

April 29, 2019

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: Preliminary Site Assessment Report

NCDOT Project I-5986B, WBS Element 47532.1.3 Parcel 140-Former Robin Hood Truck Stop

60 Robin Hood Road

Dunn, Harnett County, North Carolina

S&ME Project 4305-18-175A

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 4305-18-175 CO-01 REV-01 dated January 2, 2019, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its January 8, 2019 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's November 2, 2018, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
140	Robin Whitely Hood, II	(Former Robin Hood Truck Stop)
		60 Robin Hood Road, Dunn, NC

The property is the site of a former truck stop identified as Robin Hood Truck Stop. The truck stop facility has been razed and the petroleum underground storage tanks (USTs) that the facility operated have been removed. Information regarding the former UST systems listed for this site is provided in the following table:

UST Facility ID No. 0-00-000017933

Number of Tanks	Contents	Capacity (gallons)	Date Installed	Date Removed
1	Gasoline	8,000	1964	2010
1	Gasoline	6,000	1964	2010
1	Diesel	20,000	1981	2010
1	Other	20,000	1981	2010
3	Gasoline	6,000	1981	2010

The property is listed with one North Carolina Department of Environmental Quality (NCDEQ) Incident (Incident #29655) associated with petroleum releases from USTs which occurred in 2010. The property is not listed with NCDEQ Incidents associated with petroleum releases from aboveground storage tanks.

The PSA included a geophysical survey, subsequent limited soil sampling (eight soil borings up to 10 feet below ground surface (ft.-bgs.) and limited groundwater sampling (two groundwater samples), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil and groundwater sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (Troxler Geologic, Inc.) was also used to locate and mark underground utilities.

Geophysical Survey

From February 5 through 7, 2019, S&ME personnel performed a geophysical survey within accessible areas of the proposed ROW/easement at Parcel 140. S&ME used a combination of the Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) methods to explore for buried subsurface features at the site such as underground storage tanks (USTs) and other possible buried obstructions. Brief descriptions of these complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired

continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820-02 (2007) "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The presence of vehicles, thick vegetation and other surficial obstructions within the requested survey area however prevented TDEM data collection in several locations. The approximate TDEM data collection paths are presented in **Figure 4**. Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 3000 GPR system equipped with a 400 MHz antenna in general accordance with ASTM D6432-11 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of 15 GPR profiles (Lines 1 through 15) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

However, four anomalous features unrelated to known surficial targets were identified in the geophysical data sets (Anomalies A through D; **Figures 5 through 7**). Anomalies A, B, and C are characterized by high amplitude GPR responses located in the upper one ft-bgs and likely related to isolated buried metallic targets/debris. Anomaly D is characterized by two relative high isolated TDEM responses located within the existing curb area along the frontage road to the west. These feature were only identified in the TDEM data during post-processing and not in the field, and as such, GPR data was not collected over these features so interpretations regarding possible size and depth cannot not be determined. Possible steel reinforcement within the concrete curb may have masked the slightly higher responses while in the field. Anomalies A, B, and C were also marked in the field using white spray paint. Example GPR profiles are presented in **Figures 7 through 10**.

Soil Sampling

On February 18, 2019, Troxler Geologic, Inc. (Troxler's) drill crew utilized a track mounted Geoprobe® rig to advance eight soil borings (B-1 through B-8) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 140. The approximate location of the soil borings are shown in **Figure 2**. A

photographic log is included in **Appendix I.** Troxler's drill crew advanced the Geoprobe® borings up to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately four ft.-bgs to 6.5 ft.-bgs. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II.**

Petroleum odors and elevated PID readings were noted at soil borings B-7 and B-8 at the four to six foot depth intervals, which are either below or within the vadose zone of the groundwater encountered at these borings. Groundwater was encountered at boring B-7 and B-8 at depths of five ft-bgs and four ft.-bgs, respectively. Petroleum odors or elevated PID readings were not noted at the other soil borings on the site. Therefore, various soil samples at varying depth intervals were selected from each boring and provided to RED Lab, LLC (Red Lab) for on-site analysis. A total of ten soil samples were analyzed by RED Lab for Total Petroleum Hydrocarbons (TPH)-Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

TPH-GRO and TPH-DRO were not reported at concentrations exceeding the North Carolina TPH Action Levels. TPH-DRO was reported at borings B-1, B-2, B-4, B-5, B-6 and B-8 at the two to four foot depth intervals at concentrations ranging from 0.16 milligrams per kilograms (mg/kg) to 9.8 mg/kg, which are below its North Carolina TPH Action Level of 100 mg/kg. TPH-DRO was also reported at borings B-7 and B-8 at the four to six foot depth interval at concentrations of 62.8 mg/kg and 72.7l mg/kg, respectively. TPH-GRO was reported at borings B-3 and B-4 at the two to four foot depth interval at a concentration of 3.5 mg/kg and 6 mg/kg, respectively, which are below its North Carolina TPH Action Level of 50 mg/kg. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered within approximately 10 ft.-bgs. Therefore, the Geoprobe® was used to advance two of the soil borings into the groundwater table for the collection of groundwater samples. Based on petroleum odors, elevated PID readings and analytical results of soil samples, soil borings B-7 and B-8 were selected for the collection of groundwater samples. The collection of a groundwater sample was attempted at boring B-7 by extending the Geoprobe® groundwater sampling screen into the borehole from a depth of approximately four to eight ft.-bgs. However, the collection of a groundwater sample was unsuccessful at this depth due to clayey material within the boring. The sampling screen was

advanced within boring B-7 to a depth of approximately 12 ft.-bgs and a groundwater sample was collected. A groundwater sample was collected at boring B-8 by advancing the Geoprobe® groundwater sampling screen into the borehole and extending the screen from a depth of approximately four to eight ft.-bgs. Groundwater was purged from the screens until relatively clear using disposable tubing attached to a peristaltic pump. The flow rates were reduced and laboratory supplied containers were filled directly from the tubing, labeled as B-7/TW-1 and B-8/TW-2, respectively and placed in an insulated cooler with ice for transport to Con-Test Laboratories for analysis of VOCs by EPA Method 8260 and polycyclic aromatic compounds (PAHs) by EPA Method 8270.

Upon completion of the soil and groundwater sampling, the sampling equipment was removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as additional soil cuttings generated during the soil boring advancement, purge water and decontamination water, were spread on the ground in accordance with the procedures specified by North Carolina Department of Environmental Quality (NCDEQ). Used gloves, tubing, re-sealable bags and acetate sleeves were bagged and disposed off-site.

Groundwater Analytical Results

Based upon analytical results of groundwater samples analyzed by Con-Test Laboratories, benzene, naphthalene, and 2-methylnaphthalene were reported at B-7/TW-1 at concentrations exceeding their 15A NCAC 2L Groundwater Quality Standards (2L Standards). Benzene, naphthalene, 2-methylnaphthalene and benzo (a) anthracene were reported at B-8/TW-2 at concentrations exceeding their 2L Standards. A summary of the groundwater analytical results is presented in **Table 2** and shown on **Figure 3**. A copy of the laboratory analytical report provided by Con-Test Laboratories is presented in **Appendix III**.

Conclusion and Recommendations

Four anomalous features unrelated to known surficial targets were identified in the geophysical data sets (Anomalies A through D). Anomalies A, B, and C are likely related to isolated buried metallic targets/debris. However, Anomaly D was characterized by two relatively high isolated TDEM responses located within the existing curb area along the frontage road to the west. These feature were only identified in the TDEM data during post-processing and not in the field, and as such, GPR data was not collected over these features so interpretations regarding possible size and depth cannot not be determined. Possible steel reinforcement within the curb may have masked the slightly higher responses while in the field. Due to the lack of GPR data at Anomaly D, it is uncertain if Anomaly D is associated with a potential UST. Borings B-5 and B-6 were installed near Anomaly D where field observations and lab data for assessment of petroleum impacted soil did not indicate a petroleum release in this area. Workers in the area of Anomaly D should be aware of the possibility of a UST or buried metallic objects or debris.

S&ME advanced eight soil borings (B-1 through B-8) to a depth of up to approximately 10 ft.-bgs at the site. Petroleum odors and elevated PID readings were noted within collected soil samples at soil borings B-7 and B-8 at the four to six foot depth intervals, which are either below or within the vadose zone of the groundwater encountered at these borings. Groundwater was encountered at borings B-7 and B-8 at depths of five ft-bgs and four ft.-bgs, respectively.

Selected soil samples from the soil borings were analyzed onsite for TPH-GRO and TPH-DRO using UVF spectroscopy. TPH-DRO was reported at borings B-1, B-2, B-4, B-5, B-6 and B-8 at the two to four foot depth

intervals. TPH-DRO was also reported at borings B-7 and B-8 at the four to six foot depth interval. TPH-GRO was reported at borings B-3 and B-4 at the two to four foot depth interval. However, TPH-DRO and TPH-GRO were not reported at concentrations exceeding their North Carolina TPH Action Levels. During the soil boring advancement, groundwater was encountered at depths ranging from approximately four ft.-bgs to 6.5 ft.-bgs across the site. Temporary well (TW-1) was installed at soil boring B-7 and temporary well TW-2 was installed at soil boring B-8. Groundwater at TW-1 and TW-2 analyzed by Con-Test Laboratories for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. Benzene, naphthalene, and 2-methylnaphthalene were reported at B-7/TW-1 at concentrations exceeding their 2L Standards. Benzene, naphthalene, 2-methylnaphthalene and benzo (a) anthracene were reported at B-8/TW-2 at concentrations exceeding their 2L Standards.

Based on the analytical results of soil and groundwater samples, it is likely that during construction, NCDOT may encounter soil and groundwater impacted with petroleum at the site. Saturated petroleum impacted soil at concentrations below the North Carolina TPH Action Levels soil may be encountered within the vicinity of soil borings B-7 and B-8 near the groundwater at a depth of approximately four to five ft.-bgs. Assuming that a section of petroleum impacted soil approximately two feet thick and 40 feet in diameter at B-7 and B-8 at a depth of four to six ft.-bgs, which is near the groundwater table; up to 200 cubic yards of soil near borings B-7 and B-8 may be impacted.

If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility. If construction dewatering is required, petroleum impacted groundwater must be properly disposed or treated at a licensed facility.

S&ME recommends maintaining an awareness level for the presence of petroleum in the soil and groundwater at the site for the safety of workers and the public.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., buildings, reinforced concrete, vehicles, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific, and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of approximately about five ft.-bgs.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

Jamie T Honeycutt

Environmental Professional

ihonevcutt@smeinc.com

Thomas P. Raymond, P.E., P.M.P. Senior Consultant

traymond@smeinc.com

Attachments:

April 29, 2019

Table 1: Summary of Soil Sampling Results

Table 2: Summary of Groundwater Sampling Results

DocuSigned by:

4C890EAEC25F488.

5/6/2019

Amie Honeycutt

Figure 1: Vicinity Map

Michael W. Pfeifer

861E52DDEFAF4C7

Senior Project Manager

mpfeifer@smeinc.com

DocuSigned by:

Figure 2: Site Map

Figure 3: Soil and Groundwater Constituent Map

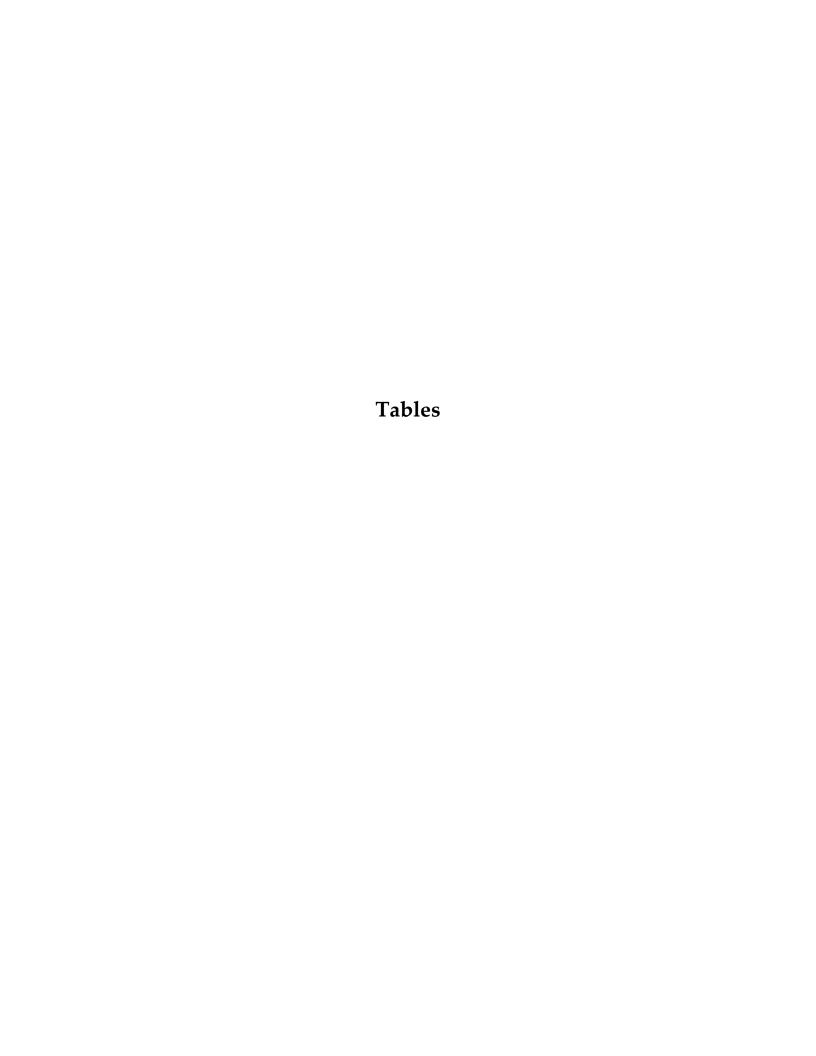

Figure 4: TDEM Path Location Plan

Figure 5: TDEM Data Plot A **Figure 6:** TDEM Data Plot B

Figure 7: Geophysical Anomaly Location Plan Figure 8: Example GPR Data – Lines 12 and 13 Figure 9: Example GPR Data – Lines 14 and 15 Figure 10: Example GPR Data – Lines 3 and 4

Appendix I: Photographs **Appendix II:** Boring Logs

Appendix III: Laboratory Analytical Reports and Chain of Custody

8 8

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5986B

Parcel 140 - (Former Robin Hood Truck Stop) 60 Robin Hood Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175A

Ai	nalytical Metho	d→	Range Organics (GR Organics (DRO) by Ul	carbons (TPH) Gasoline (O) and Diesel Range traviolet Fluorescence ectrometry
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO
B-1	2/18/2019	2 to 4	<0.65	0.52
B-2	2/18/2019	2 to 4	<0.48	0.16
B-3	2/18/2019	2 to 4	3.5	<0.22
B-4	2/18/2019	2 to 4	6	9.8
B-5	2/18/2019	2 to 4	<0.59	0.78
B-6	2/18/2019	2 to 4	<0.44	1.5
B-7	2/18/2019	2 to 4	<0.49	<0.19
D-/	2/10/2019	4 to 6	<0.51	62.8
B-8	2/18/2019	2 to 4	<0.84	1.9
D-0	2/10/2019	4 to 6	<0.47	72.7
No	orth Carolina T	PH Action Levels	50	100

