reporting limits.

Based on the findings of the geophysical survey and analytical results of soil and groundwater samples, no recommendations are provided.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., buildings, reinforced concrete, vehicles, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific, and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of approximately about five feet below ground surface.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

Jamie T Honeycutt Environmental Professional

jhoneycutt@smeinc.com

Michael W. Pfeifer Senior Project Manager

mpfeifer@smeinc.com

Michael Pfeifer

---861E52DDEFAF4C7

DocuSigned by:

Thomas P. Raymond, P.E., P.M.P.

Senior Consultant

traymond@smeinc.com

tom Raymond

【 **─** D4B9FB5F636F4BB..

Attachments:

1/22/2019

Table 1: Summary of Soil Sampling Results

Table 2: Summary of Groundwater Sampling Results

DocuSigned by:

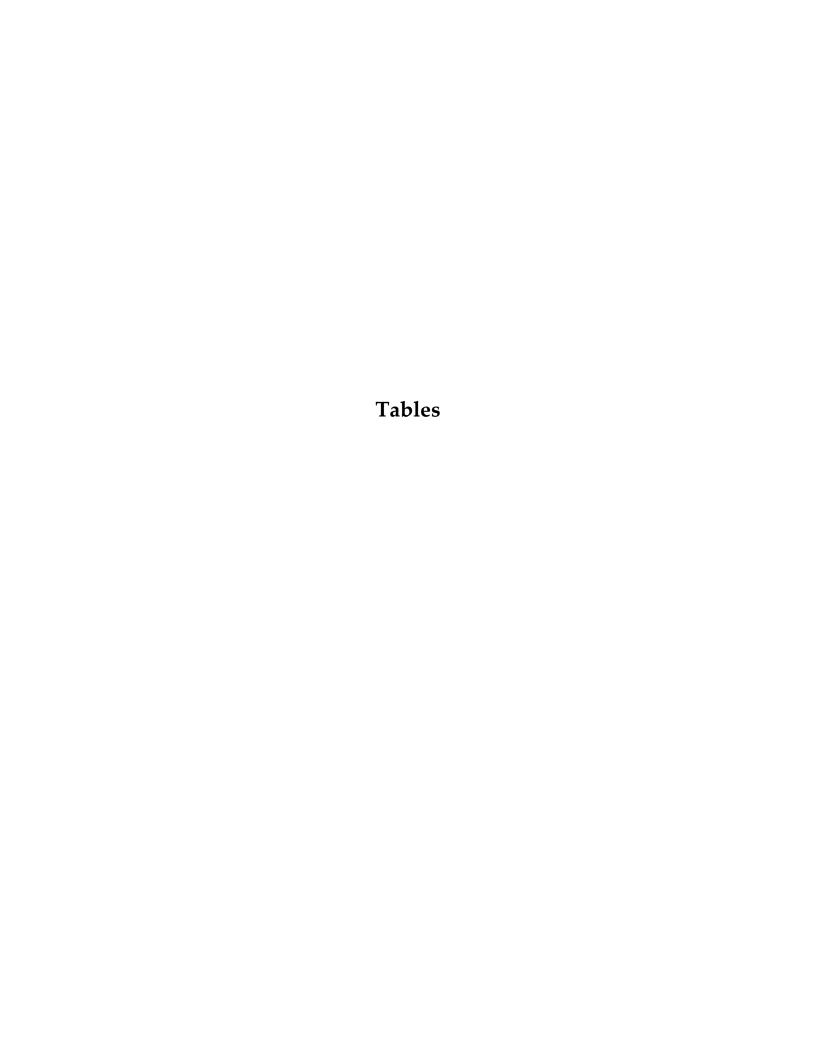
Jamie Honeyoutt

Figure 1: Vicinity Map Figure 2: Site Map

Figure 3: Soil and Groundwater Constituent Map

Figure 4: TDEM Path Location Plan

Figure 5: TDEM Data Plot A Figure 6: TDEM Data Plot B


Figure 7: Geophysical Anomaly Location Plan **Figure 8:** Example GPR Data – Lines 2 and 3

Appendix I: Photographs **Appendix II:** Boring Logs

Appendix III: Laboratory Analytical Reports and Chain of Custody

December 14, 2018

6

&

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5986B

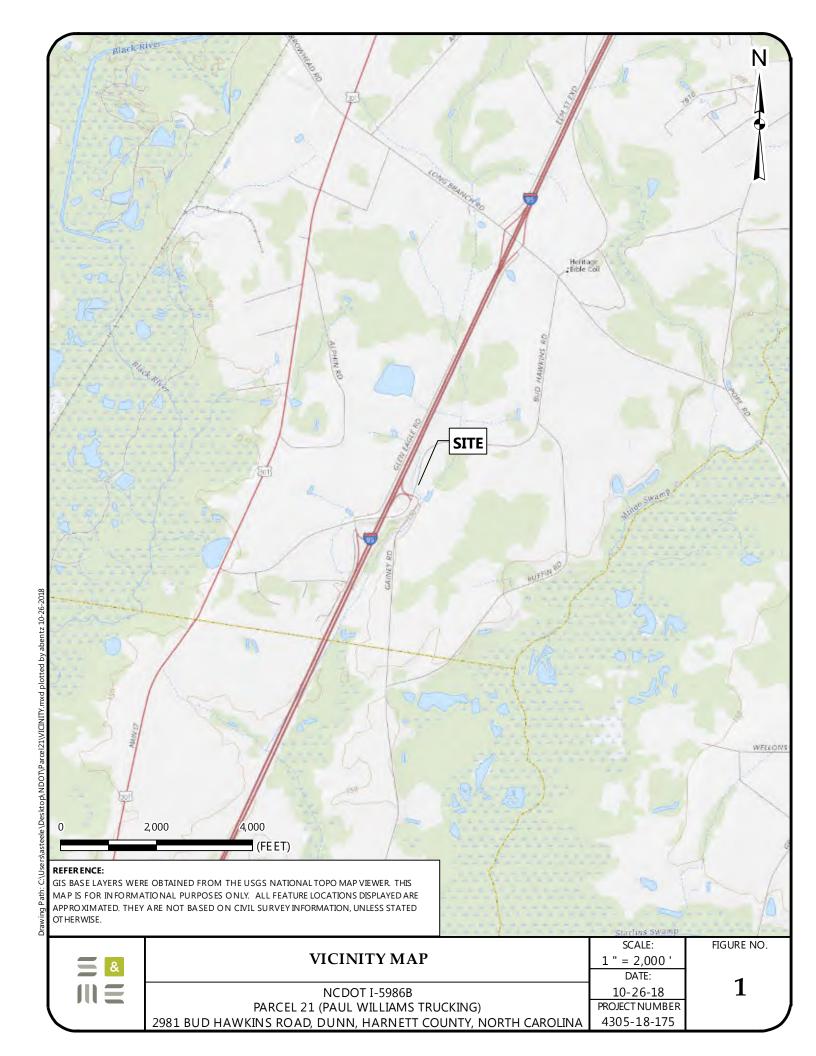
Parcel 21 - (Paul Williams Trucking) 2981 Bud Hawkins Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175

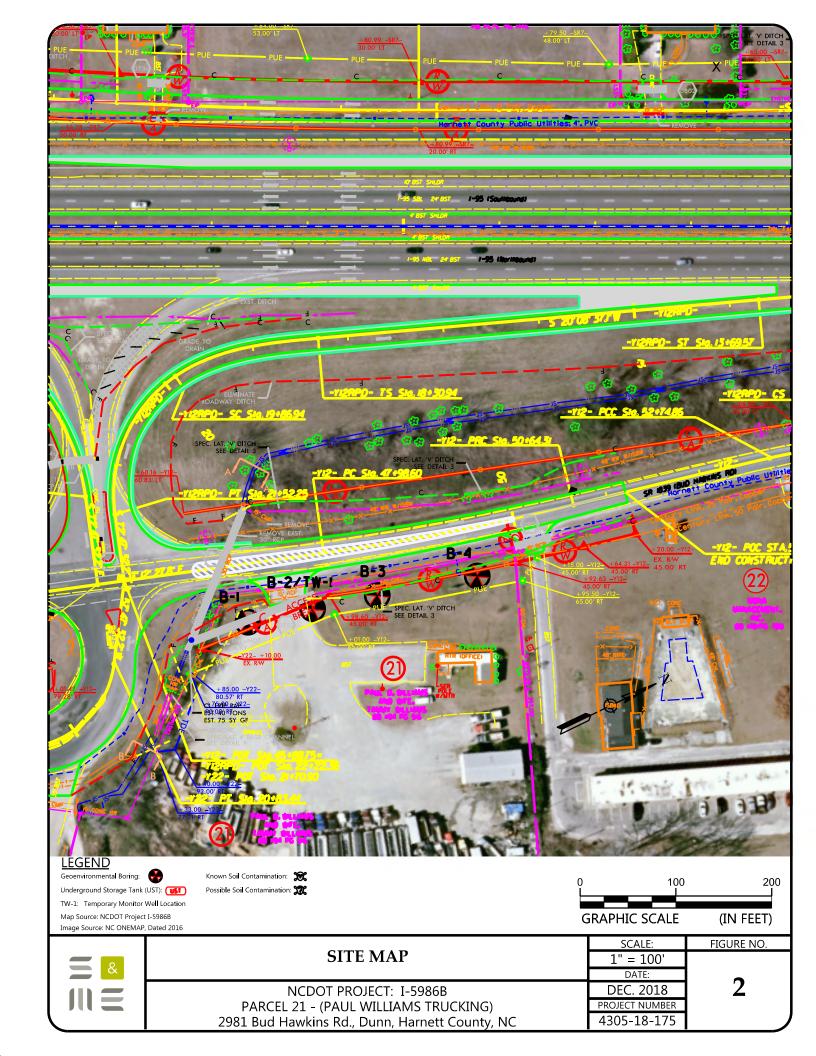
Ar	nalytical Metho	d→	Total Petroleum Hydrocarbons (TPH) Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) by Ultraviolet Fluorescence (UVF) Spectrometry						
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO					
Parcel 21 B-1	10/2/2018	2 to 4	<0.58	<0.58					
Faice(21 B-1	10/2/2018	4 to 6	<0.63	<0.63					
Parcel 21 B-2	10/2/2018	2 to 4	<0.47	<0.47					
Tarcer 21 B-2	10/2/2010	4 to 6	<0.56	<0.56					
Parcel 21 B-3	10/2/2018	2 to 4	<0.43	<0.43					
Faice 21 B-3	10/2/2018	4 to 6	<0.24	<0.24					
Parcel 21 B-4	10/2/2018	2 to 4	<0.31	<0.31					
raiceizi b-4	10/2/2010	4 to 6	<0.19	<0.19					
No	orth Carolina T	PH Action Levels	50	100					

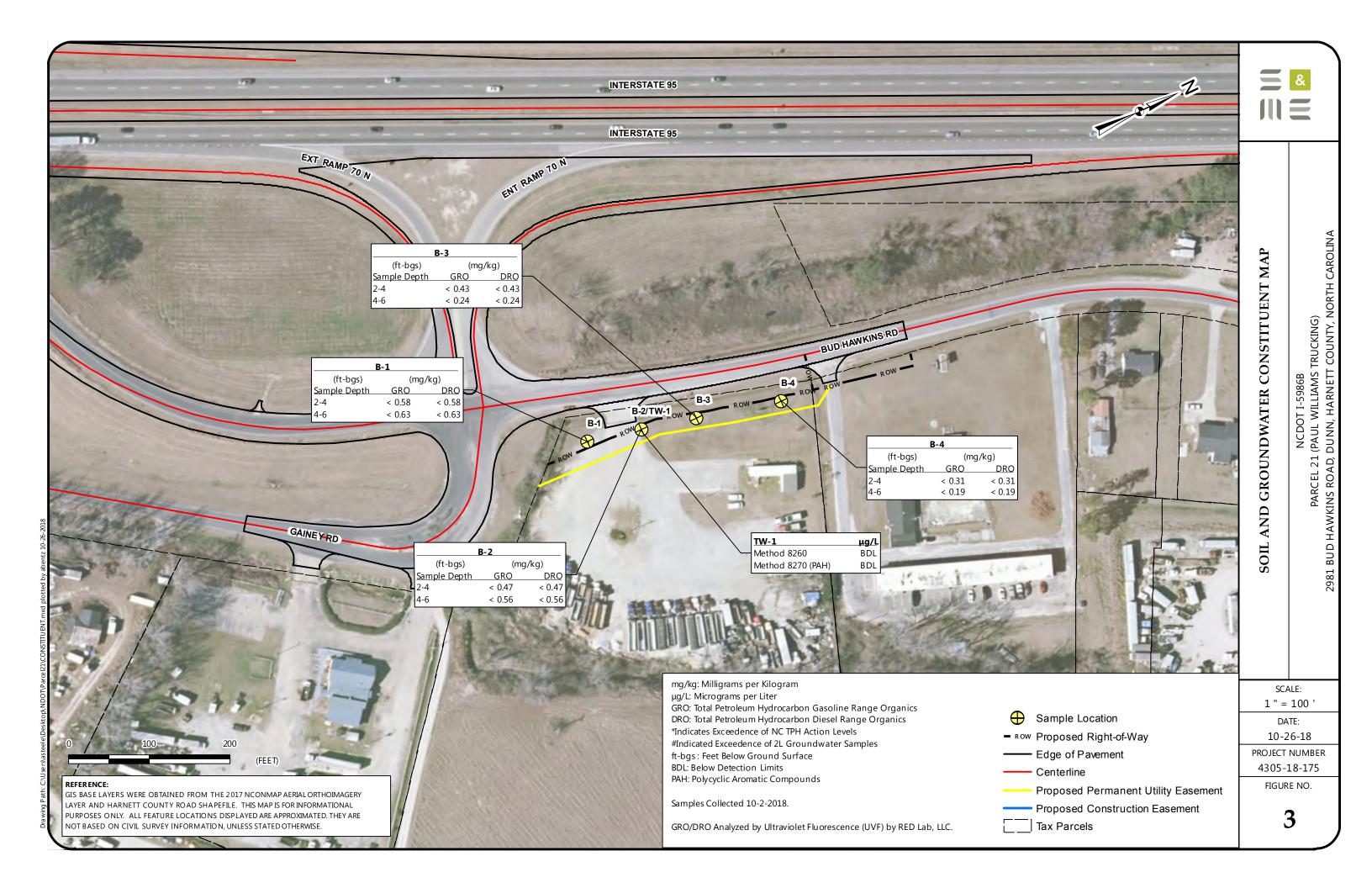
Notes

- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and BOLD fields.

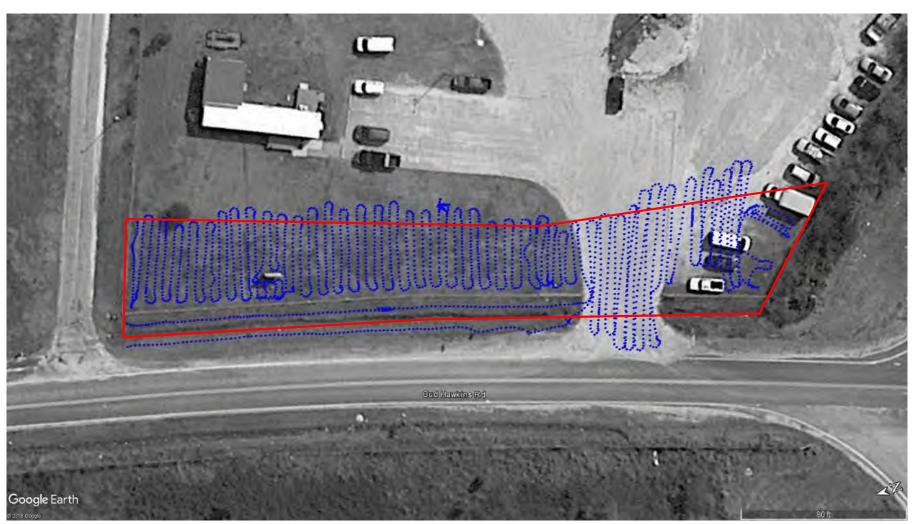
TABLE 2 SUMMARY OF GROUNDWATER SAMPLING RESULTS NCDOT Project I-5986B


Parcel 21 - (Paul Williams Trucking) 2981 Bud Hawkins Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175


Analytica	ıl Method→	Volatile Organic Compounds by EPA Method 8260	Polycyclic Aromatic Compounds (PAHs) by EPA Method 8270
Sample ID	Contaminant of Concern→	Constituent Specific	Constituent Specific
	Date		
TW-1 Parcel 21	10/2/2018	Below laboratory method reporting limits	Below laboratory method reporting limits
2	L Standard (μg/L)	Not Applicable	Not Applicable


Notes:

- 1. Analytes that are not shown for the method were not detected.
- 2. Concentrations are reported in micrograms per liter (µg/L).
- 3. 2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- 5. Concentrations exceeding the 2L Standards are shown in Shaded and **BOLD** fields.



REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

Approximate TDEM Path

Approximate Requested Survey Area

TDEM PATH LOCATION PLAN

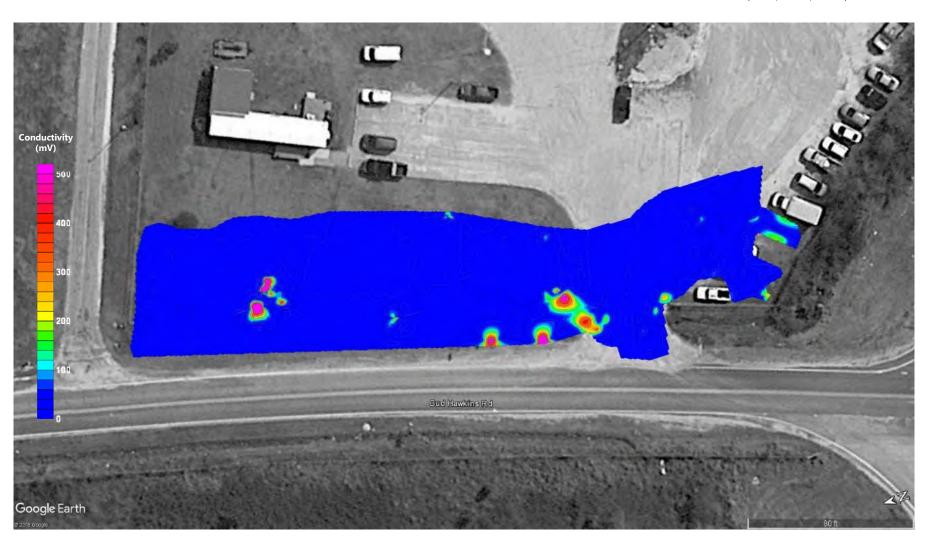
NCDOT PROJECT: 1-5986B PARCEL 21 – (PAUL WILLIAMS TRUCKING) 2981 BUD HAWKINS ROAD, DUNNI, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 10/29/2018

PROJECT NUMBER 4305-18-175

FIGURE NO.


4

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

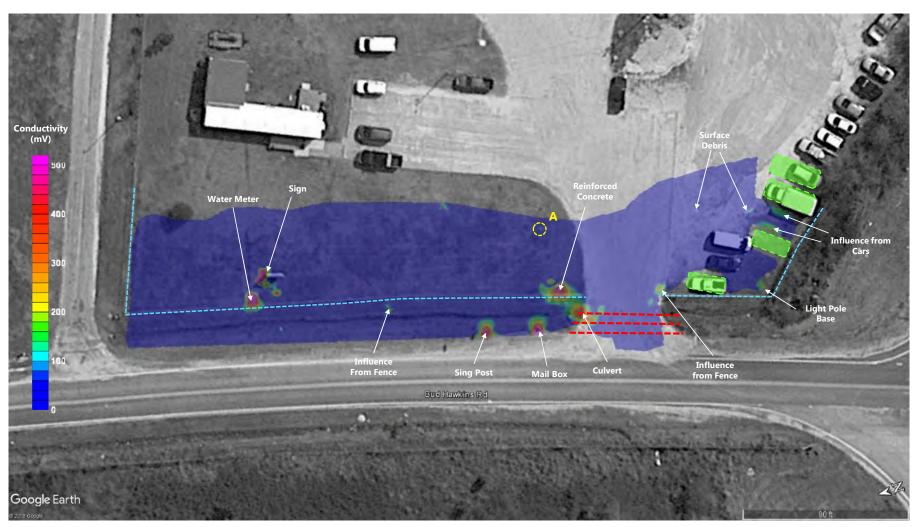
TDEM DATA PLOT A

NCDOT PROJECT: 1-59868 PARCEL 21 – (PAUL WILLIAMS TRUCKING) 2981 BUD HAWKINS ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 10/29/2018

PROJECT NUMBER 4305-18-175


FIGURE NO.

5

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

 \bigcirc

Approximate Location of TDEM Anomaly

Approximate Location of Fence

Approximate Location of Possible Utilities

Approximate Location of Vehicle

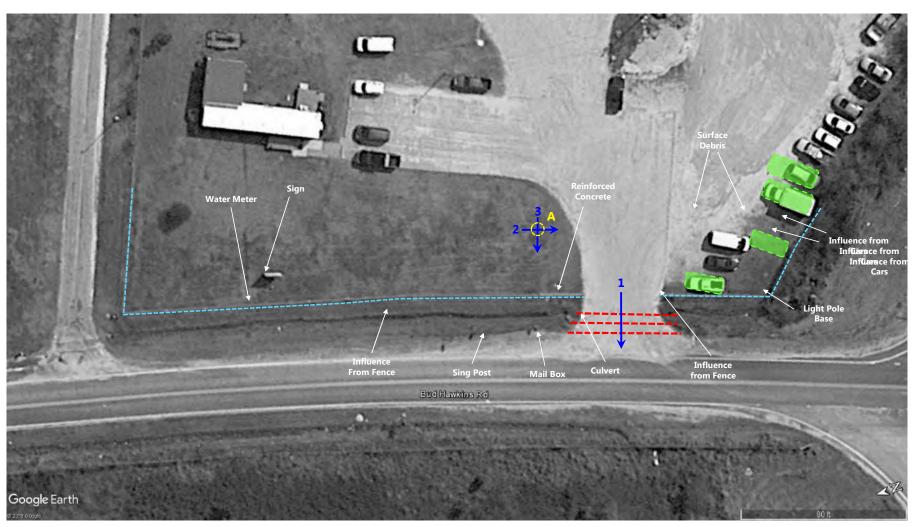
SCALE: AS SHOWN

NCDOT PROJECT: 1-5986B PARCEL 21 – (PAUL WILLIAMS TRUCKING) 2981 BUD HAWKINS ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

TDEM DATA PLOT B

DATE: 10/29/2018 PROJECT NUMBER

4305-18-175


FIGURE NO.

