

April 29, 2019

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: Preliminary Site Assessment Report

NCDOT Project I-5986B, WBS Element 47532.1.3

Parcel 118-Midwest Transport

3607 Hodges Chapel Road

Dunn, Harnett County, North Carolina

S&ME Project 4305-18-175A

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 4305-18-175 CO-01 REV-01 dated January 2, 2019, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its January 8, 2019 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's November 2, 2018, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
118	Sease 1995 Family Partnership	(Midwest Transport)
		3607 Hodges Chapel Road, Dunn, NC

The property is developed with an active trucking company and garage identified as Midwest Transport. The property is not listed with registered petroleum underground storage tanks (USTs) (active or closed). The property is also not listed with North Carolina Department of Environmental Quality (NCDEQ) Incidents associated with petroleum releases from USTs or aboveground storage tanks. However, what appears to be former dispenser islands located beneath a canopy are located on the eastern portion of the property.

The PSA included a geophysical survey, subsequent limited soil sampling (seven soil borings up to 10 feet below ground surface (ft.-bgs.) and limited groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site

location, and **Figure 2** shows the site and boring locations. Soil and groundwater sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (Troxler Geologic, Inc.) was also used to locate and mark underground utilities.

Geophysical Survey

On February 5 and 6, 2019, S&ME personnel performed a geophysical survey within accessible areas of the proposed ROW/easement at Parcel 118. S&ME used a combination of the Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) methods to explore for buried subsurface features at the site such as underground storage tanks (USTs) and other possible buried obstructions. Brief descriptions of these complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820-02 (2007) "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The presence of vehicles, thick vegetation, and other surficial obstructions within the requested survey area however prevented TDEM data collection in several locations. The approximate TDEM data collection paths are presented in **Figure 4**. Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 3000 GPR system equipped with a 400 MHz antenna in general accordance with ASTM D6432-11 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of thirteen (13) GPR profiles (Lines 1 through 13) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. However, one anomalous subsurface feature (Anomaly A) unrelated to known surficial targets was identified in the geophysical data sets (**Figures 5 through 7**). Anomaly A is characterized by high amplitude GPR responses at about one ft.-bgs and likely related to an isolated buried metallic target/debris. The identified anomaly was also marked in the field using white spray paint. Example GPR profiles are presented in **Figure 8**.

Soil Sampling

On February 18 and 19, 2019, Troxler Geologic, Inc. (Troxler's) drill crew utilized a track mounted Geoprobe® rig to advance seven soil borings (B-1 through B-7) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 118. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I.** Troxler's drill crew advanced the Geoprobe® borings up to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately seven to eight ft.-bgs across the site. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II.**

Petroleum odors and elevated PID readings were noted at soil boring B-2 at the four to six foot and eight to ten foot depth intervals, which are slightly above and at the groundwater level encountered at this boring. Groundwater was encountered at boring B-2 at a depth of eight ft-bgs. Petroleum odors and elevated PID readings were not noted at the other soil borings on the site. Therefore, various soil samples at varying depth intervals were selected from each boring and provided to RED Lab, LLC (Red Lab) for on-site analysis. A total of 14 soil samples were analyzed by RED Lab for Total Petroleum Hydrocarbons (TPH)-Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

TPH-GRO and TPH-DRO were not reported at concentrations exceeding the North Carolina TPH Action Levels. TPH-DRO was reported at boring B-2 at the four to six foot depth interval and the eight to ten foot depth interval at concentrations of 31.7 milligrams per kilograms and 25.1 mg/kg, respectively, which are below its North Carolina TPH Action Level of 100 mg/kg. TPH-DRO was reported in borings B-1, B-4, B-5 and B-6 at the two to four foot depth interval at concentrations ranging from 0.49 mg/kg to 0.96 mg/kg. TPH-DRO was reported at boring B-1 at the eight to ten foot depth interval at a concentration of 0.17 mg/kg and boring B-3 at the four to six foot depth interval at a concentration of 0.08 mg/kg. TPH-GRO was reported at borings B-2 at the four to six foot and eight to ten foot depth intervals at concentrations of 15.7 mg/kg and 4.4 mg/kg, respectively, which are below its North Carolina TPH Action Level of 50 mg/kg. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered within approximately 10 ft.-bgs. Therefore, the Geoprobe® was used to advance one of the soil borings into the groundwater table for the collection of a groundwater sample. Based on petroleum odors, elevated PID readings and analytical results of soil samples, soil boring B-2 was selected for the collection of a groundwater sample. A groundwater sample was collected by advancing the Geoprobe® groundwater sampling screen into the borehole and extending it from a depth of approximately eight to twelve ft.-bgs. Groundwater was purged from the screen until relatively clear using disposable tubing attached to a peristaltic pump. The flow rate was reduced and laboratory supplied containers were filled directly from the tubing, labeled as B-2/TW-1 and placed in an insulated cooler with ice for transport to Con-Test Laboratories for analysis of VOCs by EPA Method 8260 and polycyclic aromatic compounds (PAHs) by EPA Method 8270.

Upon completion of the soil and groundwater sampling, the sampling equipment was removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as additional soil cuttings generated during the soil boring advancement, purge water and decontamination water, were spread on the ground in accordance with the procedures specified by North Carolina Department of Environmental Quality (NCDEQ). Used gloves, tubing, re-sealable bags and acetate sleeves were bagged and disposed off-site.

Groundwater Analytical Results

Based upon analytical results of groundwater samples analyzed by Con-Test Laboratories, numerous target constituents were reported at concentrations exceeding their laboratory method reporting limits but none exceeded their 15A NCAC 2L Groundwater Quality Standards (2L Standards). A summary of the groundwater analytical results is presented in **Table 2** and shown on **Figure 3**. A copy of the laboratory analytical report provided by Con-Test Laboratories is presented in **Appendix III**.

Conclusion and Recommendations

The geophysical survey identified one anomaly (Anomaly A) which is likely related to a buried isolated metallic target/debris. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced seven soil borings (B-1 through B-7) to a depth of up to approximately 10 ft.-bgs at the site. Petroleum odors and elevated PID readings were noted at soil boring B-2 at the four to six foot and eight to ten foot depth intervals. Groundwater was encountered at boring B-2 at a depth of approximately eight ft-bgs. Selected soil samples from the soil borings were analyzed onsite for TPH-GRO and TPH-DRO using UVF spectroscopy. TPH-DRO was reported in soils samples collected at borings B-1, B-2, B-3, B-4, B-5 and B-6 at depths ranging from two to ten ft-bgs. TPH-GRO was reported in soil samples collected at boring B-2 at depths of four to six and eight to ten ft.-bgs. However, TPH-DRO and TPH-GRO were not reported at concentrations exceeding their North Carolina TPH Action Levels. During the soil boring advancement, groundwater was encountered at depths ranging from approximately seven to eight ft-bgs across the site. One temporary well (TW-1) was installed at soil boring B-2. Groundwater at TW-1 was measured at eight ft.-bgs and analyzed by Con-Test Laboratories for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. Numerous target constituents were reported in the groundwater at concentrations exceeding their laboratory method reporting limits but below their 2L Standards.

Within the vicinity of soil boring B-2, petroleum impacted soil may be encountered, where petroleum odors and elevated PID readings and petroleum detections in soil at concentrations below the North Carolina TPH Action Levels were reported. Assuming that a section of petroleum impacted soil approximately four feet thick, 40 feet in diameter at a depth of four to eight ft.-bgs, which is at the groundwater table; up to 200 cubic yards of soil near boring B-2 may be impacted.

S&ME recommends maintaining an awareness level for the presence of marginally impacted petroleum in soil (below TPH Action Levels) and in the groundwater (below 2L Standards) at the site for the safety of workers and the public. If petroleum stained or odorous soils or water are encountered during construction, these soils and water should be properly handled and disposed at a licensed facility.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., buildings, reinforced concrete, vehicles, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific, and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the

electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of approximately about five ft.-bgs.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

Jamie T Honeycutt

DocuSigned by:

4C890EAEC25F488.

5/6/2019

Pamie Honeralt

Tom Kaymon -0489f85f636f486

Environmental Professional

ihoneycutt@smeinc.com

Thomas P. Raymond, P.E., P.M.P. Senior Consultant

traymond@smeinc.com

Attachments:

Michael W. Pfeifer
Senior Project Manager

mpfeifer@smeinc.com

861E52DDEFAF4C7

Table 1: Summary of Soil Sampling Results

Table 2: Summary of Groundwater Sampling Results

Figure 1: Vicinity Map Figure 2: Site Map

Figure 3: Soil and Groundwater Constituent Map

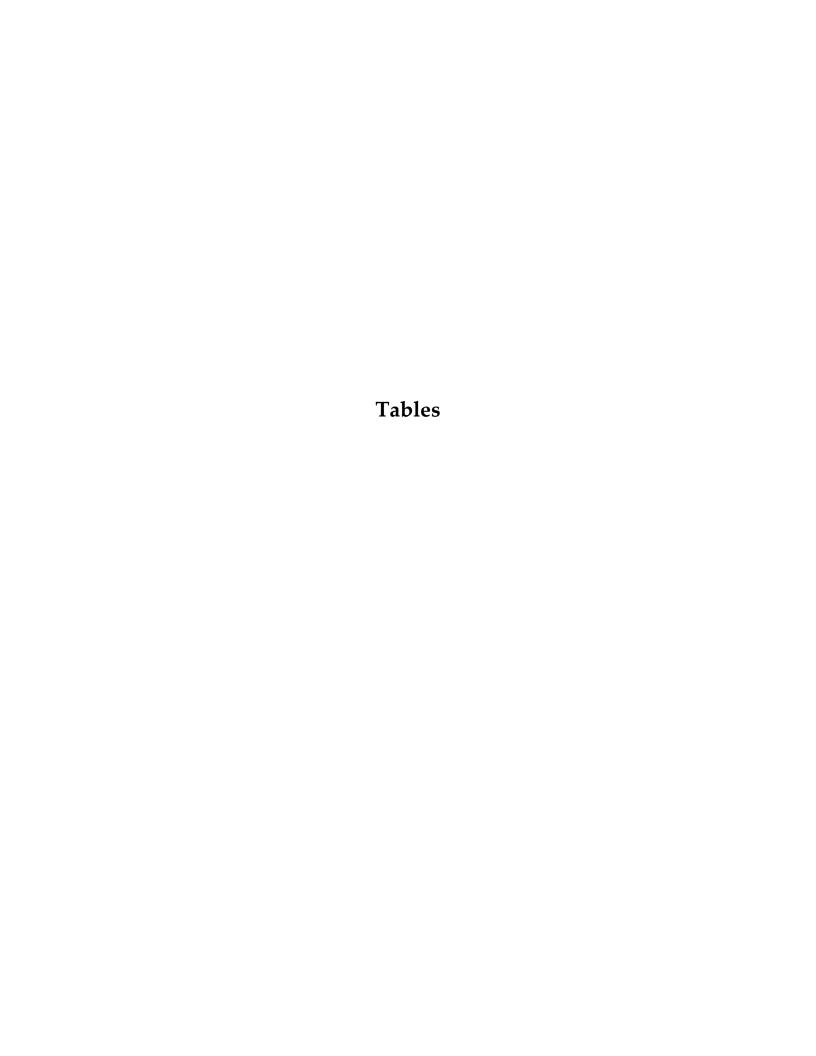

Figure 4: TDEM Path Location Plan

Figure 5: TDEM Data Plot A **Figure 6:** TDEM Data Plot B

Figure 7: Geophysical Anomaly Location Plan **Figure 8:** Example GPR Data – Lines 1 and 2

