

April 29, 2019

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: **Preliminary Site Assessment Report**

NCDOT Project I-5986B, WBS Element 47532.1.3

Parcel 148-PJ's Truck Bodies 1560 George Perry Lee Road

Dunn, Harnett County, North Carolina

S&ME Project 4305-18-175A

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 4305-18-175 CO-01 REV-01 dated January 2, 2019, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its January 8, 2019 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's November 2, 2018, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
148	JFP Properties, LLC	(PJ's Truck Bodies)
		1560 George Perry Lee Road, Dunn, NC

The property is developed with a truck body manufacturing facility identified as PJ's Truck Bodies. The property is not listed with registered petroleum underground storage tanks (USTs) (active or closed). The property is also not listed with North Carolina Department of Environmental Quality (NCDEQ) Incidents associated with petroleum releases from USTs or aboveground storage tanks.

The PSA included a geophysical survey, subsequent limited soil sampling (three soil borings up to 10 feet below ground surface (ft.-bgs.) and limited groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site

location, and **Figure 2** shows the site and boring locations. Soil and groundwater sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (Troxler Geologic, Inc.) was also used to locate and mark underground utilities.

Geophysical Survey

On February 6, 2019, S&ME personnel performed a geophysical survey within accessible areas of the proposed ROW/easement at Parcel 148. S&ME used a combination of the Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) methods to explore for buried subsurface features at the site such as underground storage tanks (USTs) and other possible buried obstructions. Brief descriptions of these complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820-02 (2007) "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The presence of vehicles, thick vegetation and other surficial obstructions within the requested survey area however prevented TDEM data collection in several locations. The approximate TDEM data collection paths are presented in **Figure 4**. Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 3000 GPR system equipped with a 400 MHz antenna in general accordance with ASTM D6432-11 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of seven GPR profiles (Lines 1 through 7) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. However, one anomaly was identified by the GPR survey (Anomaly I; **Figure 7**). Anomaly I is characterized by high amplitude GPR responses within the upper one ft.-bgs and likely related to an isolated buried target/debris. Anomaly A was also marked in the field using white spray paint. Example GPR profiles are presented in **Figure 8**.

Soil Sampling

On February 25, 2019, Troxler Geologic, Inc. (Troxler's) drill crew utilized a track mounted Geoprobe® rig to advance three soil borings (B-1 through B-3) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 148. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I.** Troxler's drill crew advanced the Geoprobe® borings up to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately 2.5 to four ft.-bgs. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II.**

No petroleum odors, staining or elevated PID readings were noted within the collected soil samples. Therefore, one soil sample was selected from each boring. The soil sample from the two to four foot depth interval was selected from boring B-1 and the soil sample from the zero to two foot depth interval was selected from borings B-2 and B-3. The soil samples were provided to RED Lab, LLC (Red Lab) for on-site analysis. A total of three soil samples (one per boring) were analyzed by RED Lab for Total Petroleum Hydrocarbons (TPH)-Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

TPH-GRO and TPH-DRO were not reported at concentrations exceeding the North Carolina TPH Action Levels. TPH-DRO was reported at borings B-1, B-2 and B-3 at concentrations ranging from 0.05 milligrams per kilograms

(mg/kg) to 9.2 mg/kg, which are below its North Carolina TPH Action Level of 100 mg/kg. TPH-GRO was not reported at concentrations exceeding the laboratory method reporting limits. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered within approximately 10 ft.-bgs. Therefore, the Geoprobe® was used to advance one of the soil borings into the groundwater table for the collection of a groundwater sample. Based on analytical results of soil samples and apparent downgradient location from the PJ's Truck Bodies facility, soil boring B-3 was selected for the collection of a groundwater sample. A temporary monitor well (TW-1) was installed at soil boring B-3 to a depth of approximately five ft.-bgs using a five foot section of one-inch diameter, Schedule 40 PVC 0.01-inch slotted screen that intersected the groundwater table. Groundwater within the temporary monitor well at soil boring B-3 was measured at 2.5 ft.-bgs. Groundwater from the temporary well was purged until relatively clear using disposable tubing attached to a peristaltic pump. The flow rate was reduced and laboratory supplied containers were filled directly from the tubing, labeled as B-3/TW-1 and placed in an insulated cooler with ice for transport to Con-Test Laboratories for analysis of VOCs by EPA Method 8260 and polycyclic aromatic compounds (PAHs) by EPA Method 8270.

Upon completion of the soil and groundwater sampling, the well materials were removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as additional soil cuttings generated during the soil boring advancement, purge water and decontamination water, were spread on the ground in accordance with the procedures specified by North Carolina Department of Environmental Quality (NCDEQ). Used gloves, tubing, re-sealable bags and acetate sleeves were bagged and disposed off-site.

Groundwater Analytical Results

Based upon analytical results of groundwater samples analyzed by Con-Test Laboratories, no target constituents were reported at concentrations exceeding the laboratory method reporting limits. A summary of the groundwater analytical results is presented in **Table 2** and shown on **Figure 3**. A copy of the laboratory analytical report provided by Con-Test Laboratories is presented in **Appendix III**.

Conclusion and Recommendations

The geophysical survey identified one anomaly (Anomaly I) which is likely related to an isolated buried target/debris. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced three soil borings (B-1 through B-3) to a depth of up to approximately 10 ft.-bgs at the site. No petroleum odors, staining or elevated PID readings were noted within soil samples collected from the soil borings. Selected soil samples from the soil borings were analyzed onsite for TPH-GRO and TPH-DRO using UVF spectroscopy. TPH-DRO were reported in the zero to two foot depth interval at two soil borings and the two to four foot depth interval at one soil boring at concentrations slightly above the laboratory method reporting limits, but well below the North Carolina TPH Action Level. During the soil boring advancement, groundwater was encountered at depths ranging from 2.5 ft-bgs to four ft.-bgs. One temporary well (TW-1) was installed at soil

boring B-3. Groundwater at TW-1 was measured at 2.5 ft.-bgs and analyzed by Con-Test Laboratories for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. No target constituents were reported in the groundwater sample at concentrations exceeding the laboratory method reporting limits.

S&ME recommends maintaining an awareness level for the presence of marginally impacted petroleum in soil (below TPH Action Levels) at the site for the safety of workers and the public. If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., buildings, reinforced concrete, vehicles, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific, and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of approximately about five ft.-bgs.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

Danie Honercutt Jamie T Honeycutt

Environmental Professional

jhoneycutt@smeinc.com

Thomas P. Raymond, P.E., P.M.P. 5/6/2019 **Senior Consultant**

traymond@smeinc.com

Attachments:

Table 1: Summary of Soil Sampling Results

Table 2: Summary of Groundwater Sampling Results

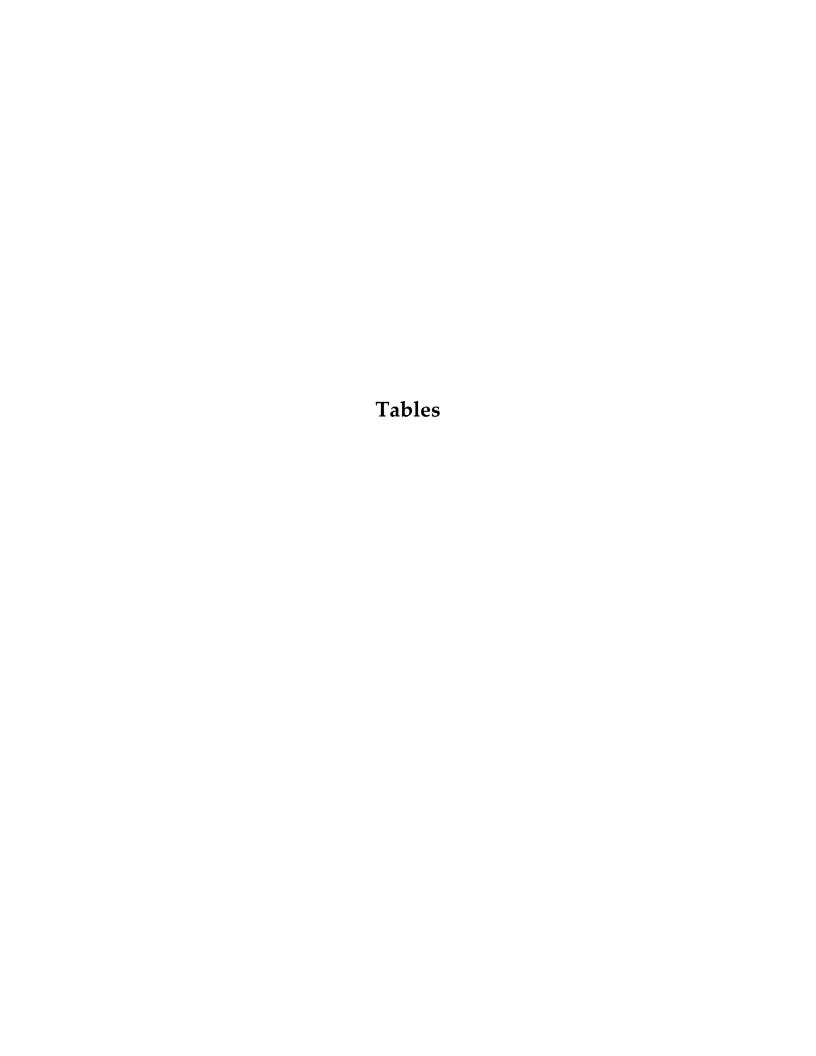
Figure 1: Vicinity Map Figure 2: Site Map

Figure 3: Soil and Groundwater Constituent Map

Figure 4: TDEM Path Location Plan

Figure 5: TDEM Data Plot A Figure 6: TDEM Data Plot B

Figure 7: Geophysical Anomaly Location Plan Figure 8: Example GPR Data – Lines 1 and 2


Appendix I: **Photographs** Appendix II: Boring Logs

Appendix III: Laboratory Analytical Reports and Chain of Custody

Michael W. Pfeifer Senior Project Manager mpfeifer@smeinc.com

Michael Pfi 861E52DDEFAF4C7.