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

 \bigcirc

Approximate Location of TDEM Anomaly

Approximate Location of Fence

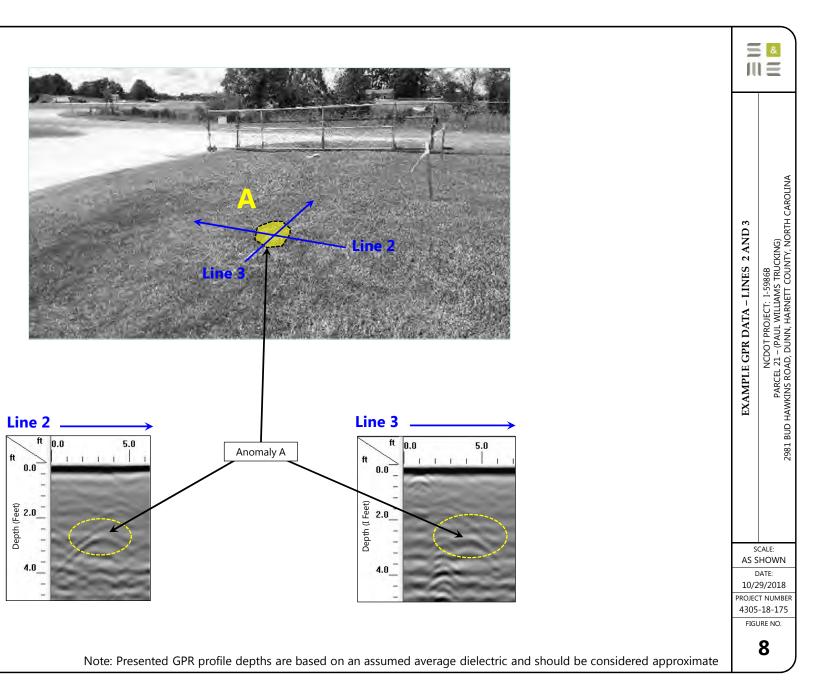
Approximate Location of Possible Utilities

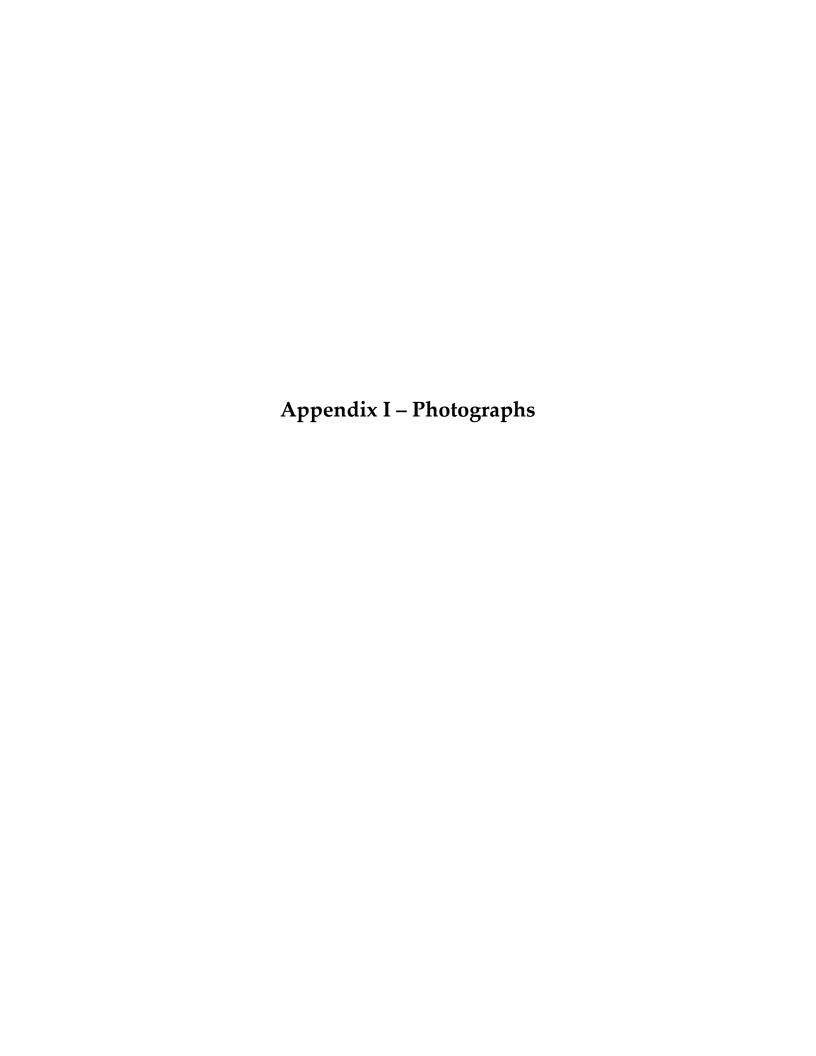
Approximate Location of GPR Profile

Approximate Location of Vehicle

GEOPHYSICAL ANOMALY LOCATION PLAN

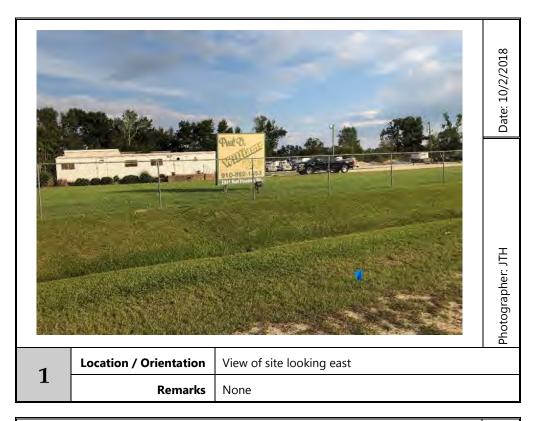
NCDOT PROJECT: 1-5986B PARCEL 21 – (PAUL WILLIAMS TRUCKING) 2981 BUD HAWKINS ROAD, DUNNI, HARNETT COUNTY, NORTH CAROLINA


SCALE: AS SHOWN

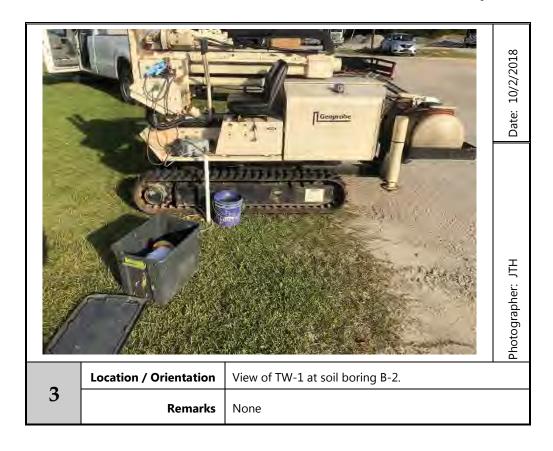

DATE: 10/29/2018 PROJECT NUMBER

4305-18-175

FIGURE NO.


7

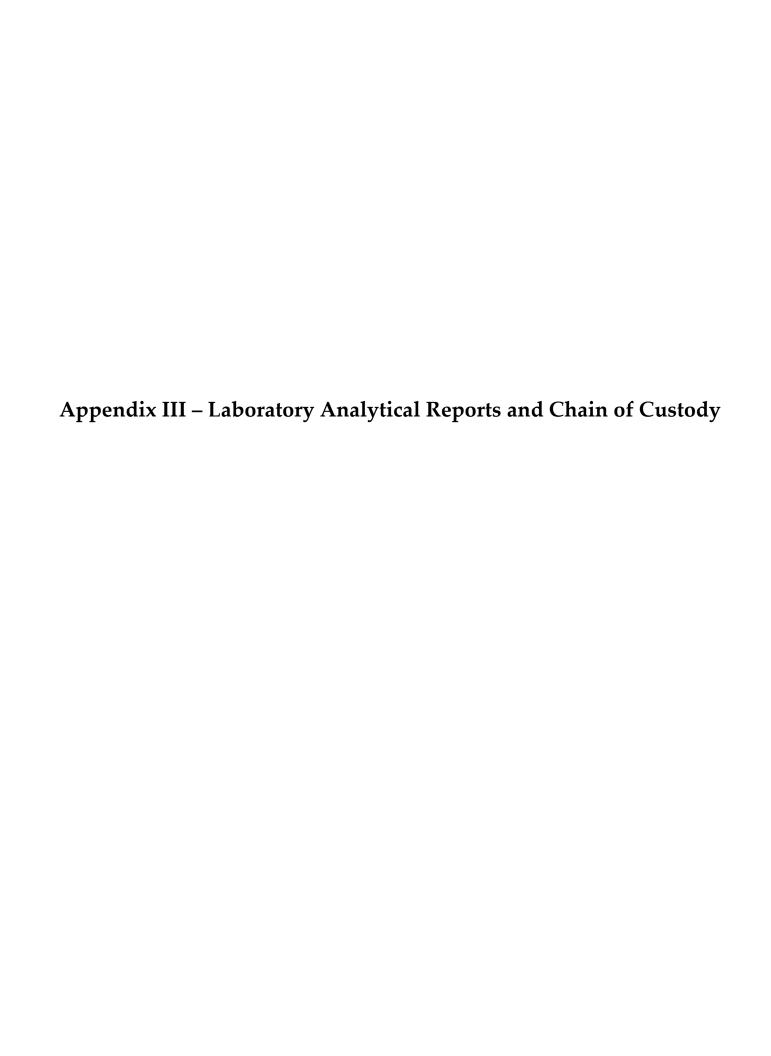
Preliminary Site Assessment Report NCDOT Project I-5986B, WBS Element 47532.1.3 Parcel 21-Paul Williams Trucking Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175



December 14, 2018

Preliminary Site Assessment Report NCDOT Project I-5986B, WBS Element 47532.1.3 Parcel 21-Paul Williams Trucking Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175

December 14, 2018



PROJECT:	NCDOT I-5986B												
	Parcel 21-2981 Bud Hawkins Rd, Dunn, N	NC			BORIN	NG LOG	B-1						
DATE DRULES	S&ME Project No. 4305-18-175	DOD'S 5	(FT): 10										
DATE DRILLED:	Tuesday, October 02, 2018	BORING DEPTH (FT):											
DRILL RIG: DRILLER:	Geoprobe 54DT	WATER LEVEL:		lical-I-									
	Troxler Geologic, Inc.	CAVE-IN DEPTH:											
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt									
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:											
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		1	I	I	1		1				
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE			
Grav Silty	el, Sand, Tan, Brown, Fine,				0.7	No Yes							
5 —	, Tan, Orange, Medium, Wet,			ŧ	1.5	Yes							
10 — Borir — 20 — — — — — — — — — — — — — — — — —	ng Terminated at 10 Ft-BGS												

PROJECT:	NCDOT I-5986B									
	Parcel 21-2981 Bud Hawkins Rd, Dunn, N	IC .			BORI	NG LOG:	B-2/	TW-1	L	
	S&ME Project No. 4305-18-175									
DATE DRILLED:	Tuesday, October 02, 2018	BORING DEPTH (FT):								
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:			1	ı	1			1
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Tops Silty	ioil, Black, Sand, Tan, Brown, Fine,			Ш						
				ł	1.6 1.9	No Yes				
5 —			•	ł	2.1	Yes				
Sand	l, Tan, Orange, Medium, Wet,									
10										
	ng Terminated at 10 Ft-BGS									
15 —										
20 —										
25 —										
30										

PROJECT	:	NCDOT I-5986B									
		Parcel 21-2981 Bud Hawkins Rd, Dunn, No			BORIN	NG LOG	: B-3				
		S&ME Project No. 4305-18-175									
DATE DRILI	LED:	Tuesday, October 02, 2018	BORING DEPTH (FT):								
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:								
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER 1		Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING		Macro-Core Sampler	NORTHING:								
DRILLING N	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		1		ı	1	1	1	1
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Topsoil, Black,									
5 —		Silty Sand, Tan, Fine, Sand, Orange, Medium, Wet, Boring Terminated at 10 Ft-BGS		•		1.3 2.2 7.7	No Yes Yes				
15 —											
25 —											

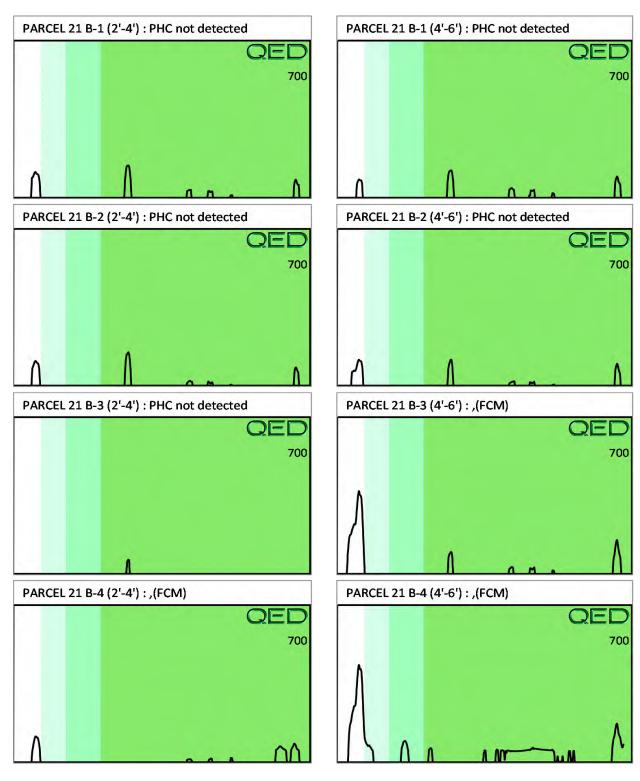
PROJECT:	NCDOT I-5986B	IC.			PODIA	16.106	D 4						
	Parcel 21-2981 Bud Hawkins Rd, Dunn, N S&ME Project No. 4305-18-175	NC			BUKI	IG LOG	Б-4						
DATE DRILLED:	Tuesday, October 02, 2018	BORING DEPTH (FT):	10										
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:											
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable									
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt									
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:											
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:											
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE			
5 —	Topsoil, Black, Silty Sand, Tan, Fine, Sand, Tan, Medium, Wet, Boring Terminated at 10 Ft-BGS		•		0.3	No Yes Yes							
15 —													
25 —													

Hydrocarbon Analysis Results

Client: S&ME Samples taken Tuesday, October 02, 2018 Samples extracted Tuesday, October 02, 2018 Address: Samples analysed Tuesday, October 02, 2018

Contact: JAMIE HONEYCUTT Operator MAX MOYER

Project: PARCEL 21 - PROJ 4305-18-175


													U00904		
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP	% Ratios		% Ratios		5	HC Fingerprint Match
										C5 - C10	C10 - C18	C18			
S	PARCEL 21 B-1 (2'-4')	23.2	<0.58	<0.58	<0.58	<0.58	<0.12	<0.19	<0.023	0	0	0	PHC not detected		
S	PARCEL 21 B-1 (4'-6')	25.2	< 0.63	<0.63	< 0.63	< 0.63	<0.13	<0.2	<0.025	0	0	0	PHC not detected		
S	PARCEL 21 B-2 (2'-4')	19.0	< 0.47	<0.47	<0.47	<0.47	<0.09	<0.15	<0.019	0 0 0		0 0 0		0	PHC not detected
S	PARCEL 21 B-2 (4'-6')	22.2	<0.56	<0.56	<0.56	<0.56	<0.11	<0.18	<0.022	0 0 0		0	PHC not detected		
S	PARCEL 21 B-3 (2'-4')	17.3	<0.43	<0.43	<0.43	< 0.43	< 0.09	<0.14	<0.017	0	0	0	PHC not detected		
S	PARCEL 21 B-3 (4'-6')	9.8	<0.24	<0.24	<0.24	<0.24	< 0.05	<0.08	<0.01	0	0	0	,(FCM)		
S	PARCEL 21 B-4 (2'-4')	12.3	<0.31	<0.31	<0.31	<0.31	<0.06	<0.1	<0.012	0	0	0	,(FCM)		
S	PARCEL 21 B-4 (4'-6')	7.5	<0.19	<0.19	<0.19	<0.19	< 0.04	<0.06	<0.007	0	0	0	,(FCM)		
	Initial C	alibrator (QC check	OK					Final FO	CM QC	Check	OK	104 %		

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only. Data generated by HC-1 Analyser Project: PARCEL 21 - PROJ 4305-18-175

October 12, 2018

Michael Pfeifer S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: NCDOT I5986B- Parcel 21

Client Job Number:

Project Number: 4305-18-175

Laboratory Work Order Number: 18J0298

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on October 4, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	6
18J0298-01	6
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B214298	10
Semivolatile Organic Compounds by GC/MS	15
B214244	15
Flag/Qualifier Summary	17
Certifications	18
Chain of Cuctody/Sample Receipt	21

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616 ATTN: Michael Pfeifer

REPORT DATE: 10/12/2018

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-18-175

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18J0298

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: NCDOT I5986B- Parcel 21

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB

TW-1 Parcel 21 18J0298-01 Ground Water SW-846 8260B

SW-846 8270D

EXECUTIVE SUMMARY

Client ID: TW-1 Parcel 21 Lab ID: 18J0298-01

No Results Detected

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 8270, only PAHs were requested and reported.

SW-846 8260B

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

Vinyl Acetate

B214298-BLK1, B214298-BS1, B214298-BSD1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lua Warrlengton Project Manager

Project Location: NCDOT I5986B- Parcel 21 Sample Description: Work Order: 18J0298

Date Received: 10/4/2018

Field Sample #: TW-1 Parcel 21 Sampled: 10/2/2018 17:00

Sample ID: 18J0298-01
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

			Volatile	Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	9.7	μg/L	1	riag/Quai	SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Acrylonitrile	ND	5.0	0.58	μg/L μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	0.33	μg/L μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Benzene	ND	1.0	0.12	μg/L μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Bromobenzene	ND	1.0	0.15	μg/L μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Bromochloromethane	ND	1.0	0.22	μg/L μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Bromodichloromethane	ND	0.50	0.30	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Bromoform	ND	2.0	0.21	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Bromomethane	ND	2.0	0.94	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
2-Butanone (MEK)	ND	20	2.4	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
tert-Butyl Alcohol (TBA)	ND	20	2.2	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
n-Butylbenzene	ND	1.0	0.15	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
sec-Butylbenzene	ND	1.0	0.13	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
tert-Butylbenzene	ND	1.0	0.12	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	0.095	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Carbon Disulfide	ND	4.0	1.0	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Carbon Tetrachloride	ND	5.0	0.25	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Chlorobenzene	ND	1.0	0.16	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Chlorodibromomethane	ND	0.50	0.10	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Chloroethane	ND	2.0	0.28	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Chloroform	ND	2.0	0.22	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Chloromethane	ND	2.0	0.55	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
2-Chlorotoluene	ND	1.0	0.12	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
4-Chlorotoluene	ND	1.0	0.14	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	0.37	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,2-Dibromoethane (EDB)	ND	0.50	0.15	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Dibromomethane	ND	1.0	0.16	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,2-Dichlorobenzene	ND	1.0	0.17	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,3-Dichlorobenzene	ND	1.0	0.17	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,4-Dichlorobenzene	ND	1.0	0.15	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
trans-1,4-Dichloro-2-butene	ND	2.0	0.31	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	0.28	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,1-Dichloroethane	ND	1.0	0.16	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,2-Dichloroethane	ND	1.0	0.19	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,1-Dichloroethylene	ND	1.0	0.21	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
cis-1,2-Dichloroethylene	ND	1.0	0.15	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
trans-1,2-Dichloroethylene	ND	1.0	0.15	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,2-Dichloropropane	ND	1.0	0.13	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,3-Dichloropropane	ND	0.50	0.13	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
2,2-Dichloropropane	ND	1.0	0.21	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,1-Dichloropropene	ND	2.0	0.13	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
cis-1,3-Dichloropropene	ND	0.50	0.12	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
trans-1,3-Dichloropropene	ND	0.50	0.11	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Diethyl Ether	ND	2.0	0.22	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH

Page 6 of 23

Project Location: NCDOT I5986B- Parcel 21 Work Order: 18J0298 Sample Description:

Date Received: 10/4/2018

Sampled: 10/2/2018 17:00 Field Sample #: TW-1 Parcel 21

Sample ID: 18J0298-01 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	0.18	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,4-Dioxane	ND	50	26	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Ethylbenzene	ND	1.0	0.13	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Hexachlorobutadiene	ND	0.60	0.59	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
2-Hexanone (MBK)	ND	10	1.5	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Isopropylbenzene (Cumene)	ND	1.0	0.12	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	0.15	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	0.090	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Methylene Chloride	ND	5.0	3.2	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	1.5	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Naphthalene	ND	2.0	0.12	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
n-Propylbenzene	ND	1.0	0.13	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Styrene	ND	1.0	0.15	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	0.12	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	0.16	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Tetrachloroethylene	ND	1.0	0.27	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Tetrahydrofuran	ND	10	1.1	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Toluene	ND	1.0	0.17	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,2,3-Trichlorobenzene	ND	5.0	0.14	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,2,4-Trichlorobenzene	ND	1.0	0.19	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,3,5-Trichlorobenzene	ND	1.0	0.17	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,1,1-Trichloroethane	ND	1.0	0.13	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,1,2-Trichloroethane	ND	1.0	0.24	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Trichloroethylene	ND	1.0	0.20	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,2,3-Trichloropropane	ND	2.0	0.22	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	0.20	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,2,4-Trimethylbenzene	ND	1.0	0.18	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,3,5-Trimethylbenzene	ND	1.0	0.13	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
m+p Xylene	ND	2.0	0.26	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
o-Xylene	ND	1.0	0.13	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4	_	80.4		70-130		_			10/10/18 3:59	
T-1 10		100		70 120					10/10/10 2.50	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	80.4	70-130		10/10/18 3:59
Toluene-d8	100	70-130		10/10/18 3:59
4-Bromofluorobenzene	98.0	70-130		10/10/18 3:59

Project Location: NCDOT I5986B- Parcel 21 Sample Description: Work Order: 18J0298

Date Received: 10/4/2018

Field Sample #: TW-1 Parcel 21 Sampled: 10/2/2018 17:00

Sample ID: 18J0298-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene (SIM)	ND	0.30	μg/L	1	-	SW-846 8270D	10/6/18	10/9/18 18:44	IMR
Acenaphthylene (SIM)	ND	0.20	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR
Anthracene (SIM)	ND	0.20	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR
Benzo(a)anthracene (SIM)	ND	0.050	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR
Benzo(a)pyrene (SIM)	ND	0.10	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR
Benzo(b)fluoranthene (SIM)	ND	0.050	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR
Benzo(g,h,i)perylene (SIM)	ND	0.50	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR
Benzo(k)fluoranthene (SIM)	ND	0.20	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR
Chrysene (SIM)	ND	0.20	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR
Dibenz(a,h)anthracene (SIM)	ND	0.10	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR
Fluoranthene (SIM)	ND	0.50	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR
Fluorene (SIM)	ND	1.0	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.10	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR
2-Methylnaphthalene (SIM)	ND	1.0	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR
Naphthalene (SIM)	ND	1.0	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR
Phenanthrene (SIM)	ND	0.050	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR
Pyrene (SIM)	ND	1.0	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR
Surrogates		% Recovery	Recovery Limits	;	Flag/Qual				
Nitrobenzene-d5		65.2	30-130					10/9/18 18:44	
2-Fluorobiphenyl		68.0	30-130					10/9/18 18:44	
p-Terphenyl-d14		61.6	30-130					10/9/18 18:44	

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18J0298-01 [TW-1 Parcel 21]	B214298	5	5.00	10/09/18

Prep Method: SW-846 3510C-SW-846 8270D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18J0298-01 [TW-1 Parcel 21]	B214244	1000	1.00	10/06/18

Diethyl Ether

1,4-Dioxane

Ethylbenzene

Diisopropyl Ether (DIPE)

Hexachlorobutadiene

2-Hexanone (MBK)

Isopropylbenzene (Cumene)

p-Isopropyltoluene (p-Cymene)

Methyl tert-Butyl Ether (MTBE)