Appendix I: Photographs **Appendix II:** Boring Logs

Appendix III: Laboratory Analytical Reports and Chain of Custody

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5986B

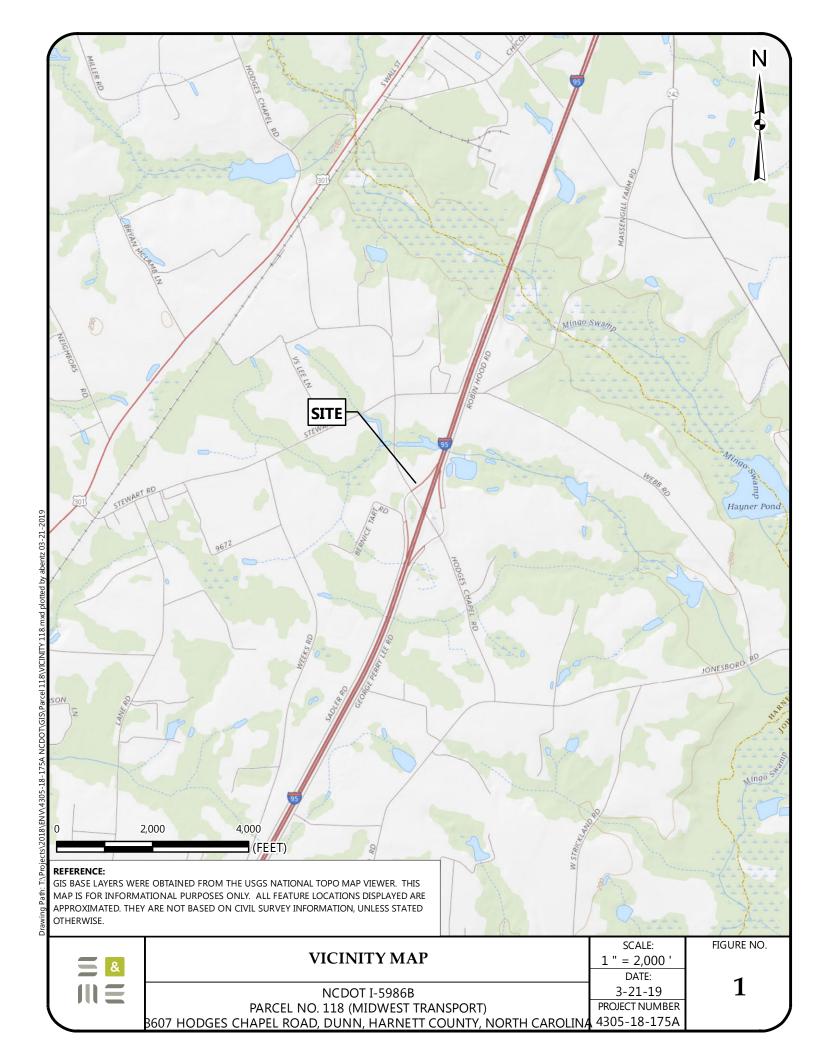
Parcel 118 - (Midwest Transport) 3607 Hodges Chapel Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175A

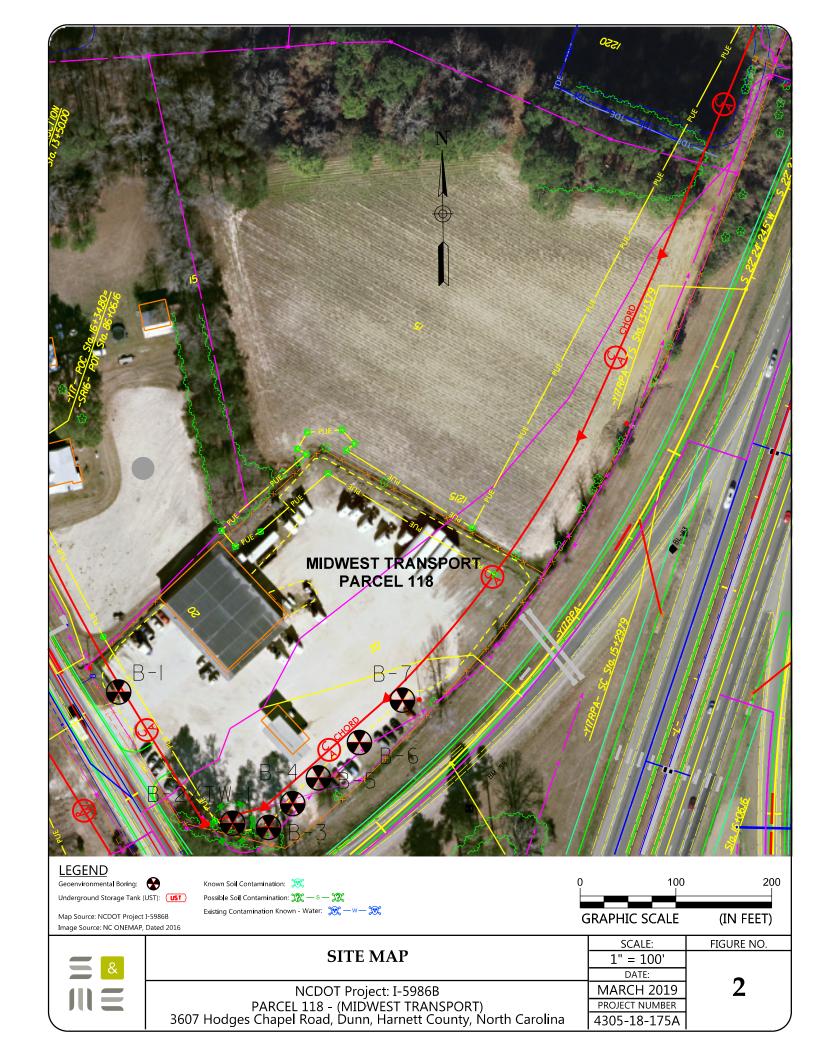
Ar	nalytical Metho	d→	Range Organics (GR Organics (DRO) by Ul	carbons (TPH) Gasoline (O) and Diesel Range traviolet Fluorescence ectrometry
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO
B-1	2/18/2019	2 to 4	<0.54	0.58
БТ	2/10/2013	8 to 10	<0.59	0.17
B-2	2/18/2019	4 to 6	15.7	31.7
D-2	2/10/2019	8 to 10	4.4	25.1
B-3	2/18/2019	2 to 4	<0.52	<0.21
D-3	2/10/2019	4 to 6	<0.53	0.08
B-4	2/19/2019	2 to 4	<0.58	0.49
D-4	2/19/2019	4 to 6	<0.58	<0.23
B-5	2/19/2019	2 to 4	<0.51	0.96
D-0	2/19/2019	4 to 6	<0.6	<0.24
B-6	2/19/2019	2 to 4	<0.52	0.82
D-0	2/13/2019	4 to 6	<0.53	<0.21
B-7	2/19/2019	2 to 4	<0.48	<0.19
D-1	2/13/2019	4 to 6	<0.66	<0.26
No	orth Carolina T	PH Action Levels	50	100

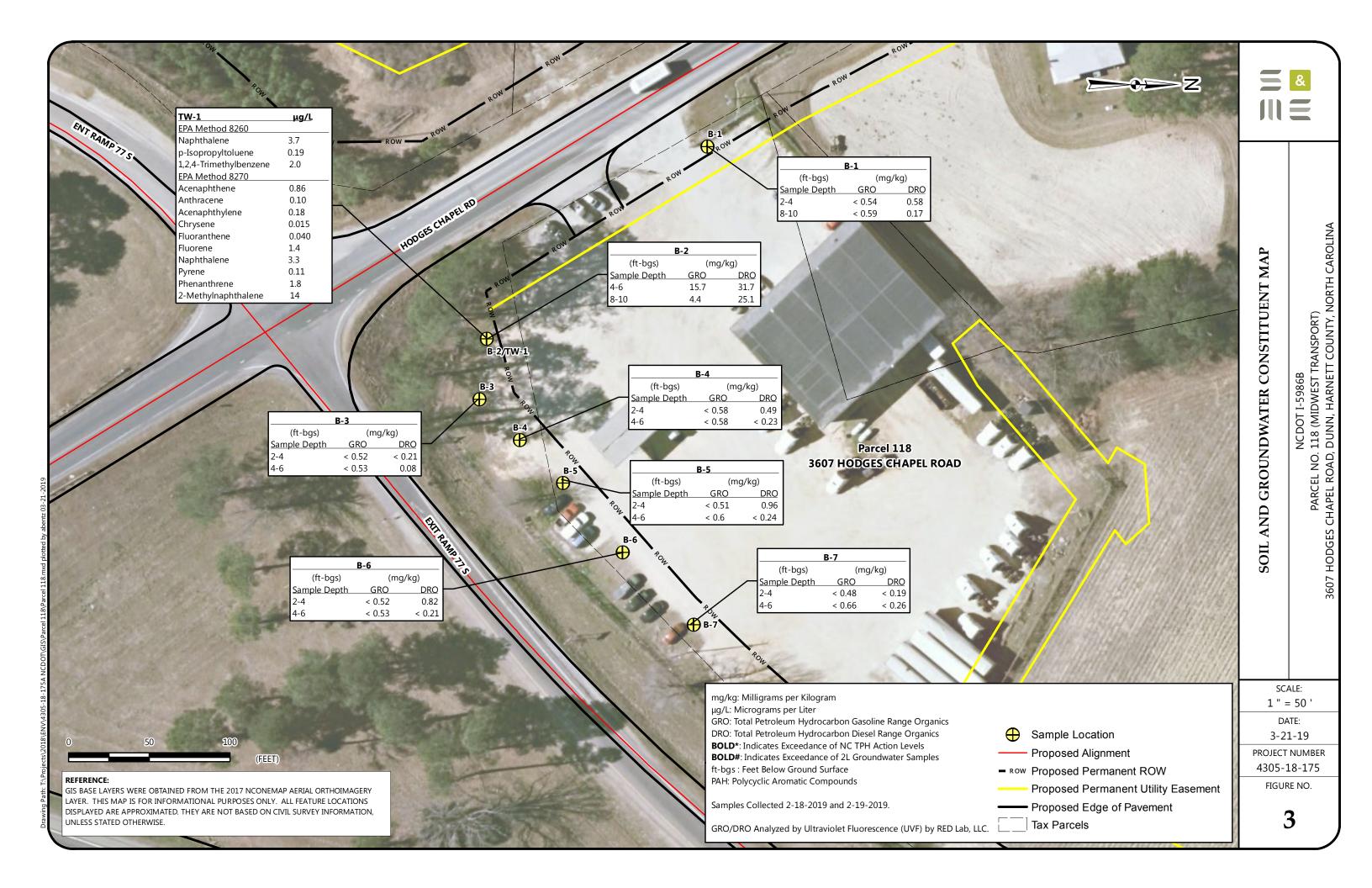
Notes:

- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and BOLD fields.

TABLE 2 SUMMARY OF GROUNDWATER SAMPLING RESULTS


NCDOT Project I-5986B
Parcel 118 - (Midwest Transport)
3607 Hodges Chapel Road
Dunn, Harnett County, North Carolina
S&ME Project No. 4305-18-175A


Analytical	Method→					Polycyc	lic Aror	natic Cor	npounds	(PAH	s) by EF	PA Meth	od 827	0
Sample ID	Contaminant of Concern→	<u> </u>	p-IsopropyItoluene	1,2,4- Trimethylbenzene	Acenaphthene	Anthracene	Acenaphthylene	Chrysene	Fluoranthene	Fluorene	Naphthalene	Pyrene	Phenanthrene	2- Methylnaphthalene
B-2/TW-1	2/19/2019	3.7 J	0.19 J	2.0	0.86	0.10 J	0.18 J	0.015 J	0.040 J	1.4	3.3	0.11 J	1.8	14
2L S	Standard (µg/L)	6	25	400	80	2,000	200	5	300	300	6	200	200	30
	GCL (µg/L)	6,000	11,700	28,500	2,120	2,000	1,965	5	300	990	6,000	200	410	12,500


Notes:

- 1. Analytes that are not shown for the method were not detected.
- 2. Concentrations are reported in micrograms per liter (µg/L).
- 3. 2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- 5. Concentrations exceeding the 2L Standards are shown in Shaded and BOLD fields.
- 6. GCL: Gross Contamination Level.
- 7. J: Estimated concentration detected below the reporting limit.

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

Approximate TDEM Path

Approximate Requested Survey Area

TDEM PATH LOCATION PLAN

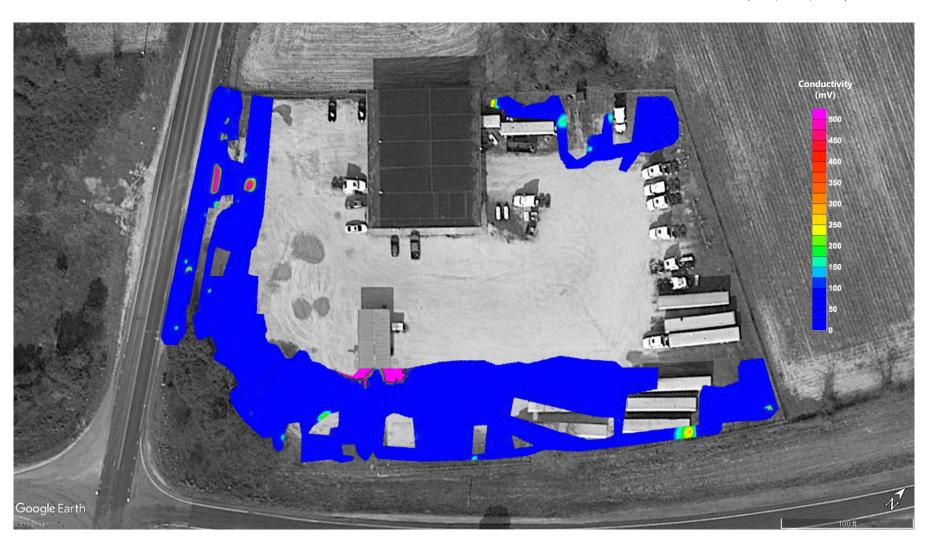
NCDOT PROJECT: I-5986B PARCEL 118 – (MIDWEST TRANSPORT) 3607 HODGES CHAPEL ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 3/21/2019

PROJECT NUMBER 4305-18-175A

FIGURE NO.