April 29, 2019

E & **(1) E**

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5986B

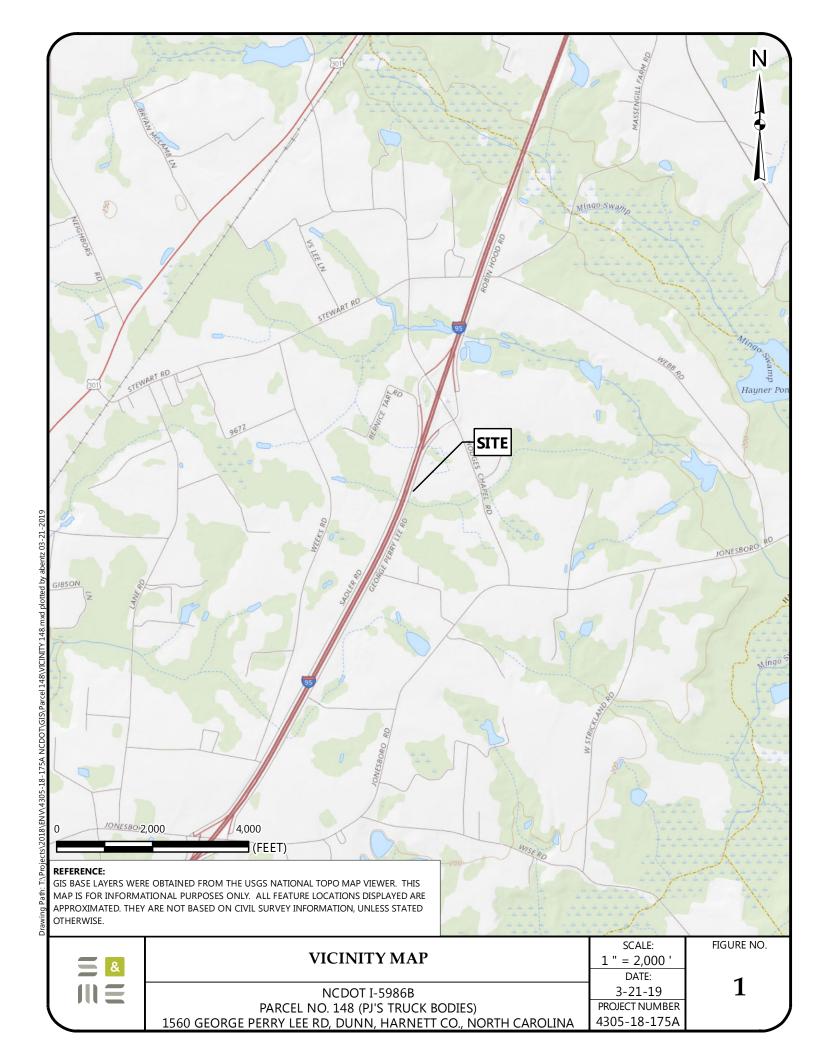
Parcel 148 - (PJ's Truck Bodies) 1560 George Perry Lee Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175A

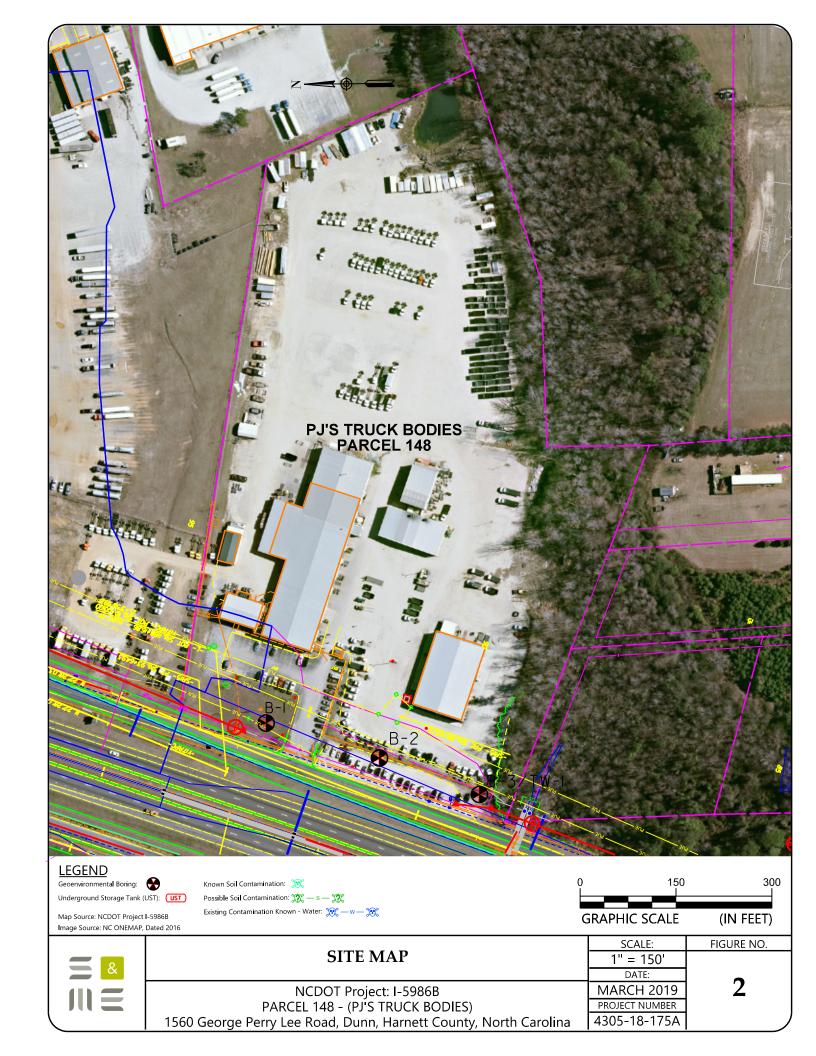
Ar	nalytical Metho	d→	Total Petroleum Hydrocarbons (TPH) Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) by Ultraviolet Fluorescence (UVF) Spectrometry									
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO								
B-1	2/25/2019	2 to 4	<0.44	0.05								
B-2	2/25/2019	0 to 2	0 to 2	0 to 2	0 to 2	0 to 2	0 to 2	0 to 2	0 to 2	0 to 2	<0.28	0.38
B-3	2/25/2019	0 to 2	<0.47	9.2								
No	orth Carolina T	PH Action Levels	50	100								

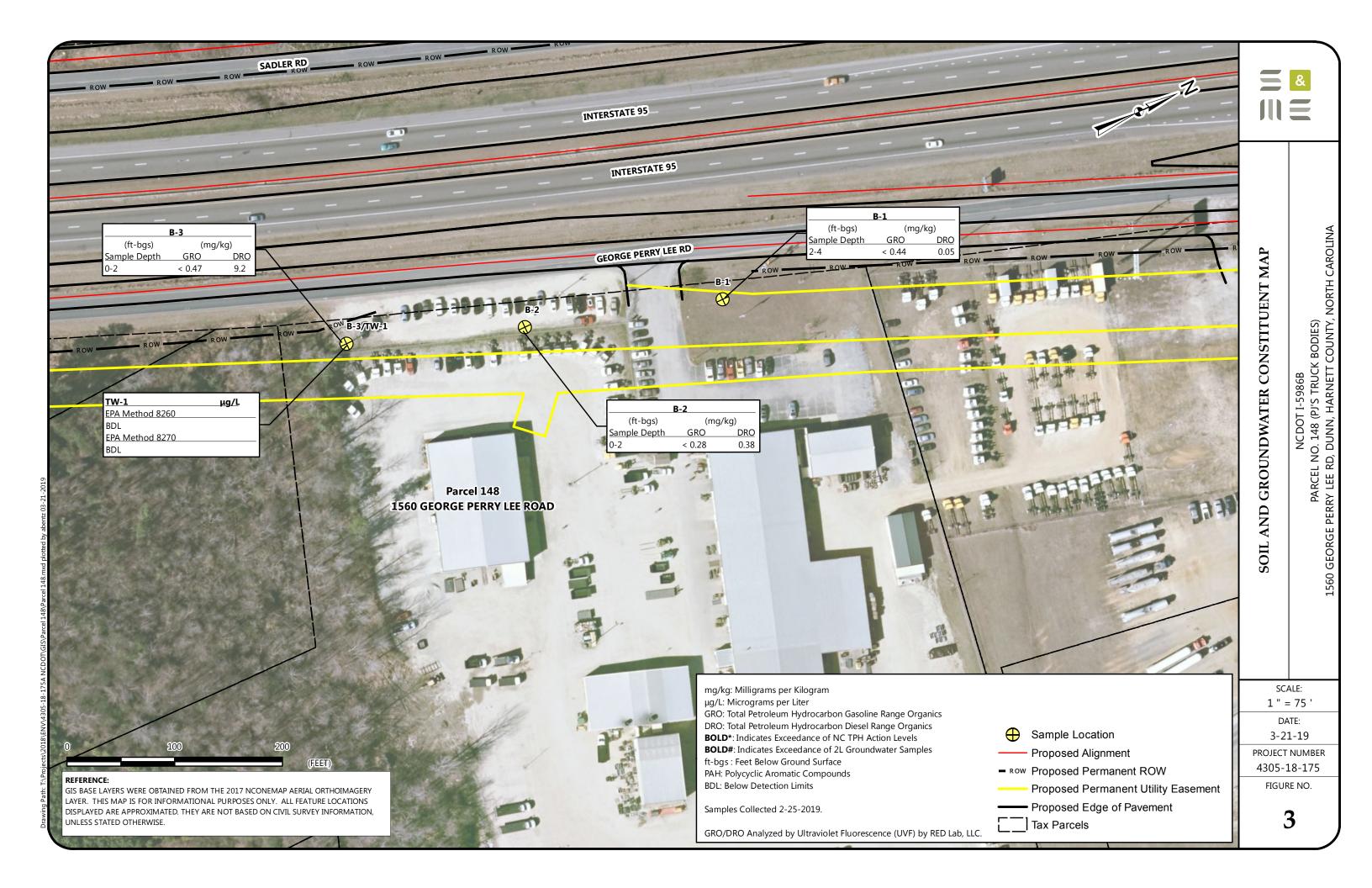
Notes:

- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and BOLD fields.

TABLE 2 SUMMARY OF GROUNDWATER SAMPLING RESULTS NCDOT Project I-5986B


Parcel 148 - (PJ's Truck Bodies) 1560 George Perry Lee Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175A


Analytica	al Method→	Volatile Organic Compounds by EPA Method 8260	Polycyclic Aromatic Compounds (PAHs) by EPA Method 8270
Sample ID	Contaminant of Concern→	Constituent Specific	Constituent Specific
	Date		
B-3/TW-1	2/25/2019	Below laboratory method reporting limits	Below laboratory method reporting limits
2	L Standard (µg/L)	Not Applicable	Not Applicable


Notes:

- 1. Analytes that are not shown for the method were not detected.
- 2. Concentrations are reported in micrograms per liter (µg/L).
- 3. 2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- 5. Concentrations exceeding the 2L Standards are shown in Shaded and **BOLD** fields.