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B214298 - SW-846 5030B										
Blank (B214298-BLK1)				Prepared: 10	0/09/18 Anal	yzed: 10/10/	18			
Acetone	ND	50	μg/L							
Acrylonitrile	ND	5.0	$\mu g/L$							
ert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$							
Benzene	ND	1.0	$\mu g/L$							
Bromobenzene	ND	1.0	$\mu g/L$							
romochloromethane	ND	1.0	$\mu g/L$							
Bromodichloromethane	ND	0.50	$\mu g/L$							
romoform	ND	1.0	$\mu g/L$							
Bromomethane	ND	2.0	$\mu g/L$							
-Butanone (MEK)	ND	20	$\mu g/L$							
ert-Butyl Alcohol (TBA)	ND	20	$\mu g/L$							
-Butylbenzene	ND	1.0	$\mu g/L$							
ec-Butylbenzene	ND	1.0	$\mu g/L$							
ert-Butylbenzene	ND	1.0	$\mu g/L$							
ert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$							
arbon Disulfide	ND	4.0	$\mu g/L$							
arbon Tetrachloride	ND	5.0	$\mu g/L$							
hlorobenzene	ND	1.0	$\mu g/L$							
hlorodibromomethane	ND	0.50	$\mu g/L$							
hloroethane	ND	2.0	$\mu g/L$							
hloroform	ND	2.0	$\mu g/L$							
hloromethane	ND	2.0	$\mu g/L$							
-Chlorotoluene	ND	1.0	$\mu g/L$							
-Chlorotoluene	ND	1.0	$\mu g/L$							
2-Dibromo-3-chloropropane (DBCP)	ND	5.0	$\mu g/L$							
2-Dibromoethane (EDB)	ND	0.50	$\mu g/L$							
ibromomethane	ND	1.0	$\mu g/L$							
,2-Dichlorobenzene	ND	1.0	$\mu g/L$							
,3-Dichlorobenzene	ND	1.0	$\mu g/L$							
,4-Dichlorobenzene	ND	1.0	$\mu g/L$							
ans-1,4-Dichloro-2-butene	ND	2.0	$\mu g/L$							
ichlorodifluoromethane (Freon 12)	ND	2.0	$\mu g/L$							
1-Dichloroethane	ND	1.0	$\mu g/L$							
2-Dichloroethane	ND	1.0	$\mu g/L$							
1-Dichloroethylene	ND	1.0	$\mu g/L$							
s-1,2-Dichloroethylene	ND	1.0	$\mu g/L$							
ans-1,2-Dichloroethylene	ND	1.0	$\mu g/L$							
2-Dichloropropane	ND	1.0	$\mu g/L$							
,3-Dichloropropane	ND	0.50	$\mu g/L$							
,2-Dichloropropane	ND	1.0	$\mu g/L$							
,1-Dichloropropene	ND	2.0	$\mu g/L$							
s-1,3-Dichloropropene	ND	0.50	$\mu g/L$							
ans-1,3-Dichloropropene	ND	0.50	$\mu g/L$							
Diathyl Ethan	3.75	2.0	/T							

2.0

0.50

50

1.0

0.60

10

1.0

1.0

1.0

ND

ND

ND

ND

ND

ND

ND

ND

ND

 $\mu g \! / \! L$

 $\mu g/L$

 $\mu g \! / \! L$

 $\mu \text{g/L}$

 $\mu g/L$

μg/L

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B214298 - SW-846 5030B										
lank (B214298-BLK1)				Prepared: 10)/09/18 Analy	yzed: 10/10/1	8			
Methylene Chloride	ND	5.0	μg/L							
-Methyl-2-pentanone (MIBK)	ND	10	μg/L							
laphthalene	ND	2.0	μg/L							
-Propylbenzene	ND	1.0	μg/L							
tyrene	ND	1.0	μg/L							
1,1,2-Tetrachloroethane	ND	1.0	μg/L							
,1,2,2-Tetrachloroethane	ND	0.50	μg/L							
etrachloroethylene	ND	0.50	μg/L							
etrahydrofuran	ND	10	μg/L							
oluene	ND	1.0	μg/L							
2,3-Trichlorobenzene	ND	5.0	μg/L							
2,4-Trichlorobenzene	ND	1.0	μg/L							
3,5-Trichlorobenzene	ND ND	1.0	μg/L μg/L							
1,1-Trichloroethane	ND ND	1.0	μg/L μg/L							
1,2-Trichloroethane	ND ND	1.0	μg/L μg/L							
richloroethylene	ND ND	1.0	μg/L μg/L							
richlorofluoromethane (Freon 11)	ND ND	2.0	μg/L μg/L							
2,3-Trichloropropane		2.0	μg/L μg/L							
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND ND	1.0	μg/L μg/L							
13)	ND	1.0	μg/L							
2,4-Trimethylbenzene	ND	1.0	μg/L							
3,5-Trimethylbenzene	ND	1.0	μg/L							
inyl Acetate	ND	20	μg/L							L-04
inyl Chloride	ND	2.0	μg/L							
+p Xylene	ND	2.0	μg/L							
-Xylene	ND	1.0	μg/L							
urrogate: 1,2-Dichloroethane-d4	19.7		μg/L	25.0		78.9	70-130			
urrogate: Toluene-d8	24.6		μg/L	25.0		98.6	70-130			
urrogate: 4-Bromofluorobenzene	24.4		μg/L	25.0		97.8	70-130			
CS (B214298-BS1)				Prepared: 10)/09/18 Analy	zed: 10/10/1	8			
cetone	80.9	50	μg/L	100		80.9	70-160			
crylonitrile	9.78	5.0	$\mu g/L$	10.0		97.8	70-130			
ert-Amyl Methyl Ether (TAME)	9.61	0.50	μg/L	10.0		96.1	70-130			
enzene	9.41	1.0	μg/L	10.0		94.1	70-130			
romobenzene	10.3	1.0	$\mu g/L$	10.0		103	70-130			
romochloromethane	10.7	1.0	μg/L	10.0		107	70-130			
romodichloromethane	9.52	0.50	μg/L	10.0		95.2	70-130			
romoform	10.7	1.0	μg/L	10.0		107	70-130			
romomethane	8.50	2.0	μg/L	10.0		85.0	40-160			
-Butanone (MEK)	85.4	20	μg/L	100		85.4	40-160			
rt-Butyl Alcohol (TBA)	87.4	20	μg/L	100		87.4	40-160			
Butylbenzene	10.8	1.0	μg/L	10.0		108	70-130			
ec-Butylbenzene	11.3	1.0	μg/L	10.0		113	70-130			
rt-Butylbenzene	11.2	1.0	μg/L	10.0		112	70-130			
rt-Butyl Ethyl Ether (TBEE)	9.61	0.50	μg/L	10.0		96.1	70-130			
arbon Disulfide	10.4	4.0	μg/L	10.0		104	70-130			
arbon Tetrachloride	8.26	5.0	μg/L	10.0		82.6	70-130			
hlorobenzene	10.5	1.0	μg/L μg/L	10.0		105	70-130			
hlorodibromomethane	10.5	0.50	μg/L μg/L	10.0		103	70-130			
hloroethane		2.0	μg/L μg/L	10.0		88.8	70-130			
Chloroform	8.88	2.0	μg/L μg/L	10.0		88.9	70-130			
Chloromethane	8.89	2.0		10.0		90.4	40-160			
moromethane	9.04	2.0	μg/L	10.0		7U. 4	40-100			age 11 d

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B214298 - SW-846 5030B										
LCS (B214298-BS1)				Prepared: 10	0/09/18 Analyzed: 10/10	18				
2-Chlorotoluene	10.6	1.0	μg/L	10.0	106	70-130				_
4-Chlorotoluene	10.3	1.0	$\mu g/L$	10.0	103	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	9.39	5.0	$\mu g/L$	10.0	93.9	70-130				
1,2-Dibromoethane (EDB)	9.90	0.50	$\mu g/L$	10.0	99.0	70-130				
Dibromomethane	9.76	1.0	$\mu g/L$	10.0	97.6	70-130				
1,2-Dichlorobenzene	10.7	1.0	$\mu g/L$	10.0	107	70-130				
1,3-Dichlorobenzene	11.0	1.0	μg/L	10.0	110	70-130				
1,4-Dichlorobenzene	10.5	1.0	μg/L	10.0	105	70-130				
trans-1,4-Dichloro-2-butene	9.07	2.0	μg/L	10.0	90.7	70-130				
Dichlorodifluoromethane (Freon 12)	7.05	2.0	μg/L	10.0	70.5	40-160				Ť
1,1-Dichloroethane	10.1	1.0	μg/L	10.0	101	70-130				
1,2-Dichloroethane	8.59	1.0	μg/L	10.0	85.9	70-130				
1,1-Dichloroethylene	8.84	1.0	μg/L	10.0	88.4	70-130				
cis-1,2-Dichloroethylene	9.21	1.0	μg/L	10.0	92.1	70-130				
trans-1,2-Dichloroethylene	9.92	1.0	μg/L	10.0	99.2	70-130				
1,2-Dichloropropane 1,3-Dichloropropane	11.1	1.0	μg/L	10.0	111	70-130				
• •	9.53	0.50	μg/L	10.0	95.3	70-130				
2,2-Dichloropropane 1,1-Dichloropropene	8.50	1.0	μg/L	10.0	85.0	40-130				İ
cis-1,3-Dichloropropene	9.18	2.0 0.50	μg/L	10.0	91.8	70-130				
trans-1,3-Dichloropropene	10.2	0.50	μg/L μg/L	10.0 10.0	102 102	70-130 70-130				
Diethyl Ether	10.2 9.82	2.0	μg/L μg/L	10.0	98.2	70-130				
Diisopropyl Ether (DIPE)	9.82 9.57	0.50	μg/L μg/L	10.0	95.7	70-130				
1,4-Dioxane	93.6	50	μg/L μg/L	10.0	93.6	40-130				Ť
Ethylbenzene	10.8	1.0	μg/L μg/L	10.0	108	70-130				
Hexachlorobutadiene	12.4	0.60	μg/L μg/L	10.0	124	70-130				
2-Hexanone (MBK)	92.2	10	μg/L	100	92.2	70-160				†
Isopropylbenzene (Cumene)	11.4	1.0	μg/L	10.0	114	70-130				
p-Isopropyltoluene (p-Cymene)	11.2	1.0	μg/L	10.0	112	70-130				
Methyl tert-Butyl Ether (MTBE)	9.43	1.0	μg/L	10.0	94.3	70-130				
Methylene Chloride	8.74	5.0	μg/L	10.0	87.4	70-130				
4-Methyl-2-pentanone (MIBK)	94.2	10	μg/L	100	94.2	70-160				†
Naphthalene	10.4	2.0	μg/L	10.0	104	40-130				†
n-Propylbenzene	10.3	1.0	μg/L	10.0	103	70-130				
Styrene	10.8	1.0	μg/L	10.0	108	70-130				
1,1,1,2-Tetrachloroethane	11.2	1.0	$\mu g/L$	10.0	112	70-130				
1,1,2,2-Tetrachloroethane	10.6	0.50	$\mu g/L$	10.0	106	70-130				
Tetrachloroethylene	10.6	0.50	$\mu g/L$	10.0	106	70-130				
Tetrahydrofuran	9.11	10	$\mu g/L$	10.0	91.1	70-130			J	
Toluene	10.4	1.0	$\mu g/L$	10.0	104	70-130				
1,2,3-Trichlorobenzene	10.6	5.0	$\mu g/L$	10.0	106	70-130				
1,2,4-Trichlorobenzene	10.8	1.0	$\mu g/L$	10.0	108	70-130				
1,3,5-Trichlorobenzene	11.1	1.0	$\mu g/L$	10.0	111	70-130				
1,1,1-Trichloroethane	8.88	1.0	$\mu \text{g/L}$	10.0	88.8	70-130				
1,1,2-Trichloroethane	10.5	1.0	$\mu \text{g/L}$	10.0	105	70-130				
Trichloroethylene	10.3	1.0	$\mu \text{g/L}$	10.0	103	70-130				
Trichlorofluoromethane (Freon 11)	7.72	2.0	$\mu \text{g/L}$	10.0	77.2	70-130				
1,2,3-Trichloropropane	9.81	2.0	μg/L	10.0	98.1	70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.58	1.0	μg/L	10.0	95.8	70-130				
1,2,4-Trimethylbenzene	10.5	1.0	μg/L	10.0	105	70-130				
1,3,5-Trimethylbenzene	10.5	1.0	μg/L	10.0	105	70-130				

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B214298 - SW-846 5030B											
LCS (B214298-BS1)				Prepared: 10	0/09/18 Analy	yzed: 10/10/1	8				
Vinyl Acetate	60.7	20	$\mu \text{g/L}$	100		60.7 *	70-130			L-04	
Vinyl Chloride	8.89	2.0	μg/L	10.0		88.9	40-160				
m+p Xylene	21.0	2.0	μg/L	20.0		105	70-130				
o-Xylene	10.6	1.0	μg/L	10.0		106	70-130				
Surrogate: 1,2-Dichloroethane-d4	19.7		$\mu g/L$	25.0		78.6	70-130				
Surrogate: Toluene-d8	24.9		$\mu g/L$	25.0		99.5	70-130				
Surrogate: 4-Bromofluorobenzene	24.4		$\mu g/L$	25.0		97.6	70-130				
LCS Dup (B214298-BSD1)				Prepared: 10	0/09/18 Analy	yzed: 10/10/1	8				
Acetone	103	50	μg/L	100		103	70-160	23.8	25		
Acrylonitrile	9.74	5.0	$\mu g/L$	10.0		97.4	70-130	0.410	25		
tert-Amyl Methyl Ether (TAME)	9.63	0.50	$\mu \text{g/L}$	10.0		96.3	70-130	0.208	25		
Benzene	9.53	1.0	$\mu \text{g/L}$	10.0		95.3	70-130	1.27	25		
Bromobenzene	10.2	1.0	$\mu \text{g/L}$	10.0		102	70-130	0.973	25		
Bromochloromethane	10.7	1.0	$\mu \text{g/L}$	10.0		107	70-130	0.373	25		
Bromodichloromethane	9.34	0.50	$\mu g/L$	10.0		93.4	70-130	1.91	25		
Bromoform	10.8	1.0	$\mu g/L$	10.0		108	70-130	0.747	25		
Bromomethane	9.41	2.0	$\mu g/L$	10.0		94.1	40-160	10.2	25		
2-Butanone (MEK)	94.8	20	$\mu g/L$	100		94.8	40-160	10.4	25		
tert-Butyl Alcohol (TBA)	89.8	20	$\mu g/L$	100		89.8	40-160	2.72	25		
n-Butylbenzene	10.9	1.0	μg/L	10.0		109	70-130	0.277	25		
sec-Butylbenzene	11.0	1.0	μg/L	10.0		110	70-130	2.15	25		
ert-Butylbenzene	11.1	1.0	$\mu g/L$	10.0		111	70-130	1.26	25		
tert-Butyl Ethyl Ether (TBEE)	9.46	0.50	μg/L	10.0		94.6	70-130	1.57	25		
Carbon Disulfide	9.77	4.0	$\mu g/L$	10.0		97.7	70-130	6.53	25		
Carbon Tetrachloride	8.35	5.0	μg/L	10.0		83.5	70-130	1.08	25		
Chlorobenzene	10.4	1.0	μg/L	10.0		104	70-130	0.575	25		
Chlorodibromomethane	10.1	0.50	μg/L	10.0		101	70-130	0.00	25		
Chloroethane	8.46	2.0	μg/L	10.0		84.6	70-130	4.84	25		
Chloroform	8.98	2.0	μg/L	10.0		89.8	70-130	1.01	25		
Chloromethane	9.05	2.0	μg/L	10.0		90.5	40-160	0.111	25		
2-Chlorotoluene	9.97	1.0	μg/L	10.0		99.7	70-130	5.65	25		
4-Chlorotoluene	9.89	1.0	μg/L	10.0		98.9	70-130	3.96	25		
1,2-Dibromo-3-chloropropane (DBCP)	9.73	5.0	μg/L	10.0		97.3	70-130	3.56	25		
1,2-Dibromoethane (EDB)	10.2	0.50	μg/L	10.0		102	70-130	2.49	25		
Dibromomethane 1,2-Dichlorobenzene	10.0	1.0	μg/L	10.0		100	70-130	2.53	25		
1,3-Dichlorobenzene	10.6	1.0	μg/L	10.0		106	70-130	1.41	25		
1,4-Dichlorobenzene	10.9	1.0 1.0	μg/L	10.0		109	70-130	0.914	25		
trans-1,4-Dichloro-2-butene	10.1	2.0	μg/L μg/L	10.0		101	70-130	4.07	25		
Dichlorodifluoromethane (Freon 12)	9.25	2.0	μg/L μg/L	10.0 10.0		92.5 68.4	70-130 40-160	1.97 3.02	25 25		
1,1-Dichloroethane	6.84 9.65	1.0	μg/L μg/L	10.0		96.5	70-130	4.26	25		
1,2-Dichloroethane	9.65 8.46	1.0	μg/L μg/L	10.0		96.3 84.6	70-130	1.52	25		
1,1-Dichloroethylene	8.46 8.82	1.0	μg/L μg/L	10.0		88.2	70-130	0.227	25		
cis-1,2-Dichloroethylene	8.82 8.90	1.0	μg/L μg/L	10.0		89.0	70-130	3.42	25		
trans-1,2-Dichloroethylene	9.80	1.0	μg/L μg/L	10.0		98.0	70-130	1.22	25		
1,2-Dichloropropane	11.2	1.0	μg/L μg/L	10.0		112	70-130	0.809	25		
1,3-Dichloropropane	9.64	0.50	μg/L μg/L	10.0		96.4	70-130	1.15	25		
2,2-Dichloropropane	8.04	1.0	μg/L μg/L	10.0		80.4	40-130	5.56	25		
1,1-Dichloropropene	8.96	2.0	μg/L	10.0		89.6	70-130	2.43	25		
cis-1,3-Dichloropropene	10.2	0.50	μg/L μg/L	10.0		102	70-130	0.589	25		
trans-1,3-Dichloropropene	9.82	0.50	μg/L	10.0		98.2	70-130	3.70	25		

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B214298 - SW-846 5030B											
LCS Dup (B214298-BSD1)				Prepared: 10	0/09/18 Analy	yzed: 10/10/1	8				
Diethyl Ether	9.94	2.0	μg/L	10.0		99.4	70-130	1.21	25		
Diisopropyl Ether (DIPE)	9.44	0.50	μg/L	10.0		94.4	70-130	1.37	25		
1,4-Dioxane	99.5	50	μg/L	100		99.5	40-130	6.08	50		† ‡
Ethylbenzene	10.6	1.0	μg/L	10.0		106	70-130	2.24	25		
Hexachlorobutadiene	12.2	0.60	μg/L	10.0		122	70-130	2.19	25		
2-Hexanone (MBK)	95.5	10	μg/L	100		95.5	70-160	3.57	25		†
Isopropylbenzene (Cumene)	11.2	1.0	μg/L	10.0		112	70-130	1.94	25		
p-Isopropyltoluene (p-Cymene)	11.1	1.0	μg/L	10.0		111	70-130	0.810	25		
Methyl tert-Butyl Ether (MTBE)	9.61	1.0	μg/L	10.0		96.1	70-130	1.89	25		
Methylene Chloride	9.05	5.0	μg/L	10.0		90.5	70-130	3.49	25		
4-Methyl-2-pentanone (MIBK)	96.0	10	μg/L	100		96.0	70-160	1.93	25		†
Naphthalene	10.4	2.0	μg/L	10.0		104	40-130	0.193	25		†
n-Propylbenzene	10.1	1.0	μg/L	10.0		101	70-130	1.86	25		
Styrene	11.0	1.0	μg/L	10.0		110	70-130	2.02	25		
1,1,1,2-Tetrachloroethane	10.9	1.0	μg/L	10.0		109	70-130	3.08	25		
1,1,2,2-Tetrachloroethane	10.6	0.50	μg/L	10.0		106	70-130	0.472	25		
Tetrachloroethylene	11.1	0.50	μg/L	10.0		111	70-130	4.25	25		
Tetrahydrofuran	9.51	10	μg/L	10.0		95.1	70-130	4.30	25	J	
Toluene	10.2	1.0	μg/L	10.0		102	70-130	1.46	25		
1,2,3-Trichlorobenzene	10.7	5.0	μg/L	10.0		107	70-130	0.564	25		
1,2,4-Trichlorobenzene	10.7	1.0	μg/L	10.0		107	70-130	1.03	25		
1,3,5-Trichlorobenzene	10.9	1.0	μg/L	10.0		109	70-130	1.36	25		
1,1,1-Trichloroethane	8.69	1.0	μg/L	10.0		86.9	70-130	2.16	25		
1,1,2-Trichloroethane	10.3	1.0	μg/L	10.0		103	70-130	2.12	25		
Trichloroethylene	10.1	1.0	μg/L	10.0		101	70-130	1.87	25		
Trichlorofluoromethane (Freon 11)	7.53	2.0	μg/L	10.0		75.3	70-130	2.49	25		
1,2,3-Trichloropropane	9.66	2.0	μg/L	10.0		96.6	70-130	1.54	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	9.42	1.0	μg/L	10.0		94.2	70-130	1.68	25		
1,2,4-Trimethylbenzene	10.4	1.0	μg/L	10.0		104	70-130	1.82	25		
1,3,5-Trimethylbenzene	10.2	1.0	μg/L	10.0		102	70-130	2.70	25		
Vinyl Acetate	58.2	20	μg/L	100		58.2 *	70-130	4.14	25	L-04	
Vinyl Chloride	8.65	2.0	μg/L	10.0		86.5	40-160	2.74	25		†
m+p Xylene	20.6	2.0	μg/L	20.0		103	70-130	1.68	25		
o-Xylene	10.4	1.0	$\mu g/L$	10.0		104	70-130	1.61	25		
Surrogate: 1,2-Dichloroethane-d4	19.7		μg/L	25.0		78.8	70-130				
Surrogate: Toluene-d8	25.1		μg/L	25.0		100	70-130				
Surrogate: 4-Bromofluorobenzene	24.5		$\mu g/L$	25.0		98.0	70-130				