(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

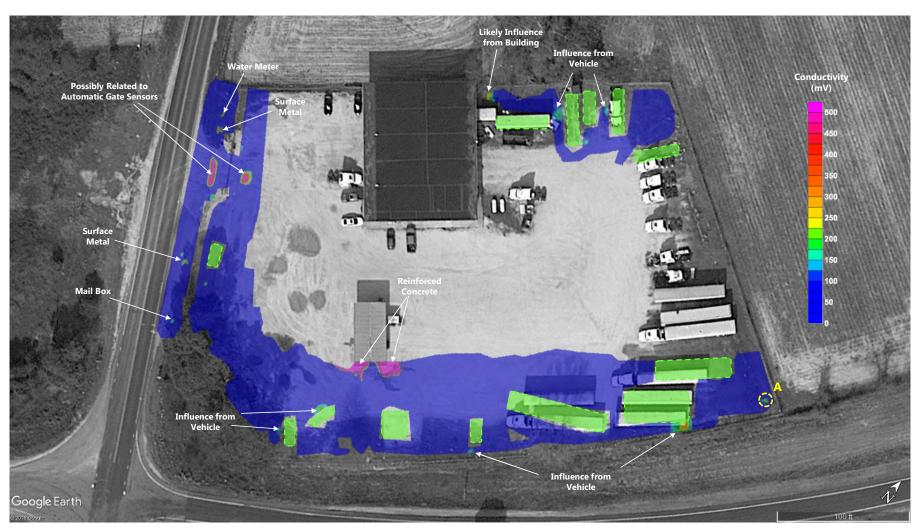
TDEM DATA PLOT A

NCDOT PROJECT: I-5986B PARCEL 118 – (MIDWEST TRANSPORT) 3607 HODGES CHAPEL ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 3/21/2019

PROJECT NUMBER 4305-18-175A


FIGURE NO.

5

REFERENCE:

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

Approximate Location of TDEM Anomaly

Approximate Location of Vehicles

TDEM DATA PLOT B

NCDOT PROJECT: I-5986B

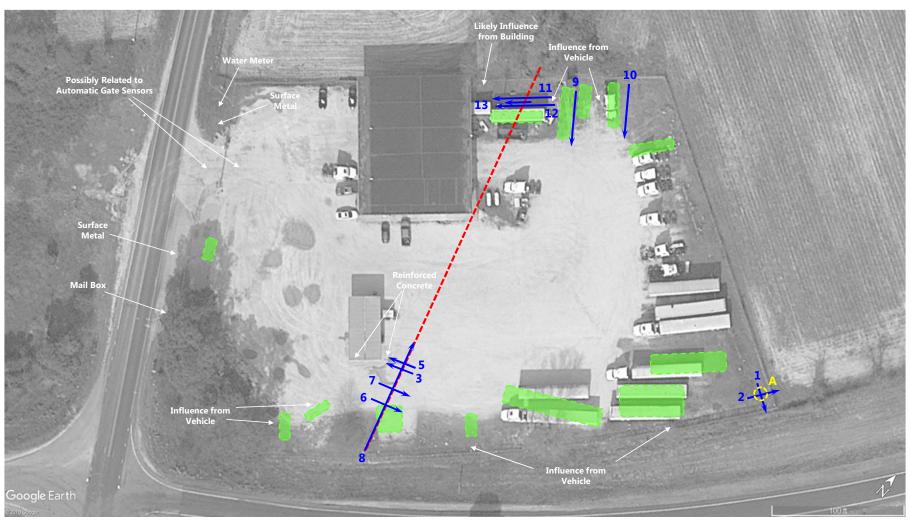
PARCEL 118 – (MIDWEST TRANSPORT)
3607 HODGES CHAPEL ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 3/21/2019

PROJECT NUMBER 4305-18-175A

FIGURE NO.



REFERENCE:

Approximate Location of Possible Storm Utility

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

SCALE: AS SHOWN

NCDOT PROJECT: I-59868 PARCEL 118 – (MIDWEST TRANSPORT) 3607 HODGES CHAPEL ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

GEOPHYSICAL ANOMALY LOCATION PLAN

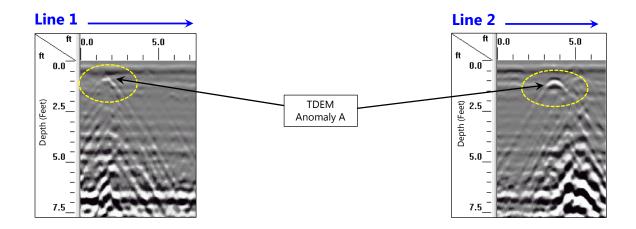
DATE: 3/21/2019

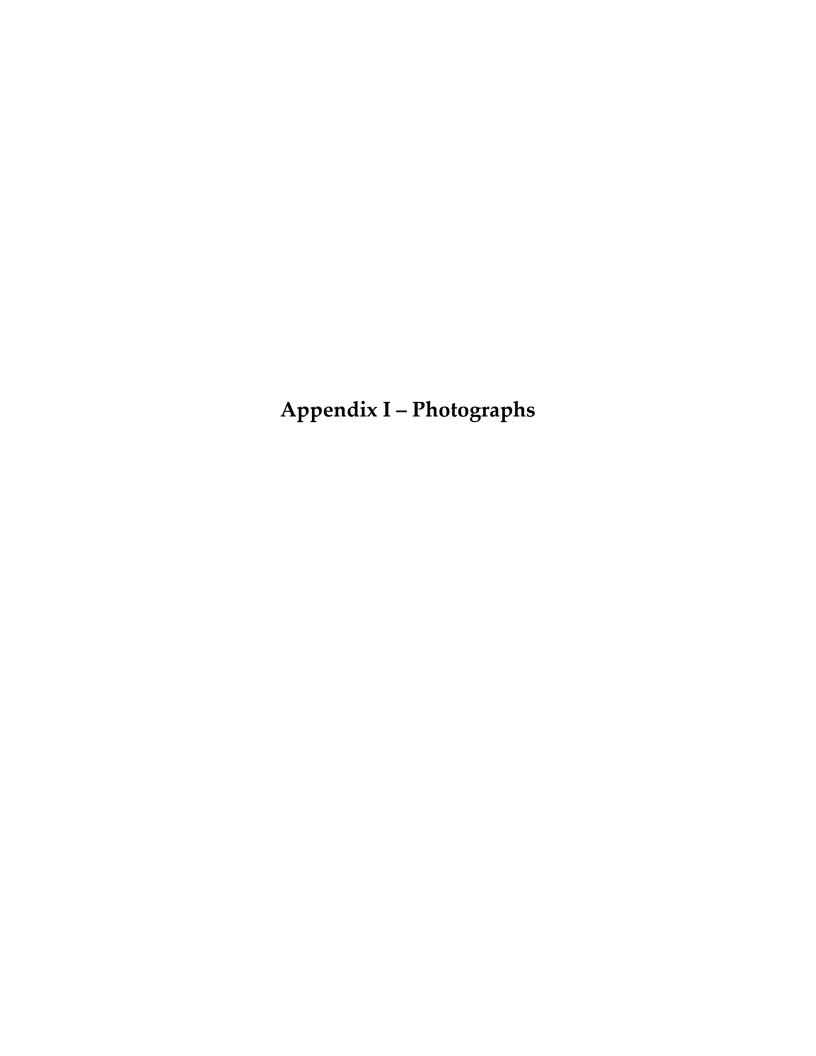
PROJECT NUMBER 4305-18-175A

FIGURE NO.

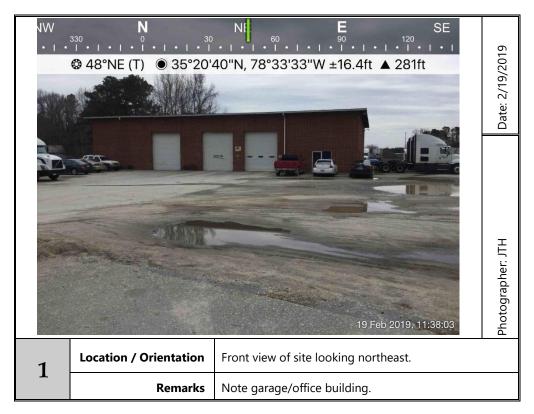
LEGEND

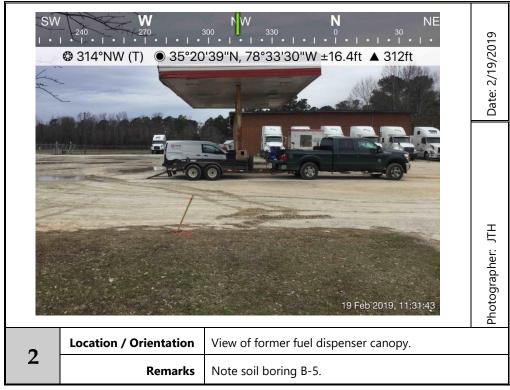
Approximate Location of TDEM Anomaly Approximate Location of GPR Profile


Approximate Location of Vehicles



PROJECT NUMBER 4305-18-175A

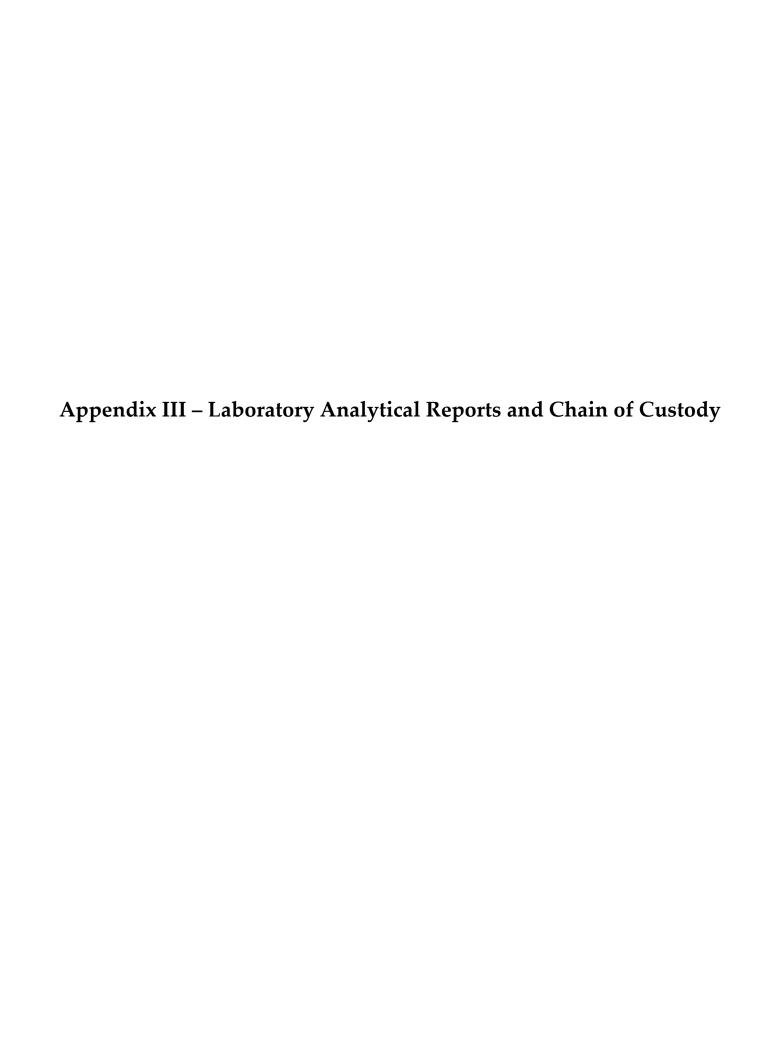

FIGURE NO.