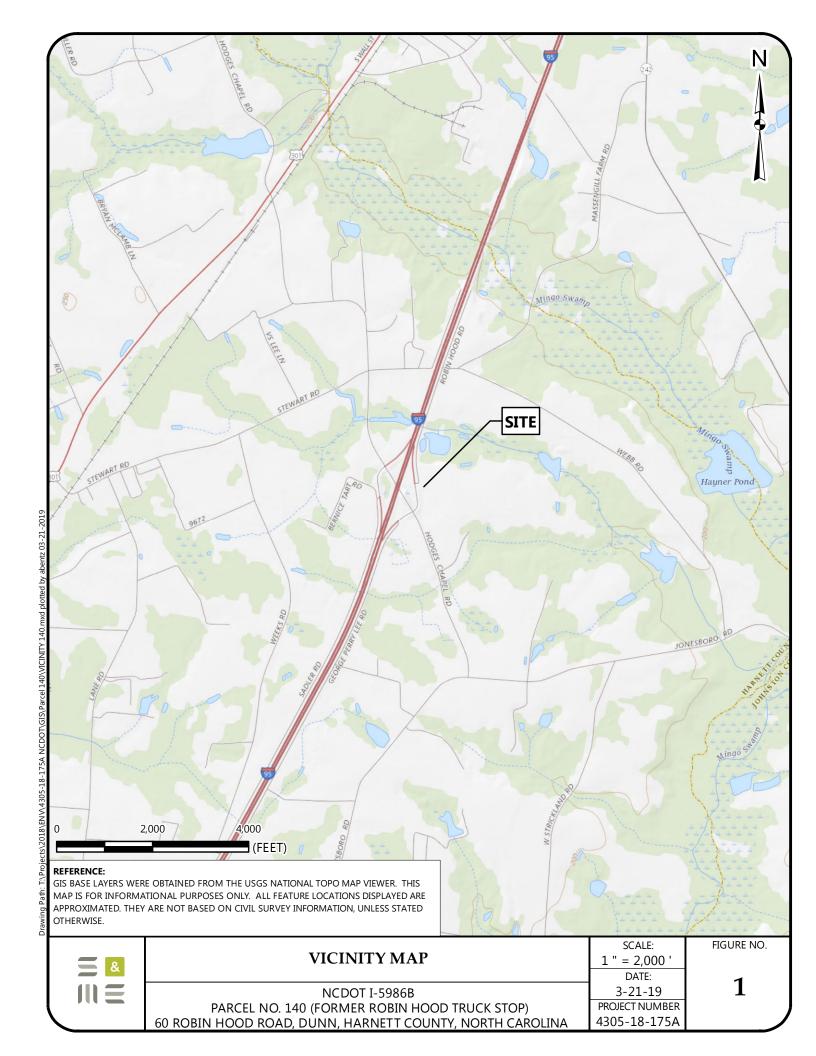
Notes

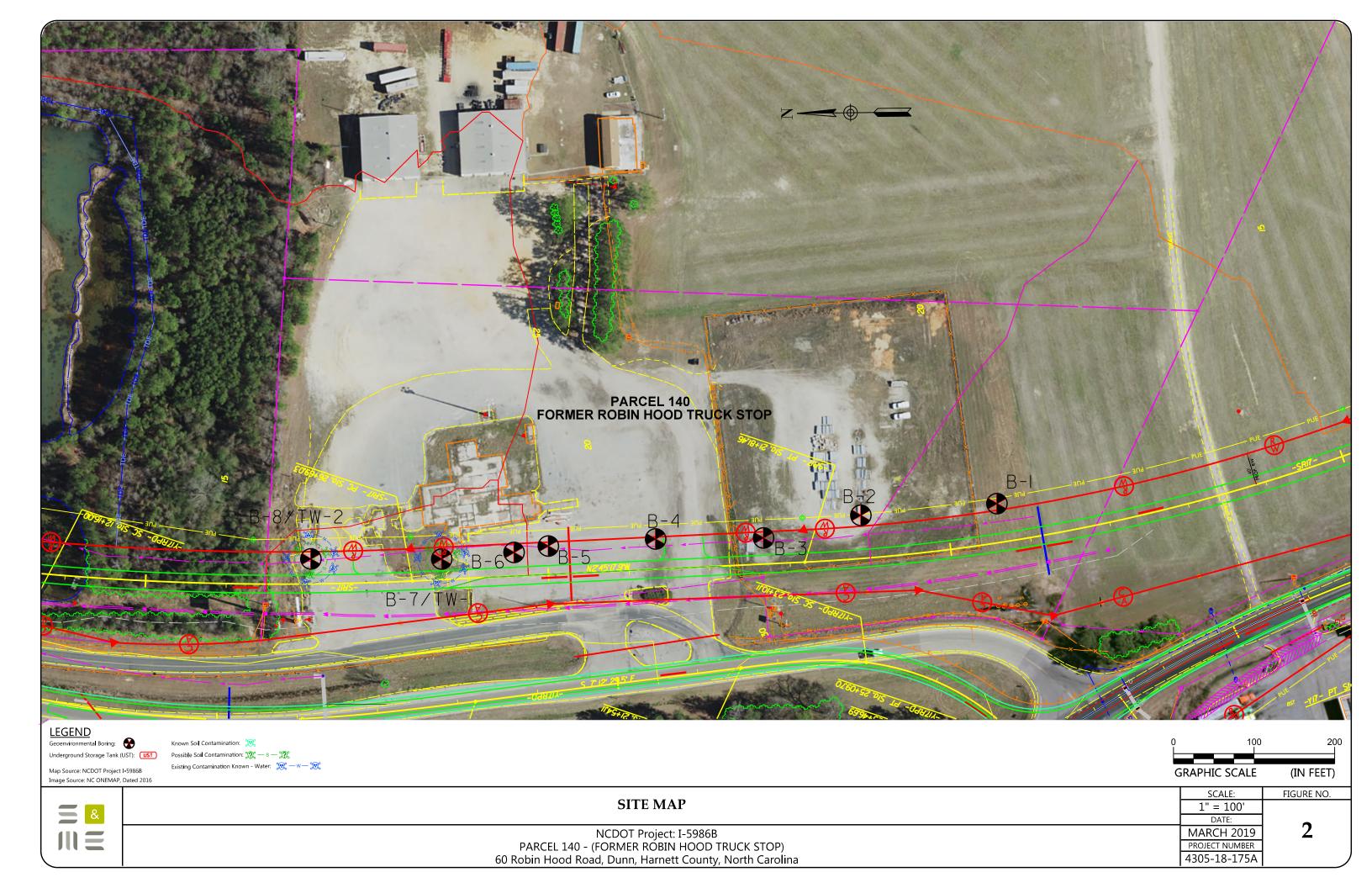
- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and BOLD fields.

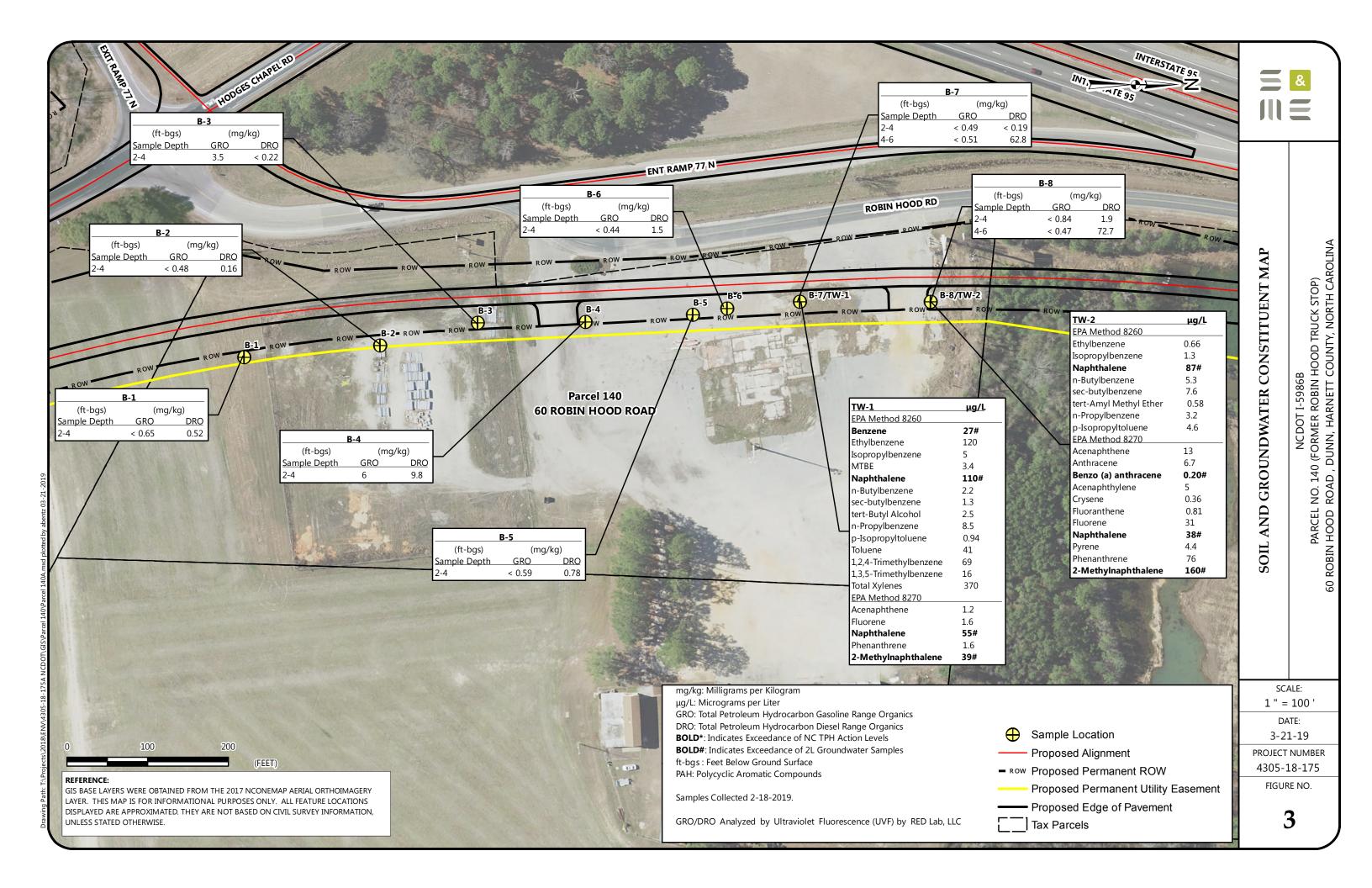
TABLE 2 SUMMARY OF GROUNDWATER SAMPLING RESULTS

NCDOT Project I-5986B

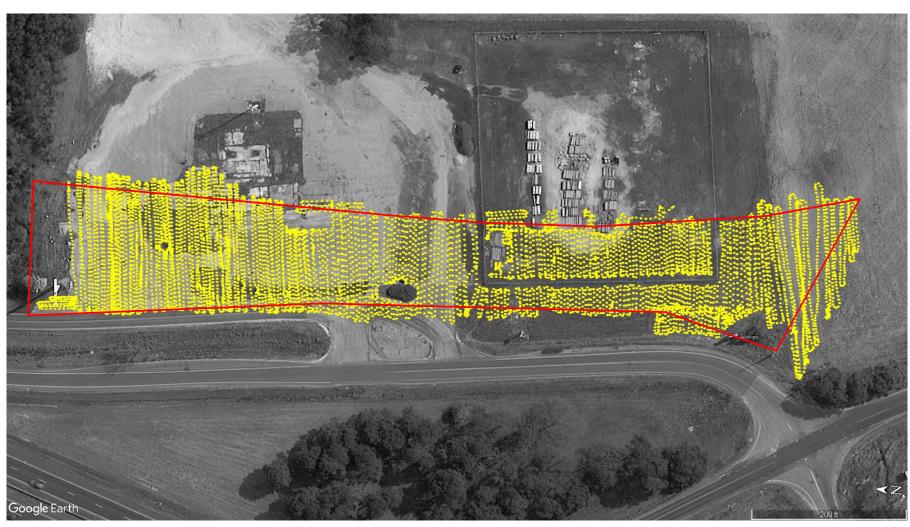
Parcel 140 - (Former Robin Hood Truck Stop) 60 Robin Hood Road


Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175A


Analytical	Method→				\	/olatile	Organ	ic Com	pounds b	y EPA N	lethod 8	3260					Poly	cyclic A	omatic	Compo	ounds (P	AHs) b	y EPA I	Method	8270	
Sample ID	Contaminant of Concern→		Ethylbenzene	Isopropylbenzene	МТВЕ	Naphthalene	n-Butylbenzene	sec-Butylbenzene	tert-Amyl Methyl Ether	n-Propylbenzene	p-Isopropyltoluene	Toluene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Total Xylenes	Acenaphthene	Anthracene	Benzo (a) anthracene	Acenaphthylene	Chrysene	Fluoranthene	Fluorene	Naphthalene	Pyrene	Phenanthrene	2-Methylnaphthalene
B-7/TW-1	2/18/2019	27	120	5	3.4	110	2.2	1.3 J	2.5	8.5	0.94 J	41	69	16	370	1.2 J	<5.0	<1.2	<5.0	<5.0	<12	1.6 J	55	<25	1.6	39
B-8/TW-2	2/18/2019	<2.0	0.66 J	1.3 J	<2.0	87	5.3	7.6	0.58 J	3.2	4.6	<2.0	<2.0	<2.0	<4.0	13	6.7	0.20 J	5	0.36 J	0.81 J	31	38	4.4 J	76	160
2L S	Standard (µg/L)	1	600	70	20	6	70	70	128	70	25	600	400	400	500	80	2,000	0.05	200	5	300	300	6	200	200	30
	GCL (µg/L)	5,000	84,500	25,000	20,000	6,000	6,900	8,500	128,000	30,000	11,700	260,000	28,500	25,000	85,500	2,120	2,000	4.7	1,965	5	300	990	6,000	200	410	12,500


Notes:

- 1. Analytes that are not shown for the method were not detected.
- 2. Concentrations are reported in micrograms per liter (µg/L).
- 3. 2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- 5. Concentrations exceeding the 2L Standards are shown in Shaded and **BOLD** fields.
- 6. GCL: Gross Contamination Level.
- 7. J: Estimated concentration detected below the reporting limit.



REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

---- Approximate TDEM Path

Approximate Requested Survey Area

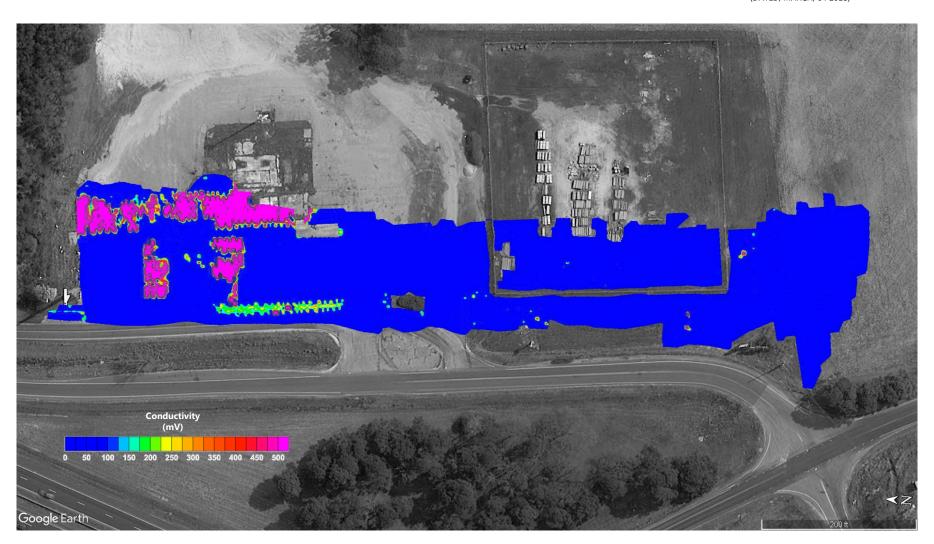
TDEM PATH LOCATION PLAN NCDOT PROJECT: 1-5986B PARCEL 140 – (FORMER ROBIN HOOD TRUCK STOP) 60 ROBIN HOOD ROAD, DUNNI, HARNETT COUNITY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 3/22/2019

PROJECT NUMBER 4305-18-175A

FIGURE NO.