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B214244 - SW-846 3510C										
Blank (B214244-BLK1)				Prepared: 10	0/06/18 Analy	yzed: 10/08/	18			
Acenaphthene (SIM)	ND	0.30	$\mu g/L$							
Acenaphthylene (SIM)	ND	0.20	$\mu g/L$							
Anthracene (SIM)	ND	0.20	$\mu g/L$							
Benzo(a)anthracene (SIM)	ND	0.050	$\mu g/L$							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
Benzo(g,h,i)perylene (SIM)	ND	0.50	μg/L							
Benzo(k)fluoranthene (SIM)	ND	0.20	μg/L							
Chrysene (SIM)	ND	0.20	$\mu g/L$							
Dibenz(a,h)anthracene (SIM)	ND	0.10	$\mu \text{g/L}$							
Fluoranthene (SIM)	ND	0.50	$\mu \text{g/L}$							
Fluorene (SIM)	ND	1.0	$\mu \text{g}/L$							
indeno(1,2,3-cd)pyrene (SIM)	ND	0.10	$\mu \text{g}/L$							
2-Methylnaphthalene (SIM)	ND	1.0	$\mu \text{g/L}$							
Naphthalene (SIM)	ND	1.0	$\mu g/L$							
Phenanthrene (SIM)	ND	0.050	$\mu g/L$							
Pyrene (SIM)	ND	1.0	$\mu \text{g/L}$							
Surrogate: Nitrobenzene-d5	74.2		μg/L	100		74.2	30-130			
Surrogate: 2-Fluorobiphenyl	78.7		$\mu g/L$	100		78.7	30-130			
Surrogate: p-Terphenyl-d14	80.5		$\mu g/L$	100		80.5	30-130			
LCS (B214244-BS1)				Prepared: 10	0/06/18 Analy	yzed: 10/08/	18			
Acenaphthene (SIM)	39.6	7.5	$\mu g/L$	50.0		79.1	40-140			
Acenaphthylene (SIM)	41.0	5.0	$\mu g/L$	50.0		82.0	40-140			
Anthracene (SIM)	42.4	5.0	$\mu g/L$	50.0		84.9	40-140			
Benzo(a)anthracene (SIM)	40.9	1.2	$\mu g/L$	50.0		81.8	40-140			
Benzo(a)pyrene (SIM)	43.4	2.5	$\mu g/L$	50.0		86.9	40-140			
Benzo(b)fluoranthene (SIM)	44.4	1.2	$\mu g/L$	50.0		88.7	40-140			
Benzo(g,h,i)perylene (SIM)	41.4	12	$\mu g/L$	50.0		82.8	40-140			
Benzo(k)fluoranthene (SIM)	42.2	5.0	$\mu g/L$	50.0		84.3	40-140			
Chrysene (SIM)	40.3	5.0	$\mu \text{g/L}$	50.0		80.6	40-140			
Dibenz(a,h)anthracene (SIM)	42.4	2.5	$\mu \text{g/L}$	50.0		84.9	40-140			
Fluoranthene (SIM)	41.9	12	$\mu \text{g/L}$	50.0		83.8	40-140			
Fluorene (SIM)	41.0	25	$\mu g/L$	50.0		82.1	40-140			
ndeno(1,2,3-cd)pyrene (SIM)	43.0	2.5	$\mu \text{g/L}$	50.0		86.0	40-140			
2-Methylnaphthalene (SIM)	39.7	25	$\mu \text{g/L}$	50.0		79.4	40-140			
Naphthalene (SIM)	36.6	25	$\mu \text{g/L}$	50.0		73.3	40-140			
Phenanthrene (SIM)	40.2	1.2	$\mu g/L$	50.0		80.5	40-140			
Pyrene (SIM)	38.7	25	$\mu \text{g/L}$	50.0		77.4	40-140			
Surrogate: Nitrobenzene-d5	54.6		μg/L	100		54.6	30-130			
Surrogate: 2-Fluorobiphenyl	71.5		μg/L	100		71.5	30-130			
Surrogate: p-Terphenyl-d14	57.2		μg/L	100		57.2	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B214244 - SW-846 3510C										
LCS Dup (B214244-BSD1)				Prepared: 10	0/06/18 Anal	yzed: 10/08/	18			
Acenaphthene (SIM)	40.4	7.5	μg/L	50.0		80.8	40-140	2.13	20	
Acenaphthylene (SIM)	41.8	5.0	$\mu g/L$	50.0		83.5	40-140	1.81	20	
Anthracene (SIM)	44.0	5.0	$\mu g/L$	50.0		88.1	40-140	3.70	20	
Benzo(a)anthracene (SIM)	44.4	1.2	$\mu g \! / \! L$	50.0		88.8	40-140	8.09	20	
Benzo(a)pyrene (SIM)	45.6	2.5	$\mu g \! / \! L$	50.0		91.2	40-140	4.88	20	
Benzo(b)fluoranthene (SIM)	46.8	1.2	$\mu g \! / \! L$	50.0		93.6	40-140	5.43	20	
Benzo(g,h,i)perylene (SIM)	43.6	12	$\mu g\!/\!L$	50.0		87.3	40-140	5.29	20	
Benzo(k)fluoranthene (SIM)	44.6	5.0	$\mu g \! / \! L$	50.0		89.2	40-140	5.59	20	
Chrysene (SIM)	42.6	5.0	$\mu g\!/\!L$	50.0		85.3	40-140	5.73	20	
Dibenz(a,h)anthracene (SIM)	44.9	2.5	$\mu g \! / \! L$	50.0		89.8	40-140	5.61	20	
Fluoranthene (SIM)	43.3	12	$\mu g \! / \! L$	50.0		86.6	40-140	3.34	20	
Fluorene (SIM)	41.8	25	$\mu g \! / \! L$	50.0		83.6	40-140	1.81	20	
Indeno(1,2,3-cd)pyrene (SIM)	45.4	2.5	$\mu g \! / \! L$	50.0		90.8	40-140	5.37	20	
2-Methylnaphthalene (SIM)	40.2	25	$\mu g \! / \! L$	50.0		80.4	40-140	1.38	20	
Naphthalene (SIM)	37.1	25	$\mu g \! / \! L$	50.0		74.2	40-140	1.29	20	
Phenanthrene (SIM)	41.8	1.2	$\mu g \! / \! L$	50.0		83.6	40-140	3.84	20	
Pyrene (SIM)	40.8	25	$\mu \text{g/L}$	50.0		81.5	40-140	5.10	20	
Surrogate: Nitrobenzene-d5	54.9		μg/L	100		54.9	30-130			
Surrogate: 2-Fluorobiphenyl	71.1		$\mu g/L$	100		71.1	30-130			
Surrogate: p-Terphenyl-d14	57.9		$\mu g/L$	100		57.9	30-130			

FLAG/QUALIFIER SUMMARY

OC result is outside of established fifth	ķ	OC result is outside of estab	olished	limits
---	---	-------------------------------	---------	--------

- † Wide recovery limits established for difficult compound.
- ‡ Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated

concentration (CLP J-Flag).

L-04 Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits.

Reported value for this compound is likely to be biased on the low side.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260B in Water	
Acetone	NC
Acrylonitrile	NC
tert-Amyl Methyl Ether (TAME)	NC
Benzene	NC
Bromobenzene	NC
Bromochloromethane	NC
Bromodichloromethane	NC
Bromoform	NC
Bromomethane	NC
2-Butanone (MEK)	NC
tert-Butyl Alcohol (TBA)	NC
n-Butylbenzene	NC
sec-Butylbenzene	NC
tert-Butylbenzene	NC
tert-Butyl Ethyl Ether (TBEE)	NC
Carbon Disulfide	NC
Carbon Tetrachloride	NC
Chlorobenzene	NC
Chlorodibromomethane	NC
Chloroethane	NC
Chloroform	NC
Chloromethane	NC
2-Chlorotoluene	NC
4-Chlorotoluene	NC
1,2-Dibromo-3-chloropropane (DBCP)	NC
1,2-Dibromoethane (EDB)	NC
Dibromomethane	NC
1,2-Dichlorobenzene	NC
1,3-Dichlorobenzene	NC
1,4-Dichlorobenzene	NC
trans-1,4-Dichloro-2-butene	NC
Dichlorodifluoromethane (Freon 12)	NC
1,1-Dichloroethane	NC
1,2-Dichloroethane	NC
1,1-Dichloroethylene	NC
cis-1,2-Dichloroethylene	NC
trans-1,2-Dichloroethylene	NC
1,2-Dichloropropane	NC
1,3-Dichloropropane	NC
2,2-Dichloropropane	NC
1,1-Dichloropropene	NC
cis-1,3-Dichloropropene	NC
trans-1,3-Dichloropropene	NC
Diethyl Ether	NC
Diisopropyl Ether (DIPE)	NC
1,4-Dioxane	NC
Ethylbenzene	NC

CERTIFICATIONS

Certified Analyses included in this Report

Certifications
NC

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019
RI	Rhode Island Department of Health	LAO00112	12/30/2018
NC	North Carolina Div. of Water Quality	652	12/31/2018
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2018
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

		Γ			W.								N.	M.Y									A N			<u> </u>			À		Ta	abl I	e of (Conte	nt
Page of	# of Containers	² Preservation Code	³ Container Code	Hemis distribution (estilo	Field Filtered	Lab to Filter		Field Filtered				Watrix Codes: GW = Ground Water	WW = Waste Water	A = Air	SL = Sludge	SUL = Solid O = Other (please	define)	Management of the contract of	² Preservation Codes: = Iced	H = HCL N = Methanol	N = Nitric Acid S = Sulfuric Acid	B = Sodium Bisulfate X = Sodium Hydroxide	O = Other (please	define)	³ Container Codes:	A = Amber Glass	P = Plastic	SI = Sterile V = Vial	S = Summa Canister	0 = Teurar bay 0 = Other (please	(auton		PCB ONLY Soxhlet	Non Soxhlet	
Doc # 379 Rev 1_03242017 39 Spruce Street East Longmeadow, MA 01028				ANALYSIS REQUESTED																				Please use the following codes to indicate possible sample concentration within the Code column above:	- High; M - Medium; L - Low; C - Clean; U - Unknown	Description in Comments	DSCA UST/Trust Fund	SWS Landfill REC	IHSB Orphaned Landfill	State Lead Other:		NELAC and Alfallate ill Appredited	Other Chromatogram	AIHA-LAP, LLC	Comment of Comments and Comment
http://www.contestlabs.com IAIN DECUSTODY RECORD (North Carolina) Requested (functional fine)	7-Day 10-Day	ite:	Rush-Approval Regulfred		2-Day	Batta Belliveny	: PDF C EXCEL	Other:	Service of Carlotte	WINTER SWEINGLOW	Wateria Cons	Composite Grab man Code	// 3 179 / Washing											Please use the following c	H - High; M - Med		2L	GWPC	SWSL	MSCC Transferrount			ity Government 🔲 Municipality	Federal Brownfield City School	
	tlabs.com		Forcet Red Relevan, N.C.			Parcel 21					Beolimin	3160	Dre-01 31 (6-3-48														10 - 4-15 2 and	Š	ەد،	Date/Time:	Date/Time:		Date/Time: Project Entity	Date/Time:	
CON-KESK" ANALTICAL LABORATORY		Company Vame	18 3301 Soring	्ति ४७३- ३६६०	Project Name:	HCBoT .	-3054	Con. Test Onote Name/Number:	Lavoire Reginient	Sampled By: Jamie Honeseith	Von-Teet		j										Comments:				Charles of Signature	Received by: (signature)		Relinquished by: (signature)	ceived by: (signature)		e linquished by: (signature)	of sceived by: (signature)	8

TRACK ANOTHER SHIPMENT

Sign In

Delivered Friday 10/05/2018 at 8:58 am

OBTAIN PROOF OF DELIVERY

FROM

RALEIGH, NO US

ΤO

EAST LONGMEADOW, MA US

Travel Hist	tory	Shipment Facts		
10/05/2018 - F	riday	8:58 am	Delivered EAST LONGMEADOW, MA	
		Expand History 🤝		
10/04/2018 - T	hursday	1:52 pm	Shipment information sent to FedEx	÷.,
				2
OUR COMPANY		MORE FROM FEDEX	LANGUAGE	
About FedEx	FedEx Blog	l'edEx Compatible	Change Country	
Our Portfolio	Corporate Responsibility	Developer Resource Center		
Investor Relations	Newsroom	FedEx Cross Border	English	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Careers	Contact Us			!
		,		

FOLLOW FEDEX

I Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Received How were the s received Were samples Temperature?	amples	In Cooler					₹'		
received' Were samples Temperature?	2	III CAAAAA	7	No Cooler		On Ice	1	No Ice	
Were samples Temperature?		•		140 000.0.		Ambient		Melted Ice	
Temperature?	4.4	Direct from Samp				Actual Tem	- 3 a	Trionio	
Temperature?	within		By Gun #	33+	-				
•		<u> </u>	By Blank #			Actual Tem	***************************************		ı
Was Cu		eal Intact?	<u> </u>			s Tampered		NA	
		quished?	1		s Chain Ag	ree With Sar	mples?		
Are there	oroken/le	eaking/loose caps	on any sam	ples?	<u> </u>				
s COC in ink/ L				Were san	nples recei	ived within h			
Did COC inclu	-	Client	T	Analysis			er Name	T	•
pertinent Inforn	nation?	Project		ID's		Collection	Dates/Times	<u> </u>	•
		dout and legible?	1	=					
Are there Lab to			E		Who wa	s notified?			
Are there Rushe			F	***	Who wa	s notified?			
Are there Short			F	•	Who wa	s notified?			
s there enough		?	T	1					
ls there Headsp			F	•	MS/MSD?	<u> </u>	_	~	
Proper Media/C			T	•	Is splitting	samples red	quired?	<u> </u>	
Were trip blank				,	On COC?	F	_		
Do all samples			NIA	Acid			Base		•
		Containers:	#			#			#
Vials	#	1 Liter Amb.	2	1 Liter	· Plastic	**	16 oz	z Amb.	
Unp- HCL-	2	500 mL Amb.	Cure		L Plastic			nb/Clear	
Meoh-	2	250 mL Amb.			L Plastic			nb/Clear	
Bisulfate-		Col./Bacteria	+		hpoint			nb/Clear	
DI-		Other Plastic			r Glass		En	core	
Thiosulfate-		SOC Kit			tic Bag		Frozen:		
Sulfuric-		Perchlorate	1		olock		1		
				Unused					
Vials	#	Containers:	#			#			#
Unp-	T .	1 Liter Amb.	-	1 Liter	r Plastic		16 o	z Amb.	
HCL-		500 mL Amb.			L Plastic		8oz Ar	mb/Clear	
Meoh-		250 mL Amb.			L Plastic		4oz Ar	mb/Clear	
Bisulfate-		Col./Bacteria			hpoint		2oz Ar	mb/Clear	
Disdilate DI-		Other Plastic	1		r Glass		En	ncore	
Thiosulfate-		SOC Kit			tic Bag		Frozen:		
Sulfuric-		Perchlorate			olock				
Comments:									

December 14, 2018

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: **Preliminary Site Assessment Report**

NCDOT Project I-5986B, WBS Element 47532.1.3

Parcel 28-I-95 Tire and Service

918 Long Branch Road

Dunn, Harnett County, North Carolina

S&ME Project 4305-18-175

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1800583 REV-02 dated August 16, 2018, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its August 20, 2018 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's July 30, 2018, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
28	Glen and Loyal Colosky	(I-95 Tire and Service)
		918 Long Branch Road, Dunn, NC

The PSA included a geophysical survey and subsequent limited soil sampling (five soil borings up to 10 feet below ground surface (ft.-bgs.), within accessible areas of the proposed ROW/easement in preparation for construction activities. Groundwater was not encountered during the advancement of soil borings at the site. Therefore, groundwater sampling was not performed. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (Troxler Geologic, Inc.) was also used to locate and mark underground utilities.

Geophysical Survey

On September 12, 2018, S&ME personnel performed a geophysical survey within accessible areas of the proposed ROW/easement at Parcel 28. S&ME used a combination of the Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) methods to explore for buried subsurface features at the site such as underground storage tanks (USTs) and other possible buried obstructions. Brief descriptions of the proposed complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820-02 (2007) "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The presence of vehicles, ditches, and other surficial obstructions within the requested survey area however prevented TDEM data collection in several locations. The approximate TDEM data collection paths are presented in **Figure 4**. Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 3000 GPR system equipped with a 400 MHz antenna in general accordance with ASTM D6432-11 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of four (4) GPR profiles (Lines 1 through 4) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. However, two anomalous features (Anomaly A and B) were identified in both the TDEM and GPR data sets (**Figures 5 through 7**). Anomaly A is characterized by relatively high TDEM values (greater than about 500 mV) and high amplitude GPR responses located within the upper one foot. Anomaly A is likely related to a buried isolated metallic target. Anomaly B is characterized by relatively high TDEM values (greater than about 500 mV) and high amplitude GPR responses located at about one ft-bgs. Anomaly B is about four feet by four feet in size and likely related to a buried isolated metallic target. Anomalies were also marked in the field using white spray paint. Example GPR profiles are presented in **Figures 8 and 9**.

♦ Soil Sampling

On October 1, 2018, S&ME's drill crew utilized a track mounted Geoprobe® rig to advance five soil borings (B-1 through B-5) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 28. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I**. S&ME's drill crew advanced the Geoprobe® borings to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was not encountered. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II.**

No petroleum odors, staining or elevated PID readings were noted within the collected soil samples. Therefore, two soil samples (two to four foot depth interval and 8 to 10 foot depth interval) were selected from each boring and provided to RED Lab, LLC (Red Lab) for on-site analysis. A total of ten soil samples (two per boring) were analyzed by RED Lab for Total Petroleum Hydrocarbons (TPH)-Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH-GRO and TPH-DRO were not reported at concentrations exceeding the North Carolina TPH Action Levels. TPH-DRO was reported at borings B-2 and B-5 at the two to four foot depth intervals at concentrations of 0.49 milligrams per kilograms (mg/kg) and 0.96 mg/kg, which are below its North Carolina TPH Action Level of 100 mg/kg. TPH-GRO was reported at boring B-3 at the two to four foot depth interval at a concentration of 0.54 mg/kg, which is below

its North Carolina TPH Action Level of 50 mg/kg. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits for the remaining soil samples. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Conclusion and Recommendations

The geophysical survey identified two anomalous features (Anomaly A and B) which are likely related to two buried isolated metallic targets. Anomaly B appears to be approximately four feet by four feet in size. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced five soil borings (B-1 through B-5) to a depth of approximately 10 ft.-bgs at the site. No petroleum odors, staining or elevated PID readings were noted within soil samples collected from the soil borings. Selected soil samples from the soil borings were analyzed onsite for TPH-GRO and TPH-DRO using UVF spectroscopy. TPH-GRO and TPH-DRO were reported in the two to four foot depth interval at three soil borings at concentrations slightly above the laboratory method reporting limits, but well below the North Carolina TPH Action Levels. During the soil boring advancement, groundwater was not encountered. Therefore, groundwater sampling was not performed.

S&ME recommends maintaining an awareness level for the presence of marginally impacted petroleum in soil (below TPH Action Levels) at the site for the safety of workers and the public. If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., buildings, reinforced concrete, vehicles, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific, and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of approximately about 5 feet below ground surface.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a

Michael Phifer

Michael W. Pfeifer
Senior Project Manager

mpfeifer@smeinc.com

project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

Jamie T Honeycutt

Lenvironmental Professional

jhoneycutt@smeinc.com

Thomas P. Raymond, P.E., P.M.P. Senior Consultant

traymond@smeinc.com

Attachments:

1/22/2019

Table 1: Summary of Soil Sampling Results

Figure 1: Vicinity Map Figure 2: Site Map

Figure 3: Soil Constituent Map **Figure 4:** TDEM Path Location Plan

Figure 5: TDEM Data Plot A

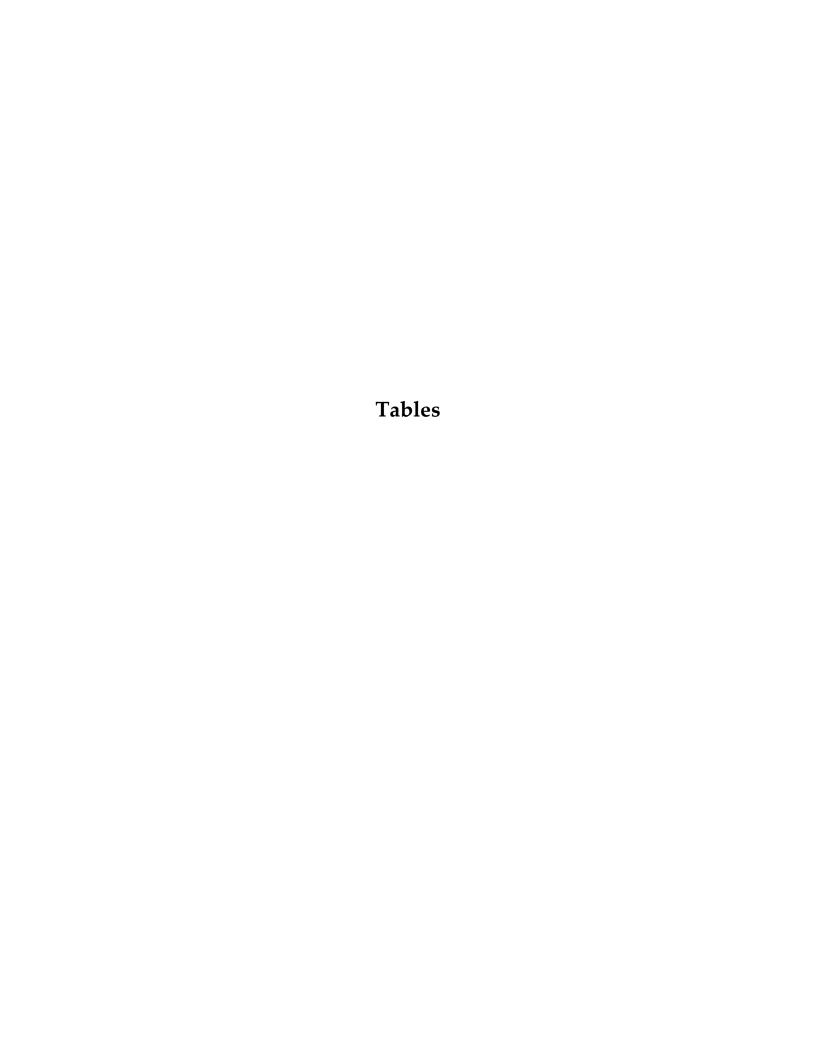


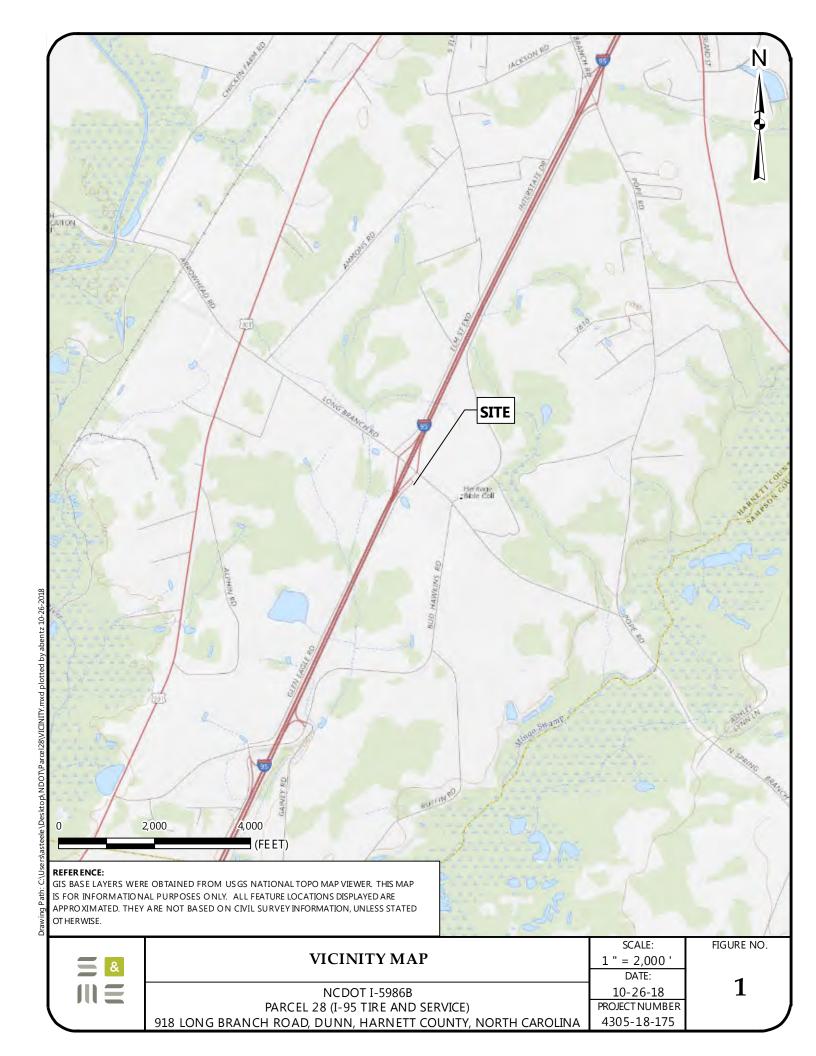
Figure 6: TDEM Data Plot B

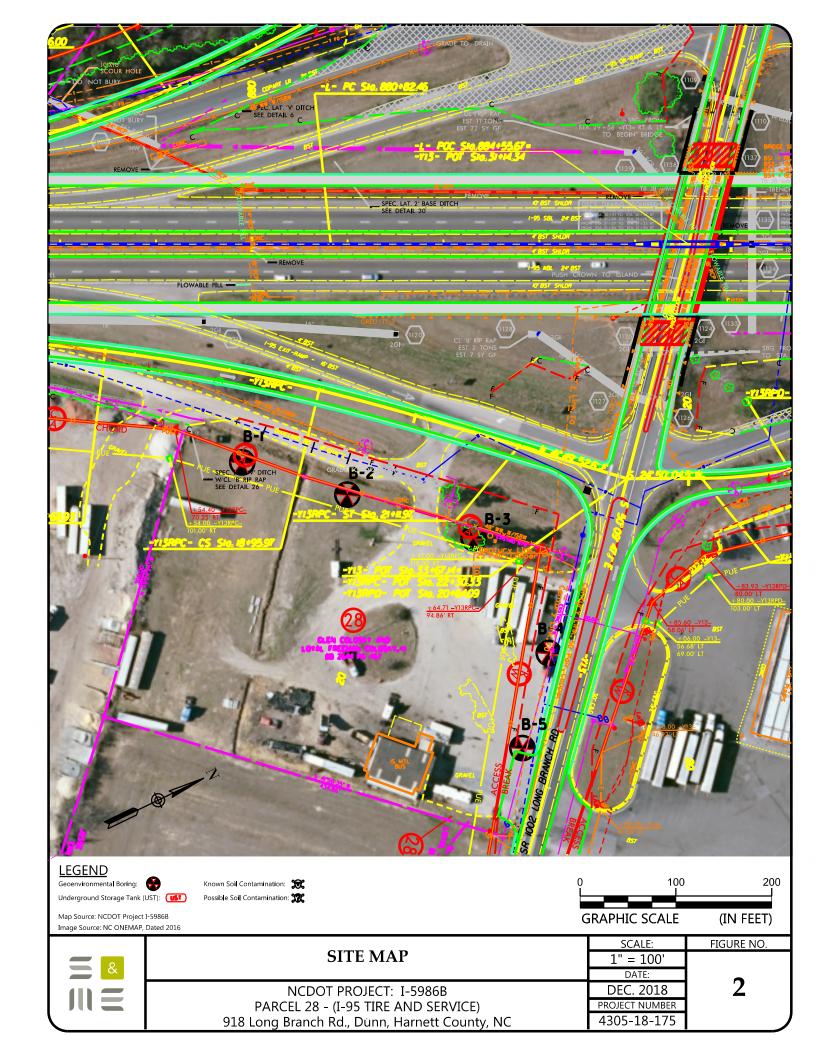
Figure 7: Geophysical Anomaly Location Plan **Figure 8:** Example GPR Data – Lines 1 and 2 **Figure 9:** Example GPR Data-Lines 3 and 4