8

April 29, 2019

PROJECT:	NCDOT I-5986B Parcel 118-3607 Hodges Chapel Road, Dunr	n, NC			BORIN	IG LOG:	: B-1			
	S&ME Project No. 4305-18-175A									
DATE DRILLED:	Monday, February 18, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 6620 DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Applic	cable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeycı	utt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	el, , Orange, Coarse, Sand, Brown,				3.2	No Yes				
5 —	ey Sand, Orange, Gray,			Ī	3.7	No				
				I	1.7	No				
	ng Terminated at 10 Ft-BGS				3.0	Yes				
15 — — — —										
20 —										
25 — — — —										
30										

PROJECT:	NCDOT I-5986B Parcel 118-3607 Hodges Chapel Road, Dunr	n, NC			BORIN	IG LOG	: B-2/	TW-1		
	S&ME Project No. 4305-18-175A									
DATE DRILLED:	Monday, February 18, 2019	BORING DEPTH (FT):								
DRILL RIG:	Geoprobe 6620 DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	utt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) (Geet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Sand	t, Orange, Coarse,			ł	2.0	No				
5 — Claye	ey Sand, Orange, Black, Petroleum Odors			ŧ	3.0	No				
				ŧ	15.2	Yes				
			•	ŧ	4.6	No				
10 Borir	ng Terminated at 10 Ft-BGS			ľ	10.1	Yes				
15 — 15 — 20 — 25 — 30 — 30										


PROJEC [*]	Т:	NCDOT I-5986B									
		Parcel 118-3607 Hodges Chapel Road, Dur	ın, NC			BORIN	NG LOG	B-3			
		S&ME Project No. 4305-18-175A	1								
DATE DRIL		Monday, February 18, 2019	BORING DEPTH (FT):								
DRILL RIG:		Geoprobe 6620 DT	WATER LEVEL:								
DRILLER:	7.05	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER		Not Applicable	LOGGED BY:	J. Honey	cutt						
	METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		ı	1	I	1		1	I
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Sand, Orange, Red, Sandy Clay, Gray,				2.8	No Yes				
5 — —	-				H	4.1	Yes				
— —				•							
10 —		Boring Terminated at 10 Ft-BGS									
15 —											
_	_										
20 —											
_ _											
25 — —											
	-										
30 —	1										

PROJECT:	NCDOT I-5986B Parcel 118-3607 Hodges Chapel Road, Dunr	n, NC			BORIN	IG LOG	B-4			
DATE DOLLED	S&ME Project No. 4305-18-175A	DODING DESTINATION	0							
DATE DRILLED:	Monday, February 18, 2019	BORING DEPTH (FT):								
DRILL RIG:	Geoprobe 6620 DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	utt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:				1				
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Sand	, Orange, Red,			ŧ	2.2	No				
	y Clay, Gray,			I	2.2	Yes				
5 —				H	3.1	Yes				
Borin	g Terminated at 8 Ft-BGS		•							
10 —										
15 —										
20 —										
25 —										
30										

PROJECT:	NCDOT I-5986B									
	Parcel 118-3607 Hodges Chapel Road, Du				BORIN	NG LOG	B-5			
	S&ME Project No. 4305-18-175A									
DATE DRILLED:	Tuesday, February 19, 2019	BORING DEPTH (FT):								
DRILL RIG:	Geoprobe 6620 DT	WATER LEVEL:		Page 1						
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		ı	1	I	1		1	I
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
• • • • • G	ravel, Flack, Flack, Flack Conserved			ш						
	ayey Sand, Orange,			ł	0.3	No				
- I I I I I I I	lty Sand, Black,			Ŧ	0.9	Yes				
_	ayey Sand, Brown, Tan,			Ŧ	0.9	Yes				
			•							
	ayey Sand, Gray,									
10 B	oring Terminated at 10 Ft-BGS									
15 —										
20 —										
25 —										
30				1	I	İ	I		I	l

Parcel II 3-807 Hodges Chaple Road, Dunn, NC S&MS Freject No. 4305 18-175A	PROJECT:	NCDOT I-5986B									
DATE DRILL SPZ			n, NC			BORIN	NG LOG	В-6			
DRILLER Control Cont	DATE DRILLED:		BORING DEPTH (FT):	10							
Delicities											
MARTENAL DESCRIPTION					icable						
SAMPINE METHOD: Marce Core Sampler (3 in OD) EASTING:											
Delication Del											
Mail Black Sisty Sand, Gray, Sisty Sand,											
Sity Sand, Black, Clayey Sand, Brown, Tan, Clayey Sand, Gray, Clayey Sand, Gray, Boring Terminated at 10 Ft-8GS	DEPTH (feet) GRAPHIC LOG	 		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	10 Borin	el, Black, ey Sand, Orange, Sand, Black, ey Sand, Brown, Tan, ey Sand, Gray,				0.8	No Yes	Sal			

PROJECT:	NCDOT I-5986B									
	Parcel 118-3607 Hodges Chapel Road, Dun S&ME Project No. 4305-18-175A	n, NC			BORIN	IG LOG:	B-7			
DATE DRILLED:	Tuesday, February 19, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 6620 DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:		icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
	-						_			
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Grav Clay	rel, rel, Black, ey Sand, Orange,			l	0.8	No				
					0.9	Yes				
_	Sand, Black, ey Sand, Brown, Tan,			ł	1.0	Yes				
			•		1.0					
Clay	ey Sand, Gray,									
10 Bori	ng Terminated at 10 Ft-BGS									
15 —										
20 —										
25 —										
30										

Hydrocarbon Analysis Results

Client: S&ME

Address:

Samples taken Samples extracted Monday, February 18, 2019

Comples extracted

Monday, February 18, 2019

Samples analysed

Monday, February 18, 2019

Contact: JAMIE HONEYCUTT

Operator

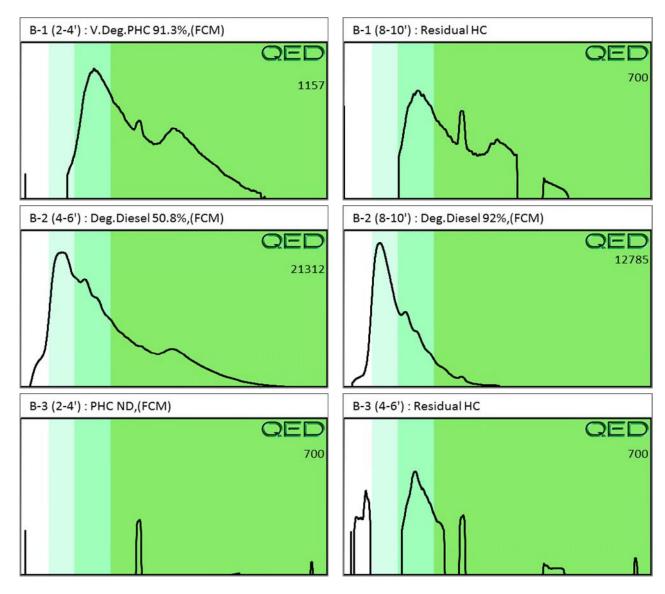
MAX MOYER

Project: 4305-18-175A; PARCEL 118

													F03640
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP	Ratios			HC Fingerprint Match
										% light	% mid	% heavy	
Soil	B-1 (2-4')	21.7	<0.54	<0.54	0.58	0.58	0.26	0.01	<0.007	0	78.5	21.5	V.Deg.PHC 91.3%,(FCM)
Soil	B-1 (8-10')	23.6	<0.59	< 0.59	0.17	0.17	0.16	0.02	<0.007	0	80.1	19.9	Residual HC
Soil	B-2 (4-6')	19.0	<0.47	15.7	31.7	47.4	24	0.91	0.002	44	55	1.1	Deg.Diesel 50.8%,(FCM)
Soil	B-2 (8-10')	19.0	<0.47	4.4	25.1	29.5	13.9	0.48	<0.006	27.7	71.5	0.8	Deg.Diesel 92%,(FCM)
Soil	B-3 (2-4')	20.8	<0.52	<0.52	<0.21	<0.52	<0.01	<0.01	<0.006	0	0	0	PHC ND,(FCM)
Soil	B-3 (4-6')	21.1	<0.53	<0.53	0.08	0.08	0.07	0.008	<0.006	0	100	0	Residual HC
	1 11 10	121		OV					Et aut Ed			OIC	00.00/

Initial Calibrator QC check OK

Final FCM QC Check OK


98.6%

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content

Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present

Project: 4305-18-175A; PARCEL 118

Hydrocarbon Analysis Results

Client: S&ME Address: Samples takenTuesday, February 19, 2019Samples extractedTuesday, February 19, 2019

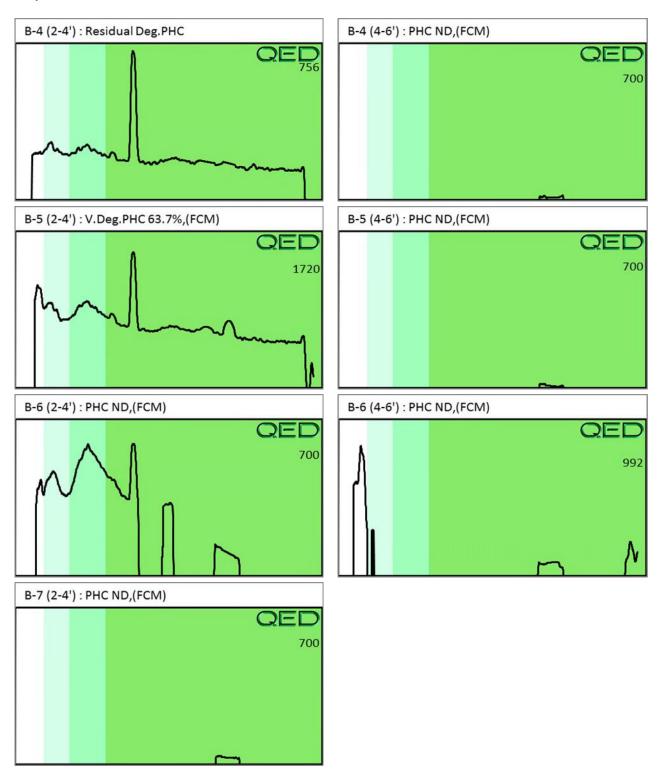
Samples analysed Tuesday, February 19, 2019

Contact: JAMIE HONEYCUTT Operator MAX MOYER

Project: 4305-18-175A; PARCEL 118

													F03640
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	Ratios			HC Fingerprint Match
										% light	% mid	% heavy	
Soil	B-4 (2-4')	23.0	<0.58	<0.58	0.49	0.49	0.47	0.05	<0.007	0	93.3	6.7	Residual Deg.PHC
Soil	B-4 (4-6')	23.0	<0.58	<0.58	<0.23	<0.58	<0.01	<0.01	<0.007	0	0	0	PHC ND,(FCM)
Soil	B-5 (2-4')	20.3	<0.51	<0.51	0.96	0.96	0.46	0.02	0.001	0	77	23	V.Deg.PHC 63.7%,(FCM)
Soil	B-5 (4-6')	23.9	<0.6	<0.6	<0.24	<0.6	<0.01	<0.01	<0.007	0	0	0	PHC ND,(FCM)
Soil	B-6 (2-4')	21.0	<0.52	<0.52	0.82	0.82	0.68	0.08	<0.006	0	97.7	2.3	PHC ND,(FCM)
Soil	B-6 (4-6')	21.1	<0.53	<0.53	<0.21	<0.53	<0.01	<0.01	<0.006	0	0	0	PHC ND,(FCM)
Soil	B-7 (2-4')	19.3	<0.48	<0.48	<0.19	<0.48	<0.01	<0.01	<0.006	0	0	0	PHC ND,(FCM)
		1.1		01/					1-			01/	440.70/

Initial Calibrator QC check OK


Final FCM QC Check OK

110.7%

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present

Project: 4305-18-175A; PARCEL 118

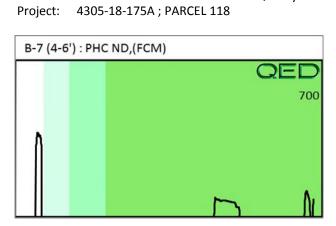
Hydrocarbon Analysis Results

Client:S&MESamples takenTuesday, February 19, 2019Address:Samples extractedTuesday, February 19, 2019

Samples analysed Tuesday, February 19, 2019

Contact: JAMIE HONEYCUTT Operator MAX MOYER

Project: 4305-18-175A; PARCEL 118


											F03640			
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	Ratios			HC Fingerprint Match	
										% light	% mid	% heavy		
Soil	B-7 (4-6')	26.3	<0.66	<0.66	<0.26	<0.66	<0.01	<0.01	<0.008	0	0	0	PHC ND,(FCM)	
	Initial Ca	alibrator (QC check	OK					Final F	CM QC	Check	OK	99.1%	