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

0 98 P888 December of the EN PERO ED 8 0 0 0 8 8 Google Earth

LEGEND

Approximate TDEM Path

Approximate Requested Survey Area

TDEM PATH LOCATION PLAN

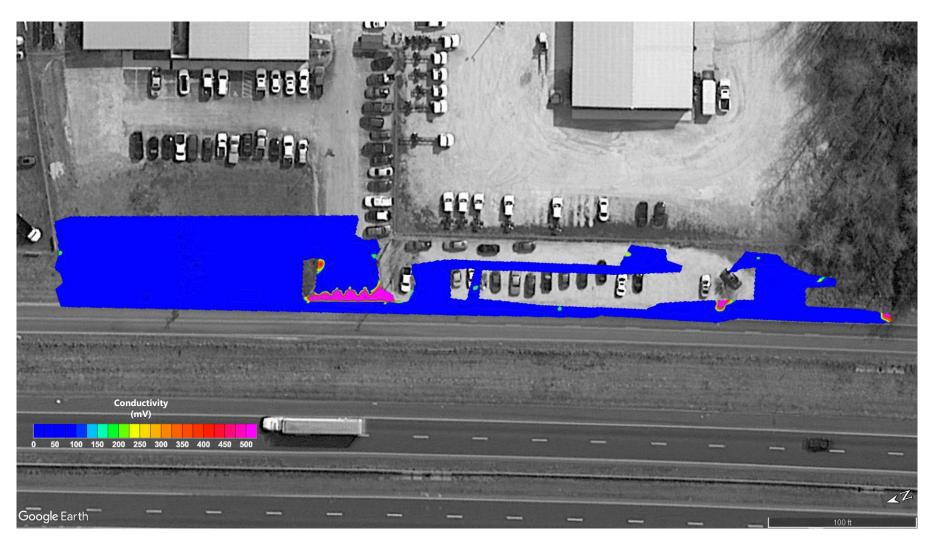
NCDOT PROJECT: I-5986B PARCEL 148 – (PJ'S TRUCK BODIES) 1560 GEORGE PERRY LEE ROAD, DUNNI, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 3/22/2019

PROJECT NUMBER 4305-18-175A

FIGURE NO.


4

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

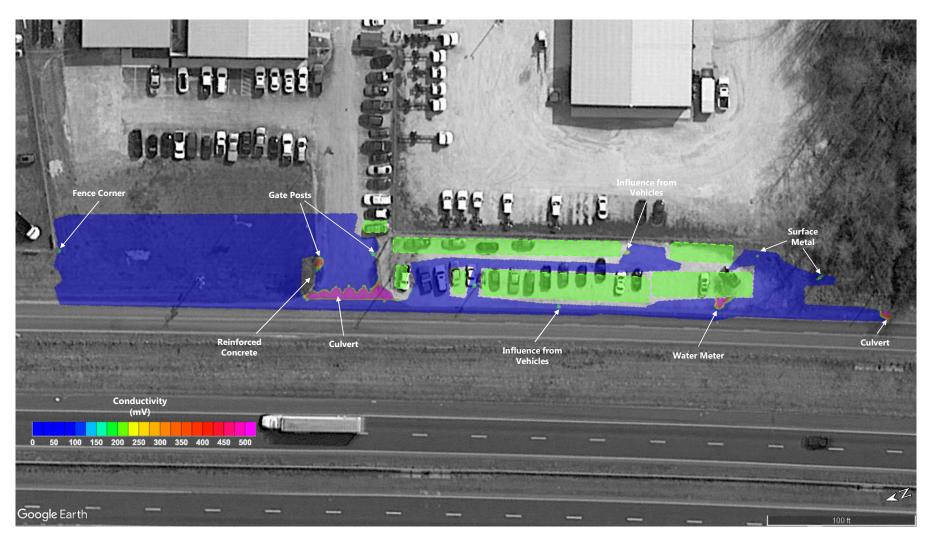
TDEM DATA PLOT A

NCDOT PROJECT: 1-5986B PARCEL 148 – (PJ'S TRUCK BODIES) 1560 GEORGE PERRY LEE ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 3/22/2019

PROJECT NUMBER 4305-18-175A


FIGURE NO.

5

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

<u>LEGEND</u>

Approximate Location of Vehicles

TDEM DATA PLOT B

NCDOT PROJECT: I-5986B

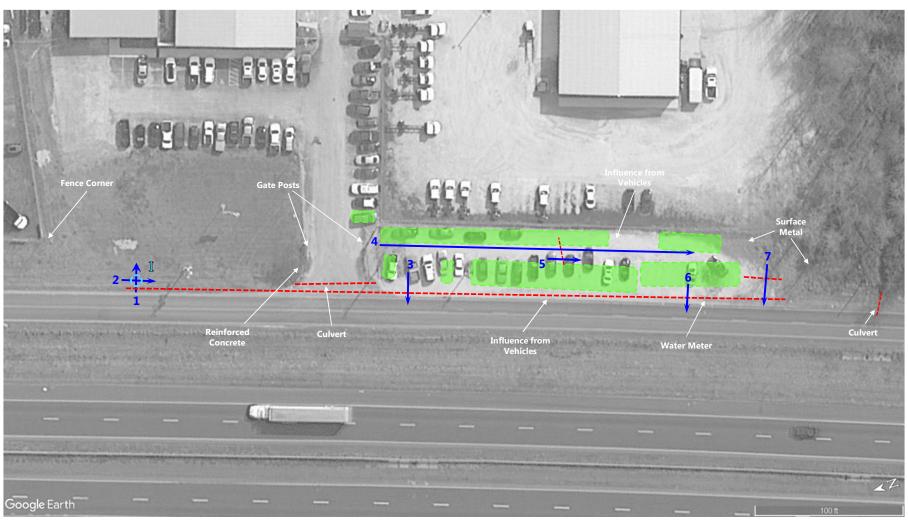
PARCEL 148 – (PJ'S TRUCK BODIES)

1560 GEORGE PERRY LEE ROAD, DUNNI, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 3/22/2019

PROJECT NUMBER 4305-18-175A


FIGURE NO.

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

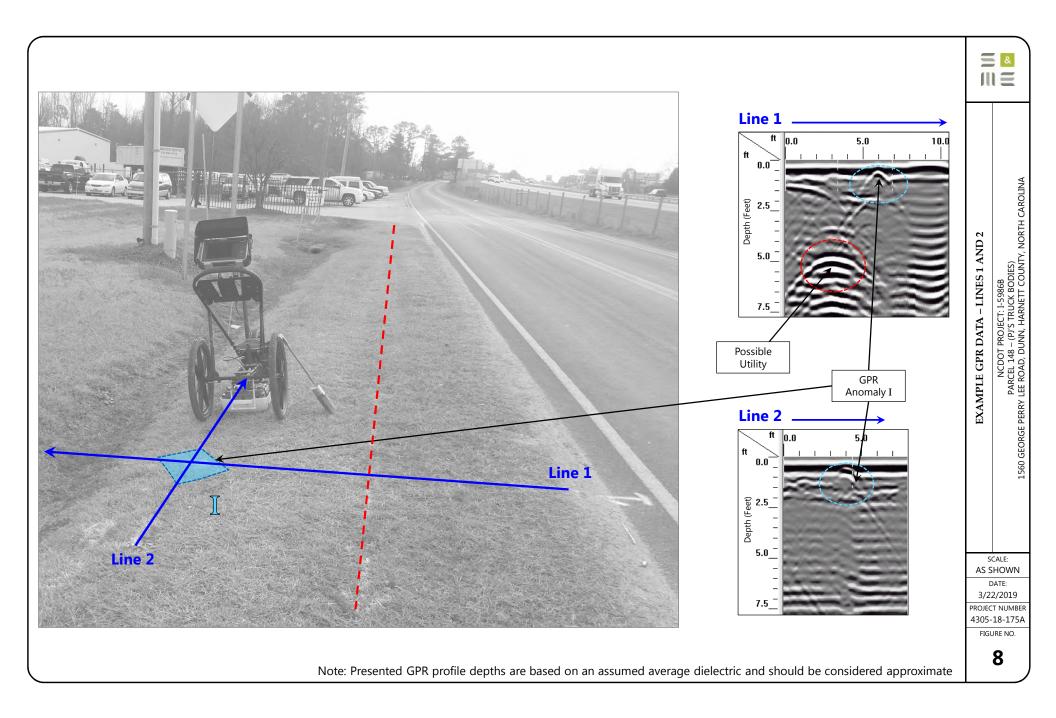
Approximate Location of GPR AnomalyApproximate Location of GPR Profile

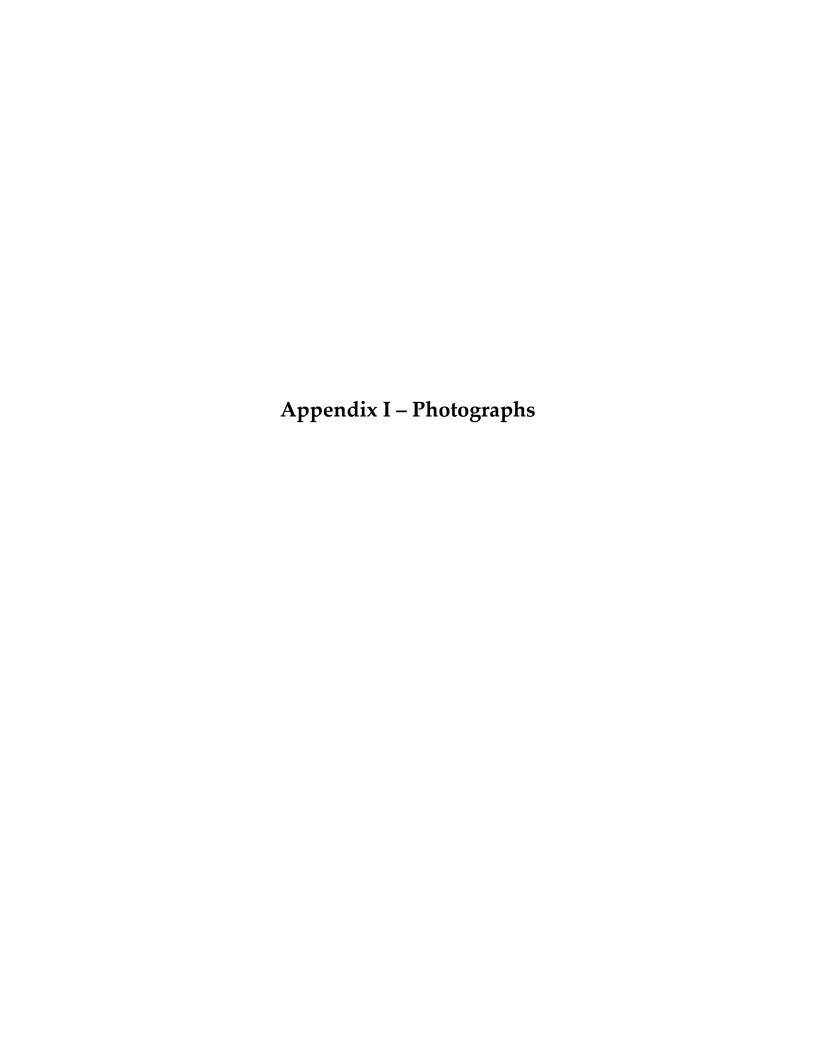
Approximate Location of Vehicles

Approximate Location of Possible Utility

GEOPHYSICAL ANOMALY LOCATION PLAN

NCDOT PROJECT: I-5986B PARCEL 148 – (PJ'S TRUCK BODIES) 1560 GEORGE PERRY LEE ROAD, DUNNI, HARNETT COUNTY, NORTH CAROLINA