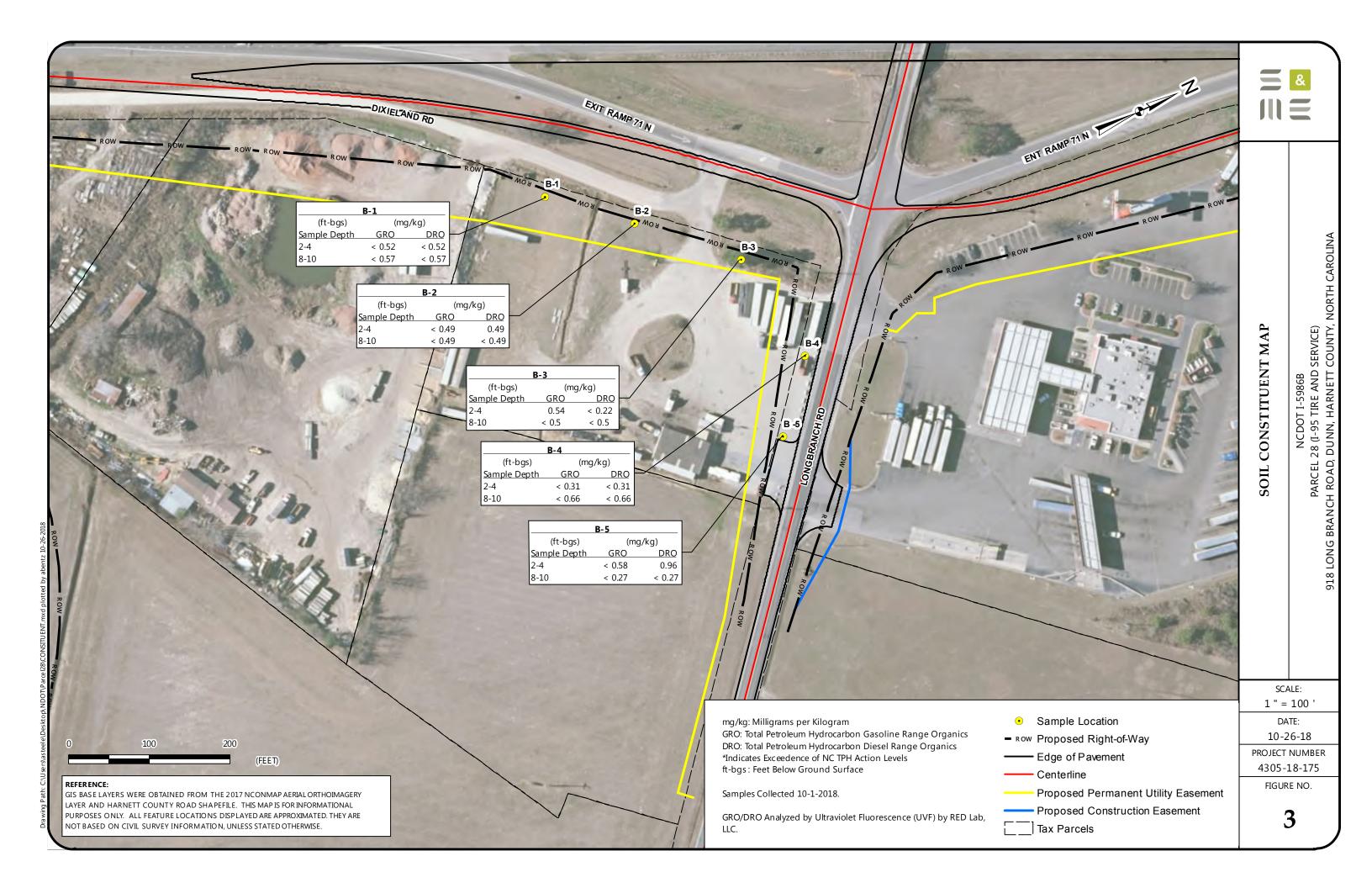
Appendix I: Photographs **Appendix II:** Boring Logs

Appendix III: Laboratory Analytical Reports and Chain of Custody

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5986B


Parcel 28 - (I-95 Tire and Service) 918 Long Branch Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175


Ana	alytical Meth	od→	Range Organics (GR Organics (DRO) by Uli	carbons (TPH) Gasoline (O) and Diesel Range traviolet Fluorescence ectrometry
		Contaminant of Concern→		
Sample ID	Date	Sample Depth (ftbgs)	TPH-GRO	TPH-DRO
Dargol 29 B 1	10/1/2018	2 to 4	<0.52	<0.52
Parcel 28 B-1	10/1/2016	8 to10	<0.57	<0.57
Parcel 28 B-2	10/1/2018	2 to 4	<0.49	0.49
Paicei 20 B-2	10/1/2016	8 to10	<0.49	<0.49
Doroel 20 D 2	10/1/2018	2 to 4	0.54	<0.22
Parcel 28 B-3	10/1/2016	8 to10	<0.5	<0.5
Doroel 20 D 4	10/1/2018	2 to 4	<0.31	<0.31
Parcel 28 B-4	10/1/2016	8 to10	<0.66	<0.66
Parcel 28 B-5	10/1/2018	2 to 4	<0.58	0.96
Faite 20 B-3	10/1/2010	8 to10	<0.27	<0.27
Nort	h Carolina T	PH Action Levels	50	100


Notes:

- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and BOLD fields.

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

•••• Approximate TDEM Path

Approximate Requested Survey Area

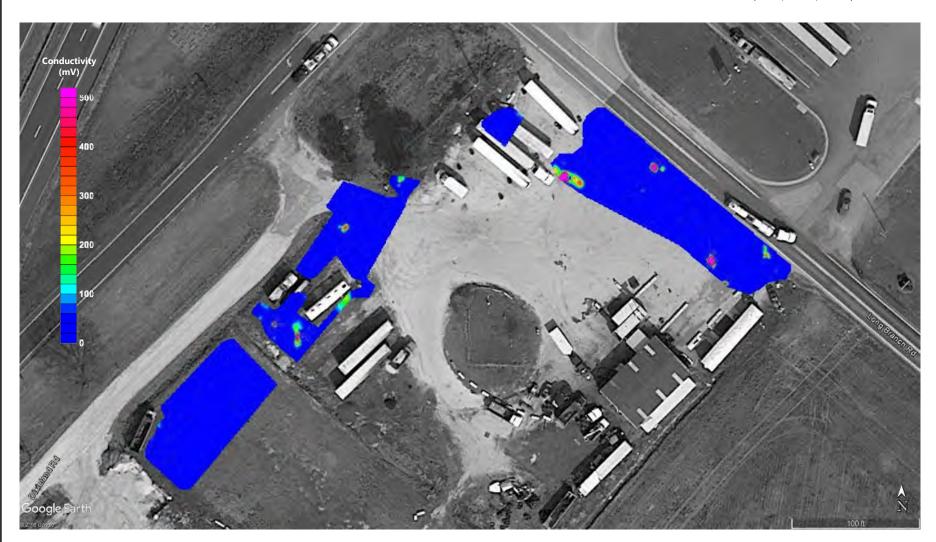
TDEM PATH LOCATION PLAN

NCDOT PROJECT: 1-5986B PARCEL 28 – (1-95 TIRE AND SERVICE) 918 LONG BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 10/29/2018

PROJECT NUMBER 4305-18-175


FIGURE NO.

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

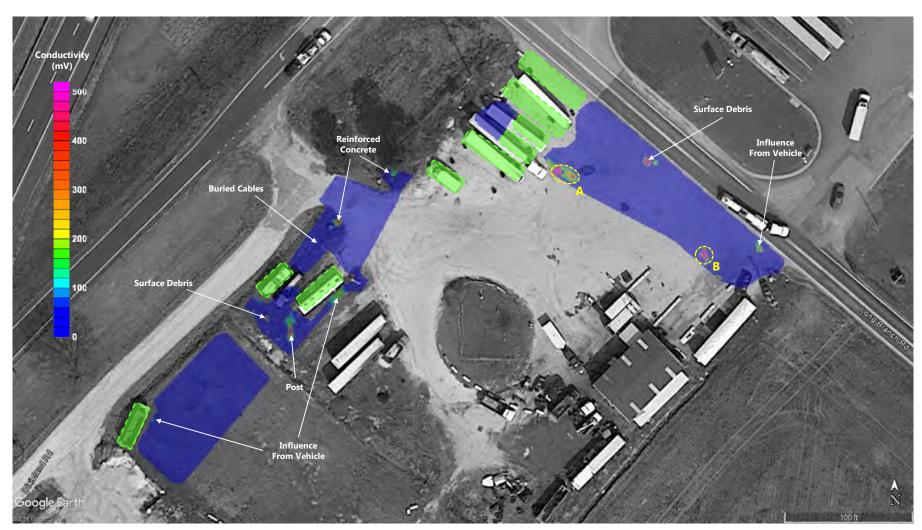
TDEM DATA PLOT A

NCDOT PROJECT: 1-5986B PARCEL 28 – (1-95 TIRE AND SERVICE) 918 LONG BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 10/29/2018

PROJECT NUMBER 4305-18-175


FIGURE NO.

5

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

Approximate Location of TDEM Anomaly

Approximate Location of Vehicle

TDEM DATA PLOT B

NCDOT PROJECT: I-5986B

PARCEL 28 – (I-95 TIRE AND SERVICE)
918 LONG BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

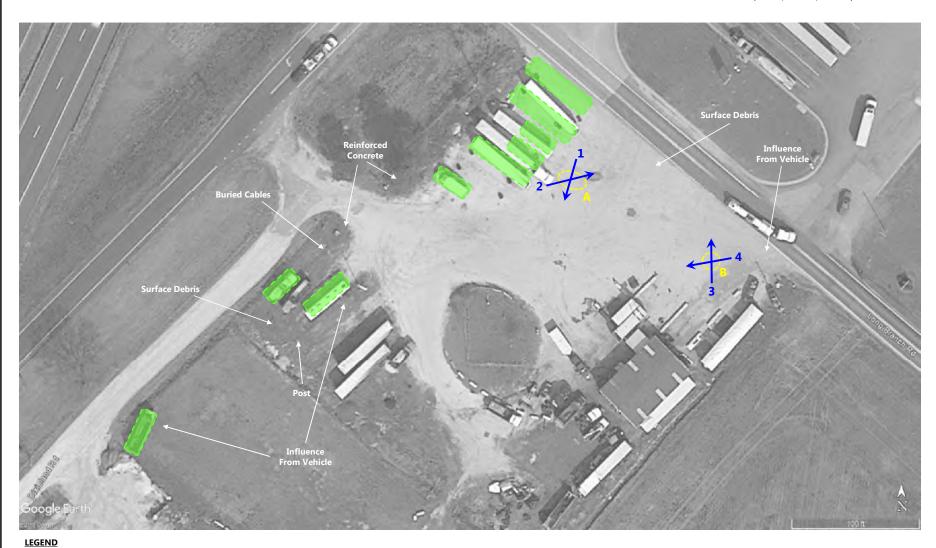
SCALE: AS SHOWN

DATE: 10/29/2018

PROJECT NUMBER 4305-18-175

FIGURE NO.

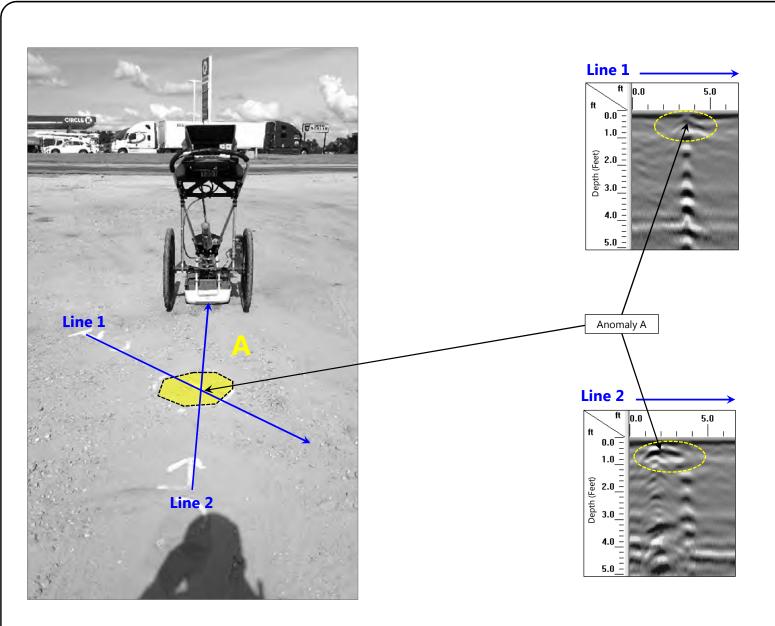
Approximate Location of TDEM Anomaly


(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

D SERVICE) COUNTY, NORTH CAROLINA

PARCEL 28 – (I-95 TIRE ANI) 918 LONG BRANCH ROAD, DUNN, HARNETT

GEOPHYSICAL ANOMALY LOCATION PLAN


Approximate Location of Vehicle

Approximate Location of GPR Profile

SCALE: AS SHOWN

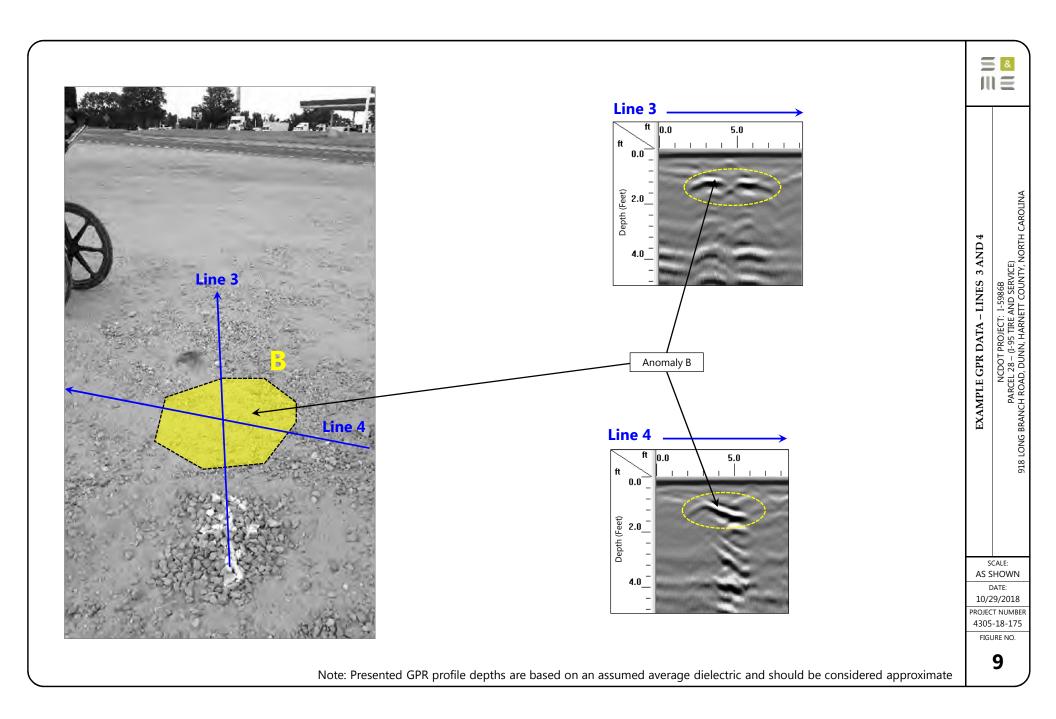
DATE: 10/29/2018

PROJECT NUMBER 4305-18-175 FIGURE NO.

EXAMPLE GPR DATA - LINES 1 AND 2

PARCEL 28 – (I-95 TIRE AND SERVICE) 918 LONG BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN DATE:


DATE: 10/29/2018 PROJECT NUMBER

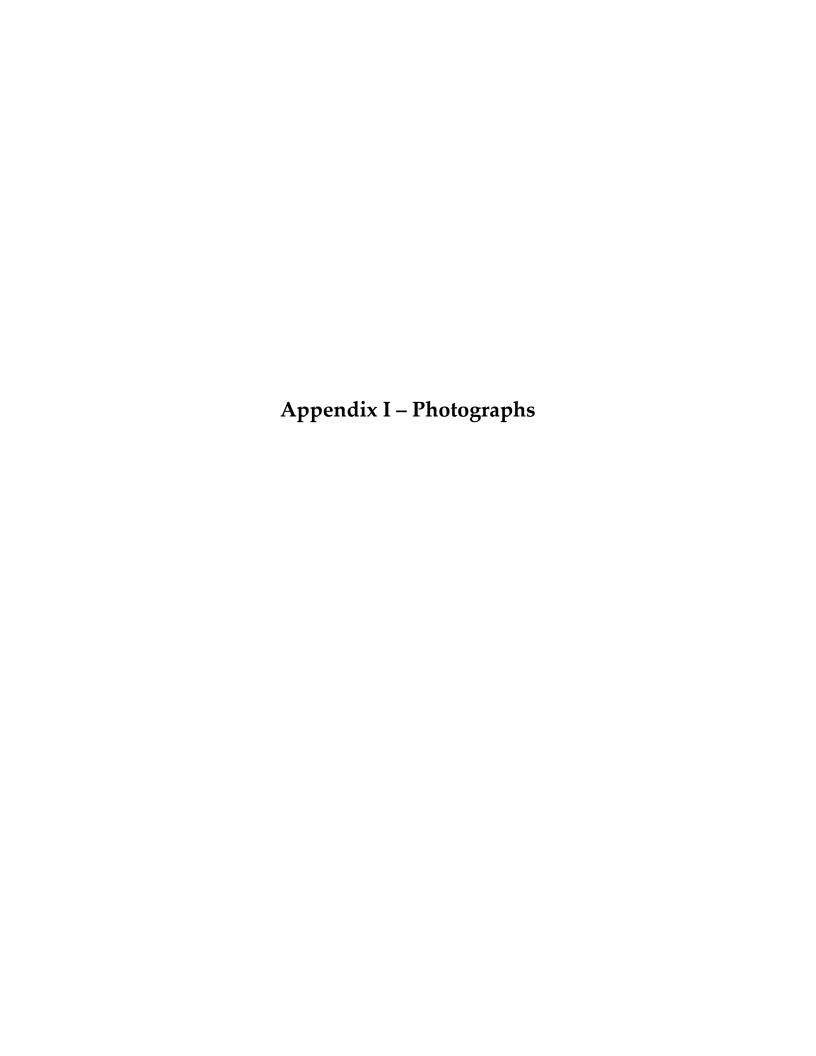

4305-18-175

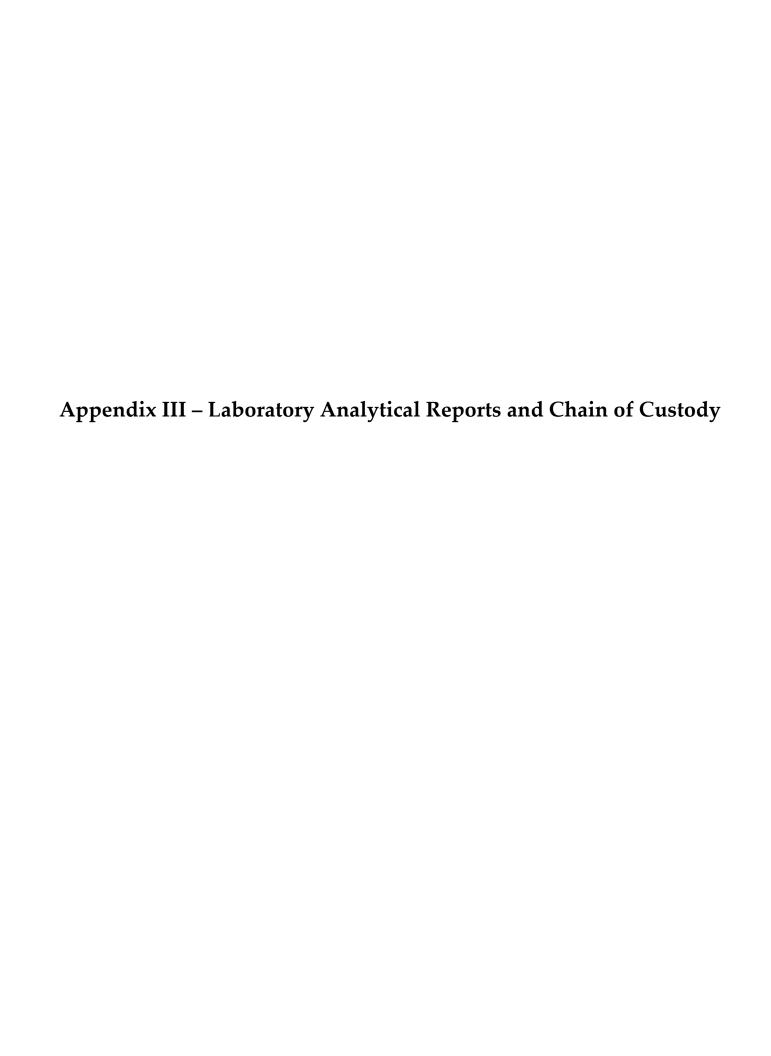
FIGURE NO.