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content

Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present

QED Hydrocarbon Fingerprints

February 28, 2019

Jamie Honeycutt S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: 3607 Hodges Chapel Road, Dunn, NC

Client Job Number:

Project Number: 4305-18-175A

Laboratory Work Order Number: 19B0930

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on February 20, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	6
19B0930-01	6
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B224172	10
Semivolatile Organic Compounds by GC/MS	15
B224345	15
Flag/Qualifier Summary	17
Certifications	18
Chain of Custody/Sample Receipt	21

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616 ATTN: Jamie Honeycutt

REPORT DATE: 2/28/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-18-175A

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19B0930

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: 3607 Hodges Chapel Road, Dunn, NC

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB

B-2/ TW-1 19B0930-01 Ground Water SW-846 8260D

SW-846 8270D

EXECUTIVE SUMMARY

Client ID: B-2/TW-1 Lab ID: 19B0930-01

Analyte	Results/Qua	l	DL	RL	Units	Method
1,2,4-Trimethylbenzene	2.0		0.18	1.0	$\mu g/L$	SW-846 8260D
Naphthalene	3.7	J	0.12	5.0	$\mu g/L$	SW-846 8260D
p-Isopropyltoluene (p-Cymene)	0.19	J	0.15	1.0	$\mu g/L$	SW-846 8260D
2-Methylnaphthalene (SIM)	14		0.12	2.0	$\mu g/L$	SW-846 8270D
Acenaphthene (SIM)	0.86		0.033	0.30	$\mu g/L$	SW-846 8270D
Acenaphthylene (SIM)	0.18	J	0.035	0.20	$\mu g/L$	SW-846 8270D
Anthracene (SIM)	0.10	J	0.032	0.20	$\mu g/L$	SW-846 8270D
Chrysene (SIM)	0.015	J	0.015	0.20	$\mu g/L$	SW-846 8270D
Fluoranthene (SIM)	0.040	J	0.025	0.50	$\mu g/L$	SW-846 8270D
Fluorene (SIM)	1.4		0.034	1.0	$\mu g/L$	SW-846 8270D
Naphthalene (SIM)	3.3		0.26	1.0	$\mu g/L$	SW-846 8270D
Phenanthrene (SIM)	1.8		0.030	0.050	$\mu g/L$	SW-846 8270D
Pyrene (SIM)	0.11	J	0.023	1.0	$\mu g/L$	SW-846 8270D

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 8270, only PAHs were requested and reported.

SW-846 8260D

Qualifications:

L-07A

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound. Analyte & Samples(s) Qualified:

Vinyl Acetate

B224172-BS1

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound.
Analyte & Samples(s) Qualified:

Acetone

19B0930-01[B-2/TW-1], B224172-BLK1, B224172-BS1, B224172-BSD1, S032911-CCV1

Vinyl Acetate

B224172-BLK1, B224172-BS1, B224172-BSD1, S032911-CCV1

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result

Analyte & Samples(s) Qualified:

1,4-Dioxane

19B0930-01[B-2/TW-1], B224172-BLK1, B224172-BS1, B224172-BSD1, S032911-CCV1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

Bromochloromethane

B224172-BS1, B224172-BSD1, S032911-CCV1

V-36

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

Carbon Disulfide

B224172-BS1, B224172-BSD1, S032911-CCV1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Project Manager

Jua Watshington

Project Location: 3607 Hodges Chapel Road, Dunn Sample Description: Work Order: 19B0930

Date Received: 2/20/2019

Field Sample #: B-2/ TW-1 Sampled: 2/19/2019 11:45

Sample ID: 19B0930-01
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

				organic co	F			_		
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	9.7	μg/L	1	R-05	SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Acrylonitrile	ND	5.0	0.58	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
tert-Amyl Methyl Ether (TAME)	ND	0.50	0.11	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Benzene	ND	1.0	0.12	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Bromobenzene	ND	1.0	0.15	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Bromochloromethane	ND	1.0	0.22	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Bromodichloromethane	ND	0.50	0.30	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Bromoform	ND	1.0	0.21	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Bromomethane	ND	2.0	0.94	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
2-Butanone (MEK)	ND	20	2.4	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
tert-Butyl Alcohol (TBA)	ND	20	2.2	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
n-Butylbenzene	ND	1.0	0.15	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
sec-Butylbenzene	ND	1.0	0.13	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
tert-Butylbenzene	ND	1.0	0.12	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	0.095	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Carbon Disulfide	ND	4.0	1.0	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Carbon Tetrachloride	ND	5.0	0.25	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Chlorobenzene	ND	1.0	0.16	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Chlorodibromomethane	ND	0.50	0.10	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Chloroethane	ND	2.0	0.28	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Chloroform	ND	2.0	0.22	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Chloromethane	ND	2.0	0.55	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
2-Chlorotoluene	ND	1.0	0.12	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
4-Chlorotoluene	ND	1.0	0.14	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	0.37	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,2-Dibromoethane (EDB)	ND	0.50	0.15	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Dibromomethane	ND	1.0	0.16	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,2-Dichlorobenzene	ND	1.0	0.17	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,3-Dichlorobenzene	ND	1.0	0.17	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,4-Dichlorobenzene	ND	1.0	0.15	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
trans-1,4-Dichloro-2-butene	ND	2.0	0.31	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Dichlorodifluoromethane (Freon 12)	ND	2.0	0.28	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,1-Dichloroethane	ND	1.0	0.16	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,2-Dichloroethane	ND	1.0	0.19	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,1-Dichloroethylene	ND	1.0	0.21	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
cis-1,2-Dichloroethylene	ND	1.0	0.15	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
trans-1,2-Dichloroethylene	ND	1.0	0.15	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,2-Dichloropropane	ND	1.0	0.13	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,3-Dichloropropane	ND	0.50	0.13	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
2,2-Dichloropropane	ND	1.0	0.21	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,1-Dichloropropene	ND	2.0	0.13	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
cis-1,3-Dichloropropene	ND	0.50	0.12	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
trans-1,3-Dichloropropene	ND	0.50	0.11	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Diethyl Ether	ND	2.0	0.22	μg/L μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
<i>y</i>	1,10	2.0	J.22	µ₽ 1			5 010 02001	11		100

Page 6 of 23

Project Location: 3607 Hodges Chapel Road, Dunn Sample Description: Work Order: 19B0930

Date Received: 2/20/2019

Sampled: 2/19/2019 11:45 Field Sample #: B-2/ TW-1

Sample ID: 19B0930-01 Sample Matrix: Ground Water

Volatile	Organic	Compounds	by CC/MS
voiatile	Organic	Compounds	DV GC/IVIS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	0.18	μg/L	1	0 -	SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,4-Dioxane	ND	50	26	μg/L	1	V-16	SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Ethylbenzene	ND	1.0	0.13	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Hexachlorobutadiene	ND	1.0	0.59	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
2-Hexanone (MBK)	ND	10	1.5	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Isopropylbenzene (Cumene)	ND	1.0	0.12	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
p-Isopropyltoluene (p-Cymene)	0.19	1.0	0.15	μg/L	1	J	SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Methyl tert-Butyl Ether (MTBE)	ND	1.0	0.090	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Methylene Chloride	ND	5.0	3.2	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
4-Methyl-2-pentanone (MIBK)	ND	10	1.5	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Naphthalene	3.7	5.0	0.12	μg/L	1	J	SW-846 8260D	2/22/19	2/27/19 2:24	LBD
n-Propylbenzene	ND	1.0	0.13	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Styrene	ND	1.0	0.15	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,1,1,2-Tetrachloroethane	ND	1.0	0.12	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,1,2,2-Tetrachloroethane	ND	0.50	0.16	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Tetrachloroethylene	ND	1.0	0.27	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Tetrahydrofuran	ND	10	1.1	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Toluene	ND	1.0	0.17	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,2,3-Trichlorobenzene	ND	5.0	0.14	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,2,4-Trichlorobenzene	ND	1.0	0.19	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,3,5-Trichlorobenzene	ND	1.0	0.17	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,1,1-Trichloroethane	ND	1.0	0.13	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,1,2-Trichloroethane	ND	1.0	0.24	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Trichloroethylene	ND	1.0	0.20	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,2,3-Trichloropropane	ND	2.0	0.22	μg/L	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	0.20	$\mu g/L$	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,2,4-Trimethylbenzene	2.0	1.0	0.18	$\mu g/L$	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
1,3,5-Trimethylbenzene	ND	1.0	0.13	$\mu g/L$	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
m+p Xylene	ND	2.0	0.26	$\mu g/L$	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
o-Xylene	ND	1.0	0.13	$\mu g/L$	1		SW-846 8260D	2/22/19	2/27/19 2:24	LBD
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		93.1		70-130					2/27/19 2:24	
Toluene-d8		98.2		70-130					2/27/19 2:24	

Project Location: 3607 Hodges Chapel Road, Dunn Sample Description: Work Order: 19B0930

Date Received: 2/20/2019

Sampled: 2/19/2019 11:45 Field Sample #: B-2/ TW-1

Sample ID: 19B0930-01 Sample Matrix: Ground Water

Semivolatile Organic	Compounds by	GC/MS
----------------------	--------------	-------

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene (SIM)	0.86	0.30	0.033	μg/L	1	8 0	SW-846 8270D	2/23/19	2/26/19 14:34	CLA
Acenaphthylene (SIM)	0.18	0.20	0.035	μg/L	1	J	SW-846 8270D	2/23/19	2/26/19 14:34	CLA
Anthracene (SIM)	0.10	0.20	0.032	μg/L	1	J	SW-846 8270D	2/23/19	2/26/19 14:34	CLA
Benzo(a)anthracene (SIM)	ND	0.050	0.016	$\mu g/L$	1		SW-846 8270D	2/23/19	2/26/19 14:34	CLA
Benzo(a)pyrene (SIM)	ND	0.10	0.012	$\mu g/L$	1		SW-846 8270D	2/23/19	2/26/19 14:34	CLA
Benzo(b)fluoranthene (SIM)	ND	0.050	0.015	μg/L	1		SW-846 8270D	2/23/19	2/26/19 14:34	CLA
Benzo(g,h,i)perylene (SIM)	ND	0.50	0.018	μg/L	1		SW-846 8270D	2/23/19	2/26/19 14:34	CLA
Benzo(k)fluoranthene (SIM)	ND	0.20	0.012	μg/L	1		SW-846 8270D	2/23/19	2/26/19 14:34	CLA
Chrysene (SIM)	0.015	0.20	0.015	μg/L	1	J	SW-846 8270D	2/23/19	2/26/19 14:34	CLA
Dibenz(a,h)anthracene (SIM)	ND	0.10	0.017	μg/L	1		SW-846 8270D	2/23/19	2/26/19 14:34	CLA
Fluoranthene (SIM)	0.040	0.50	0.025	μg/L	1	J	SW-846 8270D	2/23/19	2/26/19 14:34	CLA
Fluorene (SIM)	1.4	1.0	0.034	μg/L	1		SW-846 8270D	2/23/19	2/26/19 14:34	CLA
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.10	0.018	μg/L	1		SW-846 8270D	2/23/19	2/26/19 14:34	CLA
2-Methylnaphthalene (SIM)	14	2.0	0.12	μg/L	2		SW-846 8270D	2/23/19	2/27/19 13:28	CLA
Naphthalene (SIM)	3.3	1.0	0.26	μg/L	1		SW-846 8270D	2/23/19	2/26/19 14:34	CLA
Phenanthrene (SIM)	1.8	0.050	0.030	μg/L	1		SW-846 8270D	2/23/19	2/26/19 14:34	CLA
Pyrene (SIM)	0.11	1.0	0.023	$\mu g/L$	1	J	SW-846 8270D	2/23/19	2/26/19 14:34	CLA
Surrogates		% Reco	very	Recovery Limits	S	Flag/Qual				
Nitrobenzene-d5 (SIM)		82.4		30-130					2/26/19 14:34	
Nitrobenzene-d5 (SIM)		89.4		30-130					2/27/19 13:28	
2-Fluorobiphenyl		51.5		30-130					2/26/19 14:34	
2-Fluorobinhenyl		58.7		30-130					2/27/19 13:28	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
Nitrobenzene-d5 (SIM)	82.4	30-130		2/26/19 14:34
Nitrobenzene-d5 (SIM)	89.4	30-130		2/27/19 13:28
2-Fluorobiphenyl	51.5	30-130		2/26/19 14:34
2-Fluorobiphenyl	58.7	30-130		2/27/19 13:28
p-Terphenyl-d14	55.0	30-130		2/26/19 14:34
p-Terphenyl-d14	62.1	30-130		2/27/19 13:28