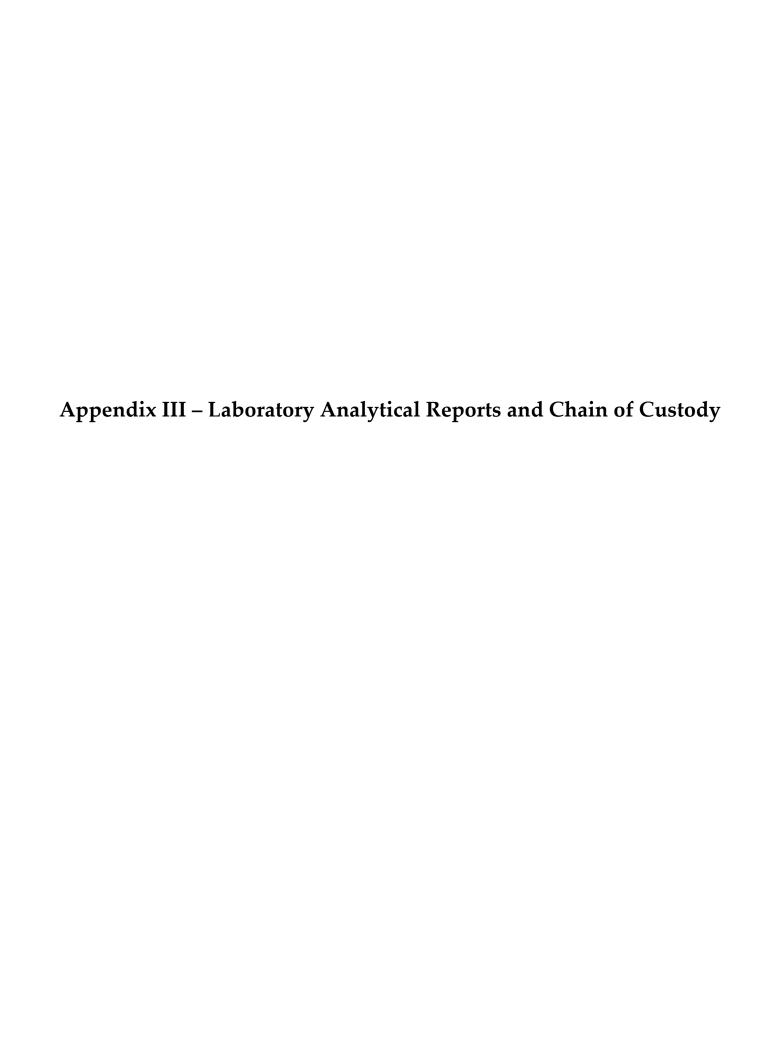

SCALE: AS SHOWN


DATE: 3/22/2019

PROJECT NUMBER 4305-18-175A

FIGURE NO.

7



PROJECT:	NCDOT I-5986B Parcel 148-1560 George Perry Lee Road, Du	nn, NC			BORIN	NG LOG:	B-1								
DATE DRILLED:	S&ME Project No. 4305-18-175A Monday, February 25, 2019	BORING DEPTH (FT):	10												
DRILL RIG:	Geoprobe 6620 DT	WATER LEVEL:													
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable											
HAMMER TYPE:	Not Applicable	LOGGED BY:													
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:													
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:													
	,	2.0.010			U	≿ ;	_								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE					
	Sand, Brown,				0.1	No									
5 Clay	ey Sand, Red, Orange,		•	ł	0.1	Yes									
	Sand, Red, Orange,			ŧ	0.2	No									
				**	0.3	No									
10 Boriu	ng Terminated at 10 Ft-BGS														
15 —															
_															
20 —															
25 —															
30															

PROJECT:	NCDOT I-5986B				_		_							
	Parcel 148-1560 George Perry Lee Road, Dur S&ME Project No. 4305-18-175A			BORIN	NG LOG	B-2								
DATE DRILLED:	Monday, February 25, 2019	BORING DEPTH (FT):	8											
DRILL RIG:	Geoprobe 6620 DT	: 3												
DRILLER:	Troxler Geologic, Inc.	TH: Not Applicable												
HAMMER TYPE:	Not Applicable	D BY: J. Honeycutt												
SAMPLING METHOD:	Macro-Core Sampler	NG:												
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	NG: NG:												
I I	macro core sumpler (5 mil cs)						1							
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION	WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE					
Grave				ш										
Claye	Sand, Black, Brown, y Sand, Red, Orange, y Sand, Orange, Tan,	▼	1	0.2	Yes									
	g Terminated at 8 Ft-BGS													
10 —														
15														
20 —														
-														
_														
25 —														
30								1						

PROJECT	Т:		NCDOT I-5986B													
			Parcel 148-1560 George Perry Lee Road, Dunr	n, NC			BORIN	NG LOG	: B-3/	TW-1	L					
D. A. T. F. D. D. V.			S&ME Project No. 4305-18-175A													
DATE DRIL DRILL RIG:			Monday, February 25, 2019	BORING DEPTH (FT):												
DRILLER:			Geoprobe 6620 DT	WATER LEVEL:	H: Not Applicable											
	TVDE:		Troxler Geologic, Inc.													
HAMMER SAMPLING		OD:	Not Applicable	LOGGED BY:	J. Honey	cutt										
DRILLING I			Macro-Core Sampler	NORTHING:												
DRILLING	IVIETHO		Macro-Core Sampler (3-in. OD)	EASTING:				1				l				
DEPTH (feet)	GRAPHIC		MATERIAL DESCRIPTION	WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE					
5 —		S S	Elayey Sand, Red, Orange, Soring Terminated at 8 Ft-BGS				0.2	Yes	Sai							
_																
30 —	1	ı				1	l	l	1	i	i	l				

Hydrocarbon Analysis Results

Client: S&ME

Address:

Samples taken Samples extracted Monday, February 25, 2019

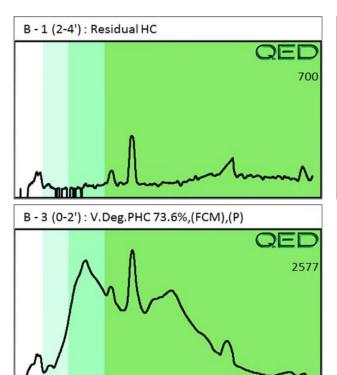
Monday, February 25, 2019

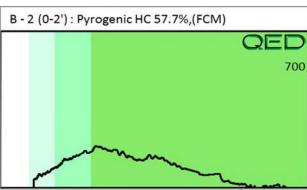
Samples analysed

Monday, February 25, 2019

Contact: JAMIE HONEYCUTT Operator JENN RYAN

Project: 4305-18-175A; PARCEL 148


													H09382
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	Q	% Ratios	5	HC Fingerprint Match
										C10 C18		C18	
Soil	B - 1 (2-4')	17.7	<0.44	<0.44	0.05	0.05	0.05	0.004	< 0.005	0	44.8	55.2	Residual HC
Soil	B - 2 (0-2')	11.4	<0.28	<0.28	0.38	0.38	0.16	0.008	< 0.003	0	88.4	11.6	Pyrogenic HC 57.7%,(FCM)
Soil	B - 3 (0-2')	19.0	<0.47	<0.47	9.2	9.2	4.2	0.23	0.002	0	93.8	6.2	V.Deg.PHC 73.6%,(FCM),(P)
	Initia	l Calibrator	QC check	OK					Final FC	CM QC	Check	OK	95.4%


Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only. Data generated by HC-1 Analyser Project: 4305-18-175A; PARCEL 148

March 7, 2019

Jamie Honeycutt S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: 1560 George Perry Lee Road

Client Job Number:

Project Number: 4305-18-175A

Laboratory Work Order Number: 19B1125

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on February 26, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	6
19B1125-01	6
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B224607	10
Semivolatile Organic Compounds by GC/MS	15
B224945	15
Flag/Qualifier Summary	17
Certifications	18
Chain of Custody/Sample Receipt	2.1

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616 ATTN: Jamie Honeycutt

REPORT DATE: 3/7/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-18-175A

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19B1125

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: 1560 George Perry Lee Road

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB

B-3/ TW-1 19B1125-01 Ground Water SW-846 8260D

SW-846 8270D

EXECUTIVE SUMMARY

Client ID: B-3/TW-1 Lab ID: 19B1125-01

No Results Detected

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 8260D, elevated reporting limits for sample(s) 19B1125-01 due to a foaming sample matrix.

For method 8270, only PAHs were requested and reported.

SW-846 8260D

Qualifications:

DL-01

Elevated reporting limits for all volatile compounds due to foaming sample matrix.

Analyte & Samples(s) Qualified:

19B1125-01[B-3/TW-1]

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

2-Butanone (MEK)

19B1125-01[B-3/TW-1], B224607-BLK1, B224607-BS1, B224607-BSD1, S033110-CCV1

Acetone

 $19B1125\text{-}01[B\text{-}3/\,TW\text{-}1], B224607\text{-}BLK1, B224607\text{-}BS1, B224607\text{-}BSD1, S033110\text{-}CCV1$

Acrylonitrile

19B1125-01[B-3/TW-1], B224607-BLK1, B224607-BS1, B224607-BSD1, S033110-CCV1

Chloromethane

19B1125-01[B-3/TW-1], B224607-BLK1, B224607-BS1, B224607-BSD1, S033110-CCV1

Methylene Chloride

19B1125-01[B-3/TW-1], B224607-BLK1, B224607-BS1, B224607-BSD1, S033110-CCV1

tert-Butyl Alcohol (TBA)

19B1125-01[B-3/TW-1], B224607-BLK1, B224607-BS1, B224607-BSD1, S033110-CCV1

Tetrahydrofuran

19B1125-01[B-3/TW-1], B224607-BLK1, B224607-BS1, B224607-BSD1, S033110-CCV1

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.