4

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

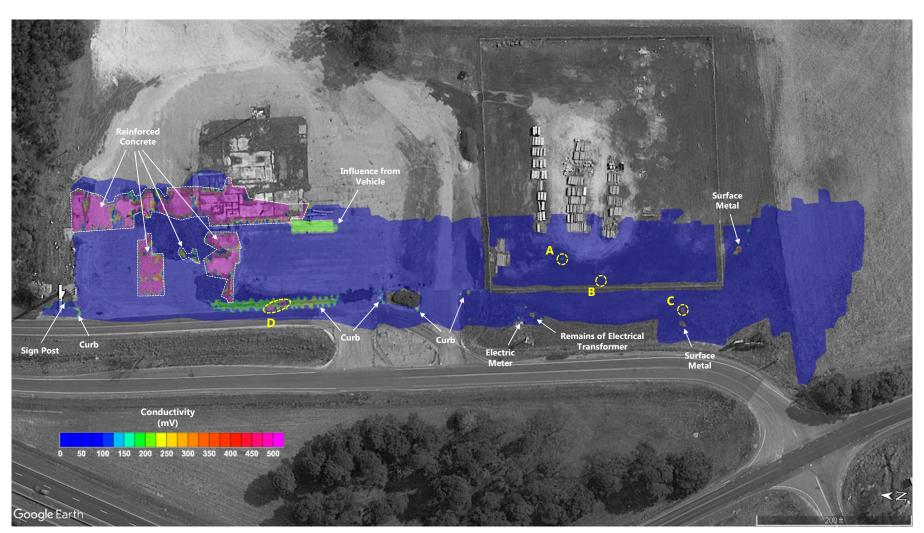
TDEM DATA PLOT A

NCDOT PROJECT: I-5986B PARCEL 140 – (FORMER ROBIN HOOD TRUCK STOP) 60 ROBIN HOOD ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 3/22/2019

PROJECT NUMBER 4305-18-175A


FIGURE NO.

5

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

Approximate Location of TDEM Anomaly

Approximate Location of Vehicles

Approximate Location of Possible Utility

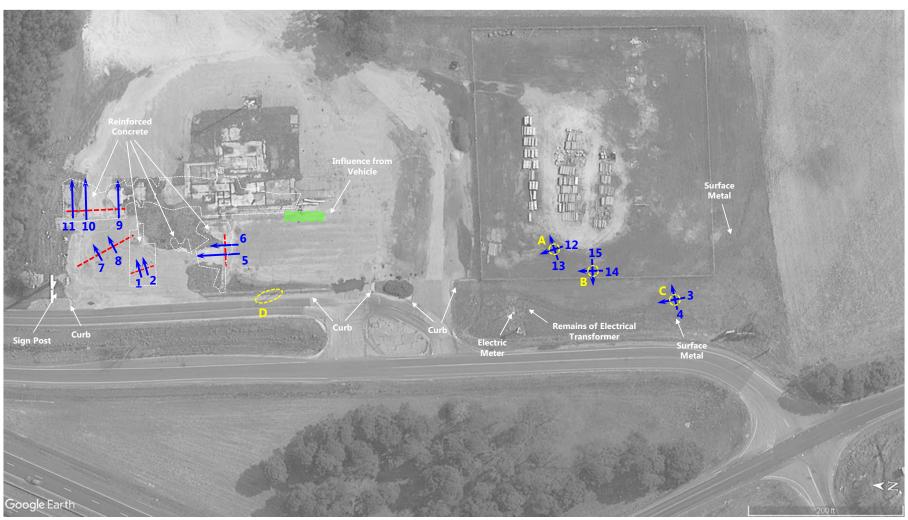
TDEM DATA PLOT B

NCDOT PROJECT: I-5986B PARCEL 140 – (FORMER ROBIN HOOD TRUCK STOP) 60 ROBIN HOOD ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 3/22/2019

PROJECT NUMBER 4305-18-175A


FIGURE NO.

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

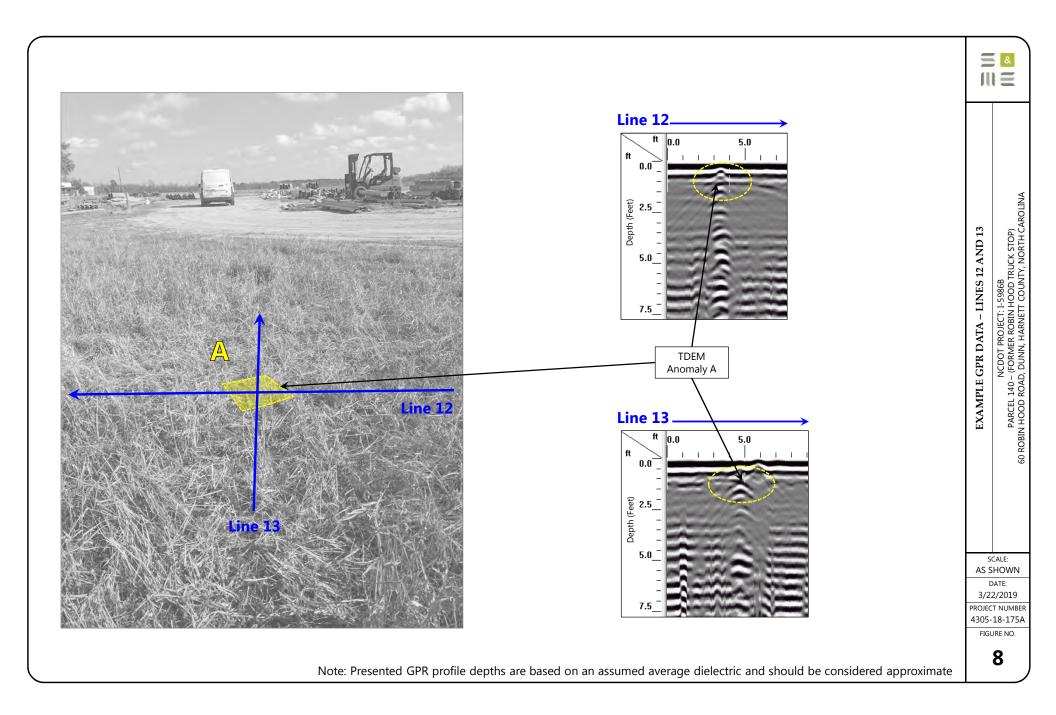
Approximate Location of TDEM AnomalyApproximate Location of GPR Profile

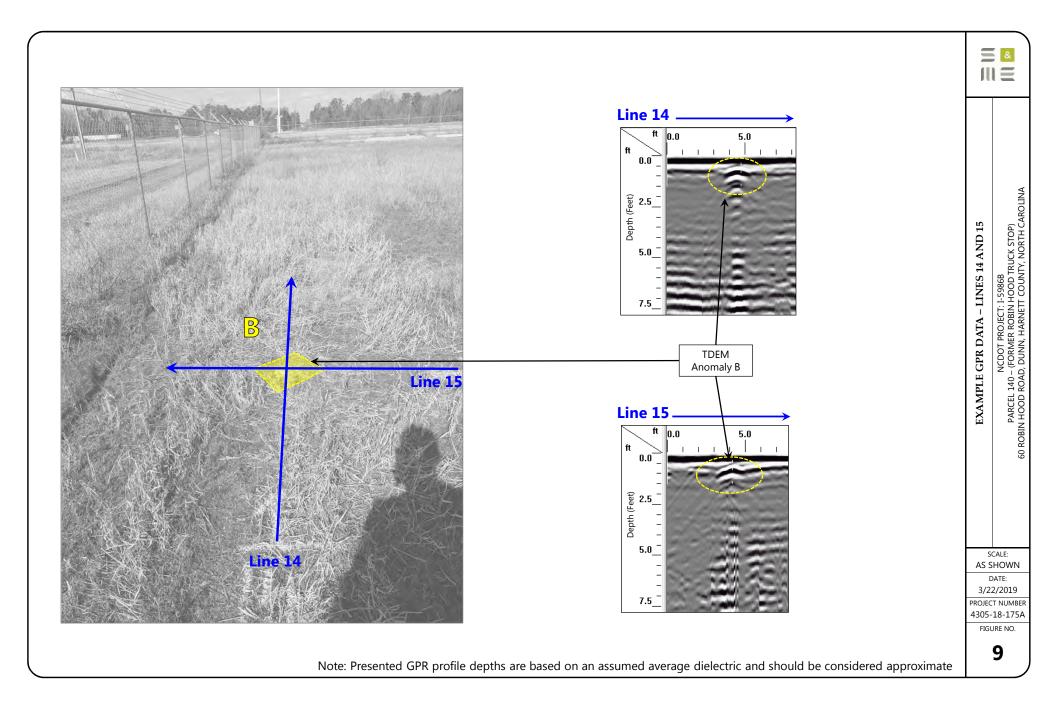
Approximate Location of Vehicles

Approximate Location of Possible Utility

GEOPHYSICAL ANOMALY LOCATION PLAN

PARCEL 140 – (FORMER ROBIN HOOD TRUCK STOP) 60 ROBIN HOOD ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA


SCALE: AS SHOWN


DATE: 3/22/2019

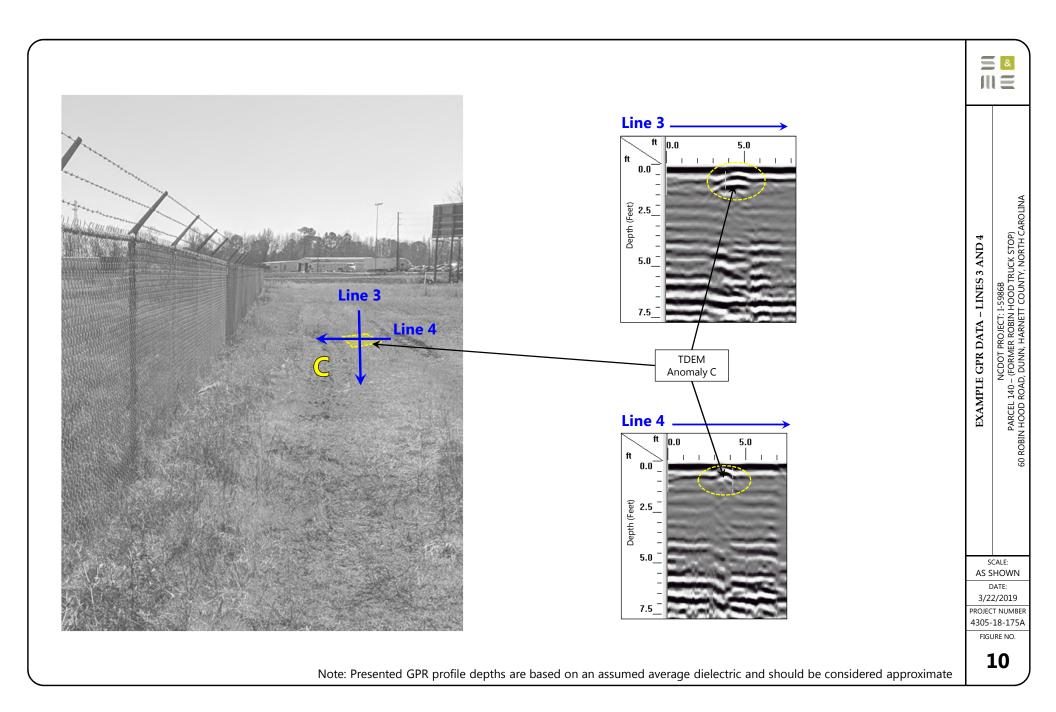
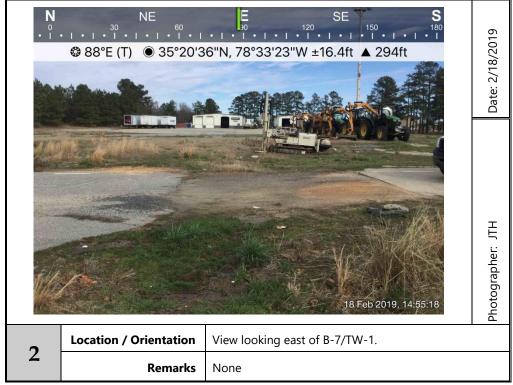

PROJECT NUMBER 4305-18-175A

FIGURE NO.

7

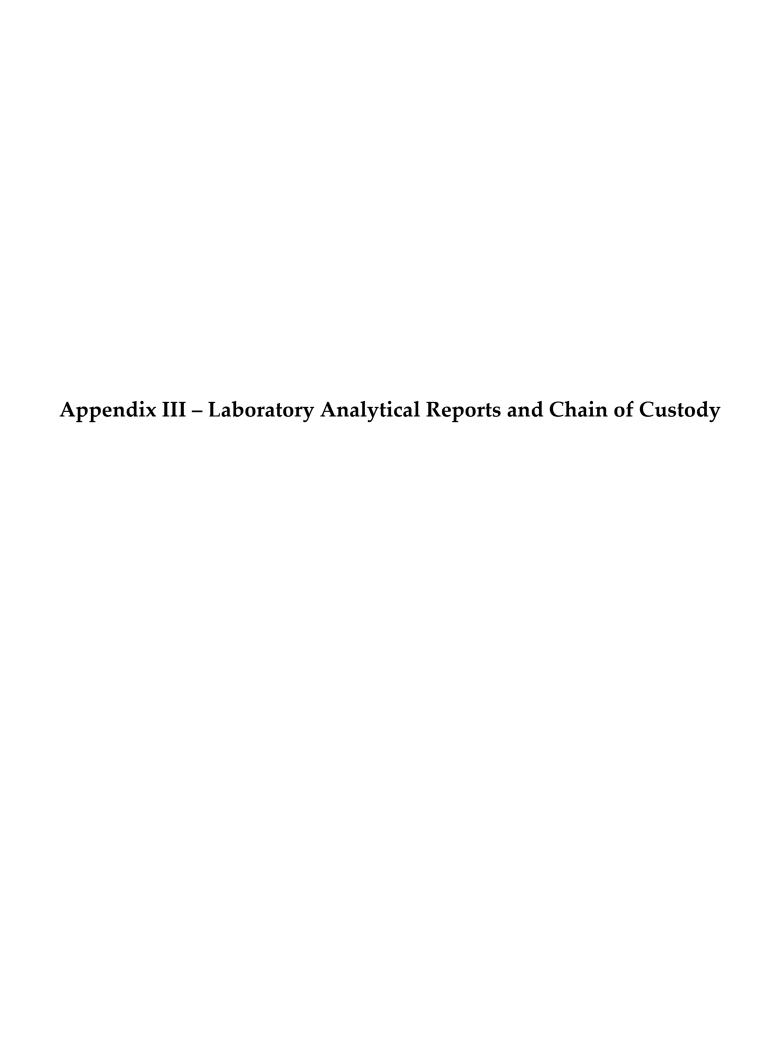


April 29, 2019

PROJECT:	NCDOT I-5986B									
	Parcel 140-60 Robin Hood Road, Dunn				BORIN	NG LOG	: B-1			
	S&ME Project No. 4305-18-175A									
DATE DRILLED:	Monday, February 18, 2019	BORING DEPTH (FT):								
DRILL RIG:	Geoprobe 6620 DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:			1	1				
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	Topsoil, Brown,			ш						
5 —	Clayey Sand, Gray, Red, Boring Terminated at 8 Ft-BGS		▼		0.0	Yes				
20										

PROJECT:	NCDOT I-5986B									
	Parcel 140-60 Robin Hood Road, Dunn, N	NC			BORIN	NG LOG	B-2			
	S&ME Project No. 4305-18-175A									
DATE DRILLED:	Monday, February 18, 2019	BORING DEPTH (FT):								
DRILL RIG:	Geoprobe 6620 DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:			1	1	1			
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	dy Clay, Gray,				0.0	No				
5 —	ey Sand, Gray,		▼		0.1	Yes				
10 ————————————————————————————————————	ng Terminated at 8 Ft-BGS									
15 —										
20 —										
25 — — — —										
30										

PROJECT	Γ:	NCDOT I-5986B									
		Parcel 140-60 Robin Hood Road, Dun				BORI	NG LOG:	B-3			
DATE DRIL	I ED:	S&ME Project No. 4305-18-175/		0							
DRILL RIG:		Monday, February 18, 2019	BORING DEPTH (FT):								
DRILL RIG:		Geoprobe 6620 DT Troxler Geologic, Inc.	WATER LEVEL: CAVE-IN DEPTH:		icable						
HAMMER	TYPF·	Not Applicable	LOGGED BY:								
	METHOD:	Macro-Core Sampler	NORTHING:	J. Honeye							
DRILLING I		Macro-Core Sampler (3-in. OD)	EASTING:								
			ļ.				_	_			
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Gravel, Silty Sand, Black,									
-		Sandy Clay, Orange, Gray,			ш						
-						0.0	No				
	1000				11						
						0.1					
	///	Clayey Sand, Orange, Gray, Gray,		▼		0.1	Yes				
5 —											
		Boring Terminated at 8 Ft-BGS									
-	1										
10 —											
	_										
-	1										
15 —											
-	-										
_											
-	1										
20 —	4										
	1										
_	-										
	_										
	1										
25 —	-										
	1										
	-										
l											
-	1										
30 —											