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19B0930-01 [B-2/ TW-1]	B224172	5	5.00	02/22/19

Prep Method: SW-846 3510C-SW-846 8270D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19B0930-01 [B-2/ TW-1]	B224345	1000	1.00	02/23/19
19B0930-01RE1 [B-2/ TW-1]	B224345	1000	1.00	02/23/19

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B224172 - SW-846 5030B										
Blank (B224172-BLK1)			¯	Prepared: 02	2/22/19 Analy	yzed: 02/26/1	19			
Acetone	ND	50	μg/L							R-05
Acrylonitrile	ND	5.0	$\mu g/L$							
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$							
Benzene	ND	1.0	$\mu g/L$							
Bromobenzene	ND	1.0	$\mu g/L$							
Bromochloromethane	ND	1.0	$\mu \text{g/L}$							
Bromodichloromethane	ND	0.50	$\mu g \! / \! L$							
Bromoform	ND	1.0	μg/L							
Bromomethane	ND	2.0	$\mu g \! / \! L$							
2-Butanone (MEK)	ND	20	μg/L							
tert-Butyl Alcohol (TBA)	ND	20	μg/L							
n-Butylbenzene	ND	1.0	μg/L							
sec-Butylbenzene	ND	1.0	μg/L							
tert-Butylbenzene	ND	1.0	μg/L							
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L							
Carbon Disulfide	ND	4.0	μg/L							
Carbon Tetrachloride	ND	5.0	μg/L							
Chlorobenzene	ND	1.0	μg/L							
Chlorodibromomethane	ND	0.50	μg/L							
Chloroethane	ND	2.0	μg/L							
Chloroform	ND	2.0	μg/L							
Chloromethane	ND	2.0	μg/L							
2-Chlorotoluene	ND	1.0	μg/L							
4-Chlorotoluene	ND	1.0	μg/L							
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L							
1,2-Dibromoethane (EDB)	ND	0.50	μg/L							
Dibromomethane	ND	1.0	μg/L							
1,2-Dichlorobenzene	ND	1.0	μg/L							
1,3-Dichlorobenzene	ND	1.0	μg/L							
1,4-Dichlorobenzene	ND	1.0	μg/L							
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
1,1-Dichloroethane	ND	1.0	μg/L							
1,2-Dichloroethane	ND	1.0	μg/L							
1,1-Dichloroethylene	ND	1.0	μg/L							
cis-1,2-Dichloroethylene	ND	1.0	μg/L							
trans-1,2-Dichloroethylene	ND	1.0	μg/L							
1,2-Dichloropropane	ND	1.0	μg/L							
1,3-Dichloropropane	ND	0.50	μg/L							
2,2-Dichloropropane	ND	1.0	μg/L							
1,1-Dichloropropene	ND	2.0	μg/L							
cis-1,3-Dichloropropene	ND	0.50	μg/L							
trans-1,3-Dichloropropene	ND	0.50	μg/L							
Diethyl Ether	ND	2.0	μg/L							
Diisopropyl Ether (DIPE)	ND	0.50	μg/L μg/I							*7 * *
1,4-Dioxane	ND	50	μg/L μg/I							V-16
Ethylbenzene Havaahlarahutadiana	ND	1.0	μg/L							
Hexachlorobutadiene	ND	0.60	μg/L							
2-Hexanone (MBK)	ND	10	μg/L							
(sopropylbenzene (Cumene)	ND	1.0	μg/L							
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	$\mu g/L$							

QUALITY CONTROL

Source

Spike

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B224172 - SW-846 5030B											
Blank (B224172-BLK1)				Prepared: 02	2/22/19 Analy	yzed: 02/26/1	9				
Methylene Chloride	ND	5.0	$\mu g \! / \! L$								
4-Methyl-2-pentanone (MIBK)	ND	10	$\mu g/L$								
Naphthalene	ND	2.0	$\mu g/L$								
n-Propylbenzene	ND	1.0	$\mu g/L$								
Styrene	ND	1.0	$\mu g/L$								
1,1,1,2-Tetrachloroethane	ND	1.0	$\mu g/L$								
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L								
Tetrachloroethylene	ND	1.0	μg/L								
Tetrahydrofuran	ND	10	μg/L								
Toluene	ND	1.0	μg/L								
1,2,3-Trichlorobenzene	ND	5.0	μg/L								
1,2,4-Trichlorobenzene	ND	1.0	μg/L								
1,3,5-Trichlorobenzene	ND	1.0	μg/L								
1,1,1-Trichloroethane	ND	1.0	μg/L								
1,1,2-Trichloroethane Trichloroethylene	ND	1.0 1.0	μg/L μg/I								
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L μg/L								
1,2,3-Trichloropropane	ND ND	2.0	μg/L μg/L								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND ND	1.0	μg/L μg/L								
113) 1,2,4-Trimethylbenzene	ND	1.0	ua/I								
1,3,5-Trimethylbenzene	ND	1.0	μg/L μg/L								
Vinyl Acetate	ND	20	μg/L μg/L							R-05	
Vinyl Chloride	ND ND	2.0	μg/L μg/L							K-03	
m+p Xylene	ND ND	2.0	μg/L μg/L								
o-Xylene	ND	1.0	μg/L								
Surrogate: 1,2-Dichloroethane-d4	23.4		μg/L	25.0		93.8	70-130				
Surrogate: Toluene-d8	24.6		μg/L	25.0		98.5	70-130				
Surrogate: 4-Bromofluorobenzene	25.5		$\mu g/L$	25.0		102	70-130				
LCS (B224172-BS1)				Prepared: 02	2/22/19 Analy	yzed: 02/26/1	9				
Acetone	125	50	$\mu g \! / \! L$	100		125	70-160			R-05	
Acrylonitrile	9.46	5.0	μg/L	10.0		94.6	70-130				
tert-Amyl Methyl Ether (TAME)	10.7	0.50	μg/L	10.0		107	70-130				
Benzene	10.3	1.0	μg/L	10.0		103	70-130				
Bromobenzene	10.3	1.0	μg/L	10.0		103	70-130				
Bromochloromethane	12.0	1.0	μg/L	10.0		120	70-130			V-20	
Bromodichloromethane	10.6	0.50	μg/L	10.0		106	70-130				
Bromoform Bromomathana	10.2	1.0	μg/L	10.0		102	70-130				
Bromomethane 2-Butanone (MEK)	5.35	2.0	μg/L μα/Ι	10.0		53.5	40-160				
z-Butanone (MEK) tert-Butyl Alcohol (TBA)	98.5	20 20	μg/L μg/L	100		98.5	40-160				
n-Butylbenzene	92.4	1.0	μg/L μg/L	100		92.4	40-160 70-130				
sec-Butylbenzene	9.08	1.0	μg/L μg/L	10.0 10.0		90.8 94.8	70-130 70-130				
tert-Butylbenzene	9.48 9.57	1.0	μg/L μg/L	10.0		94.8 95.7	70-130				
tert-Butyl Ethyl Ether (TBEE)	9.57 9.76	0.50	μg/L μg/L	10.0		93.7 97.6	70-130				
Carbon Disulfide	11.6	4.0	μg/L μg/L	10.0		116	70-130			V-36	
Carbon Tetrachloride	10.9	5.0	μg/L	10.0		109	70-130			. 50	
Chlorobenzene	10.4	1.0	μg/L μg/L	10.0		104	70-130				
Chlorodibromomethane	11.4	0.50	μg/L	10.0		114	70-130				
Chloroethane	10.0	2.0	μg/L	10.0		100	70-130				
Chloroform	10.5	2.0	μg/L	10.0		105	70-130				

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B224172 - SW-846 5030B											
LCS (B224172-BS1)				Prepared: 02	2/22/19 Analy	yzed: 02/26/1	9				
2-Chlorotoluene	10.5	1.0	μg/L	10.0		105	70-130				
4-Chlorotoluene	10.3	1.0	$\mu g/L$	10.0		103	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	8.31	5.0	$\mu g/L$	10.0		83.1	70-130				
1,2-Dibromoethane (EDB)	11.0	0.50	$\mu g/L$	10.0		110	70-130				
Dibromomethane	11.3	1.0	$\mu g/L$	10.0		113	70-130				
1,2-Dichlorobenzene	9.99	1.0	$\mu g/L$	10.0		99.9	70-130				
1,3-Dichlorobenzene	10.0	1.0	$\mu g/L$	10.0		100	70-130				
1,4-Dichlorobenzene	9.73	1.0	$\mu g/L$	10.0		97.3	70-130				
trans-1,4-Dichloro-2-butene	9.34	2.0	$\mu g/L$	10.0		93.4	70-130				
Dichlorodifluoromethane (Freon 12)	8.72	2.0	$\mu g/L$	10.0		87.2	40-160				
1,1-Dichloroethane	10.5	1.0	$\mu \text{g/L}$	10.0		105	70-130				
1,2-Dichloroethane	10.2	1.0	$\mu \text{g/L}$	10.0		102	70-130				
1,1-Dichloroethylene	10.4	1.0	$\mu g/L$	10.0		104	70-130				
cis-1,2-Dichloroethylene	10.2	1.0	$\mu g/L$	10.0		102	70-130				
trans-1,2-Dichloroethylene	10.8	1.0	$\mu g/L$	10.0		108	70-130				
1,2-Dichloropropane	10.2	1.0	$\mu g/L$	10.0		102	70-130				
1,3-Dichloropropane	10.5	0.50	$\mu \text{g/L}$	10.0		105	70-130				
2,2-Dichloropropane	9.51	1.0	$\mu \text{g/L}$	10.0		95.1	40-130				
1,1-Dichloropropene	10.7	2.0	$\mu \text{g/L}$	10.0		107	70-130				
cis-1,3-Dichloropropene	10.2	0.50	$\mu \text{g/L}$	10.0		102	70-130				
trans-1,3-Dichloropropene	10.0	0.50	$\mu g/L$	10.0		100	70-130				
Diethyl Ether	10.3	2.0	μg/L	10.0		103	70-130				
Diisopropyl Ether (DIPE)	9.31	0.50	μg/L	10.0		93.1	70-130				
1,4-Dioxane	94.9	50	μg/L	100		94.9	40-130			V-16	
Ethylbenzene	9.99	1.0	μg/L	10.0		99.9	70-130				
Hexachlorobutadiene	9.55	0.60	μg/L	10.0		95.5	70-130				
2-Hexanone (MBK)	95.9	10	μg/L	100		95.9	70-160				
Isopropylbenzene (Cumene)	10.6	1.0	μg/L	10.0		106	70-130				
p-Isopropyltoluene (p-Cymene)	9.60	1.0	μg/L	10.0		96.0	70-130				
Methyl tert-Butyl Ether (MTBE)	10.7	1.0	μg/L	10.0		107	70-130				
Methylene Chloride	9.81	5.0	μg/L	10.0		98.1	70-130				
4-Methyl-2-pentanone (MIBK)	91.0	10	μg/L	100		91.0	70-160				
Naphthalene	8.58	2.0	μg/L	10.0		85.8	40-130				
n-Propylbenzene	10.5	1.0	μg/L	10.0		105	70-130				
Styrene	10.5	1.0	μg/L	10.0		105	70-130				
1,1,1,2-Tetrachloroethane	11.1	1.0	μg/L	10.0		111	70-130				
1,1,2,2-Tetrachloroethane	10.0	0.50	μg/L	10.0		100	70-130				
Tetrachloroethylene	11.4	1.0	μg/L	10.0		114	70-130				
Tetrahydrofuran	8.68	10	μg/L	10.0		86.8	70-130			J	
Toluene	10.6	1.0	μg/L	10.0		106	70-130				
1,2,3-Trichlorobenzene	9.96	5.0	μg/L	10.0		99.6	70-130				
1,2,4-Trichlorobenzene	9.88	1.0	μg/L	10.0		98.8	70-130				
1,3,5-Trichlorobenzene	10.1	1.0	μg/L	10.0		101	70-130				
1,1,1-Trichloroethane	10.7	1.0	μg/L	10.0		107	70-130				
1,1,2-Trichloroethane	11.1	1.0	μg/L	10.0		111	70-130				
Trichloroethylene	11.4	1.0	μg/L	10.0		114	70-130				
Trichlorofluoromethane (Freon 11)	9.37	2.0	μg/L	10.0		93.7	70-130				
1,2,3-Trichloropropane	10.1	2.0	μg/L	10.0		101	70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.5	1.0	μg/L	10.0		105	70-130				
1,2,4-Trimethylbenzene	9.12	1.0	$\mu g/L$	10.0		91.2	70-130				
1,3,5-Trimethylbenzene	10.2	1.0	$\mu g/L$	10.0		102	70-130				

