Preliminary Site Assessment

I-95 Interchange Improvement
Parcel 274 PSH 42 - Robin Hood Oil Company
605 East Main Street, Benson, Johnston County, North Carolina

TIP No. I-5986B

WBS Element: 47532.1.3

November 21, 2019

Terracon Project No. 70197584

Prepared for:

North Carolina Department of Transportation Raleigh, North Carolina

Prepared by:

Terracon Consultants, Inc. Raleigh, North Carolina

terracon.com

Environmental Facilities Geotechnical Materials

Preliminary Site Assessment

I-95 Interchange Improvement
Parcel 274 PSH 42 - Robin Hood Oil Company
605 East Main Street, Benson, Johnston County, North Carolina

TIP No. I-5986B

WBS Element: 47532.1.3

November 21, 2019

Terracon Project No. 70197584

11/26/2019

2576

William O. Frazier, Pormania

Staff Geologist

Michael T. Jordan, PG, RSM

Department Manager

Donald R. Malone, PE, RSM

Senior Engineer

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

Terracon Consultants, Inc. 2401 Brentwood Road, Suite 107 Raleigh, North Carolina 27615 P (919) 873-2211 F (919) 873 9555 terracon.com

TABLE OF CONTENTS

Page No.

1.0	INTRODUCTION	
1.1	Site Description	1
1.2	Site History	
1.3	Scope of Work	
1.4	Standard of Care	
1.5	Additional Scope Limitations	
1.6	Reliance	
2.0	FIELD ACTIVITIES	
2.1	Geophysical Survey	3
2.2	Soil Sampling	3
3.0	LABORATORY ANALYSES	
4.0	DATA EVALUATION	_
4.0	DATA EVALUATION	5
4.1	Soil Analytical Results	5
5.0	CONCLUSIONS AND RECOMMENDATIONS	
6.0	REFERENCES	6

TABLES

Table 1 – Summary of PID Field Screening Values

Table 2 – Summary of Soil Analytical Results

EXHIBITS

Exhibit 1 – Topographic Vicinity Map

Exhibit 2A - Site Diagram with Soil Boring Locations

Exhibit 2B – Site Diagram with Soil Boring Locations and Analytical Data

APPENDICES

Appendix A: Geophysical Survey Report

Appendix B: Soil Boring Logs

Appendix C: Laboratory Analytical Reports and Chain-of-Custody Forms

North Carolina Department of Transportation Attention: Mr. John Pilipchuk, LG GeoEnvironmental Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Re: Preliminary Site Assessment (PSA)

I-95 Interchange Improvement

Parcel 274 PSH 42 - Robin Hood Oil Company

605 East Main Street, Benson, Johnston County, North Carolina

TIP No. I-5986B

WBS Element: 47532.1.3

Dear Mr. Pilipchuk:

Terracon Consultants, Inc. (Terracon) is pleased to submit a Preliminary Site Assessment (PSA) report for the above referenced site. This assessment was performed in accordance with our Proposal for Preliminary Site Assessment (Terracon Proposal No. P70197584) dated October 1, 2019. This report includes the findings of the investigation and provides our conclusions and recommendations. Terracon appreciates the opportunity to provide these services to the North Carolina Department of Transportation. If you have any questions concerning this report or need additional information, please contact us at 919-873-2211.

Sincerely,

Terracon Consultants, Inc.

Prepared by:

William O. Frazier, PG

Staff Geologist

Donald R. Malone, PE, RSM

Senior Engineer

Reviewed by:

Michael T. Jordan, PG, RSM
Environmental Department Manager

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

Terracon Consultants, Inc. 2401 Brentwood Road, Suite 107 Raleigh, NC 27604
P [919] 873 2211 F [919] 873 9555 terracon.com

.

PRELIMINARY SITE ASSESSMENT

I-95 INTERCHANGE IMPROVEMENT TIP NO. I-5986B WBS ELEMENT: 47532.1.3 PARCEL 274 PSH 42 - ROBIN HOOD OIL COMPANY 605 EAST MAIN STREET, BENSON, NORTH CAROLINA

1.0 INTRODUCTION

1.1 Site Description

Site Name	Parcel 274 PSH 42 – Robin Hood Oil Company
Site Location/Address	605 East Main Street, Benson, North Carolina 27532 (Johnston County Tax PIN: 153915-62-5812)
General Site Description	The site consists of an approximate 0.56-acre parcel developed with a one-story commercial building currently operating as convenience store, coffee shop, and Exxon gas station. The gas station currently operates four underground storage tanks (USTs). The site is also improved with the associated fueling islands, pump canopy, paved parking areas, and landscaped grounds.

1.2 Site History

The site is located at 605 East Main Street in Benson, Johnston County, North Carolina. At the time of the Preliminary Site Assessment (PSA), the site was operating as an Exxon gas station (Facility ID: 00-0-000001859). According to the North Carolina Department of Environmental Quality (NCDEQ) – Division of Waste Management UST Section Registered Tank Database, the facility currently operates three 6,000-gallon gasoline USTs and one 2,000-gallon diesel UST that were reportedly installed in December 1988. The facility reportedly operated one 2,000-gallon gasoline UST, two 3,000-gallon gasoline USTs, one 1,000-gallon diesel UST, and one 500-gallon new/used oil UST from 1964 to 1988. Petroleum releases have not been reported at the facility.

1.3 Scope of Work

Terracon conducted the following PSA scope of work (SOW) in accordance with Terracon's Proposal No. P70197584 dated October 1, 2019. This PSA is being completed prior to a planned upgrade of the I-95 interchange and widening of the interstate in Benson, North Carolina (site). The scope of work included a geophysical investigation, the collection of soil samples, and

Preliminary Site Assessment – I-5986B

Parcel 274 PSH 42 – Robin Hood Oil Company 605 East Main Street, Benson, NC November 21, 2019 Terracon Project No. 70197584

preparation of a report documenting our investigation activities. The PSA is not intended to delineate potential impacts. The PSA was performed within the proposed rights-of-way (ROW) as indicated by NCDOT provided plan sheets.

1.4 Standard of Care

Terracon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. Terracon makes no warranties, either expressed or implied, regarding the findings, conclusions or recommendations. Please note that Terracon does not warrant the work of laboratories, regulatory agencies or other third parties supplying information used in the preparation of the report. These services were performed in accordance with our Proposal for Preliminary Site Assessment (Terracon Proposal No. P70197584) dated October 1, 2019 and were not conducted in accordance with ASTM E1903-11.

1.5 Additional Scope Limitations

Findings, conclusions and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, undetectable or not present during these services; thus, we cannot represent that the site is free of hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this PSA. Subsurface conditions may vary from those encountered at specific borings or wells or during other surveys, tests, assessments, investigations or exploratory services; the data, interpretations, findings, and our recommendations are based solely upon data obtained at the time and within the scope of these services.

1.6 Reliance

This report has been prepared for the exclusive use of the NCDOT. Authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the site) is prohibited without the expressed written authorization of the client and Terracon.

Preliminary Site Assessment - I-5986B

Parcel 274 PSH 42 – Robin Hood Oil Company 605 East Main Street, Benson, NC November 21, 2019 Terracon Project No. 70197584

2.0 FIELD ACTIVITIES

The following PSA activities are presented in the order that they were conducted in the field. **Exhibit 1** presents the topography of the site on a portion of the USGS topographic quadrangle map of Benson, North Carolina, 1997. **Exhibits 2A and 2B** depict the site layout and indicate the approximate locations of the site features, soil boring locations, and analytical results.