8

Note: Presented GPR profile depths are based on an assumed average dielectric and should be considered approximate



December 14, 2018


PROJECT:	NCDOT I-5986B									
	Parcel 28-918 Long Branch Rd, Dunn, N	С			BORIN	NG LOG	B-1			
DATE DRILLED:	S&ME Project No. 4305-18-175 Monday, October 01, 2018	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:	10							
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Anni	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:	J. Honey	Lutt						
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
BIGLERIO WETTIOD.	inacio core sampler (s. iii. ob)	LASTING.								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Tops	oil, Black,									
Silty	Clay, Orange,			I	0.9	No				
Silty	Clay, Red,			I	0.9	Yes				
5 —				İ	1.4	No				
				İ	1.4	No				
_					0.9	Yes				
10 — Borir — Borir — — — — — — — — — — — — — — — — — —	ng Terminated at 10 Ft-BGS									
15 —										
20 —										
25 —										
30										

PROJECT:	NCDOT I-5986B									
	Parcel 28-918 Long Branch Rd, Dunn, N	С			BORIN	IG LOG:	B-2			
DATE DRILLED:	S&ME Project No. 4305-18-175 Monday, October 01, 2018	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:	10							
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
	' ' '						_			
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Tops	soil, Black,			Н						
Silty	Clay, Tan, Orange,			I	0.2	No				
Silty	Clay, Red,			ł	0.2	Yes				
5 —				ł	0.5	No				
				ł	0.3	No				
_				1						
10 Boris	ng Terminated at 10 Ft-BGS				0.5	Yes				
15 —										
20 —										
25 —										
30										

PROJECT	:	NCDOT I-5986B									
		Parcel 28-918 Long Branch Rd, Dunn, N	IC			BORIN	NG LOG	B-3			
DATE DOI!!	I FD·	S&ME Project No. 4305-18-175 Monday, October 01, 2018	BORING DEPTH (FT):	10							
DRILL RIG: Geoprobe 54DT WATER LEVEL: DRILLER: Troxler Geologic, Inc. CAVE-IN DEPTH:			Not Ann	licable							
HAMMER TYPE: Not Applicable LOGGED BY: SAMPLING METHOD: Macro-Core Sampler NORTHING:					cutt						
DRILLING N		Macro-Core Sampler (3-in. OD)	EASTING:								
DIGEERIO	VIETTIOD.	made core sumpler (5 m. 65)	LASTING.								
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Topsoil, Black,									
		Sand, Tan, Fine,			Т	0.6	No				
	-	Silty Clay, Orange,			H						
	-				Н	1.3	Yes				
5 —		Silty Clay, Red,			ł	1.0	No				
					I	0.8	No				
					H						
10 —		Boring Terminated at 10 Ft-BGS			111	0.8	Yes				
	-										
	-										
15 —											
20 —											
	1										
_											
25 —											
_											
_											
	-										
	1										
30 —	1			i	1	I.	I .	1		·	I

PROJECT	:		NCDOT I-5986B											
		Pa	rcel 28-918 Long Branch Rd, Dunn,	NC			BORIN	NG LOG	B-4					
DATE DOT!	I ED:	Monday October 01, 2010	S&ME Project No. 4305-18-175	DODING DEDTIL (CT.	10									
DATE DRILLED: Monday, October 01, 2018 BORING DEPTH (FT)				10										
DRILL RIG: Geoprobe 54DT				WATER LEVEL:										
DRILLER: Troxler Geologic, Inc.				CAVE-IN DEPTH: Not Applicable										
HAMMER TYPE: Not Applicable LOGGED BY: SAMPLING METHOD: Macro-Core Sampler NORTHING:				л. попеус	Lutt									
DRILLING N		Macro-Core Sampler Macro-Core Sampler (3-in. OE	01	NORTHING: EASTING:										
DRILLING IV	VILITIOD.	Macro-core Sampler (S-III. OL	<i>y</i>)	EASTING.			I					1		
DEPTH (feet)	GRAPHIC LOG		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE		
		iravel, llayey Sand, Tan, Fine,					0.2	No Yes						
5 —		ilty Clay, Red,				ł	0.3	No						
	-					Ī	0.6	No						
10 —		oring Terminated at 10 Ft-BGS					1.0	Yes						
15 ————————————————————————————————————														
20 —														
25 —— ——														
30 —														

PROJECT	:	NCDOT I-5986B										
Parcel 28-918 Long Branch Rd, Dunn, NC			BORING LOG: B-5									
		S&ME Project No. 4305-18-175										
DATE DRILLED: Monday, October 01, 2018 BORING DEPTH (FT			10									
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:									
		Troxler Geologic, Inc.	CAVE-IN DEPTH:									
HAMMER TYPE: Not Applicable LOGGED BY: J			J. Honeycu	utt								
SAMPLING		Macro-Core Sampler	NORTHING:									
DRILLING N	ИЕТНОD:	Macro-Core Sampler (3-in. OD)	EASTING:	1		1	1		1		1	
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE	
		Gravel, Clayey Sand, Tan, Orange, Fine,		-	ŧ	0.5	No					
5 —				-	ł	1.3	Yes					
				-	ł	1.2	No					
_		iilty Clay, Red,		-	ł	1.7	No					
10 —		Boring Terminated at 10 Ft-BGS			ш	2.0	Yes					
15 —												
30 —												

Hydrocarbon Analysis Results

Client:S&MESamples takenMonday, October 01, 2018Address:Samples extractedMonday, October 01, 2018Samples analysedMonday, October 01, 2018

Final FCM QC Check OK

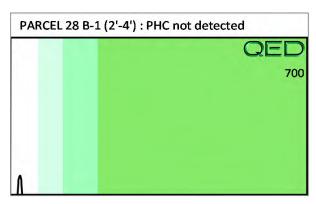
Contact: JAMIE HONEYCUTT Operator MAX MOYER

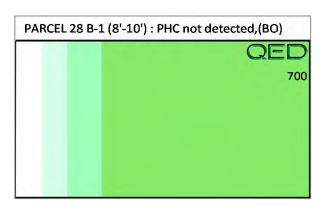
Project: PARCEL 28 - PROJ 4305-18-175

													U00904
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	(% Ratios	5	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
S	PARCEL 28 B-1 (2'-4')	20.8	<0.52	<0.52	<0.52	<0.52	<0.1	<0.17	<0.021	0	0	0	PHC not detected
S	PARCEL 28 B-1 (8'-10')	22.6	<0.57	< 0.57	<0.57	< 0.57	<0.11	<0.18	< 0.023	0	0	0	PHC not detected,(BO)
	1.111.10	. 121	00 -11-	OK					Final F		Clara ala	OK	140.4.0/

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected


B = Blank Drift: (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result: (BO) = Background Organics detected: (OCR) = Outside cal range: (M) = Modifed Result.


% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only.

Data generated by HC-1 Analyser

Initial Calibrator QC check

Project: PARCEL 28 - PROJ 4305-18-175

94.3 %

Hydrocarbon Analysis Results

Client:S&MESamples takenMonday, October 01, 2018Address:Samples extractedMonday, October 01, 2018Samples analysedMonday, October 01, 2018

Contact: JAMIE HONEYCUTT Operator MAX MOYER

Project: PARCEL 28 - PROJ 4305-18-175

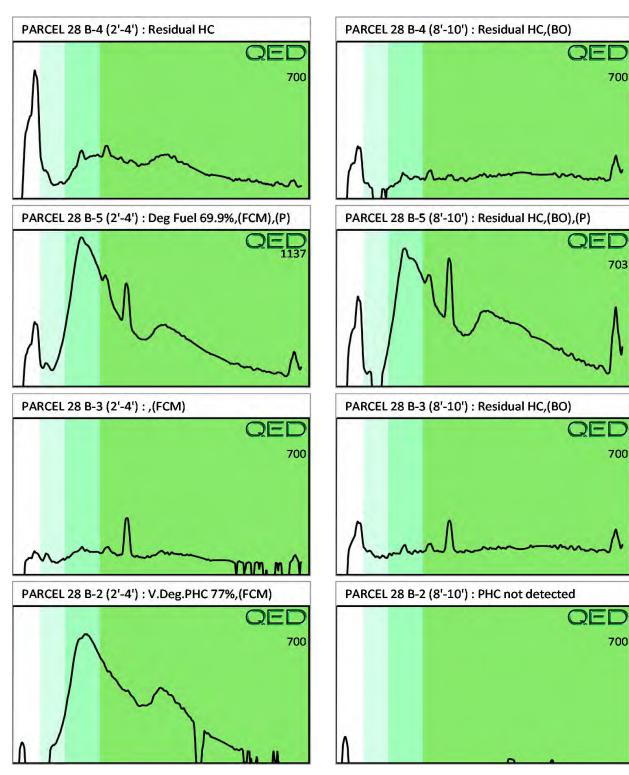
													U00904				
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	% Ratios			HC Fingerprint Match				
										C5 - C10	C10 C18 C18						
S	PARCEL 28 B-4 (2'-4')	12.4	<0.31	<0.31	<0.31	<0.31	<0.06	<0.1	<0.012	0	56.2	43.8	Residual HC				
S	PARCEL 28 B-4 (8'-10')	26.3	<0.66	< 0.66	< 0.66	< 0.66	<0.13	<0.21	<0.026	0	0 34.4 65.6		0 34.4 65.6		0 34.4 65.6		Residual HC,(BO)
S	PARCEL 28 B-5 (2'-4')	23.0	<0.58	<0.58	0.96	0.96	0.53	<0.18	< 0.023	0	78.5	21.5	Deg Fuel 69.9%,(FCM),(P)				
S	PARCEL 28 B-5 (8'-10')	10.9	<0.27	<0.27	<0.27	0.24	0.24	<0.09	<0.011	0	0 71.4 28.6		Residual HC,(BO),(P)				
S	PARCEL 28 B-3 (2'-4')	8.7	<0.22	0.54	<0.22	0.54	<0.04	<0.07	<0.009	98.2 0.8 1.1		1.1	,(FCM)				
S	PARCEL 28 B-3 (8'-10')	20.2	<0.5	<0.5	<0.5	<0.5	<0.1	<0.16	<0.02	0 15.5 84.5		84.5	Residual HC,(BO)				
S	PARCEL 28 B-2 (2'-4')	19.7	<0.49	<0.49	0.49	0.49	0.37	<0.16	< 0.02	0	75.5	24.5	V.Deg.PHC 77%,(FCM)				
S	PARCEL 28 B-2 (8'-10')	19.4	<0.49	<0.49	<0.49	<0.49	<0.1	<0.16	<0.019			0	PHC not detected				

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Final FCM QC Check OK

Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.


% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only.

Data generated by HC-1 Analyser

OK

Initial Calibrator QC check

Project: PARCEL 28 - PROJ 4305-18-175

December 14, 2018

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: **Preliminary Site Assessment Report**

NCDOT Project I-5986B, WBS Element 47532.1.3

Parcel 29-Circle K/Hardees Truck Stop

873 Long Branch Road

Dunn, Harnett County, North Carolina

S&ME Project 4305-18-175

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1800583 REV-02 dated August 16, 2018, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its August 20, 2018 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's July 30, 2018, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
29	Roxy Drive, LLC	(Circle K/Hardees Truck Stop)
		873 Long Branch Road, Dunn, NC

The PSA included a geophysical survey and subsequent limited soil sampling (seven soil borings up to 10 feet below ground surface (ft.-bgs.), within accessible areas of the proposed ROW/easement in preparation for construction activities. Groundwater was not encountered during the advancement of soil borings at the site. Therefore, groundwater sampling was not performed. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (Troxler Geologic, Inc.) was also used to locate and mark underground utilities.

Geophysical Survey

On September 11 and 12, 2018, S&ME personnel performed a geophysical survey within accessible areas of the proposed ROW/easement at Parcel 29. S&ME used a combination of the Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) methods to explore for buried subsurface features at the site such as underground storage tanks (USTs) and other possible buried obstructions. Brief descriptions of the proposed complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820-02 (2007) "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The presence of vehicles, heavy vegetation, and other surficial obstructions within the requested survey area however prevented TDEM data collection in several locations. The approximate TDEM data collection paths are presented in **Figure 4**. Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 3000 GPR system equipped with a 400 MHz antenna in general accordance with ASTM D6432-11 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

December 14, 2018 2

A total of 19 GPR profiles (Lines 1 through 19) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. However, five anomalous features were identified in the geophysical data sets (**Figures 5 through 7**). Anomaly A is an approximate 10 foot linear feature characterized by high amplitude GPR responses at about three ft.-bgs. TDEM responses were not identified over Anomaly A which indicates it may be a buried non-metallic feature possibly related to the nearby water utility. Anomalies B though E are characterized by relatively high TDEM values (greater than about 500 mV) and high amplitude GPR responses located within the upper two feet. The anomalies range from about one to three feet in size and likely related to buried isolated metallic targets/debris. Anomalies were also marked in the field using white spray paint. Example GPR profiles are presented in **Figures 9 through 12**

Soil Sampling

On October 1, 2018, S&ME's drill crew utilized a track mounted Geoprobe® rig to advance seven soil borings (B-1 through B-7) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 29. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I**. During our field activities, five groundwater monitoring wells, which appear to have been abandoned (filled with grout) were observed within the proposed ROW/easement. The approximate locations of the wells are presented in **Figure 2**. S&ME's drill crew advanced the Geoprobe® borings to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was not encountered. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II.**

No petroleum odors, staining or elevated PID readings were noted within the collected soil samples. Therefore, two soil samples (two to four foot depth interval and eight to ten foot depth interval) were selected from each boring and provided to RED Lab, LLC (Red Lab) for on-site analysis. An additional soil sample (six to eight foot depth interval) was also selected from boring B-7. A total of fifteen soil samples were analyzed by RED Lab for Total Petroleum Hydrocarbons (TPH)-Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

December 14, 2018 3

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH-GRO and TPH-DRO were not reported at concentrations exceeding the North Carolina TPH Action Levels. TPH-DRO was reported at borings B-1, B-2, B-3 and B-4 at the two to four foot depth intervals at concentrations ranging from 0.23 milligrams per kilograms (mg/kg) to 1.4 mg/kg, which are below its North Carolina TPH Action Level of 100 mg/kg. TPH-GRO was reported at borings B-1 and B-4 at the two to four foot depth interval at a concentration of 1 mg/kg and 0.73 mg/kg, respectively, which is below its North Carolina TPH Action Level of 50 mg/kg. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits for the remaining soil samples. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Conclusion and Recommendations

The geophysical survey identified five anomalous features (Anomaly A through E). Anomaly A appears to be a non-metallic feature possibly related to the nearby water utility. Anomalies B though E are likely related to buried isolated metallic targets/debris. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. Five groundwater monitoring wells were observed within the proposed ROW/easement. However, the monitoring wells appear to have been abandoned by being filled with grout.

S&ME advanced seven soil borings (B-1 through B-7) to a depth of approximately 10 ft.-bgs at the site. No petroleum odors, staining or elevated PID readings were noted within soil samples collected from the soil borings. Selected soil samples from the soil borings were analyzed onsite for TPH-GRO and TPH-DRO using UVF spectroscopy. TPH-GRO and TPH-DRO were reported in the two to four foot depth interval at two soil borings and TPH-DRO was reported in the two to four foot depth interval at two soil borings at concentrations slightly above the laboratory method reporting limits, but well below the North Carolina TPH Action Levels. During the soil boring advancement, groundwater was not encountered. Therefore, groundwater sampling was not performed.

S&ME recommends maintaining an awareness level for the presence of marginally impacted petroleum in soil (below TPH Action Levels) at the site for the safety of workers and the public. If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., buildings, reinforced concrete, vehicles, etc.) and overhead transmission lines can produce a false electromagnetic response

December 14, 2018 4

and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific, and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of approximately about five feet below ground surface.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

December 14, 2018

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

DocuSigned by: Jamie Honeycutt

Jamie T Honeycutt

Environmental Professional jhoneycutt@smeinc.com

Michael W. Pfeifer Senior Project Manager

861E52DDEFAF4C7

DocuSigned by:

mpfeifer@smeinc.com

Thomas P. Raymond, P.E., P.M.P.

Senior Consultant

traymond@smeinc.com

Attachments:

1/22/2019

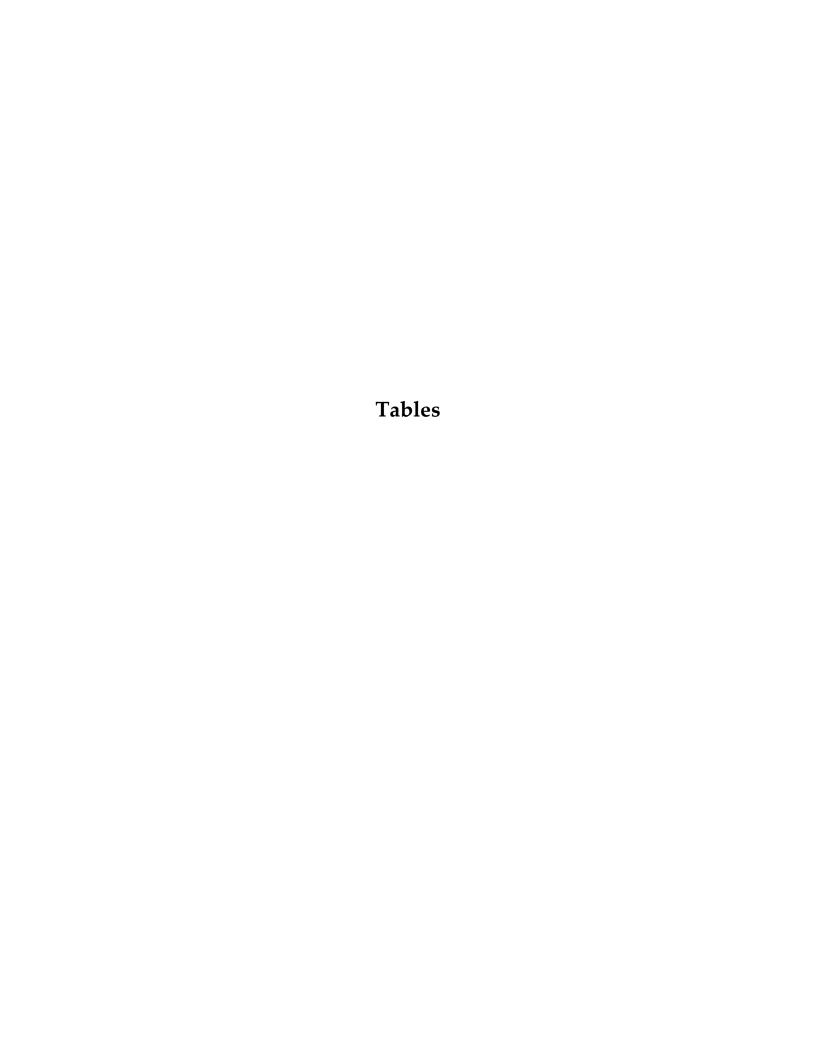
DocuSigned by: om Kaymond

Table 1: Summary of Soil Sampling Results

Figure 1: Vicinity Map Figure 2: Site Map

Figure 3: Soil Constituent Map Figure 4: TDEM Path Location Plan

Figure 5: TDEM Data Plot A Figure 6: TDEM Data Plot B


Figure 7: Geophysical Anomaly Location Plan Figure 8: Example GPR Data - Lines 3 and 4 Figure 9: Example GPR Data-Lines 5 and 6 Figure 10: Example GPR Data-Lines 10 and 11 Figure 11: Example GPR Data-Lines 14 and 15 Figure 12: Example GPR Data-Lines 18 and 19

Appendix I: **Photographs** Appendix II: Boring Logs

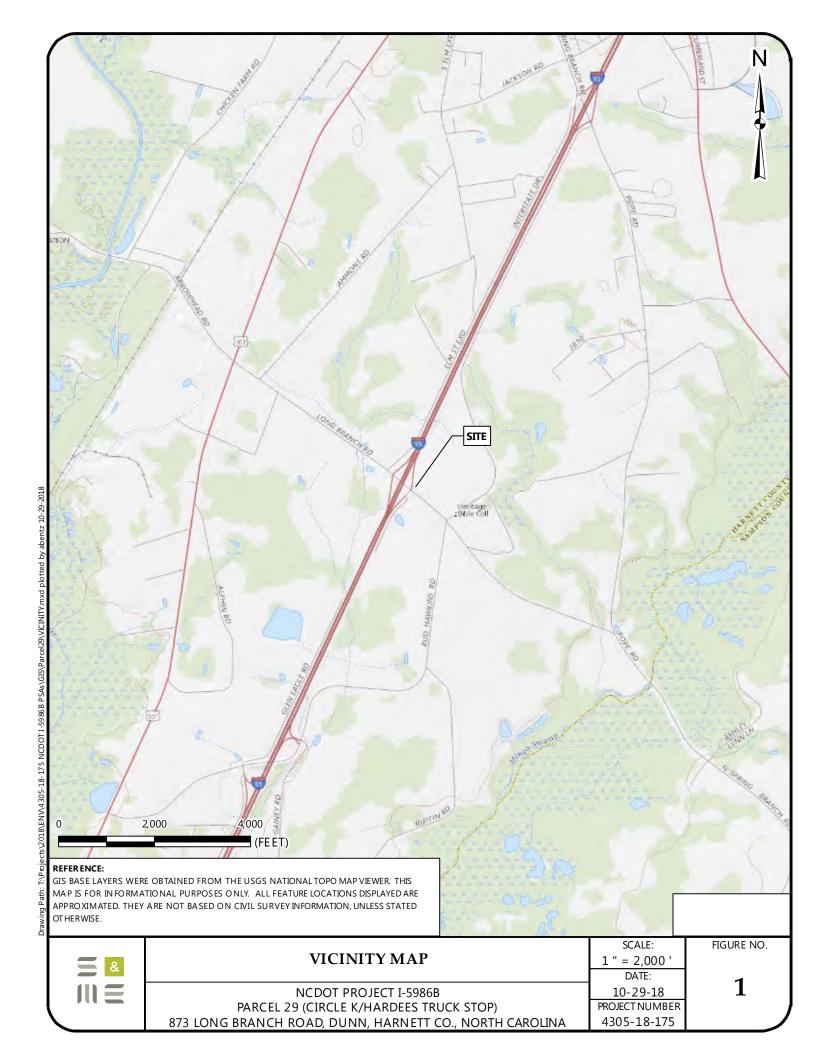
Appendix III: Laboratory Analytical Reports and Chain of Custody