PROJECT:	NCDOT I-5986B									
	Parcel 140-60 Robin Hood Road, Dunn, N S&ME Project No. 4305-18-175A	NC			BORIN	IG LOG:	B-4			
DATE DRILLED:	Monday, February 18, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 6620 DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:		icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
			15		_o	≿	<u></u>			
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Aspl	nalt, Gravel, ly Clay, Gray, Tan,			24						
				I	0.4	No				
5 —				I	0.3	Yes				
			•	•	0.3	No				
Borii	ng Terminated at 8 Ft-BGS									
10 —										
15 —										
20 —										
25 —										
30										

PROJECT	Т:	NCDOT I-5986B									
		Parcel 140-60 Robin Hood Road, Dunn,	NC			BORIN	NG LOG	B-5			
		S&ME Project No. 4305-18-175A	1								
DATE DRIL		Monday, February 18, 2019	BORING DEPTH (FT):								
DRILL RIG:		Geoprobe 6620 DT	WATER LEVEL:								
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not App	licable						
HAMMER		Not Applicable	LOGGED BY:	J. Honey	cutt						
	METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:							1	
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	A	sphalt, Gravel,			11						
5 — 10 — 15 — 20 — 25 — —		layey Sand, Brown, Orange, andy Clay, Gray, Tan, layey Sand, Gray, Orange, oring Terminated at 8 Ft-8GS		▼		0.1	No				
	-										
30 —	1			<u> </u>			<u> </u>	1	l	<u> </u>	<u> </u>

Parcel 140-60 Robin Hood Road, Dunn, NC SOME Project No. 4305-18-175A	PROJECT	T:	NCDOT I-5986B									
DAIL PRILED				, NC			BORIN	NG LOG	: B-6			
DBILL RISC Geograde 66:20 DT GRILLER Trouler Geologic, Inc. AND Applicable Not Applicable Not Applicable Not Applicable LOGGED BY J. Honoycut Macro Core Sampler Macro Core Sampler (3 in OD) Macro Core Sampler (3 in OD) MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION To applicable LOGGED BY J. Honoycut NORTHING BASTING Applicable Applicable NORTHING DILLING METHOD: Macro Core Sampler (3 in OD) MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION To applicable LOGGED BY J. Honoycut NORTHING DILLING METHOD: Macro Core Sampler (3 in OD) MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION To applicable LOGGED BY J. Honoycut NORTHING DILLING METHOD: Macro Core Sampler (3 in OD) MATERIAL DESCRIPTION MATERIAL DESC												
DRILLER TYPE Rot Applicable LOGGED RY. Honosycut New Applicable LOGGED RY. Honosycut New Applicable LOGGED RY. Honosycut New Applicable RASTING: HAMMER TYPE Rot Applicable LOGGED RY. Honosycut New Applicable RASTING: HAMMER TYPE ROT Sampler (3-in OD) RASTING: HAMMER TYPE ROT RASTING: HAMMER												
MAMMER TYPE Not Applicable Northering Macro-Core Sampler (3-in, OD) Macro-Core Sampler (3-in, OD) Matro-Core Sampler (3-in, OD) MATERIAL DESCRIPTION MATERIAL DESCRIPTION		:										
SAMPLING METHOD: Macro-Core Sampler (3-in- OD) MATERIAL DESCRIPTION Asphalt. Gravel. Clayery Sand, Gray, Orange. Clayery Sand, Gray, Orange. Boring Terminated at 8 Ft-8GS				+								
DRILLING METHOD					J. Honey	cutt						
Hadden Document												
Asphalt, Gravel, Clayey Sand, Brown, Gray, Clayey Sand, Gray, Orange, Clayey Sand, Gray, Orange, Boring Terminated at 8 Ft-BGS 10 —	DRILLING	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		1	1	ı	1	1		ı
Clayey Sand, Brown, Gray, Clayey Sand, Gray, Orange, Ves Boring Terminated at 8 Ft-BGS	DEPTH (feet)				WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Clayey Sand, Gray, Orange, 5 Boring Terminated at 8 Pt-BGS 10 15 15			Asphalt, Gravel,									
	10 —		Clayey Sand, Gray, Orange,		▼							

PROJECT	Γ:	NCDOT I-5986B									
		Parcel 140-60 Robin Hood Road, Dunn, NC				BORIN	NG LOG	B-7/	TW-1	L	
		S&ME Project No. 4305-18-175A									
DATE DRIL		Monday, February 18, 2019	BORING DEPTH (FT):								
DRILL RIG:		Geoprobe 6620 DT	WATER LEVEL:								
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	licable						
HAMMER 1	TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING	METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING N	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
5 —		iilty Sand, Tan, Orange, Brown, iandy Clay, Gray, Tan, iandy Clay, Gray, Tan, Petroleum Odors		•		0.0 0.3 7.6	No Yes Yes				
10 —		Boring Terminated at 8 Ft-BGS									
20 —											
25 —											

PROJECT:	NCDOT I-5986B									
	Parcel 140-60 Robin Hood Road, Dunn, I	NC			BORIN	IG LOG	B-8/	TW-2	2	
	S&ME Project No. 4305-18-175A	Г								
DATE DRILLED:	Monday, February 18, 2019	BORING DEPTH (FT):								
DRILL RIG:	Geoprobe 6620 DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		1	ı		1	1	1	
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	halt, Gravel,			Ш						
	y Sand, Gray,				7.2	No				
5 — Cla	yey Sand, Gray, Petroleum Odors		•	I	1.4	Yes				
					19.7	Yes				
San	dy Clay, Gray, White,									
10	ing Terminated at 10 Ft-BGS									
15 —										
20 —										
25 —										
30										

Hydrocarbon Analysis Results

Client: S&ME Address: Samples taken Monday, February 18, 2019
Samples extracted Monday, February 18, 2019

Samples analysed Monday, February 18, 2019

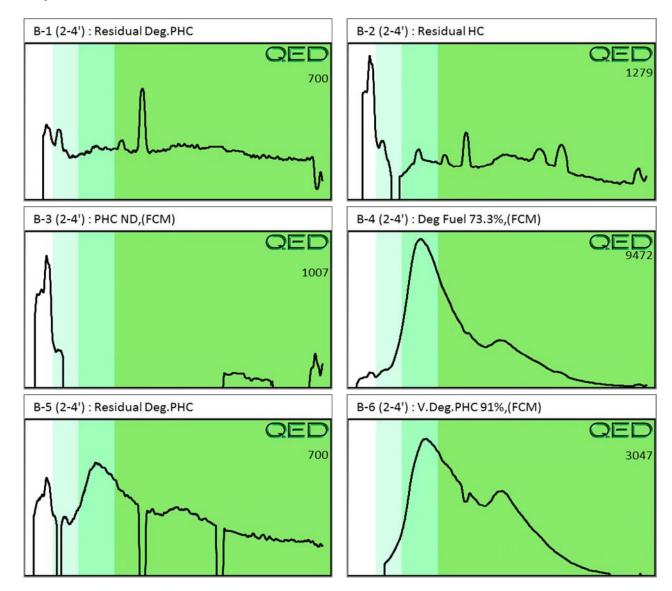
Contact: JAMIE HONEYCUTT Operator MAX MOYER

Project: 4305-18-175A; PARCEL 140

													F03640
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	Ratios			HC Fingerprint Match
										% light	% mid	% heavy	
Soil	B-1 (2-4')	26.0	<0.65	<0.65	0.52	0.52	0.49	0.02	<0.008	0	91	9	Residual Deg.PHC
Soil	B-2 (2-4')	19.1	<0.48	<0.48	0.16	0.16	0.15	0.02	<0.006	0	71.3	28.7	Residual HC
Soil	B-3 (2-4')	21.8	<0.55	3.5	<0.22	3.5	<0.01	<0.01	<0.007	100	0	0	PHC ND,(FCM)
Soil	B-4 (2-4')	23.0	<1.2	6	9.8	15.8	3.7	0.18	0.003	66.2	30.5	3.3	Deg Fuel 73.3%,(FCM)
Soil	B-5 (2-4')	23.4	<0.59	< 0.59	0.78	0.78	0.74	0.08	<0.007	0	91.9	8.1	Residual Deg.PHC
Soil	B-6 (2-4')	17.4	<0.44	<0.44	1.5	1.5	0.72	0.04	0.001	0	80.4	19.6	V.Deg.PHC 91%,(FCM)

Initial Calibrator QC check OK

Final FCM QC Check OK


103.4%

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content

Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate present

Project: 4305-18-175A; PARCEL 140

Hydrocarbon Analysis Results

Client: S&ME Address: Samples taken Samples extracted Samples analysed Monday, February 18, 2019 Monday, February 18, 2019

d Monday, February 18, 2019

Contact: JAMIE HONEYCUTT Operator MAX MOYER

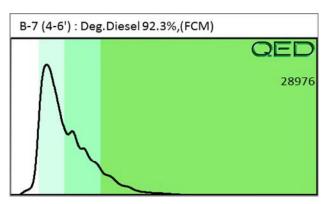
Project: 4305-18-175A; PARCEL 140

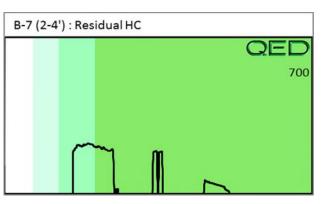
													F03640
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР		Ratios		HC Fingerprint Match
										% light % mid % heavy		% heavy	
Soil	B-7 (4-6')	20.5	<0.51	<0.51	62.8	62.8	31.1	1.1	<0.001	0	99.4	0.6	Deg.Diesel 92.3%,(FCM)
Soil	B-7 (2-4')	19.4	<0.49	<0.49	<0.19	0.03	0.03	0.004	<0.006	0	100	0	Residual HC
	Indiation Co	alibuatau (0.0 ala a ala	OK					Final F		Clarate	OK	402.00/

Initial Calibrator QC check OK

Fin

Final FCM QC Check OK


103.0%


Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content

Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate present

Project: 4305-18-175A; PARCEL 140

Hydrocarbon Analysis Results

Client: S&ME Address: Samples takenMonday, February 18, 2019Samples extractedMonday, February 18, 2019Samples analysedMonday, February 18, 2019

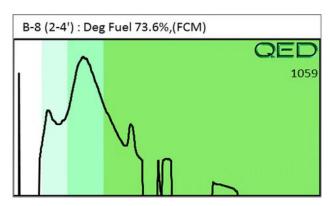
Contact: JAMIE HONEYCUTT Operator MAX MOYER

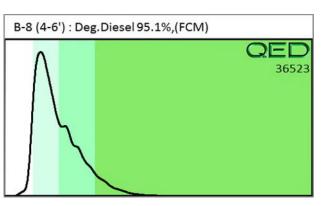
Project: 4305-18-175A; PARCEL 140

													F03640	
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP		Ratios		HC Fingerprint Match	
										% light	% mid	% heavy		
Soil	B-8 (2-4')	33.7	<0.84	<0.84	1.9	1.9	1.2	0.06	<0.01	0	97.8	2.2	Deg Fuel 73.6%,(FCM)	
Soil	B-8 (4-6')	18.7	<0.47	< 0.47	72.7	72.7	31.5	1.2	<0.006	0	99.5	0.5	Deg.Diesel 95.1%,(FCM)	
	Initial C	alibuatau (00 -11-	OK					Final F		Clara ala	OK	100 50/	

Initial Calibrator QC check OK

Final FCM QC Check OK


100.5%


Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content

Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate present

Project: 4305-18-175A; PARCEL 140

March 1, 2019

Jamie Honeycutt S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: 60 Robin Hood Road, Dunn, NC

Client Job Number:

Project Number: 4305-18-175A

Laboratory Work Order Number: 19B0931

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on February 20, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	8
19B0931-01	8
19B0931-02	11
Sample Preparation Information	14
QC Data	15
Volatile Organic Compounds by GC/MS	15
B224172	15
Semivolatile Organic Compounds by GC/MS	20
B224345	20
Flag/Qualifier Summary	22
Certifications	23
Chain of Custody/Sample Receipt	26

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616 ATTN: Jamie Honeycutt

REPORT DATE: 3/1/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-18-175A

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19B0931

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: 60 Robin Hood Road, Dunn, NC

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
B-7/ TW-1	19B0931-01	Ground Water		SW-846 8260D	
				SW-846 8270D	
B-8/ TW-2	19B0931-02	Ground Water		SW-846 8260D	
				SW-846 8270D	

EXECUTIVE SUMMARY

Client ID: B-7/ TW-1 Lab ID: 19B0931-01

Analyte	Results/Qua	l	DL	RL	Units	Method
1,2,4-Trimethylbenzene	69		0.36	2.0	$\mu g/L$	SW-846 8260D
1,3,5-Trimethylbenzene	16		0.26	2.0	$\mu g/L$	SW-846 8260D
Benzene	27		0.24	2.0	$\mu g/L$	SW-846 8260D
Ethylbenzene	120		0.26	2.0	$\mu g/L$	SW-846 8260D
Isopropylbenzene (Cumene)	5.0		0.24	2.0	$\mu g/L$	SW-846 8260D
m+p Xylene	230		0.51	4.0	$\mu g/L$	SW-846 8260D
Methyl tert-Butyl Ether (MTBE)	3.4		0.18	2.0	$\mu g/L$	SW-846 8260D
Naphthalene	110		0.24	10	$\mu g/L$	SW-846 8260D
n-Butylbenzene	2.2		0.30	2.0	$\mu g/L$	SW-846 8260D
n-Propylbenzene	8.5		0.26	2.0	$\mu g/L$	SW-846 8260D
o-Xylene	140		0.26	2.0	$\mu g/L$	SW-846 8260D
p-Isopropyltoluene (p-Cymene)	0.94	J	0.30	2.0	$\mu g/L$	SW-846 8260D
sec-Butylbenzene	1.3	J	0.26	2.0	$\mu g/L$	SW-846 8260D
tert-Amyl Methyl Ether (TAME)	2.5		0.21	1.0	$\mu g/L$	SW-846 8260D
Toluene	41		0.34	2.0	$\mu g/L$	SW-846 8260D
2-Methylnaphthalene (SIM)	39		1.6	25	$\mu g/L$	SW-846 8270D
Acenaphthene (SIM)	1.2	J	0.82	7.5	$\mu g/L$	SW-846 8270D
Fluorene (SIM)	1.6	J	0.85	25	$\mu g/L$	SW-846 8270D
Naphthalene (SIM)	55		6.4	25	$\mu g/L$	SW-846 8270D
Phenanthrene (SIM)	1.6		0.75	1.2	$\mu g/L$	SW-846 8270D

Client ID: B-8/TW-2 Lab ID: 19B0931-02

Analyte	Results/Qua	l	DL	RL	Units	Method
Ethylbenzene	0.66	J	0.26	2.0	$\mu g/L$	SW-846 8260D
Isopropylbenzene (Cumene)	1.3	J	0.24	2.0	$\mu g/L$	SW-846 8260D
Naphthalene	87		0.24	10	$\mu g/L$	SW-846 8260D
n-Butylbenzene	5.3		0.30	2.0	$\mu g/L$	SW-846 8260D
n-Propylbenzene	3.2		0.26	2.0	$\mu g/L$	SW-846 8260D
p-Isopropyltoluene (p-Cymene)	4.6		0.30	2.0	$\mu g/L$	SW-846 8260D
sec-Butylbenzene	7.6		0.26	2.0	$\mu g/L$	SW-846 8260D
tert-Butylbenzene	0.58	J	0.24	2.0	$\mu g/L$	SW-846 8260D
2-Methylnaphthalene (SIM)	160		3.2	51	$\mu g/L$	SW-846 8270D
Acenaphthene (SIM)	13		0.34	3.1	$\mu g/L$	SW-846 8270D
Acenaphthylene (SIM)	5.0		0.36	2.0	$\mu g/L$	SW-846 8270D
Anthracene (SIM)	6.7		0.33	2.0	$\mu g/L$	SW-846 8270D
Benzo(a)anthracene (SIM)	0.20	J	0.16	0.51	$\mu g/L$	SW-846 8270D
Chrysene (SIM)	0.36	J	0.15	2.0	$\mu g/L$	SW-846 8270D
Fluoranthene (SIM)	0.81	J	0.26	5.1	$\mu g/L$	SW-846 8270D
Fluorene (SIM)	31		0.35	10	$\mu g/L$	SW-846 8270D
Naphthalene (SIM)	38		2.6	10	$\mu g/L$	SW-846 8270D
Phenanthrene (SIM)	76		0.31	0.51	$\mu g/L$	SW-846 8270D
Pyrene (SIM)	4.4	J	0.23	10	$\mu g/L$	SW-846 8270D

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report. For method 8270, only PAHs were requested and reported.