2.1 Geophysical Survey

On October 28 and 29, 2019, Terracon conducted a geophysical investigation at the site in an effort to determine if unknown, metallic USTs are present beneath the proposed ROW area. The geophysical investigation included an electromagnetic (EM) induction survey using a Geonics EM31-SH metal detection instrument and a ground penetrating radar (GPR) survey using a Geophysical Survey Systems SIR-4000 unit.

The geophysical investigation identified a possible metallic UST within the proposed ROW area, as depicted on **Exhibits 2A and 2B**. The possible UST measured approximately 4 feet long and was located approximately 2.3 feet below land surface (bls). Surface features such as a vent pipe or fill port were not observed in association with the possible UST. Terracon advanced a probe rod and hand auger at the possible UST location in an effort to confirm the feature; however, refusal was encountered between 1 and 1.5 feet bls upon an apparent gravel and asphalt-containing layer.

In addition to metal detection and GPR scans, NC One Call public utility locator was used to identify several underground utility lines and to clear boring locations. A copy of the geophysical report is in **Appendix A**.

2.2 Soil Sampling

Based on the findings of the geophysical investigation and Terracon's site observations, Terracon oversaw the advancement of five soil borings (605-SB-01 through 605-SB-05) along the southern portion of the parcel and within the proposed NCDOT ROW. The borings were completed by a North Carolina Certified Well Contractor (Quantex, Inc.) using a truck-mount Geoprobe® 7822DT direct-push drill rig.

Soil samples were collected in 5-foot, disposable, Macro-Core® sampler tubes to document soil lithology, color, moisture content, and sensory evidence of impacts. Each soil sample was screened for organic vapors using an 11.7 eV photoionization detector (PID). The PID data were collected in order to corroborate laboratory data and assist in selection of sample intervals for laboratory analysis. PID readings from the borings ranged from less than 1 part per million (ppm)

Preliminary Site Assessment - I-5986B

Parcel 274 PSH 42 – Robin Hood Oil Company 605 East Main Street, Benson, NC November 21, 2019 Terracon Project No. 70197584

to 3,249 ppm, typically increasing with depth. The PID screening values are summarized in **Table 1**.

Based on the proposed disturbance depths and discussion with the NCDOT, each of the soil borings was advanced to a depth of approximately 10 feet below land surface (bls). Based on the results of the field screening, five soil samples, one from each boring, were collected from depths between approximately 4.5 feet and 9 feet bls. Soil samples were collected in the depth interval that was most likely to be impacted. Samples were placed in laboratory provided sample containers and shipped to REDLAB/QROS, LLC – Environmental Testing for analysis by Ultraviolet Fluorescence (UVF).

The drilling equipment used at the site was decontaminated prior to use and between the advancement of each boring. Non-dedicated sampling equipment was decontaminated using a Liquinox®-water wash followed by a distilled water rinse. Each of the boreholes was backfilled with bentonite pellets. Surface completion was achieved with either dirt or asphalt cold patch. Remaining investigation derived waste (IDW) was spread on the site.

Soil generally consisted of fine-grained sand to a depth of approximately 1 foot underlain by gravel and asphalt to approximately 2 feet bls and sandy clay and clayey sand to approximately 8 feet bls and lean clay to approximately 10 feet bls. Groundwater was not encountered in the soil borings. The soil boring logs are included in **Appendix B**. Sample locations were measured using a sub-foot Trimble Geo7X GPS unit and are depicted on **Exhibits 2A** and **2B**.

3.0 LABORATORY ANALYSES

Soil samples were submitted to QROS for analysis of the following:

- TPH-gasoline range organics (C₅-C₁₀) (TPH-GRO);
- TPH-diesel range organics (C₁₀-C₃₅) (TPH-DRO);
- Total petroleum hydrocarbons (C₅-C₃₅) (TPH);
- Benzene, toluene, ethylbenzene, and xylenes (BTEX);
- Total aromatics (C₁₀-C₃₅);
- 16 EPA Polycyclic Aromatic Hydrocarbons (16 EPA PAHs); and
- Benzo(a)pyrene (BaP).

Please refer to **Appendix C** for the laboratory analytical reports.

Preliminary Site Assessment - I-5986B

Parcel 274 PSH 42 – Robin Hood Oil Company 605 East Main Street, Benson, NC November 21, 2019 Terracon Project No. 70197584

4.0 DATA EVALUATION

4.1 Soil Analytical Results

Laboratory analysis identified the following detections above the laboratory reporting limits in soil samples 605-SB-01 through 605-SB-05:

- BTEX was reported within 605-SB-02 at a concentration of 41.1 milligrams per kilogram (mg/kg);
- TPH-GRO was reported within 605-SB-01 through 605-SB-04 at concentrations ranging from 14.6 mg/kg to 117.9 mg/kg;
- TPH-DRO was reported within each sample at concentrations ranging from 2.4 mg/kg to 215.6 mg/kg;
- TPH was reported within each sample at concentrations ranging from 17.3 mg/kg to 306.8 mg/kg;
- Total aromatics (C₁₀-C₃₅) was reported within each sample at concentrations ranging from 3.7 mg/kg to 138.7 mg/kg;
- 16 EPA PAHs was reported within 605-SB-04 and 605-SB-05 at concentrations ranging from 4.9 mg/kg to 5.3 mg/kg; and
- BaP was not detected above laboratory reporting limits within the samples collected.

Laboratory analysis identified concentrations of TPH-GRO and TPH-DRO in excess of the NCDEQ Action Levels (50 mg/kg and 100 mg/kg, respectively) within 605-SB-01 and 605-SB-02.

Table 2 summarizes the results of the analyses of the soil samples. **Exhibit 2B** depicts the boring locations and detected compounds.