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B224172 - SW-846 5030B											
LCS (B224172-BS1)				Prepared: 02	2/22/19 Analy	yzed: 02/26/1	9				
Vinyl Acetate	65.2	20	μg/L	100		65.2 *	70-130			R-05, L-07A	_
Vinyl Chloride	8.95	2.0	$\mu g \! / \! L$	10.0		89.5	40-160				†
m+p Xylene	20.6	2.0	$\mu g/L$	20.0		103	70-130				
o-Xylene	10.3	1.0	μg/L	10.0		103	70-130				
Surrogate: 1,2-Dichloroethane-d4	23.7		μg/L	25.0		94.7	70-130				
Surrogate: Toluene-d8	24.5		$\mu g/L$	25.0		97.9	70-130				
Surrogate: 4-Bromofluorobenzene	25.2		$\mu g/L$	25.0		101	70-130				
LCS Dup (B224172-BSD1)				Prepared: 02	2/22/19 Analy	yzed: 02/26/1	9				
Acetone	94.8	50	μg/L	100		94.8	70-160	27.3	* 25	R-05	†
Acrylonitrile	9.77	5.0	$\mu g/L$	10.0		97.7	70-130	3.22	25		
tert-Amyl Methyl Ether (TAME)	10.3	0.50	$\mu g/L$	10.0		103	70-130	3.43	25		
Benzene	10.3	1.0	$\mu g/L$	10.0		103	70-130	0.388	25		
Bromobenzene	10.6	1.0	$\mu g\!/\!L$	10.0		106	70-130	2.20	25		
Bromochloromethane	12.4	1.0	$\mu \text{g/L}$	10.0		124	70-130	3.36	25	V-20	
Bromodichloromethane	10.9	0.50	μg/L	10.0		109	70-130	3.07	25		
Bromoform	10.3	1.0	$\mu g/L$	10.0		103	70-130	0.586	25		
Bromomethane	6.67	2.0	$\mu g/L$	10.0		66.7	40-160	22.0	25		†
2-Butanone (MEK)	90.8	20	μg/L	100		90.8	40-160	8.10	25		†
tert-Butyl Alcohol (TBA)	92.1	20	μg/L	100		92.1	40-160	0.358	25		†
n-Butylbenzene	9.28	1.0	μg/L	10.0		92.8	70-130	2.18	25		
sec-Butylbenzene	9.52	1.0	μg/L	10.0		95.2	70-130	0.421	25		
tert-Butylbenzene	9.52	1.0	μg/L	10.0		95.2	70-130	0.524	25		
tert-Butyl Ethyl Ether (TBEE)	9.75	0.50	μg/L	10.0		97.5	70-130	0.103	25		
Carbon Disulfide	11.1	4.0	μg/L	10.0		111	70-130	3.96	25	V-36	
Carbon Tetrachloride	10.6	5.0	μg/L	10.0		106	70-130	2.14	25		
Chlorobenzene	10.5	1.0	μg/L	10.0		105	70-130	0.287	25		
Chlorodibromomethane	11.4	0.50	μg/L	10.0		114	70-130	0.351	25		
Chloroform	9.72	2.0	μg/L	10.0		97.2	70-130	3.24	25		
Chloromethane	10.3	2.0 2.0	μg/L μα/Ι	10.0		103	70-130	1.83	25 25		†
2-Chlorotoluene	7.75	1.0	μg/L μα/Ι	10.0		77.5	40-160	0.643	25 25		1
4-Chlorotoluene	10.6	1.0	μg/L μg/L	10.0 10.0		106 104	70-130 70-130	0.190 0.386	25 25		
1,2-Dibromo-3-chloropropane (DBCP)	10.4	5.0	μg/L μg/L	10.0		88.1	70-130	5.84	25		
1,2-Dibromoethane (EDB)	8.81 11.1	0.50	μg/L μg/L	10.0		111	70-130	0.903	25		
Dibromomethane (EEE)	11.1	1.0	μg/L μg/L	10.0		111	70-130	1.78	25		
1,2-Dichlorobenzene	10.1	1.0	μg/L	10.0		101	70-130	1.19	25		
1,3-Dichlorobenzene	10.2	1.0	μg/L	10.0		102	70-130	0.990	25		
1,4-Dichlorobenzene	9.70	1.0	μg/L	10.0		97.0	70-130	0.309	25		
trans-1,4-Dichloro-2-butene	9.55	2.0	μg/L	10.0		95.5	70-130	2.22	25		
Dichlorodifluoromethane (Freon 12)	8.54	2.0	μg/L	10.0		85.4	40-160	2.09	25		†
1,1-Dichloroethane	10.2	1.0	μg/L	10.0		102	70-130	2.80	25		
1,2-Dichloroethane	10.4	1.0	μg/L	10.0		104	70-130	2.04	25		
1,1-Dichloroethylene	9.88	1.0	μg/L	10.0		98.8	70-130	4.84	25		
cis-1,2-Dichloroethylene	10.3	1.0	μg/L	10.0		103	70-130	1.07	25		
trans-1,2-Dichloroethylene	10.5	1.0	μg/L	10.0		105	70-130	2.63	25		
1,2-Dichloropropane	10.0	1.0	μg/L	10.0		100	70-130	1.78	25		
1,3-Dichloropropane	10.4	0.50	$\mu g \! / \! L$	10.0		104	70-130	0.479	25		
2,2-Dichloropropane	9.41	1.0	$\mu g/L$	10.0		94.1	40-130	1.06	25		†
1,1-Dichloropropene	10.5	2.0	$\mu g/L$	10.0		105	70-130	1.98	25		
cis-1,3-Dichloropropene	10.2	0.50	$\mu g/L$	10.0		102	70-130	0.784	25		
trans-1,3-Dichloropropene	10.1	0.50	$\mu g/L$	10.0		101	70-130	0.894	25		

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B224172 - SW-846 5030B										
LCS Dup (B224172-BSD1)				Prepared: 02	2/22/19 Analyzed: 02/26	/19				
Diethyl Ether	10.0	2.0	μg/L	10.0	100	70-130	2.75	25		
Diisopropyl Ether (DIPE)	9.40	0.50	$\mu g/L$	10.0	94.0	70-130	0.962	25		
1,4-Dioxane	87.0	50	$\mu g/L$	100	87.0	40-130	8.75	50	V-16	†‡
Ethylbenzene	10.2	1.0	$\mu g/L$	10.0	102	70-130	2.57	25		
Hexachlorobutadiene	9.49	0.60	$\mu g/L$	10.0	94.9	70-130	0.630	25		
2-Hexanone (MBK)	93.8	10	$\mu g/L$	100	93.8	70-160	2.21	25		†
Isopropylbenzene (Cumene)	10.8	1.0	$\mu g/L$	10.0	108	70-130	1.21	25		
p-Isopropyltoluene (p-Cymene)	9.59	1.0	$\mu g/L$	10.0	95.9	70-130	0.104	25		
Methyl tert-Butyl Ether (MTBE)	10.7	1.0	μg/L	10.0	107	70-130	0.187	25		
Methylene Chloride	9.45	5.0	μg/L	10.0	94.5	70-130	3.74	25		
4-Methyl-2-pentanone (MIBK)	94.0	10	μg/L	100	94.0	70-160	3.17	25		†
Naphthalene	8.74	2.0	μg/L	10.0	87.4	40-130	1.85	25		†
n-Propylbenzene	10.4	1.0	μg/L	10.0	104	70-130	0.478	25		
Styrene	10.6	1.0	μg/L	10.0	106	70-130	1.33	25		
,1,1,2-Tetrachloroethane	10.8	1.0	μg/L	10.0	108	70-130	2.84	25		
,1,2,2-Tetrachloroethane	11.1	0.50	μg/L	10.0	111	70-130	10.6	25		
Cetrachloroethylene	11.2	1.0	μg/L	10.0	112	70-130	1.59	25		
Tetrahydrofuran	9.65	10	μg/L	10.0	96.5	70-130	10.6	25	J	
Coluene	10.5	1.0	μg/L	10.0	105	70-130	0.951	25		
,2,3-Trichlorobenzene	10.3	5.0	μg/L	10.0	103	70-130	3.16	25		
1,2,4-Trichlorobenzene	10.2	1.0	μg/L	10.0	102	70-130	2.89	25		
1,3,5-Trichlorobenzene	10.1	1.0	μg/L	10.0	101	70-130	0.198	25		
1,1,1-Trichloroethane	10.6	1.0	μg/L	10.0	106	70-130	0.659	25		
1,1,2-Trichloroethane	11.0	1.0	μg/L	10.0	110	70-130	1.17	25		
Γrichloroethylene	10.5	1.0	μg/L	10.0	105	70-130	8.21	25		
Frichlorofluoromethane (Freon 11)	9.02	2.0	μg/L	10.0	90.2	70-130	3.81	25		
,2,3-Trichloropropane	10.6	2.0	μg/L	10.0	106	70-130	5.02	25		
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	9.91	1.0	μg/L	10.0	99.1	70-130	5.50	25		
1,2,4-Trimethylbenzene	9.23	1.0	μg/L	10.0	92.3	70-130	1.20	25		
1,3,5-Trimethylbenzene	10.2	1.0	μg/L	10.0	102	70-130	0.391	25		
√inyl Acetate	91.2	20	μg/L	100	91.2	70-130	33.3		R-05	
Vinyl Chloride	8.77	2.0	μg/L	10.0	87.7	40-160	2.03	25		†
n+p Xylene	20.6	2.0	μg/L	20.0	103	70-130	0.194	25		
o-Xylene	10.4	1.0	μg/L	10.0	104	70-130	1.06	25		
Surrogate: 1,2-Dichloroethane-d4	23.6		μg/L	25.0	94.2	70-130				
Surrogate: Toluene-d8	24.9		$\mu g/L$	25.0	99.6	70-130				
Surrogate: 4-Bromofluorobenzene	26.2		$\mu g/L$	25.0	105	70-130				