For method 8260D, elevated reporting limits for sample(s) 19B0931-01 due to a high concentration of target compounds.

For method 8260D, elevated reporting limits for sample(s) 19B0931-02 due to a high concentration of non-target compounds.

SW-846 8260D

Qualifications:

L-07A

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound. Analyte & Samples(s) Qualified:

Vinyl Acetate

B224172-BS1

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound.
Analyte & Samples(s) Qualified:

Acetone

19B0931-01[B-7/TW-1], 19B0931-02[B-8/TW-2], B224172-BLK1, B224172-BS1, B224172-BSD1, S032911-CCV1

Vinyl Acetate

B224172-BLK1, B224172-BS1, B224172-BSD1, S032911-CCV1

RL-11

Elevated reporting limit due to high concentration of target compounds.

Analyte & Samples(s) Qualified:

19B0931-01[B-7/TW-1]

RL-13

Elevated reporting limit due to high concentration of non-target compounds.

Analyte & Samples(s) Qualified:

19B0931-02[B-8/TW-2]

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported

result.
Analyte & Samples(s) Qualified:

1,4-Dioxane

19B0931-01[B-7/TW-1], 19B0931-02[B-8/TW-2], B224172-BLK1, B224172-BS1, B224172-BSD1, S032911-CCV1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

Bromochloromethane

B224172-BS1, B224172-BSD1, S032911-CCV1

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

Carbon Disulfide

B224172-BS1, B224172-BSD1, S032911-CCV1

SW-846 8270D

Qualifications:

I-02

Result not attainable due to sample matrix interferences (a chemical or physical interference which could not be eliminated).

Analyte & Samples(s) Qualified:

Acenaphthene-d10

19B0931-02RE1[B-8/TW-2]

S-02

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the

Analyte & Samples(s) Qualified:

2-Fluorobiphenyl

19B0931-02RE1[B-8/TW-2]

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Project Location: 60 Robin Hood Road, Dunn, NC Sample Description: Work Order: 19B0931

Date Received: 2/20/2019
Field Sample #: B-7/ TW-1

Sampled: 2/18/2019 14:15

Sample ID: 19B0931-01
Sample Matrix: Ground Water

Sample Flags: RL-11

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	100	19	μg/L	2	R-05	SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Acrylonitrile	ND	10	1.2	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
tert-Amyl Methyl Ether (TAME)	2.5	1.0	0.21	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Benzene	27	2.0	0.24	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Bromobenzene	ND	2.0	0.30	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Bromochloromethane	ND	2.0	0.45	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Bromodichloromethane	ND	1.0	0.59	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Bromoform	ND	2.0	0.42	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Bromomethane	ND	4.0	1.9	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
2-Butanone (MEK)	ND	40	4.7	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
tert-Butyl Alcohol (TBA)	ND	40	4.3	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
n-Butylbenzene	2.2	2.0	0.30	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
sec-Butylbenzene	1.3	2.0	0.26	μg/L	2	J	SW-846 8260D	2/22/19	2/27/19 5:29	LBD
tert-Butylbenzene	ND	2.0	0.24	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
tert-Butyl Ethyl Ether (TBEE)	ND	1.0	0.19	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Carbon Disulfide	ND	8.0	2.0	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Carbon Tetrachloride	ND	10	0.49	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Chlorobenzene	ND	2.0	0.32	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Chlorodibromomethane	ND	1.0	0.21	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Chloroethane	ND	4.0	0.56	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Chloroform	ND	4.0	0.44	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Chloromethane	ND	4.0	1.1	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
2-Chlorotoluene	ND	2.0	0.24	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
4-Chlorotoluene	ND	2.0	0.28	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,2-Dibromo-3-chloropropane (DBCP)	ND	10	0.74	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,2-Dibromoethane (EDB)	ND	1.0	0.30	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Dibromomethane	ND	2.0	0.32	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,2-Dichlorobenzene	ND	2.0	0.34	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,3-Dichlorobenzene	ND	2.0	0.34	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,4-Dichlorobenzene	ND	2.0	0.30	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
trans-1,4-Dichloro-2-butene	ND	4.0	0.62	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Dichlorodifluoromethane (Freon 12)	ND	4.0	0.57	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,1-Dichloroethane	ND	2.0	0.32	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,2-Dichloroethane	ND	2.0	0.39	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,1-Dichloroethylene	ND	2.0	0.42	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
cis-1,2-Dichloroethylene	ND	2.0	0.29	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.30	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,2-Dichloropropane	ND	2.0	0.26	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,3-Dichloropropane	ND	1.0	0.26	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
2,2-Dichloropropane	ND	2.0	0.43	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,1-Dichloropropene	ND	4.0	0.26	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
cis-1,3-Dichloropropene	ND	1.0	0.24	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
trans-1,3-Dichloropropene	ND	1.0	0.22	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Diethyl Ether	ND	4.0	0.44	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD

Page 8 of 28

Project Location: 60 Robin Hood Road, Dunn, NC Work Order: 19B0931 Sample Description:

Date Received: 2/20/2019

Sampled: 2/18/2019 14:15 Field Sample #: B-7/ TW-1

Sample ID: 19B0931-01 Sample Matrix: Ground Water

Sample Flags: RL-11

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	1.0	0.36	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,4-Dioxane	ND	100	53	μg/L	2	V-16	SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Ethylbenzene	120	2.0	0.26	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Hexachlorobutadiene	ND	2.0	1.2	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
2-Hexanone (MBK)	ND	20	3.0	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Isopropylbenzene (Cumene)	5.0	2.0	0.24	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
p-Isopropyltoluene (p-Cymene)	0.94	2.0	0.30	μg/L	2	J	SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Methyl tert-Butyl Ether (MTBE)	3.4	2.0	0.18	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Methylene Chloride	ND	10	6.4	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
4-Methyl-2-pentanone (MIBK)	ND	20	2.9	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Naphthalene	110	10	0.24	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
n-Propylbenzene	8.5	2.0	0.26	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Styrene	ND	2.0	0.30	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,1,1,2-Tetrachloroethane	ND	2.0	0.24	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,1,2,2-Tetrachloroethane	ND	1.0	0.32	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Tetrachloroethylene	ND	2.0	0.54	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Tetrahydrofuran	ND	20	2.1	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Toluene	41	2.0	0.34	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,2,3-Trichlorobenzene	ND	10	0.28	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,2,4-Trichlorobenzene	ND	2.0	0.38	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,3,5-Trichlorobenzene	ND	2.0	0.34	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,1,1-Trichloroethane	ND	2.0	0.26	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,1,2-Trichloroethane	ND	2.0	0.47	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Trichloroethylene	ND	2.0	0.40	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Trichlorofluoromethane (Freon 11)	ND	4.0	0.29	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,2,3-Trichloropropane	ND	4.0	0.43	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	2.0	0.39	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,2,4-Trimethylbenzene	69	2.0	0.36	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
1,3,5-Trimethylbenzene	16	2.0	0.26	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Vinyl Chloride	ND	4.0	0.27	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
m+p Xylene	230	4.0	0.51	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
o-Xylene	140	2.0	0.26	μg/L	2		SW-846 8260D	2/22/19	2/27/19 5:29	LBD
Surrogates		% Reco	very	Recovery Limits	s	Flag/Qual				
1,2-Dichloroethane-d4		91.9		70-130					2/27/19 5:29	
Toluene-d8		99.8		70-130					2/27/19 5:29	

Project Location: 60 Robin Hood Road, Dunn, NC Sample Description: Work Order: 19B0931

Date Received: 2/20/2019

Field Sample #: B-7/ TW-1 Sampled: 2/18/2019 14:15

Sample ID: 19B0931-01
Sample Matrix: Ground Water

p-Terphenyl-d14

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene (SIM)	1.2	7.5	0.82	μg/L	25	J	SW-846 8270D	2/23/19	2/27/19 13:56	CLA
Acenaphthylene (SIM)	ND	5.0	0.88	$\mu g/L$	25		SW-846 8270D	2/23/19	2/27/19 13:56	CLA
Anthracene (SIM)	ND	5.0	0.80	$\mu g/L$	25		SW-846 8270D	2/23/19	2/27/19 13:56	CLA
Benzo(a)anthracene (SIM)	ND	1.2	0.40	$\mu g/L$	25		SW-846 8270D	2/23/19	2/27/19 13:56	CLA
Benzo(a)pyrene (SIM)	ND	2.5	0.30	$\mu g/L$	25		SW-846 8270D	2/23/19	2/27/19 13:56	CLA
Benzo(b)fluoranthene (SIM)	ND	1.2	0.38	$\mu g/L$	25		SW-846 8270D	2/23/19	2/27/19 13:56	CLA
Benzo(g,h,i)perylene (SIM)	ND	12	0.45	$\mu g/L$	25		SW-846 8270D	2/23/19	2/27/19 13:56	CLA
Benzo(k)fluoranthene (SIM)	ND	5.0	0.30	$\mu g/L$	25		SW-846 8270D	2/23/19	2/27/19 13:56	CLA
Chrysene (SIM)	ND	5.0	0.38	$\mu g/L$	25		SW-846 8270D	2/23/19	2/27/19 13:56	CLA
Dibenz(a,h)anthracene (SIM)	ND	2.5	0.42	$\mu g/L$	25		SW-846 8270D	2/23/19	2/27/19 13:56	CLA
Fluoranthene (SIM)	ND	12	0.62	$\mu g/L$	25		SW-846 8270D	2/23/19	2/27/19 13:56	CLA
Fluorene (SIM)	1.6	25	0.85	$\mu g/L$	25	J	SW-846 8270D	2/23/19	2/27/19 13:56	CLA
Indeno(1,2,3-cd)pyrene (SIM)	ND	2.5	0.45	$\mu g/L$	25		SW-846 8270D	2/23/19	2/27/19 13:56	CLA
2-Methylnaphthalene (SIM)	39	25	1.6	$\mu g/L$	25		SW-846 8270D	2/23/19	2/27/19 13:56	CLA
Naphthalene (SIM)	55	25	6.4	$\mu g/L$	25		SW-846 8270D	2/23/19	2/27/19 13:56	CLA
Phenanthrene (SIM)	1.6	1.2	0.75	$\mu g/L$	25		SW-846 8270D	2/23/19	2/27/19 13:56	CLA
Pyrene (SIM)	ND	25	0.58	$\mu g/L$	25		SW-846 8270D	2/23/19	2/27/19 13:56	CLA
Surrogates		% Reco	overy	Recovery Limits		Flag/Qual				
Nitrobenzene-d5 (SIM)		67.8		30-130	_				2/27/19 13:56	
2-Fluorobiphenyl		48.6		30-130					2/27/19 13:56	

30-130

44.7

2/27/19 13:56

Project Location: 60 Robin Hood Road, Dunn, NC Sample Description: Work Order: 19B0931

Date Received: 2/20/2019

Field Sample #: B-8/ TW-2 Sampled: 2/18/2019 15:15

Sample ID: 19B0931-02
Sample Matrix: Ground Water

Sample Flags: RL-13			Volatile	e Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	100	19	μg/L	2	R-05	SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Acrylonitrile	ND	10	1.2	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
tert-Amyl Methyl Ether (TAME)	ND	1.0	0.21	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Benzene	ND	2.0	0.24	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Bromobenzene	ND	2.0	0.30	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Bromochloromethane	ND	2.0	0.45	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Bromodichloromethane	ND	1.0	0.59	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Bromoform	ND	2.0	0.42	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Bromomethane	ND	4.0	1.9	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
2-Butanone (MEK)	ND	40	4.7	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
tert-Butyl Alcohol (TBA)	ND	40	4.3	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
n-Butylbenzene	5.3	2.0	0.30	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
sec-Butylbenzene	7.6	2.0	0.26	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
tert-Butylbenzene	0.58	2.0	0.24	$\mu g/L$	2	J	SW-846 8260D	2/22/19	2/27/19 4:58	LBD
tert-Butyl Ethyl Ether (TBEE)	ND	1.0	0.19	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Carbon Disulfide	ND	8.0	2.0	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Carbon Tetrachloride	ND	10	0.49	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Chlorobenzene	ND	2.0	0.32	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Chlorodibromomethane	ND	1.0	0.21	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Chloroethane	ND	4.0	0.56	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Chloroform	ND	4.0	0.44	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Chloromethane	ND	4.0	1.1	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
2-Chlorotoluene	ND	2.0	0.24	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
4-Chlorotoluene	ND	2.0	0.28	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,2-Dibromo-3-chloropropane (DBCP)	ND	10	0.74	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,2-Dibromoethane (EDB)	ND	1.0	0.30	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Dibromomethane	ND	2.0	0.32	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,2-Dichlorobenzene	ND	2.0	0.34	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,3-Dichlorobenzene	ND	2.0	0.34	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,4-Dichlorobenzene	ND	2.0	0.30	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
trans-1,4-Dichloro-2-butene	ND	4.0	0.62	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Dichlorodifluoromethane (Freon 12)	ND	4.0	0.57	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,1-Dichloroethane	ND	2.0	0.32	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,2-Dichloroethane	ND	2.0	0.39	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,1-Dichloroethylene	ND	2.0	0.42	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
cis-1,2-Dichloroethylene	ND	2.0	0.29	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
trans-1,2-Dichloroethylene 1,2-Dichloropropane	ND	2.0	0.30	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,3-Dichloropropane	ND	2.0	0.26	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
2,2-Dichloropropane	ND ND	1.0	0.26	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,1-Dichloropropene	ND ND	2.0 4.0	0.43 0.26	μg/L μg/I	2 2		SW-846 8260D SW-846 8260D	2/22/19 2/22/19	2/27/19 4:58	LBD
cis-1,3-Dichloropropene	ND ND	1.0		μg/L μg/I	2		SW-846 8260D SW-846 8260D		2/27/19 4:58	LBD LBD
trans-1,3-Dichloropropene	ND ND	1.0	0.24 0.22	μg/L μg/I	2			2/22/19 2/22/19	2/27/19 4:58 2/27/19 4:58	LBD
Diethyl Ether				μg/L μg/I			SW-846 8260D			
Diemyi Elliei	ND	4.0	0.44	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD

Page 11 of 28

Project Location: 60 Robin Hood Road, Dunn, NC Work Order: 19B0931 Sample Description:

Date Received: 2/20/2019

Sampled: 2/18/2019 15:15 Field Sample #: B-8/ TW-2

Sample ID: 19B0931-02 Sample Matrix: Ground Water

Sample Flags: RL-13

Sample Plags. RL-13			7014	the Organic Com	pounds by G	(C/N15				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	1.0	0.36	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,4-Dioxane	ND	100	53	μg/L	2	V-16	SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Ethylbenzene	0.66	2.0	0.26	μg/L	2	J	SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Hexachlorobutadiene	ND	2.0	1.2	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
2-Hexanone (MBK)	ND	20	3.0	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Isopropylbenzene (Cumene)	1.3	2.0	0.24	μg/L	2	J	SW-846 8260D	2/22/19	2/27/19 4:58	LBD
p-Isopropyltoluene (p-Cymene)	4.6	2.0	0.30	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.18	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Methylene Chloride	ND	10	6.4	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
4-Methyl-2-pentanone (MIBK)	ND	20	2.9	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Naphthalene	87	10	0.24	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
n-Propylbenzene	3.2	2.0	0.26	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Styrene	ND	2.0	0.30	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,1,1,2-Tetrachloroethane	ND	2.0	0.24	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,1,2,2-Tetrachloroethane	ND	1.0	0.32	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Tetrachloroethylene	ND	2.0	0.54	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Tetrahydrofuran	ND	20	2.1	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Toluene	ND	2.0	0.34	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,2,3-Trichlorobenzene	ND	10	0.28	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,2,4-Trichlorobenzene	ND	2.0	0.38	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,3,5-Trichlorobenzene	ND	2.0	0.34	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,1,1-Trichloroethane	ND	2.0	0.26	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,1,2-Trichloroethane	ND	2.0	0.47	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Trichloroethylene	ND	2.0	0.40	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Trichlorofluoromethane (Freon 11)	ND	4.0	0.29	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,2,3-Trichloropropane	ND	4.0	0.43	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	2.0	0.39	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,2,4-Trimethylbenzene	ND	2.0	0.36	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
1,3,5-Trimethylbenzene	ND	2.0	0.26	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Vinyl Chloride	ND	4.0	0.27	μg/L	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
m+p Xylene	ND	4.0	0.51	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
o-Xylene	ND	2.0	0.26	$\mu g/L$	2		SW-846 8260D	2/22/19	2/27/19 4:58	LBD
Surrogates		% Reco	very	Recovery Limits	<u> </u>	Flag/Qual				
1,2-Dichloroethane-d4		95.9		70-130					2/27/19 4:58	
Toluene-d8		98.4		70-130					2/27/19 4:58	

Project Location: 60 Robin Hood Road, Dunn, NC Sample Description: Work Order: 19B0931

Date Received: 2/20/2019

Sampled: 2/18/2019 15:15 Field Sample #: B-8/ TW-2

Sample ID: 19B0931-02 Sample Matrix: Ground Water

Semivolatile Organic	Compounds by	GC/MS
----------------------	--------------	-------

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene (SIM)	13	3.1	0.34	μg/L	10		SW-846 8270D	2/23/19	2/27/19 14:24	CLA
Acenaphthylene (SIM)	5.0	2.0	0.36	μg/L	10		SW-846 8270D	2/23/19	2/27/19 14:24	CLA
Anthracene (SIM)	6.7	2.0	0.33	μg/L	10		SW-846 8270D	2/23/19	2/27/19 14:24	CLA
Benzo(a)anthracene (SIM)	0.20	0.51	0.16	μg/L	10	J	SW-846 8270D	2/23/19	2/27/19 14:24	CLA
Benzo(a)pyrene (SIM)	ND	1.0	0.12	μg/L	10		SW-846 8270D	2/23/19	2/27/19 14:24	CLA
Benzo(b)fluoranthene (SIM)	ND	0.51	0.15	μg/L	10		SW-846 8270D	2/23/19	2/27/19 14:24	CLA
Benzo(g,h,i)perylene (SIM)	ND	5.1	0.18	μg/L	10		SW-846 8270D	2/23/19	2/27/19 14:24	CLA
Benzo(k)fluoranthene (SIM)	ND	2.0	0.12	μg/L	10		SW-846 8270D	2/23/19	2/27/19 14:24	CLA
Chrysene (SIM)	0.36	2.0	0.15	μg/L	10	J	SW-846 8270D	2/23/19	2/27/19 14:24	CLA
Dibenz(a,h)anthracene (SIM)	ND	1.0	0.17	μg/L	10		SW-846 8270D	2/23/19	2/27/19 14:24	CLA
Fluoranthene (SIM)	0.81	5.1	0.26	μg/L	10	J	SW-846 8270D	2/23/19	2/27/19 14:24	CLA
Fluorene (SIM)	31	10	0.35	μg/L	10		SW-846 8270D	2/23/19	2/27/19 14:24	CLA
Indeno(1,2,3-cd)pyrene (SIM)	ND	1.0	0.18	μg/L	10		SW-846 8270D	2/23/19	2/27/19 14:24	CLA
2-Methylnaphthalene (SIM)	160	51	3.2	μg/L	50		SW-846 8270D	2/23/19	2/27/19 15:50	CLA
Naphthalene (SIM)	38	10	2.6	μg/L	10		SW-846 8270D	2/23/19	2/27/19 14:24	CLA
Phenanthrene (SIM)	76	0.51	0.31	μg/L	10		SW-846 8270D	2/23/19	2/27/19 14:24	CLA
Pyrene (SIM)	4.4	10	0.23	$\mu g/L$	10	J	SW-846 8270D	2/23/19	2/27/19 14:24	CLA
Surrogates		% Reco	very	Recovery Limits	1	Flag/Qual				
Nitrobenzene-d5 (SIM)		60.9		30-130					2/27/19 14:24	
Nitrobenzene-d5 (SIM)		57.0		30-130					2/27/19 15:50	
2-Fluorobiphenyl			*	30-130		S-02			2/27/19 14:24	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
Nitrobenzene-d5 (SIM)	60.9	30-130		2/27/19 14:24
Nitrobenzene-d5 (SIM)	57.0	30-130		2/27/19 15:50
2-Fluorobiphenyl	*	30-130	S-02	2/27/19 14:24
2-Fluorobiphenyl	37.9	30-130		2/27/19 15:50
p-Terphenyl-d14	42.5	30-130		2/27/19 14:24
p-Terphenyl-d14	38.5	30-130		2/27/19 15:50

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19B0931-01 [B-7/ TW-1]	B224172	2.5	5.00	02/22/19
19B0931-02 [B-8/ TW-2]	B224172	2.5	5.00	02/22/19

Prep Method: SW-846 3510C-SW-846 8270D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19B0931-01RE1 [B-7/ TW-1]	B224345	1000	1.00	02/23/19
19B0931-02RE1 [B-8/ TW-2]	B224345	980	1.00	02/23/19
19B0931-02RE2 [B-8/ TW-2]	B224345	980	1.00	02/23/19

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B224172 - SW-846 5030B										
Blank (B224172-BLK1)				Prepared: 02	2/22/19 Anal	yzed: 02/26/1	9		_	_
Acetone	ND	50	μg/L							R-05
Acrylonitrile	ND	5.0	μg/L							
ert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L							
Benzene	ND	1.0	μg/L							
Bromobenzene	ND	1.0	μg/L							
Bromochloromethane	ND	1.0	μg/L							
Bromodichloromethane	ND	0.50	μg/L							
Bromoform	ND	1.0	μg/L							
Bromomethane (ACCV)	ND	2.0	μg/L							
-Butanone (MEK)	ND	20	μg/L							
ert-Butyl Alcohol (TBA)	ND	20	μg/L							
a-Butylbenzene ec-Butylbenzene	ND	1.0	μg/L							
ec-Butylbenzene ert-Butylbenzene	ND	1.0	μg/L μg/I							
ert-Butylbenzene ert-Butyl Ethyl Ether (TBEE)	ND	1.0 0.50	μg/L μg/L							
Carbon Disulfide	ND ND	4.0	μg/L μg/L							
Carbon Tetrachloride		5.0	μg/L μg/L							
Chlorobenzene	ND ND	1.0	μg/L μg/L							
Chlorodibromomethane	ND ND	0.50	μg/L μg/L							
Chloroethane	ND ND	2.0	μg/L μg/L							
Chloroform	ND ND	2.0	μg/L μg/L							
Chloromethane	ND ND	2.0	μg/L μg/L							
-Chlorotoluene	ND	1.0	μg/L							
-Chlorotoluene	ND	1.0	μg/L							
,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L							
,2-Dibromoethane (EDB)	ND	0.50	μg/L							
Dibromomethane	ND	1.0	μg/L							
,2-Dichlorobenzene	ND	1.0	μg/L							
,3-Dichlorobenzene	ND	1.0	$\mu g/L$							
,4-Dichlorobenzene	ND	1.0	$\mu g/L$							
rans-1,4-Dichloro-2-butene	ND	2.0	$\mu g \! / \! L$							
Dichlorodifluoromethane (Freon 12)	ND	2.0	$\mu g/L$							
,1-Dichloroethane	ND	1.0	$\mu \text{g/L}$							
,2-Dichloroethane	ND	1.0	$\mu \text{g/L}$							
,1-Dichloroethylene	ND	1.0	$\mu g \! / \! L$							
is-1,2-Dichloroethylene	ND	1.0	μg/L							
rans-1,2-Dichloroethylene	ND	1.0	μg/L							
,2-Dichloropropane	ND	1.0	μg/L							
,3-Dichloropropane	ND	0.50	μg/L							
,2-Dichloropropane	ND	1.0	μg/L							
,1-Dichloropropene	ND	2.0	μg/L							
is-1,3-Dichloropropene	ND	0.50	μg/L							
rans-1,3-Dichloropropene	ND	0.50	μg/L							
Diethyl Ether	ND	2.0	μg/L							
Discopropyl Ether (DIPE)	ND	0.50	μg/L							37.16
,4-Dioxane	ND	50	μg/L							V-16
Ethylbenzene Josephorobutadione	ND	1.0	μg/L							
Hexachlorobutadiene	ND	0.60	μg/L μg/I							
-Hexanone (MBK)	ND	10	μg/L μg/I							
sopropyltelyone (Cumene)	ND	1.0	μg/L							
-Isopropyltoluene (p-Cymene) Aethyl tert-Butyl Ether (MTBE)	ND ND	1.0 1.0	μg/L μg/L							

QUALITY CONTROL

Source

Spike

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B224172 - SW-846 5030B										
Blank (B224172-BLK1)				Prepared: 02	2/22/19 Anal	yzed: 02/26/1	.9			
Methylene Chloride	ND	5.0	μg/L							
4-Methyl-2-pentanone (MIBK)	ND	10	$\mu g/L$							
Naphthalene	ND	2.0	$\mu g/L$							
n-Propylbenzene	ND	1.0	$\mu g/L$							
Styrene	ND	1.0	$\mu g/L$							
1,1,1,2-Tetrachloroethane	ND	1.0	$\mu g/L$							
1,1,2,2-Tetrachloroethane	ND	0.50	$\mu g/L$							
Tetrachloroethylene	ND	1.0	$\mu g/L$							
Tetrahydrofuran	ND	10	μg/L							
Toluene	ND	1.0	μg/L							
1,2,3-Trichlorobenzene	ND	5.0	μg/L							
1,2,4-Trichlorobenzene	ND	1.0	μg/L							
1,3,5-Trichlorobenzene	ND	1.0	μg/L							
1,1,1-Trichloroethane	ND	1.0	$\mu g/L$							
1,1,2-Trichloroethane	ND	1.0	μg/L							
Trichloroethylene	ND	1.0	μg/L							
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L							
1,2,3-Trichloropropane	ND	2.0	μg/L							
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	μg/L							
1,2,4-Trimethylbenzene	ND	1.0	μg/L							
1,3,5-Trimethylbenzene	ND	1.0	μg/L							
Vinyl Acetate	ND	20	μg/L							R-05
Vinyl Chloride	ND	2.0	μg/L							
m+p Xylene	ND	2.0	μg/L							
o-Xylene	ND	1.0	μg/L							
Surrogate: 1,2-Dichloroethane-d4	23.4		$\mu g/L$	25.0		93.8	70-130			
Surrogate: Toluene-d8	24.6		μg/L	25.0		98.5	70-130			
Surrogate: 4-Bromofluorobenzene	25.5		μg/L	25.0		102	70-130			
LCS (B224172-BS1)			/T		2/22/19 Anal	yzed: 02/26/1				
Acetone	125	50	μg/L	100		125	70-160			R-05
Acrylonitrile	9.46	5.0	μg/L	10.0		94.6	70-130			
tert-Amyl Methyl Ether (TAME)	10.7	0.50	μg/L	10.0		107	70-130			
Benzene Bromobenzene	10.3	1.0	μg/L μα/Ι	10.0		103	70-130			
Bromochloromethane	10.3	1.0 1.0	μg/L μg/I	10.0		103	70-130			17.20
Bromodichloromethane	12.0	0.50	μg/L μg/I	10.0 10.0		120 106	70-130 70-130			V-20
Bromoform	10.6	1.0	μg/L μg/L	10.0		106	70-130			
Bromomethane	10.2	2.0	μg/L μg/L	10.0		53.5	70-130 40-160			
2-Butanone (MEK)	5.35	2.0	μg/L μg/L	10.0		98.5	40-160			
tert-Butyl Alcohol (TBA)	98.5	20	μg/L μg/L	100		98.5 92.4	40-160			
n-Butylbenzene	92.4 9.08	1.0	μg/L μg/L	10.0		92.4	70-130			
sec-Butylbenzene	9.48	1.0	μg/L μg/L	10.0		94.8	70-130			
tert-Butylbenzene	9.48 9.57	1.0	μg/L μg/L	10.0		95.7	70-130			
tert-Butyl Ethyl Ether (TBEE)	9.76	0.50	μg/L μg/L	10.0		97.6	70-130			
Carbon Disulfide	9.76 11.6	4.0	μg/L μg/L	10.0		116	70-130			V-36
Carbon Tetrachloride	10.9	5.0	μg/L μg/L	10.0		109	70-130			+-30
Chlorobenzene	10.9	1.0	μg/L μg/L	10.0		109	70-130			
Chlorodibromomethane	11.4	0.50	μg/L μg/L	10.0		114	70-130			
Chloroethane	10.0	2.0	μg/L μg/L	10.0		100	70-130			
Chloroform	10.0	2.0	μg/L μg/L	10.0		105	70-130			
Chloromethane	7.80	2.0	μg/L	10.0		78.0	40-160		Р	age 16