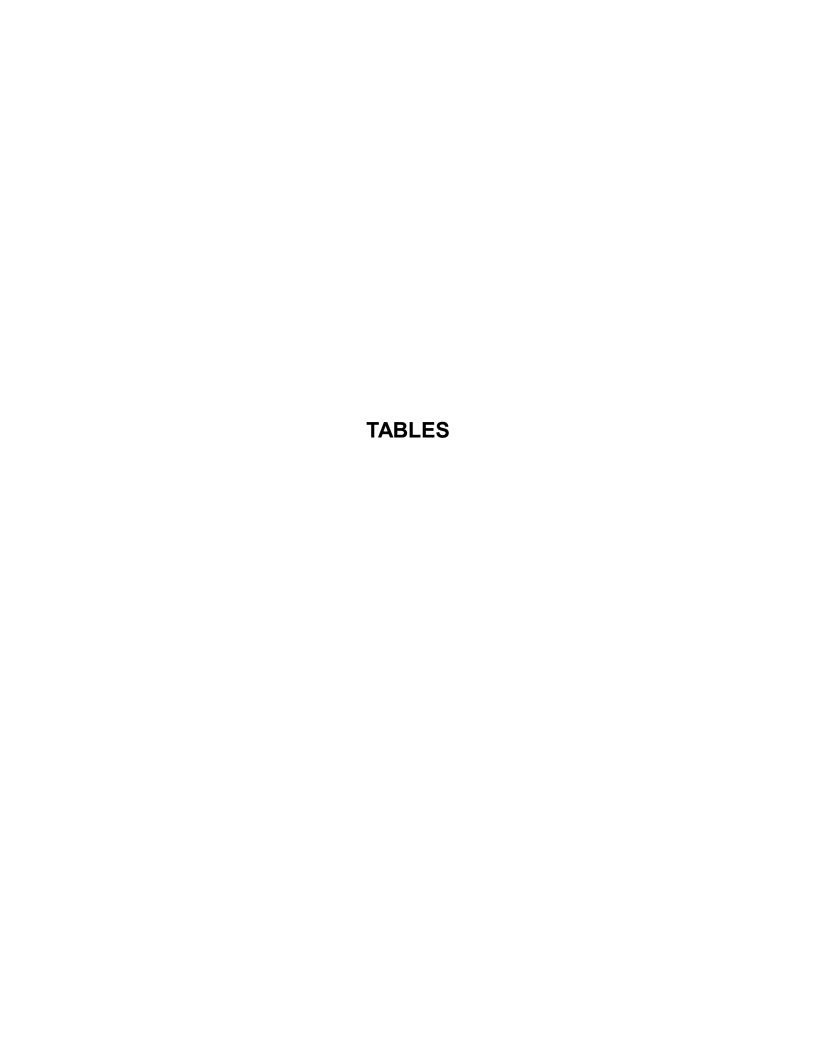
5.0 CONCLUSIONS AND RECOMMENDATIONS

The findings of this investigation are discussed below.

The geophysical investigation identified a possible metallic UST within the proposed NCDOT ROW, measuring approximately 4 feet long and buried at a depth of approximately 2.3 feet bls. Surface features such as a vent pipe or fill port were not observed in

Preliminary Site Assessment – I-5986B

Parcel 274 PSH 42 – Robin Hood Oil Company 605 East Main Street, Benson, NC November 21, 2019 Terracon Project No. 70197584



association with the possible UST. The feature could not be confirmed to be a UST, because the probe rod and hand auger encountered refusal at approximately 1 to 1.5 feet bls at the possible UST location.

- Laboratory analysis reported concentrations of BTEX, TPH-GRO, TPH-DRO, TPH, Total Aromatics, and 16 EPA PAHs in multiple soil borings at the site. The detected concentrations of TPH-GRO and TPH-DRO exceed the NCDEQ Action Levels in 605-SB-01 and 605-SB-02.
- The area of contamination appears to be located to the south of the existing pump islands and includes the area to the west of the identified possible UST. An estimated weight and volume of petroleum impacted soil in this area is 233 tons, or 156 cubic yards. This calculation is based on an impacted area of approximately 700 square feet and depths ranging from 4 to 10 feet bls, where evidence of contamination was encountered. The density was estimated at 1.5 tons of soil per cubic yard. The actual amount of impacted soil can only be determined after excavation or by advancing additional borings at the site to further delineate the extents of petroleum impacts.
- Terracon recommends NCDOT provide a copy of the results to the owner and/or operator of the site.
- Terracon recommends NCDOT provide a copy of the results to NCDEQ.
- Terracon does not recommend further assessment of the ROW at this site. However, based on detections of petroleum compounds, impacted soil and groundwater encountered during NCDOT's project should be managed and/or disposed of in accordance with applicable local and State requirements. In addition, construction workers should be alert for potential soil and/or groundwater impacts at the site.

6.0 REFERENCES

NCDOT, 2016. Revised GeoEnvironmental Report for Preliminary Site Assessments. "Hazardous Material Report." August 30, 2016.

Table 1

Summary of PID Field Screening Values

Preliminary Site Assessment

Parcel# 274 PSH 42 - Robin Hood Oil Company

605 East Main Street, Benson, Johnston County, North Carolina

Terracon Project No. 70197584

Boring Depth (feet bls)	605-SB-01	605-SB-02	605-SB-03	605-SB-04	605-SB-05
(0 - 2)	<0.1	<0.1	<0.1	<0.1	<0.1
(3 - 4)	254	<0.1	<0.1	<0.1	<0.1
(4 - 6)	2317	25.8	5.7	66	151
(6 - 8)	3249	2.5	<0.1	<0.1	30.2
(8 - 10)	773	1171	393	233	93.2

Notes:

Field screening was conducted on October 31, 2019 Values shown are given in parts per million (ppm)

PID - Photo-ionization detector

PID was calibrated using 100 ppm isobutylene gas

ft bls - feet below land surface.

Table 2

Summary of Soil Analytical Results

Preliminary Site Assessment Parcel# 274 PSH 42 - Robin Hood Oil Company

605 East Main Street, Benson, Johnston County, North Carolina Terracon Project No. 70197584

Sample ID:	605-SB-01	605-SB-02	605-SB-03	605-SB-04	605-SB-05	NCDEQ Action Level	MSCC Industrial /
Sample Depth (ft bls):	8	9.5	9	4.5	4		Commercial
BTEX (C6 - C9)	<1.5	41.1	<0.49	<1.8	<1.6	NE	NE
GRO (C5 - C10)	69.9	117.9	14.9	17.8	<1.6	50	NE
DRO (C10 - C35)	215.6	188.9	2.4	74.2	68.4	100	NE
TPH (C5 - C35)	285.5	306.8	17.3	92	68.4	NE	NE
Total Aromatics (C10-C35)	11.9	18.5	3.7	138.7	128.1	NE	NE
16 EPA PAHs	<0.47	0.71	<0.16	5.3	4.9	NE	NE
ВаР	< 0.059	<0.021	<0.02	<0.07	<0.066	NE	0.78

Notes:

Soil samples were collected on October 31, 2019.

Detected compounds are shown in the table.

Concentrations are reported in milligrams per kilogram (mg/kg).

ft bls - feet below land surface.

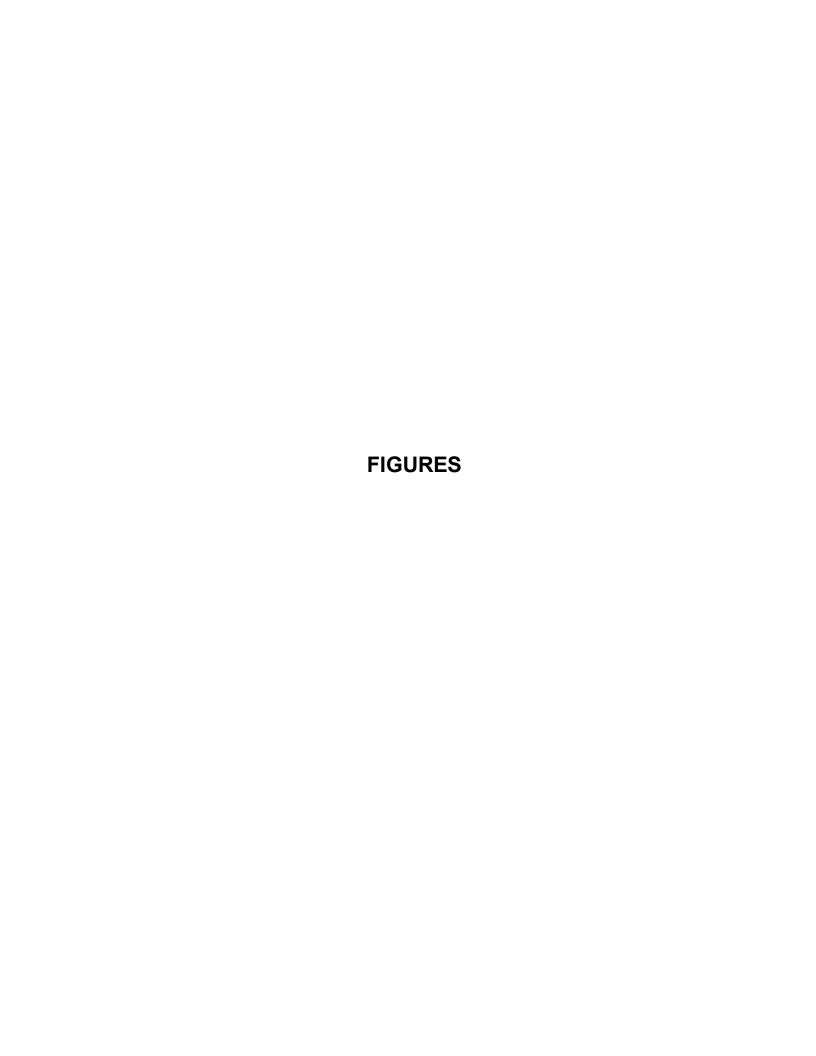
GRO - Gasoline Range Organics.