Analyte & Samples(s) Qualified:

1,4-Dioxane

19B1125-01[B-3/TW-1]

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Jua Watshington

Project Location: 1560 George Perry Lee Road Sample Description: Work Order: 19B1125

Date Received: 2/26/2019
Field Sample #: B-3/ TW-1

Sampled: 2/25/2019 12:45

Sample ID: 19B1125-01
Sample Matrix: Ground Water

Sample Flags: DL-01			Volatile	e Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	500	97	μg/L	10	V-05	SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Acrylonitrile	ND	50	5.8	$\mu g/L$	10	V-05	SW-846 8260D	2/28/19	3/1/19 18:04	LBD
tert-Amyl Methyl Ether (TAME)	ND	5.0	1.1	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Benzene	ND	10	1.2	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Bromobenzene	ND	10	1.5	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Bromochloromethane	ND	10	2.2	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Bromodichloromethane	ND	5.0	3.0	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Bromoform	ND	10	2.1	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Bromomethane	ND	20	9.4	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
2-Butanone (MEK)	ND	200	24	$\mu g/L$	10	V-05	SW-846 8260D	2/28/19	3/1/19 18:04	LBD
tert-Butyl Alcohol (TBA)	ND	200	22	$\mu g/L$	10	V-05	SW-846 8260D	2/28/19	3/1/19 18:04	LBD
n-Butylbenzene	ND	10	1.5	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
sec-Butylbenzene	ND	10	1.3	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
tert-Butylbenzene	ND	10	1.2	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
tert-Butyl Ethyl Ether (TBEE)	ND	5.0	0.95	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Carbon Disulfide	ND	40	10	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Carbon Tetrachloride	ND	50	2.5	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Chlorobenzene	ND	10	1.6	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Chlorodibromomethane	ND	5.0	1.0	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Chloroethane	ND	20	2.8	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Chloroform	ND	20	2.2	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Chloromethane	ND	20	5.5	$\mu g/L$	10	V-05	SW-846 8260D	2/28/19	3/1/19 18:04	LBD
2-Chlorotoluene	ND	10	1.2	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
4-Chlorotoluene	ND	10	1.4	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,2-Dibromo-3-chloropropane (DBCP)	ND	50	3.7	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,2-Dibromoethane (EDB)	ND	5.0	1.5	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Dibromomethane	ND	10	1.6	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,2-Dichlorobenzene	ND	10	1.7	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,3-Dichlorobenzene	ND	10	1.7	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,4-Dichlorobenzene	ND	10	1.5	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
trans-1,4-Dichloro-2-butene	ND	20	3.1	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Dichlorodifluoromethane (Freon 12)	ND	20	2.8	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,1-Dichloroethane	ND	10	1.6	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,2-Dichloroethane	ND	10	1.9	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,1-Dichloroethylene	ND	10	2.1	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
cis-1,2-Dichloroethylene	ND	10	1.5	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
trans-1,2-Dichloroethylene	ND	10	1.5	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,2-Dichloropropane	ND	10	1.3	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,3-Dichloropropane	ND	5.0	1.3	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
2,2-Dichloropropane	ND	10	2.1	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,1-Dichloropropene	ND	20	1.3	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
cis-1,3-Dichloropropene	ND	5.0	1.2	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
trans-1,3-Dichloropropene	ND	5.0	1.1	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Diethyl Ether	ND	20	2.2	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD

Page 6 of 23

Project Location: 1560 George Perry Lee Road Work Order: 19B1125 Sample Description:

Date Received: 2/26/2019 Field Sample #: B-3/ TW-1

Sampled: 2/25/2019 12:45

Sample ID: 19B1125-01 Sample Matrix: Ground Water

Sample Flags: DL-01			Vola	atile Organic Comp	pounds by C	C/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	5.0	1.8	μg/L	10	0 -	SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,4-Dioxane	ND	500	260	μg/L	10	V-16	SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Ethylbenzene	ND	10	1.3	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Hexachlorobutadiene	ND	10	5.9	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
2-Hexanone (MBK)	ND	100	15	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Isopropylbenzene (Cumene)	ND	10	1.2	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
p-Isopropyltoluene (p-Cymene)	ND	10	1.5	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Methyl tert-Butyl Ether (MTBE)	ND	10	0.90	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Methylene Chloride	ND	50	32	μg/L	10	V-05	SW-846 8260D	2/28/19	3/1/19 18:04	LBD
4-Methyl-2-pentanone (MIBK)	ND	100	15	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Naphthalene	ND	50	1.2	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
n-Propylbenzene	ND	10	1.3	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Styrene	ND	10	1.5	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,1,1,2-Tetrachloroethane	ND	10	1.2	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,1,2,2-Tetrachloroethane	ND	5.0	1.6	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Tetrachloroethylene	ND	10	2.7	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Tetrahydrofuran	ND	100	11	μg/L	10	V-05	SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Toluene	ND	10	1.7	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,2,3-Trichlorobenzene	ND	50	1.4	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,2,4-Trichlorobenzene	ND	10	1.9	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,3,5-Trichlorobenzene	ND	10	1.7	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,1,1-Trichloroethane	ND	10	1.3	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,1,2-Trichloroethane	ND	10	2.4	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Trichloroethylene	ND	10	2.0	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Trichlorofluoromethane (Freon 11)	ND	20	1.5	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,2,3-Trichloropropane	ND	20	2.2	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	10	2.0	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,2,4-Trimethylbenzene	ND	10	1.8	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
1,3,5-Trimethylbenzene	ND	10	1.3	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Vinyl Chloride	ND	20	1.3	μg/L	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
m+p Xylene	ND	20	2.6	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
o-Xylene	ND	10	1.3	$\mu g/L$	10		SW-846 8260D	2/28/19	3/1/19 18:04	LBD
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		91.0		70-130					3/1/19 18:04	
Toluene-d8		97.0		70-130					3/1/19 18:04	
4-Bromofluorobenzene		99.6		70-130					3/1/19 18:04	

Project Location: 1560 George Perry Lee Road Work Order: 19B1125 Sample Description:

Date Received: 2/26/2019

Sampled: 2/25/2019 12:45 Field Sample #: B-3/ TW-1

Sample ID: 19B1125-01 Sample Matrix: Ground Water

				8						
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene (SIM)	ND	0.30	0.033	μg/L	1	r rag/Quar	SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Acenaphthylene (SIM)	ND	0.20	0.035	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Anthracene (SIM)	ND	0.20	0.032	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Benzo(a)anthracene (SIM)	ND	0.050	0.016	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Benzo(a)pyrene (SIM)	ND	0.10	0.012	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Benzo(b)fluoranthene (SIM)	ND	0.050	0.015	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Benzo(g,h,i)perylene (SIM)	ND	0.50	0.018	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Benzo(k)fluoranthene (SIM)	ND	0.20	0.012	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Chrysene (SIM)	ND	0.20	0.015	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Dibenz(a,h)anthracene (SIM)	ND	0.10	0.017	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Fluoranthene (SIM)	ND	0.50	0.025	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Fluorene (SIM)	ND	1.0	0.034	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.10	0.018	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
2-Methylnaphthalene (SIM)	ND	1.0	0.062	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Naphthalene (SIM)	ND	1.0	0.26	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Phenanthrene (SIM)	ND	0.050	0.030	μg/L	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Pyrene (SIM)	ND	1.0	0.023	$\mu g/L$	1		SW-846 8270D	3/4/19	3/6/19 16:45	CLA
Surrogates		% Reco	very	Recovery Limits	i	Flag/Qual				
Nitrobenzene-d5 (SIM)		72.4		30-130					3/6/19 16:45	
2-Fluorobiphenyl		51.4		30-130					3/6/19 16:45	
p-Terphenyl-d14		62.0		30-130					3/6/19 16:45	

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260D

19B1125-01 [B-3/TW-1]

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19B1125-01 [B-3/ TW-1]	B224607	0.5	5.00	02/28/19
Prep Method: SW-846 3510C-SW-846 8270D				
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date

1.00

03/04/19

1000

B224945

RPD

%REC

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B224607 - SW-846 5030B				D 1 00	2/20/10 4 1	1. 02/01/2	10			
Blank (B224607-BLK1) Acetone		50	a/I	Prepared: 02	2/28/19 Anal	yzed: 03/01/	19			17.05
Acrylonitrile	ND	50 5.0	μg/L μg/L							V-05
•	ND									V-05
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L							
Benzene	ND	1.0	μg/L							
Bromobenzene	ND	1.0	μg/L							
Bromochloromethane	ND	1.0	μg/L							
Bromodichloromethane	ND	0.50	μg/L							
Bromoform	ND	1.0	μg/L							
Bromomethane	ND	2.0	μg/L							****
2-Butanone (MEK)	ND	20	μg/L							V-05
tert-Butyl Alcohol (TBA)	ND	20	μg/L							V-05
n-Butylbenzene	ND	1.0	μg/L							
sec-Butylbenzene	ND	1.0	μg/L							
tert-Butylbenzene	ND	1.0	μg/L							
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L							
Carbon Disulfide	ND	4.0	μg/L							
Carbon Tetrachloride	ND	5.0	μg/L							
Chlorobenzene	ND	1.0	μg/L							
Chlorodibromomethane	ND	0.50	μg/L							
Chloroethane	ND	2.0	μg/L							
Chloroform	ND	2.0	μg/L							
Chloromethane	ND	2.0	μg/L							V-05
2-Chlorotoluene	ND	1.0	$\mu g/L$							
4-Chlorotoluene	ND	1.0	$\mu g/L$							
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	$\mu g/L$							
1,2-Dibromoethane (EDB)	ND	0.50	$\mu g/L$							
Dibromomethane	ND	1.0	$\mu g/L$							
1,2-Dichlorobenzene	ND	1.0	$\mu g/L$							
1,3-Dichlorobenzene	ND	1.0	μg/L							
1,4-Dichlorobenzene	ND	1.0	μg/L							
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
1,1-Dichloroethane	ND	1.0	μg/L							
1,2-Dichloroethane	ND	1.0	μg/L							
1,1-Dichloroethylene	ND	1.0	μg/L							
cis-1,2-Dichloroethylene	ND	1.0	μg/L							
trans-1,2-Dichloroethylene	ND	1.0	μg/L							
1,2-Dichloropropane	ND	1.0	μg/L							
1,3-Dichloropropane	ND	0.50	μg/L							
2,2-Dichloropropane	ND	1.0	μg/L							
1,1-Dichloropropene	ND	2.0	μg/L							
cis-1,3-Dichloropropene	ND	0.50	μg/L							
trans-1,3-Dichloropropene	ND	0.50	μg/L							
Diethyl Ether	ND	2.0	μg/L							
Diisopropyl Ether (DIPE)	ND ND	0.50	μg/L							
1,4-Dioxane	ND ND	50	μg/L							
Ethylbenzene	ND ND	1.0	μg/L μg/L							
Hexachlorobutadiene		0.60	μg/L μg/L							
2-Hexanone (MBK)	ND ND	10	μg/L μg/L							
Isopropylbenzene (Cumene)	ND	1.0								
	ND	1.0	μg/L							
p-Isopropyltoluene (p-Cymene)	ND		μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L							