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B224172 - SW-846 5030B											
LCS (B224172-BS1)				Prepared: 02	/22/19 Analy	zed: 02/26/1	9				
2-Chlorotoluene	10.5	1.0	μg/L	10.0		105	70-130				
4-Chlorotoluene	10.3	1.0	$\mu g/L$	10.0		103	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	8.31	5.0	$\mu g \! / \! L$	10.0		83.1	70-130				
1,2-Dibromoethane (EDB)	11.0	0.50	$\mu g \! / \! L$	10.0		110	70-130				
Dibromomethane	11.3	1.0	$\mu g \! / \! L$	10.0		113	70-130				
1,2-Dichlorobenzene	9.99	1.0	$\mu g/L$	10.0		99.9	70-130				
1,3-Dichlorobenzene	10.0	1.0	$\mu g/L$	10.0		100	70-130				
1,4-Dichlorobenzene	9.73	1.0	$\mu g/L$	10.0		97.3	70-130				
trans-1,4-Dichloro-2-butene	9.34	2.0	$\mu g/L$	10.0		93.4	70-130				
Dichlorodifluoromethane (Freon 12)	8.72	2.0	$\mu g/L$	10.0		87.2	40-160				
1,1-Dichloroethane	10.5	1.0	$\mu g/L$	10.0		105	70-130				
1,2-Dichloroethane	10.2	1.0	$\mu g/L$	10.0		102	70-130				
1,1-Dichloroethylene	10.4	1.0	$\mu g/L$	10.0		104	70-130				
cis-1,2-Dichloroethylene	10.2	1.0	$\mu g/L$	10.0		102	70-130				
trans-1,2-Dichloroethylene	10.8	1.0	$\mu g/L$	10.0		108	70-130				
1,2-Dichloropropane	10.2	1.0	$\mu g/L$	10.0		102	70-130				
1,3-Dichloropropane	10.5	0.50	$\mu g/L$	10.0		105	70-130				
2,2-Dichloropropane	9.51	1.0	$\mu g/L$	10.0		95.1	40-130				
1,1-Dichloropropene	10.7	2.0	μg/L	10.0		107	70-130				
cis-1,3-Dichloropropene	10.2	0.50	μg/L	10.0		102	70-130				
trans-1,3-Dichloropropene	10.0	0.50	μg/L	10.0		100	70-130				
Diethyl Ether	10.3	2.0	μg/L	10.0		103	70-130				
Diisopropyl Ether (DIPE)	9.31	0.50	μg/L	10.0		93.1	70-130				
1,4-Dioxane	94.9	50	μg/L	100		94.9	40-130			V-16	
Ethylbenzene	9.99	1.0	μg/L	10.0		99.9	70-130				
Hexachlorobutadiene	9.55	0.60	μg/L	10.0		95.5	70-130				
2-Hexanone (MBK)	95.9	10	μg/L	100		95.9	70-160				
Isopropylbenzene (Cumene)	10.6	1.0	μg/L	10.0		106	70-130				
p-Isopropyltoluene (p-Cymene)	9.60	1.0	μg/L	10.0		96.0	70-130				
Methyl tert-Butyl Ether (MTBE)	10.7	1.0	μg/L	10.0		107	70-130				
Methylene Chloride	9.81	5.0	μg/L	10.0		98.1	70-130				
4-Methyl-2-pentanone (MIBK)	91.0	10	μg/L	100		91.0	70-160				
Naphthalene	8.58	2.0	μg/L	10.0		85.8	40-130				
n-Propylbenzene	10.5	1.0	μg/L	10.0		105	70-130				
Styrene	10.5	1.0	μg/L	10.0		105	70-130				
1,1,2.7 Tetrachloroethane	11.1	1.0	μg/L	10.0		111	70-130				
1,1,2,2-Tetrachloroethane	10.0	0.50	μg/L	10.0		100	70-130				
Tetrachloroethylene Tetrachydrofiyan	11.4	1.0	μg/L	10.0		114	70-130				
Tetrahydrofuran Toluene	8.68	10	μg/L μg/I	10.0		86.8	70-130			J	
1,2,3-Trichlorobenzene	10.6	1.0	μg/L μg/I	10.0		106	70-130				
1,2,4-Trichlorobenzene	9.96	5.0 1.0	μg/L μg/I	10.0		99.6	70-130				
1,3,5-Trichlorobenzene	9.88	1.0	μg/L μg/I	10.0 10.0		98.8	70-130 70-130				
1,1,1-Trichloroethane	10.1	1.0	μg/L μg/L	10.0		101 107	70-130 70-130				
1,1,2-Trichloroethane	10.7	1.0	μg/L μg/L	10.0		107	70-130 70-130				
Trichloroethylene	11.1	1.0	μg/L μg/L	10.0			70-130				
Trichlorofluoromethane (Freon 11)	11.4	2.0				114					
	9.37		μg/L μg/I	10.0		93.7	70-130				
1,2,3-Trichloropropane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	10.1	2.0 1.0	μg/L μg/I	10.0		101	70-130				
1,1,2-1fichioro-1,2,2-triffuoroetnane (Freon 113)	10.5	1.0	μg/L	10.0		105	70-130				
1,2,4-Trimethylbenzene	9.12	1.0	$\mu g/L$	10.0		91.2	70-130				
1,3,5-Trimethylbenzene	10.2	1.0	μg/L	10.0		102	70-130				

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B224172 - SW-846 5030B											_
LCS (B224172-BS1)				Prepared: 02	2/22/19 Analy	yzed: 02/26/1	9				
Vinyl Acetate	65.2	20	μg/L	100		65.2 *	70-130			R-05, L-07A	
Vinyl Chloride	8.95	2.0	$\mu g/L$	10.0		89.5	40-160				†
m+p Xylene	20.6	2.0	$\mu g/L$	20.0		103	70-130				
o-Xylene	10.3	1.0	$\mu g \! / \! L$	10.0		103	70-130				
Surrogate: 1,2-Dichloroethane-d4	23.7		μg/L	25.0		94.7	70-130				
Surrogate: Toluene-d8	24.5		μg/L	25.0		97.9	70-130				
Surrogate: 4-Bromofluorobenzene	25.2		$\mu g/L$	25.0		101	70-130				
LCS Dup (B224172-BSD1)				Prepared: 02	2/22/19 Analy	yzed: 02/26/1	9				
Acetone	94.8	50	μg/L	100		94.8	70-160	27.3	* 25	R-05	†
Acrylonitrile	9.77	5.0	$\mu g/L$	10.0		97.7	70-130	3.22	25		
tert-Amyl Methyl Ether (TAME)	10.3	0.50	$\mu g/L$	10.0		103	70-130	3.43	25		
Benzene	10.3	1.0	$\mu g/L$	10.0		103	70-130	0.388	25		
Bromobenzene	10.6	1.0	$\mu g/L$	10.0		106	70-130	2.20	25		
Bromochloromethane	12.4	1.0	$\mu g/L$	10.0		124	70-130	3.36	25	V-20	
Bromodichloromethane	10.9	0.50	$\mu g/L$	10.0		109	70-130	3.07	25		
Bromoform	10.3	1.0	$\mu g/L$	10.0		103	70-130	0.586	25		
Bromomethane	6.67	2.0	$\mu g/L$	10.0		66.7	40-160	22.0	25		†
2-Butanone (MEK)	90.8	20	$\mu g/L$	100		90.8	40-160	8.10	25		†
tert-Butyl Alcohol (TBA)	92.1	20	$\mu g/L$	100		92.1	40-160	0.358	25		†
n-Butylbenzene	9.28	1.0	$\mu g/L$	10.0		92.8	70-130	2.18	25		
sec-Butylbenzene	9.52	1.0	μg/L	10.0		95.2	70-130	0.421	25		
tert-Butylbenzene	9.52	1.0	μg/L	10.0		95.2	70-130	0.524	25		
tert-Butyl Ethyl Ether (TBEE)	9.75	0.50	μg/L	10.0		97.5	70-130	0.103	25		
Carbon Disulfide	11.1	4.0	μg/L	10.0		111	70-130	3.96	25	V-36	
Carbon Tetrachloride	10.6	5.0	μg/L	10.0		106	70-130	2.14	25		
Chlorobenzene	10.5	1.0	μg/L	10.0		105	70-130	0.287	25		
Chlorodibromomethane	11.4	0.50	μg/L	10.0		114	70-130	0.351	25		
Chloroethane	9.72	2.0	μg/L	10.0		97.2	70-130	3.24	25		
Chlorosophus	10.3	2.0	μg/L	10.0		103	70-130	1.83	25		
Chloromethane	7.75	2.0	μg/L	10.0		77.5	40-160	0.643	25		†
2-Chlorotoluene 4-Chlorotoluene	10.6	1.0 1.0	μg/L	10.0		106	70-130	0.190	25 25		
1,2-Dibromo-3-chloropropane (DBCP)	10.4	5.0	μg/L μg/L	10.0 10.0		104 88.1	70-130 70-130	0.386 5.84	25 25		
1,2-Dibromoethane (EDB)	8.81	0.50	μg/L μg/L	10.0		111	70-130	0.903	25 25		
Dibromomethane	11.1 11.1	1.0	μg/L μg/L	10.0		111	70-130	1.78	25		
1,2-Dichlorobenzene	10.1	1.0	μg/L μg/L	10.0		101	70-130	1.19	25		
1,3-Dichlorobenzene	10.1	1.0	μg/L μg/L	10.0		102	70-130	0.990	25		
1,4-Dichlorobenzene	9.70	1.0	μg/L	10.0		97.0	70-130	0.309	25		
trans-1,4-Dichloro-2-butene	9.55	2.0	μg/L	10.0		95.5	70-130	2.22	25		
Dichlorodifluoromethane (Freon 12)	8.54	2.0	μg/L	10.0		85.4	40-160	2.09	25		†
1,1-Dichloroethane	10.2	1.0	μg/L	10.0		102	70-130	2.80	25		,
1,2-Dichloroethane	10.4	1.0	μg/L	10.0		104	70-130	2.04	25		
1,1-Dichloroethylene	9.88	1.0	μg/L	10.0		98.8	70-130	4.84	25		
cis-1,2-Dichloroethylene	10.3	1.0	μg/L	10.0		103	70-130	1.07	25		
trans-1,2-Dichloroethylene	10.5	1.0	μg/L	10.0		105	70-130	2.63	25		
1,2-Dichloropropane	10.0	1.0	μg/L	10.0		100	70-130	1.78	25		
1,3-Dichloropropane	10.4	0.50	μg/L	10.0		104	70-130	0.479	25		
2,2-Dichloropropane	9.41	1.0	μg/L	10.0		94.1	40-130	1.06	25		†
1,1-Dichloropropene	10.5	2.0	$\mu g \! / \! L$	10.0		105	70-130	1.98	25		
cis-1,3-Dichloropropene	10.2	0.50	$\mu g/L$	10.0		102	70-130	0.784	25		
trans-1,3-Dichloropropene	10.1	0.50	$\mu g/L$	10.0		101	70-130	0.894	25		

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B224172 - SW-846 5030B										
LCS Dup (B224172-BSD1)				Prepared: 02	2/22/19 Analyzed: 02/26	/19				
Diethyl Ether	10.0	2.0	μg/L	10.0	100	70-130	2.75	25		
Diisopropyl Ether (DIPE)	9.40	0.50	$\mu g/L$	10.0	94.0	70-130	0.962	25		
1,4-Dioxane	87.0	50	$\mu g/L$	100	87.0	40-130	8.75	50	V-16	†‡
Ethylbenzene	10.2	1.0	$\mu g/L$	10.0	102	70-130	2.57	25		
Hexachlorobutadiene	9.49	0.60	$\mu g/L$	10.0	94.9	70-130	0.630	25		
2-Hexanone (MBK)	93.8	10	$\mu g/L$	100	93.8	70-160	2.21	25		†
Isopropylbenzene (Cumene)	10.8	1.0	$\mu g/L$	10.0	108	70-130	1.21	25		
p-Isopropyltoluene (p-Cymene)	9.59	1.0	$\mu g/L$	10.0	95.9	70-130	0.104	25		
Methyl tert-Butyl Ether (MTBE)	10.7	1.0	μg/L	10.0	107	70-130	0.187	25		
Methylene Chloride	9.45	5.0	μg/L	10.0	94.5	70-130	3.74	25		
4-Methyl-2-pentanone (MIBK)	94.0	10	μg/L	100	94.0	70-160	3.17	25		†
Naphthalene	8.74	2.0	μg/L	10.0	87.4	40-130	1.85	25		†
n-Propylbenzene	10.4	1.0	μg/L	10.0	104	70-130	0.478	25		
Styrene	10.6	1.0	μg/L	10.0	106	70-130	1.33	25		
,1,1,2-Tetrachloroethane	10.8	1.0	μg/L	10.0	108	70-130	2.84	25		
,1,2,2-Tetrachloroethane	11.1	0.50	μg/L	10.0	111	70-130	10.6	25		
Tetrachloroethylene	11.2	1.0	μg/L	10.0	112	70-130	1.59	25		
Tetrahydrofuran	9.65	10	μg/L	10.0	96.5	70-130	10.6	25	J	
Coluene	10.5	1.0	μg/L	10.0	105	70-130	0.951	25		
,2,3-Trichlorobenzene	10.3	5.0	μg/L	10.0	103	70-130	3.16	25		
,2,4-Trichlorobenzene	10.2	1.0	μg/L	10.0	102	70-130	2.89	25		
,3,5-Trichlorobenzene	10.1	1.0	μg/L	10.0	101	70-130	0.198	25		
1,1,1-Trichloroethane	10.6	1.0	μg/L	10.0	106	70-130	0.659	25		
1,1,2-Trichloroethane	11.0	1.0	μg/L	10.0	110	70-130	1.17	25		
Frichloroethylene	10.5	1.0	μg/L	10.0	105	70-130	8.21	25		
Trichlorofluoromethane (Freon 11)	9.02	2.0	μg/L	10.0	90.2	70-130	3.81	25		
1,2,3-Trichloropropane	10.6	2.0	μg/L	10.0	106	70-130	5.02	25		
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	9.91	1.0	μg/L	10.0	99.1	70-130	5.50	25		
1,2,4-Trimethylbenzene	9.23	1.0	μg/L	10.0	92.3	70-130	1.20	25		
1,3,5-Trimethylbenzene	10.2	1.0	μg/L	10.0	102	70-130	0.391	25		
Vinyl Acetate	91.2	20	μg/L	100	91.2	70-130	33.3		R-05	
Vinyl Chloride	8.77	2.0	μg/L	10.0	87.7	40-160	2.03	25		†
n+p Xylene	20.6	2.0	μg/L	20.0	103	70-130	0.194	25		
-Xylene	10.4	1.0	μg/L	10.0	104	70-130	1.06	25		
Surrogate: 1,2-Dichloroethane-d4	23.6		μg/L	25.0	94.2	70-130				
Surrogate: Toluene-d8	24.9		$\mu g/L$	25.0	99.6	70-130				
Surrogate: 4-Bromofluorobenzene	26.2		$\mu g/L$	25.0	105	70-130				

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B224345 - SW-846 3510C										
Blank (B224345-BLK1)				Prepared: 02	2/23/19 Analy	zed: 02/26/	19			
Acenaphthene (SIM)	ND	0.30	μg/L							
Acenaphthylene (SIM)	ND	0.20	μg/L							
Anthracene (SIM)	ND	0.20	μg/L							
Benzo(a)anthracene (SIM)	ND	0.050	μg/L							
Benzo(a)pyrene (SIM)	ND	0.10	μg/L							
Senzo(b)fluoranthene (SIM)	ND	0.050	μg/L							
Benzo(g,h,i)perylene (SIM)	ND	0.50	μg/L							
Benzo(k)fluoranthene (SIM)	ND	0.20	μg/L							
Chrysene (SIM)	ND	0.20	μg/L							
Dibenz(a,h)anthracene (SIM)	ND	0.10	$\mu g/L$							
Fluoranthene (SIM)	ND	0.50	$\mu g/L$							
Fluorene (SIM)	ND	1.0	$\mu g/L$							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.10	$\mu g/L$							
-Methylnaphthalene (SIM)	ND	1.0	μg/L							
Naphthalene (SIM)	ND	1.0	μg/L							
Phenanthrene (SIM)	ND	0.050	μg/L							
yrene (SIM)	ND	1.0	μg/L							
surrogate: Nitrobenzene-d5 (SIM)	77.0		$\mu g/L$	100		77.0	30-130			
surrogate: 2-Fluorobiphenyl	56.4		$\mu g/L$	100		56.4	30-130			
surrogate: p-Terphenyl-d14	59.9		$\mu g/L$	100		59.9	30-130			
LCS (B224345-BS1)				Prepared: 02	2/23/19 Analy	zed: 02/26/	19			
Acenaphthene (SIM)	34.4	7.5	μg/L	50.0		68.9	40-140			
Acenaphthylene (SIM)	34.0	5.0	$\mu g/L$	50.0		68.0	40-140			
Anthracene (SIM)	37.6	5.0	$\mu g/L$	50.0		75.1	40-140			
Benzo(a)anthracene (SIM)	32.0	1.2	$\mu g/L$	50.0		64.0	40-140			
Benzo(a)pyrene (SIM)	37.0	2.5	$\mu g/L$	50.0		74.1	40-140			
Benzo(b)fluoranthene (SIM)	37.3	1.2	$\mu g/L$	50.0		74.6	40-140			
Benzo(g,h,i)perylene (SIM)	38.5	12	$\mu g/L$	50.0		77.0	40-140			
Benzo(k)fluoranthene (SIM)	36.9	5.0	$\mu g/L$	50.0		73.8	40-140			
Chrysene (SIM)	34.2	5.0	$\mu g \! / \! L$	50.0		68.3	40-140			
Dibenz(a,h)anthracene (SIM)	41.5	2.5	$\mu g/L$	50.0		83.0	40-140			
luoranthene (SIM)	34.3	12	$\mu g \! / \! L$	50.0		68.6	40-140			
Fluorene (SIM)	34.4	25	$\mu g/L$	50.0		68.8	40-140			
ndeno(1,2,3-cd)pyrene (SIM)	40.7	2.5	$\mu \text{g/L}$	50.0		81.4	40-140			
-Methylnaphthalene (SIM)	33.5	25	$\mu g/L$	50.0		67.0	40-140			
Japhthalene (SIM)	31.4	25	$\mu g/L$	50.0		62.8	40-140			
Phenanthrene (SIM)	35.6	1.2	$\mu g \! / \! L$	50.0		71.1	40-140			
yrene (SIM)	31.8	25	$\mu g/L$	50.0		63.7	40-140			
surrogate: Nitrobenzene-d5 (SIM)	63.0		μg/L	100		63.0	30-130			
Surrogate: 2-Fluorobiphenyl	48.4		μg/L	100		48.4	30-130			
Surrogate: p-Terphenyl-d14	47.8		μg/L	100		47.8	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B224345 - SW-846 3510C	Tosuit	- Emili	Cints	Level	Result	701000	Emiles	П	Emit	rtotes
LCS Dup (B224345-BSD1)				Prepared: 02	2/23/19 Anal	yzed: 02/26/	19			
Acenaphthene (SIM)	34.5	7.5	μg/L	50.0		69.0	40-140	0.217	20	
Acenaphthylene (SIM)	34.0	5.0	μg/L	50.0		68.1	40-140	0.221	20	
Anthracene (SIM)	37.1	5.0	μg/L	50.0		74.2	40-140	1.27	20	
Benzo(a)anthracene (SIM)	31.4	1.2	μg/L	50.0		62.7	40-140	2.13	20	
Benzo(a)pyrene (SIM)	36.6	2.5	μg/L	50.0		73.2	40-140	1.22	20	
Benzo(b)fluoranthene (SIM)	37.0	1.2	μg/L	50.0		74.0	40-140	0.740	20	
Benzo(g,h,i)perylene (SIM)	38.7	12	μg/L	50.0		77.4	40-140	0.454	20	
Benzo(k)fluoranthene (SIM)	37.4	5.0	μg/L	50.0		74.8	40-140	1.21	20	
Chrysene (SIM)	33.5	5.0	μg/L	50.0		67.0	40-140	1.92	20	
Dibenz(a,h)anthracene (SIM)	41.4	2.5	μg/L	50.0		82.7	40-140	0.302	20	
Fluoranthene (SIM)	35.0	12	μg/L	50.0		70.0	40-140	2.09	20	
Fluorene (SIM)	35.6	25	μg/L	50.0		71.3	40-140	3.64	20	
Indeno(1,2,3-cd)pyrene (SIM)	40.7	2.5	μg/L	50.0		81.4	40-140	0.00	20	
2-Methylnaphthalene (SIM)	34.5	25	μg/L	50.0		69.0	40-140	2.94	20	
Naphthalene (SIM)	31.6	25	μg/L	50.0		63.2	40-140	0.556	20	
Phenanthrene (SIM)	35.4	1.2	μg/L	50.0		70.8	40-140	0.423	20	
Pyrene (SIM)	31.0	25	$\mu \text{g/L}$	50.0		62.1	40-140	2.54	20	
Surrogate: Nitrobenzene-d5 (SIM)	62.2		μg/L	100		62.2	30-130			
Surrogate: 2-Fluorobiphenyl	46.1		$\mu g/L$	100		46.1	30-130			
Surrogate: p-Terphenyl-d14	44.5		$\mu g/L$	100		44.5	30-130			