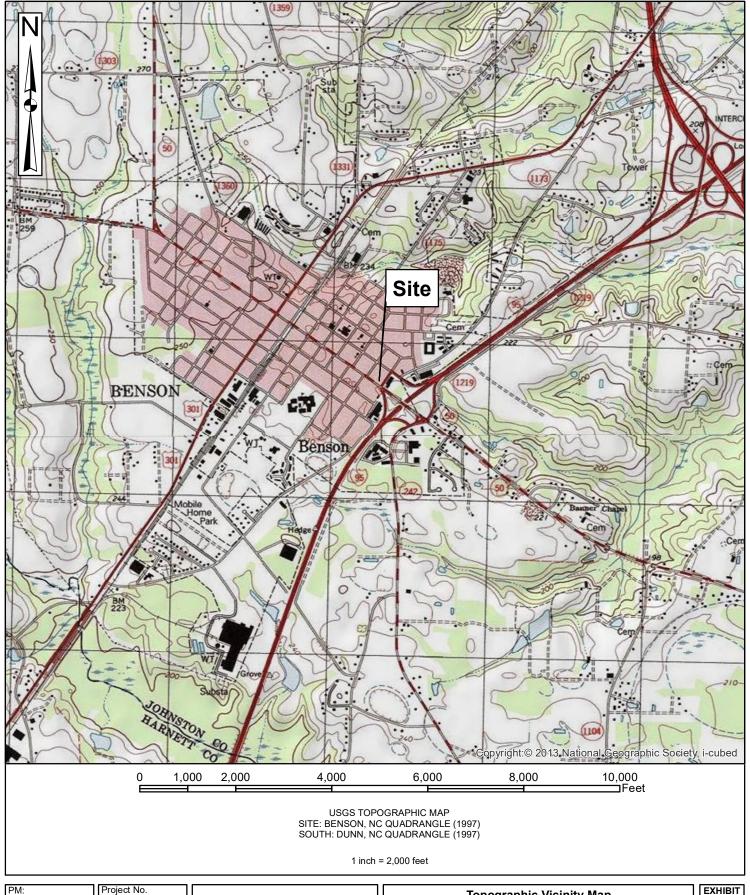
DRO - Diesel Range Organics.

TPH - Total Petroleum Hydrocarbons.

BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes.

16 EPA PAHs - Environmental Protection Agency Polycyclic Aromatic Hydrocarbons (acenaphthene, acenaphthylene, anthracene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[g,h,i]perylene, benzo[a]pyrene,


chrysene, dibenzo[a,h]anthracene, fluoranthene, fluorene, indeno[1,2,3-c,d]pyrene, naphthalene, phenanthrene, pyrene).


NE - Standard not established.

Detections shaded in gray exceed the North Carolina Department of Environmental Quality (NCDEQ) Action Level.

MSCC Industrial/Commercial - Maximum Soil Contaminant Concentration Levels Industrial/Commercial soil cleanup levels.

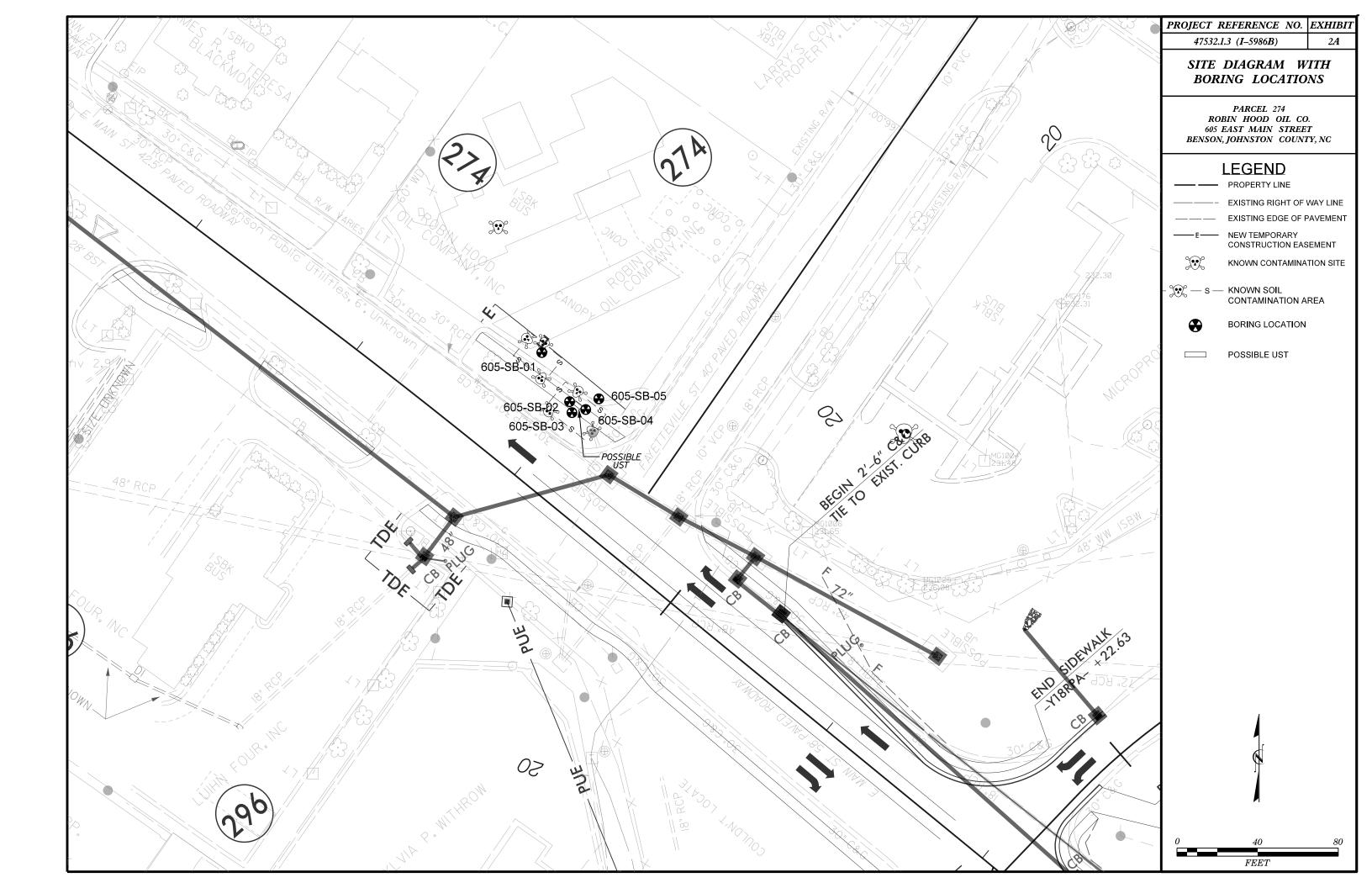
Bold: Constituent concentration reported above the method detection limit.