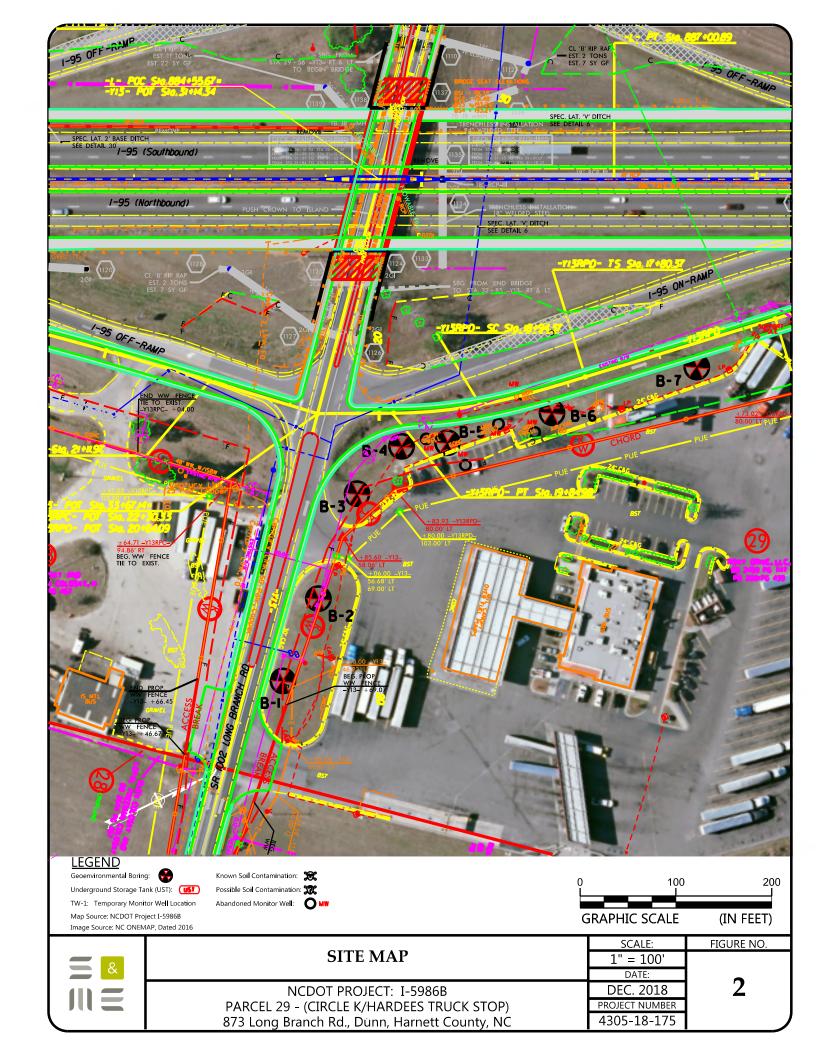
December 14, 2018

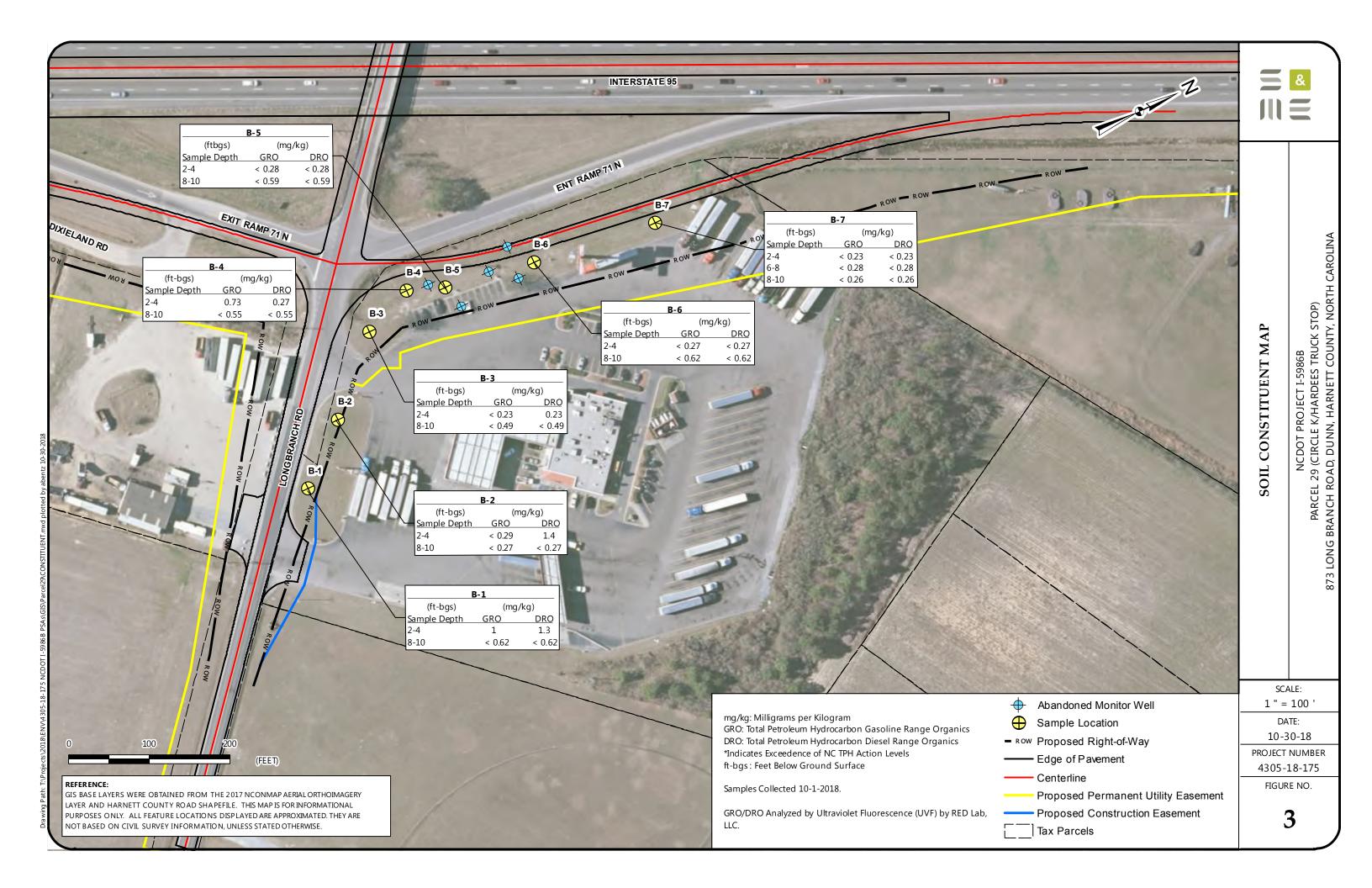
6

&

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5986B


Parcel 29 - (Circle K/Hardees Truck Stop) 873 Long Branch Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175


Ana	alytical Meth	od→	Range Organics (GR Organics (DRO) by Uli	carbons (TPH) Gasoline O) and Diesel Range traviolet Fluorescence ectrometry
		Contaminant of Concern→		
Sample ID	Date	Sample Depth (ftbgs)	TPH-GRO	TPH-DRO
Parcel 29 B-1	10/1/2018	2 to 4	1	1.3
Paicei 29 B-1	10/1/2016	8 to10	<0.62	<0.62
Parcel 29 B-2	10/1/2018	2 to 4	<0.29	1.4
Faicei 29 B-2	10/1/2010	8 to10	<0.27	<0.27
Parcel 29 B-3	10/1/2018	2 to 4	<0.23	0.23
raicei 29 b-3	10/1/2010	8 to10	<0.49	<0.49
Parcel 29 B-4	10/1/2018	2 to 4	0.73	0.27
raicei 29 D-4	10/1/2010	8 to10	<0.55	<0.55
Parcel 29 B-5	10/1/2018	2 to 4	<0.28	<0.28
1 arcer 23 B-3	10/1/2010	8 to10	<0.59	<0.59
Parcel 29 B-6	10/1/2018	2 to 4	<0.27	<0.27
raicei 29 b-0	10/1/2010	8 to10	<0.62	<0.62
		2 to 4	<0.23	<0.23
Parcel 29 B-7	10/1/2018	6 to 8	<0.28	<0.28
		8 to10	<0.26	<0.26
Nort	h Carolina T	PH Action Levels	50	100


Notes:

- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and BOLD fields.

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

•••• Approximate TDEM Path

Approximate Requested Survey Area

TDEM PATH LOCATION PLAN

NCDOT PROJECT: 1-5986B PARCEL 29 – (CIRCLE K/HARDEES TRUCK STOP) 873 LONG BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 10/30/2018

PROJECT NUMBER 4305-18-175

FIGURE NO.

4

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

TDEM DATA PLOT A

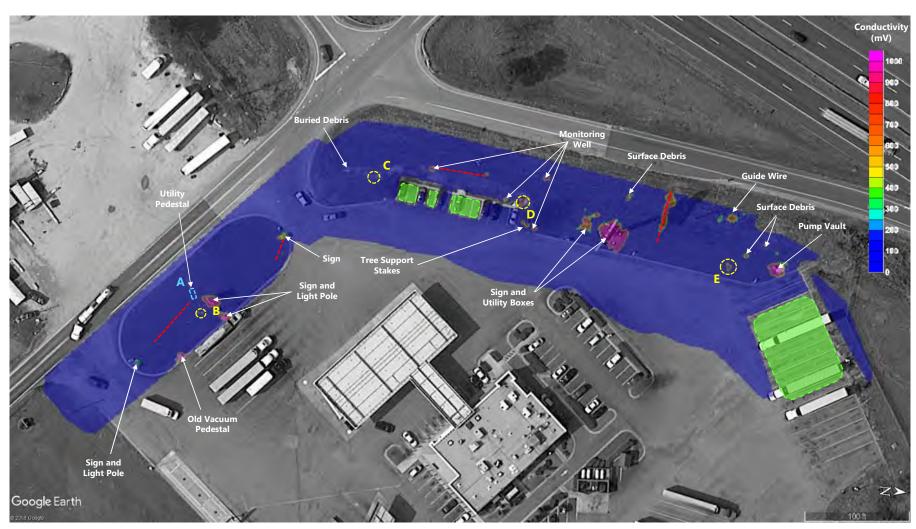
NCDOT PROJECT: I-5986B

PARCEL 29 – (CIRCLE K/HARDES TRUCK STOP)
873 LONG BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 10/30/2018

PROJECT NUMBER 4305-18-175


FIGURE NO.

5

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

() A

Approximate Location of TDEM Anomaly

Approximate Location of Possible Utility

Approximate Location of GPR Anomaly

Approximate Location of Vehicle

TDEM DATA PLOT B

NCDOT PROJECT: L-5986B PARCEL 29 – (CIRCLE K/HARDEES TRUCK STOP) 873 LONG BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 10/30/2018 PROJECT NUMBER

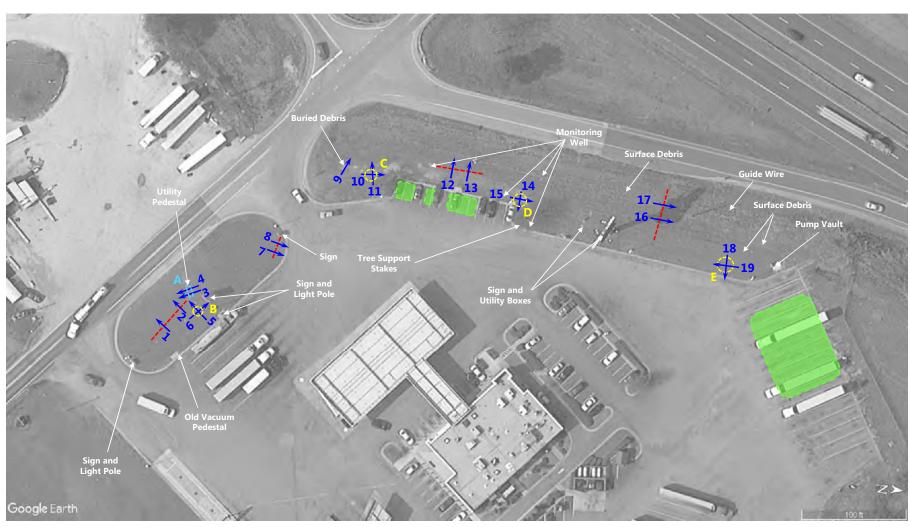

4305-18-175

FIGURE NO.

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

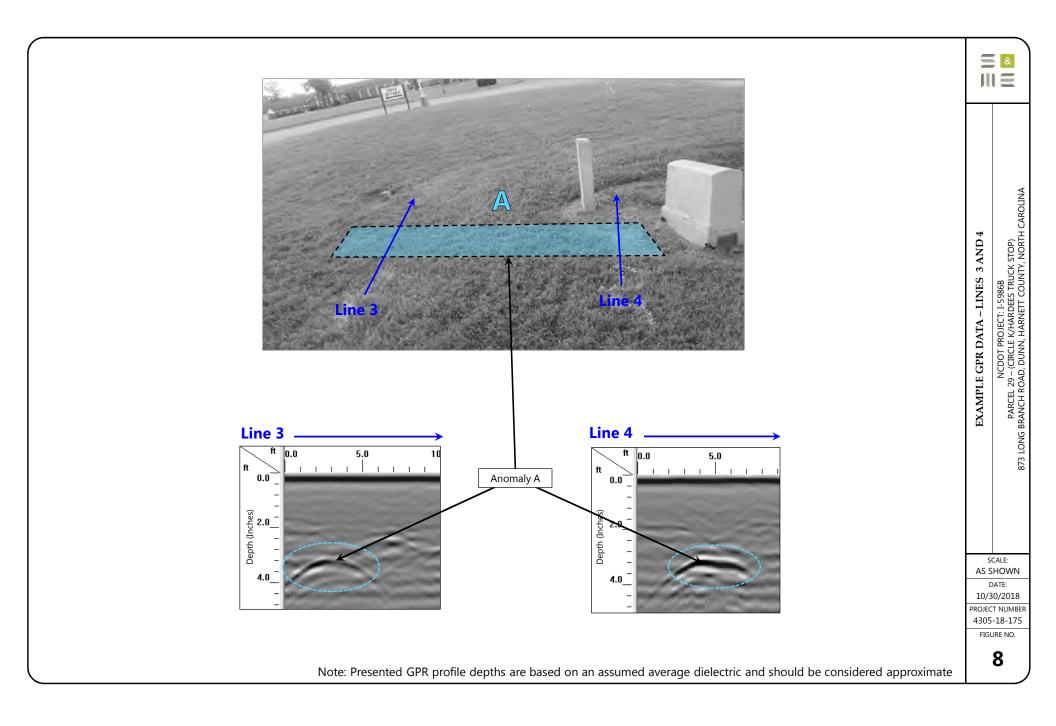
LEGEND

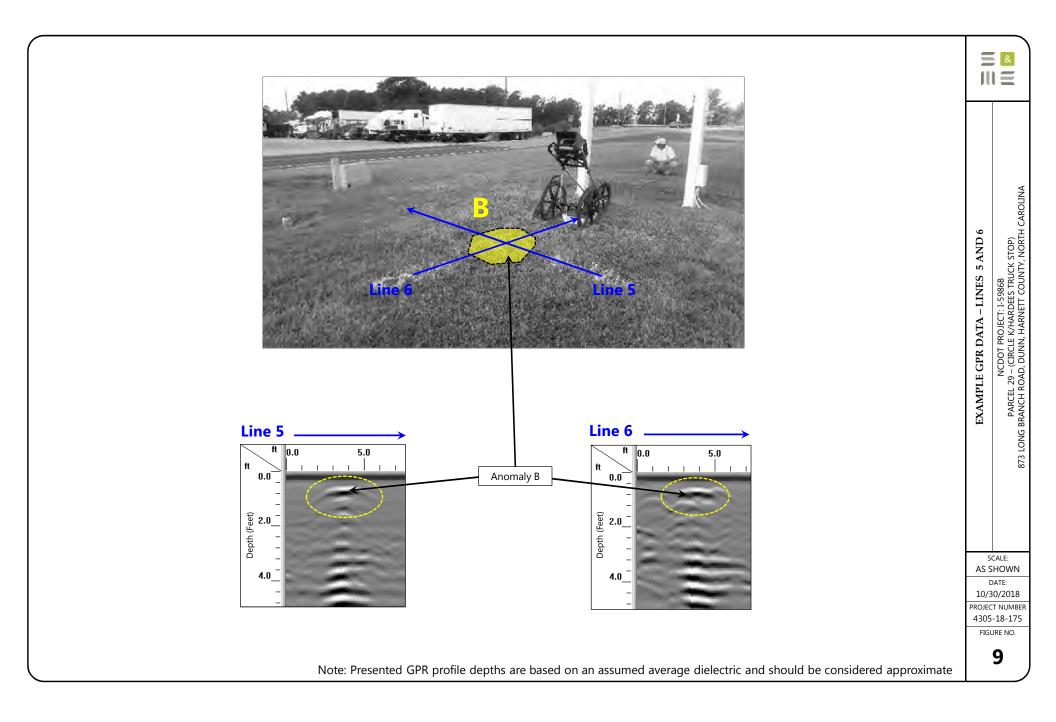
Approximate Location of TDEM Anomaly Approximate Location of Possible Utility

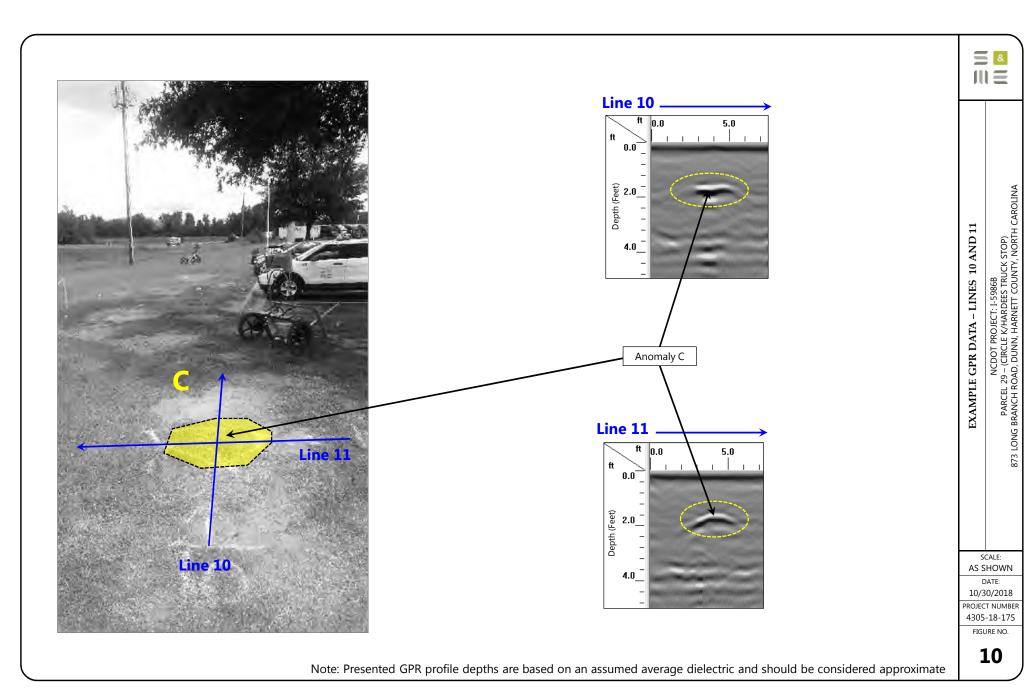
Approximate Location of GPR Anomaly Approximate Location of GPR Profile

Approximate Location of Vehicle

GEOPHYSICAL ANOMALY LOCATION PLAN


NCDOT PROJECT: 1-5986B PARCEL 29 – (CIRCLE K/HARDEES TRUCK STOP) 873 LONG BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA


SCALE: AS SHOWN DATE:


10/30/2018 PROJECT NUMBER

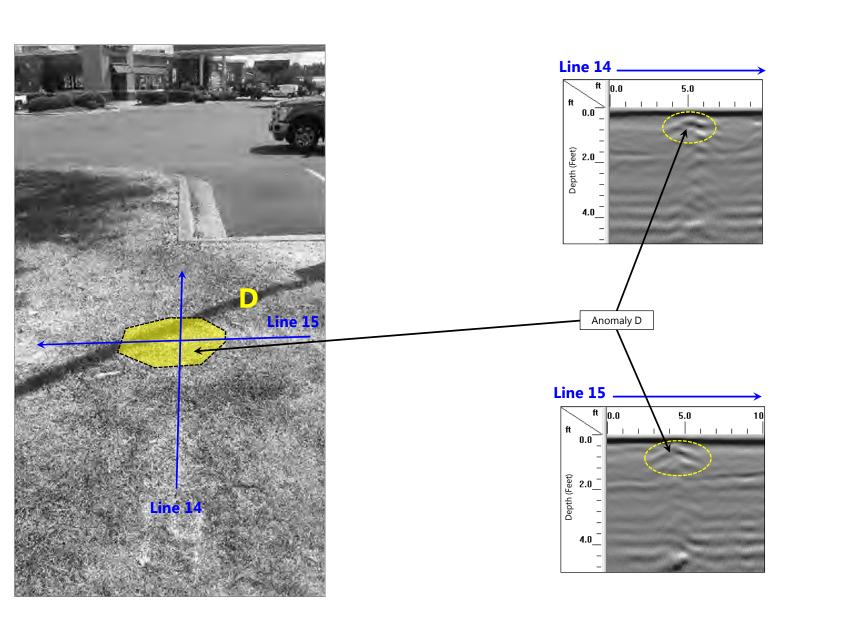
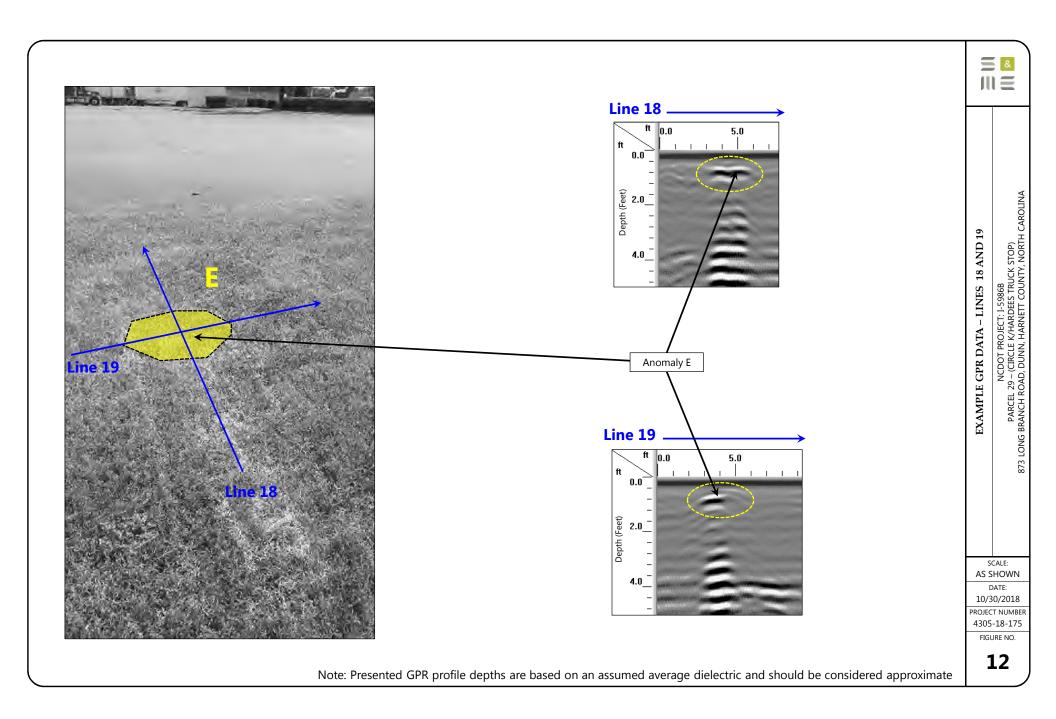

4305-18-175

FIGURE NO.