FLAG/QUALIFIER SUMMARY

*	OC seeds in contribute of established limits
T	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
I-02	Result not attainable due to sample matrix interferences (a chemical or physical interference which could not be eliminated).
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-07A	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
RL-11	Elevated reporting limit due to high concentration of target compounds.
RL-13	Elevated reporting limit due to high concentration of non-target compounds.
S-02	The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.
V-36	Initial calibration verification (ICV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260D in Water		
Acetone	NC	
Acrylonitrile	NC	
tert-Amyl Methyl Ether (TAME)	NC	
Benzene	NC	
Bromobenzene	NC	
Bromochloromethane	NC	
Bromodichloromethane	NC	
Bromoform	NC	
Bromomethane	NC	
2-Butanone (MEK)	NC	
tert-Butyl Alcohol (TBA)	NC	
n-Butylbenzene	NC	
sec-Butylbenzene	NC	
tert-Butylbenzene	NC	
tert-Butyl Ethyl Ether (TBEE)	NC	
Carbon Disulfide	NC	
Carbon Tetrachloride	NC	
Chlorobenzene	NC	
Chlorodibromomethane	NC	
Chloroethane	NC	
Chloroform	NC	
Chloromethane	NC	
2-Chlorotoluene	NC	
4-Chlorotoluene	NC	
1,2-Dibromo-3-chloropropane (DBCP)	NC	
1,2-Dibromoethane (EDB)	NC	
Dibromomethane	NC	
1,2-Dichlorobenzene	NC	
1,3-Dichlorobenzene	NC	
1,4-Dichlorobenzene	NC	
trans-1,4-Dichloro-2-butene	NC	
Dichlorodifluoromethane (Freon 12)	NC	
1,1-Dichloroethane	NC	
1,2-Dichloroethane	NC	
1,1-Dichloroethylene	NC	
cis-1,2-Dichloroethylene	NC	
trans-1,2-Dichloroethylene	NC	
1,2-Dichloropropane	NC	
1,3-Dichloropropane	NC	
2,2-Dichloropropane	NC	
1,1-Dichloropropene	NC	
cis-1,3-Dichloropropene	NC	
trans-1,3-Dichloropropene	NC	
Diethyl Ether	NC	
Diisopropyl Ether (DIPE)	NC	
1,4-Dioxane	NC	
Ethylbenzene	NC	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260D in Water	
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

		Г	Γ	П			W.			W.			8.3	N.				v svi	W.D.V				73. T	711			W.			A.Y		T	ab I	le of	Cont	ents
	Page to Of	# of Containers	² Preservation Code	³ Container Code	aldmes sterent pentossic	Field Filtered	Lab to Filter		saldiniss aveitidsolidoitinis	Field Filtered	Lab to Filter		1 Matrix Codes	GW = Ground Water	WW = Waste Water DW = Drinking Water	A = Air	SL Sludge	ono ner (pleas	define)	2 Preservation Codes:	HCI		A = Sodium T = Sodium Thisesifeto	I niosuirate 0 = Other (please	define)	³ Container Codes:	A = Amber Glass G = Glass	P = Plastic	V = Vial	T = Tedlar Bag	O = Other (please			Soxhlet	Non Soxhlet	
Doc # 3/9 Kev 1_0324201/ 39 Spruce Street	w, MA 01028				ANALYSIS REQUESTED																				Please use the following codes to indicate possible sample concentration	H - High; M - Medium; L - Low; C - Clean; U - Unknown	Program Information	DSCA UST/Trust Fund	SWS Landfill REC	State lead	Other:	and the second of the second o	NETHON ARTHUR. LEE ARTHUR.	Other	☐ AHA-LAP,LLC	
http://www.contestabs.com uoc#3/9	Trend of vostoros reconstituted and the statement	7-Day 10-Day	Due Date:	Rush-Approval Required	1-Day 3-Day	2-Day 🗌 4-Day 🗍	Data D	Format: PDF 🗹 EXCEL	Other:	CLP Like Data Pkg Required:	Email To: The work of Esme w. cm	Q9/	Ending Composite Grah	Bette/Time Code	A:Kom GW W / /	Sistem M. H.									Please use the following	H - High; M - Med	North Carotina Detection Limit Requirements		GWPC	HYSB	MSCC			ntity Government Municipality	Federal Brownfield City School	
100001	Phone: 413-525-2332 Fax: 413-525-6405	Email: info@contestlabs.com		me Forest Ro Cassis No		Parcal 140	(3	8-175A	Tranie Herenewat			Honeyenth			2-18-19	3-8 Tw.2											[Date/Time;	3/20/19/ 1440 📉	Date/Time:	Date/Time:	2/20114 / 7ac -	Date/Time: 6008 and 7 h 1 m	200	Date/Time: Project Entity	Date/Time:	
	AMALYTICAL, LABORATORY		Sampery dames	33	Phone: The grand-1614	583XX583	ation:	Project Number: 4305-1	Project Manager: Tombe	Con-Test Quote Name/Number:		Sampled By:		Work Order#		7								Comments:			Relinquished/by: (signature)	and the sep	Received by: (signature)	Refinatished by: (Signature)	Muit Parley	peived by: (signature)		6 inquished by (signature)	O ceived by: (signature)	28

Delivered Thursday 2/21/2019 at 10:25 am

DELIVERED

Signed for by: B.BECCA

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Raleigh, NC US

TO

EAST LONGMEADOW, MA US

Shipment Facts

TRACKING NUMBER

774519142837

SERVICE

FedEx Priority Overnight

WEIGHT 15 lbs / 6.8 kgs

DIMENSIONS

25x14x14 in.

DELIVERED TO

Shipping/Receiving

TOTAL PIECES

1

TOTAL SHIPMENT WEIGHT

15 lbs / 6.8 kgs

TERMS

Third Party

SHIPPER REFERENCE

80

PACKAGING

Your Packaging

SPECIAL HANDLING SECTION

Deliver Weekday, Additional Handling

Surcharge

STANDARD TRANSIT

(?)

2/21/2019 by 10:30 am

SHIP DATE

3)

Wed 2/20/2019

ACTUAL DELIVERY

Thu 2/21/2019 10:25 am

Travel History

Local Scan Time

Thursday, 2/21/2019

10:25 am

EAST LONGMEADOW, MA

Delivered

8:58 am

WINDSOR LOCKS, CT

On FedEx vehicle for delivery

8:47 am

WINDSOR LOCKS, CT

At local FedEx facility

Page 27 of 28

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

ogin Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False
Statement will be brought to the attention of the Client - State True or False

Client	5+1	16			Ĺ	1			
Receiv	ed By	PA-P		Date	2 2	-1/19	Time	10'25	
How were th	ne samples	In Cooler	-	No Cooler		On Ice	1	No Ice	
recei	ved?	Direct from Samp	ling	_		 Ambient		Melted Ice	
Were samp	alaa within		By Gun #	1		Actual Tem	p- 49	-	
Temperatu		T	By Blank #			Actual Tem	n -		•
•	Custody Se	eal Intact?	M	We	re Sampl	es Tampered		NA	•
	COC Relin		T-		•	gree With Sa		T	.
		eaking/loose caps	on any sam		F		,	W-W.	-
Is COC in in		•	•	_		_ eived within h	olding time?		
Did COC is	nclude all	Client	Τ	Analysis	T	Sampl	er Name	7	-
pertinent Inf	formation?	Project	7	ID's	τ	Collection	Dates/Times	3 7	"
Are Sample	labels filled	d out and legible?	T	_					_
Are there La	b to Filters?	•	F		Who wa	as notified?			
Are there Ru	shes?				Who wa	as notified?			
Are there Sh	ort Holds?		F		Who wa	as notified?			•
Is there enou	ugh Volume	?	T						•
Is there Hea	dspace whe	ere applicable?	F		MS/MSD	?_+	_	•	
Proper Medi	a/Container	s Used?	Τ-		ls splitting	samples red	quired?	4	
Were trip bla	anks receive	ed?			On COC	? F	_		•
				A			_		
Do all sampl	es have the	proper pH?	M	Acid _			Base		-
Vials	es have the	Containers:	#			#			#
Vials Unp-	#	Containers: 1 Liter Amb.		1 Liter f		#	16 oz	z Amb.	#
Vials Unp- HCL-		Containers: 1 Liter Amb. 500 mL Amb.	#	1 Liter F 500 mL	Plastic	#	16 oz 8oz An	nb/Clear	#
Vials Unp- HCL- Meoh-	#	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.	#	1 Liter f 500 mL 250 mL	Plastic Plastic	#	16 oz 8oz An 4oz An	nb/Clear nb/Clear	#
Vials Unp- HCL- Meoh- Bisulfate-	#	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint	#	1 Liter f 500 mL 250 mL Col./Ba	Plastic Plastic cteria	#	16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear nb/Clear	#
Vials Unp- HCL- Meoh- Bisulfate- DI-	#	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass	#	1 Liter F 500 mL 250 mL Col./Ba Other F	Plastic Plastic cteria Plastic	#	16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate-	#	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit	#	1 Liter F 500 mL 250 mL Col./Ba Other F Plastic	Plastic Plastic cteria Plastic Bag	#	16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear nb/Clear	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate-	#	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass	#	1 Liter F 500 mL 250 mL Col./Ba Other F	Plastic Plastic cteria Plastic Bag	#	16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear nb/Clear	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-	#	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate	# 4	1 Liter F 500 mL 250 mL Col./Ba Other F Plastic	Plastic Plastic ecteria Plastic Bag ock		16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear nb/Clear	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-	#	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers:	#	1 Liter for 500 mL 250 mL Col./Ba Other F Plastic Ziplo Unused M	Plastic Plastic octeria Plastic Bag ock	#	16 oz 8oz An 4oz An 2oz An En Frozen:	nb/Clear nb/Clear nb/Clear core	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp-	#	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb.	# 4	1 Liter F 500 mL 250 mL Col./Ba Other F Plastic Ziplo Unused N	Plastic Plastic Interia Plastic Plastic Region Region Plastic Region Plastic Plastic		16 oz 8oz An 4oz An 2oz An En- Frozen:	nb/Clear nb/Clear nb/Clear core	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL-	#	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb.	# 4	1 Liter f 500 mL 250 mL Col./Ba Other F Plastic Ziplo Unused N 1 Liter f 500 mL	Plastic Plastic cteria Plastic Bag ock ledia Plastic Plastic		16 oz 8oz An 4oz An 2oz An En Frozen:	nb/Clear nb/Clear nb/Clear core	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh-	#	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.	# 4	1 Liter F 500 mL 250 mL Col./Ba Other F Plastic Ziplo Unused N 1 Liter F 500 mL 250 mL	Plastic Plastic cteria Plastic Bag ock Media Plastic Plastic Plastic		16 oz 8oz An 4oz An 2oz An En- Frozen: 16 oz 8oz An 4oz An	nb/Clear nb/Clear nb/Clear core	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate-	#	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria	# 4	1 Liter F 500 mL 250 mL Col./Ba Other F Plastic Ziplo Unused N 1 Liter F 500 mL 250 mL Flash	Plastic Plastic cteria Plastic Bag ock Media Plastic Plastic Plastic Plastic Coint		16 oz 8oz An 4oz An 2oz An En- Frozen: 16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear nb/Clear core	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI-	#	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic	# 4	1 Liter F 500 mL 250 mL Col./Ba Other F Plastic Ziplo Unused N 1 Liter F 500 mL 250 mL Flash	Plastic Plastic cteria Plastic Bag ock Media Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Glass		16 oz 8oz An 4oz An 2oz An En- Frozen: 16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear nb/Clear core	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate-	#	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit	# 4	1 Liter f 500 mL 250 mL Col./Ba Other F Plastic Ziplo Unused f 1 Liter f 500 mL 250 mL Flash Other G Plastic	Plastic Plastic cteria Plastic Bag ock Media Plastic Plastic Plastic Plastic Plastic Slass Bag		16 oz 8oz An 4oz An 2oz An En- Frozen: 16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear nb/Clear core	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-	#	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic	# 4	1 Liter F 500 mL 250 mL Col./Ba Other F Plastic Ziplo Unused N 1 Liter F 500 mL 250 mL Flash	Plastic Plastic cteria Plastic Bag ock Media Plastic Plastic Plastic Plastic Plastic Slass Bag		16 oz 8oz An 4oz An 2oz An En- Frozen: 16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear nb/Clear core	# # # # # # # # # # # # # # # # # # #
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate-	#	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit	# 4	1 Liter f 500 mL 250 mL Col./Ba Other F Plastic Ziplo Unused f 1 Liter f 500 mL 250 mL Flash Other G Plastic	Plastic Plastic cteria Plastic Bag ock Media Plastic Plastic Plastic Plastic Plastic Slass Bag		16 oz 8oz An 4oz An 2oz An En- Frozen: 16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear nb/Clear core	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-	#	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit	# 4	1 Liter f 500 mL 250 mL Col./Ba Other F Plastic Ziplo Unused f 1 Liter f 500 mL 250 mL Flash Other G Plastic	Plastic Plastic cteria Plastic Bag ock Media Plastic Plastic Plastic Plastic Plastic Slass Bag		16 oz 8oz An 4oz An 2oz An En- Frozen: 16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear nb/Clear core	#