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B224607 - SW-846 5030B										
Blank (B224607-BLK1)				Prepared: 02	/28/19 Analy	vzed: 03/01/1	9			
Methylene Chloride	ND	5.0	μg/L	p		,				V-05
-Methyl-2-pentanone (MIBK)	ND	10	μg/L							
Japhthalene	ND	2.0	μg/L							
-Propylbenzene	ND	1.0	μg/L							
tyrene	ND	1.0	μg/L							
1,1,2-Tetrachloroethane	ND	1.0	μg/L							
1,2,2-Tetrachloroethane	ND	0.50	μg/L							
etrachloroethylene	ND	1.0	μg/L							
etrahydrofuran	ND	10	μg/L							V-05
bluene	ND ND	1.0	μg/L μg/L							V-03
2,3-Trichlorobenzene		5.0	μg/L μg/L							
2,4-Trichlorobenzene	ND	1.0								
3,5-Trichlorobenzene	ND		μg/L							
1,1-Trichloroethane	ND	1.0	μg/L							
	ND	1.0	μg/L							
1,2-Trichloroethane	ND	1.0	μg/L							
richloroethylene	ND	1.0	μg/L							
richlorofluoromethane (Freon 11)	ND	2.0	μg/L							
2,3-Trichloropropane	ND	2.0	μg/L							
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	1.0	μg/L							
2,4-Trimethylbenzene	ND	1.0	μg/L							
3,5-Trimethylbenzene	ND ND	1.0	μg/L μg/L							
inyl Chloride		2.0	μg/L μg/L							
+p Xylene	ND ND	2.0	μg/L μg/L							
-Xylene		1.0	μg/L μg/L							
·	ND	1.0								
urrogate: 1,2-Dichloroethane-d4	22.7		μg/L	25.0		90.7	70-130			
urrogate: Toluene-d8	24.2		$\mu g/L$	25.0		97.0	70-130			
urrogate: 4-Bromofluorobenzene	25.0		μg/L	25.0		99.9	70-130			
CS (B224607-BS1)				Prepared: 02	/28/19 Analy	yzed: 03/01/1	9			
cetone	80.7	50	μg/L	100		80.7	70-160			V-05
crylonitrile	8.08	5.0	$\mu g/L$	10.0		80.8	70-130			V-05
rt-Amyl Methyl Ether (TAME)	9.02	0.50	μg/L	10.0		90.2	70-130			
enzene	8.84	1.0	μg/L	10.0		88.4	70-130			
romobenzene	10.2	1.0	μg/L	10.0		102	70-130			
romochloromethane	10.0	1.0	$\mu g \! / \! L$	10.0		100	70-130			
romodichloromethane	9.96	0.50	$\mu g \! / \! L$	10.0		99.6	70-130			
romoform	10.3	1.0	μg/L	10.0		103	70-130			
romomethane	4.30	2.0	μg/L	10.0		43.0	40-160			
Butanone (MEK)	75.3	20	$\mu g/L$	100		75.3	40-160			V-05
rt-Butyl Alcohol (TBA)	75.6	20	$\mu g/L$	100		75.6	40-160			V-05
Butylbenzene	9.08	1.0	μg/L	10.0		90.8	70-130			
ec-Butylbenzene	9.69	1.0	μg/L	10.0		96.9	70-130			
rt-Butylbenzene	9.61	1.0	μg/L	10.0		96.1	70-130			
rt-Butyl Ethyl Ether (TBEE)	8.31	0.50	μg/L	10.0		83.1	70-130			
arbon Disulfide	9.39	4.0	μg/L	10.0		93.9	70-130			
arbon Tetrachloride	9.38	5.0	μg/L	10.0		93.8	70-130			
hlorobenzene	10.3	1.0	μg/L	10.0		103	70-130			
hlorodibromomethane	10.3	0.50	μg/L μg/L	10.0		103	70-130			
hloroethane	7.99	2.0	μg/L μg/L	10.0		79.9	70-130			
hloroform		2.0	μg/L μg/L				70-130			
Chloromethane	8.94	2.0	μg/L μg/L	10.0 10.0		89.4 60.0	70-130 40-160			V-05
-Chlorotoluene	6.00									V-U5
CHIOTOTOTUCHE	10.4	1.0	μg/L	10.0		104	70-130			age 11 d

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B224607 - SW-846 5030B										_
LCS (B224607-BS1)				Prepared: 02	2/28/19 Analyzed: 03/01/	19				
4-Chlorotoluene	10.2	1.0	μg/L	10.0	102	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	8.40	5.0	μg/L	10.0	84.0	70-130				
1,2-Dibromoethane (EDB)	10.0	0.50	μg/L	10.0	100	70-130				
Dibromomethane	10.4	1.0	μg/L	10.0	104	70-130				
1,2-Dichlorobenzene	10.1	1.0	μg/L	10.0	101	70-130				
1,3-Dichlorobenzene	10.2	1.0	μg/L	10.0	102	70-130				
1,4-Dichlorobenzene	9.94	1.0	μg/L	10.0	99.4	70-130				
trans-1,4-Dichloro-2-butene	9.29	2.0	μg/L	10.0	92.9	70-130				
Dichlorodifluoromethane (Freon 12)	6.39	2.0	μg/L	10.0	63.9	40-160				+
1,1-Dichloroethane	8.86	1.0	μg/L	10.0	88.6	70-130				
1,2-Dichloroethane	9.33	1.0	μg/L	10.0	93.3	70-130				
1,1-Dichloroethylene	8.72	1.0	μg/L	10.0	87.2	70-130				
cis-1,2-Dichloroethylene	9.06	1.0	μg/L	10.0	90.6	70-130				
trans-1,2-Dichloroethylene	9.25	1.0	μg/L	10.0	92.5	70-130				
1,2-Dichloropropane	9.03	1.0	μg/L	10.0	90.3	70-130				
1,3-Dichloropropane	9.41	0.50	μg/L	10.0	94.1	70-130				
2,2-Dichloropropane	9.26	1.0	μg/L	10.0	92.6	40-130				1
1,1-Dichloropropene	9.26	2.0	μg/L	10.0	92.6	70-130				
cis-1,3-Dichloropropene	9.48	0.50	μg/L	10.0	94.8	70-130				
trans-1,3-Dichloropropene	9.14	0.50	μg/L	10.0	91.4	70-130				
Diethyl Ether	8.59	2.0	μg/L	10.0	85.9	70-130				
Diisopropyl Ether (DIPE)	7.87	0.50	μg/L	10.0	78.7	70-130				
1,4-Dioxane	79.6	50	μg/L	100	79.6	40-130				İ
Ethylbenzene	10.1	1.0	μg/L	10.0	101	70-130				
Hexachlorobutadiene	9.52	0.60	μg/L	10.0	95.2	70-130				
2-Hexanone (MBK)	81.6	10	μg/L	100	81.6	70-160				i
Isopropylbenzene (Cumene)	10.4	1.0	μg/L	10.0	104	70-130				
p-Isopropyltoluene (p-Cymene)	9.57	1.0	μg/L	10.0	95.7	70-130				
Methyl tert-Butyl Ether (MTBE)	9.12	1.0	μg/L	10.0	91.2	70-130			17.05	
Methylene Chloride	7.84	5.0	μg/L	10.0	78.4	70-130			V-05	
4-Methyl-2-pentanone (MIBK)	80.4	10	μg/L	100	80.4	70-160				1
Naphthalene n-Propylbenzene	9.64	2.0	μg/L	10.0	96.4	40-130				†
**	10.4	1.0	μg/L	10.0	104	70-130				
Styrene 1,1,2-Tetrachloroethane	10.5	1.0 1.0	μg/L	10.0	105	70-130				
1,1,2,2-Tetrachloroethane	10.7	0.50	μg/L μg/L	10.0 10.0	107	70-130 70-130				
Tetrachloroethylene	10.5	1.0	μg/L μg/L		105 107	70-130				
Tetrahydrofuran	10.7	1.0	μg/L μg/L	10.0 10.0		70-130			V-05, J	
Toluene	7.01	1.0			70.1				V-05, J	
1,2,3-Trichlorobenzene	9.76	5.0	μg/L	10.0	97.6	70-130				
1,2,4-Trichlorobenzene	10.4	1.0	μg/L μg/L	10.0 10.0	104 103	70-130 70-130				
1,3,5-Trichlorobenzene	10.3	1.0	μg/L μg/L	10.0	103	70-130				
1,1,1-Trichloroethane	10.2	1.0	μg/L μg/L	10.0	95.5	70-130 70-130				
1,1,2-Trichloroethane	9.55	1.0	μg/L μg/L	10.0	103	70-130				
Trichloroethylene	10.3 9.56	1.0	μg/L μg/L	10.0	95.6	70-130				
Trichlorofluoromethane (Freon 11)		2.0	μg/L μg/L	10.0	78.6	70-130				
1,2,3-Trichloropropane	7.86 10.2	2.0	μg/L μg/L	10.0	102	70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	8.80	1.0	μg/L μg/L	10.0	88.0	70-130				
1,2,4-Trimethylbenzene	9.24	1.0	$\mu g/L$	10.0	92.4	70-130				
1,3,5-Trimethylbenzene	10.2	1.0	μg/L	10.0	102	70-130				
Vinyl Chloride	7.24	2.0	μg/L	10.0	72.4	40-160				†

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B224607 - SW-846 5030B											
LCS (B224607-BS1)				Prepared: 02	2/28/19 Analy	zed: 03/01/1	9				
m+p Xylene	20.5	2.0	μg/L	20.0		102	70-130				
o-Xylene	10.4	1.0	$\mu g/L$	10.0		104	70-130				
Surrogate: 1,2-Dichloroethane-d4	22.2		μg/L	25.0		88.7	70-130				
Surrogate: Toluene-d8	24.3		μg/L	25.0		97.3	70-130				
Surrogate: 4-Bromofluorobenzene	25.0		μg/L	25.0		100	70-130				
LCS Dup (B224607-BSD1)				Prepared: 02	2/28/19 Analy	zed: 03/01/1	9				
Acetone	88.3	50	μg/L	100		88.3	70-160	8.92	25	V-05	
Acrylonitrile	8.01	5.0	$\mu g/L$	10.0		80.1	70-130	0.870	25	V-05	
tert-Amyl Methyl Ether (TAME)	9.06	0.50	$\mu g/L$	10.0		90.6	70-130	0.442	25		
Benzene	8.85	1.0	$\mu g/L$	10.0		88.5	70-130	0.113	25		
Bromobenzene	10.1	1.0	$\mu g/L$	10.0		101	70-130	1.08	25		
Bromochloromethane	10.5	1.0	$\mu g \! / \! L$	10.0		105	70-130	4.20	25		
Bromodichloromethane	9.69	0.50	$\mu g/L$	10.0		96.9	70-130	2.75	25		
Bromoform	10.0	1.0	$\mu g/L$	10.0		100	70-130	2.76	25		
Bromomethane	5.33	2.0	$\mu g/L$	10.0		53.3	40-160	21.4	25		
2-Butanone (MEK)	77.0	20	$\mu \text{g/L}$	100		77.0	40-160	2.34	25	V-05	
tert-Butyl Alcohol (TBA)	76.4	20	$\mu \text{g/L}$	100		76.4	40-160	1.05	25	V-05	
n-Butylbenzene	9.01	1.0	$\mu g \! / \! L$	10.0		90.1	70-130	0.774	25		
sec-Butylbenzene	9.51	1.0	$\mu g/L$	10.0		95.1	70-130	1.87	25		
tert-Butylbenzene	9.39	1.0	$\mu g/L$	10.0		93.9	70-130	2.32	25		
tert-Butyl Ethyl Ether (TBEE)	8.31	0.50	$\mu g/L$	10.0		83.1	70-130	0.00	25		
Carbon Disulfide	9.11	4.0	μg/L	10.0		91.1	70-130	3.03	25		
Carbon Tetrachloride	9.12	5.0	μg/L	10.0		91.2	70-130	2.81	25		
Chlorobenzene	10.2	1.0	μg/L	10.0		102	70-130	1.07	25		
Chlorodibromomethane	10.3	0.50	μg/L	10.0		103	70-130	1.06	25		
Chloroethane	8.33	2.0	μg/L	10.0		83.3	70-130	4.17	25		
Chloroform	9.00	2.0	μg/L	10.0		90.0	70-130	0.669	25		
Chloromethane	6.10	2.0	μg/L	10.0		61.0	40-160	1.65	25	V-05	
2-Chlorotoluene	10.3	1.0	μg/L	10.0		103	70-130	1.16	25		
4-Chlorotoluene	10.2	1.0	μg/L	10.0		102	70-130	0.00	25		
1,2-Dibromo-3-chloropropane (DBCP)	8.73	5.0	μg/L	10.0		87.3	70-130	3.85	25		
1,2-Dibromoethane (EDB)	9.90	0.50	μg/L	10.0		99.0	70-130	1.50	25		
Dibromomethane	10.1	1.0	μg/L	10.0		101	70-130	2.44	25		
1,2-Dichlorobenzene	10.2	1.0	μg/L	10.0		102	70-130	0.493	25		
1,3-Dichlorobenzene	10.2	1.0	μg/L	10.0		102	70-130	0.295	25		
1,4-Dichlorobenzene	9.86	1.0	μg/L	10.0		98.6	70-130	0.808	25		
trans-1,4-Dichloro-2-butene	9.01	2.0	μg/L	10.0		90.1	70-130	3.06	25		
Dichlorodifluoromethane (Freon 12)	6.35	2.0	μg/L	10.0		63.5	40-160	0.628	25		
1,1-Dichloroethane	8.90	1.0	μg/L	10.0		89.0	70-130	0.450	25		
1,2-Dichloroethane	9.09	1.0	μg/L	10.0		90.9	70-130	2.61	25		
1,1-Dichloroethylene	8.58	1.0	μg/L	10.0		85.8	70-130	1.62	25		
cis-1,2-Dichloroethylene	8.85	1.0	μg/L	10.0		88.5	70-130	2.35	25		
trans-1,2-Dichloroethylene	8.90	1.0	μg/L	10.0		89.0	70-130	3.86	25		
1,2-Dichloropropane	8.88	1.0	μg/L	10.0		88.8	70-130	1.68	25		
1,3-Dichloropropane	9.30	0.50	μg/L	10.0		93.0	70-130	1.18	25		
2,2-Dichloropropane	9.10	1.0	μg/L	10.0		91.0	40-130	1.74	25		
1,1-Dichloropropene	9.09	2.0	μg/L	10.0		90.9	70-130	1.85	25		
cis-1,3-Dichloropropene	9.39	0.50	μg/L	10.0		93.9	70-130	0.954	25		
trans-1,3-Dichloropropene	9.27	0.50	μg/L	10.0		92.7	70-130	1.41	25		
Diethyl Ether	8.58	2.0	μg/L	10.0		85.8	70-130	0.116	25		
Diisopropyl Ether (DIPE)	7.87	0.50	μg/L	10.0		78.7	70-130	0.00	25		