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B224345 - SW-846 3510C										
Blank (B224345-BLK1)				Prepared: 02	/23/19 Analy	yzed: 02/26/	19			
Acenaphthene (SIM)	ND	0.30	$\mu g/L$							
Acenaphthylene (SIM)	ND	0.20	$\mu g/L$							
Anthracene (SIM)	ND	0.20	$\mu g/L$							
Benzo(a)anthracene (SIM)	ND	0.050	$\mu g/L$							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
Benzo(g,h,i)perylene (SIM)	ND	0.50	$\mu g/L$							
Benzo(k)fluoranthene (SIM)	ND	0.20	$\mu g/L$							
Chrysene (SIM)	ND	0.20	$\mu g/L$							
Dibenz(a,h)anthracene (SIM)	ND	0.10	μg/L							
Fluoranthene (SIM)	ND	0.50	μg/L							
Fluorene (SIM)	ND	1.0	$\mu \text{g/L}$							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.10	$\mu \text{g/L}$							
-Methylnaphthalene (SIM)	ND	1.0	$\mu g/L$							
Japhthalene (SIM)	ND	1.0	$\mu g/L$							
Phenanthrene (SIM)	ND	0.050	$\mu g/L$							
yrene (SIM)	ND	1.0	μg/L							
urrogate: Nitrobenzene-d5 (SIM)	77.0		μg/L	100		77.0	30-130			
urrogate: 2-Fluorobiphenyl	56.4		μg/L	100		56.4	30-130			
Surrogate: p-Terphenyl-d14	59.9		$\mu g/L$	100		59.9	30-130			
LCS (B224345-BS1)				Prepared: 02	/23/19 Analy	yzed: 02/26/	19			
Acenaphthene (SIM)	34.4	7.5	μg/L	50.0		68.9	40-140			
Acenaphthylene (SIM)	34.0	5.0	$\mu g/L$	50.0		68.0	40-140			
Anthracene (SIM)	37.6	5.0	$\mu g/L$	50.0		75.1	40-140			
Benzo(a)anthracene (SIM)	32.0	1.2	$\mu g/L$	50.0		64.0	40-140			
Benzo(a)pyrene (SIM)	37.0	2.5	$\mu g/L$	50.0		74.1	40-140			
Benzo(b)fluoranthene (SIM)	37.3	1.2	$\mu g/L$	50.0		74.6	40-140			
Benzo(g,h,i)perylene (SIM)	38.5	12	$\mu g/L$	50.0		77.0	40-140			
Benzo(k)fluoranthene (SIM)	36.9	5.0	$\mu g/L$	50.0		73.8	40-140			
Chrysene (SIM)	34.2	5.0	$\mu g/L$	50.0		68.3	40-140			
Dibenz(a,h)anthracene (SIM)	41.5	2.5	$\mu g/L$	50.0		83.0	40-140			
Fluoranthene (SIM)	34.3	12	$\mu g/L$	50.0		68.6	40-140			
Fluorene (SIM)	34.4	25	$\mu g/L$	50.0		68.8	40-140			
ndeno(1,2,3-cd)pyrene (SIM)	40.7	2.5	$\mu g/L$	50.0		81.4	40-140			
-Methylnaphthalene (SIM)	33.5	25	$\mu g/L$	50.0		67.0	40-140			
Naphthalene (SIM)	31.4	25	$\mu g/L$	50.0		62.8	40-140			
Phenanthrene (SIM)	35.6	1.2	μg/L	50.0		71.1	40-140			
Pyrene (SIM)	31.8	25	$\mu g/L$	50.0		63.7	40-140			
Surrogate: Nitrobenzene-d5 (SIM)	63.0		μg/L	100		63.0	30-130			
Surrogate: 2-Fluorobiphenyl	48.4		μg/L	100		48.4	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B224345 - SW-846 3510C										
LCS Dup (B224345-BSD1)				Prepared: 02	2/23/19 Anal	yzed: 02/26/	19			
Acenaphthene (SIM)	34.5	7.5	μg/L	50.0		69.0	40-140	0.217	20	
Acenaphthylene (SIM)	34.0	5.0	μg/L	50.0		68.1	40-140	0.221	20	
Anthracene (SIM)	37.1	5.0	μg/L	50.0		74.2	40-140	1.27	20	
Benzo(a)anthracene (SIM)	31.4	1.2	$\mu g/L$	50.0		62.7	40-140	2.13	20	
Benzo(a)pyrene (SIM)	36.6	2.5	μg/L	50.0		73.2	40-140	1.22	20	
Benzo(b)fluoranthene (SIM)	37.0	1.2	$\mu g/L$	50.0		74.0	40-140	0.740	20	
Benzo(g,h,i)perylene (SIM)	38.7	12	μg/L	50.0		77.4	40-140	0.454	20	
Benzo(k)fluoranthene (SIM)	37.4	5.0	μg/L	50.0		74.8	40-140	1.21	20	
Chrysene (SIM)	33.5	5.0	μg/L	50.0		67.0	40-140	1.92	20	
Dibenz(a,h)anthracene (SIM)	41.4	2.5	$\mu g/L$	50.0		82.7	40-140	0.302	20	
Fluoranthene (SIM)	35.0	12	$\mu g/L$	50.0		70.0	40-140	2.09	20	
Fluorene (SIM)	35.6	25	$\mu g/L$	50.0		71.3	40-140	3.64	20	
Indeno(1,2,3-cd)pyrene (SIM)	40.7	2.5	$\mu g/L$	50.0		81.4	40-140	0.00	20	
2-Methylnaphthalene (SIM)	34.5	25	μg/L	50.0		69.0	40-140	2.94	20	
Naphthalene (SIM)	31.6	25	$\mu g/L$	50.0		63.2	40-140	0.556	20	
Phenanthrene (SIM)	35.4	1.2	$\mu g/L$	50.0		70.8	40-140	0.423	20	
Pyrene (SIM)	31.0	25	$\mu g/L$	50.0		62.1	40-140	2.54	20	
Surrogate: Nitrobenzene-d5 (SIM)	62.2		μg/L	100		62.2	30-130			
Surrogate: 2-Fluorobiphenyl	46.1		$\mu g/L$	100		46.1	30-130			
Surrogate: p-Terphenyl-d14	44.5		$\mu g/L$	100		44.5	30-130			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-07A	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.
V-36	Initial calibration verification (ICV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260D in Water		
Acetone	NC	
Acrylonitrile	NC	
tert-Amyl Methyl Ether (TAME)	NC	
Benzene	NC	
Bromobenzene	NC	
Bromochloromethane	NC	
Bromodichloromethane	NC	
Bromoform	NC	
Bromomethane	NC	
2-Butanone (MEK)	NC	
tert-Butyl Alcohol (TBA)	NC	
n-Butylbenzene	NC	
sec-Butylbenzene	NC	
tert-Butylbenzene	NC	
tert-Butyl Ethyl Ether (TBEE)	NC	
Carbon Disulfide	NC	
Carbon Tetrachloride	NC	
Chlorobenzene	NC	
Chlorodibromomethane	NC	
Chloroethane	NC	
Chloroform	NC	
Chloromethane	NC	
2-Chlorotoluene	NC	
4-Chlorotoluene	NC	
1,2-Dibromo-3-chloropropane (DBCP)	NC	
1,2-Dibromoethane (EDB)	NC	
Dibromomethane	NC	
1,2-Dichlorobenzene	NC	
1,3-Dichlorobenzene	NC	
1,4-Dichlorobenzene	NC	
trans-1,4-Dichloro-2-butene	NC	
Dichlorodifluoromethane (Freon 12)	NC	
1,1-Dichloroethane	NC	
1,2-Dichloroethane	NC	
1,1-Dichloroethylene	NC	
cis-1,2-Dichloroethylene	NC	
trans-1,2-Dichloroethylene	NC	
1,2-Dichloropropane	NC	
1,3-Dichloropropane	NC	
2,2-Dichloropropane	NC	
1,1-Dichloropropene	NC	
cis-1,3-Dichloropropene	NC	
trans-1,3-Dichloropropene	NC	
Diethyl Ether	NC	
Diisopropyl Ether (DIPE)	NC	
1,4-Dioxane	NC	
Ethylbenzene	NC	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260D in Water	
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

2 Preservation Codes: X = Sodium Hydroxide 1 Matrix Codes: GW = Ground Water WW = Waste Water S = Sulfuric Acid B = Sodium Bisulfate dentitation of the Colonia DW = Drinking Water S = Summa Canister ³Container Codes: 0 = Other (please 0 = Other (please 0 = Other (please Non Soxhlet A = Amber Glass PCB ONLY T = Tedlar Bag Soxhlet N = Nitric Acid 2 Preservation Code Field Filtered Field Filtered M = Methanol G = Glass P = Plastic ST = Sterile Lab to Filter Lab to Filter S = Soil SL = Sludge Container Code T = Sodium Thiosulfate SOL = Solid # of Containers V = Vial H= FCL define) define) define) A = Air l = Iced UST/Trust Fund Please use the following codes to indicate possible sample concentration WELAG and Altha-LAP, LLC Accredited REC AIHA-LAP, LLC Chromatogram H - High; M - Medium; L - Low; C - Clean; U - Unknown East Longmeadow, MA 01028 Program Information ANALYSIS REQUESTED within the Conc Code column above: IHSB Orphaned Landfill Other SWS Landfill State Lead Other: HAG PLES <u> २७</u>४५ 88 Z INCORPORTED SMCITTLE Marrie Code Code Municipality Brownfield 3 School 10-Day 3-Day 4-Day Z EXCEL Grab CLP Like Data Pkg Required: Composite ЫĘ Government Ending Date/Time Email To: Due Date: Federal 32 ormat: Fax To# GWPC Other: SWSL MSCC 7-Day 2-Day HESB. -Day City Project Entity Beginning Date/Frme 7.61.6 2 celerch 120 Email: info@contestlabs.com 201 72 Spring Forcet P.O. Client Sample ID / Description 3 2/20/19 212019 Forme House 12/2011g 177 Fax: 413-525-6405 Date/Time Date/Time: Date/Time: Date/Time Date/Time Date/Time 135 4305-18-1151 James Transch 2007 Hodges ري دع Marce 34.45 としてい 10CS とら Con-Test Quote Name/Number: (signature) CON-TRAP ReJinquished/by: (signature) (signature) 070 eived by: (signature) eived by: (signature) eceived by: (signature) Work Order Con-Test Wast House Invoice Recipient: nquished by Project Location: Relinguished by Project Manager Project Number: 21.00 SEAT SEAT Sampled By: comments Address: Phone: Page 21 of 23

ġ,

Page _

39 Spruce Street

CHAIN OF CUSTODY RECORD (North Carolina)

http://www.contestlabs.com

1980930

Phone: 413-525-2332

Doc # 3/9 Kev 1_03242017

Delivered Thursday 2/21/2019 at 10:25 am

DELIVERED

Signed for by: B.BECCA

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Raleigh, NC US

TO

EAST LONGMEADOW, MA US

Shipment Facts

TRACKING NUMBER

774519142837

SERVICE

FedEx Priority Overnight

WEIGHT

15 lbs / 6.8 kgs

DIMENSIONS

25x14x14 in.

DELIVERED TO

Shipping/Receiving

TOTAL PIECES

1

TOTAL SHIPMENT WEIGHT

15 lbs / 6.8 kgs

TERMS

Third Party

SHIPPER REFERENCE

80

PACKAGING

Your Packaging

SPECIAL HANDLING SECTION

Deliver Weekday, Additional Handling

Surcharge

STANDARD TRANSIT

(?)

2/21/2019 by 10:30 am

SHIP DATE

()

Wed 2/20/2019

ACTUAL DELIVERY

Thu 2/21/2019 10:25 am

Travel History

Local Scan Time

Thursday, 2/21/2019

10:25 am

EAST LONGMEADOW, MA

Delivered

8:58 am

WINDSOR LOCKS, CT

On FedEx vehicle for delivery

8:47 am

WINDSOR LOCKS, CT

At local FedEx facility

Page 22 of 23

I Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False	
Statement will be brought to the attention of the Client - State True or False	

Client Received How were the received Were sample		PAP							<u></u>	
How were the received		YAY		L) ~ t ~	~ 1	,		Time	111 6	
	samples			_ Date _		21	119	line	1025	
	-	In Cooler	<u> </u>	No Cooler			On Ice	<u> </u>	No Ice	
Mere sample	j? ,	Direct from Sample	oling		_		Ambient		Melted Ice	·····
Mere sample			By Gun #				Actual Temp	n- 49		******
·			•		•		•			,
Temperature'			By Blank #				Actual Temp			•
	Custody Sea	•	1A			•	s Tampered		<u></u>	•
	OC Reling				s Unai	n Ayı	ree With San	npies r		•
		eaking/loose caps	on any sam	iples r	T			-Idina time?		
Is COC in ink/					npies	/eceiv	ived within ho Sample	olding time r er Name		•
Did COC incl		Client		_ Analysis _ ID's				er Name Dates/Times		•
pertinent Infor		Project	<u>+</u>	_ ID3			COllection	Dateorinne	3	•
-		l out and legible?		-	1 // h	~ 14/0	s notified?			
Are there Lab t				-			s notified?			•
Are there Rush				-						
Are there Shor		_		-	VVE) Was	s notified?			•
ls there enough				-	* 4C/K	icD3	- F			
	•	ere applicable?		-	MS/M				£	
Proper Media/0			<u> </u>	,	•	-	samples req	_i uirea :	1	•
Were trip blan			<u></u>	_ ^ ~iel	Un U	OC?	<u> </u>	Daca		
Do all samples			M	Acid			•	Base		-
Vials	# (Containers:	#				#			#
Unp-		1 Liter Amb.	2	1 Liter		 +	<u> </u>		oz Amb.	<u> </u>
HCL-	3	500 mL Amb.		500 mL			<u> </u>		mb/Clear	
Meoh-		250 mL Amb.		250 mL			<u> </u>		mb/Clear	
Bisulfate-		Flashpoint		Col./Ba			4		mb/Clear	-
DI-		Other Glass		Other			 '		ncore	
Thiosulfate-		SOC Kit	<u> </u>		tic Bag		<u> </u>	Frozen:		
Sulfuric-		Perchlorate			lock					
				Unused l	Media					
Vials	#	Containers:	#			السا	#	10	- 1	#
Unp-		1 Liter Amb.		1 Liter			<u> </u>		oz Amb.	
HCL-		500 mL Amb.		500 mL	-		<u> </u>		mb/Clear	
Meoh-		250 mL Amb.		250 mL			-		mb/Clear	
Bisulfate-		Col./Bacteria			hpoint	***************************************	<u> </u>		mb/Clear	
DI-		Other Plastic			r Glass		 		ncore	
Thiosulfate-		SOC Kit			tic Bag			Frozen:		
Sulfuric-		Perchlorate		ZIP	olock					
Comments:										