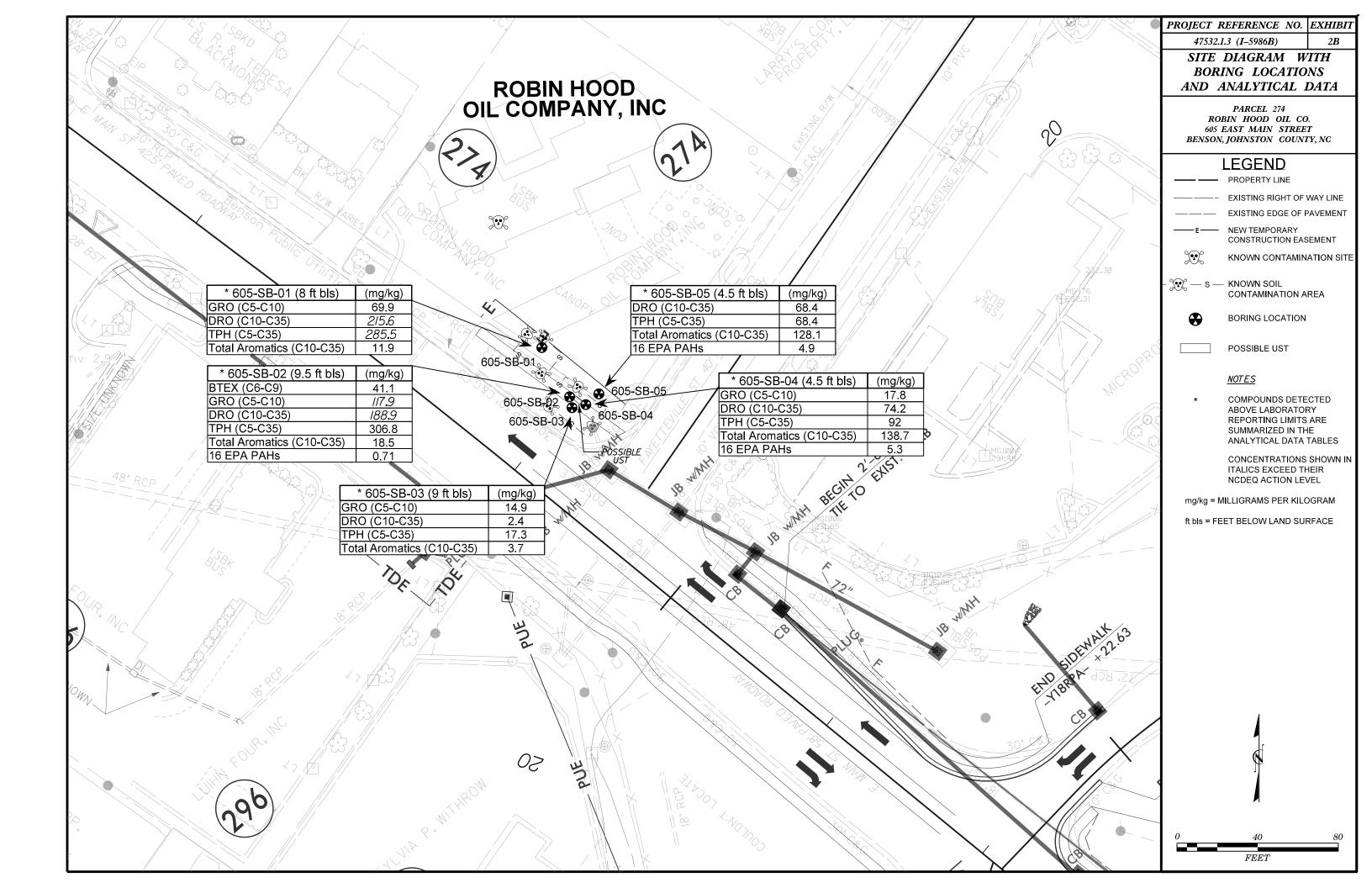
PM:	
	WOF
Drawn By:	
	WOF
Checked By	<i>'</i> :
	MTJ
Approved B	y:
	MTJ

Project No. 70197584 Scale: 1:24,000 Filename: Exhibit 1 - Topo_605 Date:

Nov. 2019

<u>llerracon</u>


2401 Brentwood Drive, Suite 107	Raleigh, NC 27604
Phone: (919) 873-2211	Fax: (919) 873-9555


Topographic Vicinity Map

Preliminary Site Assessment Robin Hood Oil Company 605 East Main Street Benson, North Carolina

EVUIDI	ı
NO.	
	-

1

APPENDIX A GEOPHYSICAL SURVEY REPORT

John Pilipchuk, L.G., P.E.

North Carolina Department of Transportation
GeoEnvironmental Engineering Unit
1589 Mail Service Center
Raleigh, NC 27699-1589

Re: Report for GeoEnvironmental Phase II Site Investigations Locate USTs and Utilities using Geophysical Methods Robin Hood Oil Company 605 East Main Street Benson, Johnston County, North Carolina ID: 35976; TIP: I-5986B; WBS Element No. 47532.1.3

Terracon Project No. 70197584

Dear Mr. Pilipchuk:

On October 28 and 29, 2019, a representative of Terracon Consultants, Inc. (Terracon) performed geophysical exploration services at the above referenced site in general accordance with Terracon Proposal No. P70197584 dated October 1, 2019. This report is presented as a summary of those geophysical services.

1.0 PROJECT DESCRIPTION

Based on the RFP from the NCDOT, PSAs are requested for the Robin Hood Oil Company site, located at 605 East Main Street in Benson, North Carolina. The project consisted of the exploration of an approximately 3,150 square-foot area of the existing right-of-way (ROW) of the existing gas station. The purpose of the geophysical exploration was to aid in identifying anomalies consistent with Underground Storage Tanks (USTs) utilizing non-intrusive geophysical methods.

2.0 EXPLORATION METHODS

Terracon used a frequency domain electromagnetic profiler (EM) consisting of a Geonics EM-31-SH system with data logger to collect EM data. In general, field data collection followed the procedures referenced in ASTM D6639-18. More information on both the general method and collection procedures can be found in the referenced standard. EM collects soil conductivity in millisiemens per meter (mS/m) and magnetic susceptibility in parts per trillion (ppt).

Terracon Consultants, Inc. 2401 Brentwood Road, Suite 107 Raleigh, NC 27604
P [919] 873 221 F [919] 873 9555 terracon.com

Report for GeoEnvironmental Phase II Site Investigations

NCDOT Project I-5986B – Robin Hood Oil Company ■ Benson, NC November 8, 2019 ■ Terracon Project No. 70197584

Data was collected on a bi-directional grid at approximately 5-foot spacings in both directions. Data was post-processed utilizing trackmaker 31 software engineered by Geomar and Surfer software developed by Golden software.

Additionally, a Ground Penetrating System (GPR) consisting of a 350 MHz antenna and SIR-4000 system made by Geophysical Survey Systems Inc. (GSSI), was utilized to collect GPR data. Data was collected on a bi-directional grid with spacings of approximately 5-feet in both directions. Following the completion of field data collection, data was post-processed utilizing RADAN software engineered by GSSI.