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B224607 - SW-846 5030B											
LCS Dup (B224607-BSD1)				Prepared: 02	2/28/19 Analy	yzed: 03/01/	19				
1,4-Dioxane	68.0	50	μg/L	100		68.0	40-130	15.7	50		†‡
Ethylbenzene	9.73	1.0	$\mu g/L$	10.0		97.3	70-130	4.03	25		
Hexachlorobutadiene	9.55	0.60	$\mu g/L$	10.0		95.5	70-130	0.315	25		
2-Hexanone (MBK)	80.8	10	$\mu \text{g/L}$	100		80.8	70-160	1.03	25		†
Isopropylbenzene (Cumene)	10.2	1.0	$\mu \text{g/L}$	10.0		102	70-130	2.14	25		
p-Isopropyltoluene (p-Cymene)	9.48	1.0	μg/L	10.0		94.8	70-130	0.945	25		
Methyl tert-Butyl Ether (MTBE)	9.03	1.0	$\mu \text{g/L}$	10.0		90.3	70-130	0.992	25		
Methylene Chloride	7.76	5.0	μg/L	10.0		77.6	70-130	1.03	25	V-05	
4-Methyl-2-pentanone (MIBK)	79.3	10	μg/L	100		79.3	70-160	1.40	25		†
Naphthalene	9.17	2.0	μg/L	10.0		91.7	40-130	5.00	25		†
n-Propylbenzene	10.1	1.0	μg/L	10.0		101	70-130	2.73	25		
Styrene	10.3	1.0	μg/L	10.0		103	70-130	2.30	25		
1,1,1,2-Tetrachloroethane	10.5	1.0	μg/L	10.0		105	70-130	2.36	25		
1,1,2,2-Tetrachloroethane	10.4	0.50	μg/L	10.0		104	70-130	0.764	25		
Tetrachloroethylene	10.8	1.0	μg/L	10.0		108	70-130	1.02	25		
Tetrahydrofuran	7.47	10	μg/L	10.0		74.7	70-130	6.35	25	V-05, J	
Toluene	9.46	1.0	μg/L	10.0		94.6	70-130	3.12	25		
1,2,3-Trichlorobenzene	10.3	5.0	μg/L	10.0		103	70-130	1.74	25		
1,2,4-Trichlorobenzene	10.1	1.0	μg/L	10.0		101	70-130	2.75	25		
1,3,5-Trichlorobenzene	10.3	1.0	μg/L	10.0		103	70-130	1.08	25		
1,1,1-Trichloroethane	9.32	1.0	μg/L	10.0		93.2	70-130	2.44	25		
1,1,2-Trichloroethane	10.0	1.0	μg/L	10.0		100	70-130	2.36	25		
Trichloroethylene	9.69	1.0	μg/L	10.0		96.9	70-130	1.35	25		
Trichlorofluoromethane (Freon 11)	8.20	2.0	μg/L	10.0		82.0	70-130	4.23	25		
1,2,3-Trichloropropane	10.0	2.0	μg/L	10.0		100	70-130	1.09	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	8.76	1.0	μg/L	10.0		87.6	70-130	0.456	25		
113) 1,2,4-Trimethylbenzene	0.15	1.0	ua/I	10.0		01.2	70 120	1.21	25		
	9.12		μg/L	10.0		91.2	70-130	1.31	25		
1,3,5-Trimethylbenzene	9.95	1.0	μg/L	10.0		99.5	70-130	2.09	25		
Vinyl Chloride	7.35	2.0	μg/L	10.0		73.5	40-160	1.51	25		Ť
m+p Xylene	20.1	2.0	μg/L	20.0		100	70-130	2.12	25		
o-Xylene	10.1	1.0	μg/L	10.0		101	70-130	3.12	25		
Surrogate: 1,2-Dichloroethane-d4	22.7		$\mu g/L$	25.0		90.8	70-130				
Surrogate: Toluene-d8	24.2		$\mu g/L$	25.0		96.6	70-130				
Surrogate: 4-Bromofluorobenzene	24.8		μg/L	25.0		99.2	70-130				

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B224945 - SW-846 3510C											
Blank (B224945-BLK1)		Prepared: 03/04/19 Analyzed: 03/05/19									
Acenaphthene (SIM)	ND	0.30	$\mu g/L$								
Acenaphthylene (SIM)	ND	0.20	$\mu g/L$								
Anthracene (SIM)	ND	0.20	$\mu g/L$								
Benzo(a)anthracene (SIM)	ND	0.050	$\mu g/L$								
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$								
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$								
Benzo(g,h,i)perylene (SIM)	ND	0.50	$\mu g/L$								
Benzo(k)fluoranthene (SIM)	ND	0.20	$\mu g/L$								
Chrysene (SIM)	ND	0.20	$\mu g/L$								
Dibenz(a,h)anthracene (SIM)	ND	0.10	$\mu g/L$								
Fluoranthene (SIM)	ND	0.50	$\mu g/L$								
Fluorene (SIM)	ND	1.0	$\mu g/L$								
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.10	$\mu g/L$								
-Methylnaphthalene (SIM)	ND	1.0	$\mu g/L$								
Iaphthalene (SIM)	ND	1.0	$\mu g/L$								
Phenanthrene (SIM)	ND	0.050	$\mu g/L$								
yrene (SIM)	0.023	1.0	$\mu \text{g/L}$							J	
urrogate: Nitrobenzene-d5 (SIM)	76.7		μg/L	100		76.7	30-130				
urrogate: 2-Fluorobiphenyl	55.4		$\mu g/L$	100		55.4	30-130				
durrogate: p-Terphenyl-d14	72.2		$\mu g/L$	100		72.2	30-130				
.CS (B224945-BS1)				Prepared: 03	3/04/19 Analy	yzed: 03/05/	19				
Acenaphthene (SIM)	35.8	7.5	μg/L	50.0		71.6	40-140				
Acenaphthylene (SIM)	35.1	5.0	$\mu g/L$	50.0		70.2	40-140				
Anthracene (SIM)	38.6	5.0	$\mu g/L$	50.0		77.1	40-140				
Benzo(a)anthracene (SIM)	35.0	1.2	$\mu g/L$	50.0		70.0	40-140				
Benzo(a)pyrene (SIM)	39.5	2.5	$\mu g/L$	50.0		79.0	40-140				
Benzo(b)fluoranthene (SIM)	40.0	1.2	$\mu g/L$	50.0		80.1	40-140				
Benzo(g,h,i)perylene (SIM)	37.3	12	$\mu g/L$	50.0		74.6	40-140				
Benzo(k)fluoranthene (SIM)	38.7	5.0	$\mu g/L$	50.0		77.4	40-140				
Chrysene (SIM)	34.9	5.0	$\mu g/L$	50.0		69.8	40-140				
Dibenz(a,h)anthracene (SIM)	38.6	2.5	$\mu g/L$	50.0		77.3	40-140				
Fluoranthene (SIM)	37.4	12	$\mu g/L$	50.0		74.8	40-140				
Fluorene (SIM)	36.2	25	$\mu g/L$	50.0		72.4	40-140				
ndeno(1,2,3-cd)pyrene (SIM)	39.6	2.5	$\mu g/L$	50.0		79.1	40-140				
-Methylnaphthalene (SIM)	37.7	25	$\mu g/L$	50.0		75.4	40-140				
Naphthalene (SIM)	34.6	25	$\mu g/L$	50.0		69.2	40-140				
Phenanthrene (SIM)	37.5	1.2	μg/L	50.0		75.0	40-140				
Pyrene (SIM)	33.6	25	$\mu g/L$	50.0		67.2	40-140				
Surrogate: Nitrobenzene-d5 (SIM)	72.2		μg/L	100		72.2	30-130				
Surrogate: 2-Fluorobiphenyl	54.2		μg/L	100		54.2	30-130				
rarrogate. 2-1 raoroorphenyr											