EXAMPLE GPR DATA – LINES 14 AND 15

NCDOT PROJECT: 1-5986B

PARCEL 29 – (CIRCLE K/HARDEES TRUCK STOP)
873 LONG BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA


SCALE: AS SHOWN DATE:

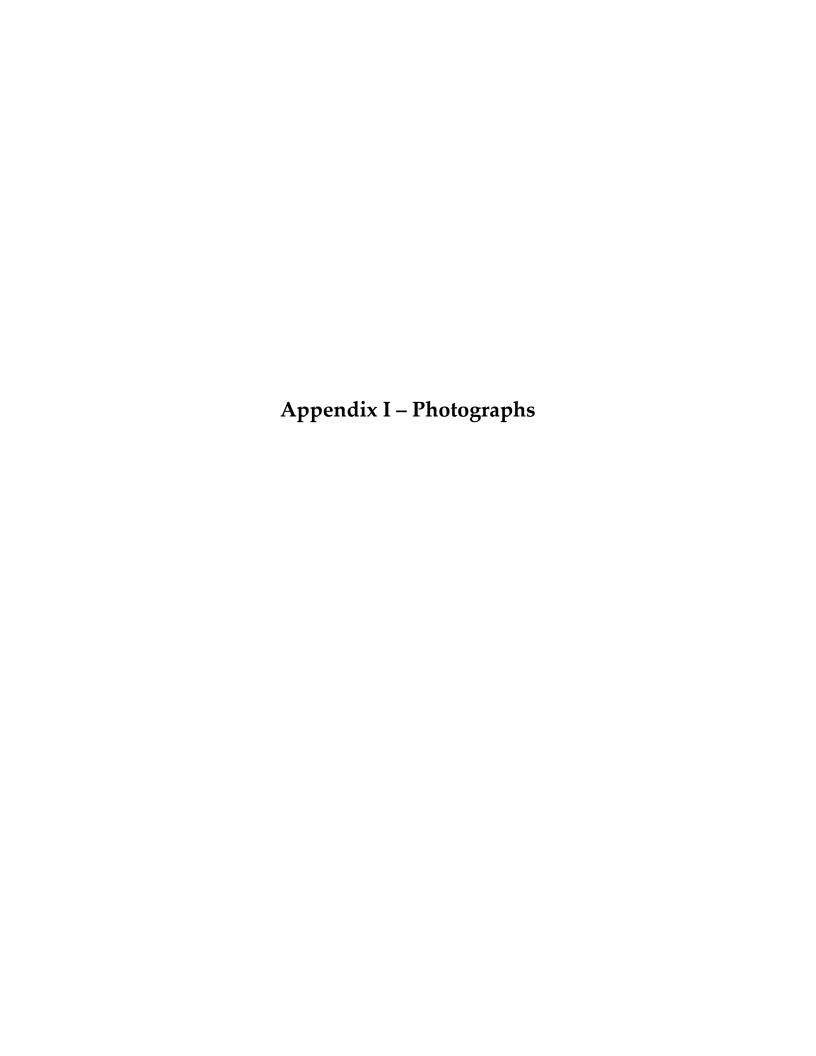
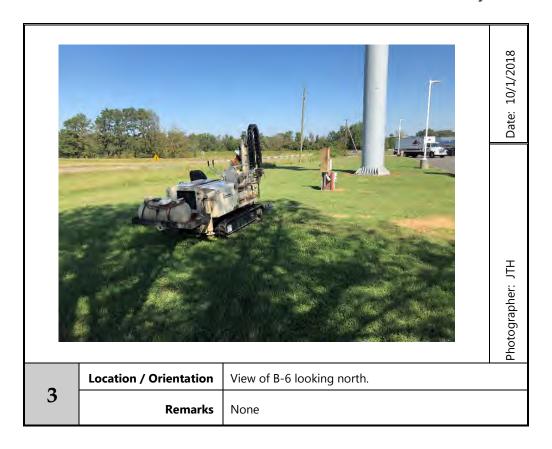

10/30/2018 PROJECT NUMBER 4305-18-175

FIGURE NO.

11

Note: Presented GPR profile depths are based on an assumed average dielectric and should be considered approximate

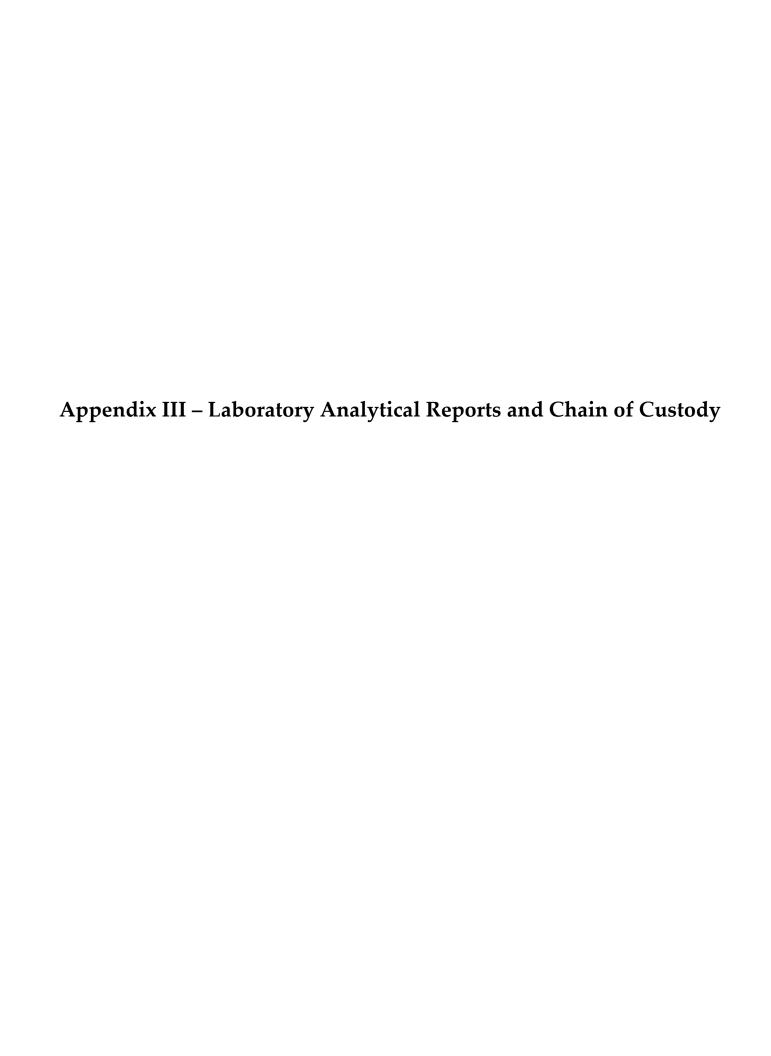


December 14, 2018

December 14, 2018

	Parcel 29-873 Long Branch Rd, Dunn, S&ME Project No. 4305-18-175	NC								
	CQIME Draiget No. 120E 10 17E				BORIN	IG LOG	B-1			
:	Monday, October 01, 2018	BORING DEPTH (FT):	10							
	Geoprobe 54DT	WATER LEVEL:								
	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
:	Not Applicable	LOGGED BY:	J. Honeycı	utt						
THOD:										
HOD:	Macro-Core Sampler (3-in. OD)	EASTING:					1			
GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	Topsoil, Black,			ш						
	Sand, Brown, Fine,		-	ł	0.7	No				
	Silty Clay, Orange,			I	1.5	Yes				
			-	ł	2.0	No				
			-	ł	2.0	140				
	Silty Clay, Red,			ł	2.1	No				
				н	1.2	Yes				
Н	OD: 901	OD: Macro-Core Sampler (3-in. OD)	OD: Macro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION Topsoil, Black, Sand, Brown, Fine, Silty Clay, Orange, Silty Clay, Red,	OD: Macro-Core Sampler (3-in, OD) MATERIAL DESCRIPTION Topsoil, Black, Sand, Brown, Fine, Silty Clay, Orange, Silty Clay, Red,	OD: Macro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION MATERIAL DESCRIPTION Topsoil, Black, Sand, Brown, Fine, Silty Clay, Orange, Silty Clay, Red,	OD: Macro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION Topsoil, Black, Sand, Brown, Fine, Silty Clay, Orange, Silty Clay, Red, Silty Clay, Red, 1.5	OD: Macro-Core Sampler (3-in, OD) MATERIAL DESCRIPTION Topsoil, Black, Sand, Brown, Fine, Silty Clay, Orange, Silty Clay, Red, Silty Clay, Red, Silty Clay, Red, 1.2 Yes	OD: Macro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION Description O.7 No 1.5 Yes 2.0 No Silty Clay, Orange, Silty Clay, Red, 1.2 Yes	OD: Macro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION MATERIAL DESCRIPTION Topsoil, Black, Sand, Brown, Fine, Silty Clay, Orange, Silty Clay, Orange, Silty Clay, Red, Silty Clay, Red, Silty Clay, Red,	Macro-Core Sampler (3-in, OD)

PROJECT:	NCDOT I-5986B									
	Parcel 29-873 Long Branch Rd, Dunn, N	IC			BORIN	IG LOG	B-2			
DATE DRILLED:	S&ME Project No. 4305-18-175 Monday, October 01, 2018	BODING DESTINATION	10							
DRILL RIG:	Geoprobe 54DT	BORING DEPTH (FT): WATER LEVEL:	10							
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icablo						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:	J. Honeyo	.utt						
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DIALERING WEITIOD.	ividero core sampler (s. iii. ob)	LASTING.								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	oil, Black,			н						
Sand	, Brown, Fine,			ł	0.7	No				
	Clay, Orange,			I	2.5	Yes				
5 —				I	1.5	No				
Silty	Clay, Red,			I	1.8	No				
10 - Paris	ng Terminated at 10 Ft-BGS			H	1.9	Yes				
15 —										


PROJECT	·	NCDOT I-5986B									
		Parcel 29-873 Long Branch Rd, Dunn, I	NC			BORIN	NG LOG	B-3			
DATE SST.	LED.	S&ME Project No. 4305-18-175		10							
DATE DRILL	LED:	Monday, October 01, 2018	BORING DEPTH (FT):	10							
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:	Maria a a d	1. 1 .						
DRILLER:	D/DE:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER T		Not Applicable	LOGGED BY:	J. Honeyo	utt						
SAMPLING		Macro-Core Sampler	NORTHING:								
DRILLING N	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		l	1	I	1	I	I	I
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Topsoil, Black,									
		Sandy Clay, Tan, Orange,			ł	0.1	No				
		Sand, Tan, Brown, Fine,			ŧ	0.5	Yes				
5 —		Silty Clay, Red, Orange,			ł	0.5	No				
					ŧ	0.5	No				
					ł	0.5	140				
10 —		Boring Terminated at 10 Ft-BGS				0.2	Yes				
	_										
15 —											
	-										
	-										
20 —	-										
	-										
	-										
25 —											
	-										
30 —	j										

DATE DRILLED DRILL RIG: DRILLER: HAMMER TYPH SAMPLING MET THE CONTROL OF THE CON	GRAPHIC LOG: LOG: LOG:	Parcel 29-873 Long Branch Rd, Dunn, N S&ME Project No. 4305-18-175 Monday, October 01, 2018 Geoprobe 54DT Troxler Geologic, Inc. Not Applicable Macro-Core Sampler Macro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION	BORING DEPTH (FT): WATER LEVEL: CAVE-IN DEPTH: LOGGED BY: NORTHING:	Not Appli		BORIN	IG LOG:	B-4			
DRILL RIG: DRILLER: HAMMER TYPE SAMPLING MET HE HAMMER TYPE THE HAMMER T	GRAPHIC LOG: LOG: LOG:	Monday, October 01, 2018 Geoprobe 54DT Troxler Geologic, Inc. Not Applicable Macro-Core Sampler Macro-Core Sampler (3-in. OD)	WATER LEVEL: CAVE-IN DEPTH: LOGGED BY: NORTHING:	Not Appli							
DRILL RIG: DRILLER: HAMMER TYPI SAMPLING MET H Labay 5	GRAPHIC LOG: LOG: LOG:	Geoprobe 54DT Troxler Geologic, Inc. Not Applicable Macro-Core Sampler Macro-Core Sampler (3-in. OD)	WATER LEVEL: CAVE-IN DEPTH: LOGGED BY: NORTHING:	Not Appli							
DRILLER: HAMMER TYPE SAMPLING ME DRILLING MET HEAD 5	GRAPHIC LOG	Troxler Geologic, Inc. Not Applicable Macro-Core Sampler Macro-Core Sampler (3-in. OD)	CAVE-IN DEPTH: LOGGED BY: NORTHING:								
HAMMER TYPH SAMPLING MET H Lag Green The sample of the	GRAPHIC LOG	Not Applicable Macro-Core Sampler Macro-Core Sampler (3-in. OD)	LOGGED BY: NORTHING:								
SAMPLING MET HEAT (teet)	GRAPHIC LOG	Macro-Core Sampler (3-in. OD)	NORTHING:	J. Honeyo	utt						
DRILLING MET OPENIA (teet)	GRAPHIC LOG	Macro-Core Sampler (3-in. OD)									
(teet) 5	GRAPHIC LOG	<u> </u>	EASTING:								
5 —		MATERIAL DESCRIPTION						1			
				WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Topsoil, Black,									
		Sand, Brown, Fine,			Ŧ	0.5	No				
		Silty Clay, Red, Orange,			ŧ	0.8	Yes				
10					ł	0.6	No				
10		Silty Clay, Red,			ŧ	1.0	No				
10 —					Ŧ						
		Boring Terminated at 10 Ft-BGS				1.0	Yes				
15 —											
20 —											
25 —											
30											,

PROJECT	:	NCDOT I-5986B									
		Parcel 29-873 Long Branch Rd, Dunn, N	NC .			BORIN	NG LOG	B-5			
		S&ME Project No. 4305-18-175	T								
DATE DRILI		Monday, October 01, 2018	BORING DEPTH (FT):								
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:								
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER 1		Not Applicable	LOGGED BY:		utt						
SAMPLING		Macro-Core Sampler	NORTHING:								
DRILLING N	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:			ı	1	1	1	1	1
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Topsoil, Black,									
		Sand, Brown, Fine,			ш	0.5	No				
	-	Silty Clay, Orange,			1	0.3					
	-				ł	0.5	Yes				
5 —	-				Ŧ	0.3	No				
		Silty Clay, Red,			H	0.2	No				
	_				ł						
10 —		Boring Terminated at 10 Ft-BGS				0.6	Yes				
_	-										
15 —											
10											
_	-										
20 —											
	1										
	1										
I —	4										
	1										
25 —	4										
	1										
	1										
—	1										
30 —									<u> </u>		
30											

PROJECT	:		NCDOT I-5986B									
			Parcel 29-873 Long Branch Rd, Dunn, N	C			BORIN	NG LOG	B-6			
DATE COV.	FD.		S&ME Project No. 4305-18-175	DOD'S 5	10							
DATE DRILL	LED:		Monday, October 01, 2018	BORING DEPTH (FT):	10							
DRILL RIG:			Geoprobe 54DT	WATER LEVEL:	NI. I A I	e a la La						
DRILLER:	DVDE:		Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER T			Not Applicable	LOGGED BY:	J. Honeyo	cutt						
SAMPLING DRILLING N			Macro-Core Sampler	NORTHING:								
DRILLING N	METHOD:	l	Macro-Core Sampler (3-in. OD)	EASTING:		1	1	I	1			
DEPTH (feet)	GRAPHIC LOG		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Tops	oil, Black,									
		Sand	, Brown, Tan, Fine,			Ĭ	1.0	No				
_		Silty	Clay, Orange,				1.3	Yes				
5 —						Ĭ	0.8	No				
		Silty	Clay, Red,			Ĭ	0.0	110				
						ł	0.9	No				
10 —			g Terminated at 10 Ft-BGS				1.5	Yes				
15 —— 20 —— 25 ——												
30 —												

PROJECT:	NCDOT I-5986B	ıc			PODIA	16.106	D 7			
	Parcel 29-873 Long Branch Rd, Dunn, N S&ME Project No. 4305-18-175	iC .			BOKIN	IG LOG	В-/			
DATE DRILLED:	Monday, October 01, 2018	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:	-							
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
	, ,						I,			
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	oil, Black,			Н						
Sand	, Brown, Fine,			I	0.7	No				
Silty	Clay, Orange,			I	0.9	Yes				
5 ————————————————————————————————————	Clay, Red,			ľ	1.1	No				
				ı	1.0	Yes				
10				Ŧ	1.2	Yes				
15 —	ng Terminated at 10 Ft-BGS									
20 —										
25 —										
30										

Hydrocarbon Analysis Results

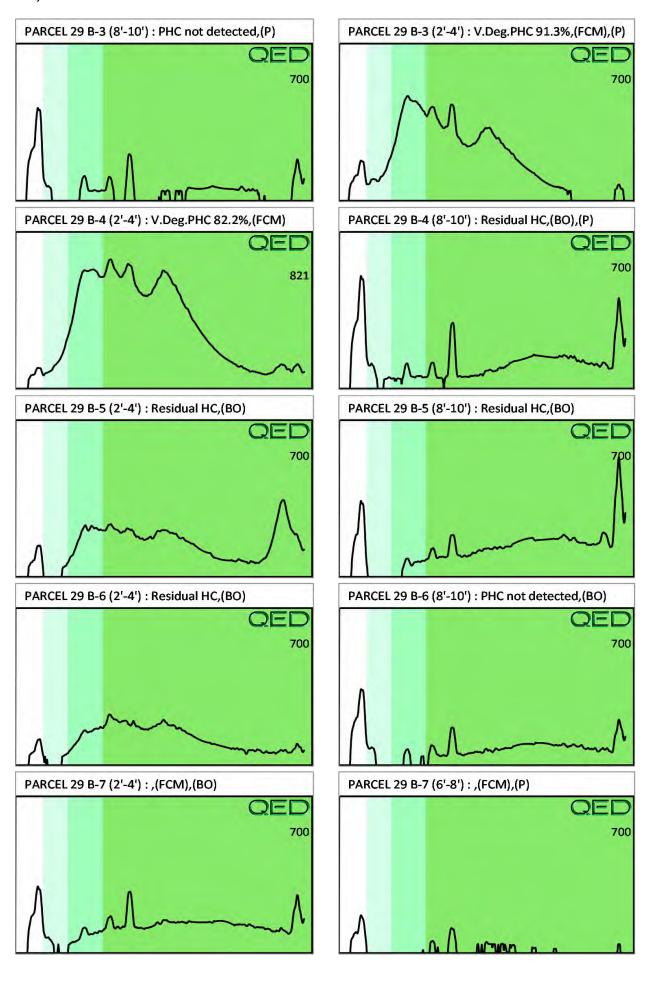
Client:S&MESamples takenMonday, October 01, 2018Address:Samples extractedMonday, October 01, 2018Samples analysedMonday, October 01, 2018

Contact: JAMIE HONEYCUTT Operator MAX MOYER

Project: PARCEL 29 - PROJ 4305-18-175

													U00904
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP	Q,	% Ratios	3	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
S	PARCEL 29 B-3 (8'-10')	19.4	<0.49	<0.49	<0.49	< 0.49	<0.1	<0.16	<0.019	0	100	0	PHC not detected,(P)
S	PARCEL 29 B-3 (2'-4')	9.3	<0.23	<0.23	0.23	0.23	0.15	< 0.07	<0.009	0	73.1	26.9	V.Deg.PHC 91.3%,(FCM),(P)
S	PARCEL 29 B-4 (2'-4')	10.8	<0.27	0.73	0.27	1	0.17	< 0.09	<0.011	84.1	10.4	5.5	V.Deg.PHC 82.2%,(FCM)
S	PARCEL 29 B-4 (8'-10')	21.8	< 0.55	< 0.55	< 0.55	< 0.55	<0.11	<0.17	<0.022	0	60.9	39.1	Residual HC,(BO),(P)
S	PARCEL 29 B-5 (2'-4')	11.0	<0.28	<0.28	<0.28	<0.28	< 0.06	<0.09	<0.011	0	59.5	40.5	Residual HC,(BO)
S	PARCEL 29 B-5 (8'-10')	23.4	< 0.59	< 0.59	< 0.59	< 0.59	<0.12	<0.19	<0.023	0	35.5	64.5	Residual HC,(BO)
S	PARCEL 29 B-6 (2'-4')	10.7	<0.27	<0.27	<0.27	<0.27	< 0.05	<0.09	<0.011	0	34.5	65.5	Residual HC,(BO)
S	PARCEL 29 B-6 (8'-10')	24.8	< 0.62	< 0.62	< 0.62	< 0.62	<0.12	<0.2	< 0.025	0	0	0	PHC not detected,(BO)
S	PARCEL 29 B-7 (2'-4')	9.4	<0.23	<0.23	<0.23	<0.23	< 0.05	<0.08	<0.009	0	27.5	72.5	,(FCM),(BO)
S	PARCEL 29 B-7 (6'-8')	11.2	<0.28	<0.28	<0.28	<0.28	<0.06	<0.09	<0.011	0	0	0	,(FCM),(P)
	Initial Ca	alibrator (OC check	OK					Final FO	CM OC	Check	OK	89 %

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations: FCM = Results calculated using Fundamental Calibration Mode: % = confidence of hydrocarbon identification: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate detected

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only.

Data generated by HC-1 Analyser

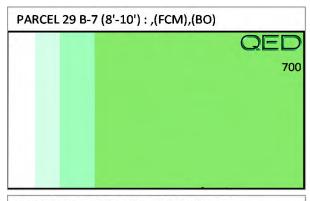
Project: PARCEL 29 - PROJ 4305-18-175

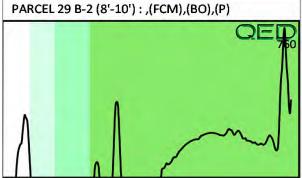
Hydrocarbon Analysis Results

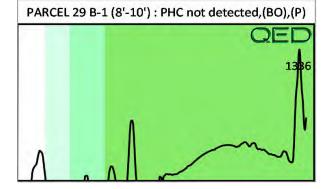
Client: S&ME Samples taken Monday, October 01, 2018 Samples extracted Monday, October 01, 2018 Address: Samples analysed Monday, October 01, 2018

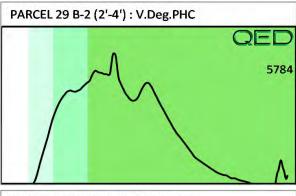
Contact: JAMIE HONEYCUTT Operator MAX MOYER

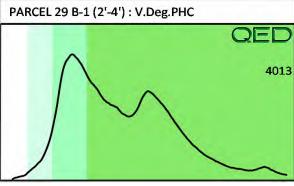
Project: PARCEL 29 - PROJ 4305-18-175


													U00904
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	% Ratios			HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
S	PARCEL 29 B-7 (8'-10')	10.2	<0.26	<0.26	<0.26	<0.26	<0.05	<0.08	<0.01	0	0	0	,(FCM),(BO)
S	PARCEL 29 B-2 (2'-4')	11.7	<0.29	< 0.29	1.4	1.4	1.4	< 0.09	<0.012	0	57.5	42.5	V.Deg.PHC 71.4%,(FCM),(BO),(P)
S	PARCEL 29 B-2 (8'-10')	10.9	<0.27	<0.27	<0.27	<0.27	< 0.05	< 0.09	<0.011	0	0	0	,(FCM),(BO),(P)
S	PARCEL 29 B-1 (2'-4')	9.6	<0.24	1	1.3	2.3	0.88	<0.08	<0.01	57	31.2	11.8	V.Deg.PHC 75.8%,(FCM),(BO)
S	PARCEL 29 B-1 (8'-10')	24.8	<0.62	< 0.62	< 0.62	< 0.62	<0.12	<0.2	< 0.025	0	0	100	PHC not detected,(BO),(P)
					-								
	Initial Calibrator QC check OK Final FC									CM QC	Check	OK	98 %


Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected


B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.


% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only. Data generated by HC-1 Analyser Project: PARCEL 29 - PROJ 4305-18-175