3.0 FINDINGS AND CONCLUSIONS

Terracon reviewed the EM and GPR data collected. Due to interreference from multiple buried utilities and above-ground structures, the anomalies consistent with USTs could not be isolated from the EM data. In general, soil conductivity measurements between -20 to 40 mS/m and magnetic susceptibly measurements between -4 to 4 ppt were considered "background". Measurements outside of these ranges were interpreted to be caused by above or below ground anomalies. The depth of EM signal penetration is approximately 9-feet below the existing grade, however, the actual depth is not produced from the data collected.

Upon review of the GPR data, an anomaly consistent with a UST was identified at coordinates 35.3779875 N, -78.5417551 W and approximately 3.25 feet below the existing grade and approximately 4 feet long. GPR is not able to provide accurate information regarding an anomaly's diameter/width. Further details on the location of this anomaly is provided in Appendix A. The depth of GPR signal penetration across the site was approximately 8 feet below the existing grade.

4.0 LIMITATIONS

It should be noted that the process relies on instrument signals to indicate physical conditions in the field. Signal information can be affected by on-site conditions beyond the control of the operator, such as, but not limited to, cultural features, concrete/soil types, concrete/soil moisture, groundwater table depth, and/or reinforcing steel spacing. Interpretation of those signals is based on a combination of known factors combined with the experience of the operator and geophysical scientist evaluating the results. Utilizing conventional observation, sampling, and testing of select areas are recommended to confirm the results from the geophysical surveys. As with all geophysical methods, the geophysical results provide a level of confidence, but should not be considered absolute. We cannot be responsible for the interpretation of geophysical results by others.

Report for GeoEnvironmental Phase II Site Investigations

NCDOT Project I-5986B - Robin Hood Oil Company Benson, NC November 8, 2019 Terracon Project No. 70197584

4.0 CLOSURE

We appreciate the opportunity to work with you on this project. Please do not hesitate to contact the undersigned if you have any questions regarding this information or if we can be of further service to you.

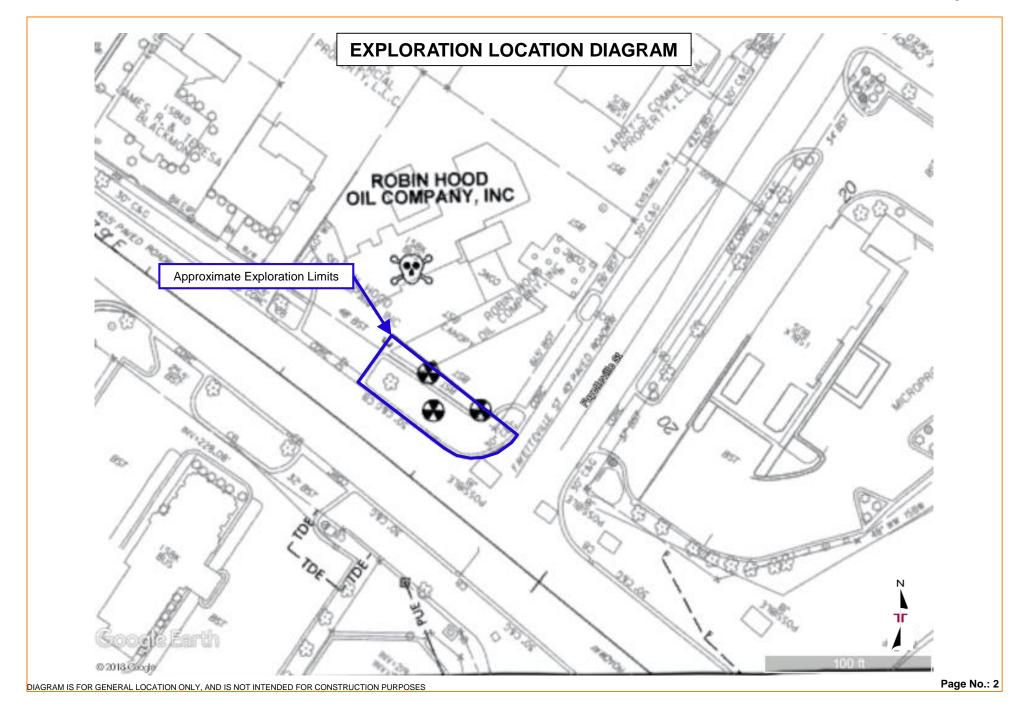
Sincerely,

Terracon Consultants, Inc.

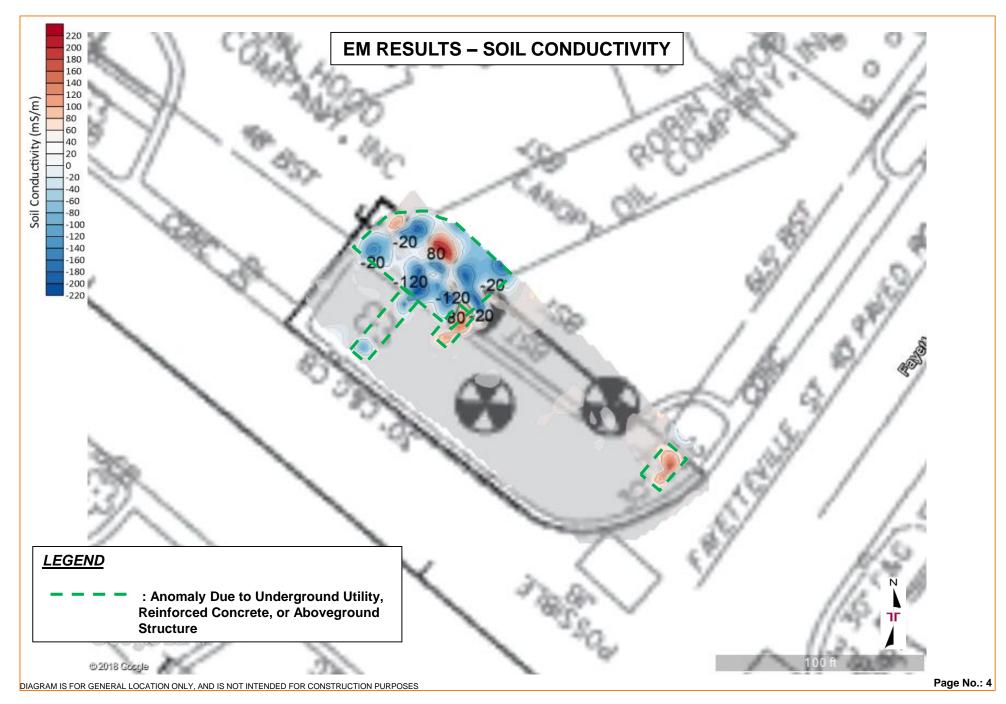
Joshua A. Lopez Geophysicist James D. Hoskins, III, P.E.