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B224945 - SW-846 3510C									·	
LCS Dup (B224945-BSD1)				Prepared: 03	3/04/19 Anal	yzed: 03/05/	19			
Acenaphthene (SIM)	31.9	7.5	μg/L	50.0		63.8	40-140	11.5	20	
Acenaphthylene (SIM)	31.9	5.0	$\mu g/L$	50.0		63.8	40-140	9.55	20	
Anthracene (SIM)	34.1	5.0	$\mu g/L$	50.0		68.2	40-140	12.3	20	
Benzo(a)anthracene (SIM)	31.8	1.2	$\mu g/L$	50.0		63.6	40-140	9.65	20	
Benzo(a)pyrene (SIM)	35.8	2.5	$\mu g/L$	50.0		71.5	40-140	9.97	20	
Benzo(b)fluoranthene (SIM)	36.3	1.2	$\mu g/L$	50.0		72.6	40-140	9.89	20	
Benzo(g,h,i)perylene (SIM)	34.0	12	μg/L	50.0		68.0	40-140	9.33	20	
Benzo(k)fluoranthene (SIM)	35.4	5.0	μg/L	50.0		70.8	40-140	8.77	20	
Chrysene (SIM)	31.6	5.0	μg/L	50.0		63.3	40-140	9.70	20	
Dibenz(a,h)anthracene (SIM)	36.1	2.5	μg/L	50.0		72.2	40-140	6.82	20	
Fluoranthene (SIM)	31.9	12	μg/L	50.0		63.8	40-140	16.0	20	
Fluorene (SIM)	30.6	25	μg/L	50.0		61.3	40-140	16.6	20	
Indeno(1,2,3-cd)pyrene (SIM)	36.5	2.5	μg/L	50.0		73.0	40-140	8.09	20	
2-Methylnaphthalene (SIM)	33.4	25	$\mu g/L$	50.0		66.8	40-140	12.1	20	
Naphthalene (SIM)	31.3	25	$\mu g/L$	50.0		62.6	40-140	10.0	20	
Phenanthrene (SIM)	33.9	1.2	μg/L	50.0		67.8	40-140	10.2	20	
Pyrene (SIM)	31.0	25	$\mu g/L$	50.0		62.0	40-140	8.13	20	
Surrogate: Nitrobenzene-d5 (SIM)	64.2		μg/L	100		64.2	30-130			
Surrogate: 2-Fluorobiphenyl	50.4		$\mu g/L$	100		50.4	30-130			
Surrogate: p-Terphenyl-d14	44.0		μg/L	100		44.0	30-130			

FLAG/QUALIFIER SUMMARY

	· ·
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
DL-01	Elevated reporting limits for all volatile compounds due to foaming sample matrix.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.

QC result is outside of established limits.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260D in Water		
Acetone	NC	
Acrylonitrile	NC	
tert-Amyl Methyl Ether (TAME)	NC	
Benzene	NC	
Bromobenzene	NC	
Bromochloromethane	NC	
Bromodichloromethane	NC	
Bromoform	NC	
Bromomethane	NC	
2-Butanone (MEK)	NC	
tert-Butyl Alcohol (TBA)	NC	
n-Butylbenzene	NC	
sec-Butylbenzene	NC	
tert-Butylbenzene	NC	
tert-Butyl Ethyl Ether (TBEE)	NC	
Carbon Disulfide	NC	
Carbon Tetrachloride	NC	
Chlorobenzene	NC	
Chlorodibromomethane	NC	
Chloroethane	NC	
Chloroform	NC	
Chloromethane	NC	
2-Chlorotoluene	NC	
4-Chlorotoluene	NC	
1,2-Dibromo-3-chloropropane (DBCP)	NC	
1,2-Dibromoethane (EDB)	NC	
Dibromomethane	NC	
1,2-Dichlorobenzene	NC	
1,3-Dichlorobenzene	NC	
1,4-Dichlorobenzene	NC	
trans-1,4-Dichloro-2-butene	NC	
Dichlorodifluoromethane (Freon 12)	NC	
1,1-Dichloroethane	NC	
1,2-Dichloroethane	NC	
1,1-Dichloroethylene	NC	
cis-1,2-Dichloroethylene	NC	
trans-1,2-Dichloroethylene	NC	
1,2-Dichloropropane	NC	
1,3-Dichloropropane	NC	
2,2-Dichloropropane	NC	
1,1-Dichloropropene	NC	
cis-1,3-Dichloropropene	NC	
trans-1,3-Dichloropropene	NC	
Diethyl Ether	NC	
Diisopropyl Ether (DIPE)	NC	
1,4-Dioxane	NC	
Ethylbenzene	NC	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260D in Water	
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

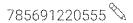
901125

COD-RSF

Doc # 379 Rev 1_03242017

http://www.contestlabs.com

CHAIN OF CUSTODY RECORD (North Carolina)


Page | of / 39 Spruce Street East Longmeadow, MA 01028

					88			,																					20 20 20 40 40 40	Tal	ble o	of C	Cont	ents
Page of		# of Containers	² Preservation Code	³ Container Code	Disserved Marals Samples	Field Hittered		STITUTES TRANSPORTED IN THE PROPERTY OF THE PR	Field Filtered	☐ Lab to Filter		1 Matrix Codes:	GW = Ground Water WW = Waste Water	DW = Drinking Water A = Air	SL = Soil	SOL = Solid O = Other (please	define)	² Preservation Codes:	H=HCL	M = Methanol N = Nitric Acid	S = Sulfuric Acid B = Sodium Bisulfate	X = Sodium Hydroxide T = Sodium	Thiosulfate	define)	³ Container Codes:	A = Amber Glass G = Glass	P = Plastic	v = Vial	S = Summa Canister	o = Other (please	define)		PCB ONLY	Soxhlet Non Soxhlet
39 Spruce Street East Longmeadow, MA 01028				AMAN VOICE BEFORE	ANALYSIS REQUESTED		(<	<i>X</i> :				0 C)												Please use the following codes to indicate possible sample concentration within the Core Code column above.	H - High; M - Medium; L - Low; C - Clean; U - Unknown	Program Information	DSCA UST/Trust Fund	SWS Landfill REC	IHSB Orphaned Landfill	State Lead		NELAC and AIHA-LAP, LLC Accredited	Other	Unromatogram AIHA-LAP,LLC
CHAIN OF CUSTODY RECORD (North Carolina)		7-Day [] 10-Day []		1 Do.		1 21E		Other:	CLP Like Data Pkg Required:	Email To: They was sing in your	Fax To #;	g Ending Composite Grab Matrix Conc & &	my / Shell										The state of the s	Please use the following within	H - High: M - Mee	Porth Carolina Detection Limit Requirements	THE STATE OF THE S	GWPC		A STATE CARDINA		THE PROPERTY OF THE PROPERTY O	tomorous	Federal Brownfield
Phone: 413-525-2332	Fax. 413-525-6405	The concession of the control of the		DALLA TOKOT AND	THE SHIP OF	ٽ ا	AT	Hmercial		Jamie Heynerposts		Client Sample ID / Description Beginning Date/Limp-	P136.6										Total Control			Date/Time: ,	3/2/15/5:00 pm	Date/Time:	Date/Fine:		Date/Time:		Vate/ Lime: Project Entity	Date/Time:
AMALYTICAL LABORATORY		Company Menne	17.00 S. 17.07	Tage of the state	Project Verne:	m: 1560 Geore		Project Manager: Townies	ame/Number:	oient:	Jame	Con-Test City	1 33										Jomments:			relinguished by (signature)		received by (Signature)	furshed by: (sgnature)	:	ထို ved by: (signature)		of (signature)	ved by: (signature)

Brownfield School

Federal City

Delivered Tuesday 2/26/2019 at 10:02 am

DELIVERED

Signed for by: B.BECCA

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

RALEIGH, NC US

TO

EAST LONGMEADOW, MA US

Shipment Facts

TRACKING NUMBER

785691220555

SERVICE

WEIGHT

51 lbs / 23.13 kgs

DIMENSIONS

24x14x14 in.

DELIVERED TO Shipping/Receiving

FedEx Priority Overnight

TOTAL PIECES

TOTAL SHIPMENT WEIGHT 51 lbs / 23.13 kgs

TERMS

Third Party

PACKAGING

Your Packaging

SPECIAL HANDLING SECTION

Deliver Weekday

STANDARD TRANSIT

2/26/2019 by 10:30 am

SHIP DATE

Mon 2/25/2019

ACTUAL DELIVERY

Tue 2/26/2019 10:02 am

Travel History

Local Scan Time

Tuesday, 2/26/2019

10:02 am

EAST LONGMEADOW, MA

Delivered

7:56 am

WINDSOR LOCKS, CT

On FedEx vehicle for delivery

7:46 am

WINDSOR LOCKS, CT

At local FedEx facility

6:16 am

EAST GRANBY, CT

At destination sort facility

Page 22 of 23

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples

Doc# 277 Rev 5 2017

Login Sam	ple Receipt Checklist	- (Rejection Criteri	a Listing - Using	Acceptance Po	licy) Any False
	Statement will be bro	ught to the attention	on of the Client -	State True or Fa	alse

Client	5+1	7F	-						
Receiv	ed By	RAP		Date	22	6/19	Time	10:02	
How were th	•	In Cooler	T	No Cooler		On Ice	T	No Ice	
receiv	/ed?	Direct from Samp	 oling	•		Ambient		Melted Ice	
Were samp	oloc within		By Gun#			Actual Tem	p- 4.0	-	
Temperatu			By Blank #			Actual Tem	n -		_
-	Custody Se	eal Intact?	. NA		re Sample	s Tampered		ΛΑ	
	COC Relin			•		ree With Sa		-/	
		eaking/loose caps	on any sam	•	F	,			
Is COC in in		A Marin	•	*	ples rece	ived within h	olding time?	T	
Did COC is	nclude all	Client	·	Analysis	ī		er Name	T	***
pertinent Inf	ormation?	Project	T	ID's	7	Collection	Dates/Times	3	_
Are Sample	labels filled	d out and legible?	T	_				-	
Are there La	b to Filters?	•	P	_	Who wa	s notified?			_
Are there Ru	shes?		F		Who wa	s notified?			_
Are there Sh	ort Holds?		<u> </u>	•	Who wa	s notified?			-
Is there enou	_		<u> </u>						
	•	ere applicable?	<u> </u>	•	MS/MSD?		. /	`	
Proper Media						samples red	quired? +	<u>-</u>	_
Were trip bla				•	On COC?	<u>+</u>	_		
Do all sampl	es have the	proper pH?	NA	Acid _		_	Base		***
Vials	#	Containers:	#			#			#
Unp-		1 Liter Amb.	2	1 Liter I				z Amb.	
HCL-	3	500 mL Amb.		500 mL				nb/Clear	
Meoh- Bisulfate-		250 mL Amb.		250 mL)	nb/Clear	
DI-	······································	Flashpoint Other Glass		Col./Ba Other F			· · · · · · · · · · · · · · · · · · ·	nb/Clear core	
Thiosulfate-		SOC Kit		Plastic			Frozen:	COLE	
Sulfuric-		Perchlorate		Ziplo			1 102011.		
				Unused N			I		
Vials	#	Containers:	#	Oliusea n	legia	#			# #
Unp-		1 Liter Amb.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 Liter F	Plastic		16.0	z Amb.	•
HCL-		500 mL Amb.		500 mL	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			nb/Clear	
Meoh-		250 mL Amb.		250 mL				nb/Clear	
Bisulfate-		Col./Bacteria		Flash	-			nb/Clear	†
DI-		Other Plastic		Other (core	
Thiosulfate-		SOC Kit		Plastic	Bag		Frozen:		
Sulfuric-		Perchlorate		Ziplo	ock				
Comments:									