Frincipal / Greensboro Office Manager

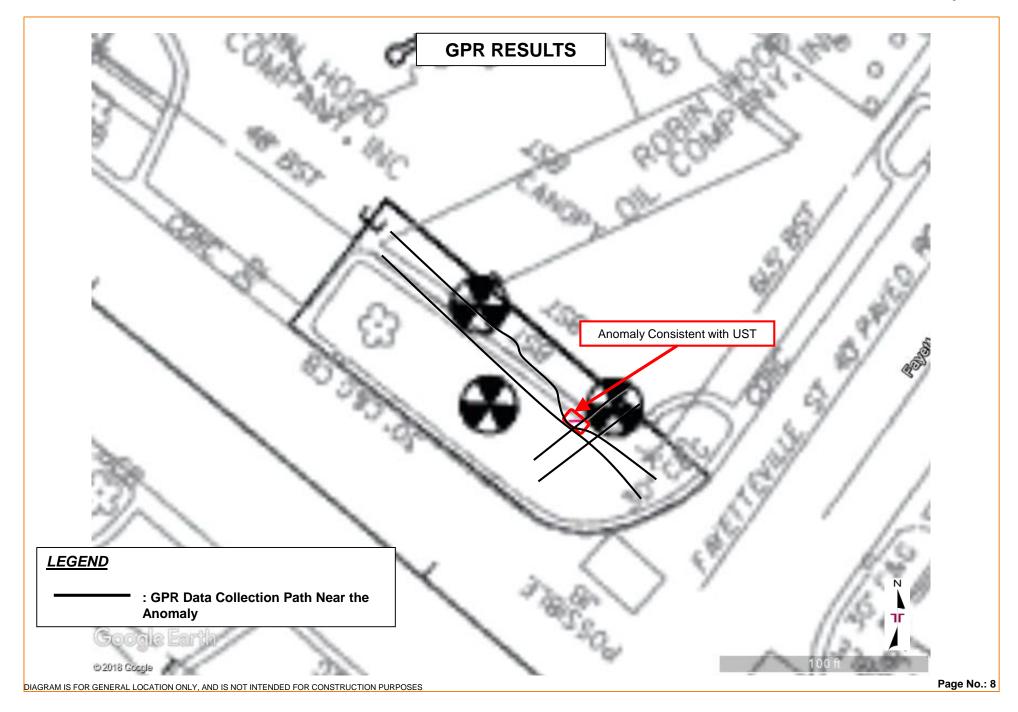
Attachments: Appendix A – Geophysical Exploration Results

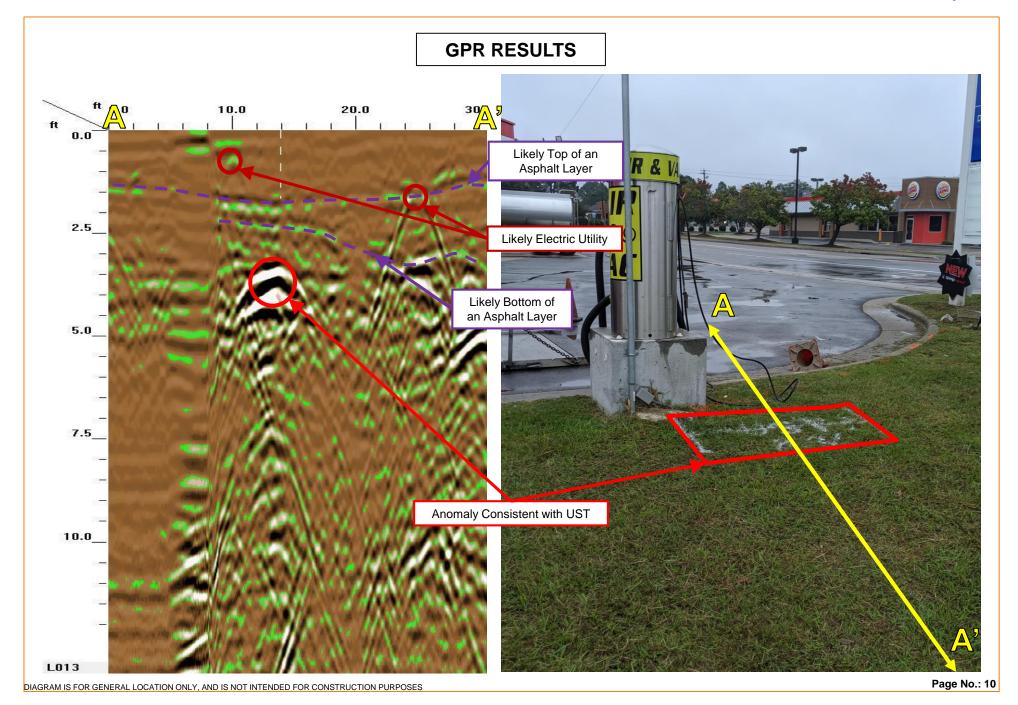

SITE LOCATION

EXPLORATION LOCATION



EXPLORATION LOCATION





APPENDIX B SOIL BORING LOGS

	ВО	RING LOG	NO. 605-SI	B-04				Pag	je 1 of 1
	OJECT: I-95 Interchange Improvement Parcel 274 PSH 42 - Robin Hoo		CLIENT: NCDO Ralei	OT gh, North Carol	ina				
SI	ΓΕ: 605 East Main Street Benson, Johnston County, No.	rth Carolina							
GRAPHIC LOG	LOCATION See Exhibit 2A			DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	OVA/PID (ppm)	SAMPLE SENT TO LAB (ID NUMBER)
	DEPTH MATER FINE SAND (SP), brown, odor not observed, dry	RIAL DESCRIPTION			-0	0)	ır.		
	1.0							<0.1	
	ASPHALT AND AGGREGATE BASE COURSE								
E.GD.	SANDY LEAN CLAY (CL), brown, mild odor obse	erved					41	<0.1	
					1				
					+			66	
				5	-				605-SB-04 (4.5 feet)
	5.5 FINE SAND (SW), with gravel, brown, odors not c	observed, dry			-			<0.1	UVF 12:15
	6.5 LEAN CLAY (CL), gray and orange, moderate od	lor observed between	9 and 10 feet, stiff						
5							60	<0.1	
					1				
					-			233	
	10.0			10					
	Boring Terminated at 10 Feet								
5									
		1:15							
<u> </u>	The stratification lines represent the approximate transition l types; in-situ these transitions may be gradual or may occur								
	ncement Method: nch DPT			Notes: UVF: Ultraviolet fluore	escence				
	donment Method: ing backfilled with bentonite upon completion.								
	WATER LEVEL OBSERVATIONS					$\overline{}$			
	Evidence of groundwater table not observed	Terr	acon	Boring Started: 10-31-2 Drill Rig: GeoProbe 78.				omplete uantex,	ed: 10-31-2019
2	during boring advancement	2401 Brentwo	od Rd, Ste 107	Project No.: 70197584	ועב		pendi:		IIIC.

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY FORMS

Hydrocarbon Analysis Results

Client: TERRACON

Address: 2401 BRENTWOOD ROAD #107

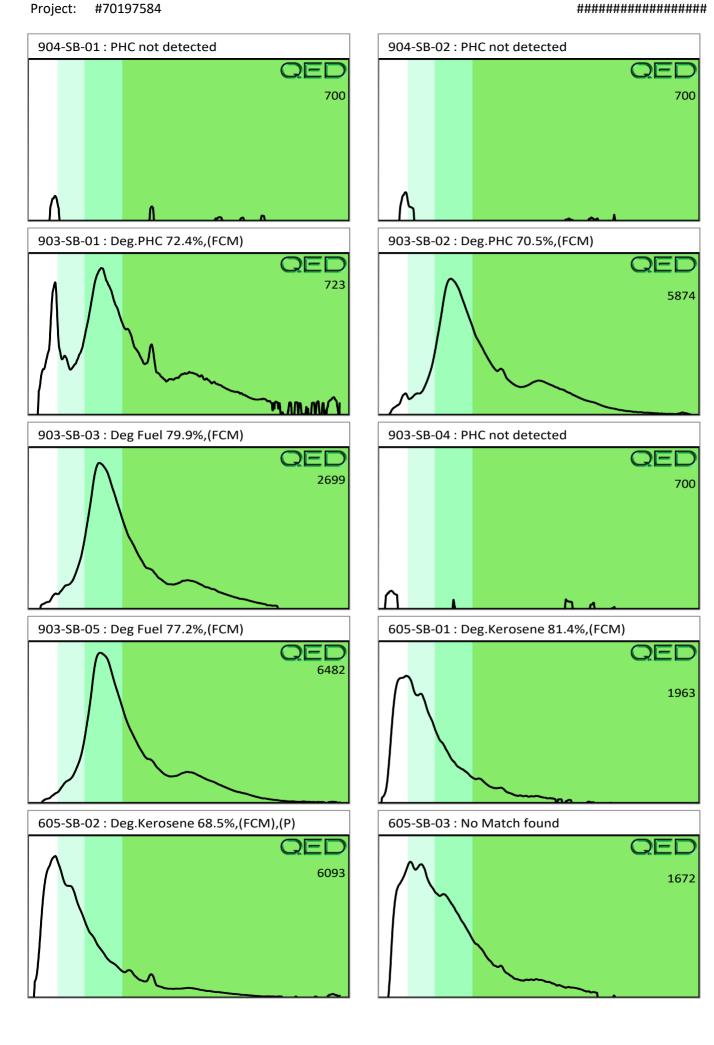
RALEIGH NC

Samples taken Samples extracted Samples analysed Thursday, October 31, 2019 Thursday, October 31, 2019 Friday, November 1, 2019

Contact: WILL FRAZIER Operator MAX MOYER

Project: #70197584

													U00902						
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP	% Ratios		% Ratios		% Ratios		% Ratios		3	HC Fingerprint Match
										C5 - C10	C10 - C18	C18							
S	904-SB-01	21.0	<0.52	<0.52	<0.52	<0.52	<0.1	<0.17	<0.021	0	0	0	PHC not detected						
S	904-SB-02	20.5	<0.51	<0.51	<0.51	<0.51	<0.1	<0.16	< 0.02	0	0	0	PHC not detected						
S	903-SB-01	10.7	< 0.27	1.7	0.27	1.97	0.2	< 0.09	<0.011	96.5	2.4	1.1	Deg.PHC 72.4%,(FCM)						
S	903-SB-02	22.8	<0.57	8.3	3.5	11.8	1.7	<0.18	<0.023	87.5	9.5	3	Deg.PHC 70.5%,(FCM)						
S	903-SB-03	21.8	<0.55	0.97	2.4	3.4	1.4	<0.17	<0.022	66.7	26.9	6.5	Deg Fuel 79.9%,(FCM)						
S	903-SB-04	22.0	<0.55	<0.55	<0.55	<0.55	<0.11	<0.18	<0.022	0	0	0	PHC not detected						
S	903-SB-05	22.4	<0.56	1.7	5.7	7.4	3.6	<0.18	<0.022	57	34	9	Deg Fuel 77.2%,(FCM)						
S	605-SB-01	58.6	<1.5	69.9	215.6	285.5	11.9	<0.47	<0.059	99.7	0.3	0	Deg.Kerosene 81.4%,(FCM)						
S	605-SB-02	21.0	41.1	117.9	188.9	306.8	18.5	0.71	<0.021	99.7	0.2	0.1	Deg.Kerosene 68.5%,(FCM),(P)						
S	605-SB-03	19.5	<0.49	14.9	2.4	17.3	3.7	<0.16	<0.02	98.7	1.1	0.2	No Match found						
	Initial C	alibrator (C chack	OK					Final FO	M OC	Check	OK	101.2 %						


Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Abbreviations: FCM = Results calculated using Fundamental Calibration Mode: % = confidence of hydrocarbon identification: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate detected

B = Blank Drift: (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result: (BO) = Background Organics detected: (OCR) = Outside cal range: (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only.

Data generated by HC-1 Analyser

Hydrocarbon Analysis Results

Client: TERRACON

Address: 2401 BRENTWOOD ROAD #107

RALEIGH NC

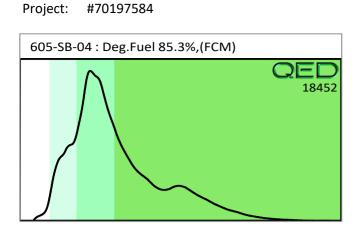
Samples taken Samples extracted Samples analysed Thursday, October 31, 2019 Thursday, October 31, 2019 Friday, November 1, 2019

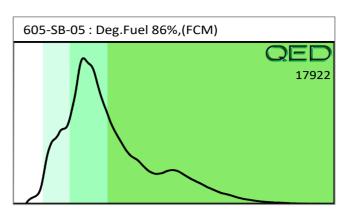
Contact: WILL FRAZIER Operator MAX MOYER

Project: #70197584

													U00902				
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	% Ratios		% Ratios		% Ratios		3	HC Fingerprint Match
										C5 - C10	C10 - C18	C18					
S	605-SB-04	70.1	<1.8	17.8	74.2	92	138.7	5.3	< 0.07	58.5	32.5	9	Deg.Fuel 85.3%,(FCM)				
S	605-SB-05	65.6	<1.6	<1.6	68.4	68.4	128.1	4.9	<0.066	0	77.8	22.2	Deg.Fuel 86%,(FCM)				
	Initia	l Calibrator	QC check	OK					Final FC	M QC	Check	OK	98.9 %				

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations: FCM = Results calculated using Fundamental Calibration Mode: % = confidence of hydrocarbon identification: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate detected


B = Blank Drift: (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result: (BO) = Background Organics detected: (OCR) = Outside cal range: (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only.

Data generated by HC-1 Analyser

######################

559	MA			RAPID ENVIRONMENTAL DIAGNOSTICS	CHAIN OF CUSTODY AND ANALYTICAL	PEOLIEST FORM	NEGOLDI COMO	
Territor Consilants	2401 Prentweed Rd #107	Robergh NC	Will Frazies	7019584 RAPIDE	com	984-202-4059	63	
Client Name:		Address:	Contact:	Project Ref.:	Email:	Phone #:	Collected by:	collected by:

Each sample will be analyzed for BTEX, GRO, DRO, TPH, PAH total aromatics and BaP

noito lle o el en	TAT Reguested		9 0 0 0		Sample ID		Total Wt.	Tare Wt.	Sample Wt.	
Sample Collection	24 Hour 48 Hour	5	Initials				ht5	45.0	12.4	
Date/ IIIIc	7	3	100t	904-50-01			577	45.0	12.7	
10/31/14 01		3		904-58-02			585	1.5h	13.1	
, 00 4E		3		903 - 58-01			56.6	2.5h	1.4	
1000	7	3	,	0			56.9	45.0	5.	
and a second	7	ý	\neg	903-50-03			56.8	0.5h	8	
5201	7	2	NOF	903-58-04			995	45.0	9.11	
1040	7	0	Sort	903-512-05			1.65	1.54	4,0	_
1245		0	mot	605-50-01			57.5	45.1	17.4	
11 50	7	Z	WOF	605-56-06			584	45.1	13.3	_
2000	2	1	CUOF	605-5B-03			86.9	45.2	+:=	_
20.00		0	FOW	605.58-04			573	8.44	5.71	_
127	7	1	Tour	605-88-60						_
2/-1										_
							,			T
										T
,										T
						The state of the s			**	T
										T
								RED Lab USE ONLY	ONLY	
Comments:								1		
			2	John /Time	Accepted by	Date/Time			<u> </u>	
Reli	Relinquished by		16 C	505	MM (1/1/19	1150			\ h	
Reli	Relinguished by		1 1	ne	Accepted by	Date/Time			\	
	-									